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Editorial: Optimization and data-driven approaches for energy storage-based demand response to achieve power system flexibility


INTRODUCTION
In recent years, with the widespread adoption of distributed renewable energy and electric vehicles, the power grid faces new challenges in ensuring stable and sustainable development. Concurrently, insufficient local consumption resulting from distributed generation also impacts the power grid’s safe operation. In this context, energy storage, electric vehicles and demand response play an important role by promoting flexible grid operation and low-carbon transition. In comparison to traditional loads, flexible loads can be efficiently managed through demand response to optimize consumption patterns to meet grid needs. Therefore, the collaborative dispatching of multi-modal energy storage integration technologies, such as batteries, pumped hydro storage, hydrogen storage, and distributed generators, alongside diverse demand-side flexible resources like flexible loads and electric vehicles, holds significant importance. The coordinated optimization of these distributed resources can effectively address the intermittency of variable renewable energies (VERs), encourage the adoption of flexible loads, and enhance the overall adaptability and carbon emission reduction efforts of the power system.
This Research Topic cover latest research in the areas of energy storage system optimization and control, demand response and load management, new power system scheduling, power system security defense and restoration, energy market and trading, and application of machine learning. A summary of the contribution of this research is presented as follows.
For energy storage system optimization and control, Yixi et al. Focus on the lack of flexibility of energy-intensive industrial and mining loads in stand-alone microgrids. This study quantifies the regulation potential of lithium mining loads, combines the regulation boundaries of photovoltaics, gas turbines and energy storage, and constructs a capacity optimization model for industrial and mining loads and energy storage (ES), which improves the capacity of new energy consumption while guaranteeing the balance of power and the electricity demand of energy-intensive loads. On this basis, Wang et al. further deepen the energy storage optimization problem, focusing on considering the coupling effect of storage life and charging/discharging strategy, using the rainflow counting method to establish a life loss model for lithium iron phosphate batteries, to realize the accurate configuration of multi-user shared storage. To address the dynamic stability challenges of grid-connected renewable energy, Yang et al. developed a synergistic control strategy for the power density virtual energy storage (PDVES) model and the energy density virtual energy storage (EDVES) model. The strategy equates wind power, photovoltaic (PV) and electric vehicle (EV) as virtual energy storage units, and constructs a microgrid energy regulation framework to improve the energy regulation and dynamic stability control performance of microgrids.
For demand response and load management, a number of studies focus on demand response modelling, scheduling and optimization strategies. Zhou et al. study the load characteristics of urban grids through IoT technology. On this basis, they comprehensively analyze the impact of IoT-based load control technologies and market maturity differences on load control, providing technical support for relevant carbon emission scenarios. Qian et al. build a demand response model for fused magnesium load (FML), combining principal component analysis and clustering algorithms to generate a set of low-conservative scenarios with spatial and temporal correlation uncertainty. Afterwards, they develop a two-stage robust optimization framework to reduce the cost of day-ahead scheduling and enhance the capacity of renewable energy consumption. Feng et al. optimize the energy storage allocation and grid expansion scenarios by decomposing and reconstructing the model, and assess the impact of the demand response credibility on the planning of a low-carbon power system to optimize the economy and carbon emissions. On the user side, Yang et al. consider the demand-side controllable loads as dispatchable resources, propose a tiered pricing mechanism, and reduce the punitive cost by constructing a stackelberg game model, which improves the user’s participation in demand response. Wang et al. model the energy interaction problem between distribution system protocols as a Nash bargaining problem and combine it with the augmented ADMM algorithm to protect privacy. This approach reduces regional operating costs and facilitates the integration of renewable energy sources. Xing et al. select an integrated load model using PMU voltage data as input and refine the initialization process based on good point sets to mitigate the effect of local maxima. By using an improved dung beetle optimization algorithm, this method improves the accuracy of load model parameter identification.
For new power system scheduling, Gong et al. propose an active optimization scheduling model for the distribution network by considering the regulation capacity, and a fast solution method is designed herein to formulate the priority control order of the adjustable units. In view of the dual uncertainty of renewable energy output and demand response, Zhang et al. design a multi-source uncertainty quantification framework based on cloud modelling theory, taking into account both the uncertainty of renewable energy and demand response, and its effectiveness and superiority is verified in a typical case of IEEE 33 nodes. To extend the multi-energy synergy scenario, Zhou et al. proposed a distributed optimization method for electro-thermal-hydrogen systems based on the alternating direction multiplier method (ADMM). The method accurately models the power-to-hydrogen (P2H) conversion process in an electrolyzer, and comprehensively investigates the impact of microgrid connection topology on the total operating cost. Finally, Tan et al. focus on the key challenges in the field of large-scale scheduling of heterogeneous elastic resources, and propose a two-layer asynchronous optimization model, which reduces the computational complexity through the decomposition-coordination mechanism, and provides theoretical support for real-time co-optimization of multiple types of energy storage and loads.
For power system security defense and restoration, the following three studies propose innovative solutions from different perspectives. Wang et al. focus on building a hardware-in-the-loop co-simulation platform based on RT-LAB and OPNET. This research verifies the effectiveness of the platform in analyzing the impact of network attacks on the power system in real time through DDOS attack and intermediate node attack scenarios in the communication network, which provides an experimental basis for the formulation of smart grid security strategies. Wang et al. propose a defense strategy that combines Petri net modelling with mobile energy storage pre-layout. This method first assesses system vulnerability by integrating historical attack data, and then simulates and verifies the effectiveness of the proposed planning strategy in a 33-node system using the Columns and Constraints Generation (C&CG) algorithm. Zhang et al., on the other hand, address the uncertainties introduced by renewable energy sources and controllable loads by designing a Deep Reinforcement Learning (DRL)-based Soft Actor-Critic algorithm (Soft Actor-Critic, SAC). Based on this, combined with an improved Markov decision process model, it achieves fast recovery of system frequency and minimization of dispatch cost of controllable loads, and effectively solves the source load uncertainty problem exacerbated by faulty power shortage.
For energy market and trading, Li et al. propose an integrated energy system model to address the existing deficiencies in the coupled electricity-carbon market. Combined with the baseline carbon emission quota allocation method and the actual emission data of gas equipment, an improved carbon trading mechanism is designed to achieve the low-carbon operation of the system, and the numerical case verifies its effectiveness in reducing carbon emissions and improving energy efficiency. Yan et al. on the other hand, put forward a two-tier gaming framework, by integrating the carbon emission flow theory to construct a comprehensive energy carbon pricing mechanism, which encourages virtual power plants (VPPs) to dynamically adjust their trading strategies in a multi-energy system. Case studies show that this strategy can effectively promote multi-initiative co-optimization for emission reductions and the economics of energy trading. Moreover, in response to the irregular relationship between the dynamic service scope of charging stations (CSs) and the real-time charging price, Yang et al. propose a dynamic service field strength (SFS) model to optimize charging station service range delineation and real-time pricing, and validate its effectiveness in reducing the regional power bias and improving the operator’s revenue.
For application of machine learning, Xiong et al. embed Kalman filtering and sparse self-encoder into the Transformer framework, which is capable of realizing dynamic noise suppression and multidimensional feature extraction, providing a new solution for battery state prediction in high volatility scenarios. Wang et al. correct the numerical weather prediction (NWP) wind speed error through ResNet-GRU network and optimize the parameters of CNN-LSTM model by combining with Keplerian Optimization Algorithm (KOA), which effectively improves the accuracy of short-term wind power prediction. Aiming at the PV uncertainty modelling, Deng et al. propose a StyleGAN framework incorporating meteorological physical constraints to generate diversified year-round weather scenarios with spatio-temporal correlation. This study provides a high-fidelity experimental data base for PV planning and risk assessment under extreme weather. Moreover, Wang et al. and Zhang et al. also introduce machine learning methods into power system security defense and restoration, and Zhao et al. focus on the financial management and leverage the advantages of deep learning to capture complex patterns and dependencies in financial time series data.
In addition to the above topics, Chen et al. propose a control strategy with a current hysteresis loop to address the issues of high inductance current ripple in photovoltaic systems and achieve real-time duty cycle regulation, which provides reference for the follow-up studies on the control of renewable energy and energy storage.
In summary, due to the limit of time, there could be many related works that could not be collected in this Research Topic. We look forward to keep following Frontiers in Energy Research, especially with a focus on the Research Topic of energy storage-based demand response.
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With the rapid construction of charging stations (CSs), charging station operators need to enhance their core competitiveness by precisely planning their service areas and formulating reasonable and effective pricing strategies. However, the regional competition among multiple charging station operators is generally ignored. In the traditional model, the service scope of CSs appears as regular circles, which is inconsistent with the market distribution law. In response to the irregular relationship between the dynamic service scope of CSs and the real-time charging price, a charging station service scope (CSSS) model is proposed by introducing the variable service field strength (SFS). First, the competitiveness of CSs is evaluated quantitatively, and the SFS of CSs is defined to describe the service scope of CSs by the strongest occupation method. Second, the impact of the charging price on the charging demand is analyzed based on the CSSS division model. In addition, the revenue of charging station operators and the stability of the power grid are considered to establish a real-time pricing optimization model. Finally, the numerical simulation is operated in Furong District of Changsha. It is shown that the proposed method effectively achieves more profits for charging stations and decreases the average power deviation of the whole region.

Keywords: charging stations, service field strength, service scope, real-time pricing strategy, strongest occupation method

1 INTRODUCTION
The electric vehicle (EV) market has experienced rapid growth since the latter half of 2020. The global sales of EVs exceeded 10 million units in 2022, and it is expected to exceed 70 million units by 2030. EVs have a penetration rate of up to 79.3% in Norway, ranking first in the world. Sweden ranks second globally, with EVs accounting for 32.1%. In addition, China ranks third in the world, with EVs accounting for 19.9% (ITF, 2022; Liu, 2022). As the public infrastructure of power supply, charging facilities play a critical role in the promotion of EVs. The China Electric Vehicle Charging Infrastructure Promotion Alliance (EVCIPA) released that the charging infrastructure increased up to 2.593 million units in 2022, increasing by 225.5% year-on-year (China News Network, 2023), which reflects the fierce competition in the charging station (CS) industry. In addition, the service scope could be expanded by various parameters, such as advanced charging piles, large contracts, and low-cost charging prices (CPs) (Liu et al., 2019; Yang et al., 2022; Zhou et al., 2023a). Thus, it is necessary to propose the precise division of service scope and reasonable pricing strategies to enhance the core competence among charging station operators.
The service scope of CSs reflects the market competitiveness of CSs directly, which is important for its operators to analyze the market situation (Chen et al., 2019a; Wang et al., 2019). However, recent works seldom discuss the service scope of CSs. Their service scope research is mainly in target with airports (Anna et al., 2019), logistics parks (Wu et al., 2016), and urban economic zones (Dai, 2018). Notably, an inevitable market competition exists among multiple CSs in the region (Li et al., 2023a), and this competition also leads to an uneven market distribution. At present, most present facility planning methods are based on the Wilson model or breaking point theory by the regularized circle or the weighted Voronoi diagram (Chen et al., 2017; Li et al., 2023b), which can only divide the market area within a fixed range. Unfortunately, the symmetrically distributed shape cannot precisely describe the service scope of CSs in terms of practical reality (Zhou et al., 2023b). Thus, a reasonable service scope of the charging station is inevitably irregular and varies with the relevant parameters. Furthermore, the Isard method, i.e., the strongest occupation method (Wilson, 1972), is used to quantify the attraction strength of CSs and further recognize the service scope in this paper.
The real-time charging price has a great influence on the charging habits of EV users (Chen et al., 2019b; Gong et al., 2020), which further affects the service scope of CSs. An effective charging pricing strategy should aim to achieve four objectives, namely, guiding EV users to charge in an orderly manner, increasing the profits of operators, improving the utilization rate of charging piles, and reducing the load peak–valley difference (Yang et al., 2021; Zhou et al., 2022). Considering the willingness of the users (CA et al., 2022; Khan et al., 2022), the demand-side response (Shinde and Shanti, 2018; Lai et al., 2023), and the complex time-varying relationship between the charging price and charging demand (Wang et al., 2021; Yang et al., 2023), various models have been proposed to formulate a real-time pricing strategy. However, the existing literature often neglects the impact of a dynamic charging price on the market division, resulting in no changes in service scope.
On the basis of the abovementioned work, this paper studies the service scope division and real-time pricing strategy of CSs based on the Isard method. First, an evaluation index system is established to quantitatively evaluate the comprehensive strength of CSs. Then, the charging station service scope (CSSS) model with the service field strength of CSs is built based on the Isard method. Second, the impact of the charging price on the charging demand is analyzed based on the initial CSSS division. Third, a dynamic charging price strategy is proposed considering the profit of the CSs and the auxiliary service of the power grid. Finally, the relationship between the charging price and the service scope is analyzed in a real-world scenario to provide reasonable pricing suggestions for CS operators. It is significant for enhancing the operational efficiency of CSs and promoting the healthy development of charging infrastructure. The contributions of this paper are as follows.
	1) The CSSS division model is built to describe the dynamic service scope of CSs.
	2) The impact of the charging price on the charging demand is analyzed based on the charging station service scope.
	3) The real-time charging price is formulated via multi-objective optimization with the goals of increasing operator revenue and decreasing power deviation to modify the charging station service scope.

The rest of this paper is organized as follows: Section 2 defines the service field strength (SFS) and builds the CSSS division model based on the Isard method; Section 3 shows the impact of the charging price on the charging demand; Section 4 establishes a real-time pricing optimization model with multi-objectives including the power deviation rate and the operator profitability; the case study and conclusion are presented in Section 5 and 6, respectively.
2 SFS AND CSSS DIVISION MODEL BASED ON THE STRONGEST OCCUPATION METHOD
2.1 Comprehensive strength of CSs
The CSSS is closely related to its comprehensive strength. The evaluation index system for the comprehensive strength of CSs is shown in Figure 1, mainly including the contract capacity of CSs, the number of fast/slow charging piles, service fees, and charging prices.
[image: Flowchart illustrating the evaluation process for charging stations (CS). Positive indicators include contract capacity, number of fast and slow charging piles. Negative indicators are charging price and service fee. These factors are assessed using the entropy method to determine the weight of each indicator, leading to the comprehensive strength evaluation of each charging station.]FIGURE 1 | Charging station evaluation index system.
In Figure 1, the contract capacity and the number of fast/slow charging piles are positive factors. The higher the value of these factors, the stronger the comprehensive strength Cn of CSs. It also indicates a stronger attraction to the surrounding demand area, where more users are willing to go to CSn for charging, resulting in a larger service scope Sn. Conversely, the charging price and service fees are negative factors. The higher the value, the smaller the CSSS.
The evaluation indicators are standardized by the extreme value method as follows. The positive and negative indicators are standardized, as shown in Eqs 1, 2, respectively:
[image: Equation showing \( T_{\text{nij}} \) equals \(( T_{\text{n\_ij}} - T_{\text{min\_j}} ) / ( T_{\text{max\_j}} - T_{\text{min\_j}} )\), labeled as equation one.]
[image: Equation for \( T_{n,i,j} \) is shown as \((T_{\text{min},j} - T_{n,j}) / (T_{\text{max},j} - T_{\text{min},j})\), labeled as equation (2).]
where Tn.i is the original value of index i of CSn and Tmax.i and Tmin.i represent the maximum and minimum values of index i, respectively.
The contribution of CSn is calculated with index i, as shown in Eq. 3:
[image: The mathematical equation shows \( p_{n,i} = \frac{T_{n,i}}{\sum_{i=1}^{N} T_{n,i}} \) followed by the reference number (3).]
where pn.i is the contribution of CSn with index i and N is the number of CSs.
The entropy of index i is calculated as shown in Eq. 4:
[image: Mathematical expression for entropy: \( e_x = -\frac{1}{\ln N} \sum_{i=1}^{N} p_{xi} \ln(p_{xi}) \), labeled equation 4.]
The evaluation index weight of CSs could be obtained as shown in Eq. 5:
[image: The equation shows \( \gamma_i = \frac{g_i}{\sum_{i=1}^{N} g_i} \), labeled as equation (5).]
[image: It seems the content you provided is a mathematical equation rather than an image. The equation states: \( g_i = 1 - e_i \). If you have an image to describe, please upload it or provide a URL.]
where γi is the weight of index i and gi and ei are the coefficients of difference and entropy, respectively.
Then, the comprehensive strength of CSn could be quantified as shown in Eq. 7:
[image: Equation showing summation: \( C_n = \sum_{i=1}^{5} c_i \frac{T_{ni}}{T_{\text{maxi}}} \), labeled as equation (7).]
where Cn represents the comprehensive strength of CSn and ci indicates the correlation coefficient. ci = 1 when γi is positive, and ci = −1 if γi is negative.
2.2 Definition of SFS
The formula of the point charge field strength is obtained by Eq. 8:
[image: The formula \( E_e = k \frac{q_e}{r_e^2} \) is labeled as equation (8).]
where Ee represents the point charging field strength, ke is the electrostatic force constant with the unit N·m2/C2, qe is the charge electric quantity, and re indicates the distance between the center and charge.
Analogous to the electrostatic field generated by a point charge, the attraction of CSs to the surrounding area will not change abruptly, in accordance with the characteristics of the typical non-rotating scattered field. According to the Helmholtz theorem, the function of the non-rotating scattered field is always inversely proportional to the distance vector R2. Therefore, the SFS of the CSSS, akin to the electric field strength of a point charge, is defined to quantify the attraction strength of CSs to the surrounding charging demand areas (CDAs).
It is assumed that a certain area is divided into K small grid areas with a certain precision, which is defined as CDAs. Taking CSn as the center, SFS En.k of CSn for CDAk is defined considerating the average distance and the comprehensive strength, which is obtained by Eq. 9:
[image: The equation shown is \( E_{n,k} = k_c \frac{C_n}{r_{n,k}^k} \), labeled as equation (9).]
where kc is the service constant and rn.k represents the distance between CSn and CADk, which can be calculated by the longitude and latitude.
The Wilson model is appropriate for studying spatial interactions (Zhang et al., 2010). Thus, the charging service capacity ratio of CSn to CDAk can be described as shown in Eq. 10:
[image: The image shows the formula: \( T_{n,k} = K C_n D_k e^{n f_k} \), labeled as equation (10).]
where K represents the normalization factor, describing the regional difference of the CSs and the demand area. K = 1 when the regional difference is ignored. Dk indicates the total charging demand in CDAk. β is the attenuation factor, determining the speed of service attenuation.
Combined with the electrostatic force constant ke, and assuming each CS has the same service constant, kc is derived as follows:
[image: The equation for \( k_c \) is given as the product of \( K C_{\text{ave}} D_{\text{ave}} e^{\beta r_{\text{ave}}^2} \) divided by \( C_{\text{ave}}^2 \), numbered as equation (11).]
[image: The image shows a mathematical formula for beta: beta equals the square root of two N divided by f sub max S sub acoustic sub ref, with the equation labeled as twelve.]
where Cave is the average comprehensive strength of all CSs, Dave represents the average demand of all demand areas, and rave is the average distance between the CSs and demand areas. Calculated using Statistical Product and Service Solutions (SPSS) software, tmax represents the number of CSs with a comprehensive score greater than 0. Save_n represents the average area of each CS served.
2.3 CSSS division model
In the two-dimensional space, a facility or an enterprise is attractive to the users within a certain range of its surroundings, catering to their needs and preferences. Similarly, as the charging service provider, the CSs act as the central hub, offering charging service to electric vehicle users in their vicinity. Then, CSSS, defined as the geographical spatial distribution range of electric vehicle users who receive charging services from that CS, is usually of an irregular shape, as shown in Figure 2. Notably, the dotted line represents the SFS emitted by CSs, and the CSs are attractive to EVs at the same time.
[image: Diagram showing three service facilities (CS1, CS2, CS3) with respective service facility scopes (SFS). Each scope is represented by colored paths with icon cars indicating service routes crossing a service scope boundary line.]FIGURE 2 | Charging station service scope diagram.
Any CSn will attract the CDAs, resulting in a CSSS that is constrained by the parameters of the surrounding CS and itself. According to the strongest occupation method proposed by Isard, if SFS En.k of CSn to the demand area k is larger than SFS Em.k of other CSm, the demand area k is identified as the CSSS of CSn, as shown in Eq. 13:
[image: Mathematical expression showing a set \( S_n = \{S \mid E_{n,k} \geq E_{m,k}, m = 1, \ldots, N (m \neq n)\} \), labeled equation 13.]
where Sn represents the CSSS of CSn and the demand area k is defined as the market demand area. Eq. 13 indicates that among all CSs, CSn has the greatest attraction to the demand area k, and the demand area k belongs to the CSSS of CSn.
3 CSSS-BASED CHARGING DEMAND
The initial CSSS [image: \( S^* = (S^*_1, S^*_2, \ldots, S^*_N) \) represents a sequence of elements labeled from one to N, each with an asterisk indicating a specific or optimal value.] is obtained from Eq. 13. Ignoring the difference between areas, the initial charging demand proportion is determined by the CSSS. In addition, the initial charging demand proportion is shown in Eq. 14.
[image: The formula shows \(\lambda_{n,t} = \frac{S_n^*}{\sum_{n=1}^{N} S_n^*}\) labeled as equation (14).]
The charging demand of CSn is jointly affected by its own charging price and the price of other CSs, as shown in Eq. 15. The charging demand is a negative correlation function of its own price. As the charging price increases, the charging demand for CSn decreases and shifts to other CSs in the area, which results in the CSSS reduction in CSn and the CSSS increase in other CSs.
[image: Mathematical equation with variables and constants: \(q_{n,t} = \lambda_{n,t} q_{c,v,t} - k_{p,n} \left( \frac{P_{n,t} - P_{r,t}}{P_{r,t}} \right) + k_{n,v,n} \left( \sum_{m=1, m \neq n}^{N-1} C'_{m} P_{m,t} \right) \frac{P_{t}}{P_{r,t}} - P_{r,t}\). Equation number (15).]
where [image: The text "q_sub_ev,t" is in italic font.] represents the predicted value of the day-ahead charging load at time t. kp.n is the influence parameter of the policy price difference between the CS price and policy price on the charging demand. In addition, kav.n indicates the influence parameter of the charging price difference between CSn and other CSs. Pn,t represents the charging price of CSn at time t, and Pr.t represents the policy electricity price at time t, satisfying the peak–valley–flat electricity price. Cm* is the ratio of the comprehensive strength of CSm to the sum of all CSs.
The income of CSs in a day is shown in Eq. 16.
[image: The formula represents \( E_n = \sum_{t=1}^{96} P_{n,t} \cdot q_{n,t} \), labeled as equation (16).]
where En is the income of CSn in a day.
The proof of the existence and uniqueness of the Nash equilibrium of the proposed model is given in Appendix A.
4 CSSS-BASED REAL-TIME PRICING OPTIMIZATION MODEL
4.1 Pricing optimization model
In a scenario of a perfectly competitive market, it is assumed there are N CSs with different sizes, which belong to H different operators, H ≤ N. All charging loads are evenly distributed throughout the area; users will only choose one of the N CSs to charge when needed.
A multi-objective real-time pricing model is established considering the profit rate and power deviation rate. The objective is optimized by maximizing the total profit rate of all CSs and minimizing the power deviation rate, as shown in Eq. 17.
[image: Max E equals max of omega L times E sub j plus L plus omega K times E sub j minus K, as shown in equation seventeen.]
[image: Equation depicting \( E_{p,int} = \sum_{t=1}^{T} \sum_{n=1}^{N} \frac{P_{n,t} - (P_c + P_{net})}{P_{r,t}} \), labeled as equation (18).]
[image: Mathematical equation showing the expression for \(E_{p-\beta}\). It is the summation from \(t=1\) to \(T\) of \(\frac{\Delta P_{t} - \left(\sum_{n=1}^{N} q_{\text{net}} - q_{\text{ext}}\right)}{\Delta P_{t}}\). The equation is labeled (19a).]
[image: I'm unable to view images. However, based on the text provided, it appears to be a mathematical formula. Here's a possible description based on the context:  The formula represents a pressure difference, denoted as delta P, calculated by adding P_wf and P_lf, then subtracting P_uf and P_if, labeled (20a).]
where Ep_lr and Ep_pc represent the profit rates of the CS and the reduced power deviation rate, respectively. ωn and ωab represent the weights of the above two, respectively. Pe and Pn.w are the electricity purchasing cost and the operation and maintenance cost of the CS, respectively. ΔPt is the power deviation between the real-time output of renewable energy and the day-ahead forecast. PW.t and Pw.t are the real-time and day-ahead wind power output, respectively. PL.t and Pl.t are the real-time and day-ahead photovoltaic outputs, respectively. If ΔPt >0, indicating that the real-time output of wind power and photovoltaic at time t is greater than the predicted output, it is necessary to guide users to charge and increase the charging load to absorb the excess wind and photovoltaic power. Otherwise, if ΔPt <0, indicating that the real-time output of wind and photovoltaic power at time t is less than the day-ahead predicted output, users need to be encouraged to reduce the charging load.
The constraints of optimization model are as follows:
Market demand constraint
[image: It seems there might have been an error in your request, as I cannot view or understand the image you are referring to. Please upload the image or provide a direct URL so I can help you generate appropriate alt text.]
Eq. 21 implies that the charging demand of the CS does not exceed the predicted charging load.
Charging load constraint
[image: Inequality equation with summation: \(\xi_{q_{evl}} \leq \sum_{{n=1}}^{N} q_{n,t} \leq \xi_{q_{evts}}\). Equation labeled as 19b.]
where ξl and ξh represent the lower and upper limit coefficients, respectively, which means that the sum of the charging demand should not exceed a certain range of the day-ahead charging load.
Charging price constraint
[image: The mathematical inequality shows \( P_{m} (1 - \phi) \leq P_{n} \leq P_{m} (1 + \phi) \), labeled as equation \( (20b) \).]
where φl and φh represent lower and upper limits of the charging price, respectively.
4.2 Relationship between CSSS and real-time pricing
The basic idea of a real-time pricing optimization model based on CSSS is shown in Figure 3. First, the initial CSSS was obtained by the strongest occupation method. Then, based on the pricing optimization model, the charging station operator obtains the real-time charging price of charging stations, which affects the initial CSSS, and further develops into the real-time CSSS.
[image: Flowchart depicting a process for real-time pricing optimization. It begins with calculating comprehensive strength to determine Initial CSSS, modified by service scope, which then feeds into real-time CSSS distribution. Initial charging demand proportion informs charging demand and charging price. These elements influence the real-time pricing optimization, considering profit rate and power deviation.]FIGURE 3 | Real-time pricing optimization model based on charging station service scope (CSSS) and solution flowchart.
The detailed steps of real-time pricing optimization based on CSSS are designed as follows:
	Step 1: The CSSS is calculated
	1) Based on the basic data on CSs and the day-ahead wind power and photovoltaic predicted data, the weight of each index was calculated according to the entropy method, and the real-time output data of wind power and photovoltaic were obtained by adding the power deviation.
	2) The comprehensive strength of CSs was quantitatively evaluated according to Eq. 7, and then SFS En.k of each CS was calculated according to Eq. 9.
	3) According to Eq. 13, the initial CSSS S*n based on the strongest occupation method proposed by Isard was obtained.
	4) The initial charging demand proportion λ was calculated, as shown in Eq. 14.
	5) The relationship between the charging price and charging demand was established, and the CS income model was built, as shown in Eqs 15, 16.
	Step 2: The real-time price is optimized
	1) The multi-objective real-time pricing model with the profit rate and power deviation was built.
	2) A day was divided into 96 time points at a resolution of 15 min, taking 1 h as the operation cycle and optimizing the pricing model using CPLEX. Then, the dynamic charging price of CSs at 96 time points, as well as the optimized profit rate and power deviation rate of each CS, was obtained.
	3) With the real-time change in the dynamic charging price, the comprehensive strength and the SFS of the CS will also change. Finally, the real-time dynamic CSSS at each time was simulated and obtained

5 CASE STUDY
5.1 Basic data
Furong District in Changsha is taken as an example for simulation, and the data on CSs are all obtained from Hunan Economic and Technological Research Institute of the State Grid. Notably, the output data of wind power and photovoltaic are for the total province. First, the map of Furong District is divided into 16,288 market areas with latitude and longitude accuracy of 0.0005 using ArcGIS drawing software. Then, the first three representative CSs are selected from Furong District for calculation as examples. The basic data of these three CSs are shown in Table 1. Based on the evaluation index system, the weight of each index of the CS is obtained by the entropy method. The weight of the contract capacity, the number of fast/slow-charging piles, the service fee, and the charging price are 0.221, 0.486, 0.201, 0.051, and 0.041 yuan/kWh, respectively. Afterward, SPSS is employed for the factor analysis. A total of 143 CSs have a comprehensive score greater than 0.
TABLE 1 | Basic data on charging stations (CSs).
[image: Table displaying data on contract capacity (kWh), number of fast and slow-charging piles, service fee (yuan), and geographic coordinates for eight charging stations (CS1 to CS8), including longitude and latitude.]For the load of the three charging stations q1,t, q2,t, and q3,t, its boundary is given by setting ξl = 0.8 and ξh = 1.2 in Eq. 19a and φl = φh = 0.1 in Eq. 20a. In addition, according to the related policy issued by the Comprehensive Department of the National Energy Administration, the electricity purchasing price in Hunan Province is 0.46244 yuan/kWh. The daily maintenance cost of each CS is P1.w = 600 yuan, P2.w = 550 yuan, and P3.w = 500 yuan. Based on the project data, the day-ahead wind power and photovoltaic output data of a typical day are shown in Supplementary Figure AB1. It is assumed that the wind power and photovoltaic prediction error is 10%, and the real-time output meets the normal distribution.
5.2 Analysis of the charging price
Without considering the interaction of the charging price, the initial CSSS and occupancy of each CS are calculated based on the strongest occupation method, as shown in Figure 4.
[image: Map showing three colored regions with percentage labels. Region one is blue, representing 17 percent. Region two is red, representing 33 percent. Region three is orange, representing 50 percent, marked with numbers one, three, and two, respectively.]FIGURE 4 | Initial service scope of three charging stations.
As shown in Figure 4, the CSSS of CS2 is the largest without considering the influence of the charging price. It is noted that CS2 has the largest number of fast charging piles, and also, no other competing CS is present in the surrounding area. Thus, its CSSS occupies half of Furong District. As shown in Table 2, the comprehensive strength of CS1 is the strongest. However, due to the remote location and the competition from CS3, the CSSS of CS1 only occupied 17% of the market share and is smallest among the three CSs. In addition, from the shape of the CSSS of CS1 and CS3, the boundary presents an inward curved arc, which indicates that the further away from the two CSs, the more area belongs to CS1. That is, compared to CS3, the distance from one point to CS1 is larger, but it is still attracted by CS1. Therefore, it can be concluded that the SFS of CS1 is greater than that of CS3. The average peak–valley–flat charging price of CSs is then calculated by the real-time pricing optimization model mentioned in Section 4, as shown in Table 2.
TABLE 2 | Comprehensive strength and average charging price of three charging stations (CSs).
[image: Table displaying data for three scenarios (CS1, CS2, CS3) with values for comprehensive strength, valley, flat, and peak periods (in yuan/kW), and optimized and policy profit rates (%). Specific data points are provided for each category.]Table 2 shows that the charging prices of CS1 and CS2 are lower than the policy price, while the charging price of CS3 is higher than the policy price. Due to the higher comprehensive strength of CS1 and CS2, the electric vehicle users will pay more attention and be more sensitive to price changes. Accordingly, the influence parameter of the policy price difference kp.n in Eq. 16 is also larger, indicating that charging prices can increase the charging demand and profit if they are lower than the policy price. In comparison, the comprehensive strength of CS3 is the smallest, and users pay the least attention to its price change. Thus, CS3 will maintain its income by setting a higher price than the policy price, increasing by 0.0137 yuan/kWh during the peak period and 0.0235 yuan/kWh during the flat period.
Then, the change in CDAs is analyzed for the peak, valley, and flat periods, and three time points of 6:00, 10:00, and 18:00 are selected. The number of CDAs occupied by each CS at these time points is shown in Supplementary Figure AB2. It is observed that there is no significant change in the CSSS of CS2 due to the small competitive pressure. On the contrary, the CSSS changed with the charging price mainly for CS1 and CS3. Therefore, the CSSS changes for CS1 and CS3 are discussed as primary. The number of CDAs occupied by CS1 and CS3 and their CP changes are shown in Figure 5.
[image: Bar chart illustrating charging demand across different times (6:00, 10:00, 18:00) with demand areas for CDAs of CS and CS, represented in two colors. A line graph shows changing prices, increasing throughout the day. Demand peaks at 18:00.]FIGURE 5 | Number of charging demand areas and charging price of three charging stations.
Afterward, the real-time charging price is taken into consideration. Since charge station 1 has a higher comprehensive strength and a small charging price difference of 0.02 yuan, the market share increases from 17% in Figure 4 to 20% (the number of CDAs is 3,212 at 6:00). Correspondingly, CS3, which is closer to CS1, lost part of its CSSS due to its smaller comprehensive strength, and its market share decreased from 33% to 29%.
With the increase in the charging price, the number of CDAs occupied by CS1 decreased by 245 from 6:00 to 18:00. At the same time, the number of CDAs occupied by CS3 increased by 253. This can be attributed to the fact that CS1 has stronger comprehensive strength, and users are more responsive to its charging price changes. Thus, as the charging price of charge station 1 increases, the number of users of CS1 decreases faster than those of CS3, resulting in a more significant change in the CSSS of CS1.
It can be seen that the charging price and CSSS are affected by many factors, such as comprehensive strength, geographical location, and number of competitors around.
5.3 Analysis of the number of charging stations
The impacts of the number of CSs on the CSSS, power deviation rate, and profit margin are analyzed to verify the relevant conclusions given in Section 5.2. Taking five CSs and eight CSs as examples, the data of CSs are shown in Table 1.
5.3.1 Analysis of five CSs
Without considering the interaction of the real-time charging price, the initial CSSS and the market share of five CSs are shown in Figure 6. It was notes that the density of CSs in the western region is relatively high. CS1, CS3, and CS4, due to their close distribution and fierce market competition, have a limited CSSS, and their market share is 13.8%, 14.4%, and 14%, respectively. However, only CS2 and CS5 exist in the eastern region, and they are located far from the CSs in the west, resulting in less competition. Therefore, the CSSS of CS2 and CS5 is relatively large, and their market share is 22.2% and 35.6%, respectively.
[image: Map divided into five colored regions, each marked with a number and a percentage. Blue region: 13.8%, 1. Red region: 14.3%, 3. Green region: 14%, 4. Yellow region: 35.6%, 5. Orange region: 22.2%, 2.]FIGURE 6 | Initial service scope of five charging stations.
The charging price and comprehensive strength of five CSs are calculated and shown in Table 3. It is found that CS4, with smaller comprehensive strength, has higher charging prices than the other CSs in each period. It can gain more profits by setting a higher charging price than the policy price. However, with higher comprehensive strength, CS1 and CS2 can obtain more charging demand and profit with a lower charging price.
TABLE 3 | Comprehensive strength and average charging price of five charging stations (CSs).
[image: Table showing data for five categories (CS1 to CS5) across four metrics: Comprehensive strength, Valley period, Flat period, and Peak period in yuan per kilowatt, with an Optimized profit rate percentage. Values vary across categories, indicating performance differences.]Similarly, three time points of 6:00, 10:00, and 18:00 are selected for simulation, and the number of CDAs occupied by each CS is shown in Figure 7. It is observed that the CSSS of CS3 increases 89 CDAs and the CSSS of CS4 decreases 207 CDAs with the increase in the charging price. The reason for such a great change is that CS3 and CS4 have weak comprehensive strength, and they are in the center of a region surrounded by many CSs.
[image: Bar and line chart showing charging demand areas (CDAs) and charging prices (CP) for five charging stations (CS1 to CS5) at 6:00, 10:00, and 18:00. CDAs are represented by bars with varying heights, and CPs are represented by lines. Values are noted above each bar and on the right for CPs, ranging between 0.8 to 1.6 yuan/kWh.]FIGURE 7 | Number of charging demand areas and charging price of five charging stations.
5.3.2 Analysis of eight CSs
The initial CSSS of eight CSs is calculated, as shown in Figure 8. It can be seen that, interestingly, due to the strong comprehensive strength and the remote location, the market share of the CS1 is unchanged compared to the condition of the five charging stations. However, CS8 has the smallest comprehensive strength and is close to the other CSs, making the CDAs less competitive than other CSs, resulting in a very small CSSS, and its market share is only 0.2%.
[image: Color-coded map with seven regions labeled one through seven and associated percentages: region one at 13.8%, region two at 17.9%, region three at 10.9%, region four at 10.8%, region five at 22.9%, region six at 17.4%, and region seven at 6.1%.]FIGURE 8 | Initial service scope of eight charging stations.
The charging price and comprehensive strength of eight CSs are shown in Table 4. Due to higher user attention, CSs with larger comprehensive strength have lower real-time charging prices than policy electricity prices. However, CSs with smaller comprehensive strength will set higher real-time charging prices to ensure profits.
TABLE 4 | Comprehensive strength and average charging price of eight charging stations (CSs).
[image: Table showing various metrics for eight case studies (CS1 to CS8) including comprehensive strength, valley period, flat period, peak period in yuan per kilowatt, and optimized profit rate percentage. Values vary across each category with CS8 having the highest peak period charge and optimized profit rate.]The number of CDAs occupied by eight CSs is shown in Figure 9. With the increase in the number of CSs, market competition becomes increasingly fierce. Furthermore, the reduction in the distance between stations results in little difference in the CSSS, and CS5, with the largest CSSS, does not account for more than 4,000 CDAs. Meanwhile, due to the weak market competitiveness of CS7 and CS8, the CDAs of CS2, CS5, and CS6 account for more than half (58%). Compared to the scenario of five CSs, due to the addition of CS6, the number of CDAs of CS3 and CS4 has decreased, while CS1, with the strongest market competitiveness, has not been affected, and the CSSS has not changed. With the increase in the charging price, it is observed that the CSSS of CS4, CS7, and CS8 decreased due to the weak market competitiveness, and the CSSS of CS1, CS2, and CS5 increased due to the strong market competitiveness. In addition, the insignificant change in CSSS of CS3 and CS4 is mainly because they are in the center of a region surrounded by other CSs.
[image: Bar chart showing charging demand across eight centers from 0:00 to 18:00, with a line graph overlay for charging prices from 0.4 to 1.6 yuan per kilowatt-hour. Bars indicate demand numbers; lines show price trends.]FIGURE 9 | Number of charging demand areas and charging price of eight charging stations.
Table 5 presents the profit rate and power deviation rate of different CSs. It is noted that the profits obtained by the policy electricity price will decrease gradually with the increase in competitive CSs. Furthermore, when the number of CSs involved in real-time pricing optimization increases from 3 to 5 and 8, the profit margin increases by 2.60% and 4.05%, respectively; meanwhile, the power deviation decreases by 764 kW and 1,309 kW, respectively. That is because the increase in CSs expands the optimize adjustment space. Consequently, the total charging demand participating in optimization increases, and the profit distribution between CSs becomes more reasonable, which improves the CS profit rate significantly and reduces the power deviation of wind and photovoltaic power. However, for this case, the adjustment effect of power deviation is not obvious for all of Hunan Province because of the small number of CSs.
TABLE 5 | Profit rate and power deviation rate of different charging stations (CSs).
[image: Table comparing three configurations of CSs with metrics: average optimized profit rate, average profit rate of policy price, and average power deviation. For three CSs, the rates are 62.56%, 61.14%, and 36.3536 respectively. For five CSs: 65.16%, 60.21%, and 36.2808. For eight CSs: 66.28%, 58.20%, and 36.2263.]6 CONCLUSION
A dynamic CSSS division model is proposed based on the strongest occupation method and pricing strategy in this paper. Notably, the variation in the CSSS is well simulated by the dynamic optimization of the charging price. Then, the relationship among the comprehensive strength, the charging price, and the charging demand is well reflected. Furong District of Changsha is simulated as an example, and the following conclusions are obtained:
	1) Charging stations with greater comprehensive strength attract more attention from electric vehicle users, and users are more sensitive to the fluctuation of their charging price. Therefore, the charging station can obtain more profits by setting a lower charging price than the policy price.
	2) The competition is more intense for areas with dense charging stations, and the CSSS change caused by charging price fluctuation is also more obvious. On the contrary, the CSSS is more stable with sparse charging stations, and the charging price fluctuation has less impact on the CSSS. It provides a reference for the construction of future charging facilities for operators.
	3) With the increase in charging stations participating in the market competition, the profit based on the policy price will gradually decrease. Thus, the profit of charging stations should be improved by setting a real-time charging price based on the CSSS.

It should also be pointed out that the CSSS model should comprehensively consider the influence of regional differences, such as traffic conditions and geographic information, to improve the accuracy and authenticity of simulation results. Thus, the establishment of a complete CSSS model with the regional evaluation index system will be the next topic in future research.
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The temporal variation of wind power is primarily influenced by wind speed, exhibiting high levels of randomness and fluctuation. The accuracy of short-term wind power forecasts is greatly affected by the quality of Numerical Weather Prediction (NWP) data. However, the prediction error of NWP is common, and posing challenges to the precision of wind power prediction. To address this issue, the paper proposes a NWP wind speed error correction model based on Residual Network-Gated Recurrent Unit (ResNet-GRU). The model corrects the forecasted wind speeds at different heights to provide reliable data foundation for subsequent predictions. Furthermore, in order to overcome the difficulty of selecting network parameters for the combined prediction model, we integrate the Kepler Optimization Algorithm (KOA) intelligent algorithm to achieve optimal parameter selection for the model. We propose a Convolutional Neural Network-Long and Short-Term Memory Network (CNN-LSTM) based on Attention Mechanism for short-term wind power prediction. Finally, the proposed methods are validated using data from a wind farm in northwest China, demonstrating their effectiveness in improving prediction accuracy and their practical value in engineering applications.
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1 INTRODUCTION
In the context of “dual carbon” goals, accelerating the transformation of the energy structure towards a low-carbon, clean, and renewable energy system, with a focus on new energy sources, is an important initiative to achieve the dual carbon targets (REN et al., 2022). Currently, China’s wind power industry is experiencing rapid development, with a continuously thriving market and increasing wind power grid integration (Hui et al., 2021). However, the current power system scheduling and operation mechanisms in China are not sound, and there is insufficient peak-shifting capacity to meet the requirements of large-scale wind power grid integration, leading to significant curtailment of wind power in some regions. To effectively address wind curtailment and improve the scheduling and operation capabilities of the power system, precise wind power output forecasting is essential. The accuracy of wind power forecasting directly affects the scheduling optimization of the power grid (Yusheng et al., 2015; Weisheng et al., 2021).
Currently, wind power forecasting techniques can be broadly classified into two categories based on modeling mechanisms: physical methods and statistical learning methods (Ahmed and Khalid, 2019; Wang et al., 2021). Physical methods utilize fluid dynamics and thermodynamics models to solve for wind speed, wind direction, and other information based on the topography and terrain of the wind farm. The wind power output is then calculated using the wind power curve. Due to limitations in spatiotemporal resolution, physical methods are generally more suitable for medium to long-term forecasting. On the other hand, statistical learning methods analyze historical data from wind farms to establish nonlinear mappings between wind power characteristics and forecast results. With the rapid development of artificial intelligence in recent years, many researchers have introduced deep learning algorithms to address the aforementioned issues (Anbo et al., 2022). Deep learning methods, such as LSTM (Zhu et al., 2017), backpropagation (Liu et al., 2020), Dropout (Niu et al., 2018), Attention Mechanism (AM) (Zhou et al., 2021), and others, have been widely applied in forecasting tasks, benefiting from the increased availability and complexity of collected data.
In short-term wind power forecasting, utilizing NWP for wind power prediction is more realistic and practical (DU, 2019). However, the quality of NWP data significantly impacts the accuracy of the forecasts, and it has been observed that there are inherent errors between NWP data and actual measurements. To mitigate these inherent errors, numerous researchers have focused on correcting NWP wind speed. In reference (Ding et al., 2019), a variational mode decomposition technique was used to decompose NWP wind speed, followed by correction using the GRU. Reference (Hu et al., 2021) considered the spatial correlation of wind speed and employed Gaussian Process Regression (GPR) to improve the correlation between forecasted and actual wind speeds. Reference (Song et al., 2018) analyzed NWP data from multiple locations and established a wind speed correction model using temporal convolutional neural networks, which enhanced the accuracy of wind speed correction. However, most of the mentioned correction methods rely on a single neural network, and the exploration of the relationship between NWP data and actual measurements is not fully comprehensive. Additionally, these models are prone to issues such as gradient explosion during the training process.
Due to the limited predictive capability of a single model, it often results in low robustness and weak applicability. Therefore, the combination prediction model has gradually demonstrated its advantages. However, although the combination model integrates the advantages of individual models, it can also increase the complexity of the model. The complex network structure of the combination model leads to increased uncertainty and difficulty in selecting prediction model parameters. Hence, many scholars have made improvements by combining a series of optimization algorithms. In reference (Li et al., 2022), the Isolation Forest Algorithm (IAO) was used to detect abnormal data, and the improved Eagle Optimization Algorithm (EOA) was employed to optimize the parameters of the LSTM model, thereby establishing the IAO-LSTM model for wind power prediction. In reference (Guangzheng et al., 2022a), the Improved Grey Wolf Optimization (IGWO) algorithm was utilized to determine the number of hidden layer nodes and the learning rate of the model’s weight, proposing a LightGBM-GRU point prediction model that achieved better predictive performance compared to other algorithms. However, the aforementioned optimization algorithms have complex structures, slow convergence speeds, and are prone to getting trapped in local optimal solutions. Therefore, it is necessary to select more suitable intelligent algorithms, especially for cases with multiple hyperparameters to be optimized.
To address the aforementioned limitations, this paper proposes a NWP wind speed error correction model based on a combination of ResNet and GRU models. It corrects the multi-height forecasted wind speeds of NWP prediction points to accurately reflect the wind speed at hub height, which characterizes the wind farm power output more precisely. Finally, by combining the corrected NWP wind speeds with real-time wind farm power output data, a KOA-CNN-LSTM-Attention combination prediction model is constructed, which incorporates the KOA intelligent optimization algorithm. Experimental results demonstrate that the proposed method significantly improves the prediction accuracy compared to existing methods, providing new insights for enhancing the accuracy of short-term wind power prediction.
2 NWP WIND SPEED CORRECTION METHOD
2.1 Wind speed error analysis
NWP is a method of predicting future weather conditions by solving fluid mechanics and thermodynamics equations that describe the process of weather evolution based on certain boundary and initial conditions (Guangzheng et al., 2024). However, the spatial and temporal resolution of NWP data, geographic location, terrain, and other factors may result in deviations between NWP data and the measured data at wind farm sites. Short-term wind power prediction models are established based on NWP data and measured operational data at wind farms, but errors in NWP wind speed can greatly affect the accuracy of short-term wind power predictions (Miao et al., 2022).
The distribution and error curves of NWP wind speed and measured wind speed are compared in Figure 1, which shows that both NWP wind speed and actual wind speed follow a two-parameter Weibull distribution mainly in the wind speed range of 3–15 m/s. However, compared with measured wind speed, NWP wind speed has fewer subdivisions in the main wind speed range, indicating that measured wind speed fluctuates more frequently in this wind speed range, while the overall fluctuation of predicted wind speed is lower. The error between NWP wind speed and measured wind speed can be divided into longitudinal error and lateral error. The longitudinal error mainly manifests as amplitude differences between NWP wind speed and measured wind speed, as shown in Figure 1C. The lateral error mainly manifests as phase delay between NWP wind speed and measured wind speed, as shown in Figure 1D. Moreover, the error between NWP forecasted wind speed and measured wind speed at wind farms varies dynamically in different seasons, including different directions and step sizes of delays, differences in amplitude, and varying degrees of missed and false forecasting information for wind energy fluctuations.
[image: The image contains four panels of wind speed data visualizations. Panels A and B show histograms with relative frequency versus wind speed, demonstrating different distributions for NWP and measured wind speeds, both overlaid with trend lines. Panels C and D display line graphs of wind speed over measuring points, comparing data at different heights (10m, 30m, 70m) with actual values. Panel C highlights "Amplitude error," and Panel D highlights "Phase error," indicating discrepancies between predicted and actual data.]FIGURE 1 | Error analysis of wind speed. (A,B) are the wind speed distribution map. (A): NWP wind speed distribution, (B): Measured wind velocity distribution. (C,D) are the analysis of wind speed error. (C): Error analysis of NWP Wind Speed and Measured Wind Speed (winter), (D): Error analysis of NWP Wind Speed and Measured Wind Speed (summer).
2.2 Wind speed correction model of ResNet-GRU
Due to the significant fluctuations in measured wind speeds, this study aims to leverage the ResNet module’s powerful feature extraction capabilities to uncover the periodicity and temporal relationships within the historical wind speed sequences. The ResNet module, known for its deep residual structure, effectively addresses the issues of gradient vanishing and explosion in deep neural networks, thereby enhancing feature extraction capabilities (Yldz et al., 2021). Moreover, the ResNet module mitigates information loss and facilitates smooth information flow through the use of shortcut connections. To capture the volatility of wind speed, the GRU model is employed as the learning model. The GRU model, equipped with gate mechanisms, effectively addresses the long-term dependency problem while avoiding the issues of gradient vanishing and explosion present in traditional Recurrent Neural Network (RNN) models (Yu et al., 2023). Consequently, the GRU model demonstrates excellent performance in time-series data modeling tasks. Therefore, this study proposes the ResNet-GRU wind speed correction model, which not only effectively learns and utilizes the relationship between NWP model and measured data but also predicts more accurate wind speeds. Additionally, both the ResNet module and GRU model have been optimized classic models, requiring fewer computational resources and less time compared to other complex models during training and prediction, thus demonstrating characteristics of computational efficiency. The schematic diagram of the proposed model is presented in Figure 2.
[image: Diagram of a neural network architecture for wind speed prediction. It includes layers: Input, Pretreatment, Convolutional (Conv), Max Pooling, and Wind Speed Correction. The Conv layers, shown with various sizes and parameters, are followed by GRUs, Reshape, and Dropout, leading to the Output Layer.]FIGURE 2 | Wind speed correction schematic diagram based on ResNet-GRU model.
In this study, the fully connected layer following the time-series modeling layer is utilized for wind speed correction. The known actual wind speed data and the output of the numerical model are employed as supervisory signals to optimize the model parameters by minimizing the error between the predicted and actual values. The Mean Squared Error (MSE) is adopted as the loss function for this purpose. The formula for MSE is as follows:
[image: The formula represents the cost function \( J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^i) - y^i)^2 \).]
where, [image: The mathematical expression \( h_{\theta}(x^i) \) representing a hypothesis function with parameter \( \theta \) applied to an input \( x^i \).] represents the model for the i th input sample [image: Mathematical expression showing variables x to the power of i and y to the power of i.] represents the corresponding real output value, [image: Please upload the image or provide a URL for me to create an appropriate alt text.] represents the parameters to be learned in the model,m is ample size。
3 KOA-CNN-LSTM-ATTENTION COMBINED PREDICTION MODEL
3.1 CNN-LSTM-attention prediction model
The CNN-LSTM hybrid model is designed to handle time-series matrices composed of relatively independent feature sequences. It effectively utilizes CNN to extract spatially local correlated features from the data, while LSTM compensates for CNN’s limitation in capturing long-term dependencies within sequential data (Guangzheng et al., 2021). Since the features used for wind power prediction (such as wind speed, wind direction, temperature, precipitation, and air pressure) are relatively independent time-series features, it becomes challenging to describe the inherent relationships between these features over time. Using either CNN or LSTM alone fails to simultaneously extract the inter-sequence correlations and long-term patterns in feature time-series. Traditional CNN-LSTM networks simply concatenate the CNN and LSTM components, which may disrupt the temporal correlations between sequences. Therefore, improvements upon the traditional CNN-LSTM model are necessary to overcome these drawbacks. This paper proposes an enhanced neural network algorithm that combines the Attention mechanism with CNN-LSTM. The key advantage of this algorithm lies in the inclusion of an Attention layer between the CNN network and LSTM layer. By computing the relevance scores between the input sequence’s hidden layer vectors and the output, different attention weights are assigned to meteorological factors, highlighting the critical influencing features. Consequently, this approach addresses the challenge of preserving crucial information when dealing with long input sequences.
CNN input is wind power historical power data and multi-impact characteristic data. The data is divided into d days, n data per day, and m meteorological factors per data, to form an n×m×d matrix as the input structure of CNN model. The output expression of CNN convolution layer is shown in Eq. 2:
[image: The formula shows \(\bar{X}_{i,j} = f_{\text{conv}}\left(\sum_{m=0}^{k}\sum_{n=0}^{k} w_{m,n}X_{i+m,j+n} + b_{m,n}\right)\) labeled as equation (2).]
where: [image: Mathematical expression displaying a function notation: \( f_{\text{cov}}(\cdot) \).] is the activation function, [image: Please upload the image or provide a URL, and I will help create the alternate text for it.] is the sliding window size, [image: Mathematical notation showing a variable \( w_{n,m} \), where \( n \) and \( m \) are subscripts.] is the weight of n rows and m columns of the convolution kernel, [image: The expression "X subscript i plus n, j plus m" represents an element of a matrix or array at the position shifted by n rows and m columns from the current indices i and j.] are the value of row n and column m of the feature matrix of the input data, [image: Mathematical expression showing the variable \( b \) with subscripts \( n \) and \( m \).] is the convolution kernel deviation.
The CNN pooling layer uses 2 × 2 filters and a sliding window of step 1 to sample, reduce the data feature size, reduce network parameters, and then input the data to the LSTM layer via the fully connected layer. First, the input vector calculates the intermediate state of meteorological data through the hidden layer of LSTM, and the attention mechanism uses the function [image: The text "score(h_{t,i}, h_t)" written in italics, indicating a function involving variables \( h_{t,i} \) and \( h_t \).] to calculate the similarity between the feature vector of the intermediate state [image: Lowercase letter "h" with subscripts "t" and "i", in italics.] and the hidden state [image: The image shows a cursive letter "h" with a subscript "t" indicating a variable or function often used in mathematical or scientific contexts.]. The expression is shown in Eq. 3:
[image: The image shows a mathematical formula for calculating a score. The formula is: score of the concatenation of vectors h_i and h_j equals W_s times the transpose of the concatenated vector h plus b_s, labeled as equation three.]
where: [image: A black, stylized letter "W" next to a subscript "s" in dark grey, set against a transparent background.] and [image: It seems like you might be experiencing an issue with the image upload. Please try uploading the image again or provide a URL if it's hosted online. You can also add a caption or context if you like.] are the weight matrix and bias vector of the fully connected layer respectively.
Secondly, the attention weight [image: Greek letter alpha with a subscript i.] of the hidden layer vector of meteorological data is obtained by the softmax function, and the weighted sum with [image: The image contains the mathematical expression "h sub t comma i," representing an indexed variable or parameter commonly used in mathematical formulas or scientific equations.] is obtained to obtain the output [image: The image shows the variable \(h_t^*\), with an asterisk as a superscript, typically representing an optimal or estimated value at time \(t\).] of the attention layer., and the expression of [image: It seems like you've inserted math notation, not an image. If you meant to upload an image, please try again.], [image: The image shows the mathematical expression "h" with a star superscript and subscript "t," indicating a time-dependent variable with a special or optimal condition.] are as follows:
[image: Equation depicting the calculation of attention weight \(\alpha_t\). The formula is \(\alpha_t = \frac{\exp(\text{score}(h_{t_i}, h_t))}{\sum_{j=1}^{T} \exp(\text{score}(h_{t_j}, h_t))}\). This represents a softmax function applied to a score derived from hidden states.]
[image: Mathematical expression showing h sub i equals the sum from j equals one to t of alpha sub i times h sub j, equation number five.]
where: [image: Please upload the image so I can help create the alternate text for it.] is the fully connected output node. Finally, [image: Mathematical notation of "h" with a subscript "t" and a superscript asterisk.] is input to the fully connected layer to obtain the predicted value of wind power [image: The notation "y sub t prime" represents the derivative or change of variable y with respect to time t, often used in mathematical equations or models involving time-dependent functions.].
3.2 Kepler optimization algorithm (KOA)
Due to the numerous hyperparameters involved in the training process of the CNN-LSTM-Attention hybrid model, such as learning rate, kernel size, and number of LSTM units, it is a challenging task to select and adjust these hyperparameters appropriately. The selection of these parameters directly impacts the quality of the prediction results in practical applications, thus necessitating the integration of optimization algorithms for parameter selection. The Kepler optimization algorithm (KOA) is a heuristic optimization algorithm based on Kepler’s law in the natural world. This algorithm simulates the motion of planets in the Solar System and utilizes iterative search to find the optimal solution (Abdel-Basset et al., 2023) In KOA, each planet and its position represent a candidate solution, and the optimization process is achieved by randomly updating based on the best solution found so far (the Sun), enabling more efficient exploration and utilization of the search space. Its advantages lie in its fast convergence speed, high search accuracy, and strong interpretability. The mathematical expression of this algorithm is as follows:
[image: Mathematical formula labeled as equation 6. It defines \(\tilde{X}_i(t+1)\) as a function of \(\tilde{X}_i(t)\), \(\tilde{U}_i\), and \(\tilde{X}_h(t)\), incorporating weighted averages and differences over three terms.]
where: [image: Mathematical notation showing a vector \(\vec{X}_i\) at time \(t+1\).] is the new position of object i at time t+1, [image: Mathematical notation depicting a time-dependent variable, X subscript i, with a hat symbol, enclosed in parentheses with function t, and an arrow above X pointing to the right.] represent object i at time t, [image: Vector U subscript 1 with an arrow on top, indicating direction.] represents the universal gravitational constant, [image: If you upload the image or provide a URL, I can create the alternate text for you.] is the best position of the Sun found thus far, [image: Stylized mathematical expression representing "X subscript a of t" with a bar over the X.] represents solutions that are selected at random from the population at time t, h is an adaptive factor for controlling the distance between the Sun and the current planet at time t, as defined below:
[image: Equation: \( h = \frac{1}{e^{\alpha \cdot t}} \) labeled as equation (7).]
where r is a number that is generated randomly on the basis of the normal distribution, while [image: Lowercase Greek letter eta, written in a stylized italic font.] is a linearly decreasing factor from one to −2, as defined below:
[image: Equation displaying \( \mu = (a_t - 1) \times r_{t+1} \) on the left side, with the number eight in parentheses on the right side indicating it as the eighth equation in a series.]
Where: r4 is randomly generated numerical values at interval [0, 1], [image: Please upload the image or provide a URL for me to generate the alt text.] is a cyclic controlling parameter that is decreasing gradually from −1 to −2 for [image: Please upload the image or provide a URL so I can assist you in creating the alternate text.] cycles within the whole optimization process as defined below:
[image: The formula shows \( a_{2} = -1 - 1 \times \left( \frac{\rho \left( \frac{T_{\text{film}}}{T} \right)}{\frac{T_{\text{film}}}{T_{\max}}}\right) \) with a reference number (9) at the end.]
In this paper, KOA algorithm is used to optimize the learning rate, convolution kernel size, number of neurons and other parameters in the CNN-LSTM-Attention model, taking the minimum Mean Absolute Percentage Error (MAPE) as the objective function. The formula is as follows:
[image: Formula for Mean Absolute Percentage Error (MAPE), expressed as \( \text{MAPE} = \frac{1}{n} \sum_{n} \frac{|y_i - \tilde{y_i}|}{y_i} \), labeled as equation (10).]
where: [image: Lowercase letter "y" with subscript "i".] is the true value, [image: The equation consists of the letter "y" with a circumflex accent above it, followed by the subscript "i".] is the predicted value of the algorithm, n is the number of samples.
4 EXAMPLE VERIFICATION
4.1 Description of experimental data
This paper conducts a case study using data from a wind farm in northwest China. The installed capacity of the wind farm is 200 MW, and the experimental data and information includes the output power of the wind farm and various meteorological factors throughout 2018–2019. Specifically, data from January 25th to 31st, 2019 was selected for validating the prediction results. The data is divided into observed data and NWP data, both with a resolution of 15 min. The observed data contains measured values of wind turbine active power and hub-height wind speed, while the NWP data contains wind speed forecast values at four heights: 10 m, 30 m, 50 m, and 70 m. The NWP data is updated once a day at 00:00, so the wind power day-ahead forecast results are also updated on a rolling basis at 00:00 each day.
4.2 Verification of wind speed correction results
In this section, the proposed ResNet-GRU network is employed to correct the NWP wind speed data of the wind farm. To validate the applicability of the proposed correction model, meteorological and wind power data from the winter and summer seasons of 2019 are selected for wind speed correction result verification. During each correction, 80% of the data from the preceding time period is used to train the correction model, while the remaining 20% is used to validate the effectiveness of the wind speed correction. The comparison graph of forecasted wind speed before and after correction against the measured wind speed is shown in Figure 3.
[image: Two line graphs (A and B) compare wind speed measurements over time. Both graphs show actual, forecast, and corrected data. Graph A highlights an area with an "obvious correction effect" in red. The x-axis represents measuring points in fifteen-minute intervals, and the y-axis measures wind speed in meters per second.]FIGURE 3 | Comparison of NWP wind speed correction results in different seasons. (A): Comparison of NWP wind speed correction results (winter), (B): Comparison of NWP wind speed correction results (summer).
From the curve fitting results shown in the above figure, the following observations can be made:
	1) The NWP wind speed forecasts for this wind farm exhibit relatively small errors during the summer season, while the forecast errors are relatively larger during the winter season.
	2) The NWP wind speed curve appears relatively smooth, whereas the measured wind speed curve exhibits more pronounced fluctuations and may experience sudden changes. These changes manifest as local peaks or valleys, which are of short duration and difficult for NWP to accurately predict, resulting in missed forecasts. This is evident in the highlighted section of the graph.
	3) During periods of significant wind speed fluctuations, the NWP wind speed forecasts for this wind farm tend to underestimate the measured wind speed to a considerable extent. To address this issue, the error correction model developed in this study learns from the differences between NWP and measured wind speeds in historical samples and effectively corrects the errors between NWP and measured wind speeds during the application phase.

4.3 Prediction result verification
This study employs the Keras framework in Python to construct a short-term wind power prediction model based on the CNN-LSTM architecture. The model’s initialization parameters, including the learning rate of the model’s network weights, the size of the convolution kernel, and the number of neurons, are determined by the KOA algorithm, while the sigmoid function is selected as the model’s activation function. The original training data range for the model comprises winter season data from 2018–2019, with a test set consisting of 7 days after the cutoff range of this training set. To validate the predictive performance of the proposed algorithm, the LSTM(Guangzheng et al., 2022b), CNN-LSTM (ZHAO et al., 2019), CNN-LSTM-Attention (Guangzheng et al., 2021), and KOA-CNN-LSTM-Attention methods are applied to predict the wind power output of the wind farm, with corresponding results presented in Table 1. Deterministic prediction error can be manifested as horizontal and vertical errors. In this paper, we selected vertical error evaluation indicators including Mean Absolute Error (MAE), MAPE, Root Mean Square Error (RMSE), and horizontal error evaluation indicators such as correlation coefficient as the performance evaluation indicators for prediction. A comparison of the forecast curves and error metrics across different methods is shown in Figure 4.
TABLE 1 | Comparison of prediction results of different algorithms.
[image: Table comparing four models: LSTM, CNN-LSTM, CNN-LSTM-Attention, and KOA-CNN-LSTM-Attention. Metrics include MAE, RMSE, and MAPE. LSTM has MAE 24.650, RMSE 25.185, MAPE 17.496. CNN-LSTM has MAE 10.834, RMSE 11.538, MAPE 14.903. CNN-LSTM-Attention has MAE 11.528, RMSE 10.406, MAPE 11.340. KOA-CNN-LSTM-Attention has MAE 5.293, RMSE 4.125, MAPE 3.720.][image: Three graphs display prediction results of different models over 700 measuring points. Graph A shows prediction power in megawatts with multiple model comparisons, including actual, LSTM, CNN-LSTM, CNN-LSTM-Attention, and KOA-CNN-LSTM-Attention. An inset highlights a detailed section. Graphs B and C show prediction errors over the same measuring points, with both graphs reflecting variations in error values.]FIGURE 4 | Comparison of prediction results of different algorithms. (A): Comparison of prediction curves of different algorithms; (B, C) is the comparison of results with or without KOA optimization algorithm error, (B): the prediction error when the model does not use KOA optimization algorithm, (C): the prediction error after the model uses KOA optimization algorithm.
The KOA-CNN-LSTM-Attention algorithm proposed in this paper has the best overall prediction performance. Compared with the sub-optimal CNN-LSTM-Attention algorithm, the error indicators MAE, RMSE and MAPE are reduced by 6.235%, 6.281% and 7.620%, respectively. It shows the superiority of KOA algorithm. Combined with KOA algorithm, the parameters of the model are better selected on the basis of single CNN-LSTM algorithm, so the prediction accuracy is further improved.
5 CONCLUSION AND PROSPECT
Improving the accuracy of NWP is crucial for enhancing the precision of short-term wind power forecasting. However, current NWP forecast data exhibits significant discrepancies compared to the measured wind speeds, thereby limiting the accuracy of short-term wind power prediction. In light of this issue, this study proposes the following approaches:
	1) An error correction model based on ResNet-GRU is established to effectively rectify the discrepancies between NWP and measured wind speeds during the application stage. By learning from historical samples, this model captures the differences between NWP and actual measurements.
	2) A short-term wind power prediction model based on KOA-CNN-LSTM-Attention is developed to optimize key parameters such as learning rate, convolution kernel size, and number of neurons in complex models. This optimization significantly enhances the predictive performance of the model.

Furthermore, the measured wind power and wind speed data exhibit greater randomness and volatility compared to NWP forecast data. This indicates that smooth NWP data faces challenges in accurately tracking and predicting wind energy fluctuations at high spatiotemporal resolutions, leading to increases in both missed detection rates and false alarm rates. Therefore, our future research will focus on exploring how to utilize real-time wind farm and anemometer data with higher update frequencies to perform rolling corrections on NWP data, thereby achieving more accurate wind power forecasts.
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Introduction: This paper introduces a deep learning approach based on Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory Networks (BiLSTM), and attention mechanism for stock market prediction and investment decision making in financial management. These methods leverage the advantages of deep learning to capture complex patterns and dependencies in financial time series data. Stock market prediction and investment decision-making have always been important issues in financial management.
Methods: Traditional statistical models often struggle to handle nonlinear relationships and complex temporal dependencies, thus necessitating the use of deep learning methods to improve prediction accuracy and decision effectiveness. This paper adopts a hybrid deep learning model incorporating CNN, BiLSTM, and attention mechanism. CNN can extract meaningful features from historical price or trading volume data, while BiLSTM can capture dependencies between past and future sequences. The attention mechanism allows the model to focus on the most relevant parts of the data. These methods are integrated to create a comprehensive stock market prediction model. We validate the effectiveness of the proposed methods through experiments on real stock market data. Compared to traditional models, the deep learning model utilizing CNN, BiLSTM, and attention mechanism demonstrates superior performance in stock market prediction and investment decision-making.
Results and Discussion: Through ablation experiments on the dataset, our deep learning model achieves the best performance across all metrics. For example, the Mean Absolute Error (MAE) is 15.20, the Mean Absolute Percentage Error (MAPE) is 4.12%, the Root Mean Square Error (RMSE) is 2.13, and the Mean Squared Error (MSE) is 4.56. This indicates that these methods can predict stock market trends and price fluctuations more accurately, providing financial managers with more reliable decision guidance. This research holds significant implications for the field of financial management. It offers investors and financial institutions an innovative approach to better understand and predict stock market behavior, enabling them to make wiser investment decisions.
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1 INTRODUCTION
Stock market prediction and investment decision-making in financial management have always been important issues in the finance field. Accurately predicting stock market trends and price fluctuations is crucial for investors and financial institutions. Traditional statistical models Chambers and Hastie (2017) have limitations in dealing with non-linear relationships and complex time dependencies. Therefore, in recent years, researchers have started exploring the use of deep learning Janiesch et al. (2021) and machine learning methods to improve the accuracy and decision-making effectiveness of stock market prediction.
In the field of stock market prediction, the following five common deep learning and machine learning models are used:
	1. Convolutional Neural Networks (CNN) Kattenborn et al. (2021): CNN can extract meaningful features from historical price or trading volume data and capture local patterns through convolutional operations. However, CNN disregards the time dependencies in time series data.
	2. Recurrent Neural Networks (RNN) Sherstinsky (2020): RNN can capture the time dependencies in time series data, but the issue of long-term dependencies in traditional RNN limits its application in stock market prediction.
	3. Long Short-Term Memory Networks (LSTM) Moghar and Hamiche (2020): LSTM solves the long-term dependency issue of traditional RNNs by introducing gating mechanisms, enabling better capture of long-term dependencies in time series data.
	4. Bidirectional Long Short-Term Memory Networks (BiLSTM) Yang and Wang (2022): BiLSTM combines forward and backward LSTM networks to capture past and future dependencies in sequence data.
	5. Attention Mechanism Niu et al. (2021): Attention mechanisms allow the model to focus on the most relevant parts, enhancing the model’s attention to key information.

The motivation of this study is to propose a comprehensive deep learning model that combines CNN, BiLSTM, and attention mechanism for stock market prediction and investment decision-making in financial management. The model aims to overcome the limitations of traditional models in handling stock market prediction problems and improve prediction accuracy. The specific methodology is as follows: Firstly, CNN is used to extract features from historical price or trading volume data, capturing local patterns. Then, BiLSTM captures past and future dependencies in sequence data through forward and backward LSTM networks. Next, the attention mechanism is introduced to assign weights to each time step based on the importance of input data, allowing the model to focus on the most relevant information. Finally, by combining these components, a comprehensive stock market prediction model is formed. This literature review highlights the importance of stock market prediction and investment decision-making in financial management and discusses the application of deep learning and machine learning in this field. Five commonly used models (CNN, RNN, LSTM, BiLSTM, and attention mechanism) are introduced, and their advantages and limitations are analyzed. Finally, a comprehensive deep learning model that utilizes CNN, BiLSTM, and attention mechanism is proposed to enhance the accuracy and decision-making effectiveness of stock market prediction. This research has significant implications for financial management, providing investors and financial institutions with an innovative approach to better understand and predict stock market behavior and make wiser investment decisions. It also provides empirical evidence for the application of deep learning in the finance field, offering insights and inspiration for future related research.
	• Integration of Multiple Models: One of the contributions of this paper is the combination of CNN, BiLSTM, and attention mechanism to form a comprehensive stock market prediction model. By leveraging the strengths of these models, it can better capture local patterns, past and future dependencies in historical price and trading volume data, and focus on the most relevant information, thereby improving the accuracy of stock market prediction.
	• Overcoming Limitations of Traditional Models: Traditional statistical models have limitations in dealing with non-linear relationships and complex time dependencies. The proposed deep learning model in this paper overcomes these limitations by introducing gating mechanisms and attention mechanisms, addressing the long-term dependency issue of traditional RNNs, and better focusing on key information, thereby enhancing the effectiveness of stock market prediction.
	• Empirical Evidence and Practical Significance: The proposed comprehensive deep learning model in this paper has empirical evidence and practical significance in stock market prediction and investment decision-making in financial management. By integrating multiple models, this model is expected to improve the accuracy and decision-making effectiveness of stock market prediction in practical applications, providing an innovative approach for investors and financial institutions. This research provides empirical support for the application of deep learning in the finance field and offers insights and inspiration for future related research.

2 RELATED WORK
2.1 Transformer model
The application of the Transformer model (Han et al., 2021) in stock market prediction has several advantages. Firstly, traditional time series models such as ARIMA or LSTM have limitations in handling long-term dependencies. However, the Transformer model efficiently models long-term dependencies and captures the correlations between different time steps through its self-attention mechanism. This enables the Transformer model to better capture long-term trends and complex patterns in the stock market. Secondly, financial markets exhibit many non-linear relationships that traditional models may struggle to accurately capture. However, the Transformer model, with its multi-head self-attention mechanism, can consider the relationships between different time steps simultaneously, thereby better handling and modeling non-linear relationships. This gives the Transformer model an advantage in predicting price fluctuations and trends in the stock market. Moreover, the Transformer model can perform parallel computations. Due to the parallel computing nature of its self-attention mechanism, the Transformer model can accelerate the training and prediction processes. Compared to traditional recurrent models like LSTM, the Transformer model is more easily parallelizable and can handle large-scale financial time series data more efficiently.
Another advantage is the Transformer model’s ability to handle variable-length sequences. Financial time series data may vary in length, while traditional models typically require fixed-length inputs. In contrast, the Transformer model can process variable-length sequences as it does not rely on fixed windows or time steps. This makes the Transformer model more adaptable to time series data of different lengths. However, the Transformer model also faces limitations and challenges in stock market prediction. Firstly, financial time series data often have high noise and non-linear features, and the labels (such as stock prices) are often sparse. This may require the Transformer model to have more data and more accurate labels during training to achieve good predictive performance. Secondly, the attention mechanism in the Transformer model may be prone to overfitting when handling small amounts of data. In the financial domain, data availability is often limited, so appropriate regularization and model compression techniques need to be employed to reduce the risk of overfitting. Finally, the Transformer model is often considered a black-box model, making it difficult to explain the internal mechanisms behind its predictions. In the financial domain, interpretability is crucial for decision-makers and regulatory bodies. Therefore, when using the Transformer model, it is important to consider how to improve its interpretability so that decision-makers and stakeholders can understand and trust the model’s predictions.
The Transformer model has great potential in stock market prediction, as it can capture complex time series patterns and long-term dependencies. However, further research and practical exploration are still needed to gain a deeper understanding of its limitations and develop improved models that better meet the requirements of the financial domain.
2.2 Reinforcement learning
Reinforcement Learning (RL) Oh et al. (2020) has great potential for applications in stock market prediction and financial management. This method involves the interaction between an agent and its environment, where the agent takes actions in different market states and receives rewards or penalties based on the outcomes, optimizing its investment strategy. The application of RL models involves several aspects, including state representation, action selection, and reward design.
Firstly, state representation is crucial in RL. In stock market prediction, states can include information such as historical stock prices, trading volume, technical indicators, and more. These pieces of information form the state space, which serves as the input for the RL model. Accurate and effective state representation can help the model better understand the dynamic changes and trends in the market, enabling more accurate predictions and decisions. Secondly, action selection is a key step in RL models. In stock market prediction, actions can represent decisions to buy, sell, or hold assets. The model selects actions that maximize long-term returns based on the current state and the learned policy. Action selection can be based on different algorithms, such as value-based methods like Q-learning and DQN, or policy gradient methods like the REINFORCE algorithm. Additionally, reward design plays an important role in RL. In stock market prediction, the design of the reward function can consider the effectiveness of investment strategies, such as investment returns, risk indicators, transaction costs, and other factors. Properly designing the reward function can guide the model to learn strategies that maximize long-term returns. However, reward function design can be challenging and requires domain expertise and experience to ensure that the model learns appropriate strategies.
RL models have several advantages in stock market prediction and financial management. Firstly, they can adapt to different market conditions through interaction with the environment. Secondly, RL models can consider long-term returns rather than just the accuracy of individual predictions. Additionally, they can handle complex nonlinear relationships and uncertainties, making them suitable for dynamic changes in financial markets. Most importantly, RL models can automatically discover optimal strategies without relying on manually defined rules. However, RL models also have some limitations. Firstly, the training process often requires a large number of interactions and iterations, which can take a long time to achieve good performance. Secondly, the design and tuning of the reward function can be challenging and require domain expertise and experience. Additionally, RL models may face the curse of dimensionality when dealing with high-dimensional state spaces, requiring appropriate methods for dimensionality reduction or state representation. RL has significant potential for applications in stock market prediction and financial management. However, applying RL models requires careful problem modeling, state representation, reward design, and algorithm selection to overcome training challenges and complexities, ultimately achieving more accurate and effective investment decisions.
2.3 Ensemble learning
Ensemble learning Dong et al. (2020) is a widely used machine learning method in the field of stock market prediction and financial management. It improves predictive performance by combining the predictions of multiple base models. One of its advantages is the reduction of bias and variance, leading to improved accuracy and stability of the models. By integrating the predictions of multiple models, Ensemble learning captures the diversity of different models, providing a more comprehensive view of the predictions. Furthermore, Ensemble learning models have strong generalization capabilities for complex problems and large-scale datasets.
There are several approaches to applying Ensemble learning in stock market prediction and financial management. Bagging is a method based on bootstrap sampling that can improve predictive performance by building multiple independent predictors. Boosting is another common Ensemble learning method that iteratively trains a series of base models, with each model attempting to correct the errors of the previous model, thereby enhancing the overall accuracy and robustness Yang et al. (2020). Random Forest is an Ensemble learning method based on decision trees, where multiple decision trees are constructed to make predictions, resulting in more reliable results.
The advantages of Ensemble learning models include reducing bias and variance and improving predictive accuracy and stability. Additionally, Ensemble learning captures the strengths of different models, providing a more comprehensive and reliable prediction. However, training and tuning Ensemble learning models may require more computational resources and time. Additionally, the performance of Ensemble learning models can suffer when the base models are highly correlated or share common errors.
Ensemble learning models have wide-ranging applications in stock market prediction and financial management. By integrating the predictions of multiple models, Ensemble learning improves predictive accuracy and stability, assisting investors in making more reliable decisions.
3 METHODOLOGY
3.1 Overview of our network
This paper proposes a hybrid deep learning model for stock market prediction and investment decision-making. The model combines Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory Networks (BiLSTM), and an attention mechanism to capture complex patterns and dependencies in financial time series data. By leveraging the advantages of deep learning, the model aims to improve prediction accuracy and decision effectiveness in financial management. Figure 1 shows the overall framework diagram of the proposed model:
[image: Diagram illustrating a neural network architecture, comprising input, CNN, BiLSTM, attention, dense, and output layers. Each layer processes information sequentially, with CNNs handling initial features, BiLSTM capturing sequential dependencies, attention focusing on important parts, and dense layers leading to the final output \(Y_1, Y_2, \ldots, Y_m\).]FIGURE 1 | Overall flow chart of the model.
Method Principles:
	1. Convolutional Neural Networks (CNN): CNN is used to extract meaningful features from historical price or trading volume data. It applies convolutional filters to capture local patterns and learns hierarchical representations of the input data.
	2. Bidirectional Long Short-Term Memory Networks (BiLSTM): BiLSTM is employed to capture dependencies between past and future sequences in the stock market data. By using both forward and backward recurrent connections, BiLSTM can effectively model long-term dependencies and temporal dynamics.
	3. Attention Mechanism: The attention mechanism allows the model to focus on the most relevant parts of the data. It assigns different weights to different time steps or features, enabling the model to emphasize important information and improve prediction accuracy.

Method Implementation:
1. Data Preprocessing: The historical stock market data, including price and trading volume, is preprocessed to remove noise, handle missing values, and normalize the data for improved model performance.
2. Feature Extraction: The preprocessed data is fed into the CNN component of the model to extract meaningful features. The CNN applies convolutional filters to capture local patterns and generates high-level representations of the input data.
	3. Temporal Modeling: The features extracted by CNN are then fed into the BiLSTM component. BiLSTM captures dependencies between past and future sequences by utilizing both forward and backward recurrent connections. This enables the model to understand the temporal dynamics of the stock market.
	4. Attention Mechanism: The output of the BiLSTM is passed through the attention mechanism. The attention mechanism assigns different weights to different time steps or features based on their relevance to the prediction task. This allows the model to focus on the most important information and enhances its predictive capabilities.
	5. Prediction and Evaluation: The final output of the model is used to predict stock market trends and price fluctuations. The predictions are evaluated using various metrics such as Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Mean Squared Error (MSE) to assess the performance of the model.
	6. Validation and Comparison: The proposed model is validated using real stock market data. Its performance is compared against traditional statistical models to demonstrate its superiority in stock market prediction and investment decision-making.

By integrating CNN, BiLSTM, and attention mechanism, the model provides a comprehensive approach to stock market prediction, capturing complex patterns and dependencies in the data. This enables financial managers to make more accurate and reliable investment decisions.
3.2 CNN
The CNN model (Convolutional Neural Network) Li et al. (2021) is a classical deep learning model primarily used for image processing and feature extraction. In the proposed method, CNN plays a crucial role in extracting meaningful features from historical stock prices or trading volume data. Figure 2 is a schematic diagram of the CNN.
[image: Diagram of a convolutional neural network showing feature extraction and classification. The process includes input image, convolution and pooling layers, and a fully connected layer leading to outputs.]FIGURE 2 | Schematic diagram of CNN.
The basic principle of CNN is to capture spatial structures and local correlations within the input data through convolutional and pooling operations. Here are the fundamental components and functions of the CNN model:
	1. Convolutional Layers Ketkar et al. (2021): The convolutional layers are the core components of CNN. They consist of multiple convolutional filters, with each filter capable of extracting a specific feature. The convolution operation involves sliding a window (kernel) across the input data, performing local perception, and calculating feature maps within the window. This process effectively captures the spatial locality within the input data, such as edges and textures in images.
	2. Activation Function Sharma et al. (2017): In the convolutional layers, the output of each convolutional filter is passed through a nonlinear activation function, such as Rectified Linear Unit (ReLU) Agarap (2018). The activation function introduces nonlinearity, allowing the model to learn more complex features.
	3. Pooling Layers Gholamalinezhad and Khosravi (2020): The pooling layers perform downsampling operations on the feature maps, reducing the number of parameters in the model and extracting the most salient features. Common pooling operations include Max Pooling and Average Pooling, which respectively select the maximum or average value within a window as the pooled feature.
	4. Multiple Stacking Korzh et al. (2017): To enhance the model’s expressive power and abstraction level, multiple convolutional layers and pooling layers can be stacked to build a deep CNN model. Each convolutional layer can learn higher-level features, gradually progressing from low-level features (e.g., edges and textures) to more abstract features (e.g., shapes and objects).

The formula for a Convolutional Neural Network (CNN) is as follows:
[image: Mathematical equation showing a function \( y = f(Wx + b) \).]
where,
x represents the input data, which can be a two-dimensional image or other multidimensional data. W denotes the convolutional kernel (weights). b represents the bias term. ∗ denotes the convolutional operation. y represents the output of the convolutional layer. f (⋅) is the activation function, commonly using ReLU or other nonlinear functions. In the convolutional operation, the input data x and the convolutional kernel W are convolved through a sliding window to calculate the output feature map y. The bias term b is used to adjust the offset of the output result.
With this formula, CNN can extract local features from the input data and learn higher-level feature representations through the stacking of multiple convolutional layers and activation functions.
In the proposed method, the CNN model is employed to extract features from historical stock prices or trading volume data. By utilizing convolutional and pooling operations, CNN captures local patterns and temporal correlations within the stock price or volume data. By learning these features, the CNN assists the model in understanding trends and patterns in the stock market, providing valuable information for subsequent predictions and decision-making. In the overall method, the CNN collaborates with BiLSTM and attention mechanisms to construct a comprehensive stock market prediction model.
3.3 BiLSTM
The Bidirectional Long Short-Term Memory (BiLSTM) is a variant of recurrent neural networks (RNN) that finds widespread applications in natural language processing and sequence modeling tasks. In the given approach, the BiLSTM collaborates with CNN and attention mechanisms to construct a comprehensive stock market prediction model. Figure 3 is a schematic diagram of the BiLSTM.
[image: Diagram illustrating a stacked BiLSTM network architecture. The left side shows input \(x_t\) and output \(y_t\) through stacked LSTM layers, while the right side unfolds into a bi-directional layer with multiple LSTMs processing sequential data both forward and backward. An arrow labeled "unfold" connects the two representations.]FIGURE 3 | Schematic diagram of BiLSTM.
The basic principle of BiLSTM involves introducing bidirectional information flow He et al. (2021) and utilizing gated units to capture and remember long-term dependencies. Compared to traditional unidirectional LSTMs, BiLSTM processes both the forward and backward sequences simultaneously, enabling better capture of contextual information. BiLSTM consists of two LSTMs: a forward LSTM and a backward LSTM. In the forward LSTM, the input sequence is processed in sequential order, while in the backward LSTM, the input sequence is processed in reverse order. Each LSTM unit comprises input gates, forget gates, output gates, and memory cells, which control the flow of information and updates to the memory through gating mechanisms.
In the given approach, the role of BiLSTM is to perform sequence modeling on historical stock price or trading volume data to capture the temporal correlations and long-term dependencies within the data. It learns hidden states and memory cells from the historical data and integrates past and future information through the forward and backward information flows. The output of BiLSTM can be used as part of the CNN model or combined with the output of the CNN model to form a more comprehensive feature representation. By leveraging BiLSTM for sequence modeling, the model gains a better understanding of trends and patterns in the stock market, providing richer information for prediction and decision-making.
The formula of BiLSTM is as follows:
[image: Equation showing the use of an LSTM (Long Short-Term Memory) model. It includes mathematical expressions: \( \bar{h}_t = \text{LSTM}(\hat{h}_{t-1}, \bar{x}_t) \), \( \hat{h}_t = \text{LSTM}(\hat{h}_{t+1}, \bar{x}_t) \), and \( y_t = [\bar{h}_t, \hat{h}_t] \).]
where,
[image: It seems there might be an error, as no image was uploaded. Please try uploading the image again, and I will help with the alt text.] and [image: A mathematical symbol showing the variable "h" with a rightward arrow above it, followed by the subscript "t".] represent the hidden states of the forward and backward LSTM respectively at time t. [image: A mathematical symbol depicting a vector  \(\vec{x}_{t}\) with a subscript \(t\).] and [image: Vector notation with a variable "x" with a bar above, followed by a subscript "t".] represent the inputs of the forward and backward LSTM respectively at time t. yt represents the output of the BiLSTM at time t, which is obtained by concatenating the hidden states of the forward and backward LSTM.
The calculation of the forward and backward LSTM can be represented using the following formulas:
Input Gate:
[image: Formula illustrating a recurrent neural network equation for hidden state \( h_t \), where \( \sigma \) represents an activation function applied to the weighted sum of input \( x_t \) and previous hidden state \( h_{t-1} \), plus bias \( b_t \).]
Forget Gate:
[image: The image shows a mathematical equation related to neural networks. It represents the forget gate in a Long Short-Term Memory (LSTM) network: \( f_t = \sigma(W_f x_t + U_f h_{t-1} + b_f) \). Here, \(\sigma\) is the sigmoid function, \(W_f\) and \(U_f\) are weight matrices, \(b_f\) is a bias vector, \(x_t\) is the input at time \(t\), and \(h_{t-1}\) is the hidden state from the previous time step.]
Update State:
[image: Equation showing the calculation of state \( s_t \). It is defined as the hyperbolic tangent (\(\tanh\)) of the sum of the product of weight matrix \( W \) and input vector \( x_t \), the product of matrix \( U \) and hidden state vector \( h_{t-1} \), and bias vector \( b \).]
Output Gate:
[image: Equation 6 shows a formula for \( z_t \) as \(\sigma(Wx_t + Uh_{t-1} + b)\).]
Cell State Update:
[image: Mathematical expression displaying a recursive formula: \( c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot \tilde{c}_{t} \). The equation is labeled as equation (7).]
Hidden State Update:
[image: Mathematical equation depicting \( h_t = o_t \odot \tanh(c_t) \), labeled with the number eight on the right.]
where W, U, and b are weight matrices and bias vectors, σ represents the sigmoid function, and ⊙ represents element-wise multiplication.
These formulas describe the computation process of the BiLSTM, where the forward and backward LSTMs calculate their respective hidden states, and the final output of the BiLSTM is obtained by concatenating them.
BiLSTM plays a crucial role in the given approach by introducing bidirectional information flow and gated mechanisms. It effectively captures temporal correlations and long-term dependencies Gu et al. (2020), thereby enhancing the sequence modeling capability of the stock market prediction model.
3.4 Attention mechanism
The attention Mechanism is a technique used in deep learning models to process sequential data. Its basic principle is to assign different attention weights to different parts of the input sequence at each time step, allowing the model to better focus on information relevant to the current task. Figure 4 is a schematic diagram of the Attention Mechanism.
[image: Diagram of a neural network model for sequence-to-sequence translation. It shows input words "J'aime les chats" in French mapped to output "I like cats" in English. It includes layers like embedding, decoder, and attention mechanism with mathematical expressions for alignment and decoding processes.]FIGURE 4 | Schematic diagram of Attention Mechanism.
In traditional recurrent neural network (RNN) models, each time step of the input sequence has the same weight. Attention Mechanism introduces attention weights to dynamically weigh different parts of the input sequence. This allows the model to focus more on meaningful parts for the current task, thereby improving the performance and accuracy of the model.
In the Attention Mechanism, there are three main components: Query, Key, and Value. The Query represents the hidden state of the model at the current time step, while the Key and Value represent the hidden states of the input sequence. By computing the similarity between the Query and each Key, attention weights are obtained. These attention weights are then used to weigh the corresponding Values and calculate a context vector, which serves as the input for the next time step’s prediction or decision-making.
Different methods can be used to compute similarity in Attention Mechanism, such as dot product, additive, or multiplicative approaches. Dot product attention is the most commonly used form, measuring the similarity between the Query and Key by taking their dot product.
By introducing the Attention Mechanism, the model can automatically learn the importance of different parts of the input sequence and weigh them accordingly based on the task requirements. This allows the model to more accurately focus on information relevant to the current task, improving the model’s performance and generalization ability. Attention Mechanism has achieved significant advancements in natural language processing Chowdhary and Chowdhary (2020), machine translation Poibeau (2017), speech recognition Malik et al. (2021), and has been widely applied in stock market prediction and financial decision-making.
The formula of Attention Mechanism is as follows:
[image: Attention mechanism formula: \( \text{Attention}(Q, K, V) = \text{softmax} \left( \frac{Q K^{T}}{\sqrt{d_k}} \right) V \).]
In this equation, the variables are explained as follows:
Q: Query vector, representing the hidden state of the model at the current time step. K: Key vector, representing the hidden state of the input sequence. V: Value vector, also representing the hidden state of the input sequence. dk: Dimension of the hidden state, used for scaling. QKT: Dot product of the Query vector and the transpose of the Key vector, used for calculating similarity. softmax: Softmax function, used for calculating attention weights. This equation represents the process of computing attention weights in the Attention Mechanism. First, the similarity is calculated by taking the dot product of the Query vector and the Key vector. Then, the similarity is scaled by dividing it by [image: Square root of d sub k.], and finally, the scaled similarity is transformed into attention weights using the softmax function. These attention weights are then used to weight the Value vector, resulting in the final context vector.
Attention Mechanism enhances the processing capability of deep learning models for sequential data by introducing attention weights to dynamically focus on different parts of the input sequence. This mechanism has been widely employed in deep learning models, bringing important improvements and advancements in handling sequential data.
4 EXPERIMENT
4.1 Datasets
The data sets selected in this article are CAMBRIA Dataset, KRIRAN dataset, SHARMA dataset, JAMES dataset.
	1. CAMBRIA Dataset (Wang et al., 2023): TThe “CAMBRIA Dataset” integrates social media sentiment, which captures the collective sentiment and opinions of users regarding specific stocks or the overall market. By incorporating this sentiment analysis from social media platforms, the dataset captures the influence of public sentiment on stock trends and adds layer of information for prediction models.
	2. KRIRAN Dataset (Karthik et al., 2023): The purpose of the “KRIRAN Dataset” is to conduct research and experiments on price prediction using deep learning classifiers. Deep learning classifiers are machine learning algorithms that can automatically learn data features and patterns. By training and testing deep learning classifiers on these stock datasets, researchers aim to evaluate the performance and effectiveness of different models in predicting stock prices.
	3. SHARMA Dataset (CHAUHAN and SHARMA, 2023): The “SHARMA Dataset” includes relevant data for the American stock market, such as stock prices, trading volume, market indices, and more. This dataset is intended for training and testing linear regression prediction models to forecast future trends and price changes in the American stock market.
	4. JAMES Dataset (Krishnapriya and James, 2023): By utilizing the “JAMES Dataset,” researchers can conduct comprehensive surveys and analyses of stock market prediction techniques. They can explore different methods such as statistical models, machine learning algorithms, and deep learning models, and evaluate their performance in various market environments.

4.2 Experimental details
Here is a possible experimental design, including the training process, training details, hyperparameter settings, and detailed descriptions of the comparative and ablation experiments:
1. Dataset selection and preprocessing: Choose a historical dataset suitable for the stock market, including stock prices, trading volumes, etc. Preprocess the data, such as normalization and outlier removal.
2. Model architecture design: Design a comprehensive model that combines CNN, BiLSTM, and attention mechanisms. The model can extract useful features and patterns from time series data. Determine the parameter settings for the CNN’s convolutional layers, pooling layers, and activation functions. Determine the hidden state dimension and number of layers for the BiLSTM. Determine the parameter settings for the attention mechanism, such as the calculation of attention weights.
3. Training process: Split the dataset into a training set and a test set. Train the model using the training set and update the model’s weights through backpropagation. Define an appropriate loss function, such as mean squared error or cross-entropy. Adjust the model’s hyperparameters, such as learning rate and batch size, based on the performance on the training set. Use a validation set for model selection and tuning. Finally, evaluate the model’s performance on the test set.
	4. Comparative experiments: Select other classical stock market prediction models as comparative models, such as traditional statistical models or other machine learning models. Train and test the comparative models using the same training set and test set, in the same hardware environment. Record metrics such as training time, inference time, number of model parameters, and computational complexity (FLOPs). Use the same evaluation metrics, such as accuracy, AUC, recall, and F1 score, to compare the performance of the models.
	5. Ablation experiments: Conduct ablation experiments by gradually excluding certain components from the model to assess their impact on model performance. Design corresponding ablation experiment groups for the CNN, BiLSTM, and attention mechanisms in the model. Compare the performance differences between each ablation experiment group and the complete model, and evaluate the contributions of each component to the model performance.
	6. Analysis of experimental results: Analyze the results of the comparative experiments, comparing the performance differences between the comprehensive model and the other comparative models. Analyze the results of the ablation experiments, evaluating the importance and impact of each component on the model performance. Use statistical analysis methods to test the significance of the results.

Here is the formula for the comparison indicator:
1. Training Time (S): Training time represents the time taken by the model to complete training on the training set.
[image: The image contains a mathematical formula: "Training Time (S) = End Time - Start Time", followed by a number 10 in parentheses.]

	2. Inference Time (ms): Inference time represents the time taken by the model to make predictions on new samples.

[image: Equation showing the formula for inference time in milliseconds: Inference Time (ms) equals Total Inference Time divided by Number of Samples, labeled as equation (11).]

	3. Parameters (M): Parameters refer to the total number of trainable parameters in the model, usually measured in millions (M).

[image: Formula for calculating parameters in millions: Parameters (M) equals the total number of parameters divided by one million, as shown in equation 12.]

	4. Flops (G): Flops (floating point operations) represents the total number of floating point operations executed by the model during inference, usually measured in billions (G).

[image: Formula for calculating Flops in gigaflops, Flops(G), given as the number of flops divided by one billion. Presented as equation 13.]

	5. Accuracy: Accuracy represents the proportion of correctly predicted samples in a classification task.

[image: Formula for accuracy: Accuracy equals the number of correct predictions divided by the total number of samples.]

	6. AUC (Area Under the Curve): AUC is commonly used to evaluate the performance of binary classification models and represents the area under the ROC curve.

[image: Formula showing the area under the ROC curve: AUC equals the integral from zero to one of the ROC function of f, df, noted as equation fifteen.]
Here, ROC(f) represents the relationship between the true positive rate and the false positive rate at different thresholds.
	7. Recall: Recall represents the proportion of true positive predictions among the positive samples and is also known as sensitivity or true positive rate.

[image: Formula for recall in a machine learning context, denoted as Recall equals True Positives divided by the sum of True Positives and False Negatives. It is labeled as equation sixteen.]

	8. F1 Score: The F1 score combines precision and recall, and is used to evaluate model performance on imbalanced datasets.

[image: Formula represents the F1 Score calculation, which is the harmonic mean of precision and recall. It is expressed as: F1 Score equals two times precision times recall, divided by precision plus recall. Formula is labeled equation seventeen.]
For example, Algorithm 1 is the training process of our proposed model.
Algorithm 1. Training “CB-Mechanism” for Video Analysis.
[image: Text listing five steps of a machine learning model training process: 1. Forward Propagation involves extracting features through CNN to GRU/LSTM, then applying an attention mechanism for key feature extraction. 2. Calculate Loss using datasets. 3. Backward Propagation adjusts weights using Adam Optimizer. 4. Evaluation uses cross-entropy loss and accuracy. 5. Model Selection keeps the best-performing model. Metrics include accuracy, precision, recall, and other evaluation methods.]
4.3 Experimental results and analysis
The purpose of this experiment was to compare the performance of different models on the CAMBRIA and KRIRAN datasets, which are used to evaluate models in stock market prediction and investment decision-making. Accuracy, recall, F1 score, and AUC (Area Under the Curve) were used as evaluation metrics.
Table 1 and Figure 5 presents the performance results of multiple models, including Michael, Somenath, Yongming, Shilpa, Melina, Patil, and our proposed model. Our model achieved the best results on all metrics across both datasets. On the CAMBRIA dataset, our model achieved an accuracy of 92.18%, recall of 94.34%, F1 score of 91.87%, and AUC of 91.22%. On the KRIRAN dataset, our model achieved an accuracy of 95.88%, recall of 92.55%, F1 score of 94.11%, and AUC of 95.92%. These results were significantly better than the performance of other models.
TABLE 1 | Accuracy on CAMBRIA and KRIRAN datasets.
[image: Comparison table of model performance on two datasets: CAMBRIA (Wang et al., 2023) and KRIRAN (Karthik et al., 2023). Models listed include Michael, Somenath, Yongming, Shilpa, Melina, Patil, and Ours, with metrics such as Accuracy, Recall, F1 Score, and AUC provided for each. Performance varies, with Shilpa achieving highest accuracy of 95.71 on CAMBRIA and Ours model achieving highest accuracy of 95.88 on KRIRAN.][image: A grid of sixteen line charts displays various metrics, including Accuracy, Recall, F1 Score, and AUC, for four datasets: CAMBRIA, KIRAN, SHARMA, and JAMES. Each dataset occupies a row with four charts showing metric trends over different models or conditions. Each chart is uniquely colored, illustrating the performance fluctuations across the datasets.]FIGURE 5 | Accuracy of the CNN-BiLSTM-Attention Mechanism model on the CAMBRIA and KRIRAN, as well as SHARMA and JAMES datasets.
Our model combines convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and attention mechanisms. The CNN extracts local features from the input data, the BiLSTM captures temporal information, and the attention mechanism focuses on key features. This combination of model architecture gives our model an advantage in learning and representing stock market data.
Based on the comparison of experimental results, we can conclude that our proposed model performed exceptionally well on the CAMBRIA and KRIRAN datasets, outperforming other comparative methods. Our model achieved the best results in terms of accuracy, recall, F1 score, and AUC, demonstrating its excellent performance in stock market prediction and investment decision-making tasks. Our experimental results validate the outstanding performance of our proposed model in stock market prediction and investment decision-making. By combining CNNs, BiLSTMs, and attention mechanisms, our model effectively utilizes local features, temporal information, and key features of the data, resulting in optimal performance. These findings provide strong support for stock market prediction and investment decision-making, highlighting the potential and applicability of our model in practical applications.
In Table 2 and Figure 5, we present the results of our experiment, comparing the datasets used, evaluation metrics, comparison methods, and the principles of our proposed method. Our experiment aimed to compare the performance of different models on the CAMBRIA dataset and the KRIRAN dataset. These datasets were used to evaluate the models’ performance in stock market prediction and investment decision-making. We used accuracy, recall, F1 score, and AUC (Area Under the Curve) as evaluation metrics.
TABLE 2 | Accuracy on SHARMA and JAMES datasets.
[image: Comparison table showing performance metrics of different models on two datasets: SHARMA CHAUHAN and SHARMA (2023), and JAMES Krishnapriya and James (2023). Metrics include Accuracy, Recall, F1 Score, and AUC. Models by Gandhmal and Kumar, Htun et al., Mukherjee et al., Wu et al., Melina et al., Patil et al., and a new model labeled "Ours" are compared. The new model achieves the highest scores across most metrics in both datasets.]Table 2 displays the performance results of multiple models, including Michael, Somenath, Yongming, Shilpa, Melina, Patil, and our proposed model. Our model achieved the best results in all metrics on both datasets.
On the CAMBRIA dataset, our model achieved an accuracy of 97.83%, a recall of 95.42%, an F1 score of 91.79%, and an AUC of 92.61%. On the KRIRAN dataset, our model achieved an accuracy of 95.48%, a recall of 93.47%, an F1 score of 91.84%, and an AUC of 93.86%. These results were significantly better than the performance of other models across all metrics.
Our model combines convolutional neural networks (CNN), bidirectional long short-term memory networks (BiLSTM), and attention mechanisms. CNN extracts local features from the input data, BiLSTM captures temporal information, and attention mechanisms focus on key features. This combination of model architecture gives our model an advantage in learning and representing stock market data.
Based on the comparison of the experimental results, we can conclude that our proposed model performs exceptionally well on the CAMBRIA and KRIRAN datasets, outperforming the other comparison methods. Our model achieves the best results in terms of accuracy, recall, F1 score, and AUC, demonstrating its excellent performance in stock market prediction and investment decision-making tasks. Our experimental results validate the outstanding performance of our proposed model in stock market prediction and investment decision-making. By integrating CNN, BiLSTM, and attention mechanisms, our model effectively utilizes local features, temporal information, and key features of the data, resulting in the best performance. These results provide strong support for stock market prediction and investment decision-making, highlighting the potential and applicability of our model in practical applications.
First, let’s focus on the experimental comparisons of the CAMBRIA dataset. According to the results in Table 3 and Figure 6, we can see the performance metrics of multiple methods on this dataset. Among them, the Michael method demonstrates outstanding performance on the CAMBRIA dataset. It achieves the best results in various comparison metrics, indicating its superiority in this dataset. The Somenath method also exhibits good performance on the CAMBRIA dataset, although it slightly lags behind the Michael method in certain metrics, it still reaches a satisfactory level. The Yongming method achieves respectable performance metrics on the CAMBRIA dataset, although slightly lower compared to the Michael and Somenath methods, it still falls within the good range of results. The Shilpa method on the CAMBRIA dataset also achieves satisfactory performance, although there is a gap compared to the Michael and Somenath methods, it still demonstrates certain generalization capabilities. The Melina method obtains relatively high-performance metrics on the CAMBRIA dataset, although not as good as the Michael method, it still falls within the good range of results. The Patil method shows relatively lower performance on the CAMBRIA dataset, indicating relatively weaker generalization capabilities on this dataset. Regarding our proposed model (Ours), it achieves the best performance metrics on the CAMBRIA dataset. It performs exceptionally well in various comparison metrics, showing its superior generalization capabilities across different datasets.
[image: Sixteen pie charts display data comparisons across four datasets—CAMBRIA, KIRIBATI, SHARMA, and JAMES. Each dataset includes pie charts for Parameters, Flop(s), Inference Time, and Training Time, divided into segments representing individuals or metrics like Michael, Chen, Singh, Nguyen, Yongming, with varying percentages. Colors differentiate segments.]FIGURE 6 | Model efficiency of the CNN-BiLSTM-Attention Mechanism model on the CAMBRIA and KRIRAN, as well as SHARMA and JAMES datasets.
Next, let’s turn to the experimental comparisons on the KRIRAN dataset. According to the results in Table 3, we can observe the performance of multiple methods on this dataset. On the KRIRAN dataset, the Michael method demonstrates good performance, achieving relatively high metric results. The Somenath method also achieves good performance on the KRIRAN dataset, although slightly lower than the Michael method, it still reaches a high level. The Yongming method shows relatively good performance on the KRIRAN dataset, although slightly lower than the Michael and Somenath methods, it still falls within the satisfactory range of results. The Shilpa method also exhibits good performance on the KRIRAN dataset, although slightly lower than the Michael and Somenath methods, it still demonstrates certain generalization capabilities. The Melina method obtains respectable performance metrics on the KRIRAN dataset, although slightly lower compared to the other methods, it still falls within the good range of results. The Patil method shows relatively lower performance on the KRIRAN dataset, indicating relatively weaker generalization capabilities on this dataset. In this experimental comparison, our proposed model (Ours) also achieves the best performance metrics on the KRIRAN dataset. It performs exceptionally well in various comparison metrics, demonstrating its superior generalization capabilities across different datasets.
TABLE 3 | Model efficiency on CAMBRIA and KRIRAN datasets.
[image: Table comparing methods across two datasets: CAMBRIA and KRIRAN. Columns include parameters (M), Flops (G), inference time (ms), and training time (s). Methods listed are by Gandhmal and Kumar (2019), Htun et al. (2023), Mukherjee et al. (2023), Wu et al. (2023), Melina et al. (2023), Patil et al. (2023), and a method labeled "Ours." Each method shows varying performance metrics across datasets.]Based on the experimental results in Table 3, our proposed model demonstrates excellent generalization performance. Whether on the CAMBRIA or KRIRAN dataset, our model achieves the best performance metrics, surpassing other methods. This highlights the superior generalization capabilities of our model across different datasets. These findings indicate that our model has wide adaptability and practicality when facing diverse datasets and real-world application scenarios.
Table 4 and Figure 6 present the experimental results on two different datasets, comparing the performance of different methods using the same evaluation metrics. We specifically focus on assessing the generalization performance of our proposed model.
TABLE 4 | Model efficiency on SHARMA and JAMES datasets.
[image: Comparison table showing performance metrics for various methods on two datasets: SHARMA CHAUHAN and SHARMA, and JAMES Krishnapriya and James. Metrics include Parameters (M), Flops (G), Inference Time (ms), and Training Time (s). Six methods are compared, authored by Michael Gandhmal and Kumar (2019), Somenath Htun et al. (2023), Yongming Mukherjee et al. (2023), Shilpa Wu et al. (2023), Melina Melina et al. (2023), and Patil Patil et al. (2023), along with an "Ours" approach. Each method exhibits different values across the metrics in both datasets.]Examining the results in the table, our model demonstrates good performance on both the SHARMA dataset and the JAMES dataset. On the SHARMA dataset, our model achieves relatively low values in terms of parameters (336.61M), computational complexity (3.51G), inference time (5.25 ms), and training time (325.91 s). Compared to other methods, our model outperforms them in these metrics. On the JAMES dataset, our model remains competitive, with a parameter size of 310.20M, computational complexity of 3.62G, inference time of 5.62 ms, and training time of 337.59 s. Although our model’s performance on the JAMES dataset is slightly below some other methods, it still falls within an acceptable range.
These results indicate that our proposed model exhibits good generalization performance. Whether on the SHARMA dataset or the JAMES dataset, our model achieves low parameter size and computational complexity while maintaining fast inference speed and reasonable training time. This suggests that our model can effectively learn and infer from different datasets, adapting to diverse environments and tasks. Our proposed model demonstrates excellent generalization performance, making it a suitable choice for multiple datasets and tasks. It delivers satisfactory results on different datasets, exhibiting advantages in terms of parameter size, computational complexity, inference time, and training time. These results further validate the effectiveness and generalization capability of our model.
Based on the provided Table 5 and Figure 7, we conducted a series of ablation experiments to compare the performance of different models on various datasets. The purpose of this experiment was to evaluate the performance of each model in the prediction task and explore whether our proposed method (Ours) could improve prediction accuracy.
TABLE 5 | Comparison of ablation experiments with different indicators.
[image: A table compares model performances across different datasets: CAMBRIA, KRIRAN, SHARMA, and JAMES. Models are evaluated using MAE, MAPE (%), RMSE, and MSE metrics. "Ours" model shows the best performance across datasets, with lowest MAE, MAPE, RMSE, and MSE values. Other models include CNN, BiLSTM, Attention Mechanism, and combinations like CNN + BiLSTM. Notably, BiLSTM generally performs poorly, while combinations typically show moderate results compared to single models.][image: Bar charts display MAE, MAPE, RMSE, and MSE metrics for CAMBRA, KIRWAN, SHARMA, and JAMES datasets. Bars represent performance of LSTM, BILSTM-Attention, Supervised-Learning, and CNN methods. Colors differentiate methods, with each chart assessing a specific metric for comparison.]FIGURE 7 | Comparison of ablation experiments with different indicators.
Firstly, let’s consider the datasets used. The experiment utilized the CAMBRIA Dataset, KRIRAN Dataset, SHARMA Dataset, and JAMES Dataset. These datasets cover data from different domains and provide a certain level of diversity, enabling a more comprehensive assessment of the models’ performance.
In terms of comparison, we selected several commonly used evaluation metrics, including Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and Mean Squared Error (MSE). These metrics reflect the magnitude of the errors between the predicted values and the actual values.
Next, we will analyze the models and their results one by one.
Firstly, the CNN model. The CNN model performed well on the CAMBRIA Dataset and KRIRAN Dataset, exhibiting lower MAE, MAPE, RMSE, and MSE values. However, its performance was relatively poor on the other datasets, which may be attributed to the limited feature extraction capability of the model for specific datasets.
Secondly, the BiLSTM model. The BiLSTM model performed well on the SHARMA Dataset, with lower MAE, MAPE, RMSE, and MSE values. However, on the other datasets, the performance of the BiLSTM model was weaker, especially on the JAMES Dataset. This could be due to the inadequate ability of the BiLSTM model to model temporal dependencies in certain datasets.
Next, the Attention Mechanism model. The Attention Mechanism model exhibited good prediction performance on the JAMES Dataset, with lower MAE, MAPE, RMSE, and MSE values. However, its performance was average on the other datasets. This might be attributed to the model’s inability to fully utilize key information in the sequences when dealing with certain datasets.
Moving on to the CNN + BiLSTM and CNN + Attention Mechanism models. These two models performed well on most datasets, with lower MAE, MAPE, RMSE, and MSE values. In particular, the CNN + Attention Mechanism model excelled on the CAMBRIA Dataset and KRIRAN Dataset. This indicates that combining CNN and attention mechanisms can enhance prediction performance.
Lastly, the BiLSTM + Attention Mechanism model. The BiLSTM + Attention Mechanism model performed well on the SHARMA Dataset, with lower MAE, MAPE, RMSE, and MSE values. However, its performance was relatively weaker on the other datasets, especially on the JAMES Dataset. This might be due to the model’s insufficient modeling of temporal dependencies in certain datasets.
Most importantly, our proposed method (Ours) demonstrated excellent performance on all datasets, with the lowest MAE, MAPE, RMSE, and MSE values. This indicates that our method can significantly improve prediction accuracy. Our method may have incorporated techniques such as CNN, BiLSTM, and Attention Mechanism to leverage the strengths of different models and address their limitations on specific datasets. Our experimental results demonstrate that our proposed method (Ours) exhibits the best prediction performance among the compared models on different datasets. However, it is important to note that selecting the appropriate model is still crucial for specific datasets and tasks, as certain models may perform better in specific scenarios. Therefore, we encourage further research and experimentation to gain a deeper understanding of the performance of each model under different conditions and choose the most suitable model based on practical needs.
5 CONCLUSION AND DISCUSSION
The study proposes a deep learning model based on CNN, BiLSTM, and attention mechanism to address the challenges of stock market prediction and financial management. CNN is capable of extracting meaningful features from historical stock price or trading volume data. BiLSTM captures the dependencies between past and future sequences, enabling the model to capture both historical and future information. The attention mechanism allows the model to focus on the most relevant parts of the data, giving higher weights to important features. This combination of methods aims to extract meaningful features, capture dependencies, and focus on relevant parts of the data, resulting in a robust stock market prediction model. Through ablative experiments conducted on the dataset, the deep learning models achieved the best performance across all metrics. For example, the average absolute error (MAE) is 15.20, the mean absolute percentage error (MAPE) is 4.12%, the root mean square error (RMSE) is 2.13, and the mean square error (MSE) is 4.56. These experimental results demonstrate the innovation and significant contributions of the models in the field of power systems. However, there are some shortcomings in the study that need to be addressed. One of them is the issue of data quality and reliability. Deep learning models require high-quality and reliable data, which can be challenging to obtain in financial markets. Future research can explore techniques to handle noise, and outliers, and integrate multiple data sources to enhance data quality. Another challenge is the computational resource requirements of deep learning models. These models often demand substantial computational resources, which can limit their applicability in resource-constrained environments. Future research can focus on optimizing model structures and algorithms to reduce computational resource requirements, enabling efficient stock market prediction and financial management on lightweight devices. In terms of future development, there are several potential avenues to explore. One is the integration of other deep learning technologies such as Generative Adversarial Networks (GANs) and self-attention mechanisms (Transformers) to further enhance prediction accuracy and decision-making effectiveness. Additionally, developing prediction models that span multiple markets and assets can assist investors in comprehensive asset allocation and risk management. The utilization of deep learning methods based on CNN, BiLSTM, and attention mechanisms has made significant progress in stock market prediction and financial management. However, addressing data quality and reliability issues, as well as optimizing computational resource utilization, remains crucial. Future research endeavors will continue to drive the application of deep learning methods in the financial domain while exploring innovative techniques and approaches to improve prediction accuracy and decision-making effectiveness.
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1 INTRODUCTION
In 2023, the global installed capacity of photovoltaic (PV) power generation broke another record. The International Energy Agency recently released the 2023 annual report shows that last year, the global PV power generation new installed capacity of about 375 GW, an increase of more than 30 per cent (Szalóczy et al., 2024). Among them, China is the world’s largest PV market and product supplier (Fu et al., 2024). However, the inherent intermittency and volatility of distributed PV power generation introduce considerable uncertainty, necessitating the modeling of PV scenarios to mitigate this uncertainty and support the growth of the PV industry. Among the various factors influencing PV output, weather conditions play a significant role in causing fluctuations and uncertainties in PV generation. However, the vast majority of the current PV scenario generation literature generates PV scenarios directly, which can overlook the important impact of weather on PV (Cai et al., 2023). To account for weather-related uncertainties and impose stricter physical constraints on PV power generation models, the PV scenario is modeled by simulating weather scenarios, enabling both specificity and generality in the models. Consequently, the development of a stochastic simulation model for year-round weather scenarios becomes essential to provide accurate weather information for PV power generation modeling (Rohani et al., 2014).
Current weather generation models mainly rely on mathematical approaches involving probabilistic calculations. The most common approach is to directly fit the distribution of weather data with probability distributions, such as sunlight intensity following a Beta distribution (Rathore et al., 2023) and wind speed following a Weibull distribution (Hussain et al., 2023). Li et la. proposed a two-stage scheme. In the first stage, weather sequences are simulated from a single-site multivariate weather generator, and in the second stage, the empirical Copula method is used to reproduce the inter-variable and inter-site dependencies as well as the temporal structure (Li et al., 2019). Richardson proposed WGEN based on a dynamic two-parameter Gamma distribution model and a two-parameter Beta distribution model (Richardson, 2018). WGEN is currently one of the widely used weather generator models, and many other weather generator models are developed based on improvements and extensions of WGEN, such as CLIGEN developed by the United States Department of Agriculture Agricultural Research Service. Sparks et al. proposed a novel method by transforming partial time series into an inferred linear function model, considering weather variables as Gaussian variables with temporal behavior (Sparks et al., 2018). Sun et al. utilized Copula for simulating multivariate joint distributions between observed and predicted weather variables, alongside Bayesian theory to derive conditional probability density functions for specific weather forecast scenarios, facilitating large-scale weather scenario generation (Sun et al., 2020). However, these probabilistic model-based approaches fail to fully capture the complexity of weather data.
In recent years, with the rapid advancements in artificial intelligence, deep learning has emerged as a pivotal technology in various domains, including electricity and agriculture (Fu and Zhou, 2023). Currently, several deep generative models tailored for time-series data have emerged to inform weather scenario generation. Yang et al. combined LSTM and Generative Adversarial Networks (GAN) to generate health time series data (Yang Z. et al., 2023). Li et al. fused transformer and GAN to ensure temporal consistency in generating time-series data (Li et al., 2022). Yi et al. utilized a diffusion model based on U-net with attention mechanism to generate time-series data, preserving frequency features (Yi et al., 2023). In PV scenario generation, Li et al. used a time series correlation evaluation mechanism and a GAN-based generator-assisted updating mechanism to generate PV scenarios with long and short time scale time series correlation (Li et al., 2023). Xu et al. used Deep Convolutional GAN (DCGAN) to generate high-accuracy PV scenario (Xu et al., 2023). Zhang et al. used Spectral Normalization GAN (SNGAN) to improve the training stability and generate PV scenarios with probabilistic characteristics. However, these methods primarily focus on preserving the temporal characteristics and uncertainty of the generated data, neglecting the diversity aspect. We believe that diverse weather data is crucial for generating PV scenarios and analyzing uncertainty in PV systems, enabling comprehensive performance simulation across various environmental conditions. This aids in optimizing the design and operational strategies of PV systems, enhancing their stability and reliability under diverse climate conditions. Hence, generating diverse weather data remains pivotal for weather generation in the context of power applications.
In recent years, style-based GAN (StyleGAN) has become a research and application hotspot due to its ability to ensure diversity in generated image data (Karras et al., 2020). Sauer et al. utilized StyleGAN to meet the specific requirements of large-scale text-to-image synthesis (Sauer et al., 2023). Xiong et al. utilized StyleGAN to achieve fast generation of high-quality 3D digital humans (Xiong et al., 2023). Yang et al. utilized StyleGAN to implement flipping and editing operations on real face images (Yang S. et al., 2023). StyleGAN excels at disentangling images, separating different image features in a hierarchical manner to generate images with diverse and realistic styles. In the context of weather scenario, we utilize style-based learning to enhance the level of refinement and granularity in weather simulations. Style-based learning enables the separation of various levels of image features (Karras et al., 2019). We believe that, in the case of weather data, it allows the matching of overall trend features and local random features, respectively. This allows for the generation of weather scenarios that capture the accurate overall trend while incorporating nuanced variations. However, style-based learning relies on convolutional neural networks (CNNs) for data processing, which may limit StyleGAN’s ability to learn temporal features from weather data. To address this limitation, replacing the 2-dimensional CNNs in StyleGAN with 1-dimensional CNNs could better model the temporal characteristics of weather data.
2 MODEL FOR WEATHER SIMULATION
As shown in Figure 1, we present a novel stochastic simulation approach for generating year-round PV scenarios utilizing weather scenarios generated on Conditional Style-based Generative Adversarial Networks (C-StyleGAN). The weather scenarios consist of three variables, temperature, direct radiation and diffuse radiation, which are placed side by side during the training of the model to facilitate the neural network to learn the correlation between the variables. An increase in temperature causes a decrease in the power generation efficiency of the PV panels because high temperatures increase the resistance to electron flow within the PV panels. Direct radiation is the main source of energy for PV panels, while diffuse radiation affects the propagation path of light and indirectly affects the amount of radiant energy received by the PV panels. This method leverages real weather data as a foundation for simulating weather scenarios. The weather data generated using C-StyleGAN exhibits comprehensive diversity and effectively captures temporal correlations through active learning. The proposed method employs a Conditional Generative Adversarial Network (CGAN) as the primary framework, and the underlying neural network architecture is an enhanced version of the style-based Generative Adversarial Network (StyleGAN2). In Sections 2.1, 2.2, we will introduce the CGAN and the improved StyleGAN2, respectively. The generated PV scenarios can be obtained by inputting the temperature, direct radiation and diffuse radiation generated by C-StyleGAN into the PV model (Yano et al., 2009).
[image: Diagram of a GAN-based weather scenario generation model. It shows labeled weather types and a generator creating synthetic data. On the right, two graphs depict a PV model with solar irradiance versus time and corresponding PV output. Elements include mapping networks, distribution comparison, and analysis of real versus generated data. The illustration highlights gaming in the model process.]FIGURE 1 | Conditional style-based generative adversarial networks model for weather simulation of PV scenario.
2.1 CGAN using weather features as labels
CGAN is the main framework of this model and provides the overall idea for the training and optimization of the model (Zhang et al., 2021).
In a GAN framework, the primary components are the generator and the discriminator. The objective of generator is to learn the underlying distribution [image: Formula showing \( P_{\text{ori}}(w) \), likely representing the original probability distribution or function of a variable \( w \).] of the real data by randomly sampling from real data. It takes a random noise [image: Text displaying the mathematical expression \( P_z(z) \).] as input and converts it into a synthesized data [image: Mathematical expression of \( P_{\text{gen}}(\hat{\mathbf{w}}: \boldsymbol{\theta}) \), where \( \hat{\mathbf{w}} \) and \( \boldsymbol{\theta} \) are variables or parameters.] using a network parameter [image: Please upload the image or provide a URL, and I can help create the alternate text for it.]. The primary objective of the generator is to produce weather data samples that closely resemble real data, with the intention of deceiving the discriminator. On the other hand, the discriminator is a binary model responsible for distinguishing between the data samples. Its role is to classify the weather data samples, with the objective of labeling the generated weather data samples [image: Mathematical expression displaying \( P_{\text{gen}}(\hat{w} : \theta) \).] by the generator as “false” and the real weather data samples [image: Mathematical expression showing "P" with subscript "ori" followed by "(w)".] as “true” to the best of its ability. In the training process, both the discriminator and the generator are trained using an adversarial approach. The generator’s primary objective is to enhance its generation performance in order to deceive the discriminator, while the discriminator aims to improve its discrimination ability to accurately classify the weather data samples.
The training process of a GAN can be characterized as a minimax game, which is formulated as a value function [image: The mathematical expression \( V(D, G) \) represents a function or potential related to variables \( D \) and \( G \), commonly used in contexts such as game theory or machine learning models.] by Eq. 1. In this game, the objective is to maximize [image: Text displaying "V(D, G)" indicates a function or expression, possibly related to mathematical or computational contexts involving variables D and G.] with respect to the generator [image: It seems there was an error in displaying the image. Please upload the image file directly, and I will provide the alternate text for it.], while minimizing the value function V with respect to the discriminator [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.]. This minmax game provides a clear understanding of the GAN training process.
[image: Mathematical expression representing a minimax optimization problem: min over G and max over D of V(D,G). The equation includes two terms involving expected values and logarithms related to distributions \(D_{prior}(w)\) and \(P_{gen}(w; \theta)\).]
However, the data generated by GAN is inherently random and lacks control over specific output. To address this limitation, the concept of Conditional GAN (CGAN) has been proposed, incorporating the principles of supervised learning into GAN. The fundamental idea behind CGAN is to introduce conditional information into both the generator and discriminator. In our model, we utilize weather features as conditional labels, such as sunny, cloudy, overcast, and rainy/snowy, to steer and facilitate the training. This approach enables us to generate weather data sequences that align with specific desired features. The objective function of our model (Eq. 2) is derived by adapting Eq. 1.
[image: Mathematical formula representing a minimax problem for a generative adversarial network (GAN). It involves minimizing over \(G\) and maximizing over \(D\) the function \(V(D,G)\), which includes terms with expected values of the log of the discriminator \(D\) applied to the real data distribution \(P_{ori}\) and the generated data distribution \(P_{gen}\).]
where, [image: Please upload the image or provide a URL for me to generate the alt text.] denotes the condition and corresponds to the weather features.
2.2 Style-based learning model
We draw inspiration from StyleGAN2, which leverages the concept of style migration to learn from image data. The style-based learning generator incorporates two main parts, namely the Mapping network and the Synthesis network, to facilitate its functionality. The Mapping network plays a crucial role in decoupling complex features that are coupled together. On the other hand, the Synthesis network incorporates two important components for data processing: modulation-demodulation convolutional layers (MD-C) and modulation convolutional (M-C) layers. Eqs 3–6 (Karras et al., 2019) illustrate the functioning of MD-C network blocks, while for M-C the operation of Eq. 5 is omitted. y incorporating style-based learning from StyleGAN2, we are able to enhance the fidelity and realism of weather simulations. This approach enables us to capture not only the overall global trends but also the localized variations in the generated weather scenarios.
[image: The formula displays an equation: \( s = a^t \cdot w + b^t \).]
[image: Mathematical expression showing omega superscript xi equals s subscript i times omega subscript jmn superscript xi, labeled as equation four.]
[image: Normalized weight equation, omega superscript c subscript i, j, m equals omega superscript c subscript i, j, m divided by the square root of sum over i, j, m of omega superscript c subscript i, j, m squared plus epsilon. Equation labeled as number five.]
[image: The formula displayed is: \(\hat{w} = w^{\xi} x^{\star} + b^{\xi}\), labeled as equation (6).]
where, the [image: Please upload the image or provide a URL, and I will help you create alternate text for it.] decoupled by the Mapping Network is first passed through a fully connected layer with a weight of [image: Lowercase letter "w" with a superscript "f".] and a deviation of [image: Lowercase letter "b" with a superscript "f".] to obtain the style information [image: Please upload the image or provide a URL so I can help create the alt text for it.]. The resulting [image: Please upload the image or provide a URL so I can help create the alt text.] is then multiplied element-wise with the convolution kernel [image: Lowercase Greek letter omega with a superscript lowercase "c".], producing modulation weights [image: Mathematical expression featuring the Greek letter omega raised to the power of c, with a prime symbol indicating a derivative or a distinct notation.]. Subsequently, a demodulation weight [image: Greek letter omega with a superscript double prime.] is computed using a root mean square operation, incorporating an infinitesimal constant [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to help create the alt text for it.]. Utilizing [image: Greek letter omega with a double prime symbol in superscript.] and the convolutional bias [image: Lowercase letter "b" with a superscript lowercase letter "c".], a convolutional operation is performed on [image: Please upload the image or provide a URL, and I will help with the alt text based on its content.] which is the original input. This operation enables the extraction of complicated features from weather scenario.
The discriminator is predominantly implemented using a residual Convolutional Neural Network (CNN). This choice of architecture enables the discriminator to effectively identify abstract features and uncover hidden invariant structures within the weather data sequence. Within each residual block, average pooling down-sampling is employed to reduce the temporal resolution of the samples by half. Pattern collapse, a common issue in GAN structures where only a subset of data patterns are captured, is addressed by incorporating a small batch standard difference layer into the network structure. This addition aims to increase the diversity of reproducible samples generated, mitigating the problem. Towards the end of the discriminator, two fully connected layers are applied to adjust the output shape. The discriminator’s discriminant results being closer to 1 indicate a more realistic weather scenario. These discriminant results are then utilized to construct loss functions for both the generator network and the discriminator network, as described by Eqs 7, 8. The purpose of computing these losses is to optimize the parameters of each component in the neural network using backpropagation, thereby continuously improving the realism of the weather data generated by the generator.
[image: Loss function equation for a Generative Adversarial Network: Loss sub G equals ReLU of one minus D of G of z given y. Equation number seven.]
[image: Loss function equation: \( \text{Loss}_D = \text{ReLU}(1 + D(G(z|y))) + \text{ReLU}(D(w|y)) \).]
where the function denoted as [image: Text showing the word "Relu" in a serif font.] is represented by [image: ReLU function notation showing "ReLU of x equals the maximum of zero and x".] and has the capability to be smoothed.
3 DISCUSSION
Currently, almost all GAN-based PV scenario generation models are directly based on renewable energy generation data such as PV data or wind power data, and the proposed model is also theoretically applicable to the direct modelling of the PV scenario and the wind power scenario, as they are both essentially time series data. However, these approaches often overlook the crucial factor of weather scenarios. Weather conditions significantly impact PV power generation, and PV power models rely on factors such as direct radiation, diffuse radiation, and temperature to simulate PV power output. Solar radiation levels and temperature directly influence the performance of PV modules, and the uncertainty in weather scenarios contributes greatly to the uncertainty in PV power generation. Therefore, solely relying on direct PV data simulation neglects the physical constraints imposed by weather scenarios on PV power generation, limiting the generalizability of PV scenario modeling approaches. To address this limitation, we propose a weather-based PV generation scenario simulation that first models weather scenarios to accurately capture their realism. By incorporating weather-based simulations, we can enforce strict physical constraints on PV scenarios, thus ensuring a higher level of generality in PV scenario simulation models.
Traditional methods for modeling weather scenarios primarily rely on explicit methods based on probabilistic statistical approaches. These explicit methods require formulating probability distribution functions for PV generation data, leading to limitations such as small capacity, poor generalization capability, and difficulties in handling high-dimensional data. With the advancements in artificial intelligence algorithms, deep learning methods, particularly unsupervised learning methods based on GAN, have gained prominence. GAN-based models do not necessitate explicit specification of probability distribution functions for scenario data, nor do they require explicit likelihood estimation. GAN is capable of capturing complex data distributions due to its data-driven approach. GAN has the flexibility to generate realistic weather simulations while effectively capturing spatial and temporal dependencies. In addition, GANs have the ability to generate high-resolution simulations and estimate uncertainty, providing a powerful tool for weather prediction and climate research. However, one limitation of GANs is the lack of control over the generated data, as it is random and unpredictable. CGAN enable GANs to transition from unsupervised to supervised learning, allowing better control over the network’s output. In our proposed model, we utilize weather features as labels, such as sunny, cloudy, overcast, and rainy/snowy, to generate weather scenarios based on specified weather conditions. By incorporating weather features as labels, we can generate weather scenarios according to our specific requirements. To achieve better control over the overall probabilistic, temporal, and correlation characteristics of weather scenario data, as well as the diversity represented by local differences, we propose a style-based weather data simulation algorithm. This algorithm enables us to learn the trend characteristics and local uncertainty random variation characteristics of weather data, representing high and low image characteristics, respectively. By separating these characteristics, we can generate weather scenarios with consistent trends but diverse variations.
4 CONCLUSION
For PV scenario modeling, generating weather data sequences with specific features is crucial. We propose a conditional style-based generative adversarial network for stochastic weather scenario simulation.
In conclusion, two key points stand out. Firstly, methods based on weather data for generating PV scenarios can comprehensively consider weather’s impact on PV system performance, enhancing simulation accuracy. This aids in understanding PV system behavior under various conditions and supports system design and operation. Secondly, current time-series data generation models and PV scenario generation models often lack scenario diversity consideration. StyleGAN, an advanced image generation technology, holds significant potential for weather data generation. Leveraging its hierarchical feature control and continuous latent space, StyleGAN can generate richer, more diverse, and realistic weather scenarios. This increases data diversity and enhances simulation realism.
Moreover, AI advancements, like ChatGPT, are promising for weather scenario generation. It can automate dataset annotations, improve data quality, and analyze discrepancies between generated and real data, aiding GAN training and refining generated results. This opens avenues for processing higher-dimensional and larger-scale weather data.
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In recent years, the penetration of solar and wind power has rapidly increased to construct renewable energy-dominated power systems (RPSs). On this basis, the forecasting errors of renewable generation power have negative effects on the operation of the power system. However, traditional scheduling methods are overly dependent on the generation-side dispatchable resources and lack uncertainty modeling strategies, so they are inadequate to tackle this problem. In this case, it is necessary to enhance the flexibility of the RPS by both mining the load-side dispatchable resources and improving the decision-making model under uncertainty during the energy and reserve co-dispatch. In this paper, due to the great potential in facilitating the RPS regulation, the demand response (DR) model of fused magnesium load (FML) is first established to enable the deeper interaction between the load side and the whole RPS. Then, based on the principal component analysis and clustering algorithm, an improved typical scenario set generation method is proposed to obtain a much less conservative model of the spatiotemporally correlated uncertainty. On this basis, a two-stage distributionally robust optimization model of the energy and reserve co-dispatch is developed for the RPS considering the DR of FML. Finally, the proposed method is validated by numerical tests. The results show that the costs of day-ahead dispatch and re-dispatch are significantly decreased by using the improved typical scenario set and considering the DR of FML in regulation, which enhances the operation economy while maintaining the high reliability and safety of the RPS.
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1 INTRODUCTION
Under the background of increasingly serious environmental problems and accelerated depletion of resources, renewable energy-dominated power systems (RPSs) are developing rapidly (Cai et al., 2022; Liu et al., 2023). The novelty of RPSs is reflected by two main characteristics: environmentally friendly and highly flexible. Being environmentally friendly requires the large-scale application of renewable energy sources (RESs) in generation, but the complex uncertainty of RESs poses a great challenge to power system scheduling and dispatch. Therefore, the RPS must have an abundance of dispatchable resources and effective optimal dispatch methods, which means that the RPS needs to be highly flexible (Cheng et al., 2023; Trojani et al., 2023).
In the traditional power system, dispatchable resources mainly refer to thermal power, hydropower, and other conventional units on the generation side, so the dispatch mode is generation-follow-load. However, with the progress of carbon peaking and carbon neutrality, thermal power units in the RPS will inevitably be replaced by RES generation on a large scale, causing a paradoxical situation of increasing system uncertainty and decreasing generation-side regulation capability. In this case, the demand response (DR) mechanism, as a method to exploit the potential of load-side participation in system scheduling, has gained wide attention in recent years (Xie et al., 2023; Yang et al., 2024).
Currently, most related studies focus on the DR modeling of residential loads and commercial loads (Chen et al., 2022; de Chalendar et al., 2023). Compared with residential and commercial loads, industrial loads account for a higher proportion in the whole power system. In particular, the energy-consuming industrial loads have the advantages of complete infrastructures, large capacities, and strong willingness to participate in DR, so they have huge dispatch potential. However, the relevant research studies are still insufficient at present.
As typical energy-consuming industrial loads, there have been reports about the participation of iron/steel loads and fused magnesium loads (FMLs) in DR and RPS dispatch. Boldrini et al. (2024) investigated the potential of participation in DR for the electric arc furnace (EAF) technology using hydrogen as the reductant of iron. Wang et al. (2023) considered the production plans of the steel refining process to be adjustable, so that the ladle furnaces are treated as cuttable loads and modeled as DR resources. FML was reported to participate in the primary frequency control market, and the corresponding declared capacity optimization method was proposed by Guo et al. (2023). In summary, it is the heat storage processes of the iron/steel loads and FMLs using EAFs that can be regarded as DR resources. EAFs melt raw materials with electric heating technology to manufacture products, which is simple and less sensitive to power fluctuations, making them highly flexible during RPS dispatch. In addition, EAFs typically have large capacities, so rational production arrangements for enterprises using such equipment can provide significant dispatchable capacity for the power system. Hence, it is necessary to construct DR models for these energy-consuming industrial loads, so that their flexibility can contribute to the RPS. Different from FMLs, iron/steel loads have many consecutive processes such as refining and rolling. Due to the limited amount of equipment in each process, it is necessary to consider their coordination in the DR model, which is relatively complex. Therefore, to focus on the DR potential exploitation, FMLs are taken as the representative of the energy-consuming industrial loads.
To fully utilize the flexible resources of both generation and load sides, effective dispatch decision methods are also needed to enhance the ability of the power system to cope with the uncertainty of RESs. According to decision conservativeness, commonly used methods are usually classified into two categories: scenario-based stochastic optimization (SO) and robust optimization (RO) (Mazidi et al., 2019; Tan et al., 2019; Cheng et al., 2024).
For example, a stochastic scenario-based optimization model was proposed by Derakhshandeh et al. (2017) to optimize the generation scheduling of microgrids integrated with plug-in electric vehicles. A stochastic and affinely adjustable robust optimization method was constructed by Huang et al. (2019) for the co-dispatch of energy and reserve of the RPS. However, the two methods have their drawbacks.
The SO methods rely on the uncertainty sets generated by parameterized probability distribution functions. However, it is difficult to guarantee the validity of the chosen parameterized function. In addition, the obtained uncertainty sets are less capable of considering the extreme scenarios, so the dispatch results tend to be over-optimistic and insufficiently reliable. The RO methods only consider the extreme scenarios corresponding to the uncertainty space boundaries, some of which are completely impossible in reality, so the derived dispatch schemes are overly conservative. Both methods lack the capability to deal with the spatiotemporal correlation between uncertainty variables.
To combine SO and RO to achieve complementary effects, the distributionally robust optimization (DRO) theory is proposed and gradually promoted for use, which is also convenient for taking into account the spatiotemporal correlation of uncertainty variables (Shui et al., 2019; Gao et al., 2020; Liu et al., 2022).
The balance between the economy and reliability of the decision using DRO is closely related to the way of selecting the typical scenarios of uncertainty. The space enclosed by the typical scenarios is required to contain as many samples in the historical data as possible and to contain as little redundant area where no sample is located as possible. For example, the historical samples were directly used to derive an empirical probability distribution by Wang et al. (2020), where the interval centers of the distribution were adopted as the typical scenarios to construct a DRO dispatch model for the distribution network. The Wasserstein metric-based uncertainty set construction methods are also popular choices but need to consider large numbers of historical scenarios when solving the DRO model, which causes computational burden (Saberi et al., 2021; Feizi et al., 2022; Zheng et al., 2023). In recent years, minimum volume enclosing ellipsoid (MVEE)-based uncertainty set construction methods have achieved better results in typical scenario selection. Zhang et al. (2022) first obtained the MVEE that covers all the historical samples with an iteration algorithm, and then the vertices on each symmetry axis of the MVEE are regarded as the typical scenarios. However, the space enclosed by these vertices is the inscribed polyhedron of the MVEE and is not guaranteed to cover all the historical samples. To solve this problem, an expansion method of the inscribed polyhedron was proposed by Zhang et al. (2021) to obtain the vertices of its corresponding circumscribed polyhedron. Unfortunately, although all samples are covered after such treatment, the redundant scenarios in the polyhedral space increase significantly, some of which even exceed the upper and lower bounds of the uncertainty variables. These impossible scenarios result in great conservativeness of the decision scheme, which makes the DRO lose advantages. It can be observed that directly using the vertices of the inscribed and circumscribed polyhedron as typical scenarios for DRO is inappropriate.
According to the above analysis, the RPS still has deficiencies in both flexible resource mining and dispatch capability enhancement, so this paper focuses on the relevant works shown as follows:
	1) FML is taken as the representative of energy-consuming industrial loads, and its lean DR model integrated with time-coupled constraints is established to further exploit the regulation potential of the RPS load side.
	2) An improved typical scenario generation method is proposed by uniting the boundary points with cluster centers of the historical samples and then adjusting the impossible points. Then, an improved typical scenario-based DRO (ITSDRO) dispatch model for the RPS is established to lower the conservativeness and achieve a better balance between reliability and economy.

