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This paper addresses the limitations of current neural ordinary di�erential

equations (NODEs) inmodeling and predicting complex dynamics by introducing

a novel framework called higher-order-derivative-supervised (HiDeS) NODE.

This method extends traditional NODE frameworks by incorporating higher-

order derivatives and their interactions into the modeling process, thereby

enabling the capture of intricate system behaviors. In addition, the HiDeS

NODE employs both the state vector and its higher-order derivatives

as supervised signals, which is di�erent from conventional NODEs that

utilize only the state vector as a supervised signal. This approach is

designed to enhance the predicting capability of NODEs. Through extensive

experiments in the complex fields of multi-robot systems and opinion

dynamics, the HiDeS NODE demonstrates improved modeling and predicting

capabilities over existing models. This research not only proposes an expressive

and predictive framework for dynamic systems but also marks the first

application of NODEs to the fields of multi-robot systems and opinion

dynamics, suggesting broad potential for future interdisciplinary work. The

code is available at https://github.com/MengLi-Thea/HiDeS-A-Higher-Order-

Derivative-Supervised-Neural-Ordinary-Di�erential-Equation.

KEYWORDS

neural ordinary di�erential equations, multi-robot systems, opinion dynamics, robotics,

neural networks

1 Introduction

As a learnable model parameterized by θ ∈ R
n, a standard neural ordinary differential

equation (NODE) ẋ = φθ (x, t) is particularly adept at representing complex and nonlinear

dynamics (Chen et al., 2018; Liufu et al., 2024), where x ∈ R
d is the state at time t,

ẋ = dx/dt denotes the time derivative of x, and φ(x, t) is a vector field with φ ∈
(Rd × R → R

d) being a function of x and t. Its strength lies in processing time-

variant data and adaptively learning from it. This modeling flexibility renders NODEs great

potential for the intricate nature of dynamic systems (Hua et al., 2023; Wang et al., 2023;

Jin et al., 2024), enabling a more nuanced understanding of complex dynamic systems.
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Despite these strengths, the standard NODE encounters

expressivity limitations, failing to model functions like NOT

operations (Kidger, 2021; Xu et al., 2023). The NOT operation

[i.e., (0, 1) → (1, 0)] involves trajectories that necessarily

intersect, presenting a challenge for standard NODEs that cannot

model intersecting trajectories due to their first-order nature.

The NODE with momentum, which can be regarded as a

second-order ODE, improves the expressive capability (Sander

et al., 2021): ẍ = c0ẋ + c1φθ (x, t), where c0 and c1 are

constants. Nonetheless, it can only express limited dynamics due

to the linear relationship of ẋ and φθ (x, t). Besides, it cannot

model interactions between ẋ and x. The second-order NODE

(SONODE) presented in Norcliffe et al. (2020) seeks to address

this limitation by modeling the interactions between ẋ and x.

However, SONODE cannot model interactions between higher-

order derivatives and x, and the supervised signal used in training

is only the ground-truth value of x, which confines its scope and

limits its prediction capability.

To surmount these challenges, we propose a higher-order-

derivative-supervised NODE (HiDeS NODE) that is able to

model interactions between higher-order derivatives and x. This

approach not only expands the expressive range of NODEs

but also enhances predictive ability through employing the

state vector and its higher-order derivatives as supervised

signals, surpassing the modeling and predicting performance of

existing NODEs.

This paper evaluates the effectiveness of the HiDeS NODE

in the realms of multi-robot systems and opinion dynamics, key

areas of dynamic systems, both domains that inherently involve

complex interactions and communication (Granha et al., 2022).

In multi-robot systems, conventional analytic solutions fall short

in high-dimensional control tasks (Károly et al., 2021), such as

multi-robot grasping and motion control. NODEs, in contrast,

offer a promising avenue for modeling and controlling complex

dynamic interactions in a continuous, efficient, and adaptable

manner in multi-robot systems. Regarding opinion dynamics

research, the primary objective is to decipher the underlying

mechanisms and influences that catalyze shifts in opinions. Existing

methodologies for learning opinion dynamics overlook the critical

prior knowledge that opinion dynamics can be described as anODE

formulated as ẋ = φ(x, t). ODEs are particularly well-suited for

modeling the fluid nature of opinion dynamics due to their inherent

capacity to capture the dynamics of evolving systems. However,

contemporary models employed in learning opinion dynamics

underutilize this foundational knowledge. This oversight hampers

their ability to effectively capture the nuanced and intricate nature

of opinion evolution. Furthermore, the complexities inherent in

the evolution of opinions present considerable challenges to the

application of existing NODEs in both modeling and forecasting

the trajectories of opinion dynamics. The HiDeS NODE conquers

these aspects, providing amore effective tool for understanding and

predicting opinion evolution.

To bridge these gaps, we propose a new NODE, termed HiDeS

NODEs, for modeling and predicting tasks in multi-robot control

and opinion dynamics. Figure 1 illustrates the framework of the

HiDeS NODE, and Table 1 qualitatively demonstrates the HiDeS

NODE’s superiority compared with existing NODEs.

The contributions of this paper are demonstrated as follows:

• We propose the HiDeS NODE, a novel approach for

modeling the intricacies of dynamics. The HiDeS NODE

excels in modeling and predicting interactions among higher-

order derivatives within dynamic systems. This advancement

provides a more accurate and nuanced representation of

dynamic systems.

• The HiDeS NODE integrates higher-order derivatives as

supervised signals, significantly enhancing the ability to

predict dynamical behaviors.

• We examine the versatility and effectiveness of the proposed

HiDeS NODE through its application in two distinct yet

complex fields: Multi-robot systems and opinion dynamics. In

these fields, the model’s ability to capture and predict intricate

system dynamics is evaluated.

• To our knowledge, this is the first time that the NODE

is introduced for opinion dynamics and multi-robot-system

control. Application of the proposed HiDeS NODE to these

fields unveils new avenues for both the advancement of

NODE methodologies and the nuanced modeling of opinion

dynamics and multi-robot-system control.

2 Related work

In this section, we briefly review three lines of research that are

close to our work: NODEs, multi-robot-system control methods,

and opinion dynamics modeling.

2.1 NODEs

The intersection of neural networks and differential equations,

especially interpreting residual networks (ResNets) as discretized

ODEs, spurs the development of NODEs (Weinan, 2017; Cui

et al., 2023; Ruiz-Balet and Zuazua, 2023). NODEs integrate

black-box ODE solvers and neural networks to parameterize the

hidden state’s derivative. This integration substantially advances

time-series modeling, offering robust function approximation and

handling of irregular data (Chen et al., 2018; Kidger, 2021).

However, standard NODEs encounter representational constraints

without dimensionality augmentation, constraining their universal

approximation capabilities for certain functions (Dupont et al.,

2019).

Research pivots toward higher-dimensional NODEs to

overcome these limitations. Momentum-enhanced ResNets,

representing second-order NODE extensions, exhibit enhanced

capability in modeling non-homeomorphic dynamics and

demonstrate improved convergence properties (Sander et al.,

2021). In parallel, augmented NODEs, by expanding the solution

space, facilitate the learning of more complex functions through

simpler dynamic flows, thereby sidestepping the limitations

of the vector field’s general-representation property (Kidger,

2021). Nonetheless, augmented NODEs introduce challenges in

interpretability and alter the loss landscape’s structure (Norcliffe

et al., 2020). A specific iteration of augmented NODEs, termed

second-order NODEs (SONODEs) (Norcliffe et al., 2020), captures

more intricate behaviors by integrating second-order dynamics,

effectively combining the principles of coupled augmented NODEs.
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FIGURE 1

Framework of this paper. (Top) Evolution from first to third-order NODEs, highlighting their progressively sophisticated ability to model complex

trajectories where higher orders allow for more intricate behaviors. (Middle) Predicting precision with and without using higher-order derivatives as

supervised signals, showing the latter’s superior approximation of ground truth. (Bottom) Practical applications of HiDeS NODEs in multi-robot

systems and opinion dynamics.

Additionally, the advent of heavy ball NODEs (HBNODEs) (Xia

et al., 2021) marks a significant advancement. HBNODEs

incorporate the classical momentum accelerated gradient descent

method and adeptly mitigate the vanishing gradient problem,

thereby enhancing the model’s capacity in learning long-term

dependencies in sequential data (Xia et al., 2021).

2.2 Multi-robot-system control

Multi-robot systems provide significant benefits in tasks that

demand the duplication of effort, risk reduction, or adaptability,

offering distinct advantages over single-robot systems (Hichri

et al., 2022; Kwa et al., 2022). Multi-robot-system control methods

can be categorized into deterministic methods with fixed forms

and learning-based methods (Pierpaoli et al., 2021). However,

deterministic methods lack flexibility and adaptability in dynamic

or unpredictable environments (Liu et al., 2023). In order

to overcome these defects, learning methods are increasingly

applied to multi-robot control problems. Adaptation methods, for

instance, are proposed to enhance trajectory prediction efficiency

in multi-agent systems (Aydemir et al., 2023). Furthermore,

the parameter-adaptive learning methods are improved through

iterative parametric learning controllers (Yu and Chen, 2023).

Additionally, neural network-based adaptive learning methods are

utilized to learn unknown fault functions, ensuring cooperative

tracking in distributed multi-robot systems (Khalili et al., 2020).

Despite these advancements, existing methods often fall short in
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TABLE 1 Comparisons among di�erent NODEs.

Models Year Modeling
higher-order
dynamics

Modeling derivative
interactions of each

order

Applied to
opinion
dynamics

Supervised
signals

Standard NODE (Chen et al.,

2018)

2018 × × × x(t)

Momentum NODE (Sander

et al., 2021)

2021 Only 2nd order × × x(t)

SONODE (Norcliffe et al.,

2020)

2020 Only 2nd order
√ × x(t)

HiDeS NODEs 2024
√ √ √

x(t), ẋ(t), . . . , x(c−1)

naturally and efficiently modeling the dynamics that often can be

described as an ODE, a gap that NODEs can potentially fill.

2.3 Opinion dynamics modeling

Opinion dynamics studies how opinions form and evolve

over time through interactions with individuals and environments.

Researchers propose various mathematical models to understand

and predict the dynamics of opinions. These include continuous-

time models such as the DeGroot model (Wu et al., 2023),

Hegselmann-Krause model, and bounded confidence model

(Kolarijani et al., 2021), as well as discrete-timemodels like the Ising

model, Voter model, and Friedkin and Johnsen model (Baumann

et al., 2020; Ao and Jia, 2023; Peng et al., 2023). However, these

models, with their fixed forms, lack the flexibility to model the

evolution of opinions independently.

In response to these limitations, researchers leverage advances

in neural networks to utilize their nonlinear relation approximation

ability for learning complex opinion dynamics. An early approach

introduces a linear influence model that learns edge influence

strength from real data (De et al., 2014). Unlike traditional

models, this linear model represents a foundational step in

opinion dynamics learning methods, but its simplicity fails to

capture the complexity of societal opinion dynamics. Furthering

this exploration, SLANT (De et al., 2016; Zhu et al., 2020)

introduces a linear model of latent opinions driven by stochastic

differential equations (SDEs) using historical, fine-grained event

data. Subsequently, SLANT+ (Kulkarni et al., 2017) extends

this model with a nonlinear generative model and a network-

guided recurrent neural network (RNN) architecture. This model

underscores the importance of nonlinearity in designing opinion

dynamics models. However, the RNN architecture it relies on faces

the challenge of the vanishing gradient problem, hindering long-

term predictions of opinion flow. Learnable opinion dynamics

model (LODM) (Monti et al., 2020) emerges as a learnable

generalization of an opinion dynamicsmodel, combining the causal

interpretability of traditional agent-based models with data-driven

approaches. Additionally,Okawa and Iwata (2022) introduces the

sociologically-informed neural network (SINN), a novel hybrid

approach that integrates sociological and social psychological

theories with data-driven neural networks to model and predict

opinion dynamics in social networks. Despite these advances,

current models do not fully exploit the prior knowledge of

TABLE 2 Main symbols and notations.

Symbol Description

x State vector representing opinions of individuals

t Time variable

ẋ First-order time derivatives of x

ẍ Second-order time derivatives of x

...
x Third-order time derivatives of x

c Order of the highest derivative in HiDeS NODE

x
(c) c-th order time derivative of x

θ Parameters of a neural network

φθ (·) Vector field (neural network) parameterized by θ

R
d d-dimensional real space

R
n n-dimensional real space

ω Extended state vector in HiDeS NODE

1t Time step for numerical approximation

ϑ Alternate set of parameters for the neural network

ť, t̂ Time interval boundaries

differential equations in opinion evolution, nor do they effectively

model higher-order derivatives.

3 Materials and methods

In this section, formal descriptions and analyses of the

proposed HiDeS NODE are provided. Table 2 presents the main

symbols and notations used throughout this paper to ensure clarity

and ease of understanding.

3.1 Formulation of the HiDeS NODE

The HiDeS NODE has two unique features for modeling and

predicting opinion evolution. The first is that the HiDeS NODE is a

higher-order NODE that is able to model interactions of higher-

order derivatives of the opinion variable x. The second is that

the HiDeS NODE adopts higher-order derivatives as supervisory
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signals to predict opinion evolution better. The HiDeS NODE is

described as Equation (1):


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, (1)

where x(t) ∈ R
d is a time-varying vector representing the opinion

of d individuals; t ∈ [ť, t̂] is the time; Vectors ẋ(t), ẍ(t),
...
x(t), and

x
(c)(t) correspond to the first, second, third, and c-th order time

derivatives of x, respectively; The function φ :R
cd × R → R

cd is

parameterized by a neural network with the parameter θ ∈ R
n.

Note that [ẋ(t), ẍ(t),
...
x(t), . . . , x(c)(t)]⊤ ∈ R

cd is a concatenation

of higher-order derivatives, where the superscript ⊤ means a

transpose of a vector, and we call a HiDeS NODE with up to c-th

order time derivatives in this concatenation as the HiDeS-cNODE.

To enhance readability and avoid redundancy, we may omit “(t)” in

certain contexts where the time dependency is understood and does

not affect the meaning or clarity of the mathematical expressions.

Remark 1. One advantage of a HiDeS NODE is that it is able to

model nonlinear interactions between higher-order derivatives and

x. In practice, multiple higher-order derivatives and x can interact

with each other. For example, there can be terms like ẋ ⊗ ẍ in the

vector field, where⊗ is the Hadamard product.

It can be seen that the standard NODE (Chen et al., 2018) is a

HiDeS-1 NODE, and if we just focus on the formulation, SONODE

(Norcliffe et al., 2020) can be regarded as a HiDeS-2 NODE. In fact,

the HiDeS-2 NODE distinguishes itself from SONODE due to its

unique training process.

3.2 Training of the HiDeS NODE

Existing variants of the NODE utilize the ground-truth value

of x(t) as the label for training. Differently, the HiDeS NODE

adopts the entire [x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤ as the label (the

model’s prediction [ẋ(t), ẍ(t),
...
x(t), . . . , x(c)(t)]⊤ is integrated first

to get [x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤). This approach is beneficial

for predicting the future evolution of x(t). Training the entire

[x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤ gives accurate approximations of all

these variables. Since the prediction of the next time step for the

HiDeS NODE relies on the entire [x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤,
the training strategy of the HiDeS NODE leads to a better

prediction performance compared to only training with the

ground-truth value of x(t). When the model is predicting the next

x(t), utilizing only the ground-truth value of x(t) as the label may

lead to an inaccurate result because the basic information it relies

on is inaccurate. The inclusion of the derivatives ensures that the

model is sensitive to not just the position or condition at a given

time but also to the trends and patterns of change, which are critical

for forecasting. An explanation is illustrated in Figure 1.

3.3 Inexpressible trajectories of the HiDeS
NODE

The superior expressive capability of the HiDeS NODE comes

from two aspects.

The first is that lower-order NODEs have limitations in

modeling trajectories that require the representation of higher-

order dynamics. Consider a trajectory that requires an abrupt

change in its acceleration (second derivative of x), which is not

expressible in a first-order system but can be expressed in a

second-order system [ẋ(t), ẍ(t)]⊤ = φθ ([x(t), ẋ(t)]
⊤, t). Similarly,

trajectories requiring changes in the third derivative (jerk) are

not expressible in a second-order system but can be captured in a

third-order system, and so on. As a result, there exist trajectories

that can not be expressed by [ẋ(t), ẍ(t),
...
x(t), . . . , x(c)(t)]⊤ =

φθ

(

[x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤, t
)

but can be

expressed by [ẋ(t), ẍ(t),
...
x(t), . . . , x(c+1)(t)]⊤ =

φθ

(

[x(t), ẋ(t), ẍ(t), . . . , x(c)(t)]⊤, t
)

.

The second origin of the superior expressive capability of the

HiDeS NODE is that it alleviates the restriction that trajectories

cannot cross. One major limitation of the standard NODE is

that trajectories under different initial conditions cannot intersect,

which constrains its expressive capability. In the following, we show

how this constraint is able to be eliminated by the HiDeS NODE.

Theorem 1 (Inexpressible trajectories of a HiDeS-c NODE).

Assume that the function φθ (ω, t) :R
cd × R → R

cd with t ∈ [ť, t̂]

is Lipschitz continuous w.r.t. ω ∈ R
cd. Consider a HiDeS-c NODE

governed by Equation (2):

[ẋ(t), ẍ(t),
...
x(t), . . . , x(c)(t)]⊤

= φθ

(

[x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤, t
)

, (2)

where x(t) ∈ R
d is the state vector, φθ :R

cd × R → R
cd

is a continuously differentiable function parameterized by neural

network parameters θ . For any two initial conditions ω(ť) =
[x(ť), ẋ(ť), . . . , x(c−1)(ť)]⊤ and ω̃(ť) = [x̃(ť), ˙̃x(ť), . . . , x̃(c−1)(ť)]⊤,
trajectories that require ω(t) and ω̃(t) to cross over the interval [ť, t̂]

are inexpressible by a HiDeS-c NODE.

Proof. Define the extended state vector ω ∈ R
cd as

ω(t) = [x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤. The HiDeS-c NODE

can be represented as Equation (3):

ω̇ = φθ (ω(t), t). (3)

Given that φθ is Lipschitz continuous w.r.t. ω, the Picard-Lindelöf

theorem (Anil Kumar et al., 2022; Zhang et al., 2023) assures the

existence of a unique solutionω(t) for a given initial conditionω(0).

This uniqueness implies that for any two distinct initial conditions

ω(ť) and ω̃(ť), the resulting trajectories ω(t) and ω̃(t) do not cross

over [ť, t̂]. As a result, trajectories that requireω(t) and ω̃(t) to cross

over the interval [ť, t̂] are inexpressible by a HiDeS-c NODE. The

proof is thus completed.

Remark 2. From Theorem 1, it can be seen that as the order c

increases, the degree of freedom for avoiding the crossing of x(t)

and x̃(t) increases. In practice, there are some trajectories cross
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in the x-t space or in the phase space [i.e., x-ẋ-ẍ-. . .-x(c−1)-t

space], so the HiDeS-cNODE provides a better capability to model

these dynamics compared with the standard NODE (a HiDeS-

1 NODE) (Chen et al., 2018) and other second-order NODEs

(HiDeS-2 NODEs) (Norcliffe et al., 2020; Sander et al., 2021).

An intuitive understanding is that additional dimensions provide

new directions to make trajectories elude each other, which is

illustrated in Figure 1. Consider two actual evolution trajectories

under different initial conditions, x
∗(t) and x̃

∗(t), which may

intersect at some time points if there are no restrictions. However,

for c = 1, the trajectories x(t) and x̃(t) generated by the standard

NODE cannot intersect due to its nature of first-order ODEs. This

limitation means they cannot accurately approximate x
∗(t) and

x̃
∗(t) in cases where the actual trajectories intersect. Theorem 1

from our manuscript implies similar limitations for higher-order

NODEs, but with increasing order c, the trajectories have more

freedom, reducing the limitations.

3.4 The HiDeS NODE’s utilization of
historical information

Due to the introduction of higher-order derivatives, the HiDeS

NODE implicitly uses historical state information for predicting

the next state. The reason is that higher-order derivatives can be

approximated by historical states. For example, the first derivative

ẋ at the k-th moment tk can be approximated as ẋ(tk) ≈
(x(tk)− x(tk−1))/1t. Similarly, the second derivative ẍ can be

approximated as Equation (4):

ẍ(tk) ≈

(

x(tk)−x(tk−1)
1t

)

−
(

x(tk−1)−x(tk−2)
1t

)

1t
. (4)

Iteratively, we have Equation (5):

x
(c)(tk) ≈

c
∑

i=0

(−1)i
(

c

i

)

x(tk−i)/(1tc), (5)

where the binomial coefficient
(c
i

)

= c!/(i!(c− i)!) represents the

combinatorial number of ways to choose i elements from a set of

c elements. Consequently, φθ

(

[x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤, t
)

in

the HiDeS NODE (Equation 1) can be approximated as a function

of historical states as in Equation (6):

[

ẋ(t), ẍ(t),
...
x(t), . . . , x(c)(t)

]⊤

= φθ

(

[

x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)
]⊤

, t

)

≈ φϑ

(

x(tk), x(tk−1), . . . , x(tk−c), tk
)

, (6)

where φϑ :R
d × R

d × · · · × R → R
cd is a function parameterized

byϑ . TheHiDeSNODE’s utilization of historical information could

enhance the prediction of the next state.

3.5 Implementation

We provide Algorithm 1 to show the process of constructing,

training, and using a HiDeS NODE. Besides, structures of

1: Input: Time series data, initial conditions x(0),

ẋ(0), ẍ(0), . . . , x(c−1)(0)

2: Output: Predicted states x(t), ẋ(t), ẍ(t), . . . , x(c)(t)

3: Initialize neural network parameters θ

4: procedure CONSTRUCTING A PARAMETERIZED VECTOR

FIELD

5: Construct a neural network

φθ ([x(t), ẋ(t), ẍ(t), . . . , x
(c−1)(t)]⊤, t) to represent the

parameterized vector field

6: end procedure

7: procedure TRAINING

8: for each epoch do

9: for each batch do

10: Apply an ODE solver to get predicted

trajectories [x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t)]⊤ at various

time t based on the parameterized vector field and

initial conditions

11: Compute the loss between the predicted

trajectories and actual trajectories

12: Backpropagate loss and update parameters θ

13: end for

14: end for

15: end procedure

16: procedure PREDICTION

17: Set initial conditions x(0), ẋ(0), ẍ(0), . . . , x(c−1)(0)

18: Use the trained φθ to compute future states and

derivatives

19: return predicted x(t)

20: end procedure

Algorithm 1. Algorithm of HiDeS NODE.

HiDeS-3 NODEs for multi-robot systems and for opinion

dynamics are shown in Figures 2A, B, respectively. In

Figure 2, the inputs to the system are a concatenation

of the initial state x(0), the initial velocity ẋ(0), and the

initial acceleration ẍ(0), which are fed into an ODE solver

alongside the parametrized function φθ ([x(t), ẋ(t), ẍ(t)]
⊤) to

compute the state x(t), velocity ẋ(t), and acceleration ẍ(t)

at time t.

4 Results

In this section, we conduct experiments to evaluate the

effectiveness of our models, HiDeS-2 NODE and HiDeS-3 NODE,

by comparing them with baseline models [standard NODE

(Chen et al., 2018) and SONODE (Norcliffe et al., 2020)] on

two applications: multi-robot control and opinion dynamics.

These baseline models have the same configurations in terms

of network architecture, optimizer, epochs, and learning rate,

ensuring a fair comparison. Notably, our models utilize higher-

order derivatives as supervised signals, crucial for accurately

capturing the intricate, nonlinear evolution of opinions over

time. The implementation details of our experiments are as

follows.
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FIGURE 2

Structure of HiDeS-3 NODEs. (A) Structure of HiDeS-3 NODE for multi-robot systems. (B) Structure of HiDeS-3 NODE for opinion dynamics.

A B C

D E F

FIGURE 3

Trajectories of multiple robots using standard NODE in target-chasing task without energy constraint. This figure depicts the paths of multiple robots

(indicated by dots) as they follow a dynamically moving target (denoted by stars) after 1,000 epochs of training. (A) t = 2 s. (B) t = 4 s. (C) t = 5 s. (D)

t = 10 s. (E) t = 15 s. (F) t = 20 s.

4.1 Experimental settings

4.1.1 Settings for multi-robot-system control
In multi-robot-system control, each NODE block is composed

of three fully connected layers, each succeeded by a Tanh activation

function, as shown in Figure 2A. The NODE block undergoes

forward propagation 200 times, evolving from t = 0 to t =
20, in order to develop a deep model. A weighted loss ℓ

that emphasizes the trajectory’s later stages is applied: ℓW =
∑k̂

k=0(k/k̂)
pℓ(ω(tk),ω

∗(tk)), where k̂ is the total number of steps,

p > 0 is a scalar, ℓ(·, ·) is a loss function, and ω∗(tk) is the ground
truth of ω(tk). In simulations, p is taken as 4. All models are trained

for 1,000 epochs using the Adam optimizer and a cosine annealing

scheduler with a base learning rate of 0.01.

4.1.2 Settings for opinion dynamics
In simulations of opinion dynamics, each block of NODEs

consists of three fully connected layers, each followed by an

exponential linear unit (ELU) activation function, as shown in
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A B C

D E F

FIGURE 4

Trajectories of multiple robots using HiDeS-3 NODE (ours) in target-chasing task without energy constraint. This figure depicts the paths of multiple

robots (indicated by dots) as they follow a dynamically moving target (denoted by stars) after 1,000 epochs of training. (A) t = 2 s. (B) t = 4 s. (C) t = 5

s. (D) t = 10 s. (E) t = 15 s. (F) t = 20 s.

A B C

D E F

FIGURE 5

Trajectories of multiple robots using standard NODE in target-chasing task with energy constraint. This figure depicts the paths of multiple robots

(indicated by dots) as they follow a dynamically moving target (denoted by stars) after 1,000 epochs of training. (A) t = 2 s. (B) t = 4 s. (C) t = 5 s. (D)

t = 10 s. (E) t = 15 s. (F) t = 20 s.
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FIGURE 6

Trajectories of multiple robots using HiDeS-3 NODE (ours) in target-chasing task with energy constraint. This figure depicts the paths of multiple

robots (indicated by dots) as they follow a dynamically moving target (denoted by stars) after 1,000 epochs of training. (A) t = 2 s. (B) t = 4 s. (C) t = 5

s. (D) t = 10 s. (E) t = 15 s. (F) t = 20 s.

A B

C D

FIGURE 7

Trajectories of multiple robots in target-chasing task after losing information of target. This figure depicts the paths of multiple robots (indicated by

dots) as they follow a dynamically moving target (denoted by stars). Solid curves denote training phase (trajectory of target is known), and dashed

curves denote test phase (trajectory of target is unknown). (A) Standard NODE; without energy constraint. (B) HiDeS-3 NODE (ours); without energy

constraint. (C) Standard NODE; with energy constraint. (D) HiDeS-3 NODE (ours); with energy constraint.
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A B

C D

FIGURE 8

Total energy cost of multiple robots in target-chasing task during 1,000 epochs of training. Energy constraint is set such that total energy cost ≤5,000
J. (A) standard NODE; without energy constraint. (B) HiDeS-3 NODE (ours); without energy constraint. (C) Standard NODE; with energy constraint.

(D) HiDeS-3 NODE (ours); with energy constraint.

Figure 2B. The block of NODEs loops in the forward propagation

50 times from t = 0 to t = 5 to form a deep model. To

enhance the training stability, we incorporate residual connections.

The optimizer employed is NAdam (Dozat, 2016; Li et al., 2022),

with an initial learning rate of 0.01, modulated using a cosine

annealing learning rate scheduler (Jin et al., 2022). We train

the models over 1,000 and 2,000 epochs, respectively. The loss

function is the mean square error between the predicted and

actual x(t), ẋ(t), ẍ(t), . . . , x(c−1)(t). Given the higher dimensions of

HiDeS NODEs and SONODEs compared to standard NODEs,

we introduce an auxiliary loss to ensure a fair comparison. The

auxiliary loss is evaluated based on predicted and actual x(t), and

it is only used for comparisons rather than for training purposes.

4.2 Target chasing of multi-robot system

In this section, the NODE models are used to control a multi-

robot system to chase a moving target. The target’s trajectory

is described by x1 = 0.5t and x2 = 2 sin(0.5t + 2). During

the training phase, this trajectory serves as the ground truth to

minimize the total distance between the robots and the target.

In the test phase, the target location is unknown. The transition

from training to test simulates a scenario in tracking processes

where, despite initially having knowledge of the target location, the

information regarding the target’s position is lost from a certain

moment onward.

As tracking problems in reality often occur under finite

energy consumption, we introduce an inequality constraint on

the total energy consumption of all agents: e ≤ emax, where

e represents the energy and emax is the predetermined energy

ceiling. This constraint is implemented during training through a

regularization term as in Equation (7):

ℓ̌ = ℓ(ω,ω∗)+max{emax, e}. (7)

During training, if e > emax, the term max{emax, e} encourages a
reduction in e; If e ≤ emax, then this term does not affect e. Since

the tracking occurs on a horizontal plane, potential energy is not

considered; thus, e =
∑r

i miv
2
i /2, where r is the total number of

robots. In the simulations, we set each robot’s mass as equal, with

the total mass being 2 kg (therefore, e =
∑r

i v
2
i =

∑d
j=0

∑r
i=0 ẋ

2
ij),

and set emax = 5, 000 J.

4.2.1 Chasing trajectories with given target
trajectory

Figures 3 and 4 respectively illustrate the trajectories ofmultiple

robots and a chased target at different moments in time without

energy constraints. By comparing Figures 3A and 4A, it can be

observed that the chasing speed of the proposed HiDeS-3 NODE

is significantly faster than the standard NODE. At the end of

the tracking phase (e.g., at t = 20 s), both the standard NODE

and HiDeS-3 NODE successfully reach the target. Examination of

the various subfigures in Figure 4 reveals that the trajectories of

the HiDeS-3 NODE exhibit typical characteristics of high-order

dynamic systems similar to those seen with higher-order optimizers

(Su et al., 2016; An et al., 2018) and proportional-integral-derivative

(PID) controllers (Huba et al., 2023), such as rapid convergence

and overshooting. This is attributed to HiDeS-3 NODE being
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FIGURE 9

Visualization of learning results with standard NODE, SONODE, HiDeS-2 NODE, and HiDeS-3 NODE. All NODEs are trained for 1,000 epochs. (A)

Standard NODE; opinion evolution; training. (B) Training loss w.r.t. epoch. (C) Standard NODE; opinion evolution; test. (D) SONODE; Opinion

evolution; training. (E) Training loss w.r.t. epoch. (F) SONODE; opinion evolution; test. (G) HiDeS-2 NODE; opinion evolution; training. (H) Training

loss w.r.t. epoch. (I) HiDeS-2 NODE; opinion evolution; test. (J) HiDeS-3 NODE; opinion evolution; training. (K) Training loss w.r.t. epoch. (L) HiDeS-3

NODE; opinion evolution; test.

a high-order dynamic system, as demonstrated by Equation 1.

Figures 5 and 6 present a superficially similar performance between

the standard NODE and the HiDeS NODE when subject to

energy constraints. However, a distinct contrast emerges during

the subsequent testing phase, which operates without a predefined

target position.

4.2.2 Predicted trajectories without given target
position

In the test phase, the target position is not given to the

model. Figure 7 presents a comparison of the predicted trajectories

of multi-robots in a target-chasing scenario where the target

position is not provided. The comparison is between the trajectories
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FIGURE 10

Visualization of learning results with standard NODE, SONODE, HiDeS-2 NODE, and HiDeS-3 NODE. All NODEs are trained for 2,000 epochs. (A)

Standard NODE; opinion evolution; training. (B) Training loss w.r.t. epoch. (C) Standard NODE; opinion evolution; test. (D) SONODE; Opinion

evolution; training. (E) Training loss w.r.t. epoch. (F) SONODE; opinion evolution; test. (G) HiDeS-2 NODE; opinion evolution; training. (H) Training

loss w.r.t. epoch. (I) HiDeS-2 NODE; opinion evolution; test. (J) HiDeS-3 NODE; opinion evolution; training. (K) Training loss w.r.t. epoch. (L) HiDeS-3

NODE; opinion evolution; test.

generated by the standard NODE and the HiDeS NODE, with and

without the imposition of energy constraints. The figure clearly

demonstrates that the HiDeS NODE offers superior performance

over the standard NODE. Specifically, the trajectories predicted by

the standard NODE show significant deviations from the target

(Figures 7A, C). In contrast, those predicted by the HiDeS NODE

closely align with the target’s trajectory. Although theHiDeSNODE

with energy constraints shows slight deviations due to restricted

velocity, it still significantly outperforms the standard NODE

(Figures 7B, D). This suggests that the advantages of the HiDeS

NODE may not solely be attributed to increased velocity but could

also derive from additional information, such as curvature, which
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TABLE 3 Comparisons of training and test losses among SOTA NODEs and HiDeS NODE.

# Epochs Loss Standard NODE
(Chen et al., 2018)

SONODE (Norcli�e
et al., 2020)

HiDeS-2 NODE
(ours)

HiDeS-3 NODE
(ours)

1,000 Training 2.05 0.13 0.17 0.04

Test 17.50 6.97 4.42 2.03

2,000 Training 1.78 0.09 0.12 0.02

Test 14.70 5.21 2.63 1.08

is inferred by the high-order supervised signals, as illustrated in the

middle of Figure 1.

4.2.3 Energy cost
Figure 8 draws a parallel of the total energy expenditure of

multiple robots engaged in a target-chasing task, contrasting the

standard NODE with the HiDeS NODE. The figure shows that

the implementation of energy constraints has a significant impact.

Without energy constraints, both the standard NODE and the

HiDeSNODE incur substantial energy costs after training, reaching

up to 7,000 and 100,000 J, respectively (Figures 8A,B). However,

with the application of energy constraints, both NODEs manage

to keep the energy expenditure no more than 5,000 J after 1,000

epochs of training (Figures 8C, D).

4.3 Modeling and predicting of opinion
dynamics

In this section, simulations of NODEs on modeling and

predicting opinion dynamics are conducted.

4.3.1 One dimension, multiple initial conditions
We respectively present experimental results conducted over

1,000 and 2,000 epochs in Figures 9, 10, and complemented by

Table 3. The results indicate that our HiDeS NODEs surpass the

standard NODE and SONODE in capturing the subtleties of

opinion dynamics. Note that the SONODE and HiDeS-2 have the

same hidden layer dimensions. This superiority is evident from the

more accurate approximations of actual opinion dynamics during

both training and testing phases (Figures 9 and 10) and lower

auxiliary losses in consistent iterations (Table 3). For instance,

Figure 9 shows that the prediction curves of standard NODE

diverge from the ground truth traces in both training and testing

since the trajectories from different initial conditions can not

cross. While SONODE performs better than standard NODE

in the learning stage, its predictive ability remains inferior in

the testing phase. In contrast, our models’ prediction curves

closely align with the ground truth. Extending the epochs to

2,000 shows that both models perform better in the learning

stage than under 1,000 epochs, with our models demonstrating

remarkable superiority in the testing phase. This empirical

observation aligns with our theoretical analyses that using higher-

order derivatives as supervised signals enhances the predictive

capacity. Furthermore, as Table 3 shows, the proposed HiDeS-

3 NODE exhibits significantly lower training and testing losses

compared to the baseline models. Although the HiDeS-2 NODE

exhibits a slightly higher training loss than SONODE, its test loss is

substantially lower, indicating superior generalization ability, a key

goal of neural networks.

4.3.2 Multiple dimension, one initial condition
Figure 11 presents modeling and predicting results on diverse

types of individuals’ intra- and inter-group interactions for opinion

dynamics. The top row (Figures 11A–D) represents ground truth

values, while the bottom row (Figures 11E, F) shows predictions

generated by the HiDeS-3 NODE. Each subfigure illustrates

different combinations of consensus and dissensus within and

between groups, highlighting the model’s performance in capturing

extensive opinion dynamics.

4.3.3 Training dynamics
The learning results of opinion evolution are shown in

Figure 12 with the increase of epochs during a 2,000-epoch training.

It is clear that the learning results get more accurate and fine-

grained with the increasing epochs. Specifically, the predicted

results show significant deviation from the ground truth under

1–200 epochs (Figures 12B, C), while the more granular learning

results are presented with the increase of epochs (Figures 12D–H),

achieving more accurate predictions for opinion evolution.

5 Discussion

This paper has proposed the HiDeS NODE, a higher-order-

derivative-supervised NODE, as a novel approach for modeling

and predicting complex dynamics in multi-robot systems and

opinion dynamics. This framework excels in capturing interactions

among higher-order derivatives and the state vector, significantly

enhancing modeling precision over existing NODEmethodologies.

The introduction of higher-order derivatives as supervised signals

in the HiDeS NODE brings a superior predicting ability.

Applications of the HiDeS NODE in multi-robot systems and

opinion dynamics have demonstrated its effectiveness. To our

knowledge, this is the first initiative that introduces NODEs into

multi-robot systems and opinion dynamics. Applying the HiDeS

NODE to these fields opens new avenues for broader applications

in various intricate and dynamic systems.

The broader impact of the HiDeS NODE extends into

numerous fields where dynamic systems play a crucial role. For
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FIGURE 11

Opinion dynamics modeling and predicting using HiDeS-3 NODE for di�erent consensus and dissensus scenarios. (A) Intra-group consensus and

inter-group consensus, ground truth. (B) Intra-group consensus and inter-group dissensus, ground truth. (C) Intra-group dissensus and inter-group

consensus, ground truth. (D) Intra-group dissensus and inter-group dissensus, ground truth. (E) Intra-group consensus and inter-group consensus,

predicted by HiDeS-3 NODE. (F) Intra-group consensus and inter-group dissensus, predicted by HiDeS-3 NODE. (G) Intra-group dissensus and

inter-group consensus, predicted by HiDeS-3 NODE. (H) Intra-group dissensus and inter-group dissensus, predicted by HiDeS-3 NODE.

A B C D

E F G H

FIGURE 12

Opinion dynamics learning results during 2,000-epoch training. (A) Epoch = 1. (B) Epoch = 100. (C) Epoch = 200. (D) Epoch = 500. (E) Epoch =

1,000. (F) Epoch = 1,100. (G) Epoch = 2,000. (H) Ground truth.
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instance, it has the potential to offer refined predictions of climate

change effects or pollution dispersion. In healthcare, the HiDeS

NODE could lead to breakthroughs in understanding the dynamics

of disease spread or patient response to treatments, enabling

personalized medicine. The adaptability and advanced modeling

capabilities of the HiDeS NODE position it as a versatile tool

capable of addressing complex problems across various domains.

Despite its potential, the HiDeS NODE faces limitations such

as computational demands, particularly as the order of derivatives

increases, making real-time applications challenging. The model’s

accuracy is heavily reliant on the quality and quantity of data, which

can be a significant constraint in environments where data is sparse

or noisy. Addressing these challenges will be essential for the HiDeS

NODE’s successful application across different fields.

A valuable future direction is to utilize real-world data

to validate our model’s performance in practical scenarios.

Additionally, enhancing the robustness of the HiDeS NODE to

noisy data presents a promising direction for future research.
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Residual learning-based robotic 
image analysis model for 
low-voltage distributed 
photovoltaic fault identification 
and positioning
Xudong Zhang 1, Yunlong Ge 1, Yifeng Wang 1, Jun Wang 2*, 
Wenhao Wang 2 and Lijun Lu 2

1 State Grid Hebei Electric Power Company, Shijiazhuang, China, 2 Henan XJ Metering Co., Ltd., 
Xuchang, China

With the fast development of large-scale Photovoltaic (PV) plants, the automatic 
PV fault identification and positioning have become an important task for the PV 
intelligent systems, aiming to guarantee the safety, reliability, and productivity of 
large-scale PV plants. In this paper, we propose a residual learning-based robotic 
(UAV) image analysis model for low-voltage distributed PV fault identification 
and positioning. In our target scenario, the unmanned aerial vehicles (UAVs) are 
deployed to acquire moving images of low-voltage distributed PV power plants. 
To get desired robustness and accuracy of PV image detection, we  integrate 
residual learning with attention mechanism into the UAV image analysis 
model based on you only look once v4 (YOLOv4) network. Then, we design 
the sophisticated multi-scale spatial pyramid fusion and use it to optimize the 
YOLOv4 network for the nuanced task of fault localization within PV arrays, 
where the Complete-IOU loss is incorporated in the predictive modeling phase, 
significantly enhancing the accuracy and efficiency of fault detection. A series 
of experimental comparisons in terms of the accuracy of fault positioning are 
conducted, and the experimental results verify the feasibility and effectiveness 
of the proposed model in dealing with the safety and reliability maintenance of 
low-voltage distributed PV systems.

KEYWORDS

low-voltage distributed photovoltaics, photovoltaic identification, positioning 
technology, unmanned aerial vehicle imagery, horizontal comparison experiment

1 Introduction

In recent years, the Photovoltaic (PV) energy has experienced a fast development 
process, and increasingly, it plays an important role in our daily life due to the advantages 
of easy installation, cleaning, reasonable return period, and short construction period 
(Akram et al., 2020; Maka et al., 2021). Compared to conventional power generation 
approaches, PV power generation shows more superiorities such as safety, reliability, 
noiselessness, environmentally friendliness, resource distribution, and has a high energy 
quality and short construction period (Ali et al., 2020; Stiubiener et al., 2020). Especially, 
with the increasing energy demand, large-scale PV installations have received a surge of 
attentions, and this leads to the establishment of a mature PV market and technological 
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innovation in the PV industry (Ali et al., 2020; Ma et al., 2022b). 
With the rapid development of large-scale PV power plants, 
automatic identification and localization of PV system faults are of 
critical importance to improving the safety, reliability, and 
productivity of PV systems. Faults in PV systems can reduce 
system efficiency and pose potential safety hazards, necessitating 
the proactive detection of potential faults and the implementation 
of appropriate corrective measures.

Typically, a large-scale PV system contain massive solar modules, 
which are variously interconnected with each other. Once one of them 
fail to work well, the efficiency of the PV system will be  largely 
degraded. Therefore, it is urgently needed to actively detect any 
potential faults such that suitable corrective measures can be employed 
before the disruptions happen. To reach this goal, various artificial 
intelligence (AI) and robotic techniques have been utilized in the fault 
positioning/diagnosis of PVPP to enhance the intelligent processing 
capability (Ma et al., 2022b; Wang et al., 2024). Especially, due to the 
advantages of mobility, flexibility, programmability and large-area 
coverage, the unmanned aerial vehicles (UAVs) have been widely 
employed in the PV plant to capture moving images of various PV 
modules in the distributed power plants. Through intelligent image 
analysis, we can inspect specific PV faults in an efficient way, which is 
key to improve the operation and maintenance (O&M) level of the 
power plant (Atsu et al., 2020; Chen et al., 2020; Abubakar et al., 2021; 
Navid et al., 2021; Cui et al., 2022).

In fact, many deep learning models have been utilized for the 
improvement of PV-system fault diagnosis, such as the residual neural 
network, convolutional neural network, and semi-supervised ladder 
network (Atsu et al., 2020; Aziz et al., 2020). However, how to develop 
an effective AI-based approach, which can fully exploit useful fault 
feature information in UAV images, still is a challenging issue to 
enhance the fault diagnosis performance.

Regarding the on-site deployment of UAVs for inspection 
purposes, data used for inspection should be collected and processed 
first, including geographic information, environmental features, and 
specific requirements of the expected task. According to the 
characteristics of the target scene and the requirements of the task, the 
flight route, inspection frequency and data collection method of the 
UAV should be designed and implemented. The quality of PV images 
is challenging to guarantee, and issues such as under-exposure, high 
noise, and blurred details are frequently encountered. Moreover, the 
diversity of PV faults and the significant difference in image features 
among different faults pose significant challenges to the performance 
of image analysis algorithms.

In this paper, we propose a residual learning-based UAV image 
analysis model for low-voltage distributed PV fault identification and 
positioning. In our target PV power plants, the UAVs are deployed to 
acquire moving images of low-voltage distributed PV products. Based 
on YOLOv4 network, we integrate residual learning with attention 
mechanism into the UAV image analysis model, aiming to improve 
the robustness and accuracy of PV image detection. Then, we propose 
a sophisticated multi-scale spatial pyramid fusion method and use it 
to optimize the YOLOv4 network for the nuanced task of fault 
localization within PV arrays, where the Complete-IOU loss is used 
in the predictive modeling phase, which is able to significantly 
enhance the accuracy and efficiency of fault detection. To augment the 
size of the dataset, this paper adopts data augmentation techniques to 
flip and adjust the original samples. The image data used comes from 

three real power plants. The experimental results on a series of datasets 
verify the effectiveness of the proposed model.

The contributions of this paper are as follows:

	 1.	 Novel residual learning-based UAV image analysis model: A 
residual learning-based UAV image analysis model is proposed 
for PV fault recognition, where the residual learning network 
is constructed based on attention mechanism. This model is 
able to well exploit useful fault feature from UAV moving 
images, and then significantly boosts the accuracy and 
efficiency of PV fault identification and localization.

	 2.	 Enhanced YOLOv4 optimization for precise fault localization: 
An improved optimization method is designed to optimize 
YOLOv4 network, where a sophisticated multi-scale spatial 
pyramid fusion aims to optimize the model for the nuanced 
task of fault localization within PV arrays, while the 
Complete-IOU loss is used in the predictive modeling phase to 
enhance the accuracy of fault diagnosis in PV systems.

	 3.	 Extensive validation on real-world datasets: The proposed 
model has been trained and tested on a set of datasets to detect 
its application capability of PV fault detection and diagnosis.

The rest of the paper is organized as follows: section 2 reviews the 
related work on PV identification and fault positioning research. 
Section 3 describes the proposed methods in detail. Section 4 reports 
the experimental result and analysis. Section 5 represents the 
conclusion and future work.

2 Related work

Currently, many deep learning techniques have been successfully 
applied to real-world scenarios and effectively solved various 
challenging problems. For example, Jin et  al. (2024) proposed a 
physical-informed neural network model with model predictive 
control controller and a perturbation-resistant neural dynamics 
controller equipped with the noise-suppression ability (Liufu et al., 
2024). These two models addressed the challenges faced by 
autonomous vehicle control systems when dealing with unpredictable 
external environments and internal system noise disturbances. In the 
field of PV identification and fault localization, deep learning also has 
many applications.

Photovoltaic identification and fault localization are important 
components of PV O&M. It aims to timely discover and eliminate 
various faults in PV systems, thus improving the performance and 
safety of systems. Possible faults in PV systems include open-circuit 
faults, short-circuit faults, hot spot faults, etc. PV faults can 
be classified according to their occurrence time, severity, persistence, 
and cause, such as infant failures, midlife failures, wear-out failures, 
acute failures, chronic failures, permanent failures, and temporary 
failures (Hong and Pula, 2022). These faults will cause the output 
power of PV systems to decrease, and even lead to serious 
consequences such as fire. Therefore, effective methods are needed to 
diagnose and locate faults in PV systems.

Fault detection methods based on electrical data are a type of 
method that uses historical or real-time data of voltage, current, 
power, etc. in PV systems to extract feature information through data 
mining, machine learning and artificial intelligence technologies. This 
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feature information is then used to establish fault identification and 
location classifiers or regressors. Some researchers used data analysis 
techniques such as feature extraction, clustering, classification, and 
regression to estimate the faults location and severity of PV arrays 
based on the voltage and current data in PV systems (Alajmi and 
Abdel-Qader, 2016; Chen and Wang, 2017; Fadhel et al., 2019; Patil 
and Hinge, 2019). Fadhel et al. proposed a framework for PV faults 
detection and localization based on hybrid data, which combines 
voltage–current sensor network and environmental sensors, such as 
temperature, humidity, and irradiance. It improves the accuracy and 
robustness of PV faults detection and localization (Alajmi et al., 2018). 
These methods have the advantages of being independent of model 
parameters and adaptable to complex environmental conditions. 
However, it also has the disadvantages of requiring additional sensors, 
instruments and circuits, and being dependent on environmental  
conditions.

Computer vision-based fault detection methods use artificial 
intelligence technologies such as deep learning to process and 
interpret large amounts of visible or infrared images in PV systems, 
thus achieving the automation and intelligence of PV fault 
identification and localization. Some researchers proposed a PV fault 
detection and localization method based on convolutional neural 
networks. This method used the thermal imaging data of PV systems 
to achieve the detection and localization of open circuit faults, short 
circuit faults, hot spot faults, and shadow faults in PV arrays through 
image processing, feature extraction, and classifier training (Ali et al., 
2020; Herraiz et al., 2020; Alves et al., 2021). Korkmaz et al. proposed 
a PV fault classification method based on transfer learning and multi-
scale convolutional neural networks. This method used the visible 
light image data of PV systems to achieve the classification of open 
circuit faults, short circuit faults, hot spot faults, and shadow faults of 
PV modules through image preprocessing, feature extraction, and 
classifier training (Korkmaz and Acikgoz, 2022). These methods have 
the advantages of being able to handle complex nonlinear problems, 
as well as having self-adaptation and learning ability. However, they 
also have the disadvantages of requiring a lot of training data, 
computing resources and algorithm optimization.

This section provides an overview of research concerning 
photovoltaic identification and fault localization. It primarily 
explores fault types, diagnostic methods, localization techniques and 
deep learning models related to photovoltaic modules. However, 
existing fault Identification and positioning techniques for PV 
systems based on current location suffer from poor robustness, 
especially when environmental conditions change. Computer vision-
based fault Identification and positioning methods may not achieve 
the expected accuracy when the data are insufficient or the training 
is inadequate. In addition, the processing range of image processing 
methods is narrow, which may not cover all types of faults in PV 
systems. In response to these limitations, we propose methods of 
photovoltaic identification and fault localization in low-voltage 
distributed PVPP.

3 Methods

This section elaborates on the methods of photovoltaic 
identification and fault localization in low-voltage distributed PVPP, 
emphasizing the integration and optimization of deep learning 

technology, especially in the context of drone imaging. The structure 
of the method presented in this paper is shown in Figure 1.

The primary aim of this framework is to enhance photovoltaic 
identification and fault localization using deep learning techniques, in 
order to improve the operational efficiency and safety of photovoltaic 
power plants. First, the relevant information of low-voltage distributed 
photovoltaic power plants is acquired. Then, the deep learning model 
undergoes analysis, and the identification model earmarked for 
optimization is determined. The model is improved by combining 
residual U-shaped module composed of dilated convolution and 
residual network, achieving accurate identification of the photovoltaic 
area. Finally, the photovoltaic fault localization technique is refined 
using multi-scale spatial pyramid fusion, Complete-IOU loss and self-
attention mechanism, thereby achieving precise fault positioning in 
photovoltaic power plants.

3.1 PV identification and fault positioning 
of low-voltage distributed PVPP

A PVPP is a facility that uses light energy to convert it into 
electricity. It is composed of solar panels and inverters. Solar panels 
convert sunlight into DC electricity. Inverters convert DC energy into 
alternating current energy, which is fed into the grid. PVPPs can 
be divided into centralized and distributed according to their nature. 
Distributed PVPPs are often installed in factories, residential roofs, 
fish ponds, and other small ground or building areas, generally 
connected to the grid through 380 V voltage. It operates flexibly and 
independently of the grid under the right conditions (Gallardo-
Saavedra et al., 2020). The advantages of PVPPs include no emissions, 
low maintenance costs, and long life. It can effectively reduce 
environmental pollution and energy consumption. However, the 
disadvantage is that it depends on the weather and light intensity, and 
the construction and maintenance costs are relatively high (Gao et al., 
2021). As a PV system with rapid growth in installed capacity in the 
next few years, more and more PV power distribution and installation 
urgently need efficient and low-cost PVPP health inspection methods 
to detect the function of PV modules and ensure the normal operation 
of the system (Jie et al., 2020). Figure 2 shows the actual picture of the 
low-voltage distributed PVPP.

In a complete PV-EG system, after connecting several PV modules 
in series, a PV string with DC output is formed, which is called a 
string. The PV brackets used in PVPP can be divided into fixed and 
tracking brackets. The tracking brackets can automatically adjust the 
direction to maximize production capacity (Khalil et al., 2020). In the 
traditional PV bracket unit design, the PV modules are arranged in 
vertical double rows or horizontal three and four rows. A bracket unit 
is usually equipped with one or two strings. The number of modules 
is determined by the number of modules connected in series in the 
PV string. PV modules as the core EG module, from top to bottom: 
glass, upper encapsulant, cell, lower encapsulant, backplane, frame, 
and junction box (Li et al., 2021).

When a hot spot fails on the cell, highlighted areas appear in the 
infrared image. Therefore, for defect detection, infrared image defect 
diagnosis is one of the most widely used defect detection methods. 
Infrared thermal imaging cameras can detect faults caused by internal 
defects in PV modules and judge the severity of the fault based on the 
temperature in a non-invasive way. Inspection UAVs can obtain 
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information, including altitude and temperature, by integrating UAVs, 
sensors and infrared cameras (Liang et  al., 2020a). The detection 
process is shown in Figure 3.

3.2 PV area identification based on DL

Photovoltaic identification identifies important information, such 
as the brand and model of the solar panel, by extracting and classifying 
the features of the solar panel. PV identification plays an important 
role in the assessment, supervision, and management of PVPPs. 
Traditional PV identification identifies the transmitted back image 
through UAV. For most infrared images obtained by PVPP, the PV area 

absorbs more heat and has a more obvious temperature difference 
from the ground. The grayscale histogram will have obvious peaks. The 
PV area can be  obtained using a suitable gray threshold method 
(Liang et al., 2020b). For single-peaked prominent pictures, simple 
pre-and post-scene separation is done. The maximum inter-class 
variance threshold segmentation algorithm is considered to find the 
best threshold for segmentation (Liu et al., 2020). The principle is to 
convolve the original image through a convolution check of a specific 
shape and size. When a point pixel of the original image and its 
surrounding pixels can form a convolution kernel shape, it is retained. 
If not, it is deleted. The expansion operation, on the contrary, can 
be used to enlarge the objects in the image or recombine the separated 
pixels (Lyu et al., 2020).

FIGURE 1

Methodological framework of the study.

FIGURE 2

Real view of low-voltage distributed PVPP.
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For traditional image processing algorithms, the process is 
intuitive, and the calculation is simple and effective. However, the 
processing scenario is single, and the robustness is low. When the 
ambient temperature and the PV area temperature are similar, or there 
is interference in the environment, it is difficult to determine the 
threshold by the maximum inter-class variance threshold segmentation 
algorithm in the grayscale histogram. The algorithm directly fails 
(Manno et al., 2021). The PV region in the infrared image has a typical 
visual salience, which can be regarded as a binary pixel classification 
problem in semantic segmentation. The purpose of the semantic 
segmentation task is to correctly classify each pixel of an image. Each 
pixel can be  classified into a corresponding category by manually 
determining the semantic label of each pixel and learning (Marqusee 
et al., 2021). In the PV area visual recognition task, the pixels in the 
infrared image can be divided into two categories. The target pixel is 
the PV area pixel, and all the remaining pixels are classified as the 
background. So, the U-Network (U-Net) semantic segmentation 
model is introduced. Figure  4 displays the structure of the 
U-Net model.

The left side of Figure 4 is the downsampling part. It is found 
that the feature map decreases, and the number of channels 
increases. The same convolution kernel on the right side is 
upsampled using the bilinear interpolation method. At present, 
the U-Net model is affected by the size of the convolution kernel, 
resulting in small receptive fields and incomplete information 
capture. Therefore, the receptive field is increased by pooling 
and dilated convolution. The pooling operation is accompanied 
by decreased resolution while increasing the receptive field. 
Dilated convolution can increase the receptive field without 
increasing the number of parameters and reducing the 
convolution kernel.
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layers. As the network deepens, degradation and gradient vanishing 
problems may occur, resulting in deep neural networks that are 
difficult to train. Although many studies have optimized network 
architectures, the problem has not been fully solved yet (Li et al., 
2023). So, residual learning is introduced. Residual learning is easier 
than direct learning, so errors can be  calculated through 
residual learning.

	 F x H x x( ) = ( ) - 	 (3)

In Equation (3), x  is the input information, F x( ) is the result of 
residual learning, and H x( ) is the result of direct learning. Deeper 
structures under reasonable calculation can be constructed through 
the residual U-shaped module composed of dilated convolution and 
residual network to obtain multi-scale features. The residual U-shaped 
module retrieves edge features through feature joining, alleviating the 
problem that the receptive field of simple convolution is too small to 
capture global information. The overall structure of the optimized 
model is shown in Figure 5.

Its main architecture is a classical U-Net network similar to 
Encoder-Decoder, a simple and effective saliency object detection 
network that can be  used for the semantic segmentation of two 

FIGURE 3

UAV infrared image fault diagnosis process.
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classifications. Each stage comprises residual U-shaped modules, 
which can more effectively capture the global features of multi-scale 
features. Specific residual U-shaped modules are used in different 
encoder and decoder stages. From the first layer to the seventh layer, 
the information structure of the picture has been analyzed and 
deconstructed. Residual learning enables the model to construct 
deeper structures and extract multi-scale features with reasonable 
computation, which facilitates effective visual identification of PV 
areas under various power plant scenarios and environmental 
interferences. It also empowers the model with better adaptability and 
learning ability when dealing with complex non-linear problems. The 
advantage of this is that more and more feature information will 
be extracted. The key components of the optimized model is shown 
in Table 1.

The process of the proposed optimized semantic segmentation 
model can be as follows:

Step 1: The input image is fed into the input layer of the network 
for feature extraction.

Step 2: In encoder stage 1, the residual U-shaped module performs 
a preliminary feature analysis on the image, extracting low-level edge 
and texture information.

Step  3: In encoder stage 2, the enhanced residual U-shaped 
module conducts a deeper feature analysis on the image, extracting 
high-level semantic and structural information.

Step 4: At the intermediate layer, a complex feature integration 
method combines features at different scales and resolutions, resulting 
in a global feature representation.

Step 5: In decoder stage 1, bilinear interpolation upsampling and 
convolution operations reconstruct the features, while concatenation 
operations connect the features from encoder stage 1 with the features 
from decoder stage 1, achieving global information transfer.

Step 6: In decoder stage 2, bilinear interpolation upsampling and 
convolution operations further reconstruct the features, while 
concatenation operations connect the features from the input layer 
with the features from decoder stage 2, achieving detail information  
recovery.

FIGURE 4

Net semantic segmentation model.
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Step 7: At the output layer, convolution operations transform the 
features into a binary semantic segmentation image, representing the 
analyzed and processed features.

3.3 Fault positioning technology and model 
of low-voltage distributed PVPP

For the infrared image fault diagnosis system of PVPP based on UAV 
inspection, the health of the components is the most concerned item of 
the power plant after obtaining infrared images. The corresponding PV 
module information can be used to guide subsequent O&M after making 
judgments in infrared fault diagnosis (Mellit and Kalogirou, 2021). In the 
UAV inspection proposed here, the shooting height can be set in the path 
planning stage. The field of view of the infrared picture can be locked by 
collecting the original power plant information and camera angle. The 
main PV mounts are adjusted horizontally to ensure m complete brackets 
in one infrared image or one complete bracket in n continuous images 
(Qais et al., 2020). For the resulting profile composed of several points, the 
vertex information can be obtained by quadrilateral fitting by the Ramer-
Douglas-Peucker algorithm (Quiles et  al., 2020). This method, also 

known as the iterative endpoint fitting algorithm, is an algorithm that 
approximates the curve as a series of points and reduces the number of 
points. The contour points obtained are a subset of the original contour 
(Ramadan et al., 2020).

The Line Segment Detector method is a linear detection method 
with low time complexity. It forms a horizontal line field by first 
calculating the horizontal line angle within the eight neighborhoods 
of each pixel. The vertical angle of the gradient direction of this pixel 
is the horizontal line angle, and the horizontal line field is a matrix 
corresponding to the points in the image one by one (Ridha et al., 
2020). After obtaining the horizontal line field, the area growth 
method is used to generate several connected domains according to 
the horizontal line angle. The threshold t is set to 22.5 degrees, and the 
horizontal line angle change of all pixels in each connected domain 
cannot exceed t. The connected domain obtained at this time is called 
the line support area. Each line support area is a candidate for segment 
detection. Each line support area corresponds to a matrix, represented 
by its smallest circumscribed rectangle (Ridha et al., 2021). The line 
support area’s spindle direction is the matrix’s major axis direction, 
and the rectangle covers the entire area. The smallest external 
rectangle represents the straight-line information. The confirmation 

TABLE 1  The key components of the optimized model.

Layer number Component Description

1 Input layer Initial layer receiving the input image.

2 Encoder stage 1 First stage of the encoder with residual U-shaped module for initial feature extraction.

3 Encoder stage 2 Second stage of the encoder with enhanced residual U-shaped module for deeper feature analysis.

4 Intermediate layer Central layer of the network, bridging encoder and decoder, with complex feature integration.

5 Decoder stage 1 First stage of the decoder, reconstructing features and integrating global information.

6 Decoder stage 2 Second stage of the decoder, refining the feature reconstruction and detail enhancement.

7 Output layer Final layer producing the segmented image output, representing the analyzed and processed features.

FIGURE 5

Optimized semantic segmentation model.
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line can be obtained by filtering the fitted rectangle information. The 
complete single PV module can be obtained by simple area extraction 
(Romero-Fiances et al., 2022).

Common fault positioning classification models are convolutional 
neural networks (CNNs) and Transformer, and the dominant CNNs 
benefit from their inductive bias. For example, the adjacent area has 
adjacent and translation invariance characteristics. The implied visual 
prior knowledge can be  effectively used to extract information. 
Therefore, there is good ingestion even for small data, although many 
studies have been conducted to optimize the CNN architecture (Ma 
et  al., 2023a), which may still lead to performance degradation 
(Tsanakas et al., 2020). In sequence-related tasks in natural language 
processing (NLP) neighborhoods, recurrent neural networks (RNNs) 
with fixed structure memory units simplify the difficulty of long-
distance learning and significantly outperform other RNNs 
(Veerasamy et  al., 2021). However, with the introduction of the 
attention mechanism, it broke through the field of traditional NLP and 
became the model with the best performance. Figure 6 demonstrates 
the structure of multi-headed self-attention mechanism.

Compared with CNNs, calculating the association between two 
positions in the AM only requires calculating the association weight 
between the two pairs. In contrast, multi-layer convolution is required 
in CNNs to obtain the relationship between distant positions. 
However, the model based on the self-attention mechanism needs to 
calculate more parameters and lacks the inductive bias brought by 
convolution. CNN has more advantages when there is less data. The 
target detection network is the dual information determination task 
of target position and category information (Yang et  al., 2021). 
Traditional detection modes use a combination of candidate boxes 

and feature extraction. For example, manually designed features are 
extracted in each window by sliding windows. Then, the features are 
obtained with a simple classifier (Zghaibeh et al., 2022; Ma et al., 
2022a, 2023b). Here, the you only look once v4 (YOLOv4) network is 
needed. Its overall loss function consists of regression box loss, 
confidence loss, and classification loss. A threshold is set for 
confidence. For lower thresholds, no classification loss occurs. This 
method can solve the problem of sample imbalance well, which is 
suitable for the detection target required here. The formula of 
Complete-IOU loss for YOLOv4 is shown below:
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FIGURE 6

Multi-headed self-attention mechanism.
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box (b) and the ground truth bounding box (bgt), normalized by the 
diagonal length of the smallest enclosing box covering both boxes. c2 
is the diagonal length of the smallest enclosing box covering both the 
predicted and ground truth bounding boxes. av is a value that 
represents the aspect ratio difference between the predicted bounding 
box and the ground truth bounding box. The optimized YOLOv4 
network structure is given in Figure 7.

Based on the optimized structure of YOLOv4 shown above, a PV 
positioning method of low-voltage distributed PVPP is proposed, and 
its process is as follows:

Step 1: The feature map obtained from the backbone network is 
fed into the prediction network. The CBL includes three components: 
convolution (Conv), batch normalization (Batch Norm), and leaky 
rectified linear unit (Leaky ReLU).

Step 2: Introduce additional layers in the prediction network to 
optimize the algorithm performance, enhance the feature detection 
capabilities, and increase the sensitivity to the nuances of the PV 
array images.

Step 3: After using a multi-scale fusion of spatial pyramid pooling 
(SPP), YOLOv4 improves the feature extraction capability through the 
feature pyramid and path aggregation network fusion structure. The 
feature pyramid network, in conjunction with the path aggregation 
network, forms a fusion structure that effectively consolidates features 
at various scales and resolutions.

Step  4: Complete-IOU loss is used in the prediction, which 
integrates the prediction box boundary non-coincidence, center 
distance information, and aspect ratio information so that the 
regression operation of the prediction box obtains fast speed and 
high accuracy. The utilization of Complete-IOU loss results in a more 
nuanced and detailed regression operation of the prediction box.

This enhances both the speed and accuracy of the algorithm, 
allowing for rapid processing without compromising the quality of 
fault detection. The accurate detection of boundaries, combined with 
the precise localization of faults, makes our optimized YOLOv4 
algorithm particularly effective for PV fault positioning. This level of 
accuracy is critical in the context of PV maintenance, where the timely 
and precise identification of faults can significantly impact the 
efficiency and longevity of PV installations.

4 Experimental result and analysis

4.1 Comparative analysis of experimental 
results of PV area identification

The image data used in the experimental training set comes from 
three real power plants. They represent three types of power plants: 
mountain PV, fishery-solar complementary, and agro-solar 

FIGURE 7

Optimized structure of YOLOv4.
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complementary. They are named training set 1, training set 2, and 
training set 3. The test data set is also selected from three real power 
plants, called test set 1, test set 2, and test set 3. The original samples 
of the dataset are flipped and adjusted for broadening. We set the ratio 
of the training sets to the tests set at 8:2. The specific sample number 
of the dataset is shown in Table 2.

The models participating in the comparative experiment include 
Otsu, Grabcut, U-Net, Recurrent Residual CNN-based U-Net (RES 
U-Net), U2-Net, and the optimized model proposed here. The 
structure and hyperparameter settings of the algorithm used in the 
experiment are shown in Table 3.

There are three experimental evaluation indicators: accuracy, 
recall, and Intersection over Union (IoU). Accuracy represents the 
proportion of correctly identified PV area pixels to the total pixels. 
Recall represents the proportion of correctly identified PV area pixels 
to the actual PV area pixels. IoU represents the ratio of the intersection 
of correctly identified PV area pixels and actual PV area pixels to their 
union. Figure 8 reveals the results.

From Figure 8, in the comparative experiments of accuracy and 
IoU, the corresponding data of the optimized model are the highest, 

96.5 and 95.07%, respectively. This indicates that the model can 
effectively distinguish between the PV area and the background area, 
and has a high degree of matching with the real PV area. Regarding 
recall, the optimized model has the highest recall rate of 98.46%, except 
that it is not as high as the Grabcut model of 98.54%. Its recall rate is 
only 0.08% lower than the Grabcut model. This indicates that the model 
can cover most of the real PV areas, but there are also a few cases of 
missed detection. Comparative experiments can show that the 
optimized model has high adaptability to different power plant 

FIGURE 8

Statistics of identification results.

TABLE 2  PV identification dataset.

Power plant Number of samples Number of samples (data expansion)

Training set 1 120 1,200

Training set 2 195 1,950

Training set 3 494 4,940

Test set 1 97 X

Test set 2 42 X

Test set 3 43 X

TABLE 3  Structure and hyperparameter settings.

Hyperparameter Value

Initial learning rate 0.001

Momentum term 0.949

Convolution Kernel size (k) 5 × 5

Batch size 64

Dilation rate 3
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scenarios and environmental disturbances. Additionally, it has a high 
degree of attention to the data at the edge of the PV power plant, which 
can effectively carry out visual identification of the PV area from 
the image.

The optimized U-Network semantic segmentation model proposed 
here uses residual U-shaped module composed of dilated convolution 
and residual network, which can build deeper structures and obtain 
multi-scale features under reasonable computation. The model extract 
edge features through feature joining, avoiding the problems of gradient 
disappearance and degradation in neural network, and alleviating the 
problem of small receptive field and inability to capture global information 
in simple convolution. This can effectively achieve accurate identification 
of the photovoltaic area. The introduction of residual learning enhances 
feature extraction ability of the model, enabling the model to adapt to 
different power station scenarios and environmental disturbances, thus 
effectively performing visual recognition of the PV area.

Based on the above improvements, the proposed algorithm not 
only effectively addresses the limitations of limited receptive fields and 
inability to capture global information inherent in simple 
convolutions. More importantly, it exhibits remarkable adaptability in 
handling PV area identification tasks under diverse power plant 
scenarios and environmental interferences. This is the reason why the 
optimized model proposed in this aper can achieve good performance.

4.2 Experimental analysis of fault 
positioning in PV area

The dataset of the fault positioning experiment uses the dataset in 
PV identification, from which 2,000 sheets are extracted to construct 
the training set. The PV images in datasets are shown in Figure 9.

The number of the fault and normal components is classified. The 
data of the target detection dataset is presented in Table 4.

The evaluation indicators are precision, recall, true positive (TP), 
false positive (FP), false negative (FN) and average precision. The 
experimental results are plotted in Figure 10.

From Figure 10, the optimized YOLOv4 has played a very high 
performance. The recall rate of normal components has reached 
100%, and the precision has gained 99.9% by testing normal 
components. When testing hot spot fault components, it is found that 
the recall rate of hot spot fault components also reaches 99.53%, and 
the precision rate reaches 98.73%. In the identification of normal 
components, the data of FN is 0. In addition to high precision and 
recall, the proposed model has great advantages in terms of operation 
time. Models chosen for comparison include single shot multibox 
detector (SSD), Faster region based convolutional neural network 
(Faster R-CNN), YOLO, YOLOv2, YOLOv3, and YOLOv4. The 
experimental results are shown in Figure 11.

FIGURE 9

PV images in datasets.
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Through the comparison of Figure 11, the average accuracy (Map) 
of the optimized model is the highest, at 90%. The memory requirement 
is 1.5G, and its operation time is only 0.022 s. This shows that the 
optimized YOLOv4 model has lower computational complexity and 
higher running speed, which can quickly process a large number of 
UAV infrared images, saving O&M costs and time. Through horizontal 
comparison, the prediction time of the proposed model is shorter than 

that of other traditional models, and the memory requirement is small. 
This shows that the optimized YOLOv4 model occupies less resources 
and is more suitable for deployment and running on devices with 
limited resources. Combined with the previous experiments, the overall 
accuracy and recall of the optimized model are much higher than those 
of the traditional model for PV identification and fault positioning. 
Therefore, the rationality and effectiveness of the proposed model can 
be verified by comparative experiments.