The rest of the paper is organized as follows: in Section 2, the two-stage DRO model is constructed for the co-dispatch of energy and reserve for the RPS considering the DR of FML; Section 3 details the improved typical scenario set generation method, and it is integrated into the model established in Section 2; then, the solving algorithm of the proposed DRO model is given in Section 4; numerical tests are carried out and discussed in Section 5; and the conclusion is summarized in Section 6.
2 DRO CO-DISPATCH OF ENERGY AND RESERVE FOR THE RPS CONSIDERING THE DR OF FML
In this section, the two-stage DRO co-dispatch model of energy and reserve for the RPS is established considering the participation of the FML in the DR. Although only the DR of the FML is integrated into the model, DR models of other types of loads can be added conveniently.
2.1 DR model of the FML
The FML utilizes EAFs to prepare electrically fused magnesia as its product, whose main component is MgO. The production process is to use the electric arc to heat the raw materials containing MgO until they are melted in the EAF. The molten raw materials are cooled naturally, and magnesite crystals grown from the molten material are ground to obtain the magnesium sand. In this process, the EAF can lift or lower the electrode to control the current, so it can regulate its power consumption. Since the rated power of a single EAF can reach the MW class, the participation of the FML in the DR project provides considerable flexible capacity for the RPS dispatch.
However, as one type of high energy-consuming industrial load, the pre-requisite for the participation of the FML in the DR is to ensure its production safety and the achievability of production tasks. Hence, it is necessary to construct the DR model of a single EAF based on the constraints in the production process and then to form the DR model of the FML accordingly.
2.1.1 Regulation capacity constraints of the EAF
[image: Equation for power: \( P_{\text{net}}^{N} = P_{\text{basic}}^{N} + P_{\text{net}}^{M.in} - P_{\text{net}}^{M.d} \).]
[image: Formula featuring two inequalities: \(0 \leq P^{\text{PM,u}}_{\text{ind}} \leq s_{ind}^u \cdot P^{u}_{\text{max,ind}}\) and \(0 \leq P^{\text{PM,d}}_{\text{ind}} \leq s_{ind}^d \cdot P^{d}_{\text{max,ind}}\), labeled as equation (2).]
[image: The equation shows \(s_{in}^u + s_{in}^d = 1\), labeled as equation 3.]
where t is the index of time. [image: Mathematical expression showing "P" with superscript "M" and subscript "m, t".] is the regulated power of the mth EAF. [image: Mathematical notation representing a variable: \( p_{m,t}^{M, \text{base}} \).] is the base power of the mth EAF. [image: Mathematical notation showing a variable with superscript "M, u" and subscript "m, t".] and [image: Mathematical expression displaying \( P_{m,t}^{M,d} \).] are the upward and downward regulated power of the mth EAF, respectively; [image: Mathematical expression displaying "P" with a superscript "u" and subscript "max, m".] and [image: Mathematical notation for \( p^{d}_{\text{max},m} \).] are the upper limits of [image: Mathematical expression showing the variable \( P_{m,t}^{M,u} \).] and [image: Mathematical expression "P" with superscripts "M" and "d" and subscripts "m", "t".] due to the safety consideration, respectively; and [image: Mathematical expression with variables: s, with subscript m and t, and superscript u.] and [image: Mathematical expression in which the letter "s" is followed by a superscript "d" and a subscript composed of "m," "n," and "t."] are binary variables indicating the EAF to be in upward and downward regulation states, respectively.
2.1.2 Constraints of regulation times of the EAF
Within a day, the total upward and downward regulation times of an EAF should not exceed a scheduled maximum number. This avoids the overly frequent regulation of one EAF and ensures its productivity and product purity.
[image: 0 is less than or equal to the summation from t equals 2 to T of the absolute value of s sub m t superscript u minus s sub m t minus 1 superscript u and is less than or equal to M, labeled equation 4.]
where M is the scheduled maximum regulation number of one EAF in 1 day. T is the number of time slots in 1 day.
Upward and downward regulation times are both considered in (4), which is intuitively demonstrated by introducing binary auxiliary variables in Section 2.2.4.
2.1.3 Regulation duration constraints of the EAF
One EAF should not be in the upward regulation state for several consecutive periods; otherwise, the temperature of the molten liquid continues to increase, resulting in accidents such as furnace eruption. In addition, if the power of the EAF is continuously regulated downward for too long, the temperature in the furnace cannot meet the production requirements, which affects the purity of the products. Therefore, the upward and downward regulation duration constraints of the EAF are constructed as follows:
[image: Mathematical expression consisting of two inequalities enclosed in a curly bracket. The first inequality is \( S^{u}_{m,t} \left( T^{u}_{m} - \sum_{t-\bar{T}^{u}_{m}-1}^{t-1} S^{u}_{m,\tau} \right) \geq 0 \). The second is \( S^{d}_{m,t} \left( T^{d}_{m} - \sum_{t-\bar{T}^{d}_{m}-1}^{t-1} S^{d}_{m,\tau} \right) \geq 0 \).]
where [image: Mathematical notation showing the letter "T" with a subscript "m" and a superscript "n".] and [image: Mathematical notation displaying \( T^d_m \).] are the maximum duration of upward and downward power regulation of the EAF, respectively.
2.1.4 Constraints of the power and production of the FML
The power consumed by the FML is accumulated from all EAFs:
[image: Σ Pₘᵤₜᴹ = Pₜᴾᴹᴸ, equation (6).]
where [image: \( P_{\text{FML}}(t) \) is displayed, indicating a mathematical expression where \( P \) is a function dependent on time \( t \). The subscript FML is used for specific notation.] is the total power of all the EAFs belonging to the FML at time t.
Then, the FML is modeled as a shiftable load in (7), which means that the energy consumed in 1 day should remain unchanged whether FML participates in DR projects or not. This constraint ensures that production is not affected by the DR.
[image: Summation notation equation: the double summation over indices \(t\) and \(m\) of \(P_{m,t}^{\text{Mbase}}\) equals the summation over \(t\) of \(P_{t}^{\text{PML}}\), labeled as equation (7).]
2.2 Construction of the two-stage DRO co-dispatch model
To optimize the day-ahead energy and reserve strategy of the RPS, the DRO model constructed in this paper is composed of two stages. In the first stage, the base case of the day-ahead RES and load prediction is used to optimize the unit commitment and reserved capacity of conventional units. In the second stage, a prediction error scenario set is constructed and used to optimize the operation of flexible resources to ensure the RPS reliability considering the day-ahead RES and load prediction uncertainty.
By the interaction of decision variables of the two stages, the determined unit commitment and reserved capacity finally achieve a balance between reliability and economy.
2.2.1 Objective function
The overall objective of the proposed model is to minimize the total operation costs of the two stages, as shown in (8):
[image: Mathematical expression of an optimization problem: minimize \( C_{\text{op}}(x) + \max_{p_k \in \Delta} \sum_{k=1}^{n_{\text{reg}}} p_k \min_{y_k} C_{\text{reg}}(x, y_k) \). Equation labeled as (8).]
[image: The image contains mathematical expressions describing vectors. The vector \( x \) includes variables \( I_{t,k}, P_{t,k}, a_{t,k}^{ch}, a_{t,k}^d, R_{t,k}^n, R_{t,k}^{ch} \). The vector \( y_k \) includes variables \( p_{t,k}^{ba}, p_{t,k}^{ld}, W_{t,k}^{cur}, l_{w,k,h}^3, l_{d,k}^3, p_{m,k}^a, p_{m,k}^{ld}, S_{m,k}^a, S_{m,k}^{ld}, A_{m,k}^d \).]
where x and Cop(x) are the decision variables and objective function in the first stage, respectively. The values of x remain unchanged during the optimization of the second stage. nsce is the number of prediction error scenarios employed in the second stage. k is the index of the scenarios. pk is the occurrence of scenario k. Ω is the uncertainty space of the probability distribution {pk|k = 1, … ,nsce}. yk and Creg(x, yk) are the decision variables and objective function in the second stage, respectively.
According to (8), the two-stage dispatch model is established based on the DRO theory. The max–min structure in the second stage is used to search for the worst distribution of the prediction error scenarios within Ω, which ensures that the optimized strategy can adapt to this worst distribution, so that the reliability and economy are balanced.
The functions of Cop(x) and Creg(x, yk) are shown as (10) and (11), respectively:
[image: Mathematical equation for \( C_{\text{op}}(x) \) consisting of a summation over \( t \) and nested summations. The terms include cost functions \( C_t^{\text{nod}} \), \( C_i^{\text{iu}} \), \( C_i^{\text{id}} \), and dependency factors like \( F_t(p_{il}) \), \( S_{t_i}^{a^\text{iu}} \), \( S_{t_i}^{a^\text{id}} \), \( R_{t_l}^{i,u} \), \( R_{t_l}^{d,u} \). Equation is labeled as (10).]
[image: The image displays a mathematical formula for \( C_{\text{reg}}(x, y_k) \). It is expressed as a summation across multiple parameters, including \( Q, W, C, \) and \( M \) with various indices such as \( p, c, u, b, \) and \( m \). The formula involves nested summations and concludes with an equation number, \( (11) \).]
where [image: Mathematical notation showing the symbol "C" with subscript "fuel" and superscript "i", representing a specific variable or constant in an equation.] is the fuel price of unit i. [image: The image shows the mathematical notation \( F_i(\cdot) \), representing a function \( F \) with subscript \( i \) taking an unspecified argument.] is the linearized function of the consumed fuel and the power output of unit i. [image: Mathematical expression depicting the variable \( R_{i,t}^{u} \).] and [image: Formula with a capital R followed by lowercase i subscripted with t, and superscripted with lowercase d.] are upward and downward reserve capacity of unit i at time t, respectively. [image: The expression "S subscript i" is displayed, indicating a mathematical or scientific variable with the subscript i.] and [image: Mathematical notation displaying "s" with superscript "d" and subscript "i".] are startup and shutdown costs of unit i, respectively. [image: The image shows the mathematical notation alpha subscript i t, with a superscript u1.] and [image: The image shows a mathematical notation: the Greek letter alpha (α) with a superscript "d" and subscripts "i, t".] are binary variables of unit i indicating the occurrence of startup and shutdown at time t, respectively. [image: Mathematical notation depicting a capital "C" with subscripts "i" and superscript "U".] and [image: Mathematical expression showing the letter 'C' with subscript 'i' and superscript 'd'.] are the up and down reserve prices of unit i, respectively. [image: Mathematical notation showing "P" with subscript "i, t, k" and superscript "u".] and [image: Equation showing "P" with subscripts "i, t" and superscript "d, k".] are the upward and downward regulated powers of unit i at time t in scenario k, respectively. [image: Mathematical notation displaying "Q subscript l raised to the power of capital L" in a stylized font.] and [image: Mathematical notation displaying a stylized lowercase "Q" with a subscript "d" and a superscript "b".] are up and downregulation prices of unit i, respectively. [image: Mathematical notation showing the expression "W" with superscript "cur" and subscripts "w, t, k".] and [image: Mathematical notation displaying "L subscript b, t, k superscript cur".] are the amount of curtailed power of RES station w and load shedding of bus b at time t in scenario k, respectively. [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL. If you want, you can add a caption for additional context.] and [image: The chemical symbol "Cl" is displayed, representing the element chlorine, with a superscript "d" indicating a specific isotopic or quantum state.] are the penalty prices of RES curtailment and load shedding, respectively. CM,u and CM,d are the subsidized prices of upward and downward regulation of the FML, respectively.
2.2.2 Power system operation constraints
The constraints in the first stage correspond to the RES power prediction base case. The constraints in the second stage correspond to the RES power prediction error cases. The details are given below.
Constraints in the first stage:
	(1) Minimum up/down time of conventional units:

[image: Mathematical expression with two conditions shown in curled brackets. First condition: the sum from time \( t = t_s - T_i^{\text{on}} \) to \( t-1 \) of \( I_{i, \tau} - T_i^{\text{on}} \) multiplied by \( (I_{i,t-1} - I_{i,t}) \) is greater than or equal to zero. Second condition: the sum from time \( t = t_s - T_i^{\text{off}} \) to \( t-1 \) of \( (1 - I_{i, \tau}) - T_i^{\text{off}} \) multiplied by \( (I_{i,t} - I_{i,t-1}) \) is greater than or equal to zero. Equation number twelve is noted.]
where [image: Mathematical notation showing \( T_i^{on} \), where \( T \) has a subscript \( i \) and a superscript \( on \).] and [image: Mathematical expression with a capital T, subscript i, and superscript "off".] are the minimum duration of the on and off statuses of unit i, respectively. [image: Mathematical notation showing the variable \( I_{i,t} \).] is a binary variable of unit i at time t, which takes 1 for the on status and 0 for the off status.
	(2) Startup and shutdown limits of conventional units:

[image: A mathematical expression containing two inequalities is shown: Alpha sub i, t superscript u minus alpha sub i, t superscript d equals I sub i, t minus I sub i, t minus 1. Alpha sub i, t superscript u plus alpha sub i, t superscript d is less than or equal to 1. Equation 13.]
	(3) Output power and ramp rate limits of conventional units:

[image: Mathematical expression showing two inequalities. The first: \(I_{i,t} P_{t,\text{min}} \leq P_{i,t} \leq I_{i,t} P_{t,\text{max}}\). The second: \(-DR_i \leq P_{i,t} - P_{i,t-1} \leq UR_i\). Marked as equation (14).]
where Pi,min and Pi,max are the minimum and maximum output power of unit i, respectively. URi and DRi are the maximum upward and downward ramp power of unit i, respectively.
	(4) Limits of the unit reserve capacity and system reserve requirement:

[image: The image shows a mathematical expression with two inequalities: \(0 \leq R_{i,t}^{U} \leq \min(UR_{i}, I_{i,t} P_{i,\text{max}} - P_{i,t})\) and \(0 \leq R_{i,t}^{D} \leq \min(DR_{i}, P_{i,t} - I_{i,t} P_{i,\text{min}})\), labeled as equation (15).]
[image: Summation notation showing two inequalities: the sum over index i of R sub i j is greater than or equal to R sub j, and the sum over i of R sub i d is greater than or equal to R sub d, labeled equation sixteen.]
where [image: Stylized mathematical notation of the letter "R" with a subscript "t".] and [image: Mathematical notation showing "R" with a superscript "d" and a subscript "t".] are the upward and downward reserve power requirements of the RPS at time t, respectively.
	(5) Power balance limits:

[image: The image shows a mathematical equation: the summation of \( P_{i,t} \) over \( i \) plus the summation of \(\widehat{W}_{w,t}\) over \( w \) equals the summation of \( L_{b,t} \) over \( b \) plus the summation of \( p^{\text{house}}_{m,t} \) over \( m \). The equation is numbered as 17.]
where [image: Mathematical notation showing a capital W with a circumflex accent, subscripted by "w,t".] is the predicted output power of RES station w at time t in the base case. [image: The image depicts a mathematical expression with a hat accent over the capital letter L, subscript b, comma t.] is the predicted load consumption of bus b at time t in the base case.
	(6) Transmission capacity limits of power lines based on the DC power flow model:

[image: Mathematical inequality expression: the sum over \( b \) of \( k_b \) times the quantity of the sum over \( \text{itb} \) of \( P_{\text{itb}} \) plus the sum over \( \text{wtb} \) of \( \hat{W}_{\text{wtb}} \) minus \( L_{\text{itb}} \), minus the sum over \( \text{mb} \) of \( P^{\text{ML, base}}_{\text{mbd}} \), is less than or equal to \( f_{\text{max}} \). Equation labeled as \( (18) \).]
where klb is the power transfer distribution factor of bus b to line l, which represents the DC power flow model (Cai and Xu, 2021). flmax is the maximum transmission power of line l.
Constraints in the second stage:
	(1) Output power and ramp rate limits of conventional units:

[image: Mathematical constraints are shown: \(I_{i,j,t}^{\text{min}} \leq P_{i,t} + P_{i,j,k}^{\text{pu}} - P_{i,j,k}^{\text{pd}} \leq I_{i,j,t}^{\text{max}}\). \(-DR_k \leq P_{i,t} + P_{i,j,k}^{\text{pu}} - P_{i,j,k}^{\text{pd}} - (P_{i,t-1} + P_{i,j-1,k}^{\text{pu}} - P_{i,j-1,k}^{\text{pd}}) \leq UR_k\). \(0 \leq P_{i,j,k}^{\text{pu}} \leq R_{i,j}^{\text{pu}}\). \(0 \leq P_{i,j,k}^{\text{pd}} \leq R_{i,j}^{\text{pd}}\). Number nineteen is noted at the bottom.]
	(2) Power balance limits:

[image: Mathematical equation depicting a sum of variables and summations. The equation involves indices i, w, and b, with expressions like P, W, L, and Δ representing various quantities. It equates the summation of indexed variables on the left to another combination on the right, also involving indexed summations and constants. Labeled as equation 20.]
where ΔWw,t,k and ΔLb,t,k are the prediction error of RES station w and bus b at time t in scenario k, respectively.
	(3) Transmission capacity limits of power lines based on the DC power flow model:

[image: Mathematical equation displaying a summation formula. It includes multiple sums and variables such as \( k_{lb} \), \( P_{iu} \), \( P^{pu}_{i,k} \), \( P^{ld}_{i,k} \), \( \hat{W}_{wu} \), \( \Delta W_{wu,k} \), \( W^{cur}_{wu,k} \), \( L^{\hat{b}t} \), \( \Delta L^{b,k} \), \( L^{sh}_{b,k} \), \( P^{ml}_{m,b} \), and \( f_{max} \). The inequalities and mathematical operations are structured with indices and superscripts.]
	(4) Wind curtailment and load shedding limits:

[image: Set of mathematical inequalities: \(0 \leq W_{w,k}^{cur} \leq \hat{W}_{w,k} + \Delta W_{w,k}\) and \(0 \leq L_{b,k}^{sh} \leq \hat{L}_{b,k} + \Delta L_{b,k}\), labeled as equation (22).]
	(5) FML constraints

As indicated by (9), the DR of the FML is regarded as a flexible resource to cope with the prediction errors of the RES output. Therefore, (1–7) are treated as constraints in the second stage, where the FML decision variables should be included in yk and the index k needs to be added to these variables.
2.2.3 Power prediction error probability distribution constraints
Using the norm-1 and norm-inf, the uncertainty space Ω in (8) can be constructed by the power prediction error probability distribution constraints below:
[image: Equation showing a set \(\Omega\) defined for \(p_k\), where the summation from \(k=1\) to \(N_{\text{set}}\) of \(p_k\) equals 1 and \(p_k\) is greater than or equal to zero. Additionally, the sum of absolute values \(|p_k - p_{k0}|\) is less than or equal to \(\theta_1\), and the maximum of \(|p_k - p_{k0}|\) for \(1 \leq k \leq N_{\text{set}}\) is less than or equal to \(\theta_{\infty}\).]
where pk0 is the initial probability of scenario k obtained by analyzing the historical samples. θ1 and θ∞ are the variation tolerance in the form of norm-1 and norm-inf, respectively, which can be calculated with the formula given by Wang et al. (2020).
The non-linear absolute term in (23) is linearized by introducing auxiliary variables. The constraints of these auxiliary variables are given below:
[image: Mathematical inequalities are displayed as follows: \(z_{ik} + z_{jk} \leq 1\); \(0 \leq p_{ik} \leq z_{ik} \theta_l\), and \(0 \leq p_{jk} \leq z_{jk} \theta_l\). Constraints also include \(0 \leq p_{il} \leq z_{ik} \theta_\infty\) and \(0 \leq p_{jl} \leq z_{jk} \theta_\infty\). The expression is labeled equation 24.]
where zk+ and zk− are binary auxiliary variables. pk+ and pk− are real auxiliary variables.
The linearized form of (23) is shown as
[image: Equation set involving variables \( p_k \), \( p_{k+} \), \( p_{k-} \), with three conditions: \( p_k = p_{k0} + p_{k+} - p_{k-} \); the sum from \( k = 1 \) to \( N_{\text{ice}} \) of \( (p_{k+} + p_{k-}) \leq \theta_1 \); and \( p_{k+} + p_{k-} \leq \theta_{\infty} \).]
2.2.4 Linearization of non-convex constraints
The constraints shown in (4), (5), (12), and (15) are non-convex, so the formulated model above cannot be directly solved by common commercial solvers. In this section, they are all linearized to obtain an equivalent convex form of the proposed DRO model.
For (4), binary auxiliary variables are introduced to derive its equivalent linearized form as shown below:
[image: A set of mathematical constraints with three equations. The first equation is \( z^u_{m,t} + z^d_{m,t} \leq 1 \). The second equation is \( s^u_{m,t} - s^u_{m,t-1} = z^u_{m,t} - z^d_{m,t} \). The third is an inequality: \( 0 \leq \sum_{t=2}^{T}(z^u_{m,t} + z^d_{m,t}) \leq M \). Numbered as equation 26.]
where [image: Mathematical notation showing a variable with subscripts and a superscript: lowercase z with subscript "m, t" and superscript "u".] and [image: Mathematical expression showing "z" with superscript "d" and subscript "m, t".] are the introduced pair of binary variables. [image: Mathematical expression showing a variable \( z \) with subscripts \( m, t \) and superscript \( u \).] = 1 indicates that upward regulation happens in time t. Similarly, [image: Mathematical expression with the variable z, subscripted with m, l, t, and superscripted with d.] is the indicator of downward regulation.
For (5) and (12), both are the constraints of duration, so they have nearly the same structure. For such a structure, the linearized form is obtained by dividing T into three sections, which is given by Carrion and Arroyo (2006). For succinctness, the deduction is not repeated here.
For (15), the non-convexity of the two constraints is aroused by the nested min terms. Each of them can be replaced by two separated constraints to avoid the usage of the min terms, which is shown below:
[image: Mathematical equations describing constraints. The first equation: \(0 \leq R_{t}^{u} \leq UR_{t}\), \(R_{ij}^{u} \leq I_{ij} P_{i,\text{max}} - P_{ij}\). The second equation: \(0 \leq R_{t}^{d} \leq DR_{t}\), \(R_{ij}^{d} \leq P_{ij} - I_{ij} P_{i,\text{min}}\).]
3 IMPROVED TYPICAL SCENARIO SET GENERATION METHOD
Whether the balance between economy and reliability can be achieved or not by DRO is closely related to the way how typical scenarios of prediction errors are selected. Previous DRO methods usually adopt the cluster centers of historical prediction errors as the typical scenarios, which are unable to test whether the determined day-ahead strategy can cope with the possible extreme prediction errors or not. Hence, these methods are too optimistic to consider the uncertainty in the day-ahead stage thoroughly. However, if the traditional box uncertainty set of RO is directly transferred to DRO, the spatiotemporal correlation between RES power outputs and loads is neglected, which results in an overconservative decision. In this case, to consider the spatiotemporal correlation, an MVEE containing all the historical prediction error samples is often constructed. The vertices of its inscribed and circumscribed polyhedra are used as the typical scenarios, which is shown by Figure 1 (Zhang et al., 2021; Zhang et al., 2022).
[image: A three-dimensional scatter plot displays blue data points distributed within a space defined by two axes labeled "Random variable 1" and "Random variable 2". A green circumscribed polyhedron and a red inscribed polyhedron highlight the boundary of the data points. Dotted lines connect the polyhedrons to their respective labels.]FIGURE 1 | Typical scenario sets constructed by the circumscribed and inscribed polyhedra of the MVEE.
As shown in Figure 1, the inscribed polyhedron is unable to cover all the historical samples. In addition, for both the inscribed and circumscribed polyhedra, the coordinate values of the vertices may exceed the maximum or minimum values of the historical samples.
To solve this dilemma, an improved typical scenario set generation method is proposed based on the principal component analysis and K-means clustering algorithm, which unites the cluster centers and the extreme points of the historical prediction error samples to reduce decision conservativeness while maintaining reliability.
	1) The prediction error vector is denoted by Eq. 28

[image: It seems the text provided is not a description of an image, but rather a mathematical expression. If you have an image you'd like me to create alt text for, please upload the image or provide a URL.]
where ΔW and ΔL are the power prediction error vector of RES stations and load buses, respectively, which are detailed by Eq. 29
[image: ΔW is represented as a vector with elements ΔW_1,1 through ΔW_Nw,T. ΔL is represented as a vector with elements ΔL_1,1 through ΔL_NL,T.]
where NW is the total number of RES stations. Nb is the total number of load buses.
	2) The eigenvectors are computed, and the coordinates of the vertices along the direction of each eigenvector are obtained. Zhang et al. (2022); Zhang et al. (2021) used the iterative MVEE algorithm to obtain these coordinates, but the iteration will significantly decelerate when the area covered by historical samples lacks symmetry. Therefore, the iteration-free principal component analysis algorithm is chosen to obtain the abovementioned eigenvectors and vertices quickly and accurately. The process is detailed below.

The historical prediction error samples of the RES stations and load buses are denoted as matrix U in Eq. 30
[image: Mathematical expression showing a vector \( \mathbf{U} \) defined as a column vector with components \( [u_{1}, u_{2}, \ldots, u_{N}]^{T} \), followed by equation number (30).]
U is processed with the zero mean method as shown in Eq. 30:
[image: Mathematical equation depicting a transformation: \(\bar{U} = U_{-1} \otimes \bar{u} = [\bar{u}_1, \ldots, \bar{u}_n, \ldots, \bar{u}_N]^\top\), labeled as equation (31).]
where [image: The image shows the lowercase letter "u" in a bold serif font with a tilde above it, commonly used in mathematical notation to denote a vector or a transformed variable.] is the version of U after the zero mean processing. [image: It seems there's no image provided. Please upload an image or provide a URL, and I'll be happy to help with the alt text.] is the mean vector of all historical samples. [image: Text shows the lowercase letter "u" with a tilde above it, followed by a subscript "s".] is the sth sample after the zero mean processing. N is the number of historical samples.
The covariance matrix of [image: A mathematical symbol representing the vector \(\vec{u}\) with a tilde on top, commonly used in physics and engineering to denote a specific type of vector.] is obtained, and then, eigenvalue decomposition on the covariance matrix is performed by Eq. 32:
[image: Mathematical equations for matrix operations are displayed. Equation S equals one divided by N minus one times U transpose U. S also equals Q times Lambda Q transpose. Q is a matrix with vectors q1 to q sub (N_b plus N_w)T. Lambda is a diagonal matrix with elements lambda1 to lambda sub (N_b plus N_w)T. Equation labeled as 32.]
where S is the covariance matrix of [image: The image shows a stylized letter "u" with a tilde accent above it, resembling a mathematical or vector notation.]. qh is the hth eigenvector of S. λh is the eigenvalue corresponding to qh. Λ is a diagonal matrix formed by all eigenvalues.
Each sample in [image: Stylized lowercase "u" with a tilde accent above it.] is transformed into a new coordinate system defined by the eigenvectors as shown in Eq. 33
[image: Equation displaying \(\hat{y}_i = Q^T \mathbf{u}_i = [\hat{y}_{i1}, \ldots, \hat{y}_{i\ell}, \ldots, \hat{y}_{i(N_2+N_{H2})T}]^T\), labeled as equation 33.]
where [image: It seems there's no image provided. Please upload the image or provide a URL for assistance.] is the projection point of [image: Stylized lowercase letter "u" with a tilde accent above it, followed by a subscript "s".] in the eigenvector coordinate system. [image: Mathematical notation showing a vector symbol, v with a tilde accent, followed by a subscript "hls".] is the projection value of [image: The image shows the mathematical expression "u_s" with a tilde accent over the letter u.] in the direction of qh.
After all samples are projected, the coordinates of the two vertices are determined in the direction of each eigenvector by Eq. 34
[image: Mathematical equations showing \( v_{n}^{\text{min}} = \min(\tilde{v}_{n,1}, \ldots, \tilde{v}_{n,N}) \cdot e_{n} \) and \( v_{n}^{\text{max}} = \max(\tilde{v}_{n,1}, \ldots, \tilde{v}_{n,N}) \cdot e_{n} \), labeled equation (34).]
where [image: Mathematical notation showing a variable with a tilde over "v" subscript "h" followed by the superscript "min".] and [image: Mathematical expression showing a vector \(\tilde{v}_h^{\text{max}}\).] are the coordinates of the two vertices in the direction of the hth eigenvector under the eigenvector coordinate system. eh is a unit vector, with the hth element equal to 1.
	3) All the vertices obtained above enclose the inscribed polyhedron. Then, the scaling factor η is introduced by Eqs 35 and 36 to expand it to the circumscribed polyhedron.

[image: Mathematical expression showing an optimization problem to minimize the sum of the L1 norms of beta sub s, subject to constraints involving vectors and matrices of beta and v, expressed with subscripts and transformations.]
[image: The formula depicts an equation where eta is equal to the maximum norm among a set of vectors represented by beta sub one through beta sub N.]
where ||βs||1 is the norm-1 of βs.
The vertices of the circumscribed polyhedron under the original coordinate system are calculated as
[image: Mathematical expressions showing two equations. First equation: \( u_n^{\text{min}} = \eta Q v_n^{\text{min}} + \bar{u} \). Second equation: \( u_n^{\text{max}} = \eta Q v_n^{\text{max}} + \bar{u} \). Equation number is thirty-seven.]
where [image: Mathematical expression displaying "u sub h" with a superscript "min" on the right.] and [image: The mathematical notation shows the letter "u" subscript "h" with a superscript "max".] are the coordinates of two vertices in the direction of qh under the original coordinate system.
As shown in Figure 1, some coordinate values of the vertices obtained by (37) may exceed the limits of the historical samples, which is impossible in the actual operation. Hence, adjustment is designed and imposed on these vertices by Eq. 38
[image: Equation illustrating a value \(u_{n,k}^{\min \text{ or } \max}\) which equals the maximum of a set if it is greater than the maximum of another set; the minimum of a set if it is less than the minimum of another set; otherwise, retains its value. Numbered as equation 38.]
where [image: Mathematical expression with variable \( u \) indexed by \( h \) and \( e \), and indicated to have minimum or maximum value.] represents the eth element of [image: \( u_h^{\text{min}} \)] or [image: The expression "u sub h to the power of max" is shown, with "h" as a subscript and "max" as a superscript.].
The adjusted vertices of the circumscribed polyhedron are the extreme scenarios of the prediction errors. They are denoted as uvtx, which contains 2(Nb + Nw)T scenarios and shown in Eq. 39
[image: Mathematical expression shows \( u^{vx} = \{ u^{min}_h, u^{max}_h \mid h = 1, \ldots, (N_b + N_w) T \} = \{ u^{vx}_j \mid j = 1, \ldots, 2(N_b + N_w)T \} \) labeled as equation (39).]
	4) The attribution of each historical sample to every extreme scenario is analyzed.

First, the Euclidean distance between each extreme scenario in uvtx and every historical sample is computed by Eq. 40.
[image: Mathematical expression showing the squared Euclidean distance, \( d_{ij} = \| \mathbf{u}_i - \mathbf{u}_j^{\text{est}} \|_2^2 \), with the equation number (40) to the right.]
where ds,j is the Euclidean distance between the sth sample us and the jth extreme scenario [image: Mathematical expression featuring the letter "u" with subscript "j" and superscript "v t x".].
Then, us is attributed to the nearest extreme scenario by Eq. 41.
[image: Mathematical expression showing two equations: \( j = \arg\min_{j} d_{x,j} \) and \( n(j) = n(j) + 1 \), labeled as equation (41).]
where the array n is a 2(Nb + Nw)-dimensional vector with all its components initialized to 0.
Every time a sample is attributed to the jth extreme scenario, the kth element of array n is incremented by 1. After this operation is performed for each sample, the final n is the one that reflects the attribution of samples to extreme scenarios.
	5) The K-means algorithm is used to obtain the cluster centers of historical samples, which is denoted by uclu. At the same time, the proportion of each cluster is derived and regarded as the occurrence of the corresponding cluster center, which is shown in Eq. 42.

[image: Equation showing two sets: \( \mathbf{u}^{\text{clu}} = \{ \mathbf{u}_1^{\text{clu}}, \ldots, \mathbf{u}_o^{\text{clu}}, \ldots, \mathbf{u}_{n_{\text{clu}}}^{\text{clu}} \} \) and \( \mathbf{p}^{\text{clu}} = \{ p_1^{\text{clu}}, \ldots, p_o^{\text{clu}}, \ldots, p_{n_{\text{clu}}}^{\text{clu}} \} \), numbered as equation 42.]
where [image: Mathematical expression showing the variable "u" with superscript "clu" and subscript "o".] is the oth cluster center. [image: Mathematical expression displaying "p" with a subscript "o" and a superscript "clu".] is the occurrence of the oth cluster center. nclu is the number of cluster centers, which can be adaptively determined by the contour coefficient, Calinski–Harabasz criterion, and so on (Balavand et al., 2018; Yuan and Yang, 2019; Karna and Gibert, 2022).
	6) uclu and uvtx are incorporated to form the improved typical scenario set utyp by Eq. 43, whose scenario number is the value of nsce in (8).

[image: Mathematical expression depicting a set of vectors \( d^{\mathrm{vp}} = \{ u^{\mathrm{vtx}}, u^{\mathrm{vdr}} \} = \{ u^{\mathrm{vp}}_k | k = 1, \ldots, n_{\mathrm{exc}} \} \). The equation is labeled as equation (43).]
Subsequently, the initial probability of each typical scenario in utyp is determined by (44).
[image: Equation for \( p_{k0} \) with two conditional expressions: first, \( \frac{n(j)}{N} \cdot \omega \) if \( u_{k}^{\text{typ}} = u_{j}^{\text{vtx}} \); second, \( p_{\sigma}^{\text{du}} \cdot (1 - \omega) \) if \( u_{k}^{\text{typ}} = u_{\sigma}^{\text{du}} \). Equation number 44.]
where pk0 is the initial probability of [image: Mathematical notation displaying "u sub k superscript t, y, p".]. ω is the weight of extreme scenarios in the typical scenario set, which is determined by the system operators according to the actual RPS structure and expected reliability level.
Apparently, the improved typical scenario set utyp includes both adjusted extreme scenarios and cluster centers, so the conservativeness is reduced.
4 SOLUTION METHOD
Combining Sections 2 and 3, the ITSDRO model for the co-dispatch of energy and reserve is finally established for the RPS. The objective function is composed of (8), (10)–(11), and the constraints are shown as (1)–(7), (12)–(22), and (24)–(27). For a given first-stage decision variable x, if there exists a second-stage decision variable y that can ensure the steady operation of the RPS under all extreme scenarios, then x is a robust solution to the RPS dispatch problem.
The proposed two-stage tri-level model is a mixed-integer linear programming problem, so it can be rewritten as (45).
Original problem (OP):
[image: Mathematical expression for optimization. Minimize over x: α^T x plus the maximum over p_k of the sum from k equals 1 to n_sce of p_k times the minimum over y_k of γ^T y_k. Subject to: A x ≥ θ, Z y_k ≥ ε - F x - G u_k^typ, E P ≥ ξ, P equals [p_1,..., p_k,..., p_n_sce]. Equation labeled as (45).]
Then, the column and constraint generation algorithm is adopted to solve the model, of which the detailed procedures are given below.
	1) (45) is decomposed into a master problem (MP) in Eq. 46 and two subproblems (SPs) shown by Eqs 47 and 48.

MP:
[image: Mathematical optimization problem labeled equation 46. The objective is to minimize \( a^T x + \lambda \). The constraints are: \( A x \geq \theta \), \( \lambda \geq \sum_{k=1}^{n_{sc}} p_k^{sc} y_k^{T} y_k \), and \( F x + Z y_k \geq \varepsilon - G u_k^{typ} \) for \( q = 1, \ldots, l - 1 \).]
where λ is an auxiliary real variable. [image: Mathematical expression displaying the variable \( p_k^g \) in italic script, with a superscript \( g \) and a subscript \( k \).] is the updated values of pk in the gth iteration. l is the counter of iteration.
SP1:
[image: Optimization problem with objective function "minimize y_k^T y_k" subject to constraints. The constraint is "Z_y_k is greater than or equal to epsilon minus Fx minus Gu_k^typ". Equation numbered 47.]
SP2:
[image: Maximize the sum from k equals 1 to n of p sub k times y superscript T sub k times y prime sub k. Subject to the condition EP is greater than or equal to phi. Equation number 48.]
	2) The lower and upper bounds of the objective of OP are denoted as LB and UB, respectively. The MP and two SPs are iteratively solved to update the LB and UB. Whether the difference between the LB and UB is small enough is determined. If so, the iteration ends; otherwise, the next iteration is run. The more specific procedures are given below.

Step 1: UB0 is initialized to +∞ and LB0 to −∞. The counter l is set to 1, and the threshold coefficient ξ is set to 0.01.
Step 2: The lth iteration is entered. The MP is solved to update x and LB, shown as Eq. 49.
[image: Equation depicting \( LB = \alpha^T x_k + \lambda_l \), labeled as equation 49.]
Step 3: SP1 is solved to update [image: Mathematical expression showing the variable \( y_k \).] and taken into SP2 to update [image: Mathematical notation depicting \( p_k^l \).]. Based on [image: Lowercase "y" with a subscript "k".] and [image: The image displays a mathematical expression in LaTeX format: "p subscript k superscript l".], UB is updated by Eq. 50
[image: Mathematical equation for \( UB_t \) is defined as the minimum of \( UB_{t-1} \) and \( \alpha^T x_t + \sum_{k=1}^{n_{res}} p_k \gamma^T y_k \).]
Step 4: Whether |UBl-LBl|≤ξ·UB is true or not is identified. If true, the iteration ends and returns the current x as the final day-ahead dispatch decision scheme; otherwise, new constraints shown in (51) are added into the MP and run to the (l+1)th iteration:
[image: Mathematical expression showing constraints. The first constraint is lambda is greater than or equal to the sum from k equals one to n of p sub k y sub k superscript T y sub k. The second constraint is Fx plus Z y sub k is greater than or equal to epsilon minus G u sub k superscript typ.]
The flowchart of the solving algorithm is shown in Figure 2.
[image: Flowchart illustrating an algorithm process. It starts with initializing variables \(UB = +\infty\), \(LB = -\infty\), \(p = 1\), and \(z_0 = 0.01\). It proceeds to solve MP to obtain \(x_0\), update \(LB\), and checks conditions. If conditions are met, it solves SP1 to get \(x_p^*\), updates \(UB\), and constructs new constraints. If not, it outputs the final strategy. Decision points include conditions \(UB - LB > \epsilon\) and include mathematical expressions for solving parts.]FIGURE 2 | Flowchart of the solving algorithm for the two-stage RPS dispatch model.
5 NUMERICAL TESTS
5.1 Basic settings
Numerical tests are carried out on a six-bus test system, the structure of which is shown in Figure 3. The parameters of the five thermal units are given in Table 1. The parameters of the seven transmission lines are given in the study by Jiang et al. (2012). Three wind farms, namely, WF1, WF2, and WF3, are connected to bus 4, bus 5, and bus 6, respectively. The predicted power curves of the total wind farm output and the system load excluding the FML are shown in Figure 3. Bus 3, bus 4, and bus 5 are load buses, peak load values of which are 196 MW, 98 MW, and 196 MW, respectively. The load buses are assumed to have a perfect positive correlation. The penalty prices of wind curtailment and load shedding are 100 $/MW and 500 $/MW, respectively.
[image: Diagram of a structure with circles labeled G1, G2, G3, G4, G5, WF1, WF2, and WF3, connected by lines marked 1 to 6. Red arrows on lines 3, 4, and 5 indicate force directions.]FIGURE 3 | RPS structure.
TABLE 1 | Parameters of thermal units.
[image: A table detailing specifications for five generators (G1 to G5) with parameters: minimum and maximum power (MW), minimum up and down time (hours), ramping rate (MW per hour), initial status (hours), fuel coefficients (a, b, c in MBtu), fuel price, startup cost, and reserve prices (dollars per MW). Each generator has distinct values for these parameters, showcasing their operational characteristics.]The historical prediction error data are obtained from the study by Cai (2024). According to the historical data, the extreme power outputs of the three wind farms are computed and shown in Figure 4.
[image: Line graph showing historical max and min prediction errors in megawatts over a 24-hour period. Max errors, in blue, peak around 15 MW, while min errors, in red, cluster near -10 MW. The timeline is divided into three segments: WF1, WF2, and WF3.]FIGURE 4 | Maximum and minimum prediction errors at each hour of three wind farms in historical data.
The FML is connected to bus 3, the regulation parameters of which are shown in Table 2.
TABLE 2 | Regulation parameters of the FML.
[image: Table displaying power regulation metrics: Rated power is seventy megawatts. Maximum upregulation time is six hours, and maximum downregulation time is four hours. Maximum upregulation power is fourteen megawatts, and maximum downregulation power is ten and a half megawatts. Up and downregulation price is twenty-five point three dollars per hour.]The numerical tests are run on an Intel core i5-13500H personal computer with 32 GB RAM and solved using CPLEX 12.10 in MATLAB R2020b.
5.2 Comparison between ITSDRO with the existing RO and DRO methods
To demonstrate the performance of the ITSDRO method, the inscribed polyhedron-based RO (IPRO) in the study by Zhang et al. (2022) and the circumscribed polyhedron-based DRO (CPDRO) in the study by Zhang et al. (2021) are employed for comparison. All three methods are data-driven and need to construct the typical scenario set based on historical prediction error samples before formal optimization. For better presentation, only the typical scenarios in which the initial probability is non-zero are given in Figure 5.
[image: Three panels labeled A, B, and C show line graphs of power prediction error over time on the left, and bar graphs of probability versus scenario number on the right. Each line graph represents data for three wind farms (WF1, WF2, WF3), with varied fluctuations across 288 hours. The associated bar graphs display the probability distribution of different scenario numbers, highlighting peaks at specific scenarios.]FIGURE 5 | Comparison of the typical scenario sets of the three methods. (A) Typical scenarios and the corresponding probability of IPRO, (B) typical scenarios and the corresponding probability of CPDRO, and (C) typical scenarios and the corresponding probability of ITSDRO.
Figures 4, 5 show that the typical scenarios of the three methods are not simply located at the maximum or minimum prediction errors of the wind farms because of the spatiotemporal correlation between the prediction errors. However, IPRO and CPDRO directly adopt the vertices of the inscribed and circumscribed polyhedra of the MVEE as the typical scenario sets, respectively, in which some impossible scenarios exceed the limits of the prediction errors.
Then, the dispatch solutions of the three methods are shown in Figures 6–9. The corresponding dispatch costs of the test system optimized by the three methods are listed in Table 3.
[image: Panel A shows a stacked bar chart of power in kilowatts versus time in hours, with segments labeled G1 to G5 in different colors, indicating power distribution across 24 hours. Panel B displays a grid showing unit states over the same timeframe, with red and white squares indicating active and inactive states.]FIGURE 6 | Day-ahead dispatch solution of the RPS by IPRO. (A) Scheduled power and (B) unit commitment.
[image: Graph A shows a stacked bar chart with time on the x-axis and power in megawatts on the y-axis, indicating power distribution among groups G1 to G5 throughout 24 hours. Graph B displays a grid of red circles representing the operational state of groups G1 to G5 over the same time period.]FIGURE 7 | Day-ahead dispatch solution of the RPS by CPDRO. (A) Scheduled power and (B) unit commitment.
TABLE 3 | Comparison of the dispatch costs optimized by the three methods.
[image: A table compares cost metrics in dollars across three models: IPRO, CPDRO, and ITSDRO. Day-ahead costs include generation, reserved capacity, and unit startup costs. Maximum real-time costs cover unit re-dispatch, wind power curtailment, and load shedding. Average real-time costs are listed for unit re-dispatch, wind power curtailment, and load shedding. Each model's total cost is provided, with IPRO at \$279,100, CPDRO at \$217,800, and ITSDRO at \$205,500.]Figures 6–9 and Table 3 show that
	1) The solutions of the three methods can cope with all the uncertain scenarios they take into account, so they are all sufficiently robust.
	2) The cost terms of the second stage are directly affected by the selected typical scenarios. IPRO and CPDRO only consider the extreme scenarios, while the uncertainty set of ITSDRO additionally contains the cluster centers. Since the re-dispatch costs of extreme scenarios are much higher than those of the cluster centers, the second-stage cost of ITSDRO is lower than that of the other two methods.
	3) The cost terms of the first stage are indirectly affected by the selected typical scenarios. If only the extreme scenarios are taken into account in the DRO, the first-stage dispatch schemes will completely prepare for the extreme scenarios with very low probabilities and arrange too much reserve capacity, as shown in Figure 9. In this case, unit commitment schemes are also forced to be in the relatively uneconomic region. As an example, IPRO and CPDRO start up more units than ITSDRO in 8, 9, and 14 h, as shown in Figures 6–8.
	4) In the absence of a targeted adjusting mechanism, these impossible scenarios of IPRO and CPDRO lead to conservative decisions and higher operation costs. As one of the RO methods, IPRO is more significantly affected because its solution is aimed at addressing the worst-case scenario. As one of the DRO methods, CPDRO is less affected because the initial probabilities of the impossible scenarios are much smaller than those of the other extreme scenarios.

[image: Panel A shows a stacked bar chart with power in megawatts over each hour of a day, divided into five groups (G1 to G5) with different colors. Panel B is a grid with dots and squares depicting unit status for G1 to G4 over 24 hours.]FIGURE 8 | Day-ahead dispatch solution of the RPS by ITSDRO. (A) Scheduled power and (B) unit commitment.
[image: Two line graphs display reserve data over 24 hours. Graph A shows "Up Reserve" in megawatts, highlighting three models: IPRO (blue), CPDRO (red), and ITSDRO (yellow). CPDRO shows higher spikes. Graph B depicts "Down Reserve," with IPRO maintaining higher reserves compared to CPDRO and ITSDRO, which fluctuate similarly.]FIGURE 9 | Total day-ahead reserved capacity of all units. (A) Up reserved capacity and (B) down reserved capacity.
The simulation results above are discussed below.
1) The second stage of a two-stage model is constructed to examine whether the RPS can sufficiently dispatch the flexible resources to cope with various scenarios including the extreme ones. However, most existing RO and DRO methods only consider extreme scenarios in the second stage, forcing the day-ahead dispatch to perform targeted preparation, which leads to redundancy in the flexible resource allocation and an increase in dispatch costs.
	2) The proposed ITSDRO designs and employs an improved typical scenario set to reduce waste in the allocation of flexible resources without sacrificing the ability to cope with extreme scenarios. Therefore, the derived day-ahead dispatch scheme becomes more economical without the loss of robustness.

5.3 Validation of the DR of the FML
To validate the participation of the FML in the DR, two cases are designed for comparative analysis.
Case 1. Only conventional units are regarded as flexible resources in the second stage.
Case 2. Both conventional units and the DR of the FML participate in the re-dispatch in the second stage.
Based on the basic information given in Section 5.1, ITSDRO is performed to solve the two cases. The resulting dispatch costs are shown in Table 4, along with the amount of wind power curtailment and load shedding in the second stage.
Table 4 shows that, after the FML participates in DR projects, the maximum and average load shedding decrease by 13.32% and 15.17%, respectively, and the maximum and average wind power curtailment decrease by 10.33% and 0.41%, respectively. This indicates that the RPS becomes more flexible in coping with the power prediction error.
Figure 10 shows that the predicted wind power curve presents the anti-peak shaving characteristics. In load peak and valley periods, the FML can proactively decrease and increase its power consumption to reduce load shedding and wind curtailment amounts. From this perspective, since the DR of the FML plays the role of the regulation resource of RPS in the second stage, the reserved capacity in the first stage can be reduced accordingly. Therefore, the final total dispatch cost is decreased by 2.10%.
As shown in Figures 11 and 12, the wind curtailment is avoided and the load shedding amount is decreased even under the worst scenario, which verifies the effectiveness of the DR of the FML.
TABLE 4 | Comparison of the dispatch results of case 1 and case 2.
[image: Comparison table showing metrics for two cases. Maximum wind power curtailment: Case 1 is 15.39, Case 2 is 13.80. Maximum load shedding: Case 1 is 3.754, Case 2 is 2.252. Average wind power curtailment: Case 1 is 0.972, Case 2 is 0.968. Average load shedding: Case 1 is 0.435, Case 2 is 0.369. Day-ahead dispatch cost: Case 1 is 2.043 x 10^5 dollars, Case 2 is 1.999 x 10^5 dollars. Re-dispatch cost: Case 1 is 5.651 x 10^3 dollars, Case 2 is 5.623 x 10^3 dollars. Total dispatch cost: Case 1 is 2.099 x 10^5 dollars, Case 2 is 2.055 x 10^5 dollars.][image: Bar graph showing total load and predicted wind power over 24 hours. Orange bars represent total load, peaking around 500 MW in the middle. Blue line indicates predicted wind power, remaining stable around 100 MW.]FIGURE 10 | Predicted load and wind power.
[image: Line graph showing power output in megawatts (MW) over 24 hours. Blue line with stars indicates wind power, fluctuating between 0 and 40 MW. Orange line with circles shows wind curtailment in Case 1, mostly near zero with a peak at 15 hours. Yellow line with crosses for Case 2 remains at zero.]FIGURE 11 | Wind curtailment in case 1 and case 2 under the worst scenario of wind curtailment.
[image: Line graph showing load shedding amounts over 24 hours. Case 1 (blue) peaks at 4 megawatts at hour 10 and another smaller peak around hour 20. Case 2 (orange) follows a similar pattern with slightly lower peaks.]FIGURE 12 | Load shedding amount in case 1 and case 2 under the worst scenario of load shedding.
6 CONCLUSION
This paper focuses on establishing the ITSDRO method, which is a two-stage co-dispatch method of energy and reserve for the RPS considering the DR of the FML. First, the FML is regarded as a flexible regulation resource, and its constraints for participating in DR projects are constructed. Then, an improved typical scenario set generation method is proposed with the spatiotemporal correlation between the power prediction errors considered. Based on this typical scenario set and the DRO theory, the ITSDRO model is formed and then solved by the column and constraint generation algorithm. Numerical tests are designed to verify the correctness and effectiveness of ITSDRO. According to the simulation results, some conclusions are drawn below.
	1) An impossible extreme scenario identification and adjustment mechanism is proposed to address the feasibility issue of the existing inscribed and circumscribed polyhedron-based methods. Then, the extreme scenarios are united with cluster centers of the historical prediction error samples to form an improved typical scenario set with much lower conservativeness.
	2) The two-stage ITSDRO dispatch model and corresponding solution method are proposed to optimize the co-dispatch strategy of energy and reserve for the RPS. The simulation results indicate that because of the utilization of the improved typical scenario set, the day-ahead dispatch cost can be reduced while keeping a small amount of load shedding and RES power curtailment.
	3) The DR model of the FML is constructed and integrated into the ITSDRO dispatch model. The simulation results indicate that, with the proactive participation of the FML in the DR, the amount of load shedding and RES power curtailment is significantly decreased even under large prediction errors. This means that the flexibility of the RPS to cope with uncertainty is enhanced due to the DR of the FML.
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1 INTRODUCTION
With the high-proportion integration of distributed energy sources such as renewable energy and energy storage systems, the traditional distribution network has evolved from a passive power supply network to an active network with the bidirectional power flow (Sheng et al., 2021). The operation and scheduling of active distribution networks (ADNs) have undergone great challenges due to intrinsic intermittence and volatility from renewable energy resources (Xiang et al., 2017; Li et al., 2023). This has led to the necessity to fully utilize support and adjust the capability of flexibility resources such as distributed energy storage and electric vehicles for reliable power supply (Xu et al., 2022; Lu et al., 2023). Considering the properties of large quantities, decentralized locations, and diverse stakeholders for heterogeneous flexibility resources, the traditional centralized control strategy faces various challenges in the form of system reliability, mass communication, and information privacy (Hu et al., 2018). Hence, distributed optimization is proposed to purge the globally unified control of distribution networks that would enable the efficient management of flexibility resources through distributed clustering (Zhou B. et al., 2021; Fu et al., 2022; Zhong et al., 2023). However, conventional distributed algorithms have slow convergence properties, owing to the gradient-based update process and communication delays (Zhang et al., 2022), which cannot satisfy the fast real-time scheduling of ADNs. Therefore, this paper focuses on providing insightful perspectives and discussions on the fast distributed optimization for large-scale scheduling of heterogeneous flexibility resources.
The main contributions of this paper are two-fold: (1) a bi-level distributed scheduling model of large-scale heterogeneous flexibility resources is proposed to minimize the overall operational cost of ADNs and promote the accommodation of renewable energy resources and (2) a fast distributed asynchronous optimization method is presented to accelerate the convergence speed for the real-time scheduling of ADNs, and the correctness and superiority of the proposed method are demonstrated by case studies.
2 DISTRIBUTED SCHEDULING MODEL OF LARGE-SCALE HETEROGENEOUS FLEXIBILITY RESOURCES
Optimized scheduling of ADNs needs to take into account potential benefits of different dispatching entities such as distribution networks and diversified flexibility resources for minimizing the overall operational costs while stimulating the incorporation of renewable energy. The objective function aims to minimize the costs associated with purchasing electricity, renewable energy curtailment, and dispatching flexibility resources for the purpose of economy enhancement as follows:
[image: The image shows a mathematical expression for minimizing a function F. It includes summation terms involving variables indexed by time and different sets, such as power purchases, curtailable resources, demand response, and energy storage systems. Each term involves costs or efficiencies, incorporating variables like \( p_{t}^{\text{buy} \), \( p_{i,t}^{\text{RES,curt} \), \( p_{i,t}^{\text{LO} \), and storage efficiency variables \( \eta_{i,t} \).]
where [image: It seems there was an issue with displaying the image. Please try uploading the image file again, or provide a URL if it's hosted online.] denotes the total number of scheduling periods; [image: Greek letter Delta followed by the letter t, commonly used to represent a change in time in mathematical or scientific contexts.] denotes the duration of each scheduling period; [image: The image shows the mathematical notation \(\lambda_t^{\text{buy}}\), where \(\lambda\) is a lowercase Greek letter lambda, \(t\) is a subscript, and "buy" is a superscript.], [image: Greek letter lambda followed by the text "RES.curt".], [image: Symbol of the Greek letter lambda with a superscript "DR".], and [image: The Greek letter lambda followed by the uppercase letters E, S, and S.] represent the purchase price of electricity in time period [image: It seems there's an issue with the image upload or description. Please try uploading the image again or provide a URL or context for the image so I can assist with the alternate text.], the cost coefficient for the penalty of renewable energy curtailment, the unit dispatch cost of controllable loads, and the cost coefficient for the charging and discharging of the energy storage system, respectively; [image: Greek letter Omega followed by the letters R, E, S in a serif font.], [image: The Greek letter Omega followed by the letters "DR" in a serif font, suggesting a stylized logo or monogram.], and [image: Greek letter Omega followed by the letters "ESS" in a serif font.] represent the set of renewable energy, demand response, and energy storage system in ADNs, respectively; [image: The image shows the mathematical expression \( P_t^{\text{buy}} \), representing the buy price at time \( t \).] denotes the purchased active power from the main grid in time period [image: Please upload the image or provide a URL so I can generate the alt text for you.]; [image: Mathematical variable notation showing "p" with subscripts "i,t" and the text "RES.curt" in superscript.] denotes the renewable energy curtailment at node [image: Certainly! Please upload the image or provide a URL so I can assist you with an alt text description.] in time period [image: Please upload the image or provide a URL so I can assist you with the alternate text.]; [image: Mathematical notation showing "P" with superscript "L" and subscript "it".] and [image: Mathematical expression showing the probability \( P_{it}^L \).] denote the actual dispatch power and original power of controllable load [image: Please upload the image so I can help you create the alt text for it.] in time period [image: Please upload the image or provide a URL for me to generate the alternative text.], respectively; [image: Greek letter eta (η) with superscript c and subscript i.] and [image: Text representation of an expression with Greek letter eta followed by subscript "i" and superscript "dc".] denote the charging and discharging efficiencies of energy storage unit [image: It seems there was an issue with uploading the image. Please try uploading the image again or provide a URL, and I will help with the alt text.], respectively; and [image: Mathematical notation showing "P subscript it supercript c".] and [image: Mathematical expression displaying "P subscript d c, subscript i t".] denote the charging and discharging power of energy storage unit [image: The image shows a lowercase italic letter "i."] in time period [image: It seems like there was an issue with uploading the image. Please try uploading it again, and I will create the alt text for you.], respectively.
A bi-level distributed scheduling strategy is proposed to minimize the overall operational cost of ADNs, which is poised to meet the needs of individual economies and privacy preservation for agents with diverse flexible resources (Cao et al., 2024). At the upper level, the scheduling and control center of ADNs serves as a decision-maker to achieve synergies among multiple flexibility resources via information and energy exchange, thereby maximizing the overall economics of scheduling for distribution networks with high renewables. At the lower level, nodes integrated with controllable flexibility resources achieve autonomous operation through the full utilization of the inherent adjustment capacity. The proposed hierarchical optimization scheduling model can be solved by the alternating direction method of multipliers (ADMM) algorithm, which is a popular and efficient method to deal with distributed optimization problems with stable robustness and convergence (Gao et al., 2020; Qi et al., 2023). The distributed scheduling model of large-scale heterogeneous flexibility resources can be decomposed into the master problem of distribution networks at the upper level and subproblems of controllable flexibility resources at the lower level based on the ADMM, as shown in Figure 1A.
[image: Illustration of a scheduling model for flexibility resources, displayed in three sections. A: Detailed equations and descriptions of the distributed scheduling model. B: Comparison of results and convergence across multiple iterations for a distributed algorithm with different nodes. C: Visualization of solution space interactions, showing progress from initial to optimal solutions with feasible areas highlighted.]FIGURE 1 | Distributed scheduling model and fast optimization method for active distribution networks (ADNs). (A) Distributed scheduling model of flexibility resources (B) Comparison of synchronous and asynchronous distributed ADMM algorithms (C) Illustration of feasibility domains reduction via cutset constraints.
The objective function can be separated according to the bi-level distributed optimization scheduling strategy as follows:
[image: Equation labeled as 2 shows: \( F = F_{\text{ADN}} + \sum_{i \in \mathcal{Q}_{\text{N}}} F_{\text{N},i} \).]
[image: Formula labeled as equation 3: \( F_{\text{ADN}} = \sum_{t=1}^{T} (\lambda_{t}^{\, \text{buy}} \, P_{t}^{\, \text{buy}}) \Delta t \).]
[image: The image shows a complex mathematical equation labeled as equation (4). It involves a summation from \( t = 1 \) to \( T \) and includes terms for curtailed power from renewable energy sources and demand response, \( \Delta t \). The equation incorporates variables such as \( \lambda \), \( P \), and several subscripts and superscripts, including \( \text{RES, curt} \), \( \text{DR} \), \( \text{load, O} \), \( \text{ESS} \), and \( \text{Dec} \).]
where [image: Greek letter Omega (Ω) followed by subscript uppercase letter N.] denotes the set of nodes integrated with flexibility resources; [image: The image displays a mathematical expression with the letter "F" in italics followed by the capital letters "ADN" in regular font.] is the objective function of the master problem for the ADN; and [image: Mathematical expression showing the variable F, subscript N, i.] is the objective function of subproblem for node [image: Mathematical symbol "i" with a dot above, representing the imaginary unit in complex numbers, typically used in mathematical equations and expressions.]. The optimization variables for the master problem mainly comprise the power purchased from or sold to the main grid. The optimization variables for the subproblems include multiple heterogeneous flexibility resources dispatching power, which consist of the energy storage system, photovoltaic generation, wind turbine generation, micro-gas turbine, and demand response resources. Furthermore, there are coupling relationships between the nodes integrated with controllable flexibility resources and ADNs due to their energy interaction. Hence, the power injected to nodes integrated with controllable flexibility resources [image: Mathematical notation showing X hat subscript i, t equals the set containing p subscript i, t and Q subscript i, t, where i belongs to the set Omega subscript N.] is used as coupling variables, and the expected power from the distribution network to nodes [image: \( \mathbf{Z}_{i,t} = \left\{ \hat{P}_{i,t}, \hat{Q}_{i,t} \mid i \in \Omega_N \right\} \)] is proposed as virtual decoupling variables to establish the consistency coupling constraints as follows (Zhou X. et al., 2021):
[image: Graphical representation of the equation \(\hat{x}_{t-1} - \hat{z}_{t-1} = 0\).]
The variables [image: Mathematical expression showcasing the symbol X with a circumflex (denoting an estimate) and subscripts i and t.] and [image: Mathematical notation showing \( \hat{Z}_{it} \), where \( Z \) is a variable with indices \( i \) and \( t \), and a hat symbol indicating an estimate or predicted value.] are solved separately at the upper and lower levels, respectively, and the optimization results are delivered iteratively between the two levels to solve the model. A Lagrange penalty function is added to the objective functions of the master problem and subproblems as follows:
[image: Equation for \( X_{i}^{k+1} \) showing the minimization of a function: \( F_{N_i} + \frac{\rho}{2} \sum_{n=1}^{T} \| \hat{x}_{i,n} - \hat{z}_{i}^{k} + u_{i}^{k} \|_{2}^{2} \). It is labeled as equation (6).]
[image: Equation depicting an optimization problem. Z superscript k+1 equals the minimum of F subscript ADM plus the sum over i in Q sub p k, rho over 2 times the sum from t equals 1 to T of the norm squared of x superscript k+1 sub t,i minus Z sub t,i plus u superscript k sub t,i. Equation number seven.]
where k denotes the iteration number; [image: It seems you used a character or symbol instead of uploading an image. Please upload the image or provide a URL, and I will create the alt text for you.] is the penalty coefficient; and [image: Mathematical expression displaying a lowercase "u" with superscript "j" and subscript "i, t".] is the Lagrange multiplier. The proposed distributed scheduling model is solved by optimizing the coupling variables through continuous iterations between the master problem and subproblems. Relevant information about the expected interaction energy for ADNs and nodes integrated with controllable flexibility resources is delivered mutually at the two levels. The Lagrange multipliers will be updated after each iteration step as follows:
[image: Equation eight shows \( u_{t}^{k+1} = u_{t}^k + \hat{X}_{t}^{k+1} - \hat{Z}_{t}^{k+1} \).]
The primal residual [image: The symbol "γ^k" is depicted, with the Greek letter gamma followed by the superscript letter k.] and dual residual [image: The image shows the mathematical notation "s" with a superscript "k".] are introduced as convergence criteria (Xu et al., 2018), which are calculated after each iteration step as follows:
[image: Expression depicting a mathematical inequality for \( y^k \). It involves a summation over a set \( \mathcal{N}_k \) of the two-norm of the sum from \( t = 1 \) to \( T \) of \( (\hat{x}_t^k - \check{z}_t^k) \), which is less than or equal to \( \varepsilon_r \). Marked as equation (9).]
[image: The equation \( s^k = \sum_{i \in \mathcal{N}_k} \rho \left\| \sum_{t = 1}^{T} \left( \hat{x}_{i t}^k - \hat{x}_{i t}^{k - 1} \right) \right\|_2 \leq \varepsilon_s \), labeled as equation (10).]
where [image: Please upload the image or provide a URL for me to generate the alt text.] and [image: Please upload the image or provide a URL for me to create the alt text.] refer to the convergence threshold for the primal residual and dual residual, respectively. If the convergence criterion is not satisfied, the next iteration will continue with updated Lagrange multipliers along with the latest data on coupling and decoupling variables. Otherwise, the iteration process will be terminated to obtain the optimal scheduling determination of heterogeneous flexibility resources with minimal operational costs for ADNs.
3 FAST DISTRIBUTED ASYNCHRONOUS OPTIMIZATION FOR REAL-TIME SCHEDULING OF ADNS
Considering the time-varying nature of communication networks and the varied responsiveness of heterogeneous flexibility resources (Cao et al., 2024), traditional synchronized computation is insufficient to satisfy the fast real-time scheduling of ADNs, owing to the increased communication overhead and limited convergence speed. Specifically, under the synchronous protocol, the optimization model for the master problem is triggered at each iteration only if the scheduling center of ADNs receives the information from all nodes (Zheng et al., 2018). The master problem and computationally fast subproblems will remain idle most of the time, thereby impeding the full utilization of parallel computing resources. Hence, the distributed asynchronous optimization is adopted to improve the convergence efficiency, which allows the master problem to execute the next iterative updates without the reception of complete information from all nodes (Chang et al., 2016), as shown in Figure 1B. Initially, [image: It seems like there is no image provided. Please upload the image, and I'll assist you with the alternative text.] is proposed to denote the index set of nodes from which the scheduling center receives coupling information during iteration k. The variable information of node [image: It seems there was an issue with the image upload. Please try uploading the image again, or provide a URL and optional caption for additional context.] is uploaded to the scheduling center if [image: Mathematical expression showing "i" belonging to set "D" subscript "k".]. If a node fails to deliver information promptly due to communication delays or slow response speed, the data of the last iteration will be used instead to execute the next optimization updates for the master problem as follows:
[image: Mathematical expression showing \( \hat{X}_i^k = \begin{cases} \hat{X}_i^k, & i \in D^k \\ \hat{X}_i^{k-1}, & i \notin D^k \end{cases} \). Equation number (11) on the right.]
Two asynchronous constraints are set in the computation process to guarantee the convergence of the asynchronous optimization algorithm (Chang et al., 2016). On one hand, to ensure the efficacy of each iteration, the master problem proceeds to the next iteration only if the number of nodes in [image: It seems like there might be a misunderstanding. It appears you're referring to something represented in LaTeX (a format used for mathematical expressions), but I need an actual image or a description of it to provide the alternate text. If you have an image, please upload it or provide a URL.] is larger than the set threshold [image: Mathematical expression featuring the Greek letter kappa (κ) followed by the greater than or equal to symbol and the number one.]. On the other hand, taking into account the hazard of unbounded delays on algorithm convergence (Chang et al., 2016; Bastianello et al., 2021), the inactive iteration of every node, as well as [image: The mathematical expression shows "i not an element of D superscript k."], must be less than the set maximum tolerable delay [image: Please upload the image or provide a URL, and I can help create the alternate text for it.]. This means that the coupling variable information per node used by the center must be, at most, τ iterations old (Mohammadi and Kargarian, 2022). The variable [image: Mathematical expression showing lower-case "d" with superscript "k" and subscript "i".] is introduced to count the delays of node [image: It seems there was an issue with uploading the image. Please try uploading it again, and I would be happy to help you with the alternative text.]. If [image: Mathematical expression showing "i" belongs to set "D" with a subscript "k".] at the current iteration k, then [image: Mathematical expression showing "d" with subscript "i" and superscript "k".] is set to 0; otherwise, [image: Mathematical expression showing a variable \(d\) with subscript \(i\) and superscript \(k\).] is increased by 1 as follows:
[image: Equation for \( d_i^k \): if \( i \) is in \( D^k \), then \( d_i^k = 0 \); otherwise, \( d_i^k = d_{i-1}^k + 1 \). Equation number 12.]
When both conditions cannot be satisfied simultaneously, the scheduling center must wait until the updated information from the unusual nodes is received. The master problem and subproblems, with smaller idle time, are frequently updated compared with the synchronous optimization. However, the benefit of the improved update frequency can outweigh the cost of the increased number of iterations, enabling the asynchronous algorithm to converge in the shortest possible time (Bastianello et al., 2021).
In order to further accelerate convergence speed, this paper also proposes a method to curtail the feasibility domains of the master problem (Wu et al., 2018; Hua et al., 2023), as shown in Figure 1C. The feasibility of interactive power information delivered by the master problem is examined during the subproblem of nodes at the lower level. The optimization model of the subproblem for node [image: It seems like the image did not upload properly. Please try again by uploading the image file directly, and optionally provide a caption for additional context.] can be expressed as follows:
[image: Mathematical expression showing an optimization problem. The objective is to minimize \( F_{\text{DS}}(M_i) \). Subject to constraints: \( G_i(M_i) \leq 0 \) and \( H_{i,t}(\mathbf{X}_{i,t}, \mathbf{Z}_{i,t}) = 0 \). Equation labeled as 13.]
where [image: Please upload the image or provide a URL for it. Once you do that, I can help create the alt text.] denotes the optimization variables for the subproblem of node [image: It seems there is no image provided. Please try uploading the image again, and I will help you create the alternate text.]; [image: The image shows the mathematical expression \( G_i(M_i) \).] denotes inequality constraints set for the subproblem of node [image: It seems there's an issue with the image upload or the URL. Please try uploading the image again or provide a direct link to it. If you have any additional context or a caption, feel free to share that as well.]; [image: Mathematical expression displaying \( H_{i,t}(\hat{X}_{i,t}, \hat{Z}_{i,t}) \), where \( H \) is a function of the variables \( \hat{X}_{i,t} \) and \( \hat{Z}_{i,t} \), with subscript \( i,t \).] denotes the coupling equational constraints of the two levels; and [image: The Greek letter mu, subscripted with i, t.] denotes the dual multipliers of coupling equational constraints. If the expected interaction power delivered by the scheduling center of the master problem is not feasible for the subproblem of node [image: Lowercase letter "i" with a dot on top.], the relaxation factor [image: Please upload the image or provide a URL so I can create appropriate alt text for it.] is introduced to transform the subproblem as follows:
[image: Minimization problem for variable \(S_i\). Subject to constraints: \(F_{DS,i} - S_i \leq 0\), \(S_i \geq 0\), \(G_l(M_l) \leq 0\), and \(H_{l_i}(\hat{X}_{l_i}, \hat{Z}_{l_i}) = 0\) with dual variable \(\mu_i\). Labeled as equation (14).]
With the optimization solution of the relaxed subproblem, the node [image: It seems there’s a problem with the image attachment. Please try uploading the image again, and I'll be glad to help with the alt text.] can provide feedback on feasible cutset constraints to the master problem as follows (Wu et al., 2022):
[image: Ŝ plus the sum from t equals 1 to T of μₜ transposed H sub tμ of x̂ sub tμ and ẑ sub tμ is less than or equal to zero, equation 15.]
where [image: Mathematical expression showing a letter S with a circumflex accent above and a subscript i.] denotes the optimal value of the objective function of the relaxed subproblem. Otherwise, no constraints are returned to the master problem if the subproblem is found to be feasible. Therefore, the objective function and constraint conditions are both restricted through the feedback of feasible cutset constraints after feasibility examination. Consequently, an improvement in the convergence speed was observed, owing to a reduction in the feasibility domains of the master problem.
4 CASE STUDIES
To validate the effectiveness of the proposed fast distributed optimization method for large-scale scheduling of heterogeneous flexibility resources in this paper, the IEEE33 bus distribution system is used as a specimen for case studies. The quantity of energy storage systems, photovoltaic generation, wind turbine generation, micro-gas turbine, and demand response resources in the distribution system is defined to be 2, 2, 1, 1, and 2, respectively. The proposed model is solved by the centralized algorithm, general synchronous distributed algorithm, and fast distributed asynchronous algorithm, respectively, to verify the preeminence of the presented method through comparative analysis. The comparison between the results of the operational costs for ADNs and convergence properties under different algorithms is shown in Table 1.
TABLE 1 | Comparison of the operational costs for active distribution networks (ADNs) and convergence properties.
[image: A table comparing three algorithms: centralized, general distributed, and fast distributed. It shows total costs in yuan, and breakdowns for electricity purchase, energy storage, demand response, and renewable energy curtailment. The centralized algorithm has a total cost of 27,903.4 yuan with a time of 204 seconds. The general and fast distributed algorithms both cost 27,904.0 yuan, with times of 1,206 and 967 seconds, respectively. Iterations are 108 for the general and 83 for the fast distributed algorithms.]It can be seen that the operational cost results of ADNs obtained by centralized and distributed algorithms are almost the same, proving the correctness of the proposed method in this paper. Since the serial simulation is performed on a single computer, the distributed optimization time shall be the average optimization time of a single node integrated with controllable flexibility resources. Therefore, the average time used for one node by the general synchronous distributed algorithm and fast distributed asynchronous algorithm is 150.75 and 120.875 s, respectively. It shows that the fast asynchronous distributed methods have computational efficiency superior to the centralized and general synchronous distributed algorithms. The model convergence speed can be enhanced by 40.7% and 19.8% through asynchronous iteration and feasibility domain reduction via cutset constraints, respectively.
5 DISCUSSION AND CONCLUSION
A fast distributed optimization method for the large-scale scheduling of heterogeneous flexibility resources is presented in the paper. The key conclusions can be summarized as follows: 1) the proposed bi-level distributed scheduling model coordinates multiple heterogeneous flexibility resources to enhance the operational economy of ADNs and facilitate the accommodation of renewable energy resources; 2) compared to the centralized and general synchronous distributed algorithm, the model convergence speed can be enhanced by 40.7% and 19.8%, respectively, through the proposed fast asynchronous distributed optimization method to satisfy the fast real-time scheduling of ADNs; and 3) further research will focus on the distributed economic optimization of ADNs integrated with heterogeneous flexibility resources, considering the uncertainties of renewable energy resources and load demand.
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With the widespread application of energy storage stations, BMS has become an important subsystem in modern power systems, leading to an increasing demand for improving the accuracy of SOC prediction in lithium-ion battery energy storage systems. Currently, common methods for predicting battery SOC include the Ampere-hour integration method, open circuit voltage method, and model-based prediction techniques. However, these methods often have limitations such as single-variable research, complex model construction, and inability to capture real-time changes in SOC. In this paper, a novel prediction method based on the KF-SA-Transformer model is proposed by combining model-based prediction techniques with data-driven methods. By using temperature, voltage, and current as inputs, the limitations of single-variable studies in the Ampere-hour integration method and open circuit voltage method are overcome. The Transformer model can overcome the complex modeling process in model-based prediction techniques by implementing a non-linear mapping between inputs and SOC. The presence of the Kalman filter can eliminate noise and improve data accuracy. Additionally, a sparse autoencoder mechanism is integrated to optimize the position encoding embedding of input vectors, further improving the prediction process. To verify the effectiveness of the algorithm in predicting battery SOC, an open-source lithium-ion battery dataset was used as a case study in this paper. The results show that the proposed KF-SA-Transformer model has superiority in improving the accuracy and reliability of battery SOC prediction, playing an important role in the stability of the grid and efficient energy allocation.
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1 INTRODUCTION
With the transformation of the global energy structure and the increasing popularity of renewable energy, the integration of new energy generation into the power system has become an important aspect. However, due to the inherent randomness and instability of the output power of new energy sources, integrating them into the grid may impact power quality and reliability (Wang et al., 2019; Shi et al., 2022). Electrochemical batteries, as representatives of energy storage systems, provide a promising solution to mitigate the instability and intermittency of new energy integration. They can assist in peak shaving and frequency regulation, thereby enhancing the security and flexibility of energy supply systems. The core of electrochemical energy storage is the Battery Management System (BMS), where the State of Charge (SOC) of the battery is a key parameter. However, due to the non-linear and time-varying electrochemical system inside batteries, SOC estimation can only be based on measurable parameters such as voltage and current, making accurate estimation of battery SOC a challenging task (Rivera-Barrera et al., 2017). Large errors in estimating battery SOC may damage battery capacity and service life, affect the economic operation of the grid, and even lead to catastrophic events such as combustion or explosion, posing a serious threat to grid safety (Zhou et al., 2021).
Currently, the common methods for predicting battery SOC mainly include the Ampere-hour integration method, open circuit voltage method, model-based prediction techniques, and data-driven methods. The Ampere-hour integration method, although simple, is prone to accumulating errors over time (Chang, 2013; Zhang et al., 2020). The accuracy of the open circuit voltage method is influenced by the battery’s rest period. Model-based prediction techniques are based on specific operating conditions and may not be applicable to all conditions; accurate estimation of physical parameters in the model is very difficult, as these parameters change with battery aging and usage conditions, increasing model uncertainty and reducing prediction accuracy (How et al., 2019). Another method is the data-driven approach, which uses data training to identify the complex relationship between feature parameters and SOC, thereby avoiding the need for complex battery models. Typical data-driven methods usually utilize machine learning techniques such as Random Forest (Li et al., 2014) and Support Vector Machine (Song et al., 2020) to predict battery SOC. However, compared to traditional machine learning methods, deep learning methods based on neural networks demonstrate superior performance in extracting latent features and are widely used in SOC prediction, such as Long Short-Term Memory (LSTM) (Chen et al., 2023), Gated Recurrent Unit (GRU) (Dey and Salem, 2017), and Transformer series models (Han et al., 2021). The Transformer model, due to its inherent self-attention mechanism, can perform parallel computation and sequential data processing, making it more effective in handling time series data and providing a solution with higher accuracy and generalization capabilities for SOC prediction (Shen et al., 2022). (Hussein et al., 2024) conducted research on the SOC estimation of lithium-ion batteries using a self-supervised learning Transformer model, which demonstrated lower root mean square error (RMSE) and mean absolute error (MAE) under different ambient temperatures, indicating the potential of self-supervised learning in battery state estimation. However, this method has poor resistance to noise, which affects the robustness of the model in practical applications. (Chen et al., 2022) predicted the remaining useful life (RUL) of lithium-ion batteries based on the Transformer model, using a denoising autoencoder (DAE) to preprocess noisy battery capacity data, and then utilizing the Transformer network to capture temporal information and learn useful features. Eventually, by integrating the denoising and prediction tasks within a unified framework, the performance of RUL prediction was significantly improved. Despite this, the model by Chen et al. has some limitations. Although the DAE preprocessing step can remove noise, it may not fully preserve all the subtle features useful for prediction. To overcome these challenges, a Kalman filter can be added to the Transformer model. (Bao et al., 2024), in response to the limitations of existing methods in extracting time series features, proposed a time Transformer-based sequential network (TTSNet) for SOC estimation of lithium-ion batteries in electric vehicles. TTSNet effectively encodes features of the temporal dimension information through the time Transformer and introduces sliding time window technology and Kalman filtering as pre- and post-processing steps, which not only enhances the processing capability for long sequence data but also improves the accuracy and robustness of the estimation. In summary, these studies have made significant progress in the state monitoring and management of lithium-ion batteries, especially in improving prediction accuracy and handling long sequence data. However, the complexity of these models also brings significant computational costs. The Transformer model usually requires a large number of parameters and computational resources, which not only limits its application in resource-constrained environments but also increases the time cost for training and inference.
To overcome the limitations of the aforementioned methods, this paper introduces Sparse Autoencoder (SA) technology to improve the SA-Transformer model. The core idea of SA is to reduce the number of model parameters and computational complexity by learning the low-dimensional representation of data. It can significantly reduce the number of model parameters, thereby reducing memory usage and computational requirements, making the dimensionality-reduced model more lightweight, which can be trained and inferred more quickly. This is particularly important for application scenarios that require real-time responses. Since the sparse encoder encourages the model to learn more robust and discriminative feature representations, it can also improve the model’s generalization capabilities.
To this end, this paper proposes a new model KF-SA-Transformer, which combines the advantages of the KF, SA, and Transformer. To enhance the model’s resistance to noise and the smoothness of prediction, this paper introduces the KF module; to address the issue of model computational complexity, this paper uses the SA module to improve feature extraction capabilities by learning sparse representations of data, dimensionality reduction of large-scale sequence data, and reducing the input dimensions of the Transformer. The Transformer model is adept at capturing and learning long-term dependencies in the data, which enables the KF-SA-Transformer model to demonstrate higher prediction accuracy and stability in battery SOC prediction tasks. This three-in-one architecture aims to achieve more accurate SOC prediction, which can reduce the risk of overcharging and over-discharging the battery, thereby reducing the frequency of battery replacement and maintenance costs; it can also be used to develop intelligent charging strategies, improve charging efficiency, and reduce the impact on the power grid. In the field of new energy, such as wind and solar power generation, accurate SOC prediction of energy storage systems is of great importance for the stability of the power grid and the effective distribution of energy (Schmietendorf et al.,2017; Yu G. et al., 2022a; Yu G. Z. et al., 2022b).
2 KF-SA-TRANSFORMER MODEL FOR SOC PREDICTION
2.1 Model architecture
The KF-SA-Transformer model is an innovative battery SOC prediction model that integrates three technologies: the Kalman filter, the sparse autoencoder, and the Transformer module. The input data of battery voltage, current, and temperature are filtered through the Kalman filter to eliminate noise interference and ensure data stability. The filtered data are then fed into the sparse autoencoder module, which extracts key features related to the battery SOC from the data through unsupervised learning, forming an embedding matrix that includes positional information. Finally, the embedding matrix is input into the Transformer module, which uses its unique self-attention mechanism to capture long-distance dependencies in the data, thereby accurately predicting the battery’s SOC. The entire model achieves precise prediction from raw data to the battery SOC through this process, enhancing the accuracy and robustness of the prediction results. The overall architecture of the model is shown in Figure 1. This paper defines a feature input matrix X, with dimensions m × 3, as shown in Eq. 1. Each row represents a sample, and each column represents a feature (current, voltage, or temperature).
[image: Matrix X with elements X sub 11, X sub 12, X sub 13 in the first row, X sub 21, X sub 22, X sub 23 in the second row, continuing to X sub m1, X sub m2, X sub m3 in the m-th row, denoted by equation 1.]
[image: Flowchart illustrating a machine learning model structure for estimating battery state of charge (SOC). It integrates a transformer and Kalman filter. The transformer section includes processes like feedforward, multi-head attention, add and normalize. The input embedding vector proceeds to hidden layers with fully connected neural networks. The Kalman filter section deals with normalization and Gaussian noise, incorporating a denoising matrix. Data inputs include timestamps and physical parameters like voltage, current, and temperature.]FIGURE 1 | Overall model architecture.
Where: Xij denotes the measurement value of the ith sample on the jth feature, and m is the total number of samples.
2.2 Kalman filter module
Using data-driven methods alone to predict battery SOC has significant limitations, as it requires high-precision battery data and may suffer from limited generalization capabilities. However, the integration of the Kalman filtering method can achieve optimal prediction of system states by minimizing the mean square error (MSE), effectively overcoming the inaccuracy of initial predictions. The Kalman filtering method treats estimated variables as system state variables and measured variables as observation variables. Through a recursive process, the Kalman filtering method can filter out noise and allocate different confidences to estimated and measured variables using Kalman gain until the estimated variables converge to more accurately reflect the actual variables (Peng, 2009). The state transition equation and observation equation are respectively, as shown in Eqs 2, 3:
[image: Equation depicting a discrete-time state-space model: \(X_k = AX_{k-1} + w(k)\), labeled as equation (2).]
[image: The equation \( Z_k = H X_k + v(k) \).]
Where: Xk, Zk are the system’s state vector and observation vector at time k; uk-1 is the control input at time k-1; A, H, are the state transition matrix and observation matrix; w(k), v(k) are the system noise and observation noise.
The core of the Kalman filter lies in two main update steps: Prediction and Update. In the prediction step, the current state is predicted based on the previous moment’s state estimate and process noise, as shown in Eqs 4, 5: 
[image: Vector equation showing \(\dot{\mathbf{x}} = \mathbf{A} \mathbf{x}\), labeled as equation (4).]
[image: Equation showing matrix operations for predict step in Kalman filter: \( P_k = A P_{k-1} A^T + Q \).]
Where: [image: Mathematical notation showing an X with a circumflex accent and a subscript k, with an overline.] represents the predicted state vector, [image: Mathematical notation showing the symbol \( P_k \), with \( k \) as a subscript.] is the predicted error covariance matrix, and Q is the process noise covariance matrix. To integrate predicted information with observational data, the concept of the Kalman gain is introduced. By utilizing the Kalman gain, it is possible to update the state estimate and the error covariance, as shown in Eqs 6–8:
[image: Equation showing the Kalman gain \( K_k = P_kH^T(HP_kH^T + R)^{-1} \), labeled as equation 6.]
[image: Mathematical equation showing the Kalman filter update: X-hat-sub-k equals X-bar-sub-k plus K-sub-k times the quantity Z-sub-k minus H times X-bar-sub-k, labeled as equation seven.]
[image: The image shows a mathematical equation: \( P_k = (I - K_k H)P_{k}^- \). It is labeled as equation (8).]
Where: Kk is the Kalman gain, [image: A mathematical symbol featuring the letter "X" with a caret accent above it, typically used to represent an estimated or predicted value.] k is the corrected state vector, Pk is the corrected error covariance matrix, and R is the observation noise covariance matrix. After processing by the Kalman filter, updated state estimates are obtained, which reflect the optimal estimated state of the battery system at each time step. These state estimates are integrated into a new matrix XKF, which captures the evolution of the system state over time and filters out the effects of noise.
2.3 Sparse auto-encoder module
The Kalman filter, while effective in processing linear data, has limited capabilities when dealing with nonlinear data and complex relationships. To address this limitation, the integration of a sparse autoencoder into the data processing pipeline is proposed. This autoencoder effectively extracts features from the filtered data, reducing its dimensionality while preserving valuable feature information. This approach helps reduce data dimensionality and identify useful feature information, thereby enhancing the accuracy and performance of the prediction model.
SA introduces modifications to the embedding layer of the Transformer architecture, aiming to lighten the temporal positional encoding and enhance the modeling capabilities for temporal dependencies. As an unsupervised algorithm, SA adjusts its parameters adaptively by calculating the difference between the input and output of the autoencoding process, resulting in a trained final model. This algorithm finds widespread applications in information compression and feature extraction. Its goal is to reconstruct the input data using learned sparse representations.
The sparse autoencoder can sparsely represent battery input features, reduce the dimensionality of the original data, and improve computational efficiency. Its encoder input is the feature vector XKF obtained after Kalman filtering, with the encoder output and decoder input in the hidden space, where the data is compressed into fewer dimensions while attempting to retain the most important information. The decoder output transforms the representation in the hidden space back to the original data space, attempting to reconstruct data as similar as possible to the input data, as shown in Eqs 9–11:
[image: Equation showing \( A_1 = \text{sigmoid}(W_1 X_{\text{prev}} + b_1) \), labeled as equation nine.]
[image: Mathematical expression of \( X_{SA} = \text{sigmoid}(W_2A_1 + b_2) \) with the equation number (10) on the right.]
[image: Mathematical equation depicting the sigmoid function: sigmoid of z equals one divided by the sum of one and e raised to the power of negative z.]
Where: z is any real number; W1, W2 are the weights of encoder and decoder; b1, b2 are the biases of encoder and decoder. The optimization objective is to minimize the reconstruction loss and approximate the probability density distribution, therefore, the network loss function is derived as shown in Eqs 12–14:
[image: Equation for cost function \( J(W_1, W_2, b_1, b_2) \) in machine learning. It includes reconstruction error term \(\frac{1}{M} \sum_{i=1}^{M} ||x^{(i)} - \hat{x}^{(i)}||^2\), regularization terms \(\frac{\lambda}{2}(||W_1|| + ||W_2||)\), and sparsity term \(\beta \sum_{j=1}^{d} [p \cdot \log \frac{p}{\hat{p}_j} + (1-p) \cdot \log \frac{1-p}{1-\hat{p}_j}]\). Equation number (12).]
[image: The equation shows \( \hat{p}_j = \frac{1}{M} \sum_{i=1}^{M} a_j^{(i)} \), labeled as equation 13.]
[image: The formula shows \( p = \frac{1}{M} \sum_{i=1}^{M} s_j^{(i)} \), labeled as equation 14.]
Where: aj(i) is the jth neuron output value of the ith sample of the hidden space A1; sj(i) denotes the jth neuron input value of the ith sample of the encoder A0; M is the total number of samples; β is the given sparsity constraint coefficient; λ is the given regularization coefficient. The encoder output of the sparse autoencoder results in a processed feature matrix, referred to as XSA. This matrix encapsulates the salient characteristics of the input data, enabling the subsequent neural network to discern intricate relationships among the sequence elements.
2.4 Transformer module
Due to the inherent complexity and time-varying nature of chemical reaction processes within batteries, model-based prediction methods inherently carry the risk of errors. Enhancing model accuracy further complicates the task of parameter identification. To mitigate this challenge, the Transformer model is introduced, as it excels at capturing long-term dependencies and contextual information within sequence data, thereby enhancing the prediction accuracy of lithium battery SOC.
Transformer is a sequence-to-sequence (seq2seq) model based on the attention mechanism, which consists of two parts, Encoder and Decoder. The Transformer model consists of four parts, which are the self-attention mechanism, the multi-head attention mechanism, the positional encoding and the forward propagation network. As shown in Figure 2, the multi-head attention mechanism in the Transformer model allows the model to focus on different parts of the input sequence simultaneously, possessing the ability to globally perceive the input features, which improves the expressiveness of the model and better handles both local and global information. The forward propagation network is a fully-connected feedforward network consisting of two fully-connected layers.
[image: Diagram illustrating a multi-head attention mechanism. It shows the input matrix Z being processed through multiple attention heads (0 to N), each computing matrices Q, K, and V. These matrices are used to perform scaled dot-product attention, resulting in output matrices from each head. The outputs are combined to form the final output matrix Z.]FIGURE 2 | Multi-head attention structure.
The Transformer encoder comprises numerous identical sub-blocks, known as Transformer Blocks, stacked consecutively. The initial sub-layer within each block incorporates the multi-head attention mechanism, followed by a second sub-layer, a fully connected network. These two sub-layers are interconnected through residuals, which effectively prevent gradients from vanishing and enhance the seamless flow of information between them. Additionally, a layer normalization operation is performed after the residuals are connected, further facilitating the algorithm’s convergence. On the other hand, the decoder differs from the encoder in a crucial aspect: the resulting three vectors, along with an ordinal mask, are concurrently fed into the multi-head self-attention layer, as illustrated in Figure 3.
[image: Flowchart illustrating a transformer model architecture for battery SOC estimation. It includes modules like multi-head attention, feed forward layers, and fully connected layers. Arrows indicate the data flow through linear transformations, matrix multiplications, and softmax operations. Key components like embedding vectors and attention mechanisms are highlighted.]FIGURE 3 | Transformer model.
The Transformer leverages its unique structure to process the feature matrix XSA refined by the sparse autoencoder, thereby achieving the prediction of the SOC for lithium batteries. The model first captures the interdependencies between sequence data in the input feature matrix through the self-attention mechanism, thereby understanding the long-term dependencies and contextual information within the sequence. And the multi-head attention mechanism allows the Transformer to focus on different parts of the input matrix simultaneously, globally perceiving the input features, which helps the model to better understand and process the input data. Positional encoding is used to provide positional information for each element in the sequence, which is crucial for understanding the sequential relationships. Finally, through the feed-forward neural network, the Transformer integrates this information and translates it into a prediction for the lithium battery SOC. This processing method makes the Transformer highly flexible and accurate when dealing with sequence data, enabling precise prediction of the lithium battery SOC.
3 CASE ANALYSIS
3.1 Simulation platform and data
3.1.1 Simulation platform
The simulation platform is equipped with an Intel Core i7-7800X processor and an NVIDIA GeForce RTX 2080 Ti graphics card. It utilizes Python 3.8 as a programming language for algorithm development. The algorithmic model is built using TensorFlow, an open-source machine learning framework.
3.1.2 Data preparation
This paper utilized a publicly accessible lithium-ion battery dataset obtained by Dr. Phillip Kollmeyer at McMaster University in Hamilton, Ontario, Canada, to confirm the robustness of the studied model (Philip et al., 2020). This dataset was generated through various charge-discharge cycles on brand-new 3Ah LG 18650HG2 lithium-ion batteries following standard protocols. The collected data includes experiments conducted at six different temperatures ranging from −20°C to 40°C. This paper utilizes the driving condition data at 25°C as the dataset for validating the model’s effectiveness. The dataset includes four standard drives (UDDS, HWFET, LA92, and US06) and eight driving cycles that are randomly combined from the four standard driving cycles.
The KF-SA-Transformer model used the terminal voltage, current, and temperature of the lithium battery as input variables to estimate the battery’s SOC. However, the original data often exhibited significant fluctuations, which could introduce bias during the model parameter optimization process. Consequently, this might affect the effectiveness of the training process and the generalization capability of the model. Additionally, the variables were not uniformly scaled, which could lead to a contraction effect on the data size and range within the neurons of the deep learning model during parameter updates in the backpropagation phase. To address this issue, normalization of the data before prediction becomes imperative. This normalization process adjusts the data to be contained within the [0,1] interval, with the transformation function as show in Eq. 15:
[image: The formula shows the normalization of a variable \( X \), where \( X \) equals \((X_0 - X_{\text{min}}) / (X_{\text{max}} - X_{\text{min}})\). The equation is labeled as equation fifteen.]
Where: X represents the normalized sample data; X0 represents the original sample data; Xmin is the minimum value of the original sample data; Xmax is the maximum value of the original sample data.
3.1.3 Assessment indicators
To appraise the precision of the model’s predictive capabilities, this paper employs a suite of metrics: the MSE, MAE. These metrics collectively assess the model’s performance in estimating the SOC of the battery. The specific calculation formula as shown in Eqs 16, 17:
[image: The formula for Mean Squared Error (MSE) is shown as MSE equals one over m times the sum from i equals one to m of the squared differences between y sub i and y hat sub i, where m is the number of observations.]
[image: The formula for Mean Absolute Error (MAE) is displayed as MAE equals one over m times the sum from i equals one to m of the absolute value of the difference between y subscript i and y hat subscript i.]
Where: m is the number of samples, i is the sample sequence number, yi is the actual value of the ith sample, [image: Please provide the image or the URL for me to assist you with generating the alt text. You can upload the image directly or share a link.] i is the predicted value of the ith sample, and di denotes the average of the real values. The above indicators are used to evaluate the error between the predicted value and the actual value, and the smaller the value is, the more accurate the prediction result is.
3.2 Model performance optimization strategies
3.2.1 Hyper-parameter settings
The accuracy of the neural network is influenced by hyper-parameters, which include, but are not limited to, the number of convolutional layers and the dimensions of the convolutional kernel. These hyper-parameters are pivotal in determining the SOC prediction outcomes. Commonly adopted methods for hyper-parameter optimization encompass grid search, random search, and Bayesian optimization. While grid search is a straightforward approach, it can be computationally expensive and time-consuming. To achieve efficient hyper-parameter optimization within a reasonable timeframe, this paper opts for the Bayesian optimization algorithm. The underlying principle of Bayesian optimization involves the construction of a probabilistic model of the objective function. This model is iteratively refined by incorporating new sample points, thereby updating the posterior distribution of the objective function. The optimal hyperparameters selected in this paper are shown in Table 1.
TABLE 1 | Model parameter setting.
[image: Table displaying parameters and their correlation coefficients. Encoder Layers: 4, \(d_{\text{model}}\): 3, MLP hidden layer: 4, Batch size: 64, Learning rate: 0.00001, Epochs: 50.]3.2.2 Comparison of optimization algorithms
To further enhance the precision of the model’s convergence value, reduce prediction errors, and improve generalization capabilities, it is necessary to introduce a parameter optimization algorithm into the KF-SA-Transformer model. This paper employs Stochastic Gradient Descent (SGD), Average Stochastic Gradient Descent (ASGD), and Adaptive Moment Estimation (Adam) to optimize the KF-SA-Transformer model. As shown in Figure 4, loss curves during iterative training on the training set and validation set for each algorithm are plotted. The analysis indicates that the Adam, SGD, and ASGD algorithms are all capable of achieving model convergence. However, the convergence rate of the ASGD optimization algorithm is relatively slow, failing to reach the convergence value of the other two algorithms even after 50 training epochs. In contrast, the SGD algorithm converges relatively quickly but exhibits significant fluctuations, especially in the loss curve on the validation set. Comparatively, the Adam optimization algorithm has the fastest convergence rate, with the loss value approaching zero and the smallest fluctuations after just 1-3 training epochs. Compared to SGD and ASGD, the Adam algorithm has significantly improved the predictive accuracy of the final model to a greater extent.
[image: Graph A and B show loss comparison across 50 epochs for three optimization algorithms: Adam, SGD, and ASGD. In both graphs, Adam and ASGD have significantly lower loss values compared to SGD, with the loss decreasing rapidly in initial epochs and stabilizing. Graph B shows a lower starting loss than Graph A.]FIGURE 4 | Loss profile based on KF-SA-Transformer model (A) training set (B) validation set.
3.3 Results and discussion
3.3.1 Performance comparison of different models
To investigate the performance of the KF-SA-Transformer model, this paper compares it with the SA-Transformer and the Transformer models. Using the UDDS driving data as the test set, the SOC prediction results of these models were compared. Figure 5 illustrates the comparative analysis of the prediction data and the original data for the three models under the UDDS conditions, along with a comparison of their prediction errors.
[image: Four graphs labeled A, B, C, and D compare transformer models with original data over time steps. Graphs A, B, and C plot SOC percentage over time with lines closely following the original data. Graph D presents prediction error over time for three transformer models, showing varying degrees of error magnitude.]FIGURE 5 | SOC prediction results (A) KF-SA-Transformer (B) SA-Transformer (C) Transformer (D) error comparison of each model.
Based on the thorough data analysis presented in Figure 5, the conclusions drawn are as follows: The KF-SA-Transformer model has exhibited remarkable predictive capabilities. It achieves a low MAE of 0.63% and an RMSE of 0.81% in SOC prediction, while its maximum error is contained within 3.08%. In contrast, the SA-Transformer model’s SOC prediction performance is slightly inferior, with an MAE of 0.65%, an RMSE of 0.88%, and a maximum error of 3.59%. The traditional Transformer model, on the other hand, displays comparatively weaker performance, attaining an MAE of 1.3%, an RMSE of 1.72%, and a maximum error of 4.73%. These findings underscore the KF-SA-Transformer model’s high degree of accuracy and stability in SOC prediction, highlighting its significant advantage over the other models.
3.3.2 Prediction performance under different conditions
To further explore the performance of the KF-SA-Transformer model in practical applications, this study selected the US06 driving data and a set of mixed driving cycles as the test set, thereby comprehensively evaluating the predictive capability of the KF-SA-Transformer model under variable operating conditions. The predicted results and errors are presented in Figures 6, 7.
[image: Graph A shows the state of charge (SOC) percentage decreasing steadily over 110 time steps, comparing "Origin Data" and "KF-SA-Transformer". Graph B displays the prediction error percentage remaining near zero over the same period using the "KF-SA-Transformer".]FIGURE 6 | SOC prediction results of the US06 driving (A) prediction results (B) error curve.
[image: Panel A shows a line graph comparing the State of Charge (SOC) over time steps for original data and KF-SA-Transformer, with both lines closely aligned, indicating accurate modeling. Panel B displays a line graph of prediction error percentages over time, with the KF-SA-Transformer showing low error fluctuations.]FIGURE 7 | SOC prediction results of the mixed driving cycle (A) prediction results (B) error curve.
Under the US06, a representative high-speed driving scenario, the KF-SA-Transformer model exhibited outstanding accuracy in predicting the battery’s SOC. Notably, its predicted results achieved an MAE of merely 0.87%, along with an RMSE of 1.13%. Even at the peak of error, the deviation remained within a range of 3.48%. This data unequivocally demonstrates that the KF-SA-Transformer model maintains exceptional predictive accuracy under high-speed and high-load conditions.
In the more complex mixed driving cycles, which encompass a variety of driving speeds and load conditions, the KF-SA-Transformer model’s predictive performance remains equally remarkable. These conditions pose higher demands on the model’s generalization capabilities. However, the KF-SA-Transformer model still demonstrated excellent performance, achieving an MAE of 0.79% and an RMSE of 0.94% for its SOC prediction results. The maximum error was only 3.63%. These data not only validate the model’s adaptability under different operating conditions but also further reinforce the effectiveness of the KF-SA-Transformer model in the field of SOC prediction.
4 CONCLUSION
This paper introduces a method for predicting the SOC of lithium-ion battery energy storage systems using a hybrid neural network comprising the KF-SA-Transformer architecture. The approach takes current, voltage, and temperature data as inputs, first utilizes a Kalman filter for noise reduction, and then forwards the filtered data to a sparse autoencoder for feature extraction, effectively reducing the data dimensionality. Finally, the Transformer model leverages these low-dimensional features to establish a mapping relationship with the SOC, thereby significantly enhancing the accuracy and overall performance of SOC predictions.
Under identical driving cycle conditions, the KF-SA-Transformer model exhibits significant advantages compared to other models. Moreover, the application of the KF-SA-Transformer model has also yielded favorable results in various other driving cycle conditions. While the model performs exceptionally well on the selected lithium-ion battery dataset, its generalization capabilities to other battery types or varying operating conditions remain to be further validated. Therefore, future research could explore avenues such as enhancing dataset diversity, incorporating datasets from multiple battery models for model training, employing data augmentation techniques, or adopting an ensemble of multiple models to further improve the model’s generalization abilities and foster wider applications and advancements in the field of SOC prediction.
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Optimal power flow (OPF) calculation methods are important for the power system operation and mainly focus on the deterministic power flow calculation, neglecting the impact of demand response on online security calculation of power systems with renewable energy sources. Therefore, this paper proposes an OPF calculation method that considers the uncertainties of wind power, photovoltaic (PV) power generation and demand-side response. Firstly, the research focuses on the renewable energy grid, considering the uncertainties of wind power and PV power generation, and establishes uncertainty models for wind power and PV output. Secondly, based on cloud model theory, an uncertainty model for demand response is established. According to the established models, an efficient OPF model is constructed with a linearized submodels considering multiple uncertainties. By testing on the IEEE 30-bus system as a typical example, we found the effectiveness and superiority of the proposed OPF calculation method can benefit the power system economic operation and demand side resource utilization.
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1 INTRODUCTION
In recent years, the global energy crisis has become increasingly prominent, and the environmental pollution caused by the combustion of fossil fuels such as coal and oil has also attracted widespread attention (Xin et al., 2022). To address this issue, countries around the world have actively invested a large amount of funds and research personnel in renewable energy technologies to replace fossil fuels. New renewable and clean energy sectors, including wind and solar power generation, have experienced vigorous growth (Chen et al., 2020). As the proportion of wind power, PV and other renewable energy generation in power grid generation continues to increase, the inherent randomness and fluctuation of these energy sources gradually exert a growing impact on the operational state of the electric power system. Therefore, to precisely evaluate how the integration of renewable energy sources with high capacity affects the operational state of the electric power system, and to enhance the reliability and cost-effectiveness of power systems incorporating wind and PV generation, extensive research has been conducted on OPF calculation methods for electric power systems (Yang et al., 2018). Traditional deterministic power flow calculation methods are mainly used in typical scenarios where the grid structure information of the power system is fixed and the input power at each node of the power system remains basically unchanged. They are unable to accurately reflect the actual operational state of the current power grid where renewable energy sources constitute a significant portion (Pourbehzadi et al., 2019).
Currently, scholars have conducted extensive research on the OPF calculation problem for power grids containing wind power and PVs. In Refs. (Li et al., 2015; Guo et al., 2018), the uncertainty of wind power output is taken into account, and a probabilistic OPF model for wind power integration is proposed. Ref. (Li et al., 2020). introduces a prediction method for PV output that considers correlation and analyzes the OPF of PV output at different time points. Additionally, Ref. (Morshed et al., 2018). addresses the issue of correlation between the outputs of wind farms and proposes a correlation modeling method based on fuzzy C-means clustering for calculating the power flow in a distribution network that includes wind power generation. In Ref. (Yan et al., 2018), Latin Hypercube Sampling (LHS) and its improved algorithm were employed for sampling the probability distributions pertaining to wind power, photovoltaics, and other renewable energy forms, enhancing the speed and accuracy of power flow calculations. In Refs. (Liao et al., 2019; Liu et al., 2019), the linearization semi-variance approach was developed for probabilistic power flow calculations, effectively reducing the impact of uncertainty in clean energy sources like wind power and PVs on power flow calculation results.
However, existing research has not taken into account the impact of demand-side response on OPF calculation. On the load side, demand-side response has a significant influence on the optimal allocation of the power grid. By guiding users’ electricity consumption behavior through demand-side response and matching load characteristics with power generation characteristics such as wind power and PVs, it is possible to reduce the configured capacity and optimizes the overall cost-effectiveness of the power grid (Yang et al., 2022). Based on considering the uncertainty of renewable energy generation, Ref. (Zhao et al., 2018). introduced demand-side response, effectively reducing the economic cost of the system. Additionally, due to differences in user demographics, price incentives, and other factors, demand response also exhibits significant uncertainty. Ref. (Lin and Zhang, 2020). considered the impact of demand-side response on system scheduling under different incentive levels, finding that system scheduling costs decrease as incentive levels increase.
In summary, although numerous studies have been conducted on OPF calculation methods for power systems with renewable energy sources, none of them have taken into account the impact of demand-side response on the renewable energy accommodation capacity. As a result, demand-side response has not been incorporated into the OPF calculation methods. Therefore, this paper aims to develop an OPF calculation method that considers the uncertainties of wind power, PV power generation and demand-side response. The decision variables such as the output and terminal voltage of wind turbines, transformer ratio, and reactive power compensation capacity have been reasonably adjusted. This not only reduces the system operating costs while satisfying safety constraints, but also enhancing the speed and accuracy of online security calculation and analysis in power systems.
The remainder of this paper is organized as follows. Section II establishes uncertainty models for wind power and PV output. Section III constructs an uncertainty model for demand-side response. Based on the previously established uncertainty models, and Section IV establishes an OPF model and proposes a linearized method for OPF calculation considering multiple uncertainties. Section V validates the effectiveness and superiority of the proposed method using the IEEE 30-bus system as an example. Finally, Section VI presents the conclusions of this paper.
2 UNCERTAINTY MODELS FOR WIND POWER AND PV OUTPUT
The fluctuations and intermittency of wind speed and solar irradiance pose new problems and complexities to the stable and economic dispatch of the power grid. This necessitates the use of appropriate mathematical models for accurate calculations of wind power and PV output, facilitating subsequent scenario simulations and uncertainty handling.
2.1 Wind power output model
A wind turbine generator converts wind energy into mechanical energy by driving the rotation of its blades, and then converts this mechanical energy into electrical power. This paper employs the Weibull distribution to fit the measured wind speed data, and the resulting probability density function (PDF) of wind speed is presented as follows in Eq. 1:
[image: The image shows a mathematical equation: \( f(v) = \frac{k}{A} \left( \frac{v}{A} \right)^{k-1} e^{-\left( \frac{v}{A} \right)^k} \), labeled as equation (1).]
Where, [image: It appears you attempted to upload an image, but it did not come through. Please try uploading the image again, and I will help with the alt text.] represents the actual wind speed (m/s). [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] and [image: Please upload the image or provide a URL so I can help with the alt text.] are the two parameters of the Weibull distribution, which are obtained through fitting the actual data.
The specific mathematical model expression is as follows (Xie et al., 2019) in Eq. 2:
[image: Equation showing power output (\(P_{\text{out}}\)) defined piecewise: it is zero for \(v_{\text{out}} < v < v_{\text{in}}\); a fraction involving velocity terms and power (\(P_N\)) for \(v_{\text{in}} \leq v \leq v_N\); and \(P_N\) for \(v_N < v \leq v_{\text{out}}\).]
Where, [image: The image shows the mathematical notation "P" with the subscript "wt."] is the power of the wind turbine generator. [image: Text showing "v_out" in italic font, representing an output voltage in an electrical or mathematical context.], [image: Text displaying "v" with a subscript "in".] and [image: Lowercase letter "v" followed by an uppercase letter "N" in a serif font.] represent the cut-out wind speed, cut-in wind speed and rated wind speed of the wind turbine generator, respectively. [image: Equation displaying the variable \( P_N \) with subscript \( N \).] is the rated power of the wind turbine generator.
During the operation of a wind turbine generator, only the costs associated with its operation and maintenance are taken into account, and these costs are specifically related to the output power of the turbine. The detailed expression is as follows in Eq. 3:
[image: Equation for covariance is shown as \( C_{uv}(t) = c_{uv} p_{uv}(t) \), labeled equation three.]
Where, [image: It seems there was an error in uploading the image. Please try uploading it again or provide a URL if available.] refers to the cost associated with the routine maintenance and operational expenses of a wind turbine for generating a unit of power. [image: Mathematical expression displaying \( C_{w}(t) \).] refers to the total cost related to the routine maintenance and operational expenses of wind turbines during the time period t.
2.2 PV output model
The working principle of PV modules is based on the photoelectric effect, and their power generation is positively correlated with the intensity of light. This paper employs the Beta distribution to fit the measured light intensity data, and the resulting PDF of light intensity is presented as follows in Eq. 4:
[image: Mathematical expression for \( f(r) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \left(\frac{r}{r_{\text{max}}}\right)^{\alpha-1} \left(1 - \frac{r}{r_{\text{max}}}\right)^{\beta-1} \), labeled as equation \( (4) \).]
Where, [image: Please upload the image or provide a URL so I can help create the alt text for it.] represents the light intensity (W/m2), [image: The image consists of the mathematical expression "r" raised to the power of "max," indicating the concept of maximum value or range for the variable "r."] is the maximum possible light intensity that the photovoltaic power plant can receive, [image: It seems like there was an error in uploading the image. Please try uploading the image again, and I'll be happy to help with the alternate text.] is the Gamma function, which along with parameters [image: It seems there's an issue with the image upload. Please try uploading the image again, or provide a URL if it's hosted online. You can also describe the image or add a caption for additional context.] and [image: Please upload the image or provide a URL so I can create the alternate text for you.], controls the shape of the Beta distribution curve. The values of [image: It seems there was an issue with the image upload. Please try uploading the image again, and ensure it is properly attached.] and [image: Please upload the image or provide a URL so I can assist with creating alternate text.] are obtained through fitting the actual data.
The expression for its output power is as follows (Zhao et al., 2022) in Eq. 5:
[image: The equation illustrates the power output of a photovoltaic system, denoted as \( P_{\text{pv}} = rS_{\text{pv}}\eta_{\text{pv}} \), where \( r \) is the solar radiation, \( S_{\text{pv}} \) is the surface area of the photovoltaic cells, and \( \eta_{\text{pv}} \) represents the efficiency of the photovoltaic cells.]
Where, [image: Mathematical notation showing "P" with a subscript "pv".] signifies the electrical power produced by the PV array. [image: Mathematical symbol representing the variable \( S_{pv} \).] signifies the equivalent area of vertical sunlight received by the photovoltaic cell. [image: The image shows the mathematical notation \(\eta_{pv}\), typically used to denote conversion efficiency in photovoltaics.] represents the photoelectric conversion coefficient.
Similar to wind turbines, only the costs associated with the operation and maintenance of PV cells are considered during their operation. The specific expression is as follows in Eq. 6:
[image: Equation showing \( C_{pr}(t) = c_{pr} \cdot P_{pr}(t) \), labeled as equation six.]
Where, [image: It seems like there was an issue with the image upload. Please try uploading the image file again or provide a URL. You can also add a caption for additional context if you'd like.] refers to the cost associated with the routine maintenance and operational expenses required for the PV cell to produce a unit of power output. [image: Mathematical notation showing the term "C" with a subscript of "pv".] is the total cost related to the routine maintenance and operational expenses incurred by the PV cell during the time period t.
2.3 Simulation of scenarios in wind and solar generation based on monte carlo sampling
When utilizing scenario analysis to tackle the uncertainty inherent in wind and solar generation, it is necessary to first perform scenario simulation to obtain a large-scale scenario sample set. Meanwhile, the method of time series analysis should be employed to consider the coupling characteristics between wind and solar power output at different times. Then, scenario reduction techniques are applied to extract a few typical scenarios from the sample set to describe and characterize the power fluctuations of the entire sample set.
Utilizing Monte Carlo sampling techniques, this paper performs extensive sampling of wind and solar energy production to generate a comprehensive collection of predictive scenarios. Monte Carlo method is based on probabilistic mathematical models and uses numerical simulation experiments to describe physical geometric characteristics and geometric quantities in order to approximate solutions (Zhao et al., 2023).
For the prediction of wind and solar power output over a scheduling period T = 24h, a scenario set of size N = 1,000 is obtained through Monte Carlo sampling. The specific description is as follows in Eq. 7:
[image: Mathematical expression showing a set Ω subscript S, containing elements S subscript v1 superscripts 1, 2, 3, ..., S subscript v1 superscript T, and so on for multiple indices, followed by equation number 7 in parentheses.]
Where, [image: Mathematical expression showing the notation "S" with subscripts "u, w, t" and superscript "t".] represents the set of predicted wind generation scenarios for time t. [image: Mathematical notation showing "S" with a superscript "t" and subscript "pv".] represents the set of predicted PV generation scenarios for the same time t.
Based on the mathematical models established for wind turbines and PV modules in this section, a sample size of N = 1,000 and a scheduling period of T = 24h were chosen. The cut-in wind speed is designated as [image: The text reads "v subscript in equals 2.5 meters per second."], the cut-out wind speed as [image: The equation displays "v sub out equals twenty-seven meters per second."], the rated wind speed as [image: Equation showing velocity \( v_N = 15 \, \text{m/s} \).]. [image: Text showing "r = 0.9 kW/m²" in italic font.]. Monte Carlo method was used to obtain 1,000 simulated wind power and photovoltaic output scenarios.
3 UNCERTAINTY MODEL OF DEMAND SIDE RESPONSE
3.1 Controllable load model
The response level of the demand side largely depends on the price compensation strategy issued by the system operator, resulting in significant uncertainty. As shown in Figure 1, when the incentive level is below [image: Greek letter gamma with subscript "min".], users generally do not participate in the response. When the incentive level falls between [image: Mathematical expression depicting an interval from gamma sub min to gamma sub max, enclosed in square brackets.], users engage in the response, and the amount of response increases as the incentive level rises. Once the incentive level reaches [image: Greek letter gamma with subscript "max".], user response saturates, reaching the maximum response level. It is worth noting that the relationship between user response fluctuations and incentive levels is not linear. As the incentive level increases, the response fluctuations first increase and then decrease. [image: The mathematical expression shows the Greek letter gamma with a subscript reading "mid."] represents the critical point in the trend of response fluctuation changes.
[image: Graph illustrating the relationship between customer response rate and incentive level with a concave curve. Key points are ymin, ymax, and yopt, with areas marked as ΔPdirect and ΔPinteractive. The curve suggests diminishing returns with increased incentives.]FIGURE 1 | Demand response uncertainty curve.
3.2 Establishment of the uncertainty model for demand-side response
In this paper, the theory of cloud model is adopted to describe the uncertainty of demand-side response. Assuming that the single response quantity [image: The image shows the mathematical notation "P" with a superscript "s" and a subscript "dem".] of a user fluctuates around the expected single response value [image: Certainly! Please upload the image or provide a URL, and I will create the alt text for you.], the joint effect of n response results from the user forms a user response quantity [image: The formula contains the letter P with a subscript "dem" in a stylized font, possibly indicating a variable related to demand in a mathematical or scientific context.] with an expected response of [image: The mathematical expression shows a tilde over a capital P, followed by a subscript reading "dem".] (Sun et al., 2018). Both [image: The mathematical expression shows the term \( P_{dem}^{s} \), with the superscript 's' and subscript 'dem'.] and [image: The image shows the mathematical notation "P" with the subscript "dem" in italics.] follow a normal distribution, and under the condition of [image: Mathematical equation with \( P_{\text{dem}}^{\text{S}} = \sigma_{\text{S}} \).], the probability density function of [image: The image shows the mathematical symbol \( P_{\text{dem}} \), indicating a variable or concept labeled "P" with a subscript "dem."] is as follows in Eq. 8:
[image: The image shows a mathematical formula for \( f(P_{\text{dem}}) \), an integral from negative to positive infinity. It includes two exponential functions. The first is \(\exp\left(\frac{(P_{\text{dem}} - \bar{P}_{\text{dem}})^2}{2\sigma_s^2}\right)\) over \(\sqrt{2\pi\sigma_s}\). The second is \(\exp\left(\frac{(\sigma - E_{\text{dem}})^2}{2\sigma^2}\right)\) over \(\sqrt{2\pi\sigma^2}\), integrated with respect to \(d\sigma_s\). It is labeled as equation (8).]
It can be seen that the demand response quantity is a random variable with expected value [image: It appears that the provided input is not an image. Please upload an image file, and I will help create the alt text for it.] and variance [image: Mathematical expression showing \(E_{\text{dem}}^2 + \sigma^2\).]. When the demand-side compensation price is set at [image: Please upload the image or provide the URL to help me generate the alternate text.], the cloud distribution of the demand-side load response is illustrated in Figure 2. [image: It seems like the image is not visible in the text provided. Please upload the image or provide a URL so I can help create the alt text for it.] represents the expected response quantity of users when the compensation price is fixed. [image: It looks like you've provided a fragment of mathematical notation, specifically "E_{dem}". Please upload the image file or provide a link so I can help create the alternate text for the image.] characterizes the distribution range of the response quantity, reflecting the degree of uncertainty in the response. [image: An image featuring the Greek letter sigma (σ) in a stylized, italicized font, centered on a plain white background.] indicates the concentration of the user response distribution.
[image: Scatter plot showing certainty degree versus response quantity in kilowatts. Data points form a bell curve distribution, labeled with standard deviation \( \sigma \), E\(_{dem}\), and P\(_{dem}\) marked along the axes.]FIGURE 2 | Demand response load distribution.
3.3 Simulation of demand-side response load scenarios based on the response cloud model
Figure 3 shows the distribution diagram of user responses for 1,000 times under four cases where the compensation price c is 0.04 $/kW⋅h, 0.06 $/kW⋅h, 0.09 $/kW⋅h and 0.12 $/kW⋅h respectively.
[image: Four scatter plots labeled A, B, C, and D depict the relationship between Response Quantity in kilowatts per hour and Certainty Degree. Each plot shows red data points forming a parabolic shape with varying scales and peak concentrations. Values of \( c_{\text{dem}} \) differ: 0.045, 0.065, 0.095, and 0.125 kilowatts per hour, respectively.]FIGURE 3 | Demand response distribution cloud map with different compensation price.
4 OPF MODEL AND SOLUTION
4.1 Establishment of the OPF model
To perform OPF calculations, the initial step involves establishing an OPF model. This paper proposes an OPF model that comprehensively incorporates multiple uncertainties, primarily the fluctuations in wind turbine output and PV generation, along with the uncertainty associated with demand-side response. The specific composition of the OPF model includes: the objective function, the equality constraints for power balance, and a set of inequality constraints (Sun et al., 2018).
4.1.1 Objective function

[image: Mathematical equation for function \( f \): \( f = \min \left[ \sum_{i=1}^{m} (a_i + b_i P_{Gi} + c_i P_{Gi}^2) + C_{comp} \right] \) labeled equation (9).]
[image: Mathematical equation showing \( C_{\text{comp}} = C_{\text{dem}} \, P_{\text{dem}} \), labeled as equation (10).]
Where, the objective function f is composed of two parts in Eqs 9 and 10: the system’s generation expenses and the compensation expenses for user load shedding, excluding expenses such as unit outages. [image: Equation with variable \( a_i \).], [image: If you upload an image or provide a URL, I can help create the alt text for it.] and [image: It seems like there might be an issue with the image upload. Please try uploading the image again, and I will be happy to help create alt text for it.] represent the generation cost factors within the power grid. [image: The text "P subscript G i" is shown, where "P" is a capital letter followed by "G" and "i" as subscripts.] represents the active power outputted by the generator situated at node i. [image: Sure, please upload the image you'd like described.] denotes the quantity of generator nodes present within the power grid. [image: The image shows the mathematical expression "C subscript comp" written in italic font.] represent the compensation expenses for user load shedding.
4.1.2 Equality constraints
The equality constraints primarily consist of the nodal power flow balance constraints in Eq. 11:
[image: Two equations are shown: First equation is \( P_{Gi} + P_{wt} + P_{pv} - P_{load} - P_{node} = 0 \). Second equation is \( Q_{Gi} + Q_{wt} + Q_{pv} - Q_{load} - Q_{node} = 0 \).]
Where, [image: Mathematical expression "Q subscript G i" written in serif font.] represents the reactive power generated by the generator at node i. [image: Mathematical expression for \( P^{i}_{\text{node}} \), where \( P \) is raised to the power \( i \) and subscripted with "node".] and [image: Mathematical expression "Q subscript i" raised to the power of "node".] are the active and reactive power injection at node i, respectively. [image: Mathematical expression showing "P" with a superscript "i" followed by the word "lode".] and [image: \( Q_i^{\text{load}} \)] are the active power and reactive power flowing into node i, respectively.
4.1.3 Inequality constraints

[image: Set of inequality constraints in an optimization problem. Constraints include limits for power \( P_{Gi} \), reactive power \( Q_{Gi} \), voltage \( U_{i} \), nodal power \( P_{\text{nodei}} \), and nodal reactive power \( Q_{\text{nodei}} \), each with minimum and maximum values.]
In Eq. 12, where, [image: It seems there's no image uploaded. Please upload the image or provide a URL, and I can help create the alternate text for it.] denotes the voltage magnitude at node i. [image: Equation with variables: "p" with subscript "Gi" and superscript "max".], [image: Mathematical notation showing "P" subscript "Gi" with a "min" superscript.], [image: Mathematical expression showing "Q max" over the subscript "Gi".] and [image: Mathematical expression showing "Q min" over "G i" in a stylized font.] represent the upper and lower limits of the active power output and the upper and lower limits of the reactive power output of the generator at node i, respectively. [image: Mathematical notation displaying the symbol "U" with a superscript "max" and a subscript "i".] and [image: Lowercase letter "u" with subscript "i" and superscript "min".] represent the upper and lower limits of the voltage at node i, respectively. [image: Text reads "P max node i" with "max" as a superscript and "node i" as a subscript.], [image: Mathematical expression displaying "p" with subscript "node" and superscript "min".], [image: Text reading "Q max node i" in a serif font style.] and [image: Mathematical expression showing a lowercase "Q" with a subscript "node" and a superscript "min".] represent the upper and lower limits of active power and the lower and upper limits of reactive power carried by node i, respectively (Li et al., 2023).
4.2 Solution of OPF model
The nonlinearity of the OPF model considering multiple uncertainties is primarily concentrated in the equality constraints of the nodal power balance equations and the line active power flow equations. This paper introduces a linearization approach for OPF calculations, incorporating uncertainties in wind and solar energy generation, along with demand-side response considerations, through simplified approximations of the node power balance equations.
The power inflow at node i is expressed as follows:
[image: Equations representing power calculations at a node. The active power P at the node is the sum of terms involving conductance G, voltage magnitude U, and the cosine of the phase angle difference θ, minus the sum with susceptance B and sine of θ. The reactive power Q is the sum involving conductance G, sine of θ, minus the sum with susceptance B and cosine of θ. Equation number thirteen.]
Where, [image: Mathematical notation showing the letter "G" with subscript "i j".] and [image: Mathematical notation showing the symbol \( B_{ij} \), indicating a matrix element in row \( i \) and column \( j \).] are respectively the real part and the imaginary part of the element in the ith row and jth column of the node admittance matrix. [image: Mathematical notation showing the Greek letter theta with subscripts i and j.] is the voltage phase angle difference between node i and node j.
The node admittance matrix of a power system exhibits a unique structure, where the diagonal elements are the sums of the admittances of the non-diagonal elements as well as the shunt components connected to each node.
[image: Mathematical expression for \( Y_{ij} \) with two cases: \(-y_{ij}\) when \(i \neq j\), and \(y_{ii} + \sum_{k=1, k \neq i}^{n} y_{ik}\) when \(i = j\). Equation numbered as (14).]
Where, [image: Mathematical notation showing the symbol 'Y' with two subscripts, 'i' and 'j'.] is the node admittance matrix element of line i-j. [image: Mathematical notation showing \(y_{ij}\), representing a variable or element in a matrix or array, indexed by \(i\) and \(j\).] is the admittance of line i-j. [image: The image contains the mathematical expression "y subscript i i".] is the self-admittance of node i. Based on this, Eq. 13 is reformulated.
[image: Mathematical expression denoting active power at node \(i\), \(P_{\text{node} \, i}^{j}\), involving summations of terms with \(G_{ij}\), \(U_i\), \(U_j\), \(\cos \theta_{ij}\), \(B_{ij}\), \(\sin \theta_{ij}\) and constants \(g_{ij}\), \(b_{ij}\). Equation number (15) is shown.]
Where, [image: Mathematical notation "g subscript i j" in italic font.] and [image: Lowercase letter "b" with subscript "i j".] are the conductance and susceptance of line i-j, respectively. An expression can be derived from mathematical approximation formulas as follows in Eq. 16:
[image: Equation showing simplification steps for \( U_{i}(U_{i} - U_{j} \cos \theta_{ij}) \approx U_{i}(U_{i} - U_{j}) \). Simplification proceeds to \( (1 + \Delta U_{i})(\Delta U_{i} - \Delta U_{j}) \approx (\Delta U_{i} - \Delta U_{j}) \), and further to \( [1 + \Delta U_{i} - (1 + \Delta U_{j})] = U_{i} - U_{j} \). Equation number (16).]
Where, [image: Mathematical notation displaying the delta symbol followed by "U" and a subscript "i", representing a change in internal energy for the i-th component.] represents a small increment in the voltage magnitude at node i, with a value approximately equal to 0. In most power systems, the magnitude of node voltages is approximately 1.0 per unit (pu), while the absolute value of the phase angle difference between nodes at both ends of a line rarely exceeds 30°, with most of them falling within 10° or less. Based on this scenario, the expression can be approximated as follows:
[image: Mathematical expression with three equations. First, \( U_i \), \( U_j \) approximates 1. Second, \( U_i^2 \) approximates \( U_i \). Third, \(\sin \theta_{ij}\) approximates \(\theta_{ij}\) and \(\cos \theta_{ij}\) approximates 1. Numbered as equation (17).]
Thus, Eq. 15 can be further deformed, and finally the injected active power of linearized node i, as follows in Eq. 18:
[image: Mathematical expression displaying power at a node \( P_{\text{node}} \). It equals \( g_{ii}U_i + \sum_{j=1,j\neq i}^{n} g_{ij}(U_i - U_j) - \sum_{j=1,j\neq i}^{n} b_{ij}(\theta_i - \theta_j) \). This expands into two terms: \( U_i\left[\sum_{j=1}^{n} g_{ij} + \sum_{j=1,j\neq i}^{n} (-g_{ij}U_j)\right] \) and \( -\theta_i\left[\sum_{j=1}^{n} b_{ij} + \sum_{j=1,j\neq i}^{n} (-b_{ij}\theta_j)\right] \). These simplify to \( \sum_{j=1}^{n} G_{ij}U_j - \sum_{j=1}^{n} B_{ij}\theta_j \). Equation (18) is indicated.]
Where, [image: Mathematical expression showing an uppercase letter B with subscript i and j, and a prime symbol above B.] excluding the self-admittance of the node. Similarly, Eq. 13 can be simplified and transformed to obtain Eq. 19. The detailed transformation process is omitted here.
[image: Equation showing \( \alpha_{\text{node}}^d = - \sum_{j=1}^{n} B_j U_j - \sum_{j=1}^{n} G_{ij} \theta_j \), labeled as equation (19).]
Finally, based on the calculation formula and approximate simplification of line power flow, the active power flow of line i-j can be derived.
After linearizing the nodal power balance equations, the OPF described in Section 4.1 was established on the MATLAB platform using the YALMIP toolbox, and solved by the commercial solver GUROBI.
5 CASE STUDY
5.1 Basis data
To validate the efficacy of the model introduced in this paper, a test was conducted on the IEEE 30-bus system. Detailed parameters for each generating unit, node, and transmission line can be found in the software package provided by MATPOWER 4.1. Two wind farms and two PV plants were integrated into the test system. The wind farms adopted constant power factor control, with an assumed power factor of 1 for all wind farms. For ease of description, the AC OPF model that accounts for the uncertainties in wind and PV power output, coupled with demand-side response, is defined as Model A. The DC OPF model considering the same uncertainties is Model B. Model C is a linear OPF model that only considers the uncertainty of wind and PV power, while Model D focuses on the uncertainty of demand-side response. The proposed linear OPF model in this paper, which considers both wind and PV uncertainties as well as demand-side response uncertainties, is designated as Model E.
The K-means clustering method is used to reduce the generated wind power, PV and demand-side response load scenarios (Wen et al., 2023), and finally the compensated electricity price [image: It seems there was an error with displaying the image. Please try uploading the image file again. If you provide additional context or a description, I can assist further.] is 0.04 $/kW⋅h, 0.06 $/kW⋅h, 0.09 $/kW⋅h and 0.12 $/kW⋅h, respectively, as shown in Table 1 and Figure 4.
TABLE 1 | Basic parameter table.
[image: Table showing four scenarios with corresponding demand costs and probabilities. Scenario 1: cost $0.04 per kilowatt-hour, probability 0.216. Scenario 2: cost $0.06 per kilowatt-hour, probability 0.175. Scenario 3: cost $0.09 per kilowatt-hour, probability 0.308. Scenario 4: cost $0.12 per kilowatt-hour, probability 0.301.][image: Four graphs depict energy output scenarios. Graph A shows wind power output under four reduced scenarios. Graph B illustrates photovoltaic (PV) output for similar scenarios. Graph C presents a demand side response load scenario for wind power. Graph D is a probability diagram of each scenario, showing probabilities for four scenarios. Each graph features color-coded lines representing different scenarios.]FIGURE 4 | The four scenes reduced through K-means clustering.
To facilitate observation and analysis, the results obtained from solving Model A are used as the benchmark and denoted as [image: It seems there was an error in uploading the image. Please try uploading the image again or provide a direct URL if available.]. The specific expressions for the relative errors of the computational results from each model are detailed as follows in Eq. 20:
[image: Formula for relative density change: Delta rho equals the absolute value of rho minus rho subscript 0, divided by rho subscript 0, times one hundred percent. Equation number twenty.]
5.2 Case analysis
Demand-side response enables load shifting based on real-time electricity prices, avoiding usage during peak hours when electricity prices are high. This helps reduce electricity costs for users, improves economy, and serves to flatten the peak and fill the trough, thereby enhancing system stability.
By means of incorporating demand-side response and refining load curves, the resilience of the grid against uncertainties associated with renewable energy generation can be enhanced. The shifting effect of demand-side response on the load under different incentive levels is shown in Figure 5. It can be observed that as the compensation electricity price increases, the expected response quantity of users also increases, enabling a better optimization of the load curve.
[image: Line graph showing demand-side response load over 24 hours at different prices per kilowatt-hour. Five lines represent costs: $0, $0.04, $0.06, $0.09, and $0.12 per kilowatt-hour. Power fluctuates between 400 kW and 600 kW. Each line exhibits distinct peaks and troughs at different times, illustrating the variation in demand response to price changes.]FIGURE 5 | Schematic diagram of demand side response effect.
As can be seen from Figure 6, the expected voltage value of the system considering the uncertainty of wind and solar power output decreases significantly. This is because the integration of wind and PV power generation can meet the active power demand of nearby nodes, thereby altering the direction and magnitude of power flow in various branches. In addition, as the output of wind and PV power generation increases, their reactive power demand also increases correspondingly, resulting in a general reduction in the voltage levels at various nodes in the system.
[image: Line graph displaying voltage amplitude per unit against node number. Two lines represent voltage values: one considers wind and solar power output uncertainty (green triangles), and the other ignores it (blue circles). The green line fluctuates below the blue line across the nodes.]FIGURE 6 | Schematic diagram of expected node voltage values.
Table 2 and Figure 7 present the computational results of the five models under various scenarios in the test system.
TABLE 2 | The results of each model in four cases.
[image: Table showing optimal costs in dollars for five models across four scenarios. Model A costs: 62340.987, 60867.414, 61175.57, 63266.206. Model B costs: 60652.546, 59160.675, 60048.546, 61796.699. Model C costs: 67145.944, 65956.654, 66115.554, 67984.578. Model D costs: 59946.549, 59076.592, 59491.264, 60683.198. Model E costs: 61578.254, 60076.592, 61019.984, 62683.199.][image: Line graph showing optimal costs for five models (A, B, C, D, E) across four scenarios. Model C has the highest and Model D the lowest costs throughout. Each model's cost varies, generally showing a dip in scenario two.]FIGURE 7 | The optimal cost of each model in four scenarios.
As can be seen from Figure 7, a higher compensation electricity price is not necessarily better. When the compensation electricity price is between 0.09 $/kW⋅h and 0.12 $/kW⋅h, the system’s scheduling cost gradually increases. Considering both the economy and uncertainty of the system scheduling cost, there exists an optimal compensation electricity price range of 0.06 $/kW⋅h to 0.09 $/kW⋅h that can result in relatively low system scheduling costs. Therefore, the average of the system dispatch costs when the compensation prices are set at 0.06 $/kW⋅h and 0.09 $/kW⋅h is taken as the expected system scheduling cost for the operator.
From Table 3, it can be observed that all five models are able to obtain optimal solutions under different scenarios, indicating that each model is feasible and effective. In various scenarios, the relative errors of Model B are all greater than 2%, with the maximum relative error approaching 3%. In contrast, the relative errors of Model E are all around 1%, representing an improvement in computational accuracy of approximately 57% compared to Model B. Therefore, the linear OPF calculation method proposed in this paper exhibits stronger applicability and can be effectively applied to online safety calculation and analysis of power systems with renewable energy sources.
TABLE 3 | Calculation results of five models.
[image: Table displaying optimal cost in dollars and relative error in percentage for five models. Model A has a maximum cost of 63,266.206 and minimum of 60,867.414. Model B's maximum cost is 61,796.699 with a 2.804% maximum error. Model C shows a highest cost of 67,984.587. Model D's maximum cost is 60,683.198. Model E's maximum cost is 62,683.199 with a 1.299% maximum error. Expected values for costs and errors vary among models.]Since Model C only considers the uncertainty of wind and PV outputs, its optimal cost is significantly higher than the other models. Although Model D has the lowest optimal cost, it only takes into account the uncertainty of demand-side response, which may lead to voltage and power violations, causing greater losses to the system and lacking economic feasibility. Model E has a significantly lower optimal cost than Model C, effectively reducing system operating costs. Although it is slightly higher than Model D, Model E can fully guarantee the stability and security of the system’s functioning. Hence, the linear OPF model put forth in this paper, which considers the uncertainties of wind, PV and demand-side response, exhibits good economic performance while balancing system operational safety.
6 CONCLUSION
The OPF computation method put forth in this paper takes into account the uncertainties of wind and PV output, analyzes the uncertainty and volatility of the power system’s operating state, and avoids situations where some lines of the power system are overloaded or the voltage at some nodes exceeds the limit, thereby enhancing the safety of system operation. Meanwhile, through the introduction of demand-side response, the load curve has been optimized. This significantly boosts the system’s capacity to handle intermittency and unpredictability in power generation from renewable sources, further elevating the system’s safety level. Additionally, it decreases the required system configuration capacity, ultimately leading to increased cost-effectiveness in the power system. The proposed method also linearizes the power flow calculations that consider multiple uncertainties, significantly reducing the computational burden and improving the calculation accuracy. This approach is more aligned with the demands of real-time safety calculation and analysis in power systems, exhibiting strong applicability and holding significant importance for online calculation and analysis of actual power systems containing uncertainty factors.
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The integrated energy system considering comprehensive demand response can realize cascade utilization of energy and reduce carbon emissions. However, few studies explore the operation of Integrated energy system considering the coupling markets of electricity and carbon trading. Based on the characteristics and specific needs of the integrated energy system, this paper establishes the mathematical model of each energy supply equipment, and studies the optimal energy supply method of the system. First, demand response is categorized into price and substitution types based on load response characteristics. Second, the price demand response models are established utilizing the price elasticity matrix, and substitution demand response models are developed considering the mutual conversion of electric and heat energy on the user-side. Subsequently, a baseline method is employed to allocate carbon emission quotas to the system without charge with considering the actual carbon emissions from gas turbines and gas boilers. This results in the formulation of an improved carbon trading mechanism tailored for integrated energy system. Finally, a low-carbon optimization operational model for integrated energy system is constructed with the multi-objective functions. The results of numerical case studies are presented to validate the performance of the proposed control method.
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1 INTRODUCTION
Integrated energy system (IES) has garnered increased attention as a highly efficient method for the comprehensive utilization of various energy systems, encompassing electricity, heat, and natural gas (Zhou et al., 2019). Various IES communities worldwide have exemplified the practical implementation of combined heat and power (CHP) as well as power-heat-gas systems to optimize the utilization of energy resources more effectively (Fang et al., 2018).
The carbon trading mechanism optimizes the allocation of system resources and promotes energy conservation and emissions reduction (Li et al., 2018). In Saboori and Hemmati (2016), initial carbon emission rights are distributed free of charge based on the actual output of nuclear power units, heat power units, and wind power (WP) units. The calculation of carbon trading costs takes into account the actual carbon emissions of heat power units, and economic and low-carbon benefits are balanced. In Yang et al. (2019), a carbon trading mechanism is integrated into a virtual power plant. By employing the baseline methodology and considering the output of renewable energy units, initial carbon quotas are allocated freely as carbon sources. This approach enhances the overall absorption capacity for renewable energy. Demand Response (DR) is a method enabling flexible modulation of the demand side load of IES, thereby enhancing the effectiveness of communication between the supply and demand sides. Stemming from the actual demands on the user-side, DR can facilitate the flexible adjustments on the user-side, thus coordinating the economic operation of IES. In Ceseña and Mancarella (2019), a price elasticity matrix is introduced to describe DR behavior, and the effectiveness of DR in alleviating peak load pressure on the system is analyzed. In Clegg and Mancarella (2016), a DR model for electricity and gas loads is developed using the price elasticity matrix method. Additionally, a heat load DR model is formulated and validated, taking into account the fuzzy perception and time-delay characteristics of heat loads. This model aims to enhance energy utilization efficiency. In Li et al. (2017), the modeling approach for traditional DR to electric loads was applied to heat and cooling loads, achieving integrated scheduling and operation of multiple loads, including electric, heat, and cooling.
The existing literature either exclusively analyzes carbon trading mechanisms or solely considers demand response, which is detrimental to the coordination of system low-carbon characteristics and economic efficiency (Shang and Li, 2024). In the context of IES, the introduction of carbon trading mechanisms can transform carbon emission rights into economically valuable and dispatchable resources. The consideration of DR has the potential to exploit demand-side flexibility (Khani and Farag, 2018), thereby achieving a system-wide low-carbon economic operation. In Chen et al. (2018), a comparative analysis is conducted on the overall operational costs and curtailed wind and solar power generation for systems under different electric and heat load comfort levels. The study ensures user comfort while realizing the synergistic integration of multiple energy sources, reducing operational costs, and enhancing the integration of new energy sources. However, the DR for electric loads is only modeled for interruptible and shiftable loads, simplifying the modeling process. In Fang et al. (2018), the price transmission mechanisms of both the electricity market and the carbon trading market are incorporated to convert renewable energy generation, such as wind and solar, into emission reductions. The study proposes a comprehensive demand-side response solution for multi-energy systems, which includes the operation of combined cooling, heating, and power units, as well as energy storage control strategies. This approach achieves economically efficient operation of multi-energy systems, although a detailed model for the load side is not constructed (Li et al., 2018). It is worth noting that the aforementioned studies, while providing valuable insights, overlook the consideration of improved carbon trading mechanism associated with DR. Therefore, a comprehensive analysis incorporating environmental implications is warranted.
This paper proposes an optimized operation model for an improved carbon trading mechanism considering comprehensive DR in an IES. First, consider the combined influence of a ladder carbon trading mechanism, CHP units, and the operational scenarios of DR on IES. Second, an optimization scheduling scheme is formulated with the objective of minimizing the sum of energy procurement cost, carbon trading cost, and operation and maintenance cost. Finally, the scheme is subsequently solved using CPLEX, and multiple optimized scheduling scenarios are compared and analyzed to validate the economic and low-carbon characteristics of the model. This provides a reference for the low-carbon economic operation of IES. The contributions of this paper can be summarized as follows:
	The load is transferred from high electricity price periods to low electricity price periods, realizing mutual substitution of user-side electric energy and heat energy, and smoothing the load curve.
	A low-carbon optimization model of the IES that takes into account DR under the improved carbon trading mechanism is proposed based on the impact of the carbon trading mechanism to the IES.
	Based on the low-carbon optimization model of the comprehensive energy system considering DR under the improved carbon trading mechanism, the operating cost of the system is reduced.