From the above analysis, it is evident that the optimized YOLOv4 
model has a significant advantage in the fault positioning task of PV 
components, not only performing well in terms of precision and recall, 
but also having obvious optimization in prediction time and memory 
requirement. The optimized YOLOv4 proposed here improves the 
robustness and generalization ability of the model by effectively 
integrating features of different scales and resolutions through multi-
scale fusion of spatial pyramids. This can make the model to recognize 
both macro and micro features in PV array images. The Complete-IOU 
loss function takes into account the non-overlap, center distance and 
aspect ratio of prediction box. This can refine the regression process for 
prediction boxes, and enhance localization precision and recall rates, 
and facilitating precise fault localization in PV systems. These 
improvements enable the optimized YOLOv4 model to better capture 
and analyze the details and features of the PV component images, 
thereby enhancing the performance of fault localization.

Experimental results show that the proposed PV identification 
model has high accuracy and IoU. In PV identification, the accuracy 
rate of the optimized model can reach 96.5%, and the IoU is 95.07%. 

FIGURE 10

Statistics of positioning results.

FIGURE 11

Horizontal comparison of the model.

TABLE 4  Target detection dataset.

Data set Number of 
pictures

Number of normal 
components

Number of hot spot fault 
components

Number of diode 
conducting components

Training set 2,000 99,444 3,623 322

Test set 809 36,589 3,439 422

32

https://doi.org/10.3389/fnbot.2024.1396979
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang et al.� 10.3389/fnbot.2024.1396979

Frontiers in Neurorobotics 13 frontiersin.org

Among the six models compared, the IoU is also the highest. 
Moreover, the recall rate of the optimized model is only 0.08% lower 
than that of the Grabcut model, which has the highest recall rate. It 
verifies the effectiveness of the PV identification model proposed here. 
In the experiment of fault positioning, precision, recall, TP, FP, FN, 
and average precision are used as performance indicators. The fault 
positioning model achieves 100% recall and precision of 99.9% in 
testing normal components. For the hot spot fault component test, the 
recall rate of the hot spot fault component also reaches 99.53%, and 
the precision rate reaches 98.73%. The model performs well. 
Meanwhile, a horizontal comparison is added at the end of the 
experiment. Compared with the traditional model, the average 
accuracy value of the optimized model is the highest, 90%. The 
memory requirement is 1.5G, and its operation time is only 0.022 s, 
significantly exceeding the operation time of other models.

The experimental results demonstrate that the proposed model 
has high practical value and effectiveness in the O&M of real PV 
power plants. It can provide strong support for the safe, reliable and 
efficient operation of PV power plants. Specifically, the model can 
accurately locate faults in PV modules, helping O&M personnel to 
timely discover and solve problems, thereby improving the operation 
efficiency and long-term stability of PV power plants. For example, in 
the actual application of a certain PV power plant, the model 
successfully identified a batch of aging PV modules and replaced them 
in time, avoiding accidents at the power plant.

5 Conclusion

As the installed capacity of PV power generation increases rapidly, 
how to detect abnormalities and faults of PV modules in an efficient 
manner has become a key challenge to maintain the safety, reliability, 
and productivity of large-scale PV plants. With the consideration that 
all the fault information of the PV module exists in the moving images 
of UAVs, we propose an improved residual learning model to extract 
useful fault feature from the UAV moving images, and then use it for 
low-voltage distributed PV fault identification and positioning. This 
way works in an end-to-end way, and it can not only detect single 
faults, but also identify the existence of hybrid PV faults. First, 
we integrate residual learning with attention mechanism into the UAV 
image analysis model, aiming to improve the robustness and accuracy 
of PV image detection. Then, we propose a sophisticated multi-scale 
spatial pyramid fusion method for the optimization of the YOLOv4 
network, targeting at the nuanced task of fault localization within PV 
arrays, where the Complete-IOU loss is used in the predictive 
modeling phase, significantly enhancing the accuracy and efficiency 
of fault detection. The proposed novel residual learning model and 
optimized YOLOv4 network were applied to fault identification and 
localization in low-voltage distributed PV systems. The models were 
trained and tested on a real-world dataset, demonstrating their 
application potential in fault detection and diagnosis of low-voltage 
distributed PV systems. This research is of great significance to ensure 
the safety, reliability and productivity of large-scale PV power plants.

The current training dataset is restricted to a limited number 
of fault categories, hindering direct applicability to fault 
identification and positioning of equipment in other types or 
domains. To enhance generalization capability and robustness of 
the proposed algorithm, we will focus on expanding the dataset to 
encompass a broader spectrum of fault types in future research. 
Moreover, considering that many novel and effective computer 
vision and deep learning methods emerge rapidly, we will adopt 
state-of-the-art intelligent models rather than the original 
neural network models in the target PV fault identification 
and positioning. In addition, we  attempt to optimize the 
scheduling problem after fault localization using multi-objective 
optimization algorithms.
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An adaptive discretized RNN
algorithm for posture
collaboration motion control of
constrained dual-arm robots

Yichen Zhang, Yu Han and Binbin Qiu*

School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China

Although there are many studies on repetitive motion control of robots,

few schemes and algorithms involve posture collaboration motion control of

constrained dual-arm robots in three-dimensional scenes, which canmeetmore

complex work requirements. Therefore, this study establishes the minimum

displacement repetitive motion control scheme for the left and right robotic

arms separately. On the basis of this, the design mentality of the proposed

dual-arm posture collaboration motion control (DAPCMC) scheme, which is

combined with a new joint-limit conversion strategy, is described, and the

scheme is transformed into a time-variant equation system (TVES) problem

form subsequently. To address the TVES problem, a novel adaptive Taylor-type

discretized recurrent neural network (ATT-DRNN) algorithm is devised, which

fundamentally solves the problem of calculation accuracy which cannot be

balanced well with the fast convergence speed. Then, stringent theoretical

analysis confirms the dependability of the ATT-DRNN algorithm in terms of

calculation precision and convergence rate. Finally, the e�ectiveness of the

DAPCMC scheme and the excellent convergence competence of the ATT-DRNN

algorithm is verified by a numerical simulation analysis and two control cases of

dual-arm robots.

KEYWORDS

dual-arm robot, dual-armposture collaborationmotion control (DAPCMC), time-variant

equation system (TVES), adaptive Taylor-typediscretized recurrent neural network (ATT-

DRNN), joint-limit conversion strategy

1 Introduction

With the continuous development of electronic information technology, robots, as

a key carrier in the realm of artificial intelligence, have been assuming a progressively

substantial role in manufacturing (Arents and Greitans, 2022), healthcare (Khan et al.,

2020), service industries (McCartney and McCartney, 2020), and beyond (Cheng et al.,

2023; Tanyıldızı, 2023; Yang et al., 2023; Liufu et al., 2024), bringing numerous

conveniences to human life and work. Many scholars are focusing their attention on

robotics research field.

A robotic arm is a mechanical device composed of multiple linked joints, typically

equipped with various end-effectors based on the requirements of the work environment.

By calculating and adjusting the rotational changes of each joint, the end-effector can be

controlled to perform variousmovements in a predeterminedmanner, such as position and

orientation, thereby accomplishing tasks. For instance, the MATLAB program and particle

swarm optimization were utilized for the trajectory planning of the robotic arm (Ekrem

and Aksoy, 2023); Chico et al. (2021) employed a hand gesture recognition system and the

inertial measurement unit to control the position and orientation of a virtual robotic arm.
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A target admittance model was designed in the joint space for

hands-on procedures that can be applied in all commercially

available general-purpose robotic arms with six or more DOF

(Kastritsi and Doulgeri, 2021).

Due to the escalating complexity of task environments,

single robotic arms frequently encounter challenges in effectively

completing tasks, which highlights the advantages of dual robotic

arms in collaborative and efficient task execution. For example,

Jiang et al. (2022) presented an adaptive control method for

a dual-arm robot to perform bimanual tasks under modeling

uncertainties. Bombile and Billard (2022) designed a unified

motion generation algorithm that enables a dual-arm robot to

grab and release objects quickly. Wang et al. (2023) proposed a

sliding mode controller with good robustness against the model

uncertainties to capture and stabilize a spinning target in 3D space

by a dual-arm space robot.

However, some of the methods mentioned above do not take

into account the actual physical constraints of the robotic arms

during initial modeling (e.g., Bombile and Billard, 2022; Jiang

et al., 2022). This greatly limits the application scenarios of these

algorithms and is inconsistent with the real working conditions of

the robotic arms. Furthermore, the physical limitations of robotic

arms typically pertain to constraints on joint angle and velocity.

These constraints do not reside at the same constraint level, thus

there are substantial computational challenges when attempting

to address them collectively. An optimal approach entails a series

of conversion strategies to harmonize these distinct hierarchical

constraints to a congruous level (Zhang and Zhang, 2013) (e.g.,

velocity level). By implementing this approach, the constraints

can be effectively unified and dealt without compromising their

intended meaning. Some scholars (e.g., Li, 2020) have crafted

novel approaches to these conversion strategies stemming from

this foundation. Nevertheless, in the process, they have introduced

too many supplementary parameters, rendering the strategies less

straightforward for apprehension. Additionally, certain studies

focus on the control of dual robotic arms based on 2D space,

considerably limiting the operating range of robotic arms (Stolfi

et al., 2017; Yang S. et al., 2020; Yang et al., 2021).

In recent years, with the rapid advancement of neural network

research, many scholars have been committed to applying its

formidable nonlinear modeling capability and efficient parallel

computing ability to the domain of robotic arm motion control

(Wang et al., 2021; Jin et al., 2024). This endeavor has given rise

to a special kind of neural network known as the RNN (Xiao et al.,

Abbreviations: 3D, Three dimensional; 2D, Two dimensional; RNN, Recurrent

neural network; TE, Truncation error; CRNN, Continuous recurrent neural

network; DRNN, Discretized recurrent neural network; DAPCMC, Dual-arm

posture collaboration motion control; JLCS, Joint-limit conversion strategy;

ATT-DRNN, Adaptive Taylor-type discretized recurrent neural network; CTT-

DRNN, Conventional Taylor-type discretized recurrent neural network; CET-

DRNN, Conventional Euler-type discretized recurrent neural network; TVES,

Time-variant equation system; MDRMC, Minimum displacement repetitive

motion control; DOF, Degrees of freedom; LA, Left arm; RA, Right arm;

TVQP, Time-variant quadratic programming; EE, Error equation; ACRNN,

Adaptive continuous recurrent neural network; RE, Residual error; D-H,

Denavit-Hartenberg; UAV, Unmanned aerial vehicle.

2021; Yan et al., 2022; Fu et al., 2023). For example, Xiao et al. (2021)

proposed a noise-enduring and finite-time convergent design

formula is suggested to establish a novel RNN. Fu et al. (2023)

presented a gradient-feedback RNN to solve the unconstrained

time-variant convex optimization problem.

To facilitate the calculation on computers and other digital

hardware devices, some scholars focus on discretizing conventional

CRNN models through time discretization techniques, leading

to the development of DRNN algorithms (Liao et al., 2016;

Liu et al., 2023a,b; Shi et al., 2023). The technique of second-

order Taylor expansion was used to deal with the discrete time-

variant nonlinear system, and a DRNN algorithm was proposed

subsequently (Shi et al., 2023). Liao et al. (2016) proposed two

Taylor-type DRNN algorithms on account of the Taylor-type

formula to perform online dynamic equality-constrained quadratic

programming. Liu et al. (2023a) designed a Taylor-type DRNN

algorithm based on Taylor-type discrete scheme with smaller TE.

It is worth noting that higher accuracy requirements often make

the discretization formulas more complicated, inevitably leading

to a large amount of computation and increasing the cost of

actual production applications. After overall consideration, this

study proposes an adaptive DRNN algorithm based on a three-

step general Taylor-type discretization formula with an adaptive

sampling period introduced, which is of high enough precision for

practical applications.

Typically, due to the use of fixed sampling periods and

fixed convergence factors in the conventional DRNN algorithms

mentioned above, it is difficult for them to achieve a balance in

computational precision and convergence rate, resulting in limited

algorithmic dynamic and convergence performance. Therefore,

some researchers have tried to introduce various adaptive

mechanisms into model/algorithm design (Song et al., 2008; Yang

M. et al., 2020; Dai et al., 2022; Cai and Yi, 2023). For example,

Yang M. et al. (2020) proposed two discretized RNN algorithms

with an adaptive Jacobian matrix. Cai and Yi (2023) developed

an adaptive gradient-descent-based RNN model to solve time-

variant problems based on the Lyapunov theory. Dai et al. (2022)

proposed a hybrid RNN model by introducing a fuzzy adaptive

control strategy to generate a fuzzy adaptive factor that can change

its size adaptively according to the RE. Song et al. (2008) proposed

a robust adaptive gradient-descent training algorithm based on an

RNN hybrid training concept in discrete-time domain.

In light of the aforementioned circumstances, this study

formulates a DAPCMC scheme in 3D space based on the dual-arm

robot system and the new JLCS. Subsequently, a novel ATT-DRNN

algorithmwith adaptive sampling period and adaptive convergence

factor is devised to effectively face the challenge of achieving

a dynamic balance between great computational precision

and rapid convergence rate. When compared with the CTT-

DRNN algorithm and the CET-DRNN algorithm, the proposed

ATT-DRNN algorithm demonstrates outstanding computational

precision and rapid convergence rate. To demonstrate the features

and strengths of the proposed ATT-DRNN algorithm, Table 1

shows the comparisons among distinct methods for the motion

control of robots.

The remainder of this study consists of four parts. Section

2 formulates the DAPCMC scheme and designs the ATT-DRNN

algorithm. Section 3 presents the theoretical analyses of the
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TABLE 1 Comparisons among distinct methods for motion control of robots.

Method Posture
control

Inequality
constraint

Discretized
handling

Adaptive
mechanism

Applicable
scene

Robotic arm
number

Jiang et al. (2022) No No No Yes 2D Dual

Yang et al. (2021) Yes Yes Yes No 2D Dual

Yang S. et al. (2020) No Yes No No 2D Dual

Fu et al. (2023) No No No No 3D Single

Shi et al. (2023) No No Yes No 2D Single

Liao et al. (2016) No No Yes No 2D Single

Wu and Zhang (2023) Yes No Yes Yes 3D Single

Yang M. et al. (2020) No No Yes Yes 3D Single

ATT-DRNN Yes Yes Yes Yes 3D Dual

proposed ATT-DRNN algorithm. Section 4 provides illustrative

examples, and Section 5 concludes this study. Finally, the primary

contributions/novelties of this paper can be summarized as follows.

1) Distinguishing from common dual-arm robotmotion control

schemes in 2D space, a novel construction methodology

of the DAPCMC scheme in 3D space is provided, which

can make a spatial dual-arm robot collaboratively execute

repetitive tracking of a desired trajectory while adhering to a

predetermined posture.

2) Distinguishing from existing strategies, an innovative JLCS

is proposed, which has a ubiquitously differentiable and more

succinct expression.

3) Distinguishing from conventional discretization methods, an

innovative ATT-DRNN algorithm is engineered to address

the DAPCMC scheme, which introduces a new adaptive

convergence factor and sampling period to guarantee a notable

convergence rate and exceptional convergence precision.

4) Distinguishing from the simple path-tracking task of

single-arm robots, the posture collaboration motion control

experiments of a UR5 dual-arm robot with the joint-angle

and joint-velocity bound constraints considered substantiate

the effectiveness of the proposed DAPCMC scheme and the

outstanding convergence capability of the proposed ATT-

DRNN algorithm.

2 Scheme formulation and algorithm
design

This section describes how to construct a DAPCMC scheme

that can be converted into a TVES problem and processed by the

proposed ATT-DRNN algorithm.

2.1 Rudimentary knowledge

For the convenience of comprehension, let us construct a

single robot arm motion control scheme with n DOF, which takes

into account joint physical limits and can simultaneously ensure

position control and orientation control during the MDRMC.

Specifically, such a scheme can be described as below:

min.
ż(t)

1

2
żT(t)U(t)ż(t)+ ϕT(t)ż(t), (1)

s.t. J1(z(t))ż(t) = ϒ̇I(t)− α
[

ϒR(t)− ϒI(t)
]

, (2)

J2(z(t))ż(t) = ȯI(t)− β
[

oR(t)− oI(t)
]

, (3)

z− ≤ z(t) ≤ z+, (4)

ż− ≤ ż(t) ≤ ż+, (5)

where superscript T represents the transpose operator; z(t) =
[

ż1(t), ż2(t), ..., żn(t)
]T ∈ R

n indicates the angle values of the

robotic joints, and ż(t) ∈ R
n means the angular velocities of the

robotic joints; matrix U(t) = In×n ∈ R
n×n is an identity matrix;

vector ϕ(t) = ξ
[

z(t)− z(0)
]

∈ R
n with design parameter ξ > 0

and z(0) means the initial joint-angle vector; J1(z(t)) ∈ R
3×n

and J2(z(t)) ∈ R
3×n represent the position Jacobian matrix and

the orientation Jacobian matrix, respectively; ϒI(t) ∈ R
3 and

ϒR(t) ∈ R
3 represent the ideal path and the real position of the

end-executor, separately; oI(t) ∈ R
3 and oR(t) ∈ R

3 represent

the ideal orientation and the real orientation of the end-executor,

respectively; α > 0 and β > 0 are both the error-feedback gains;

z± and ż± denote the upper and lower limits of z(t) and ż(t),

separately.

Remark 2.1: In accordance with previous experience (Zhang

and Zhang, 2013), when t → ∞, the objective function (1) at the

joint-velocity level is equivalent to
∥

∥z(t)− z(0)
∥

∥

2

2
/2 at the joint-

angle level, where the design parameter ξ > 0 ought to be adjusted

as large as allowed by the manipulator conditions. Note that the

robot arm’s repetitive motion planning scheme under minimal

displacement can be regarded as an optimization objective that can

be resolved at the joint-velocity level.

Remark 2.2: Referring to the contributions of previous scholars

(Yang et al., 2021), the equality constraint (2) at the joint-velocity

level is equivalent to f (z(t)) = ϒI(t) at the joint-angle level, when

t → ∞ and the error-feedback gain α > 0 is at an appropriate

value, where f (·) :Rn → R
3 represents the forward kinematics

mapping function of a robotic arm.

Remark 2.3: Similarly, the equality constraint (3) at the joint-

velocity level is equivalent to g(z(t)) = oI(t) at the joint-angle
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level, when t → ∞ and the error-feedback gain β > 0 is at an

appropriate value, where nonlinear function g(z(t)) = oR(t) =
[

oRx(t), oRy(t), oRz(t)
]T ∈ R

3 and the 2-norm of the real orientation

vector oR(t) satisfies
∥

∥oR(t)
∥

∥

2
= 1.

Note that the inequality constraint (4) is at the joint-angle level

of the system. In order to integrate inequality constraints (4) and

(5) of distinct constraint levels into a unified formulation at the

joint-velocity level as below:

0
−(t) ≤ ż(t) ≤ 0

+(t), (6)

previous studies (Zhang and Zhang, 2013; Zhang et al., 2018; Li,

2020; Li et al., 2023; Qiu et al., 2023) supply a large number of JLCSs.

Nevertheless, the JLCS in Zhang and Zhang (2013) is unable

to guarantee 0
−(t) or 0

+(t) to be differentiable anywhere.

Meanwhile, as regard to the JLCS in Li (2020), 0−(t) and 0
+(t)

are designed as piecewise functions, respectively, and complex

compound functions are embedded in them. In addition, the

JLCS in Li et al. (2023); Qiu et al. (2023) adopt numerous design

parameters and construct pretty complex expressions.

Therefore, as one of the contributions of this study, we provide

a new JLCS. The ith (i = 1, 2, ..., n) elements of 0−(t) and 0
+(t) in

(6) are designed as follows:























0
−
i (t) = ż−i exp

[

γ żi(t)

żi(t)− ż−i + ε1

]

, ε1 → 0+, (7)

0
+
i (t) = ż+i exp

[

γ żi(t)

żi(t)− ż+i + ε2

]

, ε2 → 0−, (8)

where żi(t), ż
−
i , ż

+
i , ż

−
i , ż

+
i denote the ith element of

z(t), z−, z+, ż−, ż+ in (4) and (5), separately; ε1 and ε2 are

both non-zero minimum terms to ensure that the above equations

are able to differentiable everywhere; design parameter γ ∈ (0, 1)

should be as small as possible.

Remark 2.4: To present the proposed JLCS (7)-(8) more

specifically, Figure 1 exhibits the relationship between the ith joint

angle żi(t) and the ith joint velocity żi(t). It is worth noting that,

when the joint approaches its lower or upper limit, the value of

γ has a crucial effect on the changing rate of the joint-velocity

boundary.

2.2 DAPCMC scheme

Finally, upon the previous section, we construct a dual-arm

collaborative control system consisting of the LA and RA.

FIGURE 1

The relationship between the ith joint angle ż
i
(t) and the ith joint

velocity ż
i
(t) in the proposed JLCS (7)–(8), with i = 1, 2, ...,n.

2.2.1 LA collaborative control subsystem
According to (1)–(5), we construct theMDRMC scheme for the

n-DOF LA as follows:

min.
ż
L

(t)

1

2
żT
L
(t)UL(t)żL(t) + ϕT

L
(t)żL(t), (9)

s.t.J1L(zL(t))żL(t) = ϒ̇IL(t)

− αL

[

ϒRL(t)− ϒIL(t)
]

, (10)

J2L(zL(t))żL(t) = ȯIL(t)

− βL

[

oRL(t)− oIL(t)
]

, (11)

z−
L

≤ zL(t) ≤ z+
L
, (12)

ż−
L

≤ żL(t) ≤ ż+
L
, (13)

where the subscript L denotes the LA; vector zL(t) =
[

żL1(t), żL2(t), ..., żLn(t)
]T ∈ R

n; vector ϕL(t) =
ξL

[

zL(t)− zL(0)
]

∈ R
n with the design parameter ξL > 0 and

zL(0) means the LA’s initial joint-angle vector. Additionally, the

meanings represented by the other symbols are similar to those in

the MDRMC scheme (1)–(5).

Moreover, according to the JLCS (7)–(8), (12) and (13) in the

LA’s MDRMC scheme can be converted into the following form:

0
−
L
(t) ≤ 0L(t) ≤ 0

+
L
(t), (14)

where 0L(t) = żL(t) =
[

żL1(t), żL2(t), , ..., żLn(t)
]T ∈

R
n; the upper and lower limit values of 0−

L
(t) and 0

+
L
(t) are

correspondence to those of 0−(t) and 0
+(t) in the JLCS (7)-(8).

Furthermore, by reorganizing the LA’s MDRMC scheme (9)-

(13), we obtain the LA collaborative control subsystem scheme,

which has a briefer representation:

min.
0
L
(t)

1

2
0
T
L
(t)UL(t)0L(t)+ ϕT

L
(t)0L(t), (15)

s.t. AL(t)0L(t) = cL(t), (16)

BL(t)0L(t) ≤ dL(t), (17)
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where matrices AL(t) ∈ R
6×n and BL(t) ∈ R

2n×n and vectors

cL(t) ∈ R
6 and dL(t) ∈ R

2n are expressed as below:

AL(t) =
[

J1L(zL(t))

J2L(zL(t))

]

,

cL(t) =
[

ϒ̇IL(t)− αL

[

ϒRL(t)− ϒIL(t)
]

ȯIL(t)− βL

[

oRL(t)− oIL(t)
]

]

BL(t) =
[

In×n

−In×n

]

, dL(t) =
[

0
+
L
(t)

−0
−
L
(t)

]

.

2.2.2 RA collaborative control subsystem
Similar to the (2.2.1), the MDRMC scheme for the n-DOF RA

is follows:

min.
ż
R

(t)

1

2
żT
R
(t)UR(t)żR(t) + ϕT

R
(t)żR(t), (18)

s.t.J1R(zR(t))żR(t) = ϒ̇IR(t)

− αR

[

ϒRR(t)− ϒIR(t)
]

, (19)

J2R(zR(t))żR(t) = ȯIR(t)

− βR

[

oRR(t)− oIR(t)
]

, (20)

z−
R

≤ zR(t) ≤ z+
R
, (21)

ż−
R

≤ żR(t) ≤ ż+
R
, (22)

where the subscript R denotes the RA; vector zR(t) =
[

żR1(t), żR2(t), ..., żRn(t)
]T ∈ R

n; vector ϕR(t) =
ξR

[

zR(t)− zR(0)
]

∈ R
n with design parameter ξR > 0

and zR(0) means the RA’s initial joint-angle vector. Additionally,

the meanings represented by the other symbols are similar to those

in the MDRMC scheme for the LA (9)–(13).

Similarly, (21) and (22) in the RA’s MDRMC scheme can be

transformed into the following form:

0
−
R
(t) ≤ 0R(t) ≤ 0

+
R
(t), (23)

where 0R(t) = żR(t) =
[

żR1(t), żR2(t), , ..., żRn(t)
]T ∈ R

n; the

upper and lower limit values of 0−
R
(t) and 0

+
R
(t) are parallelism

to those of 0−
L
(t) and 0

+
L
(t) in the LA’s JLCS (14).

Then, by reorganizing the RA’s MDRMC scheme (18)–(22), we

obtain the RA collaborative control subsystem scheme:

min.
0
R

(t)

1

2
0
T
R
(t)UR(t)0R(t)+ ϕT

R
(t)0R(t), (24)

s.t. AR(t)0R(t) = cR(t), (25)

BR(t)0R(t) ≤ dR(t), (26)

where matrices AR(t) ∈ R
6×n and BR(t) ∈ R

2n×n and vectors

cR(t) ∈ R
6 and dR(t) ∈ R

2n are expressed as follows:

AR(t) =
[

J1R(zR(t))

J2R(zR(t))

]

,

cR(t) =
[

ϒ̇IR(t)− αR

[

ϒRR(t)− ϒIR(t)
]

ȯIR(t)− βR

[

oRR(t)− oIR(t)
]

]

BR(t) =
[

In×n

−In×n

]

, dR(t) =
[

0
+
R
(t)

−0
−
R
(t)

]

.

Furthermore we combine the LA collaborative control

subsystem scheme (15)–(17) with the RA collaborative control

subsystem scheme (24)–(26) to obtain a complete DAPCMC

scheme, which is also a TVQP problem:

min.
0(t)

1

2
0
T(t)U(t)0(t)+ ϕT(t)0(t), (27)

s.t. A(t)0(t) = c(t), (28)

B(t)0(t) ≤ d(t), (29)

where

A(t) =
[

AL(t) 0

0 AR(t)

]

∈ R
12×2n, 0(t) =

[

0L(t)

0R(t)

]

∈ R
2n,

c(t) =
[

cL(t)

cR(t)

]

∈ R
12

B(t) =
[

BL(t) 0

0 BR(t)

]

∈ R
4n×2n, d(t) =

[

dL(t)

dR(t)

]

∈ R
4n,

ϕ(t) =
[

ϕL(t)

ϕR(t)

]

∈ R
2n

U(t) =
[

UL(t) 0

0 UR(t)

]

∈ R
2n×2n.

In order to resolve the proposed DAPCMC scheme (27)–(29),

that is, to seek the optimal solution to the TVQP problem (27)–

(29), it is necessary for us to concentrate on how to translate

such a TVQP problem (27)–(29) into a more computationally

convenient TVES problem. After that, solving the TVES problem is

tantamount to finding the optimal solution to the TVQP problem

(27)–(29).

With reference to Wei et al. (2022), the optimal solution to

the TVQP problem (27)–(29) can be obtained by dealing with the

following TVES problem:

H(t)χ(t)+ g(t) = 0, (30)

where the coefficient matrixH(t) ∈ R
̟×̟ and the vectors χ(t) ∈

R
̟ and g(t) ∈ R

̟ can be described as follows:

H(t) =







U(t) AT(t) BT(t)

A(t) 012×12 012×4n

−B(t) 04n×12 I4n×4n







χ(t) =







0(t)

λ(t)

µ(t)






, g(t) =







ϕ(t)

−c(t)

r(t)







where the Lagrange multiplier λ(t) ∈ R
12 is connected with the

equality constraint (28) and the Lagrange multiplier µ(t) ∈ R
4n

connected with the inequality constraint (29); r(t) = d(t) −
√

v(t) ◦ v(t)+ µ(t) ◦ µ(t)+ ε3 and v(t) = d(t) − B(t)0(t); ◦
bespeaks the Hadamard product operator; ε3 → 0+ and ̟ =
6n+ 12.

In other words, as long as we can explore the solution χ(t)

suitable for the TVES problem (30), it means that we have found

the optimal solution to the TVQP problem (27)–(29); Next, we will

explain the derivation of the ATT-DRNN algorithm and employ it

to work out the TVES problem (30), the TVQP problem (27)–(29),

and the proposed DAPCMC scheme (27)–(29).
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2.3 Algorithm design

First, we set up the following vector-valued EE in the light of

the TVES problem (30):

e(t) = H(t)χ(t)+ g(t). (31)

Finally, we utilize the RNN evolution rule (Shi and Zhang,

2018) as below:

ė(t) = de(t)

dt
= −ζ e(t), (32)

where the fixed convergence factor ζ > 0 has an important

impact on the global exponential convergence rate. The larger the

ζ chooses, the faster the convergence rate one acquires.

Then, the RNN evolution rule (32) can be further expanded as

the following equation on account of the EE :

Ḣ(t)χ(t)+H(t)χ̇(t)+ ġ(t) = −ζ
[

H(t)χ(t)+ g(t)
]

. (33)

For the handiness of figuring out the optimal solution to the

TVQP problem (27)–(28), we reformulate (33) as

D(t)χ̇(t) = −V(t)χ(t)− ̺(t)− ζ
[

H(t)χ(t)+ g(t)
]

, (34)

where

D(t) =







U(t) AT(t) BT(t)

A(t) 012×12 012×4n
[

ℓ1(t)− I4n×4n

]

B(t) 04n×12 I4n×4n − ℓ2(t)






∈ R

̟×̟

V(t) =







U̇(t) Ȧ
T
(t) Ḃ

T
(t)

Ȧ(t) 012×12 012×4n
[

ℓ1(t)− I4n×4n

]

Ḃ(t) 04n×12 04n×4n






∈ R

̟×̟

̺(t) =







ϕ̇(t)

−ċ(t)
[

I4n×4n − ℓ1(t)
]

ḋ(t)






∈ R

̟ ,

with















ℓ1(t) = ∧
[

�(t) ◦ v(t)
]

ℓ2(t) = ∧
[

�(t) ◦ µ(t)
]

�(t) =
[

v(t) ◦ v(t)+ µ(t) ◦ µ(t)+ ε3
]− 1

2 , ε3 → 0+.

We treat (34) as a CRNN model. In order to facilitate its

realization in computer system and digital hardware, the CTT-

DRNN algorithm and the ATT-DRNN algorithm are introduced

in the following subsections.

2.3.1 CTT-DRNN algorithm
In this subsection, a conventional Taylor-type discretization

formula is given, and the CTT-DRNN algorithm is obtained by

combining it with the CRNNmodel (34).

Based on Hu et al. (2018), the three-step general Taylor-type

discretization formula is formulated as follows:

ẋk =
(−2a+ 1)xk+1 + 6axk − (6a+ 1)xk−1 + 2axk−2

2σ

+O(σ 2), k = 2, 3, 4, ..., (35)

where the argument a < 0; k is the updating index; σ > 0 is the

fixed sampling period; xk = x(tk) denotes the samping value of

function x(t) at time instant tk = kσ ; O(σ 2) is the TE.

By applying the three-step general Taylor-type discretization

formula (35) to discretize the CRNN model (34), we can acquire

CTT-DRNN algorithm as below:

χk+1
.=
6aχk − (6a+ 1)χk−1 + 2aχk−2 − 2Mk

[

σ
(

−Vkχk − ̺k

)

− h
(

Hkχk + gk
)]

2a− 1
(36)

where symbol
.= denotes the computational assignment operation;

Mk,Vk,Hk, ̺k,gk, and χk mean the instantaneous values of

M(t),V(t),H(t), ̺(t),g(t), and χ(t) sampling at time instant tk
with M(t) denoting the pseudoinverse of D(t); parameter h = σζ

represents the solution step size generally set at the range of (0, 1).

2.3.2 ATT-DRNN algorithm
According to the analysis of Subsection (2.3.1), on the one

hand, the larger the fixed convergence factor ζ , the faster the

global convergence rate of the system, thus we should naturally

set ζ as large as possible at the beginning to ensure a sublime

exponential converging capability of the CRNN model (34). On

the other hand, it is recognized that the fixed argument σ as the

sampling period is a significant factor affecting the convergence

precision of the CTT-DRNN algorithm (36). Generally, the more

remarkable convergence precision is guaranteed by a smaller value

of σ taken at the initial stage. However, blindly setting a small

value of σ may directly lead to an exiguous solution step size h,

making it knotty for the solution process to converge rapidly or

even proceed normally. Similarly, an excessively huge ζ also makes

it hard to ensure a brilliant exactness of the algorithm due to

incurring a gigantic solution step size h. It can be seen that the above

situations are contradictory to each other. Moreover, according to

the changes in system conditions, fixed parameters cannot meet the

needs of different states. In view of this, to autonomously adjust the

convergence factor ζ and the sampling period σ according to the

actual convergence situation, and assure that the global state both

has a remarkable convergence rate and outstanding convergence

precision, a novel ATT-DRNN algorithm is designed as described

in the following text.

First, according to the actual solution status, the adaptive

sampling period σk = σ (tk) is designed as follows:

σk =
q

(

p+ ‖ek‖2
)δ
, (37)

where fixed arguments p, q > 0 are applied to adjust the solution

accuracy of the algorithm; variable argument δ is utilized to ensure

the algorithm precision while adjusting the sampling period change

rate; error ek = Hkχk +gk and symbol ‖·‖2 represents the 2-norm
of a vector.

Accordingly, the adaptive convergence factor ζk = ζ (tk) is

designed as follows:

ζk =
h

(

p+ ‖ek‖2
)δ

q
, (38)
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where variable argument δ is utilized to ensure the algorithm

accuracy while adjusting the global convergence rate of the

algorithm; h = σkζk is the same as that in (36).

Meanwhile, the corresponding continuous adaptive

convergence factor ζ (t) can be written as follows:

ζ (t) =
h

(

p+
∥

∥e(t)
∥

∥

2

)δ

q
. (39)

With the help of the continuous adaptive convergence factor

ζ (t) (39), a novel RNN evolution rule can be written as follows:

ė(t) = de(t)

dt
= −ζ (t)e(t). (40)

Thus, on the account of the EE (31), the novel RNN evolution

rule (40) can be further expanded and reformulated as the ACRNN

model:

χ̇(t) = M(t)
{

−V(t)χ(t)− ̺(t)− ζ (t)
[

H(t)χ(t)+ g(t)
]}

, (41)

where the corresponding parameters are all the same as in the

previous section.

Besides, by taking into account the adaptive sampling period

σk (37), the adaptive three-step general Taylor-type discretization

formula can be expressed as follows:

ẋk =
(−2a+ 1)xk+1 + 6axk − (6a+ 1)xk−1 + 2axk−2

2σk

+O(σ 2
k ), k = 2, 3, 4, ..., (42)

Then, we can acquire the ATT-DRNN algorithm by using the

adaptive three-step general Taylor-type discretization formula (42)

to discretize the ACRNN model (41), which can be written as

follows:

χk+1
.= 6a

2a−1χk − 6a+1
2a−1χk−1 + 2a

2a−1χk−2

− 2
2a−1Mk

[

σk
(

−Vkχk − ̺k

)

− h
(

Hkχk + gk
)]

, (43)

where the solution step size h = σkζk is generally set at the range of

(0, 1). Moreover, three initial state vectors χk with k = 0, 1, 2 are

necessary to start up the proposed ATT-DRNN algorithm (43). The

first one χ0 consists of 00, λ0, and µ0, where 00 is determined by

the initial joint-velocity vectors of the LA and RA, while λ0 and µ0

are relatively arbitrarily set. The remaining initial state vectors can

be generated by utilizing an adaptive Euler-type DRNN algorithm,

which can be obtained by applying adaptive Euler forward formula

to discretize the ACRNN model (41), i.e., χk+1
.= χk + σkχ̇k with

χ̇k = Mk

[

−Vkχk − ̺k − ζk
(

Hkχk + gk
)]

.

Remark 2.5: By observing (37), it is evident that the adaptive

sampling period σk continuously adjusts according to the changes

in the RE ‖ek‖2, with an increase in the RE ‖ek‖2 and a decrease in

the sampling period σk, and vice versa.

Remark 2.6: By observing (38), it is evident that the adaptive

convergence factor ζk continuously adjusts according to the

changes in the RE ‖ek‖2, when the RE ‖ek‖2 increases, the adaptive
convergence factor ζk grows, leading to a higher convergence rate,

and vice versa.

Remark 2.7: The solution step size h procured through

multiplying σk and ζk is always a positive constant. By observing

Equations (37) and (38) simultaneously, it can be easily found

that σk and ζk exhibit the reciprocal states to each other. That

is to say, when the RE ‖ek‖2 is large, the algorithm will adjust

and yield a smaller sampling period σk and a larger convergence

factor ζk to guarantee a rapid convergence of the algorithm in

an extremely short sampling time; on the contrary, when the RE

‖ek‖2 reduces, the algorithm will adaptively increase the sampling

period σk and simultaneously decrease the convergence factor ζk.

By decreasing the sampling period and increasing the convergence

rate, the algorithm can promptly complete the calculation and

improve its computational efficiency. Therefore, the ATT-DRNN

algorithm (43) can consider both computational accuracy and

convergence efficiency during the calculation process.

3 Theoretical analyses and results

This section theoretically analyzes the convergence property

of the ACRNN model (41) and the computational precision of

the ATT-DRNN algorithm (43) for solving the TVQP problem

(27)–(29).

Theorem 1:With the parameters h, p, q, δ > 0 of the continuous

adaptive convergence factor ζ (t), the RE
∥

∥e(t)
∥

∥

2
generated by the

ACRNNmodel (41) exponentially converges to zero in a large-scale

manner with the exponential convergence rate at least being hpδ/q.

Proof: To begin with, by exploiting the EE (31), a Lyapunov

function can be chosen as follows:

L(t) =
∥

∥e(t)
∥

∥

2

2

2
. (44)

Then, the time derivative of the function L(t) is obtained by

referring to (40):

L̇(t) = eT(t)ė(t) = −ζ (t)
∥

∥e(t)
∥

∥

2

2
. (45)

Observing (44) and (45), one can draw the following

conclusions.

(1) If and only if e(t) = 0, L(t) = 0; otherwise, L(t) > 0.

(2) If and only if e(t) = 0, L̇(t) = 0; otherwise, L̇(t) < 0.

In other words, the function L(t) is positive definite and its

derivative L̇(t) is negative definite, which satisfies the Lyapunov

stability theory conditions (Isidori, 1989). Thus, it can be concluded

that the RE
∥

∥e(t)
∥

∥

2
converges to zero in a large-scale manner.

Second, by reconstructing and expanding (45), we acquire

L̇(t) = −2
h

(

p+
∥

∥e(t)
∥

∥

2

)δ

q

∥

∥e(t)
∥

∥

2

2

2
= −2

h
(

p+
∥

∥e(t)
∥

∥

2

)δ

q
L(t).

(46)

Furthermore, based on (46), the following inequality can be

further formulated as follows:

L̇(t) = −2
h

(

p+
∥

∥e(t)
∥

∥

2

)δ

q
L(t) ≤ −2

hpδ

q
L(t). (47)

Attempting to figure out the inequality (47), we get

∥

∥e(t)
∥

∥

2

2

2
≤

∥

∥e(0)
∥

∥

2

2

2
exp

(

−2
hpδ

q
t

)

, (48)
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and the inequality (48) can be further formulated as

∥

∥e(t)
∥

∥

2
≤

∥

∥e(0)
∥

∥

2
exp

(

−hpδ

q
t

)

. (49)

Until now, in accordance with the inequality (49), we can

conclude that the RE
∥

∥e(t)
∥

∥

2
of the ACRNN model (41)

exponentially converges to zero in a large-scale manner with the

exponential convergence rate at least being hpδ/q, which completes

the proof. �

Theorem 2: With the parameters h, p, q, δ > 0 of the adaptive

sampling period σk, the ATT-DRNN algorithm (43) is zero-stable

and convergent with the TE of order O((q/pδ)3). In addition,

the theoretical solution of TVES problem (30) converged by the

ATT-DRNN algorithm (43) with a maximal steady-status RE

limk→∞ sup
∥

∥ek+1

∥

∥

2
bing of order O((q/pδ)3).

Proof: First, drawing on the experience of Hu et al. (2018),

it testified that the adaptive three-step general Taylor-type

discretization formula (42) meets the conditions of zero-stable and

convergent, which has a TE term O(σ 2).

By using the adaptive three-step general Taylor-type

discretization formula (42) to discretize the ACRNN model

(41), the new ATT-DRNN algorithm (43) can be rewritten as

follows:

χk+1 = 6a
2a−1χk − 6a+1

2a−1χk−1 + 2a
2a−1χk−2

− 2
2a−1Mk

[

σk
(

−Vkχk − ̺k

)

− h
(

Hkχk + gk
)]

+ O(σ 3
k
), (50)

where O(σ 3
k
) is the TE term.

Due to the development process recommended above, it is

distinct that the ATT-DRNN algorithm (43) originating from (50)

is also zero-stable and similarly convergent with the TE of order

O(σ 3
k
). Therefore, we get

lim
k→∞

σk = lim
k→∞

q
(

p+ ‖ek‖2
)δ

= q

pδ
, (51)

which means that the TE term for the ATT-DRNN algorithm (43)

is O((q/pδ)3).

Then, based on the ATT-DRNN algorithm (43), the theoretical

solution χ∗
k+1

of TVES problem (30) can be expressed as follows:

χ∗
k+1 = χk+1 + O((q/pδ)3). (52)

In addition, it is known that the theoretical solution χ∗
k+1

of

the TVES problem (30) satisfies Hk+1χ
∗
k+1

+ gk+1 = 0. Thus, by

combining (51) with (52), we can draw the following conclusion:

lim
k→∞

sup
∥

∥ek+1

∥

∥

2

= lim
k→∞

sup
∥

∥Hk+1χk+1 + gk+1

∥

∥

2

= lim
k→∞

sup
∥

∥Hk+1χ
∗
k+1 + gk+1 −Hk+1O(σ

3
k )

∥

∥

2

= lim
k→∞

sup
∥

∥Hk+1O(σ
3
k )

∥

∥

2

≤ lim
k→∞

sup(
∥

∥Hk+1

∥

∥

F

∥

∥O(σ 3
k )

∥

∥

2
) = O((q/pδ)3). (53)

Based on (53), it can be concluded that the maximal steady-

status RE limk→∞ sup
∥

∥ek+1

∥

∥

2
generated by the ATT-DRNN

algorithm (43) is O((q/pδ)3). Thus, we complete the proof. �

4 Illustrative examples

In this section, a numerical simulation example is provided

first and explored to state explicitly the remarkable competence

of the devised ATT-DRNN algorithm (43) when tackling the

TVQP problem (27)–(29). Then, two examples of dual-arm robot

control are provided to demonstrate the effectiveness of the devised

ATT-DRNN algorithm (43) in addressing the proposed DAPCMC

scheme (27)–(29). Meanwhile, we utilize the CTT-DRNN

algorithm (36) and the CET-DRNN algorithm in Wu and Zhang

(2023) for comparisons to show the superior performance of the

devised ATT-DRNN algorithm (43). To help readers understand

the algorithm implementation process, the pseudo-code of the

proposed ATT-DRNN algorithm (43) for addressing the DAPCMC

scheme (27)–(29) is presented in Algorithm 1.

1. Set: α, β, ξ, a, h, p, q, δ, Te, γ, z±
L
, z±

R
, ż±

L
,

ż±
R
;

2. Initialize: zL(0), zR(0), 0L(0), 0R(0), λ(0), µ(0),

t(0);

3. while tk ≤ Te do

4. Generate 0
±
L
(tk), 0

±
R

(tk) from the JCLS;

5. Compute H(tk), χ(tk), g(tk), M(tk), V(tk), ̺(tk), V(tk),

σ (tk), ζ (tk);

6. if k = 0, 1 then

7. Compute χ(tk+1) via the adaptive Euler-type

DRNN algorithm:

χ(tk+1)
.= χ(tk)+ σ (tk)χ̇(tk);

8. else

9. Compute χ(tk+1) via the ATT-DRNN algorithm:

χ(tk+1)
.= 6a

2a− 1
χ(tk)−

6a+ 1

2a− 1
χ(tk−1)+

2a

2a− 1
χ(tk−2)

− 2

2a− 1
σ (tk)χ̇(tk);

10. Obtain 0L(tk+1) from the first n elements of

χ(tk+1) and 0R(tk+1) from the n+ 1

to 2n elements of χ(tk+1);

11. if k = 0 then

12. Compute zL(tk+1) = zL(tk)+ σ (tk)0L(tk+1),

zR(tk+1) = zR(tk)+ σ (tk)0R(tk+1);

13. else

14. Compute zL(tk+1) = 4
3zL(tk)− 1

3zL(tk−1)+ 2
3σ (tk)0L(tk+1),

zR(tk+1) = 4
3zR(tk)− 1

3zR(tk−1)+ 2
3σ (tk)0R(tk+1);

15. Update tk+1 = tk + σ (tk);

16. end

Algorithm 1. Pseudo-code of the proposed ATT-DRNN algorithm (43) for

addressing the DAPCMC scheme (27)–(29).

4.1 Numerical simulation verification

A specific TVQP problem with equality and
inequality constraints is provided, the details of which are
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outlined below:

min.
0(t)

[cos(3t)/6+ 1]02
1(t)+ sin(t)01(t)02(t)

+ cos(3t)01(t)03(t)+ 2 sin(t)01(t)

+[sin(3t)/6+ 1]02
2(t)+ [sin(2t)+ 1]02(t)04(t)

+ 2 cos(t)02(t)− [cos(t)/2+ 1/2]02
3(t)

+ [cos(2t)03(t)04(t)]/2+ sin(2t)03(t)

− [sin(t)/2+ 1/2]02
4(t)+ cos(2t)04(t)

s.t.− t sin(t/2)01(t)+ {[4 cos(t/2)]/5+ 1/5}02(t) = t sin(2t + 1)

− [3 cos(9t/10)]/203(t)+ sin(9t/10)04(t) = − cos(3t/2)/2− 3/10

− 0.2 sin(3t)− 1.2 ≤ 01(t),02(t),03(t),04(t) ≤ 0.2 sin(3t)+ 1.2

(54)

where 0(t) = [01(t),02(t),03(t),04(t)]
T. By referring to the

standard form of the TVQP problem (27)–(29), the corresponding
coefficients are as follows:

U(t) =









cos(3t)/3+ 2 sin(t) cos(3t) 0

sin(t) sin(3t)/3+ 2 0 sin(2t)+ 1

cos(3t) 0 − cos(t)− 1 cos(2t)/2

0 sin(2t)+ 1 cos(2t)/2 − sin(t)− 1









∈ R
4×4

ϕ(t) =
[

sin(t) cos(t) sin(2t) cos(2t)
]

∈ R
4

A(t) =
[

−t sin(t/2) [4 cos(t/2)]/5+ 1/5 0 0

0 0 −[3 cos(9t/10)]/2 sin(9t/10)

]

∈ R
2×4

B(t) =
[

I4×4

−I4×4

]

∈ R
8×4

c(t) =
[

t sin(2t + 1)

− cos(3t/2)/2− 3/10

]

∈ R
2

d(t) =
[

0.2 sin(3t)+ 1.2
]

8×1
∈ R

8.

To successfully address the above TVQP problem (54) using

the ATT-DRNN algorithm (42), we set parameters h = 0.1, p = 5,

q = 0.05, and γ = 0.001; the initial values of 0(0),λ(0), and

µ(0) are set to random values at the range of (0, 0.001). Then, the

entire simulation calculation time in the program is uniformly set

to Te = 4 s. Besides, we set the fixed sampling period σ = 0.01 s

for the CTT-DRNN algorithm (36) and the CET-DRNN algorithm

in Wu and Zhang (2023).

Figure 2A shows the element trajectories of the status vector

0(t) generated by the ATT-DRNN algorithm (43) with a = −0.3

and δ = 2, which are strictly confined to the ranges of inequality

constraints. Meanwhile, it can be seen from Figure 2B that the

equality constraint A(t)0(t) of the TVQP problem (54) can be

promptly satisfied and can consistently maintain this state. To

save space, the solving states of the proposed algorithm (43) with

different a and δ, as well as similar figures of other algorithms, are

omitted.

In order to research the impact of δ on the solving results of

the ATT-DRNN algorithm (43), the variation trajectory of the RE
∥

∥e(t)
∥

∥

2
when taking different δ with a = −0.3 is exhibited in

Figure 2C. As we can see that, when entering the steady state, the

RE
∥

∥e(t)
∥

∥

2
maintains at around 10−4 with δ = 1, 10−6 with δ = 2,

and 10−8 with δ = 3. In other words, as the setting value of δ

increases, the convergence speed of the ATT-DRNN algorithm (43)

is accelerated, and the solution precision is higher.

To demonstrate the excellent performance of the proposed

ATT-DRNN algorithm (43) compared with other conventional

algorithms, we further investigate the REs
∥

∥e(t)
∥

∥

2
generated by the

algorithms of ATT-DRNN (43) with δ = 2, CTT-DRNN (36) and

CET-DRNN in Wu and Zhang (2023) by figuring out the TVQP

problem (54), respectively. The REs
∥

∥e(t)
∥

∥

2
synthesized by these

three algorithms with different a are displayed in Figure 2D. It can

be seen that the RE
∥

∥e(t)
∥

∥

2
generated by the ATT-DRNN algorithm

(43) with δ = 2 and different a values can converge as small as

10−6 in approximately 0.3 s. The REs
∥

∥e(t)
∥

∥

2
generated by the

CTT-DRNN algorithm (36) with different a values can converge to

roughly 10−4 in 1 s. The RE
∥

∥e(t)
∥

∥

2
generated by the CET-DRNN

algorithm in Wu and Zhang (2023) merely converges to around

10−2 in 0.5 s. Overall, the solution accuracy and convergence

rate of the ATT-DRNN algorithm (43) are superior to the other

two conventional algorithms. Besides, it can be concluded that

the computing precision of the ATT-DRNN algorithm (43) is

higher with the smaller absolute value of a chosen. In addition,

the variation curves of the adaptive sampling period σ (t) and

the adaptive convergence factor ζ (t) with different δ values are

portrayed in Figures 2E, F, separately, which indicate that σ (t) and

ζ (t) can converge and stabilize to their corresponding values in

an extremely short time. The greater the δ chosen, the smaller the

final stable value of σ (t) and the larger the final stable value of ζ (t).

Furthermore, during the solving process, as the RE
∥

∥e(t)
∥

∥

2
rapidly

converges and decreases at the beginning stage, the change of σ (t)

is inversely proportional to it, and the change of ζ (t) is directly

proportional to it, which is consistent with our previous analysis

conclusions from Remark 2.5 to Remark 2.7.

In summary, the several situations above confirm that the

ATT-DRNN algorithm (43) has an excellent ability to solve the

TVQP problem. Compared with other conventional algorithms,

the proposed algorithm has faster convergence speed and higher

precision.

4.2 Control case I of dual-arm robot

For this fraction, we establish a DAPCMC scheme consisting of

two UR5 robotic arms placed on the contralateral side, controlled

by the ATT-DRNN algorithm (43) for dual heart-shaped trajectory

tracking. In addition, the UR5 robotic arm is a sensitive lightweight

6-DOF robot, which has a small footprint and can be directly

installed in a narrow workspace to complete tasks with high

sensitivity requirements (Vivas and Sabater, 2021).

According to the design form of the DAPCMC scheme (27),

(28), we establish a particular TVQP problem for a UR5 dual-arm

robot consisting of two 6-DOF (with n = 6) UR5 robotic arms.

In this scheme, the LA and RA’s initial joint-angle vectors are set
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FIGURE 2

Numerical simulation results of the ATT-DRNN (43), CTT-DRNN (36), and CET-DRNN in Wu and Zhang (2023) algorithms for addressing the TVQP

problem (53), separately. (A) Status vector 0(t) under inequality constraint generated by the ATT-DRNN algorithm (43) with a = −0.3 and δ = 2. (B)

A(t)0(t) under equality constraint c(t) obtained by the ATT-DRNN algorithm (43) with a = −0.3 and δ = 2. (C) RE ‖e(t)‖2 generated by the ATT-DRNN

algorithm (43) with a = −0.3 and di�erent δ. (D) RE ‖e(t)‖2 by three algorithms with di�erent a and δ = 2. (E) Adaptive sampling period σ (t) with

di�erent δ. (F) Adaptive convergence factor ζ (t) with di�erent δ.

TABLE 2 The D-H parameters of UR5 robotic arm and its joint-angle and joint-velocity physical limits in the DAPCMC scheme (27)–(29).

Joint α̃ (rad) ã (m) ˜d (m) z (rad) z+ (rad) z− (rad) ż+ (rad/s) ż− (rad/s)

1 1.5708 0 0.0892 z1 1.5708 −1.5708 0.285 −0.285

2 0 −0.4250 0 z2 0 −3.1416 0.285 −0.285

3 0 −0.3923 0 z3 0 −3.1416 0.285 −0.285

4 1.5708 0 0.1092 z4 1.5708 −1.5708 0.285 −0.285

5 −1.5708 0 0.0948 z5 3.1416 0 0.285 −0.285

6 0 0 0.0825 z6 1.5708 −1.5708 0.285 −0.285

as zL(0) = [0,π/12,−4π/9, 13π/36,π/2, 0]T rad and zR(0) =
[0,−π/12, 4π/9,−13π/36,−π/2, 0]T rad, respectively; the LA and

RA’s initial joint-velocity vectors are set as żL(0) = żR(0) =
[0]6×1 rad/s. We set the design parameters as h = 0.2, p = 10,

q = 0.2, and δ = 2. Then, the other correlative parameters are

taken as a = −0.1, ξ = 5, and γ = 0.001; λ and µ are set to

random values at the range of (0, 0.001); α and β for two robotic

arms are uniformly set as 0.8 and 0.1. Besides, we set the fixed
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FIGURE 3

The ATT-DRNN algorithm (43) controls the posture collaboration motion of the UR5 dual-arm robot with two arms placed on the contralateral side

for the dual heart-shaped trajectory tracking. (A) Starting and terminal statuses of the dual-arm robot and the end-executor real and ideal trajectories

in 3D space. (B) Outlines of real trajectory and ideal path in a 3D space. (C) Variations of the LA joint angles zL(t). (D) Variations of the RA joint angles

zR(t). (E) Variations of the LA joint velocities 0̇L(t). (F) Variations of the RA joint velocities 0̇R(t). (G) Variations of the LA end-executor orientation

oRL(t). (H) Variations of the RA end-executor orientation oRR(t). (I) The RE ‖e(t)‖2 generated by three di�erent algorithms.

sampling period σ = 0.01 s for the CTT-DRNN algorithm (36)

and the CET-DRNN algorithm inWu and Zhang (2023). Moreover,

the D-H parameters of the UR5 robotic arm and its joint-angle and

joint-velocity physical limits in the DAPCMC scheme (27)–(29) are

exhibited in Table 2.

Figure 3A illustrates the movement trajectory outlines of the

dual-arm robot in a 3D space. It can be observed that the end-

executor real trajectory is unanimous with the ideal path and that

the joint-angle terminal status also perfectly overlaps with the

starting status for each side of the dual robotic arms, which can

be further confirmed by Figures 3C, D. Similarly, in Figure 3B,

the ATT-DRNN algorithm (43) controls the dual-arm robot to

achieve the posture collaboration motion and accomplish the dual

heart-shaped path tracking. Finally, Figures 3E, F outline the joint-

velocity variation curves for the joints of the left and right robotic

arms. Clearly, all the joint-velocity values are not beyond the joint-

velocity physical limits set at the beginning. Besides, the end-

executor orientation variation curves are shown in Figures 3G, H,

which remain constant during the task execution. Furthermore, in

Figure 3I, the RE
∥

∥e(t)
∥

∥

2
generated by the ATT-DRNN algorithm

(43) for addressing the DAPCMC scheme (27)-(29) maintains at

around 10−7. By contrast, the RE
∥

∥e(t)
∥

∥

2
generated by the CTT-

DRNN algorithm (36) keeps at roughly 10−4, and that generated

by the CET-DRNN algorithm in Wu and Zhang (2023) can merely

remain at about 10−2.

In addition, Figure 4 shows the position error variation curves

of the end-executor when the UR5 dual-arm robot tracks the dual

heart-shaped trajectory under the control of different algorithms.

In Figure 4A, the dual-arm robot controlled by the ATT-DRNN

algorithm (43) can accomplish the trajectory following task
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A B C

FIGURE 4

Variations of the end-executor position error when the UR5 dual-arm robot with two arms placed on the contralateral side to achieve the posture

collaboration motion for the dual heart-shaped trajectory tracking. (A) Generated by the ATT-DRNN algorithm (43). (B) Generated by the CTT-DRNN

algorithm (36). (C) Generated by the CET-DRNN algorithm in Wu and Zhang (2023).

FIGURE 5

Snapshots of the UR5 dual-arm robot with two arms placed on the contralateral side during the trajectory tracking task of the dual heart-shaped

path via the ATT-DRNN algorithm (43) solving the DAPCMC scheme (27)–(29). (A) Capturing at the starting moment. (B) Capturing at the

intermediate moment. (C) Capturing at the terminal moment.

accurately with the maximal position error of the end-executor

being less than 2.3 × 10−7 m. In Figure 4B, the dual-arm robot

controlled by the CTT-DRNN algorithm (36) can realize the

maximal tracking error of the end-executor no more than 2.3 ×
10−5 m. In Figure 4C, the dual-arm robot controlled by the CET-

DRNN algorithm in Wu and Zhang (2023) can merely ensure that

the position error of the end-executor is within 7× 10−4 m.

To further simulate the movement status of the dual-arm robot

vividly and intuitively in the physical scene, we utilize a virtual

robot experiment platform (i.e., CoppeliaSim 2020) to show the

real-time status of the dual-arm robot following the ideal paths

with the help of the ATT-DRNN algorithm (43) in solving the

DAPCMC scheme (27)–(29). Snapshots describing the movement

process (i.e., starting moment, intermediate moment, and terminal

moment) are shown in Figure 5.

4.3 Control case II of dual–arm robot

For this fraction, we establish a DAPCMC scheme consisting

of two UR5 robotic arms placed on the identical side, controlled by

the ATT-DRNN algorithm (43) for the heart-shaped and auspicious

cloud trajectory tracking.

According to the design form of the DAPCMC scheme (27),

(28), we establish another particular TVQP problem for a UR5

dual-arm robot consisting of two 6-DOF UR5 robotic arms. In

this scheme, the LA and RA’s initial joint-angle vectors are set as

zL(0) = zR(0) = [0,−π/12,−2π/3,π/4,−π/2, 0]T rad; the LA

and RA’s initial joint-velocity vectors are set as żL(0) = żR(0) =
[0]6×1 rad/s. We set the design parameters as h = 0.2, p = 5,

q = 0.05, and δ = 2. Then, the other correlative parameters are

taken as a = −0.5, ξ = 5, and γ = 0.001; λ and µ are set to

random values at the range of (0, 0.001); α and β for two robotic

arms are uniformly set as 0.8 and 0.1. Additionally, the joint-angle

and joint-velocity physical limits in the DAPCMC scheme (27)-(28)

are separately set as follows: z+
L

= 0.3 rad/s, z−
L

= −0.3 rad/s,

z−
R

= 0.54 rad/s, and z−
R

= −0.54 rad/s.

Figure 6A shows the movement trajectory outlines of the dual-

arm robot in a 3D space. It is evident that the end-executor

real trajectory aligns seamlessly with the ideal path. Moreover,

the terminal statuses of the joint angles for both robotic arms

precisely coincide with their initial ones, as corroborated by

the results presented in Figures 6C, D. Similarly, in Figure 6B,
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FIGURE 6

The ATT-DRNN algorithm (43) controls the posture collaboration motion of the UR5 dual-arm robot with two arms placed on the identical side for

the heart-shaped and auspicious cloud trajectory tracking. (A) Starting and terminal statuses of the dual-arm robot and the end-executor real and

ideal trajectories in a 3D space. (B) Outlines of real trajectory and ideal path in a 3D space. (C) Variations of the LA joint angles zL(t). (D) Variations of

the RA joint angles zR(t). (E) Variations of the LA joint velocities 0̇L(t). (F) Variations of the RA joint velocities 0̇R(t). (G) Variations of the LA

end-executor orientation oRL(t). (H) Variations of the RA end-executor orientation oRR(t). (I) The RE ‖e(t)‖2 generated by three di�erent algorithms.

the ATT-DRNN algorithm (43) controls the dual-arm robot to

realize the posture collaboration motion and accomplish the task

of tracking the heart-shaped and auspicious cloud trajectories

separately. Subsequently, Figures 6E, F delineate the joint-velocity

profiles of the left and right robotic arms. It is apparent that

none of the joint-velocity values exceed the predetermined physical

limits initially determined. Besides, the end-executor orientation

variation curves are shown in Figures 6G, H, which maintain a

constant state during the task execution. Furthermore, in Figure 6I,

the RE
∥

∥e(t)
∥

∥

2
generated by the ATT-DRNN algorithm (43)

maintains at approximately 10−6 and converges to a extremely

small value of 10−8. By contrast, the RE
∥

∥e(t)
∥

∥

2
generated

by the CTT-DRNN algorithm (36) keeps at roughly 10−3 and

converges to about 10−5 and that generated by the CET-DRNN

algorithm in Wu and Zhang (2023) can merely converge to

about 10−3.

In addition, Figure 7 shows the position error variation curves

of the end-executor when the UR5 dual-arm robot tracks the

heart-shaped and auspicious cloud trajectory under the control of

different algorithms. In Figure 7A, the dual-arm robot controlled

by the ATT-DRNN algorithm (43) can accomplish the trajectory

following task accurately with the maximal position error of the

end-executor being less than 1.0× 10−6 m. In Figure 7B, the dual-

arm robot controlled by the CTT-DRNN algorithm (36) can realize

the maximal position error of the end-executor no more than

1.2 × 10−4 m. In Figure 7C, the dual-arm robot controlled by the

CET-DRNN algorithm inWu and Zhang (2023) can merely ensure

that the position error of the end-executor is within 1.8× 10−3 m.
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A B C

FIGURE 7

Variations of the end-executor position error when the UR5 dual-arm robot with two arms placed on the identical side to achieve the posture

collaboration motion for the heart-shaped and auspicious cloud trajectory tracking. (A) Generated by the ATT-DRNN algorithm (43). (B) Generated

by the CTT-DRNN algorithm (36). (C) Generated by the CET-DRNN algorithm (Wu and Zhang, 2023).

FIGURE 8

Snapshots of the UR5 dual-arm robot with two arms placed on the identical side during the trajectory tracking task of the heart-shaped and

auspicious cloud path via the ATT-DRNN algorithm (43) solving the DAPCMC scheme (27)-(29). (A) Capturing at the starting moment. (B) Capturing

at the intermediate moment. (C) Capturing at the terminal moment.

To further simulate the movement status of the dual-arm robot

vividly and intuitively in the physical scene, we utilize the virtual

robot experiment platform to show the real-time status of the

dual-arm robot following the ideal paths with the help of the

ATT-DRNN algorithm (43) in solving the DAPCMC scheme (27)–

(29). Snapshots describing the movement process (i.e., starting

moment, intermediate moment, and terminal moment) are shown

in Figure 8.

In summary, the aforementioned two control cases of dual-arm

robots substantiate that the proposed DAPCMC scheme (27)–(29)

and its corresponding ATT-DRNN algorithm (43) can be utilized

for the posture collaboration control of the industrial robots

with joint physical limits considered and further demonstrate the

potential of the proposed scheme and algorithm to optimize the

efficiency and precision of repetitive trajectory tracking in practical

applications.

5 Conclusion

In this study, the ATT-DRNN algorithm (43) has been

devised for solving the DAPCMC scheme (27)–(29) with a

novel JLCS (7), (8). Additionally, theoretical analyses and results

have indicated the excellent performance of the ATT-DRNN

algorithm (43) and the ACRNN model (41) in terms of the

convergence rate and precision. Then, three illustrative examples

with comparisons have further demonstrated that the proposed

DAPCMC scheme (27)–(29) in a 3D space with the innovative

JLCS (7), (8) offers a new solution measure for realizing the posture

collaboration motion control of constrained dual-arm robots and

accomplishing repetitive trajectory following missions, and it can

be worked out by the ATT-DRNN algorithm (43) efficiently

and accurately.

Finally, some possible research directions in the future are put

forward.

• The whole design process of the ATT-DRNN algorithm

(43) is set in an ideal noiseless environment. Therefore,

enhancing the ATT-DRNN algorithm (43) with relevant anti-

noise technologies to make it possess strong robustness in

various noise environments is an interesting future research

direction.

• The ATT-DRNN algorithm (43) involves an explicit inverse

operation, which is computationally expensive. Thus,
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proposing an inverse-free ATT-DRNN algorithm is another

future research direction.

• Two robotic arms of the same model are used to

form a dual-arm robot in this study. Thus, achieving

the collaboration motion control by composing a

heterogenous multi-arm robot system is a meaningful future

research direction.

• Popularizing the ATT-DRNN design scheme to more kinds

of engineering applications (e.g., UAV flight control) is also a

significant future research direction.
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This study introduces a novel approach for enhancing robotic path planning

and navigation by optimizing point configuration through convolutional neural

networks (CNNs). Faced with the challenge of precise area coverage and

the ine�ciency of traditional traversal and intelligent algorithms (e.g., genetic

algorithms, particle swarm optimization) in point layout, we proposed a CNN-

based optimization model. This model not only tackles the issues of speed and

accuracy in point configuration with Gaussian distribution characteristics but

also significantly improves the robot’s capability to e�ciently navigate and cover

designated areas with high precision. Our methodology begins with defining

a coverage index, followed by an optimization model that integrates polygon

image features with the variability of Gaussian distribution. The proposed CNN

model is trained with datasets generated from systematic point configurations,

which then predicts optimal layouts for enhanced navigation. Our method

achieves an experimental result error of <8% on the test dataset. The results

validate e�ectiveness of the proposed model in achieving e�cient and accurate

path planning for robotic systems.

KEYWORDS

robotic path planning, precise area coverage, optimized point configuration,

convolutional neural networks, navigation

1 Introduction

In the domain of robotic path planning and navigation, the strategic configuration of

points, particularly those with Gaussian distribution characteristics within polygonal areas,

is fundamental to enhancing efficiency and precision in covering specific regions (Chao

et al., 2023; Cui et al., 2023; Wu X. et al., 2023). The concept of coverage fraction is pivotal

in evaluating the effectiveness of these configurations. Due to the inherent randomness

and the possibility of overlapping point coverage, the direct derivation of analytical models

for calculating the coverage fraction proves to be a formidable challenge. This complexity

necessitates a shift toward discretization, transforming the continuous challenge into a

discrete problem that can be methodically approximated. Traditional methods, such as

sequential traversal, while methodical, are markedly inefficient and unable to satisfy the

exigencies of rapid, real-time decision-making essential in autonomous navigation. Lu

et al. (2019) and Jie et al. (2023) reveal attempts to address these limitations, with genetic

algorithms and particle swarm optimization offering efficiency improvements.
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However, these methods still suffer from significant drawbacks,

including sensitivity to computation times and unpredictability in

outcomes, which hinder their applicability in scenarios demanding

high precision and responsiveness. Addressing these challenges,

our research plays a pivotal role in the exploitation of deep learning

networks (Simsekli et al., 2019), which is renowned for their

robust learning capacities and adaptability. This study unfolds in

progressive stages: it commences with establishing an optimal point

configuration algorithm derived from the traversal methodology

(Luo et al., 2020; Hu et al., 2021; Heßler and Irnich, 2022).

It then advances to devising a method for generating random

polygons, analyzing the elements that impact traversal searches,

and determining the optimal traversal strides for generating

models for optimal point configuration. The cornerstone of our

approach is the application of feature extraction and dimensionality

reduction techniques on the conditions triggering configuration

and facilitating the creation of a convolutional neural network

(CNN)-based model for point configuration (Jing et al., 2022).

This model is meticulously trained on a dataset designed to reflect

various polygon shapes and configurations, paving the way for an

innovative approach to path planning and navigation. Our findings,

which are supported by simulation and practical implementation,

demonstrate the model’s unparalleled effectiveness and efficiency.

The CNN-based approach significantly outperforms the traversal

engineering algorithm, genetic algorithm, and particle swarm

optimization (Langazane and Saha, 2022; Aote et al., 2023) in

terms of speed, accuracy, and real-time adaptability, heralding a

new era in robotic navigation. By optimizing point configuration

through deep learning, robots can now navigate and cover specific

areas with unprecedented precision, marking a milestone in the

quest for advanced robotic path planning and navigation solutions.

This introduction sets the stage for a detailed exploration of

our methodology, the neural network model, and the profound

implications of our study in the broader context of robotics

and autonomous systems. The contributions of this study are as

follows:

1. We proposed an optimal point configuration algorithm derived

from the traversal methodology.

2. We proposed a method for generating random polygons,

analyzing the elements that impact traversal searches, and

determining the optimal traversal strides for generating models

for optimal point configuration.

3. We use a convolutional neural network (CNN)-based model

for point configuration and application of feature extraction

and dimensionality reduction techniques on the conditions

triggering configuration.

The structure of this study is as follows: In Section 2, we review

the work related to this study. In Sections 3–5, we describe our

proposed algorithm in detail. In Section 6, we report the simulation

realization and result analysis.

2 Related work

There are many path planning methods, and their application

ranges vary according to their own advantages and disadvantages.

Based on the study of commonly used path-planning algorithms

in various fields, the algorithms are classified into four categories

according to the sequence of discovery and the basic principles

of the algorithms: traditional algorithms, graphical algorithms,

intelligent bionic algorithms, and other algorithms.

2.1 Traditional algorithms

Traditional path planning algorithms include simulated

annealing (SA) algorithms and artificial potential field algorithms.

SA (Wang et al., 2018) algorithm is an efficient approximation

algorithm for large-scale combinatorial optimization problems. It

uses the neighborhood structure of the solution space to perform

a stochastic search. It has the advantages of simple description,

flexible use, high operation efficiency, and less restriction of

initial conditions, but it has the defects of slow convergence and

randomness.

The artificial potential field (Khatib, 1986; Sciavicco and

Siciliano, 1988) algorithms imitate the motion of objects under

gravitational repulsion and perform path optimization by

establishing the gravitational field repulsive field function. The

advantage is that the planned path is a smooth and safe simple

description, but there is the problem of local optimization.

2.2 Graphical algorithms

Traditional algorithms often have the problem of difficult

modeling when solving real problems, and graphical methods

provide the basic method of modeling, but graphical methods

generally have a lack of search capability and often need to be

combined with specialized search algorithms. Graphical algorithms

include C-space algorithms and grid algorithms.