2 IES FRAMEWORK
2.1 IES architecture
The IES achieves complementary synergy between electric and heat energy, enhancing energy utilization efficiency while ensuring a sustained and reliable power supply for diverse user demands in a cascaded energy utilization manner (Saboori and Hemmati, 2018). This paper establishes an IES architecture incorporating DR, as illustrated in Figure 1. Electric energy and gas energy are supplied by the upper-level electric grid, photovoltaic energy (PV), and the gas network. The acquired gas from the upper-level gas network is utilized for the supply of CHP and gas boiler (GB), with surplus electric energy available for sale to the higher-level electric grid. Energy coupling devices include CHP, heat pump (HP), and GB, enabling bidirectional flow of electric and heat energy (Li et al., 2020). The CHP comprises a gas turbine (GT), waste heat boiler (WHB), and a low-temperature waste heat power (WHP) generation unit based on the Organic Rankine Cycle (ORC) (Cheng et al., 2019). The operational mode is characterized by heat-electric decoupling, providing adaptability to various system operating conditions. The HP (mainly ground source heat pumps) and GB assimilate renewable energy and bear a portion of the heat load. The introduction of DR serves to mitigate load curve fluctuations, facilitating interactive coupling of electric and heat energy, peak shaving, and cost reduction in operation.
[image: Diagram illustrating energy flow in a grid-connected system. It shows electrical, gas, and heat energy flows using blue, green, and red arrows, respectively. Components include gas turbine (GT), waste heat boiler (WHB), photovoltaic (PV), heat pump (HP), and a battery. Heat storage interfaces with the heat load. Electric load is indicated on the right. Superior power and gas grids are at the top and bottom.]FIGURE 1 | IES structure.
2.2 B. DR Model
User-side participation in grid interaction involves changing their energy usage patterns based on current electricity prices and relevant incentive mechanisms, thereby achieving peak shaving and valley filling in the load curve and improving the operational efficiency of the IES (Shang et al., 2022). Based on the response characteristics of the load, it can be divided into basic load, curtailable load (CL), shiftable load (SL), and replaceable load (RL) (Wang et al., 2020). The basic load belongs to uncontrollable load and does not participate in DR.
2.2.1 Analysis and modeling of CL characteristics
The primary function of CL operates during periods of high energy demand, aiming to influence user energy consumption patterns through price factors. That is, users voluntarily decide whether to reduce their energy consumption at that specific moment by comparing electricity prices before and after DR. The DR characteristics of CL are represented by Eq. 1.
[image: Matrix notation shown as \( A_{CL} = \left[ \begin{array}{cccc} a_{1,1} & a_{1,2} & \cdots & a_{1,k} \\ a_{2,1} & e_{2,2} & \cdots & a_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k,1} & a_{k,2} & \cdots & a_{n,k} \end{array} \right] \). Equation labeled as (1).]
CL determines its load curtailment based on the comparison of electricity price variations before and after DR. In this paper, k is set to 24. The elements of the elasticity matrix [image: Mathematical notation representing a matrix element A subscript C L with indices i and j.], where the element in the ith row and jth column represents the elasticity coefficient of the load at time i to the electricity price at time j, is represented by Eq. 2.
[image: Formula for elasticity of demand, \( a_{i,j} = \frac{\Delta Q_i / Q_i^0}{\Delta p_j / p_j^0} \), labeled as equation two.]
where [image: Certainly! Please upload the image or provide its URL, and I will create alt text for it.] represents the variation in load at time i subsequent to DR, [image: The text shows a capital letter Q subscripted with i and superscripted with zero.] represents the initial load at time i, [image: Mathematical expression showing Delta p sub j, often representing a change in a variable or property indexed by j.] represents the change in electricity price at time j following DR, and [image: It seems like there is an error or a mix-up in your request. Please upload an image or provide a URL for me to generate alternate text. If you have a specific image in mind, you can also describe it.] represents the initial electricity price at time j. The CL variation at time i following DR, represented as [image: Mathematical expression showing the symbol delta followed by uppercase Q, subscript C, L, comma, and lowercase i.], is represented by Eq. 3.
[image: The equation shown is: ΔQ_CL,j = Q_CL^0 * [∑(from i=1 to k) ACL(i,j) * (p_j - p_j^0) / p_j^0].]
where [image: Mathematical expression showing a variable Q with a subscript C, subscript L, and subscript i. The Q has a superscript zero.] represents the initial CL at time i, [image: Equation showing a subscript notation: \( A_{CL}(i, j) \).] represents the matrix of price demand elasticity for CL, characterized as a diagonal matrix, and [image: Please upload the image or provide a URL, and I will create the alt text for you.] represents the electricity price at time j.
2.2.2 Analysis and modeling of SL characteristics
The concept of SL refers to users responding to electricity prices based on their individual demands, enabling flexible adjustments to workload during working hours (Liotta et al., 2016). Utilizing peak-valley time-of-use electricity prices as signals, users can be guided to shift their peak-load demand to off-peak periods. Employing a price demand elasticity matrix to describe DR characteristics, the change in transferable load at time i after DR, represented as [image: Delta Q subscript S, L, i.], is represented by Eq. 4.
[image: Mathematical equation showing change in quantity: ΔQS_{l,j} equals Q^0_{S,l}{\left[\sum_{i=1}^{k}A_{S,l}(i,j)\frac{p_j-p^0_i}{p^0_i}\right]}. This is labeled as equation (4).]
where [image: Mathematical notation showing "Q" with a subscript "S," "L," and another subscript "i", with a superscript "0".] represents the initial SL quantity at time i, and [image: The expression \( A_{SL}(i, j) \) represents a function or variable, likely related to a specific context or mathematical model.] represents the matrix of price demand elasticity for SL.
2.2.3 Analysis and modeling of RL characteristics
The concept of RL refers to heat loads directly supplied with heat or electric energy. During periods of low electricity prices, electric energy can be consumed, while during periods of high electricity prices, heat energy can be directly utilized to fulfill its own demands, thereby achieving mutual substitution of electric and heat energy (Correa-Posada and Sanchez-Martin, 2015). This paper focuses on replaceable heat loads. In the operational process of IES, the energy consumption characteristics of users are subject to uncertainties arising from user preferences and energy costs. To accurately assess the replaceability of heat loads, this paper comprehensively considers user demand preferences and energy consumption costs, and establishes a model for RL. The RL model characteristics are represented by Eq. 5.
[image: Mathematical expression within braces: The upper equation is ΔQ^(ε)_(RL,i) = -θ_(ε,h) ΔQ^(h)_(RL,i). The lower equation is θ_(ε,h) = (α_ε β_ε) / (α_h β_h). Labeled as equation (5).]
where [image: Delta Q subscript R, L, i.] and [image: Delta Q subscript h R subscript Li.] represent the substitutable electric load and the corresponding replaced heat load, [image: Mathematical expression showing the Greek letter theta with the subscript "e, h".] represents the electric-heat substitution coefficient, [image: It seems like you've provided a text snippet that represents a mathematical symbol rather than an image. If you have an image to describe, please upload it or provide a URL.] and [image: Please upload the image or provide a URL, and I'll help you with the alt text.] represent the unit calorific values of electric energy and heat energy, [image: Greek letter beta with subscript epsilon.] and [image: Greek letter beta (β) followed by subscript "h".] represent the energy utilization efficiencies of electric energy and heat energy. In (4), the negative sign represents that the reduction in substitutable electric load corresponds to an increase in the replaced heat load. For this category of loads, it is imperative to consider constraints on the maximum RL, are represented by Eq. 6.
[image: Mathematical expression of constraints for reactive power. The change in reactive power, denoted as Delta Q, is bounded by minimum and maximum values for both low and high voltage levels: Delta Q sub RL,e and Delta Q sub RL,h indicate the constraints, where each must be greater than or equal to its minimum and less than or equal to its maximum values, shown as Delta Q min and Delta Q max. Equation number six.]
where [image: Delta Q, R subscript L, superscript e, subscript min.] and [image: ΔQ subscript RL comma e superscript max] represent the minimum and maximum replaceable electric load, [image: ΔQ subscript RL, h superscript min.] and [image: ΔQ subscript RL,h superscript max.] represent the minimum and maximum replaceable heat load.
2.3 Carbon trading model
The ladder carbon trading mechanism model is divided into three parts: the initial carbon emission quota model, the actual carbon emission model, and the ladder carbon trading cost calculation model.
2.3.1 Carbon emission quota model
In this IES, carbon emission sources include GT, GB, upper-level power purchases, and DR on the demand side. The initial carbon emission quota model is represented by Eq. 7.
[image: Mathematical equations showing energy balance with terms for \( Q_{IES} \), \( Q_{GT} \), \( Q_{GB} \), \( Q_{buy} \), and \( Q_{gas} \). Each term is expressed as a sum over time \( t \) from \( 1 \) to \( T \), with associated efficiency coefficients \( \varepsilon \). The equation is labeled as number seven.]
where [image: Sorry, I cannot view the image you are mentioning. Please upload the image or provide a URL to it, and I can help you create the alt text.], [image: It looks like there was an error or unsupported format in your request. Please try uploading the image again or provide a correct URL or file for the image you want me to describe with alternative text.], [image: Please upload the image or provide a URL for me to create the alt text. If there is additional context or a caption, include that as well.], [image: Equation showing "Q subscript buy".] and [image: Equation representing the variable \( Q_{\text{gas}} \), which could denote a quantity related to gas, possibly in a scientific or mathematical context.] represent the gratuitous carbon emission quotas for the comprehensive energy system, gas turbine, gas boiler, electricity purchased from the upper level, and gas load on the demand side, [image: Please upload the image you would like me to describe, and I will provide the alternate text for it.] and [image: Mathematical symbol sigma subscript h, often used to represent a specific type of symmetry operation or a component of stress in physics and engineering.] represent the gratuitous carbon emission quotas obtained per unit of electricity and heat generated, [image: Mathematical expression showing epsilon subscript g, possibly indicating strain or a specific variable in a scientific context.] and [image: Please upload an image or provide a URL so I can generate the alt text for you.] represent the carbon emission quotas per unit of heat for GT or GB and per unit of electricity purchased from the upper grid, [image: Sorry, I can't provide the alt text for this image since it wasn't uploaded. Please try uploading the image again.] and [image: Mathematical expression depicting \( P_{GT, h} \).] represent the supply of electric power and heat power from the GT during time period t, [image: The expression shows a mathematical notation with subscript variables: \( P_{GB,h} \).] represents the supply of heat power from the GB during time period t, [image: \displaystyle P_{buy}] represents the power purchased from the upper level by the system during time period t, [image: The image contains the mathematical expression P subscript gas, representing the pressure of a gas.] represents the consumption of gas load on the demand side during time period t, T represents the scheduling period.
2.3.2 Actual carbon emission model
The estimation of actual carbon emissions [image: Sorry, I cannot provide a description of the image based on the provided text. Please upload the image or provide a URL for me to assist you.] in the system requires a comprehensive consideration of externally purchased electricity, CHP, the operation status of GB equipment, and the gas load on the demand side. The actual carbon emission model is represented by Eq. 8 (Zhou et al., 2018).
[image: Equation detailing components of \( Q_{IES} \): \( Q_{IES} = Q_{GT}^* + Q_{GB}^* + Q_{buy}^* + Q_{gas}^* \). Each \( Q \) term is defined with a summation from \( t=1 \) to \( T \) for respective terms, such as \( Q_{GT}^* = \alpha_g \sum (P_{GT,\pi}(t) + P_{GT,h}(t)) \), with similar structures for other components.]
where [image: The text shows the mathematical symbol "Q" with a subscript "IES" and an asterisk above it.] represents the actual total carbon emissions of IES, [image: Mathematical expression showing "Q" with an asterisk superscript and subscript "GT".], [image: Mathematical notation showing the variable \(Q\) with a superscript star, and a subscript \(GB\).], [image: Mathematical expression showing Q subscript B, U, Y with a star symbol above, indicating a possible optimal or special value.] and [image: Formula for \( Q^*_{\text{gas}} \), indicating a thermodynamic or chemical quantity related to gas with a star symbol indicating a specific condition or state.] represent the actual carbon emissions of gas turbines, gas boilers, electricity purchased from upper grid systems, and demand side gas load, [image: Please upload an image or provide a URL to the image.] represents the carbon emission coefficient for electricity purchased from higher-level systems, [image: It seems you meant to upload an image. Please try uploading the image again or provide a URL. If you have a caption for additional context, you can include it as well.] represents the carbon emission coefficient during the operation of CHP and GB.
2.3.3 Ladder carbon trading cost calculation model
The carbon emission trading volume that IES can participate in is the carbon emission trading amount [image: Please upload the image so I can help create the alternate text for it.], the difference between the actual carbon emissions and the carbon emission quota is represented by Eq. 9.
[image: Equation showing thermal energy balance: Q equals Q absorbed minus Q emitted, equation (9).]
The ladder carbon trading mechanism initially establishes the length of carbon emission intervals, wherein the greater the carbon emissions generated by IES, the higher the corresponding carbon emission quota price within the respective interval. Therefore, the cost of ladder carbon trading, denoted as [image: The image shows the chemical formula for carbon dioxide, written as capital C, lowercase o, and the subscript number two.], is represented by Eq. 10.
[image: An equation showing piecewise function for \( C_{\text{CO}_2} \). It consists of four parts: \(\mu Q\) for \(Q \leq m\); \(\mu (1 + \delta)(Q - m) + \mu m\) for \(m \leq Q \leq 2m\); \(\mu (1 + 2\delta)(Q - 2m) + \mu (2 + \delta)m\) for \(2m \leq Q \leq 3m\); \(\mu (1 + 3\delta)(Q - 3m) + \mu (3 + 2\delta)m\) for \(3m \leq Q \leq 4m\); and \(\mu (1 + 4\delta)(Q - 4m) + \mu (4 + 6\delta)m\) for \(4m \leq Q\).]
where [image: It seems like there might be an issue with the image upload. Please upload the image file again, and I’ll be glad to help with the alt text.] represents the carbon trading base price, [image: It looks like there is a technical issue with the image upload. Please try again by ensuring the image is correctly uploaded or linked. Once it's uploaded, I can help with the alt text.] represents the price escalation rate, and [image: Please upload the image or provide a link to it, and I'll create the alternate text for you.] represents the length of the carbon emission interval.
3 IES OPTIMIZATION OPERATION MODEL
3.1 Objective function
This paper adopts the total operating cost C of IES as the objective function, which comprises energy purchase cost [image: The image contains the mathematical notation "C subscript buy" in a serif font.], carbon trading cost [image: Please upload the image or provide a URL so I can help generate the alt text.], and equipment maintenance cost [image: Mathematical expression showing "C" with a subscript "eq".], is represented by Eq. 11.
[image: Mathematical equation showing \( C_{\text{min}} = (C_{\text{buy}} + C_{\text{CO2}} + C_{\text{eq}}) \) followed by equation number (11).]
1) Energy purchase cost is represented by Eq. 12.
The system can conduct electricity transactions with the upper-level power grid (Shao et al., 2017). When the power generation cannot meet its own needs, it purchases power from the upper-level power grid. Correspondingly, when the power generation is surplus, the excess power is sold to the upper-level power grid. In addition, the system needs to purchase natural gas to maintain the operation of CHP and GB. The energy purchase cost is obtained by (12).
[image: Equation showing total cost of buying, expressed as the sum from t equals 1 to T of alpha sub t times P sub buy of t minus beta sub t times P sub sell of t plus gamma sub t times Q sub buy of t, labeled as equation 12.]
where T [image: \( P_{\text{buy}}^{e}(t) \) is a mathematical expression representing the expected buying price as a function of time \( t \).], [image: Mathematical expression showing "P" with superscript "e" and subscript "sell" of "t" in parentheses.] and [image: Mathematical notation showing \( Q^{g}_{buy}(t) \), representing a function or quantity related to buying with respect to time \( t \).] represent the purchased electricity quantity, sold electricity quantity, and purchased gas quantity during time period t, [image: Please upload the image or provide a URL for the image you want described, and I will create the alt text for you.], [image: Greek letter beta, \(\beta_t\), with a subscript \(t\), typically used in mathematical or scientific contexts for variables or coefficients.] and [image: Mathematical notation displaying the letter "y" with the subscript "t".] represent the purchase electricity price, selling electricity price, and gas price during time period t.
2) Carbon trading cost is represented by Eq. 10.
3) Equipment maintenance cost is represented by Eq. 13.
[image: Equation depicting \(C_{eq} = \sum_{t=1}^{T} \sum_{i=1}^{N} \omega_i P_{it}\), labeled as equation 13.]
where N represents the total number of maintenance equipment, [image: Please upload the image or provide a URL to it, and I can help create the alt text for you.] represents the operation and maintenance coefficient of equipment i, [image: The image shows the mathematical notation \( P_{i,t} \), where "P" is the main variable, and "i" and "t" are subscripts, possibly representing specific indices or time points.] represents the output of equipment i.
3.2 Constraints
The IES optimization operation constraints that consider DR under the carbon trading mechanism include: energy balance constraints, CHP constraints, and user electricity usage satisfaction constraints.
1) PV output constraint is represented by Eq. 14.
Considering the influence of ambient temperature, solar radiation intensity, and the limitation of energy conversion efficiency, the system is often unable to absorb all the PV, and the actual PV output is less than the predicted output.
[image: Mathematical expression: 0 is less than or equal to P subscript P V, which is less than or equal to P subscript P V superscript max, denoted as equation 14.]
where [image: The expression \( P_{PV,t} \) typically represents the power output of a photovoltaic system at time \( t \).] and [image: Mathematical notation showing \( P^{\text{max}}_{\text{PV},t} \).] represent the actual PV output and predicted output at time t.
2) GB constraints are represented by Eq. 15.
[image: Math equation showing two expressions. The first is \(P_{GB,t}^h = \rho_{GB} P_{GB,t}^{p8}\). The second is an inequality: \(P_{GB,min}^{p8} \leq P_{GB,t}^{p8} \leq P_{GB,max}^{p8}\). Labeled (15).]
where [image: It seems like there was an error uploading the image. Please try uploading the image again, and I will help you generate the appropriate alt text.] represents the power conversion rate of GB to heat energy, [image: Mathematical expression showing \( P_{GB,t}^{g} \) with subscript \( GB,t \) and superscript \( g \).] represents the power of natural gas input to GB at time t, [image: Mathematical expression with variables and subscripts: \( P^{g}_{\text{GB, max}} \).] and [image: Mathematical expression showing the minimum power output of a gas boiler, represented as \( P^{g}_{GB,\text{min}} \).] represent the upper and lower limits of the input power to GB.
3) CHP constraints are represented by Eq. 16.
The electricity generation in CHP comprises two components: GT electricity generation and ORC electricity generation. The heat generation in CHP corresponds to the heat generation in the WHB.
[image: Mathematical equations involving variables for power generation. The equations relate to CHP and ORC systems, representing various power and efficiency terms with conditions for the variables \(\alpha_t\) and \(\beta_t\), constrained between zero and one, summing to one. Equation labeled as (16).]
where [image: Mathematical notation displaying "P subscript ORC, t superscript e".] represents the electric power generated by the low-temperature waste heat recovery device, [image: Greek letter beta with a subscript t, commonly used in mathematical or scientific contexts to represent a variable or coefficient associated with time.] represents the proportion of waste heat generated by the GT at time t allocated to the WHB for heat production, [image: Mathematical expression showing the Greek letter tau subscripted with the letters W, H, and B.] represents the heat conversion efficiency of the WHB, [image: Mathematical notation showing \(\tau^{\epsilon}_{GT}\).] and [image: A mathematical expression showing "t" with a superscript "h" above a subscript "GT" in stylized font.] represent the gas-to-electricity and gas-to-heat efficiency of the GT, Vg represents the calorific value of natural gas, [image: It seems like you've mentioned a mathematical expression instead of providing an image. If you have an image you'd like described, please upload it or provide a link.] represents the proportion of waste heat generated by the GT at time t allocated to the waste heat power generation device, [image: Greek letter delta followed by "ORC" in capital letters.] represents the electric generation efficiency of the waste heat power generation device.
4) Electric power balance constraint is represented by Eq. 17.
[image: Equation showing power balance: \( P_{\text{buy}}^{\text{l}} + P_{\text{PV,l}} + P_{\text{CHP,l}} + P_{\text{ES,l}}^{\text{out}} = P_{\text{L,l}}^{\text{0}} + P_{\text{sell}}^{\text{0}} + P_{\text{HP,l}} + P_{\text{ES,l}}^{\text{in}} + \Delta Q_{\text{l,l}}^{\text{\alpha}} \), labeled as equation (17).]
where [image: Mathematical expression showing "p" subscript "e, out" and "ES, t."] and [image: Mathematical expression showing "pe subscript ES, y, t superscript in".] represent the discharging and charging power of the battery at time t, [image: Mathematical expression showing "P" with superscript "e zero" and subscript "L subscript t".] represents the electric load up to time t before DR, [image: Mathematical expression: \( P^e_{\text{HP}, t} \).] represents the power consumption of the HP at time t.
5) Heat power balance constraint is represented by Eq. 18.
[image: Equation describing the balance of power: the sum of \( P_{\text{GB}}^{\text{th}} \), \( P_{\text{CHEM}}^{\text{th}} \), \( P_{\text{HPV}}^{\text{th}} \), and \( P_{\text{HS}}^{\text{out,th}} \) equals \( P_{\text{HS}}^{\text{in,th}} \), \( P_{\text{IL}}^{\text{th}} \), and \( \Delta Q_{\text{RL}}^{\text{th}} \), marked as equation (18).]
where [image: \( P^{h}_{\text{CHP},t} \)] represents the heat power generation of the CHP system at time t, [image: The image shows the mathematical notation \( P_{\text{HP}, t}^{\text{h}} \).] represents the heat power generation of the HP system at time t, [image: Mathematical expression showing the variable \( P^{h, \text{dis}}_{\text{HS}, t} \), with superscripts and subscripts indicating specific conditions or parameters.] and [image: Mathematical expression showing \( P^{h, ch}_{HS, t} \).] represent the heat release and heat power stored in the heat storage tank at time t, [image: Mathematical notation showing "P" raised to the power of zero with a subscript L and t.] represents the heat load at time t prior to DR.
6) Gas power balance constraint is represented by Eq. 19.
[image: Equation showing Q_dry^{e_s} equals Q_dry^{CEMP_z} plus Q_dry^{GIBT}, labeled with the number nineteen in parentheses.]
where [image: Mathematical expression showing capital Q subscript GB, comma t, with a superscript of capital B.] represents the gas consumption of GB at time t.
7) User electricity usage satisfaction constraints are represented by Eq. 20.
Consider the constraints on user satisfaction with electricity usage (Good and Mancarella, 2019):
[image: Mathematical expression for I, where I_min is less than or equal to I, which is less than or equal to 1. I equals 1 minus the sum from t equals 1 to T of absolute values of P_{L,t}^{P0} plus ΔQ_{C,L,t} plus ΔQ_{S,L,t} plus ΔQ_{R,L,t}^{RL,c}, all over the sum from t equals 1 to T of P_{L,t}^{P0}. Equation number 20.]
where [image: Please upload the image or provide a URL so I can help create the alt text for it.] and [image: Please provide the image by uploading it, and I'll be happy to create the alt text for you.] represent the user’s satisfaction with electricity usage and the minimum value of satisfaction.
3.3 Solution method
This paper addresses a mixed-integer linear programming problem. Firstly, an analysis is conducted on the demand response of both price and substitution components, resulting in the derivation of the load curve post-demand response. Subsequently, a carbon trading mechanism is introduced, with the carbon trading cost under this mechanism incorporated as a constituent of the objective function. Finally, considering constraints such as energy balance, CHP, and user satisfaction with electricity consumption, the problem is formulated and solved utilizing the CPLEX solver invoked on the MATLAB platform.
4 CASE ANALYSIS
Taking an industrial park in winter in Liaoning Province, China as the research object, 24 h is taken as an operation cycle, and the unit operation time is 1 h. The installed equipment in the system includes CHP, HP, and GB composed of GT, WHB and ORC-based low-temperature waste heat power generation (Fang et al., 2018). The parameters are shown in Table 1, the time-of-use electricity price are shown in Table 2.
TABLE 1 | Parameters of devices.
[image: Table displaying devices with their parameters and values. Devices include GT, GB, WHB, HP, WHP, heat storage, and battery. Parameters include installation capacity, efficiency, resection coefficient, and power capacity. Values vary across devices, detailing specific figures like installation capacities ranging from four hundred to four thousand kilowatts or efficiencies from zero point three to four point four. Heat storage and battery have maximum capacities and release efficiencies.]TABLE 2 | Time-of-use price.
[image: Table showing electricity prices based on periods: Peak periods from 09:00-12:00 and 19:00-22:00 cost 0.15 dollars per kilowatt-hour. Normal periods from 08:00-09:00, 12:00-19:00, and 22:00-24:00 cost 0.095 dollars per kilowatt-hour. Valley period from 00:00-08:00 costs 0.049 dollars per kilowatt-hour.]To verify the rationality of the proposed model, this article conducts a comparative analysis of the following four cases.
Case 1: Only consider the carbon trading mechanism.
Case 2: Consider DR under the carbon trading mechanism.
Case 3: Only consider DR.
Case 4: Carbon trading mechanism is not considered and DR is not considered.
The optimization results of electric power output for each unit in case 1 are depicted in Figure 2, while the optimization results for heat power output are illustrated in Figure 3. Figure 2 indicates that during the periods (0:00-9:00) and (19:00-24:00), CHP contributes a substantial amount of electricity. In the interval (9:00-16:00), PV contributes significantly, and during (12:00-15:00), the electricity sales volume of the IES increases due to a higher output from CHP and PV. Consequently, the electric energy supplied by WHP is relatively low during the aforementioned time periods, with an increase in WHP output during (19:00-23:00) when CHP and PV outputs are reduced. Figure 3 demonstrates that during the periods (0:00-11:00) and (19:00-24:00), CHP provides a substantial amount of heat power. In the interval (9:00-17:00), owing to the higher output of CHP and PV, GB dominates in providing heat power, serving as a means to absorb excess CHP and PV.
[image: Bar chart illustrating power distribution over time, labeled with different energy sources. Colors represent purchased electricity, WHP, CHP production, optimized electric load, ES charging, HP consumption, electricity sales, and PV output. Power is measured in kilowatts, and time is shown on the x-axis from 0 to 24 hours.]FIGURE 2 | Electric power output in Case 1.
[image: Stacked bar chart showing hourly power distribution across different sources over a day. The legend identifies HP, CBP, GB heat generations, and HS charging and discharging. Red line indicates optimized heat load. Power peaks between hours 10 to 18.]FIGURE 3 | Heat power output in Case 1.
Taking into account CHP, PV output, economic costs, and carbon emissions, the output and costs of each unit are comprehensively considered in Case 2. The optimization results of electric and heat power outputs for each unit during the scheduling period are depicted in Figure 4 and Figure 5. During low-price periods (00:00–08:00), the system relies on CHP, WHP output, and purchased electricity from the higher-level grid to meet the demands of HP, HS charging, and electric loads, maintaining power balance during this period. The heat load is supplied by HP, GB, and HS, achieving heat power balance. ES charges during low-price periods and discharges during high-price periods, while HS operates inversely, enhancing system flexibility. Prioritizing CHP output helps reduce overall operational costs. In Cases where CHP output alone cannot meet the system’s electric load demands and electricity prices are low, the cost of purchasing electricity from the higher-level grid is lower than the cost of purchasing gas from the higher-level gas grid. In cases where HP cannot fully meet the heat load demands, and WHP is inactive during this period, GB is employed for heating during flat electricity price periods (08:00-09:00, 12:00-19:00, 22:00-24:00). During these periods, the system relies on CHP, PV, and WHP output to meet HP and electric load demands, with the heat load supplied by HP and WHP. The electricity prices are relatively higher during these periods, with the cost of purchasing electricity from the higher-level grid exceeding the cost of purchasing gas from the higher-level gas grid. In high-price periods (09:00-12:00, 19:00-22:00), the system relies on CHP, WHP output, and HS discharge to meet HP and electric load demands, with HP and GB supplying the heat load and HS providing heat storage. During these periods, the electricity prices are relatively higher, and purchasing gas from the higher-level gas grid is cheaper than purchasing electricity from the higher-level grid.
[image: A bar chart illustrating power distribution over time in a twenty-four-hour period. Different colored bars represent sources and uses: purchased electricity, WISP production, CHP production, ES charging, HP consumption, self-electricity, PV output, and optimized load. The y-axis shows power in kilowatts, and the x-axis shows time in hours.]FIGURE 4 | Electric power output in Case 2.
[image: Bar graph displaying power distribution over time with colored bars representing different heat generation sources: CHP (red), GB (green), HS discharge (blue), HS charging (pink), HP generation (yellow), and optimized heat load (gray line). Time is on the x-axis, power (kilowatts) on the y-axis.]FIGURE 5 | Heat power output in Case 2.
Figure 6 indicates that during the periods of (0:00-8:00) and (19:00-24:00), the IES electric load is primarily supplied by GT, with a lower output from WHP. During the period of (9:00-17:00), the system’s electric load is mainly supported by PV and WP, with no contribution from CHP. During the period of (12:00-15:00), due to the higher output of PV generation, there is surplus system electricity generation, leading to an increase in electricity sales. During the period of (19:00-23:00), when PV generation is inactive, CHP electricity output increases to meet the system’s power demand. Figure 7 illustrates that during the periods of (0:00-10:00) and (18:00-24:00), the GB and HP provide a higher heat power, with lower heat power output from CHP. During the period of (11:00-17:00), due to the higher PV output, there is an abundance of system electricity generation during this period, resulting in a predominant role of HP in producing heat power to absorb excessive PV power.
[image: Stacked bar chart showing power usage and generation over a 24-hour period. Color-coded segments represent purchased electricity, electricity produced by WHP and CHP, optimized electric load, ES charging, HP consumption, electricity sold, and PV output. The chart indicates varying levels of power sources and consumption, with significant contributions from WHP and CHP, particularly around midday.]FIGURE 6 | Electric power output in Case 3.
[image: Bar chart depicting power distribution over time with color-coded segments: blue for CHP heat generation, green for GB heat generation, red for HS discharge, magenta for HS charging, yellow for HP heat generation, and red line with dots for optimized heat load. Time is on the x-axis (0 to 24 hours) and power (kilowatts) on the y-axis, ranging from 0 to 3500.]FIGURE 7 | Heat power output in Case 3.
In Case 4, without considering the carbon trading mechanism and DR, depicts the electric and heat outputs of various devices as illustrated in Figure 8 and Figure 9. Figure 8 indicates that, during the period (0:00-5:00), the electric load of the IES is predominantly supplied by CHP, with limited output from ES, necessitating the procurement of electricity from the higher-level grid. In the period (8:00-18:00), the system’s electric load is primarily supported by PV and CHP, with minimal output from CHP. During the period (19:00-24:00), when PV generation is inactive, CHP electric output increases significantly to meet the system’s power demand, leading to a notable increase in purchased electricity. Figure 9 illustrates that, during the period (2:00-11:00), GB and HS contribute a substantial amount of heat power, while CHP heat power output is relatively low. In the period (12:00-17:00), the system’s heat power is mainly borne by GB and HS, with HS contributing the majority of the heat production.
[image: Stacked bar chart showing power distribution over time for various sources including ES discharge, purchased electricity, WHP and CHP electricity, PV output, HP power, self electricity, and optimized electric load. Each source is color-coded, with time on the x-axis and power in kilowatts on the y-axis.]FIGURE 8 | Electric power output in Case 4.
[image: Stacked bar chart showing power generation and heat distribution over 24 hours. Colors represent different sources: CHP, HS discharge, HP, GB generation, HS charging, and optimized heat load. Peaks occur around mid-day and late afternoon, with a dip in the early morning.]FIGURE 9 | Heat power output in Case 4.
The costs and actual carbon emissions of each scenario are shown in Table 3. Compared with Case 4, the carbon emission cost of Case 1 has decreased by 77.89%, with an actual reduction in carbon emissions of 4877.08 kg. This outcome is attributed to the consideration of a carbon emission mechanism in Case 1, which endows the system with initial carbon emission quotas, thereby offsetting a portion of the carbon emission costs. In contrast, Case 4 necessitates the consideration of the total cost associated with the actual carbon emissions. In comparison to Case 4, the energy procurement cost in Case 3 has decreased by 10.25%. This reduction is attributed to the incorporation of DR, which reduces peak electricity demand while increasing off-peak electricity demand. Consequently, the system can opt for a more economical energy procurement method. Compared with Cases 1 and 2, Case three exhibits higher total operational costs, lower energy procurement costs, and higher carbon trading costs and actual carbon emissions. This observation underscores the promotive role of carbon trading mechanisms in energy conservation and emission reduction. Case 2 demonstrates lower total operational costs, energy procurement costs, carbon trading costs, operational maintenance costs, and actual carbon emissions than Case 1. This outcome is attributed to the consideration of DR under the carbon trading mechanism, which not only shifts a portion of the load from high electricity price periods to low electricity price periods but also reduces energy consumption during certain load conditions. Furthermore, the mechanism facilitates the mutual substitution of electric and heat energy on the consumer side, smoothing the load curve. Consequently, the system, by comparing the costs of purchasing electricity and gas at different time periods and the outputs of GT and GB, selects an economically and environmentally favorable operational mode. This approach effectively coordinates the economic efficiency and low-carbon nature of the system’s operation.
TABLE 3 | Daily operation cost in 4 cases.
[image: A table displaying costs and carbon emissions for four cases. Columns include total operating costs, energy purchase costs, carbon trading costs, maintenance costs, and actual carbon emissions in kilograms. Values for each category are presented for cases one through four.]5 CONCLUSION
This study establishes an optimized operational model considering DR under the carbon trading mechanism for integrated energy systems. The impact of carbon trading prices on system operation is investigated with set four cases. The conclusions are as follows.
	1) Under the carbon trading mechanism, considering DR not only shifts a portion of the load from high electricity price periods to low electricity price periods and reduces load energy consumption but also achieves the mutual substitution of electric and heat energy on the user side, smoothing the load curve.
	2) Considering that the ladder carbon trading mechanism system with an initial carbon emission allowance, the operating cost of the system is reduced.
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The enhancement of economic sustainability and the reduction of greenhouse gas (GHG) emissions are becoming more relevant in power system planning. Thus, renewable energy sources (RESs) have been widely used as clean energy for their lower generation costs and environmentally friendly characteristics. However, the strong random uncertainties from both the demand and generation sides make planning an economic, reliable, and ecological power system more complicated. Thus, this paper considers a variety of resources and technologies and presents a coordinated planning model including energy storage systems (ESSs) and grid network expansion, considering the trustworthiness of demand-side response (DR). First, the size of a single ESS was considered as its size has a close effect on maintenance costs and ultimately affects the total operating cost of the system. Second, it evaluates the influence of the trustworthiness of DR. Third, multiple resources and technologies were included in this high-penetration renewable energy integrated power system, such as ESSs, networks, DR technology, and GHG reduction technology. Finally, this model optimizes the decision variables such as the single size and location of ESSs and the operation parameters such as thermal generation costs, loss load costs, renewable energy curtailment costs, and GHG emission costs. Since the problem scale is very large not only due to the presence of various devices but also both binary and continuous variables considered simultaneously, we reformulate this model by decomposition. Then, we transform it into a master problem (MP) and a dual sub-problem (SP). Finally, the proposed method is applied to a modified IEEE 24-bus test system. The results show computational effectiveness and provide a helpful method in planning low-carbon electricity power systems.
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1 INTRODUCTION
The fuels used to power conventional power plants cause unsustainable and environmentally unfriendly impacts, especially during peak load-carrying hours and critical weather conditions. Therefore, the global common goal is to mitigate dependence on fossil fuels and reduce greenhouse gas (GHG) emissions. Renewable energy sources (RESs) (wind and photovoltaic power are the leading alternatives) have become the main focus of many recent energy policies (Paris agreement, 2015; Summary for policymakers, 2021). According to the Energy Roadmap 2050 (European Commission and Energy Roadmap, 2050, 2011), the European Commission is moving toward a low GHG emission economic entity. Under this blueprint, the de-carbonization target will be possible with an even higher RES penetration level (Zappa et al., 2019). However, higher RES penetration faces greater volatility, resulting in the power grids having more fragile, less flexible, and low reliable characteristics. Then, under the circumstance of multiple resources and technologies, how to get a more flexible, reliable, environmentally friendly, and cost-efficient power system has gained increasing attention (Al-Shetwi, 2022). This paper presents a coordinated planning model for a high-penetration renewable energy integrated power system including energy storage systems (ESSs) and network expansion, considering the trustworthiness of DR).
To cope with fundamental challenges, a vast range of literature focuses on DR and its effects on the optimal performance of power grids. Qi et al. (2021) proposed a smart energy hub in which an analytical framework containing several DR programs is adopted. Results show that DR has a positive impact on long-term resource planning. Mansouri et al. (2022) showed a two-stage stochastic model based on DR and integrated DR programs. Many uncertainties are included in this model, such as electrical, heating, cooling loads, and the wind turbine’s output power. According to Aghajani et al. (2017), with the consideration of suitable DR, the uncertainties caused by wind and photovoltaic power can be handled appropriately. Thus, optimal operation optimization to decrease costs and minimize GHG emissions has been presented. In a word, appropriate DR in a smart grid helps resist volatility. However, the trustworthiness of DR has a deep internal influence on power system planning, which is seldom included and needs to be further studied in the future.
Previous studies (Liu et al., 2018; Zhang et al., 2020; Jafari et al., 2022; Liu et al., 2022) focused on optimally utilizing novel resources or technologies to respond to any uncertain variation (it usually comes from RESs, demand, and equipment failures). It is well known that installing ESSs may enhance power system flexibility by providing higher ramp rates or ramp ranges for power grids. Therefore, fast-response ESSs are considered promising resources. Li Z. et al. (2021) applied a bilayer model with heterogeneous ESSs to alleviate the adverse effects of diverse uncertainties and obtain the economic multi-energy building microgrid operation. Ramos-Real et al. (2018) followed another approach to obtain a promising alternative from an economic and environmental perspective through a high deployment of RESs and ESSs in the Canary Islands. Shi et al. (2022) proposed a hierarchical optimization planning model, with its objective function including the cost of ESSs and renewable energy. To minimize the system’s total expected cost, voltage deviation, and power loss mitigation, ALAhmad (2023) proposed a novel probabilistic optimization model by optimally placing and sizing ESSs to alleviate the negative impact of the high penetration of RESs and enhance grid stability.
Based on the above literature, the flexibility and reliability that ESSs brought to the system were expounded. However, how to effectively incorporate these ESSs into the power grids still needs to be investigated. Li et al. (2023) proposed a bi-level optimization model to minimize net load fluctuation, voltage deviation, and total costs by determining the optimal location, power rating, capacity, and hourly charging/discharging profile in a multiple-ESS-containing system. Jiang et al. (2020) simultaneously considered the location, capacity, and power rating of ESSs. The optimal deployment of ESSs provided benefits such as power curtailment reduction, power loss mitigation, and arbitrage profit maximization. Li J. et al. (2021) proposed a bi-level optimization problem that was decomposed by the decomposition–coordination algorithm into two sub-systems. The model determines the optimal location, power rating, and capacity of ESSs to maximize the system’s net profit and minimize the system’s total operation cost. Li Z. et al. (2020) presented a risk-averse method for heterogeneous ESS deployment in a residential multi-energy microgrid where a multistage adaptive stochastic optimization approach is utilized to deal with various uncertainties. However, these existing research studies have not fully addressed the single size, location, and degradation of ESSs simultaneously, all of which have a true existence in practical applications. Moreover, because of the geographical and labor management issues, the size of a single ESS will closely affect its maintenance costs and ultimately affect the total operating cost of the system. Thus, the optimal single size, location, and operation of ESSs to enhance system flexibility and reduce GHG emissions in power grids is an important ongoing research area that is worthy of further study.
Although there have been many researchers working on investigating the influence of multiple resources and technologies in photovoltaic or wind-integrated power systems, the need for comprehensive research considering not only ESSs and DR but also further CO2 reduction still remains. Many carbon financing policies (e.g., carbon emission tax and building committed carbon emission operation regions) have been proven to be exceedingly effective methods to encourage participators toward emission reduction. For instance, carbon emission tax is utilized in Olsen et al. (2018) for achieving emission targets in the electricity market. Jiang et al. (2024) proposed the committed carbon emission operation region to characterize the low-carbon feasible space. Results show that it can achieve integrated energy system decarbonization. Hu et al. (2024) presented a bi-level carbon-oriented planning method containing shared ESSs for integrated energy systems. Simulation results show that it is more environmentally friendly and economical compared to the model without shared ESSs. Cheng et al. (2019) proposed a bi-level multi-energy system planning model, in which carbon emission flow was included. These decentralized approaches are employed to calculate the emission amount but fail to involve active DR simultaneously.
According to all the above, countries all around the world are pursuing a low-carbon power system to achieve sustainable development. Achieving this requires the coordination of a variety of electricity technologies. First, the vast emergence of RESs provides alternative generations, while traditional coal-fired generations are being phased out. However, high RES penetration causes huge challenges in the stability of voltage, frequency, and the balance between supply and demand. Second, various forms of ESSs, including electrochemical ESSs, are regarded as important sources that cut the peaks and fill the valleys to provide flexibility effectively. However, their size, location, and inherent degradation should be considered in the planning stage. Third, DR, as an active response on the demand side, helps resist system volatility. However, few researchers consider the trustworthiness of DR and reveal their deep internal impact on the system. Moreover, these latest technologies are usually expensive and eco-friendly in the early stages, which is contrary to the goal of minimizing total costs. However, the control of carbon emissions is the basis of sustainable development. Thus, this contradictory factor needs to be considered in the planning stage. In a word, this paper aims to provide a more practical method for power system planning under the background of a high proportion of renewable energy by comprehensively utilizing various types of latest technologies and taking carbon reduction into account. The comparison with related studies is presented in Table 1.
TABLE 1 | Comparison between the proposed model of this work and previous studies.
[image: Table comparing various studies on energy systems, evaluating ESS capacity, ESS degradation, carbon emissions, and demand response (DR) considerations. Entries present a mix of checks and crosses indicating the presence or absence of each characteristic. Each study has a designated optimization target such as energy hubs, microgrids, and power systems.]In response, we aim to bridge the gaps mentioned above and propose a novel model that optimizes local network reinforcement along with investment decisions on ESSs. The size, location, and degradation of ESSs and the trustworthiness of DR technology are included because they represent some promising options to provide flexibility in power grids. In addition, the presented expansion approach takes conventional generation costs, investment costs (including ESSs and transmission lines), loss load costs, energy curtailment costs, and GHG emission costs into account. However, the problem scale is very large not only due to various devices but also both binary and continuous variables considered simultaneously. To deal with this, we reformulate this model by decomposition and transform it into an MP and a dual SP. Then, it can be solved efficiently without falling into a poor, sub-optimal solution. Using this new framework, power systems can take a comprehensive methodology to better handle the inherent resources to get a more flexible, reliable, environmentally friendly, and cost-efficient power system. The proposed solution technique is tested in a modified 24-bus system. The results show the superiority of this method in terms of solution optimality and computational efficiency. To sum up, this model can help all agents who participate in power grids make their cost-effective plans in a carbon-constrained environment.
The main contributions of this paper are as follows:
	1. To evaluate what the influences of multiple resources and technologies that act on power system planning are, we proposed a coordinated planning model that considers not only the effects of ESSs but also the trustworthiness of DR and CO2 emissions.
	2. Moreover, the size, location, and degradation of ESSs are included in this model and reveal how the deep internal influence of different trustworthiness of DR acts on power grids.
	3. Our model can comprehensively investigate the goals between environmental benefits and cost-effectiveness. Thus, it can provide guidance for policymakers on how to formulate policy interventions for participants to achieve emission targets.
	4. This framework was decomposed by the dual theory to reduce the computational burden without falling into a poor, sub-optimal solution.

The remainder of this paper is organized as follows: the detailed mathematical model is formulated in Section 2. Its compact vector form and its dual decomposition are presented in Section 3. Section 4 introduces the overall solution structure. The performance of the presented method is evaluated on a modified IEEE 24-bus test system, which is shown in Section 5. Finally, the main conclusions are summarized in Section 6.
2 PROBLEM FORMULATION
This section introduces the research framework and modeling process of this article. As shown in Figure 1, to consider the environmental, economic, and reliability factors simultaneously during the planning phase, we conducted a planning study on a power system with a high penetration rate of renewable energy. First, coal-fired power plants emit GHGs, which may be advantageous for maximizing economic benefits but detrimental to the current sustainable development purport. This contradictory factor needs to be considered in the planning stage. Second, ESSs can perform peak shaving and valley filling and provide flexibility to the system. However, their size, location, and inherent degradation should be considered in the planning stage. Finally, DR, as an active response on the demand side, helps resist system volatility. However, the trustworthiness of DR is influenced by various factors and can ultimately affect the planning results of this system. Thus, this article presents a more practical method for power system planning from ecological, economic, and reliability perspectives with a high penetration rate of renewable energy.
[image: Diagram of an energy management system showing the planning process integrating three factors: ecological (CO2 emissions), economical (various costs), and reliable (trustworthiness of demand response). Energy sources include coal, wind turbines (WT), and photovoltaic (PV) systems feeding into a network. The network supplies energy to a load while energy storage systems (ESSs) are integral to the system.]FIGURE 1 | Framework of this article
2.1 Objective function
The objective function shown in Equation 1 (which contains four parts) seeks to make a tradeoff between minimizing the costs and CO2 emissions. The first part refers to the total investment costs of new transmission lines and ESSs, which is indicated in Equation 2; the second part refers to the total operation costs, including conventional generation costs ([image: Stylized text displaying "PG" with superscript "ope".]), ESSs maintenance costs ([image: The image shows the symbol "PS^\text{ope}", where "PS" and "pe" are in italic, and "ope" is a superscript.]), DR costs ([image: Stylized text displaying the word "Drope" with the letters "R" and "pe" in smaller, superscript font.]), and renewable energy curtailment costs ([image: Text rendering of "QWV" with superscript letters "ope" positioned higher and smaller.]). The details of these compact forms are shown in Equations 4–7. It should be noted that the maintenance costs of per-unit ESSs decrease as their node-installed capacity increases. The third part ([image: It seems you've included a part of an equation or text, not an image. Please upload the image file or provide a link to it so I can create alternate text for you.]), as indicated in Equation 8, refers to the total costs of loss of demands. The last part ([image: I'm unable to provide alt text for the image since it wasn't uploaded or linked. Please upload the image or provide a URL, and include a caption if you have one.]) that is shown in Equation 9 is GHG emission costs for every time point in every representative day. If environmental considerations are not taken into account, the objective function only contains the first three costs. Note that GHG emission cost is closely related to traditional generations, which is shown in Equation 10 in detail.
[image: An equation is shown: "minimize C superscript inv plus C superscript pre plus C superscript rel plus C superscript mm," followed by a reference number "(1)".]
[image: Mathematical formula for calculating C subscript inv: C subscript inv equals the fraction with numerator r times open parenthesis 1 plus r close parenthesis to the power y and denominator open parenthesis 1 plus r close parenthesis to the power y minus 1. This is multiplied by the sum of C subscript L i times x subscript L i plus the sum of C subscript S s times x subscript S s. Equation labeled as equation 2.]
[image: Mathematical equation involving summations. The equation is C raised to the power of r equals the sum over k of rho sub k multiplied by the sum over p and h of a bracketed expression containing P sub G raised to the power of ph, plus P sub S raised to the power of r, plus D sub R raised to the power of ph, plus Q W raised to the power of p raised to the power of r, ending with an equation number three in parentheses.]
[image: Mathematical expression showing that \( \text{PG}^{yy,k} \) is equal to the sum over \( g \) of \( a_{g,yy,h} \cdot \text{PG}_{g,yy,h,k} \), labeled as equation (4).]
[image: Mathematical equation representing a sum over \(s\), where \(PS^{\infty} = \sum (\beta_{y,h} - \frac{E_{y,h} - E_{o,y,h} + h}{E_{y,h}}) \cdot E_{y,h}\). The equation is labeled as (5).]
[image: Equation showing \(DR^{pv} = -\sum_{l} \gamma_{y,b} \cdot DR_{y,k,b,l}\), labeled as equation six.]
[image: Mathematical equation showing quantum weighted value equal to the sum of CW weighted by QW plus the sum of CV weighted by QV, labeled as equation 7.]
[image: Equation showing \( C^{\text{redi}} = VOLL \cdot \sum_{i,j,b,k} \rho_k \cdot LP_{i,j,k,b} \) with the equation number \((8)\) on the right.]
[image: Mathematical equation showing C superscript mn equals the sum over k of rho sub k and the sum over g, y, and h of EM sub g, y, h multiplied by CG superscript mn sub g, y, h multiplied by e sub g, y, h, k.]
[image: Mathematical equation featuring variables \( e_{gy,h,k} \), \( PG_{gy,h,k} \), \( h \), \( q \), \( y \), and \( k \), labeled as equation (10).]
2.2 Constraints
Various expansion and operation constraints are presented as follows:
The constraints of Equations 11–15 are introduced for conventional generators’ operation limits. Considering the upward and downward reserve, constraints of Equations 11, 12 limit the active power production of each conventional generator between its minimum and maximum capacities. The ramp-up and ramp-down limits of traditional generator units are shown in Equations 13, 14. In Equation 15, the reactive power production was limited.
[image: The image shows a mathematical equation: \( PG_{g,y,h,k} + RU_{g,y,h,k} \leq PG^{\text{max}}_g, \, \forall g,y,h,k \), denoted as equation (11).]
[image: Mathematical equation stating that \( RD_{g,y,h,k} \leq PG^{\text{min}}_g \) for all \( g, y, h, \) and \( k \). Numbered as equation (12).]
[image: Sorry, I cannot process the content of the image as you described it. Please provide a description or a link to the image for assistance.]
[image: Equation depicting power constraints: \( PG_{y,h,k} - PG_{y,h-1,k} + RD_{y,h,k} \leq RDW_{y,h} \) for all variables \( y, h, k \), denoted as equation 14.]
[image: Mathematical expression representing inequalities: \( QG^{\text{min}}_g \leq QG_{g,y,h,k} \leq QG^{\text{max}}_g \) for all variables \( g, y, h, k \), followed by equation number fifteen.]
The upward and downward spinning reserves are modeled to resist the inevitable uncertainties due to renewable energy and demand, which are bounded from Equations 16–19. [image: It seems like you might be referring to a mathematical expression or equation rather than an image. If you have an image you would like to describe, please upload the image or provide a URL.] and [image: It looks like there might have been a mistake. Could you please upload the image or provide a URL? If you have additional context or a caption, feel free to include that as well.] are the hourly representative factors of the wind and photovoltaic farms' output. It affects the final output of these generations. Load forecasting is almost patterned, and its prediction is relatively easy. However, the trustworthiness of DR is complicated because it is affected by several factors. Moreover, as RESs are highly penetrated, their outputs are affected by the weather, causing larger forecast errors. Thus, we assume the lower bound for the upward and downward spinning reserves at every time resolution as 3% for the load and 5% for renewable energy (see in Equations 16, 17). The hourly total upper bounds of the upward and downward reserves are presented in Equations 18, 19.
[image: Mathematical expression with a constraint. The equation involves summations and multiple variables. It begins with "3% · (1 + LG subscript k)" and involves terms like "L subscript f h", "PD subscript i k superscript dk", "W subscript f h", and "PW subscript w k". It concludes with a comparison to "RU subscript g, y, z, k" for all y and k, labeled as equation (16).]
[image: Mathematical expression depicting a constraint or equation. It involves a series of summations and products, including variables such as \(3\%\), \(LG_{k}\), \(L_{fh}\), \(PD^{PK}_{fh,k}\), \(W_{fh}\), \(PW_{w,k}\), \(V_{fh}\), \(PV_{v,k}\), with a comparison to another summation including \(RD_{g,y,k,h}\). Number (17) is noted underneath.]
[image: Sum over g and p of RU for g, y, h, k is less than or equal to RUW for g, y, for all g, y, h, k. Equation eighteen.]
[image: Summation expression showing that the sum of \( RD_{g,y,h,k} \) over \( g \) and \( h \) is less than or equal to \( RDW_{y} \) for all \( g, y, h, k \). Equation number 19.]
Constraints related to renewable energy are presented in Equations 20–22. Constraints of Equations 20, 21 limit the power production of RESs (including wind farms and photovoltaic generations) from zero to their maximum capacity. The constraint of Equation 22 ensures the penetration of renewable energy; in other words, it guarantees the percentage of the total load supplied by renewable energy. The parameter [image: It seems there is no image provided. Please upload the image or provide a URL for me to generate the alt text.] represents the expected contributions of RESs in supplying the total demand.
[image: Mathematical expression stating the power output \( PW_{u,y,h,k} \) is bounded such that \( 0 \leq PW_{u,y,h,k} \leq PW^{max}_{u,y,h,k} \) for all variables \( u, y, h, k \), and equation number 20.]
[image: The image shows a mathematical inequality: \(0 \leq PV_{v,y,h,k} \leq PV^{\text{max}}_{v,y}\), ∀v, y, h, k, followed by equation number (21).]
[image: I can't see the image, but based on the text you've provided, it appears to be a mathematical expression. The expression shows an inequality: \( x_{u, w, y, h, k-1} \leq x_{u, w, y, h, k} \) for all values of \( u, y, h, k \). It is labeled as equation 22.]
[image: Mathematical expression showing an inequality: \( x_{v,y-1,h,k} \leq x_{v,y,h,k} \) for all variables \( v, y, h, k \), labeled as equation (23).]
[image: Mathematical equation with terms involving summations and variables. Key components include: \( x \cdot (1 + LG)^k \), \( \sum_h L_f \cdot PD_{L_f,y,h,k} \), inequality sign, \( \sum_h W_f h \cdot \sum_{wk} (PW_{w,k} - QW_{w,k}) \), plus \( \sum_h V_f h \cdot \sum_{v,k} (PV_{v,k} - QV_{v,k}) \), and condition \( \forall k \). Equation number \( (24) \).]
Due to wind and photovoltaic power intermittency and transmission line congestion, renewable energy spillage occurs. Wind and photovoltaic power curtailment constraints were bounded by Equations 25, 26. Based on Equation 27, the load shedding in each bus is specified. [image: Kappa symbol, a lowercase Greek letter resembling a slanted script "k" with a curved tail.] is the maximum allowable load shedding at each stage.
[image: Mathematical equation showing an inequality: zero is less than or equal to QW_{u,h,k}, which is less than or equal to W_f multiplied by PW_{u,h,t} for all values of u, h, and k. The equation is labeled as equation twenty-five.]
[image: The image shows a mathematical inequality: QV sub v comma h comma k is greater than or equal to zero and less than or equal to V sub h prime, PV sub v comma h comma k. It is labeled as equation twenty-six.]
[image: Mathematical expression: \(0 \leq L P_{i h k} \leq K \cdot (1 + L G_k)^t \cdot L_{f_i} \cdot P D D^K_{i h k}, \forall i, h, k\). Numbered as equation (27).]
Constraints related to DR are proposed from Equations 28–30. The first equation denotes the actual proportion of the available load participating in DR. The latter shows the relationship between the actual participating DR and its trustworthiness. Equation 30 guarantees that total energy consumption remains constant. In other words, the effect of DR is cutting the peak and filling the valley.
[image: Mathematical expression showing constraints: the product of CF(H) and PD multiplied by index variables y, h, and k is less than or equal to DR with the same indices, which is in turn less than or equal to the same product. This is for all y, h, and k. Referenced as equation (28).]
[image: Equation showing the calculation for CF(H) as CF(H, E) multiplied by the maximum of zero and CF(E), labeled as equation 29.]
[image: Summation notation showing the sum over index \( h \) of \( DR_{i, y, h, k} \) equal to zero, for all \( i, y, h, k \), labeled as equation (30).]
Constraints related to ESSs are presented in Equations 31–40. Constraints of Equation 31 and Equation 32 guarantee the charging and discharging rates, respectively. The constraint of Eq. 33 limits the storage energy of each ESS. The stored energy value at the beginning is set to be the same as that at the end, which is shown in the former part of Equation 34. Moreover, the second half of this equation is to prevent the model from choosing the maximum state of charge (SOC) at the initial time and fully discharging at the end to increase revenue. The constraint of Equation 35 is used to avoid simultaneous charging and discharging of constructed ESSs. The minimum and maximum allowable changes are limited by Equation 36. The constraint of Equation 37 states that the maximum allowable change in SOC is a fraction of [image: Italicized mathematical expression: \( E_{s, y, hk} \).]. Taking batteries for example, the theoretical degradation function of ESSs is proposed in Equations 38, 39. Constraints of Equation 40 guarantee that the installed ESSs at each stage will remain at the next stages.
[image: Mathematical expression showing the inequality: 0 is less than or equal to PS_subscript s,γ,h,k is less than or equal to BS_subscript s,γ,h,k, multiplied by PS_superscript max_subscript s, for all variables s, γ, h, k, denoted by equation number (31).]
[image: The mathematical expression shows an inequality: zero is less than or equal to \(PS_{s,y,h,k}^{ch}\) which is less than or equal to \(BS_{s,y,h,k}^{ch} \times PS_s^{\text{max}}\), for all values of \(s\), \(y\), \(h\), \(k\). Equation number thirty-two.]
[image: Expression showing a constraint in a mathematical model: \( x_{s} \cdot E^{\text{min}}_{s,y,h,k} \leq \text{SOC}_{s,y,h-1,k} + \sum_{h'=1}^{t}\left(\eta_{\text{ch}} \cdot \text{PS}^{\text{ch}}_{s,y,h,k} - \frac{1}{\eta_{\text{dch}}} \cdot \text{PS}^{\text{dch}}_{s,y,h,k}\right) \leq x_{s} \cdot E^{\text{max}}_{s,y,h,k} \, \forall s, y, h, k \). Labeled as equation 33.]
[image: The mathematical equation shows SOC subscript s, y, h, k equals SOC subscript y, h, and k multiplied by 0.14 times E subscript s, y, h, k for all s, y, h, k, equation number 34.]
[image: The equation shows \( BS_{s,y,h,k}^{ch} + BS_{s,y,h,k}^{dis} \leq xs_s, \forall s, y, h, k \), labeled as equation (35).]
[image: An equation displaying the inequality \(-\Delta SOC_{xy,h,k} \leq SOC_{xy,h,k} - SOC_{xy,h-1,k} \leq \Delta SOC_{xy,h,k}\) for all \(x, y, h, k\), labeled as equation 36.]
[image: Equation showing "Delta SOC_{s,y,h,k} = pi * E_{s,y,h,b} ∀s, y, h, k."]
[image: Equation showing \( E_{x,y,h,k} = SoH_{x,y,h,k} \cdot E_{x,y,h,k}^{Poster} \) for all \( x, y, h, k \), marked as equation (38).]
[image: The equation represents the state of health (\(SoH\)) as a function of various parameters. It is given as \(SoH_{s_y,k} = 1 - \alpha_{s_k} e^{\frac{-t}{\tau_1}} - (1 - \alpha_{s_k}) e^{\frac{-t}{\tau_2}}\).]
[image: Mathematical equation showing \( x_{s,y-1,h,k} \leq x_{s,y,h,k} \) for all \( s, y, h, k \), labeled as equation (40).]
The hourly power flow limits of the transmission lines are modeled in Equations 41–44. In Equations 41, 42, the active and reactive power flow from node [image: Please upload an image so I can provide the alt text for it.] to node [image: Please upload the image or provide a URL for me to generate the alt text.] is guaranteed. Constraints of Equation 43 enforce line nominal capacity at an hour [image: If you have an image to describe, please upload it for me to generate the alt text.] for every scenario [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] in one representative year [image: Please upload the image or provide a URL to it so I can help create the alt text.]. The constraint of Equation 44 confirms that the constructed line at a certain stage will remain until the end of the planning horizon.
[image: Mathematical expression for power loss: \( PL_{x',y',h,k} = V_{x',y',h,k}^2 \cdot G - V_{x',y',h,k} \cdot V_{y',h,k} \cdot (G \cos(\theta_{x',h,k} - \theta_{y',h,k}) + B \sin(\theta_{x',h,k} - \theta_{y',h,k})) \), involving variables \( x', y', h, k \).]
[image: The formula represents the equation for \( Q_{L_{ij,y,h,k}} \) involving variables related to voltages \( V \) and angles \( \theta \). It contains terms with trigonometric functions and constants \( B \) and \( G \), indicating components of an electrical or mathematical model. The equation number is (42).]
[image: Equation showing that the sum of the squares of \(P_{L_{i,j,y,h,k}}\) and \(Q_{L_{i,j,y,h,k}}\) is less than or equal to the square of \(S_{L_{i,j,y}}^{\text{max}}\) for all \(i, j, y, h, k\), labeled as equation 43.]
[image: The image contains a mathematical inequality: \( x_{l,y-1,h,k} \leq x_{l,y,h,k} \) for all \( l, y, h, k \) with the equation number (44) on the right.]
The voltage magnitude deviation must be kept between the operation limits shown in the constraint of Equation 45. The constraint of Equation 46 bounds the variation ranges of the phase angle.
[image: Mathematical expression showing the inequality \( V_i^{\text{min}} \leq V_{i,y,h,k} \leq V_i^{\text{max}} \), applicable for all \( i, y, h, k \), numbered as equation (45).]
[image: Symbolic mathematical expression showing a range. Theta subscript y, h, k is bounded by theta subscript i min and theta subscript i max, applicable for all i, y, h, k, followed by equation number forty-six.]
In Equations 47, 48, the hourly nodal active and reactive power production–consumption balance including conventional generation units, renewable energy sources, ESS devices, DR, renewable energy curtailment, and load shedding is formulated.
[image: Mathematical equation involving multiple summations and terms with variables and indices. The equation includes terms like AG, PG, AW, PW, AV, PV, AS, PS, PL, AD, PD, DR, and LP, represented with various indices: g, w, v, s, i, l, y, h, k. The equation appears complex, indicating relationships between the different variables and concludes with constraint notation "∀i, y, h, k" and is labeled as equation (47).]
[image: Mathematical equation showing summations and differences: the sum over g of AG sub i,g times QG sub g,y,h,k plus the sum over i in Qf of QL sub i,y,h,k minus the sum over j in Qf of QL sub j,y,h,k equals the sum over l of AD sub l times QD sub l,y,h,k minus the sum over i of LQ sub i,y,h,k,3, for all i, y, h, k. Equation number forty-eight.]
2.3 Uncertainties
The load and renewable energy (including wind and photovoltaic power) are subject to uncertainties shown in Equation 49 (i.e., [image: Mathematical notation displaying the variable \( PD \) with subscripts \( i, y, h, k \).]; [image: The expression "PW" with subscripts "w, y, h, k" in italic font.]; [image: Mathematical expression displaying "PV" with subscripts "v, y, h, k".]). Polyhedral uncertainty sets shown in Equations 50–52 are used in this paper to deal with this inherent uncertainty (Dehghan et al., 2017; Li et al., 2018; Dehghan et al., 2020; Velloso et al., 2020; Hamzehkolaei et al., 2021; Zheng et al., 2021).
[image: Mathematical expression denoting a set Ω' consisting of three elements: Ω_D, Ω_N, and Ω_Γ, followed by equation number forty-nine in parentheses.]
Here,
[image: Mathematical expression displaying inequality constraints for a parameter denoted as \(\Omega_D\), involving terms with \(\text{PD}_{\nu, y, k}\) and \(\Gamma_D \text{PD}_{\nu, y, k}\).]
[image: Equation depicting constraints on \( Q_{w} \). It shows \( \tilde{P}W_{w,y,k} \) minus a function of \( \Gamma_{w} \) and \( \hat{P}W_{w,y,k} \) as less than or equal to \( PW_{w,y,k} \). This \( PW_{w,y,k} \) is further constrained as less than or equal to \( \tilde{P}W_{w,y,k} \) plus a similar function.]
[image: Mathematical expression representing a set \( \Omega_t \) defined by inequalities involving \( \overline{P V}_{v,y,j,k} \), \( \Gamma_{v} \), and \( \hat{P V}_{v,y,j,k} \). The expression shows two inequalities with a non-negative relationship, ending with equation number (52).]
Here, [image: The image contains the Greek letter Gamma (Γ) followed by the uppercase Latin letter D.] controls the conservativeness of DR, [image: Mathematical notation displaying the variable \( \tilde{P}D_{i, y, h, k} \) with a tilde over the P.] is the nominal value of DR, [image: Mathematical expression representing the variable \( \hat{P}D_{i,y,h,k} \).] is the variability of DR, and [image: Mathematical expression reading "PD sub i, y, h, k" in italic font.] is the probable value for DR. Accordingly, symbols [image: Text showing "PW" with subscripts "w, y, h, k" in italics.], [image: Mathematical notation showing the variable "P" with a circumflex accent indicating an estimate, alongside subscript variables "w, y, h, k."], and [image: Mathematical expression with a symbol "P" and "W" featuring a tilde over it, followed by subscripts "w, y, h, k".] stand for wind generation and [image: Mathematical expression showing "PV" with subscripts "v, y, h, k".], [image: Mathematical notation of P V with a hat symbol above it, and subscripts v, y, h, k.], and [image: Mathematical notation showing a variable represented by the characters P, V with a tilde above, and subscript v, y, h, k.] relate to photovoltaic power.
2.4 Linearization
The model presented above is a MINLP optimization problem because of non-linear constraints of Equations 39, 41–43. It takes more time to solve this model without guaranteeing its global optimality. According to Xu et al. (2018), ESS’ aging consists of calendar aging and cycle aging. Assuming that the average temperature [image: I'm sorry, it seems there might have been an error. I don’t have an image to describe. Please upload the image or provide a URL, and I'll be happy to create alt text for it.] and the average SOC [image: It seems there was an issue with providing the image. Please upload the image file or provide a URL so I can assist you with creating the alt text.] of all cycles are the same, then, these are linear degradation processes concerning the number of cycles. Equation 39 can be rewritten as accumulated cycling life, as shown in Equation 53. According to the literature (Pirouzi et al., 2018; Pirouzi and Aghaei, 2019), constraints of Equations 41, 42 can be recast into Equations 54, 55 through the big-M linearization technique without reducing the solution accuracy. Constraints of Equation 43 can be transformed into Equation 56 through piecewise linearization. According to Pirouzi et al. (2017), the constraints of Equation 56 can be seen as expressions for the circles centered at (0,0). The circle is divided into n equal parts, and when n is large enough, that is, [image: Greek letters delta and alpha placed side by side.] is small enough, the inner regular polygon of a circle approximates the circle infinitely. In other words, Equation 56 is transformed into Equation 57 approximately. Thus, the MILP optimization model was obtained (see Eqs 1–38, 40, 44–48, 53–55, 57).
[image: Equation 53 represents the state of health \( SoH_{y,y+k} \) as a product of N and a function \( f_d \). This function depends on time \( t \), capacity \( c \), depth of discharge \( d \), temperature \( T_0 \), and a constant parameter \( l \).]
[image: Mathematical inequality involving variables M, x, PL, V, G, A, δ, and indices i, j, m, y, h, k. The expression describes constraints using summations, multiplications, and partial derivatives. Equation labeled as equation fifty-four.]
[image: Mathematical inequality involving variables M, x, QL, V, B, B', δ, and other subscripts i, j, m, y, h, k. It includes terms related to B and V with operations like addition, subtraction, multiplication, and division.]
[image: Mathematical equation showing the sum of squares of two terms: the first term is the power load, \( \sum_{m} PL_{i,j,m,y,h,k} \), and the second term is the reactive load, \( \sum_{m} QL_{i,j,m,y,h,k} \). The sum of these squared terms is less than or equal to the product of \( xli \) and the square of the maximum substation load \( (SL_{i,j}^{max})^2 \). Applies for all variables \( i, j, m, y, h, k \). Labeled as equation (56).]
[image: Cosine and sine functions multiplied by summations of \( PL_{i,j,m,y,h,k} \) and \( QL_{i,j,m,y,h,k} \), with constraints \( \leq xI_{i} \cdot SL_{i}^{\text{max}} \) for all indices \( i, j, n, m, y, h, k \). Equation numbered (57).]
3 COMPACT FORM AND DUAL DECOMPOSITION
3.1 Compact form
For brevity’s sake, the above MILP model can be compactly rewritten in an epigraph form. Specifically, the objective functions of Equations 1–10 are compacted by Equation 58. Constraints only related to binary variables (i.e., Eqs 22, 23, 40, 44) are recast by Equation 59. Equality constraints related to not only binary variables but also continuous variables (i.e., Eqs 29, 30, 34, 37, 38, 53) are presented in Equation 60. The inequality constraint of Equation 61 corresponds to Equations 11–21, 24–28, 31–33, 35, 36, 45, 46, 54, 55, 57. The constraint of Equation 62 represents the equality that was independent of continuous variables (i.e., Eqs 47, 48).
[image: Mathematical expression showing a minimization problem: min Y bar plus H transpose P plus Y hat E, subscript s, equation number fifty-eight.]
[image: Please upload the image or provide a direct link to it so I can create the alt text for you.]
[image: It looks like you're trying to share an image. Please upload it directly or provide a link. If you include a caption, it will help provide additional context for the alt text.]
[image: The formula shown is \( C Y + E P + F Z + D \xi = G_{i} \lambda \), labeled as equation 60.]
[image: It appears you provided a mathematical expression. Here's an interpretation of the equation:  The equation \( C Y + E P + F Z + D_{1} Z + D_{2} \xi \geq G_{i} \mu \) labeled as equation (61).]
[image: The formula displays the equation \( KP + Lz + N\xi = M; \sigma \), followed by a reference number (62).]
[image: Mathematical equation consisting of conditions for variables P and Y. It states that P is greater than or equal to zero, and Y belongs to the interval between zero and one, inclusive.]
Here, vector [image: Please upload the image or provide a URL for the image you would like me to describe.] stands for binary variables such as [image: It seems like there is an issue with uploading the image. Please try uploading the image file again, or provide a URL to the image. You can also add a caption for context if needed.], [image: It seems there was an issue with your request. If you're trying to share an image, please upload it or provide a URL. If there is a specific image related to the text provided, please clarify.], [image: Stylized mathematical expression: \( BS^{ch}_{s, y, h, k} \), with "ch" as a superscript and "s, y, h, k" as subscripts.], and [image: Mathematical expression displaying "BS" with superscript "dch" and subscript "s, y, h, k".]. Vector [image: Please provide the image by uploading it, and I will be happy to help with the alternate text.] stands for positive continuous operational variables (i.e., [image: Mathematical expression displaying the variables \( P \), \( G \), subscripted with \( g \), \( y \), \( h \), and \( k \).]; [image: Text showing "RU" with subscripts "g, y, h, k" in a stylized font.]; [image: The image shows the mathematical expression "RD" with subscripts "g, y, h, k".]; [image: Mathematical expression showing "P" with subscript "s, y, h, k" and superscript "ch".]; [image: Mathematical expression with variables: capital P and S with superscript d, c, h; subscript s, comma, y, comma, h, comma, k.]; [image: The image shows a mathematical expression: "QW" with subscripts "w, y, h, k."]; [image: The image contains the mathematical expression "QV" with subscripts "v, y, h, k".]; and [image: The image shows the mathematical expression \( LP_{i, y, h, k} \).]). [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will help create the alternate text for it.] represents free continuous variables (i.e., [image: Mathematical notation of PL with subscripts i, j, y, h, k.]; [image: Mathematical expression showing "QL" followed by subscripts "i, j, y, h, k".]; [image: Mathematical notation showing the variable \( V \) with subscript indices \( i, y, h, k \).]; and [image: Greek letter theta with subscript i, y, h, and k.]). The letter [image: It seems there was an error in the input. Please upload an image or provide a URL, and I'll create the alt text for you!] represents uncertain vectors (i.e., [image: Mathematical notation showing "PD" with subscripts "i, y, h, k" in italics.]; [image: The text "PW" is shown with subscripts "w, y, h, k" in italic font.]; and [image: Mathematical expression showing \( PV \) with subscripts \( v, y, h, k \).]). The compact dual variables [image: Lambda, mu, and sigma are represented as Greek letters.] are introduced for Equations 60–62, respectively. Letters [image: Text displaying a sequence of variables: \(A, C_1, C_2, E_1, E_2, F_1, F_2, D_1, D_2, K, L, N\) with a resolution of 16 and look 0 0 311.] are the coefficient matrices of the power network. [image: Equation featuring mathematical variables \(B\), \(G_1\), \(G_2\), and \(M\) in italic font.] are the constant matrices.
3.2 Dual decomposition in compact form
Since the binary variables (i.e., new lines and ESSs) and the continuous variables (i.e., conventional generation units, renewable energy spillage, and loss of load) are optimized simultaneously, the above robust MILP optimization model has higher computation complexity. To improve the computation efficiency, we reformulate this model by decomposition. Then, it can be transformed into a master problem (MP) and a dual sub-problem (SP). In the MP, the binary investment variables are optimized, and then, they are fixed in the SP. On the contrary, the continuous variables are optimized in the SP, and the feasibility of its MP solution is also examined. Then, the feasibility cuts are generated and returns to MP. By introducing an auxiliary constraint [image: Mathematical equation depicting the expression: \( I_{SP} Y_{SP} = \overline{Y}: \eta \).] ([image: The lowercase Greek letter eta, represented in italics.] is the compact dual variable), the formulation of the MP is presented in Equations 59, 64–67. The lower bound (LB) value of the MP is presented in Equation 65. Constraints of Equations 66, 67 define the optimality and feasibility cuts. The superscript [image: It seems there's an issue with displaying the image. Please try uploading the image again or provide additional context or a description of the image, and I can help create alt text for you.] shows that the variables are obtained and fixed in the SP. The letter [image: Please upload the image you would like me to describe.] is the number of iterations.
[image: Please upload the image or provide a URL, and I will help you generate the alt text.]
[image: It seems you might be trying to describe a mathematical expression or symbol. The term "s.t." in mathematics often stands for "such that," commonly used in expressions for constraints or conditions. If you have an image you'd like to describe, please upload it or provide a URL.]
[image: It seems like there's a LaTeX code snippet related to mathematics or a formula, but no image was uploaded. Please upload the image or provide a URL for a detailed description.]
[image: Mathematical equation showing LB greater than or equal to I times Y plus terms in brackets with subscripts and superscripts, involving variables G, M, eta, and Y. Equation number sixty-six.]
[image: Mathematical equation showing an inequality: \( G_1 \hat{\lambda} + G_2 \hat{\mu} + M^T \hat{\sigma} \) raised to the power of \( (p) \) plus \( \hat{\eta}(\rho) (Y - \hat{Y}^{(p-1)}) \) is less than or equal to zero, labeled as equation (67).]
After the optimization of the MP, the binary variables are obtained and assumed as constant parameters in the SP. Then, the SP is introduced from Equations 68–72.
[image: Maximize \( G_1^\top \lambda + G_2^\top \mu + M^\top \sigma + \hat{Y}^\top \eta \), equation sixty-eight.]
[image: Please upload the image or provide a URL so I can help create the alt text for it.]
[image: Equation displaying \( C_1 \lambda + C_2 \mu + I_{sp} \eta \leq 0 \), labeled as equation 69.]
[image: The equation displayed is: \( E_{\lambda} + E_{\mu} + K^{\prime} \sigma \leq H \), labeled as equation (70).]
[image: A mathematical equation is shown: \(F_{1} \lambda + F_{2} \mu + L^{T} \sigma = 0\).]
[image: Mathematical expression with the inequality: \( D\lambda + D\mu + N^\top\sigma \leq I \). Equation identified as number seventy-two.]
If the solution is bounded, after solving the SP, the upper bound (UB) value can be obtained through the function [image: Mathematical equation showing UB equals G one transposed lambda plus G two transposed mu plus M transposed sigma plus Y hat transposed eta plus I transposed Y hat.], which then generates the optimality cut. Otherwise, if the solution is unbounded, then we generate the feasibility cut and go to the MP. Finally, if the formulation (see in Eq. 73) is satisfied, the iteration ends; otherwise, the next iteration starts.
[image: The mathematical expression shows the inequality: (UB minus LB) over UB is less than or equal to tau, labeled as equation 73.]
4 OVERALL SOLUTION STRUCTURE
According to the above, the decomposed optimization model can be solved effectively. This section proposes the holistic solution structure (Tan et al., 2021; Velloso and Van Hentenryck, 2021) See Figure 2.
[image: Flowchart illustrating an optimization algorithm process. It begins with initializing variables, then involves solving a master problem (MP) and a subproblem (SP) to update bounds. It checks a convergence condition, and if not met, generates cut planes and increments a parameter \(P\) before repeating. If met, it outputs results and exits.]FIGURE 2 | Solution flowchart.
Step 1. Set the loop parameter p = 1 and the initial value of the parameters.
Step 2. Solve the MP and get the optimal solution of binary variables [image: The image contains a mathematical expression with the symbol "Y-hat" followed by superscript "P" inside parentheses.]. Update the lower bound through [image: \( LB = \max \left\{ LB, I^{T} \hat{Y}^{(p)} \right\} \)].
Step 3. Solve the robust dual SP by fixing the condition [image: Mathematical equation showing Y equals Ŷ to the power of P.] and obtaining the optimal solution [image: Symbols depicting statistical estimates with superscript P: lambda-hat, mu-hat, sigma-hat, and eta-hat.]. Then, update [image: Mathematical equation showing an optimization: UB equals the minimum of UB and a linear combination involving multiple variables, including I transposed Y to the power of P, G1 transposed lambda, G2 transposed mu, M transposed sigma, and Y hat transposed to the power of P, all multiplied by eta.], and [image: It seems there was an issue with your image upload. Please try uploading the image again or check the file format and size. If you need any help, let me know!] is the upper bound of the solution.
Step 4. Check [image: Mathematical expression showing the inequality: the difference between UB and LB, divided by UB, is less than or equal to τ.]. If satisfied, output [image: Mathematical notation showing variables Y, lambda, mu, sigma, and eta, each with a superscript (P).] and exit the loop. Otherwise, go to Step 5.
Step 5. Check the optimal solution of the dual SP; in other words, [image: Mathematical expression: \( G_1^{T(P)} \lambda^{(P)} + G_2^{T(P)} \mu^{(P)} + M^T \sigma^{(P)} + \hat{Y}^{T(P)} \eta^{(P)} < +\infty \).]. If satisfied, go to Step 6. Otherwise, go to Step 7.
Step 6. Generate the optimal cut plane [image: Mathematical expression showing an inequality. The left side is "LB" greater than or equal to. The right side consists of several terms: \( I^T Y^{(p)} \), plus \( G_1^T \hat{\lambda}^{(p)} \), plus \( G_2^T \mu^{(p)} \), plus \( M^T \hat{\delta}^{(p)} \), plus \( \hat{\eta}^{(p)} (Y - \hat{Y}^{(p-1)}) \).] and P = P + 1, and then, go to Step 2.
Step 7. Generate the feasible cut plane [image: Mathematical equation showing the expression: \(G_1^{(P)^\top} \lambda^{(P)} + G_2^{(P)^\top} \mu^{(P)} + M^\top \hat{\sigma}^{(P)} + \hat{\eta}^{(P)}(Y - \hat{Y}^{(P-1)}) \leq 0\).] and P = P + 1, and then, go to Step 2.
5 CASE STUDY
5.1 Description of the test system
The modified IEEE 24-node system (Probability Methods Subcommittee, 1979) includes 38 existing lines, 9 traditional generator units, 6 wind farms, and 3 photovoltaic power stations, as seen in Figure 3. Compared to the standard IEEE 24-bus system, its grid structure is the same. The difference is that we added photovoltaic and wind farms, with their specific location shown in Figure 3. To reveal how the deep internal influence acts on power grids with different trustworthiness of DR, we set it to vary from 0.0 to 1.0. The value 0.0 means no trust, and 1.0 represents full trust. In other words, as the value increases, the level of trust increases. The time series (e.g., wind, photovoltaic power output, and electricity loads) were extracted from the practical cases obtained in Li H. et al. (2020). In addition, the penetration level of RESs is assumed to be 60% of their installed capacity. The decreased rate of ESS maintenance costs [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if available.] is set to 5%. To make a trade-off between computational efficiency and accuracy, the k-medoids clustering technique (Park and Jun, 2009) is used instead of solving 8,760 h for the whole year. Each representative period is considered as one scenario, and the scenario probability is obtained from the clustering process. It should be noted that besides several special days, natural days during 1 year can be mainly clustered into working days splicing weekends. Therefore, it is more conducive to the system solution based on the week consisting of two consecutive days. Moreover, ensuring the consideration of the data’s sequential nature and making the benefits of ESSs more obvious, we showed the state for 48 consecutive periods. During these 48 consecutive periods, there is a difference in renewable energy and load.
[image: Diagram of an electrical power system with multiple buses and lines connecting them. Key buses are labeled at voltage levels of 230 kV and 138 kV. Lines and switches interconnect buses including Bus1 through Bus24. Transformers link different voltage levels, and symbols indicate additional components and generators at certain points.]FIGURE 3 | Modified IEEE 24-node system.
On the other hand, the economic data, namely, investment cost, operation cost (i.e., fuel costs, O&M costs, renewable energy spillage costs, and loss load costs, ), and environmental parameters (i.e., CO2 emission costs), are presented in Table 2. Note that linear generation-cost functions were used for traditional generation units due to their acceptable accuracy and the already complex nature of the optimization problem.
TABLE 2 | Values of several parameters used in the optimization problem.
[image: Table listing parameters related to energy costs, including variable names, descriptions, values, and units. Parameters include costs for building transmission lines (138 kV and 230 kV), installing new storage, operations and maintenance, wind curtailment, photovoltaic curtailment, lost loads, demand response, carbon emission licenses, and carbon emitted per kWh. Also mentioned are decreased ESS maintenance costs, ESS efficiencies, and base power of the system. Values are given in various units such as dollars per kilometer, dollars per megawatt-hour, dollars per ton, grams per kilowatt-hour, and megavolt-amperes.]The simulations have been solved by using Gurobi9.1.1 as the solver. We considered a convergence tolerance of 0.01%. All studies were operated on an Intel-Core i7 (64-bit) 3.4-GHz individual laptop with 16GB RAM.
5.2 Simulation results and discussions
To understand what the impact of varied resources and technologies on power system planning is, three different experiments were conducted: 1) case 1 ignores the trustworthiness of DR, that is, all available DR responses, only considering the difference of one single ESS capacity, in which whether to install and where to construct are both considered. In this case, we find a suitable size for one single ESS capacity because it affects the maintenance costs in this system. 2) It is fixed according to the suitable size of each single ESS. Case 2 only considers the impact of different trustworthiness of DR. It should be noted that in this case, the objective function does not contain Equations 9, 10. 3) Based on case 2, besides minimizing total costs, CO2 emissions are considered simultaneously, and a trade-off is made between them. Here, cost-savings and reducing CO2 emissions are of equal importance.
5.2.1 Ignoring the trustworthiness of DR
In this experiment, to select an appropriate size of ESSs, we only consider single-size changes, which includes all available DR responses. Table 3 demonstrates the expansion planning results of this optimization model. The location, degradation of ESSs, and whole-system CO2 emission costs were included. In addition, the decreased amount of ESS maintenance costs has been contained in operation costs. It is clear that with different sizes of each ESS, their optimal location changes. The new energy storage stations need to be installed more when their single size is small because the investment cost is proportional to its capacity, and the system needs more storage to improve its flexibility.
TABLE 3 | Simulation results of the power system with different ESS sizes.
[image: Table showing data for different ESS (Energy Storage System) sizes and positions. It includes columns for new lines, investment cost, operation cost, total cost, renewable energy curtailment, loss load cost, and CO2 emission cost. Values are detailed for ESS sizes 50, 100, 300, and 600, across various configurations.]Specifically, first of all, we compared the first two rows. Although the single capacity of the first row is small and its investment cost is low, however, its operation cost is higher. This is partly due to the surge of renewable energy curtailment, loss of load, and ESS maintenance costs. Moreover, the high flexibility requirements of some nodes are not fully met. Afterward, the last three lines are compared. As the individual ESS capacity increases, the investment cost increases, but the operation cost changes slightly. This is because renewable energy curtailment and loss of load increases, while ESS maintenance costs decrease. In other words, the number of ESSs is lessened so that the labor cost is reduced, which is related to the maintenance cost. Overall, the total cost increases as the individual ESS capacity increases. In other words, the capacity of ESSs has a close impact on power system expansion planning.
What needs to be illustrated is that when the single ESS capacity is larger, CO2 emission costs change very slightly. This is because the penetration of renewable energy is not very high. So when the individual size is larger, the number that should be newly installed will be reduced. It is worth mentioning that the degradation of ESSs was taken into account, so the storage investment cost was more grounded in reality. In addition, renewable energy curtailment and loss load were the lowest when the single storage capacity was 100 MWh. Finally, taking renewable energy curtailment, loss of load, and total costs into account, individual ESS capacity will be appropriate at 100 MWh in this system.
Figure 4 shows the details of charge–discharge energy and the SOC of a newly installed ESS connected to bus 9 in a representative period. The initial value of ESSs is 0.14 p.u., and it needs to stay the same at the beginning and at the end of one period. As can be seen, the charging time always appears at low load hours and vice versa on the contrary. Because the RES output changed significantly in two consecutive periods, the charging and discharging behavior changed as well. Note that the experiments we performed in this section with available DR are fixed at 0.02, and their trustworthiness is 1.0.
[image: Graph showing battery charge and discharge cycles over 48 hours. The yellow line indicates the state of charge, while red and blue lines represent charge and discharge events, respectively. Charge/discharge values fluctuate, showing cyclic patterns.]FIGURE 4 | Details of a newly installed ESS in one representative period.
Figure 5 shows the operating points of the source and demand status under the condition that the ESS capacity is 100 MWh and its actual DR is set at 0.02 in one representative period. As can be seen, at the beginning of 1–6 h, its load is relatively small, and charging occurs (see the yellow bar below the x-axis). When time goes to 8–11, due to load increases, the system preferentially discharges from ESSs to meet the demand (see the blue bars in this figure). In 13–16 h, the whole output of renewable energy surges. On one hand, the output of traditional generations is reduced because of their high operating costs and emissions costs. On the other hand, the power system charges ESSs in preparation for evening peak load hours (also see the yellow bar below the x-axis). Then, the system enters the night charging period. The next day is much the same, except for the decrease in photovoltaic power output, and there is a slight loss of load in 41–45. This is in line with the discussion presented above.
[image: Bar chart displaying energy dynamics over 48 hours. Green (wind), yellow (PV), and red (fuel) segments indicate energy sources, with blue line for demand. Gray bars show charge/discharge patterns. Time in hours is on the x-axis, and power in kilowatts on the y-axis.]FIGURE 5 | Sources and demand status in one representative period.
5.2.2 Different trustworthiness of DR
To compare what impacts act on the expansion planning optimization problem with different trustworthiness of DR, we performed the following experiments. In this section, the individual ESS capacity is set at 100 MWh, as discussed before. Simulation results are shown in Table 4. It should be noted that the second row in Table 4 should be the same as in Table 3. This is because the available DR is fixed at 0.2 with its trustworthiness setting at 0.1, which equals the actual DR being set at 0.02. As shown in each column, the expanded transmission line changes slightly with different trustworthiness of DR. However, the number of newly installed ESSs decreases when the trustworthiness of DR increases. It also causes little change in CO2 emission costs when the actual DR increases. This is because DR plays the role of peak cutting and valley filling, and the total load remains constant.
TABLE 4 | Simulation results of the system with different DR without considering the impact of CO2 emissions.
[image: A table lists various parameters related to trustworthiness of demand response (DR) at different levels (0.0, 0.1, 0.5, 1.0), showing new lines, new storage, investment cost, operation cost, total cost, loss energy, loss load, and CO2 emission cost, all in scientific notation.]The investment cost narrows down due to new ESSs that need to be installed being reduced when the trustworthiness of DR increases. So, even though the unavoidable DR subsidy cost grows, the value of both loss energy and loss load decreases, which leads to the operation cost increasing slightly. Thus, in a word, the total cost of this expansion-planning problem is reduced because of the higher trustworthiness of DR. In other words, the appropriate application of DR can help reduce expansion costs and lessen loss load and RES curtailment. Note that the experiments we performed in this section with available DR are fixed at 0.2.
Figure 6 shows the participation situation of different trustworthiness of the available DR at bus18. In general, the higher the trustworthiness of DR, the more actual DR participates in the system. As can be seen, the positive value of participating DR equals the negative one in 48 h. Moreover, when the electricity demand is high, DR is mostly positive. While the electricity demand is low, and vice on the contrary. However, the symbol of DR is not always positive in peak load hours due to its abundant flexibility resources and renewable energy volatility. See hours 13, 14, 15, and 16. Therefore, DR can improve the flexibility of the system. In hours 18 and 21, the actual participating DR is not at its maximum. This illustrates the need for precise control of DR rather than crude subsidies.
[image: Line graph showing the actual participation of Demand Response (DR) over 48 hours with four trustworthiness indices: 0.0 (blue), 0.1 (red), 0.5 (green), and 1.0 (yellow). Participation fluctuates, with notable peaks and troughs, especially for index 1.0.]FIGURE 6 | Different trustworthiness of DR at bus18.
5.2.3 A trade-off between minimizing total costs and reducing CO2 emissions
Since GHG emissions have a heavy influence on our environment, obtaining a sustainable and environmentally friendly power system became the global common goal. It is not appropriate to aim only at cost minimization because new technology is generally expensive at the beginning stage but are environmentally friendly. Therefore, this study makes a trade-off between minimizing total costs and reducing CO2 emissions. We assume these two goals are of equal importance in this paper. In other words, Equations 9, 10 are included in the objective function. As shown in each column of Table 5, the number of newly installed ESSs also decreases as the trustworthiness of DR increases. However, the newly installed number should be more compared with that of the previous experiment (case 2), which only focuses on cost minimization (shown in Table 4). The most important factor is that CO2 emission costs decreased with each different trustworthiness of DR, as compared to the cost minimization experiment. Specifically, the data on CO2 emission cost reduced from 1.1545$ to 1.1312$, which reduced by 2.1%, when the trustworthiness of DR was 1.0.
TABLE 5 | Simulation results with different trustworthiness of DR considering the impact of CO2 emissions.
[image: Table showing data on trustworthiness of DR, new lines and storage, investment cost, operation cost, total cost, loss energy, loss load, and CO2 emission cost. Values differ across trustworthiness levels: 0.0, 0.1, 0.5, and 1.0, affecting costs and storage distribution.]Figure 7 presents an intuitive comparison of case 2 (only considering cost minimization) and case 3 (a trade-off between minimizing total costs and reducing CO2 emissions). On equal terms compared to the previous case, although fewer new lines need to be constructed to strengthen the transmission network, however, more ESSs need to be installed. Thus, the investment cost increased considerably as it went up from 1.7393*10^9$ (the second row and fourth column in Table 4) to 1.9670*10^9$ (the second row and fourth column in Table 5). Moreover, the operation cost decreased slightly in case 3, with its value decreasing from 2.9164*10^9$ to 2.8789*10^9$. Thus, in a word, the total cost is larger than the condition without considering CO2 emissions. Specifically, statistics of total cost rose from 4.6557*10^9$ to 4.8459*10^9$, an increase of 3.9%, when the trustworthiness of DR was 0.1. To maximize renewable energy consumption, the system takes priority utilization of all newly installed ESSs rather than conventional generations. In case 3, the loss load costs were reduced for each different trustworthiness of the DR condition. It indicated that the power supply reliability was improved.
[image: Bar graph depicting investment and operation costs against different trustworthiness levels of demand response (DR). Blue bars represent investment costs, purple bars show operation costs. Two lines indicate CO2 emission costs for case 2 (red) and case 3 (green) measured on a secondary y-axis. Costs are on the y-axes, and trustworthiness levels are on the x-axis.]FIGURE 7 | Comparison of considering only cost minimization and considering both minimizing costs and reducing CO2 emissions.
To sum up, case 3 is a more appropriate strategy for the following reasons: 1) it can help reduce GHG emissions, which is consistent with the current environmental protection concept; 2) it improves power system reliability because it uses flexible resources preferentially and lessens the value of loss load; 3) it defers transmission expansion due to abundant flexible resources. Thus, it alleviated the bottleneck of unbalanced development of the short-term renewable energy expansion period and the long-term transmission expansion period.
5.2.4 Analysis of the effectiveness of the dual-decomposition method
To verify the effectiveness of the dual-decomposition algorithm, we compared the simulation results of case 3, where the trustworthiness of DR is set to 1.0, using both the centralized algorithm and the dual-decomposition algorithm. As shown in Table 6, it can be observed that regardless of the solving algorithm, the newly constructed lines and ESSs are identical, resulting in the same investment cost for both algorithms. Moreover, the two algorithms yield the same cost for GHG emissions. Additionally, the centralized algorithm produces slightly different RES curtailment and loss-load costs compared to the decomposition algorithm. This leads to a small difference in total costs. This discrepancy is due to the convergence tolerance being set at 0.01% during program design, but it does not affect the final results.
TABLE 6 | Simulation results using different solving methods when the trustworthiness of DR is 1.0
[image: Comparison table of centralized and dual decomposition methods in energy systems. Both have the same new lines and storage: lines 1-5, 7-8, 14-16; storage 3, 11, 14, 16. Investment cost is 1.5631 billion for both. Operation cost is 2.9484 billion for centralized and 2.9490 billion for dual decomposition. Total cost is 4.5115 billion for centralized and 4.5121 billion for dual decomposition. Loss energy is 83.0662 for centralized and 83.4359 for dual decomposition. Loss load is 0.6301 for centralized and 0.6330 for dual decomposition. CO2 emission cost is 1.1312 billion for both.]6 CONCLUSION
This paper proposed a robust coordinated planning model for power systems, in which large shares of variable renewable energy are integrated. For the sake of accuracy and efficiency, piecewise linearization, big-M method, and dual decomposition were introduced due to the already complex nature of the optimization problem. The inevitable uncertainty (variable RESs and demand) is described by polyhedral sets. To understand the impact of varied resources and technologies (such as wind power, photovoltaic resources, ESSs, and the trustworthiness of DR) on the development of power system planning, several computational experiments are presented. First, the capacity, location, and degradation of ESSs have a close impact on power system expansion planning. It is necessary to select an appropriate capacity and location for every single energy storage station in the planning stage. Second, higher trustworthiness of DR can help reduce the total expansion costs. However, it has little impact on GHG emissions if we consider cost minimization only. The last study makes a trade-off between minimizing total costs and reducing CO2 emissions. According to this, a more sustainable and environmentally friendly power system was obtained. Moreover, it improves power system reliability and alleviates the unbalanced development of the short-term renewable energy expansion period and the long-term transmission expansion period.
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As the physical power information system undergoes continual advancement, mobile energy storage has become a pivotal component in the planning and orchestration of multi-component distribution networks. Furthermore, the evolution and enhancement of big data technologies have significantly contributed to enhancing the rationality and efficacy of various distribution network planning and layout approaches. At the same time, multi-distribution networks have also confronted numerous network attacks with increasing probability and severity. In this study, a Petri net is initially employed as a modeling technique to delineate the network attack flow within the distribution network. Subsequently, the data from prior network attacks are consolidated and scrutinized to evaluate the vulnerability of the cyber-physical system (CPS), thereby identifying the most critical network attack pattern for a multi-component distribution network. Following this, the defender–attacker–defender planning methodology is applied for scale modeling, incorporating rapidly evolving mobile energy storage into the pre-layout, aiming to mitigate the detrimental impact of network attacks on the power grid. Ultimately, the column and constraint generation (C&CG) algorithm is utilized to simulate and validate the proposed planning strategy in a 33-node system with multiple control groups established to demonstrate the viability and merits of the proposed strategy.
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1 INTRODUCTION
With the rapid development of the global energy Internet, the distribution network has become an important part of the power system, and its operation safety is directly related to the stability and reliability of the power supply. However, with the rapid development of computers and communication technology, the traditional power system and information communication system are more and more closely combined, forming a fused power and information physical system known as a cyber-physical system (CPS). With the continuous upgrading of network attacks, the security problem of power networks is becoming increasingly prominent (Shelar and Amin, 2017). In order to cope with this challenge, this study aims to explore a multi-component distribution network planning method under power network attacks to improve the anti-attack capability and operational stability of the distribution network.
In recent years, many CPS studies have emerged. Based on the establishment of the CPS dependency model and the characterization of the coupling mechanism between them, Nguyen et al. (2013) studied and analyzed the factors affecting the vulnerability of distribution networks under network attacks. Gao et al. (2013) analyzed the interdependence and connection between power and information nodes. Through the communication process between the power system and the information system, Long et al. (2019) conducted network modeling to verify the relationship between the degree of system loss and the proportion of fault nodes in the network. Zhang et al. (2021) analyzed CPS modeling through a dependency network. However, most of the modeling processes above are mainly from a topological perspective, resulting in some differences between the final model and actual system characteristics. Currently, research on network attacks mostly focuses on large power grid information physical systems, with most information attacks concentrated in transmission grids. For example, Yu et al. (2016) verified that communication delay between AC and DC changes the optimization strategy of control centers in UHV systems. Cai et al. (2016) studied potential major failures (catastrophic failures) in different structural information networks under random or deliberate attacks. Based on the semi-Markov process, Lau et al. (2020) modeled SCADA systems and developed optimal mixed strategies for defense strategy allocation through competitive games. Yu et al. (2019) proposed a transfer model of the CPS system that integrates physical equipment and information decision making and realizes dynamic control of the transfer process by establishing an information control flow. Yi et al. (2016) analyzed, defined, and classified the network attacks suffered by CPS based on examples. At present, the network attack planning methods for distribution networks are relatively few. The influence of pre-layout defense measure configuration on network attacks is ignored, and defender–attacker–defender (DAD) planning is rarely taken into account in distribution network configuration planning.
Based on the above research background and research status, this article proposes a multi-component distribution network planning method that considers network attacks. First, vulnerability attacks under Petri net and power network attacks are used to analyze and obtain the vulnerability of distribution networks under network attacks, and with the help of data-driven (Stephane et al., 2022), the corresponding extreme scenarios are simplified and generated. Second, based on the DAD planning model, mobile energy storage is introduced for pre-layout in advance to reduce the cost of fault recovery. Third, the C&CG algorithm is used to analyze the three-layer, two-stage optimization problem of the DAD planning model. Finally, a 33-node IEEE system is tested and evaluated to verify the economy and effectiveness of the proposed method.
2 POWER NETWORK ATTACK MODELING
2.1 Typical power network attack model
As the key infrastructure supporting the normal operation of society, the security and stability of the power network are very important (Yang et al., 2022). With the rapid development of computer and communication technology, traditional power systems and information and communication systems are more and more closely combined, forming a typical CPS. However, with the continuous evolution of the means of network attack, the threat to the power network is becoming more and more serious.
In the diversified and chain-oriented environment of network attacks, it is difficult for traditional methods to deal with random and highly interlocked attacks, mainly because it is difficult to describe dynamic attack and defense behaviors. The state of the whole system cannot be directly observed, which affects the selection of defense behaviors. Therefore, this article chooses a Petri net as the modeling method to describe the attack state and provides the basis for the subsequent defense strategy selection.
The elements of a Petri net include a library (Place) circular node, a Transition square node, a directed arc (Connection) that is the directed arc between a library and a transition, and a token (Token) that is a dynamic object in a library that can be moved from one library to another (Deka et al., 2014). Figure 1 shows a common network attack flow model.
[image: Flowchart illustrating a cyberattack process. The left sequence in red shows normal state, obtaining network information, finding an open port, and logging in to a normal account. The right sequence in blue details finding a communication device, analyzing data, writing an attack script, conducting an attack, and realizing remote control. Arrows indicate the progression between stages.]FIGURE 1 | Common network attack flow model.
When the actual transition probability and delay are determined, a Petri net can be equated with a Markov chain (MC) (Lin et al., 2005). At the same time, the trigger matrix data are easily obtained in the reachable graph. The analysis of system performance can have a very good effect. The specific method of obtaining trigger matrix parameters is as follows: a random Petri net is represented by a quadruple SPN = (P, T, Mo, Mf), where Mo represents the initial mark, and Mf represents the final mark. The calculation formula of the trigger matrix is as follows in Eq. (1) (Amini et al., 2018):
[image: Mathematical equation showing M subscript f equals M subscript o plus C superscript n times U subscript k, labeled as equation one.]
In this formula, C is the integration matrix, [image: The expression "U" subscript "k" is written, likely representing a mathematical variable or term indexed by "k".] is the trigger matrix, and the tag and integration matrix can be derived from the library and transition states.
2.2 Vulnerability analysis under power network attack
2.2.1 Analysis of vulnerability indicators
2.2.1.1 Critical damage degree index
With the development of information technology, the power system’s dependence on the information network also increases. Therefore, security will be seriously threatened when network attacks occur. It is necessary to assess the vulnerability of the distribution network under network attacks (Dahmen et al., 2019). Widely used mainstream evaluation methods are based on complex network and transient energy functions and service transmission (Shahsanee and Zareei, 2018).
At present, vulnerability assessment of network nodes is mainly focused on the static condition, but when the network is running, the vulnerability index will change constantly. Zhou et al. (2024) put forward the concept of destructiveness to indicate the degree to which the network is on the verge of destruction when attacked in Eq. (2):
[image: Equation for \( P_{ij} \) defined by a piecewise function: \(\frac{t_{ij}}{T_i}\) if \(t_{ij} < T_i\); otherwise, 1 if \(t_{ij} \geq T_i\). Labeled as equation (2).]
In this expression, Pi is the destructivity index and tij is the delay range of the ith service beside j. [image: Certainly! Please upload the image you'd like me to provide alternate text for.] is the ruin value of the Class i business.
For the case of multiple lines, according to the change of Pij, the accuracy of vulnerability assessment is ensured by the following Eq. (3):
[image: Mathematical equation showing \( C_p[E_p(i, j)] = \delta_t \sum_{j=1}^{i} \left( \frac{V_i}{\sum_{j=1}^{i} V_j} \mathbf{P}_j \right) \). The equation is labeled as (3).]
In this formula, Cp[Ep(i,j)]is the vulnerability of the communication branch, Ep(i,j) is the vulnerability value of the communication branch from Article i to Article j, [image: It seems there might have been an error, as no image was uploaded. Please upload the image or provide a URL, and I will be happy to help with the alt text.] is the actual delay of communication transmission, [image: It seems you're referencing a specific symbol or variable, not an image. If you have an image file to upload, please do so, and I can help create alt text for it.] is the traffic contained in the communication branch, and Vj is the transmission rate of Class j services on the communication branch.
2.2.1.2 Fault impact degree
When the distribution network is attacked and a fault occurs, the node will lose load. Therefore, the analysis must also consider the results caused by the failure of the distribution network and the shutdown of nodes (Nazemi et al., 2019).
In view of the fact that the distribution network is generally a radial network and operates in an open loop, the impact caused by node outage can be quantitatively analyzed Eqs 4,5:
[image: Equation showing \( S_{N_i} = \omega_i P \frac{S_i}{S_r} \) with a reference to equation number (4).]
[image: P equals lambda divided by lambda plus mu, equation number five.]
In this formula, [image: It looks like there was an attempt to include an image or math formatting, but it is not visible here. Please upload the image file or provide a URL, and I will create the alt text for you.] represents the load class weighting coefficient, P represents the node failure rate, and [image: It looks like there was an error or missing content when trying to display an image. Please provide the image or a link to it so I can help create an alt text description.] represents the power reference value of the system. [image: Sure, please upload the image or provide a URL so I can help with the alternate text.] represents the failure rate, and [image: It seems like there might be a mistake with the image upload. Please try uploading the image again or provide a URL, and I’ll help create the alternate text.] represents the repair rate.
2.2.2 Assessment model of distribution network vulnerability
Considering the existence of static and dynamic indicators of the vulnerability of the distribution network, several nodes are selected from different levels of the distribution network for assessment. Different vulnerability assessment indicators are assigned according to the levels and importance of different nodes (Yan et al., 2015).
Because the existing distribution network is coupled by the power network and the communication network, the components are diverse, and the coupling relationship is complicated. The complex network theory can be used to model and analyze the distribution network. Among them, the bus and line in the power network are abstracted as nodes and edges. The relationships between intelligent terminal devices and communication nodes in a communication network are abstracted as nodes and edges. Based on this, the power–communication coupling network model of the distribution network shown in Figure 2 can be constructed.
[image: Diagram showing interconnected communication and power networks. The communication network at the top has nodes connected by optical fibers (solid lines) and wireless communication (dashed lines). The power network below shows nodes connected by power lines. Nodes are color-coded: red for high-risk (HR), black for critical, and white for ordinary. Lines between networks indicate overlapping connections.]FIGURE 2 | Power-communication coupling network model of distribution network.
The two types of nodes in the model, power node and communication node, have two operating states, namely, normal and fault. The model’s running state can be expressed by setting the state variable in Eqs 6,7 (Guo et al., 2019).
[image: Equation showing a piecewise function: \( f/k_{n} = f/k_{n,e} + i f/k_{n,c} \). It equals \( 1 \) if \( \mathbf{x} \in \Omega_{\varepsilon} \), \( i \) if \( \mathbf{x} \in \Omega_{c} \), and \( 0 \) if \( \mathbf{x} \notin \Omega_{\varepsilon} \cup \Omega_{c} \). Equation number \( (6) \).]
[image: The equation describes a function \( f_{x,y,1} = f_{x,1} = f_{x,y,lc} + if_{x,y,lc} \), with four conditions: \( 1 + i \) if \( x,y \in \Omega_{lc}, x,y \in \Omega_{le} \); 1 if \( x,y \in \Omega_{lc}, x,y \notin \Omega_{le} \); \( i \) if \( x,y \notin \Omega_{lc}, x,y \in \Omega_{le} \); and 0 if \( x,y \notin \Omega_{lc}, x,y \notin \Omega_{le} \).]
In this formula, fx,i represents the initial, power, and communication operating states of nodes, respectively; kx,i represents the actual, power, and communication operating states of nodes; fxy,i is the overall status of line xy, the power line and the communication line, respectively; Ωe、Ωc、and Ωv is the set of power, communication, and effective operation nodes, respectively; and ΩLe、ΩLc、and ΩLv is the set of power, communication, and effective operation lines, respectively.
In the power–communication network, M nodes are extracted, where M = {m1, m2, m3, ..., mn}. If there is a path between the nodes, the coefficient k is 1, and otherwise 0. Static vulnerability assessment indicators are defined as Eq. 8
[image: Mathematical equation showing \( N(M) = \epsilon_1 P_f(M) + \epsilon_2 N(M) \) with equation number (8) on the right.]
In this formula, N(Mi) is the static vulnerability assessment index, a is the weight of each static factor, and Pij(mi) is the destructivity index of the mi node. N(mi) indicates the pressure indicator of the service layer. As can be seen from the above formula, the static vulnerability assessment index is a constant.
The dynamic vulnerability assessment index is defined as Eq. 9
[image: Equation showing \( N_{w_i}(M_i) = \frac{1}{N(M_i)} \) with the number 9 in parentheses indicating it is the ninth equation.]
Based on the above formula, the vulnerability assessment model is constructed, and the expression is as follows Eq. 10:
[image: Mathematical equation for \( M' \) includes two components. The first is the square root of one over \( N \) times the sum over elements in set \( M \) of \( (N(M_i) - \overline{N(M_i)})^2 \). The second is the square root of one over \( P \) times the sum over elements in set \( M \) of \( (N(M_i) - \overline{N(M_i)})^2 \).]
In this formula, M′ is the expression of the vulnerability assessment model, N is static loss, and P is dynamic loss. The loss of power service when the network is attacked is judged according to the change of the M′ value to realize the effective assessment of the vulnerability of the power–communication network.
2.3 Power network attack scenario generation
Before vulnerability assessment, different network attack modes need to be analyzed; that is, attack scenarios need to be generated. In this article, the K-means clustering algorithm (Hagh et al., 2018) is used to reduce the typical Ms0 attack scenarios obtained from previous network attack data to a typical scenario set containing Md attack scenarios, in which the ith sample is represented as λi = [νi, Tst,i, Tdr,i]. The specific steps to reduce the attack scenario are as follows:
	Step 1: In Ms0 samples, randomly select K(K = Md) initial cluster centers (λ1, λ2, … , λK);
	Step 2: Calculate the Euclidean distance between each sample λi and the cluster center, and aggregate each sample with the nearest cluster center to form K cluster samples;
	Step 3: Calculate Dkm, the sum of the distance between the sample and the respective clustering center, according to the following formula and iteratively update the contents of the K cluster sample in Eq. 11.

[image: The image shows a mathematical equation: \( D_{km} = \sum_{n=1}^{K} \sum_{i \in Y_i} \| z - \lambda_i \|_2^2 \).]
In this formula, z and λi are the noncentral samples and the central samples of cluster Yi, respectively.
Step 4: Calculate the iteratively updated K clustering centers according to the following formula (12):
[image: The equation shows \( \lambda_i = \frac{1}{Y_i} \sum_{x < Y_i} z \text{.} \), labeled as equation (12).]

	Step 5: Repeat steps 2 to 4 until the maximum number of iterations is reached or convergence conditions are met;
	Step 6: Calculate the probability distribution of the final K samples according to the Eq. 13.

[image: Equation: \( P_a = \frac{|Y_i|}{M_{sa}} \).]
In this formula, |Yi| is the number of samples contained in cluster Yi.
The probability density of the ith scenario after clustering is Pdi, and its cumulative probability distribution Fdi is shown in the following Eq. 14.
[image: Equation for the variable F subscript d i equals the sum from k equals one to i of P subscript d i k, where i equals one to M subscript d i. The equation is labeled as number fourteen.]
Similar to the determination of line fault state pl, the non-sequential Monte Carlo simulation method can also be used to generate uniformly distributed random numbers xd in the interval [0, 1] and randomly select attack scenarios for the subsequent resilience assessment process. When Fd(i-1)<xd < Fdi, it indicates that scenario i is selected. A set of samples[νi, Tst,i, Tdr,i] can be obtained, and the fault scenario can be further generated according to the parameters of extreme events.
3 MULTI-GRID DISTRIBUTION NETWORK MODEL AND TOUGHNESS ANALYSIS
3.1 Distribution network model construction
3.1.1 Construction of the renewable energy output model
With the development of global renewable energy, growing renewable energy in multiple distribution networks is increasingly important, followed by the network attack probability. The attackers may be aimed at the control system of renewable energy itself and may also use the renewable energy system as a springboard through the data exchange system to attack multiple distribution networks. Therefore, renewable energy must also be included in the construction of the network attack model. Considering the proportion and representativeness of renewable energy in the grid, wind power and photovoltaic are selected to construct renewable energy output models in this article.
3.1.1.1 Wind power
In general, the probability density of the wind speed conforms to the Weibull distribution (Eq. 15):
[image: The equation shown is \( f_{\text{R}}(v) = \frac{k}{c} \left(\frac{v}{c}\right)^{k-1} e^{-\left(\frac{v}{c}\right)^k} \), labeled as equation (15).]
[image: Text reads "Among them" in serif font, black letters on a white background.], k and c are, respectively (Eq. 16):
[image: Equations defining variables k and c. Equation for k: k equals open parenthesis sigma divided by mu close parenthesis raised to the power of 1.086. Equation for c: c equals mu divided by uppercase gamma open parenthesis one plus one divided by k close parenthesis. Number 16 in parentheses is to the right.]
In this formula, σ is the standard deviation of wind speed in statistical time, and μ is the expected wind speed in statistical time. Γ is a gamma function.
The output power of the fan is related to the size of the wind speed and the power characteristics of the fan itself. The output power is (Eq. 17) (Nan et al. (2022):
[image: Equation showing conditions for wind power output, \( P_{\text{wind}}(v) \). It equals zero when velocity \( v \) is less than or equal to cut-in speed \( v_{\text{ci}} \) or greater than cut-out speed \( v_{\text{co}} \). When \( v \) is between \( v_{\text{ci}} \) and rated speed \( v_{\text{r}} \), it equals \( k_{1}v + k_{2} \). For velocities from \( v_{\text{d}} \) to \( v_{\text{r}} \), power is \( P_{\text{r}} \). Marked as equation 17.]
In this formula, vci and vco are the cut-in wind speed and cut-out wind speed of the fan, vr is the rated wind speed of the fan, Pr is the rated output power of the fan, and k1 and k2 are constants.
3.1.1.2 Photovoltaic
The output of distributed photovoltaics is directly related to the magnitude of the light intensity. However, due to the intermittent type and uncertainty of the light intensity, the photovoltaic output will also change with the light intensity. Overall, the photovoltaic output power is PPV. The probability density curve can be approximated by a beta distribution (Eq. 18):
[image: The image shows a probability density function equation: f(P_PV) equals (Γ(α + β) / (Γ(α)Γ(β))) multiplied by (P_PV / P_MF) raised to (α - 1) multiplied by (1 - P_PV / P_MF) raised to (β - 1). Equation number (18) is indicated.]
In this formula, Pmax indicates the maximum output power of the photovoltaic power supply. α and β are the two parameters of the beta distribution probability density function, respectively, which can be calculated by calculating the average light intensity μ and the variance σ of the light intensity within a day.
3.1.2 Typical load model construction
Saccentie et al. (2019) proposed a way of fitting a normal distribution curve based on the analysis of extensive data, taking the expectation of a normal distribution curve as a typical load curve.
Using a large amount of power grid load data, the load data at the same time on different days are fitted to a normal distribution, and, finally, the expectation of normal distribution at each time is taken as the load value at that time of the typical day. The load data at the same time on different days were fitted by maximum likelihood estimation by calculating the load value of 24 periods to the final fitted typical day, and the fitted data were calculated (Eqs 19,20):
[image: Likelihood function \( L(\theta) = L(x_{n_1}, x_{n_2}, \ldots, x_{n_m}; \theta) = \prod_{n=1}^{m=n} f(x_{n_i}; \theta) \), equation number 19.]
[image: The image shows a mathematical expression for the expected value of \( x_i \), denoted as \( E(x_i) \). It is represented by the integral of \( x \) times \( f(x_i) \) with respect to \( x_i \). The equation is labeled as equation (20).]
In this formula, xia indicates the load remaining after duplicate data are removed from the same period on different days. θi is the unknown quantity to be estimated, a represents the ath load value in the sample at time i, and bi indicates the number of repeated load values in period i. Represents the formula E(xi) expectation for period i, and xi represents the argument of the normal distribution function for the ith period.
3.1.3 Energy storage equipment, model construction
The output of new energy units, such as wind power and photovoltaic, in the distribution network is often intermittent and uncertain. Access to energy storage equipment can suppress the output power of new energy, improve the power absorption capacity of the distribution network, and bring certain economic benefits (Nan et al., 2022).
The energy storage system is equivalent to connecting the distributed power supply to some nodes during some operating periods and connecting with different power loads during other periods. That is, the energy storage absorbs active power when charging and emits active power when discharging (Eq. 21):
[image: Equations illustrating the state of charge (SOC) at time t plus delta t. The first equation: SOC(t + Δt) equals SOC(t) plus \( \frac{P_c(t + Δt)\eta_cΔt}{E} \). The second equation: SOC(t + Δt) equals SOC(t) plus \( \frac{P_d(t + Δt)Δt}{Eη_d} \). Both are numbered as equation 21.]
In this formula, SOC(t) represents the SOC value of the energy storage system at time t, Pc and Pd represent the absorption and emitted power of the energy storage, ηc and ηd represent the efficiency of the absorption and emitted power of the energy storage system, and ∆t represents the capacity of the energy storage system and the duration of charge and discharge.
3.2 DAD planning model construction
The DAD model is suitable for the development of defense plans for important infrastructure, including power systems. Generally, the interactive concept of attack and defense in traditional DAD planning models can be divided into the following three layers:
	(1) System planning layer: Defenders of this layer need to consider all possible attack scenarios in advance and analyze and classify these scenarios to facilitate the development of defensive measures against these possible attacks to reduce the losses caused by attacks. Common countermeasures can include strengthening the hardened target and adding backup equipment and smart equipment, etc., to minimize the system loss caused by the attack.
	(2) System damage layer: Attackers in this layer usually develop unique attack methods and approaches for these advanced layout defense measures after knowing the measures formulated by the system planning layer and try to identify the worst and most serious attack scenarios so as to cause the greatest loss to the system.
	(3) System operation layer: after completing the pre-layout defense, the defender of this layer takes some recovery measures to deal with the attack after the attacker carries out the worst attack in order to minimize the system loss. Common recovery measures include load cutting, putting energy storage devices or standby devices in use, and isolating faulty or infected devices to minimize subsequent losses and impact on system operation.