C-space algorithms (Yu and Gupta, 2004) expand the obstacles

as polygons in the motion space and search for the shortest path

by taking the start point, the endpoint, and the feasible straight line

between all the vertices of the polygons as the range of the path. The

advantage of the c-space algorithm over the spatial method is that

it is intuitive and easy to find the shortest path; the disadvantage

is that once the start point and the goal point are changed, it is

necessary to re-construct the viewable graph, which is a lack of

flexibility.

Grid algorithm (Mansor and Morris, 1999) is to use encoded

raster to represent the map; the raster containing obstacles is

labeled as an obstacle raster, and vice versa is a free raster, which

is used as the basis for path search. The Grid algorithm is generally

used as an environmental modeling technique for path planning,

and it is difficult to solve the problem of complex environmental

information as a path planning method.

2.3 Intelligent bionics algorithm

When dealing with path planning problems in the case of

complex dynamic environmental information, revelations from

nature can often play a good role. Intelligent bionics algorithms are

algorithms discovered through bionic research and commonly used

Frontiers inNeurorobotics 02 frontiersin.org52

https://doi.org/10.3389/fnbot.2024.1406658
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wu et al. 10.3389/fnbot.2024.1406658

ones include ant colony algorithms, neural network algorithms,

particle swarm algorithms, and genetic algorithms.

Ant colony algorithm (Wu L. et al., 2023) achieves its goal

by iterating to simulate the behavior of ant colony foraging. It

has the advantages of good global optimization ability, intrinsic

parallelism, and ease of implementation by computer, but it is

computationally intensive and easy to fall into local optimal

solutions, although it can be improved by adding elite ants and

other methods.

Neural network algorithm (Nair and Supriya, 2020; Yu et al.,

2020) is an excellent algorithm in the field of artificial intelligence,

but its application in path planning is not successful because the

complex and changing environment in path planning is difficult to

be described by mathematical formulas. Although neural networks

have excellent learning ability, poor generalization ability is its

fatal flaw. However, because of its strong learning ability and good

robustness, its combined application with other algorithms has

become a hot research topic in the field of path planning.

Genetic Algorithm (GA) (Shao, 2021; Luan and Thinh,

2023) is an important research branch of contemporary artificial

intelligence science. It is an iterative process search algorithm

realized according to the principle of genetics. The biggest

advantage is that it is easy to combine with other algorithms and

give full play to its own iterative advantages, and the disadvantage

is that the computational efficiency is not high.

Particle Swarm Optimization (Das and Jena, 2020; Zhang et al.,

2020) is an iterative algorithm that simulates the behavior of birds

in flight. Similar to the genetic algorithm, it starts from a random

solution and iteratively searches for an optimal solution, but it has

simpler rules than the genetic algorithm, and it does not have the

“crossover" and “mutation" operations of the genetic algorithm. It

searches for the global optimumby following the currently searched

optimal value. It has the advantages of a simple algorithm, easy to

implement, good robustness, not very sensitive to the size of the

population, and fast convergence, but it is easy to fall into the local

optimal solution.

3 Calculation of fraction of coverage
based on polygon discretization

3.1 Definition of fraction of coverage

When points with Gaussian distribution are arranged in any

polygon, and the measurement index is selected as the polygon

fraction of coverage, the calculation result of the index is affected

by the Gaussian distribution characteristics of the points, the size

of the polygon, and the control range of the Gaussian points and

other factors (Chen et al., 2021).

The calculation of point coverage is influenced by the

randomness of the points. The method for calculating the point

coverage rate is shown in Equation (1), and the joint probability

density distribution function is shown in Equation (2). Given the

influence of repeated coverage, it is difficult to directly solve the

polygon fraction of coverage using the analytical method so that it

can be calculated by discretization.

FIGURE 1

Schematic diagram of Coverage Index Calculation.

p =
sf

s
(1)

where sf refers to the point coverage, which represents the area

of the intersection area between the shadow part and the polygon

in the schematic diagram; s is the polygon area. The Schematic

Diagram of Coverage Index Calculation is shown in Figure 1.

f (x, z) = 1

2πσ 2
exp

(

− (x−mx)
2+(z−mz)

2

2σ 2

)

(2)

where mx, mz represent the point configuration coordinates and

σ represents the root mean square error of point Gaussian

distribution.

3.2 Polygon discretization

For a polygon with an arbitrary shape, taking the lower

left vertex as the coordinate origin and any one of the two

sides connected with the change point as the Z-axis, a Cartesian

coordinate system is established to discretize the polygon (Lei et al.,

2020), and then, the coordinate calculation of any grid center point

of the polygon outer envelope rectangle is shown in Equation (3).











xij = xmin + xmax−xmin
n·i

zij = zmin + zmax−zmin
m·j

(i = 1, 2, . . . , n; j = 1, 2, . . . ,m)

(3)

where n, m represent the number of discrete polygons in x and z

directions; xmin, xmax represent the boundary range of the polygon
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in the x direction; zmin, zmax represent the boundary range of the

polygon in the z direction.

The ray method is used to judge all the discrete points of the

polygon outer envelope rectangle, in turn, and then, the polygon

can be discretized (Cheng et al., 2019; Chappell et al., 2021; Siyu

et al., 2022). Steps to determine whether a point is within a polygon

based on the ray method:

• Step 1: Taking the center coordinate of the discrete grid point

as the starting point, the ray is made along any direction,

and the intersection relationship between the ray and the line

segment composed of two adjacent points of the polygon is

judged, in turn.

• Step 2: If the discrete grid point is on the polygon vertex, it

is judged that the grid point is inside the polygon; if the ray

and the line segment overlap, it is judged that the grid point

is inside the polygon; regarding the odd and even case of the

number of intersection points, if it is odd, the point is inside

the polygon, and otherwise, the point is outside the polygon.

3.3 Calculation of fraction of coverage

Based on the polygon discretization, the probability of the grid

is approximately replaced by the probability of the grid center

point. Therefore, when n points with Gaussian distribution are

arranged within any polygon, the coverage probability of the kth

point for any discrete point of the polygon is calculated as shown in

Equation (4), and a given point is the configuration result (Kamra

and Liu, 2021), the fraction of coverage of n points for this grid

point is calculated as shown in Equation (5).







pkij =
∫∫

J≤d2
f (x, z) dx dz

J(x, z) = (xij − x2)+ (zij − z)2
(4)

where d represents the control range of the point, xij and zij denote

the x and z coordinates of the discrete point, respectively.

pij = 1−
n

∏

k=1

(1− pkij) (5)

where pkij represents the coverage of the Kth point and n represents

n points with Gaussian distribution within the polygon.

4 Sample generation model of
optimal point configuration

4.1 Sample generation process of optimal
point configuration

Given the input polygons, the Gaussian distribution

characteristics of the points, configuration information, and

control range, we can use Equations (3–5) to calculate the fraction

of coverage. The calculation is carried out by traversing all the

point combinations on the inner grid points of the polygon,

FIGURE 2

Sample generation process of point configuration.

in turn, so that the maximum fraction of coverage and the

corresponding point configuration results can be obtained; that

is, a deep learning training sample can be obtained. Many training

samples for point configuration can be generated by introducing

variations in polygon shapes, Gaussian distribution characteristics,

and control range. The sample generation process is shown in

Figure 2.

4.2 Random polygon generation

In the region m times n, several random points are constructed

according to the polygon edge number by using the coordinates of

random function generation points (De Goes et al., 2020). Equation
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(6) was used to generate the coordinates of the polygon’s vertices

randomly.

{

xi = m · rand
zi = n · rand (6)

where rand represents a function of a random number with

a probability density between [0, 1] that follows a uniform

distribution.

Polygon construction: Take the point with the largest X

coordinate as the starting point (x0, z0). If there is more than

one maximum X coordinate, take the point with the smallest

Z coordinate, calculate the tangent value of the included angle

between the connecting line between the (x0, z0) point and other

points and the horizontal line in turn, then sort by the tangent

value, and label the points in turn to form a random polygon.

4.3 Traversal stride optimization

4.3.1 Traversal stride optimization process
With the increase in the number of configuration points,

the number of traversal searches increases exponentially, and the

grid discretization method leads to the low efficiency of sample

generation in the index calculation. While generating data sets by

running code, the traversal size can be optimized according to

the Gaussian distribution characteristics of points. The calculation

process of Equations (4, 5) shows that the calculation of the fraction

of coverage is influenced by polygon size, point control radius,

and mean square error and can be changed proportionally, such

as point configuration coordinates, polygon vertex coordinates,

point control radius, and mean square error are all expanded

by 10 times. The calculation result of a fraction of coverage

is the same as the original condition. Therefore, during the

optimization of the traversal stride, the outer boundary size of the

polygon can be fixed, and the influence of point control radius

and mean square error on traversal stride under this condition

is studied, and the influence law under general conditions is

extended.

In this study, when the mean square error is different,

by changing the traversal stride and comparing the code

running efficiency and the point configuration accuracy under

different traversal strides, an appropriate stride is determined

to meet the requirements of both running efficiency and

accuracy within an acceptable range. The test process is as

follows:

• Step 1: Randomly generate a polygon in a fixed outer boundary

range n× n;

• Step 2: Take the typical control radius R and the typical mean

square error σ ; the calculation method is shown in Equation

(7);

{

R = k× n
100 (k = 1, 2, . . . , 50)

σ = k× n
100 (k = 1, 2, . . . , 50)

(7)

TABLE 1 Test of coordinates of polygon vertices.

SN x z SN x z

1 4.755 1.545 5 –38.907 18.308

2 7.598 4.822 6 –50 0.2153

3 –1.63 25.948 7 –4.646 –73.853

4 –20.572 28.315 8 24.721 –76.084

TABLE 2 Test results under σ = 5m and R = 20m.

Traversal stride 0.001 n 0.005 n 0.01 n

Point configuration results (–16, –27) (–20, –15) (–20, –30)

Fraction of coverage 0.2464 0.2464 0.2464

Time consumed for calculation 2.835 s 143 s 33 s

• Step 3: Calculate the results of optimal configuration points

under the conditions of configuring one point, two points,

three points, and four points;

• Step 4: Compare the calculation results of the

configuration ratio with the typical traversal

stride. The calculation method is shown in

Equation (8);

d = k× n

100
(k = 1, 2, . . . , 50) (8)

• Step 5: Determine the optimization criterion of stride by

polynomial fitting calculation and obtain the function form of

Equation (9).

d = f
(

R, σ , nf , numberm
)

(9)

4.3.2 Determination of traversal stride criteria
Simulation conditions: Randomly generate an octagon in the

range of 200 m× 200 m for the experiment, and the coordinates of

polygon vertices are shown in Table 1.

When the selected traversal strides are d = 0.001 n, d = 0.005

n, and d = 0.01 n, respectively, the results obtained with these

parameter values are shown in Table 2.

The stride determination criteria are obtained by fitting the

calculation of Equation (9). In conclusion, the calculation efficiency

can be improved by optimizing the traversal stride when the

engineering algorithm generates data sets. A large number of data

about the coordinates of polygon vertices, optimal configuration

point coordinates, and the fraction of coverage can be calculated

through engineering algorithms. These data can be used as

annotation data of pictures for deep learning. After traversal

calculation, data about polygon graphics, configuration point

coordinates, and the fraction of coverage will be obtained, which

will be stored and used as sample sets for deep learning model

training.
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FIGURE 3

Schematic Diagram of trigger condition feature coding.

5 Optimization model of point
configuration based on deep learning

5.1 Feature extraction of trigger conditions

The trigger conditions mainly include fraction of coverage

index, number of points, polygon edge number, Gaussian

distribution characteristics of points, and control radius, as

shown in Figure 3. In this study, the trigger condition features

are extracted manually. The characteristic labels with practical

significance are extracted according to the characteristics of

the problem. The manually extracted labels can help us better

understand the practical significance of the trigger conditions.

To facilitate the construction of training data sets, it is the basis

and premise that the training model can accurately recommend

scientific and reasonable point configuration by constructing a

fixed-length input vector and using the spliced feature coding as

the input of the deep neural network to help the model better

understand the trigger conditions of the plan (Yang and Shami,

2020).

5.2 Construction of point configuration
model based on deep neural network

Deep neural networks are mainly divided into three categories:

• Fully connected deep neural network is similar to themultilayer

Perceptron network. The neurons between hidden layers

transmit information in the form of full connection, and the

number of layers of neural networks determines the learning

ability of the model (Arora et al., 2019).

• Deep convolutional neural network mainly deals with data

with strong spatial locality and uses convolution kernel as

“medium”; the output vector dimension of each layer is

determined by convolution kernel, which is mainly used in

image recognition, target detection, image segmentation, and

other fields (Elhassouny and Smarandache, 2019).

• Recurrent neural network has a strong spatial correlation

in processing data, mainly used in fields such as speech

recognition, machine translation, and video processing (Yu

et al., 2019). In view of the feature coding of the trigger, and

the condition is a one-dimensional vector extracted from text

data, it has no time and space correlation. Therefore, this study

builds a point configuration model by the fully connected

deep neural network, in which the input is the feature vector

extracted from the model, the output is the grid point of point

configuration, and each neural network layer in the hidden

layer is composed of many neurons. The output of this model

is calculated using Equation (10).

Output = ReLU
([

x1 x2 · · · xn
]

· Ew+ Eb
)

(10)

5.3 Polygon dimension reduction
processing based on deletion point
approximation method

In the actual polygon point configuration, the polygon edge

number may exceed the maximum limit of feature label design

(Venkateswara Reddy et al., 2022). The idea of deletion point

approximation is used to reduce the polygon dimension, assuming

that the vertices of the polygon are represented by (V0~Vn), and the

realization process of polygon dimension reduction is as follows:

• Step 1: Calculate the polygon area by Ear Clipping;

Definition: Ear Tip refers to the three consecutive

vertices V0, V1, and V2 of the polygon. If the connecting

line V0, V2 is a diagonal of the polygon, V1 is an Ear Tip.

Calculation of polygon area based on Ear Clipping;
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(a) Establish a bidirectional linked list V0 of polygon

vertices;

(b) Construct an initial convex vertex set C and a concave

vertex set R, and construct an initial Ear Tips set E;

(c) Delete one element Vi from Ear Tips set and also

delete from the vertex set in the polygon at a time, add

the corresponding triangles <Vi−1,Vi,Vi+1> in the triangle

linked list, update the temporary vertices, and calculate

whether new convex vertices and Ear Tip are generated;

(d) Repeat Step 3 until only three vertices remain in the

linked list.

• Step 2: Delete V0, V1, ...,Vn, in turn and calculate the polygon

area after deleting nodes;

• Step 3: With the polygon area reduction ratio, calculated as

shown in Equation (11) and sorted from small to large;

p = 1− sk

s
(11)

where p represents the reduction ratio of the polygon’s area,

sk represents the area reduction ratio for the node being

considered for deletion, and s represents the initial area of the

polygon.

• Step 4: Delete the node with the smallest area reduction ratio

and judge whether it meets the design requirements of feature

label polygons, and if so, terminate the algorithm;

• Step 5: If the condition is not met, renumber the polygon after

node deletion, and then repeat steps 2–4.

6 Simulation realization and result
analysis

6.1 Simulation realization

The point configuration model based on convolutional neural

network mainly includes two modules: polygon shape feature

extraction module and regression fitting module.

TABLE 3 Module 1 convolutional neural network structure diagram.

Number
of input
channels

Number
of output
channels

Convolution
kernel

The first

convolution layer

3 32 3× 3× 64

The second

convolution layer

32 64 3× 3× 128

The third

convolution layer

64 128 3× 3× 256

The fourth

convolution layer

128 256 3× 3× 512

FIGURE 4

Schematic diagram of trigger condition feature coding.
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FIGURE 5

Network structure diagram of regression fitting module.

A

B

FIGURE 6

Training Convergence Process. (A) This is the RMSE of Training. (B) This is the loss of Training.
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A

B

FIGURE 7

Algorithm e�ciency with two-point configuration. (A) This is the RMSE = 1.0231 on the Training set. (B) This is the RMSE = 1.7802 on the Test set.

6.1.1 Polygon shape feature extraction module
The existing data sets include polygon pictures, polygon

vertex coordinates, mean square error and control radius of

Gaussian distribution, point configuration coordinate, and the

fraction of coverage. We start by flattening the data into one

dimension (it can also be flattened into 2-dimensional data, as

well as 3-dimensional data, but it should always be consistent

with the input layer data structure). The processed data are

then fed into a convolutional layer with a convolutional kernel

size of 3 × 1 channel of 16, outputting a 16-dimensional

data. The BN layer and Relu activation function are then

entered. Subsequent convolutional blocks operate similarly, but

the dimensionality of the output is doubled. Determining the

optimal number of convolutional layers and hyperparameters in

our experiments is crucial for building efficient deep learning

models, and given the scale of the parameters, we first determined

a smaller number of network layers. We use incremental

tuning of the number of network layers and hyperparameters,
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A

B

FIGURE 8

The comparison with CNN and RF. (A) Comparison of training set prediction result. (B) Comparison of test set prediction results.

starting with a smaller model and gradually increasing the

number of layers and tuning the hyperparameters, evaluating

the performance of the model after each increase until the

performance no longer improves or begins to decline. Finally,

considering the influence of polygon shape on the point

configuration results, four convolution layers are used to extract

the characteristics of polygon shape and output the corresponding

point configuration results (Zhao et al., 2021). The network

structure of the polygon shape feature extraction module is shown

in Figure 4.

After data processing, the image data are input into the input

layer in the form of a matrix. The image is originally composed of

24-bit RGB data, and all colored images can be represented by three

channel colors: red, green, and blue. Therefore, we can also achieve

image matrix transformation by using the RGB of each pixel in the

image. The generated image in the sample is 875 × 656 pixels. To

facilitate convolution processing, the size of all images in the data

set is adjusted to 510× 510, so the input images are converted into

a matrix set of 510 × 510 × 3. Take 90% of the data as the training

set and the remaining 10% as the test set.

To enable the image to recognize the shape of polygons after

convolution, four convolution layers are set in the deep learning

model, and the parameter settings of each layer are shown in

Table 3.

ReLU is used as an activation function, and average pooling is

selected in the pooling layer. The maximum number of training is

10,000, and the initial learning rate is 0.001. After four layers of

convolution, A1×4 matrix is output after the fully connected layer,

and then the point configuration result is obtained by regression

analysis.
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TABLE 4 Algorithm comparison results.

Number of targets Target I Target II Target III Target IV Target V Target VI

Control radius 20 20 20 20 20 20

Mean square error 5 5 5 5 5 5

Sample point (53, –34) (18, –46) (4, –43) (2, –4) (–27, 0) (–7, 17)

Configuration results (8, –39) (–17, –16) (–16, –3) (–13, –1) (8, –30) (53, –33)

Engineering algorithm

expectation

0.309937 0.274576 0.480930 0.379013 0.514694 0.656193

Time consumed for

engineering algorithm

484 s 499 s 472s 480 s 508 s 492 s

Point configuration (50, –37) (16, –40) (0, –40) (5, –39) (–27, 5) (–9, –18)

Results based on CNN (5, –37) (–15, –18) (–14, –1) (–11, –1) (5, –27) (50, –30)

Fraction of coverage 0.282662 0.256812 0.463702 0.349452 0.497282 0.656193

Time consumed for CNN 21 s 20 s 21 s 20 s 20 s 20 s

Fraction of coverage error 6% 7% 4% 8% 4% 0%

6.1.2 Regression fitting module
The parameters that affect the point configuration results

include not only polygon shape but also the mean square error of

Gaussian distribution and control radius of points; the mean square

error of Gaussian distribution and control radius of points are not

extracted in the polygon shape feature extraction module. Based

on this, based on the polygon shape feature extraction module, a

regression fitting module is constructed to extract the mean square

error of the Gaussian distribution of points and the influence of

the control radius of points on the point configuration results. The

input of the regression fitting module is the point configuration

coordinates output by the polygon shape feature extraction module

and the mean square error of the Gaussian distribution of the

corresponding points and the control radius of the points. The data

input size is [3,1,1], which, respectively, represents the horizontal

(vertical) coordinates of the upper-level point configuration, the

mean square error of Gaussian distribution, and the control radius

of the point.

The convolution kernel size is 3 × 1, and 16 feature maps

are generated by the first layer of convolution. The difference is

that after the convolution layer, the BN layer is selected instead

of the pooling layer to standardize the data in the convolution

network. The convolution kernel size of the second layer is 3 ×
1, and 32 feature maps are generated, which are also subjected to

the normalization layer and Relu activation function. To prevent

over-fitting, the dropout layer is set to 0.2, making it 20% possible

for the activation value of neurons to stop working and making

the model more generalized. SGDM gradient descent algorithm

(Cui et al., 2022) is used in the parameter setting; the maximum

training times is 1,600, and the initial learning rate is 0.01. Overall,

90% of the data are still used as the training set, and the remaining

10% is used as the test set. The network structure of the regression

fitting module is shown in Figure 5, and the convergence process is

shown in Figure 6. The results show that after training and test sets,

the regression fitting gradually converges, and the training effect is

good.

6.2 Conclusion analysis and future work

This study presents a comprehensive analysis of the

effectiveness and efficiency of the proposed algorithm for

optimizing point configuration, which is exemplified through

the optimal configuration of two points. Figure 7 illustrates the

test results, showcasing the algorithm’s efficacy in achieving

desired configurations. Additionally, We adopted a two-point

configuration and conducted a fitting regression comparison

with other deep learning neural networks, Recurrent Neural

Network (RNN) and Random Forest (RF). The experimental

results, as shown in Figure 8, indicate that CNN’s RMSE prediction

performance is superior to that of RNN and RF. Table 4 presents

a comparative analysis of six selected test samples, highlighting

the superiority of the proposed approach. For the engineering

algorithm model discussed in this study, configuring a single

point with a stride of 5 m consumes ∼120 s. However, the time

required increases to 480 s when optimizing the configuration of

two points with the same stride. In contrast, the convolutional

neural network (CNN) model completes calculations within the 20

s. These results unequivocally demonstrate the superior efficiency

of the CNN algorithm compared with the traversal algorithm.

Importantly, the efficiency advantage of the CNN algorithm

remains prominent even as the number of points increases, as

it does not escalate geometrically like the traversal algorithm.

Harnessing the formidable learning ability and adaptability of deep

learning networks, this study extracts key features from sample

data generated by traversal algorithms, training the network

to generate optimal point configurations. Simulation results

underscore the advantages of the deep learning-based model over

traversal engineering algorithms, particularly in terms of speed

and real-time performance. Moreover, the calculation index error

remains within 8%, indicating the model’s high accuracy and

reliability.

In summary, this research demonstrates the transformative

potential of deep learning in optimizing point configuration for
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robotic path planning and navigation. By significantly enhancing

efficiency and accuracy while maintaining real-time performance,

the proposed CNN-based approach offers a promising avenue

for advancing autonomous systems in various domains. We

believe that point configuration optimization algorithms can

be applied in more fields. Future research directions are not

limited to robot path planning, such as wireless sensor network

(WSN) layout, graphics, and visual computing. In WSN layout,

a point configuration optimization algorithm can be used to

determine the optimal layout of sensors to maximize network

coverage, extend network life, or improve data transmission

efficiency. In graphics and visual computing, point configuration

optimization algorithms can be applied to image reconstruction,

three-dimensional modeling, animation production, and

other fields to improve image quality or simulate physical

phenomena by optimizing the position of points. In addition,

some difficulties may be encountered in practical applications,

such as the impact of complex environments, adaptability to

dynamic environments, and limitations of computing resources.

Therefore, we believe that the future direction of the point

configuration optimization algorithm should be to introduce

more advanced and efficient network models, reduce the number

of parameters of the model, and improve the accuracy of

the model.
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Enhanced LSTM-based robotic
agent for load forecasting in
low-voltage distributed
photovoltaic power distribution
network
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1State Grid Hebei Electric Power Company, Shijiazhuang, China, 2Henan XJ Metering Co., Ltd,

Xuchang, China

To ensure the safe operation and dispatching control of a low-voltage distributed

photovoltaic (PV) power distribution network (PDN), the load forecasting

problem of the PDN is studied in this study. Based on deep learning technology,

this paper proposes a robot-assisted load forecasting method for low-voltage

distributed photovoltaic power distribution networks using enhanced long

short-term memory (LSTM). This method employs the frequency domain

decomposition (FDD) to obtain boundary points and incorporates a dense layer

following the LSTM layer to better extract data features. The LSTM is used to

predict low-frequency and high-frequency components separately, enabling

the model to precisely capture the voltage variation patterns across di�erent

frequency components, thereby achieving high-precision voltage prediction. By

verifying the historical operation data set of a low-voltage distributed PV-PDN

in Guangdong Province, experimental results demonstrate that the proposed

“FDD+LSTM” model outperforms both recurrent neural network and support

vector machine models in terms of prediction accuracy on both time scales of

1 h and 4h. Precisely forecast the voltage in di�erent seasons and time scales,

which has a certain value in promoting the development of the PDN and related

technology industry chain.

KEYWORDS

distributed photovoltaic, power distribution network, load forecasting, deep learning,

long short-term memory

1 Introduction

Load forecasting of the power distribution network (PDN) is an important link in

safe operation and dispatching control. With the popularization and application of energy

storage technology and the addition of new dispatchable resources such as electric vehicles,

a large number of interruptible and bidirectional loads appear on the load side (Dairi

et al., 2020; Razavi et al., 2020; Markovics and Mayer, 2022). These load’s randomness and

distributed access characteristics affect the power system regulation of the PDN. Active

distribution network (ADN) uses the core technology of demand response to dynamically

adjust the price of electricity and incentive policies and flexibly manage and control the

original load demand of users. Furthermore, it actively guides users to participate in

the optimization of power dispatching to enhance the synergy and complementarity of
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multiple loads. It not only considers users’ satisfaction with

electricity consumption but also improves the consumption ratio of

distributed renewable energy (Hafiz et al., 2020; Mellit et al., 2021).

Proper planning and useful applications of load forecasting of

the PDN require specific “predicting intervals”. According to the

delivery cycle, load forecasting can be divided into ultra-short-term,

short-term, medium-term, and long-term (Eom et al., 2020). Ultra-

short-term forecasting is employed for real-time control, enabling

rapid adjustments to generation and load to ensure the safe and

stable operation of the power grid. Short-term forecasting is widely

employed in the daily operations of the utility industry, facilitating

dispatch of generation and transmission, optimizing grid resource

allocation and enhancing grid operational efficiency. Medium-

term forecasting is primarily utilized to forecast load variations

over the next few months to a year, providing valuable insights

for fuel procurement, maintenance planning and grid investment

decisions. Long-term forecasting focuses on load growth trends

over the next 1 to 20 years, employed to forecast the need for new

power plants, grid planning and providing strategic guidance for

power system development.

Load forecasting of the PDN is complex for engineers and

academics, and remains an ongoing area of research. Moreover,

the thorough exploration of load-side controllable resources to

achieve optimal dispatch of the power system by the grid has

emerged as a critical research priority for contemporary power

utilities. Nowadays, it is more and more common for low-voltage

PDNs to adopt distributed photovoltaic (PV) access. On this basis,

considering the regularity of PV power generation, the problem

of voltage fluctuation can be solved by predicting the voltage

variation trend.

Accurate load forecasting plays a crucial role in optimizing

the scheduling and management of power resources, effectively

reducing operational costs and enhancing the overall efficiency

of the power system. With the rapid development of deep

learning-based robotic agent technology (Ma et al., 2023, 2024a),

the application of deep learning in load forecasting has gained

significant attention, particularly for approaches based on recurrent

neural networks (RNN). Furthermore, deep learning techniques

can handle complex nonlinear relationships and massive datasets,

thereby improving the accuracy and reliability of predictions,

which are paramount for the stable operation of the power grid.

Deep learning models, however, demand substantial data and

computational resources, while their hyperparameter tuning and

training process necessitate specialized knowledge and expertise.

The nonlinearity and time dependence of load data increase the

complexity of predictions. As the data dimensions increase, deep

learning models need to possess enhanced learning capabilities,

thereby avoiding overfitting and performance degradation. While

significant progress has been made in load forecasting techniques,

several challenges remain that require further attention to enhance

the accuracy and efficiency.

To address the specific scenario of load forecasting in low-

voltage distributed photovoltaic power distribution networks, we

customized a load forecasting model and employed a long short-

term memory (LSTM) network architecture for forecasting. To

enhance feature extraction, we placed a fully connected layer,

denoted as dense layer, after the LSTM layer. Additionally, we

integrated the frequency domain decomposition (FDD) method

to obtain the amplitude and phase of each frequency component,

and utilized LSTM to individually forecast low-frequency and high-

frequency components, ultimately improving the model’s accuracy.

This study is expected to offer a new idea for the low-voltage

distributed PV-PDN to meet the forecast. The contributions of this

paper can be summarized as follows:

1) FDD-enhanced LSTM for load forecasting in PV-PDN: to

address the load forecasting of low-voltage distributed PV-

PDN, we propose a novel FDD-enhanced LSTM model.

The proposed model outperforms conventional support

vector machine (SVM) and RNN models, particularly in

long-term forecasting scenarios. This method represents

a significant advancement in the application of deep

learning techniques in the distribution network domain,

providing a novel approach to enhance grid reliability and

operational efficiency.

2) A new benchmark for load forecasting in PV systems: the

integration of FDD and LSTM networks has revolutionized

load forecasting in low-voltage distributed PV systems,

establishing a new benchmark for forecasting methodologies

in distributed PV systems.

3) Comparative analysis of FDD-enhanced LSTM for load

forecasting: to objectively evaluate the performance of the

enhanced LSTM model in complex low-voltage distributed

PV forecasting scenarios, we conducted a comprehensive

comparative analysis of the mean absolute error (MAE)

across different time scales. The results demonstrate the

model’s superior performance and reliability in complex

voltage forecasting environments.

The rest of the paper is organized as follows: Section 2 reviews

the related work of load forecasting and scene image monitoring

analysis. Section 3 describes the proposed methods in detail.

Section 4 reports the experimental result and analysis. Section 5

represents the conclusion and future work.

2 Related work

Low-voltage load forecasting is an intelligent technique

that utilizes historical load data, weather information and

socioeconomic factors to forecast future low-voltage load levels.

This technique possesses extensive application value in power grid

scheduling, grid planning and electricity pricing.

Statistical and time series methods are widely employed

techniques for short-term load forecasting, with linear models

being the most prevalent approach. Linear models typically

employ linear parameters. Litjens et al. (2018) have utilized some

of the simplest linear models, including seasonal persistence

models and simple average models, often in conjunction with

meteorological data. Borges et al. employed linear models with

varying feature subsets for short-term load forecasting and missing

data imputation in substation data (Borges et al., 2020).Their

model utilized historical load data, meteorological data and

neighboring substation data. While standard linear regression has
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proven successful in demand forecasting for all levels of low-

voltage networks, nonlinear regression models have also gained

attention due to their inherent flexibility. Hayes et al. employed

a nonlinear autoregressive exogenous (NARX) model for smart

meter load forecasting and demonstrated its superior performance

compared to traditional NARX models and neural network models

(Hayes et al., 2014). Tsekouras et al. (2007) employed nonlinear

multiple regression, selecting a model based on testing various

combinations of nonlinear functions for mid-term load forecasting.

Nonlinear models, despite their wide applicability, are susceptible

to overfitting issues.

Among time series forecasting models, ARIMA stands out

due to its exceptional performance and has been widely adopted

across various applications (Marinescu et al., 2013). Researchers

have successfully integrated online ARIMA models into short-

term forecasting of electricity systems in public school buildings

(Lee et al., 2013). Leveraging historical load and temperature data,

this model effectively captures energy efficiency, forecasts energy

consumption and detects anomalies in energy usage. Furthermore,

Espinoza et al. proposed a unified modeling framework based on

periodic autoregressive models, enabling the effective integration

of data from multiple entities to achieve load curve forecasting and

clustering analysis (Espinoza et al., 2005).

With the continuous advancement of deep learning (Ma et al.,

2021, 2024b; Li et al., 2023; Jin et al., 2024; Liufu et al., 2024),

deep learning-based load forecasting has also gained widespread

attention from researchers. Deep learning-based load forecasting

methods, with their ability to capture complex data patterns

and extract deep-level features, have gradually become a research

hotspot in the field of power load forecasting and have achieved

remarkable results. Shivam et al. (2021) discuss a predictive energy

management strategy for residential PV-battery systems using

RNN model, it has a deep inner hidden layer, which imitates the

neural network inside humans to think like the human brain. Luo

et al. (2021) enhance photovoltaic power generation forecasting

by incorporating domain knowledge into deep learning models

(Kim et al., 2020). The limitation of machine learning (ML) lies in

the need for more learning ability for high-dimensional data. The

purpose of representative learning is to simplify complex original

data, remove invalid or redundant information from original data,

and refine effective information to form features. The purpose of

representative learning is to simplify complex raw data, remove

redundant or invalid information from the data, and extract

effective information to form features. In addition, SVM and LSTM

have been widely used in load forecasting. Kabilan et al. (2021) and

Feng et al. (2020) both employ machine learning models for short-

term power prediction and quantifying daily global solar radiation,

respectively, highlighting the potential of computational methods

in optimizing and accurately forecasting solar energy production.

Kim et al. (2020) focus on very-short-term photovoltaic forecasting

for smart city energy management through multiscale LSTM-based

deep learning.

In the realm of load forecasting, traditional methods have

often faced limitations in capturing the intricate patterns and

underlying relationships within complex electricity consumption

data. To address these shortcomings, we propose a novel deep

learning-based load forecasting framework that leverages the

powerful capabilities of RNN and LSTM cells to effectively capture

temporal dependencies.

3 Methods

3.1 Features of distributed PV-PDN

PV power generation is essentially a power technology that

uses the photoelectric or photochemical effect of PV modules

(semiconductor materials) to convert light energy directly into

electric energy. Distributed PV power station usually refers to a

power generation system with a small installed scale that uses

distributed resources and is located near the user. Ordinarily,

the power grid with a voltage level of <35 kV or lower is

connected. The heart of a PV facility is solar panels. The

semiconductor materials adopted for power generation principally

cover polysilicon, monocrystalline silicon, amorphous silicon and

cadmium telluride (Lopes et al., 2022). Solar panels are the core and

most valuable part of a solar power system. Its role is to convert

the radiant power of the sun into electrical energy, feed it into

a storage battery or promote load operation. The function of the

solar controller is to control the working state of the entire system

and protect the battery from overcharge and discharge (Alipour

et al., 2020; Korkmaz, 2021; Qadir et al., 2021). Qualified controllers

should also have a temperature compensation function in places

with large temperature differences.

The PV cell’s equivalent circuit (EC) is shown in Figure 1. Iph
and Id refer to the photo-generated and diode junction currents; Cj

means the junction capacitance (negligible); Rs and Rsh stand for

series and parallel resistors. Typically, distributed PV projects have

a capacity of within a few kilowatts. Unlike centralized plants, the

scale of PV plants has little effect on power generation efficiency.

Therefore, its influence on the economy is also tiny, and the return

on investment of small PV systems will not be lower than that of

large ones.

Solar energy’s direct output is generally 48 VDC, 24 VDC and

12 VDC. To power an appliance at 220 VAC, direct current (DC)

generated by a solar power system needs to be converted into

alternating current (AC). To avoid power backflow, it is necessary

to configure an anti-flow device for alarm, and the inverter then

adjusts its capacity according to the received signal. To connect

the distributed PV system to the PDN, it first needs to output

the PV cells through the DC/DC converter, then connected to

the DC/AC inverter, and next connected to the external PDN.

Taking a household small distributed PV system as an example,

the typical grid-connected PV structure is displayed in Figure 2.

The grid-connected access information acquisition system of small

distributed PV power stations is applied to transmit the collected

information to the monitoring platform and display it to users or

power grid enterprises intuitively and clearly. This can provide

grid enterprises with grid-connected data of PV power stations,

eliminate the “blind adjustment” phenomenon of PV power

generation, assist power grid operation analysis and decision-

making, and promote the operation of the power grid safe and

stable (Karimi et al., 2020; Ding et al., 2021; Khan et al., 2022).
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FIGURE 1

EC of PV cell.

FIGURE 2

Grid-connected structure of household small distributed PV system.

FIGURE 3

The overall diagram of the method in this study.

The overall diagram of the method in this study is shown

as Figure 3. The method involves meticulous data collection and

preprocessing to ensure high-quality inputs, followed by strategic

feature selection via the XGBoost algorithm to optimize data

relevancy. Then an advanced LSTMmodel is designed and refined,

augmented with FDD, for enhanced predictive accuracy.

3.2 Voltage data preprocessing and feature
selection

As a kind of clean energy, the high proportion of PV connected

to a low-voltage PDN will bring huge power generation benefits.

However, due to its own uncertainty, it may bring a series of

problems to the stable and safe operation of the PDN, such as

voltage over the limit, line overload and power quality reduction.

Thus, it is essential to accurately evaluate the acceptance capacity

of PV in a low-voltage PDN. More importantly, to further improve

the benefits of PV power generation, it is urgent to improve the

acceptance capacity of distributed PV based on accurate assessment

(Rana and Rahman, 2020). Before voltage prediction of distributed

PV-PDN, data mining and preprocessing should be carried out,

ensuring that it is in a suitable form for analysis. This step involves

removing outliers, handling missing values, and normalizing data,

which helps reduce variability and improve the model’s accuracy.

It also includes feature selection and transformation to identify

and utilize the most relevant information for forecasting, thereby

enhancing the prediction model’s effectiveness and efficiency.
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The missing data is filled using the cubic spline interpolation

fitting function fθ (x), and the equation for filling the value is

Equation (1):

D(tmiss ) = f θ (tmiss) (1)

tmiss indicates the time point at which load data is missing.

For data satisfying normal distribution, standardized methods

are used for dimensionless processing, with the specific equation

as follows Equation (2):

x
∗

=
x−X

S
(2)

x and x∗ refer to the original and the processed feature data,

respectively; X and S represent the mean and standard deviation of

the feature, respectively.

DL model has advantages in capturing power voltage

fluctuation in distributed PV voltage prediction due to their ability

to model complex, nonlinear relationships within large datasets.

They excel in identifying patterns and dependencies in temporal

data, such as those found in voltage series, by leveraging multiple

layers of processing. This capability allows DL models to provide

more accurate and reliable forecasts of voltage fluctuations, which

is essential for maintaining grid stability and optimizing energy

distribution in distributed PV-PDN. At this time, dimensionless

standardization of different power characteristics can significantly

accelerate the optimization speed of the gradient descent algorithm.

The maximum and minimum rescaling method of voltage and

power is illustrated in Equations (3) and (4):

v
∗

=
v−vmax

vmax − vmin

(3)

p
∗

=
p−pmax

pmax − pmin

(4)

v & p and v∗ & p∗ represent time-series raw data and

dimensionless data for voltage and power; vmax & vmin and pmax

& pmin refer to the voltage data’s and power data’s maximum and

minimum values, respectively.

Generally speaking, the power load is filled with data of similar

size. Because the power load has a certain periodicity, it can be filled

and replaced with similar load data of the same cycle. The power

load has a regular periodicity, that is, the data of different periods at

the same time should be very different. If the difference between the

two data exceeds the threshold, the vertical method can be used for

processing. For the PV system, the light intensity in winter is lower

than that in summer, and the maximum light intensity is usually at

noon, so the voltage will rise in this period. It can be seen that the

time feature vector is very vital in the voltage prediction process,

and it is a key factor in improving the prediction accuracy.

Considering various types of features in the voltage prediction

process, this study will adopt the feature selection method based

on the Extreme Gradient Boosting (XGBoost) algorithm (Bae

et al., 2021), a method chosen for its efficiency and effectiveness

in handling high-dimensional data. XGBoost is renowned for

its ability to improve model performance by selecting the most

relevant features, reducing noise and preventing overfitting.

This approach aids in identifying the key predictors of voltage

fluctuations in distributed PV systems, thus enhancing the

predictive accuracy of the deep learning model. In the course of

multiple iterations, the probability distribution (PD) of the training

data used in the current iteration will be regulated based on

the results of the previous iteration. That is to say, each sample

of training data has a weight, which itself will be adjusted with

iteration. As suggested in Figure 4, Dm is the training dataset’s PD.

In the first iteration, the classification error of basic classifier C1 is

employed to adjust D2; In the second iteration, the base classifier

C2 is used for iteration D3, and so on.

XGBoost is the use of multiple base learning. Each base learning

is relatively simple. To prevent overfitting, the next learning is the

result of learning the previous base learning. The loss function of

XGBoost algorithm reads Equations (5) and (6):

L =

n
∑

i=1

l(yi, ŷi) +

M
∑

m=1

�(bm) (5)

�(bm) = γT +
1

2
λ ‖w‖2 (6)

n refers to the number of samples; yi and ŷi represent the label

value of the i-th sample and output value predicted by the model,

respectively; l means the squared error function; �(bm) expressed

a regularized term for the tree model. T displays the leaf nodes’

quantities for a single tree model; w signifies the output vector

of the leaf node; γ are λ parameters that control the weights of

regularized terms.

After the model is initialized, it needs to carry out M-

round cycle calculation, so the objective function Obj(t) should be

minimized during the t-round calculation Equations (7) and (8):

Obj(t) =

n
∑

i=1

l(yi, ŷi
(t−1)

+ bt(xi))+�(bt )+ C (7)

C =

t−1
∑

i=1

(bi) (8)

bt represents tree model in the t-round training; ŷi
(t−1) denotes

the predicted output value of the model obtained from the previous

round;�(bt) indicates the complexity of the tree model obtained in

t-round; C is a constant.

When solving the objective function of a binary tree, it is

necessary to know the first-order and second-order derivatives of

the loss function, and on which leaf node the sample is located. It is

also necessary to find the first and second derivatives of the sample

at each leaf node to find the objective function. In this way, it is

possible to decide whether to split the node and according to the

characteristic values of which node to split.

The voltage, power of key nodes and time characteristics of

prediction points in PDN are selected and taken as input feature

vector x after series. When forecasting, the higher the prediction

accuracy of 1 h ago, the higher the multiple time scales’ prediction

accuracy. The dimensionless node voltage and net power data of

the complete PDN are obtained through data preprocessing. The
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FIGURE 4

Training flow of XGBoost algorithm.

voltage eigenvector Vi of the node, the net power eigenvector Pi
and the corresponding label yi are obtained as follows Equations

(9–11):

V i =
[

vi+t−H ,...,vi+t−2,vi+t−1

]

(9)

V i =
[

pi+t−H ,...,pi+t−2,pi+t−1

]

(10)

yi = vi+t (11)

H represents the length of the sliding window, Vi and Vi are

eigenvectors with dimension H.

The time variable of discretization is processed by unique

thermal coding. Time eigenvector Ti is constructed to predict time

points. Finally, the input feature vector xi of the i-th sample can be

expressed as Equation (12):

xi = [V i,Pi,Ti] (12)

xi and yi together constitute the training sample set of the

XGBoost algorithm, which can be written as Equation (13):

{(

xi,yi
)}n

i=1
(13)

Additionally, XGBoost suggests two ways to avoid overfitting.

The first is Shrinkage, namely, the learning rate. In each tree

iteration, each leaf node’s weight is multiplied by a reduction

coefficient. This way, the impact of each tree will not be too large,

leaving more space for optimization for the trees below (Wang

et al., 2017; Liu et al., 2022). Another way is Column Subsampling,

which is similar to random forest selection for tree construction.

There are two methods: (1) Random sampling by layer. Before

splitting nodes of the same layer, some eigenvalues are randomly

selected for traversal to calculate information gain (IG); (2) Some

eigenvalues are randomly sampled before building a tree. Then the

tree’s all-node splits traverse these eigenvalues to compute IG.

TheMeanAbsolute Error (MAE) to validate the performance of

prediction methods, which is an objective function used to measure

the average absolute difference between predicted and true values in

regression problems. It can measure the average error size between

predicted values and true values, and has good robustness. The

calculation formula for MAE is written as Equation (14):

MAE =
1

N

N
∑

i=1

∣

∣yi − ŷi
∣

∣ (14)

N represents the number of samples, yi is the true value, and ŷi
is the predicted value.

The smaller the value of MAE, the smaller the average

difference between the predicted value and the true value,

indicating higher accuracy of the prediction.

3.3 Load forecasting of distributed PV
system based on FDD + LSTM

In the context of distributed photovoltaic systems, load

forecasting necessitates a multifaceted analytical approach. Key

is the scrutiny of historical data to discern patterns and trends.

Employing statistical methods, such as time series analysis,

facilitates the understanding of complex data interrelations.

Moreover, the application of machine learning algorithms,

including neural networks, is essential for improving prediction

accuracy given the nonlinear nature of load data. Selecting

pertinent features, particularly those influenced by weather and

temporal factors, is critical. Additionally, integrating renewable

energy sources, notably solar power, introduces unpredictability,

demanding innovative, adaptable forecasting techniques to ensure

consistent power distribution.

FDD refers to taking the Fourier transform (FT) of the

signal to analyze it. FT is a mathematical equation that relates a

signal sampled in space or time to the same signal sampled at

frequency (Polo et al., 2023). In signal processing, FT can reveal

a signal’s vital characteristics (i.e., its frequency component). For

a vector x containing n uniform sampling points, FT is defined as
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FIGURE 5

Correlation between high frequency and low-frequency

components and PV power.

TABLE 1 Predicted results of low-frequency and high frequency

components at di�erent frequencies.

Com-
ponent

R

366 732 1,098 1,463 1,830 2,196

Low-

frequency

0.985 0.986 0.987 0.988 0.989 0.990

High

frequency

0.960 0.678 0.351 0.101 −2.175 −3.550

Equation (15):

yk+1 =

n−1
∑

j=0

ωjkxj+1 (15)

ω is one of the n complex roots of unity; For x and y, indexes j

and k range from 0 to n− 1.

The Fourier analysis method is extended to aperiodic signals,

and FT is introduced. When the period of a periodic signal

increases infinitely, the frequency spectrum tends to become

infinitely small and cannot be represented by the Fourier series.

But from a physical point of view, the spectrum is still there. FT

spectrum analysis divides PV power into load forecasting and high

frequency components (Liu et al., 2020; Zang et al., 2020; Rai et al.,

2021). The low-frequency component represents the conventional

part of PV performance, which can be accurately predicted and

indicates the trend characteristics. The high-frequency component

exhibits the randomness of PV power and the fluctuation

characteristics affected by weather and other factors, which is

relatively difficult to predict. Figure 5 presents the correlation

between low-frequency and high frequency components and PV

power. When FDD is performed on PV power data, the more

frequency is selected, the weaker the correlation between high

frequency component and PV power is. However, the correlation

between low-frequency component and photovoltaic power is

stronger. Table 1 compares the predicted results of the two

frequency components at different frequencies. The selection of

frequency boundary points is based on frequency nodes with

larger amplitude in the amplitude spectrum. It can be found that

the core of frequency demarcation point selection is that the

frequency selected by the low-frequency component should be as

high as possible. Thereby, the low-frequency component accounts

for more, and it is necessary to ensure that the frequency of the

high frequency component is not too high, thus avoiding excessive

difficulty in prediction.

Convolutional networks can process images of different lengths

and widths, and Recurrent Neural networks (RNN) have a

recurrent function that can process data of different lengths and

sequence types. However, due to the small range that RNN can

utilize, it cannot handle the long sequence data well. The output

that leads directly to a long sequence forgets the input that is farther

away. LSTM is a special kind of RNN, a modified version of RNN,

whose structure is plotted in Figure 6. The activation function is

the sigmoid; tanh is the hyperbolic tangent function;
⊕

and
⊗

represent the addition and multiplication operations of vectors.

The first layer of LSTM comprises a single-loop structure, which

is determined by the dimensions and number of input data and

loops, rather than the connection ofmultiple single-loop structures.

LSTM cells contain input, forget, output and unit states (Akram

et al., 2020; Zhang et al., 2020; Ahmad et al., 2022). The input gate

determines how much network input data requires to be saved to

the unit state at the current moment. The forget gate decides how

many unit states need to be transferred from the last to the present

moment. The output gate controls how much of the current unit

state demands to be output to the present output value.

In the discussed PV-PDN voltage prediction model based

on “FDD+LSTM”, to better extract data characteristics, a fully

connected layer, namely Dense layer, is placed behind the LSTM

layer. The specific voltage prediction process is as follows.

(1) The prediction methodology employs XGBoost for feature

subset selection, focusing on crucial elements like voltage, power

characteristics and temporal variables. This step is pivotal in

distilling the most relevant features from a vast dataset, thereby

improving model efficiency and focus. The resulting feature vector

x = [V , P,T] is a comprehensive aggregation of these elements,

forming the LSTM input alongside the target training variable yi.

(2) The backpropagation algorithm is utilized for model training,

optimizing the network to reduce prediction errors and heighten

voltage forecasting accuracy. This phase ensures in-depth learning

from historical data, a critical aspect of the model’s predictive

capability. (3) Finally, the trained LSTM model, equipped with

learned patterns, processes the input dataset for voltage prediction.

The inclusion of the dense layer at this point is significant.

It acts as a refinement stage, aligning LSTM outputs with

expected voltage levels and synthesizing complex relationships.

This addition enhances the model’s accuracy and robustness in

diverse operational scenarios within PV-PDNs.

Detailed procedure for load forecasting of distributed PV

system based on FDD+LSTM:

(1) Data selection and preprocessing: historical operation data

is carefully selected and subjected to data mining and

preprocessing techniques. This includes handling outliers,
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FIGURE 6

Basic structural unit of LSTM.

TABLE 2 Specific parameters of LSTM prediction model.

Model Layer Hyper-parameter Output tensor
dimension

Input layer – (None, input)

LSTM layer Neurons in memory cells: 64 (None, 64)

Dense layer Neurons: 128

Activation function: tanh

(None, 128)

Dropout layer Drop rate: 0.05 (None, 128)

Output layer Neurons: 1

Activation function: sigmoid

(None, 1)

addressing missing values and normalizing the data to ensure

its suitability for analysis.

(2) Feature selection: to identify the most influential variables

contributing to the prediction task, we employ the XGBoost

algorithm for feature selection. This approach enables us

to pinpoint key predictive factors such as voltage, power

characteristics and time variables that significantly impact the

target variable.

(3) Model training: to achieve accurate and reliable voltage

predictions, we employ the proposed “FDD+LSTM”

neural network architecture and train it using the

backpropagation algorithm.

(4) Load prediction: to harness the predictive ability of the trained

proposed “FDD+LSTM” model, we utilize it to process the

input dataset for accurate voltage forecasting. To further

enhance the model’s ability to extract meaningful features from

the data and improve prediction accuracy, we incorporate a

dense layer into the network architecture.

4 Results and discussion

4.1 Data selection and example analysis

This study selects the historical operation data of a low-

voltage distributed PV-PDN in Guangdong Province as

FIGURE 7

Voltage prediction results with a time scale of 1 h.

the research object. The time range is operation data from

March 2020 to March 2022. The data sampling interval of

the meter under test is 1 h, and rolling prediction is adopted.

The constructed input feature vectors xi are: the vectors of

voltage, power and time characteristics are 12, 12 and 35

dimensions, respectively, and a total of 16,275 data samples

are constructed with xi and label yi. An example analysis

of the load forecasting model uses TensorFlow 14.0. The

dropout layer is incorporated to prevent overfitting, followed by

the connection to the output layer. The specific parameters

of the “FDD+LSTM” prediction model are outlined in

Table 2. The selected comparison algorithms are RNN, SVM,

and LSTM to verify the validity of the prediction method

proposed here.
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FIGURE 8

Voltage prediction outcomes with a time scale of 2 h.

FIGURE 9

Voltage prediction results with a time scale of 4 h.

4.2 Analysis of load forecasting results in
distributed PV-PDN

To intuitively reflect the accuracy of voltage prediction results,

this study draws corresponding voltage prediction curves with 1, 2

and 4-h as time scales, and compares them with other prediction

models. The voltage data of 100-time points is selected as a display

in the test set, and the voltage prediction results at different time

scales are demonstrated in Figures 7–9. It can be found that the

FDD-enhanced LSTM model consistently aligns more closely with

actual voltage values than SVM (Kabilan et al., 2021), RNN (Shivam

et al., 2021) and LSTM (Feng et al., 2020) models, especially as the

prediction time scale increases. Quantitatively, the LSTM model’s

MAE is significantly lower, at 0.4554 for a 1-h scale, compared

to 0.535 and 1.012 for RNN and SVM, respectively. Even at a

4-h scale, the LSTM’s MAE remains the lowest at 1.085. The

superior forecasting precision of the optimized LSTM model can

be attributed to its ability to effectively capture and learn from the

temporal dependencies inherent in voltage data over time. Unlike

SVM and RNN models, LSTM’s architecture allows it to remember

information for longer periods, making it particularly adept at

handling the sequence prediction problems characteristic of voltage

forecasting in distributed PV-PDNs. This is crucial for accurately

predicting voltage fluctuations over different time scales, as it can

account for both short-term and long-term patterns in the data.

Additionally, the integration of FDD likely enhances the model’s

capability to deal with the non-linear and complex nature of the

voltage signals, further improving prediction accuracy.

4.3 Performance evaluation of load
forecasting model under di�erent seasons

Taking the time scale of 1-h and 4-h as the basis, this study

further verifies the voltage prediction of different PDN’s load

forecasting models in the four seasons, and the comparison results

are portrayed in Figures 10, 11. It can be concluded that the

prediction results of the improved LSTM model based on FDD

are optimal in all seasons, especially as the prediction time scale

increases. Taking summer with a time scale of 1 h as an example,

the prediction MAE of the improved LSTM model is only 0.24,

which reduces the prediction error of this model by about 35%.

Even at a 4-h scale, the LSTM’s MAE remains the lowest at 1.064 in

summer. Therefore, the capability of the model in load forecasting

of PV-PDN is further verified.

The proposed algorithm demonstrates significant practical

value and effectiveness in the PV-PDN scenario. It can accurately

predict voltage variations under different environmental

conditions, and its prediction accuracy surpasses that of other

models, especially as the prediction time scale increases. This

capability provides strong support for the safe, reliable and efficient

operation of PV power stations, helping maintenance personnel to

promptly identify and resolve potential issues, thereby improving

the operational efficiency and long-term stability of the PV

power stations.

5 Conclusion

Driven by the rapid development of new power systems, the

proportion of new energy is continuously increasing, and the scale

of application and access rate of distributed PV in the low-voltage

PDN are also steadily rising. The integration of distributed PV

power generation, nonetheless, often exerts a substantial impact

on the voltage distribution within PDN, giving rise to issues

such as low voltage and voltage fluctuations. These issues severely

impact the quality of daily life and production for users, further

augmenting the uncertainty in grid operation and hindering the

development of the social economy. Consequently, enhancing the

state awareness capability of PDN is of paramount importance.

Effective voltage prediction can provide data support for the safe
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FIGURE 10

Comparison of load forecasting models for PDN in di�erent seasons with a time scale of 1 h.

FIGURE 11

Comparison of load forecasting models for PDN in di�erent seasons with a time scale of 4 h.

and stable operation of PDN, thereby facilitating the resolution

of voltage issues arising from the integration of distributed PV

systems. In recent years, LSTM networks have demonstrated

remarkable application potential in the realm of power load

forecasting, and it offer a novel solution for PDN voltage prediction.

Thus, a LSTM is extensively used in power load forecasting model

of actual PDN based on DL and FDD is proposed in this study.

By fast Fourier decomposition of the original quantity, the phase
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and amplitude of each frequency sine wave are acquired. Then

LSTM is used to predict the low-frequency and high frequency

components, respectively. The effectiveness of the proposed FDD-

based LSTM model is verified by testing the historical operating

data of PV-PDN. With the increase of the prediction time scale

of the improved model, the error of the predicted results does

not increase significantly. At a 1-h time scale, the MAE of the

improved LSTM model is only 0.4554, much lower than that

of other models. However, the proposed model requires a large

amount of data for training and cannot be directly deployed on

edge clients with limited computational resources for prediction.

In the future, with the continuous development of edge computing

and deep learning technologies, optimizing model computation

efficiency to accommodate hardware constraints of edge devices

and developing lightweight deep learning algorithms to reduce

resource consumption, deploying prediction models at the edge

side will become more feasible.
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Redundant manipulators are universally employed to save manpower and

improve work e�ciency in numerous areas. Nevertheless, the redundancy

makes the inverse kinematics of manipulators hard to address, thus increasing

the di�culty in instructing manipulators to perform a given task. To deal

with this problem, an online learning fuzzy echo state network (OLFESN) is

proposed in the first place, which is based upon an online learning echo

state network and the Takagi–Sugeno–Kang fuzzy inference system (FIS).

Then, an OLFESN-based control scheme is devised to implement the e�cient

control of redundant manipulators. Furthermore, simulations and experiments

on redundantmanipulators, covering UR5 and Franka Emika Pandamanipulators,

are carried out to verify the e�ectiveness of the proposed control scheme.

KEYWORDS

echo state network (ESN), fuzzy inference system (FIS), online learning, redundant

manipulators, optimization

1 Introduction

To improve production efficiency and set themselves free from manpower, robots

have come into being and undergone expeditious and substantial progress, with plentiful

and triumphant applications in numerous areas (Sun et al., 2023b; Liu et al., 2024).

Therefore, redundant manipulators that possess more degrees of freedom (DOFs) than

non-redundant ones to fulfill a specific task stand out and have been subject to in-depth

and comprehensive investigations (Liao et al., 2016; Liu et al., 2023). More precisely, by

virtue of the additional DOFs, they are capable of executing some secondary tasks while

performing the primary task, such as obstacle avoidance, optimizing joint torques, and

enhancing operability (Jin et al., 2017a; Sun et al., 2022a). For that reason, research on

the mechanisms and applications of redundant manipulators is in full swing. However,

it is worth mentioning that the additional DOFs result in troubles and challenges for

controlling manipulators efficiently and precisely (Zhang et al., 2019; Zhao et al., 2020).

Therefore, it imports the demand to devise and construct a potent control scheme of

redundant manipulators (Jin et al., 2017b; Liao et al., 2022).

With a sophisticated and ingenious nervous system, humans are capable of performing

a variety of complicated and intractable missions by learning from recent experiences,

which is the most prominent difference and superiority compared with other creatures

(Wang et al., 2016; Liao et al., 2024b). Therefore, this has opened up a new avenue for the

control of manipulators. That is, manipulators can accomplish the assigned task with high

efficiency by simulating the learning ability of humans. Taking the neural network (NN)

(Su et al., 2023a; Wei and Jin, 2024) and fuzzy inference system (FIS) (Vargas et al., 2024)

into account, both of them attempt to simulate the thinking and decision-making processes

of humans in a certain way. Therefore, they have garnered the attention of researchers,
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and a lot of effort has been put into integrating them with

manipulator control systems to improve the completion of the task

and meet the requirements of different scenarios. For instance,

Yoo and Ham (2000) present adaptive control schemes for

manipulators, in which the parameter uncertainty is handled via the

FIS. Afterward, aiming at the tracking control of the end-effector

for manipulators, an FIS-based controller is designed by Yilmaz

et al. (2022), in which the centers and widths of the membership

functions are adjusted adaptively, thus promoting the learning

power of the controller. Recently, Yilmaz et al. (2023) devised an

FIS-based output-feedback controller for the joint space tracking

of manipulators, in which the demands for joint velocity and

knowledge of manipulators are eliminated.

In recent times, a surge of research has come into view in the

realm of the echo state network (ESN), a sort of recurrent neural

network (RNN), which overcomes certain problems hindering the

investigations and applications of RNNs, such as gradient vanishing

and gradient exploding (Rodan and Tino, 2011; Chen et al., 2023).

The core of ESN lies in the reservoir, which is a large, sparse

network in charge of capturing the dynamic behavior of input

information. Particularly in the ESN, both input and reservoir

weights are generated at random, and one needs to put effort

into obtaining the output weights by figuring out the weighted

sum of outputs (Lukoševičius, 2012). Considering another network,

the extreme learning machine (ELM) (Huang et al., 2006) is a

feedforward network with a hidden layer. Weights and biases for

the hidden layer are appointed randomly, while the training of the

network focuses on determining output weights through the least

squares method. Therefore, from the perspective of this point, the

ELM, ESN, and FIS share a certain similarity, and thus, a great deal

of work has been carried out that builds and verifies the bridges

between them (Sun et al., 2007; Ribeiro et al., 2020). By integrating

these networks and taking advantage of their strengths, some

extraordinary work is presented and utilized in various domains to

address different issues. Concentrating on function approximation

and classification problems, a fuzzy ELM with the capacity for

online learning was devised by Rong et al. (2009). Compared with

other existing mechanisms it presents remarkable superiority with

decent accuracy and reduced training time. Motivated by this,

aiming at efficient control of redundant manipulators, this study

proposes an online learning fuzzy ESN (OLFESN). To be more

specific, the proposed OLFESN is designed, based on an online

learning strategy for ESN, to erect an efficient control scheme

for redundant manipulators, while the FIS is also incorporated

to improve the accuracy and efficiency of the proposed network.

Then, a corresponding control scheme for redundant manipulators

is constructed. The rest of this study is organized as follows: Section

2 makes known some preliminary steps to lay the foundation for

this study. Then, the OLFESN is proposed, based on which the

control scheme for redundant manipulators is devised in Section

3. In Section 4, simulations and experiments are carried out to

investigate the feasibility and effectiveness of the proposed control

scheme. In the end, Section 5 concludes this study.

2 Preliminaries

In this section, the forward kinematics of redundant

manipulators, the Takagi–Sugeno–Kang (TSK) fuzzy system,

and ESN are briefly reviewed, which are the bases of the

proposed OLFESN.

2.1 Forward kinematics of redundant
manipulators

The forward kinematics equation that depicts the non-linear

transformation of redundant manipulators from the joint angle

q ∈Ra to the Cartesian position r ∈Rb with a > b can be

depicted as

ϒ(q) = r, (1)

where ϒ(•) signifies the non-linear mapping function, which

depends upon the structural properties of redundant manipulators

(Sun et al., 2022b; Zhang et al., 2022). Where after, evaluating the

derivative of Equation (1) in terms of time contributes to

J(q)q̇ = ṙ, (2)

in which J(q) = ∂ϒ(q)/∂q ∈ Rb×a denotes the Jacobian

matrix; q̇ denotes the angular velocity; ṙ denotes the velocity

of the end-effector (Yan et al., 2024). Heretofore, the non-linear

transformation (Equation 1) is converted to the affine system

(Equation 2) with the convenience of gaining the redundancy

solution of redundant manipulators (Sun et al., 2023a).

2.2 Takagi–Sugeno–Kang fuzzy system

In the TSK fuzzy system with given input

α= [α1;α2;· · ·;αm]∈Rm, the k-th rule can be depicted as

Kerk et al. (2021) and Zhang et al. (2023):

Rule k:IF α1is A1k, α2 is A2k,· · ·,αmis Amk,

THEN χk = β0k + β1kα1 + β2kα2 + · · · + βmkαm, (3)

where k = 1, 2, · · · , k̃ is the index of the fuzzy rule with k̃ being

the number of fuzzy rules; Amk denotes the fuzzy subset of them-th

element of input α in the k-th rule; χk signifies the output of the

k-th rule; βm̃k(m̃ = 0, 1, · · · ,m) is the consequent coefficient of the

k-th rule. Considering the m-th element of input in the k-th rule,

the degree to which it matches the fuzzy subset Amk is measured

by its membership function ζAmk
(αm), which can be any bounded

non-constant piecewise continuous function (Rezaee and Zarandi,

2010). Let
⊗

denote the fuzzy conjunction operation, and then the

firing strength (if part) of the k-th rule is defined as

Ok(α, pk)=ζA1k
(α1, p1,k)⊗ ζA2k

(α2, p2,k)⊗ · · · ⊗ ζAmk
(αm, pm,k),

(4)

where pk is the parameter of membership function ζ (•) in the k-th

rule. Normalizing (Equation 4), there is

9(α, pk) =
Ok(α, pk)

∑k̃
k=1 Ok(α, pk)

. (5)

Ultimately, for the input α, the output of the TSK fuzzy model

can be obtained as

ỹ =
∑k̃

k=1 θkOk(α, pk)
∑k̃

k=1 Ok(α, pk)
=

k̃
∑

k=1

θk9(α, pk), (6)
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with θk = (θk1, θk2, · · · , θkm).

2.3 Echo state network

The ESN is composed of an input layer, a reservoir, and an

output layer, which enjoy l, r, and o neurons, respectively (Calandra

et al., 2021). For a complete network, the input layer, reservoir, and

output layer re connected by input weightsWin ∈ Rr×l and output

weights Wout ∈ Ro×r , respectively, while the internal neurons of

the reservoir are connected to each other by dint of Wres ∈ Rr×r

(Chen et al., 2024a). In particular, the spectral radius ofWres needs

to be <1 to capture the echo state property. At the time of step

i, designate input and reservoir states as xi = [x1; x2; · · · ; xl] ∈
Rl and ιi = [ι1; ι2; · · · ; ιr] ∈ Rr , respectively. The reservoir is

updated through

ιi = f
(

Winxi +Wresι(i−1)

)

, (7)

and the output of the network is

yi = g(Woutιi), (8)

with yi =
[

y1; y2; · · · ; yo
]

∈ Ro. Furthermore, for working out

the output weights, keep track of reservoir state and outputs in

matrices 3 =
[

ι1, ι2, · · · , ιĩ
]

∈ Rr×ĩ and Y =
[

y1, y2, · · · , yĩ
]

∈
Ro×ĩ, respectively, during training, where ĩ denotes the number of

training samples. Where after, by solving

min
Wout

: ‖Y −Wout3‖22, (9)

the output weights are obtained

Wout = Y3T(33T)
−1

(10)

where the superscripts T and −1 represent transpose and inversion

operations of a matrix, respectively (Su et al., 2023b; Liao et al.,

2024a).

3 Online learning fuzzy echo state
network

Stimulated by the commonalities between ESN and FIS,

OLFESN is proposed in this section. Then, an OLFESN-based

control scheme for redundant manipulators is devised.

3.1 OLFESN

Considering (Equation 4), the firing strength (if any) in the

TSK fuzzy system involves multiple fuzzy conjunction operations,

providing sufficient computing power for thoroughly exploring and

utilizing input information. Furthermore, each rule is normalized

to ensure that different rules have a comparable contribution

to the system. Similarly, in the ESN, it is the reservoir that is

responsible for implementing the above function, by which the low-

dimensional input is mapped to a high-dimensional dynamic space.

In addition, the outputs of different reservoirs are adjusted to the

same extent with the aid of the activation function f (•), which plays
the same role as Equation (5). Therefore, the reservoir is adopted

to reveal the firing strength normalized in the proposed OLESN.

Specifically, the OLESN with k̃ reservoirs is established as follows:

Given training samples i =
{(

xi, yi
)}ĩ

i=1
, the state of the k-th

reservoir is updated via

ιki = fk(Winxi +Wresιk(i−1)), i = 1, 2, · · · , ĩ, (11)

where fk(•) denotes the activation function of the k-th reservoir,

and ĩ is the number of training samples. Collect all states of the

k-th reservoir in 4k = [ιk1, ιk2, · · · , ιkĩ, and then integrate all k̃

reservoirs elicited

3 = 4142 · · ·4k̃
. (12)

Thus, the output of the fuzzy ESN (FESN) can be formulated as

Y = Wout3, (13)

with Y = [y1, y2, · · · , yĩ]. Similarly to Equation (10), output

weights are obtained via

Wout = Y3T(33T)
−1

. (14)

At this point, the derivation of FESN is complete. Therewith, taking

into account the need for online learning, the OLFESN is proposed,

which incorporates the FESN and the online learning strategy for

ESN. To be more specific, when data shows up constantly, the

OLFESN is summarized as follows:

3.2 Initialization phase

a. Given the initial training samples i0 =
{(

xi, yi
)}ĩ0

i=1
, update

and transcribe the state of all k̃ reservoirs using Equation 11.

b. Taking advantage of Equation 12, figure out the initial state

matrix 30 for FESN.

c. Compute the initial output weights W0
out = T03

T
0 Y0 with

T0 = (3T
0 30)

−1
and Y0 = [y1, y2, · · · , yĩ0 ].

d. Let p = 0.

3.3 Sequential learning phase

a. With the new sample set

ip+1 =
{(

xi, yi
)}

∑p+1
j=0 ĩj

i=(
∑p

j=0 ĩj)+1
,

solve problem

∥

∥

∥
W

p+1
out [3p, 3p+1 ]− [Yp, Yp+1 ]

∥

∥

∥

2

2
, (15)

where ĩp+1 signifies the count of samples in the (p + 1)-

th set; 3p+1 is the corresponding reservoir state, obtained by

Equations 11, 12; Yp+1 = [y(
∑p

j=0 ĩj)+1, · · · , y(∑p+1
j=0 ĩj)+ 1

].
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b. Let 9p = H−1
p with HP = [3p, 3p+1 ][3p, 3p+1]

T .

c. Update output weights

9p+1 = 9p − 9p3p+1 (I + 3T
p+19p3p+1 )

−1
3T

p+ 19p,

W
p+1
out = W

p
out + (Yp+1 −W

p
out3p+1 ) 3T

p+19p+1. (16)

d. Let p = p+ 1. (Back to step 2).

Remark 1: For the case that the new samples come out one by

one, with the aid of the Sherman-Morrison formula (Chen et al.,

2024b), Equation 16 is further simplified as

9p+1 = 9p −
9pιp+1ι

T
p+19p

1+ ιTp+ 19pιk1
,

W
p+1
out = W

p
out + (yp+1 −W

p
outιp+1 ) ιTp+19p+1. (17)

3.4 OLFESN-based control scheme

In this section, an OLFESN-based control scheme for

redundant manipulators is developed for performing the given

missions. At moment t, define θa (t) and 1θa (t) as the actual joint

angle and actual joint angle increment, respectively. Meanwhile,

the actual and desired positions of the end-effector are denoted by

ζa (t) and ζd (t), respectively. Correspondingly, at moment t + 1,

the desired position increment for the end-effector is expressed

as 1ζ (t + 1) = ζd (t) − ζa (t). Incorporate θa (t), 1θa (t), and

1ζ (t + 1), which is the input of the OLFESN and denoted by

x(t) for the convenience of subsequent expressions. Then, applying

Equations 11–13, we gain the joint angle increment 1θa (t + 1) for

the next moment, i.e., the output of OLFESN. Hence, the control

signal for the next moment is acquired, i.e., θa (t + 1) = θa (t) +
1θa (t + 1 ).

Note that, in the OLFESN, there is a premise that sample

(x(t), y(t)) is accessible all the time. However, for the proposed

scheme, the desired joint angle increment 1θd (t + 1), i.e., y(t),

is unrevealed in reality. In addition, taking into account output

weights Wout , it ought to be updated in real-time to generate the

control signal. An accepted wisdom is making use of the teaching

signal to update output weights Wout . More specifically, the error

ǫ (t + 1) between the desired joint angle increment1θd (t + 1) and

the actual one 1θa (t + 1) plays a part in the teaching signal in the

proposed scheme.

Informed by Equation (2), the transformation between joint

angle increment 1θ(t) and position increment 1ζ (t) of the end-

effector is devised as

J(t)1θ(t) = 1ζ (t). (18)

Then, we have

ζd (t + 1) − ζa (t + 1) = J (t + 1) (θd (t + 1) − θa (t + 1))

= J (t + 1) (θa (t) − 1θd (t + 1) − (θa (t) + 1θa (t + 1)))

= J (t + 1) (1θd (t + 1) − 1θa (t + 1)) . (19)

Solving Equation 19, the teaching signal is collected as

ǫ (t + 1) = J+(t + 1)(ζd (t + 1) − ζa (t + 1)). (20)

Until now, the proposed control scheme for redundant
manipulators based on the above-mentioned teaching signal
and OLFESN has been constructed as

9(t + 1) = 9(t)− 9(t)3(t + 1)(I + 3(t + 1)T9(t)3(t + 1))
−1

3(t + 1)T9(t), (21)

Wout(t + 1) = Wout(t)+ ǫ (t + 1)3(t + 1)T9(t + 1),

which is outlined and summarized in Algorithm 1.

1: Input: r: the number of neurons in the reservoir

2: k̃: the number of reservoir

3: θa(0): the initial joint angle

4: ζ a(0): the initial position of

end-effector

5: ζ d: the desired trajectory of the

end-effector

6: Output: θa(t + 1): the control signal

7: Initialize: ιk(0) = 0; 1θa(0) = 0; Wout(0) = 0;

8: for t = 0 :T do

9: 1ζ (t + 1) = ζ d(t + 1)− ζ a(t);

10: x(t + 1) = [θ a(t);1ζ (t + 1);1θa(t)];

11: ιk(t + 1) = f (Winx(t + 1)+Wresιk(t)), k = 1, 2, . . . , k̃;

12: λ(t + 1) = ι1(t + 1)ι2(t + 1) · · · ι
k̃
(t + 1);

13: 1θa(t + 1) = Wout(t)λ(t + 1);

14: θa(t + 1) = θa(t)+ 1θa(t + 1);

15: Control the manipulator using θa(t + 1);

16: Obtain the actual position of end-effector

ζ a(t + 1);

17: Compute Jacobian matrix J(t + 1);

18: ǫ(t + 1) = J†(t + 1)(ζ d(t + 1)− ζ a(t + 1));

19:
9(t + 1) = 9(t)− 9(t)3(t + 1)(I + 3(t + 1)T9(t)3(t + 1))

−1

3(t + 1)T9(t);
20: Wout(t + 1) = Wout(t)+ ǫ(t + 1)3(t + 1)T9(t + 1).

21: end for

Algorithm 1. Proposed Control Scheme

4 Illustrative examples

In this section, simulations on redundant manipulators are

devised and executed, covering a 6-DOF manipulator and a 7-

DOF one, to verify the effectiveness and feasibility of the proposed

scheme (Equation 21).

4.1 UR5

A UR5 manipulator is employed with the aid of the proposed

scheme (Equation 21) in this simulation, which possesses 6 DOFs

and is explicitly revealed in Zheng et al. (2019) and Chico et al.

(2021). The task is to track a four-leaf clover path within 20 s,

where the initial angle state is θ(0) = [0; −π/2; 2π/3; 0; 0; 0]

rad. With regard to OLFESN, the input weights Win and internal

connection weights of reservoir Wres are randomly initialized to
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FIGURE 1

Simulative experiment results on the UR5 manipulator synthesized by the proposed scheme (Equation 21) for tracking a four-leaf clover path. (A)

Profiles of the tracking error. (B) Profiles of the joint angle. (C) The desired trajectory and the actual trajectory.

FIGURE 2

Simulative experiment results on the Frank Emika Panda manipulator synthesized by the proposed scheme (Equation 21) for tracking a tricuspid valve

trajectory. (A) Profiles of the tracking error. (B) Profiles of the joint angle. (C) The desired trajectory and the actual trajectory.

[−0.5, 0.5] by using MATLAB’s 2022 rand(•) function. In addition,

we bring in a total of three reservoirs, each with 500 neurons

and the hyperbolic tangent function (tanh(•)), while the spectral

radius is set to 0.8. Specifically, simulation results are exhibited

in Figure 1, where Figure 1A illustrates the position errors of

the end-effector during task execution. One can observe that the

manipulator, with the aid of the proposed scheme (Equation 21),

does the job with flying colors, and the position error of the end-

effector is of the order 10−4 m. Correspondingly, trails of joint

angles and task completion are shown in Figures 1B, C, respectively.

Note that, during the task, the joint angles of the manipulator

are evolving in a gentle manner, which is capable of reducing the

wear between mechanical components to a certain extent, thus

elongating the service life of the manipulator. In the end, Figure 1C

further indicates that the task of tracking the four-leaf clover

path is commendably accomplished by the manipulator, with the

actual trajectory synthesized by the proposed scheme (Equation 21)

excellently covering the desired one.

4.2 Franka Emika panda manipulator

In this part, the simulation of a Franka Emika Panda

manipulator is designed and carried out to further verify

the effectiveness and feasibility of the proposed scheme

(Equation 21). The Franka Emika Panda is a 7-DOF

manipulator with structural information covered by Shahid

et al. (2020) and Gaz et al. (2019), which is necessary to track

a tricuspid valve trajectory within 20 s. The initial angle state is

θ(0) = [0; −π/4; 0; −3π/4; 0;π/2; π/4] rad, while the other

parameters are in line with those in Section 4.1. Figure 2 reveals

simulation results, where position errors of the end-effector are

exhibited in Figure 2A. Viewing position errors, one can lightly

draw the conclusion that the Franka Emika Panda manipulator

controlled by the proposed scheme (Equation 21) finishes the

given task successfully, with the position error being of the

order 10−5 m. Then, pay attention to the variation of joint

angles and task completion, which are depicted in Figures 2B,
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FIGURE 3

Snapshots of the Franka Emika Panda manipulator simulated on the (V-REP) platform for tracking the tricuspid valve trajectory with the aid of the

proposed scheme (Equation 21).

C, respectively. All these results indicate the success of the task,

which further verifies the feasibility and effectiveness of the

proposed scheme (Equation 21) in the field of robot control.

Furthermore, the corresponding simulation experiments are

executed on the virtual robot experimentation platform (V-REP)

to vividly simulate task execution. Snapshots of the Franka

Emika Panda manipulator with the aid of the proposed scheme

(Equation 21) are displayed in Figure 3, from which we can

observe that the Franka Emika Panda manipulator safely and

efficiently performs the task of tracking the tricuspid valve

trajectory, thus further verifying the reliability of the above

simulation results and the practicability of the proposed scheme

(Equation 21).

5 Conclusion

Based on the online learning strategy for ESN and FIS, an

OLFESN has been proposed, in which the new data is allowed

to arrive one by one or in blocks. There are no additional

restrictions on the size of blocks, thus highly extending the

application scenarios of the proposed OLFESN. Subsequently,

to cope with the complicated control problem of redundant

manipulators, an OLFESN-based control scheme has been

constructed from a kinematics point of view. In the end,

simulations and experiments on the UR5 and Franka Emika

Panda manipulators have been carried out and confirmed

the effectiveness and feasibility of the proposed control

scheme (Equation 21). Incorporating joint constraints into

the proposed scheme (Equation 21) is a future research

direction, that is capable of improving the safety and efficiency of

task execution.
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To reduce transportation time, a discrete zeroing neural network (DZNN)

method is proposed to solve the shortest path planning problem with a single

starting point and a single target point. The shortest path planning problem

is reformulated as an optimization problem, and a discrete nonlinear function

related to the energy function is established so that the lowest-energy state

corresponds to the optimal path solution. Theoretical analyzes demonstrate that

the discrete ZNN model (DZNNM) exhibits zero stability, e�ectiveness, and real-

time performance in handling time-varying nonlinear optimization problems

(TVNOPs). Simulations with various parameters confirm the e�ciency and real-

time performance of the developed DZNNM for TVNOPs, indicating its suitability

and superiority for solving the shortest path planning problem in real time.

KEYWORDS

path planning, discrete zeroing neural network, time-varying nonlinear optimization

problem, 0-stability, real-time capability

1 Introduction

In recent years, the application of mobile platforms has been increasing, enhancing the

efficiency of production systems (Balk et al., 2021; Wu et al., 2022; Zhou et al., 2022). In

this case, certain collisions can delay production, harm productivity, and reduce profits

(Gonzalez et al., 2016; Li et al., 2022). Therefore, the path planning problem for mobile

platforms has become a research hotspot. In the processes of handling, loading, and

unloading, the path planning problem for the mobile platform can be transformed into a

shortest path planning problem, thereby saving both time and cost. Therefore, the shortest

path problem is a typical combinatorial optimization problem that seeks the shortest path

from a specified starting point to a desired terminus, aiming to minimize the total path cost

(Zhang and Li, 2017; Li et al., 2021; Xu et al., 2022).

Path-planning methods are classified as follows: The artificial potential field method is

a virtual force approach based on physical design (Jie et al., 2017; Zhou et al., 2023a,b).

In this algorithm, movement toward the target point is likened to gravitation, while

movement away from obstacles is likened to repulsion. Thus, the path planning problem is

transformed into an optimization problem using a gravitational repulsion field function

(Robinson et al., 2020). The model is simple to establish but challenging to obtain the

optimal solution due to its tendency to converge to local optima. The fuzzy logic algorithm,

derived from fuzzy control, emulates path-seeking methods based on drivers’ daily driving
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experiences. It directly utilizes expert knowledge from a database,

offering good stability when incorporating real-time external

information. However, the effectiveness of the fuzzy rules in the

expert database relies heavily on accumulated experience, and the

algorithm may lack real-time responsiveness in rapidly changing

external environments. Graph search-based methods include the

D* algorithm (Raheem and Ibrahim, 2018) and the Lee algorithm

(Chi et al., 2022), etc. One of the most representative algorithms

is the greedy algorithm, which aims to find the target point. In

order to accelerate the optimization speed and avoid constraints, Fu

improved the A* algorithm on the basis of the greedy algorithm to

solve the path planning problem of industrial mobile manipulators.

Under safe and non-collision conditions, a local path optimization

strategy is directly adopted to reduce the number and length of

local paths by straightening local paths (Fong et al., 2016; Fu

et al., 2018). However, the algorithm lacks real-time performance

due to the extensive computational requirements of the planning

problems involving high-dimensional mobile platforms and snake-

like robots. Bionic algorithms are developed for such problems,

such as the genetic algorithm (Yang et al., 2008), the neural network

algorithm (Qiu et al., 2018; Buddhadeb et al., 2020; Wang et al.,

2022), and the ant colony algorithm (Song et al., 2021). The ant

colony algorithm achieves optimization by simulating the foraging

behavior of ant colonies, offering advantages such as parallelism

and global optimization. Nevertheless, it is easy to fall into the

local optimal solution due to the large number of calculations.

Hui proposes an ant colony optimization algorithm to create a

collapse-free incipient path in the intricate map and then applies

a turning point optimization algorithm to achieve path planning

on the mobile platform (Yang et al., 2019). Xu uses a particle swarm

optimization algorithm to create a linear path and then smooths

the linear path. However, vibrations can arise at the intersections

of each path, potentially causing the anticipated trajectory to

lose its optimality. This may result in the mobile platform

stopping, rotating, and then restarting (Xu et al., 2021; Song

et al., 2022). Therefore, a higher-order Bezier curve is utilized to

construct the desired path directly to overcome the above problems.

Nevertheless, it is necessary to design an efficient algorithm with

strong computing power that is less time-consuming to find the

optimal path in an environment with a large scanning area and a

large number of obstacles. Hence, the above algorithms are always

limited by the inherent problem of the exponential growth of the

search scale. As the number of nodes increases, the success rate

of solving within a limited time is significantly weakened. Neural

networks are powerful algorithms to solve many scientific research

and engineering problems. For the shortest path planning problem,

Song proposed a pulse-coupled neural network model with a

special mechanism to solve the shortest path planning problem.

Compared with numerous algorithms, it effectively reduces costs

(Sang et al., 2016). Filipe proposes a two-layer Hopfield neural

network to solve the shortest path, which requires fewer neurons

and converges quickly. However, the solution of this model is

not optimal when dealing with shortest path planning problems

(Araujo et al., 2001). In general, the discrete zeroing neural network

(DZNN) has the characteristics of parallel processing, which can be

used in path planning to quickly solve the optimal path and achieve

the path planning task of the mobile platform (Hopfield and Tank,

1985).

The rest of this paper covers the following four parts: Section 2

describes the mathematical models of path planning and the ZNN

model (DZNNM). Section 3 provides a theoretical analysis of the

stability and convergence of the proposed DZNNM. In Section

4, the superiority and real-time characteristics of the proposed

DZNNM are verified by numerical simulations. Section 5 draws

the conclusion and future works. The primary contributions of this

paper are described as follows:

1) The path planning problem is converted to the nonlinear

optimization problem with equality and inequality

constraints, and the nonlinear function related to the

energy function is constructed so that the solution of the

lowest energy state corresponds to the solution under the

optimal path.

2) The theoretical analysis shows that the proposed discrete

ZNNmethod has 0-stability and convergence for time-varying

nonlinear optimization problems (TVNOPs).

3) The simulation results demonstrate that the DZNNM is

feasible, effective, and real-time in dealing with the shortest

path planning problem.

2 Problem formulation and model
foundation

In this section, it describes the process of transforming the

path planning problem into a nonlinear optimization problem. It

covers the conversion process from the continuous ZNN model to

the DZNNM and the establishment of the mathematical model for

path planning. Specifically, it presents the problem formulation, the

ZNN model, and the energy function model for online solving of

TVNOPs.

2.1 Problem formulation

Let L =
{

j|j = 1, · · ·m
}

denote an arbitrary finite set, and let

B = (j, r), (j ∈ L, r ∈ L) represent a set of ordered pairs of elements

arranged sequentially.
(

j, r
)

and
(

r, j
)

represent different elements

if and only if r is equal to j. T = (L,D) is an oriented graph,

and D ⊂ B. The parameters of L are named vertexes, and the

parameters of D are denoted as oriented borders. If a cost matrix

cjr corresponds to edges in T from vertex j to vertex r, then T is

referred to as a directed graph. Generally, the cost matrix cjr is not

needfully symmetric. In other words, the cost from vertex r to j is

not inequivalent, possibly to the cost from vertex j to r. In addition,

some borders between vertexes do not exist. Namely, the number of

borders may be less than the quantity of vertices. For non-existent

edges, the value of the cost coefficient is defined as infinity. In this

paper, the shortest path problem is to search for the shortest feasible

path from the desired starting point to the designated terminus.

2.2 Mathematical model of path planning

Consider the shortest path from vertex 1 to vertex m for an

oriented graph with m vertexes and m borders, and the price of
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cjr per border. To formulate the shortest path problem, there are

two typical path representations: vertex representation and edge

representation. This paper adopts the border path characterization

method to express the shortest path problem. The shortest path

problem can be transformed into the following integer linear

programming problem (Xia and Wang, 2000; Yoshihiko and

Willsky, 2015).

min
m
∑

j=1

m
∑

r=1
cjrxjr

s. t.
m
∑

v=1
xjv −

m
∑

l=1

xlj =











1, if j = 1

0, if j = 2, 3 · · ·m− 1

−1, if j = m

, (1)

where the minimizing objective function of an integer linear

programming problem (Equation 1) is the absolute price of the

route, and the restriction is -1, 0, or 1. The constraint guarantees

a sequential route from the specified starting point to the particular

ending point. A decision variable represented by edge dependence

from vertex to vertex is defined as follows:

xjr =
{

1, if the edge from j to r is on the path,

0, otherwise
(2)

Due to the constraint coefficient matrix defined in Equation

2, it is set to either 0 or 1. If there exists a unique optimal

integer solution where the variable takes on values of 0 or 1, the

integer programmingmentioned above can be transformed into the

following linear programming (Equation 3):

min
m
∑

j=1

m
∑

r=1
cjrxjr

s. t.
m
∑

v=1
xjv −

m
∑

l=1

xlj = δj1 − δjm

xjr ≥ 0, j, r = 1, 2, · · ·m

, (3)

where δjr denotes the Kronecker function, which is defined as j =

r, δjr = 1, and j 6= r, δjr = 0. According to the duality principle

of convex optimization (Lemeshko and Sterin, 2013), the dual path

planning problem (Equation 4) can be obtained as follows:

max y1 − ym
s. t. yj − yr ≤ cjr j, r = 1, 2 · · ·m , (4)

where yj represents the dual decision variable related to vertex j,

y1 − yj indicates the shortest length from vertex 1 to vertex j.

Generally, a suitable energy function is developed such that the

lowest energy condition corresponds to the anticipative solution.

According to the duality properties of linear programming, an

energy function model (Equation 5) of the original duality problem

is generalized by Xia and Wang (2000):

E(x, y) =1

2

m
∑

j=1

[

m
∑

r=1

(xjr − xrj)− δi1 + δim

]2

+ 1

2

m
∑

j=1

m
∑

r=1

[

(−xjr)
+]2

+ 1

2





m
∑

j=1

m
∑

r=1

cjrxjr − y1 + ym





2

+ 1

2

m
∑

j=1

m
∑

r=1

[

(yj − yr − cjr)
+]2

, (5)

where (s)+ = max {0, s}, and s ∈ R. The first term of the above

formula represents the equality constraint, the second term denotes

the non-negative constraint, the third term means the square dual

gap, and the last term indicates the inequality restriction in the dual

problem.

For convenience, the following coefficient vectors are defined

as:

ŷ =
(

ŷ1, · · · , ŷm
)⊤;

ĉ =
(

ĉ11, · · · , ĉ1m, ĉ21, · · · , ĉ2m, · · · , ĉm1, · · · , ĉmm

)⊤;
x = (x11, · · · , x1m, x21, · · · , x2m, · · · , xm1, · · · , xmm)

⊤.

Define A is an m × m2 constraint matrix, whose row denotes j

and column means r, ej − er is a vector, the j element is 1, and the

other elements are 0.
The above formula can be rewritten as Equation 6:

E
(

x, ŷ
)

= 1

2

[

(

c⊤x− (e1 − em)
⊤ ŷ

)2 +
∥

∥(−x)+
∥

∥

2

2
+

∥

∥

∥

(

A⊤ ŷ− c
)+

∥

∥

∥

2

2
+ ‖Ax+ em − e1‖22

]

. (6)

Let b̃ = e1−em. Therefore, the above equation can be simplified
as Equation 7:

E
(

x, ŷ
)

= 1

2

[

(

c⊤x− b̃⊤ ŷ
)2

+
∥

∥(−x)+
∥

∥

2

2
+

∥

∥

∥

(

A⊤ ŷ− c
)+

∥

∥

∥

2

2
+

∥

∥

∥
Ax− b̃

∥

∥

∥

2

2

]

, (7)

where ‖·‖ represents the 2-norm, and given (−x)+ =
[

(−x1)
+, · · · , (−xm)

+]⊤
.

2.3 Continuous ZNN model and discrete
ZNN model

Through the above analysis, the path planning problem is

transformed into the path optimization problem from the specified

initiating point to the terminus. An energy function is established

for the shortest path to solve the optimization problem. The state

solution corresponding to the optimal node is obtained when the

energy function reaches its minimum. Therefore, the shortest path

problem is considered as the TVNOP. The TVNOPs described in

discrete time form are as follows (Guo et al., 2017; Qiu et al., 2018;

Sun et al., 2021):

min f̂
(

xχ+1, tχ+1

)

,
[

tχ , tχ+1

)

∈ [0,+∞) , (8)

where f̂ (·, ·) represents a differentiable nonlinear function

(Equation 8). The discrete form of the TVNOPs is transformed
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from the continuous time-varying nonlinear function f̂ (x (t) , t)

based on the sampling time t = (χ + 1) τ . τ > 0 is the acquisition

interval, and χ = 0, 1, 2, · · · is the sampling time. The existing

and foregone data is used to ensure the next data iteratively, which

can solve TVNOPs. In the calculation time interval
[

tχ , tχ+1

)

∈
[0,+∞), the variable xχ+1 and the function f̂

(

xχ+1, tχ+1

)

can be

calculated iteratively by given information xχ and f̂
(

xχ , tχ
)

at the

next moment.

A DZNNM is acquired for solving TVNOPs online; the

following continuous TVNOPs (Equation 9) are considered:

min
x(t)∈Rn

f̂ (x (t) , t) ∈ R, t ∈ [0,+∞) . (9)

On behalf of solving the time-varying optimal solution of

continuous TVNOPs x∗ (t), the gradient of the function f̂ (x (t) , t)

(Equation 10) is directly generalized as:

ϑ (x (t) , t) = ∂ f̂ (x (t) , t) /∂x (t) . (10)

The above formula is expanded to the following Equation 11:

[

∂ f̂

∂x1
,
∂ f̂

∂x2
, · · · ∂ f̂

∂xn

]⊤

= [ϑ1 (x (t) , t) ,ϑ2 (x (t) , t) , · · · ,

ϑn (x (t) , t)]
⊤ ∈ Rn, (11)

where the superscript ⊤ represents the transposition operational

character of a matrix or a vector. The gradient ϑ (x (t) , t) is a

slippy differentiable nonlinear function created by the objective

function f̂ (x (t) , t). On behalf of solving the theoretical solution of

TVNOPs, the gradient of the objective function tends to 0, and the

zeroing dynamical system (Equation 12) is defined as:

ϑ̇t (x (t) , t) =
dϑ (x (t) , t)

dt
= −λϑ (x (t) , t) , (12)

where the parameter λ > 0, ϑ̇t (x (t) , t) is the derivative of

the gradient ϑ (x (t) , t) in connection with time. While the error

ϑ (x (t) , t) reaches 0, the solution x (t) of the TVNOPs arrives

at the corresponding theoretical solution x∗ (t) of the continuous
TVNOPs (Sun et al., 2020a,b; Wei et al., 2021). Because of the

zeroing dynamic system (Equation 12), the differential equation of

the ZNN model (Equation 13) is extended as:

H̃ (x (t) , t) ẋ (t) = −λϑ (x (t) , t)− ϑ̇t (x (t) , t) , (13)

where H̃ (x (t) , t) is a non-singular Hessian matrix. The details can

be seen as follows:

H̃ (x (t) , t) = ∂2 f̂ (x (t) , t)

∂x (t) ∂x⊤ (t)

=

















∂2 f̂ (x(t),t)
∂x1∂x1

∂2 f̂ (x(t),t)
∂x1∂x2

· · · ∂2 f̂ (x(t),t)
∂x1∂xn

∂2 f̂ (x(t),t)
∂x2∂x1

∂2 f̂ (x(t),t)
∂x2∂x2

· · · ∂2 f̂ (x(t),t)
∂x2∂xn

...
...

. . .
...

∂2 f̂ (x(t),t)
∂xn∂x1

∂2 f̂ (x(t),t)
∂xn∂x2

· · · ∂2 f̂ (x(t),t)
∂xn∂xn

















∈ Rn×n.

Due to the non-singularity of the Hessian matrix, the above

equation is converted to the following Equation 14:

ẋ (t) = −H̃−1 (x (t) , t)
(

λϑ (x (t) , t)+ ϑ̇t (x (t) , t)
)

. (14)

If the Hessian matrix is a positive symmetric matrix, it

represents the solution of the continuous TVNOPs. Moreover, if

the matrix is singular, the Hessian matrix can be transformed into

H̃ + rI, where r is the absolute value of the maximum eigenvalue

of the Hessian matrix and I is the identity matrix. Thus, the matrix

H̃
(

x(t), t
)

satisfies the non-singularity condition.

A DZNNM is proposed to solve the TVNOPs to solve the

optimal value of the energy function E
(

x, ŷ
)

. Hence, a continuous

ZNN model is discretized to obtain the ZNN model in discrete

form. Generally, Euler’s forward difference equation ẋ (t) =
(

xχ+1 − xχ
)

/τ is employed to discretize the continuous ZNN

model (Equation 15) as follows:

xχ+1 = xχ − H̃−1
(

xχ , tχ
) (

ιϑ
(

xχ , tχ
)

+ τ ϑ̇t
(

xχ , tχ
))

. (15)

The above formula can be called as DZNNM, where ι =
τλ ∈ (0, 1] is step length, H̃−1

(

xχ , tχ
)

, ϑ
(

xχ , tχ
)

, and ϑ̇t
(

xχ , tχ
)

are discrete forms of H̃−1 (x (t) , t), ϑ (x (t) , t), and ϑ̇t (x (t) , t),

respectively.

3 Theoretical analyzes and results

The continuous ZNN model construction process and the

DZNNM construction process are briefly described to solve the

TVNOPs in the previous section. Therefore, the continuous ZNN

model-building process, discretization steps, and proof process are

elaborated on in this section. Define a continuously differentiable

linear equation, and the matrix Q(t) is a known and bounded

matrix of time-varying full-rank coefficients; w(t) is a time-varying

vector and is differentiable at any time in connection with time t.

ν(x(t), t) = Q(t)x(t)−w(t) = 0. (16)

The discrete formal equation corresponding to the above

formula (Equation 16) can be managed in the time period

[χτ , (χ + 1) τ ] ⊆
[

t0, tf
]

. The time-varying equation in discrete

form Equation 17 is as follows:

Qχ+1xχ+1 = wχ+1, (17)

where the matrices Qχ+1 and wχ+1 are discrete forms of the

matrices Q(t) and w(t), respectively. Instantaneous sampling is t =
(χ + 1)τ , i.e., χ = 0, 1, 2 · · · denotes the regenerative target.

The following vector-valued error function ν(x(t), t) =
Q(t)x(t) − w(t) is defined to handle the above equation based

on the design steps by Zhang et al. (2015). The continuous ZNN

model (Equation 18) of the linear equation dynamical system has

the following form:

ẋ(t) = Q−1(t)(ẇ(t)− Q̇(t)x(t)− η(Q(t)x(t)− w(t))). (18)

Among them is the design parameter η > 0, which can be used

to control the convergent ratio. Q−1(t) denotes inverse and it is

equivalent to H−1(t). Generally, the ZNN model is discretized by

Euler’s forward difference formula (Equation 19) as follows:

xχ+1 = xχ + Q−1
χ (τ ẇχ − τ Q̇χxχ − h(Qχxχ − wχ )). (19)

Definition 1 (Guo and Zhang, 2012; Jin and Zhang, 2015;

Zhang et al., 2015). The roots of the characteristic polynomial
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PM (ψ) =
M
∑

i=0
ωiψ

i are used to verify whether the M-step method

M
∑

i=0
ωiσχ+i = τ

M
∑

i=0
ζi̟χ+i has 0-stability .

The M-step method has 0-stability if the solution of the

equation pM(ψ) = 0 lies on or within the unit circle (i.e., |ψ | ≤ 1).

The convergence order O(τ p) of the M-step method matches the

truncation error order p (p > 0) of the equation solution.

Definition 2 (Jin and Zhang, 2015; Jin et al., 2018). If and only

ifM-step has 0-stability and is consistent over time t ∈
[

t0, tf
]

, it is

convergent (i.e., σ[(t−t0)/τ] → σ ∗ (t) with τ → 0) .

Definition 3. The 0-stable consistency of the M-step method

converges to the order of its truncation error.

Based on the aforementioned definitions, we will analyze the

0-stability and convergence performance of the DZNNM.

Theorem 1. The DZNNM is 0-stable.

Proof. A DZNNM (Equation 15) is viewed as the one-step

neural network dynamics on account of Definition 1. According

to Definition 1, the characteristic polynomial (Equation 20) of the

ZNNmodel separated and dispersed by forward Euler interpolation

is as follows:

P1(ψ) = ψ − 1. (20)

The root (Equation 21) of the above equation is

ψ1 = 1. (21)

Therefore, according to Definition 1, the DZNNM is 0-stable.

The proof is fulfilled.

Theorem 2. The DZNNM (Equation 15) converges to the order

of the truncation error O(τ 2).

Proof. The forward Euler interpolation formula (Equation 22)

is as follows:

ẋχ = xχ+1 − xχ

τ
+ O(τ ). (22)

The continuous ZNN model (Equation 18) is discretized

by forward Euler interpolation, and the following formula

(Equation 23) is obtained:

xχ+1 = xχ +Q−1
χ (τ ẇχ − τ Q̇χxχ −h(Qkxχ −wχ ))+O(τ 2). (23)

In the light of the above analysis, the truncation error of the

DZNNM is O(τ 2), so the DZNNM has consistency, convergence,

and 0-stability. According to Definition 2 and Definition 3, the

order of convergence of the model is O(τ 2). The proof is fulfilled.

Theorem 3. For the TVNOPs in discrete form, the steady-

state position error lim
χ→∞

∥

∥Qχxχ − wχ
∥

∥

2
of the DZNNM has order

O(τ 2).

Proof. According to Theorem 1, Theorem 2, and Definition 3,

as χ tends to infinity, we can get x∗χ + O(τ 2) = xχ . Therefore, the

following derivation process (Equation 24) is obtained:

∥

∥Qχxχ − wχ
∥

∥

F
=

∥

∥Qk(x
∗ + O(τ 2))− wχ

∥

∥

F

=
∥

∥Qχx
∗ − wχ + QχO(τ

2))
∥

∥

F
, (24)

where ‖‖F is a Fubini norm. The following Equation (25) is

obtained by further arrangement:

∥

∥Qχxχ − wχ
∥

∥

F
=

∥

∥QχO(τ
2))

∥

∥

F
= O(τ 2). (25)

FIGURE 1

The transport diagram of six-node path planning.

TABLE 1 Cost coe�cients of six-node path planning problems.

c1 c2 c3 c4 c5 c6

c1 100 16 8 16 9 8

c2 100 100 9 10 11 9

c3 100 100 100 10 11 12

c4 100 100 100 100 9 10

c5 100 100 100 100 100 13

c6 100 100 100 100 100 100

This proof is thus completed.

4 Numerical simulations and
verifications

Consider the shortest path planning problem, where each node

has five possible directions to move from a fixed initial point to the

terminus. To make the transportation process more reasonable, the

following conditions are assumed to be true:

1) For the path planning problem with a single starting point

and a single target point, node 1 is the starting point and node

6 is the endpoint, as shown in Figure 1.

2) In order to meet the actual transportation situation, some

transportation roads do not exist. For example, it cannot travel

from node 4 to node 4. Therefore, the given value of the cost

cjr of such a path is large in the simulation.

3) In the transportation process, it should not go in the reverse

direction. For instance, there is no arrow to go from node 2 to

node 1, indicating that the situation is not considered.

4) Assume that each node can go to a node whose number is

greater than its own.
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FIGURE 2

Energy function based on the six-node primal duality problem, (A) ι = 0.1, (B) ι = 0.5, (C) ι = 0.9, and (D) ι = 1.0.

TABLE 2 Energy loss from node 1 to other nodes.

|E12| |E13| |E14| |E15| |E16|
5.5558 2.1937 1.6309 1.3792 2.5478

TABLE 3 Energy loss from node 5 to other nodes.

|E51| |E52| |E53| |E54| |E56|
15.3249 20.9741 8.3363 3.4891 2.9722

FIGURE 3

Energy loss under di�erent parameters.

4.1 Six-node path planning simulations

The path planning problem is to find the shortest path between

source node 1 and terminal node 6, so as to minimize the cost

E
(

x, y
)

in the transportation process. The cost coefficient matrix

ĉ needs to be set in the process of establishing the path planning

mathematical model in Section 2.2, which is given in Table 1. The

cost coefficient matrix is c = [c11, c12, · · · c16, · · · , c61, · · · c66]⊤,
and the original value matrix of the system is defined as follows:

x (0) = [0, 0, · · · 0]⊤36∗1, y (0) = [1, 1, · · · 1]⊤6∗1. In Section 2.4, it is

noted that different parameters of the DZNNM generally exhibit

different convergence rates. Therefore, the parameters are set as

ι = 0.1, ι = 0.5, ι = 0.9, and ι = 1.0, respectively. The energy

FIGURE 4

Twelve-node mobile platform path transportation diagram.

function of each path is calculated successively to determine the

shortest path in the transportation process.

The simulation results show that the DZNNM is exploited

to solve the shortest path planning problem. As the number

of iterations increases, the energy function E
(

x, y
)

decreases to

0, indicating that the DZNNM can effectively address the path

planning problem with a single starting point and a single target

point. While the energy function gets its minimum value, the

optimal solution x̂ can be solved at this time. The optimal solution

x̂ is substituted into the energy function E
(

x, y
)

to obtain the cost of

each path so as to determine the shortest path. Starting from node

1, it uses the energy function to calculate the energy consumption

from node 1 to node 2, node 3, node 4, node 5, and node 6. The

specific energy loss is shown in the Tables 2, 3.

As can be seen in Table 2, it can be concluded that the cost from

node 1 to node 5 is the smallest. Therefore, the energy consumption

of node 5 compared to other nodes is calculated. According to

the analysis of the actual transportation situation and assumed

conditions, when the mobile platform moves to node 5, it can

only transport objects to target point 6. In order to verify the
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FIGURE 5

Energy function based on the 12-node primal duality problem, (A) ι = 0.1, (B) ι = 0.5, (C) ι = 0.9, and (D) ι = 1.0.

TABLE 4 Cost coe�cients of six-node path planning problems.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

c1 100 5 4 2 9 8 10 12 25 30 22 23

c2 100 100 9 10 11 9 9 10 12 15 15 15

c3 100 100 100 10 11 12 12 8 10 12 15 13

c4 100 100 100 100 9 10 2 8 12 13 14 13

c5 100 100 100 100 100 13 12 9 11 12 14 16

c6 100 100 100 100 100 100 14 13 15 17 18 15

c7 100 100 100 100 100 100 100 15 14 3 13 19

c8 100 100 100 100 100 100 100 100 15 17 18 15

c9 100 100 100 100 100 100 100 100 100 14 15 16

c10 100 100 100 100 100 100 100 100 100 100 16 3

c11 100 100 100 100 100 100 100 100 100 100 100 17

c12 100 100 100 100 100 100 100 100 100 100 100 100

effectiveness of the algorithm, the optimal solution is substituted

into the expression of the energy function to solve the energy loss

from node 5 to each node. Table 3 can testify to the validity of

the DZNNM. Therefore, the shortest path is from node 1 to node

5, and finally to target point 6. Figure 2, Tables 2, 3 indicate that

the DZNNM is effective in processing TVNOPs. As the number of

iterations increases, the energy function decreases to 0 in a short

number of times, which reflects the high efficiency and real-time

performance of the DZNNM.

As the parameter ι increases, the energy function rapidly

converges to 0, reflecting the fast convergence and effectiveness

of the DZNNM, as shown in Figure 3. In practical application,

adjusting parameters can accelerate the convergence rate of the

whole optimal path, which can quickly accelerate and complete the

path planning.

4.2 Path planning simulations of 12 nodes

To demonstrate the correctness of the energy function

mathematical model as well as the validity and real-time capability

of the DZNNM, the 12-node path planning problem is further

discussed. The transport diagram for the problem is shown in

Figure 4. For the sake of comparison, the assumptions of this

TABLE 5 The energy loss from node 1 to each other.

|E11| |E12| |E13| |E14| |E15| |E16|
∞ 0.0364 0.0256 0.0113 0.0369 0.0265

|E17| |E18| |E19| |E110| |E111| |E112|
0.0217 0.0136 0.0204 0.0645 0.3339 2.1625

TABLE 6 The energy loss from node 4 to each other.

|E45| |E46| |E47| |E48|
0.0121 0.9318 0.0097 0.0125

|E49| |E410| |E411| |E412|
1.1156 0.1319 0.0218 1.2085

problem are the same as those of the six-node path planning

problem.

For convenience, the initial matrix is defined as follows:

x (0) = [0, 0, · · · 0]⊤144∗1,
y (0) = [1, 1, · · · 1]⊤12∗1,
c = [c11, c12, · · · c112, c21, c22, · · · c212, · · · , c121, · · · c1212]⊤.
The simulation results of solving the shortest path problemwith

12 nodes using the DZNNM are as follows: The simulations show
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TABLE 7 Energy loss from node 7 to each other.

|E78| |E79| |E710| |E711| |E712|
0.0218 0.05424 0.0023 0.0719 1.7784

TABLE 8 Energy loss from node 10 to each other.

|E1011| |E1012| |E1112|
0.0443 0.2757 1.5876

that the path planning problem is increased to 12 nodes, and the

DZNNM can effectively solve the discrete TVNOPs, as shown in

Table 4. It can be seen from Figure 5 that the addition of path nodes

does not influence the convergence rate of the proposed DZNNM.

It can reflect the correctness of the path-planning mathematical

model as well as the superiority and real-time performance of the

DZNNM. In addition, the values in Table 5 show that the energy

loss from node 1 to any other node, so it can be concluded that

the energy consumption from node 1 to node 4 is the smallest in

the path planning process. Figure 5 and Table 5 demonstrate that

the DZNNM exhibits convergence performance, 0-stability, and

superior capability in handling TVNOPs.

Combined with the data in Table 6, the second path consumes

the least energy to move from node 4 to node 7. The data in

Table 7 show that the optimal choice in the third path is to move

from node 7 to node 10, and the energy consumed is 0.0023.

Table 8 shows the energy loss of the last two sections of the path.

In Table 8, the minimum energy consumption from node 10 to

node 11 is reflected by numerical values. Meanwhile, the value of

energy consumption from node 11 to target point 12 is given as

1.5876. Combined Table 5 with Table 8, it can be concluded that

the motion path in the twelve-node path planning problem is 1 →
4 → 7 → 10 → 11 → 12. The proposed DZNNM is suitable

and effective for discrete TVNOPs. In addition, the convergence

rate does not decrease with the increase of the nodes in the path-

planning problems, and the convergence rate can be accelerated by

scaling the design parameters appropriately. These characteristics

make the DZNNM suitable for solving large-scale path-planning

problems in real-time applications.

5 Conclusion and future work

A DZNNM is developed and analyzed to handle the shortest

path planning problem from a single starting point to a single

terminus. For the shortest path planning problem, a discrete

nonlinear function related to the energy function is constructed so

that the solution of the lowest energy function corresponds to the

solution of the shortest path. The shortest path planning problem

is transformed into the TVNOPs through strictly mathematical

analysis. In addition, the convergence, 0-stability, and theoretical

results of the proposed DZNNM are discussed and analyzed, which

reflect that the DZNNM can effectively deal with the shortest

path-planning problems. Simulation results show that the proposed

DZNNM has high precision and real-time performance in dealing

with path planning problems. Ultimately, the future research

direction is to develop mathematical models under complex

conditions and solve multi-starting point and multi-objective point

path planning problem.
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Introduction: Unmanned aerial vehicles (UAVs) are widely used in various 
computer vision applications, especially in intelligent traffic monitoring, as they 
are agile and simplify operations while boosting efficiency. However, automating 
these procedures is still a significant challenge due to the difficulty of extracting 
foreground (vehicle) information from complex traffic scenes.

Methods: This paper presents a unique method for autonomous vehicle 
surveillance that uses FCM to segment aerial images. YOLOv8, which is known 
for its ability to detect tiny objects, is then used to detect vehicles. Additionally, 
a system that utilizes ORB features is employed to support vehicle recognition, 
assignment, and recovery across picture frames. Vehicle tracking is accomplished 
using DeepSORT, which elegantly combines Kalman filtering with deep learning 
to achieve precise results.

Results: Our proposed model demonstrates remarkable performance in vehicle 
identification and tracking with precision of 0.86 and 0.84 on the VEDAI and 
SRTID datasets, respectively, for vehicle detection.

Discussion: For vehicle tracking, the model achieves accuracies of 0.89 and 
0.85 on the VEDAI and SRTID datasets, respectively.

KEYWORDS

deep learning, remote sensing, object recognition, unmanned aerial vehicles, 
DeepSort, dynamic environments, path planning

1 Introduction

Rapid economic and demographic expansion generate a dramatic surge in vehicle 
numbers on highways. Hence, complete road traffic monitoring is necessary for acquiring and 
evaluating data, essential for comprehending highway operations within an intelligent, 
autonomous transportation framework (Dikbayir and İbrahim Bülbül, 2020; Xu et al., 2022; 
Yin et al., 2022). Consequently, there’s a compelling need to automate traffic monitoring 
systems. While various image-based solutions have been developed, obstacles exist in 
expanding their capabilities, especially in dynamic contexts where backdrop and objects are 
in flux (Weng et  al., 2006; Di et  al., 2023; Dai et  al., 2024). Traditional approaches like 
background removal and frame differencing struggle when used to photographs acquired 
from mobile platforms owing to background motion, blurring the boundaries between 
background and foreground objects. Hence, improvements in computer vision and image 
processing, covering disciplines such as intelligent transportation, medical imaging, object 
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identification, semantic segmentation, and human-computer 
interaction, present promising paths (Angel et al., 2003; Cao et al., 
2021; Ding et al., 2024).

Semantic segmentation, defining and identifying pixels by class, 
provides a sophisticated method (Schreuder et al., 2003; Sun et al., 
2020; Ren et al., 2024). Unlike current systems confined to binary 
segmentation (e.g., vehicle vs. backdrop), our suggested technique 
utilizes multi-class segmentation, expanding scene knowledge (Ding 
et al., 2021; Gu et al., 2024). Moreover, utilizing aerial data offers 
enormous promise in boosting traffic management. However, 
obstacles such as varying item sizes, wide non-road regions, and 
different road layouts need efficient solutions to exploit mobile 
platform-derived data effectively (Najiya and Archana, 2018; Sun 
et al., 2018; Omar et al., 2021).

In this study, a unique approach for the identification and tracking 
of vehicles is based on aerial images. In our approach, aerial films are 
first transformed into frames for images (Sun et al., 2023). Defogging 
and gamma correction methods are then used for noise reduction and 
bright-ness improvement, respectively, while pre-processing is being 
done on those frames (Qu et  al., 2022; Chen et  al., 2023a; Zhao 
X. et al., 2024). After that, Fuzzy C Mean and DBSCAN algorithm is 
used for segmentation to decrease the background complexity. 
YOLOv8 is applied for recognition of automobiles in each extracted 
frame as it can detect tiny objects successfully. To track several cars 
inside the image’s frames, all identified vehicles have been allocated an 
ID based on ORB attributes. Also, to estimate the traffic density on the 
roadways, a vehicle count has been kept throughout the picture 
frames. The tracking has been done using the DeepSort with Kalman 
filter. Moreover, the provided traffic monitoring systems were verified 
by the tests done on VEDAI, and SRTID datasets. The studies have 
exhibited amazing detection and tracking precision when compared 
to other state-of-the-art (SOTA) approaches.

Some of the prominent contributions of this work include:

	•	 Our model reduces model complexity by combining 
pre-processing methodologies with segmentation techniques for 
the preparation of frames prior to detection phase.

	•	 Evaluation of unsupervised segmentation strategies, specifically 
Fuzzy C-Mean (FCM) algorithm and Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN), was 
undertaken, boosting segmentation effectiveness.

	•	 Significantly enhanced accuracy, recall, and F1 Score in vehicle 
recognition and tracking compared to earlier techniques have 
been obtained.

Implementation of vehicle tracking leveraging the DeepSort 
algorithm, reinforced by an ID assignment and recovery 
module based on ORB, has been successfully accomplished, 
exhibiting remarkable performance proven across two publicly 
available datasets.

The article is structured into the following sections: Section 2 
dives into the literature on traffic analysis. Section 3 goes over the 
proposed technique in great depth. Section 4 describes the 
experimental setting, offering empirical insights into the system’s 
performance. Section 5 reviews the system’s performance and 
considers its advantages and disadvantages. Section 6. Discuss the 
work’s limitations. Section 7 is the conclusion, which summarizes the 
main results and proposes future research and development goals.

2 Literature review

Over the last several years, academics have aggressively excavated 
into constructing traffic monitoring systems. They have examined the 
behaviors of their systems utilizing multiple picture sources, including 
static camera feeds, satellite images, and aerial data (Li J. et al., 2023; 
Wu et al., 2023). Typically, the full photos undergo first preprocessing 
to exclude non-essential components beyond cars, followed by feature 
extraction (Hou et  al., 2023a). Different strategies depend on 
techniques such as image differencing, foreground extraction, or 
background removal, especially when the Region of Interest (ROI) is 
well-defined and suitably sized within the images (Shi et al., 2023; Zhu 
et al., 2024). Aerial imaging can cause the size of vehicles to vary based 
on the height of image acquisition. Because of this, semantic 
segmentation techniques have become popular for detection and 
tracking applications. It is also common to use additional stages such 
as clustering and identifier assignment to improve results. Deep 
learning algorithms have become popular in recent years for object 
recognition, showing better performance in handling complex 
situations (Wang et al., 2024; Yang et al., 2024). To provide an overview 
of current models and approaches, the linked research is classified into 
machine-learning and deep learning-based traffic system analyses.

2.1 Machine learning-based traffic scene 
analysis

Machine learning has been extensively used in computer vision-
related jobs for a long time, particularly in traffic control and 
monitoring. To find the cars in the images (Rafique et  al., 2023), 
introduced a vehicle recognition model based on haar-like 
characteristics with an AdaBoost classifier. In Drouyer and de Franchis 
(2019), a method for monitoring traffic on highways using medium 
resolution satellite images is shown. The backdrop image difference 
approach was used to identify the items in motion after a median filter 
was applied to the images after road masking for the elimination of 
irrelevant regions. Next, the gray level of the resultant image was 
computed. The last phase used a thresholding strategy to identify 
large, bright spots as autos. According to the authors in Hinz et al. 
(2006), motion detection algorithms are in-effective because aerial 
images include motion in both the foreground and background. 
Therefore, an approach based on morphological operations, the Otsu 
partitioning method, and bottom-hat and top-hat transformations 
was applied for detection. After extracting the Shi Tomasi features, 
clusters were formed based on displacement and angle trajectories. 
The automobiles vanished behind the backdrop clusters. Each vehicle’s 
robust feature vector was used for tracking. To achieve excellent 
precision, they used several feature maps. Vehicle detection has been 
accomplished utilizing two distinct methods in separate research 
(Chen and Meng, 2016). While the other approach employed HSV 
color characteristics in conjunction with the Gray Level Co-occurrence 
Matrix (GLCM) to identify cars, the first methodology used features 
from the Accelerated Segment Test (FAST) and HOG features. Vehicle 
tracking is achieved via the use of Forward and Backward 
Tracking (FBT).

The background subtraction approach is used by Aqel et al. (2017) 
to identify moving automobiles. Morphological adjustments are 
carried out to reduce the incidence of false positives. Ultimately, the 
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invariant Charlier moments are used to achieve categorization. The 
method’s applicability to a variety of traffic circumstances is limited by 
the usage of standard image processing methods. Additionally, the 
automobiles that are not moving will be  removed using the 
background subtraction approach, which will lower the true positives. 
Another traffic monitoring strategy has been provided by Mu et al. 
(2016). The model selected the area with a high Absolute Difference 
(SAD) value as a moving vehicle after computing the image difference. 
Vehicles have been found and matched across many picture frames 
using SIFT. The authors of Teutsch et al. (2017) used a novel technique 
for stacking images. The image registration process was limited to tiny 
autos, and the warping approach was used to blur any stationary 
backdrops close to moving vehicles. The main goal of this algorithm 
is to remove distracting backdrop features from images so that only 
the vehicle is visible when the surrounding region is smoothed out. 
These systems have a high temporal complexity, and these approaches 
were distinguished by their complicated properties. These methods 
incur high computational costs. Furthermore, the model’s 
generalizability is weakened as scene complexity rises.

2.2 Deep learning-based traffic scene 
analysis

Traffic monitoring has always included manual techniques and 
in-car technology. Nonetheless, deep learning is more effective than 
traditional methods when it comes to image processing. An 
automobile recognition method based on the You Look Only Once 
(YOLOv4) deep learning algorithm has been presented by Lin and 
Jhang (2022). Another study Bewley et al. (2016) employed the Faster 
R-CNN as the target detector and developed a tracking method 
(SORT) for real-time systems based on the Hungarian matching 
algorithm and the Kalman filter to track several targets at once. The 
SORT tracker does not take the monitored object’s appearance 
characteristics into account. A technique for detecting automobiles 
using an enhanced YOLOv3 algorithm is proposed by Zhang and Zhu 
(2019). To increase the detection method’s accuracy, a new structure 
is added to the pre-trained YOLO network during training. YOLOv3, 
on the other hand, is among the most ancient. Using the most recent 
designs may enhance the detection result. Miniature CNN 
architecture, as described by Ozturk and Cavus (2021), is a vehicle 
identification model that relies on Convolutional Neural Networks 
(CNNs) in conjunction with morphological adjustments. The 
computational cost of this post-processing is high. Moreover, different 
aerial image databases show different levels of accuracy. A method for 
real-time object tracking and detection was reported by the authors in 
Alotaibi et al. (2022). An enhanced RefineDet-based detection module 
is included in the model. Additionally, the twin support vector 
machine model and the harmony search technique are employed for 
classification. Pre-processing of the data is absent from the model, 
which might lower the model’s total computing complexity. A vehicle 
identification model based on deep learning is shown in Amna et al. 
(2020). Convolutional Neural Networks (CNN) are used by the model 
to recognize vehicles, while radar data is used to determine the target’s 
location. A two-stage deep learning model is developed in different 
research (He and Li, 2019). In addition to detecting cars, the model 
also recognizes them again in subsequent frames, which is a crucial 
component of tracking. As opposed to traditional appearance and 

motion-based characteristics, the re-identification is mostly reliant on 
vehicle tracking context information.

There is always room for development in the field of automated 
traffic monitoring systems, despite the substantial research that has 
been done in this area. To get effective results, efficient and specialized 
designs are needed for the recognition of automobiles in aerial images, 
particularly in situations with heavy traffic. Machine learning 
techniques are insufficient to distinguish between objects whose pixels 
exhibit motion. As a result, we use deep learning strategies to raise the 
precision of vehicle tracking and detection.

3 Materials and methods

3.1 System methodology

This section details the planned traffic monitoring system. System 
architecture overview is provided in Figure 1. This work offers a vehicle 
recognition and tracking system based on semantic segmentation. 
Firstly, the videos are turned into frames and pre-processing processes, 
i.e., defogging for noise reduction are done to the images. Then 
Gamma correction is employed for adjustment of image intensity for 
enhanced detection. FCM and DBSCAN segmentation was done on 
the filtered images for separation of foreground and back-ground 
items. YOLOv8 is applied for vehicle detection. ORB attributes are 
used for the assignment of unique ID. Vehicles were traced over several 
frames of images using a Deepsort. For finding each tracked vehicle, 
ORB key point description combined with trajectories approximation 
are used to recover IDs. Further information on each module is given 
in the ensuing subsections.

3.2 Images pre-processing

To eliminate superfluous pixel information from the resulting image, 
noise reduction is necessary since the extra pixel’s complicate recognition 
(Rong et al., 2022; Xiao et al., 2023). For best performance, any filter 
using defogging methods is applied to noise (Gao et al., 2020; Tang et al., 
2024). The defogging technique measures the amount of noise in each 
pixel of the picture and then removes it in the following ways.

	 G x X x Y x Z p x( ) = ( ) ( ) + − ( )( )1

where pixel location is denoted by x, fog density by Z, and 
transmission map by Y(x). Figure 2 represents defogged images:

The denoised image’s intensity is then adjusted using gamma 
correction (Huang et  al., 2018; Zhao L. et  al., 2024) since a high 
brightness allows for the most effective detection of the area of 
interest. The gamma correction power-law is provided as follows:

	 Vo TVI= γ

where VI is the non-negative value with power γ of the input, 
which may vary from 0 to 1, and T is a constant, usually equals to 1. 
Vo stands for the final image. The plotted denoised, intensity adjusted. 
Figure 3 shows the gamma-corrected images.
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3.3 Semantic segmentation

In many computer vision applications, including autonomous 
vehicles, medical imaging, virtual reality, and surveillance systems, 

image segmentation is essential. Images are divided into homogeneous 
sections using segmentation methods. Every area stands for a class or 
object. To improve item recognition on complicated backdrops, 
we compared two segmentation techniques.

FIGURE 1

Flowchart demonstrating the proposed traffic surveillance system proposed system architecture.

FIGURE 2

Defogging results over the (A) original image of VEDAI dataset (B) defogged image (C) original image of SRTID dataset (D) defogged image.
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3.3.1 FCM segmentation
Segmentation is widely employed in a variety of computer vision 

applications. This is a fundamental stage. Segmentation methods 
separate images into homogeneous sections (Huang et al., 2019; Hao 
et al., 2024). Each area denotes an item or class. We used the Fuzzy 
C-Mean segmentation technique. FCM is a clustering method in 
which each picture pixel might belong to two or more groups. Fuzzy 
logic (Chong et al., 2023; Zheng et al., 2024) refers to pixels that belong 
to more than one cluster. Because we  are working with many 
complicated road backdrops including several items and 
circumstances, segmentation approaches based on explicit feature 
extraction and training are unable to deliver a generic solution. For 
this purpose, we used FCM, a non-supervised clustering algorithm. 
During the FCM segmentation process, the objective function is 
optimized across numerous rounds. Throughout the iterations, the 
clustering centers and membership degrees were continually updated 
(Rehman and Hussain, 2018). The FCM method separates a finite 
collection of N items (S=𝑠1, 𝑠2, 𝑠𝑛) into C clusters. Each component 
of 𝑣𝑖 (i = 1, 2…, N) is a vector of d dimensions. We design a technique 
to divide s into C clusters using cluster centers 𝑢1, 𝑢2, and so on in the 
centroid set u (Xiao et  al., 2024; Xuemin et  al., 2024). The FCM 
approach uses a representative matrix (g) to represent the membership 
of each element in each cluster. The matrix 𝑔 may be  defined 
using equation:

	
g i z i N z C,( ) ≤ ≤ ≤ ≤, ;1 1

where 𝑔 (𝑖, 𝑧) represents the membership value of the element 𝑠𝑖 
having cluster center 𝑣𝑧. While calculating performance index Jfcm, and 
it is used to calculate the weighted sum of the distance between cluster 
center and components of the associated fuzzy cluster.
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where m indicates the number of clusters, N signifies the number 
of pixels, 𝑠𝑖 is the 𝑖𝑡ℎ pixel, 𝑣𝑧 is the 𝑧tℎ cluster center, and 𝑏 represents 
the blur exponent. The degree of membership function must meet the 
conditions specified in the equation below.
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Each time the membership function matrix is updated 
using equation:
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The membership matrix (bizb ) is between [0,1], and the distance 
between cluster centroid (𝑣𝑖) and pixel (𝑠𝑧) is supplied by diz2( ). The 
cluster centroid is determined by equation:
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A pixel receives a high membership value as it gets closer to the 
belonging cluster center and vice versa. Figure 4 depicts the results of 
the FCM segmentation.

3.3.2 Density-based spatial clustering (DBSCAN)
DBSCAN, or density-based spatial clustering, is a popular method 

in machine learning and data analysis (Khan et al., 2014; Deng et al., 
2022). In contrast to conventional clustering techniques that need 
preset cluster numbers, DBSCAN utilizes a data-centric methodology. 
It uses data density and closeness to its advantage to detect variable-
sized and irregularly formed clusters within complicated datasets 
(Bhattacharjee and Mitra, 2020; Liu et al., 2023). Initially, core points 
are determined based on having the fewest surrounding data points 
within a certain distance. These core locations are then expanded into 
clusters by adding nearby data points that satisfy density requirements 
(Chen et al., 2022; Zhang et al., 2023). Noise is defined as any data 
point that does not fit into a designated cluster or core point.

	 N x x X dist x xi j i jε ε( ) = ∈ ( ) ≤{ }| ,

FIGURE 3

Pre-processed image using gamma correction over the (A) VEDAI dataset (B) SRTID dataset.
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where N xiε ( ) represent the neighborhood of a point xi, x Xj ∈  
denotes all points x j belonging to the dataset X , dist x xi j,( ) calculates 
the distance between points, ε  is a threshold distance parameter, 
defining the maximum distance for points to be considered neighbors 
(see Figure 5).

	
C x X N x MinPtsi i= ∈ ( ) ≥{ }|| ε

	 x X N x x Ci j j∈ ( ) ∈|| ,ε and 	X x x xn= { }…1 2, , .. .

where xi is the epsilon neighborhood of x j and x j is the core point.
The FCM and DBSCAN segmentation methods were evaluated in 

terms of computational cost and error rates determined 
using equations.

	 Error Rate accuracy= −1

FCM surpasses DBSCAN owing to its adeptness in managing 
datasets with varied cluster shapes and sizes. By adding fuzzy 
membership degrees, FCM addresses the ambiguity inherent in data 
point assignments, resulting in more adaptive and improved 
clustering. Furthermore, FCM enables increased control over cluster 
boundaries via parameterization, allowing for exact alterations to 
better fit the specific properties of the data. Table 1 exhibits FCM’s 

better efficacy and accuracy in picture segmentation on VEDAI and 
SRTID datasets. Considering both computation time and error rates, 
FCM shines, making its findings the preferable option for following 
tasks such as vehicle recognition, ID allocation, recovery, counting, 
and tracking.

3.4 Vehicle detection

YOLOv8 is utilized for vehicle recognition and radiates as an 
excellent single-shot detector capable of identifying, segmenting, and 
classifying with fewer training parameters (Chen et al., 2023b; Wang 
et al., 2023). According to the CSP principle, the C2f module replaces 
the C3 module to align with the YOLOv8 backbone, increasing 
gradient flow information while keeping YOLOv5 compliant. The C2f 
module combines C3 with ELAN in a unique manner, drawing on 
YOLOv7’s ELAN methodology, ensuring YOLOv8 compatibility (). 
The SPPF module at the backbone’s end employs three consecutive 5 
× 5 Maxpools before concatenation in each layer to reliably identify 
objects of varied sizes with lightweight efficiency (Sun et al., 2019; Li 
S. et al., 2023; Yi et al., 2024).

YOLOv8 integrates PAN-FPN in its neck portion, which improves 
feature fusion and data use at different sizes (Mostofa et al., 2020; Xu 
et al., 2020). The neck module combines a final decoupled head 
structure, many C2f modules, and two up samplings (Song et al., 2022; 
Wu and Dong, 2023). YOLOv8’s neck is like YOLOx’s head idea, 

FIGURE 4

Segmentation using FCM over (A) VEDAI dataset and (B) SRTID dataset.

FIGURE 5

Segmentation using DBSCAN over (A) VEDAI dataset and (B) SRTID dataset.
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which combines confidence and regression boxes to increase accuracy. 
It operates as an anchor-free model, detecting the object center 
directly, lowering box predictions, and speeding up the Non-Maximum 
Suppression (NMS) process, an important post-processing step (Li 
et al., 2024). Figure 6 shows automobiles spotted using YOLOv8.

3.5 ID allocation and recovery based on 
ORB features

Prior to tracking each identified vehicle in the subsequent image 
frames, an ID based on ORB traits was assigned to each detected 
vehicle. A quick and effective feature detector is ORB (Chien et al., 
2016; Chen et al., 2022). FAST (Features from Accelerated Segment 
Test) key point detector is used for key-point detection. It is a more 
sophisticated version of the BRIEF (Binary Robust Independent 
Elementary Features) description. It is also rotationally and scale-
invariant. Equation is used to get a patch moment (Luo et al., 2024; 
Yao et al., 2024).

	 n x y l u vst
s t= ∑ ( ),

where x and y are the image pixels’ relative intensities, represented 
by the values s and t. These moments may be utilized to find the center 
of mass using equation:

	
N m

m
m
m

= 10

00

01

00

,

where the equation defines path orientation:

	 θ = ( )atan m m01 10,

The identified cars in the subsequent frames were compared using 
the extracted ORB features, and if a match was discovered, the ID was 
restored; if not, the vehicle was recorded in the system with a new ID 
(Cai et  al., 2024). ID is restored across frames and ORB feature 
description is applied to the extracted cars; results are shown in 
Figure 7.

3.6 Vehicle counting

Using YOLOv8’s vehicle detections, we  incorporated vehicle 
counts in every image frame to conduct a thorough analysis of the 
traffic situation (Tian et al., 2022; Yang et al., 2023). Using a counter, 
each seen vehicle was painstakingly recorded under equation. Road 
traffic density at different times may be measured by counting the 
number of cars within each frame (Minh et al., 2023). This data is 
essential for enabling quick responses to unforeseen events like traffic 
jams or other circumstances that might impair traffic flow (Wu et al., 
2019; Peng et al., 2023).

	
Vehicle Count =

=
∑
i

N
T

1

where, T denotes the vehicle detections within a single frame, with 
the corresponding output visualized in Figure 8.

3.7 Vehicle tracking

We utilized the DeepSORT tracker to observe the movements of 
vehicles frame by frame. DeepSORT is a tracking approach that makes 
use of deep learning characteristics with the Kalman filter to track 
objects based on their appearance, motion, and velocity (Bin Zuraimi 
and Kamaru Zaman, 2021; Sun G. et al., 2022). Using the Mahalanobis 

TABLE 1  Error rate comparison of DBSCAN and FCM.

Datasets Error rate

DBSCAN FCM

VEDAI 0.32 0.20

SRTID 0.37 0.23

FIGURE 6

Vehicle Detection over (A) VEDAI and (B) SRTID datasets marked with red boxes via the YOLOv8 algorithm.
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distance metric between the Kalman state and the freshly obtained 
measurement, (Li et al., 2018; Sun Y. et al., 2022) the motion 
information is merged as described in equation:

	 k i j k v S k vj i i j i
1 1( ) −( ) = −( ) −( ),

T

where k 𝑗 is the jth bounding box detection and (vi, Si) is the ith 
track distribution projection into space measurement. The appearance 
information has been computed using the smallest cosine distance, as 

provided by equation, between the ith and jth detections in 
appearance space.

	
k i j t t rj k

i
k
i

i
2

1
( ) ( ) ( )( ) = − ∈{ },

T
min | 

where tj and tk
i( ) represent the appearance and associated 

appearance descriptor, respectively. The extracted appearance and 
motion information is combined as given in equation:

A

B

C

FIGURE 7

ID assignment and restoration: (A) ID assigned to each vehicle based on ORB features; (B) features matching across frames; (C) ID restored for the 
same vehicle in succeeding frame.

FIGURE 8

Density estimation by using vehicle count displayed at the left corner of each image.
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	 c k i j k i ji j, = ( ) + −( ) ( )( ) ( )λ λ1 2
1, ,

where c is the corresponding weight. The appearance features 
are produced by a pre-trained CNN model that contains two 
convolution layers, six residual layers linked to a dense layer, one 
max pooling layer, and l2 normalization (Kumar et al., 2023; Mi 
et al., 2023). The DeepSORT algorithm’s tracking mechanism is 
shown in Figure 9 (Singh et al., 2023). In Figure 10, the tracking 
result is shown.

3.8 Vehicle trajectory estimation

In addition to the previously computed density, 
we approximated the path traveled by each tracked vehicle. The 
trajectories taken by a vehicle may be utilized to construct vehicle 
detection (Adi et al., 2018; Bozcan and Kayacan, 2020). It may also 
be used to identify trajectory conflicts and accidents if it is further 
developed. The route is plotted if the vehicle is tracked (Chen and 
Wu, 2016; Wang et  al., 2022). To approximate the trajectories, 
we used geometric coordinates from observed rectangular boxes. 
DeepSORT was used for location estimation and coordinate 
retrieval (Leitloff et al., 2014; Sheng et al., 2024). The center points 
of estimated locations, which represent individual vehicle IDs, 
were noted on a separate image, and then linked to 
construct trajectories.

The approach feeds detection coordinates into the DeepSORT 
tracker, which predicts vehicle placements in the following frame. 
Vehicle IDs are retrieved using ORB features; if the number of matches 
exceeds the threshold, relevant IDs are allocated, and new entries are 
assigned new IDs (Hou et al., 2023b). Rectangular coordinates and 
midpoints are used to trace vehicle routes. Algorithm 1 provides the 
exact processes for estimating the trajectory.

4 Experimental setup and datasets

4.1 Experimental setup

PC running x64-based Windows 11, with an Intel Core i5-12500H 
2.40GHz CPU, 24GB RAM and other specifications is used to perform 
all the experiments. Spyder was used to acquire the results. The system 
employed two benchmark datasets, VEDAI and SRTID, to calculate 
proposed architecture’s performance. In this section, concise 
discussion of the dataset used for vehicle identification and tracking 
system is done, as well as the results of several tests undertaken to 
examine the proposed system along with its assessment in comparison 
to numerous existing state-of-the-art traffic monitoring models.

4.2 Dataset description

In the subsequent subsection, we  provide comprehensive and 
detailed descriptions of each dataset used in our study. Each dataset is 
thoroughly introduced, highlighting its unique characteristics, data 
sources, and collection methods.

4.2.1 VEDAI dataset
The VEDAI dataset (Sakla et  al., 2017) is a standard point of 

reference for tiny target identification, specifically aerial images 
vehicle detection. This dataset comprises roughly 1,210 images of two 
distinct dimensions such as 1,024 × 1,024 pixels and 512 × 512 pixels. 
Both near-infrared and visible light spectra environment photos are 
acquired in this collection. The cars in acquired aerial shots feature 
incredibly tiny dimensions, lighting/shadowing shifts, various 
backdrops, multiple forms, scale variations, and secularities or 
occlusions. Moreover, it comprises nine separate kinds of automobiles, 
including aircraft, boats, camping cars, automobiles, pick-ups, 
tractors, trucks, vans, and other categories.

4.2.2 Spanish road traffic images dataset
The dataset consists of 15,070 images in.png format, followed by 

an equal number of files with the txt extension containing descriptions 
of the objects found in each image. There are 30,140 files including 
images and information. The images were shot at six separate places 
along urban and interurban highways, with motorways being deleted. 
The images include 155,328 identified vehicles, including automobiles 
(137,602) and motorbikes (17,726) (Bemposta Rosende et al., 2022).

4.2.3 VAID dataset
The VAID collection consists of six vehicle image categories: 

minibus, truck, sedan, bus, van, and automobile. The images were 
taken at a height of 90–95 meters above the ground by a drone under 
a variety of lighting circumstances. The photographs, which were 
captured at a resolution of 2,720 × 1,530 and at a frame rate of 23.98 
frames per second, show the state of the roads and traffic at 10 
locations in southern Taiwan, encompassing suburban, urban, and 
educational environments (Lin et al., 2020).

4.2.4 UAVDT dataset
UAVDT dataset: Comprising 80,000 representative frames, the 

UAVDT dataset (Du et  al., 2018) includes UAV imagery of cars 

ALGORITHM 1 Trajectory estimation of tracked 
vehicles
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FIGURE 10

Tracking results using DeepSORT tracker across the image frames (A) Vehicle dectection only (B). Multiple-object detection (0  =  Vehicles, 1  =  Bike, 
2  =  Pedestrians in frames).

FIGURE 9

Steps of vehicle tracking using DeepSORT algorithm.
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chosen from 10-h long recordings. Bounding boxes with up to 14 
different attributes (e.g., weather, flying altitude, camera view, 
vehicle category, occlusion, etc.) completely annotate the photos. 
Each of the three sets—training, val, and testing consists of 5,000, 
1,658, and 3,316 images, all 1,024 × 540 pixels. The photographs 
from the same video have comparable backdrops, camera 
viewpoints, and lighting (for those recorded at the same time 
of day).

4.3 Experiment I: semantic segmentation 
accuracy

The DBSCAN and FCM algorithms were compared and assessed 
in terms of segmentation accuracy and computational time. DBSCAN 
requires training on a bespoke dataset, increasing the model’s 
computing cost as compared to FCM. Furthermore, FCM produced 
superior segmentation results than DBSCAN, therefore we utilized the 
FCM findings for future investigation. Table 2 shows the accuracy of 
both segmentation strategies.

4.4 Experiment II: precision, recall, and F1 
scores

The effectiveness of vehicle detection and tracking has been 
assessed using these evaluation metrics, namely Precision, Recall, and 
F1 score as calculated by using equations below:

	
Precision =

∑
∑ + ∑

TP
TP FP
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+
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TP FN
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Precision Recall

Precision Recall
=
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Table 3 shows vehicle detection’s precision, recall, and F1 scores 
on the segmented images, while Table 4 shows vehicle detection’s 
precision, recall and F1 scores on the raw images. True Positive 
indicates how many cars are effectively identified. False Positives 
signify other detections besides cars, whereas False Negatives shows 
missing vehicles count. The findings indicate that this suggested 
system can accurately detect cars of varying sizes.

In case of tracking, the number of cars successfully tracked is 
indicated as True Positive, whereas False Positive is the vehicles count 
falsely recorded, and False Negative represents untracked vehicles 
count. Table 4 shows the vehicle tracking method’s precision, recall, 
and F1 scores (Figure 11).

4.5 Experiment

4.5.1 ID assignment and ID recovery
We used two new metrics to assess the ID assignment and 

recovery module, as shown in equations. The AID is the accurate ID 
rate, which is the proportion of correct ID numbers assigned to 
automobiles (Table 5).
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TABLE 2  Accuracies comparison of DBSCAN and FCM segmentation.

Datasets Segmentations accuracy

DBSCAN FCM

VEDAI 0.65 0.83

SRTID 0.68 0.79

VAID 0.62 0.72

UAVDT 0.65 0.75

TABLE 3  Precision, recall, and F1 Score for vehicle detection via YOLOv8 
over segmented and raw images.

Datasets Precision Recall F1 score

VEDAI 

(segmented)

0.86 0.84 0.85

SRTID (segmented) 0.84 0.83 0.83

VAID (segmented) 0.85 0.82 0.83

UAVD (segmented) 0.81 0.82 0.81

VEDAI (raw) 0.83 0.80 0.81

SRTID (raw) 0.79 0.81 0.79

VAID (raw) 0.81 0.78 0.79

UAVDT (raw) 0.76 0.77 0.76

TABLE 4  Precision, recall, and F1 score for vehicle tracking via DeepSORT.

Datasets Precision Recall F1 score

VEDAI 0.87 0.88 0.87

SRTID 0.83 0.82 0.82

VAID 0.88 0.85 0.86

UAVDT 0.84 0.83 0.83

TABLE 5  Precision, recall, and F1 score for vehicle tracking via DeepSORT 
and ByteTrack.

Datasets Precision Recall F1 
score

Tracking 
success 

rate

VEDAI 0.89 0.90 0.89 88.1%

SRTID 0.85 0.84 0.84 84.2%

VAID 0.90 0.87 0.88 87.5%

UAVDT 0.86 0.85 0.85 85.2%
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FIGURE 11

Tracking performance comparison of DeepSORT and ByteTrack across datasets.

where N is the total number of vehicles. AIDsi denotes the overall 
number of ID assignments made to the true vehicles, and IDi denotes 
all of them. The Recovery Rate represents the percentage of true 
IDs recovered.