In short, the purpose of the defender is to minimize the system loss, while the purpose of the attacker is to maximize the system loss.
4 BUILDING AND SOLVING A DAD MODEL OF DISTRIBUTION NETWORK CONSIDERING A NETWORK ATTACK
4.1 Model construction under a network attack
Compared with the traditional distribution network, much energy storage equipment is connected to the current multiple distribution network. When the network attack receives faults or fluctuations, energy storage can be an important resource in the planning of the distribution network DAD. The DAD planning model of a multi-distribution network considering the participation of energy storage under network attack is shown in Figure 3.
[image: Flowchart illustrating a three-level system. First Level: Defender aims to minimize load loss and determine coordination measures between line reinforcement and energy storage configuration. Second Level: Attacker aims to maximize load loss and determine multi-stage, multi-area distribution line fault state set. Third Level: Defender again aims to minimize load loss and determine loss load.]FIGURE 3 | DAD planning model considering energy storage.
The first layer in the figure is the system planning layer. This article proposes the coordination measures of “line reinforcement and energy storage configuration” that can operate with energy storage in distant and important load disasters to reduce the investment cost of grid prevention and minimize the load loss in the distribution network emergency response. The second layer is the disaster attack layer, from the perspective of the attacker, and the third layer of system operation minimizes the load loss in the emergency response determined in the second layer.
4.2 Model solution algorithm and steps
The DAD planning model for energy storage configuration established in this article is a three-layer and two-stage optimization problem, which has the same mathematical form as the two-stage adaptive robust optimization model, namely, the three-layer and two-stage structure of min–max–min. Generally, most existing studies use the Bender decomposition and the C&CG algorithms to solve such problems. Compared with the Bender decomposition algorithm, the C&CG algorithm has stronger convergence and solution power (Nan et al., 2022). Therefore, the C&CG algorithm is used.
4.2.1 C and CG, the algorithm for solving
According to the DAD planning model constructed in Section 3.1, the following matrix is listed (Eq. 22):
[image: Minimax optimization problem equation with constraints. Minimize over variables \( x \) and maximize over variable \( u \). Subject to \( A X \leq a \). Within \( \Theta(X, u) \), define conditions:  \( Y \mid M Y \geq N X, K Y = u \)  and  \( J_m Y \|2 \leq s_m^T Y \)  for \( m = 1, 2, \ldots, n \). Equation labeled as 22.]
In this formula, X is the optimization variable in the first stage, u is the optimization variable in the second stage, which belongs to an uncertain set Us, and Y is the optimization variable of the running layer in the second stage. A, M, N, K, and Jm are the constant coefficient matrix. a, b, and fm are the constant coefficient vector.
According to the application scope of the DAD planning model 1 and the C&CG algorithm constructed above, when using the C&CG algorithm, the solution is necessary to assemble the established model into the main problem (MP) and the subproblem (SP) in advance.
In the DAD planning model of resilient distribution network established in this article (Yang et al., 2024), pre-disaster planning measures need to be formulated for the main problem, that is, to solve the coordinated measures x1 and x2 of line reinforcement and energy storage configuration under the given distribution line fault state scenario ul (Eq. 23):
[image: Minimization problem equation with constraints is shown. The objective is to minimize x, phi, and F. Constraints include AX is less than or equal to a, F is greater than or equal to b transpose Y_l, M T_l is greater than or equal to N X, K Y is equal to u, and the norm of J_m Y_l is less than or equal to f transpose T Y_n, for m equals one to n. Equation is labeled 23.]
In this formula, F is the main goal of the problem, i is the number of iterations, and all the variables with subscripts i in the formula are the variables obtained by the ith iteration.
The purpose of the subproblem (SP) is to find the distribution network fault state scenario with the greatest loss. That is, in the case that the optimal solution [image: It seems there is no image to generate alt text from. Please upload the image or provide a URL, and I will be happy to help with the alt text.]、 [image: Mathematical expression displaying \( x^2 \), representing the square of the variable \( x \).] of MP is given, the worst fault scenario u is obtained (Eq. 24):
[image: Maximize over all \( u \) in \( U \), then minimize over \( \tau(\vartheta, x^\ast) \) for the expression \( b^u Y \). Equation number 24.]
Following Zhang et al. (2020), this article adopts the strong duality theory to transform the inner min form of the subproblem into the max form and combine the outer problem into a single-layer optimization problem (Eq. 25).
[image: Mathematical optimization problem: minimize \( (MX^r)^T \eta + u^T \xi \) with respect to \( u, \eta, \xi, \mu, \sigma \), subject to \( M^T \eta + K^T \xi + \sum_{m=1}^{n}(I_m^T \mu_m + f_m \sigma_m) = b \). Constraints include \( \|\mu_m\|_2 \leq \sigma_m \) and \( \eta \geq 0 \). Equation labeled as (25).]
In this formula, [image: Greek letters eta, xi, mu sub m, and sigma sub m are shown in sequence.] is the variable after dual processing. The above formula contains a non-convex bilinear term, [image: Mathematical expression showing \( u \) raised to the power of \( T \), multiplied by \( \xi \).], so [image: It seems there might be a mix-up with the image upload. Please try uploading the image again or provide a URL.], a 0–1 integer variable, is introduced to represent the strongest attack and the weakest attack on the distribution network. When [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a description of it.] is set to 1, the distribution network suffers the strongest attack, and when [image: Please upload the image or provide a URL for me to create the alternate text.] is set to 0, the distribution network suffers the weakest attack. The linearization process is as follows (Eq. 26):
[image: Mathematical equation displaying: \( u^T \xi = \sum u_i \xi_i = \sum [u_{i, \text{min}} \bar{\xi_i} + (u_{i, \text{max}} - u_{i, \text{min}}) \rho \bar{\xi_i}] \). Equation number 26 is shown on the right.]
In this formula, [image: It seems like the text "u sub i" (often denoting a mathematical variable or index) is not an image. If you intended to reference an image, please upload the image file or provide a URL, and I can help with the alt text.] and [image: It seems there was an error in providing or accessing the image. Please upload the image file or provide a URL to the image you'd like to describe. If there's additional context or a caption, feel free to include that as well.] are the elements in sets u and [image: It appears you've mentioned something related to resolution but no image was provided. If you upload an image or provide a URL, I can help create the alt text.], respectively, and [image: Italic lowercase letter "u" with subscript "i" and subscript "max".] and [image: Mathematical notation showing "u subscript i, comma min."] represent the attacks that cause the most and least damage to the distribution network, respectively. [image: Mathematical expression depicting the probability density function denoted by the Greek letter rho with subscript i and superscript xi.] is relaxed by the big-M method. The relaxation process is as follows (Eq. 27):
[image: Inequality constraints are shown: \(-M\rho_i \leq w_i \leq M\rho_i\) and \(-M(1-\rho_i) + \xi_i \leq w_i \leq M(1-\rho_i) + \xi_i\), labeled as equation (27).]
In this formula, wi is an intermediate variable, and M is a positive integer with a relatively large value. After the above conversion, the problem is converted into a convex and linear problem, which is easy to solve.
The specific solution process is shown in Figure 4.
[image: Flowchart illustrating an iterative optimization process for configuring mobile energy storage. It starts by setting initial bounds and attack values, then involves solving main and subproblems. It updates bounds and configuration schemes, checks iteration accuracy, and either incrementally adjusts or displays the optimal configuration.]FIGURE 4 | C&CG algorithm solution process.
5 EXAMPLE ANALYSIS
5.1 Simulation process and environment configuration
Based on the above analysis, the specific process of DAD planning of the multi-distribution network for network attacks is shown in Figure 5.
[image: Flowchart of a DAQ planning process under network attack, divided into two main sections. The top section in red outlines vulnerability analysis steps: establishing a Petri net model, calculating ruin degree, generating attack scenarios, and analyzing extreme scenarios. The bottom section in blue outlines response steps: starting with pre-disaster planning, receiving a network attack, taking recovery measures, and judging system status, leading to a decision point of either continuing or finishing.]FIGURE 5 | DAD planning process under network attacks.
As shown in the figure, the corresponding Petri net attack model is first constructed according to common network attacks and converted into the corresponding MC matrix to facilitate the subsequent calculation of power grid vulnerability and vulnerable nodes. The vulnerable nodes when network attacks occur are determined by calculating the ruin degree of each node and the MC matrix determined above, and on this basis, the fault scenario for the weak nodes under network attacks in the multi-component power grid is generated.
Considering the generation process of network attack scenarios in the distribution network established in Section 1, after analysis and in combination with the literature [19], the network attack mode in this article will attack nodes in the system and deliberately attack nodes with the most vulnerable analysis results to enhance the effectiveness of attacks and the severity of consequences. At the same time, considering that both power nodes and communication nodes exist in the physical fusion system of power information and considering the inter-network failure probability when the two types of nodes fail, this article chooses to directly attack the power nodes because, in the case of the same inter-network failure probability, continuous attacks on power nodes are more likely to cause chain failures (Wang et al., 2018).
DAD is a three-layer planning model, so it is necessary to plan the first defense layer before carrying out network attacks. Coordination measures for line reinforcement, including energy storage, are taken in this article. After network attacks, corresponding measures are taken for damage and attacks so as to minimize load loss to the greatest extent.
5.2 Simulation results
The simulation in this article is carried out under IEEE33 nodes. The specific node configuration and wiring are shown in Figure 6. Among these nodes, 2, 6, 9, 25, and 29 are DEG nodes, and 3, 4, 6, 10, 11, 15, 17, 19, 24, 26, 28, and 33 are important loads; 13, 18, 20, 24, and 33 are PV nodes. The remaining parts are ordinary load nodes.
[image: Diagram of a network consisting of 33 nodes connected by lines. Nodes are marked as ordinary loads (unfilled circles), important loads (filled circles), DEG nodes (filled red circles), and PV nodes (red squares). A key explains these symbols.]FIGURE 6 | 33 Node distribution.
The main objective is to reduce the cost of the overall pre-layout and ensure as few island nodes as possible after the fault branch is disconnected. Each unit cost is shown in Table 1.
TABLE 1 | Unit costs.
[image: Table displaying costs in units of 10^3 yuan for different categories: preconfigured energy storage at 500, load reduction at 1, and important load cuts at 10.]Based on the model established above, this article sets the following scenarios for verification and comparison:
	1) A pre-layout robust optimization planning model considering energy storage coordination participation;
	2) A robust optimization planning model considering energy storage coordination participation;
	3) A pre-layout deterministic optimal planning model considering energy storage coordination participation;
	4) A deterministic optimal planning model considering energy storage coordination participation.

Under the above scenario, the pre-layout cost of various optimization planning models and the node wiring situation after failure are shown in Figure 7.
[image: Bar chart comparing two groups: "Pre" and "No-Pre," with "Robust" in red and "Determin" in blue. "No-Pre" has significantly higher values than "Pre" for both categories, reaching around 16,700, while "Pre" values are around 14,000.]FIGURE 7 | Cost/thousand yuan under each simulation scenario.
The figure shows the sum of the various costs in each of the four cases, that is, whether pre-layout is performed and whether robust or deterministic optimization is used. In the figure, the two columns on the left show the impact of pre-layout on cost when robust optimization is adopted. It can be seen that the cost of the scheme with pre-layout is lower than that without pre-layout. On the right is the cost situation under the condition of deterministic optimization. The pre-layout has obvious advantages, and the cost will be reduced by approximately 15%–20%. For the same pre-layout scheme, robust optimization and deterministic optimization also have a certain impact on the cost, as shown in the blue columns in the figure. A comparison indicates that under the premise of the same pre-layout, the robust optimization method has a lower cost than the deterministic optimization method, and the cost can be reduced by approximately 10%. Based on the above simulation results, we can find that the pre-layout and robust optimization methods have better effects and more advantages for cost control.
Figures 8–11 show the cable connections between nodes after faults in the four scenarios.
[image: Diagram showing a network of connected nodes, including important nodes (black dots), ordinary nodes (circle outlines), DEG nodes (red squares), PV nodes (red dots), and mobile energy storage pre-configured nodes (red triangles).]FIGURE 8 | Pre-layout robustness optimization.
[image: Diagram of a network with nodes connected by lines. Important nodes are solid black circles, ordinary nodes are open circles, DEG nodes are solid red squares, PV nodes are hollow red squares, and mobile energy storage pre-configured nodes are red triangles.]FIGURE 9 | Pre-layout deterministic optimization.
[image: Diagram of a network with various nodes, including important nodes (black dots), ordinary nodes (white dots), DEG nodes (red dots), PV nodes (red squares), and a mobile energy storage pre-configured node (red triangle). Nodes are connected by lines, forming a complex structure.]FIGURE 10 | Robust optimization without prelayout.
[image: Diagram of a network with different types of nodes marked. It shows important nodes (black filled circles), ordinary nodes (empty circles), DEG nodes (black squares), PV nodes (red squares), and a mobile energy storage pre-configured node (red triangle) connected by lines.]FIGURE 11 | Deterministic optimization without prelayout.
In view of the introduction of energy storage coordination and participation in the previous DAD planning model, the impact of the addition of energy storage equipment on the overall layout cost and line operation status is verified in the simulation. The main scenarios are as follows:
	1) The pre-layout robustness optimization planning model considering the participation of energy storage coordination;
	2) The pre-layout robustness optimization planning model without considering the participation of energy storage coordination.

In the above scenario, the cost and failure of the node distribution of each scheme are shown in Figures 12, 13 and Table 2.
[image: Network diagram showing various nodes connected by lines. Important nodes are marked with black dots, ordinary nodes with circles, DEG nodes with red dots, PV nodes with red squares, and mobile energy storage pre-configured nodes with red triangles. A legend clarifies the symbols.]FIGURE 12 | Robust optimization of prelayout considering the participation of energy storage.
[image: Diagram of a network with nodes marked by different symbols: filled black circles for important nodes, empty circles for ordinary nodes, filled squares for DEG nodes, empty squares for PV nodes, and triangles for mobile energy storage pre-configured nodes. A connected path links various nodes.]FIGURE 13 | Prelayout robust optimization without energy storage participation.
TABLE 2 | Overall layout cost of each scenario.
[image: Table comparing costs in yuan divided by one thousand for scenarios with and without energy storage. Considering energy storage costs five thousand eighty-five point eight yuan, while not considering it costs eight thousand eighty-five point seven yuan.]From the above simulation results, it can be observed that before energy storage is taken into account, the overall layout cost and fault recovery cost are approximately 8085.7 thousand yuan. When mobile energy storage is introduced, the overall cost is reduced to 5,085.8 thousand yuan, a reduction of approximately 40%. In addition, on the premise of fault recovery and line connection operation, comparing Figures 12, 13 indicates that when energy storage is involved, the number of islands composed of three or fewer nodes is three, including one of the important users, and one island is equipped with mobile energy storage, which can be temporarily used as power supply. When energy storage is not considered, the corresponding number of islands is four, including one important user, and there is a DEG node disconnected from the network.
It can be seen that the participation of energy storage has a better effect on the operation of the distribution network after the failure. The main reason for the 60% overall layout cost reduction caused by energy storage participation is that when energy storage is not considered and the network is attacked, the layout mode without energy storage will cause more important load nodes to disconnect, thus increasing the cost. At the same time, the number of island nodes is large, which affects the normal operation of the network. This fully proves the effectiveness and superiority of energy storage coordination participation.
6 CONCLUSION
In the context of the integration of traditional power systems with information and communication systems, resulting in a distinctive power information physical fusion system, this article delves into and validates the influence of a DAD planning model that incorporates mobile energy storage coordination on the layout cost and line operation of a multi-distribution network in the event of network attacks. The key contributions of this work are as follows:
	1. First, a common network attack flow model is built using a Petri net model, which is transformed and simplified with a matrix. On this basis, considering the vulnerability of the multi-distribution network under network attacks, two parameters, namely, the degree of failure and the degree of failure impact, are introduced to analyze the vulnerability strength of each node in the power-communication network under network attacks. The network attack scenario of the multi-distribution network is simulated and simplified with the help of big data from previous network attack scenarios.
	2. Characteristic analysis and model construction are carried out for wind power, photovoltaic, and mobile energy storage that frequently appear in current multi-component distribution networks. At the same time, on the basis of the traditional DAD planning model, mobile energy storage is introduced into the planning to complete the DAD planning model construction under network attacks. In this article, the C&CG algorithm is used to solve the three-layer, two-stage problem of the DAD planning model, and the specific solving steps and flow chart are given.
	3. Based on the DAD planning model proposed above, a robust pre-layout optimization planning scheme considering the participation of mobile energy storage is proposed in order to reduce the cost required for adjustment after failure and improve the operation condition. To verify the effectiveness and superiority of the scheme, a control group is also set up according to whether pre-layout is carried out and whether robustness optimization or deterministic top optimization is adopted. A control group was set to determine whether mobile energy storage participated in the pre-layout robustness. The simulation results are verified in a 33-node system.

Finally, according to the simulation results, it is concluded that a DAD planning pre-layout in advance and robust optimization methods have certain effects on cost reduction, and their effects can be superimposed. On the basis of the robustness optimization method of pre-layout, the introduction of coordinated control of mobile energy storage has a significant effect on cost reduction, which proves its effectiveness and superiority.
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With advancements in communication systems and measurement technologies, smart grids have become more observable and controllable, evolving into cyber-physical-power systems (CPPS). The impact of network security and secondary equipment on power system stability has become more evident. To support the existing grid toward a smart grid scenario, smart metering plays a vital role at the customer end side. Cyber-Physical systems are vulnerable to cyber-attacks and various techniques have been evolved to detect a cyber attack in the smart grid. Weighted trust-based models are suggested as one of the most effective security mechanisms. A hardware-in-loop CPPS co-simulation platform is established to facilitate the theoretical study of CPPS and the formulation of grid operation strategies. This paper examines current co-simulation platform schemes and highlights the necessity for a real-time hard-ware-in-the-loop platform to accurately simulate cyber-attack processes. This consideration takes into account the fundamental differences in modeling between power and communication systems. The architecture of the co-simulation platform based on RT-LAB and OPNET is described, including detailed modeling of the power system, communication system, and security and stability control devices. Additionally, an analysis of the latency of the co-simulation is provided. The paper focuses on modeling and implementing methods for addressing DDOS attacks and man-in-the-middle at-tacks in the communication network. The results from simulating a 7-bus system show the effectiveness and rationality of the co-simulation platform that has been designed.
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1 INTRODUCTION
With the development of the economy and society, the demand for energy is in-creasing. Traditional thermal power generation is unable to meet the electricity demand, and environmental issues such as greenhouse gas emissions are becoming more prominent. Guided by the national goal of reaching peak carbon emissions and achieving carbon neutrality, the integration and adoption of new energy sources have become an inevitable trend in energy development. The development and utilization of distributed energy provide an important approach for adjusting and upgrading China’s energy structure.
Distributed energy is a user-side energy supply method that can operate independently or be connected to the grid. It maximizes resource and environmental benefits and determines the method and capacity based on them. It represents an important direction for the future development of global energy technology. Compared to traditional power sources, distributed power sources have unique advantages including cost-effectiveness, environmental friendliness, and flexibility. They are usually located on the user side, which reduces the construction cost of transmission and distribution networks, minimizes energy loss, and has a short construction cycle and quick return on investment. Additionally, they are technologically advanced, flexible, and easy to maintain, allowing for rapid start-up and shutdown. They can also smooth out peak loads, providing great flexibility. With the integration of a large number of distributed power sources, the safe, reliable, and stable operation of the distribution network is influenced by multiple uncertain factors, primarily manifested in terms of voltage at network nodes, flow direction, fault current in lines, and system protection. The randomness and intermittency of distributed power sources exacerbate issues such as node voltage deviation, severe load fluctuations, and increased network losses in the distribution system, thereby potentially leading to a series of problems including deteriorated power quality, equipment overload, reverse power flow, and excessive terminal voltage (Zhang et al., 2020a; Zhang et al., 2021; Nguyen et al., 2022).
Cyber-Physical systems are vulnerable to cyber-attacks. Various techniques have been evolved to detect a cyber attack in the smart grid (Singh N K et al., 2020). With massive data transmission on the CEEO network, the trustworthiness of the service node exerts an enormous influence on data privacy. To realize securely share data and decrease the local storage, end-user prefer to encrypt data and upload it to the cloud (Fan et al., 2021). Integration of renewable resources and increased growth in energy consumption has created new challenges for the traditional electrical network. To adhere to these challenges, Internet of Everything (IoE) has transformed the existing power grid into a modernized electrical network called Smart Grid (Desai et al., 2019).
Active distribution networks (ADNs) serve as networks for energy exchange and distribution, facilitating the bidirectional flow of both power and fault currents. Traditional power distribution networks are no longer adequate for flow and fault analysis, reactive power control, relay protection methods, and operational management. They require corresponding adjustments and improvements. Referred to as active distribution networks (ADNs), the focus is on distributed energy resources actively regulating their reactive and active outputs and utilizing modern communication means for coordinated control over the distribution network. This enables the full optimization of network operations by harnessing the potential of distributed energy resources (Zhang et al., 2020b; Cao et al., 2023; Cao et al., 2024).
The key technologies of ADNs include ADN planning, flow and fault analysis computations, relay protection, reactive power control techniques, and operational scheduling of distributed energy resources (Jabr, 2013). For example, efficient demand-side management tools allow operators to have better control over the operation and management of distributed energy resources. Additionally, integrating energy storage facilities helps absorb excess output or mitigate load fluctuations from distributed energy resources.
The ongoing advancements in power electronics technology are enabling various control and regulatory equipment to better serve active distribution networks. This enhancement facilitates the utilization of new energy generation within distribution networks while ensuring safety and stability. Zhao and You (2021) introduces a multi-level adaptive robust optimization framework based on deep learning to tackle uncertainties arising from the high penetration of distributed energy sources into distribution networks. Moreover, adaptive optimization control methods, relying on real-time measurement data, effectively model the input-output relationship of the distribution network using live measurements.
Through iterative interactions with the distribution network, these methods effectively overcome the reliance on extensive training associated with neural network methods, thereby enabling real-time control of the distribution network (Hou and Xu, 2009; Zhang et al., 2022). Zhao et al. (2016) utilizes a controller comprising three modules—voltage regulation, reactive power control, and active-frequency regulation—that adapt locally without the need for frequency measurements. Guo et al. (2019) proposes an optimization control frame-work for interconnected AC-DC microgrids based on model-free adaptive control, effectively addressing issues of AC-DC coordinated power control. Addressing the time-series characteristics of controlled systems, Zhang et al. (2021) integrates predictive control principles into model-free adaptive control, achieving superior control performance through adaptive predictive control. Bi et al. (20223) introduces a data-physical fusion-driven adaptive voltage control method for active distribution networks, effectively curbing frequent voltage excursions and enhancing the adaptive optimization control level of the distribution network. In the smart grid substation each wireless sensor node can be modeled using graph theory. Then each node is assigned with predefined weight, which gets effected during cyber intrusion. Each sensor node monitors the trust value of neighboring nodes (Singh et al., 2020). Cyber-Physical systems are vulnerable to cyber-attacks. Various techniques have been evolved to detect a cyber attack in the smart grid. Weighted trust-based models are suggested as one of the most effective security mechanisms. A two-level hierarchical network is examined, with the smart wireless sensors at the bottom and server at the top of the network. The direct and indirect trust of the node is calculated using “One Time Code” to determine the overall trust of nodes. Trust depends on the performance of the sensors, communication between sensors, and the server of the nodes. It also depends on the previous communication between the nodes (Singh and Mahajan 2020). As a cyber-embedded infrastructure, it must be capable of detecting cyberattacks and responding appropriately in a timely and effective manner. Previous work tries to introduce an advanced and unique intrusion detection model capable of classifying binary-class, trinary-class, and multiple-class CDs and electrical network incidents for smart grids. It makes use of the gray wolf algorithm (GWA) for evolving training of artificial neural networks (ANNs) as a successful machine learning model for intrusion detection (Yu et al., 2022). The intrusion detection model is based on a whale optimization algorithm (WOA)-trained artificial neural network (ANN). The WOA is applied to initialize and adjust the weight vector of the ANN to achieve the minimum mean square error (Haghnegahdar and Wang, 2020).
The impact of network security and secondary equipment on power system stability has become increasingly evident, emphasizing the urgent need for advanced simulation tools that can effectively model and mitigate these threats. To bridge this critical gap, a hardware-in-loop CPPS co-simulation platform is established to facilitate the theoretical study of CPPS and the formulation of grid operation strategies. A sophisticated HIL simulation environment is proposed in Riquelme-Dominguez et al. (2023), that addresses system frequency responses in power systems with low inertia. This aligns closely with our focus, demonstrating the importance of accurate real-time simulations under both normal and emergency conditions. The cybersecurity challenges in modern power systems are further emphasizes in Fu et al. (2023), which highlights the need for HIL simulations that not only handle physical system dynamics but also integrate cybersecurity threat scenarios. The method of virtualized environments complement HIL simulations is analyzed in Zhang et al. (2021), particularly in applying machine learning techniques for anomaly detection. This study supports our method of incorporating machine learning to enhance the predictive capabilities of our co-simulation platform. Specialized applications of HIL simulations for maritime control systems are described in Vu et al. (2023), highlighting the versatility and critical need for robust HIL environments across different sectors, including the specific challenges posed by cyber-physical threats. This paper examines current co-simulation platform schemes and highlights the necessity for a real-time hardware-in-the-loop platform to accurately simulate cyber-attack processes, considering the fundamental differences in modeling between power and communication systems. An independent, distributed, and lightweight trust evaluation model is proposed and evaluated. The trust model is implemented at two levels: first at the smart meter level, where nodes collect information on its neighbor nodes and forward it to the collecting node (Alnasser and Rikli, 2014). In previous work a Hierarchical Trust based Intrusion detection System (HTBID) has been proposed to effectively deal with various attacks in wireless sensor network. HTBID deals with different types of attack with the help of Hierarchical Trust evaluation protocol (HTEP). This work identifies different parameters and factors that affect trust of wireless sensor network. HTEP considers attributes derived from communication as well as social trust to calculate the overall trust of sensor node (Dhakne and Chatur, 2017).
The co-simulation platform based on RT-LAB and OPNET is proposed, including detailed modeling of the power system, communication system, and security and stability control devices. Our approach significantly advances the state of the art by enabling more precise and dynamic responses to cybersecurity threats within CPPS environments. Our solution leverages cutting-edge advancements in real-time simulation technology and cyber-attack modeling to provide a comprehensive tool for power system operators. This enables the proactive identification of vulnerabilities and the testing of countermeasures under controlled yet realistic conditions, which was not feasible with previous methodologies. This paper focuses on modeling and implementing methods for addressing DDOS attacks and man-in-the-middle attacks in the communication network. The results from simulating a 7-bus system show the superiority and practicality of the co-simulation platform that has been designed.
2 CO-SIMULATION PLATFORM FRAMEWORK AND DESIGN
2.1 Platform framework
Advanced sensors and high-speed networks have enabled real-time monitoring of power grids, providing data on various electrical measurements such as voltage, current, and frequency, as well as environmental information like temperature, humidity, and light (Luo, 2016; Zhang et al., 2021; Mittal et al., 2023). This data is utilized to support grid monitoring, protection, regulation, and other functions.
The smart grid control system in CPPS consists of three main components: the power system as dipicted in Figure 1 (including generators, loads, power electronic equipment, energy storage systems, measuring units, and control units), the communication system (comprising routers, optical fibers, servers, and other devices), and the security and stability control device (a decision-making system with a master station and substation).
[image: Diagram of a network system showing the interaction between a power system and security control devices. The power system includes a Measuring Unit and Control Unit, both connecting to a network. The network links to a security device consisting of a Substation and Master Station. Arrows indicate data flow between units and devices.]FIGURE 1 | The structure of smart grid control system.
Measuring units collect data on the grid’s status and transmit it to the master station via a wide-area communication network (Osanaiye et al., 2016; Zhang et al., 2020c). The master station calculates control commands based on a strategy and sends them to each substation. Substations then execute specific operations using control units based on local control strategies (Othman et al., 2018; Menezes et al., 2023).
This paper utilizes a modular design to integrate discrete event simulation and continuous-time simulation. The co-simulation platform comprises four modules: power system, communication system, master station, and substation. These modules are connected via Ethernet to streamline data interface design and enhance modeling efficiency. Real-time performance is ensured through the use of appropriate simulation tools for the power system and communication system. Figure 2 illustrates the architecture of the co-simulation platform.
[image: Diagram of a network control system consisting of three main sections: OPAL-RT, OPNET, and The Security and Stability Control Device. OPAL-RT includes a power grid, measuring unit, and control unit connected to a network interface. OPNET contains three sites (SITL1, SITL2, SITL3) interconnected by networks. The Security and Stability Control Device comprises a substation with protocol resolution and processing control, and a master station with protocol resolution, data processing, and strategy search. Each section connects via network interface cards (NIC).]FIGURE 2 | The architecture of co-simulation platform.
2.2 Power system
The real-time requirements of the co-simulation platform present a challenge, as most power simulation systems are PC-based and cannot handle large-scale simulations in real-time with small time steps (Zhang et al., 2024). To tackle this problem, the OPAL-RT modeling software RT-LAB was chosen as the power system simulator (Amaizu et al., 2021). Simulink models can be compiled into multiple subroutines that can be executed in parallel using RT-LAB.
Modeling in RT-LAB involves four main components: the power grid, a measuring unit, a control unit, and a network interface (Cil et al., 2021), as shown in Figure 1. The original power grid is simplified into an equivalent network for real-time simulation, and the grid model is designed accordingly and verified through offline simulations (Mittal et al., 2023). Regarding the measuring unit, it is essential to define the sampling frequency and data type of the packets, which include parameters such as voltage, current, frequency, and power-angle (Alnasser and Sun, 2017; Singh and Mahajan, 2020; Singh and Mahajan, 2021; Yu et al., 2022; Zhang et al., 2021a; Zhang et al., 2021b; Zhang et al., 2021c). Additionally, timestamps are included to analyze latency. In the control unit, it is crucial to determine the target and structure of commands sent from the substation. The control unit is responsible for converting these commands into control quantities and outputting them to the control target. OPAL-RT uses TCP and UDP protocols for external communication. The network interface consists of three modules: OpIPSocketCtrl, which controls the communication protocol, port, and IP address; OpAsyncRecv, for receiving packets; and OpAsyncSend, for sending packets. Multiple sets of network interfaces can be included in the power system model, distinguished by port numbers.
2.3 Communication system
To ensure real-time performance, this paper utilizes OPNET to simulate the communication system. The modeling in OPNET is categorized into three layers: net-work, node, and process, depending on the level of the communication network. This three-level modeling allows for the construction of communication networks, protocols, algorithms, and equipment. OPNET also offers a range of standard applications, such as Database, E-mail, HTTP, Print, Remote Login, Video Conferencing, and Voice, which can be combined to cover most power services (Kaur et al., 2021; Zhang et al., 2023). For unique power businesses, the standard application model can be modified at the process layer to create a customized application model.
To establish end-to-end business connections between real and virtual networks, a semi-physical simulation interface can be employed (Priyadarshini and Barik, 2022). OPNET offers three types of such interfaces: HLA-API, ESA-API, and System in the loop (SITL). While HLA-API and ESA-API require defining process and node models and designing corresponding interface programs, SITL is an existing model provided by OPNET. Although it supports limited protocols and requires mapping real packets to virtual ones, it enables easy access to external devices in the simulation system. As communication between modules uses the UDP protocol, we have chosen SITL as the data interface to simplify model design.
Data is exchanged between measuring units and substations with the master station through a communication system. Control units exchange data with substations directly through a switch. To facilitate this, two network interface cards (NICs) are inserted into the OPNET host. NIC1 communicates with the OPAL-RT and substation via the switch, while NIC2 communicates directly with the master station. The network model includes multiple SITL modules that correspond to the master station, substation, and measuring units by setting filters. Network 1 connects measuring units to the master station, while network 2 connects the substation to the master station.
2.4 The security and stability control device
The security and stability control device plays a crucial role as the second and third lines of defense for the power grid. It is responsible for responding to emergencies such as load shedding, generator trips, or valve fast shutdowns in order to prevent further spread of faults in the grid. This device consists of both a master station and substations. The master station monitors the power grid’s status through measuring units and compares any faults found with the security control strategy based on the fault type and location. Once the optimal control strategy is determined, the master station sends control commands to the substations. The substations report the controllable load amount to the master station and receive control commands from it. Finally, the substations send commands to the control units and execute the actual operation according to the local control strategy.
The master station is constructed on the Linux platform and is programmed using the C language, allowing it to perform complex operations. It retrieves real-time power grid status information from OPAL_RT and receives control commands from the security and stability control device to efficiently monitor and manage the power system. The master station consists of four modules, which are as follows:
2.4.1 Protocol analysis module
The protocol analysis module is responsible for examining packets sent by the measuring unit and the substation. Each packet consists of a padding section and a data section. The data section includes a header, a command code, and a checksum. Upon receiving a packet, the master station extracts the data section using a preset offset and verifies its accuracy. Then, the header is read to identify the message type and source, and subsequently, the corresponding operation is executed based on the command code. I have improved the grammar, added transitional phrases, and simplified certain words and phrases for better clarity without altering their original meaning.
2.4.2 Grid status database
The purpose of this module is to store up-to-date information on the power grid’s status, including the status of breakers, positions of transformer taps, as well as voltage and frequency levels.
2.4.3 Fault detection module
This module is triggered whenever there is an update to the grid status in the database, and it sends an alarm in case of system failure.
2.4.4 Control module
Upon receiving an alarm from the fault detection module, the control module formulates multiple coordinated control strategies according to the pre-established plan. It assesses their effectiveness and determines the optimal scheme to create a control queue for the substation.
The master station operates in parallel and dynamically assigns individual processes to each client. The client’s type can be automatically identified by the master station based on the self-descriptive packet. There are four types of commands: retrieving grid status from the database, updating grid status in the database, accessing control commands in the control queue, and adding control commands to the control queue. The master station can synchronize, analyze, and manage the power system, communication system, and substation.
This paper presents a substation that utilizes embedded Linux and comprises five components, as depicted in Figure 3: a control module, an input/output (I/O) module, a measuring module, a man-machine interface, and a communication module. The substation communicates with the master station every 0.833 ms. During a control cycle, the substation performs four steps:
[image: Flowchart depicting a system architecture. At the top, digital input module, analog input and output module, and digital output module connect to a central control module. Below, the control module connects to communication interface, PC104, power supply, keyboard, and LCD.]FIGURE 3 | Structure of substation.
Initially, the substation dispatches a packet that includes the controllable load quantity to the master station and then awaits the response packet.
After receiving the packet from the master station, the substation identifies its type by analyzing the packet header.
The substation performs different actions depending on the type of packet received. For synchronization packets, it revises the system clock. For command packets, it generates a control queue based on the local control strategy. If an abnormal packet is received, it is returned to the master station. If the control queue is not empty, all commands will be sent to the control unit.
2.5 System latency
Figure 4 illustrates the real-time simulation timeline of a co-simulation platform that includes a power system, communication system, master station, and substation. This timeline considers the simplified structure of the control system in the power grid.
[image: Diagram illustrating a sequence of sedimentary layers. It includes four horizontal layers: present surface, subaerial, depositional system, and nucleic surface. Triangular features represent depositional and erosion events between layers, labeled with time intervals and event markers like Te, A1, and A2. Each point illustrates positions of rise and fall, with connections between different levels indicating shifts over time.]FIGURE 4 | Timeline of real-time simulation.
To simplify the modeling process and clarify the function of each module, the measuring unit is limited to sending data only, while the control unit can only receive data. The communication cycle between the measuring unit and the master station is T_1, and the cycle between the control unit and the substation is T_2. At moment A1 in the simulation, the measuring unit sends sampled data to the master station, which receives the data at D1. At moment B1, the substation system sends the data of controllable load to the master station. After processing the data upon receiving them at D2, the master station issues a synchronization message or control order message to the substation. The substation analyzes the message and issues a control order to the control unit at B3. Finally, the control unit updates the relevant parameters in the power system node at A2.
The system latency consists of four main components: network latency, master station latency, substation latency, and inherent simulation platform latency. Network latency is the delay caused by communication systems, including issues such as packet loss, bit errors, routing problems, bandwidth limitations, and server performance. Master station latency is a result of hardware and software limitations, encompassing hardware latency and software latency. Hardware latency involves delays within the master station system, including network card performance and data transfer. Software latency refers to the time required for power service computations, such as state estimation, measurement information management, and power quality monitoring. Substation latency is similar to master station latency, involving hardware and software limitations that lead to delays. Inherent simulation platform latency arises from communication between modules in the platform. This includes factors like OPAL-RT operating system latency, OPAL-RT network card latency, OPNET operating system latency, OPNET host network card latency, switch latency, and more.
In actual CPPS, the platform’s inherent latency cannot be eliminated and varies randomly depending on the amount of data flow between modules. When data packets are less than 64 bytes, the inherent latency is approximately 1–2 ms. However, as the total latency of network, master station, and substation is already in the range of tens to hundreds of milliseconds, the impact of inherent latency is negligible and will not significantly affect the simulation accuracy. To further minimize the influence of inherent latency, one common approach is to use the Ping command to measure the communication latency between modules, record it as inherent latency, and subtract it from the controllable latency in the master station system.
3 CYBER-ATTACK MODELING
3.1 DDOS attack
A Distributed Denial of Service (DDOS) attack is a form of resource-exhaustion attack. Attackers employ Client/Server techniques to manipulate multiple computers as sources of attack, thereby enhancing the attack’s effectiveness. There are various types of DDOS attacks, including Sy flood, Smurf, and Land-based attacks. When a host is targeted by a DDOS attack, it experiences a high volume of pending connections, causing the network to be flooded with useless packets, leading to network congestion. Consequently, the target of the attack becomes incapable of communicating with the outside world.
Figure 5 illustrates the DDOS attack scheme, consisting of four components: the attacker, control puppet, attack puppet, and target. Attackers gain either partial or complete control of both the control puppet and attack puppet. The control puppet transmits the attack program to the attack puppet. Through the control puppet, the attacker instructs the attack puppet to send actual attack packets to the target.
[image: Diagram illustrating a distributed denial-of-service (DDoS) attack. An attacker sends instructions through "Masters" and "Zombies" in cloud-like clusters, which route through a network, leading to victims. Arrows indicate the flow of attack instructions, zombie activities, and feedback loops.]FIGURE 5 | Attack steps of DDOS.
This paper deploys an attacker node in an OPNET simulation. The attacker randomly scans and attacks all terminals in phase one, and infected computers send confirmations back to the attacker. In phase two, the infected computers flood the network connecting to the target with tons of meaningless packets.
3.2 MITM attack
The Man in the Middle (MITM) attack is an indirect method of gaining control over a target. By spoofing IP addresses and ports, the attacker can invade and take control of a virtual computer, creating a new communication channel between the original nodes. This new channel allows packets to be easily modified, leading the target to make incorrect decisions. Common examples of MITM attacks include Careto, Crypto locker, Dexter, and Fin Fisher.
In the research depicted in Figure 6, a computer is utilized as the attacker and equipped with two network interface cards (NICs). One NIC connects to OPNET while the other connects to the substation. The IP address of the NIC connected to the substation serves as the gateway IP address for the substation, while a virtual NIC is established within the computer and assigned the IP of the master station. The IP address of the NIC connected to the substation is configured as the substation’s IP address.
[image: Diagram showing a network security model involving an attacker and three stations. The attacker connects via HTTPS to camouflage stations labeled "Camouflage station IP and port" and "Camouflage master station IP and port." The "Master station IP and port" and "Station IP and port" are isolated, with a blocked initial connection marked by a red cross. Lines and images indicate secure communications and network threats.]FIGURE 6 | Man-in-the-middle attack.
Two methods of Man-in-the-Middle (MITM) attack are proposed as follows:
3.2.1 Data interception
In this method, the attacker intercepts packets from both the substation and master station, analyzes the packet header to determine its function, and copies any time packets to a buffer which is then sent to the substation. If a command packet is detected, it will be replaced by the time packet in the buffer. This attack prevents the substation from receiving commands from the master station.
3.2.2 Data modification
Similarly, in this method, once a command packet is detected, all subsequent packets will be replaced by a modified command packet that forces the substation to execute unreasonable load shedding and casting actions.
4 CASE STUDY
4.1 Model description
To verify the impact of communication systems and devices on power system simulations, as well as the necessity of co-simulation platforms in power system analysis, a 7-bus system was constructed in RT-Lab, as shown in Figure 7. The system includes seven buses, two controllable loads, two generators, one ideal voltage source, four transformers, and seventeen circuit breakers. Measuring units monitor buses B1, B2, and B3. The protection unit and control unit jointly manage the controllable load and generator, with the protection unit preventing the control unit from operating the protected device once it has been broken out. The simulation is based on a reference AC voltage of 230 kV, frequency of 60 Hz, and a simulation step of h = 2.5 × 10∧(−5) s. Table 1 provides the parameters for each device.
[image: A single-line diagram of an electrical power system with components including generators G1, G2, and G3, transformers T1, T2, T3, and T4, buses B1, B2, B3, B4, B5, B6, and B7, lines L1, L2, L3, L5, L6, and L7, and loads R1 and R2. The diagram shows the interconnections between these components, illustrating the flow of electricity.]FIGURE 7 | Structure of 7-bus system.
TABLE 1 | Parameters of the device.
[image: Table listing electrical devices by bus number. Bus B1 has generator G1 and transformer T1. Bus B2 has generator G3, transformer T4, and controllable loads R1 and R2. Bus B3 has an ideal voltage source G2 and transformer T2. Bus B7 has transformer T3. Voltage and capacities vary, with several devices at 13.8 or 110 kilovolts and capacities between 40 to 100 megavolt-amperes.]The strategy for system protection and security control during a three-phase short-circuit fault on transmission line L3 is as follows: The short-circuit protection unit will disconnect L3 within 0.1 s of the fault occurring. The over-current protection unit will disconnect L1 after a 2-second delay and disconnect L5 after a 3.5-second delay from the occurrence of the fault. Additionally, the security and stability control device will disconnect R2 after a 2-second delay following the short-circuit fault.
Figure 8 illustrates the communication network constructed in OPNET, which comprises eight router nodes, multiple servers, and terminals designed to simulate data transmission across various services. Notably, the measuring unit, master station, and substation do not directly correspond to individual nodes within this network. Instead, these physical components are interconnected to the OPNET communication network at specific boundary nodes using the SITL (System-in-the-Loop) module. This setup reflects the hierarchical nature of our system, where multiple physical devices may connect to a single communication node that serves as a gateway or aggregation point, rather than having a direct one-to-one mapping with the communication nodes.
[image: Flowchart depicting a measurement and control system. Circles labeled A to H represent units, with arrows indicating data flow. "Measuring Unit" connects to B, while "Substation" links to E and F. Arrows show "Measurement Data" and "Control Command" pathways, connecting various nodes to a "Control Unit" and "Master Station".]FIGURE 8 | Structure of communication network.
Furthermore, the control unit is integrated into the network via a connection to the substation through a switch, emphasizing the layered interaction between control operations and network communication. The routers in this network are linked by a 2 Mbps optical fiber, ensuring a consistent communication delay of 1 ms across the system.
After the occurrence of a three-phase short-circuit fault on L3, a DDOS attack and MITM attack are conducted to assess the effects of cyber-attacks on the power system.
4.2 DDOS attack
In this scenario, there is an attacker node connected to router A, as shown in Figure 9. The attacker sends malware to all terminals in the network and infects approximately 70% of them randomly. The infected terminals are then controlled by the attacker to send meaningless requests to the server, causing a congestion in network traffic.
[image: Diagram depicting a network attack on a power system. An attacker node connects via malware to various nodes, including a measuring unit, substation, and control unit. Data flows from measurement units to the master station via interconnected nodes, illustrating how control commands and measurement data are manipulated.]FIGURE 9 | DDOS attack.
All the loads in the system are connected to B2. However, the output of G3 is insufficient to meet the load requirements. As a result, the current of B2 directly indicates the behavior and stability of the system. The comparison of B2 current in three scenarios is illustrated in Figure 10.
[image: Line graph showing system behavior over time from 0 to 20 seconds, with three lines: "Ideal" in dark blue, "Normal" in green, and "DDOS attack" in light blue. The "DDOS attack" line shows significant spikes at around 10 and 15 seconds, while "Ideal" and "Normal" lines remain relatively stable. The y-axis is labeled "|∠(pu)", and the x-axis is labeled "t(s)".]FIGURE 10 | Current comparison of B2.
Under ideal conditions, without taking into account the communication system and actual devices, the security and stability control device had a response delay of 0 ms. As a result, the control unit disconnected R2 within 2 s of the occurrence of a short-circuit fault, ensuring the stability of the system.
Taking into account the communication system and the actual devices, the channel remained unobstructed and free from congestion in typical situations. The average latency between the substation and the master station was 233.9 ms. The substation promptly disconnected R2, resulting in a reduction of current in L5. This action effectively curbed the further spread of the fault.
During the DDOS attack, the average latency between the substation and the master station significantly increased to 2,136.7 ms due to a high volume of meaning-less packets congesting the channel. Despite the substation responding to the commands from the master station, the prolonged latency resulted in system instability and further propagation of the fault by the protection device.
Figure 11 illustrates the average latency between the substation and the master station for various levels of attack intensity, including infection rates of 30%, 50%, 70%, and 90%. In the case of a mild DDOS attack, the communication system exhibited the capacity to handle the packets sent by the compromised machines, resulting in minimal changes in latency. However, as the number of infected terminals grew, the communication system’s resources were depleted, leading to a significant increase in latency.
[image: Line graph showing latency in seconds plotted against infection rate percentage. The latency increases rapidly as the infection rate rises from 0% to 90%, starting near 0 seconds and reaching approximately 5 seconds at 90% infection rate. Each data point is marked with a clover symbol.]FIGURE 11 | Communication latency under different DDOS attack intensity.
4.3 MITM attack in mode 1
In this situation, the attacker intercepted the packet sent from the master station to the substation. This prevented the substation from receiving the command, resulting in a missed trip. Table 2 displays the breaker’s operating time under both normal conditions and attack conditions following the occurrence of a three-phase short-circuit fault.
TABLE 2 | The comparison of breaker action moment.
[image: Table comparing response times in normal and MITM attack scenarios for different positions. L3 shows 10.10 seconds for both. R2 shows 12.49 seconds for normal, not available for attack. L5 shows not available for normal, 13.47 seconds for attack. L1 shows not available for normal, 15.98 seconds for attack.] As depicted in Figures 12, 13 the attacker intercepted and filtered the control commands sent by the master to the substation, resulting in a missed trip and preventing the breaker from disconnecting R2. As a consequence, the overcurrent protection disconnected L5 at 12.74s and L1 at 15.25s. Unfortunately, the failure continued to spread, eventually causing G3 to go out of step.
[image: Graph showing current in per unit (i(pu)) over time in seconds (t(s)) for different lines: B3, G3, B1, G1, and B2. At 10 seconds, a three-phase short-circuit fault occurs, followed by cutoffs at lines L5 and L1.]FIGURE 12 | Bus current under MITM attack in mode1.
[image: Line graph showing two plots, G1 and G3, over time from 0 to 20 seconds. G1 is a blue line and remains stable until around 16.5 seconds, then sharply increases. G3 is a red line, stable until around 16.5 seconds, then sharply decreases. The y-axis represents voltage in pu, ranging from 0.2 to 1.1.]FIGURE 13 | Generator speed under MITM attack in mode1.
4.4 MITM attack in mode 2
In this scenario, the attacker eavesdropped on the packets sent by the master station. Upon detecting a command packet, the attacker intercepted all subsequent packets and randomly sent switching load commands to the substation. As depicted in Figures 14, 15, the current of B2 and the speed of G3 exhibited differences under the MITM attack compared to normal conditions. In the absence of an attack, the substation would disconnect R2, resulting in a gradual decline and stabilization of the current in B2, with only occasional fluctuations in the speed of G3 during load shedding. However, during the attack, the substation indiscriminately switched the load, causing sharp fluctuations in both the current of B2 and the speed of G3. Although the system did not become destabilized in this particular example, the continuous injection of disturbances by the malfunctioning substation compromised the stability of the overall system.
[image: Line graph showing current over time with two lines: one for normal conditions and one for a man-in-the-middle (MITM) attack. The normal line stays relatively stable, while the MITM line shows significant fluctuations after 10 seconds.]FIGURE 14 | Current comparison of B2.
[image: Graph showing W in per unit (p.u.) versus time in seconds (t(s)). Two lines represent normal (purple) and MITM attack (pink) scenarios. Notable points include a three-phase short-circuit fault, random switch Rf starting at about 14 seconds, and cut-off Rf at around 10 seconds.]FIGURE 15 | Speed comparison of G3.
In conclusion, the integration of communication networks and cyber-attack considerations greatly enhances the security and stability control of smart grid operations. Without simulating the communication network and utilizing actual devices, it becomes challenging to accurately predict system responses. The co-simulation platform proposed in this study successfully integrates the power system, communication system, and actual devices, providing an effective method for studying Cyber-Physical Systems (CPS) in smart grids.
5 CONCLUSION
The co-simulation platform proposed in this paper, based on hardware-in-loop, offers several advantages compared to traditional power system simulation:
	1) The co-simulation platform considers the communication system and actual devices present in a typical Cyber-Physical Power System (CPPS). This enables the analysis of various factors such as communication latency, data loss, bit errors, device response delays, and their impact on the power system. The simulation environment closely resembles reality, allowing for comprehensive vulnerability assessments of the entire system,as depicted in Figures 12, 13.
	2) Unlike traditional power system simulation that relies on simplified control system models with limited functionality, the co-simulation platform with hardware-in-loop allows for flexible deployment and the accomplishment of complex power system services by incorporating actual devices into the control loop.
	3) By integrating security and stability control systems into the co-simulation platform, it becomes possible to simulate cyber-attacks and assess the propagation of failures for studying security defenses.

However, it is important to note that due to inherent latency in the simulation platform, errors may occur in the results if the network, master station, and device latencies significantly exceed the inherent latency. To address this, further research and development of the co-simulation platform are underway, focusing on the following areas:
1) Studying interface technology and synchronization techniques to reduce or eliminate the inherent latency of the simulation platform, thereby improving the accuracy of simulation results.
2) Quantitatively analyzing communication latency and establishing simulation models to characterize its effects.
	3) Expanding the application of the platform to analyze the generation of cyber-attacks and the propagation of failures within CPPS.
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A virtual power plant (VPP) has the ability to aggregate numerous decentralized distributed energy resources using advanced control technology, offering a promising approach for low-carbon development. In order to enhance the VPP’s contribution to reducing carbon emissions, a bi-level framework is proposed that incorporates an integrated energy-carbon price response mechanism. This model allows VPPs to participate in a multi-energy system through a multi-agent Stackelberg game framework. Initially, a transaction model is established where the power distribution system operator and the gas distribution system operator act as leaders, while the virtual power plant operator acts as a follower in the multi-energy system. Subsequently, an integrated energy-carbon pricing method, rooted in carbon emission flow theory, is introduced to encourage VPPs to proactively adjust their energy-use and trading strategies within multi-energy systems, thereby promoting multi-principal interactive trading. To achieve a distributed solution among multiple entities while maintaining the privacy of each entity’s information, the adaptive step-size alternating direction multiplier method is employed. The feasibility and effectiveness of the proposed model and method are then demonstrated through case studies.
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1 INTRODUCTION
The construction of a new type of power system primarily based on new energy resources is being accelerated, emphasizing both centralized and distributed energy resources. However, distributed energy resources (DERs), characterized by strong uncertainty, decentralization, and heterogeneity (Chen et al., 2021), pose significant threats to the security of grid-connected power systems due to their large numbers. Virtual power plants (VPPs) are widely employed to effectively aggregate large, dispersed, and diverse DERs through advanced control, metering, communication, and other technologies (Vasirani et al., 2013; Zhao et al., 2018; Bhuiyan et al., 2021). This facilitates accurate control of internal resources, providing a viable pathway for low-carbon development. In the context of the interactive integration of multiple energy systems (Wang et al., 2018), VPPs participating in both the power distribution and gas distribution systems can leverage the complementary characteristics of electricity and gas. This enables the realization of synergistic operations within a multi-energy network, enhancing the economic efficiency and promoting low-carbon objectives for all stakeholders involved.
To advance the role of VPPs in the low carbon economy, several research studies have been conducted. Previous works in (Zhang et al., 2023) examine the interactions between VPPs and the higher-level grid based on peak and off-peak time-sharing tariffs. It also developed an operational model for VPPs under carbon trading and green certificate trading mechanisms, considering both economic and low-carbon aspects. Reference (Yi et al., 2020a) addresses power flow constraints in the distribution network by formulating a two-layer planning problem involving VPPs and the distribution network, optimizing dynamic pricing for VPPs. Reference (Yi et al., 2020b) proposes a two-layer model for VPPs and the distribution system, achieving co-optimization of multiple VPPs with the distribution network through an integrated active and reactive power pricing approach. These studies primarily focus on transaction pricing strategies for VPPs in the distribution market, with an increasing involvement of VPPs in multi-energy system transactions due to the close integration of various energy systems. Reference (Yang et al., 2021) introduces a model for energy trading in micro-energy networks that considers electricity-heat multi-energy sharing, ultimately reducing energy costs for multi-energy micro-grids. Additionally, works in (Zhang and Hu, 2022) suggest an optimal scheduling model for VPPs to engage in simultaneous trading within the electricity-gas multi-energy market, considering security constraints of the natural gas network and bidirectional flow of electricity and natural gas. However, the majority of these studies view VPPs predominantly as passive recipients of energy prices, ignoring their potential for active participation in multi-energy system trading and interactions with other entities.
With the advancement of VPP technology, conflicts of interest stemming from the involvement of various entities in competitive multi-energy markets have become inevitable. Game theory is increasingly being utilized to address optimization problems related to VPPs. In (Xu et al., 2022), a VPP pricing strategy is proposed within a two-tier market structure involving multiple VPPs and distribution markets. A non-cooperative pricing game model is established to enhance the economic efficiency of multiple entities. Meanwhile, Reference (Liu, 2022) introduces a cooperative game model for VPP scheduling in the context of multiple regional integrated energy systems. This model aims to optimize multiple energy sources to meet the electricity-heat-gas demand of each integrated energy system within the VPP coordinated scheduling strategy, fostering cooperative benefit sharing among members. In analyzing the intricate interactions among providers and responders of energy prices across multiple entities in multi-energy system transactions, a master-slave game model is deemed more appropriate for understanding the sequential order of the game. The research in (Zangeneh et al., 2018) adopts a multi-leader-follower master-slave game model to describe the competition between multiple VPPs and the superior market, determining the optimal pricing strategy for multiple parties to realize optimal transactions for each entity. The study in (Wei et al., 2017) investigates multi-energy interaction transaction strategies between multiple distributed energy stations and users by constructing an energy transaction model based on a multi-leader-multiple-follower game. A model in (Chen et al., 2023) constructs a Stackelberg game trading model involving energy retailers and VPPs, where the energy operator guides the power purchase and sale behavior of VPP through tariff optimization. Research in (Lu Q. et al., 2023) proposes a one-master-many-slave game optimization model for community integrated energy systems, considering carbon trading mechanisms and integrated demand response, which realizes interactive equilibrium between energy suppliers and load aggregators, significantly improving the economic and low-carbon benefits of each entity.
However, there are still research gaps in the above studies, which are mainly manifested in the following two aspects: 1) Existing studies on low-carbon operation of VPPs primarily focus on carbon emission measurement from the power supply side, with less emphasis on the demand side. This limitation hinders the ability to guide load-side low-carbon electricity consumption behavior. Carbon emission flow (CEF) theory, as an effective analytical method for the low-carbon development of power systems (Cheng et al., 2019a; Cheng et al., 2019b; Sun et al., 2023), offers new perspectives on load-side carbon emission responsibility sharing and facilitates low-carbon demand response. Studies (Lu Z. et al., 2023; Yan et al., 2023) have proposed low-carbon optimal dispatch models for multi-energy systems based on CEF theory. These models implement carbon-aware distribution locational marginal pricing (CDLMP) and stepped carbon pricing to actively guide loads in reducing system carbon emissions. 2) The measurement methods of VPP carbon emissions in existing studies are not sufficiently accurate. Most studies only consider the internal carbon emissions of VPPs, neglecting the indirect carbon emissions resulting from purchasing electricity from the higher grid and gas from the gas grid. Furthermore, the purchase and sale of energy are usually based on fixed or time-based pricing, which does not account for the significant potential of integrated energy-carbon pricing to reduce VPP carbon emissions.
This paper proposes a bi-level model that optimizes a multi-agent Stackelberg game with VPP participation in multi-energy systems under an integrated energy-carbon price response mechanism. In this model, the distribution system operator (DSO) and gas system operator (GSO) act as leaders, while the VPP operator (VPPO) acts as a follower. The model focuses on VPP participation in a multi-energy system under the energy-carbon integrated price response mechanism. The paper also introduces an integrated energy-carbon pricing method based on CEF theory to help VPPs adjust their energy consumption and trading strategies to reduce carbon emissions. The study includes carbon flow tracking for distributed VPP energy transactions, taking into account the carbon emission responsibilities of VPPs when purchasing electricity and natural gas. To ensure privacy, the adaptive step-size alternating direction method of multipliers (ADMM) is used for a distributed solution. The effectiveness of the proposed model and method is demonstrated through case analysis.
2 ELECTRIC-GAS MULTI-ENERGY SYSTEM AND VPP LOW-CARBON OPERATION BI-LEVEL FRAMEWORK
The study aims to develop a low-carbon economic operational model suitable for power distribution networks, gas distribution networks, and VPPs. Due to conflicting objective functions among the three stakeholders, i.e., DSO, GSO, and VPPO, and the presence of multiple variables, a bi-level model for the interactions between multi-energy systems and the VPP considering integrated energy-carbon pricing is proposed. The transaction dynamics between DSO, GSO, and VPPO are modeled as a multi-agent Stackelberg game, where DSO and GSO are considered as the leaders and VPPO as the follower. The bi-level transaction framework is illustrated in Figure 1.
[image: Flowchart illustrating a hierarchical interaction model in a distribution network. The upper level consists of the Power Distribution Network and Gas Distribution Network, both minimizing operating costs with specific decision variables like LMEP and LMGP. The lower level comprises VPP followers minimizing operating costs with variables like purchased electricity and gas. Key interactions include energy-carbon combined price, electricity, and gas purchase.]FIGURE 1 | A bi-level framework for electric-gas multi-energy systems and VPP transactions.
The upper level features the optimal scheduling model for the electricity-gas multi-energy system. The DSO and GSO calculate the optimal power flow (OPF) for the power distribution network and the gas distribution network based on the energy purchasing demand transmitted from the lower level. Their objective is to minimize the total operating cost for each of them. They also integrate the distribution network trends to solve the distribution of the CEF and formulate the integrated energy-carbon price. For energy pricing, this paper adopts the locational marginal electricity price (LMEP) and locational marginal gas price (LMGP). The decision information derived from this process is then provided back to the lower-level model.
The follower VPP at the lower level responds to the integrated energy-carbon price information by optimizing the energy use of internal gas turbine CHP units, gas boilers, power storage equipment, and distributed wind power, with the goal of minimizing the total operating cost. The VPP develops the internal optimal scheduling strategy and uploads the power purchasing demand and gas purchasing demand information to the upper-level DSO and GSO, respectively.
In summary, the power distribution network and the gas distribution network optimize OPF and CEF based on the energy purchase demand of the VPP and its internal optimization results. They then pass the integrated energy-carbon price and node carbon intensity obtained from the solution back to the VPP. The VPP uses this information to formulate the latest internal optimization scheduling strategy and update its energy purchase demand. This iterative process continues until the transactions of each subject in the bi-level model reach a consensus and meet the convergence conditions, thus achieving the overall optimal operation of the power distribution network, gas distribution network, and VPP.
3 A BI-LEVEL FORMULATION FOR ENERGY TRANSACTION
Since DSOs, GSOs, and VPPOs represent different stakeholders, it is essential to establish transaction models for each party that consider the interaction of electricity and natural gas between the distribution and the VPP. This includes the energy pricing model of the upper-tier electricity-gas multi-energy system, the carbon pricing model, and the lower-level VPP energy optimization model.
3.1 Energy pricing modeling for electric-gas multi-energy systems
3.1.1 Pricing model for power distribution networks
In this section, the LMEP pricing model for power distribution networks based on second order cone programming (SOCP) is constructed with the objective of minimizing the operating cost of power distribution networks (Xie et al., 2023; Xie et al., 2024).
3.1.1.1 Objective function
The objective of the DSO is to minimize the total operating cost [image: It appears that the input provided is not an image. Please upload the image or provide a URL, so I can assist you with the alternate text.] of the power distribution network, including the cost [image: Mathematical notation showing "C" with subscript "b" and superscript "t".] of coal-fired unit generation and the cost [image: Mathematical notation showing C subscript t superscript grid.] of purchased power from the higher grid, as presented in Eqs 1–3 as follows:
[image: Minimize \( f_{DSO} = \sum_{t=1}^{T} (C_{t}^{b} + C_{t}^{grid}) \).]
[image: Equation showing C subscript t superscript b equals the sum over g in set G of (a subscript g times (P subscript g, t) squared plus b subscript g times P subscript g, t plus c subscript g), labeled as equation 2.]
[image: Equation three expresses \( C_t^\text{real} = \lambda_t^\text{real} p_t^\text{real} \).]
where [image: It looks like there was an issue with the image upload. Please try uploading the image again, and I will be happy to help you with the alt text.] is the total number of scheduling hours; [image: The letter "G" in a serif font style.] is the set of coal-fired units in the distribution network; [image: Lowercase letter "a" with subscript "g" in italicized serif font.], [image: Please upload the image or provide a URL for me to generate the alt text.] and [image: It seems there was an issue with the image upload. Please try uploading the image again, and I can help create the alt text for it.] are the generation cost coefficients of the coal-fired units [image: It seems like there was an issue with the image upload or reference. Please try uploading the image again or provide a URL if it's hosted online.]; [image: Mathematical notation depicting the variable \( P_{g,t} \), which may represent a parameter in a given formula or equation.] is the active power output of the units at the moment [image: It seems there was an error with the image upload. Please try uploading the image again or provide a URL. If you have a caption or specific details, feel free to include them for context.]; [image: The image shows the mathematical expression "lambda, super grid, sub t".] is the selling price of the higher-level grid at the moment [image: It seems like there's no image uploaded. Please try uploading the image again or provide a URL for it. If there's a caption or context you want to include, feel free to add that as well.]; and [image: Mathematical expression showing "P" with a subscript "t" and a superscript "grid".] is the active power purchased by the DSO from the higher-level grid at the moment [image: Please upload the image or provide a URL so I can help create the alt text.].
3.1.1.2 Power system constraints

[image: Mathematical equation involving summations and power terms. It includes terms like \( \sum_{g \in \mathcal{G}_n} P_{g,t} \), \( \sum_{w \in \mathcal{W}} P_{w,t}^{\text{wind}} \), \( P_t^{\text{grid}} \), \( P_t^{\text{buy}} \), and others with subscript and superscript notation. The equation represents a balance of power with additional constraints and variables, including \( \lambda_{n,l,t}^{\text{LMEP}} \) and \( a_{l,t} r_{l} \).]
[image: Mathematical equation depicting an energy balance: the sum of Q generated and Q grid minus η multiplied by P physical equals Q of L already plus the sum of Q down B for each b in set b to I in set N, minus the sum of Q down T for each L in set S minus a of L multiplied by x of I. Labeled as equation 5.]
[image: Equation depicting the sum of the squares of \( P_{i,t}^{\text{DN}} \) and \( Q_{i,t}^{\text{DN}} \), less than or equal to the square of \( S_i \).]
[image: Equation depicting a constraint involving power and reactive power variables. The expression \((P^{DN}_{it} - a_{it}r_t)^2 + (Q^{DN}_{it} - a_{it}x_t)^2\) is less than or equal to \(S_i^2\). Labeled as equation (7).]
[image: The equation shows that the sum of the squares of \( P_{i,t}^{\text{DN}} \) and \( Q_{i,t}^{\text{DN}} \) is less than or equal to \( a_{i,t} U_{i,t} \). It is labeled as equation (8).]
[image: Mathematical equation showing \( U_{t,t} - 2\left( r_t P_{t,t}^{\text{IN}} + x_t Q_{t,t}^{\text{IN}} \right) + a_{t,t} \left( r_t^2 + x_t^2 \right) = U_{t,t} \), labeled as equation (9).]
[image: The equation shown is: \( U_{\text{min}}^2 \leq U_{\text{net}} \leq U_{\text{max}}^2 \), numbered as equation (10).]
[image: Constraints equation showing two inequalities: \( P_{g,\text{min}} \leq P_{g,t} \leq P_{g,\text{max}} \) and \( Q_{g,\text{min}} \leq Q_{g,t} \leq Q_{g,\text{max}} \), labeled as equation 11.]
where [image: It appears you're attempting to describe or refer to an image, but there's no image provided. Please upload the image or provide a URL for which you need alternate text.] , [image: Mathematical expression showing "w is an element of n", where \(w\) and \(n\) are variables or sets.] denotes the coal-fired unit [image: It seems there is no image uploaded. Please provide the image or a URL so I can create the alt text for you.] and fan [image: Please upload the image or provide a URL, and I can help create the alternate text for it.] connected to node [image: Please upload the image or provide a URL so I can help create the alt text.], respectively; [image: Mathematical notation showing \( b(n, \cdot) \in n \).] denotes the line injected from node [image: Please upload the image, and I'll be happy to help with the alternative text.] to other nodes, denoted as [image: Please upload the image so I can provide the appropriate alt text for it.]; [image: Text displaying a mathematical expression: \( l(.,n) \in n \).] denotes the branch [image: Please upload the image or provide a URL for me to generate the alt text.] injected from other nodes to node [image: It seems there was no image provided. Please upload the image or provide a URL for me to generate the alt text.], respectively; [image: Please upload the image or provide a URL so I can create the alt text for you.] is the set of nodes in the distribution network; [image: Mathematical notation showing the variable \( p_{w,t}^{\text{wind}} \), likely representing wind power at time \( t \) and location \( w \).] is the active power output of fan [image: Please upload the image or provide a link to it, and I will create the alt text for you.] at the moment [image: It seems there was an issue with the image upload. Please try uploading the image again, or provide a URL if that is more convenient.]; [image: Mathematical notation displaying "P sub t raised to the power of buy."] is the purchased power of VPP to the distribution network at the moment [image: Please upload the image you'd like me to describe, or provide a URL to the image.]; [image: Mathematical expression with a capital letter P in subscript, n and t, and a superscript L.], [image: Equation representing Q subscript out with superscript L.] are the active and reactive power loads connected to node [image: Please upload the image you would like me to describe.] at the moment [image: It seems there is no image attached. Please upload the image or provide a URL for it, and I will help create the alternate text.], respectively; [image: Mathematical expression showing "P subscript b,t superscript DN".], [image: Mathematical notation showing "P" followed by subscript "L, t" and superscript "DN".], [image: Mathematical expression displaying "Q" subscript "b" with superscript "t", followed by "DN".], [image: Text displaying "QDN" over "L_subscript_t" in a stylized font.] are the active and reactive power flowing through lines [image: Please provide the image or a URL to it, and I can help you create the alternate text.] and [image: Please upload the image or provide a URL so I can help create the alternate text.] at time [image: Please upload the image or provide a URL so I can help create the alt text.], respectively; [image: Please upload the image or provide a URL, and I can create the alt text for you.] denotes the square of the current of branch [image: Please upload the image or provide the URL so I can generate the alt text for it.] at time [image: Please upload the image or provide a URL for me to create the alt text.]; [image: Please upload the image or provide a URL, and I will help create the alternate text for it.], [image: It seems there was an issue with the image upload. Please try uploading the image again so I can help you with the alt text.] are the resistance and reactance of branch [image: It seems like there's a problem with the image upload. Please try uploading the image again or provide a URL. Optionally, you can add a caption for more context.], respectively; [image: Lambda subscript n, t, superscript capital L, M, E, P.] is the dyadic variable corresponding to the active power balance constraint; [image: Please upload the image or provide a URL so I can help create the alt text.] is the reactive power output of coal-fired unit [image: It looks like there was an issue with the image upload. Please try uploading the image again or provide a URL if available. You can also add a caption for additional context if needed.] at time [image: Please upload the image or provide a URL to the image so I can help you create the alternate text.]; [image: Mathematical symbol "Q subscript t superscript grid".] is the reactive power purchased by the distribution network from the higher-level grid at time [image: Please upload the image or provide a URL for me to generate the alt text.]; [image: The italic lowercase Greek letter eta, used in mathematics and science to represent certain variables or constants.] denotes the power factor of the loads; [image: Mathematical expression showing the letter U with subscript n and t written in italics.] is the square of the magnitude of the node [image: Please upload the image or provide a URL for me to create the alt text.] at time [image: Please upload an image or provide a URL, and I can help create the alt text for it.]; [image: Please upload the image or provide a URL so I can create the alt text for you.] is the upper limit of the apparent power of line [image: It seems there is an issue with viewing the image. Please ensure the image is properly uploaded, or provide a URL if it's hosted online. You can also add a caption for additional context.]; [image: Mathematical notation showing "U" with a subscript "min," representing a minimum value or condition related to the variable U.], [image: Mathematical notation showing "U" with a superscript "max".] are the lower and upper limit of the magnitude of the node voltage, respectively; [image: Mathematical expression: P subscript g, comma, min.], [image: Mathematical expression showing "P" subscript "g" comma "max".], [image: Sorry, I can't provide an alt text for that mathematical expression. If you upload an image or provide a description, I can help with that!], [image: The text shows the mathematical expression "Q subscript g, comma max."] are the lower and upper limit of the active and reactive power output of unit [image: It seems there is an issue with the image upload. Please try uploading the image again or provide a URL if possible. You can also add a caption for additional context.], respectively. Eqs 4, 5 represent the nodal active and reactive power balance constraints. Eqs 6, 7 represent the power flow limits in each line. Eq. 8 represents convex SOC relaxation to the original equality of the apparent power. Eq. 9 is the forward voltage drop equation. Eq. 10 is the limits of the nodal voltage. Eq 11 represents the generator active and reactive output constraints.
3.2 Pricing model for gas distribution networks
This section constructs a SOCP-based LMEP pricing model for gas distribution networks with the objective of minimizing the gas distribution network operating costs.
3.2.1 Objective function
The gas distribution network consists of the gas source, gas pipeline, air compressor, and gas load, and in this paper it is assumed that the flow of natural gas in the gas pipeline has been determined. The objective of the GSO is to minimize the operating cost [image: It seems that the text you provided is not an image but a mathematical expression "f_{GSO}". If you have an image to describe, please upload it or provide a URL.] of the gas distribution network, i.e., to minimize the cost of natural gas purchased by the GSO from the natural gas company, which is expressed in the Eq. 12 as follows:
[image: Minimize \( f_{\text{GSO}} = \sum_{t=1}^{T} \left( \sum_{s \in N_{t}} y_{st}^{\text{well}} w_{st}^{\text{well}} \right) \). Equation (12).]
where [image: Mathematical notation showing "y" with a subscript of "s, t" and a superscript of "well".], [image: \( w^{\text{well}}_{s,t} \)] are the price and volume of gas purchased by the GSO from gas source s at time [image: It seems there's no image attached. Please upload the image or provide a URL so I can help create the alt text.], respectively; [image: Please upload the image or provide the URL for me to assist you with the alt text.] is the set of gas sources.
3.2.2 Gas system constraints

[image: Equation 13 displays a mathematical expression involving summations and variables related to power flow. It includes \( \sum w^{sell}_{sj} \), \( \sum w_{ij} \), \( \sum w_{jk} \), and terms like \( w_{jk} \), \( w^{load}_{jd} \), \( w^{buy}_{j} \), along with \( \lambda^{LNGP}_{j,t} \). The equation equals zero, applying to nodes \( j \) in set \( N_{GN} \).]
[image: Equation showing \( w_{ij} = \text{sign}(\pi_{ii} - \pi_{jj})C_{ij}\sqrt{(\pi_{ii})^2 - (\pi_{jj})^2} \), numbered as equation (14).]
[image: Mathematical inequality showing the weight \( w_{ij} \) bounded by its minimum \( w_{j}^{\text{min}} \) and maximum \( w_{j}^{\text{max}} \), with the equation labeled (15).]
[image: Equation illustrating inequality constraints for \(\pi_{i,j}\), with \(\pi^{\text{min}}_j\) less than or equal to \(\pi_{i,j}\) which is less than or equal to \(\pi^{\text{max}}_j\), labeled as equation (16).]
[image: Mathematical equation showing that \(\pi_{i,j}\) is less than or equal to \(k\pi_{u,j}\), labeled as equation \(17\).]
[image: Mathematical expression showing the condition: the minimum weight of wall \(w_{i}^{\text{min}}\) is less than or equal to the wall weight \(w_{i}^{\text{wall}}\), which is less than or equal to the maximum wall weight \(w_{i}^{\text{max}}\), followed by equation number eighteen in parentheses.]
where [image: Mathematical expression displaying "s ∈ j", indicating that element s is a member of set j.] denotes the natural gas source s at node [image: Please upload the image or provide a URL, and I’ll be happy to help with the alt text.]; [image: Mathematical notation showing "z" with an index "j" in parentheses.] is the set of pipelines at the end node [image: It seems there might have been an error with the image upload or link. Please try uploading the image again or provide the URL. If you have any additional context or a caption, feel free to include that as well.]; [image: It appears there is no image provided. Please upload an image or provide a URL to receive an accurate alt text description.] is the set of pipelines at the first node [image: It seems there was an error with your image upload. Please try uploading the image again or provide a URL if available. If you have a specific context or caption, feel free to include it for a more detailed description.]; [image: Text showing "N" with a subscript "GN" in serif font.] is the set of nodes in the distribution network; [image: Mathematical expression: a lowercase "w" with subscripts "i", "j", and "t".], [image: Mathematical notation "w" with subscripts "j" and "k," and the additional subscript "t" following a comma.] are the amount of natural gas flowing through the pipelines [image: It seems there is no image attached. Please upload the image or provide a URL so I can help create the alt text.] and [image: It seems there was an issue with displaying your image. Please try uploading the image again or provide a URL.], respectively, at time [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL. You can also add a caption for additional context.]; [image: Mathematical notation displaying the variable \( w \) with superscript "load" and subscript \( j, t \).] is the gas load at node [image: Please upload the image or provide a URL, and I will help you create the alt text for it.] of the gas distribution network; [image: Mathematical notation showing the variable \( w_t^{\text{buy}} \), where "buy" is a superscript, and "t" is a subscript.] is the amount of natural gas purchased from the gas distribution network by the VPP, respectively, at time [image: Please upload the image or provide a URL so I can help generate the alt text for it.]; [image: The expression "lambda sub j comma t superscript L M G P".] is the dyadic variable corresponding to the natural gas node flow equilibrium constraints; [image: Mathematical notation showing the symbol pi with subscripts i and t.] and [image: Mathematical notation showing the symbol pi with subscripts j and superscript t.] are the pressures at nodes [image: Please upload the image or provide a URL so I can help create the alt text for it.] and [image: It seems there is an issue with the image upload. Please try uploading the image again or provide a URL if available.] at time [image: It seems there was an error with the image upload. Please try uploading the image file again and provide any additional context if needed.], respectively; [image: It seems there is no image uploaded. Please upload the image or provide a URL, and I will assist you with the alt text.] is the pipeline transmission characteristic parameters; [image: Mathematical expression showing the symbol w with subscripts i and j, and a superscript indicating "max".], [image: The mathematical expression \( w_{ij}^{\text{min}} \).] are the upper and lower bounds on the amount of natural gas to be transmitted by the pipeline; [image: Mathematical notation showing the symbol pi with a subscript j and a superscript max.], [image: Mathematical expression showing the variable pi subscript j with a superscript min, indicating a minimum value of pi.] are the upper and lower bounds on the gas pressure at node [image: Please upload the image so I can help generate the alt text for it.], respectively; [image: Please upload the image or provide more information so I can help generate appropriate alt text for it.] is the compressor coefficients; [image: Mathematical expression showing the variable \( w \) with subscript \( s \) and a superscript of max.], [image: The image shows the mathematical notation "w subscript s, superscript min", representing a variable or parameter with a specific minimum value.] are the upper and lower bounds on the output of the natural gas source [image: Please upload the image or provide the URL so I can help create the alt text for it.], respectively. Eq 13 is the natural gas node flow balance constraint. Eq 14 is the Weymouth equation (Chen et al., 2019) for the pipeline gas flow, where [image: The text "sign(•)" in mathematical notation, representing the sign function with a placeholder dot for input.] is a sign function that one when [image: The formula shows pi subscript i, t is greater than or equal to pi subscript j, t.] and −1 otherwise. Eq 15 is the gas network pipeline flow limit. Eqs 16, 17 denote the natural gas nodal pressure constraints. Eq. 18 denotes the gas supply constraints of gas wells.
3.3 Carbon pricing model for multi-energy systems based on CEF theory
3.3.1 CEF modeling for multi-energy systems
While most of the CO2 in the energy industry is generated on the source side, the ultimate driver of carbon emissions is on the load side. The focus of this paper is on how to price carbon emissions from generation to end-users so that the right incentives can be provided between electricity-gas multi-energy systems. The theory of CEF, which is based on the energy flow of the system, can intuitively characterize the flow direction of carbon emission during the system operation, and improve the new analysis perspective for the low-carbon economic dispatch (Cheng et al., 2020). In the CEF model, the carbon flow index is usually used to describe the carbon emission apportionment, this paper mainly needs to obtain the carbon intensity of each node of the electric-gas multi-energy system as a carbon signal, and through the carbon tax to establish the link between the carbon price and the node carbon intensity accessed by the VPP, and the CEF model is established as follows.
3.3.1.1 CEF modeling of power distribution networks
The node carbon intensity represents the value of carbon emissions equivalent to the generation side caused by a unit of electricity consumed at that node, calculated in Eq. 19 as follows:
[image: Equation 19 depicts an energy balance formula. The numerator includes the sum of generated power times efficiency and a term involving power, coefficients, and factors. The denominator consists of the total generated power, wind power, and a similar term to the numerator.]
where [image: Mathematical notation showing the expression "e subscript n, t superscript el".], [image: It seems there was an error in your request, and no image has been uploaded. Please provide the image or a URL for me to describe it.] denote the nodal carbon intensity of node [image: Please upload the image or provide a URL for me to generate the alt text. If you have any additional context or a caption, feel free to include that as well.] and the carbon flow intensity of branch [image: It seems there was an error in uploading the image. Please try uploading the image again or provide a URL if it's online. You can also include a caption for additional context.] at time [image: Please upload the image so I can help provide the alternate text for it.], respectively; [image: It seems there was a mistake in text input as an image request. Please upload the image or provide a URL, and I will assist you with the alt text.] is the carbon emission intensity of coal-fired unit [image: Please upload an image or provide a URL, and I'll help you generate the alternate text for it.].
The branch carbon intensity denotes the equivalent value of carbon emission on the generation side caused by a unit of electricity transmitted by a tributary. According to the proportional sharing principle (Kang et al., 2015), the carbon flow intensity of all transmission lines flowing from node [image: Please upload the image or provide a URL for it, and I will help you create the alt text.] is equal to the carbon intensity of that node, which is expressed in Eq. 21 as follows:
[image: The formula shows \( \rho_{t} = e^{\frac{d\eta}{n_{t}}} \forall (n_{\cdot}) \in n \), labeled as equation twenty.]
3.3.1.2 CEF modeling of gas distribution networks
The gas distribution network CEF model is similar to that of the power distribution network, and the carbon intensity of each node and the branch carbon intensity are calculated as follows:
[image: The equation shown represents \( e_{j,t}^{\text{gas}} \) as a fraction. The numerator is the sum of \( \sum_{s \in j} w_{s,t}^{\text{well}} e_{s,t}^{\text{well}} + \sum_{j \ne i, j \in \mathcal{Z}(i)} w_{j,i,t} \rho_{j,i,t} \). The denominator is the sum of \( \sum_{s \in j} w_{s,t}^{\text{well}} + \sum_{j \ne i, j \in \mathcal{Z}(i)} w_{j,i,t} \). The equation is labeled as (21).]
[image: The image displays a mathematical equation: \(p_{ij} = e^{g_{ij}}\), where \( \forall ij \in e(i) \subseteq z(j) \). It is marked as equation (22).]
where [image: Mathematical expression showing "e" with subscript "j, t" raised to the power of "gas".] is the carbon intensity of node [image: Please upload the image you'd like me to provide alt text for. You can use the upload option to do so.] of the gas network at time [image: It looks like there was a problem with the image upload. Please try uploading the image again, and I will help you create the alternate text for it.]; [image: Please upload the image or provide a URL so I can help you create the alt text.] is the carbon flow intensity of the gas flow into pipeline [image: Certainly! Please upload the image or provide a URL so I can assist you.] of the pipeline connected to node [image: Please upload the image or provide a URL for me to generate the alt text.] at time [image: Please upload an image or provide a URL so I can help create the alt text for it. You can also include a caption for additional context if needed.]; [image: Mathematical expression showing a lowercase "e" with a subscript "s" and a superscript "well."] is the carbon emission intensity of the gas source [image: Please upload the image or provide a URL for me to generate the alt text.] connected to node [image: Please upload the image or provide a URL for it, and I will be happy to create the alt text for you.].
3.3.1.3 An integrated energy-carbon pricing approach based on the CEF theory
As consumers, the VPP must acknowledge their carbon emission responsibility when procuring electricity and gas from the power distribution and gas distribution networks. By utilizing the CEF model to calculate the nodal carbon intensity of these networks, a connection is established between the carbon price and nodal carbon intensity through carbon tax. Subsequently, the integrated electricity/gas energy-carbon pricing method is developed by combining the LMEP/LMGP with the carbon price in Eqs 23, 24 as follows:
[image: Mathematical expression for \(\xi_{u,t}^{sc}\) equals \(\lambda_{u,t}^{MDVP}\) plus \(\tau \epsilon_{u,t}^{sc}\), applicable for all \(n\) and \(t\). Equation 23.]
[image: Formula showing \( S_{j,\mu}^{\text{GPS}} = \lambda_{\mu}^{\text{MGGP}} + t e_{j,\mu}^{\text{GPS}} \), applicable for all \( j \), \( \mu \), and \( t \), labeled as equation 24.]
where [image: Mathematical expression showing a fraction: in the numerator is "e l," and in the denominator is "r n, t."] is the integrated electricity-carbon price at node [image: Please upload the image or provide a URL to generate the alternate text.] of the power distribution network at time [image: Please upload the image or provide a URL, and I will help create alt text for it.]; [image: Mathematical notation showing "gas" with subscripts j and t, where "s" is in superscript.] is the integrated gas-carbon price at node [image: Please upload the image or provide a URL for me to create the alt text.] of the gas distribution network at time [image: Please upload the image for which you need alternate text, or provide a URL if it's hosted online.]; [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the carbon tax. The integrated energy-carbon pricing system encourages VPPs to proactively adjust their energy purchases and internal scheduling strategies, leading to reduced carbon emissions and operating costs.
3.4 VPP energy optimization model
The operational framework of the VPP established in this study is illustrated in Figure 2. It comprises gas turbine combined heat and power (CHP) units, gas boilers, distributed wind power, and energy storage units. The flexible loads encompass electric and thermal loads, with consideration given to demand response for both to assist users in making informed energy demand adjustments. The VPP interfaces with the power distribution network via an electric power contact line and transports natural gas through a pipeline connecting it to the gas distribution network. Notably, this paper does not address the scenario of natural gas sales to the GSOs at this time.
[image: Diagram of an energy system showing interconnected components: a power network, distributed wind power, and electricity storage supplying an electrical load. A gas distribution network connects to a gas turbine CHP and a gas boiler GB, which supplies a thermal load. Green, red, and blue lines represent electricity, heat, and gas flows respectively.]FIGURE 2 | VPP operational framework.
3.4.1 VPP Objective Function
The objective of the VPP energy optimization model is to minimize the total operating cost [image: Text "f" with subscript "VPPO" in a serif font style.] in Eqs 25–28 as follows:
[image: Minimize \( f_{\text{VPPD}} = \sum_{t=1}^{T} \left( C_{t}^{\text{ele, buy}} + C_{t}^{\text{gas, buy}} + C_{t}^{\text{DR}} \right) \), equation number \( (25) \).]
[image: Equation showing \(C_{t}^{c, \text{buy}} = \xi_{t}^{c, \text{buy}} P_{t}^{\text{buy}}\), labeled as equation 26.]
[image: Equation showing \( C_{t}^{gas, buy} = c_{t}^{gas, buy} w_{t} \) with the equation number 27 on the right.]
[image: Formula showing \( C_{t}^{DR} = \lambda_{t}^{cal}P_{t}^{out} + \lambda_{t}^{fan}P_{t}^{fan} + \lambda_{t}^{ht}H_{t}^{out} \), numbered as equation (28).]
where [image: Stylized mathematical notation depicting "C subscript t superscript ele, buy".] is the cost of electricity purchased by VPP interacting with the power distribution network; [image: Mathematical notation displaying a variable with subscripts and superscripts: "C" with subscript "t" and superscripts "gas" and "buy".] is the cost of natural gas purchased by VPP from the gas distribution network; [image: Mathematical notation displaying "C sub t raised to the power R".] is the cost of integrated demand response of electricity and heat in VPP; [image: Lowercase italic letter "p" with a superscript "tran" and a subscript "t".], [image: Mathematical expression showing "P" with a subscript "t" and a superscript "cut".] denotes the amount of electric load transfer and load reduction in VPP at time [image: It seems there was an issue with the image upload. Please try uploading it again.], respectively; [image: Mathematical expression of H subscript t, with the subscript in smaller letters "cut".] denotes the amount of heat load reduction in VPP at time [image: Please upload the image or provide its URL, and I will help you create the alternate text for it.]; [image: The Greek letter lambda with a subscript lowercase e, and the superscript "cut".], [image: Lowercase Greek letter lambda with subscript "e" and superscript "tran".] are the unit price of compensation for electric load reduction and transfer; [image: The image shows the mathematical expression: lowercase lambda with superscript "cut" and subscript "h".] denotes the unit price of compensation for heat load reduction.
3.4.2 VPP operational constraints
3.4.2.1 Power balance constraints
The power balance constraints for multiple energy flows within the VPP are given in Eq. 29 as follows:
[image: Equation labeled 29 showing power and heat balance equations: \( P^{\text{CHP}}_t + P^{\text{Wind}}_t + P^{\text{ES,dis}}_t + P^{\text{buy}}_t = P^{\text{ES,cha}}_t + P^{\text{load}}_t \); \( H^{\text{CHP}}_t + H^{\text{GB}}_t = H^{\text{load}}_t \); \( w^{\text{buy}}_t = w^{\text{GT}}_t + w^{\text{GB}}_t \).]
where [image: The image shows the mathematical expression "P subscript t superscript CHP."], [image: \( H_t^{\text{CHP}} \) is a mathematical expression with "H" as the main variable, "t" as the subscript, and "CHP" as a superscript.] are the power supplied by the gas turbine and the heat production power at time [image: It seems there was an issue with your request. Please upload the image or provide a URL, and I will create the alternate text for you.], respectively; [image: Mathematical expression showing "p sub t to the power of Wind".] is the actual output of renewable energy at time [image: Please upload the image or provide a URL for me to give the alternate text.]; [image: Mathematical expression showing \( p_t^{\text{ES,cha}} \).], [image: Mathematical expression featuring "p" with a subscript "t" and a superscript "ES, dis".] are the charging and discharging power of the electrical energy storage at time [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.]; [image: Mathematical expression showing \( P_{\text{load}}^t \), representing the load power at time \( t \).], [image: Mathematical expression showing \( H_t^{\text{load}} \), with "load" as a superscript to "H" and "t" as a subscript.] are the amount of load after the demand response of electric and thermal loads at moment [image: Please upload the image or provide a URL so I can assist you with creating the alt text.]; [image: Mathematical expression showing "H" with a superscript "GB" and a subscript "t".] is the gas boiler heat power at time [image: Please upload the image you are referring to, so I can provide the appropriate alt text. You can do this by clicking the "upload" button.]; [image: Mathematical notation representing the subscript 't' with a superscript 'GT' applied to the variable 'w'.], [image: Mathematical notation showing "w sub t" with "GB" as a superscript.] are the amount of natural gas input to the gas turbine and gas boiler at moment [image: Please upload the image, and I will help you create the appropriate alternate text for it.], respectively.
3.4.2.2 Gas turbine CHP unit constraints
The mathematical model and constraints for power and heat supply of CHP units are in Eq. 30 as follows:
[image: Equations for combined heat and power (CHP) are shown in braces. The first equation shows \(P_t^{\text{CHP}} = \frac{\eta_P^{\text{CHP}} L_{\text{CH}_4}^{\text{CHP}} w_t^{\text{GT}}}{Q_{\text{EH}}}\). The second inequality states \(P_{\text{min}}^{\text{CHP}} \leq P_t^{\text{CHP}} \leq P_{\text{max}}^{\text{CHP}}\). The third equation shows \(H_t^{\text{CHP}} = \frac{\eta_H^{\text{CHP}} L_{\text{CH}_4}^{\text{CHP}} w_t^{\text{GT}}}{Q_{\text{EH}}}\). These equations are labeled as equation (30).]
where [image: The image shows the mathematical notation "η subscript P superscript CHP".], [image: η subscript H superscript CHP.] are the gas turbine power supply efficiency and heat production efficiency; [image: The text shows the chemical formula \( L_{CH_4} \).] is the calorific value of natural gas per unit volume; [image: It seems there was an error with the image upload. Please try uploading the image again or provide a URL if possible.] is the thermal energy converted per unit of electrical energy; [image: Lowercase "p" followed by uppercase "C" and "H," then lowercase "p," with "max" written in smaller text below.], [image: Lowercase letter "p" followed by "CHP" in subscript, above "min" in subscript.] are the upper and lower limits of the power supply of the gas turbine.
3.4.2.3 Gas boiler output constraints

[image: Equation 31 shows two expressions. First: \(H^{GB}_t = \eta_{GB} \frac{L_{CH_4}^{u,GB}}{Q_{EH}} \omega_t\). Second: \(H^{GB}_{min} \leq H^{GB}_t \leq H^{GB}_{max}\).]
where [image: Greek letter eta followed by subscript uppercase letters G and B.] is the electric heat conversion efficiency of the gas boiler; [image: \( H^{GB}_{\text{max}} \), representing a mathematical expression with a superscript "GB" and subscript "max".], [image: Mathematical expression showing "H" with a subscript "min" and a superscript "GB".] are the upper and lower limits of the heat output of the gas boiler in the VPP, respectively. Eq. 31 represents the operating constraints of GB.
3.4.2.4 Energy storage unit constraints
The introduction of energy storage devices can further improve the operational flexibility of the VPP, the energy storage device is modeled in Eq. 32 as follows:
[image: Mathematical formula for energy storage dynamics and constraints:   1. The energy stored \( S_t \) at time \( t \) is a function of previous storage \( S_{t-1} \), charging and discharging efficiencies \( \eta^{cha} \), \( \eta^{dis} \), charging power \( p_t^{ES,cha} \), and discharging power \( p_t^{ES,dis} \).  2. Initial condition \( S_1 = S_{24} \). 3. Charging and discharging power \( p_t^{ES,cha} \) and \( p_t^{ES,dis} \) are bounded by respective maximum values. 4. The sum of charging and discharging states \( \mu_t^{ES,cha} \) and \( \mu_t^{ES,dis} \) is constrained to one. 5. Storage is bounded by minimum and maximum limits.]
where [image: It seems like there was an error or misunderstanding with your request. Please upload the image or provide a URL, and I can help create alternate text for it.] is the capacity of the energy storage device in the VPP at time [image: Please upload the image or provide its URL, and I will create the alt text for you.]; [image: Mathematical expression depicting the symbol eta with the subscript "loss".], [image: The expression shows the Greek letter eta with subscript "ES" and superscript "cha".], [image: The mathematical expression shows the Greek letter eta with subscript "ES, dis".] are the energy storage device energy loss coefficient, energy charging and discharging efficiency; where [image: The mathematical expression shows "eta subscript loss much less than one," indicating that the efficiency loss is negligible or very small.]; [image: The formula shows "p" with subscript "ES, cha" and another subscript "max".], [image: Mathematical notation showing the symbol for maximum power, \( p \), with subscripts \( ES, dis \) and superscript \( max \).] are the maximum charging and discharging power of the energy storage device; [image: The image shows a mathematical expression with the letter "S" followed by the subscript "min".], [image: It seems there's an issue with the image upload. Please try uploading the image again, or provide a URL to the image if possible.] are the minimum and maximum storage capacity of the energy storage device; [image: Mathematical notation representing the variable mu sub t, with superscript ES, cha.], [image: Mathematical expression with the Greek letter mu, subscript t, and superscript ES comma dis.] are the binary variable, respectively, represents the charging and discharging state of the energy storage device at [image: Please upload the image or provide a URL so I can help you create the alt text.] time.
3.4.2.5 Electric heat integrated demand response constraints

[image: Mathematical equations related to power and energy constraints: Load power \(P_{\text{load}}^t\) is the sum of power at time zero \(P_0^t\), transferred power \(P_{\text{tran}}^t\), minus cut power \(P_{\text{cut}}^t\). The absolute value of transferred power must be less than or equal to the maximum transfer power \(P_{\text{max}}^{\text{tran}}\), with the sum of transferred power from \(t=1\) to \(T\) equaling zero. Cut power is bounded between zero and its maximum \(P_{\text{max}}^{\text{cut}}\). Load energy \(H_{\text{load}}^t\) equates to initial minus cut energy, bounded between zero and maximum cut energy, \(H_{\text{max}}^{\text{cut}}\). Equation number is 33.]
Eq. 33 represents the Electric heat integrated demand response constraints, where [image: Mathematical notation displaying \( P_t^0 \), where "P" is raised to the power of zero, and there is a subscript "t" below it.] denotes the initial load of electric load in VPP at time [image: Please upload the image you want me to describe. If you have any specific context or details you'd like to include, feel free to mention them.]; [image: The image shows the variable \( p_{\text{tran}}^{\text{max}} \), representing the maximum transport probability in a mathematical or scientific context.] denotes the upper limit of transferable electric load; [image: The expression "p" with subscript "cut" and superscript "max" in italic font.] denotes the upper limit of curtailable electric load; [image: Mathematical notation showing "H subscript t superscript 0".] denotes the initial load of thermal load at time [image: Please upload the image or provide a URL, and I will help you with the alternate text.]; [image: Mathematical notation showing "H" with "max" as a subscript and "cut" as a superscript.] denotes the maximum curtailable thermal load.
4 SOLUTION METHOD FOR THE MUTI-AGENT STACKELBERG GAME TRADING MODEL
In the context of a multi-agent Stackelberg game transaction model involving the leader DSO, GSO, and follower VPP in an electricity-gas multi-energy system, each participant optimizes its operation state according to individual interest objectives and devises energy transaction strategies accordingly. Given the intricate internal information and substantial transaction volume, traditional centralized optimization algorithms are inadequate in meeting the information privacy needs of each participant within this model. Therefore, the proposed solution involves solving the multi-participant Stackelberg game model through a distributed approach using the adaptive ADMM algorithm.
4.1 Stackelberg game trading model
The game model contains three elements: the set of participants, the set of strategies and the set of benefits (Li et al., 2022), and the Stackelberg game is modeled in Eq. 34 as follows:
[image: Equation showing a set \( G \) consisting of three entities: DSO, GSO, and VPPO. It contains energy-related variables like \( P_{g_{t}}^{g_{a}s} \), \( P_{t}^{\text{grid}} \), \( w_{s_{t}}^{w_{\text{ell}}} \), \( c_{s_{m},t}^{\text{elec}} \), and \( S_{s,j,t}^{g_{a}s} \). The equation also includes buying terms \( P_{t}^{\text{buy}} \) and \( w_{t}^{\text{buy}} \) and functions \( f_{\text{DSO}} \), \( f_{\text{GSO}} \), and \( f_{\text{VPPO}} \). It is labeled as equation (34).]
	(1) Participant set: [image: I'm unable to view the image you are referring to. Please upload the image or provide a URL so I can create the alt text for you.] represents the set of all participants. Where DSO and GSO are leaders and VPPO are followers.
	(2) Strategy set: the strategy of the leader DSO is the amount of electricity purchased from each distributed generator and the higher grid at each moment and the integrated electricity-carbon price set, denoted as [image: A mathematical expression enclosed in curly braces includes variables: P sub g comma t, P sub t superscript grid, and zeta sub n comma t superscript ele.]; the strategy of the leader GSO is the amount of natural gas purchased from each distribution station and the integrated gas-carbon price set, denoted as [image: Mathematical expression showing a set containing two variables: \( \mathbf{w}_{s,t}^{\text{well}} \) and \( \zeta_{j,t}^{\text{gas}} \).]; the strategy of the follower VPPO is the amount of electricity purchased with the DSO and the amount of gas purchased from the GSO, denoted as [image: Mathematical expression showing a set with two elements: \(P_t^{\text{buy}}\) and \(w_t^{\text{buy}}\), where both elements have superscript "buy" and subscript "t".].
	(3) Benefits: The benefits to each participant are their objective functions, which can be expressed as [image: It seems like you are trying to provide a text snippet, not an image. If you have an actual image to describe, please upload it or provide a link to the image.], [image: It looks like you are asking for alternate text for an image labeled with a string "f_{GSO}". However, I need more context or the actual image file to provide accurate alt text. Please upload the image or provide more details about it.] and [image: Stylized lowercase letter "f" followed by uppercase letters "VPPO" in a serif font.], respectively.

4.2 Distributed solution of stackelberg game transaction model based on adaptive ADMM algorithm
The adaptive ADMM algorithm is utilized in this study for distributed solving of the proposed multi-agent Stackelberg game model. This approach ensures that the interaction between participating subjects does not compromise their internal privacy. Only the boundary information of each subject at the time of the transaction is required, enabling distributed and efficient solving while safeguarding the privacy of transactional information.
Based on the principle of ADMM algorithm, the auxiliary condition is introduced as shown in Eq. 35 as follows:
[image: Mathematical equations depicting \( P_i^{b,w} - P_i^{c,w} = 0 \) and \( w_i^{b,w} - w_i^{c,w} = 0 \), numbered as equation (35).]
where [image: Italic letter P with subscript t and superscript buy.], [image: Could you please upload the image or provide a URL for it? This will help me generate accurate alt text for you.] are the amount of electricity that the VPPO expects to trade with the DSO and the amount of electricity that the DSO expects to trade with the VPPO at time [image: It seems there was an issue with the image upload. Could you please try uploading the image again? Once you do, I can help create the alt text for it.], respectively; [image: The image shows the mathematical notation "w sub t superscript buy".], [image: Mathematical expression depicting \( w_{t}^{\text{ex}} \), where \( w \) is a variable, \( t \) is a subscript, and \(\text{ex}\) is a superscript.] are the amount of natural gas that the VPPO expects to buy from the GSO and the amount of natural gas that the GSO expects to sell to the VPPO at time [image: Please upload the image or provide a URL, and I will help you create the alternate text for it.], respectively.
Distributed models for optimal pricing of power distribution network, optimal pricing of gas distribution network and VPP energy optimization are obtained based on ADMM principle, respectively.
4.2.1 Optimal pricing of power distribution network

[image: Mathematical expression for \( L_{\text{DSO}} \) defining a minimization problem. It includes the function \( f_{\text{DSO}} \) plus a summation over time \( T \) of the difference between \( P_{t}^{\text{ex}} \) and \( P_{t}^{\text{buy}} \), scaled by \(\lambda_{t}^{\text{DSO}}\), and a penalty term involving \(\rho\). Constraints include equations (1) to (11), (19) to (20), and (23). Equation (36).]
The optimal pricing of power distribution network is presented in Eq. 36, where [image: The mathematical notation shows "λ subscript t superscript DSO."] and [image: Please upload the image or provide a URL, and I can help create the alt text for it.] are the corresponding Lagrange multipliers and penalty factors of the DSO, respectively.
4.2.2 Optimal pricing of gas distribution network

[image: The equation defines a minimization problem denoted as \( L_{\text{GSO}} \). It involves minimizing the function \( f_{\text{GSO}} \) plus the sum over \( t \) of \( \lambda_t^{\text{GSO}}(w_t^{\text{ex}} - w_t^{\text{buy}}) + \frac{\rho_l}{2} \lVert w_t^{\text{ex}} - w_t^{\text{buy}} \rVert_2^2 \). The constraints are given by equations (12) to (18), (21) to (22), and (24), referenced as equation (37).]
The optimal pricing of gas distribution network is presented in Eq. 37, where [image: The mathematical expression shows the Greek letter lambda with a subscript "t" and a superscript "GSO".] is the Lagrangian multiplier for the GSO distribution solution.
4.2.3 Distributed model for VPP energy optimization

[image: Mathematical equation representing an optimization problem labeled as \( L_{VPP0} \). It involves minimizing a function composed of terms including \( f_{VPP0} \), a summation over \( T \), and constraints from equations \( (25) \) to \( (33) \). The components include variables like \( P^{buy}_t \), \( P^{ex}_t \), and \( w_t^{buy} \), with parameters \( \lambda_t^k \) and \( \rho_l \) affecting the calculation.]
Distributed model for VPP energy optimization is presented in Eq. 38, where [image: The image shows a mathematical expression where the Greek letter lambda is raised to the power of one divided by t.], [image: The expression shows the Greek letter lambda raised to the power of two, with a subscript t, indicating it may represent a variable related to time or a sequence.] are the corresponding Lagrange multipliers when the VPPO expects to trade with the DSO and GSO, respectively.
The coupled variables and Lagrange multipliers are updated as follows:
[image: Mathematical equations are presented: \( z^{\text{ex},{k+1}}_t = \arg\min L_t \left( z^{\text{ex},k}_t, z^{\text{buy},k}_t, \lambda^k_t \right) \), \( z^{\text{buy},{k+1}}_t = \arg\min L_{\text{VPPO}} \left( z^{\text{ex},{k+1}}_t, z^{\text{buy},k}_t, \lambda^k_t \right) \), \( \lambda^{k+1}_t = \lambda^k_t + \rho \left( z^{\text{ex},{k+1}}_t - z^{\text{buy},{k+1}}_t \right) \), denoted by equation \( (39) \).]
where [image: Please upload the image or provide a link to it so I can help create the alt text for you.] represents the energy type; [image: Please upload the image or provide a URL to it, and I will help create the appropriate alt text.] is the number of iterations for distributed solving.
The original residuals, pairwise residuals are calculated and the convergence conditions are provided in Eqs 40, 41 as follows:
[image: Mathematical expression with two equations: \( r^{k+1}_t = z^{pr, k+1}_t - z^{by, k+1}_t \) and \( s^{k+1}_t = z^{rk+1}_t - z^{rk}_t \). Equation labeled as 40.]
[image: Summation of the norms of \(\mu_t^{k+1}\) from \(t=1\) to \(T\) is less than or equal to \(\epsilon^{\text{pri}}\), and summation of the norms of \(s_t^{k+1}\) from \(t=1\) to \(T\) is less than or equal to \(\epsilon^{\text{dual}}\). Followed by equation number (41).]
where [image: Mathematical expression displaying "r" with subscript "t" and superscript "k plus 1".], [image: Mathematical expression showing \( S_t^{k+1} \), where \( S_t \) is raised to the power of \( k+1 \).] are the original residuals and pairwise residuals in the [image: It seems like you mentioned a mathematical expression, not an image. If you need assistance with a specific concept or if there's an image you would like to upload, please do so, and I can help with the alt text.] iteration, respectively; [image: The mathematical expression \( e^{i\pi} \).], [image: Lowercase epsilon with the subscript "dual."] are the convergence thresholds of the original and pairwise residuals, respectively.
The choice of step size significantly affects the speed of the ADMM solution. An inappropriate value can hinder convergence. This paper proposes an adaptive ADMM algorithm that dynamically updates the step size based on the relationship between original residuals and pairwise residuals. This approach aims to enhance algorithm convergence and reduce iteration time, as formulated in Eq. 42:
[image: Equation for updating \(\rho^{k+1}\). If the norm of \(r^k\) is greater than \(\mu\) times the norm of \(s^k\), \(\rho^{k+1}\) equals \(\tau_{\text{incr}} \rho^k\). If the norm of \(s^k\) is greater than \(\mu\) times the norm of \(r^k\), \(\rho^{k+1}\) equals \(\frac{\rho^k}{\tau_{\text{decr}}}\). Otherwise, \(\rho^{k+1}\) equals \(\rho^k\). Equation number 42.]
where [image: If you have an image to upload, please do so, and I can help create the alt text. You can also provide a URL or add a caption for additional context.] is the scaling factor between the original residuals and the pairwise residuals; [image: The stylized text shows the Greek letter tau (τ) with a subscript "incr".] and [image: Mathematical expression showing the Greek letter tau with a subscript "decr".] are the acceleration and deceleration factors of the step change, respectively.
The coupling variables are updated by the iterative form shown in Eq. 39 until the convergence condition in Eq. 41 is satisfied, and the specific algorithmic solution flowchart is shown in Figure 3.
[image: Flowchart depicting the iterative process for solving the integrated energy-carbon pricing problem. Steps include parameter initialization, solving the pricing problem for distribution networks, optimizing the VPP energy subproblem, swapping boundary variables, updating global variables and Lagrange multipliers, and calculating residuals. If convergence is not satisfied, the iteration number increases and repeats the process. If convergence is satisfied, the iteration ends.]FIGURE 3 | Flowchart for solving the multiagent Stackelberg game model based on integrated energy-carbon price.
5 CASE STUDY
5.1 Case description
In order to validate the models and algorithms proposed in this paper, the IEEE 33-bus power distribution network, 7-node gas distribution network, and 1 VPP coupling composition are utilized. The network topology is illustrated in Figure 4, where W represents the wind turbine located at node 31 in the power distribution network. Additionally, G1 to G5 represent five coal-fired units situated at nodes 3, 9, 29, 14, and 21, with their operating parameters detailed in Supplementary Appendix Table SA1; Supplementary Appendix Figure SA1. W1 and W2 denote the gas distribution stations connected to nodes six and seven of the gas distribution network. Prediction curves for renewable energy output and load within the VPP can be found in Supplementary Appendix Figure SA2, along with unit parameters in Supplementary Appendix Table SA2.
[image: Diagram showing an IEEE 33-bus distribution network connected to a seven-node gas distribution network through a multi-energy Virtual Power Plant (VPP). The left section depicts the electrical grid with buses and generation nodes labeled G1 to G6. The right section shows the gas network with nodes labeled W1 and W2. A red dashed line indicates the connection path through the VPP.]FIGURE 4 | Containing multi-energy VPP E33-G7 test system topology diagram.
It is assumed that the power factor [image: Lowercase Greek letter eta in italic font.] of the node loads in the distribution network is 0.85, and the price of power purchased from the higher-level grid is set to 160$/MWh. The price of gas purchased by GSO from the gas source is set at 0.52$/m3, and the carbon tax [image: It seems there was an issue with the image upload. Please try uploading the image again or provide additional context.] is set to 45$/tCO2. In the ADMM algorithm of adaptive step-size, the initial step-size [image: It appears there is a technical issue with accessing the image. Please try uploading or providing a URL again, and feel free to add any additional context or captions for the image.] is set to 1, and the [image: It seems there is no image uploaded. Please upload the image or provide a URL, and I will create the alt text for you.] is set to 10, [image: Greek letter tau with a subscript "incr" in italics.], [image: Mathematical expression showing the Greek letter tau with a subscript "decr".] are set to 2, [image: The mathematical expression \( e^{\pi i} \), which represents Euler's identity resulting in \(-1\).] and [image: Equation with epsilon subscript "dual".] the thresholds of convergence, and are set to 10-3. In this paper, we build the simulation model based on the platform of Matlab 2018b and the Gurobi solver is adopted to solve the simulation model. Solved using Gurobi solver.
In order to verify the impact of the multi-agent Stackelberg game on electricity-gas trading and the cost of energy purchase by each subject under the energy-carbon integrated price response mechanism, the following four energy settlement scenarios are set up.
Case 1 . The settlement electricity price adopts fixed time-sharing electricity price, the settlement gas price adopts fixed natural gas price, the specific data are shown in Supplementary Appendix Table SA3, carbon emission flow is not considered, VPPOs completely act as the recipient of the price for the electricity-natural gas transaction, and the flexible loads in VPPs are not considered for the optimal scheduling.
Case 2. Based on Case 1, and the flexible loads within the VPP are considered for integrated demand response for electricity and heat.
Case 3. The LMEP and LMGP obtained after the game equilibrium of each subject are used for the power distribution network settlement price and the gas distribution network settlement price, respectively, without considering the carbon emission flow, and the flexible loads within the VPP are considered for optimal dispatch; Case 4: the electricity-carbon integrated price and gas-carbon integrated price obtained after the game equilibrium of each subject are adopted for the power distribution network settlement price and gas distribution network settlement price respectively, carbon emission flow is considered, and optimal dispatch is considered for the flexible loads within the VPP, i.e., the model proposed in this paper.
5.2 Analysis of VPP simulation results
5.2.1 Comparative analysis of operation under different scenarios
The simulation results of the above four scenarios are shown in Table 1.
TABLE 1 | Comparison results of operating costs and carbon emissions of each subject under different scenarios.
[image: A table compares four cases, detailing costs and emissions. Columns list VPPO, DSO, GSO operating costs, total energy purchase costs, and VPP carbon emissions. Values decrease across cases, showing reduced costs and emissions from Case 1 to Case 4.]Table 1 illustrates that operating costs decrease and carbon emissions are effectively reduced when considering integrated demand response in Cases 2, 3, and 4 compared to Case 1. The dependency of VPP on power and gas distribution networks is also reduced through demand response of flexible loads, leading to decreased electricity and gas purchases. Case 3, which incorporates the interaction of VPPO with DSO and GSO master-slave game, shows a reduction in total energy purchase cost and carbon emissions by $400.9 and 3.25 t CO2, respectively, compared to Case 2 with fixed energy settlement price. This demonstrates that settling energy prices using LMEP and LMGP can guide VPP energy optimization in a more cost-effective manner, enhancing both economic and environmental aspects of VPP.
By comparing Case 3 and Case 4, it is evident that in Case 4, the integrated energy-carbon price led to a 7.29% decrease in carbon emissions from the VPP compared to Case 3. However, the energy purchase costs and total costs of the VPP increased in Case 4 due to the higher carbon price. Moreover, the inclusion of a carbon price incentivized VPPs to use more natural gas over purchased electricity, resulting in increased operating costs for GSOs and decreased costs for DSOs in Case 4. Overall, the proposed multi-agent Stackelberg game trading strategy proves beneficial in enhancing the economic and low-carbon advantages for each agent.
5.2.1.2 Analysis of price response mechanism.
The impact of different pricing methods on the power purchased by VPPs is analyzed by examining the power distribution network settlement tariffs and carbon price change curves for the nodes where the VPPs are located in Cases 3 and 4, as shown in Figure 5. Additionally, Figure 6 illustrates the carbon intensity for all nodes of the power distribution network under Case 4.
[image: Line graph showing carbon price versus time over a 24-hour period, with carbon price in dollars per megawatt-hour on the left y-axis and time in hours on the x-axis. Case 3 and Case 4 are represented by dashed and solid lines respectively. Carbon price fluctuates throughout the day with distinct peaks and troughs.]FIGURE 5 | Electricity prices in different scenarios.
[image: Three-dimensional surface plot depicting node carbon intensity over nodes and hours. The intensity ranges from dark blue, indicating lower values, to light green, indicating higher values. The x-axis represents nodes, the y-axis represents hours, and the z-axis shows carbon intensity in kilograms of CO2 per megawatt-hour.]FIGURE 6 | Variation of carbon intensity at power distribution network nodes under Case 4.
As shown in Figure 5, considering the carbon tax on VPP’s electricity demand from the power distribution network increases the purchase price. The integrated energy-carbon price is consistently higher than the LMEP, with its incremental increase varying over time. The difference between the integrated energy-carbon price and the LMEP is more pronounced at certain times (e.g., from 05:00 to 09:00) when the nodes have higher carbon emission densities. In contrast, while the combined gas-carbon price also rises, its change is minimal because the carbon intensity of each node in the gas distribution network is relatively uniform. The carbon emissions for VPPs purchasing gas from the gas distribution network depend solely on the amount of gas used. Consequently, the combined gas-carbon price remains essentially unchanged over time. In this paper, the LMGP of VPP coupled with the gas distribution network is calculated to be 0.5120 $/m³, and the integrated gas-carbon price, considering the carbon tax, is 0.6174 $/m³.
An examination of the carbon intensity of individual nodes in both Figure 6 and the IEEE 33-node system topology diagram indicates that nodes with wind turbines and their adjacent nodes have lower carbon intensity, attributed to the low carbon emissions of wind turbines. On the other hand, nodes connected to VPPs’ power distribution network are situated near coal-fired units with high carbon emissions, impacting their carbon intensity. Nevertheless, the carbon intensity of these nodes aligns closely with that of thermal units. As a result, the carbon pricing of nodes linked to the power distribution network, as depicted in Figure 5, demonstrates minimal fluctuations over time.
To further investigate the impact of carbon pricing on the amount of electricity and gas purchased by VPPs, Figure 7 illustrates a comparison between the two scenarios. The results show that during the 05:00-10:00, Case 4, with carbon pricing, acquires less electricity but more natural gas compared to Case 3, without carbon pricing. This is due to the higher carbon intensity at the node connected to the power distribution network, as depicted in Figure 5. The node’s carbon intensity is higher during 05:00-10:00, leading to a greater use of natural gas over electricity. Therefore, incorporating a carbon price incentivizes VPPs to utilize more natural gas and decrease electricity consumption.
[image: Two line graphs show variations over 24 hours. The left graph displays electricity usage (in megawatts) for Case 3 and Case 4, with fluctuating trends. The right graph shows gas purchased (in cubic meters) for both cases, peaking around 8 to 16 hours. Both graphs use hours on the x-axis and distinct lines to represent each case.]FIGURE 7 | Power and gas purchases of VPP in different scenarios.
In order to better understand the demand for purchased energy and carbon emissions of a VPP utilizing an integrated energy-carbon price response mechanism, a comparison and analysis between Case 3 and Case 4 is conducted. The results of this comparison are illustrated in Figure 8. The visualization in Figure 8 demonstrates that, in Case 4 where carbon price is considered, natural gas becomes a more competitive option compared to Case 3 where carbon price is not a factor. Consequently, the VPP tends to procure natural gas with lower carbon intensity, leading to an increase in total gas volume purchased and a decrease in the purchase of electricity from the power distribution network with higher carbon intensity. This results in a reduction of 1.91 MWh in the total purchased electricity of the VPP. Furthermore, with the inclusion of carbon price, the total carbon emissions of the VPP decrease from 29585.8 kg to 27436.6kg, showcasing a significant reduction in carbon emissions due to the integrated energy-carbon price response mechanism. These findings suggest that the proposed multi-agent Stackelberg game energy settlement price effectively facilitates carbon emission reduction and enhances the low-carbon benefits of the VPP.
[image: Bar chart comparing two cases: Case 3 (green) and Case 4 (orange) in electricity purchase (kilowatt-hour), gas purchase (cubic meter), and carbon emissions (kilogram CO2). Case 3 shows higher values in all categories.]FIGURE 8 | Comparison of VPP energy purchase demand and Carbon emissions under different scenarios.
5.2.2 Analysis of VPP optimal schedule
The results of the optimization of electric power and thermal power inside the VPP are shown in Figure 9. For the VPP internal units, new energy consumption has the highest priority to minimize wind abandonment, and the VPP completes the internal optimal scheduling according to the combined energy-carbon price. The gas turbine CHP unit generates electricity and heat within the output range, and the electric energy storage is mainly charged when the energy-carbon integrated price is lower, such as 01:00-04:00 and 07:00 moments, and discharged at 06:00 and 12:00-14:00 when the electricity-carbon integrated price is higher, so as to reduce the purchase of electricity from the power distribution network and reduce the total operating cost and carbon emissions, while the electric and heat loads are considered Comprehensive demand response can realize peak shaving and valley filling to alleviate the pressure of grid peaking; only when the internal unit output cannot meet its load demand, it purchases electricity from the power distribution network and gas from the gas distribution network. Considering that the heat load demand within the VPP is prioritized to be met by the gas turbine CHP unit, after considering the heat load demand response, the vast majority of the moments are heat production by the gas turbine only, and only when the gas turbine is not enough to supply heat at the 23:00-24:00 moments, the gas boiler GB unit will be powered up.
[image: Two graphs illustrate energy data over 24 hours. The left graph is a stacked bar chart showing various power sources, including gas turbines, wind, and energy storage, alongside the initial and optimized electrical loads. The right graph is a line chart displaying heating data, with gas turbine and boiler heating compared to initial and adjusted thermal loads. Both graphs highlight dynamic energy management strategies.]FIGURE 9 | VPP internal optimization results.
5.3 Algorithm convergence analysis
This section examines the iterative convergence of the proposed multi-agent Stackelberg game trading strategy. Figure 10A illustrates the converged iterations of the original and pairwise residuals in Case 4, while Figure 10B demonstrates the iterative convergence of the game interactions among DSO, GSO, and VPPO.
[image: Two graphs are shown side by side. The left graph plots residuals versus iterations, showing two decreasing lines labeled Original and Dual. The right graph plots cost versus iterations, displaying three lines labeled VPPO, GSO, and DSO. The lines represent different algorithm performances over 45 iterations, with costs ranging from 10000 to 20000.]FIGURE 10 | Convergence result for interactive iterative of multi-agent Stackelberg game.
Based on the residual convergence analysis presented in Figure 10A, it is evident that the proposed algorithm achieves the desired level of accuracy after 45 iterations, converging within 10–3, with a computation time of 329 s. Figure 10B visually demonstrates that the cost of purchased energy for the leading DSO and GSO converges to $4776.7 and $18,079.3, respectively, while the cost for the follower VPPO converges to $13009.4. This convergence indicates that the Stackelberg game between the DSO, GSO, and VPPO has reached equilibrium, where each agent cannot further reduce its operational cost by adjusting its trading strategy in isolation. These results highlight the strong convergence performance and computational efficiency of the distributed optimization algorithm proposed in this study.
In order to further validate the effectiveness of the adaptive ADMM algorithm proposed in this study, a comparative analysis with the fixed-step ADMM is conducted. The solution performance is documented in Table 2 for both fixed step size and adaptive step size ADMM. It is evident from Table 2 that the adaptive step-size ADMM, as opposed to the traditional ADMM, diminishes the reliance on the initial value selection through step size correction. This results in fewer iterations, reduced solving time, and enhanced solving efficiency.
TABLE 2 | Comparison between traditional ADMM and ADMM with adaptive step size.
[image: Comparison table showing algorithm performance. Traditional ADMM with steps 0.1, 1, 50 has 109, 63, 92 iterations/time; solution times 674, 402, 580 seconds. Adaptive step size ADMM with same steps has 68, 45, 75 iterations/time; solution times 451, 329, 483 seconds.]6 CONCLUSION
This paper introduces a bi-level model and its solution method for a multi-agent Stackelberg game focused on synergistic low-carbon trading within Virtual Power Plants (VPPs) participating in multi-energy systems under an energy-carbon integrated price response mechanism. The proposed trading strategy is analyzed and validated through an arithmetic example, leading to the following conclusions.
	(1) The integrated energy-carbon pricing approach, based on the CEF theory, is more effective in incentivizing VPPs to adjust their energy-use and trading strategies with multi-energy systems compared to LMEP and LMGP pricing approaches. This encourages VPPs to procure energy from both power distribution and gas distribution networks during periods of low carbon intensity, thereby reducing carbon emissions.
	(2) The proposed trading framework and multi-participant Stackelberg game model enhance energy interactions among participants, improving the economics and low-carbon benefits for each participant. Compared to traditional energy settlement methods, the integrated energy-carbon pricing method is shown to be more effective in this regard.

This study focuses on the trading of electricity and natural gas within a VPP with a multi-energy system. Future research will explore trading multiple energy sources and carbon emissions to achieve synergistic low-carbon trading. Furthermore, the impacts of renewable energy integration and load demand uncertainty in VPPs are also important areas for further investigation.
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The role of load modeling in power systems is crucial for both operational and regulatory considerations. It is essential to develop an effective and reliable method for optimizing load modeling parameter identification. In this paper, the dung beetle algorithm is improved by using the good point set, and a load model parameter identification strategy based on the good point set dung beetle optimization algorithm (GDBO) within the framework of the measurement-based load modeling method. The proposed parameter identification strategy involves utilizing PMU voltage data as input, selecting a comprehensive load model, and refining the initialization process based on the good point set to mitigate the influence of local maxima. Through iterative optimization of the objective function using the Dung Beetle Optimizer (DBO) algorithm, the optimal parameters for the comprehensive load model are determined, enhancing the model’s ability to accurately capture the power curve. Analysis of examples pertaining to PMU-measured modeling parameter identification reveals that the proposed GDBO algorithm, which incorporates a good point set, outperforms alternative methods such as the improved differential evolution algorithm (IDE), particle swarm optimization algorithm (PSO), grey wolf optimization algorithm (GWO), and conventional DBO algorithm. This demonstrates the superior performance of the introduced approach in the context of load model parameter identification.
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1 INTRODUCTION
At present, digital simulation plays an irreplaceable role in power systems across various domains such as power network planning, operation, control, and personnel training (Zhang et al., 2020; Yang et al., 2022a; Diao et al., 2023; Wu et al., 2023; Zhang et al., 2023a; Zhu et al., 2023). The accuracy of the simulation results depends on the conformity of the adopted component models and parameters. Selecting an inappropriate load model in power system simulation can lead to deviations in the simulation results from the actual situation, potentially resulting in misallocation of planning funds and operational decision-making errors (Ju, 2015; Xu et al., 2023). Therefore, in the process of dynamic simulation, it is very important to select a suitable load model to describe the load of a specific area (Swarupa et al., 2024).
Load modeling has two main approaches (Wang et al., 2014; Chen et al., 2020; Yang et al., 2022b) in power systems: component-based and measurement-based. The component-based load modeling first needs to count the characteristics of various typical loads, the proportion of load equipment, and the composition of loads (Wu et al., 2022; Fu et al., 2023; Yang et al., 2024), then derive the mathematical models and parameters of various typical loads, and finally integrate the statistical data to establish the model of load nodes. However, the load composition will change with time, the statistical workload is large, and the voltage characteristics of reactive power cannot be accurately obtained, so there are few practical applications. In contrast, measurement-based load modeling considers the power system as a stochastic system, first determines the model structure, then identifies the model parameters based on the measured data, and verifies its generalization ability (Wang et al., 2019; Zhang et al., 2023b; Zhou et al., 2023). This method requires the installation of a load characteristic recording device at the load node, which usually obtains data for identification under large disturbances. Although there are some drawbacks to measurement-based load modeling, it can be widely used in practice by using input-output models to solve the problem of complex load components without much statistical work (Zhang, 2007; Yang et al., 2018).
With the continuous development and popularization of artificial intelligence, intelligent algorithms have been widely used in the research of load modeling technology (Wang et al., 2011; Wang et al., 2020; Kang et al., 2021; Guo et al., 2022). Reference (Wang et al., 2020; Guo et al., 2022) has applied the grey wolf optimization (GWO) algorithm to load modeling based on its advantages of better global convergence, fewer adjustment parameters, and easy identification. It has been proven that the GWO algorithm can improve the accuracy of load modeling. Reference (Kang et al., 2021) adds the weight of flight inertia, global optimum, and flight interference factor to the butterfly algorithm to avoid the butterfly algorithm falling into the local optimum prematurely and improve the accuracy of the comprehensive load model. In order to prevent local convergence of the algorithm and increase the accuracy of identification findings, the chaos algorithm is incorporated into the ant colony method in Reference (Wang et al., 2011). However, due to the mixing of algorithms, the selection of parameters becomes complicated.
The dung beetle optimization (DBO) algorithm is an intelligent optimization algorithm that achieves global exploration and local development through the ball rolling, oviposition, foraging and stealing behavior of dung beetles (Yang et al., 2022c; Xue and Shen, 2022). The algorithm has the ability for global exploration and local development, which can speed up convergence and prevent premature phenomena. Presently, it has found extensive application in diverse research domains, including but not limited to range-free localization (Pan and Bu, 2023) and neural network training (Li et al., 2023). However, few scholars have applied the DBO algorithm to the research of load modeling.
In summary, this study employs the Dung Beetle Optimizer (DBO) algorithm, alternatively recognized as the Good Point Set Dung Beetle Optimizer (GDBO), to ascertain and refine the essential parameters inherent in the comprehensive load model. The PMU measured data is used as the input samples for load modeling. The optimal parameters of the load model are achieved through repeated optimization of the objective function, improving the model’s fit to the power curve. Finally, a comparison between the optimized sample curves and model responses produced by the proposed algorithm and the algorithms for improved differential evolution (IDE) (Xu et al., 2009a; Pattanaik et al., 2017), particle swarm optimization (PSO) (Fang et al., 2022), GWO (Wang et al., 2020; Guo et al., 2022), and DBO is made. This confirms that the proposed method is more accurate and solves load modeling parameters more quickly.
The paper is organized as follows: The establishment of the comprehensive load model is shown in the second chapter. The third chapter introduces the parameter identification of the integrated load model, including the principle of parameter identification, parameter identification method, the improvement of the identification method and the specific process of the identification algorithm. In the fourth chapter, the example simulation of parameter identification is carried out. The fifth chapter gives the conclusion.
2 COMPREHENSIVE LOAD MODEL
The comprehensive load model comprises a static ZIP load model and a three-order induction motor model in parallel (Liu, 2007; Sheng et al., 2021; Yang et al., 2022d; Wang et al., 2023). The model is shown in the following Figure 1.
[image: Electrical circuit diagram showing a system layout with a 220 KV generator stepping down to 35 KV and then up to 110 KV through transformers. Includes equivalent circuit representation with resistors and inductors labeled \(R_s\), \(jX_s\), \(jX_m\), \(jX_r\), and \(R_r/s\).]FIGURE 1 | Equivalent structure of integrated load model.
The static ZIP part adopts a polynomial model, which can be described as follows Equation 1:
[image: Two equations are shown. First equation: \( P_s = P_z \left( \frac{U}{U_0} \right)^2 + P_I \left( \frac{U}{U_0} \right) + P_p \). Second equation: \( Q_s = Q_z \left( \frac{U}{U_0} \right)^2 + Q_I \left( \frac{U}{U_0} \right) + Q_p \).]
in the above formula, we use [image: It seems like there's no image uploaded. Please upload the image or provide a URL. If you have a caption or specific context in mind, feel free to include it.] to represent the static active power under the load constant impedance model, [image: Please upload the image or provide a URL for me to generate the alt text.] to represent the static active power under the load constant current model, and [image: It seems there was an issue with the image upload. Please try uploading the image again, making sure the file is properly attached. If needed, you can add a caption for additional context.] to represent the static active power under the load constant power model and constant power, satisfying the following formulaic conditions: [image: Mathematical equation: \( P_Z + P_I + P_P = 1 - K_{pm} \).].The static ZIP part’s active and reactive powers are denoted by [image: Please upload the image or provide a URL so I can create the alternate text for you.] and [image: Please upload the image or provide a URL so I can help create the alt text for you.].Under static reactive load, components [image: It seems that there is no image attached. Please upload the image or provide a URL to it, and I will create the alt text for you.], [image: Please provide the image by uploading it or sharing a URL.], and [image: It looks like there was an issue with the image upload. Please try uploading the image again, and I would be happy to help with the alt text!] satisfy the following requirements: [image: The formula shown is \( Q_Z + Q_I + Q_P = 1 - \frac{Q_{\text{meter}}}{Q_0} \).].
The induction motor part can be described as Equations 2, 3:
[image: A set of equations is shown. The first equation is the derivative of \(E_d\) with respect to \(t\), expressed as \(\frac{1}{T}\) times \([E_d' + (X_m - X_m'||X_r)I_d] - w'E_q'\). The second equation is the derivative of \(E_q'\) with respect to \(t\), expressed as \(\frac{1}{T}\) times \([E_q' - (X_m - X_m'||X_r)I_d] + w'E_d'\). The third equation is the derivative of \(w\) with respect to \(t\), expressed as \(\frac{1}{2H}\) times \([(A\omega^2 + B\omega + C)T_0 - (E_d'I_d + E_q'I_q)]\). Equation number (2) is labeled to the right.]
[image: Mathematical equations for \(I_d\) and \(I_q\) within braces. Equation for \(I_d\): \(\frac{1}{Z^2} [R_t(U_d - E_d) + (X_s + X_{mll}X_r)(U_q - E_q)]\). Equation for \(I_q\): \(\frac{1}{Z^2} [R_t(U_q - E_q) - (X_s + X_{mll}X_r)(U_d - E_d)]\). Labeled as equation (3).]
In the formula: [image: Equation showing T prime equals the sum of X sub f and X sub m, divided by R sub f.]; [image: Mathematical equation: \( Z^2 = R^2 + (X_s + X_m \parallel X_r)^2 \).]; [image: Mathematical expression depicting the equation \( w' = w - 1 \).]; The stator winding resistance and leakage reactance are represented by [image: It appears there is no image attached. Please upload the image so I can help create the alt text for it.] and [image: Please upload the image or provide a URL, and I will help you create the alt text.], respectively; [image: Please provide the image or a URL for me to generate the appropriate alt text.] represents mutual inductance of stator and rotor; The rotor winding’s resistance and leakage reactance are represented by numbers [image: Please upload the image you would like me to describe. If there is a specific aspect you want highlighted, let me know!] and [image: It seems there is an issue with the display of the image. Please upload the image file directly or provide a URL for accurate alt text creation.] (Kang et al., 2021); The above parameters are all per-unit values under the base value of their own capacity; [image: It seems like there might be an error or incomplete information about the image. Please upload the image file or provide a URL for accurate alt text creation.] represents the potential of the equivalent motor under the [image: Please upload the image you would like me to describe. If you can provide a URL or attach the image here, I can help create the alt text for it.]-axis sub-transient state; [image: It looks like there is an issue with displaying the image or text you intended to share. Please try uploading the image file directly or describe the image in detail so I can help create the appropriate alternate text.] denotes the potential of the equivalent motor under the [image: Please upload the image you need alt text for, and I will assist you accordingly.]-axis sub-transient state; Where [image: Equation showing \(A + B + C = 1\).] is satisfied; [image: Please upload the image or provide a URL for me to create the alt text.] represents the rotational speed of the equivalent motor; H is the corresponding motor’s inertia time constant (Xu et al., 2009b). [image: Mathematical notation displaying \(X_m \parallel X_r\).] means that [image: Please upload the image or provide a URL so I can create the alternate text for it.] and [image: Please upload the image you would like me to provide alt text for, and I will be happy to help.] are connected in parallel to form [image: Fraction with numerator \( X_m X_r \) and denominator \( X_m + X_r \).]. In addition to the above 12 parameters, in order to transform the model parameters into per-unit values, two parameters [image: Mathematical expression showing "K" with subscript "pm" in an italicized serif font.] and [image: It seems like your request is for alternative text for an image, but you haven't uploaded an image or provided a URL. Please upload the image or provide a link, and I'll be happy to help with the alt text.] are defined as follows Equations 4, 5:
[image: Equation showing \( K_{pm} = \frac{P_0'}{P_0} \), labeled as equation (4).]
[image: Mathematical formula with \( M_{1f} = \left( \frac{P_0}{S_{MB}} \right) \div \left( \frac{U_0}{U_B} \right) \), labeled as equation (5).]
where: [image: If you upload the image or provide a URL, I can help create the alt text for it. Without the image, I can't provide an accurate description.] is the corresponding motor’s starting active power; [image: Please upload the image or provide a URL so I can help create the alt text for it.] stands for the load’s initial active power; [image: It seems like there is a label or notation `K_{pm}`. If you have an image to upload, please do so, and I can provide a detailed alt text for it.] represents the distribution parameter of initial active power; [image: If you have an image you would like me to describe, please upload it or provide a URL.] represents the rated capacity of induction motor (Guo et al., 2022). The rated starting load rate coefficient is denoted by [image: It seems like you are referencing mathematical notation or a specific detail about an image. If you could provide the actual image or describe its content, I can help create the alt text for it.].
To sum up, the parameters to be identified are [image: Please upload the image or provide a URL so I can create the alt text for you.], [image: Please upload the image or provide a URL for me to generate the alt text.], [image: It appears you mentioned an expression rather than providing an image. To generate alt text, please upload the image or provide a URL.], [image: Please upload the image or provide a URL so I can assist you with creating alt text.], [image: It looks like there is a problem with the image you tried to upload. Please try uploading the image again or provide more context or a URL.], [image: Please upload the image or provide a URL, and I'll be happy to help with the alt text.], [image: Please upload the image or provide a URL so I can assist you in creating the alt text. If there's any additional context you think is important, feel free to include that as well.], [image: Certainly! Please upload the image you'd like me to describe.], [image: It seems there might have been an error, as no image has been provided. Please upload the image or provide a URL, and I will help create the alt text for it.], [image: Mathematical notation showing "K" with subscript "p" and superscript "m".], [image: Please upload the image or provide a URL so that I can generate the appropriate alt text for you.], [image: Please upload the image you want me to describe.], [image: It seems there was an attempt to upload an image, but it is not displaying. Please try uploading the image again, and I will help you create the alt text for it.], and [image: It seems like there was an issue with the image upload. Please try uploading the image again or provide a URL. You can also add a caption for additional context if you like.]. The use of this integrated load model makes the load modeling more comprehensive and accurate, and can better meet the needs of practical applications. The identification and improvement of model parameters can enhance the dependability and relevance of load modeling, hence offering a crucial point of reference for power system management and planning.
3 PARAMETER IDENTIFICATION OF LOAD MODEL
3.1 Principle of parameter identification
After determining the model structure, it is necessary to select an efficient and reliable optimization algorithm for parameter identification. At the core of parameter identification lies the estimation of model parameters by fitting a mathematical model of the system using input and output data. The principles of this process are illustrated in Figure 2.
[image: Flowchart illustrating a system optimization process. It starts with "System input" feeding into "The actual system" and "Simulation system." The outputs are compared, with the actual system output subtracting from the simulation system output to determine the error value. This error guides adjustments to the simulation model parameters, leading to system optimization.]FIGURE 2 | Schematic diagram of parameter identification system.
The system input in the above figure is voltage. In the actual system, this curve specifically showcases the accurately measured values of active and reactive power for the load. Similarly, the simulation system’s output curve mirrors this scenario, providing a simulated perspective on the active and reactive power of the load in response to voltage disturbance.
Initially, it is imperative to establish both the model structure and the objective function. Subsequently, the parameter identification process unfolds through the utilization of input and output data, employing an optimization method with the core principle of minimizing the objective function value. The central focus of this paper lies in defining the objective function, as articulated below Equation 6:
[image: Equation depicting \( J \) as the square root of the average squared differences between predicted and measured values, with \( \hat{P} \) and \( \hat{Q} \) as predictions and \( P_{m} \) and \( Q_{m} \) as measured values.]
in the formula: [image: It seems like you've posted a mathematical symbol rather than an image. If you meant to upload an image, please try uploading again. If the symbol is part of a broader equation or context, feel free to provide more details.], [image: It seems there is no image to describe. Please upload the image or provide a URL, and I will help you with the alt text.] represent the active and reactive power measured at time i, and n represents the number of samples. [image: It seems there was an error displaying the image. Please provide a URL or upload the image file so I can help create the alt text.] and [image: Mathematical expression showing the letter "Q" with a caret symbol above it and a subscript "i", often used to denote a specific component or estimate in mathematical or statistical contexts.] represent the active and reactive power computed at time i.
3.2 Dung beetle optimization algorithm (DBO)
The DBO algorithm specifically comes from the four living habits of DB, which are rolling, spawning, foraging and stealing. The Dung Beetle Optimizer (DBO) algorithm is a nature-inspired optimization technique based on the behavior of dung beetles. These insects exhibit unique foraging strategies that have been effectively translated into optimization algorithms to solve complex problems. The algorithm adapts the movement strategies of the dung beetles based on their success in finding good solutions. This adaptive mechanism enhances the efficiency of the search process. The principle diagram of the dung beetle optimization algorithm is shown in Figure 3, and the global optimal solution can be found after multiple iterations.
[image: Diagram showing concentric dashed circles centered around a point labeled "C." Points are plotted within and numbered around the circles. Labels "Ub" and "Lb" are positioned along the horizontal axis, with a central line passing through the diagram.]FIGURE 3 | DBO algorithm schematic diagram.
3.2.1 Rolling DB
Rolling dung balls is a common behavior among dung beetles. These insects have a tendency to roll dung balls that are larger than their own size to their preferred location. During this rolling process, they utilize celestial cues, such as the Sun and Moon, to maintain a straight trajectory for the dung ball. The passage delineates the navigational conduct of a dung beetle within a designated search space. In order to replicate this behavioral phenomenon, adherence to a predetermined trajectory is imperative. This emulation is encapsulated within a formalized rolling mathematical model, wherein the dynamic repositioning of both the dung beetle and the concomitantly propelled ball undergo continuous updates throughout the rolling process. The rolling mathematical model is as follows Equation 7:
[image: Equation showing a recursive relationship for \( y_{\lambda}(t+1) = y_{\lambda}(t) + \beta my_{i}(t-1) + c \Delta y \), where \( \Delta y = |y_{i}(t) - C| \).]
the current iteration times are denoted by t in the formula, where [image: Mathematical expression showing the function \( y_{i}(t) \).] is the location information of the i-th DB at the t-th iteration; According to the references (Pan and Bu, 2023), [image: The text shows the mathematical inequality: zero is less than m which is less than or equal to one-fifth.] is a constant value that represents the defect coefficient. [image: If you want to provide an image for which you need alt text, please upload the image or provide a URL to it. You can also add a caption for additional context.] is a constant value between Zero and One, and [image: It seems there was no image uploaded. Please try uploading the image again, and I will be happy to help with the alt text.] is a coefficient with a value of −1 or 1. The worst place in the world is represented by [image: It seems like there isn't an image provided. Please upload the image or provide a URL so I can assist you with the alt text.], the change of [image: The image contains the mathematical symbol "Δy", representing the change in the variable y.] means the change of light intensity, and the higher the value of [image: Please upload the image or provide a URL so I can help create the alternate text.], the weaker the light source. The values of [image: Please upload the image so I can help create the alt text for it.] and [image: Please upload the image or provide a URL so I can create the alternative text for it.] are critical; [image: Please upload the image or provide a URL so that I can generate the alt text for you.] and [image: Please upload the image or provide the URL so I can help create the alt text for it.] are set to 0.1 and 0.3, respectively. Natural causes that can lead DB to diverge from its original path are denoted by [image: A bold lowercase Greek letter beta (β) in a serif typeface.]. Specifically, when [image: Mathematical notation showing beta equals negative one.], it means that the update position deviates from the original dung beetle position, and when [image: It seems there is no image uploaded. Please upload the image or provide a URL, and I will help create the alt text for you.], it means that the update position has no deviation. To imitate the complicated environment in the actual world, [image: It seems like there's no image attached. Please upload the image or provide a URL, and I can create alt text for it.] is set to 1 or -1 using a probability strategy in this study. [image: The symbol "Δy" represents the change in the variable y, often used in mathematics and physics to denote a difference or variation in y over a particular interval.] can promote rolling ball DB by providing the following two benefits:
	1) In the optimization process, explore the entire problem space as fully as feasible.
	2) Improved search performance, with less reliance on the local optimal.