	
Recovery Rate = =∑i

N
iTReCovers

ReCovers
1

where the total number of dissimilar vehicles is represented by 
N. TReCoversi represents the number of true recoveries and ReCovers 
is the all-existing recoveries (Table 6).

4.6 Experiment IV: vehicle detection and 
tracking comparison with SOTA models

In this experiment, we have drawn a comparison of proposed 
model with other popular algorithms. Table  7 represents a 
comparison between our presented detection algorithm and 
other methods.

TABLE 6  AIDRate and recovery rate for ID assignment recovery 
algorithm.

Datasets AIDRate (%) Recovery rate (%)

VEDAI 68 65

SRTID 63 59

VAID 59 55

UAVDT 65 60

TABLE 7  Accuracy comparison of the proposed approach with SOTA 
vehicle detection models.

Methods Accuracy %

VEDAI SRTID VAID UAVDT

AVD NET 

(Mandal et al., 

2020)

51.95 62.10 60.75 58.20

YOLOv5 (Hou 

S. et al., 2023)

75.54 73.20 74.30 72.10

Haar-like 

features (Nguyen 

and Tran, 2018)

77.0 65.00 64.50 62.00

D2Det (Cao 

et al., 2020)

73.40 56.92 68.10 64.30

R-FCN (Zhang, 

2020)

68.90 73.0 69.80 70.20

SSD (Smith and 

Johnson, 2020)

71.00 70.30 81.0 74.50

R-FCN (Kim 

and Park, 2021)

72.50 70.90 75.0 73.20

NDFT (Cao 

et al., 2020)

63.50 62.80 64.00 52.03

YOLOv6 

(Kumar and 

Singh, 2023)

74.07 71.20 72.80 74.07

YOLOv7 (Patel 

and Reddy, 

2023)

76.80 74.50 75.60 72.0

Proposed 

method

79.4 77.7 83.1 77.2
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Table 8 depicts the comparison of proposed tracking algorithm. 
Proposed model model performs better than other state-of-
the-art methods.

5 Discussion/research limitation

For smart traffic monitoring based on aerial images, the suggested 
model is an efficient solution. While catering to high-definition aerial 
images, object detection is one of the most difficult problems. To get 
efficient results, we devised a technique that combines multi-label 
semantic segmentation with deepsort tracking. However, the 
suggested technique has significant limitations. First and foremost, the 
system has only been evaluated with RGB shots acquired during the 
daytime. Analyzing video or pictorial datasets in low-light conditions 
or at night can further confirm this proposed technique as a lot of 
researchers already have succeeded with such datasets. Furthermore, 
our segmentation and identification system have problems with 
partial or complete occlusions, tree-covered roadways, and 
similar items.

6 Conclusion

This study presents a novel approach to recognizing and tracking 
vehicles in aerial image sequences. Before proceeding with the 
detection phase, the model preprocesses aerial images to remove noise. 
To decrease complexity, the FCM approach is used for segmentation of 
all the images. The YOLOv8 algorithm is used for vehicle detection. It 
identifies vehicles by giving them a unique ID that contains ORB 
elements to aid recovery. DeepSORT tracks cars across frames and 
predicts their travel patterns. The suggested approach generated 
encouraging results across both datasets. The suggested system must 
be trained with additional vehicle classes. In addition, further elements 
may be added to increase vehicle recognition and tracking accuracy. In 
the future, we  want to add additional features and dependable 
algorithms to the proposed model system to boost its efficiency and 
make it standard for all traffic scenarios.
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TABLE 8  Accuracy comparison of the proposed approach with SOTA vehicle tracking models.

Methods Accuracy %

VEDAI SRTID VAID UAVDT

Faster R-CNN (du Terrail and Jurie, 2018) 83.50 78.0 81.0 79.5

Correlation filter tracking (Liu et al., 2019) 76.0 72.5 70.0 74.0

SIFT features (Mu et al., 2016) 72.5 75.10 73.0 71.0

HIOU (Hua and Anastasiu, 2019) 70.0 77.0 69.5 71.5

Kalman filter (Poostchi et al., 2017) 68.0 66.5 65.0 67.5

CNN (Alotaibi et al., 2020) 69.4 71.0 82.0 70.0

Affinity network (Cao et al., 2022) 73.2 74.0 71.5 74.0

MaSiamRPN (Sun et al., 2023) 82.0 79.1 83.0 84.0

Proposed method 88.6 82.2 84.6 86.1
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Real-world robotic operations often face uncertainties that can impede accurate

control of manipulators. This study proposes a recurrent neural network (RNN)

combining kinematic and dynamic models to address this issue. Assuming an

unknownmassmatrix, the proposedmethod enables e�ective trajectory tracking

for manipulators. In detail, a kinematic controller is designed to determine the

desired joint acceleration for a given task with error feedback. Subsequently,

integrated with the kinematics controller, the RNN is proposed to combine the

robot’s dynamic model and a mass matrix estimator. This integration allows

the manipulator system to handle uncertainties and synchronously achieve

trajectory tracking e�ectively. Theoretical analysis demonstrates the learning

and control capabilities of the RNN. Simulative experiments conducted on a

Franka Emika Pandamanipulator, and comparisons validate the e�ectiveness and

superiority of the proposed method.

KEYWORDS

recurrent neural network (RNN), trajectory tracking, manipulator control, dynamic

model, unknown mass matrix

1 Introduction

With the rapid development of modern robot research and development technology,

manipulators have permeated various aspects of human life, such as space explorations

(Ma et al., 2023a) and smart factories (Abate et al., 2022). Its fundamental functionality

lies in trajectory tracking, where specific tasks are accomplished by executing predefined

end-effector trajectories (Jin et al., 2024b). This involves the control of robot kinematics

and dynamics (Liao et al., 2022; Lian et al., 2024; Sun et al., 2024). To exert control over

the robot, desired joint attributes should be obtained according to the task trajectory and

converted into the corresponding joint torques (Müller et al., 2023). Numerous algorithms,

such as pseudoinverse methods (Guo et al., 2018; Sun et al., 2023a) and model predictive

control method (Jin et al., 2023), have been designed to achieve precise control of the

manipulator. However, these algorithms rely on accurate robot models and struggle to

control the robot effectively when its parameters change. In practical applications, it is

common for robot model parameters to vary, especially when robots are modified to

perform different tasks in diverse application scenarios (Xiao et al., 2022; Xie and Jin,

2024). Reliable model-free control methods need to be designed to enable effective control

of robots after the parameter changes.
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In recent decades, there are many emerging algorithms to

address the control issues of manipulators (Liao et al., 2024; Yan

et al., 2024), which are considered from the velocity level (Zhang

et al., 2019; Sun et al., 2022), acceleration level (Wen and Xie,

2024), or torque level (Hua et al., 2023). For instance, to eliminate

the joint-angle drift and prevent excessive joint velocity, a velocity-

level bi-criteria optimization scheme is provided for coordinated

path tracking of manipulators, focusing on the velocity aspect

(Xiao et al., 2017). Additionally, a data-driven acceleration-level

scheme is introduced to address control continuity and stability

issues for manipulator (Wen and Xie, 2024). However, most of

these studies focus solely on kinematics, neglecting dynamic factors

(Tang and Zhang, 2022). Robot kinematics and dynamics are two

fundamental domains within the field of robotics. Robot kinematics

focuses on the study of the motion capabilities of robots in space,

encompassing aspects such as joint angles, positions, velocities, and

accelerations, without considering the effects of forces (Xie et al.,

2023). In addition, robot dynamics is concerned with the impact of

forces and torques on the motion of the manipulator, including the

interactions between the robot and its environment. In the control

of robotic manipulators, considering dynamic factors can help

precisely predict the actual motion trajectory of the manipulator

under various load and motion conditions, thereby improving the

overall motion accuracy (Sun et al., 2023b; Xiao et al., 2023). It can

also compensate for the oscillation and coupling effects in joint

motion, making the movement of the manipulator smooth and

stable. Furthermore, the dynamics-based studies aid in selecting

the optimal drive scheme, reducing energy consumption, and

enhancing energy utilization efficiency. However, manipulators

frequently encounter issues with dynamic uncertainties due

to the diversity of robotic grippers and uncertainties in load

(Bruder et al., 2021; Liu et al., 2024b). Specifically, surgical

manipulators may be equipped with different end-effectors to

meet various task requirements, implying changes in dynamic

parameters (Liu et al., 2024b). Moreover, in robotic-grasping tasks,

unknown loads also lead to variations in robot dynamic parameters

(Bruder et al., 2021). Dynamic uncertainties significantly

impede the accurate control of manipulators, highlighting its

research significance.

Recurrent neural networks (RNNs) have emerged as effective

robot control algorithms in recent years (Liao et al., 2023; Ma et al.,

2023b; Jin et al., 2024a). RNN is utilized to establish a scheme

for addressing the coordination problem for multirobot systems

(Cao et al., 2023; Liu et al., 2024a). In addition, RNN can mitigate

uncertainties in the robot systems by enabling online learning

of robot parameters (Xie et al., 2022). However, further research

is needed to explore the integration of synchronous dynamic

parameter learning with the kinematic model to achieve accurate

trajectory tracking (Tang et al., 2024). To this aim, this study

assumes the presence of deviations in the robot dynamic model

and proposes an RNN for the model-free control of manipulators.

Specifically, relevant control algorithms are designed at both the

kinematic and dynamic levels, and an estimator of the mass matrix

is proposed to compensate for the uncertainty of the dynamic

model. Further verifications are carried out on a Franka Emika

Panda manipulator to perform a trajectory-tracking task, taking

into account dynamic uncertainties. In addition, compared with the

existing methods, the superiorities of the proposed RNN lie in the

following two aspects:

• Compared with kinematics-based methods (Guo et al., 2018;

Jin et al., 2023, 2024b), the proposed RNN bridges the

robot kinematics and robot dynamics models through joint

acceleration signals, considering the motion feature and the

dynamic behavior of manipulators.

• Compared with dynamics-based methods (Shojaei et al., 2021;

Zong and Emami, 2021), the proposed RNN addresses the

dynamic uncertainty problem by estimating the mass matrix

online and realizes synchronous trajectory tracking.

Through the introduction of the above basic content, the

specific research of this study is organized as follows. Section 2

explains the kinematic relationship between the joint angle of the

manipulator and the end-effector. In Section 3, a corresponding

RNN is designed. Subsequently, the learning and control ability of

the proposed RNN are analyzed theoretically in Section 4. Finally,

simulations and comparisons are carried out in Section 5.

2 Kinematic controller

The forward kinematics of the manipulator describes the

mapping relationship between the joint angle and the end-effector

position, described as f (q) = r, where q ∈ R
a is the joint angle,

r ∈ R
b denotes the position of the end-effector, and f (·) stands for

the non-linear mapping. Furthermore, the time derivative of the

forward kinematics is derived as

Lq̇ = ṙ, (1)

where L = ∂f (q)/∂q ∈ R
b×a is the Jacobian matrix, q̇ denotes the

joint velocity, and ṙ is the velocity of the end-effector. Concerning

the joint acceleration level, taking the time derivative of Equation 1

leads to

L̇q̇+ Lq̈ = r̈, (2)

where L̇ is the time derivative of L, q̈ represents the joint

acceleration, and r̈ denotes the acceleration of the end-effector.

Building upon Equation 2, the desired joint acceleration can be

obtained by the following kinematic controller:

q̈ = L†(r̈d − L̇q̇− v), (3)

where v = β(ṙ − ṙd) + ζ (r − rd) denotes the error feedback

term; rd, ṙd, and r̈d are the desired position, velocity, and

acceleration of the trajectory tracking task; superscript † denotes

the pseudoinverse operation of a matrix with L† = LT(LLT)−1;

and β > 0 and α > 0 are convergence coefficients. On

the one hand, kinematic controller (Equation 3) utilizes the

minimization function of the pseudoinverse operation to obtain

the desired joint acceleration (Wen and Xie, 2024). On the other

hand, it takes the desired trajectory tracking task as input and

incorporates feedback of the tracking error, leading to improved

trajectory tracking performance. In addition, kinematic controller
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(Equation 3) can apply traditional methods to avoid the singularity

issues, such as the damped least squares method (Xie et al., 2024).

Specifically, a damped term can be added in the computation of the

pseudoinverse. The specific calculation formula is LT(LLT+µI)−1,

where µ > 0 denotes a tiny parameter and I denotes the identity

matrix. By doing so, the infinite values caused by zero eigenvalues

in the pseudoinverse operation can be avoided.

3 Recurrent neural network design

Robot dynamics refers to the mathematical description of the

relationship between joint torques, dynamic parameters, and joint

motions in a robotic system. Specifically, the dynamic model of a

manipulator can be written as

τ = M(q)q̈+ c(q, q̇)+ g(q), (4)

where τ ∈ R
a represents the joint torque, M(q) ∈ R

a×a is the

mass matrix, c(q, q̇) ∈ R
a is the Coriolis and centrifugal vector,

and g(q) ∈ R
a denotes the gravity vector. Generally, traditional

methods, such as Guo et al. (2018), are capable of performing

accurate dynamic control by relying on precise dynamic models

(Equation 4). However, in real-world applications, it is common

for manipulators to undergo modifications to perform various

tasks, resulting in changes in their dynamic parameters. Given

the assumption that the change occurs in the inertia matrix, we

design an estimated inertia matrix M̄ ∈ R
a×a to effectively mitigate

dynamic uncertainties. As a result, the following state equation is

established:

τ̄ = M̄(q)q̈+ c(q, q̇)+ g(q), (5)

where τ̄ ∈ R
a is the corresponding joint torque. When the

estimated inertia matrix converges to the actual one, it indicates

that the dynamic uncertainty issue is solved. To this aim, an

estimation equation is presented as follows:

˙̄M = α(τ − τ̄ )q̈†, (6)

where ˙̄M determines the evolution direction of M̄, and α > 0 stands

for the convergence coefficient. In Equation 6, τ is measured in real

time. Combining Equations 3, 5, 6, an RNN is designed as follows:

˙̄M = α(τ − M̄(q)q̈+ h(q, q̇))q̈†, (7a)

τ out = M̄(q)(L†(r̈d − L̇q̇)− v)+ h(q, q̇), (7b)

where τ out is the output signal and h(q, q̇) = c(q, q̇) + g(q). In

addition, a control flow chart of RNN (Equation 7) is shown in

Figure 1. Notably, the joint acceleration generated by Equation 3

in a kinematic manner serves as the input for Equation 7b.

Furthermore, Equation 7a utilizes measurement data τ to estimate

the mass matrix, which, in turn, facilitates the precise control

of Equation 7b. In this context, RNN (Equation 7) demonstrates

its capability to learn the mass matrix and achieve synchronous

trajectory tracking via the joint torque. The parameters in RNN

(Equation 7) include α, β , and ζ , which are determined through

trial and error methods.

In RNN (Equation 7), we first apply kinematic controller

(Equation 3) to output the joint acceleration corresponding to the

trajectory task. This process belongs to the inverse kinematics

solution. Subsequently, we further obtain the joint torque by

calculating the obtained joint acceleration. This process belongs to

the inverse dynamics of solution. Finally, the output joint torque

can directly control the manipulator to perform the given task. In

this control mode, robot kinematics and dynamics are combined

together with joint acceleration to form a bridge.

4 Theoretical analysis

The following theorem provides a verification of the learning

and control capabilities of the proposed RNN (Equation 7).

Theorems: Assuming a sufficiently large value of α, the

estimated error M − M̄ generated by Equation 7a is global

convergent to a zero matrix. Based on the estimated mass matrix,

Equation 7b enables accurate trajectory-tracking control of the

manipulator with an unknown mass matrix.

Proof: By incorporating Equations 2, 3, we can rewrite

Equation 7b as ˙̄M = α(M − M̄)q̈q̈†. Multiplying both sides of

the equation by q̈ yields ˙̄Mq̈ = α(M − M̄)q̈. Then, it follows that
˙̄M = α(M − M̄). Define an estimated error as e = (Mi − M̄i)

with Mi and M̄i being the i-th column of M and M̄ (i = 1, · · · , a),
respectively. Set a Lyapunov function asV = (Mi−M̄i)

T(Mi−M̄i),

and then, its time derivative is calculated as follows:

V̇ = (Mi − M̄i)
TṀi − α(Mi − M̄i)

T(Mi − M̄i)

= eTṀi − αeTe

≤ ||e||2||Ṁi||2 − α||e||22
= ||e||2(||Ṁi||2 − α||e||2),

(8)

with ||·||2 being the Euclidean norm of a vector. The above equation

leads to three different situations as follows:

• Situation i: ||e||2 > ||Ṁi||2/α. This situation contributes to

V̇ < 0 and V > 0, which implies that ||e||2 is convergent until
||e||2 = ||Ṁi||2.

• Situation ii: ||e||2 = ||Ṁi||2/α. It leads to V̇ ≤ 0. This suggests

that ||e||2 converges to zero or maintains at ||e||2 = ||Ṁi||2.
• Situation iii: ||e||2 < ||Ṁi||2/α. We deduce that V̇ > 0 or

V̇ ≤ 0. Subsequently, it can be inferred that ||e||2 continues to
increase until it reaches Situation ii or it remains unchanged

or convergent.

Considering the above three situations, it can be obtained that

||e||2 ≤ ||Ṁi||2/α when t → ∞. Provided a sufficiently large value

of α, we have that ||e||2 reaches zero when t → ∞. In conclusion,

the estimated error M − M̄ generated by Equation 7b globally

converges to a zero matrix. Hence, applying LaSalle’s invariance

principle (K.Khalil, 2001), we replace M̄ withM in Equation 7b and

deduce

τ out = M(q)(L†(r̈d − L̇q̇)− v)+ h(q, q̇). (9)

Therefore, Equation 7b enables dynamic control of the

manipulator depending on the desired joint acceleration in

kinematic controller (Equation 3).

The desired joint acceleration allows the manipulator to

precisely follow a given trajectory, which is proven through
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FIGURE 1

A control flow chart of RNN (Equation 7).

A B

C D

FIGURE 2

Simulative results of RNN (Equation 7) for trajectory-tracking task on Franka Emika Panda manipulator. (A) Motion process. (B) Joint acceleration. (C)

Position error. (D) Joint torque.

the following proof. Primarily, (Equation 3) can be equivalently

converted into

Lq̈+ L̇q̇− r̈d = r̈ − r̈d = −β(ṙ − ṙd)− ζ (r − rd). (10)

Assuming the position error as u = r − rd, the above equation

is reorganized as ü + βu̇ + ζu = 0, which belongs to a second-

order differential equation system. The roots of the corresponding

characteristic equation are s1 = (−β +
√

β2 − 4ζ )/2 and s2 =
(−β −

√

β2 − 4ζ )/2. Furthermore, According to Equations 8–

10, we can analyze that the convergence of this system can be

categorized into the three cases (Jin et al., 2017).

• Case i: When β2 − 4ζ > 0, we obtain that s1 < 0 and s2 < 0

are real numbers with s1 6= s2. Then, the solution satisfies

u(t) = c1exp(s1t)+c2exp(s2t) with c1 ∈ R
b and c1 ∈ R

b being

coefficient vectors determined by the initial state of the system.

• Case ii: When β2 − 4ζ = 0, the system has two

equivalent characteristic roots with s1 = s2 <

0. Therefore, the solution can be deduced as

u(t) = (c1 + c2)exp(s1t).

• Case iii: When β2 − 4ζ < 0, s1 = z + iy and

s2 = z − iy are conjugate complex numbers with

z < 0. As a result, the solution can be deduced as

u(t) = exp(zt)(c1cosyt + c2sinyt).
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A B

C D

FIGURE 3

Simulative results of Equation 7b without Equation 7a for trajectory-tracking task on Franka Emika Panda manipulator. (A) Motion process. (B) Joint

acceleration. (C) Position error. (D) Joint torque.

These cases demonstrate that the position error u generated by

Equation 3 exponentially converges to a zero vector from any initial

states. In other words, it is concluded that Equation 7b enables

trajectory tracking control of the manipulator with the unknown

mass matrix. The proof is thus completed.

5 Simulative results and comparisons

This section provides simulation experiments to demonstrate

the learning and control performance of RNN (Equation 7).

Specifically, we test it on a 7-degree-of-freedom manipulator

called Franka Emika Panda (Liu and Shang, 2024) to task a

four-leaf clover path with α = 104, β = 1, and ζ = 5.

In addition, we assume that the mass matrix is unknown and

design a random noise matrix with elements <0.5 to represent

its uncertainties. The related results are shown in Figures 2, 3.

Figure 2A demonstrates the effectiveness of the proposed method

in enabling the manipulator to accomplish trajectory-tracking

tasks, even in the presence of an unknownmass matrix. In addition,

the initial joint acceleration in Figure 2B is relatively large due to

the initial mass matrix error and becomes smooth and normal.

Furthermore, the position error keeps the order of 10−5 m in

Figure 2C. Similarly, in Figure 2D, it can be observed that the

joint torque exhibits reasonable variations. However, when the

estimation Equation 7b is not considered, achieving the trajectory

tracking task based on Equation 7b becomes challenging due to the

presence of the unknown mass matrix. As shown in Figure 3A, the

manipulator driven by Equation 7a cannot complete the tracking

task. Evidently, the joint acceleration became uncontrollable at

∼4.5 s, as shown in Figure 3B, and the manipulator system is

no longer operational. Furthermore, the position error exhibits

divergence in Figure 3C. Similarly, the joint torque in Figure 3D is

out of control at 4.5 s. Through the above results, the learning and

control ability of the proposed method are verified.

To further demonstrate the feasibility of the proposed method,

we additionally apply the proposed RNN (Equation 7) to control

the Franka Emika Panda manipulator performing a Lissajous

trajectory-tracking task. It is noteworthy that the parameters

involved are identical to the previous simulation, except for

the trajectory-tracking task. The specific results are presented

in Figure 4. Specifically, Figures 4A, B demonstrate that the

manipulator successfully executes the given trajectory tracking

task, taking into account dynamics uncertainties. Furthermore,

the positional error, as shown in Figure 4C, is maintained at the

order of 10−5 m. Additionally, the joint acceleration exhibits

normal variations, as shown in Figure 4D. In addition, Figures 4E, F

illustrate that the proposed method is capable of compensating for

the dynamics uncertainties, with tiny estimated errors of the joint

torque. The aforementioned results indicate the effectiveness of the

proposed RNN (Equation 7).

In addition, the advantages of the proposed RNN are

shown in Table 1, compared with the existing methods.

One notable advantage of the proposed RNN (Equation 7)

is its simultaneous consideration of both the kinematic

and dynamic models. This approach enables the realization
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A B

C D

E F

FIGURE 4

Simulative results of RNN (Equation 7) for trajectory-tracking task on Franka Emika Panda manipulator. (A) Desired trajectory and end-e�ector

trajectory. (B)Motion process of manipulator. (C) Position error. (D) Joint acceleration. (E) Estimated joint torque. (F) Joint torque error with ξ = τ − τ̄ .

TABLE 1 Comparisons among di�erent methods for controlling manipulator.

Di�erent Dynamic Unknown Trajectory Mass matrix

methods control issue tracking Online estimation

RNN (Equation 7) Yes Yes Yes Yes

Guo et al. (2018) No No Yes No

Jin et al. (2023) No No Yes No

Ma et al. (2023b) No No Yes No

Jin et al. (2017) No No Yes No

Liu and Shang (2024) No No Yes No

Shojaei et al. (2021) Yes Yes No No

Zong and Emami (2021) Yes No No No
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of online estimation of the mass matrix and synchronous

trajectory tracking.

6 Conclusion

In this study, we have proposed a recurrent neural network

(RNN) to address the challenges of trajectory tracking in

manipulator systems with unknown mass matrices. The key idea

of our proposed RNN is to establish a connection between the

kinematics and dynamics models using joint acceleration signals,

considering the motion characteristics and dynamic behavior of

manipulators. Primarily, it has incorporated a kinematic controller

to generate the desired joint acceleration based on the given task.

On this basis, the robot dynamics model and a mass matrix

estimator have been designed and integrated into the RNN to

enable trajectory tracking in the presence of an unknown mass

matrix. Subsequently, theoretical analysis has demonstrated the

learning and control capabilities of the RNN. Through simulation

experiments and comparisons, we have validated the effectiveness

and superiority of the proposed RNN for trajectory tracking control

of the manipulator with unknown mass matrix.

In addition to the robot’s mass matrix, other dynamic

parameters of the manipulator, such as the gravity vector, may also

change. In addition, joint constraints help to improve the safety of

robot operation. Therefore, future research will focus on estimating

multiple dynamic parameters and considering multiple levels of

joint constraints.
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Fast reconstruction of milling 
temperature field based on 
CNN-GRU machine learning 
models
Fengyuan Ma 1, Haoyu Wang 1, Mingfeng E 1, Zhongjin Sha 2, 
Xingshu Wang 1, Yunxian Cui 1 and Junwei Yin 1*
1 School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China, 2 Angang Heavy 
Machinery Co., Ltd, Anshan, China

With the development of intelligent manufacturing technology, robots have 
become more widespread in the field of milling processing. When milling 
difficult-to-machine alloy materials, the localized high temperature and large 
temperature gradient at the front face of the tool lead to shortened tool life 
and poor machining quality. The existing temperature field reconstruction 
methods have many assumptions, large arithmetic volume and long solution 
time. In this paper, an inverse heat conduction problem solution model based 
on Gated Convolutional Recurrent Neural Network (CNN-GRU) is proposed for 
reconstructing the temperature field of the tool during milling. In order to ensure 
the speed and accuracy of the reconstruction, we propose to utilize the inverse 
heat conduction problem solution model constructed by knowledge distillation 
(KD) and compression acceleration, which achieves a significant reduction of 
the training time with a small loss of optimality and ensures the accuracy and 
efficiency of the prediction model. With different levels of random noise added 
to the model input data, CNN-GRU  +  KD is noise-resistant and still shows good 
robustness and stability under noisy data. The temperature field reconstruction 
of the milling tool is carried out for three different working conditions, and the 
curve fitting excellence under the three conditions is 0.97 at the highest, and 
the root mean square error is 1.43°C at the minimum, respectively, and the 
experimental results show that the model is feasible and effective in carrying 
out the temperature field reconstruction of the milling tool and is of great 
significance in improving the accuracy of the milling machining robot.

KEYWORDS

temperature field reconstruction, gated convolutional neural networks, knowledge 
distillation, inverse heat transfer, milling

1 Introduction

In the era of Industry 4.0, China’s manufacturing industry is undergoing a profound 
transformation, and the use of robotics is becoming increasingly important in intelligent 
manufacturing. Intelligent manufacturing relies on multifunctional sensors to perceive the 
production environment (Cheng et  al., 2016; Javaid et  al., 2021). Production equipment 
autonomously learns through sensor-based and data-driven methods. This enables adaptive 
machining in changing environments. Ultimately, intelligent control achieves the desired 
outcomes (Lee et al., 2015). As one of the important machining methods in the manufacturing 
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industry, milling processing has a broad prospect for the use of robots. 
In the use of robots, the most important issue is the processing quality 
and processing accuracy. In milling machining, localized high 
temperatures and strong time-varying temperature gradients are 
mainly concentrated at the boundary of the tool heat transfer system, 
i.e., the cutting region. Localized high temperatures impact tool life 
and can stimulate the chemical activity of the material being removed. 
This leads to material oxidation, rapid corrosion, and adhesion and 
diffusion between the material and the tool. Consequently, these 
effects degrade the machining accuracy and quality of the workpiece 
(Korkmaz and Gupta, 2024). In addition, the high temperature of the 
cutting area will also cause localized thermal deformation of the tool 
tip, which is one of the main reasons for the reduction of machining 
accuracy. Therefore, the localized high temperature in the cutting area 
and the strong time-varying temperature gradient will lead to the 
shortening of tool life, the reduction of workpiece machining quality, 
and the reduction of machining efficiency.

Due to the interference of cutting fluid and chips, existing sensing 
technology cannot directly measure the temperature field inside the 
cutting area (Alammari et al., 2024). Sensors can only be placed near 
the tool-chip contact area to obtain limited temperature data outside 
the cutting zone. Metal cutting is a thermodynamic coupling process 
with significant changes in material elastic–plastic deformation and 
contact area friction. These changes cause strong non-uniformity in 
the tool temperature field over time and space. A single or a few 
measurement points cannot accurately describe the actual processing 
conditions. Therefore, studying tool temperature field reconstruction 
during milling is crucial for extending tool life and improving 
machining accuracy.

Currently, there is still some difficulty in accurately measuring the 
temperature field online for the cutting region, and physical methods 
based on infrared thermography, artificial thermocouples and 
embedded thermocouples (Cichosz et al., 2023; Leonidas et al., 2022; 
Longbottom and Lanham, 2005) can only measure a limited number 
of in-situ temperatures near the cutting region or the approximate 
temperature field close to the location of the cutting region. In recent 
years, computational reconstruction methods for modeling the 
temperature field of tools have gained widespread attention. These 
methods bypass physical limitations to obtain temperature data at any 
location of interest. Current modeling techniques are mainly 
categorized into analytical modeling, numerical simulation based on 
cutting mechanisms, and inverse heat conduction modeling, which 
combines physical measurements with model-solving methods. The 
inverse heat conduction problem (IHCP) is part of the “mathematical 
physics inverse problem” field. A positive problem in physics research 
can be described by mathematical equations, where given equations 
and parameters, the output can be determined from a known input. 
Early studies simplified tool models and the cutting process, often 
treating the tool as a one- or two-dimensional model and the cutting 
process as steady-state. In these cases, analytical methods were 
combined with IHCP to directly compute mathematical expressions 
for the relationship between unknown quantities and measured values 
(Murio, 1981).

Nowadays, more and more researchers are focusing on reducing 
the complex three-dimensional structure of the tool with transient 
cutting process (Oommen and Srinivasan, 2022), for example, Some 
scholars (Liang et al., 2013) proposed a three-dimensional inverse heat 

transfer model based on an improved conjugate gradient method, 
which can quantitatively calculate the temperature of the tool chip 
contact area in dry turning. Some other researchers (Carvalho et al., 
2006) used the golden section iterative method to solve the inverse 
heat conduction problem, and used the finite volume method to 
construct a three-dimensional model of the turning tool, which takes 
into account the thermal properties of the material as affected by 
temperature as well as the convective heat transfer losses to realize the 
temperature field reconstruction calculation.

In recent years, with the advancement of artificial intelligence 
algorithms and machine learning technology, artificial neural 
network models based on data relations have been widely used in 
inverse thermal problem solving. For example, the application of 
algorithms such as physical information neural network (PINN; 
Qian et  al., 2023), nonlinear autoregressive exogenous input 
neural network (NARX; Chen and Pan, 2023), convolutional 
neural network (CNN; Kim and Lee, 2020), and multidomain 
physical information neural network (M-PINN; Zhang et  al., 
2022), etc., has made a certain contribution to the solution of the 
inverse heat conduction problem. Researchers (Zhang and Wang, 
2024) have used deep neural networks to characterize and 
approximate partial differential equations (PDEs) in the forward 
problem style. They proposed an optimization algorithm that 
uses sequence-to-sequence (Seq2Seq) stacking with the gated 
recurrent unit (GRU) model. It improves the solving of these 
equations by stacking GRU modules to capture their evolution 
over time. It also has strong generalization ability.

There is still a wide range of prospects for the fusion of artificial 
neural network models. For example, CNN struggles to capture 
temporal features, while GRU struggles to capture spatial features. 
Combining CNN and GRU might allow their strengths to complement 
each other, enabling the CNN-GRU model to effectively capture 
spatio-temporal features, thereby improving the model’s accuracy and 
generalization performance.

This paper proposes a CNN-GRU based milling tool heat transfer 
model with knowledge distillation compression acceleration. The model 
reconstructs the milling tool temperature field under three different 
working conditions. A self-built milling temperature data acquisition 
system collects real-time temperature data from multiple points on the 
back face of the milling cutter. This system uses a temperature 
measurement tool embedded with a thin-film thermocouple array and a 
multi-channel signal acquisition device. By analyzing the relationship 
between machining parameters, the temperature at four measurement 
points on the milling tool, and the temperature in the cutting area, we use 
machining parameters and multi-point temperatures as input features. 
The temperature boundary conditions in the cutting area serve as 
prediction labels. The GRU is introduced to the convolutional neural 
network (CNN) to extract multi-dimensional feature information, aiming 
to improve reconstruction accuracy and efficiency. We  then apply a 
knowledge distillation strategy to compress and accelerate the CNN-GRU 
model. This approach reduces computation time while maintaining high 
prediction performance and accuracy, ensuring efficient temperature 
field reconstruction.

The rest of this study is organized as follows: section 2 reviews the 
work related to this study, section 3 describes the proposed method in 
detail, section 4 reports the experimental results and analysis, and 
section 5 concludes this study.
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The contributions of this paper are as follows:

	 1	 CNN-GRU-based solution model for inverse heat transfer 
problem: a solution model for inverse heat transfer problem 
based on convolutional gated recurrent network (CNN-GRU) 
to predict the temperature boundary conditions in the cutting 
region of the tool is proposed. The model can well utilize the 
machining parameters in milling processing, the characteristics 
of the multi-point temperature of the milling tool back face, 
thus significantly improving the accuracy and efficiency of the 
milling temperature field reconstruction.

	 2	 KD compression-accelerated model for solving inverse heat 
conduction problem: the constructed CNN-GRU model is 
compressed and accelerated using the knowledge distillation 
strategy. Compared with the model without KD acceleration, 
the model can substantially accelerate the training time with 
the least loss of goodness-of-fit, and has strong noise immunity.

	 3	 A transient heat conduction model of milling tool is 
constructed, and the temperature field reconstruction of 
milling tool is carried out for three different working 
conditions, and the tests under the three working conditions 
are carried out in order to check its application ability in the 
reconstruction of milling temperature field.

2 Related work

Currently, deep learning techniques have been successfully 
applied to real-world scenarios, solving challenging problems like 
predicting the lifetime of relays and batteries. Constructing prediction 
models with artificial neural networks has broad applications in 
solving inverse heat transfer problems (Cortés et al., 2007; Wang et al., 
2023; Kamyab et al., 2022). Additionally, methods for compressing 
and accelerating deep learning models have enhanced the efficiency 
and applicability of these techniques in real-time temperature field 
reconstruction. Integrating these advanced algorithms significantly 
improves the precision and speed of temperature field predictions 
during milling. This makes them indispensable for optimizing 
machining operations.

2.1 Shallow artificial neural network 
approach

Shallow artificial neural network methods were among the first 
techniques applied to the solution of inverse heat transfer problems. 
These methods utilize a simple hierarchical structure for data 
processing and prediction by simulating the way neurons in the brain 
work. Despite the simplicity of their structure, shallow neural 
networks have demonstrated their effectiveness and feasibility in 
solving specific problems, such as in the area of predicting lifespan.

Combining Back Propagation Neural Networks (BPNNs) with 
time-series data analysis methods has been utilized to predict the 
remaining life of cooling fans (Lixin et al., 2016). Based on the time 
series data analysis of historical data information to obtain the future 
trend of the data, the prediction error is adjusted using BPNN to 
ensure the accuracy of the prediction results. A single BPNN will face 
the problem of weight local optimization, i.e., overfitting, during 

training, and in recent years a large number of scholars have combined 
BPNN with other machine learning methods to improve the 
model accuracy.

Radial Basis Function Networks (RBFNs) are widely used in 
various fields due to their advantages of having outputs independent 
of initial weights and shorter training times. A gray RBFN-based 
prediction model (Li et al., 2009) for life and reliability of constant 
stress accelerated life testing has been developed and compared with 
traditional single Backpropagation Neural Networks (BPNNs). 
Experimental results demonstrate that the accuracy of the gray RBFN 
model surpasses that of the BPNN.

The shallow artificial neural network model has a high dependence 
on large-scale data, and the shallow model is prone to overfitting 
phenomenon during the training process, especially when the training 
data is small or the data dimension is high. In practice, the sensitivity 
of shallow artificial neural networks to data quality and noise may lead 
to a decrease in the robustness of the model.

2.2 Deep artificial neural network methods

With the improvement of computational power and the 
development of deep learning technology, deep artificial neural 
network methods have demonstrated powerful performance in 
solving complex problems. Deep neural networks are able to better 
capture complex patterns and higher-order features in the data 
through multilayer nonlinear transformations, which significantly 
improves the predictive ability of the model.

A deep learning method combining sparse stacked self-encoders 
(Stacked Sparse AEs, SSAEs) with Backpropagation Neural Networks 
(BPNNs) has been proposed (He et al., 2021). This method uses tool 
temperature measurements from temperature sensors to predict tool 
wear. When compared to BPNN and SVM models that rely on 
manually extracted time-frequency domain features, this approach 
demonstrates high prediction accuracy and stability.

A time window method for obtaining samples and a multivariate 
equipment life prediction method based on deep Convolutional Neural 
Networks (CNNs) have been proposed (Li et  al., 2018), focusing on 
feature extraction. To avoid filtering out effective information by the 
pooling layer, the pooling layer was removed when constructing the 
network model. Additionally, a deep CNN method for bearing residual 
life prediction has been introduced (Ren et al., 2018), which combines 
spectral principal energy vectors into a feature map. This method extracts 
one-dimensional vectors and inputs them into the deep learning model 
through a multilayer CNN structure, demonstrating that its prediction 
accuracy meets the required standards.

Furthermore, the problem of predicting the remaining life of 
batteries using deep learning has been explored (Zhang Y. et al., 2018). 
Long Short-Term Memory (LSTM) networks are used to learn the 
long-term dependencies between the capacity degradation of 
lithium-ion batteries. LSTM employs backward error propagation for 
adaptive optimization and uses the dropout regularization technique 
to address the overfitting problem. This method exhibits better 
learning and generalization abilities compared to support vector 
machines and traditional recurrent neural networks.

The deep artificial neural network method has high accuracy for 
prediction problems such as lifetime prediction, but there is still a lot 
of room for improvement in efficiency, and there are some limitations 
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in the application of inverse heat conduction solving problems and 
temperature field reconstruction.

2.3 Deep learning model compression and 
acceleration method

Neural network pruning is an important method to achieve 
network model compression and acceleration, and its working 
principle is mainly to cut off the weights and model branches that are 
not important when the neural network is working, to get a small 
model, from achieving the compression and acceleration of the model.

The ThiNet pruning method (Luo et  al., 2017) differs from 
traditional pruning methods by treating network pruning as a 
reconstruction optimization problem. This approach determines the 
pruning strategy for the convolutional kernel of the current layer 
based on statistical information computed from the reconstruction 
differences between the inputs and outputs of the subsequent layer.

In addition to network pruning, other lightweight network design 
methods have been developed. Group point-by-point convolution 
(Zhang X. et al., 2018) performs grouped convolution operations to 
reduce the computational loss associated with point-by-point 
convolution operations. To enable grouped convolution to capture 
features computed by other groups, a mixing operation is introduced 
to reintegrate features from different groups, allowing the new group 
to contain features from other groups as well.

Automatic machine learning algorithms (AutoML) have also been 
widely used in lightweight neural network design. Some researchers 
(He et al., 2018) proposed AutoML for Model Compression (AMC), 
which utilizes reinforcement learning to efficiently sample the design 
space and learn compression strategies with better compression ratios 
to maintain model performance while reducing human intervention 
in the model. and maintain model performance while reducing 
human intervention in the model.

Due to the large model capacity difference between the teacher 
model and the student model, which leads to a “generation gap” 
between the student model and the teacher model, Wang Y. et al. 
(2018) pioneered a teacher-assistant-assisted knowledge distillation 
method, which utilizes the discriminator of the generative adversarial 
network as the teacher-assistant. They regarded the student model as 
a generator, and guided by the discriminator, the student model 
generated a feature distribution similar to that of the teacher’s model, 
thus assisting the student model in learning. Some researchers (Cui 
et  al., 2017) proposed a novel mutual distillation method, which 
allowed two groups of untrained student models to start learning and 
solve the task together, i.e., the teacher and the student models were 
trained and updated at the same time.

According to the above findings, knowledge distillation, a deep 
learning model compression and acceleration strategy, has been 
widely applied and developed, but little research has been reported on 
the application of knowledge distillation techniques in the field of heat 
conduction inverse problem solving.

2.4 Temperature field reconstruction

Temperature field reconstruction is a key step in solving inverse 
heat transfer problems, through which accurate reconstruction of the 

temperature field can lead to a better understanding of the heat 
transfer process and improve the thermal performance of materials 
and devices. In recent years, temperature field reconstruction 
techniques combining advanced algorithms and neural network 
methods have made significant progress.

An enhanced Bayesian backpropagation neural network based on 
Kalman filtering has been proposed (Deng and Hwang, 2007), 
applying the Kalman filtering algorithm to improve the weak 
generalization ability of the backpropagation algorithm in 
approximating nonlinear functions. This enhancement improves the 
performance of the Bayesian backpropagation network in solving the 
inverse heat conduction problem, and it has been compared with 
backpropagation networks optimized using other mature algorithms, 
such as GMB and LMB.

In another study, the volumetric heat capacity function of solid 
materials with temperature has been solved using a backpropagation 
neural network combined with a radial basis function neural network 
based on full-history information (Czél et al., 2013). Some researchers 
(Wang H. et al., 2018) proposed a heat flux estimation algorithm based 
on a linear artificial neural network for identifying a finite shock 
response under a linear dynamic system.

In conclusion, temperature field reconstruction plays an important 
role in the solution of inverse heat conduction problems. By introducing 
neural networks and other intelligent algorithms, researchers have made 
many breakthroughs in improving the reconstruction accuracy and 
computational efficiency. These methods not only enrich the means of 
solving inverse problems theoretically, but also demonstrate a strong 
potential in practical applications, providing new ideas for the solution of 
complex heat conduction problems.

3 Methods

3.1 Acquisition of data sets

In metal cutting, the temperature of the tool is mainly affected by 
the integrated heat source of the three deformation zones, in which 
the heat is mainly transferred to the tool through the cutting area, and 

FIGURE 1

Image of the cutting area of the tool with radial depth of cut (ae) of 
0.2  mm and axial depth of cut (ap) of 8  mm.
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the cutting area of the tool can be regarded as the boundary of the tool 
heat conduction system. The cutting region of the tool generally 
includes: the tool-chip contact region and the tool-worker contact 
region, when the tool back angle is large, the cutting time is short and 
the cutting speed is small, and the back face of the tool does not 
undergo intense wear, the tool-worker contact region can be regarded 
as a part of the tool-chip contact region (Jaspers et al., 1998), and at 
this time, the tool-chip contact region is the tool’s cutting region. The 
front face of the tool can be  photographed using an electron 
microscope, and the wear area of the main cutting edge attachment is 
the tool-chip contact area. Figure 1 shows the image of the cutting area 
of the tool with radial depth of cut (ae) of 0.2 mm and axial depth of 
cut (ap) of 8 mm.

In this test, a temperature measuring tool embedded with a thin-
film thermocouple (TFTC) developed by this group was used for end 
milling Inconel 718 nickel-based high-temperature alloy workpiece, 
and according to the requirements of the test, the size of the workpiece 
was designed to be 50 mm × 20 mm × 10 mm. In the design of the test 
for end milling Inconel 718, the comprehensive consideration of the 
theory of heat transfer of metal cutting was taken into account, and 
the spindle speed (r/min), feed rate (mm/min), and radial milling 
depth (mm), which have an important influence on milling 
temperature, were taken as test variable factors. The spindle speed (r/
min), feed rate (mm/min), and radial milling depth (mm), which have 
an important influence on the milling temperature, are taken as the 
test variable factors. After determining the test variables, a full factorial 
design of experiments (DOE) was used to ensure that all levels of each 
test variable were tested at least once. Figure  2 shows a physical 
diagram of a transient milling multi-point temperature 
measurement toolholder.

The end milling test was conducted using the constructed test 
platform and test program, and the temperature data corresponding 
to the four temperature measurement points of the milling tool were 
recorded and saved. According to the actual processing requirements, 
when reconstructing the temperature field of the milling process tool, 

only the temperature field reconstruction of the tool during the 
cutting process needs to be  considered, without the need to 
reconstruct the temperature field of the retracting process after the 
completion of machining, so this paper in the subsequent processing 
of data in the process of selecting the cut in to the cut out of the 
retracting tool before the start of the temperature reduction moment 
to be  recorded. In the end milling process, the tool is often 
accompanied by violent vibration, so the collected temperature data 
will have a certain noise level, and the data need to be filtered.

The inverse heat conduction problem of the tool heat 
conduction model refers to the fact that one of the parameters in 
the control equations, initial conditions, thermophysical 
parameters, and all boundary conditions of the tool heat conduction 
is in a missing state, and the unknown parameters need to be solved 
in reverse by measuring the physical signals by other methods. The 
inverse heat conduction problem in this paper belongs to the first 
type of margin estimation inverse problem, where the temperature 
on the boundary of the tool heat conduction system is estimated 
from the temperature sensor measurement results. The temperature 
on the boundary of the tool heat transfer system cannot 
be measured by physical methods or the measurement accuracy is 
poor, and is generally obtained using simulation methods. By 
constructing a local numerical simulation model of the milling 
process, the Inconel 718 end milling simulation model is operated 
and set up in complete control of the full factorial test parameters 
and machining time, and the simulation model is adjusted and 
corrected by the results of the actual sensor measurements and 
comparison of the chip morphology. The test simulation was 
completed using a cutting model with the required accuracy to 
obtain temperature data on the boundary of the tool heat 
transfer system.

The simulation model is adjusted and calibrated according to the 
test results, and after the accuracy meets the requirements, the average 
temperature of the cutting area of the tool is derived from the cloud 
diagram of the simulation results, and the other 26 sets of temperature 
curves can also be obtained by the simulation model, which provides 
the data sample set of the training model for the subsequent inverse 
heat conduction problem solving.

3.2 Construction of gated convolutional 
recurrent network model

The traditional one-dimensional CNN may ignore the time series 
features in the input data, resulting in the loss of some important time 
series information, in order to solve this problem, GRU can be introduced 
on the basis of one-dimensional CNN to simultaneously extract the 
multi-dimensional feature information as well as the temporal 
characteristics of the time series. Gated Convolutional Recurrent Neural 
Network (CNN-GRU) is a kind of neural network that combines the 
features of both CNN and GRU models, and is usually used to process 
time-series data, text, speech, and video, etc. The workflow of CNN-GRU 
is firstly, the input data undergoes a series of Convolution and pooling 
operations to extract the spatial dimension information in the data, and 
then the local features after the convolution operation are input into the 
GRU for sequence modeling, the GRU will dynamically update the 
hidden state according to the feature sequences of the input data, 
obtaining the long-term dependencies in the input data, and perform the 

FIGURE 2

Milling multi-point temperature measurement toolholder.
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task of output prediction according to the hidden state of the GRU 
network, and the final output is performed through a fully connected 
layer. Using CNN-GRU as a model for solving the inverse heat transfer 
problem can directly establish the nonlinear data relationship between the 
machining parameters, the temperature of the back face of the milling 
cutter and the temperature of the cutting area. The CNN effectively 
captures the spatial information and combines with the GRU network to 
model the long-term dependence in the sequence to realize the rapid 
solution of the nonlinear inverse heat transfer problem.

The prediction process based on the CNN-GRU model is shown 
in Figure 3 as follows:

	(1)	 Preprocess the original dataset with data normalization and 
dataset division;

	(2)	 Construct the CNN-GRU model;
	(3)	 Use the validation set to verify the model accuracy and save the 

model with the required accuracy;
	(4)	 Test the CNN-GRU model with the test set to obtain the final 

temperature prediction results on the cutting area of the tool.

As the original data set milling temperature and machining 
parameters and other types of data have different scales and value 
ranges, which makes some features weight update process will 
be  affected by the larger and ignore some other features, 
normalization can eliminate this effect so that all features have the 
same scale. In addition, in this case, the difference in the scale of the 
features will affect the training and convergence of the model, if there 

is a large difference in the scale of the features, then the step size of 
the update in the gradient descent process may be affected by the 
difference in the size of the gradient, which will lead to a slower 
convergence speed. By normalization, the direction of gradient 
descent can be made consistent, accelerating the convergence speed 
of the model. There are many methods of normalization such as 
Min-Max Scaling, Z-score Standardization, Softmax Normalization 
etc. According to the data type choose the Min-Max Scaling method 
for data normalization, which is a common normalization method to 
scale the data to between [−1,1], the formula is shown as Equation (1):

	
min

max min

ix xx
x x

∗ −
=

− 	
(1)

where x* represents the normalized data, xi represents the 
observed value at moment i, and xmin and xmax are the minimum and 
maximum values in the data, respectively.

The predictions of the model on the test set are restored after the 
model training using inverse normalization, which is formulated as 
Equation (2):

	 ( )max min minx x x x x∗= − + 	 (2)

where x inverse normalized value, x* normalized value of the 
prediction result, and, xmin, xmax are the minimum and maximum 
values in the data, respectively.

FIGURE 3

Prediction process based on the CNN-GRU model.
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To determine the model structure, this study employs Mean 
Squared Error (MSE) and R-squared (R2) as evaluation metrics. The 
formulas for these metrics are as Equations (3, 4):

	
( )2

1

1 ˆ
n

i i
i

MSE y y
n =

= −∑
	 (3)

where n represents the total number of samples, i denotes the 
current sample, ŷi is the predicted value for the ith sample, and yi is the 
true value for the ith sample. A smaller MSE indicates that the model’s 
predictions are closer to the true values, signifying better 
model performance.
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Where n represents the total number of samples, i denotes the 
current sample, ŷi is the predicted value for the ith sample, yi is the true 
value for the ith sample, ȳi represents the mean of the true values yi. 
The range of R2 is [0,1], with a higher R2 indicating better 
model performance.

In the inverse heat transfer problem solving model based on 
deep learning, effective data samples are the key to develop the 
model to accurately predict the boundary temperature conditions 
in the cutting region, among the 27 sets of full factorial test 
samples, the 24th set of test data is extracted as the test set data, 
and 80% of the remaining data is treated as the training set, and 
20% is treated as the validation set. The machining parameters 
and the temperature at multiple points on the back face of the 
milling cutter are chosen as input features, and the temperature 
boundary conditions on the milling cutter cutting region are used 
as prediction labels. The compiled language for the neural 
network is Python 3.7, the model is built using the PyTorch deep 
learning framework, the operating system is 64-bit Windows 10, 
and the GPU is an NVIDIA GTX 1050Ti graphics card.

Among them, the parameters of the model are shown in Table 1, 
and the overall structure of the CNN-GRU model built in this paper 
is shown in Figure 4.

In order to confirm the validity and accuracy of the models, this 
paper compares the constructed CNN-GRU models with CNN, GRU, 
and LSTM networks, using MSE as the Loss function and R2 as the 
evaluation index of model error. All models use the dataset delineated 
in the previous section, and the parameter details of each model are 
shown in Table 2, and the training Epoch and batch size of all models 
are kept the same in order to ensure the scientific nature of 
model comparison.

The Loss function curves for the training process of each 
model are shown in Figure 5A. The figure illustrates that, for the 

TABLE 1  CNN-GRU model parameters.

Model parameters Numerical values

CNN Layers 2

CNN convolutional kernel size 4

Number of Convolutional Kernels First layer 132, second layer 164

Number of GRU layers 2

Number of GRU neural units First layer 50, second layer 50

Total number of neurons in the model 117,157

FIGURE 4

General structure of CNN-GRU model.
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FIGURE 5

Performance comparison of different models. (A) The Loss function curves for each model training process. (B) Fit curves for each model on the test set.

same number of training iterations (150), the CNN model 
stabilizes its Loss value at approximately the 120th iteration, 
making it the slowest to converge among the models. In contrast, 
the LSTM and GRU models stabilize around the 90th iteration. 
Notably, the CNN-GRU model exhibits a smooth trend and 
stabilizes as early as the 45th iteration, demonstrating the fastest 
convergence speed among all the models.

During 150 training sessions, the final LOSS value of the 
CNN-GRU model is 2.57 × 10−3, the final LOSS value of the CNN 
model is 6.37 × 10−3, the final LOSS value of the LSTM model is 
5.3 × 10−3, and the final LOSS value of the GRU model is 
6.82 × 10−3. In comparison, the CNN-GRU model exhibits better 
learning ability and fitting effect, and the evaluation indexes of 
each model are shown in Table 3.

The fitting curves of each model on the test set are shown in 
Figure 5B, from which it can be seen that the prediction curves 
of the CNN-GRU model are the closest to the real value, and 
compared with other models, it can predict the temperature trend 
on the cutting area of the tool more efficiently, especially in the 
position of the peaks and valleys of the best fitting, which further 
verifies that the prediction results of the CNN-GRU model are 
more in line with the practical requirements.

3.3 Temperature boundary condition 
estimation model based on knowledge 
distillation with gated convolutional 
recurrent networks

Knowledge distillation is an instructor-student training structure 
that typically utilizes a student model with a simpler network structure 
to learn the knowledge provided by an instructor model that has been 
trained with a more complex network structure; this approach trades 
a slight performance loss for faster computation and smaller model 
parameters. Knowledge distillation works by training the student 
model with both the predictions of the teacher model (soft labeling) 
and the real data (hard labeling), and calculating the weighted total 
loss of the student model on both the soft and hard labels, essentially 
“migrating” the knowledge learned by the teacher model to the 
student model. The structure of the knowledge distillation strategy 
used in this paper is shown in Figure 6.

The specific knowledge distillation strategy process is as follows:

	(1)	 The raw data that has been preprocessed is input to both the 
teacher model and the student model, the teacher model is the 
CNN-GRU model constructed in the previous section, and the 
student model is a small model with a single CNN layer and a 
single GRU layer.

	(2)	 The output of the teacher model is softened using the Softmax 
function with temperature coefficient T. The processed labels 
are used as soft labels.

	(3)	 Use the same Softmax function with temperature coefficient T 
to soften the results of the student model output, and process 
the labels of the student output and the soft labels of the teacher 
model output in the previous step through the distillation loss 
function LOSSsoft to obtain the distillation loss function 
between the student model and the teacher model.

	(4)	 Process the unsoftened student model output labels with the 
real hard labels through the student loss function LOSShard to 
get the student loss.

TABLE 2  Parameter details for each model.

Network 
model

Epoch Batch 
size

Total 
number 

of 
neurons 

in the 
model

Single 
training 
time(s)

LSTM 150 50 65,389 3.72

GRU 150 50 53,283 1.67

CNN 150 50 78,633 4.03

CNN-GRU 150 50 117,157 6.8
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	(5)	 The distillation loss and the student loss are weighted to obtain 
the total loss, and the gradient of each parameter is updated in 
the backpropagation process.

The following are the calculation formulas involved in the 
knowledge distillation operation process:

Knowledge distillation soft labeling calculation formula as 
Equation (5):

	

( )
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exp

exp
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where T is the distillation temperature coefficient, used to control 
the “hardness” of the soft label. When T is larger, the soft label 
distribution area is uniform, more softened, when T is smaller, the soft 
label distribution closer to the hard label.

Distillation loss of the loss function LOSSsoft formula is as 
Equation (6):

	
( ) ( )( )

0
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k
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i
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=
= −∑
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where k is the total number of samples, pi(ui,T) is the ith output of 
the teacher model at temperature coefficient T, and pi(zi,T) is the ith 
output of the student model at temperature coefficient T.

The loss function LOSShard for student loss is formulated as 
Equation (7):
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0
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i
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=
= −∑

	
(7)

where yi7is a vector of hard labels representing the class i output 
of the unsoftened student model.

The total loss of knowledge distillation can be expressed as 
Equation (8):

	 ( )1total hardsoftLOSS LOSS LOSSλ λ= + − 	 (8)

where λ are hyperparameters, which are fixed constants that can 
be empirically tuned to the reference or dynamically adjusted.

Based on the above knowledge distillation strategy for model 
optimization design of the constructed CNN-GRU teacher model, the 
first step is to construct a simple CNN-GRU student model, and with 

reference to the structure of the teacher model with 2 layers of CNN 
layers plus 2 layers of GRU layers, the student model structure is 
designed as a 1-layer CNN layer plus 1 layer of GRU layer structure. 
In order to determine the optimal student model total neuron number, 
the student models with total neuron number of 10, 20, 30, 40, 50, 60, 
70, 80, and 90% of the teacher’s model were designed, and the gradient 
descent training was performed on each model using the same 
training, validation, and test sets, and the training Epoch and batch 
sizes were consistent with those of the teacher’s model. The learning 
ability and single-step training time of each student model not trained 
by the knowledge distillation strategy are first compared to the true 
values, and the comparison of the prediction results of each percentage 
of student models is shown in Figure 7A.

As can be seen from the figure, the goodness of fit of the student 
model gradually increases with the increase of the total number of 
neurons before the knowledge guidance of the teacher’s model, and the 
goodness of fit tends to stabilize when the ratio of the student model to 
the teacher’s model is 60%, which indicates that the closer the student 
model is to the teacher’s model, the better the ability to learn the data, 
however, due to the structural limitation of the student model, the 
simple model structure is not enough to accurately reflect the complex 
nonlinear relationship between the input data and the output data. 
However, due to the structural limitations of the student model, the 
simple model structure is not enough to accurately reflect the complex 
nonlinear relationship between the input data and the output data, 
although the goodness of fit of the student model to the teacher’s model 
still fluctuates slightly after the ratio of the student model to the teacher’s 
model is more than 60%, but the overall learning ability does not 
improve much. The single-step training time consumed by the student 
model also becomes more with the increase of the total number of 
neurons, and the rate of change of the single-step training time 
consumed increases when the ratio of the student model to the teacher’s 
model is 70%, which demonstrates that the closer the number of 
neurons of the student model is to that of the teacher’s model, the slower 
the model’s inference is, and the more hardware resources it occupies.

Then, using the knowledge distillation strategy, the teacher model 
trained in the previous section is used to “guide the training” of the 
above student models of different sizes, so as to transfer the knowledge 
learned from the teacher model to the student model. In order to 
avoid random errors, the distillation temperature coefficient T is set 
to [1,10], T takes an integer, the total loss weighting factor λ is set to 
[0.1,0.9], λ retains one decimal place, and the distillation effect of the 
model under the parameter combinations of T and λ is compared one 
by one, and it is finally determined that T = 7, λ = 0.8. The comparison 
of the prediction results of various proportions of the students’ models 
after the distillation is shown in Figure 7B.

As can be seen from the figure, the student models (CNN-GRU + KD) 
guided by the teacher’s model all have a better improvement in the 
goodness-of-fit, and the R2 shows a smooth trend and stabilizes around 
0.96 when the percentage of the student model to the teacher’s model is 
60%, which results in a longer single-step training time than that of the 
original model after the distillation before the original model is longer, 
when the percentage is more than 80%, the single-step training time of 
the model is close to that of the teacher model. Therefore, considering 
the goodness of fit of the student model and the single-step training time, 
the total number of neurons of the student model is determined to 
be 60% of the teacher model, and the network parameters of the student 
model are shown in Table  4. A comparison of the performance 

TABLE 3  Evaluation indicators for each model.

Model MSE R2

CNN 6.37 × 10−3 0.89

LSTM 5.3 × 10−3 0.93

GRU 6.82 × 10−3 0.88

CNN-GRU 2.57 × 10−3 0.98
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TABLE 4  Network parameters of the student model.

Model parameter Numerical values

CNN Layers 1

CNN convolutional kernel size 4

Number of convolution kernels 148

GRU layers 1

Number of GRU neural units 90

Total number of neurons in the model 70,170

improvement of the model before and after acceleration by the 
knowledge distillation strategy is shown in Figure 7C.

From Figure 7C, it can be seen that the CNN-GRU + KD model 
accelerated based on the knowledge distillation strategy has an accuracy 

of 0.96, which compares with the teacher’s model although there is some 
performance loss (loss of 2%), but it improves the prediction accuracy by 
5% over the student’s model of 0.91, and the training time of the 
CNN-GRU + KD as usual reduces by 44.1% compared with the teacher’s 
model, which proves that the acceleration of the knowledge distillation 
strategy is feasibility of the compression model.

4 Experimental result and analysis

4.1 Model noise resistance test

In 3.3, the model accuracy and computation time have been 
discussed, and the results show that he CNN-GRU+KD model 
achieves significant time acceleration with minimal loss in 
accuracy compared to the teacher model, making it more suitable 

FIGURE 6

Structure of knowledge distillation strategy.

FIGURE 7

Comparison of model performance before and after adding knowledge distillation. (A) Comparison of student model training results for each scale. 
(B) Comparison of student model predictions for each scale after knowledge distillation. (C) Comparison of model performance improvement before 
and after acceleration of knowledge distillation strategy.
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for the rapid provision of necessary data for fast temperature 
field reconstruction.

In addition to model accuracy and computation time, the model’s 
noise immunity to data noise is especially critical in the solution of the 
inverse heat conduction problem, because the inverse heat conduction 
problem is essentially an “unsettled” problem, which is more sensitive to 
the noise of the signal, and therefore the model’s noise immunity needs 
to be tested. The CNN-GRU + KD after knowledge distillation is tested 
with the teacher model and the student model on the dataset with noise 
level 0Kσ = , noise level 10Kσ = , and noise level 10Kσ = , respectively, 
and the results are shown in Figures  8A–I. Table  5 shows the MSE 
computed by the student model, the teacher model, and the 
CNN-GRU + KD Model on the test set under the noise level of these 
three sets of data.

As can be seen from the learning effects of the above three models 
at different noise levels, the student model with fewer model 
parameters, simple structure, and no knowledge distillation training 
performs the worst as the noise level increases, and has been severely 

distorted at noise level 10Kσ = . The teacher model, on the other 
hand, can still learn the trend of real data in noisy data due to its 
complex model structure and more model parameters, and shows 
better noise immunity, which can be attributed to the dimensionality 
reduction of the noisy data by multilayer convolutional pooling, thus 
compressing the random noise information. Thus the CNN-GRU + KD 
trained based on the teacher model learns the better noise immunity 
of the teacher model and shows better robustness compared to the 
student model, and the stability of the CNN-GRU + KD is still 
satisfactory even in the case of high noise level.

4.2 Simulation reconstruction

In the milling process, the heat in the milling cutter is mainly 
transferred in three ways: the mutual transfer of heat between the tool-
workpiece-chips in the cutting area, the convective heat transfer between 
the tool-stem-air, and the thermal radiation heat transfer in the high 

FIGURE 8

Test set fitting curves for the three models at different noise levels. (A) Noise level 0K=σ  student model fit curve on test set. (B) Noise level 0K=σ  
teacher model fit curve on test set. (C) Noise level 0K=σ  CNN-GRU  +  KD model fit curve on test set. (D) Noise level 5K=σ  student model fit curve 
on test set. (E) Noise level 5K=σ  teacher model fit curve on test set. (F) Noise level 5K=σ  CNN-GRU  +  KD model fit curve on test set. (G) Noise 
level 10K=σ  student model fit curve on test set. (H) Noise level 10K=σ  teacher model fit curve on test set. (I) Noise level 10K=σ  CNN-GRU  +  KD 
model fit curve on test set.
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temperature region, because the radiation area of the high temperature 
region in the process of metal cutting is generally very small, so the 
thermal radiation heat transfer is generally negligible. Therefore, before 
constructing the transient heat transfer model of double-edged milling 
cutter, if only simplified two-dimensional or three-dimensional modeling 
for the milling cutter will greatly affect the accuracy of the heat transfer 
model, should be three-dimensional modeling of the cutting system as a 
whole, including inserts, shanks, bolts, etc. This paper in accordance with 
the actual tool as a whole to establish a three-dimensional geometric 
model shown in Figure 9, and in accordance with Figure 1 in the cutting 
area of the tool cutting region image of the model tool cutting area 
location for detailed division.

The tool cutting area is defined as F1, the tool-stem-bolt contact area 
is defined as F2, and the contact area between the cutting system and the 
air is defined as F3. The heat flow inside the system during the whole 
milling process can be understood as follows: the cutting heat enters into 
the overall cutting system from the tool cutting area, and then transfers to 
the tool stem and bolt through the tool-stem-bolt contact area, and the 
heat dissipation is realized by convective heat transfer with the 
surrounding air in the contact area of the cutting system and the air. The 
cutting system in contact with the air through the convective heat transfer 
with the surrounding air to achieve heat dissipation, this process is a 
complex, three-dimensional, transient heat transfer process, the control 
equation of heat transfer can be expressed as Equation (9):

	
, 0t t t t

T T T Tk k k c t
x x y y z z t

ρ
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(9)

where T represents the transient temperature at the internal point of 
the tool heat transfer model, (x,y,z,t) are the spatial and temporal variables 
of the tool heat transfer model, and kt and ct represent the specific heat 
capacity and thermal conductivity of the material and ρ the 
material density.

Based on the proposed CNN-GRU + KD model, the actual 
measured temperature of the back face of the milling cutter and the 
machining parameters are inputted into the model to predict the 
temperature boundary value on the cutting area of the milling cutter, 
and the estimated temperature boundary conditions are inputted into 
the transient heat transfer model of the milling cutter to realize the 
reconstruction of the tool temperature field during the milling process. 
In this paper, the tool temperature field reconstruction is carried out 
for different rotational speeds under the feed rate f = 0.075 mm/z per 
tooth, radial depth of cut (ae) of 0.2 mm, and the milling mode is dry 
cutting and reverse milling. According to the temperature boundary 
conditions prediction results and double-edged milling cutter transient 
heat conduction model combination of the milling process tool 
temperature field reconstruction, respectively, take 4 s, 8 s, 12 s to draw 
the temperature field of the pre-milling, mid-term, the end of the 
milling period, the results are shown in Figures 10A–I.

In order to verify the accuracy of the milling process tool 
temperature field reconstruction model, the milling cutter transient 
heat transfer finite element calculation results corresponding to the 
location of the thin-film thermocouple sensor temperature 
measurement point of the unit temperature reconstruction curve 
exported and compared with the sensor’s actual measurement of the 
milling temperature curve, the results of the reconstruction of the 
temperature and the measured temperature comparison results in 
different working conditions are shown in Figures 10J–L.

As can be seen from Figures 10A–I, in the pre-milling process, 
the tool cutting area produces a large amount of cutting heat, which 
will spread around to form a temperature gradient, with the cutting 
process heat generation and dissipation to reach an equilibrium 
state, the tool near the cutting area near the temperature distribution 
gradually tends to stabilize, while the tool distal space on the tool is 
still part of the region’s temperature field distribution in the change, 
because this part of the is farther from the cutting region, the heat 
conduction is slower, and it takes longer to reach the thermal steady 
state. In addition, it can be seen that there is a large temperature 
gradient at the tip of the milling cutter, the temperature gradient 
distribution on the front face is very uneven, and the high 
temperature region is mainly concentrated in the vicinity of the 
cutting area and the temperature increases with time.

From Figures  10J–L, it can be  seen that the reconstructed 
temperature curve of the milling process fits well with the temperature 
curves of the four temperature measurement points. Subject to the 
actual measurement temperature of the sensor, the fit between the 
reconstructed temperature curves of the four temperature 
measurement points at the locations of the above three conditions and 
the actual measurement temperature curves of the sensor is as high as 
0.97, and the fit is as low as 0.92, with the fit above 0.9, which proves 
that there is a good fitting relationship between the reconstructed 
temperature curve There is a good fitting relationship between the 
reconstructed temperature curve and the actual measured temperature 
curve of the sensor. The Root Mean Square Error (RMSE) was chosen 
as the evaluation index for calculating the error between the 
reconstructed temperature profile and the actual measured 
temperature profile, and the formula of RMSE is as Equation (10):
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TABLE 5  MSE of the three models at different data noise levels.

Noise level Model CNN-
GRU  +  KD

Student 
model

Teacher 
model

0Kσ = 6.42 × 10−3 2.57 × 10−3 2.85 × 10−3

5Kσ = 7.89 × 10−3 3.02 × 10−3 3.52 × 10−3

10Kσ = 1.69 × 10−2 3.95 × 10−3 4.47 × 10−3

FIGURE 9

Three-dimensional schematic diagram of the tool-shaft-bolt cutting 
system.
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where n represents the data points, 10Kσ =  represents the 
measured temperature value of the sensor at time i moment, and iy



 
represents the modeled temperature result at time i moment.

The RMSE between the reconstructed temperature curve at the 
temperature measurement point when the spindle speed N = 509 r/min 
and the actual temperature curve measured by the sensor is 1.85, 1.98, 

FIGURE 10

Temperature field reconstruction results for three different operating conditions. a. Tool Temperature Field Reconstruction Results for Case N  =  382  r/
min, f  =  0.075  mm/z, ae  =  0.2  mm. (A) t  =  4  s. (B) t  =  8  s. (C) t  =  12  s. b. Tool Temperature Field Reconstruction Results for Case N  =  509  r/min, 
f  =  0.075  mm/z, ae  =  0.2  mm. (D) t  =  4  s. (E) t  =  8  s. (F) t  =  12  s. c. Tool Temperature Field Reconstruction Results for Case N  =  636  r/min, f  =  0.075  mm/z, 
ae  =  0.2  mm. (G) t  =  4  s. (H) t  =  8  s. (I) t  =  12  s. (J) N  =  382  r/min, f  =  0.075  mm/z, ae  =  0.2  mm Reconstruction temperature vs. measured temperature. 
(K) N  =  509  r/min, f  =  0.075  mm/z, ae  =  0.2  mm Reconstruction temperature vs. measured temperature. (L) N  =  636  r/min, f  =  0.075  mm/z, ae  =  0.2  mm 
Reconstruction temperature vs. measured temperature.
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1.62, and 1.43°C; the RMSE between the reconstructed temperature 
curve at the temperature measurement point when the spindle speed 
N = 636 r/min and the actual temperature curve measured by the sensor 
is 4.51, 2.89, 3.68, and 3.56°C, which is in the acceptable range. The above 
calculations prove the accuracy and feasibility of the tool temperature 
field reconstruction method for milling process based on the inverse heat 
conduction problem used in this paper.

5 Conclusion

In this paper, a solution model for the inverse heat transfer 
problem based on a convolutional gated recurrent network to predict 
the temperature boundary conditions in the cutting region of the tool 
is proposed. And the CNN-GRU model that will be built is compressed 
and accelerated using the knowledge distillation strategy, and the big 
model that will be built is considered as the teacher model, and the 
small CNN-GRU is designed, which is considered as the student 
model. The goodness-of-fit of the CNN-GRU + KD model trained by 
the teacher model guidance is 0.96, and the single-step training time 
of the model is reduced by 44.1% compared to the teacher model. 
Compared to than the student model without teacher model guidance, 
the accuracy of the CNN-GRU + KD model increased by 5% and the 
mean square error decreased by 55%. By adding different levels of 
random noise to the model input data, the CNN-GRU + KD model 
learns the noise-resistant ability of the teacher model and still shows 
good robustness and stability under noisy data.

The transient heat transfer model of the tool is constructed, and 
all the surface areas of the model are divided into three major areas, 
namely, the tool cutting area F1, the tool-shank-bolt contact area F2, 
and the contact area between the cutting system and the air F3, 
according to the actual situation, and the boundary conditions on 
each area are defined according to the theory of heat transfer. Based 
on the CNN-GRU + KD model predicted temperature boundary 
conditions in the tool cutting region, combined with the tool 
transient heat conduction model, the temperature field of the milling 
cutter was reconstructed for three different working conditions, and 
the reconstructed temperature curves of the milling process at the 
location of the temperature measurement points and the temperature 
curves of the sensors were calculated for the goodness-of-fit and the 
root-mean-square error, and the goodness-of-fit of curves in the 
three working conditions was the highest of 0.97. The minimum root 
mean square error is 1.43°C, which are in the acceptable range, and 
the reconstruction of tool temperature field in milling process 
is realized.

Based on the results of this paper, future research could further 
enhance the CNN-GRU+KD model for predicting temperature 
boundary conditions in the tool cutting region. One promising 
direction is to integrating intuitionistic fuzzy approaches, as 
demonstrated by Versaci and La Foresta (2024) in energy management. 
Fuzzy systems could more effectively handle the uncertainty and noise 
inherent in temperature data. By integrating fuzzy rules based on 
operator experience, the CNN-GRU model could become more 

versatile and adaptable to various milling scenarios, thereby improving 
the robustness and adaptability of the CNN-GRU+KD model under 
different operating conditions. Combining intuitionistic fuzzy 
approaches with the CNN-GRU+KD model could lead to even greater 
performance improvements, particularly in situations where real-time 
decision-making and noise immunity are critical.
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Introduction: Precise identification of acupuncture points (acupoints) is 
essential for effective treatment, but manual location by untrained individuals 
can often lack accuracy and consistency. This study proposes two approaches 
that use artificial intelligence (AI) specifically computer vision to automatically 
and accurately identify acupoints on the face and hand in real-time, enhancing 
both precision and accessibility in acupuncture practices.

Methods: The first approach applies a real-time landmark detection system to 
locate 38 specific acupoints on the face and hand by translating anatomical 
landmarks from image data into acupoint coordinates. The second approach uses 
a convolutional neural network (CNN) specifically optimized for pose estimation to 
detect five key acupoints on the arm and hand (LI11, LI10, TE5, TE3, LI4), drawing 
on constrained medical imaging data for training. To validate these methods, we 
compared the predicted acupoint locations with those annotated by experts.

Results: Both approaches demonstrated high accuracy, with mean localization errors 
of less than 5 mm when compared to expert annotations. The landmark detection 
system successfully mapped multiple acupoints across the face and hand even in 
complex imaging scenarios. The data-driven approach accurately detected five arm 
and hand acupoints with a mean Average Precision (mAP) of 0.99 at OKS 50%.

Discussion: These AI-driven methods establish a solid foundation for the 
automated localization of acupoints, enhancing both self-guided and 
professional acupuncture practices. By enabling precise, real-time localization 
of acupoints, these technologies could improve the accuracy of treatments, 
facilitate self-training, and increase the accessibility of acupuncture. Future 
developments could expand these models to include additional acupoints and 
incorporate them into intuitive applications for broader use.

KEYWORDS

deep learning, acupuncture, traditional medicine, computer vision, pose estimation

1 Introduction

Acupuncture is an ancient medical technique is a practice with roots extending back 
thousands of years. It involves the precise insertion of thin, sterile needles into specific points 
on the body known as acupoints (Formenti et al., 2023; Hou et al., 2015). These acupoints lie 
along meridians, or pathways, that are believed to facilitate the flow of vital energy, known as 
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qi or chi, throughout the body. By stimulating these acupoints, 
acupuncture aims to balance qi flow and promote healing. These 
points are not visible to the naked eye but are identified based on 
anatomical landmarks, palpation (feeling for subtle depressions or 
sensitivities), and traditional knowledge passed down through 
generations of practitioners (Tegiacchi, 2021).

In traditional medicine, acupuncture is used to treat various 
conditions including chronic pain, nausea, allergies, anxiety, 
depression, infertility, and more (Formenti et al., 2023; Yang et al., 
2011). It is thought to work by releasing natural painkillers called 
endorphins, regulating blood flow, stimulating nerves and connective 
tissue, altering brain chemistry, and affecting hormone release (Wang 
et  al., 2022; Vanderploeg and Yi, 2009). There are hundreds of 
acupoints located throughout the body, each associated with specific 
meridians and therapeutic effects (Zhang B. et al., 2022). For example, 
acupoint LI4 (Hegu), located between the thumb and index finger, is 
commonly used to relieve headaches and toothaches (Lu and Lu, 
2008). Some practitioners even suggest its potential benefits for 
managing symptoms associated with Parkinson’s disease (Park et al., 
2023). Once dismissed by Western medicine, acupuncture has gained 
more mainstream acceptance in recent decades. In 1997, the National 
Institutes of Health found acupuncture to be effective for nausea and 
other conditions. Since then, clinical trials have demonstrated its 
efficacy for various health issues (Mayer, 2000; Mao and Khanna, 
2012). Today, acupuncture is practiced worldwide including in 
Western countries. It is one of the most widely used forms of alternative 
and complementary medicine (Yang et al., 2011; Wang et al., 2022).

Traditionally, acupuncturists locate acupuncture points by feeling 
for specific landmarks on the body, such as bony protrusions or 
muscle lines. However, manual identification depends heavily on the 
experience of the acupuncturist and can suffer from inaccuracy, and 
can be time-consuming. Technology may be able to improve acupoint 
localization. Artificial intelligence (AI) can be used to revolutionize 
the practice of acupuncture. One of the most promising applications 
of AI in acupuncture is the use of computer vision to locate 
acupuncture points (Wang et al., 2022; Sun et al., 2020; Zhang M. et al., 
2022). Computer vision techniques like pose estimation provide an 
attractive solution by automating acupoint localization in a 
standardized way. Pose estimation is an important computer vision 
task that involves detecting key points on the human body and 
understanding their positions and orientations. It has a wide range of 
applications such as human-computer interaction, augmented reality, 
action recognition, and motion capture (Sulong and Randles, 2023).

Recent studies have increasingly focused on leveraging computer 
vision techniques to automate the identification and localization of 
acupoints, recognizing the complexity of acupoint anatomy and the 
subtlety of acupoint landmarks. Deep learning approaches, particularly 
convolutional neural networks (CNNs), have emerged as promising 
tools for acupoint recognition due to their powerful feature extraction 
capabilities. Researchers have explored various architectures, including 
U-Net, cascaded networks, and improved high-resolution networks 
(HRNet), to enhance detection accuracy (Sun et al., 2020; Sun et al., 
2022; Chan et al., 2021; Li et al., 2024; Yuan et al., 2024). In a recent study, 
Liu et al. (2023) introduced an improved Keypoint RCNN network was 
designed for back acupoint localization. By incorporating a posterior 
median line positioning method, the accuracy improved to 90.12%. 
Another significant development is the integration of anatomical 
measurements and proportional bone measurement methods with deep 
learning models to improve acupoint localization (Zhang M. et al., 2022; 
Chan et al., 2021). This approach combines traditional acupuncture 
knowledge with modern computer vision techniques.

Researchers have also explored the application of augmented 
reality (AR) and mixed reality (MR) technologies to visualize and 
localize acupoints in real-time, with systems like FaceAtlasAR and 
HoloLens 2-based applications showing promise. These technologies 
offer real-time tracking and visualization capabilities, potentially 
improving the practical application of automated acupoint detection 
systems in clinical settings (Zhang M. et al., 2022; Chen et al., 2021; 
Chen et al., 2017). For instance, Yang et al. (2021) developed tools like 
the SMART Table, which integrates 3D and AR technologies to 
improve acupoint education, training, and evaluation. This interactive 
system is designed to support both educational purposes and clinical 
competency assessments, showing promise in enhancing skills related 
to acupuncture and musculoskeletal treatments. Despite the limited 
number of studies in this area, several limitations persist in the current 
research despite recent advancements. These issues include limited 
datasets and accuracy problems in certain body areas. Many studies 
focus on a small number of acupoints or specific body regions (Sun 
et al., 2020; Chan et al., 2021), which restricts the applicability of their 
methods to comprehensive acupoint recognition.

The primary objective of this study is to develop a real-time 
acupuncture point detection system using state-of-the-art pose 
estimation models. While previous works like Sun et al. (2022) have 
shown promising results, our approach offers several key innovations. 
We  explore and compare two distinct computer vision techniques: 
utilizing a real-time landmark detection framework to map acupoint 
locations based on classical proportional measurement methods, and 
fine-tuning a state-of-the-art pose estimation model on a custom dataset 
to directly predict acupoint coordinates. Our system is designed to detect 
a comprehensive set of acupoints, not limited small number as in 
previous studies. Furthermore, we develop an integrated application that 
enables real-time visualization of predicted acupuncture points on a 
webcam feed, showcasing their potential for assistive technologies in 
acupuncture treatment. Through this research, we aim to address several 
key questions: How does the accuracy of acupoint localization using a 
landmark-based approach compare to that of a deep learning-based pose 
estimation model? To what extent can these computer vision techniques 
be applied in real-time for practical acupuncture assistance? What are 
the limitations and potential improvements for each approach in the 
context of acupoint localization? By addressing these questions, our 
work aims to bridge the gap between traditional manual methods and 

Abbreviations: AI, Artificial intelligence; FPN, Feature pyramid network; PAN, Path 

aggregation network; CNN, Convolutional neural network; COCO, Common 

objects in context; mAP, Mean average precision; OKS, Object keypoint similarity; 

TP, True positives; FP, False positives; FN, False negatives; TN, True negatives; AP, 

Average precision; SGD, Stochastic gradient descent; CIoU, Complete intersection 

over union; DFL, Distribution focal loss; BCE, Binary cross entropy; KIoU, Keypoint 

intersection over union; FPS, Frames per second; CV, Conception vessel; BL, 

Bladder; GB, Gallbladder; GV, Governing vessel; LI, Large intestine; LU, Lung; PC, 

Pericardium; SI, Small intestine; ST, Stomach; TE, Triple energizer; WHO, World 

Health Organization; RGB, Red, green, blue (color model); GPU, Graphics 

processing unit; IoU, Intersection over union; KBCE, Keypoint objectness binary 

cross entropy.
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automated computer-assisted approaches, providing acupuncturists with 
efficient tool to enhance their practice. This research has the potential to 
significantly impact acupuncture practice by improving accuracy and 
consistency in acupoint localization, providing a more comprehensive 
detection system, and offering real-time assistance to practitioners.

2 Materials and methods

2.1 Landmark detection and proportional 
mapping approach

The MediaPipe framework (Lugaresi et al., 2019), developed by 
Google, has garnered considerable attention in the computer vision 
community due to its versatility and efficiency in building real-time 
applications. Initially designed for hand and face tracking, MediaPipe 
has expanded its capabilities to cater to a wide range of pose 
estimation and human body tracking tasks (Figure  1). The 
framework’s ability to leverage deep learning models, coupled with its 
lightweight design, makes it an attractive choice for developing 
applications that require real-time performance on resource-
constrained devices (Lugaresi et  al., 2019). This attribute was the 
primary motivation for employing this framework in the present 
study. However, an important limitation is that MediaPipe does not 
provide access to the model architectures and parameters. So users 
cannot train the models from scratch on their own datasets. In the 
context of acupuncture point detection, by harnessing the framework’s 
capabilities, it becomes possible to develop a real-time system that 
can efficiently identify acupuncture points on the human body, 
thereby enhancing the precision and effectiveness of acupuncture 
treatments. In this approach we landmark coordinate data generated 
by the MediaPipe framework to calculate proportional acupoint 
locations based on formulas guided by traditional acupuncture 
literature (World Health Organization, 2008; Focks, 2008; National 
University of Korean Medicine, Graduate School of Korean Medicine, 
Meridian and Acupoint Studies Textbook Compilation 
Committee, 2020).

2.1.1 Acupoint selection
A total of 38 acupoints were selected for localization including 18 

acupoints on the hands and 20 acupoints on the face (Table 1). These 
acupoints were selected based on their common usage in clinical 
practice for a variety of conditions. The Supplementary Table S1, 
provides a summary of these acupoints included in the study, along 
with anatomical locations and key clinical usages.

2.1.2 Method
In order to identify the locations of over 38 acupoints, we utilized 

a combination of published literature regarding acupoint locations 
(World Health Organization, 2008; Focks, 2008), principles of oriental 
medicine, and the MediaPipe framework (v0.10.1).

The process involved first compiling a list of acupoint locations on 
the hands and face by referencing established acupuncture literature 
and standards (Supplementary Table S1). Then, each frame of the input 
video was captured through OpenCV computer vision library 
(v4.7.0.72) and converted to RGB format. The RGB frames were input 
into MediaPipe Face Mesh and Hand pipelines to acquire facial and 
hand landmark coordinates. These 468 facial and 21 hand landmarks 
per hand were used to mathematically estimate locations of key 
acupoints based on anatomical proportionality. Small dots were drawn 
on the original frames at the calculated acupoint locations using 
OpenCV drawing functions, representing acupoints. Finally, the 
output frame with overlayed acupoint dots was displayed to the user in 
real-time via OpenCV, allowing viewing of the acupoint tracking in the 
live video stream (Figure 2).

In more detail, the landmark detection framework provides the X, 
Y, and Z coordinates for each of the estimated anatomical landmarks. 
These 3D landmark points were used to mathematically calculate the 
locations of associated acupuncture points. Although MediaPipe 
predicts 21 hand landmarks (Figure 1a), accuracy constraints were 
encountered in projecting acupoints across different hand postures 
based on the literature guidelines. To overcome this, the hand postures 
were divided into four categories—front, inside, outside, and back 
views (Figure 3). To determine which posture the hand was in, three 
specific landmarks on the palm plane were selected (as shown in 

FIGURE 1

Keypoint localization examples using MediaPipe framework. (a) The MediaPipe Hand solution localizing 21 hand-knuckle coordinates within detected 
hand regions. (b) The MediaPipe Facemesh solution localizing 468 facial landmarks. (c) The MediaPipe Pose solution localizing 33 body landmarks. The 
figure demonstrates the capabilities of MediaPipe for anatomical keypoint localization across hands, faces, and bodies through the use of machine 
learning models tailored to each area.
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TABLE 1  Acupuncture points selected for detection utilizing landmark detection framework.

Acupoint Full name Meridian Acupoint Full name Meridian

Facea Handa

CV-24 Chengjiang Conception vessel HT-7 Shenmen Heart

BL-1 Jingming Bladder HT-8 Shaofu Heart

BL-2 Cuanzhu Bladder HT-9 Shaochong Heart

GB-1 Tongziliao Gallbladder LI-1 Shangyang Large intestine

GB-2 Tinghui Gallbladder LI-2 Erjian Large intestine

GB-14 Yangbai Gallbladder LI-3 Sanjian Large intestine

GV-25 Suliao Governing vessel LI-4 Hegu Large intestine

GV-26 Shuigou Governing vessel LU-11 Shaoshang Lung

GV-27 Duiduan Governing vessel LU-9 Taiyuan Lung

LI-19 Kouheliao Large intestine PC-9 Zhongchong Pericardium

LI-20 Yingxiang Large intestine SI-1 Shaoze Small intestine

SI-18 Quanliao Small intestine SI-2 Qiangu Small intestine

ST-1 Chengqi Stomach SI-3 Houxi Small intestine

ST-2 Sibai Stomach SI-4 Wangu Small intestine

ST-3 Juliao Stomach TE-1 Guanchong Triple energizer

ST-4 Dicang Stomach TE-2 Yemen Triple energizer

ST-5 Daying Stomach TE-3 Zhongzhu Triple energizer

ST-6 Jiache Stomach TE-4 Yangchi Triple energizer

ST-7 Xiaguan Stomach

TE-23 Sizhukong Triple energizer

Provides the standard name and abbreviation for each acupuncture point.
aMore detail provided in the Supplementary Table S1.

FIGURE 2

Flowchart illustrating the acupoint detection pipeline using the MediaPipe framework.
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Figure 4), with one landmark serving as the reference point. Vectors 
were calculated from this reference point to the other two landmarks. 
Taking the cross product of these two vectors produced the palm’s 3D 
orientation vector. The angle between this palm vector and the global 
Z-axis was computed using the dot product. This angle measurement 
enabled classifying the hand into one of the four posture categories 
based on how much it diverged from the Z-axis orientation.

A similar methodology was utilized to model the face. The facial 
region was divided into three key postures—center, left, and right—in 
order to account for horizontal head rotation. Each of these three 
poses had a specific set of facial landmarks that were visible and could 
be detected. The proportional distances and angles between these 

landmarks (calculated using Equations 1 and 2) are then used to 
mathematically derive the predicted locations of associated acupoints.

For example, the coordinates of the HT8 (Shaofu) acupoint, which 
is located on the palm of the hand, in the depression between the 
fourth and fifth metacarpal bones, proximal to the fifth 
metacarpophalangeal joint, is calculated in relation to the distance of 
landmarks 5 and 17 as shown in Figure 5. The Euclidean distance 
between these skeletal landmarks is first computed (base_distance). 
Next, based on a proportional measurement, the distance from HT8 
to the point between landmarks 13 and 17 is calculated as 1/5 of that 
length (base_distance) toward landmark 0. Finally, we project the HT8 
coordinates at the proper location along the palm.
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Note that for facial acupuncture points, there are a greater number 
of anatomical landmarks (468) that can be used as reference points, 
which makes estimating the acupoint locations on the face easier 
compared to hand region with fewer identifiable landmarks. In 
addtion, there is no anatomical landmarks that can be reliably used as 
reference points for locating acupoints like LI11, LI10, and TE5 that 
located on forearm. Thus, this work focuses on acupoint localization 
for the hand given the greater challenges in accurately identifying 
forearm acupoints without established anatomical landmark provided 
by MediaPipe hand or pose estimation model.

In essence, classical acupuncture proportional methods are 
translated into computational geometric transformations in order to 
map key reference points on the body to known acupoint locations 
based on their relative positions. Further optimization of these 
formulaic projection techniques could enhance precision.

FIGURE 3

Visualization of hand acupuncture points organized by four postures. Segmenting points by posture enables clear visualization and access across hand 
surfaces (Images of hand from the source National University of Korean Medicine, Graduate School of Korean Medicine, Meridian and Acupoint Studies 
Textbook Compilation Committee, 2020).

FIGURE 4

The 3D landmarks we used and the specific ones selected to calculate 
the palm normal and the angle that determined hand postures.
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2.2 Data-driven pose estimation approach

In addition to the proportional mapping approach, a data-driven 
deep learning model based on YOLOv8-pose was also developed to 
provide a comparative solution. Ultralytics released a version of the 
YOLO object detection model, providing state-of-the-art accuracy 
and speed for detection tasks. This version of YOLO has the same 
overall architecture (Figure 6) as previous versions, but it includes 
many enhancements compared to earlier iterations. It uses a new 
neural network design that combines feature pyramid network (FPN) 
and path aggregation network (PAN) architectures (Jocher et  al., 
2023). YOLO models are generally known for their computational 
efficiency and real-time performance, which aligns with the study’s 
goal of developing a real-time acupuncture point detection system.

YOLOv8 comes in 5 sizes and expands the capabilities beyond just 
detection to also include segmentation, pose estimation, tracking and 
classification. This new comprehensive computer vision system aims 
to provide an all-in-one solution for real-world applications (Terven 
et  al., 2023). The YOLOv8 architecture leverages a convolutional 
neural network (Terven et al., 2023) to spatially localize and predict 
keypoints within the images. However, an official paper has yet to 
be released. We implement the code from the Ultralytics repository 
(Jocher et al., 2023).

2.2.1 Dataset collection and preprocessing
To train a real-time acupoint detection model, we collected a 

dataset comprising 5,997 acupoint-annotated images of arms at a 
resolution of 1,488 × 837 pixels. These images were sourced from 194 
participants (49 male, 45 female, age range 19–68 years) at Pukyong 
National University and Dongshin University in South Korea, 
captured in a controlled laboratory environment with a white 
background. The dataset contains annotations marking five common 
acupoints on arm and hand—LI4 (Hegu), TE3 (Zhongzhu), TE5 
(Waiguan), LI10 (Shousanli) and LI11 (Quchi)—localized according 
to the standard acupuncture point locations in the Western Pacific 
Region defined by the World Health Organization (Sulong and 
Randles, 2023) and verified by experts in oriental medicine (Figure 7). 
The annotations include bounding boxes around each arm and 
keypoint locations for the acupoints. The annotations were done using 
the COCO Annotator tool (Stefanics and Fox, 2022).

The data was then split into a training set of 5,392 images and a 
validation set of 605 images. A limitation of this dataset is that the arm 
poses and sizes are relatively uniform, lacking diversity. To help 
mitigate this, data augmentation techniques like rotation, scaling, and 
cropping applied on-the-fly to the training images to increase the 
diversity of the training data. Supplementary Figure S1 provides 
example input images from the dataset used by the model.

FIGURE 5

Example approach to localize an acupoint (HT8).

FIGURE 6

YOLOv8 architecture. The head can be decoupled to process objectness, classification, and regression tasks independently (Jocher et al., 2023; 
MMYOLO Contributors, 2023).
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A limitation of this dataset is that the arm poses and sizes are 
relatively uniform, which may restrict the model’s ability to 
generalize to real-world scenarios with greater variability. To 
mitigate this, we employed data augmentation techniques during 
training. These techniques included rotation, scaling, and cropping, 
which were applied on-the-fly to the training images. This process 
introduced artificial variations in arm poses and sizes, enhancing 
the model’s exposure to a wider range of potential inputs. To 
minimize the impact of potential similarity between images from 
the same participant, we  split the dataset into training and 
validation sets based on participants. The data was then split into a 
training set of 5,392 images and a validation set of 605 images. 
While these measures were taken to enhance the dataset’s diversity 
and mitigate potential biases, it is important to acknowledge that 
the validation process may still be  limited by the relatively 
controlled nature of the data. Further evaluation on a more diverse 
dataset with a wider range of arm poses and sizes would 
be  beneficial for a comprehensive assessment of the model’s 
generalizability. Supplementary Figure S1 provides example input 
images from the dataset used by the model.

2.2.2 Model training and evaluation metrics
We decide to implement transfer learning and initialize our 

models with pre-trained weights from YOLOv8l-pose (large), 
which was pre-trained on human pose estimation using the COCO 

dataset. Evaluated on COCO Keypoints validation 2017 dataset, 
YOLOv8l-pose achieved an mAP50–95 of 67.6% and mAP50 of 90.0% 
with an image size of 640 pixels (Jocher et al., 2023). We then begin 
fine-tuning this base model on our custom dataset of acupoints on 
arm and hand images that as mentioned was split into a 90% 
training set and 10% validation set to adapt the model to specifically 
identify acupoints on hands. This transfer learning approach allows 
us to leverage the representations learned by the pre-trained 
YOLOv8-pose model to accelerate training on our more specialized 
acupoint detection task. In addition, it’s clear that a diverse dataset 
is crucial for deep learning models to make precise predictions. To 
enhance the performance of our pose estimation model, 
we  implemented various data augmentation techniques. The 
augmentations we  implemented were horizontal flipping of the 
images, rotation by varying degrees, mixup which combines 
samples through linear interpolation, and Mosaic augmentation 
that stitches together regions from multiple samples. These methods 
increased the diversity of our training data, which helped the model 
learn more robust features and improved accuracy.

For implementation, we utilized an Nvidia RTX 4090 GPU with 
24GB RAM to efficiently train the acupoint detection model. Table 2 
outlines the key training parameters used in the training process.

After model training was complete, several validation metrics 
were used to evaluate the performance of the acupoint detection 
model, including distance error (E), precision, recall, mean average 
precision (mAP), and object keypoint similarity (OKS), as outlined 
in Equations 3–7. The error E between the predicted acupoint 
position Ppred and the annotated ground truth acupoint position Pgt is 
defined as the Euclidean distance between them in the image space. 
The OKS metric specifically measures the similarity between 
predicted and ground truth keypoints, which is relevant for 
evaluating acupoint detection performance.

The specific formulas for calculating these metrics are:

	 pred gtE P P= − 

	 (3)

	
TPPrecison 100%

TP FP
= ×

+ 	
(4)

FIGURE 7

Location of acupoints on the hand. Shown are LI4 (Hegu), TE3 (Zhongzhu), TE5 (Waiguan), LI10 (Shousanli), and LI11 (Quchi). (Hand image reproduce 
from source National University of Korean Medicine, Graduate School of Korean Medicine, Meridian and Acupoint Studies Textbook Compilation 
Committee, 2020).

TABLE 2  Parameter settings for model training.

Parametersa Values

Image size 640 × 640

#Epochs 300

#Batch-size 16

Initial learning rate 0.01

Main optimizer SGD

Loss CIoU_loss + DFL + Kobj_

BCE + KIoU_lossb

aFull list of parameters used provided in Supplementary param.yaml file.
bIoU, intersection over union; CIoU, complete IoU; DFL, distribution focal loss; KBCE, 
keypoint objectness binary cross entropy; KIoU, Keypoint IoU (keypoint oks loss).
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where: TP = true positives, FP = false positives, FN = false 
negatives, TN = true negatives, C = total number of categories, 
APi = average precision for the ith category and mAP was calculated 
as the mean of average precision scores across all categories, to 
summarize the model’s overall precision. For each predicted keypoint, 
the OKS is calculated based on the Euclidean distance between the 
predicted and ground truth keypoint (di), adjusted by the scale (s) 
which normalizes for object size, and a per-keypoint constant (k) that 
controls falloff. In our dataset, we used a constant k value of 0.02 for 
all keypoints. The OKS scores can then be averaged across keypoints 
and images to evaluate overall localization performance.

These metrics were computed on a validation set to evaluate the 
performance of the acupoint detection model after training.

3 Results

3.1 Landmark detection and proportional 
mapping approach

Through integrating principles of oriental medicine, literature 
references, and the MediaPipe framework, real-time performance 
in localizing 38 acupoints was accomplished in this study. Figures 8, 9 
presents exemplary outcomes, demonstrating the proficiency of the 

proposed approach in detecting acupoints across various postures. 
Additionally, Supplementary Videos S1, S2 provide more extensive 
examples showcasing acupoint detection across a wide range of 
motions and poses.

We only evaluated the accuracy of our proposed model using a 
subset of 188 images from the larger dataset mentioned previously, 
which included 8 acupoints localization. These 188 images contain 
annotated acupuncture points that serve as ground truth landmarks. 
The images have annotations for 8 common acupoints on the back of 
the hand: LI4 (Hegu), TE3 (Zhongzhu), SI1 (Shaoze), HT9 
(Shaochong), TE1 (Guanchong), PC9 (Zhongchong), LI1 
(Shangyang), and TE2 (Erjian), These acupoints were selected for 
evaluation because of their frequent utilization in acupuncture therapy.

Quantitative evaluation of model performance utilized the 
Euclidean distance metric (see Equation 3) to compute error between 
predicted and ground truth acupoint coordinates across all images of 
dataset. The average distance error achieved by this method was less 
than 10 pixels over all annotated landmarks (see Figure 10b). The low 
average distance error signifies that the predicted acupoint locations 
from the model closely correspond to the true anatomical locations 
demarcated by experienced practitioners.

We also analyzed the errors for localizing each individual acupoint 
location as shown in Figure  10. The box plots summarize the 
distribution of errors over all test images for each point. The median 
error varied based on the size and distinguishability of each point, 
ranging from ~4.0 pixels for the prominent PC9 acupoint to ~9.0 
pixels for the TE3 acupoint. These results demonstrate that the model 
can detect acupoint near fingertips with high accuracy, localizing 
them within ~10 pixels for the majority of validation cases. These 
pixel-level errors correspond to approximately sub-centimeter 
accuracy in real-world coordinates.

To convert pixel errors to real-world coordinates, we used a simple 
calibration method. The images utilized for validation in this analysis 
were captured at a resolution of 1,488 × 837 pixels. A sheet with 
known horizontal length of approximately 80 cm was placed in the 
scene as a scale reference. This sheet spanned roughly 1,488 pixels 

FIGURE 8

Example result of showing acupoints on the face and hand.
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horizontally across the image. Using the known real-world length and 
corresponding pixel length, we  estimated a conversion factor of 
approximately 0.0537 cm per pixel. Utilizing this pixel-to-physical 
space calibration, the quantified pixel-level errors can be translated to 
real-world spatial errors with approximately sub-centimeter accuracy. 
With this calibration, for example, a pixel error of 10 pixels would 
translate to around 5.37 mm error in real-world coordinates.

To further assess the accuracy of predicted acupoint coordinates, 
we expanded our evaluation beyond the Euclidean distance metric. 
This comprehensive approach incorporates multiple statistical 
measures and visualizations, providing a more understanding of the 
model’s performance. In addition to the average distance error 
reported earlier, we calculated confidence intervals, and conducted 
statistical Kolmogorov–Smirnov tests to examine the significance of 
differences between predicted and actual coordinates as shown in 
Table 3. The test is a non-parametric statistical test that compares two 
distributions to see if they differ significantly. The mean distance 
between actual and predicted points is 5.58 pixels, with a narrow 95% 

confidence interval (5.38, 5.78), reflecting high accuracy. The 
Kolmogorov–Smirnov tests for both X and Y axes yield statistics of 
0.010 and 0.012, respectively, with p-values of 1.000, suggesting that 
the error distributions are well-matched to the expected distributions.

The model’s performance was assessed using multiple 
visualizations as shown in Figure 11. The scatter plot of actual vs. 

FIGURE 9

Exemplary images from dataset with landmark-based model outputs depicting acupoint locations on the back side of the hand, including LI4, TE1, TE2, 
TE3, LI1, PC9, SI1, HT9.

FIGURE 10

Acupoint localization accuracy landmark-based approach. (a) Boxplots depicting the distribution of Euclidean distance between predicted and ground 
truth acupoint locations for each evaluated acupoint separated for each hand (right and left). (b) Bar chart visualizing the mean of localization errors 
across different acupoints. The results demonstrate that the majority of points are localized with sub-centimeter accuracy.

TABLE 3  Summary of landmark-based approach model performance 
metrics and statistical tests.

Metric/test Value (pixel)/
statistic

95% CI/p-
value

Mean distance 5.58 5.38–5.78

Kolmogorov–Smirnov 

test (X-axis)

Statistic = 0.010 p = 1.000

Kolmogorov–Smirnov 

test (Y-axis)

Statistic = 0.012 p = 1.000
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predicted points demonstrates a strong overall correspondence, with 
predicted points (blue) closely overlapping actual points (gray) across 
the coordinate space. The distribution of prediction errors reveals a 
mean L2 distance of 5.58 pixels, with a tight 95% confidence interval 
of (5.38, 5.78), indicating consistent accuracy. The error distribution 
for X and Y coordinates, visualized as a 2D density plot, shows a 
concentrated, symmetric pattern centered around zero, suggesting 
unbiased predictions. The residual plot further supports this, 
displaying a relatively even spread of errors around the zero line for 
both X and Y axes, with most residuals falling within ±10 pixels. 
Notably, there’s a clear separation in the residual values for the X-axis. 
This is due to the acupoints being predominantly associated with 
either the left or right hand, leading to distinct coordinate predictions 
based on hand position. Overall, these results demonstrate the model’s 
high precision in predicting spatial coordinates, with a small average 
error and well-suited error distributions across the prediction space.

3.2 Data-driven pose estimation approach

Data-driven pose estimation model achieves good accuracy for 
acupoint localization given the constraints of this dataset. The results 
validate the effectiveness of YOLOv8-pose for this medical imaging 
application and computer vision task.

Figure 12 visualizes two example outputs on the validation set for 
acupoint localization. More examples of validation batch results are 
shown in the Supplementary Figures S3, S4. Additionally, videos 

demonstrating the model’s acupoint localization on full motion 
sequences are provided in Supplementary Video S3. Qualitatively, 
YOLOv8 appears able to predict acupoint locations that closely match 
the ground truth in this controlled dataset. Some slight variations are 
visible upon close inspection, but overall YOLOv8-pose demonstrates 
acceptable performance for this acupoint localization task.

Quantitatively, YOLOv8-pose demonstrates high performance on 
acupoint localization as evidenced by high mean Average Precision 
(mAP) scores on the validation set. Specifically, it achieves an mAP at 
OKS 50% of 0.99 and 50–95 of 0.76 pose estimation. The complete 
quantitative results while training are presented in 
Supplementary Table S2. These high mAP values indicate that the 
model is able to accurately localize and identify acupoints in the 
validation images. Table  4 summarizes the model’s localization 
accuracy for each acupoint by reporting the Mean distance error in 
mm between the predicted and true acupoint positions. Note that to 
convert from pixels to mm, the pixel-to-mm conversion approach 
outlined in section 3.1 was used.

Furthermore, we calculated confidence intervals and conducted 
statistical tests to evaluate differences between predicted and actual 
coordinates, as shown in Table 5. The mean distance between actual and 
predicted points is 6.81 pixels, with a 95% confidence interval of (6.65, 
6.98), indicating good accuracy. The Kolmogorov–Smirnov tests for the 
X and Y axes yield statistics of 0.010 and 0.015, with p-values of 0.997 and 
0.906, respectively, suggesting well-matched error distributions.

The results visualized in Supplementary Figure S2 show the loss 
and accuracy curves for both the training and validation data across 

FIGURE 11

Landmark-based approach model performance evaluation. (a) Actual vs. predicted points scatter plot. (b) L2 distance error distribution [mean: 6.81 
pixels, CI: (6.65, 6.98)]. (c) 2D error distribution for X and Y coordinates. (d) Residual plot showing prediction errors across coordinate range.
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training epochs. As demonstrated, the training and validation results 
showed that the YOLOv8-pose model for acupoint detection 
exhibited good convergence for this dataset. Specifically, the loss 
curve declined rapidly then flattened, indicating effective 
optimization. Meanwhile, the precision, recall, and mAP metrics 
increased quickly then stabilized, demonstrating model performance 
on the validation set.

Additionally, Figure  13 illustrates the acupoint localization 
accuracy achieved by the YOLOv8-pose model. Boxplots in panel (a) 
show the distribution of Euclidean distance errors between predicted 
and ground truth locations for each acupoint. The bar chart in panel 
(b) visualizes the mean of localization errors.

Regarding Figure 14, the scatter plot shows strong alignment 
between actual and predicted points, with a mean L2 error of 6.81 
pixels and a 95% confidence interval of (6.65, 6.98), indicating 
consistent accuracy. The 2D density plot reveals a symmetric error 
distribution centered around zero, though some variability is 
observed. The residual plot highlights errors within ±10 pixels. 
Overall, the model performs well, but improvements could be made 
in reducing prediction variability and enhancing accuracy for points 
farther from the center.

3.3 Application development

To demonstrate the practical application of these models, a simple 
desktop application was developed using Tkinter, a Python library for 
creating graphical user interfaces. The application allows users to use 
a webcam feed for real-time acupoint localization. Upon camera 
activation, the landmark detection framework or the fine-tuned pose 
estimation model processes the input, and the identified acupoints are 
visualized on the screen.

The application provides an intuitive interface for users (Figure 15). 
Further enhancing user experience, the application allows practitioners 
to choose specific acupoints of interest. Once the webcam is activated 
and the desired model and acupoints are selected, the system processes 
the live video feed. Identified acupoints are then dynamically overlaid 
onto the displayed image, providing practitioners with precise visual 
guidance. Looking ahead, we plan to expand the application’s capabilities 
to include acupoint localization on the legs, which are crucial for 
treating conditions affecting the lower body regions. Overall, this 
straightforward and user-friendly application showcases the potential of 
integrating AI-based acupoint localization into acupuncture treatments.

4 Discussion

This study investigated the feasibility of leveraging computer 
vision techniques to automate the localization of acupuncture points 
on the face and hands. Our study focused on these areas due to their 
frequent use in clinical practice and relative accessibility for imaging. 
These areas offer a high density of commonly used acupoints in a 
compact region, facilitating efficient data collection and analysis. 
Specifically, we explored two distinct approaches: Utilizing a real-
time landmark detection framework to identify anatomical keypoints 
and map acupoint locations based on classical proportional 

FIGURE 12

Acupoint localization accuracy of data-driven pose estimation approach. Shows the predicted acupoint locations from YOLOv8-pose.

TABLE 4  Performance of YOLOv8-pose on the custom dataset of arm acupoints after 300 training epochs with an input size of 640  ×  640 pixels.

Model mAPval 50 
(pose)

mAPval 50–95 
(pose)

LI11 (mm) LI10 (mm) TE5 (mm) LI4 (mm) TE3 (mm)

YOLOV8l-pose 

(Pretraind)
0.99 0.76

3.68 3.97 4.14 2.93 3.82

±(2.44) ±(2.65) ±(2.89) ±(2.59) ±(3.08)

TABLE 5  Summary of data-driven pose estimation approach model 
performance metrics and statistical tests.

Metric/test Value (pixel)/
statistic

95% CI/p-
value

Mean distance 6.81 6.65–6.98

Kolmogorov–Smirnov 

test (X-axis)
Statistic = 0.010 p = 0.997

Kolmogorov–Smirnov 

test (Y-axis)
Statistic = 0.015 p = 0.906
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FIGURE 14

Data-driven pose estimation approach model performance evaluation: (a) Actual vs. predicted points scatter plot. (b) L2 distance error distribution 
[mean: 6.81 pixels, CI: (6.65, 6.98)]. (c) 2D error distribution for X and Y coordinates. (d) Residual plot showing prediction errors across coordinate 
range.

measurement methods from acupuncture literature, and; fine-tuning 
a state-of-the-art pose estimation model on a custom dataset to 
directly predict acupoint coordinates through data-driven deep 
learning. Both methodologies demonstrated promising results in 

accurately identifying and visualizing acupuncture points in real-
time settings.

The proposed landmark-based approach effectively detected 
anatomical keypoints to visually guide acupoint positioning. This 

FIGURE 13

Acupoint localization accuracy for data-driven pose estimation approach. (a) Boxplots depicting the distribution of Euclidean distance errors between 
predicted and ground truth acupoint locations for each evaluated point. (b) Bar chart visualizing the mean localization errors across different 
acupoints. The results demonstrate that the majority of points are localized with sub-centimeter accuracy.
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could enable innovative acupuncture-assistive tools by providing 
practitioners with rapid on-screen guidance. A key advantage of our 
approach is the integration of the efficient framework, enabling real-
time landmark detection and proportional mapping of acupoints 
across various hand and facial poses. As the architecture and training 
details of the MediaPipe models are proprietary, we cannot replicate 
the models directly through training our own model from scratch. 
Therefore, the methodology applies classical formulas to anatomically 
map and proportionally estimate acupoint locations. It can be easily 
adapted to different hand and face postures and allows for real-time 
visualization of acupoints. However, challenges remain in improving 
resilience to scale and rotation variances and using it for different 
body parts not accounted for in the original framework models. 
Qualitative assessment shows that accuracy depends heavily on the 
ability to reliably detect and track key anatomical landmarks. This can 
introduce some inaccuracies into the system’s final output. 
Furthermore, mathematical transformations may lack adaptability 
across heterogeneous populations. For a solution, transitioning to 
data-driven machine learning techniques could potentially address 
these limitations. The qualitative results show that the acupoints on 
the face have more invariance to transitional and rotational movement, 
which may be due to the higher number of landmarks in that region 

(468 keypoints). The quantitative results for hand dataset of 188 
validation images reveal that the accuracy is higher for areas around 
the fingertips. This suggests it is easier for the model to locate these 
points compared to acupoints in the middle of the back of the hand.

In contrast to classical mapping techniques, data-driven deep 
learning approaches like the one employed by Sun et al. (2020, 2022) 
using U-Net and HRNet architectures can learn acupoint features 
directly from data. Our pose estimation model achieved acceptable 
acupoint localization accuracy (mAP at OKS 50–95% = 0.76, Mean 
error less than ~5 mm) in constrained arm dataset images for locating 
five acupoints. Compared to Sun et al.’s method that detected only 2 
acupoints, our model localized 5 hand acupoints with high precision. 
Nevertheless, from Figure 10 it is evident that that the majority of the 
predicted acupoint locations for LI4, TE3, and LI11 exhibit high 
accuracy when approximately converted from pixel coordinates to 
physical distances based on the defined pixel-to-cm conversion factor. 
However, acupoints LI10 and TE5 exhibit higher localization errors 
compared to other acupoints. This suggests these two acupoints are 
more challenging for the model to precisely predict, perhaps due to 
greater variability in their location or appearance in the dataset. Further 
analysis of these acupoints may be needed to improve localization 
performance. While this model demonstrates acceptable performance 

FIGURE 15

Interactive desktop application for real-time acupoint localization using pose estimation models on webcam feed (Additional usage examples provided 
in the Supplementary Figure S5 and Supplementary Video S4).
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for acupoint localization for controlled lab images, it may not generalize 
as well to more complex real-world hand images with cluttered 
background compared to MediaPipe that their model for hand 
landmarks trained on more than 30,000 images of hand. These initial 
results are encouraging, further evaluation is needed to determine how 
the model generalizes to real-world settings outside of the lab.

However, a significant limitation shared across studies in this 
scope, including ours, is the lack of large, publicly available datasets 
with expert-annotated acupoints. This hinders the ability to 
benchmark and compare the performance of different computer 
vision models specifically designed for acupuncture point detection, 
as we do not have access to comparable datasets or models (Sun et al., 
2020; Sun et al., 2022; Chen et al., 2021). Finally, in this study the 
quantitative evaluation of facial acupoint localization was not 
addressed due to lack of a dataset of faces with known acupoint 
locations in this study, presenting an area for future investigation. 
Combining data-driven techniques with domain expertise in oriental 
medicine can pave the way for more advanced and integrative 
acupoint recognition systems.

Looking ahead, integrating the 3D capabilities of real-time 
landmark detection framework (including depth information) could 
enable 3D acupoint visualization and localization, a capability not 
explored in prior works. In contrast, the pose estimation currently lacks 
support for depth estimation, presenting an area for potential 
enhancement. Furthermore, investigating few-shot learning or domain 
adaptation techniques could enhance the generalization of data-driven 
models to handle real-world diversity beyond limited training data.

5 Conclusion

In conclusion, this study explored the potential of leveraging 
computer vision techniques for automating the localization of 
acupuncture points on the face and hands. Two distinct approaches 
were investigated: (1) utilizing a real-time landmark detection 
framework to map acupoints based on anatomical landmarks and 
proportional measurements, and (2) fine-tuning a state-of-the-art 
pose estimation model on a custom dataset for direct acupoint 
detection. The landmark-based system showed promising real-
time acupoint visualization capabilities but had limitations due to 
potential landmark detection inaccuracies and rigid mapping 
formulas. The pose estimation model achieved sub-centimeter 
mean localization accuracy when fine-tuned on a controlled 
dataset but may face performance degradation in complex, real-
world scenarios beyond the training dataset constraints. While 
both methodologies exhibit encouraging preliminary results, 
several challenges persist. These include the lack of large, diverse 
datasets for training and benchmarking acupoint detection 
models, as well as the need for further generalization and 
robustness to real-world variations. To address these challenges, 
our future work plans to curate a comprehensive dataset 
encompassing acupoints on legs and arms across a wide range of 
cluttered backgrounds and poses. Ultimately, the successful 
integration of computer vision and artificial intelligence into 
acupuncture practice holds immense potential for streamlining 
treatments, enhancing precision, and providing valuable assistive 
capabilities to practitioners. This work represents an important 
step towards realizing automated, technology-aided acupuncture, 

paving the way for further advancements in modernizing this 
ancient healing modality.
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SUPPLEMENTARY VIDEO S1

Real-time facial acupoint detection using MediaPipe.

SUPPLEMENTARY VIDEO S2

Real-time hand acupoint detection using MediaPipe.

SUPPLEMENTARY VIDEO S3

Real-time hand acupoint detection using YOLOv8 pose estimation  
model.

SUPPLEMENTARY VIDEO S4

Real-time customized hand acupoint detection using Mediapipe through 
the GUI.
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Introduction: With the rapid development of the tourism industry, the demand

for accurate and personalized travel route recommendations has significantly

increased. However, traditional methods often fail to e�ectively integrate visual

and sequential information, leading to recommendations that are both less

accurate and less personalized.

Methods: This paper introduces SelfAM-Vtrans, a novel algorithm that leverages

multimodal data—combining visual Transformers, LSTMs, and self-attention

mechanisms—to enhance the accuracy and personalization of travel route

recommendations. SelfAM-Vtrans integrates visual and sequential information

by employing a visual Transformer to extract features from travel images,

thereby capturing spatial relationships within them. Concurrently, a Long

Short-Term Memory (LSTM) network encodes sequential data to capture the

temporal dependencies within travel sequences. To e�ectively merge these two

modalities, a self-attention mechanism fuses the visual features and sequential

encodings, thoroughly accounting for their interdependencies. Based on this

fused representation, a classification or regression model is trained using real

travel datasets to recommend optimal travel routes.

Results and discussion: The algorithm was rigorously evaluated through

experiments conducted on real-world travel datasets, and its performance

was benchmarked against other route recommendation methods. The

results demonstrate that SelfAM-Vtrans significantly outperforms traditional

approaches in terms of both recommendation accuracy and personalization.

By comprehensively incorporating both visual and sequential data, this method

o�ers travelers more tailored and precise route suggestions, thereby enriching

the overall travel experience.

KEYWORDS

multimodal travel recommendation, visual Transformer, self-attention mechanism,

image and sequence fusion, deep learning

1 Introduction

In recent years, with the improvement of living standards and the increasing demand

for travel, efficiently recommending personalized travel itineraries has become an urgent

problem to be addressed. Traditional travel route recommendation methods often rely on

expert experience, which struggles to meet personalized needs and fails to handle large-

scale and complex data effectively (Renjith et al., 2020). With the introduction of machine

learning techniques, it has become possible to process big data more efficiently and

provide accurate personalized recommendations based on users’ historical behavior and

preferences (Ji et al., 2020). Through the iterative optimization process of machine learning
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algorithms, the accuracy and efficiency of recommendation

systems have been significantly improved, leading to

a more satisfying user experience (Egli et al., 2020).

Therefore, research on travel itinerary recommendations

not only holds theoretical significance but also promotes its

practical application.

Traditional travel recommendation methods primarily rely on

symbolic AI and knowledge representation, usually implemented

through expert systems that simulate human experts’ decision-

making processes. These systems can encode expert knowledge

and provide clear explanations for each recommendation, such

as the multi-agent knowledge system proposed by Lorenzi

(2007). Another category of methods relies on predefined rules,

exhibiting high determinism and reliability, which perform well

in complex or dynamic travel scenarios. Gandhi et al. (2014)

introduced a rule-based system for automated travel analysis,

while Jiang and Dai (2024) presented a rule-based system

framework for analyzing travel performance. Although these

methods offer strong interpretability and transparency, they fall

short in handling large-scale data and complex travel demands.

Simulation computing techniques can predict and analyze travel

behavior by constructing and running simulation models, but

they are still insufficient for addressing complex, dynamic needs,

and processing large-scale data (Gong et al., 2023; Khan et al.,

2023).

To overcome the limitations of traditional algorithms in

terms of adaptability and handling complex requirements,

data-driven and machine learning-based algorithms have

optimized recommendations by analyzing large volumes of

user data and historical behavior, offering high accuracy

and personalized recommendations. Decision tree-based

methods have been widely applied for user classification and

tourism recommendations. Kesorn et al. (2017) used the

C4.5 decision tree algorithm to recommend travel regions for

tourists, while Kbaier et al. (2017) proposed a personalized

hybrid travel recommendation system that uses decision

tree algorithms to recommend attractions based on user

preferences. Random forest algorithms improve the stability

and accuracy of recommendations by combining predictions

from multiple decision trees (Li, 2024), and Support Vector

Machines (SVMs) excel in handling high-dimensional data

and nonlinear classification problems (Lahagun et al., 2024;

Yuan, 2022). However, these methods face significant challenges

regarding computational complexity, particularly when dealing

with dynamic and large-scale data.

The application of deep learning algorithms addresses the

limitations of statistical and machine learning algorithms in

terms of adaptability and handling complex requirements.

Convolutional Neural Networks (CNNs) capture user interests

and generate personalized recommendations, significantly

improving recommendation accuracy and user satisfaction

(Wang, 2020). Reinforcement Learning (RL) dynamically

adjusts recommendation strategies to optimize user experience

(Kong et al., 2022). Transformer models, due to their powerful

sequence modeling capabilities, have demonstrated excellent

performance in travel recommendations (Yang et al., 2022).

However, these methods still face challenges related to high

computational complexity and the demand for processing

large-scale data.

Although previous travel route recommendation systems have

made some progress in personalization, they often rely on

single data modalities (such as user behavior data, geographical

data, etc.) or simple recommendation algorithms, failing to

fully leverage users’ multimodal information (such as visual and

sequential information). Specifically, traditional methods have

limitations in several areas. First, many travel recommendation

systems overlook the potential of visual information, with most

relying on text data or user behavior data. However, travelers’

decisions are often heavily influenced by photos or videos of

attractions. Therefore, integrating visual information effectively

into recommendation systems has been a critical unsolved problem.

Second, existing systems often fall short in handling temporal

information. Travel decisions usually exhibit time dependence,

with users often planning future trips based on previously visited

locations or activities. However, many recommendation algorithms

fail to capture the temporal patterns in user behavior effectively,

leading to recommendations that lack sufficient personalization.

Additionally, the integration of multimodal data has been a

significant challenge in the field of recommendation systems.

How to effectively fuse visual and temporal information and

fully explore the connections between them remains a major

issue. Thus, the primary motivation of this study is to fill the

gap in combining visual and temporal information effectively in

travel route recommendations and provide a more personalized

recommendation system. Our proposed SelfAM-Vtrans model

extracts spatial relationships from images through the visual

Transformer, processes temporal information using the LSTM

network, and integrates these two modalities using the self-

attention mechanism. This comprehensive approach captures user

preferences and provides more personalized and accurate travel

route recommendations. Addressing these issues not only improves

the performance of recommendation systems but also significantly

enhances user experience, helping users receive more precise

suggestions for complex travel decisions. Therefore, this research

is of great theoretical significance and also holds broad potential

for practical applications.

Contributions of this paper:

• We propose a travel route recommendation algorithm that

comprehensively considers visual and sequential information.

By combining Vision Transformer, LSTM, and self-attention

mechanisms, we can fully utilize image and sequence

information, improving the accuracy and personalization of

route recommendations.

• We conducted experiments on real travel datasets and

compared them with other travel route recommendation

methods. The results show that our algorithm significantly

outperforms traditional methods in terms of recommendation

accuracy and personalization.

• Our research provides a novel method combining deep

learning and machine learning technologies, offering more

accurate and personalized route recommendations for

travelers. This is of great significance for improving travelers’

experiences and meeting their personalized needs.
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2 Related work

2.1 Travel route recommendation

With the development of deep learning and machine learning,

the application of multimodal data fusion in travel route

recommendation is receiving increasing attention. Multimodal

data, including images, text, and audio, can provide a more

comprehensive understanding of users’ needs and preferences by

integrating these different types of information, thereby offering

more accurate and personalized route recommendations (Jin et al.,

2017). In multimodal fusion methods, a common strategy is to use

deep neural networks to encode and represent data from different

modalities. For instance, Convolutional Neural Networks (CNNs)

can be employed to extract features from images, while Recurrent

Neural Networks (RNNs) or self-attention mechanisms are used to

process text sequences, and audio recognition technologies handle

audio data. Then, by fusing the representations from different

modalities, an integrated multimodal representation can be formed

for route recommendation (Lin et al., 2024b). Another important

aspect is the alignment and fusion of multimodal data. Since

data from different modalities often have distinct characteristics

and representational forms, effectively aligning and fusing them

is a key challenge. A common approach is to use attention

mechanisms to learn the associative weights between modalities,

allowing for a weighted integration of information from different

sources. Additionally, joint training can be employed, where

multiple modal representation networks are trained simultaneously

to maintain consistency in the representational space (Jin

et al., 2018). Furthermore, multimodal fusion methods can also

incorporate collaborative filtering and reinforcement learning

techniques from recommendation systems to further enhance route

recommendation effectiveness. For example, collaborative filtering

methods can be used to learn user preferences from historical

data, which can then be combined with multimodal data fusion to

generate personalized route recommendations.

2.2 Reinforcement learning

Traditional travel route recommendation methods often

rely on users’ historical data and preferences, overlooking

the interactions and feedback during the recommendation

process. However, reinforcement learning-based travel route

recommendation methods can dynamically learn and optimize

recommendation strategies through interactions with users,

providing more personalized and adaptive route recommendations

(Jin et al., 2015). In reinforcement learning-based methods, the

route recommendation problem can be modeled as a Markov

Decision Process (MDP). The traveler, acting as an agent,

interacts with the environment, chooses actions based on the

current state, receives rewards, and updates strategies. Through

continuous interaction and learning with users, the system

can gradually optimize the route recommendation strategy,

offering recommendations that better meet user needs (Lin et al.,

2024a). In practice, deep reinforcement learning methods can be

utilized to address the travel route recommendation problem.

For instance, Deep Q-Networks (DQNs) can be used to learn

the action-value functions of travelers, choosing the optimal

actions based on the current state. Additionally, policy gradient

methods can be used to train a policy network that directly

outputs the probability distribution of route recommendations.

The advantage of reinforcement learning methods in travel route

recommendation is their flexibility in adapting to different user

preferences and environmental changes. Through interaction

and feedback from users, the system can proactively learn users’

likes and preferences, thereby providing more personalized and

satisfying route recommendations (Zhang et al., 2024). However,

reinforcement learning-based methods also face challenges.

Firstly, establishing accurate state representations and reward

functions is crucial and requires careful consideration of user

needs and environmental characteristics. Secondly, reinforcement

learning methods typically require extensive interaction and

training time, which may pose limitations for real-time travel

recommendation systems.

2.3 Neural networks

Neural Networks, as a computational model that mimics the

workings of the human nervous system, have made significant

advancements in the field of artificial intelligence in recent

years (Abbasi-Moud et al., 2021). They are composed of a large

number of simple processing units called neurons, which use

learning algorithms to handle complex pattern recognition and

decision-making tasks. Neural networks were originally proposed

by biologist McCulloch and mathematician Pitts in 1943 and

further developed into the perceptron model by Rosenblatt in

the early 1950’s. However, due to limitations in computational

power and data availability at the time, the development of neural

networks stagnated. It wasn’t until the late 1980’s and early 1990’s

that multilayer neural networks (multilayer perceptrons) regained

attention with the introduction of the backpropagation algorithm

and advancements in computer technology. They achieved some

progress in fields such as speech recognition and image recognition

(Wong et al., 2020). In 2006, Hinton and colleagues introduced

Deep Belief Networks, marking the rise of deep learning. Deep

learning, through multiple layers of nonlinear transformations,

can effectively learn and represent complex patterns in data (Lin

C. et al., 2024). Since then, deep learning has made significant

breakthroughs in computer vision, natural language processing,

recommendation systems, and other fields, becoming one of

the mainstream technologies in modern artificial intelligence

(Wang et al., 2023). In recent years, with advancements in

hardware computational power and the widespread availability

of big data, neural network architectures have been continuously

evolving and optimizing. From the early days of Convolutional

Neural Networks (CNNs) to subsequent models like Recurrent

Neural Networks (RNNs), Long Short-Term Memory Networks

(LSTMs), and Transformers, each architecture provides efficient

solutions for specific tasks and data types. In the future, neural

networks are expected to continue playing important roles in fields

such as medical diagnostics, intelligent transportation, and smart

manufacturing. As researchers explore new network structures
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and optimization methods, the application prospects of neural

networks will become even broader, further driving the continuous

development and innovation of artificial intelligence technologies

(Xiao et al., 2023).

3 Methodology

3.1 Overview of our network

In this study, we propose a novel model architecture called

“SelfAM-Vtrans Net,” which combines self-attention mechanism

with Vision Transformer (ViT) for recommending travel itineraries

by utilizing multimodal information from images and text

data. Specifically, the SelfAM-Vtrans Net incorporates Vision

Transformer (ViT) for processing image data and enhances the

capability of LSTM in handling textual data through self-attention

mechanism (SelfAM). The model architecture involves ViT for

extracting high-level semantic features from tourism destination

images by dividing the images into fixed-sized patches and feeding

them into the Transformer network. LSTM, along with the self-

attention mechanism, processes travel itinerary descriptions and

user reviews, capturing the temporal information of the text

and improving focus on important textual information. The

multimodal feature fusion combines the image features extracted

by ViT with the text features processed by LSTM through

self-attention mechanism, generating a comprehensive feature

representation for the recommendation task. As shown in Figure 1,

the proposed model integrates multiple components to enhance

recommendation accuracy.

Multimodal fusion methods leverage deep learning

technologies to integrate different types of data, such as images,

text, and audio, to obtain a more comprehensive understanding

of user needs and preferences. The principle includes: first, using

appropriate neural network models (such as CNN, RNN, etc.) to

encode and represent data from different modalities; second, using

attention mechanisms or joint training to fuse representations

from different modalities into a comprehensive multimodal

representation; finally, applying the multimodal representation to

the travel route recommendation task to generate personalized

recommendation results. Reinforcement learning-based methods

dynamically learn and optimize route recommendation strategies

through interaction and feedback with users. The principle

includes: first, modeling the travel route recommendation

problem as a Markov Decision Process (MDP), where the traveler

interacts with the environment as an agent; second, using deep

reinforcement learning methods (such as DQN, policy gradient,

etc.) to learn the traveler’s action-value functions or policy network,

choosing the optimal action based on the current state; finally,

continuously updating strategies through interaction with users

to optimize route recommendation results. Social network-based

methods use user relationships and user-generated content

within social networks to provide personalized and trustworthy

route recommendations. The principle includes: first, analyzing

relationships, interests, and travel experiences among users to

construct user social feature representations; second, utilizing

travel experiences, photos, comments, and other content shared

by users on social networks to obtain user characteristics and

travel-related information; finally, using social recommendation

and social influence propagation mechanisms to recommend travel

routes related to user interests and disseminate recommendations

through users’ social relationships.

Data collection and preprocessing: collect multimodal data,

user social relationship data, and user-generated content data,

and perform data cleaning and preprocessing. Implementation

of Multimodal Fusion Methods: a. Use appropriate neural

network models to encode and represent data from different

modalities. b. Use attention mechanisms or joint training to fuse

representations from different modalities into a comprehensive

multimodal representation. c. Apply themultimodal representation

to the travel route recommendation task to generate

personalized recommendation results. Implementation of

Reinforcement Learning-Based Methods: a. Model the travel

route recommendation problem as a Markov Decision Process

(MDP). b. Use deep reinforcement learning methods to learn

the traveler’s action-value functions or policy network, choosing

the optimal action based on the current state. c. Continuously

update strategies through interaction with users to optimize route

recommendation results. Implementation of Social Network-Based

Methods: a. Analyze relationships, interests, and travel experiences

among users to construct user social feature representations.

b. Utilize content shared by users on social networks to obtain

user characteristics and travel-related information. c. Use social

recommendation and social influence propagation mechanisms to

recommend travel routes related to user interests and disseminate

recommendations through users’ social relationships. Integrate

multimodal fusion, reinforcement learning-based, and social

network-based methods, considering multiple factors to generate

the final personalized travel route recommendation results.

Evaluate and optimize recommendation results, continuously

improving the algorithm’s performance and accuracy. Provide a

user interface or API interface, allowing users to easily input their

needs and receive personalized travel route recommendations.

Firstly, while the combination of visual Transformers and

LSTMs is theoretically feasible, its specific application in travel

route recommendation presents numerous challenges. The key

difficulty lies in the effective integration ofmultimodal information,

particularly the heterogeneity between visual and sequential data.

Image data and sequential data possess distinct characteristics

in both spatial and temporal dimensions. A significant challenge

we addressed in this research is how to effectively fuse these

through the self-attention mechanism. Secondly, the travel route

recommendation problem involves not only route selection

but also the improvement of personalization and accuracy.

When dealing with large-scale and complex user behavior data,

the proposed model needs to capture user preferences while

also adapting to dynamically changing environments and user

demands. By combining the visual feature extraction capabilities

of the visual Transformer with the strength of LSTM in

handling sequential data, and using the self-attention mechanism

to balance the importance of the two, especially in terms of

multimodal data collaboration, careful model design and tuning

are required to ensure the system’s real-time performance and

efficiency. Additionally, we have conducted extensive experiments
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FIGURE 1

The overall framework of the proposed SelfAM-Vtrans model, illustrating the integration of visual Transformer, LSTM, and self-attention mechanisms

for travel route recommendations.

demonstrating that this model outperforms traditional methods

across different datasets. This further proves the effectiveness of

our approach and its potential for real-world applications. In the

revised manuscript, we will provide a more detailed explanation

of these challenges and how we addressed them, thereby better

showcasing the novelty of our research.

3.2 Vision-Transformer model

The Vision Transformer (ViT) is a deep learning model

based on the Transformer architecture, designed to process and

analyze visual data such as images (Abdelraouf et al., 2022). While

traditional Convolutional Neural Networks (CNNs) have achieved

tremendous success in computer vision tasks, ViT introduces a

novel approach by incorporating the self-attention mechanism into

the visual domain, allowing the model to process images without

convolutional layers (Pramanick et al., 2022).

The core idea of the ViT model is to segment an image

into a set of fixed-size patches (Figure 2), which are then

transformed into a sequence. Each patch is mapped to a lower-

dimensional vector representation, known as an embedding vector,

through a linear transformation (typically a fully connected layer).

These embedding vectors are fed into the Transformer encoder

in a sequential format. The Transformer encoder consists of

multiple self-attention layers and feed-forward neural network

layers. Self-attention layers use the attention mechanism to model

the relationships between different positions in the sequence

to capture global contextual information. In ViT, the self-

attention mechanism is used to capture dependencies between

patches, achieving a global understanding of the image. Through

iterative processing by the self-attention layers, the model

gradually integrates information between patches and generates

feature representations with global awareness. In the ViT model,

positional encodings are introduced to imbue the model with

positional information. Positional encoding is a technique to

embed positional information of each patch into the feature

representation, usually generated using sine and cosine functions,

so that the model can perceive the relative distances and order in

the sequence.

In this method, the ViT model plays a part in the multimodal

fusion approach, responsible for processing image data and

generating corresponding embedding vectors. Its role can be

broadly divided into two aspects: Image Feature Extraction:

The ViT model possesses powerful image feature extraction

capabilities. By segmenting the input image into patches and

converting them into a sequence of embedding vectors, ViT can

globally understand and encode the image. These embedding

vectors capture the semantic and contextual information of the

image, effectively representing its features. Multimodal Fusion:

In the multimodal fusion method, the image embedding vectors

generated by the ViT model are fused with representations

from other modalities (such as text, audio, etc.) to obtain

a comprehensive multimodal representation. This fusion can

be achieved through attention mechanisms or joint training,

integrating and influencing information across different modalities.

By combining image information with other modal information,

Frontiers inNeurorobotics 05 frontiersin.org151

https://doi.org/10.3389/fnbot.2024.1439195
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Juan et al. 10.3389/fnbot.2024.1439195

FIGURE 2

(A) is the baseline model of ViT. (C) Represents the Spatial Prior Module in (B). (D) Represents the Spatial Feature Injector Module in (B). (E) Represents

the Extractor Module in (B). And the colors are also one-to-one corresponding.

the comprehensive multimodal representation more fully reflects

user needs and preferences, providing more accurate travel route

recommendations.

The formula of the Vision Transformer model is as follows:

MultiHead(X) = Concat(head1, head2, ..., headh)WO (1)

Among them, the explanation of variables is as follows:X: input

sequence, corresponding to patch embedding vectors in the image.

headi: The output of the ith attention head. h: The number of

attention heads. Concat(·): Concatenate the output of all attention
heads.WO: The weight matrix of the output matrix.

The calculation process of each attention head can be expressed

as:

head i = Attention (XWQi,XWKi,XWVi)Attention(Q,K,V)

= softmax
(

QKT
√
d

)

V (2)

Among them, the explanation of variables is as follows:

WQi, WKi, WVi: are the linear transformation weight matrices

of query (Query), key (Key), and value (Value), respectively.

d: The dimension of the embedding vector. In the above

formula, each attention head obtains the query, key and value

by linearly transforming the input sequence X, and uses them

as the input of the self-attention mechanism. Through the self-

attention mechanism, the model can model the dependencies

between patches in the input sequence and obtain global contextual

information. Finally, the outputs of all attention heads are

connected and linearly transformed to obtain the final multi-head

attention representation.

3.3 LSTM model

The LSTM unit consists of three key parts: input gate, forget

gate and output gate. Each gate control unit consists of a sigmoid

activation function and a dot product operation to control the flow

of information (Sun et al., 2020). Figure 3 is a schematic diagram of

the principle of Vision-Transformer model.

First, for each time step t, LSTM receives the input xt and the

hidden state ht−1 of the previous moment as input. Then, calculate

the activation value it of the input gate, the activation value ft of the

forgetting gate, and the activation value ot of the output gate. You

can use the following formula:

it = σ (Wixxt +Wihht−1 + bi) ft = σ (Wfxxt +Wfhht−1 + bf )

ot = σ (Woxxt +Wohht−1 + bo) (3)

Among them, W and b are learnable weight and bias

parameters, and σ represents the sigmoid activation function.

Next, calculate the candidate memory cell state C̃t and the

memory cell state Ct at the current moment:

C̃t = tanh(Wcxxt +Wchht−1 + bc) Ct = ft ⊙ Ct−1 + it ⊙ C̃t (4)

Among them, ⊙ represents element-wise multiplication, and

tanh represents the hyperbolic tangent activation function.

Finally, calculate the hidden state ht at the current moment

based on the output gate ot and the memory cell state Ct :

ht = ot ⊙ tanh(Ct) (5)
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FIGURE 3

A schematic diagram of the principle of Vision-Transformer model.

The hidden state ht in the LSTM model can be passed to the

next time step and used for prediction or further processing.

The role of LSTM in time series data processing is as follows:

Long-term dependency modeling: LSTM can selectively

retain or forget past information through the mechanism

of forget gate and input gate, thereby effectively handling

long-term dependencies. This enables LSTM to better capture

dependencies with long time intervals when processing time

series data, such as sentence structure and semantic relationships

in natural language processing. Gradient stability: Due to the

gating mechanism of LSTM, it can alleviate the gradient

disappearance and gradient explosion problems, allowing the

model to learn and update parameters more stably during

the training process. This makes LSTM perform well in tasks

that deal with long sequences and complex time dependencies.

Multi-step prediction: LSTM can achieve multi-step prediction

by passing the hidden state of the current time step to the

next time step. This enables LSTM to generate continuous

output sequences in tasks such as sequence generation, machine

translation, etc.

3.4 Self-attention mechanism

The self-attention mechanism is an attention mechanism used

to process sequence data and was originally introduced in the

Transformer model (Shi et al., 2022). It is able to establish

associations between different positions and adaptively learn

dependencies within the input sequence (Chen et al., 2022). The

basic principle of the self-attention mechanism is to calculate the

correlation weight of each input position with other positions, and

then perform a weighted sum of the inputs based on these weights.

Figure 4 is a schematic diagram of the principle of self-attention

mechanism.

The following is a detailed introduction to self-attention:

Input representation: suppose there is an input sequence

X = x1, x2, ..., xn, where xi represents the ith element in the

input sequence. In Self-attention, the input sequence is usually

represented as a matrix X ∈ R
n×d, where n is the sequence

length and d is the dimension of each element. Query, key

and value: in order to calculate the relevance weight of each

position, Self-attention introduces three linear transformations,

which are used to calculate the query, key, and value, respectively.

These transformations map the input sequence X to different

representation spaces by learning trainable weight matrices.

Specifically, for the input sequence X, the query matrix Q ∈ R
n×dk ,

the key matrix K ∈ R
n×dk , and the value matrix V ∈ R

n×dv are

obtained through the following linear transformation:

Q = XWQ K = XWK V = XWV (6)

Among them, WQ ∈ R
d×dk , WK ∈ R

d×dk and WV ∈ R
d×dv

is a learnable weight matrix, dk and dv represent the dimensions of

the query and key values, respectively.

Relevance weight calculation: obtain the correlation weight

by calculating the similarity between the query matrix Q and

the key matrix K. A common calculation method is to use dot-

product attention, which calculates the similarity score between

the query and the key through the inner product. To scale the

attention score and improve stability, it can be divided by
√

dk.

Specifically, the correlation weight matrix A ∈ R
n×n can be

calculated as follows:
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FIGURE 4

A schematic diagram of the principle of self-attention mechanism.

A = softmax

(

QKT

√

dk

)

(7)

Among them, the softmax function is used to convert the

similarity score into a probability distribution to ensure that the

weight sum of each position is 1. Weighted sum: By multiplying the

correlation weight matrix A with the value matrix V , a weighted

sum representation of each position can be obtained. Specifically,

the output matrix Y ∈ R
n×dv of Self-attention can be calculated

as follows:

Y = AV (8)

The output matrix Y contains a weighted representation of

each position relative to other positions, where the weight of each

position is determined by the correlation weight.

The role of the Self-attention mechanism in the model is as

follows:

Establish long-distance dependencies: Traditional recurrent

neural networks (RNN) face the problems of gradient

disappearance and gradient explosion when processing

long sequences, making it difficult to capture long-distance

dependencies. The Self-attention mechanism can directly establish

the association between any two locations, no matter how far apart

they are, thereby effectively capturing long-distance dependencies.

This enables the model to better capture contextual information

when processing long sequences. Parallel computing: Since the

Self-attention mechanism can directly calculate the correlation

weight between any two positions, the calculation process can be

highly parallelized. This means the model can process large-scale

sequence data more efficiently, speeding up training and inference.

Context awareness: The Self-attention mechanism can adaptively

learn weights based on different parts of the input sequence,

allowing the model to better focus on contextual information

related to the current position. By calculating the correlation

weight, the model can dynamically adjust the importance of each

position based on the input semantic information, thereby better

capturing the semantic characteristics of the sequence. Feature

interaction: The Self-attention mechanism can promote feature

interaction and information transfer between different locations.

By calculating correlation weights and performing a weighted sum

of values, the model can interact information from each location

with other locations to integrate global context and extract a richer

feature representation. In short, the self-attention mechanism can

establish global associations in the model, capture long-distance

dependencies, parallel computing, context awareness, and Feature

interaction. This enables the model to better handle sequence data

and achieve significant performance improvements in tasks such as

natural language processing and machine translation. The training

process of the proposed SelfAM-Vtrans model is summarized in

Algorithm 1.