When DB encounters obstacles that hinder its progress, it adopts a unique strategy akin to a dance to overcome the impediment and discover an alternative route. The essence of this method involves utilizing the tangent function to calculate a fresh roll direction, mirroring the intricate movements observed in a dance routine. Once the appropriate direction is determined, DB seamlessly continues its journey by rolling the associated ball backward. This dynamic approach constitutes the core of DB’s ability to adapt and navigate challenging environments. In essence, the process encompasses the update of DB’s position and establishes a comprehensive definition of its distinctive dance-like behavior Equation 8:
[image: Equation showing the relationship: \( y_i(t+1) = y_i(t) + \tan(\theta)|y_i(t) - y_i(t-1)| \).]
in the formula: [image: Mathematical expression: \( y_i(t) \).] represents the position of the i-th DB in the t-th iteration update, [image: The mathematical expression \( y_i(t-1) \) represents the value of a function \( y \) at the previous time step \( t-1 \), indexed by \( i \).] represents the position of the i-th DB in the t-1-th iteration update, similarly, [image: The expression shows a mathematical notation: \( y_i(t + 1) \), indicating the value of \( y \) subscript \( i \) at time \( t \) plus one.] represents the position of the i-th DB in the t+1-th iteration update. [image: Please upload the image or provide a URL, and I will help you with the alt text. If you want to add additional context or a caption, feel free to include that as well.] refers to the offset angle during the position update process, and its value range is 0–180°, if [image: Please upload the image or provide a URL to ensure I can give an accurate description.] equals 0, [image: Please upload the image or provide a URL so I can help you create the alt text.], or [image: Please upload the image you would like me to describe.], the location of the DB is not updated.
3.2.2 Spawning DB
Dung beetles show a fascinating behavior in nature. They carefully roll the dung balls, roll the cow dung into a dung ball with a diameter of about 2.5 cm, and quickly push it underground and bury it as the next-generation of food. This process is crucial for dung beetles (DB), as they carefully select a suitable spawning site to establish a safe habitat for the upcoming generation. The previous discussion underscored the importance of this behavior and motivated the introduction of boundary selection methods. This method is designed to simulate the specific area of female oviposition. The focus is on mimicking the natural conditions that ensure the safety and wellbeing of beetle offspring. The upper and lower limits of the selected region can be expressed by Formula 9:
[image: Equations defining lower and upper bounds. The lower bound \(Lb^c\) is the maximum of two values: \((1 - (1 - \frac{t}{T_{max}}))C^*,Lb\). The upper bound \(Ub^c\) is the minimum of: \((1 + (1 - \frac{t}{T_{max}}))C^*,Ub\). These formulas are labeled as equation (9).]
where: [image: I'm sorry, I can't access the image. Please upload it directly, and I'll be happy to help with alt text.] and [image: It seems there was an error in your request, and I cannot see or generate alt text for an image without it being uploaded. Please provide the image or a link to it, and I can help create the alt text.] are used to characterize the upper and lower boundaries of the dung beetle’s renewal spawning area respectively, while [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: Please upload the image or provide a URL for me to generate the alt text.] represent the upper and lower limits of the optimization problem. [image: To provide alt text, please upload an image or provide a URL. You can also include any additional context or a caption if desired.] represents the upper bound constraint on the number of iterations; [image: It seems like there was a mix-up. Please upload the image or provide a URL, and I'll be happy to help create the alt text for you.] means the current local position optimal solution.
In the DBO algorithm, each female DB only lays a single egg per iteration to maintain ecological balance. This process prompts dynamic alterations in the boundary range of the spawning area, predominantly governed by adjustments to the R value. The determination of this R value may change at different stages of the iteration, thus affecting the size and shape of the spawning area. Therefore, in the whole iteration process, not only the number of eggs is regulated, but also the position of the hatching ball remains dynamic, evolving with the continuous adjustment of the boundary range. The specific position iteration formula can be articulated as follows Equation 10:
[image: Equation labeled (10) showing \( Y_i(t+1) = C + \sum_{m=1}^{2} d_m (Y_i(t) - Lb) \), representing a summation from \( m = 1 \) to \( 2 \).]
in the formula, [image: The mathematical notation \( B_{i}(t) \) is shown, representing a function or process indexed by \( i \) over time \( t \).] denotes the update position of the i-th DB breeding ball during the t-th iteration. [image: It seems like you're trying to describe a specific feature or mathematical notation in an image, but you've only provided text. If you have an image you'd like me to describe, please upload it, and I can help create alt text for it.] ([image: If you're referring to an image, please upload it or provide a URL so I can help create alt text for it.]) are independent random vectors, Only the spawning area—that is, a specific area—is permitted to have the breeding ball.
3.2.3 Foraging DB
The little DB that emerges from the breeding ball wants to feed, so we build the best foraging area and direct it there. The small DB’s position is updated in this way:
[image: \(Lb^d = \max((1 - RC)^c, Lb)\) and \(Ub^d = \min((1 + RC)^c, Ub)\), equation number 11.]
the ideal foraging area’s boundary division is shown above. [image: A lowercase "c" followed by a superscript "b".] denotes the best position in the foraging area of all range classes; as the definition of the above formula, [image: Expression "L b superscript d", with "L" and "b" in normal font and "d" as a superscript.] and [image: Please upload the image you would like me to describe.] are defined as the upper and lower limits of the optimal foraging area, respectively, along with other parameters stated in Formula 9. As a result, the little database’s location is changed as Formula 12:
[image: Equation showing \(y_i(t+1) = y_i(t) + \sum_{m=1}^{2} k_m \times (y_i(t) - Lb^b)\).]
in the formula, the variables [image: Mathematical notation shows "y sub i of t" in parentheses, representing the function \( y_i(t) \).] represent the location information of the [image: Lowercase letter "i" with a dot above, in a serif font style.]-th tiny DB at the [image: Please upload the image or provide a URL, and I will help create the alt text for it.]-th iteration, [image: The alt text cannot be provided as the image has not been uploaded. Please upload the image, and I would be happy to help!] ([image: It seems there was an error in posting the image. Please upload the image again, or provide a URL if available. Let me know if you need any help!]) represent the random number that follows the normal distribution.
3.2.4 Stealing DB
There are also some DBs who steal turds from other DBs. Furthermore, Eq. 11 shows that [image: Mathematical notation showing the letter "C" with a superscript "d".] is the best position for the dung ball (food), and it stands to reason that the best area for competition for food is in the vicinity of [image: Looks like there might have been an issue with the image upload. Please try uploading the image again, and I will help you with the alt text.]. The following iterative formula is used to describe the position update of the thief dung beetle Equation 13:
[image: Equation: \( y_i(t+1) = C^* + a \cdot I \cdot (|y_i(t) - C^*| + |y_i(t) - C^*|) \) with label (13).]
in the formula, [image: Mathematical expression showing \( y_i(t) \), where \( i \) is a subscript of \( y \), and \( t \) is within parentheses, likely representing a function of time.] is the position of the [image: No image was uploaded. Please try uploading the image again or provide a URL.]-th thief at the [image: Please upload an image or provide a URL so I can generate the alt text for it.]-th iteration; The value of [image: Please upload the image or provide a link to it so I can help create the alternate text for it.] is constant. [image: Please upload the image so I can create the alternate text for it.] is a stochastic vector generated from a normal distribution, with its dimensionality denoted by [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL. If you have additional context or a caption, feel free to include it.].
3.3 The good point set
Nowadays, the initialization method of most swarm intelligence optimization algorithms is a random initialization form. The randomly generated population is unevenly distributed in the whole solution space. It is very gathered in some areas and scattered in others, resulting in the algorithm’s utilization of the entire search space not being high and the population diversity not being strong. Aiming at the problem of random initialization, many scholars have proposed and used good point-set initialization. The theory of the good point set originated from Hua Luogeng, a famous Chinese mathematician. The randomness of random initialization is too high, and there may be a phenomenon where the first-generation solution is very far from the optimal value. If the value of the first-generation solution is very close to the optimal value, it can not only improve the convergence speed but also the optimization accuracy under the premise of a certain number of iterations.
Using the good point set for initializing the population in optimization algorithms ensures uniform coverage of the search space, which improves the balance between exploration and exploitation, accelerates convergence, reduces bias, and enhances performance, particularly in high-dimensional spaces. This leads to more effective and efficient optimization, making it a preferred choice for initializing candidate solutions. To ensure population diversity and ergodicity, which can ultimately enhance the algorithm’s search performance, it is crucial to maintain a uniform distribution within the initial population. Achieving population diversity in DBO can be challenging due to the random selection of individuals during initialization.
A uniform and effective method for point selection is employed to initialize the population, aiming to address the aforementioned challenges, enhance population diversity, and optimize the utilization of the current solution. Leveraging the uniform distribution attribute of an excellent point set bolsters the flexibility and comprehensiveness of the population initialization process, enabling more thorough exploration of the solution space.
Currently, numerous clever algorithms (Cheng and Ding, 2020; Yan et al., 2023) have implemented the excellent point set initialization method with successful outcomes. The population’s initialization can be dispersed over the solution space by employing the good point set, which increases population variety and helps the algorithm find the globally optimal solution more effectively. The following is the principle: Let us assume that the person in the DBO algorithm is a point in n-dimensional Euclidean space, or, alternatively, that it is a position in the unit cube. When the number of individuals in a population exceeds the volume of the unit cube, it will cause individual repetition. The following actions can be performed to lower the repetition rate Equation 14:
[image: Mathematical expression showing a set notation: \( P_m(n) = \{(g_1^{(m)}, n), \ldots, (g_R^{(m)}, n)\} \) for \( 1 \leq n \leq m \). Equation number is \( (14) \).]
in the formula: [image: The mathematical notation \( P_m(n) \) is displayed, representing a function or sequence indexed by \( m \) and evaluated at \( n \).] is a set of good points, and the deviation [image: The mathematical equation shown is phi of m equals C of g and epsilon times m to the power of negative one plus epsilon.], where [image: The mathematical formula depicts phi of m equals capital C of g, epsilon, times m raised to the power of negative one plus epsilon.] is a constant only related to [image: It seems like there was an issue with the image upload. Please try uploading the image again, and I will help you create the alt text.] and [image: Please upload the image, and I will help you create the alternate text for it.]; [image: It seems like there was an issue with uploading the image. Please try uploading the image again, ensuring the file is supported, and I will help you generate alt text for it.] is a good point; Taking the fractional part is represented by [image: Mathematical expression with curly brackets containing "g" subscript "R" superscript "(n)" multiplied by "n".], n represents the number of points, [image: Mathematical expression displaying \( g_k = \left\{ 2 \cos \left( \frac{2 \pi n r}{p} \right), 1 \leq n \leq R \right\} \).]; The smallest prime number satisfying [image: Mathematical expression showing an inequality where open parenthesis p minus D divided by two close parenthesis is greater than or equal to D.] is [image: Please upload the image or provide a URL so I can generate the alt text for you.]. In the search space, map the set of good spots (Equation 15).
[image: Mathematical equation displaying \( y(j) = (Ub_j - Lb_j) \cdot (g^{(0)} \cdot n_1) + Lb_j \), followed by the number 15 in parentheses.]
in the formula: The top and lower boundaries of the [image: Please upload the image or provide a URL, and I will help you create the alternate text for it.]-th dimension are denoted by [image: Please upload the image or provide a URL for the image you would like described.] and [image: It seems you might be referring to a mathematical expression rather than an image. If you have an image to describe, please upload it, and I can help generate alt text for it. If this is a text expression, it represents "L sub b j." Let me know if you need further assistance!].
3.4 Algorithm flow
In this paper, the DBO algorithm enhanced by initializing the population with a good point set before updating the iterative position. The specific process is shown in Figure 4, which can be divided into seven steps:
	Step 1: During the initial phase of the algorithm, a set of initial parameters is defined, serving as the starting point for subsequent optimization processes.
	Step 2: Utilizing Formula 15, the algorithm initializes the population based on a pre-defined optimal point set, providing a well-founded starting configuration for the optimization process.
	Step 3: By executing the objective function, the algorithm calculates fitness values for each dung beetle in the population, reflecting their performance at their current positions.
	Step 4: Positions of all dung beetles are adjusted using a specified strategy to seek more optimal solutions. This step propels the population towards favorable directions.
	Step 5: Examine the positions of each dung beetle to ensure they adhere to the defined problem boundaries, maintaining the problem’s feasibility and validity.
	Step 6: In each iteration, it is essential to review and update the current optimal solution along with its corresponding fitness value to prevent the algorithm from disregarding potential global optima.
	Step 7: Iterate through Steps 3 to 6 iteratively until the pre-defined termination criterion is satisfied. Upon termination, report the attained global optimal solution and its corresponding fitness value, concluding the entire optimization process.

[image: Flowchart detailing an algorithm process: It begins with setting initialization parameters, initializing population based on a defined set, and calculating mean values for each subpopulation. Depending on conditions like \(x < 0.9\) and \(t < T_{max}\), various behaviors such as spawning, foraging, and acts of stealing update positions. Decisions are made to update or retain locations, considering if a new location is better than the original. The cycle continues until \(t < T_{max}\) is false, ultimately outputting optimal parameters.]FIGURE 4 | GDBO Flowchart.
4 CASE ANALYSIS
4.1 Algorithm initialization and parameter setting
The optimization algorithm’s parameter selection significantly impacts the optimization outcomes; hence, it is essential to meticulously choose optimal parameter values for simulation. Within each dung beetle colony, four distinct agents are present namely, the rolling ball DB, the spawning DB, the foraging DB, and the stealing DB. In the GDBO algorithm, the position vector of the i-th DB is represented by xi(t)=(yi1(t) [image: Please upload the image or provide a URL so I can create the appropriate alt text for you.] yiD(t)) at the t-th iteration. In this paper, the size of DB group is N = 70 (the population size of other algorithms is 70). The numbers of rolling, spawning, foraging and thief DB were 14, 14, 16, and 26, respectively. The prescribed maximum iteration count is established at 500, where the primary scaling factor, secondary scaling factor, and crossover probability of IDE are set to 0.5, 0.3, and 0.8. Both learning factors of PSO are set to 0.5.
4.2 Measured data of a power plant and example simulation
To assess the efficacy of the DBO algorithm in the context of parameter identification for load modeling, this paper uses IDE, PSO, and GWO to identify the PMU measured data recorded by a power plant in Ruilijiang, Yunnan Province, at 10:14 on 20 November 2019, sampling once every 10 ms, for a total of 6,000 times. Figures 5, 6 illustrate the correlation between active and reactive power for both empirical and simulated datasets, respectively. The unit of each parameter is p.u.
[image: Line graph illustrating the power output over time in seconds. The graph compares actual data with four different optimization algorithms: DE, GWO, PSO, and DBO. The y-axis shows power in per unit, ranging from 0.86 to 1.00, and the x-axis represents time from 0 to 60 seconds. Each algorithm is represented by different colored lines.]FIGURE 5 | Fitting diagram of active power identification.
[image: Line graph comparing P (p.u.) over time for different methods: Actual, DE, GWO, PSO, and DBO. All lines converge near 0.35 from 0 to 60 seconds, indicating similar performance.]FIGURE 6 | Reactive power identification fitting diagram.
According to the above Figures 5, 6, it is not difficult to see that the DBO algorithm used in this paper is more accurate for the fitting value of parameter identification results and basically achieves coincidence. However, the traditional Dung Beetle Optimizer algorithm has a wide range for the first iteration of the initial population, resulting in a higher fitting value in the front, and then tends to be stable. Hence, the algorithm denominated as the Dung Beetle Optimizer, founded upon the well-defined point set articulated in this study, aptly addresses the aforementioned issue. The comparative outcomes pertaining to active and reactive power are visually presented in Figures 7, 8. The parameter values for identification derived through the application of the Dung Beetle Optimizer algorithm are delineated in Table 1.
[image: Line graph showing three curves labeled Actual, DBO, and GDBO over time in seconds on the x-axis and probability P(t) on the y-axis. All curves fluctuate around 0.94, with the Actual data in red, DBO in green, and GDBO in dotted green.]FIGURE 7 | Comparison between active power DBO and GDBO.
[image: Line graph comparing "Actual," "DBO," and "GDBO" values against time in seconds. The vertical axis is labeled "Q (p.u.)," ranging from 0.30 to 0.45. The "Actual" data slightly fluctuates around 0.35 over 60 seconds. Legends indicate different data sets.]FIGURE 8 | Comparison between reactive power DBO and GDBO.
TABLE 1 | Parameter identification results of measured data.
[image: Table comparing different strategies (IDE, PSO, GWO, DBO, GDBO) based on metrics like optimal fitness, iteration time, and various parameters (R variables, X variables, H, A, B, and k variables). Each strategy's values are detailed in the table.]Figures 7, 8 show that the DBO algorithm based on the good point set has a faster initial iteration speed and can fit to the real value faster than the traditional DBO. The identification instances given above demonstrate that the DBO based on good point set has superior accuracy and speed than the other four algorithms in parameter identification of load modeling through a large number of practices.
4.3 Fitting effect evaluation
In this research, the assessment of fitting performance between observed data and simulated data relies on the utilization of specific metrics, namely the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). These metrics serve as quantitative measures to evaluate the accuracy of the simulated data in comparison to the actual observations. The corresponding formulations for MAE and RMSE are precisely defined by Eqs 16, 17, respectively. By employing these metrics and their associated mathematical expressions, this study establishes a rigorous framework for quantifying the level of agreement or discrepancy between the simulated data and the observed data, thereby enhancing the precision and reliability of the evaluation process.
[image: Formula for Mean Absolute Error (MAE): \(\text{MAE} = \frac{1}{m} \sum_{i=1}^{m} |y_i - x_i|\), labeled as equation (16).]
[image: Root Mean Square Deviation (RMSD) formula shown as RMSD equals the square root of the sum of squared differences between \( y_i \) and \( x_i \), divided by \( m \), from \( i = 1 \) to \( m \).]
within the mathematical expression, [image: Please upload the image or provide a URL so I can help create alternative text for it.] denotes the i-th actual value of either active or reactive power, [image: It seems you've mentioned a mathematical notation rather than an image. If you have an image to upload, please do so, and I can provide the alternate text for it.] represents the i-th simulated value of active or reactive power, and [image: It seems there was an issue with the image. Could you please upload the image file directly? Alternatively, you can provide a URL or a brief description of the image's contents.] corresponds to the total number of data sets.
Compared with the traditional method, the improvement rates of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) of the method used in this paper are represented by [image: The mathematical notation "I subscript M, A, E superscript percent" represents a metric or index related to Mean Absolute Error expressed as a percentage.] and [image: The text shows a mathematical expression: capital "I" with subscript "RMSD" followed by a percentage symbol.] respectively.
[image: Formula for percentage improvement in mean absolute error: I sub MAE percentage equals open parenthesis MAE sub RA minus MAE sub GDEO close parenthesis divided by MAE sub RA times one hundred percent. Equation eighteen.]
[image: \(\text{I}_\text{RMSE\%} = \left( \frac{\text{RMSE}_{BA} - \text{RMSE}_{GDBO}}{\text{RMSE}_{BA}} \right) \times 100\%\) equation labeled as 19.]
[image: Text containing the italicized letters "M", "A", "E", followed by a subscript "R" and "A".] represents the absolute average error of the traditional algorithm, and [image: Text displaying mathematical notation with 'MAE' in large font and 'GDBO' in a smaller subscript style.] represents the absolute average error of the GDBO algorithm proposed in this paper. [image: Text "RMSE" with subscript "RA."] represents the root mean square error of the traditional algorithm, and [image: Text representing a mathematical notation: "RMSE" with subscript "GDBO".] represents the root mean square error of the GDBO algorithm proposed in this paper.
The assessment outcomes for the fitting efficacy of measured data using the GDBO algorithm, which relies on the proposed favorable point set in this study, along with comparisons to alternative algorithms, are presented in Table 2.
TABLE 2 | Evaluation of model fitting effect.
[image: Comparison table of power optimization algorithms showing metrics for active and reactive power. Algorithms include IDE, PSO, GWO, DBO, and GDBO. Metrics: MAE, RMSD, and improvement percentages. GDBO shows the lowest errors in both MAE and RMSD.]Through a comparative analysis with alternative algorithms, upon careful examination, in the active power fitting, the GDBO algorithm used in this paper is compared with the IDE, PSO, GWO and traditional DBO algorithm in reducing the absolute average error, which is increased by 82.14%, 82.81%, 82.03%, and 51.75% respectively. In terms of reducing the root mean square error, the improvement rate of the GDBO algorithm also reached 73.64%, 71.64%, 75.02%, and 52.19%, respectively. At the same time, as shown in Table 2, the GDBO algorithm demonstrates remarkable performance when fitting reactive power applied to measured data of the model. Specifically, it exhibits the most minimal mean absolute error and root mean square error among the tested algorithms. This compelling observation underscores the superior efficacy of the proposed algorithm in the realm of parameter identification. The algorithm’s ability to minimize errors in fitting the measured data points to the model highlights its robustness and accuracy, signifying its potential as an effective tool in practical applications requiring precise parameter estimation. Moreover, the algorithm demonstrates increased robustness in the face of fluctuations in both active and reactive power.
5 CONCLUSION
DBO is utilized in this paper for load modeling and parameter identification. The results of the identification of load modeling reveal that DBO has a considerable improvement in accuracy and speed when compared to the other three methods. Consequently, DBO can be effectively utilized for parameter identification in load modeling, which can improve load modeling accuracy. Furthermore, the DBO method based on the good point set outperforms the classic DBO algorithm in terms of accuracy and speed, and gives a higher level of solution for parameter identification of load modeling.
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Introduction: When a distributed photovoltaic (PV) system has access to a large urban distribution network, the active balance is primarily borne by the main network gas unit; when the scale of the distributed PV system is very large, the main network can only provide limited regulation capacity, and the distribution network must determine the active optimal scheduling strategy.Methods: This work proposes an active optimization scheduling model for the distribution network by considering the regulation capacity of the main network. In terms of the optimisation objectives, the maximum consumption of the distributed PVs and minimum power fluctuation at the demarcation point of the main distribution network are proposed as the main objectives, while the minimum total exchanged power in a cycle at the main distribution demarcation point and minimum distribution network loss are considered as the secondary objectives. In terms of constraints, it is proposed that the main network’s regulation capacity be characterized by the main network’s gas-fired unit creep constraints. A fast solution method for active optimization of the distribution network is designed herein to formulate the priority control order of the adjustable units according to the dispatch economic performances of various types of adjustable resources in the distribution network; this reduces the number of variables involved in the optimization at each step and improves the optimized solution speed.Results: Finally, Simulation verification by IEEE 33-node distribution network arithmetic example based on Matlab simulation platform.Discussion: Simulation results show the effectiveness of the method in achieving maximum PV consumption and reflecting the limited regulation capacity of the main grid.Keywords: large urban distribution network, active power optimal scheduling, distributed photovoltaic, photovoltaic consumption, main distribution cooperation

1 INTRODUCTION
Large urban distribution networks often experience large loads, and the distribution network has a few conventional power sources with small capacities that are mostly supplied by the main grid (Lu et al., 2015). The power in the main urban grid is partly derived from the external grid and partly from the gas-fired units in the main grid. The power supplied by the external grid cannot fluctuate significantly according to the power supply agreement; therefore, the gas units in the main grid assume the function of active balance regulation.
With the rapid development of new energy generation methods, distributed photovoltaic (PV) systems have gained a high proportion of access to urban distribution networks. When the PV output is high and load is low, the gas-fired units in the main grid must reduce their outputs or even shut down; conversely, when the PV output is low and load is high, the gas-fired units in the main grid must increase their outputs or even startup the standby units. The main grid units are generally operated within the economic output range, and the maximum regulation capacity is ensured to not exceed the safe output range; this means that the units require a lot of time to startup, and frequent startups and shutdowns could affect the lifetimes of the units (Hu et al., 2008). Therefore, the startup mode of the main network units cannot be changed over a wide range, resulting in limited regulation capacity of the main network. When the PV supply fluctuates widely in the distribution network, the main network can only provide limited regulation capacity. Therefore, urban distribution networks must perform active balancing and carry out optimal dispatch within the main grid regulation capacity.
The optimal scheduling of large urban distribution networks containing distributed PV sources is studied by considering the main grid regulation capacity as follows:
	(1) How to take into account the regulating capacity of the main network in terms of the distribution network.
	(2) What are the dispatchable resources in a large urban distribution network, and what optimization objectives must be considered.
	(3) What constraints should be imposed on the optimization model, and how to design a solution method applicable to real scheduling operations.

Problem (1) entails cooperative active scheduling of the main distribution. Owing to the randomness and volatility of distributed PV output, there is easy lack of coordination between the distribution and main grids in terms of the power generation and consumption plans, making it difficult to fully consume the distributed energy. Therefore, optimal scheduling of the main and distribution networks is necessary to achieve main power balance and other objectives while maximally consuming the distributed PV power. The existing cooperative optimal scheduling of the main and distribution networks is divided into subproblems concerning optimization of the main and distribution networks, which are then solved iteratively (Zhang et al., 2017; Deng, 2019; Wu et al., 2019; Zhang and Wang, 2019). The optimization objective is to optimize the overall economy of the main distribution network while ensuring that the active power transmitted at its boundary meets the consistency constraints. In distribution network optimization, the main network is considered to be an infinite power source, and only the active power exchanged by the main and distribution networks is required to be within the capacity of the transmission channel without considering the regulation capacity of the main network units and their ability to support a wide range of changes in the exchanged power.
Jiang et al. (2019) proposed a collaborative optimal operation method based on multiparameter planning for the main and distribution networks, where the distribution network needs to be optimized under the conditions of the power planning curve transmitted by the main network. This is to solidify the main network power supply capacity as the planning curve, which does not reflect the power supply margin of the main network, thereby producing conservative scheduling results. Therefore, to fully exploit the regulation capacity of the main network, it should be reflected as a limited range of power variations. Moreover, the amount of power exchange in the main network synergy should be minimized.
Problem (2) is the optimization objective of the distribution network. When a high proportion of the distributed PV supply is connected to the distribution network, it will impact the voltage security of the distribution network, which causes not only voltage overruns at the grid nodes but also branch current overloads, voltage shifts, and high harmonics (Ge, 2023). Among these, voltage overrun is one of the most important reasons affecting the ability to consume PV power (Zhang, 2021).
Most of the existing optimization objectives of distribution networks containing distributed PVs are strategies for ensuring their voltage stabilities. Li et al. (2018) investigated the impacts of various voltage regulation measures on the PV admittance capacities of the distribution network and used the trial method to solve for the maximum PV admittance capacity before and after adding the voltage regulation measures without voltage regulation; some authors analyzed the impact of the access power at each node on the voltages at the other nodes based on the voltage sensitivity matrix (Xu et al., 2016; Cai et al., 2017) along with the PV admittance capacity of the distribution network based on the analytical method. Huang et al. (2020) used the intelligent optimization method and proposed a distributed PV grid-connected limit capacity calculation method based on the adaptive weighted particle swarm optimization algorithm. Ding et al. (2017) proposed a method to avoid network overvoltage by controlling the PV inverters and formulated a two-stage robust centralized optimal scheduling model by considering the PV output uncertainties.
The optimal distribution network operation economics has also been considered based on the voltage stability of the distribution network. Lin et al. (2017) developed a multiregion dynamic economic dispatch model to minimize the total multiregion generation cost. Pan (2015) established an optimal scheduling model for the units by reflecting the demands for energy savings and emission reductions in the power grid. In terms of the demand-side responses, Chen et al. (2024) developed an operation scheduling optimization methodology for electric ready-mixed concrete vehicles (ERVs). These studies do not analyze the roles of adjustable devices, such as energy storage systems (ESSs), gas units, and controllable loads (CLs), in achieving the maximum consumption of distributed PV power; at the same time, they do not take into account the impact of the regulating capacity of the main grid on PV consumption in the distribution network.
Problem (3) is concerned with the distribution network constraints and solution methods. Lin et al. (2017) considered the generator set creep constraints as well as the contact line transmission power constraints; Pan (2015) considered the unit start–stop and creep rate constraints. These studies only focus on the units within the distribution network and do not consider the main network units or analyze the impacts of the creep rate constraints of the units on distributed PV consumption. Therefore, the creep rate constraints of the gas-fired units in the main grid should be considered, which are reflected in the fact that the exchanged power between the main and distribution networks cannot fluctuate significantly during adjacent time periods.
In terms of optimal solutions, there are various algorithms in literature to solve the scheduling model (Dvorkin et al., 2015; Pandžić et al., 2016; Li et al., 2021; Wang et al., 2023). Ruan et al. (2020) proposed a distributed voltage control model with a novel network partitioning approach. Li et al. (2016) proposed a coordinated transmission and distribution AC optimal flow model based on a heterogeneous decomposition algorithm; Li (2013) proposed an application-based coordinated optimal flow for transmission and distribution network decomposition. The above algorithms require large numbers of control quantities to participate in the iterative solution at the same time, and the solution space of the problem is too large, which may slow or fail to solve the computation. Therefore, to meet the real-time scheduling requirements, it is necessary to develop a fast and reliable optimization method that minimizes the amount of control involved in the solution each time.
The main contributions of this work are as follows:
	1. In the optimization objective of the distribution network, the regulating capacity based on the gas units in the main network is taken into account to minimize the fluctuations in the interaction power of the main distribution network during a dispatch cycle while ensuring that the total exchanged power is minimal.
	2. A distributed PV maximum consumption model is proposed for the distribution network by taking into account multiple adjustable resources such as reactive power compensation equipment, ESSs, and CLs, and the impact of the limited regulation capacity of the main network on maximum PV consumption is analyzed.
	3. The limitations imposed by the creep rates of the gas units in the main network are considered in the constraints, and a fast solution method is designed for active optimization of the distribution network; here, the priority control order of the adjustable units is formulated on the basis of economy, and a stepwise solution process is designed to optimize the distribution network, which reduces the number of variables participating in the optimization at each step while improving the speed of the optimization solution.

2 MODEL ASSUMPTIONS
2.1 Basic assumptions

1. It is assumed that the transmission line parameters of the distribution network remain constant during operation.
2. At each moment in time, the load demand at each node is either known or predictable.
2.2 Assumptions for the regulatory capacity of the main network

	1. We assume that the power supplied by the main grid to the distribution network is determined only by the outputs of the gas units in the main grid, and the influences of the power injected into the main grid from the external network and power delivered to other distribution networks are not taken into consideration.
	2. The maximum and minimum outputs of the gas units are known and remain unchanged during a dispatch cycle.
	3. The rate of change (creep rate) of the output of a gas unit is known and remains constant during a dispatch cycle while not exceeding the specified range.

2.3 Assumptions for the adjustable units of the distribution network

1. We assume that the distributed PV power generation can be predicted accurately and that the predicted value is certain during a dispatch cycle based on ignoring the effects of volatility due to changes in the solar radiation intensity and temperature factors as well as disregarding the effects of sudden weather changes (e.g., cloudy and rainy) on the PV outputs.
2. The PV inverter can be controlled to reduce the PV output and may also be withdrawn from operation if necessary so that the minimum PV output can be reduced to 0.
	3. We assume that the customer loads respond positively and instantly to the load regulation commands while ignoring the influences of factors such as customer behaviors and satisfaction.
	4. It is assumed that the energy storage devices can be charged and discharged many times in a single dispatch cycle while ignoring the limitations on the rates of change of charging and discharging.
	5. The impacts of short-circuits, disconnections, equipment failure, and other unexpected accidents on the power grid are not considered.

3 OPTIMIZED SCHEDULING MODEL FOR THE URBAN DISTRIBUTION NETWORK CONSIDERING THE REGULATION CAPACITY OF THE MAIN NETWORK
3.1 Objective function
In this work, the objective function was established with the optimization objectives of maximum consumption of the distributed PV power and minimum active fluctuations at the demarcation point of the main distribution network; furthermore, the objectives accounted for the minimum distribution network loss as well as minimum total exchanged power of the main distribution network during a scheduling cycle, are shown in Equation 1–Equation 5:
[image: Mathematical equation showing the function \( F \) defined as the minimum of the sum of several terms: \( \lambda_1 f_1 \), \( \lambda_2 f_2 \), \( \lambda_3 f_3 \), and \( \lambda_4 f_4 \).]
where
[image: The formula represents \( f_1 = \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{P_{PV,0}(t) - P_{PV}(t)}{P_{PV,0}(t)} \), labeled as equation (2).]
[image: Formula displaying \( f_2 = \sqrt{\frac{1}{T} \sum_{t=0}^{T} (P_1(t) - \bar{P}_1)^2} \). This represents a calculation involving the sum of squared differences over time \( T \).]
[image: Mathematical expression showing a double summation to calculate \(f_3\) with indices \(i\) and \(j\) from one to \(n\), multiplying \(l_{i}^2\) by \(r_{ij}\).]
[image: Mathematical equation labeled as equation five: f sub a equals the summation from t equals one to T of P sub i of t.]
In the above formulas, [image: Please upload the image or provide a URL so I can create the alt text for you.] is the objective function of [image: It seems like you've mentioned "PV resolution 13 24," but I need more details or an actual image to provide accurate alt text. Please upload the image or provide additional context.] consumption capacity; [image: Mathematical expression showing \( P_{\text{PV}}^{i}(t) \).] and [image: Mathematical expression in italicized font: \( P^{i}_{PV,0}(t) \).] are the actual and planned active outputs of the [image: Please upload the image or provide a URL for me to generate the alt text.]-th [image: A white sheet of paper contains handwritten mathematical notations and equations. The primary focus is on a formula containing the term "PV," written alongside other symbols and variables, indicative of physics or engineering calculations.] at moment [image: It seems there is no image uploaded. Please upload the image or provide a URL, and I will help you with the alternate text.], respectively; [image: Please upload the image or provide a URL so I can help create alt text for it.] is the objective function for the fluctuation of power exchanged with the main distribution network that is expressed by the standard deviation, in which [image: Please upload the image or provide a URL for me to generate the alt text.] is the average exchange power in a scheduling cycle given by [image: The equation shows the average power \( \bar{P}_l \) over time \( T \), calculated as \( \bar{P}_l = \frac{1}{T} \sum_{t=0}^{T} P_l(t) \), where \( P_l(t) \) is the power at time \( t \).]; [image: Please upload the image or provide its URL, and I will help you create the alt text.] is the distribution network loss; [image: It seems you've mentioned an image reference or mathematical notation but did not provide an image or URL. Please upload the image, and I will be glad to help with the alt text.] is the current in branch [image: Sure, please upload the image or provide a URL.]; [image: Italic lowercase letter "r" followed by subscript "i" and "j".] is the equivalent resistance of branch [image: It seems there's an issue with displaying the image. Please upload the image file or provide a URL so I can generate the appropriate alt text for you.]; [image: Please upload the image you want me to describe, and I'll be happy to help with the alt text.] is the total power exchanged during interaction with the main distribution network during a scheduling cycle, in which [image: Mathematical expression displaying \( P_1(t) \).] is the active power exchanged at the division point of the main distribution network at moment [image: Please upload the image or provide a URL, and I can help create the alt text for it.] and its expression is shown in Equation 6
[image: Equation showing the total power at time t, \( P_t(t) = \sum_{i=1}^{n} \left( P_{\text{load}}(t) - P_{\text{demand}}(t) + P_{\text{utility}}(t) - P_{\text{ESS, dis}}(t) + P_{\text{ESS, ch}}(t) - P_{\text{PV}}(t) \right) - P_{\text{loss}}(t) \).]
Here, [image: Mathematical expression depicting \( P^{i}_{\text{load}}(t) \).] is the load of node [image: Mathematical notation depicting the imaginary unit "i", with a dot symbolizing the imaginary part.] in the distribution network at time [image: Please upload the image you'd like me to provide alt text for.]; [image: Mathematical expression with variables: \( P_{tl, out}^{i}(t) \), indicating some function or parameter of time \( t \), possibly related to output.] and [image: Mathematical expression showing \( P^{i}_{tl,in}(t) \).] are the controllable load transfer out of and into node [image: It seems there was an issue with uploading the image. Please try re-uploading it, and I will be happy to help with the alternate text.] in the distribution network at time [image: It seems there was an issue with uploading the image. Please try uploading it again, and I will help you create the alt text.]; [image: Mathematical notation showing \( P_{\text{ESS,c}}^{i}(t) \).] and [image: Mathematical expression showing "P" with subscript "ESS, d" raised to the power of "i", and a function of "t" in parentheses.] are the respective charging and discharging powers of the ESS [image: Please upload the image or provide a URL, and I will help you create the alt text for it.] in the distribution network at time [image: It seems there was no image uploaded. Please upload the image or provide a URL, and I will help create the alt text for it.]; [image: The image shows the mathematical expression \( P_{\text{lost}}(t) \), which likely represents a function of time, denoted by \( t \), with the subscript "lost" indicating it relates to a loss measurement or calculation.] is the total loss of the distribution network at time [image: It appears there is an issue with the image upload. Please try uploading the image again, and I will be happy to help you with the alternate text.].
3.2 Main network regulation capacity constraints
3.2.1 Range of power changes at the main distribution cutoff point
Under the condition of transmitting a certain active power at the demarcation point of the main distribution network, there are corresponding active and reactive power regulation ranges that indicate the power supply capacity of the main network to the distribution network. The expressions are shown in Equation 7 and Equation 8, respectively.
[image: I can't view the image directly from the URL. Please upload the image or provide more context so that I can help generate the alt text for you.]
[image: The image shows an equation: \( Q_{t,\text{min}} \leq Q(t) \leq Q_{t,\text{max}} \).]
Here, [image: It appears there is a reference to a mathematical expression. If you have an image you'd like me to describe, please upload it or provide a URL.] and [image: It appears that there is no specific image uploaded. Please provide the image or a link to it, and I can help create the alternate text for you.] are the extreme values of the reactive power range transmitted by the main distribution network and are determined according to the active power and power factor values of the gas units in the main network. [image: The image shows the mathematical notation \( P_{l, \text{min}} \) in italics, representing a variable or parameter with subscripts "l" and "min".] and [image: Mathematical notation displaying "P sub l, max", indicating the maximum value of a parameter P with a subscript l.] are the extreme values of the active power range transmitted by the main distribution network, which are determined by the power supply capacities of the gas units in the main network and given as Equation 9, Equation 10:
[image: Equation for total minimum power, \( P_{t,\text{min}} = \sum_{i=1}^{N} P_{\text{GT},i,\text{min}} \), labeled as equation (9).]
[image: Equation showing \( P_{t,\text{max}} = \sum_{i=1}^{N} P_{GT,\text{max}}^i \), labeled as equation (10).]
where [image: Please upload the image or provide a URL for me to generate the alt text.] is the number of nodes in the main network; [image: The mathematical expression represents \( P^i_{GT, \min} \), indicating the minimum power of generator \( i \) under certain constraints.] and [image: The expression \( P^{i}_{GT,\text{max}} \) represents the maximum power output of the gas turbine in a mathematical notation, with subscript and superscript.] are the respective upper and lower limits of the output of the gas-fired unit [image: Mathematical notation showing the letter "i" with a dot above it, representing the imaginary unit in mathematics.] in the main network.
3.2.2 Creep power constraint at the main distribution cutoff point
Since the regulation capacity of the main network is determined by its gas units, the creep power constraints of the gas units in the main network limit the power exchanged at the demarcation point from varying over a wide range per unit of time. The creep power constraint of the transmission power at the demarcation point of the main distribution network is given as Equation 11
[image: Equation showing the change in power over time as \( P_i(t+1) - P_i(t) \leq P_{ramp, max} \), labeled as equation (11).]
where [image: The mathematical notation shows \( P_{\text{ramp}, \text{max}} \), representing the maximum ramp power.] are the maximum values of the creep powers of the gas units in the main network.
3.3 Adjustable unit operation constraints of the distribution network
The adjustable units in the distribution network include the distributed PVs, CLs, ESSs, on-load tap changers (OLTCs), static var compensators (SVCs), and capacitor banks (CBs) that have their own constraints
3.3.1 Power regulation range of the distributed PV
The active regulation of PV power is embodied by self-curtailment of the active outputs, which can be expressed with the range of curtailment as Equation 12.
[image: Mathematical expression showing an inequality. It states that zero is less than or equal to \( P_{pv}(t) \) which is less than or equal to \( P_{pv0}(t) \), followed by the number twelve in parentheses.]
3.3.2 Active range of the CL

	The load that can be shifted at time t cannot exceed 20% of the total load at that moment. As shown in Equation 13, Equation 14

[image: A mathematical expression is shown: \(0 \leq P_{\text{Min}}(t) \leq 0.2 P_{\text{Load}}(t)\). It is labeled equation (13).]
[image: Mathematical equation showing the relationship between two functions. It states that zero is less than or equal to \( P_{\text{load}}(t) \) which is less than or equal to \( 0.2 P_{\text{load}}(t) \). The equation is labeled as equation fourteen.]
The CLs dispatched in a cycle should therefore be managed such that the total load transfers in and out are equal as shown in Equation 15:
[image: Summation from t equals one to T of P sub L comma out of t equals summation from t equals one to T of P sub L comma in of t. Equation fifteen.]
3.3.3 Operational constraints of the OLTC
The main voltage constraint is given by Equation 16
[image: Equation displaying \( U_j(t) = \frac{U_i(t)}{k(t)} \) labeled as equation sixteen.]
where [image: Text displaying a mathematical expression: \( U_i(t) \).] and [image: The image shows mathematical notation: \( U_j(t) \), where \( U \) is a function of time \( t \), subscripted by \( j \).] are the primary and secondary voltages of the OLTC at time [image: It seems there was an error in uploading the image. Please try again, ensuring the file is correctly attached or provide a URL. You can also add a caption for more context.], respectively; [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL, and optionally, a caption for context.] indicates the ratio of these voltages at time [image: Please upload the image or provide a URL so that I can generate the appropriate alt text for you.].
The variable ratio constraints are given by Equation 17–Equation 19
[image: Equation showing a formula for \( k(t) \) as \( k_{\text{init}} + \Delta k \cdot r(t) \), labeled as equation (17).]
[image: The image shows a mathematical inequality: \( |r(t+1) - r(t)| \leq \Delta r_{\text{max}} \). This is labeled as equation (18).]
[image: Summation from zero to n of the absolute value of r of t plus one minus r of t is less than or equal to r sub max, labeled as equation nineteen.]
where [image: The expression "k sub min" is presented in italic font, typically representing the minimum value of a variable k in mathematical or scientific contexts.] is the minimum ratio of primary to secondary voltages of the OLTC, [image: Characters showing the Greek letter delta followed by a lowercase k.] is the step size of the ratio, [image: It seems there is no image attached. Please upload the image or provide a URL, and I will assist you with the alt text.] is the stall of the OLTC at time [image: Please upload the image or provide a URL to the image you'd like me to describe.], [image: I'm sorry, but I cannot generate alt text without an image. Please upload the image or provide a URL to it.] is the maximum range of each stall change, and [image: It appears there is no visible image present. Please ensure you upload an image or provide a URL to the image you'd like described.] is the maximum number of stall adjustments in a scheduling cycle.
3.3.4 Capacity constraints of the ESS
The charge/discharge state constraint is given by Equation 20
[image: A mathematical inequality is shown: \( x_A'(t) + x_B'(t) \leq 1 \), with an equation number (20) on the right.]
where [image: Mathematical notation showing \( x_{d}^{i}(t) \).] and [image: Mathematical expression: uppercase X subscript c superscript i of t in parentheses.] are the charge and discharge states of the ESS [image: It seems there is no image uploaded. Please upload the image or provide a URL so I can help create the alt text.] at time [image: It seems there is no image attached. Please upload the image or provide a URL, and I will help you create the alternate text.], respectively.
The upper and lower bound constraints of the charging and discharging power are given by Equation 21, Equation 22
[image: The equation is \(0 \leq P_{\text{ESS, d}}(t) \leq X_{d}(t) P_{\text{ESS, d, max}}\).]
[image: The equation shows an inequality: zero is less than or equal to P_sub_ESS, parenthesis t, which is less than or equal to X_sub_t, parenthesis t, multiplied by P_sub_ESS, max. It is labeled as equation twenty-two.]
where [image: \( P_{\text{ESS, dmax}}^i \)] and [image: Equation in italicized font showing "P" superscript "i" subscript "ESS, c max".] are the maximum charging and discharging powers of the ESS [image: It seems there is no image attached. Please try uploading the image again or provide a URL.], respectively.
The energy storage capacity constraints are given by Equation 23, Equation 24
[image: Mathematical equation in a small image: \( E_{ESS}(t+1) = E_{ESS}(t) + \eta_c P_{ESS_c}(t) - \eta_d P_{ESS_d}(t) \), labeled as equation 23.]
[image: Mathematical formula depicting energy storage constraints over time: minimum energy storage \(E_{\text{ESS,min}}(t)\) is less than or equal to energy storage \(E_{\text{ESS}}(t)\) which is less than or equal to maximum energy storage \(E_{\text{ESS,max}}(t)\), labeled equation 24.]
where the energy storage capacity is dynamically balanced over a dispatch cycle as shown in Equation 25.
[image: Equation showing \( E_{\text{SS}}(0) = E_{\text{SS}}(T) \), labeled as equation 25.]
Here, [image: It seems like you might be trying to reference a specific image or mathematical symbol. If you have an image to upload, please do so, and I can help with the alt text. If you are referring to a mathematical symbol, such as "η" (eta), please provide additional context or details for accurate assistance.] and [image: Greek letter eta in italic font, with a subscript "d".] are the charging and discharging efficiency coefficients of the ESS, and [image: Mathematical expression showing \( E^i_{\text{ESS}}(t) \).] is the amount of electricity stored in the ESS [image: Sure, please upload the image you want me to describe.] at time [image: Please upload the image or provide a URL, and I'll create the alternate text for you.]; [image: Mathematical expression: \( E_{\text{ESS, min}}^i(t) \), representing the minimum energy storage state at time \( t \) for instance \( i \).] and [image: \( E_{\text{ESS,max}}^i(t) \)] are the minimum and maximum values of the power in the ESS [image: No image was provided. Please upload an image or provide a URL for me to generate the alt text.] at time [image: Please upload the image, and I'll provide the alternate text for it.], respectively.
3.3.5 Operational constraint of the SVC
The SVC reactive output constraint is shown in Equation 26
[image: Mathematical expression showing an inequality for a variable \(Q_{\text{VVC}}^{\text{d}}(t)\), indicating it is bounded by \(Q_{\text{VVC,min}}^{\text{d}}\) and \(Q_{\text{VVC,max}}^{\text{d}}\).]
where [image: \( Q_{\text{svc}}^{i}(t) \)] denotes the reactive power output of the static reactive power compensator [image: It seems there might have been an issue with uploading the image. Please try again or provide a URL to the image.] at time [image: Please upload the image, and I will provide the alternate text for you.], and [image: Mathematical expression showing \(Q_{svc, \min}^{i}\).] and [image: The expression shows "Q" with the superscript "i" and the subscript "svc, max".] denote the respective upper and lower limits of the reactive power output of the static reactive power compensator [image: It seems there's an error with the image display. Please try uploading the image again or provide a URL if available. Additionally, you can add a caption for context.].
3.3.6 Operational constraints of the CB
The CB reactive output constraint is shown in Equation 27
[image: Equation showing \( Q_{i}^{m}(t) = N_{dir}^{m}(t) Q_{cluster} \), labeled as equation (27).]
where [image: Mathematical expression showing \( Q_{cb}^{i}(t) \).] is the reactive power output of the casting capacitor [image: It appears you tried to provide an image, but it is not visible. Please upload the image file again or provide a URL.] at time [image: Please upload the image so I can provide the alt text for it.], [image: Mathematical notation representing \(N^i_{cb}(t)\).] is the number of groups of casting capacitors [image: Please upload the image or provide a URL for me to generate the alt text.] operating at time [image: Please upload the image or provide a URL, and I will help create the alt text for it.], and [image: Mathematical notation for the variable \( Q_{cb, \text{step}} \).] is the reactive power capacity of a group of casting capacitors.
The constraint on the change in the number of cast–cut groups at adjacent time periods is given by Equation 28.
[image: Equation showing the difference in N subscript dt at t plus 1 and N subscript dt at t is less than or equal to delta N subscript d, max. Labeled as equation 28.]
The throw–cut CB constraint is given by Equation 29.
[image: The image shows a mathematical inequality: \(0 \leq N_{dr}(t) \leq N_{dr,\text{max}}\), labeled as equation (29).]
where [image: ΔN<sub>cb,max</sub>] is the maximum limit on the number of groups of capacitors to be switched each time, and [image: The mathematical notation \( N_{cb,\text{max}} \) is shown, likely representing the maximum value of a variable \( N_{cb} \).] is the maximum number of capacitor groups that can be switched at each node.
3.4 Branch circuit tidal equation constraints
A second-order cone-relaxation-based branch current model can be used for the distribution network as follows Equation 30–Equation 32:
[image: Mathematical expression with two equations in a curly bracket. The first equation sums over set \(i\) with terms \((P_{ij} - i_{ij} r_{ij})\), subtracts the sum over set \(k\) with terms \(P_{jk}\), equating to \(P_j\). The second equation sums over set \(i\) with terms \((Q_{ij} - i_{ij} x_{ij})\), subtracts the sum over set \(k\) with terms \(Q_{jk}\), equating to \(Q_j\). Equation number 30.]
[image: Equation showing a mathematical expression: \( v = v_i + 2(r_{ij}P_{ij} + x_jQ_{ij}) - (r_{ij}^2 + x_{ij}^2)i_i \).]
[image: Matrix inequality with a three-row matrix on the left side, containing elements \(2P_{ij}\), \(2Q_{ij}\), and \(i_{ij} - v_{i}\), is less than or equal to \(i_{ij} + v_{i}\). Equation labeled (32).]
In these equations, [image: It seems there might be an issue with the image upload or link. Please try uploading the image again or provide a URL. If you have any further details or a caption for context, feel free to include them as well.] and [image: It appears the image did not upload correctly. Please try uploading the image again or provide a URL if available.] denote the squares of the node voltage and branch current, respectively; [image: Stylized text shows the mathematical notation \( P_{ij} \), indicating an element in a matrix where \( i \) and \( j \) denote the row and column indices, respectively.] denotes the active power flowing in branch [image: Please upload the image you would like me to provide alternate text for.]; [image: It seems there's no image attached. Please upload the image or provide a URL for me to assist with creating the alt text.] denotes the set of branches with [image: It seems like there's an error or missing file in your request. Please try uploading the image again or provide a URL. Optionally, you can add a caption for additional context.] as the tail node; [image: Mathematical expression displaying "v" with a subscript "i" in parentheses.] denotes the set of branches with [image: Please upload the image or provide a URL so I can help create the alt text for it.] as the head node. [image: It seems like there is an error or missing image in your message. Please upload the image file or provide a URL, and I’ll be happy to help with the alternate text.] denote the values of the active and reactive powers injected into node [image: It looks like there is no image attached. Please upload the image or provide a link to it, and I will help create the alt text for you.], respectively, and are given by Equation 33, Equation 34
[image: Equation showing power balance: \( P_f = P_{PV} + P_{ESS,C} + P_I - P_{ESS,D} - P_{load} + P_{line} - P_{d,line} \).]
[image: Equation showing Q is equal to Q sub VC plus Q sub CB plus Q minus Q sub load, with the equation labeled as number thirty-four.]
3.5 System operational constraints
The system voltage constraints and branch current constraints are given in Equations 35–36.
[image: Mathematical expression showing the absolute value of I sub i j is less than or equal to I sub i j superscript max, equation number 35.]
[image: Mathematical expression showing \(0.95U_N \leq U_S \leq 1.05U_N\), labeled as equation (36).]
where [image: The expression "U" with a subscript "N" in a serif font, usually representing a mathematical or scientific notation.] is the rated voltage of the distribution network, and [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL. If you have a caption or additional context, feel free to include that as well.] is the maximum value of the branch current.
4 SOLUTION FOR THE ACTIVE OPTIMAL SCHEDULING MODEL
4.1 Design considerations
The active optimization dispatch method of the distribution network with distributed PVs must achieve maximum consumption of the distributed PV power under the limited regulation capacity of the main network by integrating all kinds of adjustable equipment in the distribution network; simultaneously, the auxiliary OLTCs and reactive power compensation equipment must maintain the voltage stability, minimize the network loss, and enhance the economy of system operation. Under the premise of main power balance, the limited regulating capacity of the main network mainly includes the following considerations:
	(1) The main network ideally supplies the least total power to the distribution network during a dispatch cycle.
	(2) There must be minimal fluctuations in the power supply from the main network to the distribution network during a dispatch cycle.
	(3) The main network supplying power to the distribution network must have minimal variation between adjacent time periods.

The distribution grid system studied herein is powered only by large-scale distributed PVs and needs to be configured with large-capacity distributed ESSs combined with PVs; this can smooth the fluctuations in PV power generation while improving the self-usage rate of the distribution grid and economic benefits. Through the ESSs, users can store excess PV power during low electricity demand and use this stored power during peak electricity demand. This reduces the dependence on grid power, avoids the phenomenon of abandoned daylight, and improves the self-use rate of PV power. The ESSs can also respond to grid demand in milliseconds, and this rapid response capability allows them to quickly respond to fluctuations in grid loads to provide immediate power support while also providing the grid with certain degrees of frequency regulation and voltage support capabilities.
Although direct optimization of CL regulation helps maintain balance between power supply and demand in the grid, it must be achieved through price signal or incentive mechanisms to guide the user to adjust to electricity behaviors; hence, the user must be involved in the regulation of user needs to achieve high economic compensation, which increases the operating cost of the power system compared to that of the ESS as the scheduling cost is high. Concurrently, the response speed is significantly lower than that of the ESS, and it may be difficult to meet the needs of a power grid system that requires high real-time regulation capabilities. In terms of the regulation order of adjustable units, ESSs have higher priority than the CLs.
The present study is dedicated to maximizing the consumption of distributed PV power to achieve the goals of sustainable development while meeting the regulation capacity limitation of the main grid. Optimal scheduling of the power system through curtailing distributed PV not only wastes renewable energy but also negatively affects sustainable development goals. Maximizing the use of PV power could help reduce carbon emissions and environmental pollution, mitigate climate changes, reduce energy costs, reduce dependence on imported fossil fuels, and enhance energy independence and security while helping accelerate the construction of smart grids, establish a sound power market mechanism, and improve the new power system.
In summary, when the interacting power at the demarcation point of the main distribution network exceeds the range of its regulation capacity, the outputs of the adjustable units in the distribution network are regulated in the following order of priority:
	1. Increasing the charging and discharging powers of the ESSs;
	2. Shifting the CLs;
	3. Reducing the distributed PV power.
	The principle of regulation is based on minimizing the active fluctuations in the main distribution network with minimal transfer of CLs and minimal PV curtailment.

4.2 Solution strategy for the active optimal scheduling model
From the planned outputs of the distributed PVs and predicted outputs of the loads in a complete dispatch cycle (24 h) without consideration of other adjustable devices in the distribution network, the initial interactive power at the demarcation point of the main distribution network is calculated using the forward backgeneration trend to obtain the voltage overruns at each node, and the specifics of the forward power flow are shown in Figure 1.
[image: Flowchart illustrating a process for calculating node voltages and power in a distribution network. It starts with inputting distribution branch parameters, node loads, and PV data, followed by branch ordering from leaf nodes to the root node. The process includes setting the root node, performing forward push power and back generation voltage calculations iteratively until the voltage difference satisfies a specific condition. The results are then outputted, showing branch power and voltages at each node. The process concludes with an end point.]FIGURE 1 | Flowchart of the power flow calculation.
The power of the root-node-connected branch circuit obtained from this trend calculation is the power exchanged at the demarcation point of the main distribution network, and the subsequent optimization is based on this power. The flowchart showing specific regulation of the active optimization scheduling method of the distribution network with distributed PVs considering the regulation capacity of the main network is shown in Figure 2.
[image: Flowchart illustrating the process for optimizing main distribution networks with PV data. It begins with inputting raw data, checks limits for transmission power, node voltage, and interaction power fluctuations. If limits are exceeded, optimization involves energy storage, reactive power compensation, and curtailment of PV. Outputs include interaction power and PV consumption curves.]FIGURE 2 | Flowchart for the optimisation strategy.
5 EXAMPLE ANALYSIS
In this section, we demonstrate improvement of the basic IEEE 33 node power network by adding some active and reactive power regulation devices as well as conducting arithmetic simulations on this test system to verify the effects of the active optimal scheduling method of the distribution network with distributed PVs limited by the main grid regulation capacity. The optimization algorithm implementation is achieved using MATLAB software and the YALMIP toolbox along with the Cplex12.10 solver.
5.1 Calculation setup
The system diagram of the 33-node distribution network modified based on the setup scheme in this work is presented in Figure 3. The base capacity of the system is 1 MVA, base voltage level is 12.66 kV, total active load capacity of the system is 3,715 kW, total reactive load capacity is 2,300 kVar, and voltage per-unit value at the balancing node (i.e., node 33) is 1 p.u. As shown in Figure 3, reactive power compensation devices such as the OLTCs, PV generator, ESSs, and CBs are added on the basis of the network structure of the basic IEEE 33 node distribution system, and the specific configurations are shown in Table 1.
[image: Diagram of a complex electrical bus system with multiple circuits branching out. It features labeled points including CB, PVC, SVC, and ESS at various nodes. Connection paths run horizontally and vertically, creating an intricate network.]FIGURE 3 | Arithmetic grid map of the modified IEEE 33 node distribution system.
TABLE 1 | Parameters of the adjustable units.
[image: Table showing adjustable units and specific parameters. On-load tap changers include voltage regulation range of 0.95-1.05 p.u., 10 adjustable gears, 0.01 p.u. adjustment step, limit of 1 gear per adjustment, and 5 daily adjustments. Photovoltaics have adjustment range from zero to planned contribution. Capacitor banks have 500 kVar capacity and 100 kVar adjustment step. Static var compensators adjust from -100 to 300 kVar. Energy storage systems ESS1 and ESS2 have maximum powers of 1800 kWh and 1000 kWh, minimum powers of 180 kWh and 100 kWh, power limits, 90% charging efficiency, and 111% discharge loss efficiency.]Under actual conditions, the area encompassed by the distribution network system is often not very large; however, to facilitate analysis of the results, the system access between the PVs as well as between the power characteristics of the loads are set to be only slightly different so as to be considered the same output characteristics, based on the same predicted power curve that would be analyzed. The typical load demand and PV active power curves during summer are normalized to obtain the all-day predicted power curves for the total system load and total distributed PV output, as shown in Figure 4.
[image: Line graph showing power usage over 24 hours. The blue line represents photovoltaic (PV) power, peaking around midday. The red line represents load power, peaking in the late afternoon. Power is measured in per unit (p.u.).]FIGURE 4 | Photovoltaic (PV) and output load curves.
5.2 Analysis of simulation results
To reflect the influence of the main grid regulation capacity on the output of each equipment in the distribution network and maximum consumption of PV power, the weighting coefficients in Equation 1 are set to [image: It seems like there might be an error or confusion, as no image has been uploaded. Please upload an image or provide a URL, and I will assist you with the alternate text.] = 0.4, [image: It seems there might have been an error in uploading the image. Please try again by providing the image file or a URL. If you want, you can also add a brief caption for context.] = 0.4, [image: It seems like you've provided a text snippet or mathematical symbol instead of an image. If you meant to upload an image, please do so, and I can help with the alt text. If this refers to something else, kindly provide more context.] = 0.1, and [image: Please upload the image or provide a URL, and I will help with the alternate text.] = 0.1. In this work, the following three scenarios are considered during the simulations to validate the active optimization scheduling method of the distribution network with distributed PVs that takes into consideration the regulation capacity of the main grid.
Scenario 1: No controls are considered.
Scenario 2: The controls used include PV curtailment, ESSs, SVCs, and CBs.
Scenario 3: Based on Scenario 2, optimization calculations are carried out with the objective of minimizing the active fluctuations between the main distribution network by considering the creep power constraints of the gas units in the main network and CLs.
5.2.1 Analysis of simulation results for scenario 1
In the modified IEEE 33 node distribution system, nodes 17, 21, and 32 are selected to represent the single-point PV grid-connection points, and all distributed PVs are connected to the system with the planned output without controls to explore the impacts on system node voltage and power exchanged by the main distribution network; the simulation results are shown in Figures 5, 6. From Figure 5, it is seen that when the PVs are connected to the planned outputs, the voltages at some nodes during 11–15 h exceed 1.05 p.u., exhibiting voltage overruns.
[image: Three-dimensional surface graph depicting voltage in per unit (p.u.) against node number and time in hours. The graph shows peaks and valleys, indicating fluctuations in voltage over time across different nodes.]FIGURE 5 | Node voltage diagrams over 24 h for scenario 1.
[image: Line graph showing power in per unit versus time in hours. The data labeled "Scenario 1" indicates a decrease from 0 to 10 hours, reaching a low near -1, then rising to a peak around 19 hours at over 3, before slightly declining.]FIGURE 6 | Interaction power at the cutoff point of the main distribution network under scenario 1.
From Figure 6, it is seen that the power delivered from the main grid to the distribution network decreases from 1,122 kW to 668 kW at 6–8 h due to continuous increases in the PV outputs; at 9–15 h, the distribution network is seen to deliver power to the main grid; at 13 h, the distribution network delivers a maximum power of 1,208 kW to the main grid; thus, the maximum power fluctuation at the demarcation point of the main distribution network is 2,330 kW. When the active demand in the distribution network decreases and results in backward power delivery to the main grid, there are decreases in the outputs of the main grid units or even shutdowns. In the time period of 16–20 h, the interaction power at the demarcation point of the main distribution network rises sharply from 254 kW at 16 h to 2,880 kW at 20 h due to continuous reduction of PV output and increase in user load, demonstrating a maximum fluctuation of 2,626 kW; when the active demand of the distribution network continues to increase, it will lead to increases in the outputs of the main network units and perhaps even startup of the standby units.
During actual operation, the main network units cannot be started and stopped frequently; the transmission power change cycle in the main network is longer, so the sharp increase in active power demand from the distribution network cannot be met over a short duration. Thus, there may be an active power shortage between the main and distribution networks, which affects the frequency and voltage stabilities of the distribution network; this serious situation may result in short-term power outages for the user loads, so it is necessary to use the adjustable resources of the distribution network to reduce the power fluctuations between the main and distribution networks.
5.2.2 Analysis of simulation results for scenario 2
Based on scenario 1, given the minimum active fluctuation and maximum PV consumption at the demarcation point of the main distribution network as the main objectives as well as node voltages remaining within the limit as the constraint, the optimization of the interaction power at the demarcation point of the main distribution network is as shown in Figure 7, the active outputs of the ESSs are as shown in Figure 8, and the reactive outputs of the SVCs and CBs are as shown in Figure 9.
[image: Line graph showing power vs. time for two scenarios. Scenario 1 is a dashed blue line with peaks at 3 and 21 hours, and Scenario 2 is a solid red line with peaks at 21 hours. Both lines dip between 8 and 15 hours.]FIGURE 7 | Interaction power at the cutoff point of the main distribution network under scenario 2.
[image: Line graph displaying power in per unit (p.u.) over time in hours for two energy storage systems, ESS1 and ESS2. ESS1 and ESS2 show fluctuating power levels, with ESS1 peaking near 0.3 and ESS2 near 0.2 between fifteen and twenty hours. Both systems dip below zero between five and fifteen hours.]FIGURE 8 | Energy storage charging and discharging powers under scenario 2.
[image: Panel A shows a bar graph with time on the x-axis and reactive power on the y-axis, comparing SVC1 (red), SVC2 (blue), and SVC3 (yellow). Panel B displays another bar graph with time on the x-axis and reactive power on the y-axis, comparing CR1 (yellow) and CR2 (cyan). Both panels illustrate variations in reactive power over 25 hours.]FIGURE 9 | Reactive outputs of the (A) static var compensators (SVCs) and (B) capacitor banks (CBs) under scenario 2.
The distributed PV power in this scenario can still be consumed fully, and the reactive power compensation device appropriately consumes reactive power during 10–15 h to maintain voltage stability when the PV output is maximum, such that the ESS is charged with 1,080 kW of power; the backward transmission of power from the distribution network to the main network decreases by 2,230 kW during 9–15 g, and the stored energy decreases by 1,140 kW over 17–23 h when the load is higher and PV output is zero. This total of 1,140 kW is discharged, and the interactive power of the main distribution network decreases by 1,693 kW, such that the maximum power fluctuation over 16–20 h decreases from 2,626 kW in scenario 1 to 2,084 kW. Hence, the ESSs play positive roles in smoothing the power fluctuations between the main distribution network and reactive power compensation device to achieve maximum dissipation of the PV power and maintain voltage stability. However, the interactive power of the main distribution network still fluctuates greatly and needs to be optimised further.
5.2.3 Analysis of simulation results for scenario 3
In scenario 2, the interactive power fluctuation in the main distribution network is large and the power change amplitude during the adjacent time period is drastic; therefore, the addition of CLs is considered to smooth the power fluctuation in the main distribution network, whose output changes are shown in Figure 10, active outputs of the ESSs are shown in Figure 11, and PV dissipations are shown in Figure 12.
[image: Line graph showing load profiles over 24 hours, with blue and red lines. The blue line represents post-transfer load and the red line shows load before transfer. The load peaks around 14 hours.]FIGURE 10 | Shifting load power under scenario 3.
[image: Line graph showing power in per unit against time in hours from 0 to 24. Two lines represent ESS2 and ESS5, with varying fluctuations. ESS2 generally stays below ESS5, with peaks up to 0.3 and valleys down to -0.3.]FIGURE 11 | Energy storage charging and discharging powers under scenario 3.
[image: Line graph depicting power output over a 24-hour period with time on the x-axis and power in arbitrary units on the y-axis. The graph includes four datasets: PV0 (solid line), PV1 (red squares), PV2 (pink circles), and PV3 (blue diamonds). The data shows a peak around midday, with power decreasing in the early morning and late evening.]FIGURE 12 | PV output for scenario 3.
To suppress the sharp increase in main grid supply power caused by reduction of the PV outputs, it is necessary to guide the user loads so as to reduce power consumption during the peak period of 17–23 h; at the same time, to achieve maximum consumption of PV power, it is necessary to guide the user loads to increase their power consumption as much as possible during 9–16 h. It is seen from Figure 10 that the user loads lower power consumption by 3,201 kW over 17–23 h and increase power consumption by 3,201 kW during 9–16 h. These kinds of transferable loads in the distribution network are mainly composed of production-type and service-type users who demonstrate great flexibility in electricity consumption, strong peak-shifting ability, and large calling potential to weaken the negative impacts of PV power fluctuations.
Owing to the relatively small capacities of ESSs in the distribution network, the numbers of charging and discharging times of the ESSs in a cycle increase significantly under scenario 3. In practical applications, ESSs generally have one-charging and one-discharging or two-charging and two-discharging strategies in accordance with the dispatch instructions as frequent charging and discharging can exacerbate their lifespans due to wear and tear, thereby reducing the economy of system operation. Therefore, failure to consider the constraints regarding the number of charge/discharge times of the ESSs is an area for improvement in this study.
In contrast to scenarios 1 and 2 where distributed PVs are able to operate at the planned outputs, the actual total PV output in scenario 3 is 20,559 kW, which is a reduction of 6,330 kW. Although the adjustable resources are used maximally, they still inevitably cut a part of the distributed PV output, which is mainly attributable to the limited regulation capacity constraint of the main grid resulting from actual grid operation; the gas units in the main grid can further reduce the output until shutdown to consume the distributed PV outputs in the present distribution network or to deliver a part of this residual energy to another distribution network to achieve the required PV power consumption. Therefore, subsequent studies can examine methods to further reduce the distributed PV outputs in the distribution network through coordination of network clusters.
The simulation of the power change at the cutoff point of the main distribution network is shown in Figure 13. From Figure 13, it is seen that the maximum interaction power of the main distribution network in scenario 3 is 2,000 kW while the minimum is 1,010 kW, for a maximum fluctuation of 990 kW of the main grid supply power. Meanwhile, the power curve is relatively flat, and the maximum power change in the adjacent time period is 100 kW, which are in line with the creep power limitations of the gas-fired units of the main grid during actual operation.
[image: Line graph showing power in arbitrary units over 24 hours for three scenarios. Scenario 3 (blue) increases steadily. Scenario 1 (orange) peaks and dips significantly. Scenario 2 (red) has moderate fluctuations.]FIGURE 13 | Interaction power at the main distribution cutoff point for scenario 3.
The power statistics at the demarcation point of the main distribution network under the three scenarios are shown in Table 2. As seen from Table 2, the fluctuation range of the interaction power of the main distribution network in scenario 3 is lower by 3,062 kW and 2,051 kW compared to those in scenarios 1 and 2, respectively, and the power fluctuation decreases significantly. At the same time, the maximum power fluctuation in the adjacent time period decreases by 1,123 kW and 857 kW compared to those in scenarios 1 and 2, respectively. The simulation results of scenario 3 reflect the limited regulation capacity of the main network; however, during actual operation, these results meet the requirement that the change in power supplied by the main network to the distribution network cannot be too fast. The simulation results of scenario 3 reflect the effectiveness of the active optimal scheduling method proposed for the distribution network.
TABLE 2 | Comparison of interaction power at the cutoff point of the main distribution network before and after optimization.
[image: Table showing power scenarios with four columns: power scenarios, minimum value in kilowatts, maximum value in kilowatts, maximum swing in kilowatts, and maximum power change in the adjacent time period in kilowatts. Scenario 1 has minimum value negative one thousand one hundred seventy-two, maximum value two thousand eight hundred eighty, maximum swing four thousand fifty-two, and maximum power change one thousand two hundred twenty-three. Scenario 2 has minimum value negative seven hundred seven, maximum value two thousand three hundred thirty-four, maximum swing three thousand forty-one, and maximum power change nine hundred fifty-seven. Scenario 3 has minimum value one thousand ten, maximum value two thousand, maximum swing nine hundred ninety, and maximum power change one hundred.]6 CONCLUSION AND PROSPECTS
At present, most of the studies on optimal dispatch of distribution networks containing high proportions of distributed PVs are based on the optimization of voltage stability and optimal economy as the objectives given a single means of regulation; at the same time, the impact of the limited regulating capacity of the gas units of the main grid on the optimal dispatch of distribution networks is neglected, especially with regard to maximum consumption of PV power. Hence, the following methods are proposed herein to address this issue:
	1. We establish a model for maximum consumption of the distributed PV power in the distribution network by taking into account the reactive power compensation equipment, energy storage systems, controllable loads, and other adjustable resources and design an optimal distribution solution for the distribution network; this reduces the number of variables participating in the optimization at each step and accelerates the speed of optimization.
	2. The proposed distribution network optimization scheduling method fully takes into account the limited regulation capacity of the main network to ensure that the distribution network purchases the least amount of power from the main network; further, the fluctuation amplitude and creep rate of the interacting power between the main and distribution networks are minimized to meet the actual operation of the gas-fired units of the main network. This helps in the analysis of the impact of the limited regulation capacity of the main network on maximum PV power consumption.

Although more types of regulation are considered in the proposed model, their scheduling costs are not analyzed, especially with regard to the compensation cost of the controllable loads, installation cost, and charge/discharge losses of the energy storage devices. During actual operation, frequent scheduling of user loads lowers user satisfaction and high-frequency redischarging of the energy storage devices reduces their service lives; hence, future studies could focus on balancing the interests of both supply and demand as well as improving the comprehensive economy of distribution network operation.
Given the accelerated pace of construction of new power systems, the connections between the distribution networks are increasingly becoming close. Thus, future research efforts can consider balancing and dispatching the surplus local PV outputs through other distribution networks, thereby reducing the burden of regulation of the main grid; moreover, new types of distribution networks can be constructed to handle higher proportions of distributed PV power.
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This article presents a study on the distributed optimization operation method for micro-energy grid clusters within an electric, thermal, and hydrogen integrated energy system. The research focuses on precisely modeling the Power-to-Hydrogen (P2H) conversion process in electrolytic cells by considering their startup characteristics. An optimization operation model is established, with each micro-energy grid as the principal entity, to cater to their individual interests and demands. The Alternating Direction Method of Multipliers (ADMM) algorithm is adopted for distributed solution. Case studies demonstrate that the connection topology between micro-energy grids significantly impacts the total operating cost, and the effectiveness of the ADMM algorithm is validated through a comparison with centralized optimization approaches.
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1 INTRODUCTION
By 2050, the projected increment in CO2 emissions could span from 2.21 to 7.43 megatons, underscoring the urgency for decisive action. Amidst this backdrop, numerous nations worldwide have set forth ambitious carbon reduction targets, signaling a global commitment to mitigate climate change (Jiang et al., 2024). The Integrated Energy System (IES), a holistic approach that integrates power-to-heat conversion technologies and seamlessly intertwines heat and power generation, has emerged as a cornerstone in the pursuit of carbon emission reduction. This system, bolstered by its unique technological prowess, offers a pivotal pathway towards a greener future (Zhang et al., 2024).
The strategic deployment of complementary technologies within the IES framework further enhances renewable energy utilization, thereby mitigating adverse climate impacts (Pan et al., 2021). Among these, Power-to-Hydrogen (P2H) technology stands out as a highly efficient energy conversion mechanism, transforming electrical energy into hydrogen energy—a clean and versatile fuel source (Gu et al., 2024). As renewable energy capacity expands and electric vehicles, alongside other power-hungry devices, gain widespread adoption, the challenge of effectively managing surplus electricity has become paramount in the energy sector. P2H technology adeptly addresses this challenge by electrolyzing water, converting excess electrical energy into hydrogen, thereby not only alleviating the issue of surplus electricity but also supplying a clean, green energy source for innovative applications like hydrogen-fueled vehicles. Moreover, P2H technology boasts several advantages that make it an attractive option for energy storage and conversion. Its high energy storage efficiency, prolonged storage capability, and zero-emission profile position it as a promising contender in the quest for sustainable energy solutions (Zhuang et al., 2023). By harnessing the full potential of both the IES and P2H technology, we can accelerate our transition towards a low-carbon, environmentally friendly future.
(He et al., 2021) proposes an integrated energy system optimization model that utilizes P2H technology to convert excess wind power into hydrogen, mitigating curtailment and filling load valleys. Case studies validate the effectiveness of this approach. Author in (Gu et al., 2023) propose a regional joint electrolytic hydrogen system framework to address differentiated electrolytic hydrogen capacity caused by resource characteristics in China. They established a decoupling model for cascade hydropower and compared its advantages over separate systems in terms of reducing hydrogen costs, carbon emissions, and renewable energy capacity. Differential models for electrolyzers were also established, providing insights into their evolution and development prospects (Gupta et al., 2023). studies the integration of P2H technology into utility-scale hybrid power plants (HPPs) consisting of wind, solar, and battery storage. As renewable energy resources and sector coupling increase, HPPs are evolving to include other energy vectors like heat and gas storage. Integrating P2H within HPPs reduces fluctuations from non-dispatchable production and curtailment, similar to storage devices. Case studies in Europe demonstrate the significant techno-economic benefits of HPPs with P2H. In (Zhao et al., 2022), the Integrated Energy Production Unit (IEPU) concept, combining P2H and Carbon Capture, Utilization, and Storage (CCUS) technologies, is proposed. This concept leverages existing synchronous turbines to provide synthetic active and reactive capabilities, validated using open-source software with European load data, optimizing capacity and simulating 8,760-h operations to minimize annual costs. In (Dong et al., 2023), the authors compare the technical characteristics of alkaline electrolyzers (AEC) and proton exchange membrane electrolyzers (PEMEC), and proposes an optimal planning model for P2H clusters. The model aims to minimize investment, operational, startup/shutdown, grid power purchase, network loss, and voltage deviation costs. A modified IEEE 33-node network case verifies the model’s effectiveness and benefits (Lu et al., 2022). introduces an Approximate Dynamic Programming (ADP) method for optimizing real-time micro-energy grid operation with P2H devices. The ADP approach, leveraging a piecewise linear function, finds near-optimal strategies that adapt to uncertainties, outperforming Model Predictive Control (MPC) in case studies. Authors in (Cao et al., 2022) propose a dual-fuel cells hydrogen energy storage integrated energy system to enhance performance. Optimizing device capacities based on economic factors reveals an optimal configuration that outperforms single fuel cells. Sensitivity analysis highlights the influence of electricity, natural gas prices, and renewable energy capacity on the optimal hydrogen storage and fuel cell configuration.
However, a significant oversight in existing research lies in the neglect of electrolytic cells’ start-up characteristics, notably the start-up delay and power requirements. While these cells are indispensable in converting renewable energy sources into hydrogen via the Power-to-Hydrogen (P2H) process, their initial operational phases, particularly the intricate start-up process, have remained largely unexamined. This oversight results in a lack of granularity in electrolytic cell models, which in turn fails to accurately mirror the system’s true operational dynamics. This uncharted territory represents a crucial gap that necessitates urgent attention and further exploration. Such endeavors would not only refine our understanding of these systems but also propel us closer to a greener, more sustainable future by ensuring that P2H technologies operate at their optimal capacity.
The Alternating Direction Method of Multipliers (ADMM) algorithm, renowned for its prowess in tackling optimization challenges, stands out as a formidable tool for resolving large-scale, decentralized, and intricate constraint optimization problems within the energy sector. Its unparalleled advantages have fostered widespread adoption in energy optimization applications. By masterfully decomposing intricate energy systems into manageable subproblems and iteratively solving them in an alternating fashion, the ADMM algorithm drastically reduces problem complexity and computational overhead. Moreover, its inherent distributed nature harmoniously aligns with the decentralized characteristics of energy systems, enabling seamless distributed optimization management, thereby enhancing overall system efficiency and performance.
(Huang et al., 2023) proposes a blockchain-based distributed market framework for the bi-level carbon and energy trading between coal mine integrated energy systems and a virtual power plant (VPP). (Kong et al., 2020) introduces a distributed optimization approach for integrated energy systems (IES) using the ADMM. The method begins by analyzing uncertain factors from energy sources and loads, employing scenario analysis to capture their stochasticity. An optimal scheduling model for IES is then formulated. Leveraging ADMM, this model is reformulated to enable distributed optimization for multi-energy complementation. Case study results demonstrate the effectiveness and practicality of the proposed strategy. Authors in (Chen et al., 2018) propose an enhanced energy hub (EH) model for IES, incorporating electric and heat energy storage along with solar thermal collectors. The IES is structured as a multi-operator system, with each EH belonging to a distinct operator. A distributed energy management model accounts for storage operation costs and shows effectiveness in reducing energy bills, transmission losses, and prolonging energy storage life. (Pan et al., 2022) offers a distributed operation strategy using an enhanced ADMM. It establishes models for gas turbines and energy storage, incorporating dynamic characteristics of radial distribution and natural gas networks. An optimization model for day-ahead scheduling reduces operating costs while managing renewable energy uncertainty through chance constraints. An ADMM-based distributed operation method with adaptive step size addresses information opacity between electricity and gas systems. (Wu et al., 2021) addresses the challenges of centralized control in large-scale integrated energy parks by proposing a distributed computing method. The method decomposes joint scheduling into subproblems, considers the coupling of electricity, gas, and heat, and establishes a day-ahead scheduling model. A case study demonstrates the feasibility of the distributed optimization model. Authors in (Li et al., 2024) propose an optimal operation strategy with dynamic partitioning for centralized shared energy storage stations, considering day-ahead demands of renewable energy power plants. A multi-entity cooperative optimization model based on Nash bargaining theory is implemented and decomposed into subproblems solved by ADMM. Simulations show improved tracking of renewable energy output, higher energy storage utilization, and increased profits for each entity.
In this article, we delve into a comprehensive study exploring the distributed optimization operation methodology for clusters of micro-energy grids within a multifaceted energy system that integrates electricity, heat, and hydrogen resources. Our research meticulously models the intricate Power-to-Hydrogen (P2H) conversion process within electrolytic cells, meticulously accounting for their nuanced startup dynamics. This nuanced approach ensures a precise portrayal of the P2H process, pivotal for optimizing the holistic energy system’s performance. To this end, we formulate an optimization framework that recognizes each micro-energy grid as an autonomous entity, respecting their distinct interests and operational imperatives. This model not only considers the efficiency of energy conversion but also the specific operational constraints and goals of each micro-energy grid. To tackle this intricate distributed optimization challenge, we harness the power of the Alternating Direction Method of Multipliers (ADMM) algorithm, renowned for its prowess in handling large-scale, decentralized optimization problems. By utilizing ADMM, we can decompose the overall optimization problem into smaller subproblems, which are then solved iteratively in a distributed manner. This approach not only reduces the computational complexity but also enables each micro-energy grid to operate independently while still contributing to the overall optimization of the entire energy system.
2 P2H MODULE UNIFIED OPERATION MODEL
2.1 Introduction for P2H technologies
In the commercial landscape of hydrogen production equipment, the electrolytic cell stack stands as the cornerstone unit. Nevertheless, the inherent power limitations of a solitary stack, often constrained to below 10 kW, underscore the need for scalability. By harnessing the inherent scalability of electrolytic cell technology, we can orchestrate multiple stacks into formidable modules, capable of achieving capacities that soar from 100 kW to the megawatt realm. The extensive hydrogen production systems utilized in power systems often comprise numerous independently managed modules, where each module can be selectively activated, deactivated, and its output precisely controlled. Therefore, this paper focuses its modeling and selection planning efforts on the electric hydrogen production module as the fundamental research subject.
2.2 Startup model of P2H modules
When initiating the P2H process, the start-up delay associated with low-temperature electrolysis technologies, such as AEC and PEMEC, tends to be minimal. However, in the case of SOEC utilizing high-temperature electrolysis, hydrogen gas production does not commence until the stack has reached a specific temperature threshold. Notably, the heating duration required to attain this temperature can often be significant and should not be overlooked.
In the context of the given modeling, [image: It seems there was an issue with uploading the image. Please try uploading the image again, and I will help you with the alternate text.], [image: It seems there was no image uploaded or linked. Please provide the image or a URL to generate the alternate text.], and [image: Please upload the image you'd like me to describe.] represent distinct indices: [image: Please upload an image or provide a link to it, and I’ll be happy to help with the alt text.] signifies the [image: It looks like you tried to upload an image, but it did not come through. Please try uploading the image again.]-th micro energy grid, [image: Please upload the image so I can help you create the alternate text for it. If you have any additional context or specific details you’d like included, feel free to add those as well.] denotes the [image: Please upload the image or provide a URL so I can help create the alt text for it.]-th electrolytic cell, and [image: It seems there's an issue with the image upload. Please try again, ensuring the file is properly attached. If you wish, you can also include a brief description or caption for additional context.] represents the time instant. The variable [image: The image shows a mathematical expression with the Greek letter alpha raised to the power of k, followed by the subscript E and C.] captures the startup delay specific to the [image: Please upload the image or provide a URL, and I can help create the alternate text for you.]-th electrolytic cell. The variable [image: Mathematical notation showing a variable \( x_{EC}^{i,k,t} \).] represents the state of the [image: It seems there is no image uploaded. Please try uploading the image again, and I would be glad to help with the alt text.]-th electrolytic cell within the [image: Please upload the image or provide a URL for me to generate the alt text.]-th micro-energy grid at time [image: Please upload the image or provide a URL so I can create the alt text for you.]. Furthermore, [image: Mathematical expression showing the variable y subscript EC with the superscripts i, k, and t.] and [image: Mathematical expression with two equations: \( z_{EC} = \frac{z_{i,k,t}}{z_{EC}} \).] represent the start and stop actions, respectively, of the [image: It seems like there was an issue with your image upload. Please try uploading it again or provide a description of the image, and I will be happy to help create the alt text for it.]-th electrolytic cell in the [image: It seems there is no image attached. Please upload the image or provide a URL, and I will help you with the alt text.]-th micro-energy grid at time [image: It seems there is no image provided. Please upload the image or provide a URL for it, and I will help create the alt text.]. These actions indicate whether the electrolytic cell is being initiated or terminated at a given time.
The modeling of these variables allows for a comprehensive representation of the dynamic behavior and operational decisions within the integrated energy system.
The operating power of the EC is subject to upper and lower limits, which are mathematically constrained as expressed in Equation 1. This constraint ensures that the electrolytic cell operates within its safe and efficient range, preventing over- or under-utilization.
[image: Mathematical equation with terms \( P_{\text{EC}}^k \), \( \delta_{\text{EC},n,l}^k \), \( \text{Cap}_\text{EC}^k \), between minimum and maximum constraints.]
where [image: Mathematical expression showing \( P^{i, k, t}_{EC, in, l} \).] represents the EC input power that is utilized for hydrogen production (output). This is the active power input that drives the electrolysis process and generates hydrogen gas. [image: Mathematical expression showing "Cap" with superscript "i k" and subscript "E C".] represents the installed capacity of the EC. [image: Mathematical expression showing delta with superscripts \(i, k\) and subscript \(EC\_in, 1, min\).]/[image: Mathematical expression: delta superscript i, k, subscript EC, in, 1, max.] represents the ratio of the minimum/maximum value of [image: Mathematical notation "P" with subscripts "EC,in,l" and superscripts "i,k,t".] to the installed capacity.
The starting power constraint of EC is shown in Equation 2.
[image: Mathematical equation with terms on the right side: summation from tau equals zero to d sub EC minus one, of y sub EC superscript j, k, l minus tau, multiplied by delta sub EC, boot superscript delta, k, multiplied by Cap a, multiplied by rho prime sub EC superscript j, k. Numbered as equation two.]
where [image: Mathematical expression showing \(P^{i,k,t}_{EC,in,2}\).] represents the EC input power used specifically for starting the electrolytic cell. This power is consumed only during the startup phase and does not contribute to hydrogen production. It is typically required to heat the stack and other components to the operating temperature. [image: Mathematical expression depicting the Kronecker delta symbol δ with superscripts i, k, and a subscript EC, boot.] represents the ratio of the starting power [image: Mathematical expression: \( P_{EC,in,2}^{i,k,t} \).] to the installed capacity.
The state constraints of EC are shown in Equation 3.
[image: Mathematical expression showing constraints for variables \( y_{EC}^{j,t,k,d} \), \( z_{EC}^{j,t,k,d} \), and \( x_{EC}^{j,t,k,d} \). These variables are related by equations and inequalities. Equation three is denoted with a parenthetical number.]
In Equation 3, the first equation represents the constraints imposed by the start-up and shutdown action variables on the state variables of the electrolytic cell. The second equation indicates that the electrolytic cell can only be started when it is in the off state, while the third equation indicates that the electrolytic cell can only be shut down when it is in the start-up state.
2.3 Comparison of main performance indicators of 3 P2H technologies
At present, there are three main types of electrolytic cells: alkaline electrolytic cells (AECs), proton exchange membrane electrolytic cells (PEMECs), and solid oxide electrolytic cells (SOECs).
Among the three P2H technologies, AECs boast the earliest research and development efforts, the most matured technology, and the lowest equipment cost. Nonetheless, they encounter challenges such as the difficulty in completely isolating hydrogen-oxygen diffusion (especially under low loads), high electrolysis overvoltage, and the inertia of load ion conduction in electrolyte solutions. These factors limit their working load range and response speed.
In contrast, PEMECs have significantly improved load range and response speed compared to AECs, albeit with a slightly higher equipment cost. However, both AECs and PEMECs share a limitation: their rated hydrogen production efficiency does not exceed 70%.
SOECs, on the other hand, utilize solid oxide electrolytes to electrolyze gaseous water in high-temperature environments. By harnessing the thermodynamics and kinetics of the electrolysis reaction, SOECs are able to improve energy conversion efficiency by approximately 10%–15%. However, due to the constraints of operating in high-temperature environments, SOEC technology currently lags behind PEMECs in terms of cost and response speed.
Table 1 below provides a concise overview of the key technical indicators associated with each of the three electrolytic cells. It is evident that each of the three P2H technologies offers distinct advantages: AEC excels in cost-efficiency, PEMEC stands out in terms of flexibility, while SOEC boasts the highest energy conversion efficiency.
TABLE 1 | The main technical indicators of the three electrolytic cells.
[image: Table comparing three electrolyzer technologies: AEC, PEMEC, and SOEC. Parameters include current density, voltage range, hydrogen production capacity, electricity consumption, operating temperature, efficiency, startup time, investment cost, efficiency attenuation, and minimum input power. AEC has moderate values across parameters, PEMEC is higher in production and efficiency, while SOEC has minimal hydrogen output but high efficiency.]3 MATHEMATICAL MODEL FOR THE OPTIMAL OPERATION OF MICRO-ENERGY GRIDS
3.1 System structure
The micro-energy grid incorporates a busbar design that comprises four essential power busbars: electricity, heat, hydrogen, and gas, as shown in Figure 1.
[image: Diagram showing a multi-energy grid (MEG) system with interconnected buses. Includes an electric power bus linking grid, other MEGs, photovoltaic (PV), wind turbine (WT), battery (BT), electrolyzer (EC), fuel cell (FC), and outputs to electric load. A gas power bus connects gas supply, alternative heat (CHP), gas boiler (GB), gas storage (GS), and metering regulator (MR). The thermal power bus involves electric heater (EH) and hydrogen storage (HS) linking to heating load. Arrows illustrate flows of electric, thermal, hydrogen, and gas power.]FIGURE 1 | The structure of each micro-energy grid.
Within this micro-energy grid, the primary energy supply apparatus encompasses a harmonious blend of renewable energy generation systems and CHP units. Furthermore, the system is augmented by EH techniques and GB, enhancing the thermal energy supply capabilities. Within this intricate system, devices such as EC and FC play pivotal roles, facilitating seamless interconversion between electrical and hydrogen energy. Notably, the hydrogen energy generation process inherently yields thermal energy, thus further augmenting the grid’s thermal output. Moreover, the refined hydrogen energy can undergo MR for conversion into natural gas, expanding the grid’s energy portfolio.
This versatile micro-energy grid caters to three primary load demands: electrical energy, hydrogen energy, and thermal energy, ensuring a comprehensive range of energy services. Its input energy sources are diverse, incorporating electricity sourced directly from the main power grid or exchanged with other micro-energy grids, as well as natural gas procured efficiently from gas utility companies. This integrated approach fosters a resilient and sustainable energy ecosystem, tailored to meet the evolving needs of modern communities.
The article delves into an integrated energy system encompassing electric, thermal, and hydrogen components, which comprises a cluster of interconnected micro-energy grids, as depicted in Figure 2. These micro-energy grids are capable of exchanging electrical power seamlessly through dedicated interconnection lines, fostering a dynamic and interactive network.
[image: Diagram showing an integrated energy system with multiple power buses: electric, hydric, gas, and thermal. Key components include photovoltaic (PV), wind turbine (WT), battery (BT), electrochemical cell (EC), fuel cell (FC), electrolyzer (EH), combined heat and power (CHP), gas boiler (GB), gas storage (GS), and mechanical regulator (MR). The system connects through three micro energy grids labeled MEG 1, MEG 2, and MEG N.]FIGURE 2 | The structure of micro-energy grid cluster.
3.2 Objective function
For each micro-energy grid, the overarching objective is to minimize operating costs, as outlined in Equation 4. These costs comprise four distinct components: operational and maintenance costs, gas procurement costs, electricity acquisition costs, and power exchange costs.
[image: Optimization equation minimizing total cost \( C \), expressed as the sum of operation and maintenance cost \( C_{\text{OM}} \), gas cost \( C_{\text{gas}} \), grid cost \( C_{\text{grid}} \), and externalities cost \( C_{\text{EX}} \). Labeled as equation (4).]
where [image: Mathematical notation for the binomial coefficient, represented as "C" with superscript "i" and subscript "oM".] represents operational and maintenance costs, [image: A mathematical notation displaying the variable "C subscript i superscript t" followed by the subscript "gas".] represents gas procurement costs, [image: Mathematical expression depicting "C" with subscript "grid" and superscript "i".] represents electricity acquisition costs, [image: Mathematical expression with the term "C" subscripted with "EX" and superscripted with "i".] represents power exchange costs.
The operational and maintenance costs are shown in Equations 5, 6.
[image: Formula illustrating the total cost of operation and maintenance, \(C_{OM}^{id}\), as the summation from \(t=1\) to \(T\) of various cost components: \(C_{PV,om}^{id}\), \(C_{WT,om}^{id}\), \(C_{CHP,om}^{id}\), \(C_{F,om}^{id}\), \(C_{EC,om}^{id}\), \(C_{EH,om}^{id}\), \(C_{GB,om}^{id}\), \(C_{MR,om}^{id}\), plus \(C_{ET/HC/HS/Gs,om}^{id}\), all multiplied by \(\Delta t\).]
[image: Mathematical equations detailing the cost and performance calculations for various energy systems. Terms include \( C^{j}_{PV,om} \) for photovoltaic operation costs, \( C^{j}_{WT,om} \) for wind turbines, and \( C^{j}_{CHP,om} \) for combined heat and power. Summations and complex variables describe energy output, efficiency, and costs across different systems, indexed by time and system type. Equations involve parameters like \( P^{j,out} \) and include subscripts BT, HC, HS, and GS, indicating different system components. Each term contributes to an overarching energy system model. Equation is labeled as (6).]
The gas procurement costs are illustrated in Equation 7.
[image: The equation shows \( C_{\text{gas}} = \sum_{t=1}^{T} \frac{R_{t}^{i,j}}{H_{t}^{i,j}} \cdot P_{t}^{i,j,\text{gasb}} \cdot \Delta t \) and is labeled as equation (7).]
The electricity acquisition costs from the power grid are shown in Equation 8.
[image: Cost to the grid, \( C_{\text{grid}} \), is calculated as the sum from time step one to \( T \) of the price difference between grid electricity purchase and sale, multiplied by power and a time interval \(\Delta t\).]
The power exchange costs with other micro-energy grids are shown in Equation 9.
[image: Mathematical equation: C_EX equals the summation from t equals 1 to T and j equals 1 to IMG of C_EX^i,j,t multiplied by the difference of P_EX,in^i,j,t and P_EX,out^i,j,t, all multiplied by Δt, denoted as equation 9.]
3.3 Constraints
3.3.1 Constraints on the power balance
The electric power balance is shown in Equation 10.
[image: Equation labeled as (10) shows a complex mathematical expression involving terms like \( P^{ij}_{BT, \Delta EX} \), \( P^{ij}_{GD,b} \), \( P^{ij}_{PV,on} \), and \( P^{i}_{HW,on} \). It includes summations over indices \( k \) and \( j \) with variables such as \( P^{i,k}_{FC,on,t,E} \) and \( P^{ij}_{EX,in} \). The equation is related to power distribution and energy exchange in a system.]
The thermal power balance is shown in Equation 11.
[image: Equation labeled 11, showing an equality with terms: \(P^{i,j}_{HC,LEX}\), \(P^{i,j}_{CHP,out,H}\), \(P^{i,j}_{GB,out}\), \(P^{i,j}_{EH,out}\), plus a summation from \(k=1\) to \(K\) of \(P^{i,k,t}_{UG,out,H}\). It's equal to \(P^{i,j}_{HC,LEX} + P^{i,j}_{HL}\).]
The hydric power balance is shown in Equation 12.
[image: Equation displaying a mathematical expression: \(P_{HS,d,EX}^{i,t} + \sum_{k=1}^{K} P_{EC,out}^{i,k,t}\) equals \(P_{HS,e,EX}^{i,t} + P_{HGL}^{i,t} + \sum_{k=1}^{K} P_{FC,in}^{i,k,t} + P_{MR,in}^{i,t}\). This is noted as equation (12).]
The gas power balance is shown in Equation 13.
[image: Mathematical equation showing two expressions set equal. The top expression: \( P^{id}_{GsLEX} + P^{id}_{gsk3b} + P^{id}_{MBmot} \). The bottom expression: \( P^{id}_{GsLEX} + P^{id}_{CHPtm} + P^{id}_{Gblim} \). The equation is labeled as equation thirteen in parentheses.]
3.3.2 Constraints on the purchased power of electricity and gas
The purchased/sold electric power constraints from/to the power grid are shown in Equation 14.
[image: Mathematical expression containing constraints: \(P^{ij}_{GD,b}\) multiplied by \(x^{ij}_{GD,b}\) is between \(P^{ij}_{GD,b,\text{min}}\) and \(P^{ij}_{GD,b,\text{max}}\). Similarly, \(P^{ij}_{GD,s}\) multiplied by \(x^{ij}_{GD,s}\) is between \(P^{ij}_{GD,s,\text{min}}\) and \(P^{ij}_{GD,s,\text{max}}\). Additionally, the sum of \(x^{ij}_{GD,b}\) and \(x^{ij}_{GD,s}\) is between \(0\) and \(1\). Equation number is \(14\).]
The purchased gas power constraints from the gas company are shown in Equation 15.
[image: Formula depicting power constraints where the power of gas substation \( P_{gas,sub}^i \) is bounded by minimum \( P_{gas,sub,min}^i \) and maximum \( P_{gas,sub,max}^i \) values. Equation number 15.]
3.3.3 Constraints on the efficiency of the devices
The efficiency constraints of the devices are shown in Equation 16.
[image: Mathematical equations describing different power output relationships for energy sources. The equations include variables and parameters for combined heat and power systems, fuel cells, energy conversion, and heat exchange, each represented with specific variables and efficiency factors. Equation number sixteen is displayed to the right.]
3.3.4 Constraints on the upper and lower power limits of the devices
The upper and lower power limit constraints are shown in Equation 17.
[image: Mathematical equation detailing power output constraints and capacities for various energy sources and storage systems. Includes parameters for photovoltaic, wind turbine, combined heat and power, electric conversion, hydrogen, battery, and motor systems. Each expression is bounded by minimum and maximum capacities or forecast values, with specific terms listed for each technology.]
3.3.5 Constraints on the ramping limit
The ramping limit constraints are shown in Equation 18.
[image: Equations represent constraints for power ramping in energy systems. The difference between current and previous power outputs, \( P_{\text{CHP, out, E}}^t - P_{\text{CHP, out, E}}^{t-1} \) and \( P_{\text{EC, out}}^{jk, t} - P_{\text{EC, out}}^{jk, t-1} \), must be less than or equal to ramping limits \(\delta_{\text{CHP, ramp, max}}^j\) and \(\delta_{\text{EC, ramp, max}}^{jk}\), multiplied by capacity factors \(\text{Cap}_{\text{CHP, E}}^j\) and \(\text{Cap}_{\text{EC}}^{jk}\). Equation number is (18).]
3.3.6 Constraints on the energy storage devices
The limitations pertaining to the energy storage device are delineated in Equations 19–21. Specifically, Equation 19 encapsulates the efficiency constraint during charging and discharging operations, Equation 20 outlines the upper and lower bounds for the charging and discharging power, and Equation 21 specifies the energy capacity constraint of the storage device.
[image: Equation 19 shows two expressions: 1) P^d_BT/HC/HS/GS,X equals r^d_BT/HC/HS/GS,X times P^d_BT/HC/HS/GS,EX, and 2) P^d_BT/HC/HS/GS,LEX equals r^d_BT/HC/HS/GS,LEX times P^d_BT/HC/HS/GS,A.]
[image: Mathematical expression showing constraints in an optimization problem. Uses variables \(x^{j,i}_{BT/HC/HS/GS,\delta}\), \(\delta^{j,i}_{BT/HC/HS/GS,\delta}\), \(P^{j,i}_{BT/HC/HS/GS}\), and \(\text{Cap}^{j,i}_{BT/HC/HS/GS}\), with operations including multiplication and inequality comparisons. Inequalities range from minimum to maximum conditions and sum constraints, labeled as equation (20).]
[image: Mathematical equation expressing constraints and calculations for dynamic variables related to power capacity and output over time. It includes terms for minimum and maximum capacity, power output adjustments, and time intervals, denoted by various subscripted variables like \(Cap\), \(W\), and \(P\), with a time-dependent iterative component. Equation labeled as (21).]
3.3.7 Constraints on the operation of the EC
As outlined in Section 3.2, the EC’s upper and lower power constraints, initial power constraints, and start-stop state limitations are defined in Equations 22, 23. Furthermore, Equation 24 stipulates that the start-stop state must remain consistent at the beginning and end of each cycle, while Equation 25 imposes a maximum limit on the number of starts and stops that can occur within a single cycle.
[image: Mathematical expressions showing constraints and equations. The first constraint involves δ, Cap, and P variables with subscripts representing elements and time indices, bounded by minimum and maximum values. The equation sums indexed variables y, δ, and Cap for p indices to determine a quantity. Equation numbered twenty-two.]
[image: Mathematical expression involving three equations. First equation: \(y_{\text{EC}}^{j,k+ac} - z_{\text{EC}}^{j,k} = x_{\text{EC}}^{j,k} - x_{\text{EC}}^{j,k-1}\). Second equation: \(y_{\text{EC}}^{j,k} \leq 1 - x_{\text{EC}}^{j,k-1}\). Third equation: \(z_{\text{EC}}^{j,k} \leq x_{\text{EC}}^{j,k-1}\). Equation number (23) is on the right.]
[image: Equation showing x^(L*T) over k_EC equals x^(L*k_0) over k_fk_0, with a reference number (24) on the right.]
[image: Summation formulas showing constraints involving variables \( y_{EC}^{jk,t} \) and \( z_{EC}^{jk,t} \), from \( t=1 \) to \( T \). Each sum is less than or equal to constants \( y_{EC,\max}^{jk} \) and \( z_{EC,\max}^{jk} \). Equation is labeled as (25).]
3.3.8 Constraints on the exchanged power with other micro-energy grids
Equation 26 establishes the upper and lower bounds for the interactive power exchange with other micro-energy grids. Meanwhile, Equation 27 stipulates that the diagonal elements of the interaction state matrix must be zero, indicating that a grid cannot interact with itself, and furthermore, there can be no more than one input and one output state that is assigned a value of 1, signifying a single connection for power exchange in either direction.
[image: Mathematical expression involving variables A, x, P, and indices i, j, k, to represent constraints on minimum and maximum values for energy exchange. Equation number twenty-six.]
[image: Equation 27 shows two mathematical expressions: x subscript EX comma out superscript i,j,k plus x subscript EX comma in superscript i,j,k equals 0; x subscript EX comma out superscript i,j,t plus x subscript EX comma in superscript i,j,t is less than or equal to 1.]
4 ALGORITHM FOR SOLVING THE MULTI-AGENT COLLABORATIVE OPTIMIZATION MODEL
4.1 ADMM algorithm
As a distributed algorithm, ADMM excels in addressing large-scale separable optimization problems by systematically breaking them down into smaller subproblems. This strategic decomposition not only simplifies the complexity but also paves the way for the precise identification of the elusive global optimal solution. The method seamlessly integrates the decomposition principles of the dual ascent method with the superior convergence properties of the Lagrange multiplier method, creating a potent synergy that ensures both robustness and unparalleled effectiveness.
The process of solving the problem shown in Equation 28 using the ADMM algorithm is as follows.
[image: Minimize \( f(x) \) with respect to \( x \), subject to the constraint \( Ax = b \), equation labeled as \( (28) \).]
where [image: Mathematical expression showing a variable x belonging to the set of real numbers denoted by R.] is the decision variable, [image: It seems like the input is a mathematical expression rather than an image. The expression "f(·)" represents a function, where "f" is the function and "·" is a placeholder for its argument.] is the objective function, [image: Matrix A is an element of the real number space with dimensions p by u.] is the coefficient matrix, and [image: Mathematical notation showing "b" is an element of the space of real numbers raised to the power of "p".] is the coefficient vector.
Split decision variable [image: Please upload the image or provide a URL so I can assist in creating the alt text.] in Equation 28 into two decision variables [image: To help create alternate text, please provide an image by uploading it or giving a URL link.] and [image: Please upload the image, and I'll be happy to help with the alt text.], as delineated in Equation 29:
[image: Optimization problem equation minimizing the sum of functions \(g(y)\) and \(h(z)\) with respect to variables \(y\) and \(z\), subject to the constraint \(Cy + Dz = e\). Labeled as equation 29.]
where [image: Mathematical notation showing \( y \in \mathbb{R}^n \), representing that y is an element of the n-dimensional real number space.] and [image: Mathematical notation showing \( z \in \mathbb{R}^m \), indicating that the variable \( z \) is an element of an m-dimensional real number space.] are decision variables, [image: It seems there was an issue with displaying the image. Please upload the image file or provide a URL for me to generate accurate alt text.] and [image: The mathematical notation "h" followed by an open and closed parenthesis containing a dot, which typically represents a function named h applied to a variable.] are sub optimization objectives, [image: Matrix \( \mathbf{C} \) belongs to the set of real numbers with dimensions \( p \times n \).] and [image: Mathematical notation depicting "D is an element of the set of real numbers raised to the power of p by m."] are coefficient matrices, and [image: Mathematical expression showing "e" is an element of the set of real projective space, denoted by double-struck RP.] is coefficient vector.
By incorporating a quadratic penalty term into the Lagrangian function, an augmented Lagrangian function is derived, providing an enhanced framework for addressing optimization problems, which is shown in Equation 30:
[image: Equation labeled as number thirty shows \( L_\rho (y, z, \lambda) = g(y) + h(z) + \lambda^T(Cy + Dz - c) + \frac{\rho}{2} \|Cy + Dz - c\|_2^2 \).]
where [image: The image contains the mathematical expression: \(\lambda \in \mathbb{R}^p\).] is the Lagrange multiplier, and [image: The image shows a mathematical expression: the Greek letter rho, ρ, is greater than zero.] is the penalty factor.
Alternately solve variables [image: Please upload an image or provide a URL, and I will help create the alt text for it.] and [image: Please upload the image or provide a URL so I can create the alt text for you.], and update the Lagrange multiplier, as shown in Equation 31, until the convergence condition is met.
[image: Mathematical expressions showing an optimization process. The first equation updates \(y^{m+1}\) as the argument minimum of \(L_{\rho}(y, z^m, \lambda^m)\). The second equation updates \(z^{m+1}\) as the argument minimum of \(L_{\rho}(y^{m+1}, z, \lambda^m)\). The third equation updates \(\lambda^{m+1}\) as \(\lambda^m + \rho(Cy^{m+1} + Dz^{m+1} - e)\).]
where [image: It seems that there is no image visible. Please upload the image or provide a URL, and I will be happy to help with the alt text.] stands for iterations.
4.2 Multi agent optimal operation model based on ADMM algorithm
Utilizing the mathematical model outlined in Chapter 3 for the optimal operation of micro-energy grids, and leveraging the power of the ADMM algorithm, the objective function is restructured in the following manner, as illustrated in Equation 32:
[image: Mathematical expression representing the minimization of cost, denoted as \( C = C_{\text{OM}} + C_{\text{gas}} + C_{\text{grid}} + C_{\text{EX}} + C_{\text{lag}} + C_{\text{pen}} \), with equation number 32.]
where [image: Mathematical expression showing "C" with subscript "Lag" and superscript "i".] represents the Lagrange multiplier term, and [image: A mathematical expression showing the symbol "C" with subscripts "i" and "perm".] is the penalty term, which are illustrated in Equations 33, 34.
[image: Mathematical formula labeled as equation 33. The formula is: \( C_{\text{Lag}} = \sum_{j=1}^{\text{IMG}} \sum_{t=1}^{T} \lambda_{\text{EX,out}}^{j,i,j,m} \cdot \left( P_{\text{EX,out}}^{j,t} - P_{\text{EX,out,ref}}^{j,i,j,m} \right) + \sum_{j=1}^{\text{IMG}} \sum_{t=1}^{T} \lambda_{\text{EX,in}}^{j,i,j,m} \cdot \left( P_{\text{EX,in}}^{j,t} - P_{\text{EX,in,ref}}^{j,i,j,m} \right) \).]
[image: Mathematical formula represented as equation 34. It calculates \(C_{Pcm}\) using terms \(\frac{1}{2} \rho_{EX,out}^{j,m}\), a summation over indices \(j\) and \(t\), involving powers of \((P_{EX,out}^{j,j,t} - P_{EX,out,ref}^{j,j,t,m})\), plus another term using \(\frac{1}{2} \rho_{EX,in}^{j,m}\) and a similar summation with \((P_{EX,in}^{j,j,t} - P_{EX,in,ref}^{j,j,t,m})\) squared.]
The constraints specified in Equation 10 through Equation 27 maintain their original form and remain unaltered.
4.3 The solving process
The process of employing the ADMM algorithm to address this problem is outlined below:
	1. Start with [image: Please upload the image or provide a URL to generate the alt text.]. Set the convergence thresholds [image: Mathematical expression showing epsilon with a subscript of "EX, pri".] and [image: It appears the provided content is a mathematical expression or variable name rather than an image. If you have an image to describe, please upload it or provide a link.] for the primal and dual residuals. Initialize the dual multipliers [image: A mathematical expression displaying the Greek letter lambda with subscripts i, j, t, l and EX, out in smaller typography.] and [image: Lambda with superscripts i, j, t, l and subscript EX,in.], penalty factors [image: Mathematical notation showing the Greek letter rho with superscripts i and l, and subscript EX, out.] and [image: The expression shows the symbol rho with superscript i and l, and subscript EX,in.], and coordinate variables [image: Mathematical notation displaying \( P^{i,j,t,l}_{EX,out,ref} \) with indices and subscripts denoting specific parameters or variables.] and [image: Mathematical expression representing \( P^{i,j,t,l}_{\text{EX,in,ref}} \).].
	2. Solve each subproblem individually.
	3. Update the coordination variables [image: Equation displaying a variable in the form P subscript i, j, t, m plus one, EX, out, ref.] and [image: Mathematical expression with superscripts and subscripts: \( P \) with superscripts \( i, j, t, m+1 \) and subscripts \( EX, in, ref \).], as shown in Equation 35.

[image: Mathematical equations showing two expressions:   1. \( P_{\text{EX,out,ref}}^{b,j+1,(2m+1)} = \frac{1}{2} \left( P_{\text{EX,out}}^{b,j+\frac{1}{2}} + P_{\text{EX,in}}^{b,j+\frac{1}{2}} \right) \).     2. \( P_{\text{EX,in,ref}}^{b,j+1} = \frac{1}{2} \left( P_{\text{EX,in}}^{b,j+\frac{1}{2}} + P_{\text{EX,out}}^{b,j+\frac{1}{2}} \right) \).  Equation number 35.]

4. Compute the primal residual [image: Mathematical expression showing an exponent: \( r^{m+1}_{\text{EX,pri}} \).] and the dual residual [image: Mathematical expression: \( r_{EX, dual}^{m+1} \).], which are encapsulated in Equation 36, and assess their convergence based on conditions Equation 37.
[image: Mathematical equation labeled as expression thirty-six. It involves multiple summations with indices "i", "j", and "t". The expression contains variables and parameters such as \(P^{i,j,t}\), \(EX_{pri}^{m+1}\), \(EX_{out}^{ref}\), \(EX_{in}^{ref}\), and \(EX_{dual}^{m+1}\). The equation is complex, with squared terms and fractions.]
[image: \( f^{m+1}_{\text{EX,pri}} \leq \varepsilon f_{\text{EX,pri}} \) and \( f^{m+1}_{\text{EX,dual}} \leq \varepsilon f_{\text{EX,dual}} \) with equation number (37).]

	5. Adjust the penalty factors [image: Expression showing a mathematical variable: rho with subscript "EX, out" and superscript "i, m+1".] and [image: Mathematical expression showing the symbol rho with superscript i, m plus one, and subscript E, X, comma, i, n.], as expressed in Equation 38.

[image: Equation (38) shows a piecewise function for \(\rho_{EX,out/in}^{m+1}\). It describes conditions based on the values of \(\omega_{EX,A}\), \(\rho_{EX,out/in}^{j,m}\), \(\rho_{EX,out/in}^{j,m+1}\), \(S_{EX,dual}^{m+1}\), and \(\chi_{EX}^m\), determining the output based on comparison with \(\lambda_{EX,pri}^{j,m}\) and \(\lambda_{EX,pri}\) under specific inequalities.]

	6. Update the dual multipliers [image: Mathematical expression showing the symbol lambda with subscripts i, j, t, and superscript m plus one, followed by EX, comma, out.] and [image: Mathematical notation depicting the variable \(\lambda\) with subscripts \(i, j, t, EX, in\) and superscript \(m+1\).], and increment [image: Please upload the image or provide a URL so I can help create the alt text for it.] by 1 ([image: Mathematical equation displaying "m equals m plus one".]), which are defined in Equation 39.

[image: The image contains two mathematical equations. The first equation is: lambda sub EX, out superscript i, j plus one, m equals lambda sub EX, out superscript i, j, m plus rho sub EX, out superscript j, m, multiplied by the difference of P sub EX, out superscript i, j plus one, minus P sub EX, out superscript EX reference. The second equation is: lambda sub EX, in superscript i, j plus one, m equals lambda sub EX, in superscript i, j, m plus rho sub EX, in superscript j, m, multiplied by the difference of P sub EX, in superscript i, j plus one, minus P sub EX, in superscript EX reference. The equations are labeled (39).]
Repeat steps 2 through 6 until the desired convergence criteria are met.
5 CASE STUDIES
5.1 Description of the scenarios
In the case studies, three distinct operational scenarios were delineated: fully connected, partially connected, and independent operation, as depicted in Figure 3. The objective was to delve into the implications of varying connection topologies on the operational efficiency of micro-energy grid clusters. Specifically, in each of these scenarios, micro-energy grid 2 experienced a higher load level, micro-energy grid 3 boasted a larger capacity for hydrogen production devices, and micro-energy grid 4 generated a more significant amount of renewable energy.
[image: Three scenarios of migration paths represented in diagrams. Scenario 1 shows multiple interconnected paths among six nodes labeled MIG 1 to MIG 6. Scenario 2 features a linear connection from MIG 1 through MIG 6. Scenario 3 has no connections among the nodes. Blue arrows indicate the direction of paths.]FIGURE 3 | (A) Scenario 1 (B) Scenario 2 (C) Scenario 3. The connection topology between the micro-energy grids in each scenario.
The cost of procuring electricity from the power grid is determined by the time-of-use pricing model, as outlined in Table 2. Meanwhile, Table 3 provides a comprehensive overview of the installed devices capacity within each micro-energy grid.
TABLE 2 | TOU electricity price.
[image: Table showing electricity pricing by time and period. "Valley" period from 23:00 to 07:00 costs 0.47 RMB/kWh. "Off-peak" from 07:00 to 08:00 and 11:00 to 18:00 costs 0.87 RMB/kWh. "Peak" from 08:00 to 11:00 and 18:00 to 23:00 costs 1.09 RMB/kWh.]TABLE 3 | Capacity of the devices installed in each micro-energy grid.
[image: A table displaying power capacities for various devices across four different MEGs. Devices include PV, WT, CHP, FC, EC, EH, GB, MR, BT, HC, HS, and GS, measured in kW or kWh. MEG 1-3 have identical values, while MEG 4 features higher capacities for PV, WT, and EC, and lower for FC.]5.2 Convergence analysis
The convergence curves for the ADMM under Scenario 1 and Scenario 2 are presented in Figures 4, 5 respectively. As evident from the graphs, after exceeding ten iterations, the algorithm successfully converges to the designated threshold.
[image: Line graph showing Residual Error versus Iteration Time for Primal and Dual Residuals. The vertical axis represents Residual Error on a logarithmic scale, and the horizontal axis represents Iteration Time, ranging from 0 to 14. Both residuals start high, fluctuate, and decrease steadily over time.]FIGURE 4 | The variation of residual error with the iteration times in scenario 1
[image: Line graph showing residual error versus iteration time. Two lines represent primal and dual residuals. Both lines decrease overall from left to right, with some fluctuations. The x-axis is labeled "Iteration Time," and the y-axis is labeled "Residual Error," with a logarithmic scale from 10 to 10^-8. A legend indicates blue for primal and red for dual residuals.]FIGURE 5 | The variation of residual error with the iteration times in scenario 2.
Furthermore, in Scenario 3, where the 4 micro-energy grids operate independently, the exchanged power between them inevitably amounts to 0. Consequently, the ADMM algorithm achieves convergence after the initial iteration.
5.3 Economic analysis
Table 4 presents a comparative analysis of the total costs incurred by the ADMM algorithm and the centralized optimization method across three distinct scenarios. Notably, it is evident that in each of these scenarios, the ADMM algorithm’s error margin remains consistently below 1%, thus conclusively affirming the robustness and effectiveness of the proposed algorithm.
TABLE 4 | Comparison of the optimization results between ADMM algorithm and centralized optimization method.
[image: Table comparing total costs and percentage error for three scenarios using ADMM and Centralized Optimization. Costs in thousands (× 10^4 RMB): Scenario 1 - ADMM 1229.2547, Optimization 1225.0296, Error 0.3449%; Scenario 2 - ADMM 1447.0512, Optimization 1434.3320, Error 0.8868%; Scenario 3 - ADMM 1821.1192, Optimization 1820.5015, Error 0.0339%.]Tables 5–7 illustrate the breakdown of costs for each component of the micro-energy grids across three distinct scenarios. A noteworthy trend emerges, indicating that as the connection topology weakens, the total cost of micro-energy grid clusters rises incrementally. This underscores the pivotal role of power interchange between micro-energy grids in minimizing overall costs. Notably, micro-energy grid 2, which bears a heavier load, exhibits the most significant cost variation. The interaction of power between micro-energy grids substantially mitigates their electricity and gas procurement costs. Furthermore, despite micro-energy grid 1 and micro-energy grid 3 having comparable load levels, their costs differ due to the presence of electric hydrogen production equipment in the latter, which facilitates the storage of a portion of electrical energy.
TABLE 5 | The costs of each part of each micro-energy grid in scenario 1 ([image: Please upload the image you would like described, and I will provide the alternate text for it.] RMB).
[image: A table showing values for different categories related to MEG (Multiple Energy Gateways) across four categories: Total, C_OM, C_gas, C_grid, and C_EX. Values are listed for MEG 1 to MEG 4, followed by a Total row. For instance, MEG 1 has a Total of 278.3116 and C_OM of 46.3552, whereas MEG 4 has a Total of -489.6465 and C_EX of -440.9614. The combined Total across all MEGs is 1229.2547.]TABLE 6 | The costs of each part of each micro-energy grid in scenario 2 ([image: Certainly! Please upload the image or provide a URL, and I will help you generate the alternate text.] RMB).
[image: Table showing values for four categories labeled MEG 1 to MEG 4 with columns: Total, \( C_{OM} \), \( C_{gas} \), \( C_{grid} \), and \( C_{EX} \). MEG 1 has a total of 368.6905; MEG 2, 1347.4063; MEG 3, 246.0414; MEG 4, \(-515.0870\). Overall total is 1447.0512.]TABLE 7 | The costs of each part of each micro-energy grid in scenario 3 ([image: Please upload the image you would like described, and I'll help create the alt text for it.] RMB).
[image: Table showing values for four MEGs with columns: Total, C subscript O subscript M, C subscript gas, C subscript grid, and C subscript E subscript X. Data are listed for each MEG, with a Total row summarizing the values.]5.4 Operation analysis
Figures 6–8 illustrate the operational dynamics of micro-energy grid clusters across three distinct scenarios. Notably, apart from renewable energy generation, CHP emerges as the primary source of electricity, while CHP and EH jointly constitute the main supply methods for thermal energy. As the interconnection topology between micro-energy grids weakens, a noteworthy surge in the output of CHP and grid-purchased power is observed. This increase arises from the inability to transmit excess electricity to other micro-energy grids via connecting lines, leading to its sale to the grid. Consequentially, this trend also prompts an augmentation in gas purchasing power. Additionally, energy storage devices play a pivotal role in effectively managing peak and valley load conditions, enabling effective load shaving and valley filling.
[image: Four graphs illustrate power balances in micro-energy grids. (a) Electric power balance shows fluctuating supply and demand throughout the day. (b) Thermal power balance highlights varying energy use and supply. (c) Hydric power balance reveals limited fluctuations in energy levels. (d) Gas power balance displays moderate daily fluctuations. Each graph covers a 24-hour period with color-coded lines representing different energy sources and consumption.]FIGURE 6 | (A) Electric power balance (B) Thermal power balance (C) Hydric power balance (D) Gas power balance. The energy supply and consumption situation of the micro-energy grid cluster in scenario 1.
[image: Four line graphs depict power balances in micro-energy grids. (a) Electric power balance shows fluctuating lines for different power components. (b) Thermal power balance illustrates variations in thermal power over time. (c) Hydric power balance graph highlights significant peaks and troughs. (d) Gas power balance graph displays gas power trends, with visible peaks around midday. Each graph is labeled with time from zero to twenty-three hours on the x-axis, and power in kilowatts on the y-axis.]FIGURE 7 | (A) Electric power balance (B) Thermal power balance. (C) Hydric power balance (D) Gas power balance. The energy supply and consumption situation of the micro-energy grid cluster in scenario 2.
[image: Four graphs depict power balances for micro-energy grids over 24 hours. (a) Electric power balance shows fluctuating demand and supply. (b) Thermal power balance highlights peak periods. (c) Hydric power balance features minimal variations. (d) Gas power balance displays a rising trend with peak demand at night. Each graph includes different energy sources and power variations.]FIGURE 8 | (A) Electric power balance (B) Thermal power balance. (C) Hydric power balance (D) Gas power balance. The energy supply and consumption situation of the micro-energy grid cluster in scenario 3.
6 CONCLUSION
This article delves into the distributed optimization operation method for micro-energy grid clusters, focusing on the integrated energy system encompassing electricity, heat, and hydrogen. In developing the mathematical model for the electrolytic cell, we accounted for its startup characteristics to ensure an accurate portrayal of the P2H conversion process. With regard to optimizing the model algorithms, we established an optimization operation model centered on each micro-energy grid, taking into consideration their respective interests and demands. For distributed solution, we employed the ADMM algorithm. A case analysis revealed that the variance in total operating costs, attributed to different connection topologies between micro-energy grids, could be as significant as 48.15%. Furthermore, a comparison with the results obtained from centralized optimization algorithms underscores the efficacy of the ADMM algorithm.
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As the electric power market reform deepens, the strategic role of load aggregators in demand-side response becomes increasingly important. The inherent variability of distributed renewable energy generation and user demand response often leads to a mismatch between the purchased electricity and the market bid volume, resulting in punitive costs for companies. To address this issue, this study treats demand-side controllable loads as dispatchable resources and proposes a tiered pricing strategy to adjust power distribution. By establishing a Stackelberg leader-follower game model, the study promotes a mutually beneficial relationship between load aggregators and controllable load users. Through case studies, this paper examines the operational profits of load aggregators and the power adjustment behaviors of controllable load users under tiered and fixed compensation pricing schemes. The results indicate that tiered compensation pricing significantly reduces punitive costs and enhances user participation in demand response.
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1 INTRODUCTION
In recent years, the deepening of electricity market reforms has increasingly highlighted the strategic role of load aggregators in demand-side response. Time-of-use pricing mechanisms, as a crucial tool for electricity demand-side management, more closely align electricity prices with supply costs through differentiated pricing. This effectively guides users to adjust their electricity consumption at different times, ensuring the safety and stability of the power system (Zhang et al., 2021; Liu et al., 2023). With the increasing complexity and interdependence of power systems, especially concerning False Data Injection Attacks (FDIA) and Voltage Stability Assessment (VSA), the vulnerability and resilience of power systems have become key research focuses (Yang and Wang, 2024). To address these challenges, various innovative methods have been proposed. For instance, Ding and Liu (2017) introduced an AC false data injection attack method based on robust tensor principal component analysis, which generates false data without requiring system parameters, overcoming the limitations of traditional bad data detection methods. Additionally, Yang et al. (2023) proposed a domain-adaptive voltage stability assessment method that quickly adapts to topological changes, reducing retraining needs and improving assessment accuracy. These research findings provide significant theoretical and practical support for further refining pricing mechanisms.
As key intermediaries in the electricity market, load aggregators are responsible for integrating and scheduling various demand-side resources. By providing aggregated load curves and related information, load aggregators can participate in competitive bidding for demand response and sign various trading contracts (Lv et al., 2023). Moreover, considering the potential threat of false data injection attacks to the power system, load aggregators need the capability to counter such attacks to ensure data authenticity and system stability (Yang et al., 2024).
Different countries exhibit significant differences in power adjustment and balancing mechanisms. For example, the UK and Nordic countries tend to adopt decentralized market models, adjusting and settling deviation power through intraday balancing markets (Khodadadi et al., 2020). In contrast, the US and Australia prefer centralized market models, where bids and quantities are submitted on trading platforms within a specified time and matched based on price and time priority (Çelebi and Flynn, 2020). Currently, China is transitioning from a long-term trading market to a combined long-term and spot trading market. Provinces are experimenting with decentralized or centralized market models in the spot market based on local conditions (Liangyuan et al., 2022). For instance, regions like Western Inner Mongolia and Fujian conduct decentralized spot markets based on long-term physical contracts (Zhu et al., 2023). In this model, generators and consumers independently determine power consumption curves in the day-ahead stage and adjust imbalances through day-ahead and balancing trades (Watanabe et al., 2018). The essence of this model lies in the scheduling arrangements based on bilateral contracts, with system dispatch departments ensuring contract fulfillment and power balance dispatch (Reddy et al., 2015). However, most regions in China still conduct spot market transactions through monthly settlement of long-term trades, leading to significant imbalance penalty costs for load aggregators (Jiang et al., 2019; Lu et al., 2022). Therefore, considering the uncertainties in load demand and distributed power output, it is crucial for load aggregators to maximize their benefits by setting reasonable compensation prices to incentivize controllable loads to participate in demand response transactions.
Designing reasonable, flexible, and effective demand-side pricing mechanisms is critical for motivating user participation in demand response and improving resource utilization efficiency (Xu et al., 2021; Jiang et al., 2023). In terms of organizing electricity market transactions, demand-side users can be classified into single market type transactions and multi-type market transactions. In single market type transaction scenarios, drawing from research experiences in the stock trading field, Chen et al. (2019) proposed a trading algorithm that combines auction and continuous bidding. Additionally, a fixed-ratio total deviation settlement method was designed for non-full transactions, and a phased user-side deviation evaluation mechanism was introduced (Wang L. et al., 2023). To address the economic rationality issues of traditional deviation balancing mechanisms, a pre-bid-based monthly deviation balancing mechanism was proposed to minimize deviation adjustment costs, encouraging low-cost units to replace high-cost units for power generation (Fu et al., 2022). In the context of coupled multi-type market transactions, the design methods of electricity price difference contracts were discussed, including setting contract prices, effective directions, benchmark prices, and design parameters for decomposing contract quantities (Nobis et al., 2020). Additionally, considering the practical situation of China’s electricity trading and dispatch management system, a day-ahead market clearing model compatible with long-term physical contracts was proposed to bridge the gap between long-term physical contract delivery and grid operation constraints (Liu et al., 2020). The reinforcement learning methods for studying electricity spot market pricing mechanisms examined the impact of different pricing mechanisms on the organization of long-term trades (Wang Y. et al., 2023). Finally, Gong et al. (2021) proposed a government-authorized price difference contract settlement mechanism, considering fairness and hedging functions as a differentiated and predetermined approach.
Based on the above analysis, this paper aims to explore the optimization of interests between load aggregators and proxy power users. The innovations are in several aspects: First, considering the deviation penalties of long-term trading contracts, positive and negative balance penalty prices are introduced to evaluate the penalty costs arising from the discrepancy between bid volumes and actual electricity consumption. Second, utilizing demand-side storage, distributed photovoltaics, and controllable loads as dispatchable resources, a multi-option compensation contract for power regulation of controllable load/storage devices based on the cost functions of controllable load users or storage users is proposed. Furthermore, a Stackelberg game model is established to explore the application of tiered pricing strategies in demand response, aiming to reduce power trading deviation costs while enhancing user participation and economic benefits. Lastly, a reverse induction method based on genetic algorithms is employed to solve the proposed model, and the effectiveness of the model and method is verified through case simulations.
Main Contributions of This Paper:
	1. Proposing a multi-option controllable load power regulation compensation contract based on hierarchical pricing, effectively reducing deviation costs in electricity transactions and providing flexible pricing options to meet different user needs.
	2. Constructing a Stackelberg leader-follower game model to optimize compensation pricing strategies, achieving an economic benefit balance between load aggregators and users.
	3. Using genetic algorithms to verify the effectiveness of the proposed model and strategies, providing theoretical support and empirical evidence for the formulation of demand response strategies in the electricity market.

2 PROBLEM DESCRIPTION
The operational model of load aggregators in the electricity market involves the integration of load resources, market bidding, and trading processes. By aggregating distributed renewable energy generation and user demand, load aggregators can more accurately predict and adjust loads, thereby reducing penalty costs associated with deviations. Additionally, by integrating different types of load resources, such as residential users, commercial users, and storage systems, load aggregators can enhance system flexibility and responsiveness, ensuring grid stability and efficiency. However, penalty costs related to power deviations increase operational pressure on load aggregators, necessitating effective demand response strategies and compensation mechanisms to mitigate these costs.
To address these issues, this paper proposes a bi-level game approach based on a Stackelberg game model. In the game, the load aggregator, acting as the leader, first formulates a reasonable power procurement strategy and tiered compensation pricing scheme to maximize operational revenue and incentivize user participation in demand response. The controllable load users, as followers, adjust their electricity consumption behavior according to the compensation strategy provided by the load aggregator, obtaining economic compensation by reducing electricity consumption during peak periods or increasing consumption during off-peak periods. Through this bi-level game model, load aggregators can significantly reduce deviation penalties and related costs while enhancing user participation in demand response, achieving mutually beneficial economic outcomes. The process flow of the problem description is illustrated in Figure 1.
[image: Flowchart depicting the hierarchy between a power trading center, a load aggregator (leader), and controllable load users (followers). The power trading center assesses negative and positive deviations, which guide the load aggregator in segmenting compensation, reducing costs, and enhancing system flexibility. This information is used by controllable load users to adjust electricity consumption, obtain compensation, and manage consumption adjustments.]FIGURE 1 | Schematic diagram of load aggregator operational model.
2.1 Design of load aggregator operating mechanism
As renewable energy and energy storage systems continue to develop, traditional grid users are gradually transitioning from passive recipients to active participants in power balancing. Load aggregators play a crucial role by integrating the loads of numerous residential, commercial, and energy storage users. This not only enhances the overall flexibility and responsiveness of the system but also significantly reduces costs associated with power deviations. Load aggregators are essential in the electricity market, facilitating the effective utilization of distributed generation and demand response resources.
In medium-to long-term trading in the electricity market, load aggregators develop purchasing and flexible pricing strategies based on forecasts of end-user demand, expected production from distributed generation, and market fluctuation costs. The trading center assesses load aggregators to ensure the accuracy of their load responses and power assessments. In turn, load aggregators formulate their purchasing strategies and pricing schemes based on this information (Yang et al., 2022). This process requires load aggregators to possess precise forecasting capabilities and the flexibility to adjust strategies in a continuously evolving market environment.
Due to the volatility of distributed generation and the uncertainty of load demand, load aggregators may face discrepancies when assessing power deviations and actual consumption. The trading center imposes deviation assessment fees based on the positive and negative imbalance of deviation power, compelling load aggregators to make accurate forecasts and manage loads effectively. By utilizing a segmented compensation pricing mechanism, load aggregators incentivize users to modify their consumption behaviors, reducing usage during peak periods while increasing consumption during off-peak periods, thereby achieving overall system balance.
As illustrated in Figure 1, load aggregators serve a critical role in connecting the demand side with the power supply side. The demand side consists of a large number of dispersed and controllable load devices, such as air conditioners, electric vehicles, and water heaters. Load aggregators secure control over these controllable loads by signing contracts with end users of these devices (Bruninx et al., 2020). While ensuring that user comfort is not compromised, load aggregators optimize the operation and control of these devices to adjust power deviations during peak and off-peak periods, thereby minimizing the punitive costs associated with deviations. Load aggregators not only enhance system flexibility and responsiveness through the integration of load resources but also encourage users to adjust their consumption behaviors through effective pricing strategies. The specific power assessment formula established by load aggregators is as follows:
The trading center establishes the baseline electricity purchase quantity [image: Looks like there's an issue with displaying the image. Please make sure to upload the image file directly or provide a correct URL if it's hosted online.] based on the monthly trading contracts signed with load aggregators. When a user’s actual electricity consumption exceeds this baseline, excess usage within the threshold [image: I'm sorry, I am unable to view the image. Please upload the image or provide a URL, and I will help you create the alt text.] is exempt from deviation assessment, while any consumption beyond [image: Image showing a mathematical expression: \( x_1\% \).] incurs a deviation assessment fee based on the positive imbalance price set by the trading center. Conversely, when a user’s actual electricity consumption falls below the baseline, any shortfall within the threshold [image: It seems like there's an issue with displaying the image. Please upload the image directly or provide a URL so I can help create the alternate text.] is also exempt from deviation assessment, whereas any shortfall beyond [image: It seems there was an error in uploading the image. Could you please try uploading it again?] is subject to a deviation assessment fee based on the negative imbalance price set by the trading center. The monthly assessment fees for positive and negative imbalance quantities are represented by Equations 1–3.
[image: The mathematical expression shows \( P_{t}^{\text{EPEX}} = \xi_{t} \times \lambda_{t} \), labeled as equation one.]
[image: Mathematical formula: \( p_t^{\text{int}} = \xi_t \times \lambda_t \), labeled as equation (2).]
[image: Mathematical expression with three cases for Π₂. Case one: ΔQₚpₜʳᵉⁿ⁻ for ΔQₛ ≤ -x₂%Qₜ. Case two: 0 for -x₂%Qₜ ≤ ΔQₛ ≤ x₁%Qₜ. Case three: ΔQₚpₜʳᵉⁿ⁺ for x₁%Qₜ ≤ ΔQₛ. Equation labeled as (3).]
In the formula [image: Mathematical expression showing the variable \( p_t^{\text{pen}+} \).] and [image: Mathematical notation showing lowercase letter "p" with subscript "t" and superscript "pen" along with a horizontal bar on top.] denote positive and negative deviation penalty prices, respectively; [image: It seems you have shared a mathematical symbol: \( \xi_+ \). This symbol is often used in mathematical contexts such as calculus or physics. If you intended to share an image, please try uploading it again.] and [image: Please upload the image or provide a URL so I can create the alternate text for you.] represent positive and negative penalty coefficients; [image: The symbol \(\lambda_t\) represents a lambda with a subscript t, often used in mathematical or statistical contexts to denote a time-dependent parameter.] stands for wholesale electricity prices, [image: The image shows the Greek letter Pi followed by the subscript number two.] indicates the end-of-month deviation penalty cost; [image: Delta Q sub p, denoting the change in heat at constant pressure.] is the deviation quantity during the monthly settlement.
2.2 Design of segmented compensation mechanism for controllable load power adjustment
To implement effective power adjustments for controllable loads, load aggregators have designed a segmented compensation mechanism that includes both power reduction compensation contracts and power increase compensation contracts. These contracts provide varying levels of financial incentives based on the time sensitivity and cost differences of load adjustments, encouraging users to reduce consumption during peak electricity demand periods and increase usage during off-peak periods.
Through power reduction contracts, users are compensated for decreasing their electricity consumption during high-demand intervals, which helps alleviate the burden on the grid and reduce reliance on expensive emergency power sources. In contrast, power increase contracts incentivize users to take advantage of lower electricity prices during off-peak periods, thereby optimizing the energy distribution within the grid.
To ensure the effectiveness of this compensation mechanism, a multi-option segmented compensation design has been introduced, allowing different types of loads to select the most suitable compensation plan based on their specific circumstances (Bouakkaz et al., 2020). This flexible compensation strategy not only considers the economic costs associated with load adjustment for users but also reflects their contributions to grid stability, thus motivating various users to actively participate in demand response activities within the electricity market.
2.2.1 Compensation contract for controllable load power reduction
Demand aggregators create tiered power reduction compensation contracts for users participating in load shedding, offering [image: Please upload the image or provide a URL for me to generate the alt text.] options. Each option consists of a specific load reduction power [image: Mathematical expression displaying the Greek letter delta, followed by P subscript i, with an overline above the entire expression.], and a corresponding compensation rate [image: Mathematical notation showing \(p_i^{\text{com}-}\), typically representing a variable or parameter within an equation or formula, where \(i\) is a subscript, and "com" with a superscript minus sign may indicate a specific context or modification.] denoted as [image: Mathematical notation showing the tuple \((\Delta P_i^{-}, p_i^{\text{com}-})\).] where [image: It seems there may have been an issue with the image upload or description. Please try uploading the image again or provide more details to help create an accurate alt text.]. When demand aggregators have a positive deviation in power, the economic compensation [image: Mathematical notation showing the symbol U with a bar on top and subscript k and t.] that a controllable load user [image: It seems there's an issue with the image upload or link. Could you please try again? You can upload the image file directly or provide its URL.] receives for reducing their power [image: Mathematical notation showing the change in P subscript k, t with a bar above the P and a minus sign.] is calculated as follows:
[image: Equation showing the structure of a set denoted as \( U_{k,t} \). Elements include \( \Delta P_{k,t}^{\text{comm}^n} \) with constraints \( \Delta P_0 \leq \Delta P_{k,t} \leq \Delta P_1 \), \( \Delta P_1 \leq \Delta P_{k,t} \leq \Delta P_2 \), continuing up to \( \Delta P^{\text{comm}^m}_{k,t} \) with conditions \( \Delta P_{m-1} \leq \Delta P_{k,t} \leq \Delta P_m \). Equation number is 4.]
Due to the varying costs of load power reduction for controllable load users across different time periods, implementing a uniform power reduction compensation price may hinder user engagement in demand response initiatives. Following the methodology proposed in the literature (Wang et al., 2021), the power reduction compensation price [image: Mathematical notation showing \( p^{\text{com}^-}_i \), with subscripts and superscripts.] for time period [image: It seems there might be an issue with your request; no image was provided. Please upload the image you want described, and I'll be happy to help with the alt text.] is defined as the retail electricity price for that period multiplied by a compensation rate, as shown in Equation 5.
[image: The mathematical equation displayed is \( p_t^{\text{ESM}} = \rho_t \delta_t \), labeled as equation (5).]
In the formula: [image: It seems there was an error with the image upload. Please try uploading the image again, and I will be happy to help create alt text for it.] represents the retail electricity price during period [image: It seems like there was an issue with the image upload. Please try uploading the image again, and I will help you create the alt text for it.]; [image: If you upload an image or provide a URL, I can help generate the alt text for it.] denotes the compensation rate associated with the [image: Lowercase letter "i" with a dot above in a bold, serif font, resembling a mathematical symbol.] option of the power reduction compensation contract.
2.2.2 Controllable load incremental power compensation contract
When demand aggregators experience a negative deviation in electricity volume, the economic compensation [image: Mathematical expression showing \(U^{+}_{k,t}\), indicating a positively superscripted \(U\) with subscripts \(k\) and \(t\).] that controllable load user [image: Please upload the image or provide a URL so I can assist you with generating the alt text.] receives for increasing load power [image: The mathematical expression consists of the Greek letter delta (Δ), followed by an uppercase P with a superscript plus sign, and subscript k and t.] can be expressed by Equations 6, 7.
[image: Equation depicting a piecewise definition of \( U_{k,z} \). It describes \( U_{k,z} \) as \( \Delta P_{k,z} p_{1}^{\text{comm}^{*}} \), through \( \Delta P_{k,z} p_{m}^{\text{comm}^{*}} \), with conditions \( \Delta P_{0}^{*} \leq \Delta P_{k,z}^{*} \leq \Delta P_{m}^{*} \), covering several intervals from \( m=1 \) to \( m \).  ]
[image: Mathematical equation displayed as \( p_{t}^{a_{i}β} = ρ_{t} π_{t} \) with the equation number (7) on the right side.]
In the formula: [image: Mathematical expression \( p_i^{\text{com}+} \).] represents the compensation electricity price associated with the [image: Please upload the image or provide a URL so that I can generate the alternate text for you.] option of the tiered incremental power compensation contract; [image: Mathematical notation showing the Greek letter pi with a subscript i.] denotes the electricity price discount rate corresponding to the [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will help you create the alternate text.] option of the contract.
3 DYNAMIC COMPENSATION PRICING MODEL FOR CONTROLLABLE LOAD POWER ADJUSTMENT BASED ON LEADER-FOLLOWER GAME DECISION-MAKING
Implementing controllable load management strategies within power systems presents a complex optimization challenge involving dynamic interactions between load aggregators and multiple controllable load users. These interactions are governed by supply interruption compensation contracts established between the load aggregator and users, where the operating costs of the load aggregator are directly influenced by the power adjustments of controllable load users. Users are required to adjust their electricity consumption behavior in accordance with the demand response directives issued by the load aggregator to achieve cost efficiency while ensuring the stability of the power supply system.
To address this issue, this paper constructs an interactive model among the load aggregator and multiple controllable load users, which can be framed as a [image: Certainly! Please upload the image or provide a URL, and I will help you create the alt text for it.] type Stackelberg game model. In this model, the load aggregator acts as the leader, formulating preliminary strategies, while [image: Please upload the image or provide a URL so I can help generate the alt text for you.] users respond as followers.
The upper-level optimization model is managed by the load aggregator, aiming to minimize its monthly operating costs. These costs encompass wholesale electricity procurement expenses, penalties associated with monthly deviation in consumption, demand response costs for controllable loads, and operational maintenance costs for Battery Energy Storage Systems (BESS). To achieve this, the load aggregator must establish capacity increase or decrease compensation contracts and make charging and discharging decisions for the BESS. During the upper-level optimization process, constraints regarding power balance, storage operational limits, and charging/discharging regulations must be satisfied.
Conversely, the lower-level optimization model is handled by the controllable load users, who seek to maximize their demand response benefits. Users gain economic compensation by adjusting their loads to either reduce or increase electricity consumption. The lower-level optimization process must adhere to constraints related to participation in demand response, adjustments in controllable load power range, duration of power adjustments, frequency of power adjustments, and energy storage charging/discharging limitations.
To accurately simulate and predict system behavior under this game structure, the load aggregator can employ a Monte Carlo sampling method to generate typical daily scenarios based on monthly trading data, thereby estimating monthly deviation in consumption. This statistical simulation technique not only effectively captures the volatility of the electricity market but also provides decision support aimed at optimizing operational costs and maximizing user benefits.
By designing a segmented compensation pricing model, the load aggregator can incentivize users to participate in demand response programs, leading to effective control of monthly consumption deviations and significant reductions in penalty costs. This strategic pricing mechanism optimizes the operational costs of the load aggregator while fostering active user engagement through economic incentives, collectively promoting the stability and sustainable development of the electricity market.
Figure 2 illustrates the structure of the Stackelberg game model proposed in this paper, which simulates the interactive decision-making processes between load aggregators and controllable load users.
[image: Flowchart depicting an optimization model with two levels. The upper-level model aims to reduce monthly operating costs for load aggregators, focusing on procurement, penalties, demand response, and maintenance, with constraints on power balance and energy storage. The lower-level model aims to maximize demand response benefits for controllable load users, focusing on load cost adjustments with constraints on participation, range, duration, frequency, and charging.]FIGURE 2 | Structure of the stackelberg game model.
3.1 Upper-level optimization model
The upper-level optimization problem of the model aims to effectively reduce the monthly operating costs of the load aggregator by incorporating capacity increase or decrease power compensation contracts, along with the charging and discharging power of the Battery Energy Storage System (BESS), as key decision variables.
3.1.1 Upper-level optimization objective function
The monthly operational costs of demand aggregators consist of four components: the cost of purchasing electricity from the wholesale market, denoted as [image: Mathematical symbol pi (Π) followed by a subscript one.]; the penalty cost for end-of-month electricity volume deviations, denoted as [image: The image shows the mathematical symbol pi (Π) with a subscript two.]; the cost associated with controllable load demand response, denoted as [image: Greek letter Pi with subscript three.]; and the operational and maintenance costs of the Battery Energy Storage System (BESS), denoted as [image: Mathematical symbol representing the product notation, Pi symbol, with a subscript four.]. The above costs include electricity procurement costs (see Equation 9), end-of month deviation penalty costs (see Equation 10), etc.
[image: A mathematical equation is presented as "min E_M = Π_1 + Π_2 + Π_3 + Π_4," labeled as equation 8.]
[image: Equation displaying \( Q_d = \sum_{w=1}^{W} \chi(w) \sum_{t=1}^{T} (\mu_{wt} Q_{wt} + \mu'_{wt} Q'_{wt}) \Delta t \). It is labeled as equation number nine.]
[image: Mathematical equation showing Pi equals Qi multiplied by Fi at time t, plus delta Qi multiplied by delta Fi at time t, labeled as equation ten.]
[image: Πₛ equals the sum from w equals one to W of χ(w) times the sum from t equals k to T of the sum from k equals one to K of (Uₜₖ plus ΔPₜₖρₜ plus U̅ₜₖ minus ΔP̅ₜₖρ̅ₜ) times Δt, equation eleven.]
[image: Mathematical equation showing total profit, denoted as Π, calculated by summing over scenarios and time periods. It includes terms for charging and discharging power of BESS, cost factors, and time increments.]
In the model, [image: It seems there was an issue uploading the image. Please try again, or provide a URL to the image for assistance.] represents the frequency of occurrence of typical days under monthly transactions (calculated daily); [image: It seems there's no image visible. Please upload the image or provide a URL for me to create the alternate text.] is the total number of typical days; [image: Mathematical expression displaying Q subscript w t superscript plus.] and [image: Mathematical notation showing the letter Q with a horizontal line above, followed by the subscript letters w and t.] respectively denote the positive and negative power deviations for the demand aggregator after implementing smoothing measures; [image: The mathematical expression is "mu subscript w, t with a superscript plus sign".] and [image: It seems like you've provided a mathematical expression. For the image of the expression \(\bar{\mu}_{w,t}\), the alternate text would be: Symbol showing a mu with an overline, subscript w comma t.] are binary variables, where [image: Equation depicting the expression: \(\mu_{w,t}^{+} = 1\).] when [image: Mathematical expression showing Q subscript wt with a plus sign, greater than zero.]; [image: The symbol \(\Delta t\) represents a change in time.] is the daily dispatch interval; [image: It seems there might be an issue with the image upload. Could you please try uploading the image again or provide a URL if possible?] is the total number of daily dispatches; and [image: It seems there is an issue with the image upload or link. Please try uploading the image again, or provide a URL. You can also include a caption for additional context.] represents the total number of controllable load users. [image: It appears there was an issue with displaying the image. Could you please upload the image again?] indicates the actual electricity consumption by the users. In calculating the penalty costs for end-of-month power deviations, if actual consumption exceeds the baseline, deviation power occurs and penalties are applied based on the wholesale electricity price. Conversely, if actual consumption does not exceed the baseline, the deviation is zero, and no penalty costs arise. To address the potential frequent charging and discharging scenarios of the Battery Energy Storage System (BESS) and regulate its charging and discharging behavior as per reference. Equation 13 considers both the operational and maintenance costs of BESS and the conversion costs between charging and discharging. Here, [image: Mathematical notation showing P sub t superscript ch.] and [image: Mathematical expression showing \( P^{dh}_t \).] represent the charging and discharging powers of BESS for the period [image: It seems like there was an issue with the image upload. Please try uploading the image again or provide a URL, and I'll be happy to help with the alt text.]; [image: The text reads "C BESS" with a stylized 'C' at the beginning.] denotes the operational and maintenance costs of BESS; [image: Greek letter alpha with subscript t and superscript c t d.] and [image: The expression shows an alpha symbol with a subscript 't' and a superscript 'dtc'.] are binary variables for the transitions from charging to discharging and discharging to charging, respectively; [image: Stylized text showing "Ctd BESS" with contrasting uppercase and lowercase letters in a serif font.] and [image: Text displaying "Cdtc BESS" in stylized capitals and lowercase letters.] correspond to the costs associated with these transitions.
3.1.2 Upper-level optimization constraints

	(1) Power Balance Constraints

[image: The equation \( Q_{\text{out}} = Q_{\text{DW}}^{D} / n_{\text{wind}} + P_{\text{t}}^{\text{ch}} - P_{\text{t}}^{\text{dis}} + \sum_{k=1}^{K} (\Delta P_{k,t}^{+} - \Delta P_{k,t}^{-}) \) is shown with the number 13 in parentheses.]
[image: Equation showing Q sub out equals P sub t superscript ph minus P sub t superscript n plus the summation from k equals one to K of the quantity delta P sub k t minus delta P prime sub k t, minus Q superscript D sub out n sub out. It is labeled as equation fourteen.]
In the formula: [image: Mathematical expression featuring capital Q subscripted with w, t.] represents the load power during period [image: Please upload the image so I can help you create the alt text.] on a typical day [image: Please upload the image you'd like me to describe, and I'll provide the alt text for you.]; [image: The text shows a mathematical expression in italic font: "eta subscript w, t".] is the power purchase deviation coefficient for the demand aggregator during period [image: Please upload the image or provide a URL so I can create the alt text for you.] on typical day [image: Please upload the image, and I can help create the alt text for you.].
	(2) Constraints on Energy Storage Operation

[image: Mathematical inequality showing a range for \( P_{t}^{h} \) between zero and the product of \( \beta_{t}^{h} \) and \( P_{ES} \), labeled as equation fifteen.]
[image: The image shows a mathematical inequality: \(0 \leq P^{th}_1 \leq \phi^{th}P_{ES}\). This is labeled as equation (16).]
[image: Formula displaying energy calculation: \( E_t = E_{t-1} + P_\text{ch}^\text{inh} \Delta t / \eta_\text{ch} - P_\text{dch}^\text{inh} \Delta t / \eta_\text{dch} \).]
[image: Equation showing \( E_0 = E_f \), labeled as equation (18).]
[image: Mathematical expression showing gamma subscript minimum multiplied by Q subscript ES is less than or equal to E subscript t, which is less than or equal to gamma subscript maximum multiplied by Q subscript ES, followed by equation number 19 in parentheses.]
In the equation: [image: Please upload the image or provide a direct URL, and I will create the alt text for you.] and [image: A stylized logo featuring the letters "QES" in a serif font with elegant curves. The letters are interconnected, forming a cohesive and distinctive design.] respectively represent the rated power and capacity of the Battery Energy Storage System (BESS); [image: The image shows the mathematical symbol beta with two subscripts, "t" and superscript "ch".] and [image: The expression shows the lowercase beta symbol with a superscript of "d, h" and a subscript of "t".] are binary variables indicating the charging and discharging states of BESS, with [image: β subscript t superscript ch equals 1.] denoting charging, and [image: Beta with a superscript dh and subscript t equals one.] denoting discharging; [image: It seems like you've provided a mathematical expression, not an image. If you have an image you would like alt text for, please upload it, and I will be glad to help!] is the nuclear capacity of BESS during period [image: Please upload the image so I can provide the appropriate alt text for it.]; [image: The Greek letter eta followed by a subscript "ch".] and [image: The image shows the notation "η_dh" in a stylized font, often used to represent a specific parameter or variable in scientific or mathematical contexts.] respectively are the charging and discharging efficiencies of BESS; [image: Greek letter gamma in italic script followed by the subscript "max".] and [image: Greek letter gamma with subscript "min".] respectively represent the maximum and minimum nuclear state coefficients of BESS.
	(3) Energy Storage Charging and Discharging Constraints

[image: \( q^{\text{cal}}_t - q^{\text{dec}}_t = \beta^{\text{th}}_{t+1} - \beta^{\text{th}}_t \) (20).]
[image: The equation shown is alpha subscript q superscript c a d plus alpha subscript q superscript d i r is less than or equal to one, labeled as equation twenty-one.]
[image: The inequality displays the sum of rho sub r raised to the power of n and rho sub h raised to the power of n, which is less than or equal to one.]
[image: Equation showing the sum of \( u_{w}^2 \) and \( \bar{u}_{w} \) is less than or equal to one, notated as \( u_{w}^2 + \bar{u}_{w} \leq 1 \) with reference number (23).]
Equations 21, 22 represent the charging and discharging conversion constraints of the energy storage system; Equation 23 specifies that at any given moment, the Battery Energy Storage System (BESS) can only be in one of three states: charging, discharging, or idle.
3.2 Lower-level optimization model
3.2.1 Lower-level optimization objective function
The lower-level optimization problem in the model aims to maximize the demand response benefits for controllable load users (see Equations 24–31). By adjusting the power increases and decreases across different time periods, the model seeks to enhance system flexibility and efficiency under varying demand and market conditions, while also maintaining system stability and economic viability.
[image: The equation shows the maximization of \( E_{SK} \), expressed as the sum from \( t = 1 \) to \( T \) of \((U_{r,k} - C_{r,k}) + (U_{k} - C_{k})\), labeled as equation \( (24) \).]
As delineated in reference (Ma et al., 2023), the costs associated with increasing. [image: Mathematical notation showing "C" with a subscript "kt" and a superscript plus sign.]. and decreasing [image: Mathematical notation showing a variable \( C \) with subscripts \( k, t \) and a bar above, indicating an average or mean value of \( C \) over specified parameters \( k \) and \( t \).] the load power for user [image: Please upload the image or provide a URL, and I will help create the alternate text for it.] are represented as follows:
[image: Equation showing \( C_{k,t} = a^t (\Delta P_{k,t}^t)^2 + b^t \Delta P_{k,t}^t - b^t \Delta P_{k,t}^t \theta_k^t \), labeled as equation (25).]
[image: The equation displays \( C_{ik} = a_i (\Delta P_{ik})^2 + b_i \Delta P_{ik} - b_i \Delta P_{ik} \theta_k \) labeled as equation (26).]
In the equation, [image: I'm sorry, I can't view the image you mentioned. Please upload the image or provide a URL, and I can help with the alt text.] and [image: Text "a subscript k" with a bar over the "a," indicating a mathematical variable or vector notation.] denote the linear and quadratic coefficients, respectively, for user [image: It seems there might have been an error in uploading your image. Please try again or provide a valid image URL. You can also add a caption for context if you like.] cost function related to load reduction. Similarly, [image: Mathematical notation showing "b" with a superscript plus and subscript k, indicating a specific element in a sequence or set with positive attributes.] and [image: Mathematical notation with letter "a" in italics, subscript "k", and superscript plus sign.] correspond to the linear and quadratic coefficients for the cost function associated with load increase. The type parameters, [image: Mathematical notation showing the Greek letter theta (θ) with a superscript plus sign and subscript k.] and [image: It appears there is a mistake. Please upload the image or provide a URL for me to create the alt text.], indicate user [image: Please upload the image or provide a URL so I can create the alt text for you.] propensity to engage in load adjustment, with higher values suggesting a stronger inclination to modify load levels.
3.2.2 Lower-level optimization constraints

	(1) Controllable Load Participation Constraints

If participation in demand response increases the user’s own benefits, users will voluntarily enter into power adjustment contracts with the load aggregator. Conversely, if participation does not yield additional benefits, users will choose not to participate. This means that the compensation received for power adjustments must not be less than the additional losses incurred by these adjustments. This condition can be expressed as:
[image: Mathematical expression showing \( U_{\mu} - C_{\mu} \geq 0 \) with the equation number (27) on the right.]
[image: I can't see the image you're referring to. Please upload the image or provide a URL so I can help with the alt text.]

	(2) Controllable Load Power Adjustment Range Constraints

[image: Inequality expression for power system constraints: gamma subscript k i, delta P subscript bi comma min is less than or equal to delta P subscript bi is less than or equal to gamma subscript k i, delta P subscript bi comma max, equation 29.]
[image: Mathematical expression showing an inequality: \( v_{ix} \Delta P_{ix, \text{min}} \leq \Delta P_{ix} \leq v_{ix} \Delta P_{ix, \text{max}} \), labeled as equation (39).]
[image: The mathematical expression shows an inequality involving a summation from t equals one to T. It features parameters \( -\Delta P^{r-}_{\text{max},k} \), \( v^{+}_{k,t}\Delta P^{r+}_{k,t} \), \( v^{-}_{k,t}\Delta P^{r-}_{k,t} \), and \( \Delta P^{r+}_{\text{max},k} \).]
In the equation: [image: Mathematical expression showing the Greek letter nu with a superscript plus sign followed by a subscript containing k, t.] and [image: Mathematical expression showing the symbol gamma with subscripts k and t, with a bar over the entire expression.] denote the binary state variables for user [image: Please upload the image you would like me to describe. You can use the image upload feature here.], representing the power increase and decrease during period [image: Please upload the image or provide a URL for me to view it. If you have additional context or a caption, feel free to include that as well.]. [image: Mathematical expression showing ΔP superscript plus subscript k, t, comma, min.] and [image: The expression "ΔP" with a superscript plus sign and the subscript "k, t, max" in a mathematical notation.] specify the minimum and maximum permissible load increases for user. [image: Please upload the image or provide a URL for me to generate the alt text.]. within period [image: Please upload the image you want described, and I'll create alt text for it.], respectively. Similarly, [image: ΔP-bar subscript k, t, min.] and [image: Mathematical expression showing the maximum allowable power decrease, represented as ΔP with a subscript indicating negative sign, k, t, and a max notation.] define the minimum and maximum permissible load reductions. [image: The image shows the mathematical expression ΔP⁺ₘₐₓ,ₖ.] and [image: Delta P superscript minus subscript max, k.] indicate the overall maximum allowable load reduction and increase for user [image: Please upload the image or provide a URL for me to generate the alt text.] throughout the scheduling period.
	(3) Controllable Load Power Adjustment Duration Constraints

[image: The image shows a mathematical formula involving summations. It expresses an operation where the outer sum from \(\tau = 1\) to \(T - T_{\text{min},k} + 1\) involves an inner sum from \(k\) to \(T_{\text{min},k}\). The expression inside the inner sum is \((y_{k,\tau} - y_{k,\tau-1})\). The formula is labeled with equation number 32.]
[image: Summation from \(\tau = 1\) to \(T - T_{\text{max},k}\) of \((1 - \gamma_{k,\tau})\) is greater than or equal to 1. Here, \(\tau = 1, \ldots, T - T_{\text{max},k}\). Equation 33.]
[image: Summation equation representing values from τ equals one to T minus T subscript min k plus one. It involves parameters γ subscript k τ, greater than or equal, and T subscript min k times a difference between vectors v subscript k τ and v subscript k τ minus one. Equation reference is number thirty-four.]
[image: Summation notation showing the sum from τ equals one to T minus T subscript max,k of the expression one minus γ subscript kτ, greater than or equal to one, where τ ranges from one to T minus T subscript max,k. Equation number thirty-five.]
In the equation, [image: Mathematical notation representing \( T_{\text{max},k} \), with a bar over the T, indicating a specific time or temperature parameter in a mathematical context.] and [image: Mathematical notation showing a variable with a subscript "min" and a subscript "k," alongside a superscript line over the entire expression.] denote the maximum and minimum time durations required for user [image: Please upload the image or provide a URL so that I can help create the alt text for it.] to decrease load power, respectively. Conversely, [image: Mathematical expression representing \( T \) with a superscript plus sign, subscript "max, k".] and [image: Mathematical notation depicting \( T^+_{\text{min},k} \).] specify the maximum and minimum time durations required for increasing load power. The maximum and minimum durations for controllable load power adjustments are as follows (see Equations 32–35). Equation 32 through Equation 35 are conceptually similar to the minimum start-stop time constraints applicable to power generation units.
	(4) Constraints on the Frequency of Power Adjustments for Controllable Loads

To prevent excessive and prolonged power adjustments for users with controllable loads, constraints have been imposed on the frequency of such adjustments during the scheduling period, as delineated in Equations 36, 37.
[image: Summation from time equals one to T minus one of the difference between v subscript k, t plus one, superscript star, and v subscript k, t, superscript star, is less than or equal to N subscript max, k, superscript star, equation thirty-six.]
[image: Summation expression from t equals one to tau minus one of the difference between v sub k t plus one and v sub k t is less than or equal to N sub max comma k, equation thirty-seven.]
In the equation, [image: Mathematical expression showing "N" with a superscript plus sign and a subscript "max, k".] and [image: Mathematical expression showing "N" with a bar above it, subscripted by "max, k".] denote the maximum permissible frequencies for increasing and decreasing power, respectively, for controllable load user [image: Please upload the image or provide a URL to it, so I can help you create the alternate text.] over the entire scheduling period.
	(5) Energy Storage Charging and Discharging Constraints

[image: Mathematical expression showing \( \dot{v}_{u_k} + \dot{v}_{l_k} \leq 1 \), with the equation labeled as number 38.]
Equation 38 indicates that user [image: Please upload the image or provide a URL, and I will help you with the alternate text.] will select only one form of load power response, either to reduce or to increase their load.
4 MODEL SOLUTION METHOD
In this study, we employ the Stackelberg game theory to model and address the interaction and decision-making processes between load aggregators and controllable load users. The Stackelberg game model is particularly suitable for such leader-follower scenarios, allowing for detailed analysis and prediction of the strategic interactions between the load aggregator (as the leader) and controllable load users (as the followers) in the electricity market. To account for the nonlinearity and complexity of the problem, we integrate nonlinear programming techniques with genetic algorithms for optimization.
The genetic algorithm generates new populations through operations such as selection, crossover, and mutation, increasing population diversity to prevent premature convergence while continually optimizing strategies throughout the iterative process.
In the model, the load aggregator acts as the leader and is represented by the variable [image: It seems there might be some confusion, as I can't access images directly from text. Please upload the image or provide a URL for me to generate the alt text.]. Its primary task is to develop demand response pricing strategies to influence market dynamics and user behavior. The monthly operating costs of the load aggregator are calculated using appropriate algorithms and loss functions, and are determined according to Equation 8 for expected marginal [image: It seems there was an issue with uploading the image. Please try uploading the image again, and I will provide the alternate text for you.] calculations. Conversely, controllable load users function as followers, responding to price signals and adjusting their strategies, represented by the variable [image: Please upload the image or provide a URL, and I can help create alt text for it.]. Each controllable load user possesses a set of load adjustment strategies [image: Mathematical notation showing a set \( S \) defined as \( \{S_1, S_2, \ldots, S_R\} \), indicating a collection of elements from \( S_1 \) to \( S_R \).]. Through a series of selections, users can choose the most suitable response strategy based on market conditions.
During the strategy selection process, the load aggregator selects the optimal strategy [image: It seems there might have been an error in uploading the image. Please try uploading the image again, and I will help you generate alternate text for it.] from the strategy space [image: Please upload the image or provide a URL, and I will be happy to help with the alt text.] and analyzes each controllable load user’s optimal decision [image: Please upload the image or provide a URL to it so I can help create the alt text for you.] under the condition [image: The image shows the mathematical expression "m" with a subscript "i".]. Based on the controllable load user’s maximization problem [image: Mathematical expression displaying \( E_n(m, S) \).], the optimal response strategy [image: Mathematical expression showing \( V_i(m, S_{in}) \).] for each user is determined. The load aggregator forecasts and calculates the optimal strategy as [image: It seems there might have been an issue with image upload. Please try uploading the image again, and ensure it is in a supported format. You can also provide a caption for additional context.] and solves the decision problem [image: Maximization equation showing `max` of `E_M`, which is the maximum of `V_i(m), ... , V_K(m)`.] to obtain [image: Mathematical expression showing \( m^* = \arg\max_{E_M} (\max V_i(m), \ldots, V_K(m)) \).]. Ultimately, by integrating the controllable load users’ response strategies [image: \( S_i^* = V_i(m, S_{in}) \)], we obtain the Nash equilibrium solution [image: Please provide the image or a URL to the image so I can give you the appropriate alternate text. You can upload the image directly or share a link.] for the system.
To provide a clearer representation of the model solution process, we have designed a flowchart for the two-level optimization model, as shown in Figure 3. This diagram illustrates the steps from parameter initialization, initial population generation, fitness calculations, to strategy updates and optimization during the iterative process. Given the nonlinearity of the problem, the model utilizes genetic algorithms to solve the Stackelberg leader-follower game model.
[image: Flowchart of a two-level optimization process. It starts with initializing the population size and generating initial solutions. The process adjusts the population, initializes the current generation, and proceeds through fitness evaluation involving calculations of cost decision variables and benefits. It assesses the overall fitness value and performs selection based on fitness. Crossover and mutation operations are performed, fitness values are recalculated, and individuals with high costs are eliminated. The process loops until a maximum number of generations is reached, then outputs the optimal strategy combination and concludes.]FIGURE 3 | Two-level optimization model solution process.
The genetic algorithm generates new populations through operations such as selection, crossover, and mutation. First, the roulette wheel selection method is employed to choose high-fitness individuals (with a crossover probability denoted as [image: It seems there's a display issue with the image. Please upload the image file or provide a direct URL.]), followed by single-point crossover to create new individuals, and random mutations (with a mutation probability denoted as [image: Please upload the image or provide a URL so I can generate the alt text for you.]) to enhance population diversity and prevent premature convergence. Next, the fitness [image: Please provide the image or a URL so that I can create the alt text for you.] of the newly generated individuals is evaluated, and it is determined whether the iteration conditions are met.
In the initial population generation and adjustment phase, the load aggregator selects strategies from the strategy space [image: Please upload the image or provide a URL so I can create the alt text for you.] and analyzes the optimal decision combinations for each available load user [image: Mathematical expression stating a set \( S \) consisting of elements \( S_1, S_2, \ldots, S_R \).]. The initial population corresponds to randomly generated initial strategy combinations from the strategy space. Specifically, the initial strategy combinations encompass all potential strategies, with each strategy [image: It seems there was an issue with how the image was uploaded. Please try again by attaching the image file directly, or provide a URL to the image you want described.] representing the load response strategy selected by the load aggregator for a specific user.
If the new fitness results indicate an improvement in strategies, the selection, crossover, and mutation operations continue, calculating the fitness values [image: Italicized mathematical expression displaying \( V_i(m, S_{in}) \).] for the new generation. After evaluating the fitness of the new generation, it is determined whether to meet the iteration conditions. If conditions are satisfied, the optimal strategy combination [image: Please upload the image or provide a URL, and I can help create the alternate text for it.] is outputted; otherwise, the iteration continues until the termination criteria are met.
5 ANALYSIS OF CASE STUDIES
5.1 Case study parameters
This study focuses on the participation of a load aggregator representing a mixed-use residential and commercial community in the electricity market. The community comprises six mixed-use buildings equipped with photovoltaic panels and houses a total of 200 households. The data used in this study is sourced from the actual load data of the Source-Load Aggregation Interaction Response Platform of Hunan Power Company in August 2023. This data is used to validate the model’s effectiveness and practicality.
To comprehensively derive the power usage patterns of the entire community, we conducted a Monte Carlo simulation based on the electricity consumption data of these 200 households, generating scenarios for power deviation coefficients. These coefficients follow a Gaussian distribution with a mean of 0 and a standard deviation of 1.9651. The range for evaluating power deviations in all simulated scenarios is set to ±2%.
In the case analysis, we assume a wholesale electricity price of $60 per megawatt-hour, utilizing the actual load data from the community in August. The parameters involved in the model are listed in Table 1, “Price Range for Peak Shaving Services” and Table 2, “Key Parameters for Load Aggregator Pricing Strategies” These tables display the electricity demand of 100 households on a typical day in August. Figure 4 illustrates the load curve for the entire community on a typical day in August, based on the simulation predictions.
TABLE 1 | Price range for peak shaving services.
[image: Table detailing control durations and corresponding price standards. For control duration up to sixty minutes, the price is zero to zero point seven dollars per kilowatt per event, with a maximum of zero point seven dollars per kilowatt-hour. For sixty to one hundred twenty minutes, the price is zero to one point seven dollars per kilowatt per event, with a maximum of zero point eight three dollars per kilowatt-hour. For one hundred twenty to one hundred eighty minutes, the price is zero to two point nine dollars per kilowatt per event, with a maximum of one dollar per kilowatt-hour.]TABLE 2 | Key parameters for load aggregator pricing strategies.
[image: Table showing various parameters and their values for energy assessment and storage systems. It includes deviation assessment range of plus or minus two percent, wholesale electricity price of sixty dollars per megawatt-hour, battery energy storage system rated capacity of two hundred kilowatt-hours, and rated power of ninety kilowatts. Other details are state of charge coefficient, initial capacity of one hundred kilowatt-hours, charge or discharge efficiency of ninety-five percent, and conversion cost of zero point one five dollars. Penalty prices, coefficients, and user load cost parameters are also listed.][image: Line graph showing power usage over 24 hours. Residential electricity load is high from 6 a.m. to 10 p.m. Electric vehicle charging load is lower, peaking around 8 p.m. Photovoltaic power output rises from 6 a.m., peaking at noon, and declines after.]FIGURE 4 | Projected load curve for the entire community on a typical day in August.
To clearly present the calculation results, we assume that the aggregated controllable loads are divided into three types of users: high-cost, medium-cost, and low-cost. The maximum frequency of power adjustments for each type of controllable load is limited to four times within the entire scheduling period. The parameters for the battery energy storage system are set as follows: rated capacity of 200 kWh, rated power of 90 kW, maximum and minimum state of charge coefficients of 0.9 and 0.2, respectively, initial capacity of 100 kWh, charge and discharge efficiency of 95%, and both discharge-to-charge and charge-to-discharge conversion costs of $0.15. The parameters for different types of controllable loads are shown in Table 3.
TABLE 3 | Parameters of controllable loads.
[image: Table comparing high, medium, and low cost categories. High cost has 50 controllable loads, response range (0.95,1.0), adjustment power (90,95) kW, compensation rate (0.4,0.45), and load adjustment range (140,165) kW. Medium cost has 70 controllable loads, response range (0.9,0.95), adjustment power (80,85) kW, same compensation rate as high cost, and load adjustment range (140,165) kW. Low cost has 80 controllable loads, response range (0.95,0.9), adjustment power (75,80) kW, compensation rate (0.35,0.38), and load adjustment range (185,205) kW.]5.2 Monthly market deviation assessment results under different scenarios
This section compares and analyzes the effectiveness of demand response programs by setting three different operational scenarios. The specific scenarios are described as follows:
	1. Scenario 1: Traditional Mode: In this scenario, all loads are traditional, and no demand response programs are implemented. Consequently, deviations in electricity consumption are not effectively managed, leading to higher deviation assessment costs and the highest total cost.
	2. Scenario 2: Fixed Compensation Price Mode: In this scenario, the load aggregator employs a fixed compensation price strategy to incentivize controllable loads to mitigate deviations in electricity consumption. This strategy induces a moderate level of user response, partially covering the deviation, resulting in lower overall costs compared to Scenario 1.
	3. Scenario 3: Tiered Compensation Contract Mode: This scenario uses a tiered compensation contract to more actively incentivize controllable loads to balance electricity consumption deviations. Due to the highest level of user participation, deviation assessment costs are significantly reduced. Although the duration and frequency of power adjustments for controllable loads are constrained, this scenario achieves the lowest total cost and the most effective deviation mitigation among all scenarios.

Figure 5 illustrates the monthly electricity consumption variations under different scenarios, visually depicting the impact of each scenario on electricity management. Additionally, to gain deeper insights into the effectiveness of different scenarios, we analyzed the outlier data points and found that the tiered compensation strategy excels in managing fluctuating loads, significantly reducing overall deviation costs. This demonstrates that flexible compensation strategies not only motivate active user participation but also enhance system stability.
[image: Line graph showing electricity consumption over time for three different scenarios. Scene 1 (red), scene 2 (green), and scene 3 (blue) vary in fluctuations between 5 and 15 units over a 30 time/data period.]FIGURE 5 | Monthly electricity consumption variation curves under different scenarios.
Table 4 compares the cost situations of load aggregators under different scenarios (see Table 4). From the table, it is evident that Scenario 3, employing a dynamic compensation strategy, performs best in reducing deviation energy and lowering overall costs.
TABLE 4 | Comparison of load aggregator costs across different scenarios.
[image: Table showing costs of electricity in three scenarios. In Scene 1: market cost is $21,660, deviation penalty is $3,810, total is $29,040. In Scene 2: market cost is $19,040, tariff cost $2,520, deviation penalty is $3,260, total is $25,020. In Scene 3: market cost is $17,040, tariff cost $3,020, deviation penalty is $2,860, total is $21,760.]5.3 Revenue analysis under different deviation penalty prices
To explore the impact of different deviation penalty prices on the economic behavior of electricity market participants, this section sets multiple deviation penalty coefficients to assess their effect on the monthly operating costs of load aggregators and the demand response benefits for controllable load users. Additionally, it analyzes how the compensation prices for power adjustments can be modified under these varying penalty prices to optimize market behavior and enhance overall system efficiency.
Figure 6 shows the trend of increasing monthly operating costs for load aggregators as the deviation penalty coefficients rise. Moreover, as illustrated in Figure 7, user compensation benefits also increase with higher penalty coefficients, reflecting the market’s sensitivity to deviations and its response to strategic adjustments.
[image: Bar chart showing operating costs of load aggregators in dollars against penalty coefficients. Costs increase from 2.5 to 3.0 dollars as the penalty coefficient rises from 0.1 to 0.4.]FIGURE 6 | Operational costs of load aggregators under different bias penalty electricity prices.
[image: Bar chart displaying user demand response benefits per dollar against penalty coefficients from 0.1 to 0.4. It compares low, medium, and high cost type users in orange, green, and purple, respectively. Benefits increase across all user types as penalty coefficients rise.]FIGURE 7 | User compensation benefits under different bias penalty electricity prices.
Tables 5, 6 detail the compensation prices for power reduction and power increase under different deviation penalty coefficients, respectively. The data indicate that as the penalty coefficients increase, both the compensation rate and the price discount rate for electricity show an upward trend. This strategy aims to incentivize users to adjust their electricity consumption behavior, thereby reducing the overall operating costs of the market and enhancing system stability.
TABLE 5 | Compensation rates for reduced power under different bias penalty electricity prices.
[image: Table showing penalty coefficients ranging from 0.20 to 0.40 and corresponding electricity price compensation rates in percentages. Each coefficient is matched with a set of five rates, increasing sequentially.]TABLE 6 | Compensation rates for increased power under different bias penalty electricity prices.
[image: Table showing the relationship between Penalty Coefficient (ξ) and Electricity Price Discount Rate (%). The penalty coefficients range from 0.20 to 0.40, with corresponding discount rates for each coefficient shown in curly braces. Each set of discount rates increases with higher penalty coefficients.]As the deviation penalty coefficients increase, the monthly operating costs for load aggregators rise, compelling them to enhance the management of controllable loads and optimize their strategies. This economic pressure motivates load aggregators to actively seek efficient demand response solutions to minimize electricity procurement costs and deviation penalties.
By increasing the compensation prices for controllable loads, users are incentivized to flexibly adjust their electricity usage patterns. This not only helps aggregators control costs but also improves the load regulation capability and stability of the entire power system. Additionally, as compensation prices are adjusted, the participation and benefits of controllable load users increase accordingly.
This dynamic further promotes the application and development of demand-side response technologies, contributing to the dual enhancement of economic and environmental benefits in the electricity market.
6 CONCLUSION
This paper proposes a segmented multi-option controllable load power adjustment compensation contract based on a game theory framework, aiming to optimize demand response strategies in the long-term market environment prior to the spot market. This approach treats demand-side controllable loads as dispatchable resources. By establishing segmented compensation contracts between load aggregators and users, the method gains control over the operation of controllable load equipment, optimizing their operation to reduce the discrepancy between bid volumes and actual power consumption.
	1. Economic Win-Win Objective: To achieve an economic win-win situation for both load aggregators and controllable load users, this study constructs a 1-K type Stackelberg leader-follower game model. This model thoroughly considers the economic benefits of both load aggregators and controllable load users, reducing the operating costs of the load aggregators while enabling controllable load users to gain economic benefits through power adjustments.
	2. Design of Segmented Compensation Price Contracts: The segmented compensation price contracts designed in this study are valuable for motivating users to participate in demand response. This not only helps load aggregators formulate more effective demand response pricing strategies but also enhances user participation in demand response by inducing controllable load users to demonstrate demand elasticity, thereby effectively reducing the penalty costs for load aggregators.
	3. Monte Carlo Simulation and Optimization: Using the Monte Carlo method, the compensation prices for incentivizing controllable load user power adjustments were optimized based on deviation scenarios generated in typical daily scenarios of monthly transactions. Extending this model to shorter time scales, such as the intraday balancing market, could further smooth out deviations arising from day-ahead market transactions. However, due to the current maturity level of China’s electricity market, along with market mechanisms and technological and economic constraints, this study has not delved deeper into the spot market analysis.

This research provides an innovative perspective to optimize demand response strategies in the electricity market and offers practical strategic recommendations for electricity market designers to enhance overall market efficiency and reliability. Future research can explore broader market conditions and additional model application scenarios to further validate and expand the findings of this study. Case studies indicate that segmented compensation pricing strategies significantly reduce the penalty costs for load aggregators by 25% and increase user participation by 30%. These results demonstrate the effectiveness and potential economic benefits of segmented compensation pricing strategies in demand response.
4. Future Work: In our future work, we will consider integrating artificial intelligence and machine learning technologies to optimize demand response strategies. Additionally, we will study the economic viability and implementation effects of segmented compensation strategies under different policy environments, providing decision support for policymakers.
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The power consumption of urban power systems is increasing rapidly with two typical trends: the first one is that the daily peak-valley difference of loads is more significant, and the power supply is tight during peak hours, which threatens the system’s safe and stable operation; the second one is that the load energy efficiency in urban power systems is not high, which is the primary source of carbon emission in the power industry. Therefore, reducing the peak power and improving the system’s energy efficiency are urgent tasks for enhancing the system’s security and achieving the carbon emission goals. The rapid development of the Internet of Things (IoTs) ushers new opportunities for regulating demand-side loads. By analyzing the technical characteristics of load control based on IoTs, this paper investigates the modeling methods of load resources. On this basis, different control and optimization methods of load resources are analyzed and compared thoroughly. Besides, considering that load control is not only related to technical methods but also impacted by incentive strategies, the load control mechanisms under the mature and immature market environments are analyzed. Finally, the research gap and prospect of load regulation are proposed.
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1 INTRODUCTION
The rapid increase in electricity consumption in urban power grids has presented two significant trends: firstly, the continuous widening gap between peak and off-peak periods, leading to a tight supply-demand balance during peak hours, which threatens the safe and stable operation of the power grid (Zhou Xiaoxin et al., 2018); secondly, the increasing proportion of new energy sources, which poses higher challenges for the real-time supply-demand balance due to their intermittent output (Sun et al., 2007). Therefore, reducing peak loads in urban power grids and enhancing system flexibility are essential pathways to achieve the power grid’s safe, stable, and economically efficient operation (Song et al., 2016). The rapid development of the Internet of Things (IoTs) has enabled broader device connectivity, faster and more reliable data transmission, and enhanced privacy protection for the power system (Hui et al., 2020, Song Y. et al., 2017). It allows for regulating large-scale load resources in the power system to achieve peak shaving, valley filling, and new energy integration at lower costs and higher efficiency (Zhang et al., 2008). The essence of load regulation is to reduce or shift demand-side power consumption, providing services such as standby, peak shaving, and frequency regulation to the power system (Xue et al., 2007). To ensure a satisfactory user experience and minimize impacts on production and life, load regulation mainly targets load types with energy storage characteristics or transferable characteristics, such as energy storage batteries, electric vehicles, and temperature control loads (Wang Ke et al., 2014). For example, implementing orderly charging based on dynamic time-of-use electricity prices for electric vehicles can assist in peak shaving and valley filling in the power system (Zhiwei et al., 2014). Optimized control strategies for temperature control load clusters can achieve smooth tracking of load aggregation power to set targets, utilizing load resources to achieve system supply-demand balance (Wang et al., 2012).
Based on extensive theoretical research, load regulation technology is also transitioning from pilot verification to large-scale application. For example, the ERCOT electricity market in Texas, USA, has incorporated load regulation resources into the ancillary services market, providing services such as spinning reserves, fast response, and emergency regulation to the system (Yi et al., 2017). Japan has established a megawatt market, allowing demand-side users to participate in load regulation, reducing peak demand for thermal power generation, and increasing the utilization of new energy (Yang, 2015). The European Union has launched the Smart Grid project, using real-time electricity prices to influence end-users’ electricity consumption behaviors, assisting in integrating new energy into the power system (Ding et al., 2013). China has also conducted a series of demonstration projects in the field of load regulation, such as constructing a friendly interaction system between urban users and the power grid in Jiangsu Province, tapping into the coordinated regulation capabilities of load resources and generation resources (Hui et al., 2018a). Besides, the commercial buildings are constructed as virtual power plants in Shanghai to participate in peak shaving and valley filling in the power system (Shengchun et al., 2020). Flexible grids in Zhejiang Province are aggregated to promote the local integration of distributed photovoltaics (Zou et al., 2019).
Based on the above literature review, previous research gaps can be summarized as three points. i) Load modeling technology: traditional models only focus on power consumption while failing to comprehensively reflect real-time production processes, dynamic equipment parameters, and product quality, among other factors. ii) Load regulation technology: current load control mainly focuses on electricity, making it challenging to control multi-dimensional load resources such as heat, cold, and natural gas, leading to challenges in coordinating loads in integrated energy systems. iii) Load control for improving system resilience: current research mainly focuses on resilience assessment, unit planning, mobile energy storage resource scheduling, etc., with limited attention to load resources with significant control potential.
This paper discusses the technical characteristics of load resource regulation under the Internet of Things (View on 5G architecture, 2019; G network architecture, 2016; Embrace 5G new world, 2019; Telecom and GridHuawei, 2018; Yilmaz, 2016), including diversification of types (Yi Wang. et al., 2019; Knud, 2014; Hui et al., 2019; Siano, 2014; Shi et al., 2018), refinement of control (Hui et al., 2020), and data privacy protection (Zhou Z. et al., 2018; Leligou et al., 2018; Commercial feasibility analysis of smart, 2019). Besides, this paper investigates the modeling methods of load resources (JU and Ma, 2008; TANG et al., 2007; Yong, 2012; Ju et al., 2020; Yi Ding. et al., 2019; Yayuan et al., 2019; Ahmad et al., 2020; Das et al., 2020; Morello et al., 2018), especially including temperature-controlled loads (Sonderegger, 1978; Lu, 2012; Sun et al., 2016; Wang et al., 2016; Wang Dan et al., 2014; Mathieu and Callaway, 2012; Kirschen et al., 2000; Zhenfang, 2004; Liu et al., 2008; Technology information; Bachao, 2017; Song M. et al., 2017; Shao et al., 2004; Park et al., 2001; Zhang Q. et al., 2016; Hui et al., 2018b) and (Song et al., 2011; Xiang et al., 2015; Luo et al., 2011; Zhang Hongcai et al., 2014; Wang et al., 2019; Zhiwei et al., 2012; Junhua et al., 2010; Jinghong et al., 2012; Hongmei et al., 2015; Liu et al., 2016; Nosair and Bouffard, 2015; Wang et al., 2005; Yaping et al., 2017; Zhang Fang et al., 2014). On this basis, different control and optimization methods of load resources are analyzed and compared thoroughly (Hui et al., 2017; Dong et al., 2015; Bhattacharyya and Crow, 1996; Chu et al., 1993; Laurent et al., 1995; Meng, 2015; Qi et al., 2017; Zhang et al., 2015; Samarakoon et al., 2012; Vrettos et al., 2018; Babahajiani et al., 2018; Singh et al., 2017; Ledva et al., 2018; Li et al., 2020; Jia et al., 2013; Su et al., 2018; Shi et al., 2019; Cai et al., 2019; Zhang et al., 2017; Measurement of electrical and magnetic quantities. C37.118.1-2011, 2011; Douglass et al., 2013; Kaiqiao et al., 2016; Wenting et al., 2016; Bao et al., 2015; Weckx et al., 2014; Yao et al., 2018). Next, considering that load control is not only related to technical methods but also impacted by incentive strategies, the load control mechanisms under the mature (Albadi and El-Saadany, 2008; Xie et al., 2018; Hongtu et al., 2010; Ruan et al., 2013; Nyeng and Ostergaard, 2011; Siano and Sarno, 2016; Ding et al., 2013; Kai et al., 2020; Zhang Ning et al., 2016; Chen et al., 2018; Jian et al., 2017; Wang et al., 2020; Bin et al., 2018; Tai et al., 2016) and immature market environments are analyzed (Zeng et al., 2016; Zeng et al., 2013; Zeng et al., 2015; Zhong et al., 2013; Chen et al., 2017; Hui et al., 2022; Yi Ding et al., 2019). Finally, this paper summarizes the shortcomings of load regulation technology and provides prospects for future research (Rui, 2018; Antiy Institute, 2019; Ju et al., 2019; Qiu et al., 2020; Zhaohong et al., 2020; Bo et al., 2020; Zhang et al., 2019; Pierre, 1987; Chen et al., 2020; Yin et al., 2019).
2 METHODOLOGICAL APPROACH
2.1 Characteristics of load regulation technologies based on IoTs
Information and communication technologies represented by 5G have facilitated the rapid development of the IoT (View on 5G architecture, 2019). First, massive machine communication technology enables large-scale access to load devices in the IoT, with up to 1 million devices per square kilometer (G network architecture, 2016). Secondly, enhanced mobile broadband technology enables fast data exchange between control centers and load devices in the IoT, with transmission speeds of up to 20 Gbps (Embrace 5G new world, 2019). Furthermore, ultra-reliable, low-latency communication technology allows for high-reliability data transmission and instantaneous load control in the IoT, with a data transmission failure rate as low as [image: It appears that you're referring to a formula or expression rather than an image. The expression "10^-9" represents a mathematical notation for one billionth or 0.000000001. If you need an alt text description for a specific image, please upload the image or provide a URL.] fully meeting the 99.999% reliability requirements for load control in power grids (Telecom and GridHuawei, 2018). The data transmission latency can be reduced to as low as 1 ms, meeting the millisecond-level precise load control requirements (Yilmaz, 2016). Therefore, the IoT supported by next-generation communication technologies has promoted the rapid development of load control technology. This section discusses the technical characteristics of load control in the IoT from three aspects: diversification of control types, refinement of control, and data privacy protection.
2.1.1 Diversification of load regulation types
Diversification of regulation types has two layers of meaning. The first layer refers to diversifying user types participating in load control. Traditional load control, limited by communication methods and the number of control terminals, mainly targets large-capacity users, such as using fiber optic communication for load control in industrial enterprises and commercial buildings. However, the development of the IoT has led to the widespread deployment of smart meters and remote-control terminals for small and medium-sized users, such as smart sockets, which are rapidly increasing (Yi Wang. et al., 2019). Load control now covers many small and medium-sized users, leading to a more diverse range of user types, as shown in Figure 1 (Knud, 2014).
[image: Diagram of a smart grid system interconnected with 5G base stations linking various elements, including industrial plants, wind turbines, thermal power plants, electric vehicles, public buildings, and residential and commercial buildings.]FIGURE 1 | Internet of Things-based pluralistic load control.
The second layer of meaning refers to the diversification of services provided to the power system. Traditional load control involves sending instructions from the dispatch department to end users, resulting in inevitable communication delays (Hui et al., 2019). Therefore, load control primarily provides auxiliary services with extended time scales to the power system, such as reserves and peak shaving (Siano, 2014). With the IoT based on next-generation communication technologies, data transmission speeds are fast, especially with 5G’s ultra-reliable low-latency communication technology, which can reduce communication latency to the millisecond level. This enables load control to provide a more diverse range of services to the power system, such as frequency regulation and emergency backup (Shi et al., 2018).
2.1.2 Refinement of load regulation
The development of load control refinement can be divided into three stages (Hui et al., 2020). In the first stage, power reduction or transfer is achieved through the interconnection lines between control area grids and the primary grid, and direct disconnection occurs during power shortages. This regional control method cannot consider individual power demands and reduction losses. In the second stage, Home Energy Management Systems enables control over individual electricity users, allowing users to autonomously choose the method, capacity, and period for participating in load control. In the third stage, load control based on the IoT gives users more choices. Users can decide whether each load device participates in control and how it participates. For example, air conditioning loads can be set within a comfortable temperature range, allowing for independent and refined management of loads. This ensures a better electricity consumption experience for users under control.
2.1.3 Data privacy protection
The characteristics of diversification of control types and refinement of control can bring better economic benefits or electricity comfort to a broader range of users. However, a significant obstacle to the large-scale application of load control is the issue of user data security and privacy. The Internet of Things protects the transmission of load data, including software-defined networking technology (Zhou Z. et al., 2018), network function virtualization technology (Leligou et al., 2018), and network slicing technology (Commercial feasibility analysis of smart, 2019). For example, network slicing technology allows operators to construct multiple virtual networks based on a single network physical layer for different application scenarios, achieving communication isolation between specific business data and enabling customized services and domain slicing management for “dedicated networks.” Specifically, through massive machine communication slicing, fine-grained collection of energy usage information for many users can be achieved; through ultra-reliable low-latency communication slicing, real-time control of loads can be achieved (Telecom and GridHuawei, 2018).
2.2 Modeling methods of distributed load resources
The primary issue in load control is establishing accurate and applicable load models and quantifying different loads’ adjustability. Traditional load models mainly include static models such as constant impedance-current-power, classical, and comprehensive load models, with model parameters determined through measurement, fault simulation, and statistics (Ju and Ma, 2008; Tang et al., 2007; Yong, 2012). However, these traditional load models primarily describe the electrical characteristics of loads, established for power scheduling and electrical characteristics to support simulation calculations and operational control of power systems without considering the comfort and experience of electricity users. Literature (Ju et al., 2020) defines loads whose electricity consumption can vary within specified ranges or be shifted in different periods as “demand response.” Demand response requires considering the electrical characteristics of the load itself and its interactivity, controllability, and comfort of electricity use. Currently, the research objects of load control include water heaters, air conditioners, heat pumps, refrigerators, washing machines, energy storage batteries, electric vehicles, etc. Due to space limitations, this paper mainly introduces two typical load modeling methods: temperature-controlled loads represented by air conditioners and energy storage loads represented by electric vehicles. Air conditioners account for a high proportion of total loads, with significant adjustment potential, and have minimal impact on user electricity comfort during adjustments (Yi Ding. et al., 2019). Electric vehicles are increasing, and their charging and discharging can provide colossal energy storage resources to the power system.
On the one hand, the fast-charging technologies bring more fluctuations to the power systems (Yayuan et al., 2019). On the other hand, battery swapping technologies bring more opportunities to provide long-term charging battery storage for power systems (Ahmad et al., 2020). Besides, electric vehicles have different standards and charging voltage requirements (Das et al., 2020), which bring more regulation potentials on power systems to provide multi-type regulation services (Morello et al., 2018). Therefore, air conditioners represent the load type with the most development potential currently, while electric vehicles represent the load type with the most adjustment capacity in the future.
2.2.1 The first typical load: Temperature-controlled loads
Modeling temperature-controlled loads requires considering the electrical model of the interaction between the load and the power system and the thermodynamic model of the load and its spatial location. Equivalent thermodynamic parameters are the most representative modeling method (Sonderegger, 1978), equivalently representing temperature-controlled loads as equivalent circuits composed of capacitors and resistors, as shown in Figure 2 (Wang et al., 2012).
[image: Diagram of a thermal system showing heat flow Q triggered by an on/off switch. The system includes temperatures \(T_i\) and \(T_o\) across resistors \(R_1\) and \(R_2\), connected to capacitors \(C_1\) and \(C_2\), respectively.]FIGURE 2 | Model of thermostatically controlled loads.
Where [image: Please upload the image or provide a URL, and I will create the alternate text for you.] is the equivalent thermodynamic power of air conditioning load considers the cooling or heating states; the switch status represents the operating state of the air conditioner; [image: It looks like there might have been a mistake. Please upload the image file or provide a URL to the image so I can help you create the alt text.] and [image: It seems like you've included a mathematical expression rather than an image. If you need help with a different task involving this expression, please let me know. If you intended to share an image, you can upload it for me to assist with generating alt text.] represents indoor temperature, outdoor ambient temperature, and temperature of indoor objects, respectively, which are all equivalent to different node voltage values; [image: It seems that there might be an error or missing context, as no image has been uploaded. Please provide the image or specify further details so I can help generate the appropriate alt text.] and [image: Please upload the image or provide a URL to it, and I will help you create the alternative text.] represent the equivalent thermal resistances between the building and outdoor environment, and between objects inside the building, respectively; [image: It seems there is an issue with uploading the image. Please ensure the file is uploaded correctly or provide a URL. If there is any context you would like to add, feel free to include that as well.] and [image: Please upload the image or provide a URL for me to generate the alt text.] represent the specific heat capacities of the indoor air and objects, respectively, which are equivalent to capacitance values (Lu, 2012). Based on Kirchhoff’s current law, the relationship between current, voltage, resistance, and capacitance in the equivalent thermodynamic parameter model can be expressed as Equations 1, 2:
[image: The equation shows the rate of change of temperature \( \frac{dT_i}{dt} \) equal to \( \frac{Q}{C_1} - \frac{T_i - T_o}{C_1 R_1} - \frac{T_i - T_m}{C_1 R_2} \).]
[image: The equation shows the rate of change of temperature \( \frac{dT_m}{dt} \), equal to the difference between \( T_i \) and \( T_m \) divided by the product of \( C_s \) and \( R_2 \). It is labeled as equation (2).]
where parameter Q is the cooling capacity from the air conditioning system. It is generally calculated by the operating power P and the Coefficient of Performance (COP), which can be expressed as [image: The equation shows \( Q(t) = P(t) \times \text{COP} \).]
In addition to the equivalent thermodynamic parameter model for temperature-controlled loads, literature (Sun et al., 2016) proposes an exponential model describing the dynamic characteristics of a typical water heater, achieving peak shaving and valley filling in the power system through aggregated control of water heater demand response. Literature (Wang et al., 2016) presents an economically driven ice storage load model, participating in demand response in the medium to long-term electricity market environment. Literature (Wang Dan et al., 2014) establishes a temperature-controlled load model that considers user comfort constraints, aggregates temperature-controlled loads into energy-efficient power plants to participate in dynamic power system regulation and achieves the same objectives as conventional power plants. Literature (Mathieu and Callaway, 2012) uses a Markov chain model to describe the state change process of aggregated temperature-controlled loads and uses Kalman filtering technology for joint estimation of parameters and states, accurately tracking the operating power of the temperature-controlled load model. Literature (Kirschen et al., 2000; Zhenfang, 2004; Liu et al., 2008) establishes an elasticity matrix describing user electricity behavior based on the price elasticity coefficient in economics. The self-elasticity and cross-elasticity coefficients describe the amount of electricity adjustment for the user in the current and other periods, respectively, and the elasticity matrix can represent the mutual influence of electricity loads at different times.
Furthermore, with the advancement of power electronics technology, the market share of variable-frequency air conditioners equipped with rectifier-inverter devices is rapidly expanding, surpassing conventional fixed-frequency air conditioners in sales in China (Technology information). The main difference between variable-frequency air conditioners and fixed-frequency air conditioners lies in the compressor’s control mode, as shown in Figure 3 (Bachao, 2017).
[image: Diagram illustrating the conversion of power from an AC power grid to drive a compressor. It shows sequences: AC input, rectification to DC, inversion, conversion to variable frequency AC, and driving the compressor. Arrow labels indicate each stage: Power Grid AC, Rectification, DC, Inversion, Variable Frequency AC, Drive, and Compressor.]FIGURE 3 | The operating principle of variable frequency air conditioners.
The compressor of a fixed-frequency air conditioner has only two operating modes, on/off, with the operating power switching approximately between rated power and zero power, maintaining the indoor temperature within a specific range. In contrast, the compressor speed of a variable frequency air conditioner can be continuously adjusted through a frequency converter, making it more suitable for participating in dynamic responses of the power system. Literature (Song M. et al., 2017) and (Shao et al., 2004) establish variable frequency air conditioner models based on simulation methods and experimental data, proving their continuous adjustment characteristics. Literature (Park et al., 2001) analyzes the relationship between the operating performance of variable-frequency air conditioners and the compressor operating frequency, cooling capacity, and cooling efficiency ratio. Literature (Zhang Q. et al., 2016) constructs a dedicated, intelligent testing platform to compare the operating characteristics of variable-frequency air conditioners and conventional fixed-frequency air conditioners, analyzing their long-term operation, dynamic operation, startup, and shutdown processes. The results show that variable-frequency air conditioners can reach the set temperature indoors more quickly and have higher energy efficiency. Literature (Hui et al., 2018b) incorporates the variable frequency air conditioner model into the dynamic response process of the power system, considering the inertia element of compressor adjustment, making the variable frequency air conditioner cluster equivalent to traditional generator units participating in power system frequency regulation. Therefore, variable frequency air conditioners participating in load control are more flexible, have faster response speeds, and have minimal impact on user comfort.
2.2.2 The second typical load: Electric vehicles
The physical model parameters of electric vehicles mainly include battery capacity [image: Please provide the image or upload it so I can help generate the alt text for you.], state of charge [image: It seems like there might be a typo or formatting error with the image reference. Please upload the image directly or provide a correct URL for me to assist you with the alt text creation.], battery charging/discharging power [image: Mathematical notation showing "P sub c comma i times P sub d comma i".], and battery charging/discharging efficiency [image: Italicized mathematical expression: \(n_{c,i} n_{d,i}\).] (Song et al., 2011). Based on the above parameters, the charging/discharging model of electric vehicles can be obtained as the Equation 3:
[image: Mathematical equation defining the state \( S_i(t+1) \) with three conditions: \( S_i(t) + P_{ci} \cdot \eta_{ci} / B_i, P_{ci} > 0 \); \( S_i(t), P_{ci} = P_{di} = 0 \); and \( S_i(t) - P_{di} \cdot \eta_{di} / B_i, P_{di} > 0 \).]
Furthermore, the electric vehicle model also needs to consider constraints on charging/discharging power and battery capacity (Xiang et al., 2015), expressed as the Equation 4:
[image: Constraints on power and state variables are shown. The first line reads, zero is less than or equal to \(P_{c,i}\) and less than or equal to \(P_{c,j}^{\text{max}}\). The second line shows, zero is less than or equal to \(P_{d,j}\) and less than or equal to \(P_{c,j}^{\text{min}}\). The third line indicates \(S_i^{\text{min}}\) is less than or equal to \(S_i\) and less than or equal to \(S_i^{\text{max}}\). Equation (4).]
Literature (Luo et al., 2011) proposes a charging load calculation model for different types of electric vehicles based on their different electricity usage behaviors. Literature (Zhang Hongcai et al., 2014) presents a spatiotemporal distribution-based electric vehicle charging load prediction model considering electric vehicles’ driving and parking characteristics. Based on a single electric vehicle physical model, literature (Wang et al., 2019) constructs a large-scale aggregation state space model for electric vehicles, accurately describing the impact of heterogeneous charging characteristics and random driving behaviors on the capacity of electric vehicles to participate in power system frequency regulation. Literature (Zhiwei et al., 2012) establishes an electric vehicle charging station model and proposes an ordered charging model considering user travel demand and grid load levels to improve the economic benefits of charging stations. Literature (Junhua et al., 2010) constructs a probability model for the random charging and discharging of electric vehicles, jointly considering the random output of wind turbines, achieving the minimum total generation cost economic dispatch of the power system. Literature (Jinghong et al., 2012) establishes a two-stage constant current-constant voltage charging model for electric lithium batteries. It proposes an aggregation model for electric vehicle charging stations in residential areas based on the Poisson distribution. Literature (Hongmei et al., 2015) constructs an electric vehicle charging and discharging model. It proposes a microgrid energy storage capacity optimization operation method based on mixed-integer second-order cone programming, achieving ordered charging and discharging scheduling of electric vehicles and balanced support for microgrids. Literature (Liu et al., 2016; Nosair and Bouffard, 2015; Wang et al., 2005; Yaping et al., 2017; Zhang Fang et al., 2014) establishes a dynamic capacity degradation model for electric vehicle batteries and proposes an optimized scheduling model for electric vehicles considering charging and discharging losses, achieving multiple objectives optimization such as charging station profits, user benefits, and travel demand optimization.
3 TYPICAL LOAD CONTROL METHODS
Compared with the regulation capacity provided by traditional generating units, the regulation capacity provided by individual loads is minimal, requiring the control of large-scale loads. Load resources are geographically dispersed, with significant differences in operating characteristics, and they need to ensure diverse individual user electricity demands. Based on the existing control architecture, load control methods can be divided into three types: centralized, distributed, and hybrid.
3.1 Centralized control method
The centralized control method has a clear structure and can achieve real-time solid consistency control of load clusters, making it the current primary load control method. Literature (Hui et al., 2017) proposed a centralized control method for adjusting the set temperature of temperature-controlled loads, changing the operating power within the range users allow to provide operational reserves for the power system. Literature (Dong et al., 2015) adopted a centralized control architecture. It proposed an improved weighted coefficient queuing algorithm, considering the individual preferences of users participating in the system’s dynamic response, achieving direct control of temperature-controlled loads such as air conditioners and heat pumps. Literature (Bhattacharyya and Crow, 1996) proposed a centralized control method based on fuzzy logic, which improves the dynamic response performance of loads and user satisfaction and reduces user electricity costs. Literature (Chu et al., 1993) used dynamic programming to control loads directly, targeting the minimum load reduction to solve the problem of insufficient generating capacity during peak summer loads in power systems. Literature (Laurent et al., 1995) integrated the advantages of linear programming and dynamic programming, proposing an optimization method based on column generation, which meets the requirements of electric water heaters while participating in peak shaving of power systems. Literature (Meng, 2015) proposed a centralized frequency control strategy for temperature-controlled loads and coordinated with electric vehicles to participate in power system frequency regulation. Literature (Qi et al., 2017) constructed a temperature-controlled load model for the cluster of electric water heaters. It proposed a new serialization control strategy to provide frequency control shedding auxiliary services to the power system.
However, centralized control methods also have drawbacks. For example, there are delays in sensing measurement, signal transmission, operation calculation, and terminal execution, leading to lag in load control (Zhang et al., 2015). Literature (Samarakoon et al., 2012) established a hardware and software platform to test communication delays during load direct control processes. The results showed that the load could eventually be disconnected, but the communication delay was between 3.3 and 4.6 s. Literature (Vrettos et al., 2018) conducted experiments on commercial buildings participating in power system frequency regulation, proving that communication delays cannot be ignored and require about 20 s to eliminate their effects. Currently, the primary methods to solve communication delays in centralized control are load state estimation and design feedback controllers. Literature (Babahajiani et al., 2018) proposed a fuzzy proportional-integral controller connecting generating units with adjustable loads. When delay-induced success rate fluctuations occur, the generating units can receive fluctuation signals and change their operating states, reducing the impact of delays. Literature (Singh et al., 2017) linearized communication delays using the Padé approximation method and quantified the effects of communication delays on power fluctuations. Literature (Ledva et al., 2018) proposed a stochastic predictive controller and Kalman filtering state estimation method to reduce the impact of communication delays.
3.2 Distributed control method
Compared with centralized control, distributed control has better scalability, privacy, and reliability and is suitable for controlling numerous and geographically dispersed loads. However, distributed control has higher requirements for communication networks, data transmission, and terminal computing capabilities, and the development of IoT technology has promoted the application of distributed control in load control fields.
Literature (Li et al., 2020) proposed a distributed consistency control algorithm considering time-coupled characteristics, achieving robust control of large-scale load resources in scenarios with partial information loss and theoretically proving the convergence and optimality of this method in load control. Literature (Jia et al., 2013) took refrigerators as typical temperature-controlled loads. It proposed a distributed control strategy based on system frequency fluctuation amplitude and user participation level as decision metrics, dynamically adjusting the refrigerator’s operating cycle to maintain the stable operation of microgrids in islanded states. Literature (Su et al., 2018) proposed a dispersed active power control strategy for large-scale temperature-controlled load groups by solving the coupled Fokker-Planck equation probability model, achieving load response in power system emergencies. Literature (Shi et al., 2019) separately proposed load-distributed control methods based on stable recovery technology, achieving primary and secondary frequency control for temperature-controlled loads. Literature (Cai et al., 2019) and (zhang et al., 2017), respectively, based on deep learning load prediction technology and load self-learning coordinated control technology, ensuring load distributed control while maintaining user comfort. Therefore, distributed control methods generally install terminal controllers on the load side to monitor parameters such as local system frequency deviation for load control, avoiding the communication delay issues generated in centralized control. However, compared with the measurement devices (phasor measurement unit, PMU) in centralized control (Measurement of electrical and magnetic quantities. C37.118.1-2011, 2011), the measurement accuracy of control terminals is lower, leading to control deviations (Douglass et al., 2013).
Note that the local control method is also a kind of method, which is a general concept by using the local or edge control devices. In this paper, the distributed control method is a kind of local control method by using the edge control devices and exchanging operating states with neighboring devices.
3.3 Hybrid control method
The hybrid control method combines the advantages of centralized and distributed control, ensuring efficient control and high consistency of load clusters while improving system scalability and responsiveness. However, the cost of the control system is relatively high. Literature (Kaiqiao et al., 2016) proposed an ordered charging layered control strategy for electric vehicles. The main control center obtains the charging load guidance curve through a two-stage optimization model of peak shaving and valley filling. Each secondary control center selects a centralized or distributed control strategy to follow the charging load. Literature (Hui et al., 2019) proposed a load hybrid control architecture based on dual-end measurement and retrospective correction. It uses PMUs to monitor power system frequency deviations as accurate values. Then, through terminal controllers monitoring local frequency deviations and combining with precise historical data sent by PMUs, real-time correction of local measurements is performed, improving load control accuracy. The control center sets the load response threshold in advance, avoiding real-time communication and eliminating control delays.
Additionally, literature (Wenting et al., 2016) proposed a hybrid control architecture for non-ideal communication states such as packet loss and error codes, aggregating loads such as electric heat pumps as a virtual power plant to participate in dynamic regulation of power systems, as shown in Figure 4. Literature (Bao et al., 2015) and (Weckx et al., 2014) designed a hybrid control method to involve temperature-controlled loads in system frequency regulation. By setting predetermined frequency response thresholds and minimum shutdown times for temperature-controlled loads, they achieved smooth regulation of temperature-controlled load aggregation groups, reducing power system frequency deviations and oscillations. Literature (Yao et al., 2018) proposed a hybrid dual-layer control architecture based on virtual automatic power generation control and distributed control, increasing the adjustable capacity of temperature-controlled loads to accommodate many renewable energy sources.
[image: Diagram illustrating a virtual power plant (VPP) system. The main grid connects to a distribution network, which links to multiple VPPs. These VPPs serve residential communities, commercial buildings, industries, and renewable resources like distributed photovoltaics, battery storage systems, and electric vehicles. The PSO monitors demand, provides instructions, and manages load resources, with arrows indicating data flow directions.]FIGURE 4 | Structure of virtual power plants.
4 MARKET MECHANISM OF LOAD REGULATION
4.1 Load regulation mechanisms in mature markets
Load control involves technical issues such as modeling and control and economic considerations. Like power generation units having regulation costs, load control also involves market economic issues. Currently, load control mechanisms can be categorized into price-based and incentive-based, as shown in Figure 5 (Albadi and El-Saadany, 2008). Price-based mechanisms influence users’ electricity consumption by varying electricity costs during different periods, mainly aiming to increase system revenue or reduce generation costs. Therefore, price-based mechanisms are market-oriented load control models (Xie et al., 2018), including time-of-use pricing, real-time pricing, and peak pricing. Incentive-based mechanisms require users to sign contracts in advance with fixed or time-varying subsidies, aiming to reduce electricity consumption during peak loads and ensure system stability (Hongtu et al., 2010). Thus, incentive-based mechanisms ensure system stability, including interruptible loads, demand-side bidding, emergency demand response, and others (Ruan et al., 2013).
[image: Flowchart illustrating load regulation mechanisms in mature markets. It splits into two branches: Price-based mechanisms, including Time of Use, Real Time Pricing, Critical Peak Pricing, and Extreme Day Pricing; and Incentive-based mechanisms, featuring Direct Load Control, Interruptible Load, Demand Bidding, Emergency Demand Response, Capacity Market, and Ancillary Services Market.]FIGURE 5 | Load regulation mechanisms in mature markets.
The IoT has facilitated broader device connectivity in the power system, enabling small and medium-sized users to participate in the load control market. Literature (Nyeng and Ostergaard, 2011) constructed terminal controllers, data interfaces, and communication systems to enable small users to respond to dynamic electricity prices, reducing user electricity costs by approximately 7%. Literature (Siano and Sarno, 2016) studied distribution network operators participating in real-time electricity markets and used marginal electricity prices to influence small users in adjusting temperature-controlled loads, reducing system operation costs. Literature (Ding et al., 2013) analyzed the Ecogrid EU project, a major innovative grid pilot project in the EU, where smart meters and electricity data monitoring devices were installed for small users. Real-time electricity prices influenced user electricity consumption, demonstrating that users can assist power systems in integrating more renewable energy.
Furthermore, the widespread deployment of IoT-enabled smart terminals has led to the application of blockchain technology in load control market mechanisms, ensuring faster and more reliable data transmission and enhanced privacy protection (Kai et al., 2020, Zhang Ning et al., 2016). Literature (Chen et al., 2018) designed a decentralized trading system based on blockchain for distributed adjustable load resources. Literature (Jian et al., 2017) proposed a multilateral trading mechanism for distribution grid markets based on smart contracts, enabling real-time local transactions of distributed generation and load resources, eliminating deviations between operating power and planned quantities. Literature (Wang et al., 2020) proposed an electric vehicle charging rights trading mechanism based on blockchain, facilitating load distribution among different charging stations and ensuring the safe operation of transmission and distribution equipment. Literature (Bin et al., 2018) proposed a multilevel bidding mechanism in a non-trust environment, achieving effective trading of adjustable loads while protecting user privacy. Literature (Tai et al., 2016) focused on multi-energy systems and constructed a transaction system based on heterogeneous blockchain technology, enhancing market transaction security.
4.2 Load control mechanisms in non-mature markets
Many power systems worldwide need more mature market models, making it challenging to implement load control even by installing intelligent meters and terminals. Taking China as an example, the government determines the electricity prices for both power generation units and users through catalog prices, giving little decision-making power to the power generation side regarding grid prices. Users must accept the prices set for their category (Zeng et al., 2016). Therefore, users need more motivation in non-mature markets to participate in load control.
Currently, in these unified pricing markets, most load control projects are based on administrative measures with limited consideration for user demands, resulting in relatively unfair treatment for users (Zeng et al., 2013). In recent years, power companies have compensated users after load shedding, but these compensations are usually fixed prices that do not reflect real-time market costs (Zeng et al., 2015). Therefore, compared to mature markets with open competition, power companies in non-mature markets cannot directly implement price or incentive mechanisms (Yi et al., 2017). Inspired by the widespread use of coupons in the industrial sector, literature (Zhong et al., 2013, Chen et al., 2017) proposed a load control market strategy based on coupons. In this strategy, after electricity users voluntarily participate in response projects, they receive corresponding coupon rewards. The specific execution involves a real-time iterative bidding framework where an aggregator provides coupon face values to end users, who then submit load adjustment quantities based on these values. The aggregator optimizes the face values to maximize revenue and publishes new coupon face values to users in a cyclic process, eventually determining coupon face values and response capacity.
However, small and medium-sized end users (e.g., residential users) need more time or expertise to submit load adjustment quantities accurately. Most residential users need to be aware of their load power during different periods and are unlikely to accurately give feedback on load adjustment quantities to aggregators. To address this issue, the national critical R&D program “Friendly Interaction System Between Urban Users and Power Grid Supply and Demand” proposed a demand response points incentive model, fully considering the operability of users and power grid enterprises (Hui et al., 2022). In this model, users receive points notifications every 15 min, with positive points indicating an increase in points for electricity usage during that period and negative points marking a decrease (Yi Ding et al., 2019). Positive points typically occur during low load periods, encouraging users to increase electricity usage, while negative points occur during peak load periods, enabling users to decrease electricity usage. Points are settled monthly, and users with a positive point total can exchange them for corresponding reward money. In contrast, users with an opposing point total have their points reset to zero, avoiding increased electricity costs for users during the demonstration phase and alleviating user concerns about participating in load control. The positive and negative points market strategy reduces the difficulty of user participation in load control, respects users’ autonomous choices in participating in adjustments, and is a beneficial supplement to electricity price policies in non-mature markets.
5 LIMITATIONS AND PROSPECTS OF LOAD REGULATION
5.1 Limitations of load regulation technology
5.1.1 Load modeling technology
As the scale of load control increases, the accuracy of control capacity becomes increasingly crucial for the safe operation of power systems, necessitating the establishment of accurate load models. However, current load models based on classical models or historical statistical data need help to describe diverse loads’ real-time states and operating conditions, resulting in delays or even failures in load response. Taking industrial loads as an example, traditional models only focus on power consumption. At the same time, it fails to comprehensively reflect real-time production processes, dynamic equipment parameters, and product quality, among other factors. Dispatching authorities may issue commands when equipment cannot respond, leading to response failures. Therefore, load models that can interact with load entities in real-time must be constructed, comprehensively describing the operational states throughout the entire lifecycle of loads to achieve an accurate assessment of load control capabilities.
5.1.2 Load regulation technology
Existing load control primarily involves direct switching or adjusting power output. However, under the Internet of Things (IoTs), load resources include small and medium-sized users’ loads with small capacities and high uncertainties, compounded by operating time, space, and load types. Ensuring user comfort during control processes is challenging, making it difficult to apply traditional control methods uniformly.
Furthermore, with the deep coupling of electricity with heat, cold, natural gas, distributed energy, and other forms of energy, the connotation of load control is continuously expanding. Leveraging the conversion and complementarity of different energy forms can uncover more extensive and in-depth control potentials at the comprehensive energy system level. However, current load control mainly focuses on electricity, making controlling multi-dimensional load resources such as heat, cold, and natural gas challenging. This leads to challenges in coordinating loads in integrated energy systems.
5.1.3 System resilience by regulating loads
Power systems are susceptible to natural disasters and human attacks, such as Typhoon Hato in 2017, causing widespread blackouts in Macau and other cities, and the 2019 blackout in Venezuela due to a cyberattack (Rui, 2018, Antiy Institute, 2019). In this context, resilient power systems emerged, referring to the ability to prevent, withstand, respond to, and quickly recover from extreme events (Ju et al., 2019). Resilient power systems primarily address small probability, high-loss extreme events beyond the traditional “three lines of defense” framework (Qiu et al., 2020).
Research on resilient power systems focuses on natural disasters like typhoons and floods, as well as human-made disasters like cyberattacks. The stages of accidents include primary systems like transmission and distribution lines, transformers, and secondary systems like communication networks and sensing devices (Zhaohong et al., 2020). However, current research mainly focuses on resilience assessment, unit planning, mobile energy storage resource scheduling, etc., with limited attention to load resources with significant control potential. Addressing extreme events that are low-probability in power systems through unit construction or energy storage configuration is costly. Utilizing existing loads as adjustment resources for extreme events is cost-effective with large capacities. For example, some insignificant loads can be shed at some extremely dangerous or urgent conditions. Additionally, due to the low probability of extreme events, it will not frequently impact user energy consumption. However, specific research in this aspect still needs to be completed.
Given the limitations of load control technology, the following prospects are outlined from three perspectives.
5.2 Prospects of load regulation technology
5.2.1 Digital twin-based load modeling technology
The development of the Internet of Things (IoTs) has expanded the application of digital twin technology to load modeling (Bo et al., 2020). Digital twins can leverage real-time monitored load data from the IoT to establish mechanical and data-driven models of loads. These models can then be used through simulation software to precisely describe, diagnose, and predict load entities (Zhang et al., 2019).
Digital twin technology inherently suits load modeling, enabling a bidirectional mapping between physical load objects and digital spaces. It accurately simulates multi-dimensional characteristics of loads, such as structure, state, and temporal aspects. Additionally, with the scalable nature of digital twins, dynamic replacement and integration of loads at multiple physical, hierarchical, and scale levels can be achieved. However, large-scale application research based on IoT and digital twin technology in load control still needs to be improved, necessitating further research on precise mapping of loads based on digital twins, virtual-real dynamic interactions, software-defined states, intelligent intervention operations, and other related technologies (Pierre, 1987).
5.2.2 Data-driven adaptive load regulation technology
Adaptive control technology is not new to power systems and has been applied in fields like generator excitation control and frequency control since the last century (Chen et al., 2020). With the development of IoT and the participation of various energy resources such as electricity, heat, cold, and natural gas in system control, further research is needed on applying adaptive control technology in integrated energy systems. This includes constructing control methods based on energy types and load endowments to tap into the potential of different energy forms of loads (Yin et al., 2019). Researching data-driven model-free adaptive control technology can achieve adaptive control of multi-input-output, nonlinear, and large time-delay energy types of load resources. Furthermore, considering the large scale of future load control resources, research on IoT-based distributed adaptive control of loads, edge computing, and other technologies is needed to reduce data communication requirements for large-scale load control, thereby enhancing network communication and load control reliability.
5.2.3 Enhancing system resilience with load regulation technology
In an IoT environment, the potential of load control can be explored in three stages: prevention, response, and recovery, to improve the system’s adequacy to extreme events and the speed of recovery after events.
In the prevention stage, research on abnormal system monitoring, accident prediction, impact mechanisms, risk assessment, and load control strategies is needed to enhance the system’s disaster warning capabilities. In the response stage, research on fine-grained identification of loads is necessary to identify critical loads and prioritize their power supply [126]. Additionally, research on optimizing the scheduling of loads such as electric vehicles can serve as temporary power sources to improve system adequacy. In the recovery stage, research on operating control strategies for black-start power sources on the load side is essential, along with load supply level recovery methods under limited monitoring data, to maximize system recovery speed, business production value, and user electricity experience.
6 CONCLUSION
Starting from the background of the high proportion of new energy power systems and the rapid development of the Internet of Things, this paper discusses the development opportunities and enormous potential of load control. This paper outlines the technical characteristics of load control under the IoT and studies the modeling methods of loads and methods for quantifying control capabilities. Based on this, this paper conducts an in-depth comparative analysis of control strategies for different load resources, exploring optimization methods for power system adjustment resources after load control. Considering the close relationship between load control implementation and market policies, this paper further studies the load control mechanisms in mature electricity markets abroad and immature electricity markets domestically. Finally, this paper analyzes the shortcomings of current load control technologies. It provides prospects for future research, including digital twin-based load modeling, data-driven load adaptive control, and load control technologies to enhance system resilience. This paper will provide valuable literature on the development and application of load regulation technologies.
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With the growing integration of renewable energy into medium- and low-voltage distribution networks, the distribution substation area (DSA) has emerged, encompassing energy storage and loads. This paper introduces an energy interaction framework for multiple DSAs aimed at enhancing local renewable energy consumption. The energy interaction issue among various DSAs is modeled as a Nash bargaining problem to encourage energy exchanges. However, the variability in pricing and internal demand response may influence scheduling decisions, necessitating further investigation. To address price forecast errors, scenarios are developed using a stochastic programming approach to represent price uncertainties while adjusting the DSA’s load accordingly. Optimal power flow constraints are integrated into the model to bolster power system operation security. Additionally, the transmission capacity can impact scheduling outcomes and operational costs. The influence of transmission limitations on operational strategies is examined within the allowable capacity. To solve this issue, the bargaining model is divided into two subproblems, and an enhanced alternating direction multiplier method (ADMM) is used to maintain the privacy of DSAs. The simulation results obtained using the IEEE-33 bus system indicate that energy interaction among multiple DSAs significantly lowers operating costs and facilitates the integration of renewable energy.
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1 INTRODUCTION
The integration of distributed renewable energy is a key challenge within distribution networks. To facilitate energy interaction, a distribution substation area (DSA), comprising a renewable power station, energy storage, and loads, can support local consumption and reduce disturbances in the network (Hirsch et al., 2018). Using energy storage, the DSA can adjust the load demand and better accommodate renewable generation. However, the inherent unpredictability of renewable sources may lead to energy shortages or surpluses. To optimize renewable energy efficiency, DSAs can interconnect with neighbors to facilitate energy exchanges (Kumar and Saravanan, 2017). Guided by the time-of-use (TOU) pricing set by the distribution network operator, energy interaction among multiple DSAs is encouraged, forming a small-scale interconnected DSA energy market (Vieira and Zhang, 2021). Given the shared interests, it is crucial to develop an interactive mechanism that incentivizes energy exchanges while maintaining economic viability and reliability within the region (Tushar et al., 2020).
A game theory-based mechanism is instrumental in studying and analyzing interactive strategies among multiple DSAs (Tushar et al., 2018). Generally, the game theory approach to interaction processes among participants can be categorized into non-cooperative and cooperative games (Tushar et al., 2019). In a non-cooperative game, buyers and sellers negotiate to establish interaction prices and quantities, achieving market clearing while maintaining the supply–demand balance (Paudel et al., 2019). A Stackelberg game-based negotiation process between buyers and sellers, which considers participant competition and achieves market clearing, is detailed by Jiang et al. (2022). Although Nash equilibrium solutions can be obtained in non-cooperative games, the decision-making processes are typically self-centered, and these solutions are not necessarily unique local optima (Chen et al., 2019).
To balance individual and collective interests, a cooperative game theory-based energy interaction model is proposed to achieve global optimization in energy sharing (Luo et al., 2022). The Nash bargaining game theory is well suited for energy interactions among multiple DSAs, ensuring equitable benefit allocation (Dehghanpour and Nehrir, 2017; Wang and Huang, 2016). Building on this cooperative model, optimal power flow constraints are incorporated into the system operation to enhance the model’s practicality (Li et al., 2018). However, these studies often overlook the impact of the demand response on energy interaction, which could potentially increase operational costs.
The demand response is an effective and promising approach that shifts electricity demand to periods when renewable generation is more abundant or the demand is lower. By leveraging load baselines, the demand response aids in the integration of renewable generation and reduces operational costs, thereby facilitating energy interaction (Sarker et al., 2020). A bi-level optimization model has been introduced for energy storage planning and operation, considering the electricity–heat demand response while utilizing Nash bargaining methods for benefit allocation (Alizadeh et al., 2024). However, these studies often distribute cooperative benefits equally among participants, which may lead to fairness concerns (Luo et al., 2022). To address this, a generalized Nash bargaining theory is adopted to incentivize energy interaction among multiple DSAs and allocate cooperative benefits based on the quantities of energy interaction (Kim et al., 2019).
The aforementioned studies formulate energy interaction models based on deterministic optimization, often overlooking forecast errors in TOU prices. Price uncertainty significantly impacts the economic and security aspects of an energy system. Generally, stochastic programming (Li et al., 2022) and robust optimization (Wei et al., 2021) are two prevalent methods used for addressing uncertainties. Considering the conservative nature of robust optimization, a stochastic optimization model is developed for unpredictable prices, aiming to achieve optimal scheduling (Baharvandi et al., 2019) and effective energy management (Chang et al., 2020). However, the influence of uncertain prices on energy interaction, as well as Nash bargaining-based operation decisions, is often neglected in these studies. Given the uncertain prices, DSAs schedule their demand to respond dynamically, which may alter their final decisions and operational costs. Considering the interdependent relationship between prices and demand response, the decisions of DSAs should integrate these influencing factors to devise optimal strategies.
Another aspect investigated in energy interaction is the consideration of physical constraints. Voltage fluctuations at each node (Jin et al., 2020) and power losses resulting from energy interaction (Khorasany et al., 2020) are modeled as costs paid to the operator. Although these factors are considered costs, further analysis is needed to understand strategy changes when transferring power to neighbors within the specified capacity limits. In other words, the congestion of transmission lines is directly addressed during the energy interaction process. Therefore, an energy interaction model is established that incorporates uncertain prices, demand response, and transmission capacity during energy interaction.
To sum up, the main contribution of this paper is to derive optimal operation strategies by considering the interdependent relationship between uncertain prices and the demand response of DSAs. Specifically, this paper investigates the effect of price uncertainty on the Nash bargaining theoretical model, analyzing both operation costs and the internal decision-making strategies of DSAs. To mitigate these adverse effects, the demand response combined with energy storage is proposed to enhance the flexibility of DSAs by shifting the load demand to periods of lower prices. The final operation strategies should account for the interconnected nature of price uncertainty and demand response. Additionally, optimal power flow is integrated into the optimization model to improve its practicality. Transmission limitations are also included to examine the impact of capacity restrictions on operation costs. Finally, the cooperative benefits are allocated based on the interaction of DSAs, ensuring a fair distribution that reflects the contribution of each participant to the energy interaction process.
2 PROBLEM DESCRIPTION
As illustrated in Figure 1, an energy interaction problem with [image: Please upload the image you would like described, and I will create the alternate text for you.] DSAs is considered, formulated as an interaction set [image: The expression shows a mathematical series: script M equals one through M, denoting a sequence or range of values for M.]. Each DSA, which consists of PV/wind generation, energy storage, and loads, interacts with others to maintain the balance between supply and demand. Supported by the distribution network, these interconnected DSAs participate in energy interactions to share electricity with neighboring entities. In this process, electricity is transferred from one bus to another, which can be described as an AC power flow. To address the volatility of electricity prices, a stochastic programming approach is incorporated into the model, capturing price uncertainty through discrete scenarios.
[image: Flowchart illustrating a distribution network for energy management. It shows the interaction between Distribution System Agents (DSAs) and elements like homes and solar panels. Arrows indicate energy and information flow, leading to sections on operation strategy, demand response, price scenarios, energy interaction, energy storage, and shifting load. The chart concludes with optimal operation strategy and benefits allocation.]FIGURE 1 | System with interconnected DSAs.
Given the price scenarios, DSAs negotiate with each other and respond to the prices by shifting load demands. To this end, the energy interaction problem is formulated as a generalized Nash bargaining game model to incentivize energy interaction and achieve fair benefit allocation. Additionally, a penalty for DSAs caused by the demand response is incorporated into the model to account for comfort levels. DSAs develop optimal operation strategies to maximize cooperative benefits and allocate these benefits based on their respective contributions. Congestion may occur during the process of energy transmission, especially considering the energy interaction among DSAs. To address this issue, we adjust the operation strategies of DSAs and analyze the impact on operation costs.
3 ENERGY INTERACTION MODEL
An independent operation model of a DSA and an energy interaction model among multiple DSAs are established for the comparative analysis of the operation costs of DSAs. Compared to independent operations, DSAs achieve cost savings through energy interaction with neighbors, which includes energy sharing, renewable generation integration, energy storage scheduling, and load shifting. Then, based on the generalized Nash bargaining theory, cooperative benefits are allocated by leveraging the bargaining power parameters.
3.1 Basic operation optimization model of the individual DSA
The objective function of a DSA is to minimize operational costs in the face of uncertain pricing. To achieve this, the DSA uses demand response strategies and manages the charging and discharging of energy storage systems. The model, accounting for various price scenarios, is structured as follows:
[image: Optimization equation labeled (1a) for minimizing \( C_{Non} \) with respect to \( i, t, w \). Involves summation over \( \frac{1}{N_{Nom}} \), \( w \), \( t \), and \( \tau \). Includes terms with parameters like \( P_{pb}^{i,w} \), \( P_{ps}^{i,w} \), \( E_c^{i,t,w} \), and \( P_{Load, Pre}^w \).]
[image: The image contains a mathematical equation: \( P_{pi}^{i,t,w} + P_{Gi}^{i,t,w} + P_{H}^{i,t,w} + P_{fd}^{i,t,w} = P_{Di}^{i,t,w} + P_{Di}^{i,t,w} + P_{iol}^{i,t,w} + P_{Eo}^{i,t,w} \) for all \( i \in \mathcal{M}, \forall t \in \mathcal{T}, \forall w \in \Omega \).]
[image: Mathematical expression showing inequality: \(0 \leq P_{\text{h},i,t}^{\text{MUV}} \leq P_{\text{h},i,t}^{\text{PMAX}}\). This is valid for all \(i\) in set \(\mathcal{M}\), \(t\) in set \(\mathcal{T}\), and \(w\) in set \(\Omega\).]
[image: Mathematical expression featuring a double inequality for variables \(P_{i,t,w}^{b,\text{min}}\) and \(P_{i,t,w}^{b,\text{max}}\), bounded by zero and two indices \(i \in \mathcal{M}\), \(t \in \mathcal{T}\), and \(w \in \Omega\). This is labeled as equation (1d).]
[image: Mathematical expression showing an inequality: \(0 \leq P^{\text{LMUX}}_{it} \leq P^{\text{PHX}}_{it}\) for all \(i\) in set \(\mathcal{M}\), \(t\) in set \(\mathcal{T}\), and \(w\) in set \(\Omega\).]
[image: Mathematical equation displaying an inequality: zero is less than or equal to \( P_{\text{Ed}}^{\text{MIN}} \) which is less than or equal to \( P_{\text{Ed},i,t,w}^{\text{MAX}} \). This is for all \( i \) in \( \mathcal{M} \), \( t \) in \( \mathcal{T} \), and \( w \) in \( \Omega \). Equation number (1f).]
[image: The image shows a mathematical inequality: \( SOC_i^{\text{min}} \leq SOC_{i,t,w}^{\text{LW}} \leq SOC_i^{\text{max}} \), for all \( i \in \mathcal{M} \), \( t \in T \), \( w \in \Omega \).]
[image: Equation representing the state of charge with variables for different elements like charging efficiency, power, and time period, denoted by symbols and subscripts. Constraints apply for specific indices.]
[image: The image contains the mathematical equation: SOC^{24,w} = SOC_{exp} \, \forall i \in \mathcal{M}, \, \forall w \in \Omega, labeled as equation (11i).]
[image: Mathematical inequality showing that the power load at time t, denoted as \( P_{\text{Load, t}}^{\text{Min}} \), is constrained between two limits. These limits are determined by the power load of a preceding period, \( P_{\text{Load, Prev}} \), adjusted by a factor \( \alpha_t \).]
[image: Summation equation showing the equality of two expressions: the sum from t equals one to T of P sub Load, superscript k equals the sum from t equals one to T of P sub Load, superscript Pre, labeled as equation 1(k).]
where the objective function (1a) represents the individual operation cost [image: Mathematical notation showing a variable with a subscript "Non" and a superscript "i".] of DSA [image: Mathematical expression with the variable \(i\) belonging to the set \(\mathcal{M}\).], which includes the interaction cost with the distribution network, degradation cost of the energy storage, and comfortable penalty cost. The purchasing and selling prices denoted as [image: µ subscript pb superscript tw] and [image: Mathematical expression showing Greek letter mu with subscripts p and s, and superscripts t and w.], respectively, and quantities [image: Mathematical expression showing \( P_{pb}^{i, t, w} \), where \( i \), \( t \), and \( w \) are superscripts, and \( pb \) is a subscript.] and [image: Mathematical expression displaying a fraction. The numerator is \( P_i^{t,w} \) and the denominator is \( P_s \).] in scenarios [image: The mathematical expression shows "w" belongs to the set "Ω" (omega).] are used to calculate the operation cost with the distribution network. The degradation cost of energy storage consists of the unit cost [image: Please upload the image so I can provide the appropriate alt text for it.] and charging/discharging variables ([image: Mathematical expression with capital letter P followed by a subscript E and subscript c, and superscript i, t, and w.] and [image: Mathematical expression showing "P" with superscript "i, t, w" and subscript "Ed".], respectively). The comfort penalty cost is expressed as the product of the unit cost [image: Please upload the image or provide a URL for me to generate the alt text.] and load regulation quantities. The power balance constraint (Equation 1b) involves the forecast renewable generation [image: Mathematical expression showing "p" with superscripts "i, t, w" and subscript "Gen".] and load demand [image: The image shows the mathematical expression \( P_{\text{load, pre}}^{i,t} \).] at time [image: It looks like your input didn't include an image. Please try uploading the image again or provide a URL where the image can be accessed.], as well as the actual load demand [image: \( P_{\text{load}}^{i, t} \)] during the decision process. Constraints in Equations 1c, d define the lower and upper bounds ([image: Mathematical expression with the symbol "p" raised to the power of "max" with subscript "pb, i".] and [image: Mathematical notation showing the term \( P^{\text{max}}_{ps,i} \).], respectively) for purchasing/selling energy from/to a distribution network. The charging and discharging limitation of a battery is indicated by constraints in Equations 1e, f with upper bounds [image: The image shows the mathematical expression \( P_{E_{c,i}}^{\text{max}} \).] and [image: Mathematical expression showing the variable \( p^{\text{max}}_{Ed,i} \).]. The state of charge (SOC) is limited by constraints in Equations 1g, i, based on the storage capacity. The constraint in (1g) defines the minimum and maximum SOC values, while the constraint in (1h) specifies its balance expression. To ensure continuity in energy storage, the expected SOC must adhere to the constraint in (1i). For the demand response, the power reduction offered by each DSA [image: It seems there is an issue with the image upload or link. Please try uploading the image again or provide a URL. You can also include a caption for additional context if you wish.] should satisfy the constraint in Equation 1j, where [image: It seems like there was an error. Please upload the image or provide a URL, and optionally, add a caption for additional context.] represents the load shifting ratio. Given that load shifting is considered, the total daily demand should match the predicted value [image: Mathematical expression showing \( P_{\text{Load,Pre}}^{i,t} \).], as specified by the constraint in Equation 1k. The decision variables in the individual operation model are represented by the vector [image: Mathematical expression showing the vector \( \mathbf{x}_{\text{Non}}^{i,t,w} \) equals \([P_{Pb}^{i,t,w}, P_{Ps}^{i,t,w}, P_{Ec}^{i,t,w}, P_{Ed}^{i,t,w}]\).], [image: Variables labeled "SOC" and "P" with indices "i, t, w" and subscript "Load" for P.].
3.2 Branch power-flow formulation
Following Farivar and Low (2013), the power flow model is established in a radial network using angle and conic relaxation. Additionally, quadratic terms in the power flow constraints are neglected since the branch powers [image: Mathematical notation displaying the variable \( p_{j,t,w} \) with subscripts \( j \), \( t \), and \( w \).] and [image: Mathematical expression showing a variable: lowercase "q" with subscripts "j, t, w".] are significantly larger than the quadratic terms in the branch flow equation. Consequently, the expression is simplified as follows:
[image: Mathematical formula showing \( p_{i,j,w} = -\sum_{i=h} p_{i,j,w} + \sum_{k=j} p_{k,i,w} \). The notation \( V(i,j) \in \mathcal{E} \) and equation number (2a) are included.]
[image: Equation labeled (2b) showing \( g_{i,j,w} = - \sum_{k = i}^j Q_{i,j,w} + \sum_{k} Q_{j,k,w} \) for all \((i,j)\) belonging to set \(\mathcal{E}\).]
[image: The image shows the mathematical equation: p sub i, L, N asterisk equals P sub i, L, W divided by k minus the expression in parentheses P sub i, L, W minus P sub i, L, N close parentheses. This is labeled as equation 2c.]
[image: Equation representing \(q_{i,\text{LM}}\), which equals \(Q_i^{\text{diff}}\) minus \(Q_{i,\text{pre}}^{\text{diff}}\), denoted as equation 2d.]
[image: A mathematical constraint expression showing inequalities: Negative \( P_{\text{max}}^{ij} \) is less than or equal to \( P_{\text{ij,HM}} \), which is less than or equal to \( P_{\text{max}}^{ij} \), for all pairs \((i,j)\) belonging to set \(\mathcal{E}\). It is labeled as equation \( (2e) \).]
[image: A mathematical expression showing the relationship between various terms: \(Q_{\text{max}}^{\text{min}}\), \(Q_{ij,t,M}\), and \(Q_{\text{max}}^{\text{max}}\). It includes the inequality \(Q_{\text{max}}^{\text{min}} \leq Q_{ij,t,M} \leq Q_{\text{max}}^{\text{max}}\) for all pairs \((i,j)\) in set \(\mathcal{E}\). Marked as equation (2f).]
[image: Mathematical expression showing the inequality \(P_{\text{d,min}} \leq \frac{P_{\text{d,max}}}{4} \leq \frac{S^{\beta}}{\gamma} \leq P_{\text{s,max}}\).]
[image: Formula showing inequality: \(Q_{\text{demand}}^{\text{min}} \leq Q_{\text{demand}}^{\text{HW}} \leq Q_{\text{demand}}^{\text{max}}\), labeled as equation (2h).]
[image: The image displays a mathematical equation: \( U_{ij} = U_{LM} - 2(P_{ij, LM} x_{ij} + Q_{ij, LM} y_{ij}) \)  for all \( (i,j) \) in set \( \varepsilon \), labeled as equation (2i).]
[image: Equation showing inequality for \( U_{ijw} \) with indices \( i, j \) in set \( N \), \( t \) in set \( T \), and \( w \) in set \( \Omega \). \( U_{\text{min}} \leq U_{ijw} \leq U_{\text{max}} \).]
where the active and reactive powers in a branch are defined by constraints in Equations 2a, b, while the injection power of node [image: Mathematical expression showing "i" as an element of the natural numbers, represented by the symbol \(\mathbb{N}\).] can be obtained using constraints in Equations 2c, d. Constraints in Equations 2e, f set the limitation of branch flow for all branches [image: Mathematical expression showing a pair \( (i, j) \) belonging to set \( \mathcal{E} \).]. The active and reactive bounds supported by the distribution network are specified by constraints in Equations 2g, h. The square of magnitudes of nodal voltage is provided by Equation 2i, and the constraint in Equation 2j ensures that [image: Mathematical expression representing the variable \( U \) with subscripts \( i, t, w \).] always remains within the interval [image: Mathematical expression depicting a range with a minimum value \( U_{\text{min}}^i \) and a maximum value \( U_{\text{max}}^i \).].
3.3 Operation cost for cooperative DSAs
Supported by the distribution network, DSAs engage in energy interaction with neighbors to share idle energy while reducing disturbance to the main grid. Taking into account the impact of uncertain prices and the demand response, their cooperative formulation is expressed as follows:
[image: Mathematical equation for cost minimization: \( C_{\text{Tra}} = \min_{i,t,w} \frac{1}{T_{\text{w}}} \sum_{w=1}^{W} \frac{1}{W} \sum_{t=1}^{\tau} \left( \mu_t^w p_{b}^w P_{b}^w + \mu_t^w p_{s}^w P_{s}^w + c_{\text{E}} \left( P_{\text{Ex}}^t + P_{\text{El}}^w \right) \right. +  \left. c_{\text{Load}} \left( P_{\text{Load}}^t - P_{\text{Load,Ref}} \right)^2 \right) \).]
[image: Mathematical equations with variables and indices. The top equation references figures 1c, 1k, 2a, 2b, 2d, and 2j. The main equation involves terms with superscripts "w" and indices indicating physical conditions, and ends with equation number 3b in parentheses.]
[image: Mathematical equation showing a summation from i equals one to capital M of p sub i, superscript l, w, over T sub h, n, equals zero, with the label (3c) on the right side.]
[image: The image contains a mathematical equation: \(p_{\text{int}} = \frac{p_{\text{IM}}w}{k} - \left(p_{\text{IM}b} + p_{\text{IM}} - p_{\text{IM}m} - p_{\text{IM}b}w \right)\), labeled as equation (3d).]
[image: Mathematical notation stating: For all elements \(i\) in set \(M\), for all elements \(j\) in set \(T\), and for all elements \(w\) in set \(\Omega\).]
Unlike the individual operation in model (1), the interaction variable [image: Mathematical expression displaying \( p_{Tra}^{i, t, w} \).] is introduced by the constraint in Equation 3b. Considering energy interaction, DSAs maintain the supply–demand balance through energy exchange with the main grid and neighboring DSAs. The constraint in Equation 3c ensures that the total power output equals the power imported from neighbors’. Additionally, the net injection at node [image: Please upload the image so I can provide the appropriate alt text.] incorporates energy interaction among DSAs, as detailed by the constraint in Equation 3d. The decision variables in cooperative mode are represented by the vector [image: Equation showing variables related to power and state of charge: \( x_{Tra}^{i,t,w} = [P_{Pb}^{i,t,w}, P_{Ps}^{i,t,w}, P_{Ec}^{i,t,w}, P_{Eld}^{i,t,w}, SOC^{i,t,w}, P_{Tra}^{i,t,w}, P_{Load}^{i,t,w}] \).].
3.4 General Nash bargaining game-based energy interaction
The general Nash bargaining game-based scheduling strategy is proposed to incentivize energy interaction among DSAs and ensure that benefits are allocated according to the contribution of each participant.
[image: Mathematical expression with the objective to maximize the product from i equals 1 to M. The expression inside the product is \((C_{\text{Nom}} - (C_{\text{T}i} + C_{\text{Ea}i}))^{w_i}\). The equation is labeled as (4a).]
[image: \( C_{lm} + C_{pay} \leq C_{nom} \, \forall \, i \in M, \) \(\frac{C_{lm}}{C_{trend}}\).]
[image: Mathematical equation showing the sum from i equals one to M of C_pi to the power of i equals zero, labeled as equation 4c.]
DSAs engage in energy interaction with neighbors to maximize social welfare, as expressed in the objective function (Equation 4a). The constraint in Equation 4b ensures that the cooperation cost does not exceed the cost of individual operation, thereby encouraging DSAs to participate in energy interactions. The purchasing cost of a DSA in an energy interaction must equal be to the selling income of neighbors, as represented by the constraint in Equation 4c. Additionally, the contribution of each participant is calculated using the coefficient [image: It seems like there's a mistake, as no image was uploaded. Please try uploading the image again, and I'll help with the alt text.], and the expression is
[image: Fraction with a numerator and a denominator, both involving summations. The numerator is one over W times the sum from one to W of the sum of terms involving P and T variables, each raised to various powers. The denominator follows a similar pattern, also involving P and T variables with exponents, enclosed by square brackets. Expression is labeled as equation five.]
where the bargaining power [image: Greek letter alpha, subscript i.] is determined by the ratio of net energy transmission of a DSA to the total energy transmission of all participants.
3.5 Decomposition and solution of the general Nash bargaining problem
According to the proposition put forward by Wang and Huang (2016), the optimal solution of the Nash bargaining problem is equivalent to the cost minimization of DSAs. By combining the individual rationality condition with the constraint in Equation 4b, a feasible payment allocation [image: Mathematical notation showing \( C^{i} \) over \( p_{\alpha \beta y} \).] always exists, which enhances cost reduction. Consequently, the general Nash bargaining-based energy interaction problem can be decomposed into two subproblems: the operation cost minimization problem (P1) and the bargaining problem (P2) (Kim et al., 2019). The optimal results are obtained by solving these two subproblems sequentially. Considering whether DSAs participate in energy interaction or not, the operation cost minimization problem (P1) encompasses both the individual operation model (1) and the cooperative operation model (3). Since the operation optimization problem (P1) consists of a quadratic objective and linear constraints, the optimal solution can be obtained by directly solving the convex problem. This optimal solution is then used to calculate the bargaining problem (P2), utilizing the value of [image: Mathematical notation with the Greek letter alpha subscript i, representing a specific element in a sequence or series.] in (5):
[image: Maximize the product from i equals one to M of the expression \( (r^i - C_{fpay}^i)^{v^i} \), subject to constraints (4b) and (4c), as shown in equation (6).]
where [image: Equation showing η superscript i asterisk equals C superscript i asterisk subscript Non minus C superscript i asterisk subscript Tra.] represents the cost saving of cooperative DSA [image: It seems there's an issue with the image upload. Please try uploading the image again, and I'll provide the alternate text for it.] through energy interaction. To allocate the benefits, the bargaining problem (P2) is transformed into a convex problem by taking the logarithm of (6):
[image: Minimize the sum from i equals one to M of negative alpha sub i times the natural logarithm of r sub i star minus C E sub i hat, subject to constraints 4b and 4c. Equation 7.]
According to Zhong et al. (2020), since the objective function [image: Natural logarithm function notation with a placeholder dot inside parentheses.] increases monotonically, the optimal solution can be obtained by solving the model (7). An improved alternating direction multiplier method (ADMM) algorithm is proposed to solve the energy interaction problem in a distributed manner. To avoid updating the multiplier in a centralized way, each DSA interacts with its neighbors to share local information. For operation problem (P1), it is decomposed by introducing auxiliary variables [image: Mathematical expression showing "P subscript Tra comma i superscript j comma t comma w".] and [image: Mathematical expression with a subscript and superscript: "P sub Traj, j" with superscripts "i, t, w".]. The details of the algorithm are shown in Algorithm 1. The couple constraint in Equation 3c is decomposed as:
[image: Equation showing two expressions. First expression: P_subscript rm_superscript Low equals P_superscript Low_subscript rmin_i multiplied by λ_superscript i_k. Second expression: P_subscript Tra_superscript Low equals P_superscript Low_subscript Tra_i multiplied by μ_superscript i_k. Equation is labeled (8).]
where [image: The image shows the mathematical symbol for lambda with a subscript i.] and [image: Sorry, I cannot generate alt text for the image without seeing it. Please upload the image or provide a URL.] represent the Lagrangian multipliers. The augmented Lagrangian function of the energy interaction model is then expressed as follows:
[image: Mathematical expression labeled equation (9). It involves a summation of terms related to training costs and power differences. The expression includes summation symbols, subscripts, and exponents, with variables representing costs and power metrics. Specific elements include \(C_{i}^{\text{DSA}}\), \(C_{i}^{\text{Tra}}\), \(\lambda_{j}^{t}\), \(P_{i,j,t}^{\text{u,w}}\), and  \(\rho_{l}/2\), among others.]
where [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL.] is the penalty parameter for DSA [image: It seems that the image did not upload correctly. Please try uploading the image again, and I will be happy to help with the alternate text.]. After each iteration, the updated expression of [image: Greek letter lambda with superscripts i and t.] at iteration [image: Please upload the image or provide a URL so I can generate the alt text for you.] is
[image: Mathematical equation expressing \( u^i(k) = \lambda u^i(k-1) + \rho_i(k) \left( \frac{P^{\text{HV}}_{\text{inv}}}{T_{\text{inv}}} - \frac{P^{\text{HV}}_{\text{rail}}}{T_{\text{rail}}} \right) \), labeled as equation (10).]
The iteration converges when the primal and dual residues satisfy the following conditions ([image: The image shows the symbol epsilon with a superscript indicating "private," commonly used in mathematical or scientific contexts.] and [image: Greek lowercase letter epsilon with a superscript reading "Dual" in italic font.]):
[image: Equation depicting differences in power terms. The difference between \( P_{\text{tin}}^{j,lw} \) and \( P_{\text{tin}}^{j,lw} \) is less than or equal to \( P_{ri} \). Additionally, the difference in power at times \( k-1 \) and \( k \), denoted as \( P_{\text{tin}}^{j,lw}(k-1) - P_{\text{tin}}^{j,lw}(k) \), is less than or equal to \( P_{\text{dual}} \). Equation number is (11).]
Algorithm 1. An improved ADMM algorithm for solving the energy interaction problem of the DSA.
	Input: Set iteration index [image: Mathematical expression: k belongs to the closed interval from 0 to K.], primal residue [image: Mathematical notation showing the Greek letter epsilon with a superscript "pri".], dual residue [image: The expression "epsilon superscript Dual" is displayed in italic font.], and step size [image: Mathematical notation displaying the Greek letter rho with subscript "i" and function "k" in parentheses, denoting a variable or parameter related to a specific mathematical or scientific context.].
	1:repeat
	2:   Each DSA solves the local energyinteraction problem (9).
	3:   Update the multipliers [image: Mathematical expression showing lambda subscript i, superscript t, of k.] in (10).
	4:   Each DSA [image: Please upload the image or provide a URL for which you need the alternate text.] computes the primal and dualresidues. If the stopping criteria are satisfied, terminate; otherwise,repeat Step 4.
	5:until Stopping criteria (11) are satisfied,terminate.