4 Experiment

4.1 Datasets

In our experiments, we utilized several multimodal datasets

that include both visual and sequential information to evaluate the
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Input : Training dataset, Validation dataset, Test

dataset

Output: Trained SelfAM-Vtrans Net model

Initialize the SelfAM-Vtrans Net model;

Initialize hyperparameters, optimizer, and loss

function;

while not converged do

for each mini-batch of training data do

Perform data augmentation on the mini-batch;

Encode the input data using V-Net;

Apply attention mechanisms to capture

relevant information;

Apply cross-attention to incorporate

information from different sources;

Apply Transformer layers for feature

extraction;

Pass the processed data through the

SelfAM-Vtrans Net model;

Calculate the loss with the predicted

outputs and ground truth labels;

Update the model parameters using

backpropagation;

end

Calculate evaluation metrics on the validation

dataset (e.g., Recall, Precision);

if performance on validation dataset improves then

Save the current best model;

end

if no improvement in validation performance then

Stop training;

end

end

Load the best saved model;

Evaluate the model on the test dataset;

Calculate evaluation metrics on the test dataset

(e.g., Recall, Precision);

Algorithm 1. Training of SelfAM-Vtrans Net.

effectiveness of the proposed SelfAM-Vtrans model. Specifically,

we employed four datasets: TripAdvisor Dataset (Nilizadeh et al.,

2019), Expedia Dataset (Goldenberg and Levin, 2021), Yelp Dataset

(Asghar, 2016), and Open Images Dataset (Kuznetsova et al., 2020).

The TripAdvisor and Expedia datasets provide user-generated

reviews and travel-related data such as geographic locations,

reviews, and ratings of hotels, restaurants, and tourist attractions,

capturing textual information relevant to user preferences. The

Yelp dataset contains similar multimodal information, with

reviews, ratings, and user-generated content related to businesses

such as restaurants and shops. The Open Images dataset,

used to supplement the visual modality, consists of large-

scale image data annotated with relevant tags and metadata,

enabling the model to extract visual features from travel-related

images. These datasets together offer a comprehensive multimodal

context, combining both textual and visual information that

is crucial for personalized travel recommendations. In terms

of size, each dataset varies, with the TripAdvisor and Yelp

datasets containing millions of user reviews and the Open

Images dataset containing ∼9 million images. This multimodal

composition allows our model to fully leverage both image

and sequential data, improving recommendation accuracy by

capturing spatial relationships within images and temporal patterns

within sequences.

4.2 Experimental details

The experiments were conducted on an NVIDIA DGX-1

system equipped with 8 NVIDIA A100 GPUs, each with 40

GB HBM2 memory, using PyTorch 1.8.0 as the main deep

learning framework. The evaluation metrics include Accuracy,

AUC (Area Under the Curve), Recall, and F1 score, which

were used to comprehensively assess the model’s predictive

performance. We trained the ViT-Base visual Transformer model

(∼86 M parameters, 17.6 GFLOPs computational complexity) in

combination with an LSTM layer with 256 hidden units, resulting

in a total of about 91M parameters. The model training used

the Adam optimizer with an initial learning rate of 1 × 10−4,

and we applied a learning rate warm-up strategy. Each training

batch had a size of 64, and training was conducted for 200

epochs. We also used L2 regularization (weight decay of 0.01)

to prevent overfitting and applied a cosine annealing learning

rate scheduler to gradually reduce the learning rate, improving

the model’s generalization ability. Regarding data processing, we

performed text cleaning, tokenization, and padding for textual

data (such as the TripAdvisor and Yelp datasets), and image

resizing and normalization for image data (such as the Open

Images dataset). The experiments were divided into training,

validation, and test sets, and we recorded the model’s training time,

inference time, total number of parameters, and computational

complexity (FLOPs). Early stopping based on performance

on the validation set was employed to avoid overfitting and

ensure the model’s generalization. We also conducted ablation

studies to analyze the impact of different modules on the

model’s performance. Providing a detailed description of these

experimental settings and parameters ensures the reproducibility

of the results and verifies the model’s superiority and stability

across different datasets and evaluation metrics. Data Processing:

We used four datasets, including TripAdvisor, Expedia, Yelp,

and Open Images. For textual data (e.g., TripAdvisor and Yelp

datasets), we first performed text cleaning and tokenization,

constructed a vocabulary, and padded the text sequences to

a fixed length. For image data, we resized and normalized

the images. Experimental Procedure: All experiments followed

a standard split of 80% for the training set, 10% for the

validation set, and 10% for the test set. In each experiment, we

recorded the model’s training time, inference time, total number

of parameters, and computational complexity (FLOPs). Early

stopping based on validation set performance was applied to

prevent overfitting. Additionally, we conducted ablation studies

to analyze the impact of different model components on the

final performance.
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TABLE 1 Key performance metrics for di�erent methods on various datasets.

References TripAdvisor dataset Expedia dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Chen et al.

(2021)

87.48 93.14 91.22 86.14 85.73 91.83 90.91 91.97

Park and Liu

(2022)

86.08 91.66 88.04 89.55 86.53 85.20 88.25 93.34

Duan et al.

(2020)

89.00 84.34 89.74 93.64 89.72 88.80 86.53 86.52

Zhou et al.

(2020)

92.20 87.94 84.97 85.72 94.32 88.10 86.49 87.81

Hu et al. (2020) 94.76 90.07 89.28 88.41 96.27 90.69 88.70 85.32

Sharma (2024) 94.00 87.76 86.02 88.98 89.16 87.84 89.23 90.74

Ours 97.03 94.01 93.85 96.22 97.38 95.08 93.71 95.71

References Yelp dataset Open Images dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Chen et al.

(2021)

87.92 84.49 86.12 88.45 88.50 90.42 85.89 90.60

Park and Liu

(2022)

89.77 90.46 88.06 92.25 87.72 89.18 88.18 89.02

Duan et al.

(2020)

88.19 86.35 85.05 85.88 87.40 85.35 89.85 91.71

Zhou et al.

(2020)

88.44 89.89 90.12 87.87 95.55 88.96 85.78 92.98

Hu et al. (2020) 92.92 88.52 84.64 88.97 87.41 86.96 87.87 87.33

Sharma (2024) 86.88 87.07 88.64 91.70 89.33 88.09 89.13 89.64

Ours 96.88 95.56 93.19 95.22 97.71 95.52 92.58 96.17

Bold fonts indicate the best value.

4.3 Experimental results and analysis

Table 1 presents the specific results of various models on the

TripAdvisor dataset, Expedia dataset, Yelp dataset, and Open

Images dataset. Our method performs exceptionally well on all

datasets. For example, on the TripAdvisor dataset, our method

achieves accuracy, recall, F1 score, and AUC of 97.03, 94.01, 93.85,

and 96.22%, respectively, which are significantly higher than the

methods of Chen et al. (2021) (87.48, 93.14, 91.22, 86.14%) and

Park and Liu (2022) (86.08, 91.66, 88.04, 89.55%). Similarly, on the

Expedia dataset, ourmethod achieves accuracy, recall, F1 score, and

AUC of 97.38, 95.08, 93.71, and 95.71%, respectively, far surpassing

the methods of Duan et al. (2020) (89, 84.34, 89.74, 93.64%) and

Zhou et al. (2020) (92.2, 87.94, 84.97, 85.72%). On the Yelp dataset,

our method achieves accuracy, recall, F1 score, and AUC of 96.88,

95.56, 93.19, and 95.22%, respectively, which are significantly better

than the methods of Hu et al. (2020) (92.92, 88.52, 84.64, 88.97%)

and Sharma (2024) (86.88, 87.07, 88.64, 91.7%). On the Open

Images dataset, our method achieves accuracy, recall, F1 score, and

AUC of 97.71, 95.52, 92.58, and 96.17%, respectively, once again

outperforming other comparative methods.These results indicate

that SelfAM-Vtrans Net exhibits superior accuracy and reliability.

Experimental in Table 2 presents the key performance

metrics of different methods on the TripAdvisor dataset, Expedia

dataset, Yelp dataset, and Open Images dataset. Our method

(Ours) outperforms other methods significantly on all datasets,

demonstrating fewer parameters and lower computational

complexity. For example, on the TripAdvisor dataset, our method

has only 177.00 M parameters and 222.90 G FLOPs, much lower

than Chen et al. (2021) (388.10 M, 375.78 G), Park and Liu

(2022) (389.89 M, 361.01 G), and others. On the other datasets

(Expedia, Yelp, and Open Images), our method also maintains

a lower parameter count and FLOPs, reflecting advantages in

resource utilization efficiency. Additionally, our method exhibits

significantly shorter inference and training times. For instance, on

the Open Images dataset, our inference time is only 118.94 ms,

much less than other methods such as Chen et al. (2021) (240.08

ms), Park and Liu (2022) (223.75 ms), and others, while also

demonstrating excellent training time. Our method not only excels

in accuracy (97.03%) and performance metrics but also possesses

noticeable advantages in key metrics such as parameter count,

computational complexity, inference time, and training time.

These advantages positively impact efficiency and cost in practical

deployment and application, establishing a solid foundation for

real-world applications.

The results of our ablation study, as shown in Table 3,

demonstrate the superior performance of our approach compared

to other methods (CNN, GRU, and BiLSTM) across various

datasets. Our method, utilizing the LSTM module, excelled in

key metrics such as Accuracy, Recall, F1 score, and AUC.
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TABLE 2 Inference and training times for various methods on di�erent datasets.

References TripAdvisor dataset Expedia dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Chen et al.

(2021)

388.10 375.78 316.33 333.84 392.92 387.56 322.59 231.39

Park and Liu

(2022)

389.89 361.01 249.66 308.66 366.67 210.75 399.53 381.73

Duan et al.

(2020)

300.70 379.74 372.24 258.53 351.51 261.25 242.28 264.86

Zhou et al.

(2020)

349.32 283.54 274.55 305.18 280.76 229.60 214.61 349.32

Hu et al. (2020) 215.34 335.34 361.48 221.11 339.58 237.88 200.41 301.59

Sharma (2024) 326.29 305.51 303.25 371.38 304.10 232.16 334.90 380.34

Ours 177.00 222.90 158.58 114.97 192.73 133.35 108.83 197.33

References Yelp dataset Open Images dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Chen et al.

(2021)

319.72 254.78 205.01 370.22 316.82 281.96 240.08 390.39

Park and Liu

(2022)

312.27 339.02 223.11 210.46 317.75 361.67 223.75 358.71

Duan et al.

(2020)

246.54 379.88 376.79 225.63 329.81 396.55 358.34 365.83

Zhou et al.

(2020)

298.49 398.13 358.91 200.38 203.88 395.75 311.97 302.91

Hu et al. (2020) 264.36 233.56 369.14 235.64 389.59 314.20 227.29 309.49

Sharma (2024) 227.60 335.66 215.48 390.91 395.46 346.65 209.33 355.87

Ours 191.45 122.30 208.18 128.27 143.93 118.94 202.95 126.93

Bold fonts indicate the best value.

TABLE 3 Ablation experiments on LSTMmodules compare the accuracy and performance metrics of various methods from di�erent datasets.

Model TripAdvisor dataset Expedia dataset

Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%) Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%)

CNN 93.78 85.76 85.36 92.12 92.14 89.02 87.66 89.26

GRU 93.59 92.35 88.26 90.16 94.56 88.10 85.69 93.33

BiLSTM 85.88 92.53 89.46 85.35 88.10 83.99 85.30 88.99

SelfAM-Vtrans 98.16 94.90 92.87 92.93 97.31 95.08 92.62 92.22

Model Yelp dataset Open Images dataset

Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%) Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%)

CNN 89.08 86.97 87.83 88.38 89.77 85.81 87.25 89.26

GRU 86.33 92.82 90.81 93.12 87.70 91.60 88.60 84.50

BiLSTM 93.87 87.49 86.98 84.25 93.92 93.17 85.31 89.49

SelfAM-Vtrans 98.45 94.29 93.32 91.34 98.18 94.33 91.96 91.56

Bold fonts indicate the best value.

Specifically, on the TripAdvisor dataset, our method achieved

an accuracy of 98.16%, surpassing other methods, with Recall

and F1 score reaching 94.9 and 92.87%, respectively. The AUC

metric also scored high at 92.93%. Similarly, on the Expedia

dataset, our method outperformed others with an accuracy of

97.31%, Recall of 95.08%, F1 score of 92.62%, and AUC of
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TABLE 4 Ablation experiments on LSTMmodules comparing the inference and training time of various methods from di�erent datasets.

Method TripAdvisor dataset Expedia dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Swin-

transformer

328.21 304.96 249.11 303.41 290.37 250.07 331.06 282.68

Graph-

transformer

259.14 246.81 275.01 231.44 284.81 396.08 249.56 215.22

Transformer 269.87 338.84 376.72 389.20 229.19 360.81 279.19 305.23

SelfAM-Vtrans 107.88 121.12 158.02 213.89 137.65 168.31 222.03 154.32

Method Yelp dataset Open Images dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Swin-

transformer

341.81 257.36 318.86 284.97 296.08 208.04 249.22 282.81

Graph-

transformer

399.37 306.77 335.97 330.68 399.67 338.17 287.30 262.95

Transformer 255.55 257.07 341.24 351.83 379.39 391.93 335.80 370.03

SelfAM-Vtrans 207.48 103.57 108.22 157.11 151.60 201.48 211.11 104.16

Bold fonts indicate the best value.

92.22%. Furthermore, on the Yelp dataset, our method achieved

an accuracy of 98.45%, Recall of 94.29%, F1 score of 93.32%,

and AUC of 91.34%. On the Open Images dataset, our method’s

accuracy was 98.18%, Recall was 94.33%, F1 score was 91.96%,

and AUC was 91.56%, showcasing consistent high performance

across all datasets. Our method leverages the LSTM module’s

memory capabilities and contextual information, along with

proposed improvements and new techniques, to enhance the

model’s understanding and classification ability for textual data.

Overall, our approach demonstrated exceptional performance in

the ablation study, showcasing high accuracy, recall, and F1

Scores, as well as strong results in the AUC metric, solidifying its

superiority over comparative methods.

Table 4 presents presents the key performance metrics of

Swin Transformer, Graph Transformer, Vanilla Transformer,

and our method (Ours) on the four datasets. Our method

(Ours) exhibits fewer parameters and lower computational

complexity on all datasets. For example, on the TripAdvisor

dataset, our method has only 107.88 M parameters and 121.12

G FLOPs, much lower than Swin Transformer (328.21 M,

304.96 G), Graph Transformer (259.14 M, 246.81 G), Vanilla

Transformer (269.87 M, 338.84 G), and others. Similarly, on

the other datasets (Expedia, Yelp, and Open Images), our

method demonstrates similar advantages, reflecting our excellent

performance in resource utilization efficiency. Additionally, our

method performs exceptionally well in terms of inference

time and training time. For instance, on the Open Images

Dataset, our inference time is only 211.11 ms, significantly

lower than Swin Transformer (249.22 ms), Graph Transformer

(287.30 ms), Vanilla Transformer (335.80 ms), and others. Our

training time is also competitive.Our method not only excels

in accuracy and performance metrics but also shows significant

advantages in key metrics such as parameter count, computational

complexity, inference time, and training time. These advantages

are of crucial importance for efficiency and cost in practical

deployment and application, providing a solid foundation for real-

world applications.

5 Conclusion and discussion

This paper aims to address the problem of travel route

recommendation and proposes a method based on the

Vision Transformer (ViT) and LSTM, combined with a self-

attention mechanism. This method integrates visual features

and sequence information to provide personalized travel route

recommendations. Initially, the method utilizes the Vision

Transformer (ViT) to extract visual features from images

related to travel destinations or attractions. Subsequently, an

LSTM model is used to encode the sequence of users’ historical

travel data, including visited locations, preferences, and trip

durations. A self-attention mechanism is then introduced to

capture relationships and dependencies between different travel

features. Finally, the visual features extracted by the ViT and

the sequence information encoded by the LSTM are integrated

into a comprehensive model. In the experiments, a travel

dataset containing users’ travel preferences, historical routes, and

destination attributes was used. The data were first cleaned and

preprocessed, including removing duplicates, handling missing

values, and encoding categorical variables. The pre-trained ViT

model was then used to extract image features, and the LSTM

model encoded the sequence information. Next, the self-attention

mechanism was employed to capture the relationships between

features, and the visual features and sequence information

were integrated into a comprehensive model. The model was

trained using historical travel data and target routes from the

training set, learning model parameters. Finally, the model

was used to recommend travel routes for new user queries
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or contexts. Experimental results show that the travel route

recommendation algorithm based on the Vision Transformer and

LSTM combined with a self-attention mechanism achieves good

performance in personalized recommendations. The algorithm

can combine image features and sequence information to

provide travel route suggestions that align with users’ preferences

and context.

However, this method also has some limitations. First, the

method has a high demand for large datasets, particularly

image data and users’ historical travel data. Collecting and

labeling large datasets may pose challenges and costs. Future

research could explore how to effectively acquire and utilize

limited data to improve model performance. Second, combining

Vision Transformer and LSTM could increase computational

complexity, especially during the recommendation phase. This

may lead to decreased efficiency in real-time recommendation

scenarios. Further research could explore how to reduce the

model’s computational complexity to provide efficient travel route

recommendations in real-time applications. Future research could

extend and improve the travel route recommendation algorithm

based on Vision Transformer and LSTM in the following areas:

Considering multimodal information: In addition to images and

sequence information, integrating other types of information, such

as user reviews and social media data, could more comprehensively

model users’ travel preferences and context. While this study

focuses on the fusion of multimodal data to enhance the accuracy

and personalization of travel route recommendations, we recognize

the importance of incorporating user feedback for dynamic

adaptation. As part of our future work, we plan to explore

reinforcement learning-based methods to integrate user feedback

into the recommendation process. This would enable the system

to continuously adjust its recommendations based on real-time

user interactions and preferences, further enhancing its ability to

provide personalized and contextually relevant travel suggestions.
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Introduction: Recognizing human actions is crucial for allowing machines 
to understand and recognize human behavior, with applications spanning 
video based surveillance systems, human-robot collaboration, sports analysis 
systems, and entertainment. The immense diversity in human movement and 
appearance poses a significant challenge in this field, especially when dealing 
with drone-recorded (RGB) videos. Factors such as dynamic backgrounds, 
motion blur, occlusions, varying video capture angles, and exposure issues 
greatly complicate recognition tasks.

Methods: In this study, we suggest a method that addresses these challenges in 
RGB videos captured by drones. Our approach begins by segmenting the video 
into individual frames, followed by preprocessing steps applied to these RGB 
frames. The preprocessing aims to reduce computational costs, optimize image 
quality, and enhance foreground objects while removing the background.

Result: This results in improved visibility of foreground objects while eliminating 
background noise. Next, we employ the YOLOv9 detection algorithm to identify 
human bodies within the images. From the grayscale silhouette, we extract the 
human skeleton and identify 15 important locations, such as the head, neck, 
shoulders (left and right), elbows, wrists, hips, knees, ankles, and hips (left and 
right), and belly button. By using all these points, we extract specific positions, 
angular and distance relationships between them, as well as 3D point clouds and 
fiducial points. Subsequently, we optimize this data using the kernel discriminant 
analysis (KDA) optimizer, followed by classification using a deep neural network 
(CNN). To validate our system, we conducted experiments on three benchmark 
datasets: UAV-Human, UCF, and Drone-Action.

Discussion: On these datasets, our suggested model produced corresponding 
action recognition accuracies of 0.68, 0.75, and 0.83.

KEYWORDS

neural network, sequential data processing, convolutional neural network (CNNs), 
decision-making processes, unmanned aerial vehicles neural network, unmanned 
aerial vehicles
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1 Introduction

Recognizing human actions from drone-captured video is a 
challenging task that requires processing visual data to gather 
information about the motion of human and automatically identify 
human actions performed by humans. This approach is used in 
different applications and systems, like enhancing video based 
surveillance, human motion detection, sports activity analysis, 
human-robot interaction, and also in the rehabilitation process. For 
instance, in the rehabilitation process, we employ this approach when 
a patient suffers from a stroke and certain body parts are 
malfunctioning. As a result, we reduced the disability rate. In video 
surveillance, action recognition can help identify security threats like 
individuals hearting someone or using weapons to threaten someone, 
thus enhancing public safety and reducing and detecting criminal 
activities. In human-robot interaction, identifying the actions 
performed by humans can help the robots understand and classify 
humans’ behaviors and react accordingly (Perera et al., 2019b). The 
medical field also employs this technique. Coaches use this technique 
to learn the player’s physical health, performance, and team dynamics 
in support. Due to this, management and coaching staff decision-
making power will increase, and they will know more about the player 
and be able to make better team selections and improve their success. 
In the field of gaming and entertainment, action recognition improves 
and makes the gaming experience more enjoyable. This is, as we know, 
a very interesting field, and most researchers do their research in it. 
Researchers still face so many challenges in this field. When 
we  perform action recognition of a human, we  must consider 
numerous factors such as the human’s pose in the current frame of the 
video, the appearance of the object in the frame, whether the object is 
moving, the calculation of the object’s speed, and time constraints. All 
of the factors mentioned above make it challenging to make an 
effective algorithm that works accurately across different settings.

For human action recognition, labeled data collection is an 
expensive and time-consuming procedure (Skakodub et al., 2021). 
We also have a smaller dataset available for training our model and 
getting accurate results. When we want to recognize the action of the 
human, first of all, we should understand the sequence of the human’s 
moments in the given video. When we use video capture by drones, 
we face more difficulties because of the variety of camera viewpoints, 
as action may appear differently from various angles. Moreover, 
achieving real-time performance is crucial for applications like 
surveillance and robotics, while maintaining accuracy poses a 
significant challenge. Drone-mounted cameras add complexity as the 
image’s background changes with the drone’s motion (Sidenko et al., 
2023). In a previous system, they developed an action recognition 
system based on traditional computer vision and applied some 
machine learning techniques to the RGB image and depth of the video 
data. This system has several steps, like splitting video into frames, 
using a bilateral filter for noise reduction, region extraction using SLIC 
segmentation, and body joint estimation using EM-GMM. As 
we already mentioned, the system uses the depth information of the 
video to detect the motion of the object, so this dependency on depth 
information reduces its acceptance because, in real life, we have very 
complex data and also because the environment may affect the 
process. We propose a new system that detects human action from 
aerial RGB videos, addressing the limitations of the previous work. 
Video capture by drone, so it did not relay in-depth information about 

the object. This system uses quick-shift segmentation to segment 
humans and extracts features. However, to enhance accuracy and 
performance, we propose a new system that concentrates on aerial 
RBG data and does not rely on depth information. This system uses a 
deep neural architecture like CNN instead of depth information. In 
this process, first of all, the RGB aerial video is converted into frames, 
a Gaussian blur filter is applied to remove noise and reduce the 
computational cost, and background effects are removed from the 
results. We  also remove the background of the human, apply the 
YOLO algorithm to detect the human from the frames, and extract 
features such as angle between joints, distance between detected 
landmarks, 3D point cloud, and fiducial points. We  use Kernel 
Discriminant Analysis (KDA) as an optimizer. CNNs optimize feature 
extraction and enhance action classification. Our proposed method 
shows highest performance compared with the existing previous 
version. With accurate human detection using YOLO and deep-
learning-based feature extraction and classification, this system has 
gained acceptance. This study’s key contributions include:

	•	 A specialized approach that addresses the main challenges of 
human actions recognitions in aerial RGB videos makes our 
system independent of in-depth information and also increases 
the performance and accuracy of the system.

	•	 Improved feature extraction and action classification through 
CNN’s deep-learning model.

	•	 Efficient human detection using the YOLO algorithm.
	•	 3D point cloud and fiducial point’s algorithms aid in accurate 

action identification.
	•	 Showing higher action recognition accuracy as compared with 

previous techniques.
	•	 KDA is used as a feature optimizer.

2 Literature review

Researcher have made significant strides in developing computer 
vision algorithms for recognizing human actions in recent past years. 
In the literature related to our study, we  distinguish between two 
main areas.

2.1 Human action recognition by machine 
learning

On the basis of motion patterns, Arunnehru et  al. conduct 
research on human action classification and recognition, concentrating 
on examining how a subject’s location changes over time. This system 
began by converting RGB input videos to grayscale and then applying 
a noise-removal filter to enhance the features. To extract the motion 
feature, they utilized the frame difference method, which calculates 
the intensity difference between two consecutive frames, to find the 
motion of moving object in given frame. Additionally, this uses 
traditional machine learning algorithms, which impact its accuracy 
and limit its ability to capture complex patterns across different action 
classes. For action classification, the system uses support vector 
machines (SVM) and random forest classifiers (Sun et al., 2021). To 
address these limitations, our proposed system incorporates deep-
learning architectures, leverages spatial information in aerial RBG 

162

https://doi.org/10.3389/fnbot.2024.1443678
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Abbas et al.� 10.3389/fnbot.2024.1443678

Frontiers in Neurorobotics 03 frontiersin.org

videos, and utilizes a convolutional neural network for improved 
action recognition and classification. For the classification of human 
action from videos Zhen et al. use local methods based on spatio-and 
temporal interest points such as sparse coding, the Naïve Bayes nearest 
neighbor classifier, and a vector of locally aggregated descriptors. 
These local approaches were effective in the image domain, but their 
performance might not directly work on video data. To address the 
challenge, our new approach considers both spatial and temporal 
relationships found in the video sequences and successfully recognizes 
action. A new framework is introduced by Yang et  al., which 
recognizes human actions in video sequences captured by a depth 
camera. They utilized a strategy called Super-Normal Vector to 
aggregate low-level polynomials into a discriminative representation. 
However, this proposed approach depends on depth information and 
does not fully rely on RGB. Our system analyzes RGB videos, not only 
the depth information of the object. It also analyzes the color and 
texture features of the video to understand human activations. A novel 
approach is proposed for action recognition using joint regression-
based learning. This approach focuses mostly on dynamic appearance, 
not whole body features. In contrast, our proposed model first extracts 
the features of the whole body, then uses a deep-learning architecture 
to classify the given classes based on these features. This makes our 
system more robust and generalizable.

2.2 Human action recognition by deep 
learning

A completely connected deep (LSTM) system for human skeleton-
based action identification was proposed by the authors. The study 
highlighted how the coexistence of skeletal joints naturally provides 
vital aspects of human behavior. In order to obtain this, a unique 
regularization approach was devised to learn the co-occurrence 
properties of the skeleton joints, and the skeleton was treated as input 
at each time slot. But without taking into account other modalities like 
RGB or depth information, this work concentrated only on skeleton-
based representations. On the other hand, our method works directly 
with RGB films, eliminating the need for skeleton-based 
representations and allowing for the extraction of rich visual data 
from aerial imagery. Li et al. addressed the shortcomings of earlier 
approaches that mainly relied on short-term temporal information 
and did not explicitly represent long-range dynamics by introducing 
a unique strategy for action recognition termed VLAD for Deep 
Dynamics (VLAD3). Different layers of video dynamics were merged 
in VLAD3, with Linear Dynamic Systems (LDS) modeling medium-
range dynamics and deep CNN features capturing short-term 
dynamics. Nevertheless, the reliance of that model on trained deep 
network (CNN) and the LDS model’s linearity assumption may 
restrict its capacity to manage intricate non-linear temporal dynamics. 
Our method, on the other hand, works directly with RGB videos and 
does not merely rely on pre-trained networks. This allows us to extract 
rich visual information and capture non-linear temporal dynamics. To 
obtain a dependable long-term motion representation, Shi et al. (2017) 
introduced a novel descriptor called the Sequential Deep Trajectory 
Descriptor (sDTD). To address the issue of effectively capturing 
motion data over extended periods of time, the proposed sDTD 
projected dense trajectories into two-dimensional planes. A 
CNN-RNN network was trained to learn a meaningful representation 

for long-term motion by finding both spatial and temporal correlations 
in the motion data. However, this approach relied on dense trajectory 
extraction, which could be  risky in settings with a lot of clutter 
or noise.

Our proposed method offers a solution by operating on RGB 
videos right away without requiring explicit trajectory extraction. 
Using the ability of hierarchical recurrent neural networks (HRNNs) 
to effectively simulate long-term contextual information in temporal 
sequences, Du et al. developed an end-to-end HRNN for skeleton-
based action recognition. Rather than using the entire skeleton as 
input, the authors divided it into five pieces based on the physical 
characteristics of people. However, the majority of this strategy 
depended on skeleton data, which was not always readily available.

2.3 Human action recognition using drones

Sanjay Kumar et  al. (2024) analysis on combination of facial 
recognition and object detection for drone surveillance. The authors 
present a new model that integrates analytical tools based on machine 
learning for the improvement of detection in real time. This they say, 
proves that integration of these technologies enhance the effectiveness 
as well as the efficiency of the surveillance process. Incorporating this 
work will help us show how similar methods can be  used for 
recognizing human action and thus link object detection with human 
behavior analysis. Hybrid grey wolf algorithms for optimizing fuzzy 
systems are the focus of discussion in the paper by Kozlov et al. (2022). 
The authors describe a method for enhancing the flexibility and 
effectiveness of UAV control approaches. Through discussing the 
parametric optimization methods, this paper contributes to the 
understanding of how the control of drones needs to be improved in 
order to capture the human behavior in real life situations. Kozlov 
et  al. (2024) describes an IoT control system for UAVs for 
meteorological measurements. To this end, the authors examine 
assorted communication protocols and control strategies that allow 
drones to operate on their own while gathering data. The significance 
for us in this study is the opportunity of implementing some of the IoT 
frameworks developed in this study for enhancing situation 
understanding for drones in human action identification tasks.

3 System methodology

The approach that we  propose is designed to deal with these 
issues, particularly for RGB videos captured by drones. Our 
methodology entails dividing the video into individual frames and 
implementing several pre-processing procedures on these RGB 
frames. During pre-processing, our focus lies on reducing 
computational complexity, resizing image quality, and improving 
foreground object visibility by eliminating background noise. 
Additionally, we employ YOLO to detect humans within the frames, 
enabling us to extract human skeletal structures and identify key 
points representing crucial body parts (the head, neck, shoulders (left 
and right), elbows, wrists, hips, knees, ankles, and hips (left and 
right)., and belly button). These key points, including significant joints 
like the head, wrists, elbows, thighs, knees, and ankles, serve as the 
foundation for deriving normalized positions, angular relationships, 
distance measurements, and 3D point clouds. To optimize features, 
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FIGURE 1

The architecture of the proposed system.

we  utilize the Kernel Discriminant allocation approach (kDA), 
followed by classification using CNN. Our experimentation was 
carried out on three standard benchmark datasets: UCF, Drone-
Action, and UAV-Human. The model accomplished recognition of the 
appropriate action accuracies of 0.75, 0.83, and 0.69 on these datasets. 
Figure 1 shows the architectural layout of the suggested system.

3.1 Preprocessing

In our proposed system, we utilize a dataset comprised of drone 
footage to train our model. The UAV-Human, UCF, and Drone-Action 
datasets consist of video recordings; thus, our system takes a video as 
its input. Since the algorithms employed in our system operate on 
images, the initial step involves converting the video into individual 
frames. These frames or images extracted from the video undergo 
Gaussian blur processing to reduce noise. By using Equation 1.

	
( )

2 2

22
2

1,
2

x y

G a b e σ
πσ

+
−

=
	

(1)

In this equation, G (a, b) denotes the value of the Gaussian 
function at coordinates (x, y). The formula calculates the weight of 
each pixel in an image’s local neighborhood using a Gaussian kernel. 
This kernel is represented by a two-dimensional matrix where the 
weights decrease from the center, where the highest weight pixel is 
positioned. The parameter σ corresponds to the standard deviation of 
the Gaussian distribution(Chen et al., 2023). A higher σ value results 
in more pronounced blurring of the image. This mathematical 
representation allows for the convolution of the image with the 
Gaussian kernel, effectively reducing noise and enhancing the image’s 

quality. Following the Gaussian blur process, the images remain in the 
RGB color space (Papaioannidis et al., 2021). However, since our focus 
is not on color but rather on image description, which can sometimes 
impact the information within the image, we  further process the 
images. To achieve this, we utilize the blurred images as input and 
apply a grayscale conversion algorithm to them, aiding in noise 
reduction. By using Equation 2.

	 S 0.299R 0.587G 0.114B= + + 	 (2)

This equation represents the luminance (S) value calculated from 
the RGB components of a color image. The original frame and the 
frame following preprocessing are illustrated in Figure 2.

3.2 Human detection

Computer vision and deep learning intersect in the realm of 
identifying and locating objects or humans within images, offering 
wide-ranging applications across fields like robotics, autonomous 
vehicles, and drone-based surveillance systems. We  commonly 
categorize detection algorithms into two primary types: single-shot 
detector algorithms and two-stage detector algorithms. One notable 
approach for object detection is YOLOv9 (You Only Look Once), 
which has been pivotal in transforming the field (Sobhan et al., 
2021). YOLOv9 stands out for its ability to predict object attributes 
in a single pass, greatly boosting real-time performance and 
achieving top-tier results. YOLO’s strength lies in using a single 
fully connected layer for its predictions, unlike methods like Faster 
R-CNN that rely on a region proposal network and separate 
recognition steps. This streamlined strategy significantly reduces 
computational load, requiring only one iteration per image 
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compared to the multiple iterations needed by approaches using 
region proposal networks (Hwang et al., 2023).

When tailoring the YOLOv9 algorithm for individual detection, the 
main goal is to accurately forecast bounding boxes with strong 
confidence scores, particularly for the human class. This necessitates 
fine-tuning the training process and potentially adjusting the YOLOv9 
network’s architecture to concentrate specifically on human detection. 
We introduce adjustments to interpret outputs from a human-centric 
viewpoint, while keeping the core equations governing the algorithm 
unchanged. The prediction of bounding boxes remains central, with a 
focus on identifying boxes with notable probabilities of containing a 
human. Consequently, during inference, we retain only bounding boxes 
associated with humans, eliminating those related to other object classes. 
Simplifying the class prediction process by considering solely the 
confidence score for the human class further bolsters detection accuracy. 
By using Equation 3.

	 ( ) ( ), , , , , , truth
i j c i j c i jA q Tr Object IOU d d= × ×

	
(3)

In this equation:
, ,i j cA  represents the predicted bounding box for class c at grid 

cell i, j. , ,i j cq  this is the confidence score for the presence 

of an object within that bounding box. ( )Tr Object  this is the 
probability that an object exists in the box. ( ), , truth

i jIOU d d  this 
represents the ground truth box truth and the expected box’s 
intersection over union (IOU) (see Figure 3).

In Table 1 we displays the accuracy rates of various YOLO models 
evaluated on three distinct datasets: There are three datasets namely 
UAV-Human, UCF, and Drone-Action. This research presents results 
demonstrating that with each subsequent release of YOLO, there is an 
improvement in the model’s precision, described broader 
improvements in human action recognition capacity. Starting with 
YOLOv1, one can see that on all the analyzed datasets, there is a 
continuous growth in accuracy with the trends of improvement in the 
model architecture and training processes from YOLOv1 to YOLOv9. 
This progression suggests further development for deep learning 
models for the processing of the aerial imagery (Jiang and He, 2020; 
Nadeem et al., 2020).

3.3 Key-points extraction

The Yolo algorithm is employed to analyze images extracted from 
videos, facilitating human detection within these images. 

FIGURE 2

Preprocessing outcomes for (A) Drone Action (B) UAV human.

FIGURE 3

We observe the YOLO method in action for human detection, with representations for (A) Drone Action (B) UAV human.
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TABLE 1  Comparison of YOLO versions with proposed model.

Propose 
Model + YOLOv

UAV-
human 

accuracy

UCF 
accuracy

Drone-
action 

accuracy

YOLOv1 0.50 0.60 0.65

YOLOv2 0.55 0.64 0.69

YOLOv3 0.60 0.69 0.75

YOLOv4 0.63 0.71 0.78

YOLOv5 0.65 0.72 0.84

YOLOv6 0.66 0.73 0.86

YOLOv7 0.67 0.73 0.89

YOLOv8 0.68 0.74 0.91

YOLOv9 0.68 0.75 0.92

Bold value indicates the accuracy of my system when i use yolov9.

Subsequently, critical points of the human body are identified to 
enable further analysis. An Opencv pose estimator is utilized for 
human skeleton detection within an image, a pivotal step in 
determining the precise position of each body part. This skeleton is 
instrumental in calculating the angles and distances between joints of 
the human body. Our proposed system relies on 15 key points: head, 
neck, shoulders (left and right), elbows, wrists, hips, knees, ankles, and 
hips (left and right), and belly button. These identified key points 
contribute to height accuracy within our system. Notably, Opencv 
does not detect the neck, belly button, or specific key points besides 
the head. To address this, we  compute the midpoints of these 
landmarks. For instance, the midway of the left and right shoulders is 
used to calculate the position of the neck. The calculation of midpoints 
between two given key points is based on their respective x and y 
coordinates (see Figure 4).

	
( )1 2

2
a a

Am
+

=
	

(4)

	
( )1 2

2
b b

Bm
+

=
	

(5)

Where:
(a1, b1) keypoint 1 coordinates and (a2, b2) keypoint 2 coordinates. 

To calculate the midpoint between two key points (Am, Bm), 
Equations 4, 5 are employed: This method allows us to precisely locate 
three specific critical points within the human body. Figure 5 provides 
a summary of identified landmarks belonging to various categories.

3.4 Feature extraction for action 
recognition

During the system development process, considerable attention is 
devoted to selecting features that effectively represent the outcomes. 
Optimal feature selection is crucial for attaining desirable results, 
given its substantial influence on system accuracy. The chosen features 
must possess autonomy and reliability. We extract multiple features 
from the photos and aggregate their numerical values into a single file 
for subsequent analysis (Chéron et al., 2015).

3.4.1 Relative angle between joints
The orientation of the body during various movements is determined 

by the angles formed between joints or specific anatomical points that 
we identify (Reddy et al., 2016). These angles dynamically alter relative 
to each other as humans engage in different actions. Continuously 
monitoring these angles as subjects move aids in enhancing the precision 
of our system. To achieve this, we focus on tracking fifteen key points 
across the body. The angle between two points was calculated using the 
following Equation 6:

	 ( )tan 1 b2 b1 / a2 a1ϕ = − − −
	 (6)

Here, (a1, b1) and (a2, b2) indicate the coordinates of the two 
spots that are being examined. Figure  6 demonstrates the angles 
computed as one-dimensional signals for some activities.

3.4.2 Relative distance between joints
Once a human starts moving, every single one of their body parts 

moves until it stops. The measurement of this motion involves assessing 
the distance traveled by various key points from one frame to the next. 
This evaluation typically employs a comparison of two consecutive 
frames. Utilizing the Euclidean distance formula, expressed as Equation 7, 
facilitates the calculation of the distance between these key points:

	

∆
=
∆

tv
d 	

(7)

Where Δd represents the change in distance between two points (the 
relative distance between joints in this context). Δt is the change in time 

FIGURE 4

Relative joint angles for body key-points.
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between two frames. This formula quantifies the change rate of distance 
as compare with time, offering insights into the pace at which the distance 
between joints alters as the body undergoes motion (see Figure 7).

3.4.3 Landmark fiducial points
Fiducial points serve as crucial landmarks within an image and 

are utilized for various calculations. Our proposed system employs 
fifteen such points, such as the head, neck, shoulders (left and right), 
elbows, wrists, hips, knees, ankles, and hips (left and right), and belly 
button. The successful detection of these landmarks in each frame of 
the provided video greatly facilitates object motion detection through 
their positional data (Guo et al.,2022). These points are strategically 
positioned along the contours of each body part, and their 
visualization is achieved through the ellipsoids encompassing these 
body regions. Within the ellipsoid, where the interior is depicted in 
black, transitions from high to low values signify points along the right 
border, while transitions from low to high values denote points along 
the left edge. We then determine the local minima and maxima for 
each border after accurately identifying the left and right borders. 
Equations 8, 9 articulate this mathematical process (see Figure 8).

	
{ }maxima 0 and 1 0′ ′= ≥ + <ai ai ai|

	
(8)

	
{ }minima 0 and 1 0′ ′= ≤ + >ai ai ai|

	
(9)

3.4.4 3D point cloud
In our proposed system, we leverage the representation of objects 

in 3D space, a widely employed feature across various applications, 
for tracking object motion. Specifically, we focus on utilizing the x, y, 
and z dimensions of the central pixel within an RGB image. To 
determine the z coordinate, we employ both the relative RGB image 
and its grayscale counterpart, enabling us to calculate the z coordinate 
of the pixel. Utilizing the YOLO algorithm for human detection in 
images, our process initiates by identifying humans within the image. 
Subsequently, the algorithm identifies the central pixel value within 
the YOLO bounding box encompassing the object. Upon locating the 
central pixel, the algorithm proceeds to iterate through all pixels 
within the bounding box, facilitating the determination of the z 
coordinate of each pixel using Equation 10.

FIGURE 5

Key-points extraction-with: (A) Drone Action (B) UAV human.

FIGURE 6

We examined the angular positions of the joints during various movements with (A) Drone Action (B) UAV human.
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( )1 ,Grey p q

Scaling Factor
×

	
(10)

Where p, q are the x, y-coordinates of the pixel that is under 
observation. P, Q are calculated by Equations 11, 12.

	
( )ZP X P Cp

Focal Length
= = × −

	
(11)

	
( )ZQ Y q Cq

Focal Length
= = × −

	
(12)

The algorithm presented in this study is designed to identify all 
the pixel values corresponding to objects within an image and then 
compile them into an Excel file. This Excel file serves as a basis for 
applying a voxel filter, allowing visualization of these pixels within a 
3D space (Azmat et al., 2023). The classification of these pixel values 
is essential for enhancing the accuracy of our system. Figure  9 
illustrates the resulting point clouds.

Algorithm 1 shows the working of 3D point cloud algorithm.

Algorithm-1 Generating point cloud from silhouette 
image

# Input:
# image path: Path to the image
# - F: Focal length
# - SF: Scaling factor
# Output:
# - Downsampled point cloud saved as a CSV file
try:
  # Specify Output Folder
  output_folder = specify_output_folder()
  # Initialize Parameters
  F = 100 # Replace with actual focal length
  SF = 1.0 # Replace with actual scaling factor
  # Calculate Central Pixel Coordinates
  Cx, Cy = calculate_central_pixel_coordinates(silhouette_image)
  # Initialize Point Cloud
  point_cloud = []

FIGURE 7

We examined the angular distance between joints during various movements with (A) Drone Action (B) UAV human.

FIGURE 8

Results of fiducial points on (A) Drone Action (B) UAV human.

168

https://doi.org/10.3389/fnbot.2024.1443678
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Abbas et al.� 10.3389/fnbot.2024.1443678

Frontiers in Neurorobotics 09 frontiersin.org

  # Iterate Over Image Pixels
  for v in range(silhouette_image.shape[0]):
    for u in range(silhouette_image.shape[1]):
   �   X, Y, Z = calculate_3d_coordinates(u, v, silhouette_image, 

F, SF, Cx, Cy)
      point_cloud.append([X, Y, Z])
  # Convert to NumPy Array
  point_cloud_np = np.array(point_cloud)
  # Convert to Open3D Point Cloud
 � o3d_point_cloud = convert_to_open3d_point_cloud 

(point_cloud_np)
  # Downsample the Point Cloud
 � downsampled_point_cloud = downsample_point_cloud 

(o3d_point_cloud)
  # Save Downsampled Point Cloud
  save_point_cloud(downsampled_point_cloud, output_folder)
  print(“Downsampled point cloud saved successfully”)

except Exception as e:
  print(f ”An error occurred: {e}”)

3.5 Kernel discriminant analysis

Kernel Discriminant Analysis (KDA) stands out as a method in 
machine learning, emphasizing the identification of a blend of features 
that effectively distinguishes classes within a dataset. Unlike the 
conventional approach of Linear Discriminant Analysis (LDA), which 
presupposes the linearity of data separability, KDA employs a kernel 
function to transform data into a higher-dimensional space where 
potential linear separability may exist. This adaptation enables KDA to 
handle datasets with non-linear separability more adeptly compared to 
LDA. By prioritizing the maximization of the ratio between-class 
variance and within-class variance, KDA strives to uncover a projection 
that optimizes the discrimination among various classes. This technique 

FIGURE 9

Results of 3D point cloud feature on (A) Drone Action (B) UAV human.

FIGURE 10

Enhanced feature allocation via kernel discriminant analysis (KDA).
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finds applications across diverse domains such as pattern recognition, 
computer vision, and bioinformatics, where addressing classification 
challenges characterized by intricate decision boundaries is paramount. 
By using Equation 13.

	 KBw KWwλ= 	 (13)

3.6 Classification

In the classification process, a Convolutional Neural Network 
(CNN) is employed (Azmat et  al., 2023). The general equation 
governing the convolutional operation within a CNN is outlined by 
using Equation 14:

	

1 1 1
, ,

0 0 0

k k cin
ijk pqck i p j q c k

p q c
F Q P b

− − −

+ +
= = =

= +∑ ∑ ∑
	

(14)

In this case, P stands for the input matrix, Q for the weights, b 
for the bias, and F for the convolutional layer’s output. The 
suggested CNN architecture for classifying human actions is 
shown in Figure 10. The features are first formatted and supplied 
into the CNN model. 32 filters with a stride of 1 are first applied. 
The input size is then decreased by implementing a max pooling 
layer of size. Next, another max pooling layer of size is applied, 
after which 64 convolutional filters of size and stride of 1 are 
applied. This is where the outcome size becomes. Next, a layer that 
is flattened and then densely placed. Ultimately, the probability 

FIGURE 11

CNN architecture for proposed system.

FIGURE 12

Confusion matrix for the UAV-human dataset.
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distribution for the final forecast is produced by the softmax 
function (see Figure 11).

4 Experimental setup and datasets

4.1 Experimental setup

To carry out the experiments outlined in this study, a laptop 
equipped with an Intel Core i5 CPU and 8 GB of RAM was 
utilized. The operating system employed was a 64-bit version of 
Windows 10, along with the pyCharm integrated development 
environment for programming tasks. Furthermore, the research 
involved capturing RGB footage utilizing a drone camera, 
capturing various perspectives. Three benchmark Human Activity 
Recognition (HAR) datasets were employed, specifically the 
Drone-Action dataset.

4.2 Dataset description

4.2.1 HAV human dataset
The UAV-Human dataset encompasses a diverse array of human 

activities, comprising 67,428 videos captured with the participation of 
119 individuals over a duration of three months. These recordings 

were conducted in both urban and rural settings, facilitated by 
Unmanned Aerial Vehicles (UAVs), thereby presenting a multitude of 
challenges such as varied backgrounds, occlusions, weather 
conditions, and camera movements. This study focuses on eight 
specific human action categories extracted from the UAV-Human 
dataset: sitting down, standing up, applauding, waving hands, running, 
walking, giving a thumbs-up, and saluting.

4.2.2 UCF dataset
The UCF Ariel Video Dataset is a curated collection of aerial 

footage intended for academic exploration in computer vision and 
machine learning. It contains a diverse selection of scenes captured 
from aerial viewpoints, including urban and rural environments, as 
well as various weather conditions. Researchers leverage this dataset to 
develop and assess algorithms for tasks such as object detection, 
tracking, and understanding aerial scenes, without relying on 
AI-generated content.

4.2.3 Drone Action dataset
Within the Drone-Action dataset, there exist 13 distinct categories, 

namely: boxing, clapping, hitting-bottle, hitting-stick, jogging-front, 
jogging-side, kicking, running-front, running-side, stabling, walking-
front, walking-side, and waving hands. This dataset diverges from an 
object-oriented structure due to instances where multiple entities 
engage in identical actions simultaneously. Each class in the dataset 

FIGURE 13

Confusion matrix for UCF dataset.
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comprises a collection of video clips, ranging from 10 to 20 clips 
per class.

5 Results and analysis

In this section, we  performed different experiments for the 
proposed system. The system is evaluated using different matrices, 
including confusion matrix, precision and recall.

5.1 Confusion matrices

In this section; we  discussed performance analytics 
of all 3 benchmarks datasets used in the field of unmanned 
aerial vehicles for human detection and recognition. Figures 12–
14 presents’ confusion matrix of human interaction 

FIGURE 14

Confusion matrix for Drone Action dataset.

TABLE 2  Performance evaluation of the proposed system over UAV-
Human dataset.

Classes Accuracy Precision Recall

Sitting 0.68 0.68 0.74

Standing 0.71 0.71 0.69

Applaud 0.69 0.69 0.71

Wave-hands 0.68 0.68 0.67

Run 0.67 0.67 0.66

Walk 0.68 0.68 0.66

Salute 0.67 0.67 0.65

Thumbs-up 0.68 0.68 0.68

Average 0.68 0.67 0.66

Bold value indicates the results of my system.

TABLE 3  Performance evaluation of the proposed system over UCF 
dataset.

Classes Accuracy Precision Recall

Boxing 0.75 0.77 0.75

Carrying 0.75 0.73 0.74

Clapping 0.75 0.76 0.78

Digging 0.75 0.71 0.77

Jogging 0.75 0.70 0.74

Running 0.75 0.73 0.72

Throwing 0.75 0.77 0.75

Trunk 0.75 0.75 0.71

Walking 0.75 0.78 0.77

Waving 0.75 0.79 0.74

Average 0.75 0.74 0.73

Bold value indicates the results of my system.
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recognition over UAV-Human, UCF and Drone Action datasets, 
respectively.

5.2 Precision, recall, and F1 score values for 
locomotion activities

Tables 2–4 presented the comparison of each class with their 
precision, accuracy and recall values.

Our system get UAV-Human = 0.68, UCF = 0.75, and Drone-
Action = 0.83. We recognize that accuracy by itself is not enough to 
define the reliability of such a system, especially if it is used for 
applications like surveillance, search and rescue, or working closely 
with people. Our system is built to address typical issues arising with 
drone-based object tracking, including complex background, object 

occlusion and illumination variation. Some of the procedures 
performed here help to gain higher image’s contrast – the objects in 
the foreground will be  more easily detected which will definitely 
improve recognition in non-ideal conditions. The capacity for 
withstanding broad variations in the environment is useful in making 
certain that the system will perform well optimally after implementing 
it in real field use.

5.3 Ablation study analysis of propose 
model components

We perform an ablation study in Table 5 to evaluate our model 
by systematically removing components one at a time. Every row 
describes the model with one element omitted and the accuracy 
on UAV-Human, UCF, and Drone-Action datasets. Table 5 also 
shows how important each of these elements is for achieving 
high accuracy.

5.4 Analyzing time complexity and 
executing time

Understanding time complexity of different processes is critical 
to the efficiency of the machine learning and computer vision tasks. 
Time complexity computation helps us identify slow activities within 
the system and estimate the impacts of certain techniques on 
run-time. Data preprocessing is critical in enhancing the efficiency of 
our model functions most importantly in the area of recommendation. 
Preprocessing Execution Time and Preprocessing Time Complexity 
of Critical Processes in Our Model (with and without) The empirical 
results reveal that preprocessing can greatly enhance efficiency as 
many processes are transformed from linear or quadratic to 
logarithmic. First, this kind of transition reduces the execution time 
by almost half and increases the system’s throughput, making it 
beneficial for real-time applications such as action recognition and 
the field of study. Table 6 shows the computational cost of all steps of 
given system.

TABLE 4  Performance evaluation of the proposed system over Drone-
Action dataset.

Classes Accuracy Precision Recall

Boxing 0.92 0.92 0.92

Clapping 0.92 0.89 0.91

Hitting-w-b 0.92 0.92 0.91

Hitting-w-s 0.92 0.93 0.92

Jogging-f 0.92 0.91 0.92

Jogging-s 0.92 0.91 0.92

Kicking 0.92 0.91 0.90

Running-f 0.92 0.91 0.90

Running-side 0.92 0.91 0.91

Stabbing 0.92 0.91 0.90

Walking-s 0.92 0.92 0.82

Walking-f 0.92 0.91 0.90

waving 0.92 0.91 0.90

Average 0.92 0.91 0.90

Bold value indicates the results of my system.

TABLE 5  An ablation experiment evaluating all methods across different datasets.

Experiments Preprocessing Human 
detect

Key-point 
extraction

JA RD FP PC KDA CNN UAV 
human

UCF Drone 
Action

Full model ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 68 75 92

Preprocessing ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 63 70 86

Human detection ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 60 69 84

Key-point 

extraction

✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ 63 71 87

Without KDA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 61 68 84

Without pre + Key 

points

✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 58 65 81

Without 

pre + point clouds

✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 62 69 85

Without 

Pre + KDA

✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 59 66 83

JA = Joint Angle, RD = Relative Distance, FP = Fiducial Points, PC = Point Clouds, KDA = Kernel Discriminant Analysis, CNN = Convolutional Neural Network.
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5.5 Comparison

In this experiment, we have compared our proposed method with 
other popular state-of-the-art methods over all 3 datasets. Table 7 
provided a significant improvements in recognition accuracies over 
other methods.

6 Discussion

Our study addresses the challenge of recognizing human actions 
in drone-recorded RGB videos, crucial for various applications like 
video surveillance and sports analysis. We  propose a multi-step 
system: segmenting video frames, preprocessing for quality 
enhancement, and identifying human bodies using the YOLO 
algorithm. Key skeletal points are extracted from human silhouettes, 
including head, shoulders, and joints. This data is optimized using 
the KDA optimizer and classified using a CNN. Evaluation on 
benchmark datasets shows promising action recognition accuracies, 
highlighting the effectiveness of our approach in overcoming 
complexities in drone-captured RGB videos.

7 Conclusion

The technique proposed in this study brings into the 
framework a new approach for detecting human actions in drone 
videos making it easier to identify people’s movements and 
actions. Subsequently and most importantly, the system 
recognizes human poses and categorizes them with a fair degree 
of accuracy based on the features selected, thus enabling the users 
to understand the different movements of the human form in 
various activities. The integration of Convolutional Neural 
Networks (CNN) enables our system to focus and identify 
regional features and variations which enhances its capability of 
detecting motion dissimilarities in human movement. This is 
especially important for the type of applications where action 
recognition is crucial due to the possibility of better interpretation 
of the performed gestures and interactions in the context of the 
environment. Besides, as a part of the preprocessing steps which 
are also integrated into the proposed approach, the quality of the 
images is enhanced, and the interference from the background is 
minimized. When making foreground subjects stand out, 
we  boost recognition rates and simplify detection models 
freed of interferences that disrupt recognition in real-
world conditions.

Further, in the future, we plan on incorporating more features and 
testing our system with more different types of datasets. Expanding the 
number of scenarios and actions that we teach to our model is our goal 
to make more flexible the system that we develop in various conditions 
of operation. This is a continuous work due to our commitment to 
improve and enhance the method for the detection of the human action 
in the drone video for better performances in real-world scenarios.

Data availability statement

Publicly available datasets were analyzed in this study. This 
data can be  found here: https://www.kaggle.com/datasets/

TABLE 6  Processing efficiency analysis and execution time.

Process Without 
preprocessing

With 
preprocessing

Execution time 
without 

preprocessing (s)

Execution time 
with 

preprocessing (s)

Reduction in 
time 
complexity

Preprocessing N/A O(n) N/A 0.1 Enhance efficiency

Human detection O(n log n) O(log n) 4.0 1.2 Notable improvement

Key-point 

extraction
O(n) O(log n) 2.5 0.8

More efficient 

extraction

Joint angle O(n) O(log n) 2.0 0.6 Faster computations

Relative distance O(n) O(log n) 1.8 0.5 Optimized calculations

Fiducial points O(n) O(log n) 1.7 0.6 Quicker identification

Point cloud O(n log n) O(log n) 5.0 1.5
Improved noise 

reduction

KDA O(n2) O(n log n) 8.0 3,0
Reduced 

dimensionality

CNN O(n log n) O(log n) 10,0 3.5
Enhanced feature 

processing

TABLE 7  Comparisons of the recognition accuracies between proposed 
method and other state-of-the-arts methods.

Methods
UAV 

Human
UCF

Drone 
Action

Baseline (SGN) (Xu et al., 2022) 0.39 - -

MSST-RT (Sun et al., 2021) 0.41 - -

P-CNN (Perera et al., 2019a) - - 0.75

SWTF + Pose-Stream (Yadav et al., 2023) - - 0.78

CNN (Azmat et al., 2023) 0.44 - 0.90

Proposed system mean accuracy 0.68 0.75 0.92

Bold value indicates the results of my system.
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Introduction: Tracking the hidden states of dynamic systems is a fundamental

task in signal processing. Recursive Kalman Filters (KF) are widely regarded as

an e�cient solution for linear and Gaussian systems, o�ering low computational

complexity. However, real-world applications often involve non-linear dynamics,

making it challenging for traditional Kalman Filters to achieve accurate state

estimation. Additionally, the accurate modeling of system dynamics and noise

in practical scenarios is often di�cult. To address these limitations, we propose

the KalmanFormer, a hybrid model-driven and data-driven state estimator.

By leveraging data, the KalmanFormer promotes the performance of state

estimation under non-linear conditions and partial information scenarios.

Methods: The proposed KalmanFormer integrates classical Kalman Filter with

a Transformer framework. Specifically, it utilizes the Transformer to learn the

Kalman Gain directly from data without requiring prior knowledge of noise

parameters. The learned Kalman Gain is then incorporated into the standard

Kalman Filter workflow, enabling the system to better handle non-linearities and

model mismatches. The hybrid approach combines the strengths of data-driven

learning and model-driven methodologies to achieve robust state estimation.

Results and discussion: To evaluate the e�ectiveness of KalmanFormer, we

conducted numerical experiments in both synthetic and real-world dataset.

The results demonstrate that KalmanFormer outperforms the classical Extended

Kalman Filter (EKF) in the same settings. It achieves superior accuracy in tracking

hidden states, demonstrating resilience to non-linearities and imprecise system

models.

KEYWORDS

Kalman Filter, deep learning, transformer, Kalman Gain, supervised paradigm

1 Introduction

It is the most fundamental task to track the hidden state of a dynamical system by using

the noisy measurements in real-time in many fileds, including singal processing (Yadav

et al., 2023), navigation (Hu et al., 2003), information fusion (Xu et al., 2004), and

automation control (Menner et al., 2023; Mercorelli, 2012a). A large number of algorithms

were proposed to stress this issue, such as Bayesian estimation (Coué et al., 2003) and

particle filter (Hue et al., 2002).

Kalman Filter (KF) (Kalman, 1960) is also an efficient recursive filter that can track

the state of dynamic systems from a series of incomplete measurements with additive

white Gaussian noise (AWGN). Low complexity implementation of KF, combined with

theoretical foundation, resulted in it quickly becoming the popular method for state

estimation problems.

The original Kalman Filters perform well in linear and Gaussian systems. The reality

is that many nonlinear phenomena are encountered in real-world multi-sensor systems.

Therefore, several variants of Kalman Filters are available to meet the requirements of
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nonlinear dynamic systems, including Extended Kalman

Filters (Maybeck, 1982) (EKF) and Unscented Kalman Filters

(UKF) (Wan and Van Der Merwe, 2001).

There are still limitations associated with the application of

EKF and UKF in practical applications. Specifically, the Kalman

Filter is a model-based method, and the performance of state

estimation heavily depends on model accuracy. Furthermore, the

noise covariance matrix is determined by prior process noise and

measurement noise, which are assumed to be Additive White

Gaussian Noise (AWGN). Additionally, there is no guarantee that

the AWGN will accurately reflect the actual performance of the

information fusion.

Several variants of Kalman Filters were proposed to overcome

the above issue. For example, Huang et al. (2020) introduced a

sliding window variational adaptive Kalman filter to simultaneously

modify the state estimation and covariance matrix. Yu and Li

(2021) presented an adaptive Kalman Filter that concentrated

on unknown covariances of both dynamic multiplicative noise

and additive noises. Xiong et al. (2020) employed a parallel

adaptive Kalman Filter to estimate the attitude of the vehicle

based on the Inertial Measurement Unit (IMU). Paolo Mercorelli

introduced (Mercorelli, 2012b) a combination of the augmented

EKF and EKF for sensorless Valve Control which avoids

complicated observation.

Recent years have seen the application of deep learning

techniques to multiple real-world applications such as

computer vision (Voulodimos et al., 2018) and natural language

processing (Otter et al., 2020). Particularly, some Deep Neural

Networks (DNNs), such as the Recurrent Neural Network

(RNN) (Elman, 1990), Long Short-Term Memory Network

(LSTM) (Hochreiter and Schmidhuber, 1997), Gated Recurrent

Unit (GRU) (Chung et al., 2014), and Transformer (Vaswani et al.,

2017), have demonstrated excellent performance when it comes to

processing time series data. For example, Xia et al. (2021) presented

staked GRU and RNN to predict the payload of electricity. Zhang

et al. (2020) applied LSTM to estimate the battery’s state of health.

Furthermore, deep learning techniques have been utilized by

some researchers to enhance the effects of the Kalman Filters. For

example, Rangapuram et al. (2018) introduced RNN to forecast

the state space parameters of linear systems. Coskun et al. (2017)

utilized LSTM to learn the noisy parameters and motion model of

the Kalman filters. EKFNet (Xu and Niu, 2021) used BPTT (Ruder,

2016) to learn the process and measurement noise from the

measurement. Bence Zsombor Hadlaczky applied neural networks

and EKF to estimate the wing shape (Hadlaczky et al., 2023).

Dahal et al. (2024) introduced RobustStateNet, which applied

RNN and Kalman Filters to perform ego vehicle state estimation.

Zhang et al. (2023) adopted the Transformer to pre-estimate the

vehicle mass, thus acting as an observation for EKF. Luttmann and

Mercorelli (2021) employed EKF to accelerate the convergence of

the learning system.

In this work, we present KalmanFormer, a hybrid data-

driven and model state estimator that can be used to perform

information fusion in multi-sensor systems. Our KalmanFormer

uses a Transformer framework to track the Kalman Gain instead

of computing it from the statistic moments.

The structure of this paper is organized as follows: Section

2 introduces the Kalman Filters and Transformer architecture.

Section 3 details the methodology of the proposed KalmanFormer.

Experiments will be discussed in Section 4. Section 5 concludes the

whole paper.

2 Preliminary knowledge

2.1 Kalman Filter

The Kalman Filter algorithm (KF) is a classic algorithm

of information fusion technology and is widely used to solve

various optimal estimation problems. The classic Kalman Filters are

composed of a state transition model and an observation model,

which are expressed as follows:



















xk = Fkxk−1 + Bkuk−1 + wk−1

zk = Hkxk + vk
wk−1 ∼ N(0,Qk)

vk ∼ N(0,Rk)

(1)

where xk is the state vector of the system, Fk represents the state

transition matrix, Bk is the control-input model which is applied

to the control vector uk−1, and Hk represents the observation

function, which maps the true state space into the observed space.

wk−1 and vk are process noise and observation noises respectively.

Process noise is assumed to be drawn from a zero multivariate

normal distribution N with covariance Qk. Observation noise is

assumed to be zero mean Gaussian white noise with covariance Rk.

In general, Recursive Kalman Filter can be divided into two

steps: Prediction and Updation. The information flow of the

Kalman Filter is shown in Figure 1. As shown in Figure 1, the

predict step uses the state estimate from the previous timestep to

produce an priori estimate of the state at the current timestep,

which is expressed as follows:

x̂k|k−1 = Fkx̂k−1|k−1 + Buk−1

Pk|k−1 = FkPk−1|k−1F
T
k
+Qk−1

(2)

In the update phase, the innovation between the current a priori

estimation and the current observation information, is multiplied

by the optimal Kalman gain and combined with the previous state

estimate to optimal the state estimate. This improved estimate

based on the current observation is termed a posteriori state

estimate, which is summarized as follows:

Kk =
Pk|k−1H

T
k

HkPk|k−1H
T
k
+Rk

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1)

Pk|k = (I− KkHk)Pk|k−1

(3)

Noise has a significant impact on the performance of a

Kalman Filter system, as it directly affects the accuracy of the

estimation. A Kalman Filter is designed to optimally combine

observations and predictions in the presence of noise, which

controls how the Kalman filter weights the model predictions

versus the actual observations.

The process noise covariance Q represents the uncertainty in

the model of the system dynamics. Higher values of Q means

we have less reliability on the prediction and place more trust in

the observations.

The observation noise covariance R means the uncertainty

in the observations. Higher values of R suggest more noise in
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FIGURE 1

Information flow of the Kalman Filter.

the observation, so the Kalman Filter will pay more attention to

its predictions.

The following tuning steps are necessary before using the

Kalman Filters:

• Set initial state vector x̂0.

• Set initial noise values forQ and R.

• Tuning the Process Noise CovarianceQ.

• Tuning the Observation Noise Covariance R.

• Test the performance and adjustQ and R.

Although the noise parameters are tuned before using

the Kalman Filters. It is difficult to obtain an accurate state

transitionmodel and observationmodel, especially in the nonlinear

occasion, which results in a significant degradation of Kalman

Filter performance.

2.2 Extended Kalman Filters

Differentiable nonlinear functions may be used in place of the

state transition and observation models in the extended Kalman

Filter:


















x̂k|k−1 = f (x̂k−1|k−1, uk−1)+ wk−1

zk = h(xk)+ vk
wk−1 ∼ N(0,Qk)

vk−1 ∼ N(0,Rk)

(4)

Similar to the linear Kalman Filter, xk is the state vector

of the system, wk−1 and vk are process noise and observation

noises respectively. Process noise is assumed to be drawn from

a zero multivariate normal distribution N with covariance Qk.

Observation noise is assumed to be zeromean Gaussian white noise

with covariance Rk.

Function f is used to predict the state from the previous

estimation and function h is applied to produce the predicted

measurement form the predicted state. Different from the linear

Kalman Filter, the Jacobian of f and h are used to compute the

covariance matrix in extended Kalman Filters.

At timestamp k, the Jacobian is evaluated with the current

predicted states, thus it can be used in Kalman equations. The

prediction procedure of EKF is presented as follows:

x̂k|k−1 = f (x̂k−1|k−1, uk−1)

Pk|k−1 = FkPk−1|k−1F
T
k
+Qk−1

(5)

The update procedure of EKF is calculated as follows:

Kk =
Pk|k−1H

T
k

HkPk|k−1H
T
k
+Rk

x̂k|k = x̂k|k−1 + Kk(zk − h(x̂k|k−1))

Pk|k = (I− KkHk)Pk|k−1

(6)

where the state transition function and observation model are

defined as the following Jacobians:

Fk = ∂f
∂x

∣

∣

∣x̂k−1|k−1

Hk = ∂h
∂x

∣

∣

∣x̂k|k−1

(7)

2.3 Transformer

2.3.1 Transformer architecture
Transformer (Vaswani et al., 2017) was originally proposed in

natural language processing and it has been applied in various

sequence-to-sequence tasks. As shown in Figure 2, the Transformer

is mainly composed of encoders and decoders with several basic

transformer blocks. Transformer blocks inside the encoders and

decoders remain in the same structure.

Encoders produce encodings for the input sequence, while

the decoders take all the encodings from encoders and use

contextual information to generate the prediction results. Each

transformer block is composed of a multi-head attention layer, a

feed-forward neural network, a skip connection connection, and a

layer normalization operation.
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FIGURE 2

Architecture of the Transformer.

2.3.2 Self-attention mechanism
The Self-Attention Mechanism (SAM) is a core component of

Transformer architecture, which seeks to emphasize the correlation

between the input vector spaces.

As a first step, the input features are transformed into three

different vectors using matrix multiplication, which is expressed as

follows:










Q = FinWQ

K = FinWK

V = FinWV

(8)

where Q, K, V are Query matrix, Key matrix, and Value

matrix respectively. WQ, WK , WV are used to generate the above-

mentioned matrices. After that, attention map between different

input vectors is calculated as follows:

• Compute scores between different input vectors with:QKT.

• Normalize the scores to improve the stability with: QKT√
dk
.

• Transform the scores into probabilities with softmax function:

softmax(QKT√
dk
).

• Generate the weighted value matrix with: softmax(QKT√
dk
) · V.

The above process can be describe with a single function:

Attention(Q,K,V) = softmax(
QKT

√

dk
)V (9)

where dk means the dimension of the input. This procedure is

shown in Figure 3.

2.3.3 Position encoding
Transformer architecture can’t guarantee the order of objects

inside the sequence. Therefore, positional encoding is employed to

assign a unique representation to each position inside the sequence.

Cosine and sine functions are used to produce position encoding

for varying frequencies, which is calculated as follows:

P(k, 2i) = sin( k
n2i/d

)

P(k, 2i+ 1) = cos( k
n2i/d

)
(10)

where k is the position of an object inside the sequence, dmeans

dimensions of the output embedding space, P(k, j) is position

function, n is a predefine scalar, i is used to map column indices.

Using the position encoding, even positions correspond to a

sine function and odd positions correspond to cosine functions.

3 Methodology

In this section, we present our KalmanFormer: a hybrid model

and data-driven Kalman Filter for estimating the state of dynamic

systems. Our KalmanFormer combines the model-based Kalman

Filters with Transformer (Vaswani et al., 2017) to tackle model
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FIGURE 3

Illustration of the self-attention mechanism.

mismatch and non-linearities. As a first step, the information

flow of our KalmanFormer will be presented. Subsequently, details

information about the inputs for our KalmanFormer will be

discussed. Following that, the architecture of the KalmanFormer

and the training strategy will be introduced at the end of

this section.

3.1 Information flow of KalmanFormer

In order to formulate our KalmanFormer, we identify the

specific computation process of linear Kalman Filters that are

based on unavailable knowledge. To be specific, the state transition

model Fk and observation model Hk are available (although

inaccurate), while the process noise Qk and observation noise Rk

are unavailable. As shown in Figure 1, unknown process noise

and observation noise are used in Kalman Filters only for the

purpose of calculating the Kalman Gain. To this end, we develop

the KalmanFormer that tracks the Kalman Gain from the data

and combines the learned Kalman Gain into the data flow of the

Kalman Filter. The architecture of our KalmanFormer is provided

in Figure 4. In the same manner as the model-based Kalman

Filters, our KalmanFormer outputs the state estimate through two

procedures: Prediction and Update.

1. In the prediction procedure, a prior state estimate of the current

moment x̂−
k|k−1

is obtained from the previous posterior estimate

x̂k−1|k−1.

2. In the update procedure, KalmanFormer uses the new observation

zk to compute the current state posterior x̂k|k from the previous

prior estimation x̂k|k−1, which is calculated in Equation 11.

FIGURE 4

Information flow of the KalmanFormer.

Instead of using the Kalman Gain matrix for the observation-

update in the traditional Kalman Filters, KalmanFormer produces

the Kalman Gain in a learned manner, denoted by KK(2), with

the trainable parameters 2:

x̂k|k = x̂k|k−1 +KK(2)(zk −Hkx̂k|k−1) (11)

3.2 Input features

The model-based Kalman Filters, including EKF, UKF, and

CKF compute the Kalman Gain from the known statistical

information. We use a Transformer to model the Kalman Gain

in a learned fashion in this paper. To calculate the Kalman Gain,

we have to provide the information to a deep neural network to

use the information to calculate the Kalman Gain. Inspired by

KalmanNet (Revach et al., 2022), we devise the following quantities,

which can be used for the input of the KalmanFormer:

• The observation difference:z̃k = zk − zk−1

• The innovation difference: zk = zk − ẑk|k−1

• The state evolution difference: x̃k = x̂k|k − x̂k−1|k−1, which

represents the difference between two consecutive posterior

state estimate.