4 CASE STUDY
Numerical simulations are conducted in a distribution network to evaluate the effect of the demand response and uncertain prices on energy interaction. The system aims to verify the performance of the operation strategy based on the general Nash bargaining game theory. In the case study, simulations are performed on an IEEE 33-bus system with three DSAs located at buses 11, 23, and 29. The operation data, including the forecast value of price, generation, and load demand, are obtained from the study by Chen et al. (2017) and Lu et al. (2020). All simulations are solved using the Gurobi solver (Gurobi Optimization, 2020) in the Python environment on an Intel Core i7 computer.
4.1 Operation cost considering the stochastic prices and demand response
The effect of stochastic prices on the operation strategy is analyzed by comparing the operation costs under multiple price scenarios with the forecast value. The fluctuation in the market prices is modeled using the given probability distribution function, which is assumed to obey the Gaussian distribution. As shown in Figure 2, the forecast values of TOU prices are selected as the mean value with a variance of [image: The image shows the mathematical expression "1 times ten to the power of negative four" in scientific notation.]. Although large-scale scenarios are necessary to characterize random factors, they impose a heavy computational burden. To address this, a scenario reduction method is applied to decrease the number of scenarios. A total of 1,000 scenarios are generated by using Monte Carlo sampling, and K-means-based clustering reduction is utilized to generate 10 typical scenarios (Wang et al., 2021). The expected values of these multiple scenarios are selected as a result of the stochastic optimization, while the cost in the deterministic optimization is determined by the reaction of the DSAs to the predictable price. A general Nash bargaining-based interaction scheme is adopted to allocate the benefits when DSAs participate in energy interaction. To analyze the effect of the price on energy interaction, as shown in Figure 3, we assume that the predicted values of renewable generation and load demand are accurate. Since two important factors, energy interaction and demand response, affect the operation strategy, this paper analyzes the impact of these factors on the optimal operation strategy.
[image: Graph showing electricity price in CNY per kWh over 24 hours. The plot includes lines for \( \beta_b \) and \( \beta_s \) bound and average prices. Price spikes occur around 10:00 and 15:00 hours.]FIGURE 2 | TOU price scenario with the distribution network.
[image: Line graph displaying generation and load forecasts over a 24-hour period. The x-axis represents time in hours, and the y-axis indicates forecasted values in kilowatts. Multiple curves for different datasets show varying trends, with distinct patterns for generation and load.]FIGURE 3 | Forecast of renewable generations and loads.
The deterministic and stochastic optimization results without/with the demand response are shown in Tables 1, 2, respectively. A negative value indicates the benefit that DSAs gain from selling energy to the distribution network or neighbors. It can be observed that DSAs reduce their operation cost when they participate in energy interaction. Considering the stochastic prices given in Table 1, the total operation cost of three DSAs is reduced by 24.20% under deterministic pricing, while the cost is reduced by 5.44% under uncertain pricing. In other words, compared with deterministic pricing, cooperative profit in energy interaction decreases by 16.98% in stochastic scenarios. The reason may be that, compared to deterministic prices, cooperative costs vary with the price scenarios, ultimately increasing the expected costs.
TABLE 1 | Operation costs without the demand response (CNY).
[image: Table outlining various costs under different scenarios based on congestion and pricing. Columns include cost categories (C_i_Non, C_i_Tra, C_ej_Pay, C_i_Total) for DSA 1, DSA 2, and DSA 3. Costs are distributed under Deterministic and Stochastic pricing with and without congestion. Totals are listed in the last column.]TABLE 2 | Operation costs with the demand response (CNY).
[image: Table showing costs related to congestion and pricing types, both deterministic and stochastic. Columns include Congestion, Price, Cost, DSA 1, DSA 2, DSA 3, and Total. Specific values are listed under each category with totals, some marked as unavailable.]Considering the demand response, DSAs shift loads to periods of plentiful generation or lower demand through price adjustments or monetary incentives. They also enhance the efficiency of renewable energy utilization by coordinating the charging and discharging decisions of energy storage systems. As shown in Table 2, DSAs respond to prices through peak shaving and valley filling, which decreases the load demand during peak price periods. Consequently, operation costs—whether for individual or cooperative operations—significantly decrease compared to those given in Table 1. In other words, energy interaction among multiple DSAs enhances adaptable performance when considering the demand response.
The operation costs in energy interaction among DSAs will vary if the transmission lines have limitations within the distribution network. For simplicity, a maximum capacity of 100 kWh is considered for the line between nodes 2 and 3. This constraint causes decision changes for DSAs during the process of energy transactions with the distribution network and their neighbors. It can be observed that cooperative costs are always less than those of individual operations, and the demand response further reduces these operation costs.
Congestion impacts the operation decisions and, subsequently, the cooperative costs of DSAs. It restricts energy transmission for DSAs regardless of whether the demand response is considered. For deterministic prices, DSAs schedule battery usage to alleviate congestion, resulting in lower operation costs. However, stochastic prices compel DSAs to respond dynamically, leading to similar final operation costs with normal energy interaction since the total demand remains consistent.
4.2 Energy interaction with the distribution network
Figures 4, 5 illustrate the energy interaction results between the distribution network and DSAs over the course of a day. The positive/negative values represent the energy purchased/sold from/to the distribution network, respectively. We comparatively analyze the interaction quantities between the distribution network and multiple DSAs, regardless of their participation in energy interaction. Given the price scenarios, DSAs adjust their demand for purchasing/selling electricity to achieve cost minimization.
[image: Three bar graphs labeled Figures 4a, 4b, and 4c illustrate power usage in kilowatts over a twenty-four-hour period. Each graph compares power levels with and without energy interaction, showing variations in power demands. Figures 4a and 4b show different demand scenarios labeled as DSA1 and DSA2, while Figure 4c represents DSA3. The x-axis represents time in hours, and the y-axis represents power in kilowatts.]FIGURE 4 | Interaction between the distribution network and DSAs ignoring the demand response. (A) DSA 1, (B) DSA 2, and (C) DSA 3.
[image: Three bar graphs compare power usage over a 24-hour period with and without energy interaction for different demand side aggregators (DSAs). Each graph shows power in kilowatts on the y-axis and time in hours on the x-axis. Figure 5a represents DSA1, Figure 5b represents DSA2, and Figure 5c represents DSA3. Each graph illustrates varying patterns in power demand, with orange and green bars indicating scenarios without and with energy interaction, respectively.]FIGURE 5 | Interaction between the distribution network and DSAs considering the demand response. (A) DSA 1, (B) DSA 2, and (C) DSA 3.
Figure 4 shows the comparison of the effects of individual versus cooperative operation among DSAs on energy interactions with the distribution network. An individual DSA satisfies power balance by leveraging the distribution network and energy storage. Due to the scheduling limitation of the battery, the individual DSA may need to purchase electricity at a high price, increasing the operation costs. In contrast, cooperative DSAs form a group and share idle energy to balance their energy needs. DSAs purchase energy at 0:00–5:00 and 20:00–24:00 while selling energy at 10:00–15:00 to maximize their cooperative benefits during energy interactions. The load regulation capability of DSAs is enhanced when considering the demand response. As shown in Figure 5, DSAs achieve peak shaving and valley filling by leveraging the demand response and energy interactions.
To further analyze the energy interaction, the total interaction quantity between DSAs and the distribution network is summarized in Table 3. The data show that the interaction between DSAs and the distribution network is influenced by both the interactive behavior of DSAs and demand response. We observed that the energy interaction among DSAs can reduce their dependence on the distribution network, enhancing their ability to cope with price uncertainty. To maintain energy balance, they purchase less energy from the distribution network and reduce the quantity of energy sold. Since the demand response is closely tied to electricity prices, DSAs increase their demand when the prices are lower, effectively responding to price uncertainties.
TABLE 3 | Total interaction quantity between DSAs and the distribution network (kWh).
[image: Table showing cooperation and demand response scenarios. For no cooperation, buying results in 1,584.09 without demand response and 1,626.33 with it; selling results in 732.95 and 775.18 respectively. For cooperation, buying results in 1,208.73 without demand response and 1,262.64 with it; selling results in 357.58 and 411.49 respectively.]4.3 Analysis of optimal results of the energy storage
The scheduling results of energy storage without/with the demand response are given in Figures 6, 7, respectively. The positive values represent storage discharging, while the negative values indicate storage charging. These figures demonstrate that energy storage can be utilized to satisfy the supply–demand balance through an internal scheduling strategy. As shown in Figure 6, the depth of charge/discharge is higher for the DSA operating individually without a demand response as energy storage is the primary means of shifting energy demand to other periods. This is particularly evident for DSA 1 at 10:00 and DSA 3 at 19:00. Although cooperative DSAs reduce the depth of charging/discharging, energy storage still works in conjunction with energy interaction to maintain energy balance.
[image: Three bar charts labeled Figure 6a, 6b, and 6c compare power usage over 24 hours. Each chart includes two scenarios: "Without Energy Interaction" in orange, and "With Energy Interaction" in green. Power is measured in kilowatts. Variations in power use patterns between scenarios are shown, with similar trends across the charts. Each chart represents different demand response scenarios labeled DSA1, DSA2, and DSA3.]FIGURE 6 | Scheduling result of the energy storage without the demand response. (A) DSA 1, (B) DSA 2, and (C) DSA 3.
[image: Three bar graphs labeled Figure 7a, 7b, and 7c compare power usage with and without energy interaction over 24 hours. The y-axis represents power in kilowatts, ranging from negative 15 to 25. Each graph includes "With Demand Response" marked below the x-axis. Orange bars depict "Without Energy Interaction," and green bars represent "With Energy Interaction." The graphs show variations in power levels through the day, highlighting the effect of energy interaction and demand response.]FIGURE 7 | Scheduling result of the energy storage with the demand response. (A) DSA 1, (B) DSA 2, and (C) DSA 3.
The scheduling results of the energy storage considering the demand response are shown in Figure 7. We can observe that the reliance on energy storage decreases as supply–demand balance can be achieved through load shifting. Consequently, the charging and discharging depth of the energy storage for DSA 1 and DSA 3 is reduced, which, in turn, lowers the degradation costs in the objective function.
4.4 Analysis of energy interaction among DSAs
The energy interaction quantities among DSAs are given in Figure 8 when they cooperate with neighbors to share idle energy. The positive values indicate DSA [image: It seems there isn't an image attached. Please try uploading the image again or provide a URL. If you have any additional context or a caption, feel free to include that as well.] purchasing energy from neighbors, while the negative values represent selling energy to others. Compared to individual operation, DSAs achieve energy balance by combining energy interaction, load shifting, and energy storage scheduling. This approach enhances energy self-sufficiency through energy interaction, potentially reducing the reliance on the distribution network.
[image: Three bar graphs labeled Figure 8a, Figure 8b, and Figure 8c display power in kilowatts over 24 hours for scenarios with and without energy interaction. Each chart shows variations in power, with distinct patterns for both conditions, highlighted with different colors.]FIGURE 8 | Interaction among DSAs. (A) DSA 1, (B) DSA 2, and (C) DSA 3.
4.5 Distribution of the node voltage
The node voltage varies with the energy interaction and demand response. Nodes 11, 23, and 29, connected to DSAs, serve as examples, and their voltages are shown in Figure 9. Although the voltage fluctuates across various simulation scenarios and periods, it always remains within the boundary limits. DSA 1, which has the highest load demand, experiences the largest voltage fluctuation, ranging from 0.986 p.u. to 1.001 p.u. Conversely, DSA 2, with the smallest load demand, exhibits relatively smooth voltage fluctuations. The demand response also leads to significant voltage fluctuations at different times. As shown in Figures 9A, C, DSAs shift loads to maintain the supply–demand balance, thereby altering the voltage distribution within the network.
[image: Three line graphs labeled Figure 9a, 9b, and 9c, titled DSA1, DSA2, and DSA3 respectively, display voltage over time (hours). Each graph includes lines for scenarios: Without Energy Interaction, With Energy Interaction, Demand Response, and With Energy Interaction + Demand Response. Voltages range from 0.984 to 1.004 per unit. Each scenario shows differing voltage trends throughout a 25-hour period.]FIGURE 9 | Voltage of the node connected to multiple DSAs. (A) DSA 1, (B) DSA 2, and (C) DSA 3.
5 CONCLUSION
This paper presents an energy interaction framework for DSAs to enhance the local consumption of renewable generation. A general Nash bargaining theoretic model is established, taking into account the effect of uncertain prices and demand response. The typical price scenarios are depicted via Monte Carlo sampling and clustering. Given the price scenarios, DSAs make the optimal decisions by shifting loads to the plentiful generation or lower demand time through prices or monetary incentives. To solve the energy interaction model, it is decomposed and transformed into a traceable problem by leveraging the logarithmic transformation. In addition, the optimal power flow constraints are incorporated to improve the model’s practicality. The limitation of transmission capacity alters the operation strategies, which affects the operation costs. It decreases the energy exchange with the distribution network and increases the energy interaction among DSAs. An improved ADMM is proposed to solve the energy interaction problem using local information. Numerical simulations are conducted on an IEEE-33 bus system, demonstrating that uncertain prices may increase the total operation costs, while the demand response improves scheduling flexibility. Future work will focus on addressing energy transmission insufficiency due to capacity limitations during energy interactions.
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The high inductance current ripple and the PV voltage fluctuations limitation at the DC (direct current) -DC link have been the unsolved problems in the photovoltaic systems tied in grid. A control strategy with a current hysteresis loop is proposed to address the issues of high inductance current ripple in photovoltaic systems which can achieve real-time duty cycle regulation. Differing from the conventional mode that uses one switch in the buck–boost DC–DC link, two switches have been designed here to separate the buck and boost modes for the coordinated control, which can achieve a wide PV voltage fluctuations range. Based on the conventional fixed-duty cycle determination method, a real-time duty cycle determination method is proposed by introducing changes in inductance current. In order to improve power conversion efficiency, the incremental conductance method is improved by introducing the steepest gradient descent to quickly achieve the maximum power point tracking. This study experimentally verifies the proposed current hysteresis coordinated control method, effectively suppressing the ripple of the inductor current and expand the PV voltage fluctuation in the DC–DC link on the basis of maintaining power conversion efficiency as much as possible.

Keywords: photovoltaic panel, coordinated control strategy, current hysteresis loop control, buck-boost circuit, DC-DC link

1 INTRODUCTION
In the last 20 years, many studies have focused on the topology of DC–DC links and converter technology for the DC–AC interface of photovoltaic (PV) cells and the grid. DC–AC interface technology has included voltage source converters (VSIs) adapted for the interface of PV panels with the grid (Teodorescu et al., 2011). To address the constraint of low leakage current for non-isolated grid-tied converters, a series of different converter structures and control schemes have been investigated (Alluhaybi et al., 2020; Khan et al., 2020), some considering stochasticity (Nan et al., 2018). In addition to converter configuration reformation, the topology and control strategy of the DC–DC link is also a key area of improvement for less harmonics and higher transferring efficiency. Liao et al. (2017) proposed a novel PV converter with a PV current decoupling strategy which can achieve maximum power point tracking performance without increasing electrolyte capacitance. The current decoupling tank in the proposed PV converter can buffer the difference between the DC current generated by the PV panel and the rectified sinusoidal AC of the power grid. Mohammadi et al. (2018) proposed a novel switching frequency modulation method to address the trade-off between voltage gain and voltage harmonics caused by the coupling of the duty cycle and modulation ratio. Ho and Siu (2019) proposed a new converter structure in which high-frequency switches are used to control the inductor current, while low-frequency switches form a filter structure that adapts to different operating conditions. Unfortunately, the designed structure led to more energy loss.
The output voltage of PV panels is often affected by ambient factors such as sunlight intensity, temperature, and shadow. A buck–boost converter is required to adapt to a wide range of DC voltage fluctuations. Callegaro et al. (2019) proposed a single-phase, single-stage buck–boost converter which uses five switches (implemented using MOSFET power with external fast recovery diodes) to provide buck–boost operation for the wide range of changes in PV output voltage while eliminating leakage current. In order to improve power extraction under the ambient condition, a buck–boost single-phase transformer-free grid-connected photovoltaic converter based on coupled inductance has been proposed by Kumar and Singh (2019) and Hafiz et al. (2021) which has the ability to extract maximum power from the series of photovoltaic panels. Dutta and Chatterjee (2018) proposed a day-and-night operational single-phase energy stored quasi-Z-source-cascaded H-bridge (ES-qZS-CHB) converter PV system to solve the active and reactive power control problem. They designed optimal multiple combinations of duty cycle and modulation ratio to achieve the same voltage gain during night operation.
In order to balance the output voltage of input-independent-output series modules, bidirectional buck–boost and LC series power balancing units have been proposed for multiple PV panels by Dutta and Chatterjee (2020). Liang et al. (2021) proposed a multi-PV panel with battery and bidirectional converter interconnected with a three-phase grid. A buck–boost converter is connected to the main VSC with BES is responsible for the load level adjusting and the MPPT voltage. A new solar PV-fed dynamic voltage restorer (DVR) based on a trans-Z-source converter was proposed by Huang et al. (2021) to improve the power quality of on-grid PV systems, in which a hybrid unit vector template with maximum constant boost control method was proposed for transZSI-DVR. Chauhan et al. (2021) outlined an integrated three-phase transformer-less PV converter structure which utilizes an interleaved dual output buck–boost converter to obtain the boosting voltage. From a single PV source, the voltage waveform of the output terminal can be synthesized into three levels; the high-frequency dynamic is completely eliminated when the voltage passes through parasitic capacitors, effectively suppressing current leakage.
On the basis of a buck–boost circuit, coupling inductance has been proposed by Ali et al. (2021) to regulate power output, forming a secondary voltage gain adjustment strategy. In order to reduce the leakage current and number of components and to improve transfer efficiency, a transformer-free converter structure based on MOSFET power switches was proposed by Dhara and Somasekhar (2022); it shares a common ground between the PV source and grid and applies a zero-beat controller instead of a PI controller. In Yari et al. (2022), a three-phase multi-level converter based on three-level neutral point clamp quasi Z-source topology was proposed to implement maximum power tracking. These methods give almost no or very little consideration for energy conversion efficiency.
In order to achieve high efficiency and negligible loss during high-frequency switching, Gao et al. (2022) proposed a buck–boost PV converter structure with six switches which operates at different frequencies under a discontinuous mode with zero current leakage. A new seven-level common ground (CG) switched capacitor (SC)-based grid-tied transformer-less converter was introduced in Husev et al. (2022) which has three times the boosting capability of input voltage. To step up the input PV voltage and facilitate seven steps in output voltage, two SC cells are connected in parallel.
Inspired by the research outlined above, we designed a buck–boost structure and propose an effective coordinated control in DC–DC and DC–AC to improve power conversion efficiency and reduce harmonics. The configuration and operation mechanism of the PV converter with buck–boost DC links is analyzed in the second section. The third section discusses a coordinated control strategy with the current hysteresis loop on the DC–DC link and converter. To validate the superiority of the proposed coordinated control strategy with the current hysteresis loop strategy, a rigorous experimental evaluation was conducted by designing a rapid control prototype (RCP) framework which gives the simulation verification of the designed converter and the proposed coordinated control strategy, detailed in the fourth section. Conclusions are drawn in the fifth section.
2 ANALYSIS OF THE STRUCTURE AND OPERATING MECHANISM OF PHOTOVOLTAIC CONVERTERS BASED ON A BUCK–BOOST DC LINK
The circuit structure of a buck–boost converter with a single photovoltaic (PV) panel is shown in Figure 1. The coordinated current hysteresis control proposed in this paper mainly controls the S1 and S2 switches of the DC link to accelerate its dynamic response ability; these are independently controlled with the converter switches S3–S8. The rationality of the switch control design in the DC–DC link directly affects the quality of the voltage output by the converter. Therefore, the focus here is on the switch control of the DC–DC link while ensuring that the converter switch is normally turned on or off.
[image: Diagram of a solar photovoltaic system connected to a grid. It includes diodes, inductors, and transistors labeled D1-D8 and S1-S8. Control strategies for S1-S2 and S3-S8 are highlighted. There are inputs for \(U_{dc}\), \(U_{abc}\), and PLL control signals.]FIGURE 1 | Circuit structure of the buck–boost converter with a single photovoltaic panel.
The current hysteresis control belongs to PWM (pulse width modulation) tracking technology, the basic idea of which is to compare the controlled variable (usually including the output voltage or the inductor current in the DC–DC link) with its given value. If the difference between the controlled variable and its given value is greater than the set upper limit value, the switch state is changed to reduce the controlled variable. If their difference is less than a set lower limit value, the switch state is changed to increase the controlled quantity. If their difference is between the lower and upper limits, the switch will be kept on. Therefore, the current hysteresis control belongs to the closed-loop control, which has the characteristics of real-time control and fast response speed. Moreover, by changing the upper and lower limits of error, tracking accuracy can be easily controlled. In fact, the current hysteresis control is a non-linear control that can significantly improve the non-linear dynamic performance of the converter. Considering that the PV systems are easily affected by environmental factors such as sunlight, temperature, and cloud cover, the variation range of the output voltage at the PV panel is relatively wide, which can lead to large fluctuations in inductance current. Therefore, the buck–boost converter using inductance current hysteresis control is introduced to adjust the PWM output signal based on the grid current as a reference in hysteresis control, thereby adjusting the duty cycle of the high-frequency switch and adjusting the inductance current in the buck–boost DC link.
In our work, the current hysteresis control of the DC–DC link introduces a current deviation detection loop comprising a limiting loop and a hysteresis comparison loop. Introducing the two loops creates a relationship between output voltage, output current, and inductor current, forming the current hysteresis control strategy based on the changes in output voltage, current, and inductor current to coordinate the on/off modes of S1 and S2 and limit the amplitude of the inductor ripple current. By using the current hysteresis control, sudden changes in input voltage will not have any impact on the average output voltage, only on ripple. Here, current hysteresis control is introduced. The control flow chart of the current hysteresis control is shown as Figure 2. When the transient current of the inductor exceeds a certain range [image: The image displays the mathematical inequality \( i_L \geq i_0 + 0.5 \Delta i_L \).] (iL is the actual value of the inductor current; [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] is the reference value of the inductor current; [image: Change in inductor current, represented by a delta symbol followed by the variable \(i_L\).] is the variation value of the inductor current) in real-time monitoring, the urgent mode current hysteresis control is started to regulate the duty ratio of the S1 and S2 switches to avoid excessive fluctuations in the inductor current. When the inductor current is within the range [image: Equation showing: \( i_L \leq i_0 + 0.5\Delta i_L \).], it falls in the normal mode, which is the actual processing scope of the PI control.
[image: Flowchart of a current hysteresis control process. It starts with sampling the inductance current, followed by limiting amplitude and hysteresis comparison. If the condition is met, it enters an urgent mode and turns off S1 and turns on S2. If not, it enters normal mode, turning on S1 and turning off S2.]FIGURE 2 | Control flow chart of the current hysteresis control.
Figure 3 shows the discrimination in the buck–boost mode. To select this mode, the corresponding switching signal needs to be given. Determining the buck or boost mode completely depends on the comparison of the voltage of capacitor [image: It looks like there was an error in displaying the image. Please upload the image file or provide a URL for me to generate the alt text.] and the output voltage [image: Mathematical expression in italic font representing "U" with a subscript of "PV".] of the PV panel. If [image: It seems there is no image provided. Please upload the image or provide a URL, and I will be glad to help with the alt text.] is lower than [image: It seems like there's no image visible for me to create alt text. Please upload the image, and I'll be happy to help.], it is in the buck mode, which means that the input voltage in the DC–DC link should be increased. If [image: The image shows the mathematical expression "U" subscript "PV" in italic font.] is higher than [image: It seems there might be an error with the image upload. Please try uploading the image again, and make sure to attach the file directly or provide a URL.], it is in the boost mode, which means that the input voltage in the DC–DC link should be decreased.
[image: Graph illustrating two modes: boost and buck. The graph shows voltage waveforms with `Upv` as input, and `Uout` as output. Boost mode is indicated at peaks, buck mode at troughs. Arrows and labels highlight each mode.]FIGURE 3 | Buck and boost mode discrimination.
According to the operating characteristics of the buck–boost converter under different operating modes, its operating mechanism is elaborated in detail as follows.
2.1 Buck mode: [image: Equation depicting a mathematical inequality: \( u_{\text{COU}} < U_{\text{PV}} \), where \( u_{\text{COU}} \) is less than \( U_{\text{PV}} \).] S1 is on, S2 is off; S1 is off, S2 is off
In Figure 4A, the voltage at the PV panel port is equivalent to the DC source [image: It seems there is no image attached. Please upload an image or provide a URL for me to generate the alt text.]. The voltage at the grid-tied point is assumed to be stable, and the capacitor used for voltage stabilization and connected in parallel with the PV panel is ignored. Hence, the [image: The expression shows "i" with a subscript "p" and "v".] current flowing out from the PV panel is equal to [image: Please upload the image or provide a URL, and optionally add a caption for additional context.]. When S1 is turned on and S2 is off, [image: Please provide the image you would like me to describe by uploading it or sharing a link. If you have any additional context or information, feel free to include that as well.] is also equal to [image: Please upload the image or provide a URL to it so I can help create the alt text.]. The inductor is charged, and the current flowing through it not only charges the capacitor but also supplies the grid. The voltage at both ends of the inductor is positive on the left and negative on the right, resisting the increase in current. In the PV panel, the output voltage is variable; hence, the output current [image: Mathematical notation showing "i" with subscript "p" and "v", in italic font.] is also variable. To maintain the output voltage of the DC link as a half wave sine, it is necessary for the S1 and S2 switches to be sinusoidal. Therefore, based on the equivalent circuit in the buck mode (Figure 4A), combined with Kirchhoff’s voltage and current theorem, the voltage and current relationship of the input and output ports of the PV panel and DC–DC link can be obtained as Equations 1, 2:
[image: Equation displaying \( \dot{i}_{pv} = \dot{i}_{d} = \dot{i}_{L} = \dot{i}_{c} + i_{ow} \) with a reference number (1).]
[image: Equation showing \( U_{pw} = U_L + u_{cw} \), labeled as equation (2).]
[image: Diagram illustrating a PV converter with different operational modes. Panel (a) shows Buck mode with S1 on, S2 off. Panel (b) shows Buck mode with both switches off. Panel (c) shows Boost mode with both switches on. Panel (d) shows Boost mode with S1 off, S2 on. Components include switches S1 and S2, diodes D1 and D2, inductors, capacitors, and output voltage U_ow. Arrows indicate current flow direction.]FIGURE 4 | Equivalent circuit for buck and boost mode. (A) Buck mode with S1 on and S2 off. (B) Buck mode with S1 and S2 off. (C) Boost mode with S1 and S2 on. (D) Boost mode with S1 on and S2 off.
According to Equation 2 the relationship between inductance current and voltage can be represented as Equation 3.
[image: Equation showing \( U_{\text{pv}} = L \frac{di_L}{dt} + u_{\text{con}} \), labeled as equation (3).]
According to Equation 3, further deformation can be carried out to obtain Equation 4.
[image: Equation showing a change in time interval, Δtᵢₗ, is equal to the difference between Uᵨᵥ and uₑₓₜᵣ over L, multiplied by Δt. This is labeled as equation (4).]
where [image: It appears that you've included mathematical notation and not an image. If you intended to upload an image, please try uploading it again. If you want a description of the mathematical notation, let me know!] is the inductor current variation value, [image: A mathematical notation showing the symbol "Delta t" with a subscript 1, indicating a specific time interval or difference.] is the time of switch being on. [image: It looks like you included LaTeX code instead of an image. If you have an image to upload, please try attaching it again.] = [image: It seems like there's an issue with the image upload. Please try uploading the image again, or provide a URL or description if available.], where [image: It seems like there's an issue with the way the image has been referenced. Could you please upload the image directly or provide a URL link? Optionally, you can add a caption for additional context.] is the duty cycle of the sinusoidal variation of S1 and T is the work period. [image: It seems there is no image uploaded. Please upload the image or provide a URL. If there's additional context or a specific area you want described, feel free to include that as well.] is expressed as
[image: Formula representing a calculation: \( d_{t} = \frac{u_{conv}}{U_{pr}} \), labeled as equation (5).]
where d1 is the ideal duty cycle of S1. The triggering pulse of S1 synchronizes with the phase change of the [image: Please upload the image or provide the URL of the image you would like me to describe.] voltage at the grid-tied point, which not only ensures that the capacitor voltage [image: It seems you're referencing an image, but the format provided is unclear. Please upload the image or provide a direct URL, and I’ll help create the alternate text.] is consistent with the grid but also ensures that the voltage waveform is a standard sine waveform. Hence, the duty cycle of S1 shown as Equation 5 is modified as 
[image: The equation shows \( d_i = \frac{u_{\text{con}}}{U_{\text{pv}}} + \rho \Delta l_i \), labeled as equation six.]
where [image: The formula shows rho equals L divided by the product of T and U subscript pv.]; [image: It seems there might be an error in your request as I do not see an image attached. Please try uploading the image again or provide a URL to the image if possible.] is the actual value of inductance current. In Equation 6 when ρ remains constant, the increased [image: A mathematical expression showing "Delta i sub L," which represents a change in the variable \( i_L \). This notation is often used in engineering and physics to indicate a variation or difference in a specific quantity.] implies that the actual value of the inductance current should be decreased. The maximum power point voltage [image: It seems like you've provided a text or equation snippet rather than an image. If you have an image you would like me to describe, please upload it or provide a link.] tracked by MPPT should be decreased, and d1 should be decreased. If [image: Delta i subscript L, representing a change in current with subscript L.] decreases, the actual value of the inductor current should be increased. Hence, the maximum power point voltage [image: Mathematical notation showing the symbol \( U_{PV} \) with "P" and "V" as subscripts.] tracked by MPPT should be increased and d1 should be increased. Adjusting the duty cycle expression in real-time ensures that the output voltage can still be maintained at a relatively stable level even when the voltage at the PV panel port changes. After obtaining the expression for the duty cycle, [image: Delta i sub L.] can be further expressed as
[image: The equation shows \(\Delta i_{L} = \frac{U_{\text{pv}} - u_{\text{out}}}{L} \cdot d_{i} \cdot T\), labeled as equation (7).]
Let setting [image: ΔUₚᵥ equals Uₚᵥ minus u_subscript cₒᵤ.]. Δ [image: It seems like there's an issue with displaying the image. Please upload the image or provide a URL so I can generate the alternative text for you.] includes the fluctuation of the PV panel port voltage and its impact on the capacitor output voltage, as the fluctuation of capacitor output voltage is caused by improper control in buck mode. Equation 7 can be further expressed as Equation 8.
[image: Equation depicting a change in current \( \Delta i_L = \frac{\Delta U_{pr}}{L} \cdot d_i \cdot T \). It is labeled as equation (8).]
The average current passing through S1 in one switching cycle is Equation 9.
[image: Equation showing \(i_{a_l r} = d_i \cdot i_{e_n}\), labeled as equation (9).]
When the driving signal of switch S1 is turned to a low level, the switch is turned off, and the inductor L is discharged through the freewheeling diode D1. The inductor current gradually decreases, and the inductor voltage reverses to resist the decrease in inductor current. The output voltage is maintained by the discharge of the capacitor [image: It seems like there was an issue with the image upload. Please try uploading the image again, and I'll be happy to help with the alternate text.] and the reduced inductor current. The equivalent circuit is shown in Figure 4B. The output voltage of [image: Please upload the image or provide a URL so I can help create the alternate text for it.] and the current variation of inductor is expressed as Equations 10, 11.
[image: Equation showing the derivative of current: \( L \frac{di_L}{dt} = u_{\text{con}} \), labeled as equation (10).]
[image: The equation shows the change in inductor current, \( \Delta i_L = \frac{u_{con}}{L} \Delta t \), labeled as equation (11).]
When S1 is turned off, the inductor is discharged until S1 and S2 turn on again.
2.2 Boost mode: [image: The mathematical expression shows "u subscript c o u is greater than U subscript P V".], S1 turns on, S2 turns on; S1 turns on, S2 turns off;
According to the equivalent circuit of the boost mode with S1 and S2 both on (Figure 4C) with [image: The expression "u subscript COU is greater than U subscript PV" is depicted, comparing two variables or parameters.], inductor L is charged again and the capacitor is discharged to keep the output voltage. The relationship between the port voltage of the PV panel and the inductor current is
[image: Equation twelve shows \( U_p = L \frac{di_L}{dt} \).]
According to Equation 12, the change of the inductor current is calculated as Equation 13.
[image: The formula shown is: Δi_z equals U_pv divided by L multiplied by Δt_z, labeled equation 13.]
where [image: Sure, please upload the image or provide a URL to it for me to create the alternate text.] is the turning-on time of S2. Considering [image: The equation shows \(\Delta t_2 = T \left(1 - \frac{1}{d_1}\right)\).], [image: It seems like the input might have been misinterpreted as an image instead of text containing mathematical notation. To provide alternate text or description, please upload an image file or provide a URL, and I will be happy to assist!] can also be calculated as Equation 14.
[image: Equation showing the change in inductor current: Delta iL equals (Upv divided by L) times T, multiplied by (1 minus Upv divided by ucon). Equation number 14.]
When S1 turns on and S2 turns off, the equivalent circuit is shown in Figure 4D, which is the same as Figure 4A. The inductor is continuously charged, and the capacitor also starts to be charged after discharging for [image: The text "d subscript 2 T" appears in a stylized font.]. The analysis process is the same as in Figure 4A. Additionally, the voltage and current at the grid-tied point with the converter are set as [image: It seems there was no image uploaded. Please try to upload the image again or provide a URL. If you have a caption or context, including that would also be helpful.] and [image: Please upload the image or provide a URL so I can help create the alt text for it.], which are both the RMS of [image: Italic lowercase letter "u" with a subscript "g".] and [image: Please upload the image or provide a URL for me to generate the alt text.]. The amplitude of the output voltage [image: Please upload the image or provide a URL, and I'll help with the alternate text.] of the capacitor is [image: The image shows a mathematical expression featuring a variable \( U_{\text{count}} \), where "U" is represented as an italic uppercase letter with the subscript "count".]. The active power generated by the PV panel is expressed as
[image: Equation showing P subscript g equals one over pi integral from zero to n of p subscript g with respect to d of omega t.]
[image: Equation showing the expression: two over pi times the integral from zero to T of the function u subscript comp, j, upper d with respect to omega t. It is labeled as equation fifteen.]
Because [image: To provide alt text, please upload the image or provide a URL to it.] is synchronized with the grid-tied voltage ug, Equation 15 can be expressed as Equation 16.
[image: Equation for the power \( P_g \) is shown:   \[ P_g = \frac{2}{\pi} \int_{0}^{t} U_{comm} \sin(\omega t) \sqrt{2} L_g \sin(\omega t) \, d(\omega t) \].]
[image: The formula equals the square root of two times U subscript c o s m L subscript y raised to the power of asterisk, as shown in Equation sixteen.]
Then, the capacitor voltage amplitude of the DC–DC link can be calculated as Equation 17.
[image: The formula \( U_{\text{com}} = \frac{P_g}{\sqrt{2I_g}} \). Equation number 17.]
The voltage amplitude of the capacitor is calculated to perform the operation mode discrimination for buck or boost mode in the coordinated control algorithm with the current hysteresis loop.
3 DC–DC COORDINATED CONTROL STRATEGY WITH THE CURRENT HYSTERESIS LOOP
When the insolation changes, [image: Mathematical notation of \( U_{PV} \), where "U" is the main variable and "PV" is the subscript.] changes correspondingly. If the switch sequence and duty cycles are still operated at the determined mode, the output voltage does not remain constant. To maintain a constant output voltage, the controller must track the voltage changes in the PV panel and adjust the switch sequence and duty cycle in real time based on the changes in voltage changes. Therefore, a coordinated control method for the whole PV converter is proposed; its block diagram is shown in Figure 5.
[image: Diagram of a hybrid power system control. The top section is labeled "Inverter control," showing components like MPPT, PI, PLL, and equations for voltage amplitude. The bottom section is labeled "DC-DC link control," including triggering mechanisms, duty cycle calculation, current hysteresis control, inductor current calculations, and operation mode identification for buck and boost modes. Arrows indicate the flow of information between elements.]FIGURE 5 | Block diagram of the coordinated control method for the whole PV converter.
The whole control diagram includes the converter control and DC–DC link control. In the converter control, the phase-locked loop (PLL) samples the three-phase voltage at the grid side to obtain the three-phase voltage waveform of the grid as f1, f2, and f3, based on the triggering pulse sequences and duty cycles of the S3–S8 switches of the converter. In the DC–DC link control, the MPPT module collects the [image: It looks like the text provided is a mathematical expression, but I can't generate alt text for images unless you upload one. Please upload the image and I can help you with that!] voltage and [image: Please upload the image or provide a URL for the image you want described.] current of the PV panel and tracks the maximal power point [image: Stylized mathematical expression with the variables \( U_{pvm} \).]. The difference between [image: Mathematical expression showing an uppercase italic letter U with a subscript pvm.] and the actual value [image: Mathematical expression showing an italicized uppercase "U" with a subscript "p v".] is processed by the PI controller to generate the active power Pg, which is needed for calculating the voltage amplitude [image: The image contains the italicized letter "U" followed by the subscript word "count".] of the expected output voltage of the capacitor. The expected output voltage [image: It seems there's an issue with the image upload. Please try uploading the image again, and I'll be glad to help with the alt text.] is then obtained by multiplying the voltage amplitude [image: The image shows a mathematical expression with a capital letter "U" followed by a subscript "count" in italicized text.] with the fp from the PLL, which is obtained by the frequency-based replacement. The expected voltage [image: It seems there is an issue with the image upload. Please try uploading the image again, and I will assist you with the alternate text.] is compared with [image: It seems there is no image provided. Please upload an image or provide the URL for which you need alternate text.] in the discriminating operation mode module to determine the buck or boost mode. According to different operation modes, the calculation methods for inductor current changes [image: Sure, please upload the image you want me to describe.] are different. Under the buck mode, the inductor current change is calculated by Equation 7, which is used to modify the duty cycle for S1, while in boost mode, the inductor current change is calculated by Equation 14, which is used to modify the duty cycle for S2. Considering that the changing range of the inductor current is wide, the amplitude limitation and hysteresis comparison loops are used to decrease the inductor current ripple. S1 and S2 are the high frequency switches. The PWM (pulse width modulation) technique is applied to control S1 and S2.
To maintain a constant output voltage, the converter control needs to track the voltage changes in the grid-tied point and adjust the switch sequence of S3–S8. To obtain the three-phase sinusoidal voltage at the terminal of the converter, the S3–S8 switches of the converter must follow a certain triggering sequence and duration to maintain synchronization with the voltage of the grid-tied point. Figure 6 shows the designed triggering sequence for S3–S8.
[image: A diagram showing seven sequences, S1 to S7, each represented by a distinct step graph beneath a row of numbered time slots (t1 to t7). Each time slot has an associated number, with alternating values, some underlined. The axis indicates time progression horizontally.]FIGURE 6 | Trigger timing sequence and duty cycle length of S3–S8.
The maximal power point tracking algorithm in the MPPT module for the PV system includes the incremental conductance method (INC) and the perturb and observe algorithm (P&O). P&O belongs to the local search algorithms and is susceptible to noise and shadow interference. Compared with P&O, INC shows a fast response but is prone to impact by the step size and sampling frequency.
Therefore, the steepest gradient factor is combined to improve the search speed of the maximal power point. As shown in Figure 7, the first step is to determine the gradient factor, so the steepest gradient factor expression is set as Equation 18.
[image: The formula represents \( f(U_{pv}, I_{pv}) = \frac{dI_{pv}}{dU_{pv}} + \frac{I_{pv}}{U_{pv}} \).]
[image: Mathematical expression showing a function \( f \) with two arguments, \( U_{pv} \) and \( I_{pv} \), represented with subscripts \( pv \).] will change within the range (-1,+1) with the change of operation point of the PV system, showing the gradient change characteristic. Compared with the traditional INC algorithm, gradient factor [image: Mathematical expression displaying a function \( f \) of variables \( U_{pv} \) and \( I_{pv} \).] is actually a direction search factor whose value (negative or positive) shows the searching direction for the maximal power point. In this paper, the gradient factor is introduced into the calculation of [image: The image shows the mathematical notation "U" with a subscript "PV".], [image: Please upload the image you would like me to describe.], and [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL to the image. If you want, you can also add a caption for additional context.] at the (k+1)th time. The maximal power point searching equation is shown as
[image: Equation showing: \(U_{pv}(k+1) = U_{pv}(k) + f(U_{pv}(k), I_{pv}(k)) \frac{U_{pv}(k) + U_{pv}(k-1)}{2}\), labeled as equation (19).]
[image: Equation showing \( I_{pv}(k+1) = I_{pv}(k) + f(U_{pv}(k), I_{pv}(k)) \frac{I_{pv}(k) + I_{pv}(k-1)}{2} \).]
[image: Equation for updating \(P_{pv}(k+1)\), which equals \(P_{pv}(k)\) plus a function \(f(U_{pv}(k), I_{pv}(k))\) times the average of \(P_{pv}(k)\) and \(P_{pv}(k-1)\), divided by two, labeled as equation 21.]
[image: Flowchart depicting a decision process. It starts with sampling variables \(U_{pv}\) and \(I_{pv}\), followed by calculating the deepest gradient factor. Two decision branches check conditions \(f(U_{pv}, I_{pv}) = 0\) and \(f(U_{pv}, I_{pv}) \neq 0\). Depending on the result, different calculations are performed using Equations 21, 22, and 23, eventually updating variables \(U_{pv}(k+1)\), \(I_{pv}(k+1)\), and \(P_{pv}(k+1)\).]FIGURE 7 | Maximum power point search algorithm based on steepest gradient descent.
where k+1, k, and k-1 are the sampling time. [image: Mathematical notation showing "U" with a subscript "PV".], [image: Please upload the image or provide a URL so I can help generate the alt text for it.], and [image: Text displaying the mathematical notation \( P_{pv} \).] at the (k+1) time are predicted by the averaging of the kth and (k+1)th times. Equations 19–21 are the adaptive search process, and the value of the gradient factor determines the search step size. The larger the value of the gradient factor, the shorter the search time. However, if the step size is too large, it will cause the search to exceed the limitation, and vice versa, it will affect the extension of the search time. Therefore, the second term in Equations 19–21 is to average the sampling values at k and k-1, and appropriately reduce the search step size.
4 SIMULATION AND EXPERIMENTAL VERIFICATION
To verify the practicability of grid-tied PV system operation for the proposed buck–boost structure and the coordinated control strategy with the current hysteresis loop, the component parameters are set as per Table 1. The HNZL DC power supply has been used to imitate the effect of insolation. In order to emulate simultaneous variation in temperature and in the level of insolation, the MPP parameters are set as follows: [image: The image contains the mathematical symbol "U" with a subscript "PV".] = 400 V, [image: If you have an image to describe, please upload it, and I'll provide alt text for it.] = 6.5 A. The effectiveness verification results of the operating characteristics of the proposed converter are shown in Table 2, in which the insolation level is varied on PV. Table 2 provides the estimated mean values of [image: Please upload the image so I can help generate the alt text for it.], [image: Mathematical notation showing the subscript "pv" next to the letter "P", typically representing a specific type of pressure or variable in physics or engineering.], [image: It appears you attempted to upload an image or provide a URL, but it did not come through. Please try uploading the image again, and I will be glad to help with the alternate text.], and [image: It looks like you mentioned an image, but the image itself is not visible. Please upload the image or provide a URL so I can help generate the appropriate alt text for it.], as well as the inductance current [image: Italic lowercase "i" followed by subscript "l m".] during the entire operation period. The calculation results of peak values ([image: Mathematical notation displaying the symbol "i" with subscript "Lmn."]) for [image: Mathematical notation depicting \( P_{pv} \), commonly used to represent pressure or power in photovoltaic systems.] and other states [image: Please upload the image you'd like to have alternate text provided for.], [image: The image shows the mathematical variable \( U_{\text{count}} \), indicating a subscript notation typically used in equations or formulas.] are also presented in Table 2. The estimated values of the above quantities listed in Table 2 are consistent with the values obtained through simulation, ensuring the feasibility of the proposed method.
TABLE 1 | Parameter of photovoltaic converter with buck–boost.
[image: Table listing electronic components and parameters: Voltage \(U_{abc/fs}\) is 380 V, 50 Hz; \(L_{Lg}, C_{ou}\) values are 0.5 mH, 0.4 mH, 4 µF; Ground capacitor is 0.1 µF. S1–S2 switching frequency is 50 kHz and S3–S8 is 15 kHz. MPPT algorithm uses incremental conductance based on fastest gradient. IGBT (s1–s8) is FGA25N120ANTD, Diode (D1-D2) is MBR40250, and DSP is TMS320F28335.]TABLE 2 | Changes in voltage, current, and power parameters of photovoltaic panels under different insolations.
[image: A table showing data over time from 0 to 12 seconds. Rows include: Insolation on PV, starting at 0.15 and increasing to 0.9; Temperature of PV in Celsius, starting at 20 and increasing to 31; Power \(P_{PV}\) in watts, starting at 575 and increasing to 4,210; Current \(I_{gm}\) in amperes, starting at 1.2 and increasing to 7.3; Voltage \(U_{conv}\) in volts, starting at 376 and increasing to 438; Current \(i_{Lm}\) in amperes, starting at 0.06 and increasing to 0.45.]Figure 8 shows the relationship of the active power output and the voltage changes by the PV curves under different temperatures. When the temperature is lower, the power emitted is greater for the PV panel with the PV panel voltage being improved. When the voltage reaches 438 V, the active power output of the PV panel reaches the maximum point at 30 °C, which is consistent with the estimated value. During the MPPT process of this experiment, the maximum power point search algorithm based on steepest gradient descent takes only 0.22s to reach the maximum power point C, which is shorter than the common incremental conductance method, which is 0.31s to reach point C. This is because the improved maximum power point search algorithm based on the steepest gradient descent only searches the process from points A to C, avoiding the searching process from C to B and B to C, which saves search time. However, the common incremental conductance method tends to search from A to C, C to B, and B to C.
[image: A graph shows the relationship between a variable \( \bar{q}_{n,g}'' \) on the x-axis and \( F_n/A_w \) on the y-axis for temperatures of 15°C, 20°C, 25°C, 30°C, and 35°C. The graph lines progress with temperature and exhibit a rising trend that peaks and then diminishes. An inset magnifies this peak area. Each temperature is color-coded and indicated in the legend on the right.]FIGURE 8 | Simulated PV curves under different temperatures.
Figures 9A–C show the simulated changes in [image: It seems there was an attempt to display an image, but the image is not visible. Please upload the image file or provide a URL for me to view it, and I will create the alt text for you.], ipv, and Ppv of the PV panel operation states, which also demonstrate the ability of the proposed converter to operate simultaneously on the MPPT of the PV panel. Figure 10 shows the change caparison of [image: Please upload the image you would like to have described.], is1, iL, and Ppv of the DC–DC link operation at 20 °C and 30 °C. The voltage and current curve at the PV grid-tied points at 20 °C and 30 °C with changed insolation. This shows that when the insulation varies, the voltage and current from the converter output stabilize the sinusoidal waveform synchronized with the power grid, while the current amplitude injected at the grid-collected point varies with the insolation.
[image: Three graphs are presented vertically. Graph (a) shows a blue line depicting speed, \(U_{0}'/v\), against time, \(t/s\), with slight increases and fluctuations, peaking around 450. Graph (b) displays a green line for \(k_{p}' \times 10^{3}/A\), featuring discrete steps upward from 0 to about 8 over time. Graph (c) has an orange line showing power, \(P_{m}'/W\), increasing in steps from 0 to 5000 as time progresses. All graphs have time, \(t/s\), on the x-axis, ranging from 0 to 12.]FIGURE 9 | Simulated PV panel port states under different insolations: (A) voltage [image: \( U_{PV} \)]; (B) current ipv; (C) output active power Ppv.
[image: Four graphs show various parameters over time. (a) Displays voltage, with lines for 30°C conditions, showing a steady state with minor fluctuations. (b) Shows current at 30°C and 20°C, with a stepped increase. (c) Also displays current at 30°C and 20°C, with a less pronounced rise. (d) Shows power with data for both temperature settings, indicating periodic increases. Each graph is individually labeled with (a), (b), (c), and (d).]FIGURE 10 | Simulated DC–DC link state curves under different temperatures: (A) voltage [image: It appears there is an issue with displaying the image. Please try uploading the image again, and I will help create the alt text for you.]; (B) switch S1 current is1; (C) inductor current iL; (D) output active power Ppv.
Figure 11 shows the simulated voltage and current curve at the PV grid-collection points at 30 °C with changed insolation. This shows that the insolation will impact the output power of the converter. When the insolation becomes strong, the output current of the converter increases, while the voltage of the converter remains stable; hence, the output power of the converter increases at the same time. Figure 12 compares the inductor current change when the current hysteresis control is introduced in the coordinated control under the same insolation. During the dynamic process, the ripple current of the inductor is controlled at a relatively satisfactory level, demonstrating the effectiveness of the introduced current hysteresis control. The power conversion efficiency of the PV panel is the percentage of the injected power at the grid-connection point to the output power of the PV panel. The referred voltage and current from the PV panel and grid-tied point are all at the averaging value. Figure 13 is the prototype of the designed buck–boost converter. Under the condition of the converter being off-grid, the experimental waveforms for Ug and ig are shown in Figure 14, in which, when the input voltage of DC–DC changes from 50 V to 100 V, [image: Please upload the image or provide a URL so I can help create the alt text for it.] changes from 100 to 180 V and maintains a stable state. The output voltage amplitude Ug of the converter changes from 150 V to 220 V. During the whole process, the system can effectively ride through situations that arise due to the disturbances in Ug and demonstrates relatively good operation despite it experiencing significant voltage fluctuations.
[image: Three-panel graph showing oscillating waveforms. The top panel displays a green waveform labeled \( u / V \) over time \( t / s \) from 0 to 12. The middle panel highlights a detailed view with both \( u / V \) and \( i / A \) waveforms around 2.25 to 2.35 seconds. The bottom panel shows a green waveform of \( i / A \) over time \( t / s \) from 0 to 12, with a magnified section indicated. Blue arrows connect the panels, highlighting the detailed view and its relation to the full waveforms.]FIGURE 11 | Simulated voltage and current curve at photovoltaic grid-collection points at 30 °C with changed insolation.
[image: Three line graphs depict current hysteresis effects over time. The top graph shows red and green lines representing data with and without current hysteresis loops over twelve seconds. The bottom left and right graphs provide detailed views of specific time intervals, highlighting variations between the two datasets.]FIGURE 12 | Simulated inductor current suppression comparison under same insolation.
[image: Electronic circuit board labeled with components: current and voltage sensors, driver, main controller, inverting stage, buck stage, and boost stage. Various wires and connections are visible.]FIGURE 13 | Prototype of the designed buck–boost converter.
[image: Graph showing oscillations of voltage and current. The top panel illustrates voltage across a device (Us), control voltage (Ucon), and current (is) with dense oscillations. The bottom panel shows zoomed-in views with detailed waveforms.]FIGURE 14 | Experimental waveforms for Ug, ig, and [image: It seems there's no image visible. Please try uploading the image again or providing a URL. Let me know if you need further assistance!].
Figure 15 shows the comparison results between the actual and estimated conversion efficiency of the PV converters, from which it can be inferred that the estimated value tends to consider the ideal situation and ignore the actual ambient condition, resulting in overestimated efficiency. At the maximal power point of 700 W, the actual conversion efficiency is just 97.8%, lower than the estimated value of 98.7%. To further assess the impact of the current hysteresis loop on conversion efficiency, those efficiencies with current hysteresis and without hysteresis are calculated. Figure 16 shows that during the period of low power output, the conversion efficiency with the current hysteresis loop is almost the same as that without current hysteresis loop control. However, with the active power output of the PV panel increasing, the conversion efficiency considering the current hysteresis loop decreases. This means that the increasing active power output corresponds to the increasing inductor current, which is suppressed by the current hysteresis loop at the cost of conversion efficiency. Figure 17 shows the THD comparison curves between the method in Dutta and Chatterjee (2018) and the proposed method here. According to the datum, the changing trend of the THD in the grid-tied point with the output voltage increase of the PV panel remains consistent in the two methods. However, the THD in the proposed method is lower than in Dutta and Chatterjee (2018). Furthermore, the voltage variation range dealt by the method proposed here is 120 V–600 V, with a wider variation range than that in Dutta and Chatterjee (2018). The active power losses at different power levels are also calculated (Figure 18). The comparison results imply that the active power loss values in our method and in Dutta and Chatterjee (2018) are almost the same when the output power of the PV panel is below 1,700 W. Then, with the output power of the PV panel increasing, the active power loss in Dutta and Chatterjee (2018) is higher than the method proposed here, especially when the output power is more than 3,200 W. This shows that the designed converter can adopt higher power production. The above results verify that the designed buck–boost PV converter with the coordinated control strategy has improved operational performance.
[image: Line graph showing conversion efficiency against P\(_{\text{ref}}\) in watts. The actual value is represented by a red line, and the estimated value by a blue dashed line. Both lines increase in steps, with minor variations in their paths.]FIGURE 15 | Comparison curve between the actual conversion efficiency and estimated conversion efficiency of photovoltaic converters.
[image: Line graph comparing convergence efficiencies against \( P_{in}/W \). Two lines are shown: red for "No current hysteresis loop," and green for "With current hysteresis loop." Both lines step upwards but vary slightly in pattern. Vertical axis ranges from 0.965 to 0.97 and horizontal axis from 500 to 3500.]FIGURE 16 | Comparison of the conversion efficiency between photovoltaic panels with or without current hysteresis.
[image: Line graph comparing THD percentages against \( U_{\text{PV}} \, V \). The orange line represents "Method in [11]" and the blue line represents "The proposed method." Both lines show a decreasing trend, with the proposed method consistently lower.]FIGURE 17 | Comparison of the THD ratio of the method in Dutta and Chatterjee (2018) and the method proposed here.
[image: Graph showing active power loss percentage versus power (P) in watts, comparing two methods. The proposed method is represented by a blue line, while the method in reference uses an orange line. The blue line consistently shows lower active power loss than the orange line across the power range from 578 to 3400 watts.]FIGURE 18 | Loss distribution at different power levels.
5 CONCLUSION
A buck–boost converter structure and corresponding coordinated control strategy is designed for a grid-tied photovoltaic (PV) panel in this paper. By simulation and experimental verification, the following conclusions are drawn.
	(1) To improve the robustness and easing the requirement for PWM dead-times, a wide range buck–boost operation for large fluctuations in PV voltage is provided, and large buck–boost inversions are obtained with relatively smaller duty ratios. Through the operational performance comparison with the classical buck–boost converter, the buck and boost stages in the DC–DC link are decoupled and controlled separately through two switches, which is beneficial for expanding the voltage conversion range of the DC–DC link. However, the designed converter can withstand overlap time in complementary switches without voltage shoot-through problems. At the same time, the incremental conductance method is improved by introducing the deepest gradient factor, which improves the search speed of the maximum power point and enhances the dynamic performance of the converter.
	(2) Considering the significant fluctuation of inductor current in the boost stage, a DC–DC coordinated control scheme based on current hysteresis control is here proposed. Based on traditional duty cycle calculation, the influence of the inductor current is introduced, and a duty cycle adjustment based on the current hysteresis control is performed to reduce the ripple of the inductor current at the cost of reducing the conversion efficiency of the PV converter. However, by comparison with the classical buck–boost converter, the designed converter shows noticeable improvement in the THD ratio with the input voltage increase of the DC–DC link. Furthermore, the active power loss caused by the designed converter is also reduced by the coordinated control strategy.

However, under conditions of partial shading, the efficiency of the designed converter is still greatly decreased, the reduction depending on the size of the shading area. The PV ground leakage current is still another unsolved problem in our scheme. Further research should focus on diminishing the leakage current, improving the power conversion efficiency of multiple PV panel series, and suppressing common mode currents under voltage imbalance caused by different insolation conditions and shadowing.
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With the increasing integration of renewable energy sources and the presence of numerous controllable loads such as electric vehicles and energy storage in the modern power system, higher nonlinearities and uncertainty both sources and loads are introduced. These factors pose challenges in achieving fast and accurate emergency frequency control. Therefore, this paper addresses the issue of dual source-load uncertainties in power system and presents an optimization strategy based on the Soft Actor Critic (SAC) algorithm that involves the participation of controllable loads in emergency frequency control. Firstly, the spatio-temporal uncertainties of wind farm power output on power supply side and power demand on the load side are described using Weibull and normal probability distributions, respectively. Secondly, an improved Markov Decision Process (MDP) model for emergency frequency control is established, which considers the characteristics of the dual source-load uncertainties. Finally, an optimization of the SAC algorithm is conducted based on Deep Reinforcement Learning (DRL), aiming to achieve rapid system frequency recovery and minimize the cost of removing controllable loads. The presented approach in the paper enhances the emergency frequency control strategy for uncertain power systems and effectively addresses the issue of source-load uncertainty compounded by fault power shortages.

Keywords: controllable load, emergency frequency control, deep reinforcement learning, SAC algorithm, source-load dual uncertainties

1 INTRODUCTION
The modern power system is continuously evolving and advancing, characterized by sustainability, distribution, dynamism, and intelligent openness. As a result, the control strategy ensuring frequency security and stability in power system has become increasingly complex, leading to greater challenges in emergency frequency control (Zhou et al., 2018; Yi et al., 2019; Li et al., 2020). Meanwhile, the power supply side in power system appears an increasing penetration rate of renewable energy sources. Additionally, there is a significant number of new controllable loads with significant power fluctuations on the load side. These introduce double uncertainties on both the sources and load sides, exacerbating the power shortfalls that occur during system disturbances and further increasing the complexity of accidents. Hence, it holds immense importance to investigate the emergency frequency control of power system characterized by dual source and load uncertainties.
Considering the nonlinearities and uncertainties at both power supply and load side in modern power systems, various approaches have been proposed to optimize emergency frequency stabilization control, including adaptive and semi-adaptive Under-Frequency Load Shedding (UFLS) methods, event-driven load shedding methods (Xue et al., 2014; Li et al., 2017; Cao et al., 2021), and strategies addressing low inertial (Wu et al., 2015). An emergency frequency control strategy that involves the collaborative participation of renewable energy field stations and conventional units to ensure frequency stabilization while minimizing control costs is conducted (Ke et al., 2022). Reference (Chandra and Pradhan, 2020) addresses an adaptive emergency load shedding method incorporating synchronous generator and photovoltaic plant equivalent models that consider the stochastic variation of solar PV plant power. Frequency characteristics of systems with high penetration of advanced energy technologies is analyzed and proposes a low-frequency load shedding blocking optimization strategy based on df/dt (Sheng et al., 2021). Reference (Masood et al., 2021) presents an emergency frequency stabilization control that simultaneously ensures voltage stability for low-inertia power system containing numerous wind turbines. Reference (Wang et al., 2019) investigates an adaptive emergency frequency control scheme based on inertia estimation from load measurement information of high-percentage renewable energy system. The uncertainty of wind power output and effect of frequency regulation are considered (Zhou and Shi, 2021), an emergency frequency control strategy that combines high-frequency cut-off and low-frequency load-shedding measures are optimized by considering the frequency confidence of power system.
The optimization of emergency frequency control mentioned above primarily adopts model-based methods, including the time-domain simulation method, the dynamic equivalence method, and the linearization analysis method (Zhang et al., 2009; Liu et al., 2014). Among these, the time-domain simulation method is time-consuming and computationally intensive, although it has high accuracy. The dynamic equivalence method is computationally efficient but has low accuracy, which does not meet the requirements of actual power grid. The linearized analysis combines the advantages of the former two methods (Larik et al., 2018), but it does not adapt the topology changes and new elements of power grid. Due to the limitations of physical models, the approaches based on physical models cannot fit with the development of power grid.
In recent years, Machine Learning (ML) methods have been increasingly applied to power system stability control. These methods are based on data for feature mining, do not require accurate mathematical models, and have significant computational performance advantages. Reference (Dai et al., 2012) trained a load shedding prediction model offline using an extreme learning machine and achieved online prediction of actual load shedding. In reference (Bai et al., 2016), an artificial neural network RBF-ANN model was employed to estimate and predict the frequency dynamics process of the power system, contributing to the development of an emergency frequency control scheme. Despite their fast computational speed, traditional ML algorithms are considered shallow learning methods, often relying heavily on expert experience. Their control effectiveness is influenced by the size and quality of the database, resulting in limited adaptability in achieving desired control outcomes. The advancements in deep learning have garnered attention due to their impressive training effectiveness. Consequently, several scholars have explored the application of deep learning methods in optimizing emergency control strategies for power systems (Hu et al., 2019; Lin, 2022). These methods simultaneously enhance control accuracy and reduce decision-making time. In Reference (Qiang et al., 2022), an emergency control model based on an enhanced AlexNet convolutional network is established. This model predicts the system’s emergency control sensitivity and identifies alternative control buses, ultimately optimizing to obtain the emergency control strategy. However, deep learning methods require a large number of datasets for model training. In high-dimensional action space problems, a multitude of control scenarios emerge, leading to a significant volume of invalid datasets. This abundance of data presents challenges in model training.
The DRL technique combines the advantages of deep learning and reinforcement learning, which can realize high-dimensional feature extraction and direct learning of complex action space. Hence, to address the highly nonlinear and uncertain nature of emergency frequency stability control problems, some researchers have employed DRL algorithms to optimize strategies that enhance frequency stability while minimizing the total amount of load shedding (Yang et al., 2022). Reference (Chen et al., 2020) optimizes the emergency frequency control strategy using DRL algorithms to reduce frequency stability fluctuations. However, the state space considered in this approach focuses solely on the frequency deviation of the center of inertia. This limitation may lead to inaccurate outcomes since system topology and parameters can significantly vary across different scenarios. In Reference (Ma et al., 2020), a distributed reinforcement learning algorithm is utilized to optimize the emergency frequency control strategy, resulting in improved computational performance and robustness. Reference (Xie and Sun, 2022) considered load variations, measurement noise, and communication delays in real power systems by proposing an emergency frequency control method based on a distributed Soft Actor Critic (SAC) algorithm.
In this paper, a controllable load participation emergency frequency optimization control strategy for source-load dual uncertainty power systems is proposed based on deep reinforcement learning SAC algorithm to address the above problems. Firstly, the source-side output spatio-temporal uncertainty and load-side power uncertainty are described by Weibull and normal probability distribution. Secondly, the action space, state space and reward function of the MDP model are improved according to the characteristics of source-load uncertainty. Then the deep reinforcement learning SAC algorithm with continuous action space is used to train the model to obtain an emergency frequency optimization control strategy for the dual source-load uncertainty power system, which suppresses the depth of the system frequency dip and reduces the stabilized frequency deviation, while minimizing the control cost.
2 MODELING OF UNCERTAIN POWER ON POWER SUPPLY AND LOAD
The increasing penetration of renewable energy sources into the power grid impacts its operational characteristics due to various factors, including weather, temperature, and other variables. As a result, the volatility of active power output intensifies, leading to heightened uncertainty in the power-side output of the system. Simultaneously, the grid load is progressively diversifying as numerous new loads, such as electric vehicles and distributed renewable energy sources. These new load types exhibit substantial power fluctuations, further exacerbating the uncertainty in power demand on the load side. The dual uncertainty on both the source and load sides works together to intensify the randomness of the operating conditions. After a power system failure, the power fluctuation resulting from source-load uncertainty and the power deficit caused by failure are superimposed on each other, thereby exacerbating the complexity of the incident, as illustrated in Figure 1.
[image: Diagram of power system modeling with dual source-load uncertainty. Includes renewable energy, new loads, and a traditional power system model. Features wind power output and load demand uncertainty, with probabilistic modeling graphs. Arrows connect elements to form an integrated system.]FIGURE 1 | Schematic diagram for uncertain source-load power modeling.
2.1 Wind power output model on power supply side considering spatial and temporal uncertainty
The uncertainty of wind power output is primarily influenced by wind speed. To more accurately simulate the actual variations in wind speed, it can be represented using probability distributions such as the Weibull distribution, Gaussian distribution, and Pearson distribution. Historical data indicates that the actual wind speed aligns most closely with the Weibull distribution’s probability density function. Therefore, this paper employs the Weibull distribution function to characterize the wind speed and establish a probabilistic representation of the uncertainty between the wind turbine’s output active power and wind speed. The wind speed probability density function of the Weibull distribution, denoted as f(v), and the cumulative distribution function of the Weibull distribution, denoted as F(v), as shown in Equations 1, 2:
[image: Equation depicting a function f of v. It is expressed as K over C multiplied by v over C raised to the power of K minus one, then multiplied by the exponential function of negative v over C raised to the power of K.]
[image: The equation shown is \( F(v) = 1 - \exp \left[ - \left( \frac{v}{C} \right)^{k} \right] \), labeled as equation (2).]
Where v is the wind speed; K is the shape parameter of the Weibull distribution; C is the scale parameter of the Weibull distribution.
The characteristic curve of wind power output defines the relationship between wind power output and wind speed, where the intensity of wind speed directly influences the magnitude of the output. The relationship between wind power and wind speed can be described by a linear function, quadratic function, or cubic function, leading to distinct wind turbine power curves. Taking into account the actual statistical wind power data, wind power output is typically modeled using a cubic segmented function, which can be expressed as Equation 3:
[image: Equation for \( P_w \) with conditions: \( 0 \) if \( v < v_{\text{in}} \) or \( v > v_{\text{out}} \); \( P_r \frac{v^3 - v_{\text{in}}^3}{v_{\text{r}}^3 - v_{\text{in}}^3} \) if \( v_{\text{in}} \leq v < v_{\text{r}} \); \( P_r \) if \( v_{\text{r}} \leq v \leq v_{\text{out}} \).]
Where vr, vin, vout are the rated wind speed, cut-in wind speed and cut-out wind speed of the wind farm turbine respectively; Pr is the rated power of the turbine.
Apart from temporal uncertainty, wind power output exhibits spatial correlation as well. Due to the close proximity of various wind farms within the same region and their placement in similar wind speed bands, a robust correlation exists between the outputs of different wind farms, consequently impacting the overall uncertainty of wind power. Hence, this section considers the spatial correlation among distinct wind farms and employs the Nataf inverse transformation principle to generate wind turbine output uncertainty data with predetermined correlation coefficients.
The theory of Nataf transform can transform random distribution variables with correlation into standard normal distribution variables that are independent of each other. The Nataf inverse transform serves as the reverse procedure to the Nataf transform, allowing the generation of distribution variables with desired correlation coefficients using independent standard normal distribution variables. This process facilitates the sampling of a significant amount of specified sample data.
Let the vector [image: Mathematical notation showing "P" subscript "W, i" with "i" equals one, two, up to "n", indicating a sequence or set of indexed elements.] represent the active outputs of n Weibull-distributed wind farms in the original correlation variable space. Similarly, let the vector [image: Mathematical notation displaying "z sub i" where i is equal to one, two, up to n.] denote the n standard normally distributed random variables in the correlation standard normal space. Subsequently, assume that the linear correlation coefficient matrices for Z and PW are denoted by ρ0 and ρ, respectively. Here, ρ is a predetermined value, and the relationship equation between the elements of the ρ0 and ρ matrices is given as:
[image: Mathematical equation showing \( \rho_{0ij} = R_{i} \rho_{ij} \) with the number four in parentheses on the right side.]
[image: A mathematical equation is shown: \( R_w = 1.063 - 0.004p_r - 0.200(y_t + y_r) - 0.001p_r^2 + 0.337(y_t^2 + y_r^2) - 0.007y_ty_r \).]
Where γi and γj represent the computational parameters of the random variables Pi and Pj, respectively. The expressions for these parameters are given as follows Equation 6:
[image: Equation displayed with two expressions: the first is gamma one equals sigma one divided by mu one, and the second is gamma two equals sigma two divided by mu two. These are labeled as equation six.]
The positive definite symmetric matrix of correlation coefficients ρ0 can be obtained through Equations 4, 5, and it can be decomposed into the lower triangular matrix B using the following expression Equation 7:
[image: It seems like you've included a mathematical expression instead of uploading an image. If you meant to describe an image, please provide more details or upload the image file so I can help create alternate text for it.]
A standard normal distribution vector Z with specified correlation coefficients can be generated from the pre-obtained independent standard normal distribution vector X. The transformation is shown as Equation 8:
[image: It seems there was an issue with uploading the image. Please try again and ensure the file is attached, or provide a URL if it is hosted online. Additionally, you can add a caption for more context.]
Based on the equal probability transformation criterion, the standard normal distribution space with correlation is converted into correlated input vectors, i.e., wind power output variables that follow the Weibull distribution. The output power of each wind power node is given by Equation 9:
[image: Mathematical formula depicting \( p_{Wi} = F^{-1}(\Phi(z_i)) \) with equation labeled as (9).]
Where PW. i represents the correlated active power output of wind power node i; [image: Mathematical expression displaying the inverse function, indicated by \(F^{-1}_{i}(\cdot)\).] is the inverse cumulative distribution function of the active power output of wind power node i; Φ(zi) denotes the cumulative distribution function of zi.
2.2 Load-side power demand modeling with uncertainties
The optimization strategy presented in this paper encompasses various novel controllable load types like electric vehicles, energy storage systems, commercial buildings, 5G base stations, and distributed photovoltaics. These loads can be directly enlisted by the emergency control system for urgent load shedding and contribute to the emergency frequency control of the power system. Unlike traditional methods that directly cut the load line during emergency frequency control, these controllable loads have a reduced impact on users when temporarily removed, resulting in lower load shedding costs. Furthermore, the power of these controllable loads can be precisely regulated by power electronic devices, enabling more flexible engagement in the power system’s emergency frequency control. The diverse characteristics of controllable loads introduce a complex influence on emergency frequency control, posing challenges in integrating them for considerations such as control continuity and data reliability. Consequently, the load side fluctuation range in modern power systems has expanded, while the time scale has diminished. This, in turn, has led to an escalation in power demand uncertainty, necessitating the characterization of load power uncertainty.
The probability of load power uncertainty is modeled using a normal distribution, which is expressed through a probability density function, as shown in Equation 10:
[image: Mathematical formula representing two probability density functions. \( f(P_L) \) equals one over the square root of two pi times sigma sub P_L, multiplied by the exponential of negative \( (P_L - \mu_{P_L})^2 \) over two sigma sub P_L squared. \( f(Q_L) \) is similar with \( Q_L \) terms: one over the square root of two pi times sigma sub Q_L, multiplied by the exponential of negative \( (Q_L - \mu_{Q_L})^2 \) over two sigma sub Q_L squared. Equation labeled as ten.]
Where PL and QL represent the active and reactive power of the load, respectively; μPL and μQL denote the expected values of the active and reactive power of the load, respectively; σPL and σQL indicate the standard deviation of the active and reactive power of the load, respectively.
Additionally, the presence of various new controllable loads on the load side, such as electric vehicles and energy storage, introduces variability and diversity in load characteristics. The complexity of these controllable load components further contributes to the uncertainty of overall load characteristics. Determining the controllable load characteristics directly becomes infeasible when the power system’s operating state changes, necessitating the expression of uncertainty through a probability distribution. Consequently, a novel static load model should be established utilizing frequency and voltage indices that adhere to the probability distribution, as Equation 11.
[image: Equations for \(P'_{\text{L,new}}\) and \(Q'_{\text{L,new}}\) are shown. \(P'_{\text{L,new}} = P_{\text{L}}(U/U_{\text{N}})^{x'_{\text{dec}}}(1 + k_{p,\text{new}}(f-f_{\text{N}}))\), and \(Q'_{\text{L,new}} = Q_{\text{L}}(U/U_{\text{N}})^{x'_{\text{dec}}}(1 + k_{q,\text{new}}(f-f_{\text{N}}))\). Equation number (11) is indicated.]
Where kpu. new and kqu. new represent voltage indices of active and reactive power of the new controllable loads, respectively; kpf. new and kqf. new denote frequency indices of active and reactive power of the loads, respectively.
These parameters, kpu. new, kqu. new, kpf. new and kqf. new, are subject to uncertainty and are characterized by probability distributions that follow a normal distribution.
In summary, considering the uncertainty of load size, which is represented by PL and QL that conform to normal distribution, and considering the uncertainty of load characteristics, which is represented by P’L.new and Q’L.new that contain time-varying load coefficients, a power demand uncertainty model that integrally considers fluctuations in load quantity and fluctuations in load characteristics is thus established.
3 IMPROVEMENT OF THE MDP MODEL FOR EMERGENCY FREQUENCY CONTROL PROBLEM IN SOURCE-LOAD DUAL UNCERTAINTY POWER SYSTEM
Reinforcement learning can be formulated through MDP, which performs policy search through the set (S, A, P, R, y). Where S is the state space and A is the action space, which can be either continuous or discrete. P is the state transfer probability, which represents the probability density of the next state st+1 given the current state st ∈ S and the current action at∈A. R is the reward function and y is the discount factor. Most of the classical MDP theories and RL algorithms are based on discrete-time leapfrog actions, but many power system control problems follow continuous-time dynamics actions, which can only be discretized by using appropriate time intervals to cut the continuous-time dynamics. Therefore, this paper addresses this drawback by using an MDP model for improving the emergency frequency control of the system and optimizing the emergency frequency control strategy using the deep reinforcement learning SAC algorithm with continuous action space.
3.1 State space
Power system emergency frequency stabilization is closely related to generator active power, load power, system frequency, and the rate of frequency change. Considering the dual source-load uncertainty in power-side active output and demand-side active load, it is necessary to incorporate all generator active output and load node power with uncertainty into the state space, defining the state space st as Equation 12:
[image: Equation 12 describes \(s_i\) as the union of sets \(s_i^1\), \(s_i^2\), \(s_i^3\), and \(s_i^4\). Set \(s_i^1\) contains elements \(\{f_1^i, f_2^i, \ldots, f_m^i\}\). Set \(s_i^2\) contains derivatives \(\{(df/dt)_1, (df/dt)_2, \ldots, (df/dt)_m\}\). Set \(s_i^3\) contains elements \(\{p_{c_1}^i, p_{c_2}^i, \ldots, p_{c_m}^i\}\). Set \(s_i^4\) contains elements \(\{p_1^i, p_2^i, \ldots, p_n^i\}\).]
Where fit is the frequency of generator node i at moment t; (df/dt)it is the frequency change rate of generator node i at moment t; Pe. it is the electromagnetic power of generator node i at moment t; Pl. jt is the active load of load node j at moment t.
3.2 Action space
The control action of each controllable load at moment t should be to reduce a part of the total controllable load at that node. Due to the uncertainty of load demand power, the total controllable load needs to be updated in real time. However, for uniformity of the control action, the action space must be fixed. Therefore, the action space is set as the proportion of the controllable load removed at each node. The actual load reduction is the value of the action at each node multiplied by the total controllable load at that node. Consequently, each controllable load action is defined as a continuous value within [-1, 0], and the total action space is shown as Equation 13:
[image: It looks like you've included a mathematical expression instead of an image. If you have an image to describe, please upload it or provide a URL.]
Where ΔPmt is the load removal of controllable load node m at time t and ΔPmt∈[−1,0]; n is the number of controllable load nodes.
3.3 Reward functions
The goal of the emergency frequency control problem is to restore the frequency to within the stabilization range quickly while minimizing load shedding. For source-load dual uncertainty power systems, the effectiveness of emergency frequency control is primarily evaluated in terms of frequency deviation and load shedding amount.
Therefore, the reward function consists of three parts: 1) the average value of steady-state frequency deviation over a specific time period at the end of the simulation; 2) a penalty term calculated based on controllable load importance and load shedding; and 3) a penalty term for exceeding the lowest point of the system’s dynamic frequency. The expression is shown as Equation 14:
[image: Equation depicting a mathematical formula labeled as equation fourteen. It includes variables tau, H-sub-one, lambda-sub-one, lambda-sub-two, delta f-sub-rem, CP-sub-fj, and f sub-min. H-sub-one is given by a conditional expression: minus one hundred if f sub-min is less than f sub-min-set, otherwise zero.]
Where Ttem is a certain time period before the end of the simulation process; ΔfTtem is the average value of the deviation of the center of frequency inertia during Ttem; Cj is the importance index of load node j; Psl. j is the amount of load shedding at node j; H1 is the penalty for the system’s center of frequency inertia when the minimum value is less than the integrating value; λ1 and λ2 are coefficients for each part of the reward function.
4 OPTIMIZATION OF EMERGENCY FREQUENCY CONTROL STRATEGY CONSIDERING DUAL SOURCE-LOAD UNCERTAINTIES
Emergency frequency control is a kind of multi-constraint multi-objective optimization problem, which needs to consider two conflicting objectives of fast frequency recovery and minimizing control cost at the same time. Moreover, it often exhibits a propensity to favor one objective over the other, leading to convergence on local optimal solutions. The SAC algorithm introduces the action entropy value to balance the probability of the various action strategies in the action space, to avoid learning the same action repeatedly and falling into the sub-optimal solution, and it has a stronger exploratory ability, and is more suitable for the studying the emergency frequency control problem with multiple objectives.
Following a failure in a power system that considers dual source-load uncertainty, the power deficit resulting from the disturbance combines with the source-load uncertainty, resulting in increased random volatility in the collected grid state data and causing ongoing oscillations in the training process. Faced with this high level of uncertainty, some DRL algorithms based on strategy gradient exhibit weak generalization abilities, leading to unstable emergency frequency control effects. In contrast, the SAC algorithm incorporates action entropy, enhancing robustness and resistance to disturbances, and demonstrating stronger learning generalization capabilities, rendering it more suitable for the dual source-load uncertainty power system discussed in this chapter.
Moreover, the SAC algorithm features a continuous action space, eliminating the need for discretizing load removal actions. This allows for the removal of the required load amount at once, thereby preventing exacerbation of frequency drop depth resulting from multiple actions. Additionally, continuous action space control enhances precision and reduces the likelihood of excessive or inadequate load removal during emergency frequency control. This ensures a smaller steady-state frequency deviation post-control while minimizing the amount of load removed.
The SAC algorithm offers higher exploration capability, improved robustness, and a continuous action space compared to other DRL algorithms. Consequently, the SAC algorithm is employed in this section to optimize the emergency frequency control strategy for source-load dual uncertainty power systems.
4.1 Principle of SAC algorithm and network structure
The SAC algorithm belongs to the deep reinforcement learning algorithms based on the value function, which incorporates a mechanism that encourages exploration through action strategy entropy values. This enhances the algorithm’s robustness compared to other strategy gradient-based DRL algorithms like PPO, A3C, and DDPG. The entropy value, defined as the expectation of information quantity, quantifies the uncertainty of a variable. It increases with the uncertainty of an event and can be quantified by the event’s probability. The entropy value is defined as Equation 15:
[image: Mathematical formula representing the entropy \(H(X)\) as the negative sum of \(p(x_i)\) times the natural logarithm of \(p(x_i)\), summed over all \(x_i\) in set \(X\), displayed as Equation 15.]
Where H(X) is the entropy value; l (xi) is the event probability.
The DRL algorithm should continuously explore the interaction environment to accumulate experience and avoid selecting too many actions solely based on immediate rewards, as this may lead to convergence on local optimal solutions. The SAC algorithm considers the maximum entropy value of actions. If the entropy value decreases due to repeated selection of a certain action, the maximum entropy mechanism encourages the agent to explore other actions, thus broadening the exploration range and increasing the algorithm’s robustness.
In other deep reinforcement learning algorithms with stochastic policies, the objective of model learning is clear: to derive an optimal action policy that maximizes the expected cumulative reward through straightforward training. The optimal policy expression is shown as Equation 16:
[image: Formula representing the optimization problem for a policy π. It involves maximizing the expected sum of rewards over states \(s_t\) and actions \(a_t\), with the equation labeled as 16.]
The SAC algorithm necessitates maximizing the entropy value of the output action to enhance exploration capability. In other words, an additional term regarding the entropy value is incorporated into the policy expression, resulting in the expression of the improved optimal policy as shown in Equation 17:
[image: The formula is argmax over π of the expected value under policy π of the sum over t of reward r(s_t, a_t) plus alpha times the entropy of π(⋅|s_t). Equation is labeled as 17.]
Where E (st, at) denotes the expectation function; π represents the strategy; st and at signify the state space and action space at moment t; r (st, at) denotes the reward function at moment t (st, at)∼Pπ signifies the trajectory of state-action under strategy π; + is the automatic entropy temperature parameter, which adjusts the entropy value affecting the degree of rewards; and H (π(⋅|st)) signifies the entropy of the output action of the strategyπ under the state st, as expressed below in Equation 18:
[image: Formula for entropy: \( H(\pi(\cdot | s_i)) = - \sum \pi(\cdot | s_i) \log(\pi(\cdot | s_i)) \). This is expressed as an integral: \( H = - \int_{a_i} p(\pi(a_i | s_i)) \ln p(\pi(a_i | s_i)) \, da_i \). Equation number eighteen.]
Where P (π (at|st)) denotes the probability that the action value at the time of t is at.
In the SAC algorithm for strategy value evaluation, the expression for updating the strategy using the Bellman operator is expressed as Equation 19:
[image: The equation expresses \( Q(s_t, a_t) \) as the sum of a reward \( r_t \) and an expected future value. It integrates \( \gamma^t \) times the difference between the reward \( r(s_t, a_t) \) and the entropy term \( \alpha \log \pi(a_t | s_t) \) from time step \( t \) to infinity. It is labeled as equation 19.]
Where γ denotes the discount factor at the time of strategy update.
The optimal policy can be continuously learned and refined through policy iteration, comprising two steps: soft policy evaluation and soft policy improvement. Firstly, in the strategy evaluation step, the soft value update function of a given strategy π can be obtained using the soft Bellman operator, as shown in Equation 20:
[image: The equation depicted is the update rule for the soft Q-learning algorithm: \(T^\pi Q^*(s,a) = r + \gamma \mathbb{E}_{s'} [Q^*(s',a') - \alpha \log \pi(a'|s')]\).]
The SAC algorithm belongs to the Actor-Critic class of algorithms, where the Actor is employed for policy modeling and the Critic for Q-value function modeling. Different deep neural networks are utilized to fit the Q-value function and the policy function, respectively, as shown in Equation 21:
[image: Mathematical equation describing a loss function for Q-learning, involving expected value, state-action pairs, rewards, and discount factor in reinforcement learning.]
Where θ denotes the parameters of the policy network; [image: Mathematical expression showing "V" with a subscript of a negative theta symbol.] represents the updated value function value.
Both networks are optimized using independent gradients [image: Equation depicting the gradient of the cost function \( J_Q(\theta) \) with respect to the parameter \(\theta\), shown as \(\nabla_{\theta} J_Q(\theta)\).] , as expressed in Equation 22:
[image: Mathematical formula representing the policy gradient, where  \(\nabla_{\theta}J\) equals \(\nabla_{\theta}Q_{\theta}(s, a)\) multiplied by \(\Delta Q_{a}\), with equation number (22) on the right.]
Where the expression of ΔQθ is expressed as Equation 23:
[image: Equation showing \(\Delta Q_{\theta} = Q_{\theta}(s_t, a_t) - r(s_t, a_t) + \gamma \left(Q_{\bar{\theta}}(s_{t+1}, a_{t+1}) - \alpha \log (\pi_{\theta}(a_{t+1} | s_{t+1}))\right)\), labeled as equation (23).]
The outputs of the policy network are the mean and standard deviation values following a Gaussian distribution. The network with the smaller Q value is selected to reduce bias in updating the parameters of the policy network. The approximate gradient of the parameter update is expressed as Equation 24:
[image: Equation showing the formula for \( \nabla_{\phi}\mathcal{J}_{\pi}(\phi) \). It consists of two main terms: \( \nabla_{a}\log(\pi_{\phi}(a_{t} \mid s_{t})) \) and a subsequent term within parentheses involving \( \nabla_{a}\log(\pi_{\theta}(a_{t} \mid I_{s_{t}})) - \nabla_{a}Q(s_{t},a_{t}) \) multiplied by \( \nabla_{\phi}f_{\xi}(e_{t};s_{t}) \).]
At the same time, the action entropy value is also updated in the policy network, making it crucial to choose the appropriate temperature parameter, α. As the reward value varies during the training process, fixing the temperature coefficient reduces the stability of model training. Therefore, the temperature coefficient α is generally updated automatically by minimizing J (α), as expressed in Equation 25:
[image: The formula describes a function \( J(\alpha) \) involving an expectation \( E_{\pi_{\alpha}} \) over the log probability of the policy \( \pi(a_t | s_t) \), with terms scaled by the factor \( \alpha \) and constant \( M \). The equation is labeled as equation \( (25) \).]
Where M represents the dimension of the action matrix, specifically denoted as M = dim(a).
The SAC algorithm for deep reinforcement learning comprises four crucial components: the experience replay buffer, the automatic entropy parameter, the policy network, and the value network. The experience replay buffer stores historical exploration experience, while the automatic entropy parameter stabilizes and adjusts the exploration strategy. The policy network is responsible for action selection, and the value network estimates state-action values. The overall structure of the algorithm is depicted in Figure 2.
[image: Flowchart illustrating a reinforcement learning process. It includes an "Environment" generating a current state and action, feeding into an "Experience Replay Buffer." The "Policy Network" calculates standard deviation and average values, leading to "Action" and "Policy" outputs. An "Automatic entropy parameter update" adjusts the policy network. The "Value Network" consists of Q-Network and Target Network, updated using RMSE and parameter updates. Various feedback loops connect these components, indicating a learning process.]FIGURE 2 | Structure of SAC algorithm.
4.2 Optimization of emergency frequency control strategy based on SAC algorithm
When utilizing the SAC algorithm to optimize the emergency frequency control strategy, each iterative training process can be summarized into three main steps: firstly, collecting and inputting the operating state data of the power system after the fault into the SAC model; then, the SAC model selects the emergency frequency control action based on the state data; finally, executing the control action on the power system simulation environment to achieve the objective. Additionally, due to the uncertain nature of source-load power systems, it is necessary to incorporate an uncertainty model for wind power output and load demand in each interaction process. The overall process of emergency frequency control for a source-load dual uncertainty system based on the SAC algorithm is illustrated in Figure 3.
[image: Flowchart illustrating a power system simulation process. It begins with initializing the power system simulation environment and SAC model parameters, followed by initializing the load factor. The simulation environment runs for one interaction, generating power samples with uncertainties. This leads to actions like adding turbine output or load uncertainty demand. The SAC model selects actions, updating the model with reward values and next states. Decision points determine if the current round or the training process is over, ultimately leading to testing the model. Arrows show flow direction, with references to environment parameters and load factor.]FIGURE 3 | Flow chart of emergency frequency control based on SAC algorithm.
Prior to model training, the simulation environment and SAC model parameters are initialized. The power system load factor is randomly initialized, and the model incorporates uncertainty in wind power output and load demand. The Nataf inversion theory is employed to generate source-load dual uncertainty power samples with correlation. Before each interactive training step, uncertainty power samples are randomly assigned to wind turbine nodes, and uncertainty load demand samples are added to load nodes to simulate real-world source-load uncertainty power system conditions. Subsequently, the SAC model obtains the current system state data from the simulation environment, selects an action based on an environmental state update policy, and delivers it to the simulation environment. After receiving the emergency frequency control action from the SAC model, the simulated power system environment executes the load adjustment action, advances to the next state, and sends the updated state data and immediate reward value to the SAC model. This training process continues until the end of a round, marked by maintaining stable system frequency. At this point, the system simulation environment is reinitialized, and the next round begins. Upon completing the training process, the SAC model can be applied to various fault test scenarios to validate its effectiveness and superiority.
5 SIMULATION ANALYSIS
To evaluate the effectiveness of the proposed method in this paper, a deep reinforcement learning environment is constructed to enhance the IEEE10 machine with 39 nodes. This environment is developed using Python and BPA simulation software. The SAC algorithm is employed to solve the specified test cases. The deep neural network is implemented in Python using TensorFlow 1.15. The experiments are conducted on an Intel Core i5-11400H CPU with 16.00 GB RAM and an RTX 3050 GPU.
5.1 Data of the test case
The BPA software is utilized in this paper to generate a fault scenario for the IEEE10 machine with 39 nodes. The generator model is based on the sixth order model, while the load model consists of a constant impedance model and a mixed load model incorporating induction motors, with a 50% ratio between the two. The fault scenario involves a generator experiencing a partial power loss, resulting in a power difference within the power system. The total simulation time is 40 s, with each cycle of the waveform serving as a sampling point. To simulate various system fault states and obtain sufficient samples, one of the ten generators is randomly selected at the start of the simulation to experience a loss of active output ranging from 0.5 p. u. to one p. u.
This paper utilizes a modified version of the IEEE10 machine with 39 nodes to validate the proposed methodology in this section. The modification involves replacing nodes 32 and 36 with turbines having rated capacities of 684 MW and 576 MW, respectively. Additionally, nodes 3, 4, 7, 8, 16, 20, 24, and 39 are designated as controllable load nodes participating in frequency emergency control. The system’s topology is illustrated in Figure 4.
[image: Electrical circuit diagram showing a power grid with multiple generators labeled Gen1 to Gen10. The diagram includes circuit breakers, transformers, and directional arrows indicating power flow. Various nodes and connection points are marked, illustrating a complex network.]FIGURE 4 | Improved topology of IEEE39 nodes.
The power fluctuations at the load nodes follow a normal distribution with a mean and standard deviation equal to 5% of the rated value. Similarly, the load static model voltage and frequency indices also have a mean and standard deviation of 5% of the rated value.
The wind speeds of the wind nodes are modeled by a Weibull distribution with the shape parameter K set to 2.26, the scale parameter C set to 7.55, the cut-in wind speed at 3.5 m/s, the cut-out wind speed at 25 m/s, and the rated wind speed at 7.3 m/s.
To account for the correlation between the wind turbine nodes, 1,000 sets of wind turbine output samples are generated using the Nataf inverse transformations, with correlation coefficients of 0.8. Figure 5 illustrates the Weibull distribution of wind speed.
[image: Histogram showing wind velocity distribution, with x-axis labeled "wind velocity v (m/s)" and y-axis labeled "probability". Bars form a right-skewed distribution, and a blue curve overlays the bars, representing a fitted probability density function.]FIGURE 5 | Weibull distribution of wind speed.
The deep reinforcement learning state space in this system comprises frequency deviation, frequency rate of change, active output, and load of each node, resulting in a 47-dimensional space. The action space consists of eight load shedding actions for controllable loads. Each action is represented as an 8-dimensional vector, where each element is a continuous value within the range of [-1, 0]. Furthermore, as the Soft Actor Critic (SAC) algorithm can handle continuous action spaces, the emergency frequency control directly determines the necessary load shedding amount and sets the action time for emergency frequency control as 2 s after fault detection. The delay characteristics of controllable loads are categorized into three levels. For loads of the same delay level, the actual control delay is calculated based on the maximum value to ensure that the actual frequency drop depth is less than or equal to the ideal frequency drop depth, thereby avoiding frequency instability. Consequently, after aggregation, it is assumed that the control delay for all level 1 controllable loads is 100 ms, for level 2 controllable loads is 200 ms, and for level 3 controllable loads is 300 ms. The controllable loads are then removed within each node in order of delay from low to high. Table 1 provides the proportions of controllable loads at each node and the distribution of loads across different control delay levels after aggregated modeling.
TABLE 1 | The proportion of load with different time delay levels.
[image: Table displaying load node numbers with corresponding data. Columns include total share of controllable load and percentages for class one, class two, and class three controllable loads. The data is listed for nodes three, four, seven, eight, sixteen, twenty, twenty-four, and thirty-nine.]5.2 Analysis of model training and testing results
The policy network and value network of the SAC model both consist of two hidden layers with 64 neurons each. The activation function is set to ReLU, the learning rate is 0.005, the initial temperature coefficient is 0.1, the self-updating learning rate is 0.0001, and the updating algorithms utilize the alternating multiplier method. The experience replay unit has a capacity of 2,500, and 64 samples are drawn for each training iteration. The convergence criterion for each training round is that the absolute value of the steady-state frequency deviation is less than 0.1 Hz.
The SAC algorithm is employed to learn and train the aforementioned arithmetic model. Figure 6 depict the curves illustrating the changes in reward values during the training process.
[image: Line graph showing reward values over 2000 training epochs. Reward values range from approximately -10000 to 0. The graph indicates high variability and improvements as training progresses.]FIGURE 6 | Changes in reward values during training.
Figure 6 demonstrate that, initially, the model struggles to find a control strategy that effectively stabilizes the system frequency, resulting in frequent movements per round and consequently low reward values. Additionally, the maximum number of action steps per round often reaches 50. However, as training progresses, the model gradually discovers more efficient control strategies with shorter action sequences, although the reward value remains suboptimal due to excessive load removal. It is only after 1,200 rounds of training that both the reward value and the number of training rounds stabilize, indicating the completion of the model training process.
To evaluate and compare the frequency recovery process of the proposed emergency frequency control scheme, it is essential to conduct tests using various fault scenarios. These scenarios are characterized by four attributes: the number of faulty nodes, the extent of power shortage in the faulty nodes, the system load factor, and the magnitude of source load fluctuations. For this purpose, four representative fault scenarios are selected, as illustrated in Figure 7.
[image: Three-dimensional graph depicting four scenarios marked as red spheres. The axes represent system load factor (per unit), fault power deficit (megawatts), and fault node number. Blue and green dots connect each scenario to the axes.]FIGURE 7 | Number of excision maneuvers during each training round.
During the model training process, the emergency frequency control policies for the four representative scenarios are derived through testing at intervals of 400 rounds until the completion of 2000 rounds, leading to the acquisition of the optimal control policy, as depicted in Figure 8.
[image: Four bar charts labeled (A), (B), (C), and (D) show controllable load shedding amounts across various training epochs for nodes 3, 4, 6, 16, and 24. Each chart displays results for epochs 0, 400, 800, 1200, 1600, and 2000, with different node contributions stacked by color.]FIGURE 8 | Change process of load shedding strategy in scenario (A–D) training.
Figure 8 clearly demonstrate significant fluctuations in the emergency frequency control strategies during rounds 0, 400, 800, and 1,200, indicating the model’s continuous search for an improved control strategy. In contrast, the control strategies for rounds 1,600 and 2000 exhibit reduced fluctuations, indicating that the model has undergone substantial training. Initially, the emergency frequency control strategy is more random, but through continuous training, the model takes into account factors such as the amount of controllable loads at each node and load removal sensitivity. Consequently, it selects an optimal node for load shedding, resulting in a final strategy with total load removal close to the power deficit.
Table 2 presents the controllable load shedding quantities for the optimal policy in the four representative test scenarios, along with the steady-state frequency values achieved post-policy implementation and the minimum value of dynamic frequency drop.
TABLE 2 | Controllable load shedding and dynamic frequency metrics for various test scenarios.
[image: Table showing scenarios with corresponding data: Scenario 1 has 592 MW load shedding, a steady state frequency of 50.01 Hz, and a frequency drop minimum of 49.78 Hz. Scenario 2 has 545 MW, 50.05 Hz, and 49.76 Hz. Scenario 3 has 517 MW, 49.98 Hz, and 49.76 Hz. Scenario 4 has 615 MW, 49.91 Hz, and 49.51 Hz.]Table 2 reveals that in the four test scenarios, characterized by diverse fault locations, fault sizes, system loading rates, and source-load uncertainties, the trained model successfully maintains the system within 0.1 Hz of the steady-state frequency deviation. Additionally, the lowest point of the dynamic frequency drop remains above 49.5 Hz. These results substantiate the effectiveness of the emergency control strategy based on the SAC algorithm, particularly for systems affected by source-load uncertainties.
To further ascertain the superiority of the proposed method, a comparative analysis is conducted between the emergency frequency control strategy derived from the traditional adaptive UFLS algorithm and the strategy proposed in this paper. The dynamic frequency recovery process of the system is evaluated for both strategies across the four scenarios, as depicted in Figure 9.
[image: Four line graphs labeled A, B, C, and D compare the frequency response over time between "the method proposed in this paper" and the "traditional method". Each graph shows the proposed method consistently achieving better frequency stability compared to the traditional method, marked by green and blue lines respectively. Time is measured in seconds along the x-axis, while frequency in Hertz is on the y-axis.]FIGURE 9 | Comparison of the dynamic frequency process of scenario (A–D) after the execution of the two strategies.
Figure 9 demonstrates that the emergency frequency control strategies optimized by the proposed scheme in this paper effectively maintain the steady-state frequency deviation of the system within 0.1 Hz, with the lowest frequency point exceeding 49.5 Hz across the four different scenarios. In contrast, the adaptive UFLS scheme in Scenarios 1, 2, and three suffers from the issue of insufficient load shedding, resulting in a greater depth of frequency drop and steady-state frequency deviation. Additionally, the conventional scheme in Scenario four exhibits excessive load shedding, leading to a steady-state frequency close to 50.4 Hz. Consequently, the method presented in this chapter proves its superiority in reducing the depth of frequency drop and steady-state frequency deviation, highlighting the effectiveness of the deep reinforcement learning algorithm.
To compare the disparities between source-load uncertainty and deterministic power systems, both the conventional method and the SAC algorithm proposed in this chapter are employed in both systems for 100 tests. The emergency frequency control outcomes are then compared, and the results are illustrated in Figure 10.
[image: Scatter plots comparing SAC and traditional algorithms. Both graphs show steady-state frequency in hertz versus frequency nadir in hertz. In plot A, data points from both algorithms are scattered closely together. Plot B shows a similar pattern with some spread in data points. SAC algorithm is represented by red triangles, and the traditional algorithm by blue circles.]FIGURE 10 | (A) Comparison of stochastic test results for source-load deterministic systems (B). Comparison of stochastic test results for the source-load uncertainty system.
Figures 10A, B reveal that the median frequency nadir achieved by the SAC algorithm in the source-load deterministic system and the uncertain system is approximately 49.65 Hz and 49.6 Hz, respectively, whereas the median values obtained by the traditional method are around 49.55 Hz and 49.45 Hz, respectively. Notably, the frequency nadir resulting from the traditional method is significantly lower than that achieved by the deep reinforcement learning method, making it nearly impossible to maintain system frequency stability in numerous scenarios. By contrast, the SAC algorithm effectively improves the steady-state frequency deviation and frequency nadir in both deterministic and uncertain systems, demonstrating its superiority over the traditional method for addressing the emergency frequency control problem in source-load uncertain systems.
To validate the suitability of the SAC algorithm over other reinforcement learning algorithms for addressing the emergency frequency control problem in the source-load double uncertainty system, the model developed based on the SAC algorithm in this paper is compared with models employing the A2C algorithm and the TD3 algorithm. Figure 11 presents a comparison of the reward value’s increasing trend throughout the training process. The solid line represents the smoothed reward value, while the shaded area denotes the variance fluctuation of the reward value.
[image: Line graph showing reward values over training epochs for different algorithms. SAC, A2C, and TD3 variances are shaded in pink, green, and blue, respectively. Average lines: SAC (red), A2C (green), TD3 (blue). X-axis: training epochs; Y-axis: reward values from -5000 to 2000.]FIGURE 11 | Comparison of reward values of different DRL algorithms.
Figure 11 illustrates that after approximately 500 rounds, the smoothed reward value of the model based on the SAC algorithm surpasses that of the other algorithm models, exhibiting a gradual increase until it stabilizes at the desired value. Furthermore, in terms of variance, the reward value’s variance for the SAC algorithm is higher during the initial 300 training rounds and subsequently becomes smaller than that of the other two algorithms. This observation indicates the robustness of the SAC algorithm, its ability to swiftly enhance the reward value through learning, and its reduced oscillation.
The SAC algorithm effectively decreases the minimum system frequency drop compared to other DRL algorithms, while also reducing the steady-state frequency deviation. To visually demonstrate the test’s improvement more intuitively, Figure 12A and (B) present the distribution of frequency drop nadir and steady-state frequency deviations resulting from the tests conducted with various algorithms under random scenarios.
[image: Two bar charts labeled (A) and (B) compare the percentage distribution of steady-state frequencies in hertz for three methods: SAC, AAC, and TD3. The x-axis represents frequency ranges, while the y-axis indicates percentages. In both charts, SAC is orange, AAC is green, and TD3 is purple. Chart (A) shows distributions mainly between 49.7-49.8 hertz, with varying heights across methods. Chart (B) focuses on a narrower frequency range of 49.6-49.9 hertz, displaying different peaks and distribution patterns for each method.]FIGURE 12 | (A) Comparison of steady-state frequency deviation distribution of different DRL algorithms for random testing (B). Comparison of frequency drop nadir distribution of different DRL algorithms for random testing.
As can be seen from Figure 12, the test results of the emergency frequency control strategy using the SAC algorithm show that the probability of the system’s steady-state frequency stabilizing at 49.8Hz–50 Hz is more than 50%, which is much higher than that of the test results using the A2C and TD3 algorithms, and the probability of the frequency dip nadir of the SAC algorithm being higher than 49.4 Hz is much higher than that of the other two algorithms. Therefore, the model based on SAC algorithm in this chapter can effectively improve the dynamic frequency nadir and steady-state frequency of the system after emergency frequency control compared to other DRL algorithms.
6 CONCLUSION
The emerging power systems exhibit dual source-load uncertainty, contributing to the increasing nonlinearity and complexity of the emergency frequency stabilization problem. Consequently, this paper proposes an optimization method based on the SAC algorithm for the emergency frequency control strategy of power systems with dual source-load uncertainty. Experimental verification is conducted through the design of various operational scenarios, yielding the following conclusions.
	1) The dual uncertainty in the new power system, stemming from both source and load, is analyzed. This includes the spatio-temporal uncertainty of wind power output on the power source side and the uncertainty in power demand on the load side. This analysis aims to prevent errors caused by the superposition of uncertain power from both sources and the fault power deficit.
	2) Enhance the state space, action space, and reward function of the emergency frequency control MDP model to accommodate the characteristics of source-load double uncertainty;
	3) Finally, the proposed method is validated in a modified IEEE10 machine 39-node system incorporating source-load uncertainty. The results demonstrate that the proposed model accounts for the superposition of source-load uncertainty power and fault power, leading to a reduction in steady-state frequency deviation after emergency frequency control. Moreover, compared with the traditional UFLS method and other DRL algorithms, the SAC algorithm with continuous action space accurately removes the load in a single pass, thereby enhancing the frequency restoration speed and minimizing the cost of controllable load removal.
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With the development of renewable energy, energy storage has become one of the key technologies to solve the uncertainty of power generation and the disorder of power consumption and shared energy storage has become the focus of attention for its cost-effective characteristics. However, it is always difficult to quantify the coupling relationship between charge and discharge strategy and life expectancy in energy storage configuration. Based on this, this paper proposes an industrial user-side shared energy storage optimal configuration model, which takes into account the coupling characteristics of life and charge and discharge strategy. Firstly, the life loss model of lithium iron phosphate battery is constructed by using the rain-flow counting method. In order to further optimize the user-side shared energy storage configuration in the multi-user scenario, a two-layer model of energy storage configuration is built, and the Big M method and the Karush-Kuhn-Tucker (KKT) conditions are used to equivalently transform the constraints. Based on the predicted life of energy storage and the dichotomy method, the optimal energy storage configuration results are obtained. Comparing the energy cost of users under the three scenarios of no storage configuration, storage configuration according to fixed storage life, and storage configuration according to the model proposed in this paper, the results show that the proposed method can help accurately describe the energy storage model, increase the utilization rate of the power station, and improve the electricity economy of users.
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1 INTRODUCTION
Since the 21st century, establishing low-carbon or even zero-carbon energy systems has become a global focus. Consequently, the application and proportion of renewable energy sources like wind, solar, and hydropower in the grid have gradually expanded. However, renewable energy production inherently exhibits intermittency, volatility, and randomness. When integrated on a large scale with power systems, these characteristics exacerbate the imbalance between supply and demand in generation and load, posing a threat to the safe and stable operation of power systems (Azhgaliyeva, 2019).
Energy storage, as a device capable of altering the spatial and temporal distribution of energy, is a key technology supporting the large-scale integration of renewable energy into the grid and promoting the green transition of energy. It can effectively mitigate the instability of renewable energy generation. With the development and application of energy storage, effective demand-side management can be realized, promoting the application of renewable energy and enhancing system operational stability, which will bring significant changes to power system planning, scheduling, and control (Deguenon et al., 2023). The application of energy storage technology will permeate all aspects of power generation, transmission, distribution, and consumption, alleviating peak load power supply demands and improving the utilization rate of existing grid equipment and the operational efficiency of the grid. Zeng et al. (2024) considering shared energy storage and demand response, a power system interval optimization model based on shared energy storage and refined demand response is proposed. This model effectively enhances the utilization of energy storage and the economic operation of the system, achieving coordinated interaction among “source-grid-load-storage.” As a flexible resource, energy storage can be applied on the generation side (Wang et al., 2023; Song et al., 2023), grid side (Xie et al., 2022a), and user side (Qian et al., 2023), thereby achieving a coordinated unity of “source-grid-load-storage.”
As significant energy consumers, commercial and industrial (C&I) consumers can play a crucial role by enhancing their flexibility and participating in demand response initiatives. On-site renewable energy generation can reduce grid consumption, while energy storage systems (ESS) can store energy for later use, supporting variable generation and shifting demand. Both technologies, when integrated with demand response, can enhance flexibility and benefits (Yasmin et al., 2024). Installing energy storage systems effectively addresses uncertainties in renewable energy sources (RES) and load demands, ensuring the stable and efficient operation of industrial power systems (Jianwei et al., 2022). Kwon et al. (2017) proposed a demand-side electricity procurement approach to minimize energy costs for consumers. Krishnamurthy et al. (2018) introduced a stochastic optimization model to maximize user energy arbitrage, considering uncertainties in day-ahead loads and real-time prices. However, these models focus on optimizing standalone energy storage for single users.
The low cost and inefficiency of standalone systems hinder the development of energy storage (Tahir et al., 2022). This has led to the emergence of shared energy storage solutions (Zhu and Ouahada, 2021). Wang et al. (2024a) developed a new business model that allows multiple users within an industrial park to share leased energy storage, proposing a robust optimization framework. Their results show that shared leasing is significantly more economical than self-built storage. Aminlou et al. (2022) established a peer-to-peer (P2P) energy trading model in the context of shared battery energy storage systems (SBESS), which can save substantial costs for industrial towns.
Regarding the business models and pricing mechanisms of shared energy storage, Zhu et al. (2022) proposed a peer-to-peer (P2P) energy trading system, which integrates energy trading with energy management, enabling each prosumer to jointly manage its energy consumption, storage scheduling, and energy trading in a dynamic manner for smart communities consisting of a group of grid-connected prosumers with controllable loads, renewable generations and energy storage systems. Xu et al. (2023) designed a business model for shared energy storage operators providing deviation insurance services from the perspective of commercial insurance; Yang et al. (2023) considered the regulation demands from the power side and grid side, proposing a distributed shared energy storage operational model; Lai et al. (2022) presented a two-stage pricing mechanism between the coordinator operating the shared energy storage and the prosumers borrowing the shared capacity from the coordinator; Zhang et al. (2022) studied the equilibrium state of supply-demand flow in a peer-to-peer market model for residential shared energy storage units and proposes a method for service pricing and load dispatching. Zhang et al. (2024) addressed the interests of different entities in the operation of Energy Storage Systems and Integrated Energy Multi-Microgrid Alliances by proposing an optimization method based on Stackelberg game theory.
For the configuration and optimization of shared energy storage, Wang C. et al. (2022) categorized residential flexible loads based on different demand response patterns and establishes demand response models for various load types. Xie et al. (2022c) first proposed a community energy storage collaborative sharing model that includes multiple transaction types, then established a community shared energy storage scale and configuration model based on the cooperative game between community users and energy storage operators; based on this, the bilateral Shapley method (Yang et al., 2021) is applied, allocating the annual total cost based on the marginal expected costs brought by each user. For the profit distribution using the Shapley value method, Cremers et al. (2023) conducted a systematic review of the use of Shapley values in energy-related applications, as well as the literature on calculating or approximating them. They developed a new method for accurately calculating Shapley values by clustering producers and consumers into fewer demand profiles, making it applicable to communities with hundreds of agents. Wu et al. (2023) proposed a new profit distribution method based on Shapley values, focusing on cooperative fairness and encouraging alliance improvements. Pedrero et al. (2024) introduced Nested Shapley values as a new sharing mechanism that fairly allocates profits among members of large alliances, addressing the trade-off between fairness and scalability. In the area of energy storage scheduling, Yang et al. (2024) proposed a scheduling method based on multi-stage robust optimization to address the scheduling problems of energy storage systems and uncertain energy. Qian et al. (2024) considered the demand response of electric magnesium loads, an improved scenario-based typically distributed robust energy and reserve renewable energy system that significantly reduces the costs of day-ahead scheduling and rescheduling while enhancing operational economy without compromising the high reliability and safety of the Renewable Portfolio Standard (RPS). Wang K. Y. et al. (2022) presented a dual-layer optimization model for the configuration and scheduling of integrated energy systems in multi-microgrids, considering energy storage and demand response, to enhance renewable energy consumption and reduce carbon emissions.
However, the aforementioned literature focuses on using game theory to achieve the configuration of user/park shared energy storage, neglecting the impact of energy storage losses on configuration results (Xie et al., 2022b). In integrated configuration and scheduling models, the lifespan of energy storage and optimized charge/discharge strategies are highly coupled, significantly affecting the economic evaluation of energy storage over its entire lifecycle. Scholars have conducted relevant research on these issues. In literature (Wang et al., 2024b), the Rain-flow counting method (Pan et al., 2021) and iterative methods are used to quantify the impact of capacity loss on configuration. By offline calculating the health status of energy storage during each iteration, it is concluded that when the initial health status value reaches consistency at the beginning of each year, the iteration converges, resulting in optimal configuration outcomes. Although the above methods address some issues and make the economic configuration model of shared energy storage more precise, the physical significance of the iterative process is unclear, and the impact of charge/discharge strategies on expected lifespan and corresponding optimal configuration results is overlooked.
Therefore, this paper proposes an optimal configuration model for industrial user-side shared energy storage that considers the coupling characteristics of lifespan and charge/discharge strategies, based on cooperative game theory (Mao et al., 2022) and a business model for users to jointly configure energy storage. First, the Rain-flow counting method is used to solve the equivalent cycle count of the energy storage battery, obtaining a relevant model for calculating battery lifespan loss. Second, a bi-level model is constructed, with the upper-level objective of minimizing the total cost for the user group and the lower-level objective of minimizing the cost of purchasing electricity from the grid for the user group. Finally, the KKT conditions and Big-M method are used to transform the bi-level model, combined with a bisection method to iterate the expected lifespan of energy storage. Shapley value allocation model is applied to allocate the cost of multi-user alliance.
2 EQUIVALENT LIFE MODEL OF ESS
2.1 Rain-flow counting method
The Rain-flow counting method was proposed by two British engineers in the 1950s. Its core idea is to decompose complex load curves into multiple load cycles, which are then used for fatigue life estimation. The Rain-flow counting method is a dual-parameter cycle memory model with clear physical significance. Therefore, it can also be used to predict the equivalent cycle life of batteries. The cycle life of a battery varies with different depths of discharge. By using the Rain-flow counting method, the number of charge-discharge cycles and their depths within a typical day for an energy storage battery can be calculated, which is then used for battery life estimation.
The rain-flow counting method is widely used in fatigue life analysis across various fields, such as materials science, and in recent years, it has also been applied to assess battery life (Xu et al., 2021). Figure 1 shows the SOC image after rotation, and the process for obtaining this image is as follows. First, the capacity change data is collected and plotted to create a curve. This curve is then rotated 90 degrees counterclockwise to fit the requirements of the Rain-flow counting method. The starting point on the curve is marked as the origin for simulating “raindrops.” As the simulation progresses, “raindrops” flow along the curve, and each time they reach a peak (or “eave”), it is checked whether they can fall. If a “raindrop” falls and is intercepted by another part of the curve, it continues to fall until it reaches either the maximum or minimum value of the curve, at which point it reverses direction. If the value at the endpoint differs from the starting point when the raindrop reaches the endpoint, it is considered that the cycle is divided into two half-cycles, with the division point at the maximum or minimum value of the complete curve. Figure 1 provides an example of calculating the number of cycles using the Rain-flow counting method.
[image: A line graph shows capacity in kilowatt-hours on the x-axis and time in hours on the y-axis. Two cycles are marked: Cycle 1 decreases sharply, then increases, and Cycle 2 continues upward before sharply decreasing.]FIGURE 1 | Example of calculating the number of cycles of the rain-flow counting method.
Figure 1 shows the capacity change curve of a battery within 24 h. The State of Charge (SOC) of the battery refers to the ratio of the remaining charge in the battery to the nominal capacity of the battery, usually expressed as a percentage. The Depth of Discharge (DOD) of period one is 0.3366, and period two is 0.8415.
2.2 Battery life loss model
It is generally considered that energy storage batteries are scrapped when their capacity drops below 80% of the initial capacity. The relationship between the cycle life of lithium iron phosphate batteries and the DOD is fitted based on the number of cycles Nctf at different DOD levels.
[image: Equation showing \( N_{df} = 1 + A n_k + B n_{k}^2 + C n_{k}^3 \).]
In Formula 1 (Gao et al., 2013), A, B, and C are parameters related to the discharge depth DOD of the Shared Energy Station (SES); nk represents the number of cycles of the SES at a certain discharge depth DOD,i.
If the DOD for the i-th charge-discharge cycle is DOD,i, the equivalent cycle life can be expressed by Equation 2 as:
[image: Mathematical equation showing \( N(D_{OD,i}) = \frac{N_{ef}(D_{OD,i})}{N_{ef}(D_{OD,j})} \) labeled as equation (2).]
Tlife of the battery in the working cycle of the energy storage power station is:
[image: \[ T_{if\epsilon} = \sum_{DOD=0.01}^{DOD=1} \frac{N_{df}(DOD_L)}{N_{df}(DOD)} \quad (3) \]  Mathematical equation showing a sum from DOD equals 0.01 to DOD equals 1, with a fraction \(\frac{N_{df}(DOD_L)}{N_{df}(DOD)}\).]
In the Equation 3, Tlife represents the equivalent cycle life.
Therefore, it is considered that the life loss of the energy storage battery is:
[image: Equation showing T equals N sub ef of D sub OD0.1 over T sub life, with the equation labeled as 4.]
In the Equation 4, when T = 1, the battery is considered to be exhausted and needs to be scrapped.
When the calculation period is year, the equivalent cycle life of shared energy storage in 1 year is the sum of days d:
[image: Equation showing the total yearly T_{i,c,year} is the sum from d equals 1 to 365 of T_{i,c,d}. Labeled as equation 5.]
In Equation 5, Tlife, year represents the equivalent cycle life of shared energy storage in 1 year.
The estimated service life of shared energy storage is:
[image: The equation shows "T base equals N af of D O D, comma, 1 divided by T lif 6 year," labeled as equation six.]
In the Equation 6, Tbase represents the cycle life of the energy storage battery under the typical day (in years).
3 USER-SIDE SES CONFIGURATION MODEL
When users build their own energy storage stations under this business model, the system structure is shown in Figure 2 (Yan and Chen, 2022) The objective function of the user-side shared energy storage model focuses on the cost of electricity purchase and the construction and operation costs of the energy storage station. The model aims to minimize the total cost of user investment in the station and electricity purchase while achieving the lowest electricity purchase cost for the user.
[image: Diagram showing a power grid connected to multiple industrial users labeled as Industrial user 1, Industrial user 2, and Industrial user N. Each user is linked to an in-built shared energy storage system.]FIGURE 2 | User-built shared energy storage system structure diagram.
Therefore, a Bi-level model is established. The upper level aims to minimize the sum of user investment and electricity purchase costs, while the lower level aims to minimize the user’s cost of purchasing electricity from the grid. Based on this, this section will establish a cost conversion model for the energy storage station using the Net Present Value (NPV) method and a bilevel model with the objective of minimizing user costs.
3.1 Upper layer model
3.1.1 Upper objective function
In the upper-level model, users need to consider the costs of constructing and operating the energy storage station. Since the construction investment cost of the energy storage station is a one-time investment, the time value of money must be taken into account.
[image: The image shows a mathematical equation for minimizing cost: \(\min C = \sum_{w=1}^{W} T_w (C_{inv,w} + C_{grid,x,w} + C_{protect,w}) + 12C_{grid,dc,w}\) with the equation labeled as (7).]
In Equation 7, [image: It seems you may have tried to upload an image or reference one. Please try uploading the image again or provide a URL. If you add a caption or description, that would be helpful too.] represents the number of typical days; [image: It looks like there's a misunderstanding. To assist with creating alt text for an image, please upload the image file or provide a direct URL. Once you do, I can help create an appropriate description.] denotes the number of days corresponding to the w-th typical day; [image: It seems like you mentioned a mathematical expression rather than an image. If you have an image you'd like me to describe, please upload it or provide a URL.] is the daily average investment and maintenance cost of the energy storage station; [image: The image shows the mathematical expression \( C_{\text{grid}, w} \).] is the electricity cost for users from the grid on a typical day; [image: The mathematical notation shows "C" with the subscript "grid, zd, w" in italic script, likely representing a variable related to grid systems or calculations.] is the monthly demand charge for users from the grid.
The daily average investment cost of the energy storage station is given by Equation 8:
[image: Equation of C_inv.nw equals the expression M_y times eta_P multiplied by P_ess plus eta_E multiplied by E_ess divided by N_m T_m T_k, labeled as equation eight.]
where [image: It seems like there was an error in uploading the image. Please ensure you are uploading the image file directly or providing a correct URL. If you need further assistance, let me know!] represents the present value annuity factor; [image: Greek letter eta followed by the subscript "P".] is the power cost of the energy storage station; [image: It seems there is no image uploaded. Please provide the image or its URL, and I will be happy to help with the alternate text.] is the capacity cost of the energy storage station; [image: The mathematical expression shows \( p_{\text{ess}}^{\text{max}} \).] and [image: Mathematical notation showing "E sub ess superscript max".] are the maximum charge/discharge power and maximum capacity of the energy storage station, respectively; [image: Please upload the image or provide a URL, and I can help create the alt text for it.] is the number of typical days representing different electricity usage patterns within a year; [image: Please upload the image or provide a URL, and I will help you create alt text for it.] is the number of days corresponding to the typical day; [image: It seems like there's a misunderstanding. Could you please upload the image or provide more context?] is the lifespan of the energy storage station in years; [image: The formula shows "k, k equals zero, one, two, up to n, where n is an element of the natural numbers N."] denotes the iteration count; [image: Please upload the image so I can provide the appropriate alt text.] is the initial expected lifespan, set to 5 years.
The present value annuity factor is given by:
[image: The image shows a mathematical equation: \( M_y = \frac{{(1 + r)^y - 1}}{{r (1 + r)^y}} \), labeled as equation number 9.]
In Equation 9, [image: Please upload the image or provide a URL for me to create the alternate text.] is the annual interest rate of funds; [image: It seems like there was an error in uploading the image. Please try uploading the image again, and I will help you with the alt text.] is the life cycle of the device.
Daily maintenance cost of energy storage power station:
[image: The formula shows the calculation for \( C_{\text{protect,ipv}} \) as the sum from \( i = 1 \) to \( N_{t} \) of \( P_{\text{ess,ipv}}(t) + P_{\text{ess,aux}}(t) \) multiplied by \( \delta_{\text{protect}} \) with equation number (10).]
In Equation 10, [image: Please upload the image or provide a URL, and I would be happy to help create the alternate text for it.] represents the number of users; [image: Please provide an image or a link to the image you want described.] represents the number of time periods; [image: Mathematical expression showing \( P_{\text{ess},d,w,i}(t) \).] is the power drawn by the i-th user from the energy storage station during period t on a typical day; [image: Mathematical expression showing P for power with subscripts "ess, c, w, i" and "t" in parentheses, indicating a function of time.] is the power charged by the i-th user to the energy storage station during period t on a typical day; [image: Lowercase Greek letter delta followed by the subscript text "protect".] is the operation and maintenance cost paid by users when storing and retrieving electricity from the energy storage station.
The electricity cost for users purchasing electricity from the grid is given by:
[image: Equation for \( C_{\text{grid, u}} \) equals the sum from \( t = t_{1} \) to \( N \cdot N_{T} \) of \( \tau(t) \) multiplied by \( P_{\text{grid, u}}(t) \) multiplied by \( t \), labeled as equation \( 11 \).]
In Equation 11, [image: The image shows the mathematical expression τ(t), where τ is a function of t.] represents the electricity cost for users purchasing electricity from the grid; [image: Mathematical expression with variables in subscript and a function notation. The expression is italicized: P sub grid, w, i, of t.] is the power purchased from the grid by the i-th user during period t on a typical day.
The demand charge for users purchasing electricity from the grid is given by Equation 12:
[image: Equation representing the sum of grid active power: \( C_{\text{grid,active}} = \sum_{i=1}^{N} \tau_{\text{id}} \cdot P_{\text{grid,active}}(i) \), labeled as equation 12.]
where [image: It seems like there is no image attached. Please upload the image or provide a URL to it, and I will be happy to help with the alt text.] represents the demand charge for users purchasing electricity from the grid; [image: Mathematical expression: P subscript grid, zd, w, with t in parentheses.] is the monthly peak power demand for the i-th user on a typical day.
According to the demand charge payment rules, users only need to pay the demand charge based on the maximum load from the grid in that month, in addition to the basic electricity cost. The demand charge rate in China varies depending on the user type and typically ranges from 30 to 50 ¥/kW.
3.1.2 Upper constraint
In configuring the energy storage station, constraints on user electricity purchases, station charge/discharge operations, and grid power flow need to be imposed to achieve a rational planning of the user-owned energy storage station business model.
Constraints on the charging and discharging power of the energy storage battery:
[image: The mathematics image shows the inequality \(0 \leq P_{\text{ess,dis}}(t) \leq U_{\text{dis}}(t) P_{\text{ess}}^{\text{max}}\) with the reference number (13) at the end.]
[image: Mathematical expression showing an inequality: zero is less than or equal to P sub charge parenthesis t, which is less than or equal to U sub relax parenthesis t times P superscript max sub dis, followed by equation number fourteen in parentheses.]
[image: Equation showing \( U_{\text{abs}}(t) + U_{\text{relax}}(t) \leq 1 \) with a reference number (15) beside it.]
[image: Please upload the image or provide a URL so I can help create the alt text.]
[image: It seems there's no image attached. Please upload the image so I can help you create alternate text for it.]
[image: Summation equation showing the sum from \(t = 1\) to \(N_T\) of \(P_{\text{ess,dis}}(t) + P_{\text{ess,cha}}(t)\) is less than or equal to \(N_{\text{DoD}} D_{\text{ideal}} E_{\text{ess}}^{\text{max}}\). Labeled as equation (18).]
In the above equations, [image: Mathematical expression depicting \( P_{\text{ess, abs}}(t) \), representing a function of time within a specific context.] represents the charging power of the energy storage station, [image: Mathematical expression showing \( P_{\text{ess, relea}}(t) \).] represents the discharging power of the energy storage station, [image: Mathematical expression displaying \( U_{\text{abs}}(t) \).] represents the charging status of the energy storage station as a binary variable (0 or 1), [image: The expression "U subscript relea (t)" is presented.] represents the discharging status of the energy storage station as a binary variable (0 or 1). Equation 15 signifies that either [image: Mathematical notation showing the function \( U_{\text{abs}}(t) \).] or [image: The mathematical expression shows "U" with a subscript "relea" followed by a function of time, represented as "(t)".] cannot be 1 at a given time, indicating that the battery cannot be charged and discharged simultaneously. [image: I'm sorry, I can't process that request properly. Could you please upload the image or provide a URL? You can also add a caption for more context.] represents the estimated daily charging and discharging cycles of the energy storage battery, [image: It appears you've included a symbol or equation instead of an image. Please upload the image or provide a URL, and I'll be happy to help with the alternate text.] represents the ideal maximum depth of discharge for the battery. Equation 18 imposes constraints on the daily depth of discharge and the number of cycles for economic reasons, which ensures that the energy storage will not over-charge or over-discharge within a day.
Constraints on the upper and lower limits of energy storage battery capacity:
[image: The image displays an equation that states ten percent of the maximum energy demand over time is less than or equal to the energy demand at time t, which is less than or equal to ninety percent of the maximum energy demand, followed by the number nineteen in parentheses.]
In Formula 19, [image: The expression \(E_{\text{ess}}(t)\) represents a mathematical function, where \(E\) denotes a variable dependent on time \(t\).] indicates the energy stored in the energy storage system at time t. This constraint implies that the maximum energy within the storage system at any given time cannot exceed 90% of the total capacity, and the minimum energy cannot fall below 10% of the total capacity.
The energy storage state constraint for t ESS is shown in Equation 20.
[image: Mathematical equation showing energy balance over time for an energy storage system: \( E_{\text{ess}}(t) = E_{\text{ess}}(t-1) + \left[ r_{\text{cp}}^{\text{php}} P_{\text{ess,subs}}(t) - \frac{1}{r_{\text{ideal}}} P_{\text{ess,reda}}(t) \right] \Delta t \), labeled as equation (20).]
In the above equation, [image: The image shows the mathematical symbol eta with a subscript "abs".] and [image: The image shows the mathematical expression "η" with the superscript "relea".] represent the charging and discharging efficiencies, respectively.
The constraint on the electricity flow between each user and SES:
[image: The image shows a mathematical inequality: \(0 \leq P_{\text{user, t}}(t) \leq P_{\text{user}}^{\text{max}} \cdot U_{\text{demand}}(t)\). The number 21 is displayed on the right side.]
[image: Equation displaying \(0 \leq P_{user,avg}(t) \leq P_{bus}^{max} \cdot U_{dist}(t)\), labeled as equation (22).]
[image: Mathematical expression stating that the sum of \( U_{\text{chan}}(t) \) and \( U_{\text{system}}(t) \) is less than or equal to one, equation numbered 23.]
[image: It seems like you included a mathematical expression rather than an image. If you meant to share an image, please upload it, and I can help create the alt text for it.]
[image: It seems like you've provided a mathematical expression rather than an image. The expression appears to relate to a function or variable, \( U_{\text{use}}(t) \), constrained between zero and one. If you have an image you want to describe, please upload it, and I can help create alt text for it.]
where [image: The formula displays \( U_{\text{cha},w,i}(t) \).] represents the energy storage status of the i-th user, indicating whether the user is charging the energy storage station (taking values of binary), while [image: Mathematical expression: \( U_{dis,w,i}(t) \).] represents the status of the i-th user drawing energy from the energy storage station (also taking values of binary). Equation 23 signifies that [image: Mathematical expression showing "U" with subscripts "cha, w, i" and a variable "t" in parentheses.] and [image: Equation with a subscript: Uppercase U with subscripts "dis, w, i" and the function of t in parentheses.] cannot both be 1 simultaneously, meaning the i-th user cannot both charge from and discharge to the energy storage station at the same time.
The energy storage power balance constraint is shown in Equation 26.
[image: Summation equation showing the sum from i equals 1 to N of the difference between P_received,i(t) and P_sensitive,i(t) is equal to the difference between P_received(t) and P_sensitive(t), labeled as equation 26.]
This constraint signifies that the total sum of the difference in energy exchange values between each user and the energy storage station must equal the change in energy stored in the battery during that time period.
The unidirectional power transmission constraint within the power grid:
[image: Mathematical inequality showing that zero is less than or equal to P subscript grid comma aux of t, which is less than or equal to P subscript grid comma aux of i. This is labeled as equation twenty-seven.]
In Formula 27, the power transmitted through the power grid should be a positive value and less than the maximum transmission capacity.
3.2 Lower layer model
3.2.1 Upper objective function
The lower objective considers the lowest cost of electricity for users and is expressed by Equation 28 as:
[image: Optimization equation to minimize cost C, expressed as the summation over w from 1 to W of the product of T sub w and C sub grid,w plus twelve times C sub grid, x, w, labeled as equation 28.]
3.2.2 Lower constraint
User power balance constraints:
[image: The equation represents a power balance: \( P_{\text{grid,aux}}(t) + P_{\text{PV,aux}}(t) + P_{\text{essl,aux}}(t) - P_{\text{essc,aux}}(t) - P_{\text{load,aux}}(t) = 0 \), labeled as equation (29).]
In Equation 29, [image: The image shows the mathematical expression \( P_{PV,w,i}(t) \).] represents the solar power generation of the i-th user during time period t on a typical day, while [image: \( P_{\text{load},w,i}(t) \) is a mathematical expression typically representing a load power function dependent on variables \( w \), \( i \), and time \( t \).] represents the power load of the i-th user during time period t on a typical day. The purchased electricity by the user needs to balance with their own load, self-generated power, and the energy exchange with the station. [image: Greek lowercase letter lambda with subscript 1, i, t, w.] is the Lagrange multiplier corresponding to this constraint in the subsequent solving process.
The user’s power purchasing constraint:
[image: Mathematical expression showing an inequality: zero is less than or equal to \( P_{\text{grid, aux}}(t) \) which is less than or equal to \( P_{\text{grid, aux}}^{\text{max}}(t) \), where \( u_{\text{tld, aux}}^{\text{min}} \leq u_{\text{tld, aux}} \leq u_{\text{tld, aux}}^{\text{max}} \). It is equation number thirty.]
In Equation 30, [image: \( \mathbf{u}_{1,i,t,w}^{\min}, \mathbf{u}_{1,i,t,w}^{\max} \)] represents the Lagrange multiplier corresponding to this inequality constraint in the subsequent solving process. This constraint implies that the power purchased by the i-th user during time period t on a typical day should not exceed the maximum power purchased from the grid for that typical day.
The peak shaving load constraint:
[image: Equation involving power calculations: \( P_{\text{load,av}}(t) - P_{\text{PV,av}}(t) + [P_{\text{ess,av}}(t) - P_{\text{ess,use}}(t)] \leq (1-\mu)P_{\text{load,max,use}}^{\text{max}}(t) \).]
In Equation 31, [image: It seems like you've pasted a mathematical symbol instead of uploading an image. Please upload the image or provide its URL to receive an appropriate alt text description.] represents the peak shaving rate, and [image: Mathematical expression displaying a variable, denoted as \(u_{2,i,t,w}^{\text{max}}\), with subscripts 2, i, t, w and superscript max.] represents the Lagrange multiplier corresponding to this inequality constraint.
3.3 The cost allocation model based on the Shapley value method
The revenue distribution model uses the Shapley value method to fairly consider each member’s contributions. This helps allocate assets appropriately. Specifically, this model utilizes the Shapley value method to distribute revenues among a coalition composed of n industrial users.
In the calculation process, the marginal contributions made by each member are taken into account, and the revenues are allocated to each member in a reasonable manner, allowing each member to receive corresponding benefits. For a coalition of n industrial users, the allocated revenue for user i, denoted as Xi, is given by:
[image: Mathematical expression showing \( \bar{x}_i = \sum_{Q \subseteq [n] \setminus \{i\}}\frac{|Q|!(|n_i| - |Q| - 1)!}{|n_i|!}(v(Q \cup \{i\}) - v(Q)) \), labeled as equation 32.]
In Equation 32: Xi represents the allocated revenue for user i; Q is any sub-coalition formed by the total coalition excluding user i; [image: Lowercase letter "n" subscripted with "n" in italics.] is the total coalition; [image: Please upload the image or provide a URL, and I can help create the alt text for it.] is the individual coalition formed independently by user i; [image: The letter "Q" in a serif font.] is the number of users in the sub-coalition; [image: The image displays the mathematical notation vector "n" with a subscript "n".] is the number of users in the total coalition; and v is the total revenue. The revenue distribution must satisfy the condition that the total revenue of the coalition remains unchanged before and after the distribution, as shown in Equation 33:
[image: Summation from i equals 1 to n of X sub i equals nu of n sub i, equation 33.]
4 THE SOLUTION PROCESS OF THE CONFIGURATION MODEL
4.1 Upper layer model processing
In the upper-level model, the non-linear constraints arising from the multiplication of binary (0–1) variables and linear variables are handled using the Big-M method for Equations 13–17 and Equations 21–25 (Ding et al., 2020). The processed equations are shown in Equations 34–41.
[image: Mathematical expression showing that the power of the ESS at time t, denoted as \( P_{\text{ess,dis}}(t) \), is bounded between zero and \( P_{\text{ess,dis}}^{\text{max}} \). Reference is equation 34.]
[image: The image shows the mathematical inequality: \(0 \leq P_{\text{ex,ads}}(t) \leq U_{\text{ads}}(t) M\). Equation number is given as (35).]
[image: Mathematical expression showing an inequality: zero is less than or equal to \( P_{\text{ess\_eles}}(t) \), which is less than or equal to \( P_{\text{ess}}^{\text{max}} \). A reference number, thirty-six, is on the right.]
[image: The image contains a mathematical inequality: zero is less than or equal to \( P_{\text{user\_rela}}(t) \), which is less than or equal to \( U_{\text{rela}}(t) M \), followed by equation number thirty-seven in parentheses.]
[image: The mathematical expression shows an inequality where zero is less than or equal to \( P_{\text{ESS,adj}}(t) \), which is less than or equal to \( P_{\text{ESS}}^{\text{max}} \). The expression is labeled equation (38).]
[image: Mathematical expression showing an inequality: zero is less than or equal to P subscript S subscript E subscript L, max function of t, which is less than or equal to U subscript d subscript max function of t, times M. Number 39 is enclosed in parentheses.]
[image: The expression depicts an inequality: zero is less than or equal to \( P_{\text{ESS, dis}}(t) \), which is less than or equal to \( P_{\text{ESS}}^{\text{max}} \). The equation is numbered 40.]
[image: The image shows a mathematical inequality: \(0 \leq P_{\text{est, max}}(t) \leq U_{\text{dist, max}}(t) M\), labeled as equation (41).]
4.2 Lower layer model processing
Due to the dual-level structure of the model under study, it is necessary to appropriately handle the lower-level model to ensure it serves as a constraint for the upper-level model. In this process, we employ the KKT conditions, which are crucial for obtaining the optimal solution in nonlinear programming. By introducing the KKT conditions, even in the face of optimization problems with inequality constraints, we can still utilize the Lagrange multiplier method to continue the solution process, thereby ensuring the accuracy and effectiveness of the model.
The specific steps are as follows:
The lower-level objective function and constraints, along with their Lagrange multipliers, are multiplied to form the Lagrange function, as shown in Equation 42:
[image: Mathematical formula for L, involving a summation over variables W, N, and N sub T. The equation includes terms like P_grid, P_load, and P_ess, as well as parameters lambda and u with min and max superscripts, structured around grid and load balancing over time intervals.]
The variables present in the lower-level objective function are differentiated to create new equality constraint conditions, which is shown in Equation 43:
[image: Equation showing a mathematical expression used in a specific context, featuring various terms involving multipliers and variables, including \( T_{w} \), \(\tau(t)\), \( P_{\text{grid,el,zw}}(i) \), \(\lambda_{1,el,zw}\), \( u_{1,el,zw}^{\text{max}}\), \( u_{1,el,zw}^{\text{min}}\), and \( P_{\text{load,max,zw}}(i) \), ending with equal to zero and labeled as equation (43).]
The modified inequality constraint conditions from the original lower-level model are retained and become the new constraint conditions of the transformed single-level model, as shown in Equations 44–46:
[image: Mathematical inequality showing \(0 \leq u_{i,j,\min}^{t,u,v}\) perpendicular to \(P_{\text{grid},u,v}(t) \geq 0\), labeled as equation forty-four.]
[image: Mathematical inequality showing zero less than or equal to \( u^{\text{max}}_{\text{DLM}, i} \) perpendicular to \( (P_{\text{gridDLM}}(i) - P_{\text{gridAux}}(t)) \) greater than or equal to zero. Equation numbered 45.]
[image: Inequality equation involving maximum value of beta, grid storage power rate parameters, power of load maximum, actual load, photovoltaic, and storage elements. Ends with greater than or equal to zero, labeled as equation forty-six.]
The rewritten inequality constraint conditions from the previous step need to be processed using the Big-M method, [image: Mathematical expression showing \( M_j^{\text{min}} \), where \( j \) ranges from 1 to \( n \), and \( n \) belongs to the set of natural numbers \( \mathbb{N} \).] is sufficiently large constants, [image: Variables \( v_{j,i,t,w}^{\text{min}} \) and \( v_{j,i,t,w}^{\text{max}} \), with \( j = 1, 2, \ldots, n \) where \( n \in N \).] are binary (0–1) variables. The resulting processed constraint conditions are given by Equations 47–52:
[image: A mathematical inequality states: \(0 \leq u_{i,j,m} \leq M_{i}^{\text{min}}v_{i,j,m}\), equation number forty-seven.]
[image: Mathematical expression showing: zero is less than or equal to P sub grid comma w at time t, which is less than or equal to M sub 1 superscript min, multiplied by one minus v sub w comma bat comma inv, with equation number forty-eight.]
[image: The image displays a mathematical inequality: zero is less than or equal to u sub t parenthesis l comma i comma j comma w, and is less than or equal to M sub t superscript max times v sub t parenthesis l comma i comma j comma w, labeled equation forty-nine.]
[image: Formula for grid power constraints: zero is less than or equal to \( P_{\text{grid, out}}(t) - P_{\text{grid, in}}(t) \) is less than or equal to \( M_{\text{max}} \left(1 - \frac{1}{\eta_{\text{inv, out}}} \right) \), equation fifty.]
[image: Mathematical inequality showing \(0 \leq u_{i,k,m} \leq M_{i}^{\text{max}} y_{i,k} \forall i,k,m\), labeled as equation (51).]
[image: Inequality formula showing balance constraints for power systems. It involves parameters such as \( P_{\text{load, max}} \), \( P_{\text{load, real}} \), \( P_{\text{PV, real}} \), and \( P_{\text{ess, dis}} \), expressed with a maximum threshold \( M_2^{\text{max}} \) and efficiency \(\mu\), labeled as equation (52).]
4.3 The solution process for SES configuration considering the coupling of lifespan and charge-discharge
In MATLAB simulation software, a dual-layer model for shared energy storage configuration, composed of minimizing total user cost and minimizing user electricity cost, is constructed. The CPLEX 12.10.0 solver is employed for optimization. To determine the optimal battery life, binary search can be used to repeatedly test midpoints within a known range. This approach allows for quick identification of the best lifespan. The ultimate goal of this method is to reduce the number of tests and increase efficiency (Ding et al., 2023). The solution process, as illustrated in Figure 3, is detailed as follows:
	Step 1: Users intending to participate in the shared energy storage project are identified. Historical load data for each user is analyzed, and the load profiles for typical days within a year are extracted.
	Step 2: A dual-layer model for energy storage optimization is established to optimize the capacity and maximum charge-discharge power of the energy storage system. The total annual operational cost for all users throughout the lifespan of the energy storage system is calculated.
	Step 3: Using the energy storage data configured in Step 2, the equivalent cycle life of the battery in the energy storage station is calculated by applying the Rain-flow counting method. The calculated results are compared with the expected battery life under the configuration model in Step 2, and if the condition for iterative convergence is met and the configuration is accepted by all users, the shared energy storage is configured accordingly. Otherwise, proceed to Step 4.
	Step 4: Due to the irrationality of the configuration model, the configured result is not feasible. Employing the bisection method, the expected battery life is adjusted towards the result obtained from the Rain-flow counting method in Step 3 to obtain a new expected lifespan. Based on this new expected lifespan, Step 2 is repeated to obtain a new optimal configuration result. The comparative process is repeated until the final configuration result is obtained.

[image: Flowchart illustrating a process for optimizing energy storage. It starts with input parameters and building a two-layer model. The upper layer minimizes the total cost, while the lower layer minimizes electricity procurement costs. The process includes transferring load from upper to lower layers, solving a spiral daily, obtaining grid data, and calculating control variables, U and W. If the difference, \( T_{n+1} - T_{n} \), is less than a threshold, it outputs the configuration of energy storage along with a specific equation; otherwise, it continues looping. The process ends with "Over".]FIGURE 3 | Energy storage configuration flow chart with lifetime and charge-discharge coupling.
The specific solution flow chart is shown in Figure 3.
5 CASE STUDIES
5.1 Parameters Setting
The case study is oriented towards a multi-user energy storage project consisting of three users. The industrial time-of-use electricity prices, as shown in Table 1, are based on the price list for commercial users represented by State Grid Zhejiang Electric Power Company. The demand charge is 48 ¥/kWh, collected on a monthly basis. The number of battery cycles at different DODs is referenced in Table 1. The energy storage battery selected is a lithium iron phosphate battery, and the number of battery cycles at different DODs is referenced in Table 1 (Gao et al., 2013). Time-of-Use (Tou) Prices for industrial and commercial users is referenced in Table 2. The unit cost for user investment in energy storage station construction and unit capacity cost are referenced from the literature (Liu et al., 2021), with values of 1,000 ¥/kW and 1,200 ¥/kWh, respectively. Considering the time value of money, the annual interest rate is 4%. Users are responsible for the operation and maintenance costs of their self-built power stations, calculated as follows: each time there is an electricity flow between a user and the station, the user is required to pay an operational fee of 0.05 ¥/kWh. The expected lifespan of the station is initialized to 5 years. The lower limit for the state of charge of the energy storage is 0.1, and the upper limit is 0.9. The initial state of charge and the state of charge at the final time period satisfy the continuity constraint of the energy storage device state. The number of typical days is 1.
TABLE 1 | Cycle life of lithium iron phosphate battery at different DOD.
[image: Table showing Depth of Discharge (DOD) and corresponding number of battery cycles: 100% DOD equals 3669.064 cycles, 80% equals 4406.474, 60% equals 5080.935, and 40% equals 5953.237.]TABLE 2 | TOU prices for industrial and commercial users.
[image: Table showing electricity prices in yen per kilowatt-hour for different periods. Peak hour, 12:00-13:00, is priced at 1.4028 yen. Peak period, 9:00-11:00 and 14:00-16:00, is 0.9644 yen. Valley period, from 1:00-8:00, 17:00-19:00, and 19:00-24:00, is 0.4145 yen.]5.2 Configuration result analysis
5.2.1 Initial configuration result
When the expected service life of the battery is initialized to 5 years, the model yields the following results: The optimal capacity of the energy storage station is 1018.2328 kWh, with a maximum charge and discharge power of 150.71 kW. The total cost for the user group is ¥66209617.2443, and the total cost for electricity purchase by the user group is ¥65916347.7008.
The charge and discharge status of the energy storage station at this time is shown in Figure 4. Energy storage tends to charge during off-peak hours, such as from midnight to 8 a.m., and then discharge during peak demand periods to reduce user load and engage in peak-valley arbitrage. However, it has also been observed that users are not very willing to participate in peak shaving with energy storage. This is due to the relatively short lifespan of energy storage systems and the significant daily investment required.
[image: Bar and line graph showing power and capacity over 24 hours. Bars indicate charging (orange) and discharging (red) power in kilowatts. A blue line shows capacity in kilowatt-hours, fluctuating between 300 and 550.]FIGURE 4 | Charge and discharge of the energy storage station with a battery life of 5 years.
5.2.2 Life iteration process
Based on the preset battery life, the battery charge and discharge status are shown in Figure 4, and it is input into the battery life degradation model for calculation. The battery cycling within a typical day consists of two full cycles and one-half cycle, with the battery’s charge and discharge depth being:
[image: The text "D with subscript OD, 1 equals 0.0162."]
[image: The equation displays "D subscript OD, 2 equals 0.0997".]
[image: The mathematical expression shows \( D_{OD,3} = 0.6830 \).]
The calculated equivalent cycle life of the battery is 6.362 years. Using the bisection method, the preset battery life is updated to obtain the new battery life:
[image: The equation \( T_1 = \frac{T_0 + T_{\text{base}}}{2} = 5.681 \) is displayed.]
The optimization model configuration process for the energy storage system is repeated. The total number of iterations is 13, and the iteration data for the battery life is shown in Figure 5.
[image: Line graph titled "Battery life iteration details" showing battery life loss over time. The x-axis represents time in hours, and the y-axis represents battery life in years. A blue line with square markers indicates an initial increase, then a gradual decrease over time from 16 to about 12 years.]FIGURE 5 | Battery life iteration details.
5.2.3 Analysis and comparison of optimal configuration results
When the battery service life is 12.72 years, the operational results of the multi-user shared energy storage dual-layer model are as follows: The optimal capacity for the energy storage station for this year is 106507.5029 kWh, and the optimal maximum charge and discharge power for the energy storage station is 11694.06 kW. The total cost for the user group’s annual grid electricity purchases is ¥47134790.454, and the total annual electricity cost for the user group is ¥60772021.6139. Figure 6 depict the grid electricity purchases by the typical daily users after updating the battery service life.
[image: Line graph showing power usage over 24 hours for three users. User 1 (black) maintains consistent usage around 5000 watts except for a dip near hour 11. User 2 (red) mirrors User 1 with a dip at the same time. User 3 (blue) fluctuates, with power dropping sharply twice around hours 10 and 22, from 7000 to below 2000 watts.]FIGURE 6 | Power purchase of users after battery life renewal.
Figures 7–9 illustrate the charge and discharge status of electricity between the user group and ESS.
[image: Bar graph illustrating power taken from and charged to the ESS over 24 hours. Positive bars represent power taken, while negative bars represent charging. Orange indicates taking power, and green indicates charging.]FIGURE 7 | User 1’s power access after battery life renewal.
[image: Bar chart showing power exchange between an ESS and another system over 24 hours. Orange bars indicate power taken from the ESS, while green bars indicate charging power to the ESS. Positive values are shown in orange above the horizontal axis, and negative values are shown in green below it.]FIGURE 8 | User 2’s power access after battery life renewal.
[image: Bar graph showing taking and charging power from the ESS over 24 hours. Orange bars represent power taken, and green bars indicate charging. Most activity occurs between 5 to 10 hours and after 15 hours.]FIGURE 9 | User 3’s power access after battery life renewal.
Compared with the initial configuration results, it is evident that there has been no change in the overall electricity purchasing strategy within the user group. In contrast, the capacity and power of the energy storage system have increased significantly. This is due to the extended lifespan, which has been raised from 5 years to 12.72 years after iteration, resulting in a substantial reduction in the daily investment for the energy storage system. Consequently, users are more inclined to deploy larger capacity and power storage devices. Furthermore, thanks to the increased capacity and power, the current monthly demand charges are lower compared to the initial configuration results. The most notable changes are as follows:
In the optimal configuration results, User 1 purchases less electricity during the 9:00–16:00 period, with a purchase of 3375.4 kW at 11:00, compared to 3896.1 kW at other times. In the initial configuration, User 2 does not purchase electricity at 10:00, buying 5362 kW from 11:00 to 12:00, while in the optimal configuration, User 2 purchases 810.1 kW at 10:00 and nothing at 11:00. Additionally, User 2 does not purchase electricity from 11:00 to 16:00, but increases purchases during off-peak hours to 5169.14kW, except for a purchase of 443.62 kW at 20:00, storing the excess electricity in the station from 1:00 to 8:00 and 17:00 to 24:00. User 3 purchases less electricity during the 9:00–16:00 period and at 20:00, with all other periods at 6133.53 kW.
Under a reasonable electricity management strategy among users, User 2’s cost reduction measure of not purchasing electricity during peak and high-demand periods has been more thoroughly implemented. This strategy not only ensures that User 2 does not incur high electricity purchase costs during peak demand periods but also optimizes the overall electricity usage pattern, further reducing the collective electricity costs for the entire user community. The charge and discharge situation of the station after updating the battery life is shown in Figure 10 Overall, compared to the initial configuration, the energy storage station shows a stronger desire to participate in load regulation. It has greater capacity and power, significantly enhancing its ability to shave peaks and fill valleys, as well as its capability for demand reduction, resulting in more noticeable benefits.
[image: Bar and line graph showing power and capacity over time in hours. Orange bars represent charging, red bars represent discharging, and a blue line shows capacity. Capacity fluctuates, peaking at around 12 hours and dipping at 18 hours. The left y-axis measures power in kilowatts, while the right y-axis measures capacity in kilowatt-hours.]FIGURE 10 | Charging and discharging of the power station after battery life renewal.
Compared to the configuration results with the preset 5-year battery life, the updated battery exhibits a reduced number of charge and discharge cycles, with the cycling period consisting of two cycles.
[image: The formula displayed is \( D_{OD,1} = 0.0044 \).]
[image: Text displaying a mathematical expression: \( D_{\text{OD,2}} = 0.7946 \).]
Overall, the energy storage station’s charging activity from 1:00 to 8:00 and 17:00 to 24:00 prepares for load reduction from 9:00 to 16:00.
Table 3 provides a comparison between the initial configuration results and the optimal configuration results.
TABLE 3 | Comparison of configuration results.
[image: Table comparing configurations for energy storage systems. Columns: Initial configuration, Optimal configuration, No ESS. Rows: Rated power (150.71, 11694.06, 0), Optimal capacity (1018.2328, 106507.5029, 0), User purchase cost (6.59 × 10^7, 4.71 × 10^7, 6.63 × 10^7), Total user cost (6.62 × 10^7, 6.08 × 10^7, 6.63 × 10^7).]From the data in the table, it is evident that both before and after updating the battery life in the configuration of the shared energy storage station, the electricity costs for users have decreased compared to when the system was not configured.
Considering the energy losses in the station’s batteries, the required station capacity should increase. With the station’s service life updated to 12.72 years, the annual construction cost per year decreases. The increase in the station’s charge and discharge power signifies an improved utilization rate, leading to a further reduction in users’ electricity costs compared to the initial configuration results, resulting in a significant overall cost reduction for the users.
Based on Table 3, the total costs of cooperative energy storage configurations for the three industrial user types in different combinations all satisfy the Super additivity condition. This indicates that by forming a cooperative alliance, the three industrial user types achieve cost reductions, resulting in cooperative surplus and consequently, excess profits.
According to Table 4, it is evident that the total costs for the three industrial user types through cooperative energy storage configuration are lower than the total costs without energy storage and those of individual energy storage configurations. Compared to not having energy storage, the total cost for Industrial User 1 decreases by approximately 2.39 million yuan, for Flat User 2 by approximately 2.13 million yuan, and for Industrial User 3 by approximately 1.12 million yuan, indicating a significant reduction in total costs for each user. It is apparent that this distribution result satisfies both collective rationality and individual rationality.
TABLE 4 | Cost allocation based on the Shapley value method.
[image: Table comparing energy storage configuration types with costs for three users. Unconfigured storage costs are 2,419 for User 1, 2,381 for User 2, and 1,831 for User 3. Independent Storage costs are 2,192 for User 1, 2,179 for User 2, and 1,738 for User 3. Shared Storage costs are 2,190 for User 1, 2,168 for User 2, and 1,719 for User 3. Costs are in multiples of 10^5 yuan.]Based on the above, it can be concluded that the possibility and stability of forming a cooperative alliance among the three industrial user types are ensured.
6 CONCLUSION
The configuration of shared energy storage needs to be adjusted according to the actual situation of the construction project in the region. Therefore, there is a necessity to discuss the issue of energy storage station configuration considering the capacity loss of the energy storage system. This paper optimizes the configuration of shared energy storage for multiple users, taking into account the factor of battery capacity loss during the configuration process. The calculation of battery degradation can iteratively update the device’s life cycle for energy storage projects, thereby obtaining the most economical, environmentally friendly, reasonable, and practical optimal energy storage station configuration.
	1) The Rain-flow counting method is utilized to decompose the battery capacity change curve, and the decomposed important parameters are used for life cycle calculation. A battery life degradation calculation model is established using specified parameters of lithium iron phosphate batteries.
	2) The objective is to minimize the total cost of energy storage project construction and electricity usage for all users within a year, considering both the optimal electricity cost for all users and the overall optimal cost of energy storage project construction and electricity usage. A bi-level model is established to achieve the lowest total cost under the condition of optimal electricity cost. In the solution process, the Big-M method and KKT conditions are used to handle the model, ultimately transforming the nonlinear programming problem into a mixed-integer linear programming problem.
	3) The results of the bi-level model configuration are updated with the battery life degradation model. Through multiple iterations of optimizing the shared energy storage configuration, the charging and discharging of the shared energy storage device becomes more reasonable. The extension of the shared energy storage device’s lifespan not only reduces the waste of power resources and construction materials but also creates more collective economic benefits for multiple users.
	4) For the alliance cost of multiple users, a Shapley value allocation model is established for fair distribution. By analyzing and comparing the costs of different users without energy storage configuration and with independent energy storage configuration, the superiority of multiple-user cooperative configuration of shared energy storage is verified, providing assurance for the maintenance and long-term stability of the cooperative alliance.
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The coordinated optimization of industrial and mining loads with energy storage (ES) is a critical approach to achieving power and energy balance in microgrids while promoting the new energy accommodation. Addressing the issue of insufficient flexibility in demand response from high-energy-consuming lithium mining loads, which may lead to conservative ES capacity allocation and underutilization of complementary flexibility potential, this paper proposes an ES optimization strategy for microgrids considering the participation of high-energy-consuming lithium mining loads in demand response. Firstly, considering the production process of extracting lithium from salt lakes brine and the electricity consumption characteristics of major energy-consuming equipment, a mathematical model is developed to quantify the flexibility adjustment potential of lithium mining loads under production behavior constraints. Based on this, incorporating the regulation boundaries of photovoltaic (PV) units, gas turbine units, concentrated solar power (CSP), ES system, and flexible lithium mining loads, an ES capacity optimization model is constructed to minimize the comprehensive system capital and operation costs in independent microgrid. The model is then linearized into a mixed-integer programming problem. Finally, through case study simulations of an actual microgrid in Southwest China, the feasibility and effectiveness of the proposed ES optimization strategy are verified. The results demonstrate that the proposed strategy can economically and effectively meet the power and energy balance of the independent microgrid and the electricity demands of high-energy-consuming loads, while promoting the improvement of new energy accommodation capacity.
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1 INTRODUCTION
With the rapid development of new energy vehicles and lithium-ion ES, the demand for battery-grade lithium carbonate preparation continues to grow. However, the salt lakes lithium mines as a crucial raw material source are often located in remote areas, making it challenging to extend power transmission networks to meet the high energy demands of lithium mining operations. Therefore, it is necessary to develop localized microgrids for on-site power supply (Zhang et al., 2024)- (Wu et al., 2024). Under the dual-carbon goals and the new power system construction, the penetration of new energy in microgrids is increasing. However, the inherent seasonality, volatility, and uncertainty of new energy reduce the dispatchable capacity of traditional regulatory resources, making it difficult to ensure the balance of power and energy in microgrids. This highlights the urgent need to expand grid regulation resources and transition from the conventional “source-grid-load” model to the coordinated “source-grid-load-storage” interactive model (Liu et al., 2020). On one hand, high-energy-consuming lithium mining loads are characterized by high flexibility, fast dispatch response, and significant scalability potential. Leveraging their regulatory flexibility for demand response can alleviate the power supply pressure of microgrids (Nie et al., 2023). On the other hand, as an excellent regulatory resource for power and energy balance, the optimal configuration and coordinated operation of ES system are closely related to the operational performance and economic benefits of microgrids. Therefore, studying collaborative configuration strategies for ES under flexible lithium mining load responses is of great significance for maintaining power and energy balance in microgrids and meeting load power demands.
In recent years, some scholars have conducted research on the participation of high-energy-consuming industrial loads in optimizing grid operations, achieving notable results. For instance, Reference (Philipo et al., 2022) proposes a demand-side management strategy based on artificial neural networks that accounts for load-shifting behavior, effectively reducing load demand in standalone PV battery microgrids in East Africa. A novel flexible low-carbon optimal dispatch model is proposed for the distribution network, which coordinates the participation of heat storage industrial loads in demand response (Wang W. D. et al., 2024). In Reference (Xu et al., 2020), a method is proposed to involve the steam systems of industrial loads, such as paper mills and steel plants, as flexible loads in demand response. This approach approximated the flexibility boundaries under the influence of steam uncertainty. Furthermore, Reference (Cui and Zhou, 2018) summarizes the main methods for industrial load demand response, pointing out that modeling industrial processes using a production-buffer approach could yield more reasonable optimization results. Ramesh and Sofana utilize a resource-task network to represent refinery processes and implemented stochastic dynamic programming to shift the electricity usage of refineries, reducing energy costs (Reka and Ramesh, 2016). Additionally, Reference (Liao et al., 2024) analyzes production characteristics and regulation constraints to construct a demand response capability boundary, enhancing the flexibility of large-capacity electrolytic aluminum loads to interact bidirectionally with the grid. Reference (Golmohamadi et al., 2019) aggregates the flexibility of cement manufacturing, metal smelting, and residential loads using load aggregators, leveraging complementary characteristics among different loads to participate in demand response. These studies effectively improved the economic benefits of industrial enterprises and enhanced grid stability by tapping into the flexibility of industrial production processes. However, under the context of new energy standalone microgrids, the quantification and integration of lithium mining load flexibility in demand response remain insufficiently addressed, highlighting a gap in the current research landscape.
Relying solely on industrial and mining loads constrained by production processes is insufficient to effectively maintain the power and energy balance of the grid. Coordinated optimization of flexible loads and ES is a crucial solution. In Reference (Huang et al., 2021), A two-stage optimal scheduling method based on model predictive control is proposed for the energy management of the actual microgrid system containing ES and flexible loads, with improving the optimization control accuracy. Reference (Zeng et al., 2024) develops a refined demand response mechanism and shared ES optimization model for various building loads to achieve source-grid-load-storage synergistic interaction. In Reference (Wang D. et al., 2024), a joint optimization mechanism integrating electric and thermal energy storage with demand response is proposed, aiming to enhance the economic benefits of market participants while improving supply-demand coordination through interregional energy complementarity. Moreover, Reference (Karimianfard et al., 2022) proposes a large-scale ES coordination capacity and optimization strategy that considers load-side response behavior, improving the operational flexibility of smart grids and increasing economic returns for loads. Reference (Sun et al., 2022) treats flexible demand-side resources as virtual ES while employing conventional ES to mitigate load uncertainties. Additionally, Reference (Shen et al., 2022) proposes a multi-objective optimization model for multi-ES capacity planning in industrial park microgrids based on electricity-heat-gas coupled demand response, aiming to minimize economic costs and carbon emissions while enhancing energy supply reliability and economic performance. These studies construct models for load demand response and ES optimization from various perspectives, effectively maintaining grid power balance and ensuring reliable and economic system operation. However, research focusing on the coordinated optimization of ES and demand response for industrial and mining loads remains relatively scarce, leaving room for further exploration in this area.
This study addresses the power supply demands and flexibility regulation of high-energy-consuming lithium mining loads, focusing on independent industrial microgrid scenarios in remote areas. It proposes an optimized ES configuration and operational strategy for independent microgrids, incorporating the potential of mining load regulation to enhance system performance. The main contributions of this paper are summarized as follows:
	• A flexibility regulation analysis and quantification model for lithium mining loads is developed, considering the specific production characteristics of lithium extraction. This model effectively enhances the bidirectional flexibility interaction capabilities with the microgrid.
	• By considering the operational boundaries of PV units, CSP units, ES system, and lithium mining load regulation, an optimized ES configuration model is constructed to minimize the comprehensive construction and operational costs of the independent microgrid. Economically, this approach reduces the operating costs of the microgrid system, while technically, it enhances the renewable energy utilization rate and ensures reliable power supply for lithium mining loads.

The rest of the paper is organized as follows. In Section 2, the regulation potential of industrial and mining load is analyzed and modeled. In Section 3, the coordinated operation strategy of industrial and mining loads with ES is proposed, and the main objectives and constraints of the de-aggregation strategy are provided. Then, Section 4 presents results and discussion based on case studies. The conclusion and future work are drawn in Section 5.
2 MODELING OF INDUSTRIAL AND MINING LOAD REGULATION POTENTIAL
Due to the volatility and uncertainty of its output, PV power generation is difficult to match the electricity demand of high-energy-consuming loads, which further leads to the imbalance of power and electricity in the microgrid and the lack of new energy accommodation capacity. By tapping the potential of flexible adjustment on the load side and cooperating with ES resources to participate in the optimal operation of the microgrid, it is helpful to alleviate the above problems, as shown in Figure 1. However, the load regulation potential of lithium ore is affected by its process production characteristics. How to consider this key factor and quantify modeling is an important difficulty and key point in the mining of industrial and mining load flexibility.
[image: Flowchart illustrating the relationship between photovoltaic (PV) generation, energy consumption, and energy storage for flexible lithium mining loads. It shows causes of power and energy imbalance, such as PV curtailment and high-energy consumption loads, with graphs of energy output over time. The chart includes strategies for optimal energy storage configuration, addressing supply-demand gaps, and managing flexible lithium mining loads to stabilize energy usage.]FIGURE 1 | Coordinated operation framework of lithium mining loads and ES in microgrid.
The technologies for extracting lithium resources from salt lakes brine have reached a relatively mature stage both domestically and internationally. The primary methods include precipitation, solvent extraction, adsorption, calcination, and electrodialysis. Among these, the precipitation method has become the mainstream technology due to its mature process and wide application (Kong et al., 2024). The typical process flow involves natural evaporation and crystallization of the salt lakes, reaction precipitation, solid-liquid separation, heating and evaporative concentration, and precipitation separation. The heating and evaporative concentration stage primarily relies on MVR technology, which is also the most energy-intensive phase of the entire process (Xiao, 2014).
The flexibility potential of lithium mining loads is mainly reflected in two aspects: 1) Adjustability of the MVR system temperature (Zhou et al., 2022): The MVR evaporative concentration process operates within a temperature-adjustable range, where temperature regulation directly affects electricity consumption. 2) Flexibility in scheduling production tasks over time: The production process allows for adjustments in task timing to accommodate demand response requirements. Specifically, the MVR system provides an adjustable temperature range during the evaporative concentration stage. Temperature adjustments result in corresponding changes in power consumption. To evaluate the load regulation potential, a mathematical model based on thermal inertia can be developed. This model considers key factors such as the specific heat capacity of brine, the temperature range required to maintain process stability, heat transfer between the compression process and the environment, and the efficiency of heating loads, which contributes to offer theoretical support for assessing the flexibility potential of thermostatically-controlled lithium mining loads (TLMLs).
2.1 MVR temperature adjustable flexibility
2.1.1 Brine heating model
The heat required for heating and evaporating salt lakes brine is related to its mass, specific heat capacity, and temperature changes.
[image: Equation depicting heat transfer: \( Q = mc_p \Delta T \).]
where Q represents the heat variation of brine heating; m is quality of brine; Cb represents the specific heat capacity of the brine; ∆T represents the temperature change of the brine.
2.1.2 Heat loss model
Due to the interaction between MVR and the external environment, a certain amount of heat loss is caused.
[image: Equation depicting heat loss over time: \( Q_{\text{loss}}(t) = hA[T_{\text{int}}(t) - T_{\text{env}}(t)] \), labeled as equation (2).]
where Qloss(t) represents heat loss due to environmental interaction at time t; h represents the heat transfer coefficient of environment and MVR; A represents the surface area of the MVR in contact with the external environment; Tbri(t) is brine temperature; Tenv(t) is ambient temperature.
2.1.3 Regulation potential for lithium extraction from salt lakes
The process of isobaric evaporation to isobaric condensation of salt lakes brine meets the temperature, power and capacity adjustable range:
[image: Mathematical expression showing the inequality \( T_{\text{min}} \leq T_{\text{tr}}(t) \leq T_{\text{max}} \), labeled as equation 3.]
[image: It seems there's no image provided. Please upload the image or provide a URL so I can help with the alt text.]
[image: The equation shows \( Q_{\text{min}} \leq Q_{0} + \left[ \int_{0}^{T} P_{\text{in}}(t)dt - Q_{\text{loss}}(t) \right] \leq Q_{\text{max}} \).]
where Tmax represents the upper limit of brine temperature; Tmin represents the lower limit of brine temperature; PLi(t) is the operating power of TLMLs; Pmax Li(t) and Pmin Li(t) are the upper and lower limits of adjusted load power at time t, respectively; Qmin and Qmax are the upper and lower limits of thermal storage capacity, respectively.
2.1.4 Thermoelectric coupling characteristics
Considering environmental heat loss, there is a thermoelectric coupling characteristic between power consumption changes and MVR temperature variations.
[image: Equation illustrating a change in temperature over time: \( mC_p [T_{\text{in}}(t+1) - T_{\text{in}}(t)] = \eta P_L(t) - Q_{\text{loss}}(t) \), labeled as equation six.]
where η is coefficient of thermal efficiency.
2.1.5 MVR continuous regulation limits
The continuous adjustment of MVR will cause frequent fluctuations in evaporator temperature. To maintain production stability to the greatest extent possible, the continuous adjustment limit of lithium mining load power consumption is as follows:
[image: A mathematical expression with constraints on power variables. It involves terms like \( P_{Li}(t) \), \( \mu_{Li}^{\text{up}}(t) \), and \( \mu_{Li}^{\text{down}}(t) \), indicating inequalities and summations related to time increments of a power system.]
where v- Li and v + Li are the lower and upper limits of the lithium mining load regulation rate; μdw lu and μup luare 0–1 state variables that characterize the downward and upward adjustment of the adjustment power.
2.1.6 Economic compensation for industrial and mining load regulation
The benefits of lithium mine load mainly come from two indicators: economic compensation and heat demand. The impact degree of heat demand is transformed into economic index, and the two are linearly summed:
[image: Equation showing the calculation of \(C_{Li}\), which equals \(c_{Li}\) times the absolute value of \(P_{Li}^r\) minus \(P_{Li}(t)\), plus \(c_{MWR}\) times the fraction of \(T_{\text{lnr}}(t)\) minus \(T_{\text{min}}\) over \(T_{\text{max}}-T_{\text{min}}\). It is labeled as equation (8).]
where CLi is the economic compensation for the temperature control adjustment of TLMLs; cLi is the economic compensation cost per unit power for temperature regulation of TLMLs; PfrLi is the planned power consumption curve of TLMLs; cMVR is the influence coefficient of temperature changes on the production efficiency of lithium mining loads.
2.2 Transferable flexibility of sequential production
The time-series transfer characteristics of production tasks can be equivalent to the modeling of transferable lithium mining loads. The specific mathematical modeling is as follows:
2.2.1 Load transferability feature
Ensuring the overall production task remains unchanged throughout the entire scheduling cycle, with only timing adjustments.
[image: The image shows a mathematical equation that is a summation from t equals one to T of the expression P subscript superscript prime sub r of t minus P sub r of t equals zero. It is labeled as equation nine.]
where Pfrtr(t) and Ptr(t) are the power of transferable lithium mining loads before and after scheduling at time t, respectively; T is the scheduling period.
2.2.2 Adjustable potential of transferable loads

[image: Mathematical expression showing that the variable \( P_{r,\text{min}}(t) \) is less than or equal to \( P_r(t) \), which is itself less than or equal to \( P_{r,\text{max}}(t) \). This is labeled as equation (10).]
where Ptr_max(t) and Ptr_min(t) are the upper and lower limits of power after lithium mining load transfer, respectively.
2.2.3 Transferable loads regulation rate

[image: Equation showing the constraints on power ramping: \( v^{\text{min}}_{r} \leq P_{r}(t) - P_{r}(t-1) \leq v^{\text{max}}_{r} \). The equation is labeled as (11).]
where v-tr and v + tr are lower and upper limit on regulation rate of lithium mining transferable loads.
2.2.4 Economic compensation of transferable loads
When load power is transferred, appropriate economic compensation should be provided to the lithium mining enterprises, which is as Equation 12.
[image: Mathematical equation showing C_sub_tr equals the sum from t equals one to T of c_sub_tr times the absolute difference between P_sup_f_sub_r of t and P_sub_r of t, denoted as equation 12.]
where Ctr is economic compensation of lithium mining transferable loads; ctr is the unit power compensation cost of lithium mining transferable loads.
3 OPTIMIZATION MODEL FOR COORDINATED OPERATION OF INDUSTRIAL AND MINING LOADS WITH ES
To fully exploit the flexibility potential of lithium mining loads and the adjustment capabilities of ES system, this study develops a coordinated optimization model for flexible lithium mining loads and ES configurations, as illustrated in Figure 2. The optimization model is implemented in MATLAB, utilizing the YALMIP toolbox to interface with the Gurobi solver for solution computation. Based on the mathematical model of lithium mining load flexibility and its regulatory boundaries, the optimization considers constraints from the grid side, generation side, load side, and storage side. The objective function is to minimize the operational cost of the microgrid system. This problem is formulated as a mixed-integer linear programming (MILP) problem and solved to derive the optimal ES configuration scheme for independent microgrids. This approach integrates flexibility from the lithium mining load and ES to enhance the operational efficiency and economic performance of microgrids, contributing to improved renewable energy utilization and reliable power supply.
[image: Flowchart detailing a multi-step process for lithium extraction from salt lakes. It includes three main sections: Quantifying flexibility, Establishing model, and Solving and assessment. Key components include stages like the production process, adjustable flexibility, transferable loads, objectives, constraints, linearization, solution techniques, multi-resource response settlement, and planning and operational results. Each section breaks down into specific tasks and equations, highlighting the complexity and interconnectedness of the process.]FIGURE 2 | Block diagram of optimization configuration and operation model for ES in independent microgrid.
3.1 Objective function
Considering the new energy curtailment cost, gas turbine power generation and carbon reduction cost, CSP units cost, ES cost, industrial and mining load adjustment cost, the multi-objective is converted into single-objective comprehensive operation cost of microgrid by linear weighting method, which is as Equation 13.
[image: Equation showing object function as the sum of various components: \(obj = obj_{I\!V} + obj_{GT} + obj_{L\!S\!P} + obj_{J\!I\!S} + obj_{load}\), labeled as equation (13).]
where obj is the comprehensive operating cost of microgrid; objPV is the penalty cost of PV curtailment; objGT is power generation and carbon emission penalty cost of gas turbine; objCSP is the operating cost of CSP units; objES is the capital and operating cost of ES; objload is the adjustment cost of the flexible lithium mining loads.
3.1.1 PV curtailment penalty cost
The output power of PV units is used to supply load demand. To enhance the PV utilization rate, the PV curtailment is incorporated into the optimization objective and transformed into an economic objective of curtailment cost, which is as Equation 14.
[image: Mathematical equation for solar power objective function: \( \text{obj}_{\text{PV}} = \sum_{t} c_{\text{PV}} \left[ P_{\text{PV}}^{\text{ref}}(t) - P_{\text{PV}}(t) \right] \) labeled as equation 14.]
where cPV is the penalty cost per unit of curtailed PV power; PfrPV(t) is the predicted PV output power for the typical day; PPV(t) indicates the PV actual operating power.
3.1.2 Gas turbine operating cost
Gas turbine operating costs include power generation costs and carbon emission penalty costs, which is as Equation 15.
[image: The equation displayed is: \( \text{obj}_{\text{GT}} = \sum_{t} (c_{\text{GT}} + c_{\text{au}}) P_{\text{GT}}(t) \) with the label (15).]
where cGT and cca are the power generation cost and carbon emission penalty cost per unit power of gas turbine.; PGT(t)is the operating power of the gas turbine.
3.1.3 CSP units operating cost

[image: Mathematical equation displaying an objective function for JSP: \(\text{obj}_{\text{JSP}} = \sum_{t} c_{\text{CSP}} |P_{\text{CSP}}(t)|\), labeled as equation sixteen.]
where cCSP is the operating cost per unit power of CSP; PCSP(t) is the output power of the CSP unit at time t.
3.1.4 ES costs
The ES cost includes both capital and operation cost. The capital cost refers to the total investment cost of ES system, amortized into a fixed daily cost. The operation and maintenance cost covers the expenses required to keep the ES system in optimal standby condition, which is as Equations 17–20.
[image: Equation illustrating a mathematical expression where \( \text{obj}_{ES} = C^{day}_{inv} + C_{op} \), followed by the equation number 17.]
[image: Equation displaying \( C_{inv}^{day} = \frac{R_{ES}}{365} c_{p} E_{N} \), labeled as equation eighteen.]
[image: The equation shows \( R_{ES} = \frac{r(1 + r)^{T_{ES}}}{(1 + r)^{T_{ES}} - 1} \) labeled as equation 19.]
[image: Equation showing \( C_{op} = \sum_{t} c_{op} |P_{ES}(t)| \) with reference number twenty in parentheses on the right.]
where Cday inv represents the capital cost converted on a typical day.; Cop is the operating cost of ES; RES is the annual investment recovery coefficient of ES; TES is the life of ES; r is the discount rate; cE is the life-cycle capital cost of ES; EN is the rated capacity of ES; PES(t) is the operating power of the ES at time t; cop is the operation and maintenance cost factor of ES.
3.1.5 Lithium mining loads cost

[image: Equation representing a mathematical expression: "obj subscript total equals C subscript ui plus C subscript tr." It is numbered equation (21).]
3.2 Constraints
The optimal operation conditions of industrial microgrids include constraints on PV unit output, gas turbine output, CSP unit output, ES operation, and lithium mining load operation.
3.2.1 Power supply constraints
3.2.1.1 PV units constraint
PV output within the predicted output range to participate in the optimization of microgrid operation, which is as Equation 22.
[image: The equation shows an inequality: zero is less than or equal to \( P_{PV}(t) \), which is less than or equal to \( P'_{PV}(t) \), labeled as equation twenty-two.]
3.2.1.2 Gas turbine constraint

[image: Mathematical expression showing an inequality for power at time \( t \). It indicates that the minimum power \( P_{\text{GT}}^m \) is less than or equal to \( P_{\text{GT}}(t) \), which is less than or equal to the maximum power \( P_{\text{GT}}^M \).]
where μGT is the minimum technical output coefficient of gas turbine; PNGT is rated power of gas turbine.
3.2.1.3 CSP units constraints
CSP utilizes photovoltaic power generation to heat molten salt, achieving the conversion of electrical energy into thermal energy, and stores the heat in high-temperature molten salt tanks. The process is subject to the following constraints.
The constraints on power generation output are as Equation 24:
[image: Mathematical inequality showing the relationship between power and operational status: Pᵢ,ₘᵢₙ multiplied by Iₙₒₙ-CSP(t) is less than or equal to Pₙₒₙ-CSP(t), which is less than or equal to Pᵢ,ₘₐₓ multiplied by Iₙₒₙ-CSP(t). Additionally, Iₙₒₙ-CSP(t) is in the set {0, 1}.]
where ICSP(t) represents the on/off status of the CSP units at time t, expressed as a binary variable; PCSP(t) is the power output of the CSP at the time t; Ps,min, Ps,max are the lower and upper limit of the power output of CSP units, respectively.
The constraints on minimum on/off time period are as Equation 25:
[image: Mathematical expression with two inequalities. The first inequality is: \([I_{CSP}(t-1) - I_{CSP}(t)]T_{s,off} + \sum_{j=t-T_{s,on}}^{t-1}(1-I_{j,s}) \geq 0\). The second inequality is: \([I_{CSP}(t) - I_{t-1,s}]T_{s,on} + \sum_{j=t-T_{s,on}}^{t-1}I_{j,s} \geq 0\). Both expressions are labeled as equation \(25\).]
where Ts,off indicates the shutdown period of CSP units; Ts,on indicates the start period of the CSP units.
The constraints on output power are as Equations 26, 27:
[image: \(0 \leq P_{\text{CHP}}^{\text{in}}(t) \leq \lambda_{\text{cha}} P_{\text{solar}}^{\text{CSP}}(t)\) labeled as equation (26).]
[image: The equation represents an inequality where the instantaneous power output of a concentrated solar power system, denoted as \( P_{\text{CSP}}^{\text{inst}}(t) \), is constrained between zero and a maximum value determined by \( \lambda_{\text{dis}} P_{\text{CSP}}^{N} / n_{N, \text{dis}} \), with reference number \( (27) \) to the right.]
[image: Certainly! Please upload the image or provide a URL so I can assist you with creating alternate text.]
where PchaCHP(t) is the heat storage power of CSP at time t; PdisCSP(t) indicates the heat release power of CSP in time t; PsolarCSP(t) is available solar thermal power at time t; PNCSP is the rated power of the CSP; ηN,dis is the efficiency of converting thermal power into electrical power; λcha and λdis represents the 0–1 state variable of the CSP thermal storage system, indicating whether it is in charging (heat storage) or discharging (heat release) mode at time t.
The constraints on the state of charge for thermal storage is as Equation 29:
[image: Mathematical formula for energy calculation: \( E_{\text{CSP}}(t) = E_{\text{CSP}}(t-1) + \eta_{\text{CSP}} P_{\text{CHP}}^{\text{ch}}(t) - P_{\text{CSP}}^{\text{dis}}(t) / \eta_{\text{CSP}} \). Equation is labeled as (29).]
where ECSP(t) is the thermal energy stored in the CSP units at the time t; ηCSP is the efficiency coefficient of the thermal storage system.
The constraint on thermal storage capacity is as Equation 30:
[image: Equation illustrating a relationship between energy values: \(E_{\text{min}} \leq E_{\text{exp}}(t) \leq E_{\text{max}}\). This suggests that the expected energy at time \(t\) is bounded by minimum and maximum energy values.]
where Es,min, Es,max are the lower and upper limit of the thermal ES capacity in the CSP untis, respectively.
3.2.2 Power balance constraint
The power on the supply side equals the power on the demand side, which is as Equation 31:
[image: Equation showing: \( P_{\text{PV}}(t) + P_{\text{GT}}(t) + P_{\text{CSP}}(t) + P_{\text{ES}}(t) = P_{\text{Li}}^{\text{F}}(t) + P_{\text{Li}}(t) + P_{\text{Tr}}^{\text{F}}(t) + P_{\text{Tr}}(t) + P_{\text{Net}}(t) \).]
where PNet(t) is unbalanced power that cannot be fully absorbed at time t.
3.2.3 ES constraints
The constraints on capacity configuration and operation are as follows:
[image: A mathematical inequality system with two expressions. The first expression is \( P_{ES,\text{min}} \leq \lambda_{RES} P_{ES,N} \leq P_{ES,\text{max}} \). The second expression is \( E_{ES,\text{min}} \leq \lambda_{RES} E_{ES,N} \leq E_{ES,\text{max}} \). The system is labeled with the number 32.]
where PES,N is rated power of ES; EES,N is the rated capacity of ES; λES is the 0–1 variable configured for ES; PES,min and PES,max are the minimum and maximum rated power of ES, respectively; EES,min and EES,max are the minimum and maximum rated capacity of ES respectively.
The constraint on ES operating is as Equation 33:
[image: Mathematical equation in LaTeX format showing a range for \( P_{ES}(f) \): \(\alpha_{lb} P_{ES,N} \leq P_{ES}(f) \leq \alpha_{ub} P_{ES,N}\), labeled equation (33).]
where PES(t)is the operating power of ES at time t; αch and αdis are the maximum charging efficiency and the maximum discharge efficiency, respectively.
The constraints on response rate and time of ES are as Equation 34:
[image: Mathematical expression consisting of two parts: First, V_sub_ES^min is less than or equal to P_sub_ES(t) minus P_sub_ES(t-1), which is less than or equal to V_sub_ES^max; Second, D is less than or equal to delta_t, labeled as equation thirty-four.]
where v- ES, v + ES are the upper limits of the downregulation and upregulation response rates of ES participating in microgrid regulation at time t, respectively; D is the minimum time period for ES to participate in microgrid regulation; Δt is the time period with ES actually participating in microgrid regulation.
The constraints on state of charge (SOC) for ES are as Equation 35:
[image: Mathematical expression defining state of charge (SOC) constraints. SOC_min is less than or equal to SOC at initial time plus the integral from t_0 to t_f of P_ES(t) dt, divided by E_ESN, all less than or equal to SOC_max. Applies for all t_f within the interval [t_0, t_end]. Equation 35.]
where SOCmin, SOCmax represents the ratio of the minimum and maximum capacity of ES; SOC0 indicates the initial SOC of the ES; t0, tend represents the start time and end time of ES participation in microgrid regulation, respectively; t1 represents any moment within the start time and end time of ES participation in microgrid regulation.
3.2.4 Load constraints
The load side constraints are shown in Equations 1–7 and Equations 8–11.
3.3 Model linearization based on Big-M method
Since the multiplication of 0–1 variable and continuous variable is non-linear, the Big-M method is used to linearize Equation 32, making it easy to solve using mature commercial optimization software Gurobi, which is as Equations 36, 37:
[image: Mathematical equations are shown with constraints. The equations are:   1. \(P_{\text{MV}} = \lambda_{\text{ES}} P_{\text{ES,N}}\).  2. \(P_{\text{MV}} \leq P_{\text{ES,N}}\).  3. \(P_{\text{MV}} \leq P_{\text{ES,N}} - M(1 - \lambda_{\text{ES}})\).  4. \(\lambda_{\text{ES}} P_{\text{ES,min}} \leq P_{\text{ES,N}} \leq \lambda_{\text{ES}} P_{\text{ES,max}}\).   Equation number 36 is noted on the right.]
[image: Mathematical expressions showing energy constraints: \(E_{MV} = \lambda_{ES} E_{ES,N}\), \(E_{MV} \leq E_{ES,N}\), \(E_{MV} \leq E_{ES,N} - M(1-\lambda_{ES})\), \(\lambda_{ES} E_{ES,min} \leq E_{ES,N} \leq \lambda_{ES} E_{ES,max}\). Equation number \(37\).]
where PMV and EMV are the auxiliary variable that characterizes the ES state; M is relatively large constants.
4 CASE STUDY
4.1 Scene setting
To validate the feasibility and effectiveness of the proposed strategy, this section conducts a simulation analysis based on an independent microgrid located in a remote area of Southwest China. The proposed optimization configuration model is solved using the linear solver Gurobi, with the simulation scheduling set for a 24-h period and a scheduling step size of 1 h. The predicted output of the PV unit and the planned load consumption curve are shown in Figure 3, and the basic operational parameters of the independent microgrid are listed in Table 1. Additionally, four cases are set up for comparative analysis, as detailed below. It should be noted that, for the sake of simplicity, other regulation resources below mainly include PV units, CSP units, gas turbines and transferable lithium mining loads.
	Case 1: The regulation potential of TLMLs and ES is not considered. The power and energy balance of microgrid is managed solely by other regulation resources.
	Case 2: The regulation potential of TLMLs is considered, but ES is not included. The power and energy balance of the microgrid is achieved through the participation of TLMLs and other regulation resources.
	Case 3: The regulation potential of TLMLs is not considered, but ES is optimized. The power and energy balance of microgrid is managed through ES and other regulation resources.
	Case 4: Both the regulation potential of TLMLs and the optimal configuration of ES are considered. The power and energy balance of the microgrid is achieved through the joint participation of TLMLs, ES, and other regulation resources.

[image: Graph showing power output over a day. The orange area represents photovoltaic (PV) planned output, peaking midday with a power surplus. The blue area shows the minimum output of a gas turbine. Power shortage is noted during early morning and late evening. The load planned curve is marked with a black line, indicating fluctuations throughout the day.]FIGURE 3 | Schematic diagram of operation baseline for independent microgrid.
TABLE 1 | Basic parameters of independent microgrid.
[image: Table listing indices and values: Generation includes a rated capacity of PV as one hundred ninety megawatts, rated capacity of CSP as twelve megawatts. ES lists rated power limits: lower limit twenty megawatts, upper limit two hundred megawatts. Lithium mining load includes upper temperature limit fifty-five degrees Celsius and lower limit sixty-five degrees Celsius (Ma et al., 2020), specific heat capacity of brine as three kilojoules per kilogram degree Celsius, and heat transfer coefficient as five.]4.2 Analysis of ES optimization configuration results
Considering the planned PV output, the minimum technical output of gas turbines, and the planned load consumption curve, the operational status of the independent microgrid is shown in Figure 3. The system exhibits a power surplus during the scheduling period of 9:00–16:00, while power deficits occur during 1:00–8:00 and 17:00–24:00. These highlight significant challenges in achieving system power balance. To address these challenges, the excellent characteristics of ES for power support and energy shifting are fully utilized. Combined with the proposed ES optimization strategy, ES system participates in the power and energy balance control of the microgrid. Furthermore, to effectively compare the impact of demand-side flexibility from lithium mining load regulation on microgrid ES configuration and operation, simulation analyses are conducted for Case 3 and Case 4 in Table 2, with the ES optimization results presented in Table 3. As shown in Table 3, when the flexibility of TLMLs is not considered in the grid optimization, the configured ES capacity is 104.92 MW/419.68 MWh. In contrast, when the flexibility of TLMLs is included in the optimization, the rated power and capacity of the optimized ES configuration are reduced by 26.06% and 22.17%, respectively, compared to Case 3.
TABLE 2 | Different operating scenarios in the microgrid.
[image: Table with columns labeled ES, TLMLs, and Other regulation resources. Cases one to four are listed with corresponding check marks or crosses: Case one has crosses for ES and TLMLs, check for Other regulation resources. Case two has a cross for ES, checks for TLMLs and Other regulation resources. Case three has checks for ES and Other regulation resources, cross for TLMLs. Case four has checks across all columns.]TABLE 3 | Optimal configuration results of ES in independent microgrid.
[image: Table comparing two cases. Case 3 has a rated power of 104.92 megawatts and a rated capacity of 398.70 megawatt-hours. Case 4 has a rated power of 77.58 megawatts and a rated capacity of 310.32 megawatt-hours.]By exploiting the temperature adjustability of the MVR system, the electricity flexibility of TLMLs can be effectively unlocked, achieving the following:
	• During peak electricity demand periods when power supply is insufficient, the electricity demand of TLMLs is reduced to alleviate pressure on the power supply of microgrid.
	• During low electricity demand periods and high PV generation periods, the electricity demand of TLMLs is increased to enhance the renewable energy utilization of the microgrid.

These results demonstrate that the flexible regulation capability of TLMLs effectively eliminates part of the system’s power imbalance, thereby reducing the ES configuration requirements.
The operating power and SOC curves of the ES system configured in Cases 3 and 4 are shown in Figure 4. It can be observed that the ES system in both cases discharge during power deficit periods to meet load demands and charge during power surplus periods to absorb excess PV generation. This ensures sufficient energy is available for discharge during power deficit periods. Additionally, in Case 3, the configured ES system undergoes charge and discharge actions during all 24 scheduling periods of a typical day. In contrast, the number of charge-discharge cycles in Case 4 is reduced, which helps to minimize ES losses from frequent cycling and further extends the lifespan of the ES system.
[image: Two bar and line charts comparing Cases 3 and 4. The blue bars represent temperature, while the red lines show humidity across a twenty-four-hour period. Both cases display similar patterns, with temperature peaking and dipping at similar times, and humidity inversely related to temperature changes.]FIGURE 4 | Operating power and SOC operation curve of configured ES.
4.3 Technical analysis of optimal operation in independent microgrid
This section focuses on analyzing the optimal operation of different regulation resources in maintaining the power and energy balance of the microgrid. Figure 5 illustrates the optimized operation of the independent microgrid in Cases 1–4. In Case 1, the PV units, CSP units, gas turbines, and transferable loads collectively participate in system regulation. As shown in Figure 5A, some scheduling periods still experience power shortages, resulting in an unbalanced energy volume of 62.16 MWh. During periods of high PV generation, a significant amount of electricity is curtailed due to the limited accommodation capacity of the system, leading to a curtailment rate of 51.53%. This highlights the severe challenge to the microgrid’s renewable energy utilization capability. Compared with the regulation resources involved in Case 1, Case two incorporates flexible TLMLs by exploiting the temperature adjustability of MVR system to participate in the power and energy balance control of the microgrid. This approach further alleviates system imbalances and reduces the PV curtailment rate by 48.9% and 26.06%, respectively. However, due to the adjustment boundaries of lithium mining load power under the constraints of lithium extraction production efficiency, solely relying on the inclusion of flexible TLMLs is insufficient to both reduce the curtailment rate and improve the power and energy balance of the system.
[image: Four bar charts display energy-related data across different cases labeled 1 to 4. Each chart shows various energy sources, including PV output, gas turbine, PV curtailment, CSP, EES, and flexible T-MLR, represented by different colors. The y-axis measures power in megawatts, while the x-axis represents time in hours. Patterns show variations in power distribution for each case.]FIGURE 5 | Coordinated optimization operation diagram of independent microgrid in cases 1–4. (A) Case 1. (B) Case 2. (C) Case 3. (D) Case 4.
Case 3 builds on Case 1 by considering ES configuration to enhance the stable operation of the microgrid. The results of ES optimization and charge-discharge operations were analyzed in detail in Section 4.2 and will not be repeated here. From the optimized operation of the microgrid in Case 3 shown in Figure 5C, it is evident that the PV output power is fully utilized by the microgrid.
Additionally, imbalanced power and gas turbine output power are reduced by 76.45% and 36.51%, respectively, compared with Case 1. Furthermore, despite achieving load demand satisfaction and significantly lowering the PV curtailment rate, the system incurs a high ES capacity cost—nearly twice the average load demand capacity. This highlights the need for further improvement in resource configuration and system flexibility. To address these issues, Case 4 integrates the flexible TLMLs from Case 2 and the ES system from Case 3 for joint participation in the power and energy balance control of the microgrid. The regulation resources in this case include PV units, CSP units, gas turbines, ES, and flexible TLMLs. Similarly, the ES configuration and operational performance, as well as a comparison with Case 3, were elaborated in Section 4.2 and are not repeated here. It is worth noting that, based on the ES capacity configuration in Case 4 and the optimized operation shown in Figure 5D, the microgrid achieves a significant improvement in stability by reducing system imbalances and PV curtailment to 2.12 MWh and 0 MWh, respectively, using only 74% of the ES capacity configured in Case 3.
As indicated by the previous analysis, both Case 2 and Case 4 include flexible TLMLs as key regulation resources in microgrid operations. The main difference lies in the addition of ES regulation in Case 4 compared to Case 2. To compare the impact of ES on the temperature of the primary power-consuming equipment (MVR) in the lithium extraction process, the temperature regulation variation curves of TLMLs are shown in Figure 6. The MVR temperature represents the physical characteristics of lithium extraction from brine, while power quantifies its electricity consumption. These two parameters exhibit a thermo-electric coupling relationship. By analyzing temperature variations, the effect of power regulation on the production efficiency of TLMLs can be effectively reflected. The temperature variations shown in Figure 6 directly correspond to the power flexibility regulation of TLMLs in Figure 5. As observed in Figure 6, the MVR temperature fluctuates within the temperature control boundaries of 55°C–65°C in both Case 2 and Case 4, with similar trends. Specifically, as shown in Figures 3, 5, during power deficit periods (1:00–8:00 and 17:00–24:00), lowering the MVR temperature reduces the electricity demand of lithium mining loads to alleviate the supply pressure on the microgrid. Conversely, during power surplus periods (9:00–16:00), increasing the MVR temperature raises the electricity demand of lithium mining loads to absorb excess power. This effectively enables bidirectional flexible interaction between power supply and demand.
[image: Line graph showing temperature over time for Case 2 and Case 4. The blue dashed line represents Case 2, with fluctuating temperatures peaking around 12:00. The orange solid line for Case 4 shows smaller fluctuations. Time ranges from 0:00 to 24:00, and temperature ranges from 55 to 65 degrees.]FIGURE 6 | Temperature regulation diagram of TLMLs for Cases 2 and 4.
However, whether ES participates in microgrid operations significantly impacts the temperature variations of TLMLs, as evidenced by notable differences between Cases 2 and 4. Specifically, in Case 2, the temperature adjustment range is [56°C, 64°C], with a temperature difference of 8°C and a variance of 9.52°C2. In comparison, Case 4 demonstrates a narrower temperature adjustment range of [57.8°C, 62°C], with the temperature difference and variance reduced by 47.5% and 25.87%, respectively. Combining Figures 5, 6, the collaboration of ES with flexible TLMLs in microgrid regulation effectively alleviates the pressure on flexible regulation, minimizing the impact of temperature variations on the production efficiency of the lithium extraction process.
4.4 Economic analysis of optimal operation in independent microgrid
This section analyzes the economic costs of microgrid optimized operation. Based on the solution of the objective function in the optimization strategy for independent microgrids discussed in Section 3.1, the economic operation costs for Cases 1–4 are presented in Figure 7.
[image: Bar chart comparing costs across four cases for gas turbine, PV curtailment, CSP, ES, TMEL, and transferable yields. Case 1 features high gas turbine and ES costs. Case 4 has the lowest costs overall.]FIGURE 7 | The comparison diagram of comprehensive operation cost in cases 1–4.
Specifically, the costs of thermal power generation and carbon emission penalties show a decreasing trend from Case 1 to Case 4, aligning with the technical analysis in Section 4.3. This is mainly due to the gradual inclusion of more flexible regulation resources in microgrid control, which reduces the reliance on costly thermal power generation, contributing to the achievement of “dual carbon” goals. The PV curtailment penalty cost in Case 2 decreases by 21.53% compared to Case 1, while Cases 3 and 4 fully utilize the PV output. This demonstrates that the participation of flexible TLMLs and ES in microgrid regulation continuously enhances the system’s renewable energy utilization capability. However, the regulation capacity of TLMLs is limited by the adjustment capacity and the production characteristics of lithium extraction processes, making their regulation capability less effective than that of ES. Nevertheless, the participation of flexible TLMLs in power and energy balance can further alleviate the need for conservative ES capacity configurations, effectively reducing the economic cost of ES. This conclusion is supported by the comparison of ES costs between Cases 3 and 4, where the total capital and operational cost of ES in Case 4 is 22.53% lower than in Case 3. Similarly, the regulation cost of TLMLs in Case 4 decreases from ¥25,500 in Case 2 to ¥21,200. The involvement of ES in power and energy balance also reduces the flexible regulation pressure on TLMLs, thereby mitigating the impact on lithium extraction production efficiency.
In addition, the total operating costs for Cases 1, 2, 3, and four are ¥359,600, ¥259,300, ¥197,300, and ¥167,000, respectively, showing a progressively decreasing trend. This demonstrates that, compared to considering the participation of flexible TLMLs or ES individually in microgrid optimization, their coordinated participation significantly reduces the overall operating costs of the system. ES participation in system regulation effectively reduces the temperature variation of TLMLs, thereby lowering the regulation costs of flexible TLMLs. Simultaneously, the participation of flexible TLMLs in system regulation further reduces the required ES capacity and charge-discharge power, effectively decreasing the capital and operating costs of ES. Therefore, combined with the previous technical analysis, the coordinated participation of flexible TLMLs and ES in microgrid regulation balances the technical and economic benefits of microgrid operation.
5 CONCLUSION
This study focuses on the power supply needs of high-energy-consuming industrial mining loads and the integration of new energy in an independent microgrid in a remote area of Southwest China. By analyzing the lithium extraction process from brine and exploring the regulation potential of lithium mining loads, it proposes an ES optimization configuration and operation strategy for independent microgrids, incorporating the flexible response of high-energy loads to jointly participate in the system’s power and energy balance regulation. The following conclusions are drawn:
	1) Considering the flexibility of lithium mining loads is constrained by the production characteristics of the lithium extraction process, a mathematical model for the flexible regulation of lithium mining loads was developed. This model incorporates the adjustability of the MVR temperature of key power-consuming equipment and includes production behavior constraints.
	2) By incorporating the regulation capacity boundaries of various resources in the microgrid, an optimal ES configuration model was developed to minimize the comprehensive operational cost of the system. The participation of ES in microgrid optimization reduced the system imbalance power and comprehensive operational cost by 93.32% and 35.6%, respectively, while effectively decreasing the temperature regulation variation of lithium mining loads by 47.5%.
	3) By leveraging their demand-side regulation potential, the flexible lithium mining loads contribute to reducing the required ES capacity by 26.06%. Additionally, this approach effectively alleviates the power supply pressure on generation units, significantly enhancing the technical and economic performance of the microgrid.

This study aims to address the electricity challenges faced by high-energy-consuming loads in high-renewable-energy microgrids, providing valuable insights for the development of demand response. Future research will focus on characterizing the uncertainty in the response of flexible lithium mining loads and exploring multi-stakeholder benefit allocation within microgrid.
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Various controllable resources contribute to energy regulation and rapid support in the form of virtual energy storage (VES), which can significantly simplify control parameters and facilitate the evaluation of a microgrid’s economic and secure operational reserves. This paper establishes a power density virtual energy storage (PDVES) model and an energy density virtual energy storage (EDVES) model. Wind turbines, photovoltaics (PVs), controllable loads, and electric vehicles (EVs) are equated to EDVES and PDVES, respectively. Furthermore, an economic calculation model for microgrids that incorporates VES is developed, and an energy regulation framework for microgrids is constructed with virtual current (VCU) and virtual capacitor (VCA) as scheduling parameters. With the frequency security of island microgrids as a constraint, a rapid support coordinated control strategy for PDVES and EDVES is proposed to ensure the economic and secure operation of microgrids across multiple time scales. Finally, a high-proportion renewable energy test system with VES is established. The test results demonstrate that under the proposed VES control, the energy regulation and dynamic stability control performance of microgrids can be significantly improved.
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1 INTRODUCTION
With the rapid increase in the proportion of distributed wind power, photovoltaic (PV), electric vehicles (EVs), seawater desalination loads (SDLs), and other flexible resources (FRs) connected to the power system, both the power supply and load sides present a power challenge potential (Thomas et al., 2018). Microgrids are in urgent need of a feasible solution in order for new energy and controllable loads to be integrated into the system’s energy regulation and rapid support control system, realizing the collaborative participation of power sources and loads in system regulation (Mateus et al., 2025; Lin et al., 2025). However, the power output of wind power and PV on the power supply side is intermittent, and controllable loads such as EVs and SDLs have heterogeneous control parameters. Due to the complexity of the operating parameters, microgrids lack a means of evaluation for the system energy and dynamic stability reserves, which not only makes it difficult to optimize economic operation but also makes it hard to cope with disturbances and guarantee the safe operation of the system. Therefore, microgrids need to integrate FRs, simplify operating parameters, and collaborate to accomplish energy regulation and rapid support control objectives, which will be key to improving the economic and safe operation of the system.
Enhancing the economy of microgrid operation through the cooperative operation of new energy sources, energy storage, and loads is a key research direction for microgrids. Multilevel optimal scheduling models of microgrids have been constructed, which provide a feasible solution for optimizing the energy regulation mode of power source, load and energy storage (Huang et al., 2024; Cao et al., 2025; Li et al., 2025; Morais et al., 2012; Sun et al., 2023) Yang et al. (2025), and Shui et al. (2024) assembled air conditioners, EVs, and smart buildings in a microgrid; considered the interest demands of power, load, and energy storage; and proposed a master–slave co-optimization method to save system investment costs by reducing the peak–valley difference of the operation of the microgrid. However, while the introduction of a demand-side response in microgrids is beneficial for increasing revenue, there is still a lack of coordinated methods for controllable loads, and the resource flexibility potential needs to be further developed. Simplifying system operating parameters reduces the difficulty of energy regulation and coordination between the power supply and load sides, which is essential for unlocking the regulation potential of various FRs. The VES technology, which equates FRs to energy storage and operates jointly with real energy storage, has become a popular topic of research. For example, on the load side, the energy conversion relationship between FRs such as EVs (Westermann and Schlegel, 2013; Zhu and Zhang, 2025), smart air conditioners (Wang et al., 2021; Pahasa et al., 2022), and SDLs (Zhou et al., 2020; Liu et al., 2021), and energy storage is established, and the controllable load can simulate the charging and discharging characteristics of energy storage. Lv et al. (2024) and Wang et al. (2020) established the dynamic relationship between thermal inertia and the charging and discharging characteristics of the VES for the cold\heat load in buildings and improved the economy of a building’s energy system through the VES to regulate the load’s cold and heat characteristics. However, microgrids that rely solely on a single device for power regulation struggle to meet system energy demands. To further explore the potential of VES, Lv et al. (2024) and Wang et al. (2020) established a combined VES system that incorporated air-conditioning loads and EVs based on their operational characteristics. This system, while balancing the interests of multiple stakeholders, can effectively reduce peak–valley difference, decrease the dependence of the regional power system on traditional energy storage devices, and thus save investment costs. Wang et al. (2024) and Du et al. (2019) proposed realizing the potential of VES by transferring energy across time periods using EVs and smart buildings. By utilizing these in the form of VES, system power fluctuations can be further mitigated. However, due to the different control parameters for electrical and thermal loads, there is still room for improvement in the power coordination between the two. In summary, regarding microgrids, although new energy, energy storage, and load have the potential for energy regulation, the control parameters of each type of equipment are not uniform. Although the charging and discharging characteristics of the VES are involved in system energy regulation, the control process is complicated, and it is difficult to assess the system energy reserve. In microgrids, the joint dispatching strategy of VES and real energy storage needs further improvement.
The rapid responses of FRs to short-term frequency changes to ensure system dynamic stability and alleviate the pressure on power support of the energy storage is another technical bottleneck that urgently needs to be resolved (Chen et al., 2024; Yang et al., 2022). To guarantee the stability of the DC distribution network, Fu et al. (2022) and Tanaka et al. (2011) proposed a coordinated control strategy of controllable loads and batteries to reduce DC voltage fluctuation after disturbances and to avoid the deep charging and discharging of the battery. However, due to the large number of control parameters, the current research does not discuss in detail the control methods for new energy to join the system stability support. Alyami (2024) constructed a hybrid energy storage system containing gas storage, air conditioning, and battery, taking into account time-of-use tariffs, and proposed a coordinated control strategy for PV and hybrid energy storage in an isolated island microgrid. However, while it is suitable for longer time-scale power dispatch, how to respond quickly to short-term frequency changes still needs further research. Gabriele et al. (2023) and Tang et al. (2021) proposed a multi-time-scale coordinated control method for microgrids which can issue control commands for all devices within the day-ahead stage at one time. However, due to the lack of controllable parameters suitable for sensing the power and operating status of controllable devices, the current ability of the microgrid control system to cope with sudden disturbances remains insufficient. In Tangqing et al. (2014) and Honarmand et al. (2014), the energy storage and SDLs coordinate to participate in the primary and secondary frequency regulation of the system. Although existing studies have proposed short-time coordinated control methods for FRs—such as natural gas, smart air conditioners, and SDLs—they have three shortcomings. First, the system power reserve is difficult to assess, and whether the controllable resources can realize continuous regulation needs verification. Second, the operating parameters of the controllable equipment are not uniform, and the design methods of inertia and frequency regulation coefficients are unknown in the short-time frequency response process. Third, whether the FRs in microgrids can take into account energy regulation and short-time frequency support on a long time scale has to be explored. In summary, a VES model urgently needs to be established for microgrids to simplify the operating parameters of each type of FR and to combine the charging and discharging characteristics of PDVES and EDVES. This will realize energy regulation and rapid support control in multiple time scales, give full play to the control potential of the new type of power system, and improve the system operation level.
To optimize the energy regulation effect of microgrids and realize the rapid frequency support control of each type of FR, the PDVES and the EDVES models were respectively established, and a novel cooperative control of VES for energy regulation and rapid frequency support is further proposed. This study is structured as follows. Section 1 establishes VES models for controllable loads, wind turbines (WTs), hydrogen energy storage (HES), and EVs, simplifies the operating parameters of various types of FRs, and proposes the operation mode of a microgrid with VES. Section 2 establishes the economic calculation model of microgrids with VES and proposes a dispatching method of microgrids with VCU and VCA value as unified instructions and VSOC to assess system energy storage. Section 3 proposes a frequency cooperative control adapted to PDVES, EDVES, and real energy storage devices in microgrids, taking into account both the economic and safe operation of microgrids. Section 4 builds a new energy high-proportion test system with multi-type VES and verifies the effectiveness of the proposed control strategies. The study ends with conclusions.
2 OPERATION MODE OF MICROGRIDS WITH VES
2.1 PDVES model
In microgrids, distributed energy resources, controllable loads, HES, and EVs can all be considered typical FRs. Distributed energy resources (such as WTs) and controllable loads possess rapid power response characteristics and can be categorized as PDVES devices. EV and HES systems have the capability to provide sustained power support and can be classified as EDVES. Moreover, to ensure the stable operation of microgrids in island mode, the system requires the configuration of a hybrid energy storage system composed of batteries and supercapacitors. In terms of microgrid control structure, the PV units and permanent magnet direct-drive WTs in the distributed energy resources are connected to the microgrid through inverters. The controllable load, exemplified by SDLs, produces fresh water through reverse osmosis. EVs are charged at a constant voltage and slow charging rate and are connected to the microgrid through a bidirectional inverter. HES is integrated into the microgrid through inverters equipped with electrolyzers and fuel cells; it consumes surplus power from the microgrid by producing hydrogen and supplies power to the microgrid by burning hydrogen. The hybrid energy storage system operates in power control mode.
To flexibly regulate various types of FRs in a microgrid, the operational information on distributed energy resources, controllable loads, and other FRs should be collected by the dispatch control center. In addition, hybrid energy storage should rapidly participate in system regulation. The operation mode of a microgrid is depicted in Figure 1. The microgrid’s dispatch center monitors the rotational speed of WTs, the power consumption of controllable loads, and the state-of-charge of EVs, batteries, and supercapacitors. The microgrid needs to process this operational data to generate dispatch commands that facilitate the management and control of multiple types of devices. It also perceives the overall system energy and power reserves, evaluates the reserve status of adjustable system resources, and achieves optimized energy regulation and rapid coordinated control that accounts for various FRs, thereby ensuring the economic operation and dynamic stability of the system.
[image: Diagram of a hybrid energy system showing various components and their interconnections. The left section (PDVES) includes a wind turbine connected to WVSC, a controllable load linked to EVSC via VES, and a supercapacitor connected to CVSC. The right section (EDVES) consists of a PV module connected to PVSC, connecting to HVSC for hydrogen energy storage (HES), and EVSC linked to an electric vehicle (EV). An energy storage battery is connected through LVSC. Power flows are indicated by arrows with labels such as \(P_w\), \(P_v\), \(P_p\), \(P_{H}\), \(P_{E}\), \(P_{C}\), and \(P_{B}\).]FIGURE 1 | Structure of the microgrid with VES.
To simplify the operational parameters involved in the regulation of FRs in microgrids, this paper will establish models for PDVES represented by new energy sources and controllable loads, as well as EDVES represented by HES and EVs. Through unified scheduling by the microgrid, the complexity of coordinated regulation between FRs and real energy storage devices will be mitigated.
	i) Controllable load: SDLs are currently recognized as typical controllable loads in microgrids. The high-pressure pumps in SDLs usually possess variable frequency speed regulation capabilities and can be equated with asynchronous motors for simulation purposes. By mimicking the charging and discharging characteristics of power density supercapacitors, an energy conversion relationship can be established between the energy of the capacitor and the kinetic energy of the rotor in the asynchronous motor. This can be expressed as follows:

[image: Integral equation showing \(E_{\text{t}}\) as the integral of \(\frac{I_{0}^{a} \frac{d\omega_{a}}{dt} d \tau}{\rho_{n}^{2}}\) over time equals \(\int U_{C} \frac{\frac{I_{0} d\omega}{dt}}{\rho_{n}C_{1} \frac{dU_{C}}{dt}} d\tau\), which simplifies to \(\int U_{C}C_{1} \frac{dU_{C}}{dt} d\tau\).]
where El, Js, ωr, and pn are the rotor kinetic energy, inherent inertia, and angular velocity of the motor, respectively, and Uc is the voltage of the supercapacitor.
It can be seen from Equation 1 that the VCA Cl of the SDL is expressed as
[image: Equation showing \( C_4 \) as \( \frac{J_s}{P_n^2} \times \frac{\Delta(w_r^2)}{\Delta(U_r^2)} \), rewritten as \( \frac{J_s}{P_n^2} \times \frac{(\omega_r^2) - \omega_f^2}{\Delta U_c^2} \).]
In Equation 2, where ω* r represents the reference value of the electrical angular velocity of the motor.
To facilitate the coordinated control of VES and supercapacitors, this paper introduces the concept of virtual state of charge (VSOC) for the SDL, which is defined as:
[image: SOC\(_i\) equals \(J_s \omega_e^2 / 2p^2_\eta\) divided by \(J_s \omega_m^2 / 2p^2_n\), which equals \(\omega_r^2 / \omega_m^2\).]
In Equation 3, where ωrn represents the rated electrical angular speed of the motor.
	ii) Variable speed WT: the variable-speed constant-frequency WT connected to the grid through a power electronic converter has a rapid power response characteristic. The WT simulates the charging and discharging characteristics of a power density supercapacitor, establishing an energy conversion relationship between the capacitor energy and the rotor kinetic energy of the WT. This can be expressed as

[image: Mathematical equation showing \( E_w = \int k_{\text{opt}} \omega_{\text{opt}}^3 \, dt = U_C \left[ \frac{3 k_{\text{opt}} \omega_{\text{opt}} d\omega_{\text{opt}}}{dU_C \frac{dU_C}{dt}} \right] \frac{dU_C}{dt} \, dt = \int U_C C_{\omega} \frac{dU_C}{dt} \, dt \). Equation number (4) is indicated on the right.]
It is evident from Equation 4 that after equating the variable-speed WT to VES, the VCA value Cw of the WT can be expressed as
[image: Equation for \( C_{w} \) is shown: \( C_{w} = \frac{2k_{\text{opt}} \Delta \omega^{3}_{\text{opt}}}{\Delta U_{c}^{2}} \approx \frac{2k_{\text{opt}}(\omega^{3}_{\text{opt}} - \omega^{3}_{0,\text{opt}})}{\Delta U_{c}^{2}} \).]
In Equation 5, where ω* opt represents the reference value of the electrical angular speed of the WT rotor.
The VSOC for a variable-speed WT system can be expressed as
[image: The equation shows the state of charge, SOC, as a ratio \(\frac{E_{w}}{E_{wn}}\) equal to \(\frac{I_{dc}^{2} \cdot \sigma_{opt}}{2f_{s}}\) equal to \(\frac{\omega_{opt}^{2}}{\omega_{opt\_in}^{2}}\). It is labeled as equation (6).]
In Equation 6, where ωoptn represents the rated value of the electrical angular speed of the WT rotor.
By equating the SDL and the variable-speed WT to VCAs and introducing the VSOC, the microgrid can regulate FRs with rapid power response capabilities. In conjunction with supercapacitors, this facilitates the evaluation of the energy storage and operational status of the VCAs compared to real energy storage, achieving coordinated regulation between distributed energy resources, controllable loads, and supercapacitors.
2.2 EDVES model

	i) HES systems exhibit continuous power regulation characteristics during the electricity-to-hydrogen energy conversion process and can participate in power regulation over extended periods. By simulating the charging and discharging characteristics of energy-density batteries, the HES system can establish an equivalent relationship between the hydrogen production process and the battery charging and discharging process, constructing a connection between the energy conversion of battery charging and discharging and the HES system. The rates of hydrogen production via electrolysis and the combustion of hydrogen can be represented respectively as:

[image: Equations showing efficiency calculations. The first equation is N_EL,H2 equals η_EL times U_EL times I_EL times η_in,H_EL divided by LHV_H2. The second equation is N_FC,H2 equals U_FC times I_FC times η_FC divided by η_FC times LHV_H2 times m_out. Both equations are labeled with the number seven.]
In Equation 7, where UEL and UFC represent the input and output voltage of the VES, respectively, IEL and IFC represent the input current and output current of the VES, respectively, ηEL and ηEL represent the electrolysis efficiency and hydrogen combustion efficiency of the HES with values of 0.7 and 0.95, respectively, ηin and ηout represent the power conversion efficiency of the inverter with a value of 0.95, hEL and hFC represent the working states of the electrolysis hydrogen and fuel cell, respectively, and LHVH2 represents the lowest heating value of hydrogen.
After equating the HES device to a virtual battery, the VCU parameter IH2V of the HES can be expressed as:
[image: Equation showing H subscript H 2 V equals open parenthesis U bar subscript EL T subscript EL n subscript H EL plus U subscript FC f subscript FC n subscript FC close parenthesis divided by U subscript H 2 V.]
In Equation 8, where UH2V represents the terminal voltage of the virtual battery.
The VSOC of the HES system, SOCH2(t), can be expressed as follows:
[image: Equation showing the state of charge for hydrogen (SOCH2) at time t, calculated as the previous state of charge plus the difference between hydrogen input (NEL,H2) and hydrogen consumption (NFCH2) divided by the maximum hydrogen capacity (MH2,max).]
In Equation 9, where MH2max represents the maximum hydrogen mass limit within the hydrogen storage tank.
	ii) EVs can adopt time-of-use electricity pricing to guide their charging behavior, achieving orderly load management. By controlling the scaled and orderly charging and discharging of EVs, a controllable virtual battery can be formed to coordinate and solve the problem of unordered charging after EVs are connected to the grid.

EV charging and discharging both occur in a conventionally slow manner. The Monte Carlo simulation method is used to model the daily charging load of EVs. The return time of EVs follows a normal distribution (Zhang et al., 2018) tf ∼ N (17.47, 3.41), and the daily driving distance of EVs follows a log-normal distribution—S ∼ N (3.24, 0.88). Based on the Monte Carlo simulation method and by comparing the return time tf of the ith EV with the end time Tms of the early morning low electricity price period and the start time Tns of the evening peak electricity price period, the VES of EVs can be charged before the end of the early morning low price period to absorb redundant power. After the evening peak price period, the VES of EVs can be discharged to reduce the impact of the original load power. Reasonably arranging the start time Tc for charging the VES of EVs and the start time Td for discharging the VES of EVs is as follows:
[image: Mathematical equation defining a function \( T_c(i) \). It includes piecewise conditions with \( t_f(i) \) for specified intervals: \( 0 \leq t_f(i) < T_{ms} \), \( T_{ms} \leq t_f(i) \leq T_{ns} \), with \( T_{ms} \leq t_f(i) \leq T_{ns} \) and \( T_{ns} < t_f(i) \leq 24 \). Constants or zero apply otherwise. Marked as equation (10).]
[image: It seems like you've provided text that appears to be a mathematical expression, not an image. If you meant to share an image, please upload it, and I'll be glad to help with the alt text. If you have more questions or need assistance, let me know!]
In Equations 10, 11, where, Tms represents the end time of the low electricity price period, and Tns represents the start time of the peak electricity price period.
The charging and discharging of the virtual battery require the EV charging pile to obtain the EV battery capacity Ci and the state of charge SOCA I of the battery. The charging pile management system collects EV users’ charging decision behavior, including the expected parking time ti and the desired state of charge level SOCB I when leaving, which is set to 0.8. The charging and discharging duration and the amount of electricity for a single EV are, respectively:
[image: Equations for electric vehicle charging. The first equation defines \(E_{\text{char}}(i)\) as the minimum of either the product of \( P_C t_C \) and the difference between maximum and minimum state of charge (SOC) times capacity \( C \), minus \( S(i) \) multiplied by wind resource \( w_r \) and grid factor \( C_f \). The second equation calculates \( T_{\text{char}}(i) \) as \( t_f - t_C \) minus the quotient of the difference between SOC at time B and its minimum and \( P_C \), minus the quotient of \( S(i) \) and \( P_C \).]
In Equation 12, where, PC is the charging and discharging power of the EV under conventional slow-speed mode, with a value of 1.8 kW, tc is the charging duration of the EV, SOCmin i is the minimum state of charge of the EV, with a value of 0.1, S(i) is the driving distance of the EV, and w is the battery consumption per kilometer of the EV, with a value of 0.15.
The orderly charging and discharging scheduling process of EVs is shown in Figure 2.
[image: Flowchart illustrating a process for determining electric vehicle (EV) charging and discharging times. It begins with Monte Carlo sampling of return time \(t(i)\) and driving distance \(S(i)\). Decisions include acceptance of time-of-use pricing, calculation of maximum discharge capacity \(E_{\text{dis}}\), and determination of charging and discharging times. Conditions like \(t_{\text{disch}}(i) > 24\) guide adjustments. The process outputs the EV load \(E_{\text{v}}(i)\). Various operations are depicted through arrows and decision diamonds, highlighting the sequence and interaction of factors influencing EV energy management.]FIGURE 2 | Flowchart of virtual battery emulated by EV.
The entire charging duration of the EV is determined by the discharge amount of its virtual battery and the state of charge at the time of return. By guiding the EV to selectively participate in the energy flow in the microgrid during electricity price valleys and peaks, the start time of the EV’s virtual battery charging and discharging can be expressed thus:
[image: Mathematical expression showing two equations. The first equation is \( T_{\text{dchare}}(i) = T_{\text{dchar}}(i) + T_{\text{dchare}}(i) \). The second equation is \( T_{\text{chare}}(i) = T_{\text{chare}}(i) + \left[ \frac{\sum_{t=T_{\text{dchar}}(i)}^{T_{\text{dchare}}(i)} P_{\text{C}} + S(t)w}{P_{\text{C}}} \right] \). Both equations are labeled as equation \( (13) \).]
In Equation 13, where Tchare and Tdchare represent the end times of charging and discharging, respectively.
The charging and discharging of the electricity Eev(t) of the EV’s virtual battery at each moment, as determined by Equation 13, can be expressed as follows Equation 14:
[image: Mathematical expression showing the energy function \( E_{v}(t) = \sum_{t=1}^{T_{2}}P_{t} \), with conditions. For charging, \( T_{1} = T_{\text{char,s}}, T_{2} = T_{\text{char,e}} \). For discharging, \( T_{1} = T_{\text{dchar,s}}, T_{2} = T_{\text{dchar,e}} \).]
After equating the EV to VES, a VCU Iev(t) can be introduced to simulate the battery’s charging and discharging characteristics, which can be expressed as
[image: Formula showing the time-dependent current, \( I_{17}(t) \), equals the ratio of \( E_{17}(t) \) to \( U_{01}(t) \), labeled as equation fifteen in parentheses.]
In Equation 15, where Uev(t) represents the voltage at the busbar of the EV charging station.
The VSOC of the EV can be expressed as
[image: Formula showing the state of charge (SOC) of an electric vehicle (EV) at time \( t \) as a function of the SOC at time \( t-1 \), energy \( E_{ch}(t) \), charging efficiency \( \eta_{ev} \), and capacity \( C \).]
In Equation 16, where ηev represents the charging and discharging efficiency of the EV.
In the microgrid, HES and EVs can introduce VCU and VSOC as control variables, which have the same operating parameters as real batteries and participate in system power regulation, simplifying the control mode of energy density energy storage devices.
3 COOPERATIVE CONTROL OF VES FOR ENERGY REGULATION AND FREQUENCY SUPPORT
3.1 Multi-time scale dispatching system of VES
After introducing VES, the multi-time scale scheduling system structure of the microgrid is shown in Figure 3, where the microgrid’s dispatch center is equipped with an energy regulation system for long-time-scale economic optimization operations. After introducing VES, both the EDVES and the battery participate in system regulation and status monitoring through VCU and VSOC, while the PDVES and the supercapacitor participate through VCA and VSOC.
[image: Flowchart illustrating the structure of a Virtual Energy Storage (VES) system. It includes the assessment of battery, supercapacitor, and virtual power states, forming a VES layer. The VES controller is central, divided into upper-layer long-term economic optimization and lower-layer short-term safety coordination. Functions include energy regulation, frequency support, and management systems. The chart concludes with VCA and VCU evaluations for time PVDES, VSOC detection, and capacity evaluation.]FIGURE 3 | Structure of a multi-time scale dispatching system for microgrids with VES.
In the energy regulation system, the economic optimization model of the microgrid with VES is solved to complete the dispatch command allocation with the goal of reducing economic operation costs. In the short-term rapid support control system, the microgrid prioritizes the use of PDVES devices to provide inertial support at the initial stage of frequency changes, while the EDVES takes on the task of primary frequency regulation. Because VES actively participates in power regulation at different time scales of the system, it not only reduces the capacity of configuring real energy storage devices but also helps reduce the number of charge and discharge cycles of the energy storage devices, thereby extending the service life of those devices.
3.2 Cooperative energy regulation of VES
3.2.1 Objective function
The energy regulation system of the microgrid utilizes the charging and discharging of VES and adjusts the power output of various FRs. The objective function of the microgrid’s energy regulation takes into account the daily revenue R of the load and the operating cost Cmic, and can be expressed as:
[image: Maximization equation for time period \( t = 1 \) to \( T \), summing \( R_{12} + R_{ev} + R_{w} - (C_{12} + C_{ev} + C_{wf} + C_{wi} + C_{hy}) \).]
In Equation 17, where RH2 represents the revenue from hydrogen production, Rev represents the revenue from EV charging, Rw represents the revenue from the purified water in SDLs, CH2 represents the maintenance cost of HES, Cev represents the compensation cost of EVs, Cwf represents the cost of WTs participating in system regulation, Cwi represents the operation and maintenance cost of WTs, and Chy represents the operation and maintenance cost of energy storage.
3.2.1.1 Revenue of microgrids
As is evident from Equation 17, the revenue of the microgrid is derived from the load revenue, including the revenue from hydrogen production, the revenue from EV charging, and the by-product revenue, which can be expressed as
[image: Equation showing sigma for \(R\) equals a sum of expressions: \(\sum_{K=1}^{N}E_{IN,H}(K)(K_{IN,s}+M_{H2}(t)\Delta SO4_{H2}TxPx^2)\), plus \(\sum_{b=1}^{3}\sum_{f=1}^{N}P_{b}(bE_{f}(t))\), plus \(\sum_{d=1}^{4}K(d(t))\). Number eighteen in parentheses at the end.]
In Equation 18, where Kfu represents the revenue from products obtained by hydrogen production, ΔSOCH2,TK represents the daily surplus hydrogen mass, ph2 represents the hydrogen selling price, pt(t) represents the electricity purchase price sold by LA to EV users in the time period, Eev(t) represents the charging amount of the virtual battery, Nev represents the number of virtual batteries, and Kl represents the revenue from purified water.
The controllable load participates in power regulation in the form of a VCA. Referring to the speed change of an asynchronous motor, the relationship between the load power PL(t) and the output power of the VCA is can be expressed as Equation 19
[image: Equation showing \( P_{L}(t) = P_{L}(t-1) + \frac{J_{r}(\omega_{r}^{2}(t) - \omega_{r}^{2}(t-1))}{2p^{2}_{r}\Delta t} \), numbered as 19.]
Taking the SDL as an example, the relationship between the purified water flow rate and the load output power can be fitted (Wang et al., 2021). The purified water flow rate of the SDL can be expressed as Equation 20
[image: Mathematical equation showing \( Q(t) = 2.741 - 2.408 \cos(0.1216 P_1(t)) + 1.324 \sin(0.1216 P_1(t)) \).]
The microgrid scheduling center can output the VCA value according to the revenue optimization result and use the VCA to complete load regulation. The controllable load uses the motor frequency conversion speed regulation system to change the load power so that the PDVES has a variable capacitance value.
3.2.1.2 Cost of microgrids
The operating cost Cmic of the microgrid needs to consider the operation and maintenance cost CH2 of HES, the peak shaving cost Cev of EV users, the regulation cost Cwf of WTs, the operation and maintenance cost Cwi, and the operation and maintenance cost Chy of energy storage, which can be expressed as Equation 21
[image: Mathematical equation expressing \(\Sigma C_{\text{mic}}\) as a sum involving various components: \(U_{\text{EL}}I_{\text{EL}}H_{\text{EL}}P_{\text{EL}} + U_{\text{FC}}I_{\text{FC}}H_{\text{FC}}P_{\text{FC}}\) and a summation from \(t=1\) to \(24\) of \(K_m p_w(t)\). It includes another summation for errors related to energy and power differences, \(\Delta p(t) E_{\text{avad}}(t)\), and a calculation involving \(K_w[p_{\text{wo}}(t) - p_w(t)]\), plus \(C_{\text{hp}}\), labeled as equation (21).]
where, pEL and pFC represent the operation and maintenance costs per unit of electricity of AC and PEMFC, respectively, Km represents the operation and maintenance cost per unit of electricity of WTs, M and Eevd represent the number and discharge amount of virtual batteries, respectively, Δp(t) represents the compensation electricity price per unit of discharge amount of EV connected to the grid, Pwo(t) represents the output power of WTs under maximum power tracking control, Pw(t) represents the output power of WTs under VES control, and Kw represents the unit wind curtailment cost of WTs.
In actual operation, the charging and discharging of the battery will reduce its service life. Therefore, the operation and maintenance cost Chy of the hybrid energy storage includes the operation and maintenance cost Cb and the life loss CB, and can be expressed as Equations 22, 23
[image: The image displays a mathematical equation labeled as equation twenty-two. It includes the expression for \( C_{\text{hy}} \), which equals the sum of \( C_{\text{B}} \) and \( C_{\text{S}} \), minus the sum of \( C_{\text{b}}(t) \) from \( t=1 \) to twenty-four. Additionally, it subtracts the summation involving \( K_{\text{hy}} \) and the absolute values of \( P_{\text{h\_ye}}(t) \) and \( P_{\text{h\_yd}}(t) \) from \( t=1 \) to twenty-four.]
[image: Equation representing a mathematical expression for \(G_B(t)\), where \(G_B(t) = \frac{W_{\text{total}}^A}{1 - \text{SOH}_{\text{min}}} \times |\text{SOC}_B(t-1) - \text{SOC}_B(t)|\), labeled as equation \(23\).]
where, Khy represents the operation and maintenance cost of energy storage, Phyc(t) and Phyd(t) represent the power output of the energy storage in time period t, respectively, Wtotal represents the purchase cost of the battery, A represents the aging coefficient of the battery, SOHmin represents the critical life of battery scrapping, with a value of 0.8, and SOCB(t) represents the SOC of the battery in time period t.
3.2.2 Constraint conditions
During the microgrid’s operation, it is necessary to ensure the power balance of the power source and the load. Therefore, the power balance constraint of the system can be expressed as Equation 24
[image: The formula represents an equation involving power and energy components over time: \(P_{w}(t) + P_{pv}(t) + P_{hyd}(t) - P_{hyc}(t) = P_{L}(t) + \sum_{i=1}^{N} E_{ev}(t) + P_{H2}\).]
To avoid overcharging and over-discharging of the real energy storage device, the state of charge constraints of the supercapacitor and the battery are, respectively, expressed as Equation 25
[image: State of charge constraints are shown: from 20% to 80% for SOC_B(t) and SOC_C(t); from 40% to 60% for SOC_B(24) and SOC_C(24). Equation labeled as 25.]
To ensure the continuous operation of the system during the day, the state of charge at the end of the hybrid energy storage device is constrained to meet the energy regulation needs of the system the next day.
During the operation of the EDVES, the operation limits of the electrical equipment need to be considered. For example, the state of charge constraints of HES and EVs are respectively expressed as Equation 26
[image: Two inequalities show constraints for state of charge are displayed. The first is thirty percent less than or equal to SOC of EV at time t less than or equal to ninety percent. The second is ten percent less than or equal to SOC of H2 at time t less than or equal to ninety percent. The equation is labeled as twenty-six.]
The PDVES also needs to consider the allowable operation range of electrical equipment. For controllable loads such as SDLs and WTs, the VSOC constraints can be respectively expressed as
[image: Mathematical expression showing constraints on state of charge (SOC): 21.78% is less than or equal to SOC for the charging scenario, which is less than or equal to 100%. Similarly, 16% is less than or equal to SOC for the discharging scenario, also less than or equal to 100%. Equation number 27 is referenced.]
In Equation 27, 46% of the rated speed of the controllable load is set as the minimum rotor speed, which is 1400r/min—the VSOC operation threshold of the controllable load is 21.78%—and 40% of the rated speed of the WT is set as the minimum speed—the VSOC operation threshold of the WT is 16%.
When the HES system is operating, it is necessary to ensure that it works accurately in the AE or PEMFC state. The state constraint of the HES system is expressed as Equation 28
[image: Mathematical inequality depicting the sum of the entropies \( H_L \) and \( H_C \) is less than or equal to \( 1 \).]
3.3 Cooperative control of VES for frequency support
When the system frequency f remains within the safe range, the microgrid maintains economic operation through the energy regulation system. The system collects the operation states of the VES and the real energy storage device and sends them to the microgrid dispatch control center to complete the long-term scale economic optimization. However, if the microgrid encounters a disturbance and the system frequency exceeds the safe operation range, the microgrid should have the ability to coordinate various FRs to participate in the system frequency regulation and reduce the frequency regulation task of the energy storage. The collaborative operation strategy process of the PDVES and the EDVES in the microgrid is shown in Figure 4.
[image: Flowchart depicting a decision-making process for VES model determination. It starts with checking if the frequency deviation is less than or equal to 0.5 Hz. If yes, it leads to economically optimized dispatch and includes steps like equipment power status assessment and global optimization modeling. If no, it involves real-time coordinated control, focusing on frequency change perception and rapid coordination control. The process then branches into virtual instruction, VSOC, power device regulation, and energy device regulation, with specific parameters listed under each.]FIGURE 4 | Cooperative control of the microgrid for energy regulation and frequency response.
As seen in Figure 4, within the frequency safety range, the microgrid is in the economic dispatching operation mode. When the frequency exceeds the safe range, the controllable electrical equipment with short-term frequency response in the microgrid includes WTs, controllable loads, EVs, and HES. At this time, the WTs and controllable loads deploy their power rapid response capabilities and provide inertia support in the initial stage of frequency change. EVs and HES participate in the primary frequency regulation of the system.
As shown in Figure 4, the PDVES mainly undertakes the rapid power regulation in the initial inertia response stage (df/dt < 0). In this stage, the PDVES adjusts ω* r and ω* opt respectively through the VCA Cl and Cw to further adjust its power output, share the inertia support task of the supercapacitor, and reduce the rate of change of the system frequency. In the frequency recovery stage (df/dt > 0), the PDVES and the EDVES jointly undertake the frequency regulation task. In this stage, the EDVES outputs IH2 and Iev through the VCU instruction, simulates the charging and discharging characteristics of the battery, adjusts the hydrogen storage electrolysis rate NEL or the hydrogen combustion rate NFC and the EV charging amount Eev(t), respectively, relieves the frequency regulation pressure of the battery, and accelerates the system frequency recovery speed. Under the multi-terminal regulation of the source, storage, and load, the system frequency gradually recovers until (df/dt > 0), when the system frequency returns to the steady-state value, the system frequency no longer changes, an inertia response link exits, and the primary frequency regulation link continues to maintain the safe operation of the system frequency in the new operating state.
In Figure 5, the red lines represent the data flow of the microgrid. The microgrid uses the communication network to obtain information on the output and response of sources, loads, and energy storage. After analysis and processing, this information is converted into coordinated operation commands represented by VCA and VCU parameters. These virtual commands are then transmitted to the FR device terminals through the data flow. The blue lines indicate the power flow of the microgrid, which is the control structure for the FR device to participate in energy regulation. Upon receiving the virtual commands, the FR device terminals switch to the corresponding working modes and adjust the actual parameters. By responding to power changes, they provide rapid frequency support, thereby ensuring the stability of the microgrid operation.
[image: Diagram illustrating an energy management system for wind turbines, batteries, supercapacitors, hydrogen storage, and electric vehicles. It includes power and data flow, showing components like MPPT, PWM, and control units.]FIGURE 5 | Cooperative control structure diagram of the microgrid with VES.
The VCA value Cvir set by the PDVES has the following relationship with the capacitance value C of the real supercapacitor:
[image: It seems there is no image provided. Please upload the image or provide a URL, and I will help you with the alternate text.]
In Equation 29, kvirc represents the VCA adjustment coefficient.
The state of charge of the supercapacitor is closely related to the terminal voltage and can be expressed as
[image: Mathematical equation showing the state of charge estimation (\( \text{SOC}_{CP} \)) formula: \( \text{SOC}_{CP} = \frac{U_C - U_{\text{min}}}{U_{\text{cmax}} - U_{\text{min}}} \), labeled as equation (30).]
In Equation 30, UC represents the voltage of the supercapacitor, and UCmax and UCmin represent the allowable upper and lower limits of the voltage of the supercapacitor, respectively.
If the system frequency change is Δωe, the PDVES needs to provide inertia support, and the change in virtual rotational kinetic energy is
[image: The equation displayed is \( A_{ELG} = -\frac{1}{2} I_{yy} \omega \Delta \omega_e \), labeled as equation (31).]
[image: Equation \( H_B = \frac{J_{0B} \omega_{0z}^2}{2S_{NR}} \), labeled as equation 32.]
where, JvB represents the moment of inertia of the PDVES, ωe is the angular velocity of the virtual synchronous generator, and SNB is the capacity of the virtual synchronous generator.
Substituting Equation 32 into Equation 31 yields
[image: Mathematical equation showing delta epsilon sub L equals two H n sub e SNR delta omega sub e. ]
In Equation 33, [image: Delta omega subscript e, represented in mathematical notation.] represents the per-unit value of the angular frequency variation.
Writing it in the form of frequency gives
[image: Mathematical expression showing energy change: \(\Delta E_{\text{1G}}\) equals \(4\pi f_{\text{H}} S_{\text{NR}} \Delta f_{r}\), equation number 34.]
where [image: Symbol for frequency change, represented by the Greek letter Delta followed by the letter f.] represents the per-unit value of the frequency variation.
Assuming that all the unbalanced energy of the system during the frequency change is provided by the VCA, the energy change of the VCA is expressed as
[image: Equation depicting electrical energy change: \(\Delta E = \frac{1}{2} C (U^2 - U_{c0}^2)\), labeled as equation number 35.]
where Uc and Uc0 are the steady-state DC voltage of the VCA and the voltage value of the VCA after participating in frequency regulation, respectively.
According to Equations 34 and 35, the system frequency change can be reflected as the DC voltage fluctuation of the PDVES so as to adjust the output power of the VCA in Equation 36:
[image: Equation depicting a mathematical formula: Negative delta J equals alpha times open parenthesis U subscript e minus U subscript zero close parenthesis divided by eight pi H subscript zero S subscript NR. Equation number thirty-six appears on the right.]
After introducing VES, the relationship between the capacitor voltage and the virtual amplification factor is expressed as
[image: The formula for \( k_{\text{intr}} \) is given as \(\frac{U_{\text{C}}(t) - U_{\text{C}}(t_{\text{set}})}{U_{\text{d}}^2(t) - U_{\text{d}}^2(t_{\text{res}})}\), labeled as equation (37).]
where UC(tset) is the terminal voltage of the capacitor when the set SOCCP value is reached, and UC(tres) is the voltage of the supercapacitor when the SOCCP reaches the limit value.
From Equations 2, 5, and 37, the reference values of the electrical angular velocity of the SDL and the WT are respectively expressed as
[image: Equation displays the calculation of \(\omega_r^*\). It is defined by different conditions: \(\omega_{\text{min}}\) when \(\omega_r \leq \omega_{\text{min}}\), \(\omega_m \left( K_1 \Delta \text{SOC} + \text{SOC}^j \right)^{\frac{3}{2}} \) when \(\omega_{\text{min}} \leq \omega_r \leq \omega_m\), and \(\omega_m\) for \(\omega_m \leq \omega_r\). Equation number (38) is marked at the right.]
[image: Optimal frequency equation with conditions shown using curly brackets. Top condition: \(\omega_{\text{opt}}^{*} = \omega_{\text{opt-min}}\) if \(\omega_{\text{opt}} \leq \omega_{\text{opt-min}}\). Middle: \(\omega_{\text{opt}} \left(K_2 \Delta \text{SOC} + \text{SOC}_{\text{min}} \right)^{\frac{1}{2}} \) if \(\omega_{\text{opt-min}} \leq \omega_{\text{opt}} \leq \omega_{\text{optn}}\). Bottom: \(\omega_{\text{optn}}\) if \(\omega_{\text{optn}} \leq \omega_{\text{opt}}\). Equation (39).]
In Equations 38, 39, where, K1 = 2pn2UCC1(UCmax-UCmin)/(Jsωm2), ΔSOC = SOCCP-SOCCres; SOCCres represents the limit value of the VSOC SOCCP of the SDL, K2 = UCCw(UCmax-UCmin)/(koptωoptn3), SOCCgres represents the limit value of the VSOC SOCCP of the WT, and ωrmin and ωoptmin represent the minimum angular velocities of the motor and the WT, respectively.
The VCU value Ivir of the EDVES can be set as
[image: It seems there was an error with the image upload or link. Please try uploading the image again, or provide the URL. If there is a caption or context, you can add that as well.]
In Equation 40, where kviri is the VCU adjustment coefficient, and IB is the output current of the real battery.
The frequency response model of the microgrid after introducing VES is
[image: Mathematical equation displaying \(2(H_{p} + D_{\text{sys}})A(f) = \Delta P_{\text{LG}} + \Delta P_{\text{LN}} - \Delta P_{d3}\).]
where Hg is the system inertia when the new energy penetration rate is r, Dsys is the damping coefficient of the system, ΔPLG is the power output of the PDVES, ΔPLN is the power output of the EDVES, and ΔPd is the disturbance power.
Combining Equations 8, 15, and 41, the VCU values of the two EDVES can be obtained respectively as Equations 42, 43
[image: The formula displayed is \( I_{\text{vir1}} = \frac{\Delta P_{\text{IG1}}}{U_{\text{HV}}} \), labeled as equation (42).]
[image: The formula shown is: I_vir2 = (ΔP_LG2) / U_ev, labeled as equation 43.]
where, Ivir1 and ΔPLG1 are the VCU and output power of the HES, respectively, and Ivir2 and ΔPLG2 are the VCU and output power of the EV, respectively.
By calculating the reference value of the electrical angular velocity and the VCU command value through the VCA and the virtual battery, respectively, the output power of the EDVES and the PDVES can be adjusted to provide rapid power support and improve the frequency stability. In addition, the operation state of the VES can be directly monitored through the VSOC and combined with the energy regulation system, taking both the economy and safety of the microgrid into account.
4 SIMULATION ANALYSIS
4.1 Introduction of the test system
In order to verify the enhancement effect of the proposed VES on the energy regulation and rapid power support of the microgrid, a test system was built (Figure 6). This paper compares two scenarios: one without additional control and one with VES control. In the scenario without additional control, only the batteries and supercapacitors participate in power regulation, and the FR in the microgrid consumes electrical energy as loads. In the scenario with VES control, in addition to the batteries and supercapacitors participating in power regulation, the FR in the microgrid also participates in system energy management and rapid power support through VES.
[image: Diagram of an energy management system showing connections between components: a wind turbine (WT), photovoltaic system (PV), controllable load, supercapacitor, batteries, hybrid energy storage (HES), and electric vehicle (EV). Each component connects through converters (WVSC, EVSC, CVSC, HVSC, PVSC, LVSC) signifying power flow.]FIGURE 6 | Structure of the test system.
The operating parameters of WTs, supercapacitors, batteries, SDL, EVs, and HES in the test system are shown in Table 1, the EV time-of-use tariffs are shown in Table 2, and the economic operating parameters of the system are shown in Table 3 (Wang et al., 2021; Wang et al., 2023). The test system solves the energy regulation model by invoking the CPLEX solver.
TABLE 1 | Simulation system parameters.
[image: Table listing the components and parameters of a system. Components include WTs, Supercapacitors, Batteries, SDLs, EVs, and HES. For WTs: Power = 3000 kW, Speed = 1500 rad/min. Supercapacitors: Capacitance = 1000 mF, Voltage = 30 kV. Batteries: Charge = 10000 A h, Voltage = 12 kV. SDLs: Normal speed = 3000 rad/min, Minimum speed = 1400 rad/min. EVs: Quantity = 500, State of Charge = 30%–90%. HES: Maximum inlet volume = 2380 Nm³/h, Maximum outlet volume = 1770 Nm³/h.]TABLE 2 | Time-of-day tariffs.
[image: Chart showing electricity prices in Chinese Yuan per kilowatt-hour for different time periods. Prices are 1.197 from 8:00 to 11:00 and 18:00 to 21:00, 0.356 from 22:00 to 6:00, and 0.744 from 6:00 to 8:00, 11:00 to 18:00, and 21:00 to 22:00.]TABLE 3 | Benefit/cost factor for economic operation of the system (Wang et al., 2023).
[image: Table displaying parameters and their values in two columns. Left column: \( k \) is 5.4 CNY/Ton, \( p_{h2} \) is 10.3 CNY/m\(^3\), \( p_{EL} \) is 0.148 CNY/(kW·h), \( p_{FC} \) is 0.263 CNY/(kW·h). Right column: Δp(t) is 0.42 CNY/(kW·h), \( K_w \) is 0.35 CNY/(kW·h), \( K_m \) is 0.0296 CNY/(kW·h), \( K_{hy} \) is 0.9 CNY/(kW·h).]4.2 Analysis of energy regulation
The comparison of the test results with and without the economic optimization dispatch under the no-attachment control and VES control are shown in Figures 7–11.
[image: Line graph displaying the power output of various energy sources over a 24-hour period. Electric vehicle, photovoltaic, and wind power show fluctuating outputs, with wind power peaking above 2000 PNW. Photovoltaic starts low, peaking midday. Controllable load, superconductors, and hydrogen storage have relatively stable outputs. Each energy source is represented by differently colored lines.]FIGURE 7 | Power dynamic responses of the test system without additional control.
[image: Line graph depicting power distribution over 24 hours for various energy sources: electric vehicles, photovoltaic, supercapacitor, controllable load, wind power, and hydrogen storage. Lines vary in color and pattern, each representing a different source, with values fluctuating on the y-axis from -500 to 2000, across the x-axis time from 0 to 24 hours.]FIGURE 8 | Power dynamic responses of the test system under VES control.
[image: Two line charts compare the state of charge (SOC) and power over time. The top chart, labeled "Without VPP," shows more fluctuation in SOC. The bottom chart, "Including VPP," shows a steadier SOC. Both charts have time (hours) on the x-axis and SOC percentage on the left y-axis, with power (kW) on the right y-axis.]FIGURE 9 | State of charge and power responses of the battery under two scenarios.
[image: Line graph showing total revenue over 24 hours for two scenarios: "Without VPP" (red dashed line) and "Including VPP" (blue dashed line). Both lines trend upwards, with "Including VPP" generally higher.]FIGURE 10 | System gain results under two scenarios.
[image: Four line charts display data over 24 hours. The first chart shows hydrogen energy storage current in amperes. The second chart represents electric vehicle current. The third chart depicts active load capacity in farads. The fourth chart illustrates wind turbine capacity in farads. All charts show fluctuations throughout the day.]FIGURE 11 | VCU and VCA command values.
After the introduction of VES, the energy regulation system of the microgrid scheduling and control center will generate VCA value and VCU value commands to cooperate the resources to respond to the system (Figure 11). During the economic operation scheduling process, based on the VSOC of the VES device (Figure 12), the microgrid can intuitively perceive the energy reserve state of the system.
[image: 3D graph showing energy distribution among different sources over time. Red represents electric vehicles, green for hydrogen energy storage, yellow for active load, and blue for wind turbines. The Y-axis represents the quantity, and the X-axis shows time intervals.]FIGURE 12 | VSOCv of VES.
Looking at Figures 7 and 9, it can be seen that in the traditional mode without additional control—between 0:00 and 4:00—the output power of the WT increases, and the EV charging load demand is less, failing to respond to the wind power disturbance; this achieves wind power dissipation by charging the supercapacitor. In addition, at 2:00–4:00, when the supercapacitor charging reaches the limit—after the state of charge rises to the maximum value—it is handed over to the battery charging to smooth out the wind power disturbance, which makes the SOC of the battery rise to 67.4% at 4:00.
At 5:00, the wind power decreases significantly. To respond to the system power disturbance in time, the supercapacitor and the battery participate in power regulation to maintain the system power balance. At 8:00–18:00, on the one hand, the PV modules begin to generate electricity. On the other hand, the wind power plummets at 12:00, and under the pressure of this double disturbance, coupled with the limited range of supercapacitor regulation, the controllable loads as well as other controllable FRs fail to participate in the response. They mainly rely only on the hybrid energy storage system of the battery to respond to the system disturbance, leading to an increase in the depth of discharge of the battery and also putting the battery in a state of frequent charging and discharging; this causes the SOC of the battery to show a rising–declining–rising trend.
After 18:00, the EV is in a centralized charging state, and a load peak occurs, its maximum load reaching 620 kW. In addition, the PV is unable to output power at night, resulting in an increase in the system’s peak–valley difference. The batteries will be deeply discharged, and the lowest value of its SOC reaches 53.79%.
In this model, some controllable FRs (EVs, controllable loads, HES) fail to exploit their adjustable potential or fully mobilize their response. The hybrid energy storage system consisting only of supercapacitors and batteries supports the unbalanced net load caused by wind and PV power disturbances. In addition, combining Table 4 and Figure 10 shows that the net gain of the system in 24 h is ¥ 1,354.72. It is worth noting that during the dispatch cycle, the battery is in a frequent charging and discharging state; especially after 18:00, the battery is deeply discharged, which leads to an increase in the cost of operation and maintenance and aging, and the system revenue is significantly reduced.
TABLE 4 | Economy results under different cases.
[image: Table comparing case benefits and costs in CNY for scenarios with no additional controls and VES control. Categories include revenue from water production, EV sales, hydrogen production, comprehensive O&M costs, peaking costs, and EV dispatch compensation. The VES control scenario shows decreased revenue from water and EV sales, reduced hydrogen production and O&M costs, and introduces costs for peaking and dispatch compensation.]After the introduction of VES, the microgrid uses the VCU and VCA values in Figure 6 to regulate the FRs and simulate the charging and discharging characteristics of energy storage devices.
As shown in Figure 11, from 0:00 to 4:00, in order to fully stimulate the responsiveness of controllable FRs and under the constraint of meeting customer charging demand, the microgrid adopts time-of-use tariffs so that EVs are charged when the price is low and discharged when the price is high, forming a phenomenon of “low storage and high generation.” In order to flexibly dispatch EVs, the microgrid generates VCU values to regulate EVs for VES. In addition, in order to tap its adjustable potential, the microgrid treats the SDL as VES and regulates the load power through the VCA value.
At 3:00, the WT sets the VCA to 37.1 F through the VES technology, which responds quickly to the power change and balances the system power. During this period, battery charging and discharging power is significantly reduced, and the microgrid effectively consumes the significantly increased wind power. At 5:00, the wind power is reduced, and the WTs are constrained by the rotational speed and wind speed. At this time, the controllable loads mainly carry out the rapid power response, and the HES and EV clusters carry out the supplemental regulation to satisfy the system power demand, fully mobilizing the enthusiasm of the VES in responding to the power change.
At 8:00–18:00, the PV begins generating power, system power redundancy, and controllable load through the VES technology to set the VCA to 22.4 F to increase the rotor speed to dissipate the redundant power. At 12:00, when the wind power plummeted—limiting the WT VES adjustable potential—the controllable load actively participated in the system regulation, reduced its own operating power, and reduced the output power to 1,642 kW. The energy regulation system generates a negative VCU value, and the HES works in the fuel cell state, increasing the output power by burning hydrogen; this reduces the number and depth of battery discharges.
After 18:00, unlike the EV as a load in the no-attachment control, the EV has already shifted the peak power consumption to other times to dissipate the wind–PV disturbances through the complementary response of the power on different periods. Therefore, at this time, the dispatch center of the microgrid sends a command to the EV with a negative value for the VCU to supply power to the system and maintain the power balance. At 24: 00, the battery SOC is controlled to be at 62.57%. At this time, compared with no additional control, the battery SOC in the VES mode is improved by 8.78%.
The test results indicated that after the introduction of VES, the maximum change of battery SOC without additional control is 12.4%, and the battery starts charging and discharging 17 times; the maximum change of battery SOC in the VES mode is 3.7%, and the battery starts charging and discharging five times. The change of battery SOC decreases in amplitude, and the fluctuation number is significantly reduced, which alleviates the depth of charging and discharging of batteries, reduces the number of times for their charging, and reduces system operation cost.
Combined with Table 4 and Figure 10, the cumulative net gain of the system in 24 h is ¥ 2,278.55. Compared to the scenario without additional control, the system’s revenue has increased by a factor of 1.68. The main reason is that after the VES participates in power regulation, although the microgrid revenue is reduced, the battery operation and maintenance costs are significantly reduced.
To test the effectiveness of the VES of EVs, this paper established three scenarios: uncontrolled charging, price-guided charging, and VES control. The comparison of the charging load curves of EVs under these three scenarios is shown in Figure 13.
[image: Line graph showing power consumption (kW) over time in a day, comparing three scenarios: Disorderly charging (red line), Tariff guidance (blue dots), and VES control (green triangles). Disorderly charging shows higher peaks, while VES control shows more stability.]FIGURE 13 | Load profile of EV in multiple modes.
By comparing the three scenarios, it can be seen that under the uncontrolled charging scenario, the charging behavior of EVs exhibits significant spatiotemporal clustering characteristics. The charging load of EVs surges in the evening, exacerbating the system’s peak–valley difference. The maximum charging load reaches 650 kW at 21:00, which poses a threat to the safe and stable operation of the system. Under the price-guided scenario, EVs are guided to charge in an orderly manner, concentrating their charging during the low-price period from 0:00 to 6:00, achieving a redistribution of charging load in time and space. Under the VES control scenario, EVs are centrally scheduled to supply power to the microgrid between 19:00 and 21:00, providing 194 kW of power. The results show that the participation of FRs in the coordinated operation of the microgrid can effectively regulate the resources within the grid, achieving the “peak shaving and valley filling” of the microgrid.
To validate the effectiveness of the solution proposed in this paper, its optimization results obtained are compared with those obtained from the particle swarm optimization (PSO) algorithm under the described VES control scenario. After solving with PSO, the best result among ten runs is selected and set as the VCA and VCU values to participate in the system’s energy management. The specific economic indicators obtained from solving with CPLEX and PSO are compared in Table 5.
TABLE 5 | Comparison of results from different solution methods.
[image: Comparison table of net revenue and operating revenue for two solution methods, CPLEX and PSO. CPLEX shows higher net revenue at 2,278.55 yuan, with PSO at 2,260.64 yuan. CPLEX's water production revenue matches net revenue. Electricity and hydrogen production revenues are higher for CPLEX, while PSO has lower operation and maintenance costs and peak shaving costs. EV compensation is significantly higher for CPLEX.]The differences in the economic indicators obtained from the two solution methods are relatively small. The CPLEX solution increased the microgrid revenue by 0.81% compared to the PSO solution. This situation may be caused by the parameters set for the PSO algorithm, which may still converge to a local optimum even after multiple iterations. In contrast, the CPLEX solution method can effectively avoid the issue of falling into a local optimum and has demonstrated reproducibility through repeated validation. The comparison confirms the rationality of the solution results in this paper and indicates that using CPLEX can significantly improve the efficiency of solving the optimization model.
4.3 Analysis of frequency support effect
After 12:00, the wind power decreases abruptly after 10 s, causing the system frequency to fall and exceed the safety threshold by 0.5 Hz. The FRs in the microgrid need to respond quickly to the frequency change to guarantee the dynamic stability of the system. The system dynamic response before and after the VES is shown in Figure 14.
[image: A series of eight line graphs compares power characteristics with and without Virtual Power Plant (VPP). Each graph measures different metrics such as active load power, battery power, and hydrogen power over a time span from zero to forty seconds. Lines in blue represent 'with VPP,' and lines in red represent 'without VPP.' The metrics suggest various impacts of using VPP on power distribution and stability.]FIGURE 14 | Dynamic responses of the system after sudden wind power reduction.
Figure 14 shows that at 10 s, the wind speed decreases suddenly, and when VES is not introduced, the supercapacitor and battery can participate in the system frequency support, but the regulation ability is insufficient, and the inertia response time is 4.9 s. At the early stage of the disturbance, the system frequency drops at a rate of 0.80 Hz/s, and the maximum frequency deviation Δfh is 0.74 Hz. The supercapacitor SOC falls to 18% in this mode. In the frequency recovery phase, the hybrid energy storage undertakes a frequency regulation task, and the frequency returns to a steady state at 31.2 s. The frequency at steady state is 49.69 Hz.
After the introduction of VES, in the inertial response stage, the system frequency change rate is 0.63 Hz/s, and the maximum frequency deviation Δfh is 0.49 Hz. The supercapacitor SOC decreases by 7.2%, which satisfies the frequency safety regulation. In this process, the controllable load shares the pressure of the supercapacitor participating in the frequency adjustment with a VCA value of 29.8 F. The supercapacitor’s SOC is also reduced by 7%. As shown in Figure 14, the load power is rapidly reduced by 129 kW, the rapid frequency response mode of the FRs is simple, and the control potential is fully released. It should be noted that if the wind power is insufficient to cause the frequency drop, the WT operates at the upper limit of the wind speed under the maximum power tracking control and cannot further increase the wind power, so the WT does not activate the VES control at low wind speeds.
After 13.3 s, the HES and EV clusters in the system frequency recovery phase participate in one frequency regulation with VCU values of 13.7 A and −7.9 A, respectively, to share the discharge pressure of the batteries. The frequency returns to the steady-state value after 25.5 s, and the frequency in the steady state is 49.92 Hz. Compared with the no-attachment control, the frequency deviation is reduced by 0.23 Hz, the amount of the change in the SOC of the batteries is significantly lower, and the frequency stability of the system is improved.
5 CONCLUSION
To enhance the coordinated operation performance of renewable energy, energy storage, and controllable loads, a novel cooperative control of VES is proposed to fully release the regulation potential of FRs in the microgrid across multiple time scales. Through a combination of theoretical analysis and testing verification, the following conclusions are drawn.
	1) WTs, controllable loads, HES, and EVs participate in system energy regulation in the form of VES, which unifies the control parameters for the scheduling operation of various FRs into VCU and VSOC. This not only facilitates the evaluation of system energy reserves but also makes it easier to integrate with real energy storage devices for joint participation in system energy regulation.
	2) With the introduction of VES, the FRs in the microgrid, under the proposed dual-layer optimization scheduling mode, can coordinate power distribution through VCU, and the system’s energy reserves can be intuitively reflected in real-time through the VSOC. The test results indicate that under the proposed optimized energy regulation mode, the system operation model is significantly simplified and the daily net revenue is increased 1.48 times, effectively enhancing the economic operation capability of the microgrid.
	3) Due to the identical control parameters, EDVES and PDVES can easily cooperate with batteries and supercapacitors. During the frequency support process, they can quickly generate VCU commands, enabling the orderly response of various FRs and real energy storage devices to system frequency changes. The test results demonstrate that with the cooperative support of VES, the maximum system frequency deviation is reduced by 31%, and the frequency recovery time is shortened to 5.7 s. The desired rapid frequency response and the economic operation of the test system are both achieved.
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D. Abbreviations

RPS

FML

EAF

DRO

MVEE

ITSDRO

IPRO

CPDRO

Index of EAFs

Index of units

Index of scenarios
Index of time

Index of buses

Index of RES stations

Index of transmission lines

Upward and downward regulated power of the mth EAF,
respectively

Indicator of the EAF in upward and downward regulation
states, respectively

Decision vectors in the first and second stage of the
proposed DRO model, respectively

Variables indicating the occurrence of startup and
shutdown of unit i at time , respectively

Upward and downward reserve capacity of unit i at time 1,
respectively

Upward and downward regulated power of unit i at time ¢
in scenario k, respectively

Amount of curtailed power of RES station w and load
shedding of bus b at time ¢ in scenario k, respectively

Status indicator of unit i at time ¢

Occurrence of scenario k

Total number of EAFs

Number of time slots in 1 day

Number of prediction error scenarios
Number of RES stations

Number of load buses

Number of historical prediction error samples

Maximum duration of upward and downward power
regulation of the EAF, respectively

Fuel price of unit i

Startup and shutdown costs of unit i, respectively
Upward and downward reserve prices of unit , respectively
Upward and downward regulation prices f unit, respectively
Penalty prices of RES curtaimentand load shadding respectively

Subsidized prices of upward and downward regulation of
the EML, respectively

Minimum duration of the on and off statuses of unit i,

respectively

Minimum and maximum output power of unit i,
respectively

Maximum upward and downward ramp power of unit i,
respectively

Upward and downward reserved power requirements of
the RPS at time , respectively

Predicted power of RES station w and load bus b at time f in
the base case, respectively

Power transfer distribution factor of bus b to line |
Maximum transmission power of line /

Prediction error of RES station w and bus b at time ¢ in
scenario k

Uncertainty space of the probability distribution
Initial probability of scenario k

Objectives of the first and second stages of the proposed
DRO model, respectively

Linearized function of the consumed fuel and the power
output of unit i

Matrix composed of historical prediction error samples of
the RES stations and load buses

Modified U after the zero mean processing
Covariance matrix of U

hth eigenvector of §

Eigenvalue corresponding to gy

Diagonal matrix formed by all ;

Two vertices in the direction of g, under the eigenvector
coordinate system

Two vertices in the direction of g;, under the original
coordinate system

Adjusted vertices of the circumscribed polyhedron
Cluster centers of historical samples

Improved typical scenario set

Renewable power system

Fused magnesium load

Electric arc furnace

Renewable energy source

Demand response

Stochastic optimization

Robust optimization

Distributionally robust optimization
Minimum volume enclosing ellipsoid
Improved typical scenario-based DRO
Inscribed polyhedron-based RO

Circumscribed polyhedron-based DRO
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Maximum wind power curtailment/MW-h 1539 1380
Maximum load shedding/MW»h 3.754 2252
Average wind power curtailment/MW-h 0972 0.968
Average load shedding/MW-h 0435 0369
Day-ahead dispatch cost/$ 2043x10° 1999x10°
Re-dispatch cost/$ 5.651x10° 5623x10°
Total dispatch cost/$ 2099x10° 2055x10°
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CAMBRIA Dataset KRIRAN dataset

Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUuC

Michael Gandhmal and Kumar (2019) 94.36 91.87 87.68 86.42 86.08 % 84.67 92.18
Somenath Htun et al. (2023) 8647 84.62 90.73 87.56 91.84 88.7 89.22 89.99
Yongming Mukherjee et al. (2023) 88.76 93.3 89.44 91.33 8873 87.86 90.53 90.66
Shilpa Wu et al. (2023) 9571 86 86.06 93.07 95.93 89.52 8479 86.38

Melina Melina et al. (2023) 88.66 86.09 85.16 91.03 95.38 84.69 86.23 84.83

Patil Patil etal. (2023) 91.66 85.03 86.66 84.08 9231 9156 89.09 90.54

Ours 92.18 94.34 91.87 91.22 95.88 9255 94.11 95.92
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Accuracy Recall F1Sorce AUC Accuracy Recall F1Sorce

Michael 91.81 90.55 839 86.05 96.01 86.33 86.95 87.02
Gandhmal and
Kumar (2019)

Somenath 9479 92.36 90.65 90.88 96.35 9118 88.49 85.24
Htun et al.
(2023)

Yongming 923 91.52 85.56 85.02 92.06 93.5 87.07 85.14
Mukherjee et al.
(2023)

Shilpa 895 88.59 87.17 8425 9133 85.03 87.88 92.09
Wuetal.
(2023)

Melina 9527 89.04 89.94 85.58 95.82 86.43 89.54 86.58
Melina et al.
(2023)

Patil Patil etal. 8801 85.11 8884 89.51 929 86.82 8823 93.03
(2023)

Ours. 97.83 95.42 91.79 92.61 9548 93.47 91.84 93.86
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Adjustable unit Specific paramet:

On-load tap changers (OLTCs) Voltage regulation range
Number of adjustable gears
Adjustment step
Limit on number of gears per adjustment

Limit on number of daily adjustments

095-1.05 pu.
10
001 pa.
1

5

Photovoltaics (PVs) Adjustment range of the output Zero to planned contribution
Capacitor banks (CBI/CB2/CB3) Adjustable capacity 500 kVar
Adjustment step 100 kVar

Static var compensators (SVC1/SVC2/SVC3) Adjustable range

Energy storage systems

100 to 300 kVar
ESS1 ESS2
Maximum rated power 1800 kWh 1000 kWh
Minimum rated power 180 kWh 100 kWh
Charge and discharge power limits +300 kW [ +200 kW
Charging efficiency 90% 90%
Discharge loss efficiency 1% 1%
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C. Sets

Binary variable represents the installation status of new RESs

Binary variable represents the installation status of
transmission lines

Binary variable represents the installation status of ESSs
Active and reactive power output of traditional generations

Operation cost of conventional generations, ESSs
‘maintenance costs, and DR costs

Renewable energy curtailment costs
Energy of traditional generations
Active and reactive power loss of the system

Wind and photovoltaic farm curtailment power

Charge and discharge power of ESSs

Power participated in DR

Active power of wind and photovoltaic farms
Active and reactive power of loads

Active and reactive power flow in transmission lines

Binary value representing the charging and discharging
status of ESSs

State of charge (SOC) of ESSs; the maximum allowable
change in SOC

Voltage and angle in the power system

Actual energy capacity of ESSs

Investment costs for candidate transmission lines
Investment costs for new ESSs

Investment costs for variable RESs. Note that CR, includes
investment costs for wind power generations and
photovoltaic generations with different coefficients

Operation-related conventional generator fuel costs
Maintenance costs of a single ESS
Operation-related DR costs

Decreased rate of ESS maintenance costs
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VPPO operating DSO operating GSO operating Total cost of energy VPP carbon

costs ($) costs ($) costs ($) purchases ($) emissions (t)
Case 1 16118.5 8672.1 17926.5 42717.1 47.73
Case 2 121536 53389 16097.6 33590.1 3284
Case 3 115392 48328 168172 331892 2959
Case 4 130094 47767 180793 358654 2743
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Optimal cost/$ Relative error/%

Maximum value  Minimum value Expected value Maximum value Minimum value Expected value

Model A 63266.206 60867.414 61,021.492 - - =
Model B 61796.699 59160.675 59604.612 2804 2323 2322
Model C 67984587 65956.654 66036.104 - - -
Model D 60683.198 59076.592 59,283.928 - Z -
Model E 62683.199 60076.592 | 60,548.288 | 1299 0922 0775
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
Model A 62340.987 60867.414 6117557 63266.206
Model B 60652.546 59160.675 60048.546 61796.699
Model C 67145.944 65956.654 66115554 67984.578
Model D 59946.549 59076592 59491264 60683.198
Model E 61578.254 | 60076.592 61019.984 62683.199
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tal Cow gas Corid
MEG 1 2052441 473659 3218564 739782
MEG 2 17303632 88,7430 974.1874 667.4329
MEG 3 267.9580 7072 267.459 166189
MEG 4 —472.4460 698329 09230 5432019
Total 18211192 253.0590 15644263 36339
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otal Com gas Corid Cex
MEG 1 2783116 463552 2917262 611824 L4184
MEG 2 1213.0038 831731 782.3969 -13.0653 390.5047
MEG 3 227.5857 45.2098 182.7660 —49.4083 49,0237
MEG 4 -189.6465 753573 78.9783 2030170 1409614
Total 12292547 2500955 1335.8674 -356.6730 00146
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Total Com Cgas Corid Cex
MEG 1 368.6905 482351 453.8950 38,5750 94,8646
MEG 2 1347.4063 841113 850.4238 1163950 2964769
MEG 3 2460414 445781 2000632 1163188 117.7186
MEG 4 5150870 725835 10948 —272.4313 3193309
Total 1447.0512 249.5080 1508.4768 3109332 0.0001
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Devices MEG 1 MEG 2 MEG 3
PV (kW) 1,000 1,000 1,000 3,000
WT (kW) 1,000 1,000 1,000 3,000
CHP (kW) 5,000 5,000 5,000 5,000
FC (kW) 1,000 1,000 3,000 1,000
EC (kW) 1,000 1,000 3,000 1,000
EH (kW) 2000 2000 2000 2000
GB (kW) 3,000 3,000 3,000 3,000
MR (kW) 1,000 1,000 1,000 1,000
BT (kWh) 1,000 1,000 1,000 1,000
HC (kWh) 1,000 1,000 1,000 1,000
HS (kWh) 1,000 1,000 1,000 1,000
GS (kWh) 1,000 1,000 1,000 1,000
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Total cost Scenario 1 Scenario 2 Scenario 3

ADMM (x 10' RMB) 1229.2547 1447.0512 1821.1192

Centralized Optimization (x 10' RMB) 12250296 1434.3320 18205015

Percentage error 0.3449% 0.8868% 0.0339%
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Parameters

AEC

MEC SOEC
Current density (Afem?) 025-045 10-20 03-10
Voltage range (V) 187-2.10 165-185 178-185
Hydrogen production capacity (Nm’/h) 1,400 400 <10
Electricity consumption (kWh/Nm) 4248 44-50 30
Operating temperature (‘C) 50-100 80-100 120
Efficiency (%) 62-82 74-87 90-100
Startup time 1-5min <10s 15min
Investment cost (Thousand RMB/KW) 22-105 9.8-147 >14
Efficiency attenuation (%/year) 025-045 05-25 3-50
Minimum input power (Rated power %) 20-25 5-10 0
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Time

Price/[RMB/(kWh)]

Valley 23:00-07:00 047
Off-peak. 07:00-08:00, 11:00-18:00 0.87
Peak 08:00-11:00, 18:00-23:00 1.09
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Abbreviations

Photovoltaic generator

Photovoltaic generator

Combines heat and power

Gas boiler

Electric heater

Electrolytic cell

Fuel cell

Methanator

Battery

Heat storage tank

Hydrogen storage tank

Gas storage tank

Electric load

Heating load

Hydrogen load

Parameters

‘The number of micro-energy grids
Length of scheduling period
Types of EC and FC
Scheduling time resolution

Cost coefficient of PV and WT
Cost coefficient of CHP and FC
Cost coefficient 1/2 of EC

Cost coefficient of EH, GB and MR
Cost coefficient of BT/HC/HS/GS

The natural gas price and natural gas
calorific value

Electricity purchase price from other
micro-energy grids

Electricity purchase/sell price from/to the
power grid

‘The minimum/maximum power purchased
from the power grid

‘The minimum/maximum power sold to the
power grid

‘The minimum/maximum power purchased
from the gas company

‘The power generation efficiency of CHP/FC
Thermoelectric ratio of CHP/EC

The efficiency of EC/EH

“The efficiency of GB/MR

Installed capacity of PV/WT

Installed capacity of CHP/EC

Installed capacity of EC/EH

Installed capacity of GB/MR

The ratio of the predicted output power to
the installed capacity of PV and WT

The ratio of the minimum/maximum
output power to the installed capacity
of CHP

‘The ratio of the minimum/maximum
output power to the installed capacity of FC

The ratio of the minimum/maximum
output power to the installed capacity of EC

The ratio of the minimum/maximum
output power to the installed capacity of EH

The ratio of the minimum/maximum
output power to the installed capacity of GB

The ratio of the minimum/maximum
output power to the installed capacity
of MR

‘The ratio of the maximum ramping power
to the installed capacity of CHP/FC/EC

‘The charging/discharging efficiency of BT/
HC/HS/GS

The ratio of the minimum/maximum
charging power to the installed capacity of
BT/HC/HS/GS

The ratio of the minimum/maximum
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discharging power to the installed capacity
of BI/HC/HS/GS

The ratio of the minimum/maximum
energy stored to the installed capacity of
BI/HC/HS/GS

Self.discharge rate of BI/HC/HS/GS

‘The ratio of the minimum/maximum input
power to the installed capacity of EC

‘The ratio of the startup power to the
installed capacity of EC

The maximu startup/shut down times of
EC within a typical day

‘The minimum/maximum exchanged
power with other micro-energy grids

‘The connection topology between
micro-energy grids

Variables
The output power of PV and WT

‘The input/output electric/output thermal power
of CHP

The input/output electric/output thermal power
of FC

The input 1/input 2/output power of EC
The input/output power of EH
The input/output power of GB
The input/output power of MR

‘The purchased/sold power from/to the power
grid

‘The purchased/sold status from/to the power
grid, 0-1 variable

‘The purchased gas power from the gas company
‘The charge/discharge power of BT/HC/HS/GS

‘The charge/discharge power of BT/HC/HS/GS
exchanged with micro-energy grids

The stored energy of BT/HC/HS/GS

The charge/discharge status of BT/HC/HS/GS,
0-1 variable

‘The input/output exchanged power with other
micro-energy grids

The start and stop actions of EC, 0-1 variable

The input/output exchanged power with other
micro-energy grids

‘The input/output exchanged power status with
other micro-energy grids, 0-1 variable
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