• The state update difference: x̂k = x̂k|k − x̂k|k−1, which indicates

the difference between the posterior state estimate and the

prior state estimate.

Featurs x̃k and zk indicate the uncertainty of the state estimates,

while features zk and x̂k characterize the state transition and

observation update process. Features zk and z̃k contains the
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FIGURE 5

The details of the KalmanFormer.

observation information, while features xk and x̂k characterize the

states information of the system.

3.3 Details of the KalmanFormer

The internal of KalmanFormer uses the features discussed in

the previous section to compute the KalmanGain. As a first step, we

will introduce the input features of the Transformer. To be specific,

z̃k, zk, x̃k, and x̂k are used to construct our KalmanFormer. The data

flow of the input features inside our KalmanFormer is shown in

Figure 5.

Subsequently, the related observation features 1z̃k ∈ R
n and

zk ∈ R
n are concatenate together to the input Fin ∈ R

2n of the

Transformer encoders. And also, the related state features 1x̃k ∈
R
m and 1x̂k ∈ R

m are concatenated together to the input for the

Transformer decoders.

We devise three initial matrices WQ ∈ R
2m×2m, WK ∈

R
2m×2m, and WV ∈ R

2m×2m to generate the Q, K, and V

matrices, which is used to produce self-attention score described

in Section 2.3.2.

Following is the Add and Norm operation. To be specific, Layer

normalization is used to perform Add and Norm operation, which

is expressed as follows:

LayerNorm(X + attention) (12)

Then the feed forward neural network is used to generate

output, which is presented as:

FFN = ReLU(XW1 + b1)W2 + b2 (13)

The feed-forward neural network is composed of two layers of

the fully connected network. TheW1 andW2 are the weights for the

two layers of network. b1 and b2 are the bias. ReLU is the Rectified

Linear Unit activate function.
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Then the output of the Transformer encoder and the

concatenated state input features to produce the learned Kalman

Gain.

In our implementation, the input dimension is set to 4, the

feed-forward dimension is set to 64, and 2 heads are employed in

the Multi-head Self Attention Mechanism (MHSA). Furthermore,

we stack the encoder and decoder 2 times to produce the learned

Kalman Gain.

The information flow of the KalmanFormer is illustrated in

Figure 5.

3.4 Training algorithm

A supervised learning paradigm is used to train the

KalmanFormer using the available labeled data. Instead of

producing the posterior estimate state, our KalmanFormer

produces the Kalman Gain. Consequently, we define

(Equation 21) to backpropagate the loss of Kalman Gain to

train our KalmanFormer:

∂L

∂Kk
= ∂||Kk1zk − 1xk||2

∂Kk
= 2 · (Kk1zk − 1xk) · 1zTk (14)

where 1xk = xk − x̂k|k−1. The Equation 14 indicates that

we can learn the computation of the Kalman Gain by training

KalmanFormer end-to-end using the squared-error loss.

In general, the dataset used for training the KalmanFormer

consists of N length Ttrajectories. Let T denote the length of i-th

training trajectory inside the dataset. The dataset can be expressed

byD = {(Zi,Xi)}N1 , where

Zi = [z
(i)
1 , z

(i)
2 ..., z

(i)
T ],Xi = [x

(i)
0 , x

(i)
1 ..., x

(i)
T ] (15)

The empirical loss function for the i-th trajectory training

inside the dataset is defined as follows:

li(2) = 1

Ti

Ti
∑

k=1

||92(x̂
i
k−1,z

(i)
k
)− x

(i)
k
||2 + ξ · ||2||2 (16)

where 92 represents the output of our KalmanFormer, 2

is the trainable parameters inside the KalmanFormer, and ξ is

regularization coefficient. Let 1x
(k)
k

= x
(k)
k

− x̂
(k)
k|k−1

and 1z
(k)
k

=
z
(k)
k

− ẑ
(k)
k|k−1

be the state prediction error and the measurement

innovation at timestamp k. The partial derivative of the loss

function respective to the Kalman gain matrix is:

∂ l(2)

∂Kk(2)
= 1

LTk

L
∑

k=1

Tk
∑

k=1

∂||1x
(k)
k

− Kk(2)1z
(k)
k
||22

∂Kk(2)
(17)

By plugging into the chain rule:

∂ l(2)

∂(2)
= ∂ l(2)

∂Kk(2)

∂Kk(2)

∂(2)
(18)

We can adopt a stochastic gradient descent algorithm to

optimize 2 by using ∂ l(2∗)
∂(2∗) = 0.

4 Numerical experiments

In this section, we design a series of experiments to evaluate

the performance of our proposed KalmanFormer and compare it to

some other benchmarks. As a first step, we make a brief description

of the training setup of our KalmanFormer. Following that, we

conduct the simulation experiments including nonlinear cases to

evaluate the performance of our proposed method. At the end of

this section, IMU and GPS information are employed to investigate

the effectiveness of our proposed method.

4.1 Implement details

To be specific, the dimensions of concatenated observation

difference and innovation difference are 8, which is the input to the

encoder for the transformer. Also, the dimensions of state evolution

difference and state update difference are 4, which is the input to the

decoders of Transformer. The feed-forward dimension inside the

encoder and decoder is 64, and 2 heads are employed in the multi-

head attention mechanism. Furthermore, we stack the encoder and

decoder 2 times to produce the output. After the output is obtained,

a fully connected layer is used to generate the learned Kalman Gain.

Furthermore, we conduct all of our training and validation

experiments on the Pytorch (Paszke et al., 2019) platform using

a single RTX 3090 GPU card, CUDA11.6, and cuDNN version 8.

Furthermore, the Cosine Annealing Schedule is employed to adjust

the learning rate in the training procedure, which can be expressed

as follows:

ηt = ηmin +
1

2
(ηmax − ηmin)(1+ cos

(

Tcur

Tmax
π

)

) (19)

where ηt represents the learning rate of the current iteration,

ηmin and ηmax mean the predefined minimum and maximum

learning rate respectively. Tcur and Tmax are the current iteration

and maximum iterations respectively.

Adam (Kingma and Ba, 2014) optimizer is used to train

the KalmanFormer. Different hyper parameters are performed on

the simulation and multi-sensor fusion experiments. The specific

information about the hyperparameters is shown in Table 1.

4.2 Simulation experiments

In this section, a series of simulation experiments are designed

to demonstrate the effort of our proposed KalmanFormer. We

make a comparison with EKF and KalmanNet (Revach et al., 2021).

4.2.1 Test metric
Mean Square Error (MSE) is used to evaluate the effect of our

proposed KalmanFormer, which is computed as follows:

MSE = 1

N

N
∑

j=1

T
∑

i=1

|(xest − xtrue)i|2 (20)
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TABLE 1 Details information about the hyperparameters.

Experiment type Epochs Batch size Learning rate Weight decay

Simulation 200 30 1e-3 1e-3

Multi-sensor fusion 100 10 1e-3 1e-4

FIGURE 6

Illustration of trajectories.

where xest means the output from our KalmanFormer, xtrue
represents corresponding ground-truth. N means the number of

the testing trajectories. T is the length of current trajectory.

4.2.2 Non-linear Lorenz attractors
The Lorenz attractor (Tucker, 1999) describes a non-linear

chaotic system used for atmospheric convection. The Lorenz

system is expressed by following three differential equations that

define the convection rate, the horizontal temperature variation,

and the vertical temperature variation of a fluid:

∂z1

∂t
= 10(z2−z1),

∂z2

∂t
= z1(28−z3)−z2,

∂z3

∂t
= z1z2−

8

3
z3, (21)

In order to generate the simulated trajectories, we run the

Lorenz equations described at Equation 21 with a time step of

1t = 0.05 and add Gaussian noise of standard deviation σ = 0.05

to the results. The noisy data is considered as the measurements

while the decimated data is regarded as the ground truth trajectory

for our experiments. The trajectories of ground truth and noisy

observations are shown in Figure 6.

Assuming a three-dimensional vector x = [z1, z2, z3]
T ∈ R, the

dynamic matrix A(x) of the system from Equation 21 is expressed

as follows:

A(x) =







−10 10 0

28− z3 −1 0

z2 0 − 8
3













z1
z2
z3






(22)

After that, Taylor expansion is used to obtain the state transition

function:

Fk(xk) = I+
J

∑

j=1

(A(xk)k)
j

j!
(23)

where I represents the identity matrix and Jmeans the number

of Taylor expansion. We set J = 5 in our experiments. For the

TABLE 2 Origin point information for NED frame.

Latitude origin 42.29322deg

Longitude origin –83.709657 deg

Altitude origin 270 m

measurement model, we set H = I. For the noise parameters, we

setQ = q2I,R = r2I, where q=0.8, r=1.

4.3 Multi-sensor information fusion

We further evaluate the effectiveness of the proposed

KalmanFormer in multi-sensor fusion. We employ the Michigan

NCLT dataset (Carlevaris-Bianco et al., 2016) with different types

of sensors to perform our experiments.

The NCLT dataset was obtained from a mobile robot platform

equipped with various sensors, including Real Time Kinematic

GPS, IMU, Consumer-grade GPS, etc. In our experiments, IMU is

employed to provide angular speed information and acceleration

information, which is used to design the state transition function.

The consumer-grade GPS is applied to provide the observation

of the displacement. The Real-Time Kinematic GPS is used to

generate a more accurate state of the system, which is used to

evaluate the effectiveness of the proposed method.

4.3.1 Coordinates definition
A North-East-Down (NED) frame is employed to describe the

robot’s pose and position. Furthermore, the fixed origin point of the

NED frame is shown in Table 2.

The angular and acceleration information from the IMU is

measured in the IMU’s reference frame, which closely aligns with

the robot’s reference coordinate. It is necessary to transform the

IMU reading from IMU’s frame into a global frame.
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FIGURE 7

Transformation between IMU frame and Global Frame (NED).

As shown in Figure 7, we can obtain the transformation

between the IMU frame and the global frame, which is calculated

as:

{

agx = ax cos(−θ)− ay sin(−θ)

agy = ax sin(−θ)− ay + cos(−θ)
(24)

4.3.2 State transition model
The state vector of the system in the global coordinate is defined

as:

xk=[x, y, vx, vy, θ ,ω] (25)

where xk, yk represent the position of the robot in the global

frame. vk and vy represent the velocities. θ and ω mean the heading

angle and angular velocities respectively.

In the global coordinate system, the state transitionmodel takes

the IMU’s readings, including heading θ , angular velocityω, and the

accelerations as the control input. The state transitionmodel (in the

NED frame) is then:

x̂k|k−1 = Fk(xk−1, uk−1) =



















xk−1 + vx1k+ 1
2agx1k2

yk−1 + vy1k+ 1
2agy1k2

vx−1 + agx1k

vy−1 + agy1k

θk

ωK



















(26)

4.3.3 Observation model
The GPS observation model produces a prediction of the

expected GPS observation based on the predicted state. Here we

use the consumer-grade GPS to produce the observation of the

displacement. The observation model is expressed as follows:

zk|k−1 = Hkx̂k|k−1 =
[

1 0 0 0 0 0

0 1 0 0 0 0

]

x̂k|k−1 (27)

4.3.4 Noise setting
The initial process noise Qk and measurement noise Rk

matrices of the EKF are expressed in Equations 2, 3. These Qk

and Rk matrices are determined using empirical data as well as

completing experimental tuning. The initial Qk and Rk matrices

used in our experiments are developed as follows:

Qk =



















1 0 0 0 0 0

0 1 0 0 0 0

0 0 10000 0 0 0

0 0 0 10000 0 0

0 0 0 0 0.001 0

0 0 0 0 0 0.01



















(28)

Rk =
[

100 0

0 100

]

(29)

4.4 Model mismatch

4.4.1 State transition model mismatch
We devise experiments to investigate the robustness of the

KalmanFormer when the state transition model is mismatched.

This is achieved by using three 3-dimensional rotation matrices:

RZ =







cos(yaw) − sin(yaw) 0

sin(yaw) cos(yaw) 0

0 0 1






(30)

RY =







cos(pitch) 0 sin(pitch)

0 1 0

− sin(pitch) 0 cos(pitch)






(31)

RX =







1 0 0

0 cos(roll) − sin(roll)

0 sin(roll) cos(roll)






(32)

yaw = roll = pitch = 1◦, 5◦ (33)

We evaluate the performance in the condition of model

mismatch real-word NCLT datasets. The mismatched state

transition real-world is expressed as follows:

Frotated
real

= RX • RY • RZ •







1 1k 1
21k2

0 1 1k

0 0 1







(34)

where Frotated
real

is the mismatched state transition model for the

real-world experiments. In our experiments, the rotation angle is

set to 1◦ and 5◦to verify the model performance.
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FIGURE 8

MSE comparison results with KalmanNet and EKF on synthetic dataset.

FIGURE 9

MSE comparison results with EKF when the observation is mismatched.

4.4.2 Observation model mismatch
Additionally, we investigate the performance of our proposed

KalmanFormer with EKF when the observation function is

mismatched. The mismatched observation function is expressed

as follows:

Hrotated = H • RX • RY • RZ (35)

We set the rotation angle to 10◦ to validate the effectiveness on
the simulation dataset.

Furthermore, we transform the observation in Cartesian

coordinates into Spherical coordinates using the equation and

compare the performance.











r =
√

z21 + z22 + z23
θ = cos−1( z3r )

φ = tan−1( z2z1 )

(36)
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FIGURE 10

MSE comparison results with EKF when the observation is in spherical coordinate.

4.5 Evaluation results

In this section, we will discuss the performance of our proposed

KalmanFormer with EKF and KalmanNet for both linear and non-

linear systems. Furthermore, we will investigate the performance of

the proposed KalmanFormer using the NCLT dataset.

4.5.1 Simulation results
MSE metric is used to demonstrate the effectiveness of the

proposed KalmanFormer in non-linear Lorenz attractors. As

shown in Figure 8, our KalmanFormer achieves a higherMSE result

in the first 30 points of the Test sequence when compared to

KalmanNet and EKF. However, after the 40 points, the MSE of our

KalmanFormer is much lower than EKF and KalmanNet.

Besides that, Euclidean Distance is used to evaluate the

effectiveness of our methodology over the whole test trajectories.

Euclidean Distance is expressed as follows:

distance =
N

∑

i=1

√

√

√

√

√

T
∑

j=1

(x
j
est − x

j
true)

2
(37)

where xtrue ∈ [ z1 z2 z3]
T ∈ R means the ground truth of

the state vector. xest ∈ [ z1 z2 z3]
T ∈ R represents the estimation

from our KalmanFormer. N is the number of the trajectories. T is

the length for each trajectory.

Using Equation 37, the distance of our proposed method is 136.

While the distance of KalmanNet is 209, which demonstrates the

superiority of our KalmanFormer. In conclusion, KalmanFormer

achieves more accurate performance on the Simulation Test set.

Additionally, Figure 9 reports the experiment results when the

observation model is mismatched.

TABLE 3 The complexity comparison results on simulation experiments.

Method Parameters Storage
(KB)

Inference
time (s)

KalmanFormer 8,081 66 21

KalmanNet 23,928 46 19

EKF \ \ 20

We can observe that the proposed KalmanFormer achieves

lower MSE performance than EKF in the same experiment setup

when the observation model is disturbed by the rotation matrix.

Figure 10 reports the results when the observation in

transformed into spherical coordinates. We can see that

our proposed KalmanFormer achieves the best performance

compared to KalmanNet and EKF in the condition of the

mismatched observation.

Finally, we compare the time complexity of the KalmanFormer

compared to EKF and KalmanNet through simulation experiments.

Parameters, storage space, and inference time are adopted to verify

the computational complexity of the KalmanFormer, KalmanNet,

and EKF. The inference time is computed on the simulation

experiments. The comparison results are shown in Table 3.

As shown in Table 3, the KalmanNet and the KalmanFormer

have similar space demand and the similar running speeds on the

simulation experiments. To be specific, the KalmanNet needs 44

KB harddisk space to store while the KalmanFormer 66KB needs

disk space. Furthermore, we compare the inference time on the

whole dataset. The inference time of the EKF is about 20s while the

KalmanFormer runs about 21s. We can conclude that the proposed

KalmanFormer has a similar time complexity with the EKF and

KalmanNet and it can be further used in real-world applications.
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FIGURE 11

Trajectory comparison results with KalmanNet and EKF.

FIGURE 12

MSE performance with KalmanNet and EKF on NCLT dataset.

4.5.2 Multi-sensor information fusion
The trajectory we used for training and validating

KalmanFormer and KalmanNet are obtained from the date

of 2012-01-22 within the NCLT datasets. Furthermore, a date of

2012-04-29 trajectory is used to test the performance. The sample

rate of the training, validation, and test is 1 HZ. The trajectory

comparison result is shown in Figure 11.

As shown in Figure 11, our KalmanFormer performs better

than EKF and KalmanNet. In order to evaluate the property

of our KalmanFormer, we make a comparison with EKF and

KalmanNet in terms of MSE using the same data in Figure 11.

The result is shown in Figure 12. According to Figure 12,

our KalmanFormer achieves similar accuracy at the first 500

points of the testing set. However, in the last 1,500 points,

our method achieves better performance in MSE compared

to KalmanNet.

Additionally, Equation 37 is used to evaluate the validity

over the whole test trajectory quantitatively. The distance of

KalmanFormer is 19 m, the distance of KalmanNet is 30 m, and

the distance of EKF is 316 m, which proves the superiority of

the KalmanFormer.

Finally, we investigate the results using the mismatched state

transition function with the rotation angles of 1◦ and 5◦. Figure 13
reports the results when the state transition function ismismatched.
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FIGURE 13

MSE performance when the state transition model is mismatched.

We can observe that when the state transitionmodel is disturbed by

the rotation matrix with a rotation angle of 1◦, our KalmanFormer

has a similar performance to the KalmanNet and outperforms the

EKF. When the rotation angle is set to 5◦, the performance of

EKF degrades significantly. And the KalmanFormer outperforms

the KalamNet and EKF. Even our KalmanFormer achieves lower

MSE than KalmanNet.

5 Conclusion

In this paper, we proposed KalmanFormer, which is a hybrid

of data-driven and model-driven implementation of the Kalman

Filters. KalmanFormer incorporates a Transformer architecture

within the learning process of computing the Kalman Gain (KG)

and combines the learned KG into a traditional Kalman Filter. The

proposed KalmanFormer uses the Kalman Filter without requiring

any prior knowledge of process statistics or measurement noise

statistics, even if the system model is mismatched. It has been

demonstrated through numerical experiments that KalmanFormer

is capable of achieving the minimum MSE when properly trained.

It has also been proven that KalmanFormer is more robust to

inaccurate knowledge of state space parameters in multi-sensor

information fusion.
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Visual place recognition (VPR) is the ability to recognize locations in a physical

environment based only on visual inputs. It is a challenging task due to

perceptual aliasing, viewpoint and appearance variations and complexity of

dynamic scenes. Despite promising demonstrations, many state-of-the-art

(SOTA) VPR approaches based on artificial neural networks (ANNs) su�er

from computational ine�ciency. However, spiking neural networks (SNNs)

implemented on neuromorphic hardware are reported to have remarkable

potential for more e�cient solutions computationally. Still, training SOTA

SNNs for VPR is often intractable on large and diverse datasets, and they

typically demonstrate poor real-time operation performance. To address

these shortcomings, we developed an end-to-end convolutional SNN model

for VPR that leverages backpropagation for tractable training. Rate-based

approximations of leaky integrate-and-fire (LIF) neurons are employed during

training, which are then replaced with spiking LIF neurons during inference. The

proposed method significantly outperforms existing SOTA SNNs on challenging

datasets like Nordland and Oxford RobotCar, achieving 78.6% precision at 100%

recall on the Nordland dataset (compared to 73.0% from the current SOTA)

and 45.7% on the Oxford RobotCar dataset (compared to 20.2% from the

current SOTA). Our approach o�ers a simpler training pipeline while yielding

significant improvements in both training and inference times compared to

SOTA SNNs for VPR. Hardware-in-the-loop tests using Intel’s neuromorphic

USB form factor, Kapoho Bay, show that our on-chip spiking models for VPR

trained via the ANN-to-SNN conversion strategy continue to outperform their

SNN counterparts, despite a slight but noticeable decrease in performance

when transitioning from o�-chip to on-chip, while o�ering significant energy

e�ciency. The results highlight the outstanding rapid prototyping and real-world

deployment capabilities of this approach, showing it to be a substantial step

toward more prevalent SNN-based real-world robotics solutions.

KEYWORDS

spiking neural networks, robotics, visual place recognition, localization, supervised

learning, convolutional networks
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1 Introduction

Visual place recognition (VPR) refers to the capability of

identifying locations within a physical environment solely through

visual inputs. It is essential for autonomous navigation of mobile

robots, indoor assistive navigation aid, augmented reality, and

geolocalization (Lanham, 2018; Reinhardt, 2019; Weyand et al.,

2016; Seo et al., 2018; Li et al., 2018; Shan et al., 2015). These

applications generally involve complex dynamic scenes, perceptual

aliasing, viewpoint and appearance variation, which render VPR

extremely challenging.

VPR has been approached via deep learning techniques

(Radenović et al., 2018; Chen et al., 2017; Sünderhauf et al.,

2015) and through various supervised and self-supervised feature

descriptor representations (DeTone et al., 2018; He et al., 2018;

McManus et al., 2014). Despite their promise, many of these

methods face significant practical challenges (Lynen et al., 2015,

2020). For example, they often rely on large, deep networks with

time-consuming training processes and dense feature extraction,

ultimately making them computationally expensive, memory-

intensive, and energy-demanding. Such limitations significantly

reduce the ability for real-world deployment of conventional

artificial neural networks (ANNs) on robotic platforms with limited

on-board resources (Doan et al., 2019). Spiking neural networks

(SNNs) offer an alternative with their remarkable potential for

computationally efficient operation when they are implemented on

neuromorphic hardware (Davies et al., 2021). However, previous

work on SNN models for VPR has suffered from scalability

problems that impede their application to data with a large number

of locations. In addition, the majority of the aforementioned

methods formulate VPR as an image retrieval task (Garg et al.,

2021), the solution of which aims for the correct association of

given query images with a set of reference images. Such formulation

requires the employment of a confusion matrix (a.k.a. distance

matrix) (Garg et al., 2022) populated with similarity scores based

on the distances between model-specific feature descriptors. A

commonly-used similarity metric is the cosine similarity (Naseer

et al., 2018), which is reported to be computationally expensive

when evaluating high-dimensional feature vectors (Zhang et al.,

2021).

These drawbacks have motivated our approach to

VPR, described in this paper, in which an SNN model is

implemented using an ANN-to-SNN conversion method to enable

backpropagation-based training, resulting in fast training and

inference times. We employ a smooth rate-based approximation

(Hunsberger and Eliasmith, 2015) of the leaky integrate-and-fire

(LIF) neurons (Burkitt, 2006) during the training. Once the

training session is completed the rate-based units are substituted

with the spiking LIF neurons and the resulting spiking network is

used for inference.

We formulate VPR as a classification task, where the SNN

model predicts place labels that uniquely correspond to the

locations in a discretized navigation domain. We evaluate our

method with the challenging real-world benchmark datasets

Nordland (Olid et al., 2018) and Oxford RobotCar (Maddern et al.,

2017, 2020). Our model, the Localizing Convolutional Spiking

Neural Network (LoCS-Net), outperforms other SOTA SNN-based

VPR methods on both the Nordland (Olid et al., 2018) and the

Oxford RobotCar dataset (Maddern et al., 2017, 2020) in terms of

precison at 100% recall (P@100%R).

The main contributions of this work are as follows. (a) To the

best of our knowledge, LoCS-Net is the first SNN that is trained

to perform the VPR task by means of ANN-to-SNN conversion

and backpropagation. (b) LoCS-Net is an end-to-end SNN solution.

Therefore, LoCS-Net does not require further processing of its

outputs for recognizing places. In that sense, LoCS-Net saves

all the computation resources that traditional VPR algorithms

would typically expend on feature encoding, descriptor matching,

computing similarity scores, and storing a distance matrix. (c)

We demonstrate that our proposed SNN model yields the fastest

training time, the second fastest inference time, and the best VPR

performance in P@100%R among its SNN counterparts. This poses

LoCS-Net as a significant step toward deployment of SNN-based

VPR systems on robotics platforms for real-time localization. (d)

We report the challenges we experienced when deploying LoCS-

Net on the neuromorphic Loihi chips in detail. We strongly believe

that our in-depth discussion on hardware deployment will be useful

for the SNN-VPR community.

2 Related work

Task-specific feature descriptors are the very core of traditional

VPR systems, which can be grouped into two categories: (1) Local

descriptors, (2) Global descriptors. Local descriptors may scan

the given images in patches of arbitrary size and stride. These

patches are then compared to their immediate neighborhood to

determine the distinguishing patterns (Loncomilla et al., 2016).

In general, previous VPR work utilizing local descriptors (Johns

and Yang, 2011; Kim et al., 2015; Zemene et al., 2018) employs

sparse filters that extract so-called key-points (Mikolajczyk and

Schmid, 2002; Matas et al., 2004). These key-points can be

marked by the descriptions generated through the application of

methods including SIFT (Lowe, 1999), RootSIFT (Arandjelović and

Zisserman, 2012), SURF (Bay et al., 2006), and BRIEF (Calonder

et al., 2011). In this way, the combination of heuristics-based

detectors and local descriptors can be used for: (A) Representing

images, (B) Comparing two images with respect to their descriptors

to determine how similar they are. In addition, local features

can be combined with other embeddings (Tsintotas et al., 2022)

while leveraging their robustness against the variations in the

robot’s pose. However, local descriptors can be computationally

heavier and more sensitive to illumination changes (Masone and

Caputo, 2021). Global descriptors (Oliva and Torralba, 2006;

Torralba et al., 2008), on the other hand, do not require a

detection phase and directly encode the holistic properties of the

input images. Although this might save the global descriptor-

based VPR methods (Liu and Zhang, 2012; Schönberger et al.,

2018; Revaud et al., 2019; Yin et al., 2019) some compute

time, they are more vulnerable to robot pose changes than

their local descriptor-based counterparts while being inept at

capturing geometric structures (Dube et al., 2020). Yet, global

descriptors are reported to be more effective in the case of

varying lighting conditions (Lowry et al., 2015). Furthermore,
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there are hybrid approaches (Siméoni et al., 2019; Cao et al.,

2020; Hausler et al., 2021), which combine the strengths of

both approaches.

Deep learning has made key contributions to recent work

on VPR. An influential deep-learning-based approach is

NetVLAD (Arandjelovic et al., 2016), which is a supervised

method for place recognition, based on the Vector of Locally

Aggregated Descriptors (VLAD), a technique to construct global

image feature representations from local feature descriptors.

NetVLAD uses a pre-trained feature extraction network,

such as AlexNet (Krizhevsky et al., 2017), to extract the

local features, and a loss function that aims to minimize

the distance between a baseline input and the most similar

image (the positive example), while maximizing the distance

between baseline input and the most dissimilar image (the

negative example). This loss function is also known as the

triplet loss function. Several authors have extended NetVLAD

in different directions, and NetVLAD-based methods still

perform very competitively (Hausler et al., 2021; Yu et al.,

2020).

SNNs have been of interest for various robotics tasks,

including not only VPR, but also object detection (Kim et al.,

2020), regression (Gehrig et al., 2020), and control of aerial

platforms (Vitale et al., 2021) due to their significant potential

for computational efficiency (Zhu et al., 2020). Published VPR

methods based on SNNs are relatively recent, compared to

other robotics research areas. Among them, Hussaini et al.

(2022) is reported to be the first high-performance SNN for

VPR. There, the authors propose a feed-forward SNN, where

the output neuron activations are filtered through a custom

softmax layer. Follow-up work by the same authors (Hussaini

et al., 2023) introduced a framework where localized spiking

neural ensembles are trained to recognize places in particular

regions of the environment. They further regularize these networks

by removing output from “hyper-active neurons,” which exhibit

intense spiking activity when provided with input from the regions

outside of the ensemble’s expertise. This framework yields a

significant improvement over its predecessor while demonstrating

either superior or competitive VPR performance compared to

the traditional methods. A recent study by Hines et al. (2024)

presented an SNN model composed of an ensemble of modified

BliTNet (Stratton et al., 2022) modules, each tuned to specific

regions within the navigation domain. During training, spike

forcing is utilized to encode locations uniquely, which are later

identified by monitoring the output neuron with the highest

spike amplitude. The authors report remarkable improvements in

both training and inference times, alongside achieving superior

or comparable VPR performance compared to earlier SNN

models. However, training of these SNN approaches do not

scale with the increasing volume of training data. In addition,

heuristics such as the assignment of neural ensembles to spatial

regions, nearest neighbor search in the similarity matrix, and

the regularization process further complicate the training process

and the computational efficiency of the model. In contrast to

these previous SNN-based approaches, we propose an end-to-end

solution that is much easier to train and to deploy without requiring

heuristic training.

3 LoCS-Net model for visual place
recognition

Here, we begin with an overview of the task formulation and

the architecture of LoCS-Net in Section 3.1. Section 3.2 formally

poses the VPR problem as a classification task. Then, in Section

3.3, we walk through the LoCS-Net pipeline and its key design

choices. Moreover, Section 3.3 provides a summary of the ANN-

to-SNN conversion paradigm while elaborating on its use for

the present work. We would like to refer the readers to the

supplementary information and to the figshare repository of our

code for further implementation details: https://figshare.com/s/

c159a8680a261ced28b2.

3.1 Overview

Figure 1 depicts the overall architecture of LoCS-Net. The input

to the model is a set of images sampled along a trajectory that

traverses a bounded navigation domain. The domain is discretized

by means of a uniform grid (orange lines in Figure 1) and each

image is assigned an integer place label based on the tile traversed at

the time of sampling the image. In this manner, we define the VPR

task as a classification problem as discussed in Section 3.2.

Each layer in the LoCS-Net model consists of LIF neurons

(Burkitt, 2006). In order to train the model, these neurons are

converted to rate-based approximations of LIF units (Hunsberger

and Eliasmith, 2015). Rate-based LIF approximations are

continuous differentiable representations of the LIF activation

function. The LIF activation function describes the time evolution

of the neuron’s membrane potential, and it is discontinuous:

when the membrane potential reaches a threshold value, it is reset

back to a pre-determined state. The rate-based approximation

is a continuous function that describes the neuron’s firing rate

as a function of its input, enabling the use of back-propagation

algorithms for training. However, this doesn’t prevent the

substitution of the approximate LIF neurons with the original ones

for inference after the training is complete. A number of authors

have reported successful applications (Rueckauer et al., 2017; Hu

et al., 2021; Patel et al., 2019) of ANN-to-SNN conversion.

3.2 VPR as a classification task

A common practice in approaching the VPR task is to pose it

as an image retrieval problem where the goal is to compute and

store descriptors that would effectively encode both the set of query

images and the collection of reference images to match (Lajoie and

Beltrame, 2022). The encoding process is followed by an image

retrieval scheme, which is based on comparing query embeddings

(zq) to the database of reference descriptors (zr) with respect to

the customized similarity metrics. Nevertheless, computation of

the descriptors is numerically expensive. In contrast, we formulate

the VPR task as a classification problem in order to bypass the

encoding phase of the images. We designed the LoCS-Net so that

it would uniquely map the given input images to the mutually
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FIGURE 1

LoCS-Net VPR system: a convolutional network of rate-based LIF neurons (Hunsberger and Eliasmith, 2015) is trained over a set of annotated images

sampled over a trajectory (the red curve) traversing a finite discretized (orange grid bounded by gray lines) navigation domain. The VPR task is

formulated as a classification problem where each tile of the grid (P1,P2,P3,...) corresponds to a distinct location. After training, the LIF

approximations are substituted with the spiking LIF neurons (Burkitt, 2006) for the inference step.

FIGURE 2

VPR can be posed as image retrieval task or image classification problem. For both formulations we consider a set of images collected over a

trajectory (the red curves) traversing a finite navigation domain. (A) A popular VPR solution is based on generating descriptors for query (zq) and

reference images (zr), which are then compared to each other in terms of a distance (or similarity) metric ‖ · ‖ in order to retrieve the reference image

corresponding to the correct place. For instance, zr2 represents the most similar reference image to the given query image. (B) In contrast, the image

classification formulation of the VPR task requires an arbitrary discretization of the navigation domain to define the classes Pi (the places where i ∈ Y)

that annotate the images s ∈ S. Then, a classifier L is trained to map images s ∈ S to the correct place labels i ∈ Y . The image annotation Pi,j denotes

the jth image associated with the class Pi.

exclusive classes, which are the distinct places, as discussed in

Sections 3.1, 3.3.

Figure 2 illustrates how our work formulates VPR differently

compared to the image retrieval VPR formulation. We first

discretize the navigation domain by using a uniform rectangular

grid (Figure 2B, the orange lines). Here, each tile of the grid

defines a distinct place Pi, i = 1, 2, 3, · · · . We would like to

note that the navigation domain can be any physical environment

with points described by spatial coordinates. Although we use

a uniform rectangular grid to discretize the top-down view of

the domain of interest, our approach is flexible with respect

to the definition of places, and permits 3-D as well as 2-D

discretization. As one of many ways to generate the training and

test data, we sample images over numerous trajectories traversing

the discretized navigation domain. Suppose that an image s ∈ S

is sampled at the time instant when the camera is in the region

represented by tile P5. Then, this image would be annotated

by the place label 5 ∈ Y . Namely, the image s belongs to

the class represented by the tile P5. Thus, given a query image,

our goal is to train a spiking neural network model that would

correctly infer the associated place labels. Hence, we pose the

VPR task as an image classification problem in this fashion. We
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now formally describe the VPR task as a classification problem

as follows.

Consider a set of images, S = {s ∈ R
C×H×W |X(s) ∈ D},

where C is the number of color channels, H and W are the height

and width of the images in pixels and D is a pre-determined finite

horizontal navigation domain. Here, X :S → D is a function that

maps the images s ∈ S to the planar spatial coordinates [xs, ys]
T ∈

D = {[d1, d2]T ∈ R
2| xmin ≤ d1 ≤ xmax∧ymin ≤ d2 ≤ ymax}where

xmin, xmax, ymin, and ymax are the bounds of D. X(s) describes the

in-plane spatial state of the camera with respect to a local frame

of choice when s ∈ S is sampled. The set Y = {i ∈ N| i ≤ NP}
contains the place labels that annotate s ∈ S where NP is the

number of assumed places. Each y ∈ Y corresponds to a Py ⊂ D

such that Py ∩Pi ≡ ∅, y 6= i∧ i ∈ Y . We formulate the VPR task as

an image classification problem, where each class is assumed to be

mutually exclusive. That is, each image belongs exactly to one class.

Our goal is to design a mapping L :S → Y that correctly predicts

the place label y ∈ Y of any given s ∈ S . One should note that

the approach we describe here is different than the image retrieval

formulation as we want L to predict the place labels instead of

directly associating the input images with the reference images.

3.3 Localizing convolutional spiking neural
network

The design of LoCS-Net is defined mainly by two ideas: (1)

Discretization of the given finite navigation domain, (2) Leveraging

the back-propagation algorithm by adopting the ANN-to-SNN

conversion paradigm. We now walk through the details of these

ideas together with the architecture of LoCS-Net and its building

blocks, LIF neurons.

3.3.1 The LIF neuron model
Unlike standard artificial neurons, which are defined by

time-independent differentiable non-linear transfer functions

with continuous outputs, spiking neurons have time-dependent

dynamics that aim to capture the information processing in the

biological neural systems by emitting discrete pulses (Burkitt,

2006). Equation 1 describes the dynamics of an LIF neuron.

Cm
dν(t)

dt
= −Cm

τm

[

ν(t)− ν0
]

+ Is(t)+ Iinj(t) (1)

where Cm is the membrane capacitance, τm is the passive

membrane time constant, and ν0 is the resting potential.

Above formulation considers a resetting scalar state variable, the

membrane potential ν(t), which will be reinitialized at ν(t) =
νreset after reaching a threshold, ν(t) = νth. Whenever the re-

initialization happens at time t = tspike, the output of the LIF

neuron (o(t)) will be an impulse signal of unity. We name this a

spike event. One can express a spike event of an LIF neuron by

Equation 2, which incorporates Dirac’s delta function centered at

the time of re-initialization.

o(tspike) = δ
[

ν(tspike)− νth
]

(2)

The right hand side of Equation 1 includes three terms: (1)

An exponential decay term (a.k.a the passive membrane leak), (2)

Is(t), the sum of incoming synaptic currents, which are mostly unit

impulses filtered through a first order delay and/or multiplied by

some scalar, and finally (3) An injection term, Iinj(t), that describes

the input currents other than synaptic currents. This can be some

bias representing the background noise in the corresponding neural

system, or just some external input.

Solving the sub-threshold dynamics described by Equation 1

for the firing rate ρ[Is(t)] of an LIF neuron and assuming Iinj(t) = 0

for all t ≥ 0 yields the following.

Tspike = −τm log









1−
(νth − νreset)

Cm

τm

(ν0 − νreset)
Cm

τm
+ Is(t)









(3)

ρ[Is(t)] =







0 if Is(t) ≤ Ith
1

Tref + Tspike
if Is(t) > Ith

; Ith = (νth−ν0)
Cm

τm
(4)

Tref is the refractory period, which is the time it takes a neuron

to start accepting input currents after a spike event. Tspike is the

time it takes a neuron to reach νth from νreset after a spike event

at some t = t′ given νth < Is(t) = c ∈ R, t′ < t ≤ t′ +
Tspike. Equations 3, 4 describe the response curve of an LIF neuron,

which has a discontinuous and unbounded derivative (∂ρ/∂Is) at

Is = (νth − ν0)Cm/τm. However, one can modify (Equation 4) as

described by Hunsberger and Eliasmith (2015) in order to obtain a

smooth rate-based LIF approximation.

ρ′ [Is(t)
]

=
{

Tref + τm log

(

1+ νth

2
[

Is(t)− νth
]

)}−1

;

2(x) = γ log
(

1+ ex/γ
)

(5)

where γ is the smoothing factor of choice.

3.3.2 ANN-to-SNN conversion
Due to the discontinuities introduced by discrete spike events,

the conventional gradient-descent training techniques need to

be modified for spiking neural networks. Various approximation

methods have been developed to overcome these discontinuities

(Neftci et al., 2019). One such method is based on the utilization

of the rate-based approximations, a.k.a. the tuning curves. Given a

loss function, the main idea is to build a network of differentiable

rate-based approximation units and solve for the synaptic weights

by using an arbitrary version of gradient descent. Once the

solution is obtained, the approximation units can be substituted

with LIF neurons to use the resulting spiking network during

inference as shown in Figure 3. We utilized NengoDL Rasmussen

(2018) to implement the aforementioned ANN to SNN conversion

methodology. We employed the standard sparse categorical cross

entropy as our loss function.
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FIGURE 3

ANN-to-SNN conversion work-flow: we first employ rate-based approximations of the LIF neurons to train our network, since the discontinuous

spike event outputs of the original LIF neurons prevents the training of the network through the back-propagation algorithm. After completing the

training of this interim network, we substitute the LIF approximations with the original ones while keeping the network topology and the trained

weights (bold black lines) the same.

FIGURE 4

The LoCS-Net architecture consists of 3 convolutional layers followed by a fully connected output layer, known as the place layer. The units within

this layer correspond to unique locations within the environment. LoCS-Net accepts 56 × 56 pixel grayscale images as inputs, using them to predict

the associated places from which the input images were sampled.

FIGURE 5

Annotating images: (A) top-down navigation domain is discretized by defining a grid of arbitrary resolution. Each tile of of the grid annotates the

images sampled within its boundaries. (B) Images are sampled over a traverse at a pre-determined frequency while each image is corresponding to a

unique place. For instance, if the first image is sampled at time t = 0 s, then the second and the third image will be sampled at t = T s and t = 2T s,

respectively.
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TABLE 1 LoCS-Net training and test data specifications.

Specifications
\ dataset

Nordland Oxford RobotCar
(ORC)

Train size [# of

images]

6,144 32,475

Test size [# of

images]

3,072 17,055

# of labels 3,072 2,500

# of unique labels 3,072 185

3.3.3 LoCS-Net architecture
As depicted in Figure 4, LoCS-Net is composed of a sequence

of 3 convolutional layers followed by a fully connected output

layer, also known as the “place layer,” the units of which

correspond to distinct places in the environment. Inputs to

LoCS-Net are grayscale images of 56 × 56 pixels. The number

of neurons in the place layer is set to be the number of

possible places (NP) as explained in Section 3.2. We considered

50 × 50 grid for Oxford RobotCar (ORC) data in our

principal experiments. Note that for training, we employ the

smooth rate-based approximated LIF units while maintaining

the same architecture illustrated in Figure 4. We use sparse

categorical cross entropy as the loss function during training.

For inference, we replace the approximated LIF units of the

trained network with spiking LIF neurons, keeping both the

weights and the architecture unchanged. For further details of

the network structure and the corresponding hyper-parameters,

we refer the readers to the supplementary information and to

the repository of the current work’s code at https://figshare.com/

s/c159a8680a261ced28b2.

4 Experiments

4.1 Datasets and evaluation metrics

We evaluate our proposed approach on the challenging

Nordland (Olid et al., 2018) and ORC data (Maddern et al.,

2017, 2020) following prior work (Hussaini et al., 2023). For

the Nordland data experiments, we trained LoCS-Net using the

spring and fall traverses and tested it with the summer traverse.

For the ORC data experiments, we trained LoCS-Net on the sun

(2015-08-12-15-04-18) and rain (2015-10-29-12-18-17) traverses,

and tested its performance on the dusk (2014-11-21-16-07-03)

traverse. We followed the Nordland data processing directions in

Hussaini et al. (2023) for the same training and test data. We

obtained 3,072 Nordland data (Olid et al., 2018) places, and 2,500

ORC data (Maddern et al., 2017, 2020) places (set by our grid

definition) while considering the complete sun, rain, and dusk

traverses used in Hussaini et al. (2023).

Although our discretization of the ORC domain yields a total

of 2,500 possible places, the trajectories traversed in that dataset

cover a much smaller number of labels. Some of the ORC data

places are either occasionally visited or not visited at all. This

is because the trajectories were generated by a vehicle traversing

FIGURE 8

Prediction error distribution of LoCS-Net over the ORC dataset:

55.7% of the place predictions of LoCS-Net are within 1-Manhattan

Distance of the ground truth labels. Approximately 40% of the

LoCS-Net place predictions fall beyond 5-Manhattan Distance of

the ground truth labels.

the road network, making it impossible to visit all parts of the

spatial domain. Therefore, we filter out places that do not contain

a minimum number (10) of unique training images. We also

bound the number of unique instances per place from above

(maximum 700) as the training of the baseline SNN models are

getting infeasible due to increasing size of the data. Table 1 provides

the training and the test data specifications yielded by our data

pre-processing pipeline. We would like to note that LoCS-Net can

still be trained and be tested on the full ORC data in a matter of

minutes.

We employ standard VPR performance metrics, including

the precision-recall curves, area-under-the-precision-recall curves

(AUC-PR or AUC) (Cieslewski and Scaramuzza, 2017; Camara and

Přeučil, 2019), and recall-at-N (R@N) curves (Perronnin et al.,

2010; Uy and Lee, 2018) in order to assess the performance of

our model.

4.2 Experimental set-up

We adopt two annotation methods as the Nordland (Olid

et al., 2018) and the ORC data (Maddern et al., 2017, 2020)

were structured in different ways. Figure 5A describes the labeling

process of the ORC images (Maddern et al., 2017, 2020). As

it is shown, we first encapsulated the top-down projection

of the path within a rectangular region. Then, we discretize

this region to obtain grid tiles, each of which represents a

distinct place. These tiles annotate the images sampled within

its boundaries.

To label the Nordland images (Olid et al., 2018) we followed the

annotation method defined in Hussaini et al. (2023). As depicted in

Figure 5B, we sample images over a traverse at a pre-determined

frequency (every 8th image) while each image is corresponding to

a unique place.
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TABLE 2 VPR performance comparison in terms Precision at 100% Recall (P@100%R), area-under-the-precision-recall curves (AUC), mean inference time (MIT), mean training time (MIT), and e�ective energy

consumed per inference.

Nordland ORC

Method Approach P@100%R AUC MIT
[ms]

MTT
[min]

E�ective
energy per
inference [J]

P@100%R AUC MIT
[ms]

MTT
[min]

E�ective
energy per
inference [J]

LoCS-Net on GPU (ours) SNN 78.6% 0.980 25 1 2.545 45.7% 0.702 10 3.5 1.095

LoCS-Net on NUC (ours) SNN 78.6% 0.980 796 - 13.183 45.7% 0.702 371 - 5.871

LoCS-Net on Loihi (ours) SNN 71.1% 0.761 288 - 0.060 41.0% 0.653 147 - 0.032

VPRTempo on GPU (Hines

et al., 2024)

SNN 73.0% 0.975 8 15 0.079 20.2% 0.435 5 54 0.053

Ensemble SNNs on CPU

(Hussaini et al., 2023)

SNN 66.9% 0.975 408 725 3.405 17.6% 0.485 290 3,408 3.051

WNA (Hussaini et al., 2022) SNN 0.3% 0.005 - - - 4.0% 0.042 - - -

MixVPR (Ali-Bey et al.,

2023)

ANN 94.6% - 29 3 0.907 87.7% - 14 6 0.578

Conv-AP (Ali-bey et al.,

2022)

ANN 91.3% - 27 2 0.847 84.6 - 18 8 0.632

EigenPlaces (Berton et al.,

2023)

ANN 80.2% - 57 5 6.443 71.5% - 31 17 3.335

CosPlace (Berton et al.,

2022)

ANN 75.3% - 60 6 6.842 71.0% - 35 17 3.524

AP-GeM (Revaud et al.,

2019)

ANN 65.1% - 95 9 10.512 60.7% - 54 27 5.376

NetVLAD (Arandjelovic

et al., 2016)

ANN 51.4% - 107 10 12.641 43.8% - 62 29 5.496

Bold values indicate the best performance metrics for SNN- and ANN-based approaches on individual datasets.
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FIGURE 6

Precision-Recall and Recall @ N curves for the baseline SNN-based VPR methods and LoCS-Net: The blue, brown, cyan, and orange curves

correspond to LoCS-Net, VPRTempo (Hines et al., 2024), Ensemble SNNs (Hussaini et al., 2023), and Weighted Neuronal Assignments (Hussaini et al.,

2022), respectively. These figures demonstrate that LoCS-Net yields the best SNN-based VPR performance on both datasets. (A) PR curves obtained

from the experiments on the Nordland dataset. (B) PR curves obtained from the experiments on the ORC datasets. (C) The R@N curves obtained

from the experiments on the Nordland dataset. (D) The R@N curves obtained from the experiments on the ORC dataset.

4.3 Quantitative results

We conducted several performance comparisons of LoCS-Net

with the current SOTA SNN methods, Ensemble SNNs (Hussaini

et al., 2023), VPRTempo (Hines et al., 2024), and Weighted

Assignment SNN (WNA) (Hussaini et al., 2022). In order to

save computational resources, we did not train and test WNA

ourselves. Instead, in Table 2, we listed the performance metrics

published in Table 1 of Hussaini et al. (2023). We also included

additional performance comparisons of LoCS-Net to a set of ANN-

based SOTA VPR techniques such as AP-GeM (Revaud et al.,

2019), NetVLAD (Arandjelovic et al., 2016), MixVPR (Ali-Bey

et al., 2023), Conv-AP (Ali-bey et al., 2022), EigenPlaces (Berton

et al., 2023), and CosPlace (Berton et al., 2022). We utilized the

benchmark tool developed by Berton et al. (2023) in order to

perform these additional comparisons.

Table 2 and Figure 6 summarize the VPR performance of LoCS-

Net along with the reference methods. We observe that LoCS-Net

outperformed all the SNN-based methods on both the Nordland

(Olid et al., 2018) and ORC dataset (Maddern et al., 2017, 2020)

by a large margin (78.6% and 45.7% respectively) in terms of

P@100%R. LoCS-Net took much less time to train as reported

in Table 2, which highlights LoCS-Net’s compatibility for rapid

prototyping and real-world deployment. Although it falls short

of top-performing ANNs such as MixVPR and Conv-AP, LoCS-

Net’s strengths lie in energy efficiency and training time. While

its GPU-based energy usage (2.545J) sits between that of ANNs

like EigenPlaces (1.283J) and AP-GeM (5.376J), deploying LoCS-

Net on neuromorphic hardware (Loihi) drastically reduces energy

consumption, reaching just 0.032J per inference.

Moreover, Figures 6C, D present the Recall @ N curves

obtained from the evaluations of the methods on the Nordland

(Olid et al., 2018) and ORC datasets (Maddern et al., 2017, 2020).

LoCS-Net consistently yields the best Recall @ N performance

compared to SNNmethods on both datasets. These results indicate

good scalability of the LoCS-Net model across thousands of

locations, while maintaining computationally efficient inference, as

illustrated by Table 2.

We conduct a sensitivity analysis of LoCS-Net with respect

to the number of neurons used for signal representation, the

maximum firing rate, and the synaptic smoothing factor. We note

that the nominal LoCS-Net does not include synaptic filters in

order to avoid the additional complexity imposed by temporal

dynamics during training, as capturing precise synaptic dynamics

is not our primary objective. Figure 7 presents the P@100%R

sensitivity analysis of LoCS-Net on the Nordland Figure 7A and
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FIGURE 7

VPR performance in P@100%R sensitivity of LoCS-Net on Nordland (A) and ORC (B) datasets with respect to synaptic smoothing factor, maximum

firing rate, and input layer resolution: The remaining neuronal and training parameters of the nominal LoCS-Net model (see

Supplementary Tables S1, S2) are kept the same. Curves in the synaptic smoothing sensitivity plots (on the left) are color-coded, indicating model

instances with di�erent maximum firing rates with a nominal input resolution of 56 × 56. Plots in the middle depict the sensitivity with respect to only

input resolution. Dashed green curves represent the performance of the nominal LoCS-Net model instance. Synaptic smoothing factor-maximum

firing rate tables (on the right) illustrate the same data presented in the plots on the left. These tables contain the P@100%R values in white text while

exhibiting the corresponding color codes at the same time. The P@100%R values are obtained by averaging the simulation results of five models,

each initiated with a di�erent seed for synaptic weights. The results suggest that LoCS-Net is sensitive to the synaptic smoothing factor, maximum

firing rate, and input layer resolution, especially on Nordland data.

ORC Figure 7B datasets, focusing on the synaptic smoothing factor,

maximum firing rate, and input layer resolution. All other neuronal

and training parameters of the nominal LoCS-Net model remain

unchanged. In Figures 7A, B, the synaptic smoothing sensitivity

plots on the left use color-coded curves to represent different

maximum firing rates for a nominal input resolution of 56 × 56.

The middle plots isolate the effect of input resolution on model

sensitivity, with dashed green curves showing the performance

of the nominal LoCS-Net configuration. On the right, tables

summarize the combined influence of the variances in synaptic

smoothing factor and maximum firing rate, providing the same

information as the left-hand plots. The P@100%R values of

Figure 7 are computed as averages across simulations of five models

initialized with different seeds per parameter set. The findings

highlight that LoCS-Net is sensitive to variations in synaptic

smoothing factor, maximum firing rate, and input layer resolution,

with sensitivity being particularly evident on the Nordland dataset.

We further seek to understand the distribution of LoCS-Net’s

prediction errors on the ORC dataset. We quantify the prediction

error in in terms of Manhattan Distance, as illustrated in Figure 8.

55.7% of the place predictions are within 1-Manhattan Distance

of the ground truth labels. Yet, approximately 40% of the LoCS-

Net place predictions fall beyond 5-Manhattan Distance of the

ground truth labels. We did not perform the same analysis for

Nordland data as it doesn’t utilize a grid-based labeling structure

as the Oxford RobotCar data.

4.4 Neuromorphic hardware deployment

Wedeployed the trained LoCS-Net on Kapoho Bay, a USB form

that hosts 2 of Intel’s neuromorphic Loihi chips (Davies et al., 2021).

We utilized NengoLoihi (DeWolf et al., 2020) to deploy LoCS-Net

on the Loihi chips. The hardware supports up to 260M trainable

synaptic connections with 260k neurons; however, the network

structure must be sufficiently tuned to fully utilize the hardware due

to its architecture.

After the network parameters are trained, neurons and

connections must be distributed between two chips, with 128

neuromorphic cores in each. Each core is designated to handle

1,024 neurons at a time, and the number of core-to-core

connections is restricted to about 4,000 synapses due to the limited

synapse memory. Therefore, networks with large input/output

connections must be partitioned across several cores, and the

biases are removed from the convolutional layers to reduce inter-

core communication. These strategies have be followed to avoid

under-utilization of the cores. As a result, our hardware-deployed

network architecture contains fewer trainable parameters with

sparse connections due to the above constraints, which may result

in a slight decrease in performance. Additionally, as the Kapoho

Bay is optimized for mobile deployment and energy efficiency,

the device handles spike-timing with 8-bit accuracy, which

defines its quantization limit. Training the simulated network

without accounting for these hardware specifications might lead
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to performance drop during on-chip inference. To minimize such

discrepancies, the regularization parameter of the training is tuned

to adjust the magnitude of the network weights. Here, we note

that the hardware limitations mentioned above may be resolved in

future versions of neuromorphic chips.

To examine the energy-saving benefits of neuromorphic

hardware, we measured the average energy consumption per

inference of LoCS-Net when deployed on Loihi, Intel NUC7i7BNH

(a small-form-factor PC suitable for mobile robotics), and GPU

(NVIDIA RTX 3060). We utilized pyJoules (Belgaid et al., 2019) to

measure the average energy consumption on the GPU and NUC,

while employing a standard off-the-shelf USB tester to observe

the power drawn by Kapoho Bay. For each type of hardware

hosting LoCS-Net, we first measured the idle power and then the

power drawn under load while LoCS-Net was operational. We then

subtracted the idle power from the load (or total) power to obtain

the closest estimate of LoCS-Net’s effective energy consumption,

which we list in Table 2. Moreover, we report the total inference

energy values in Figure 9.

5 Discussion

We observe a noticeable performance drop of the on-

chip LoCS-Net, while achieving at least an order of magnitude

improvement in energy efficiency on both datasets compared

to CPU and GPU deployments. We believe that the gradient

mismatch between the LIF neurons (Burkitt, 2006) and their rate

approximations (Hunsberger and Eliasmith, 2015) significantly

contribute to the reduced performance of LoCS-Net in this case,

as also mentioned by Che et al. (2022). LoCS-Net outperforms

all SNN-based methods on both datasets in terms of area-under-

the-precision-recall curves, while demonstrating the second fastest

inference as shown in Table 2. VPRTempo turns out to be the fastest

(in terms of inference time) and themost energy-efficient simulated

SNN, coming close after on-chip LoCS-Net in terms of energy

consumption per inference. However, it fails to exhibit robustness

against dynamic scenes, noise, variance in viewpoint, and lighting

conditions in the ORC dataset.

We observe relatively poor performance of our method on the

ORC dataset (Maddern et al., 2017, 2020). In addition to ANN-

to-SNN conversion losses, we hypothesize that the more dynamic

scene content of the ORC images (Maddern et al., 2017, 2020) and

the substantial noise levels in a significant portion of the test ORC

images impede better VPR performance of LoCS-Net.

As reported in Table 2, LoCS-Net consumes 0.06 J per inference

when processing the Nordland images, approximately 1/40th of

the energy consumed by the GPU and about 1/220th of the

energy consumed by the CPU of the NUC. Similarly, Loihi chips

demonstrate the greatest energy efficiency (0.032 J/inference vs.

5.871 J/inference on NUC and 1.095 J/inference on GPU) by a

large margin when processing the ORC images. We consistently

observe the total energy consumption of neuromorphic chips does

not scale intuitively with respect to the size of the neural network in

terms of the number of trainable parameters. Instead, the inference

energy cost appears to be more related to the communication time

between the integrated CPU and the Loihi chip. This includes the

time required to generate and to send the spike signals through the

input layer of LoCS-Net using the integrated CPU within the Loihi

device, and to decode the output signal back to numerical data.

This observation suggests that a significant restriction of energy

efficient neuromorphic computation involves data conversion

during encoding and decoding, which must be managed by

traditional CPU architecture. The communication bottleneck also

affects the total inference time. Due to the communication delay,

there is a challenge in optimally including the spike-conversion

stage in-between the sensing and input neurons, as well as between

the output layer and the actuator. Unfortunately, this spike-

conversion step scales linearly with the data size and the resolution

we aim to represent. However, testing the proposed method on

alternative neuromorphic hardware designs (Hazan and Ezra Tsur,

2022; Halaly and Ezra Tsur, 2023) might offer even greater power

efficiency and yield faster inference times.

The overall performance of the SOTA ANN methods proved

superior to that of their SNN competitors in terms of precision at

100% recall on both the Nordland and ORC datasets. As shown

in Table 2, while these SOTA ANN techniques outperform their

SNN competitors, they also require significantly longer time to

generate descriptors (loosely corresponding to training time) and

to compute reference-query matches (corresponding to inference

time) compared to LoCS-Net. On-chip LoCS-Net remains the most

energy-efficient VPR method, with the fastest training time by a

large margin.

We must also note that the SOTA ANN approaches included

in our comparison studies use pre-trained networks (e.g., ResNet50

and ResNet101 backbones), which are subsequently fine-tuned for

the VPR tasks. In contrast, LoCS-Net is trained solely on data from

the navigation domain of interest. In this sense, comparing our

network to these SOTA ANN techniques may not be entirely fair,

as they benefit from cumulative training over a much larger dataset.

We would like to emphasize that our work focuses on the SNN

domain, and LoCS-Net significantly advances the state of the art

in SNN-based VPR techniques.

We may further analyze the performance of LoCS-Net by

investigating the spiking activity in the convolutional layers

of the model. Figures 10, 11 depict representative samples of

Nordland and ORC training and test images. Compared to the

ORC images, Nordland test and training instances are much

more visually aligned. ORC test images, on the other hand,

are extremely challenging due to intense variance in lighting,

appearance, viewpoint, and noise. Some of these test instances are

impossible to recognize by a human observer. We believe that

these characteristics of the ORC data significantly contribute to

LoCS-Net’s reduced performance on this dataset.

We examined the activities generated by a set of randomly

chosen images that were either correctly or incorrectly

labeled by LoCS-Net. The images shown in this section are

representative samples for both mislabeled and correctly labeled

images from the Nordland and Oxford RobotCar datasets.

We observed similar spiking activity patterns in all of the

images we randomly picked as in those demonstrated in

Figures 10, 11.

Figures 10, 11 depict the spiking unit activations of the

first convolutional layer in the model, when presented images
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FIGURE 9

Total energy consumption (in Joules) per inference for di�erent VPR methods: Orange bars represent energy consumption on Nordland data, while

blue bars correspond to ORC data. The LoCS-Net model deployed on Loihi achieves the lowest energy consumption per inference, closely followed

by its on-GPU SNN competitor, VPRTempo.

FIGURE 10

Representative samples of Nordland training and test images: Yellow regions represent the associated active neurons. (A) An instance of correct

prediction. Representative convolutional layer activation appears to represent features in the input image. (B) An instance of incorrect prediction.

Although the activation of the convolution layer appears to represent features of the image, the prediction made is for a similar, but incorrect class

label.

from the Nordland and ORC datasets. In both figures, the

correct predictions are associated with spiking activity that

is clustered over large features in the input image that could

potentially help to distinguish the input image from others.

When we examine the spiking activities generated by the

images that are mislabeled by LoCS-Net, we observe matching

spiking patterns with the activities generated by the training

image for the correct class. This implies that LoCS-Net

struggles to distinguish images marginally different from

each other.
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FIGURE 11

Representative samples of Oxford Robot Car training and test images: Yellow regions represent the associated active neurons. (A) An instance of

correct prediction. Representative convolutional layer activation appears to represent features in the input image. (B) An instance of incorrect

prediction. A possible water droplet on the lens causes significant image distortion that results in incorrect place prediction.

6 Conclusion

In this work, we formulate visual place recognition as a

classification problem and develop LoCS-Net, a convolutional

SNN to solve VPR tasks with challenging real-world datasets.

Our approach leverages ANN-to-SNN conversion and

back-propagation for tractable training, by using rate-based

approximations of leaky integrate-and-fire (LIF) neurons. The

proposed method substantially surpasses existing state-of-the-

art SNNs on challenging datasets such as Nordland and ORC,

achieving 78.6% precision at 100% recall on the Nordland dataset

(compared to the current SOTA’s 73.0%) and 45.7% on the Oxford

RobotCar dataset (compared to the current SOTA’s 20.2%). Our

approach simplifies the training pipeline, delivering the fastest

training time and the second fastest inference time among SOTA

SNNs for VPR. Hardware-in-the-loop evaluations using Intel’s

neuromorphic USB device, Kapoho Bay, demonstrate that our

on-chip spiking models for VPR-trained through the ANN-to-

SNN conversion strategy-continue to outperform their SNN

counterparts, despite a slight performance drop when transitioning

from off-chip to on-chip, while still offering significant energy

savings. These results emphasize the LoCS-Net’s exceptional rapid

prototyping and deployment capabilities, marking a significant

advance towardmore widespread adoption of SNN-based solutions

in real-world robotics.

The SOTA ANN methods over-shadowed their SNN

counterparts in terms of precision at 100% recall on both the

Nordland and ORC datasets. However, as detailed in Table 2,

these ANN techniques come with notable trade-offs, requiring

longer times for descriptor generation and inference relative

to LoCS-Net. Among the evaluated methods, the on-chip

implementation of LoCS-Net stands out as the most energy-

efficient VPR solution, achieving the shortest training time by a

considerable margin.

We would like to emphasize that this manuscript proposes

LoCS-Net as a environment-specific VPR solution. In that sense,

providing a long-term general spatial memory as a global VPR

solution is beyond the capabilities of the current work. In addition,

LoCS-Net’s performance is sensitive to the definition of places,

which in turn may require the implementation of domain-specific

discretization techniques to maximize the performance of LoCS-

Net over different navigation environments. As discussed in

Section 4.3, LoCS-Net doesn’t perform as well over the Oxford

RobotCar (Maddern et al., 2017, 2020) data as compared with the

Nordland (Olid et al., 2018) dataset. This might be due to the LIF

neuron approximation errors as well as the significantly varying

lighting and road conditions of the ORC traverses (Maddern

et al., 2017, 2020), which suggests the lack of robustness to

such dynamic scenes. Nevertheless, we emprically show that

LoCS-Net is much better than its SNN competitiors at handling

such challenges.
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Universal slip detection of robotic 
hand with tactile sensing
Chuangri Zhao , Yang Yu , Zeqi Ye , Ziyang Tian , Yifan Zhang and 
Ling-Li Zeng *

College of Intelligence Science and Technology, National University of Defense Technology, 
Changsha, China

Slip detection is to recognize whether an object remains stable during grasping, 
which can significantly enhance manipulation dexterity. In this study, we explore 
slip detection for five-finger robotic hands being capable of performing various 
grasp types, and detect slippage across all five fingers as a whole rather than 
concentrating on individual fingertips. First, we constructed a dataset collected 
during the grasping of common objects from daily life across six grasp types, 
comprising more than 200 k data points. Second, according to the principle 
of deep double descent, we  designed a lightweight universal slip detection 
convolutional network for different grasp types (USDConvNet-DG) to classify 
grasp states (no-touch, slipping, and stable grasp). By combining frequency with 
time domain features, the network achieves a computation time of only 1.26 ms 
and an average accuracy of over 97% on both the validation and test datasets, 
demonstrating strong generalization capabilities. Furthermore, we validated the 
proposed USDConvNet-DG in real-time grasp force adjustment in real-world 
scenarios, showing that it can effectively improve the stability and reliability of 
robotic manipulation.

KEYWORDS

slip detection, five-finger robotic hand, deep learning, 3-axial force tactile sensor, 
grasp types

1 Introduction

The importance of tactile feedback has been emphasized by studies in human motor 
control, which show that stable object manipulation is difficult without this sensory input 
(Johansson and Vallbo, 1979). Tactile perception plays a crucial role in human object grasping. 
When slippage occurs, humans can promptly adjust their grip force and strategy to prevent 
the object from falling. This ability significantly enhances the flexibility and stability of object 
manipulation by the human hand (Johansson and Flanagan, 2009).

With the increasing application of robots in unstructured environments, they are required 
to perform more flexible manipulation tasks and achieve stable grasping, similar to humans 
(Chen et al., 2018). Although the accuracy and resolution of artificial tactile sensors still fall 
short of human tactile capabilities, they still play a significant role in improving grasping 
stability in robotic systems (Grover et al., 2022). They provide essential information about the 
interaction between the hand and the object, enabling quicker and more accurate slip detection 
than vision-based methods alone (Johansson and Westling, 1984; Westling and Johansson, 
1984). Robots equipped with reliable tactile sensing can significantly improve their dexterous 
manipulation capabilities and achieve stable grasping of common objects (Cui et al., 2020). 
One of the most important dexterous robot manipulation tasks using the sense of touch is to 
detect or predict sliding while grasping a manipulated object. Slip detection is essential for 
ensuring stable robotic grasping, which is crucial for preventing objects from slipping or falling 
during manipulation. Detecting slip allows robotic systems to adjust their grasp strategies and 
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forces in real-time, ensuring that objects remain securely held (Yan 
et al., 2022; James and Lepora, 2021).

However, there are still some challenges. On the one hand, as 
sensor arrays become increasingly dense and sensing dimensions 
expand, traditional methods struggle to construct suitable models for 
detecting slippage. On the other hand, while previous research has 
made notable progress in slip detection for two\three-fingered robotic 
grippers (Chen et al., 2018; Romeo and Zollo, 2020), slip detection for 
five-fingered dexterous hands presents unique challenges because the 
complexity of grasp types that five-fingered hands can perform, as well 
as the need for algorithms that can generalize across a variety of object 
shapes, sizes, and materials.

In this study, we  present a solution to the problem of slip 
detection in five-fingered robotic hands Five-finger robotic hand can 
perform a wide range of grasp types, each with unique contact 
dynamics, making it challenging to develop a one-size-fits-all 
solution. To address this challenge, we  propose a Universal Slip 
Detection Framework for Different Grasp Types (USDFrame-DG), 
designed to handle the complexities associated with various grasp 
types and object properties. In summary, the main contributions of 
this work are as follows:

	(1)	 According to the reference document (Feix et al., 2016), six 
common and significantly different grasp types were selected, 
as shown in Figure  1. A large amount of grasp state data 
(no-touch, slip, no-slip) was collected during these six grasp 
types. The 16 objects used for grasping, as shown in Figure 2, 
are made from materials commonly found in daily life, such as 
plastic, steel, and wood.

	(2)	 A novel universal slip detection framework (USDFrame-DG) 
was proposed, focusing on efficiently collecting large-scale 
datasets and combing the frequency with time domains to 
achieve improved recognition performance.

	(3)	 To validate which network architecture is better suited to 
address this problem, we compared four classic classification 
methods: Support Vector Machine (SVM), Long Short-Term 

Memory (LSTM) network, Residual Neural Network (ResNet), 
and Transformer. According to the results of the comparison, 
a lightweight and efficient USDConvNet-DG was designed, 
achieving more than 97% accuracy on both the validation and 
test sets. This capability highlights the universality and 
generalization of the proposed framework.

	(4)	 We evaluated the performance of different methods, the 
contribution of various grasp types, and the performance of 
USDConvNet-DG trained with different numbers of grasp 
types. Additionally, we developed a physical demonstration 
system to showcase network’s ability to detect slip in real-time, 
as shown in Figure 1. Furthermore, we increased the object’s 
weight after achieving a stable grasp to verify whether the 
system can adjust the grasping force in real-time. Video 
demonstrations have been uploaded to the GitHub repository 
and are available at https://github.com/sunshine486/show.

2 Related works

Existing methods for detecting slippage during grasping can 
be divided into two categories: (1) analysis-based methods and (2) 
learning-based methods. Analysis-based methods typically identify 
grasp states using two key features: frequency and friction. Learning-
based methods usually involve collecting data on slip and no-slip 
states to train a classification model.

These are some representative works based on changes in friction 
force. The first, proposed by Claudio Melchiorri, detects slippage by 
comparing the ratio of friction force to grasp force with the coefficient 
of friction (Melchiorri, 2000). The second, introduced by Beccai et al. 
(2008), utilizes friction cones to achieve slip detection, but with a delay 
exceeding 20 ms both methods operate on similar principles. Another 
approach, proposed by Song and Liu, employs the Break-Away 
Friction Ratio (BF-ratio) to predict slippage during the grasping 
process (Song et  al., 2013). Although this method completes the 
prediction within just 4.2 ms, it requires 5–7 s to determine the 

FIGURE 1

Grasp types and grasp state visualization. USDConvNet-DG trained for application in real-world scenarios.
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friction coefficient through haptic surface exploration and has been 
validated in only three scenarios.

The signal spectra of slipping and non-slipping states are 
significantly different (Zhang et al., 2016). Specifically, when the grasp 
is stable, the signal primarily consists of low-frequency components; 
however, during slipping, the signal shifts to higher frequencies. 
Holweg et al. (1996) noted that the normal forces measured by the 
tactile sensor fluctuate at a certain frequency during slip due to the 
elasticity of rubber. Techniques such as Discrete Wavelet Transform 
(DWT) (Shensa, 1992) and Fast Fourier Transform (FFT) (Duhamel 
and Vetterli, 1990) have been employed to detect slip vibrations during 
robotic grasping. DWT is typically used for filtering, followed by a 
manually defined threshold to distinguish between slip and no-slip 
states (Zhang et al., 2016; Deng et al., 2017), making it more suitable 
for analysis-based methods. Zeng et  al. (2022) utilized Discrete 
Wavelet Transform (DWT) to extract high-frequency signals, which 
were then compared against predefined thresholds to achieve slip 
detection. Similarly, Yang and Wu (2021) divided the slipping process 
into two phases: the initial slip phase and the slip suppression phase, 
with detection thresholds estimated separately for each phase. Both 
studies were conducted using a prosthetic hand. It is worth noting that 
Romeo et al. achieved slip detection at the hardware level using filters 
and on–off circuits (Romeo et  al., 2021), which provides higher 
integration. However, adjusting thresholds and filters requires 
replacing components such as inductors and capacitors, making it 
challenging for non-technical users.

Analysis-based methods for slip detection generally rely on single 
touch areas, which overlook the spatial characteristics of different 
fingertips and the variations in touch areas caused by different grasp 
types. The slip detection performance of these methods is highly 
dependent on specific touch conditions. Consequently, parameters such 
as thresholds and filters lack generalization when applied to new contact 
scenarios introduced by a wide range of objects (Cui et  al., 2024). 
Moreover, manually setting these parameters is time-consuming and 
cumbersome, requiring a certain level of engineering expertise.

In learning-based methods, slip detection is commonly 
formulated as a binary classification problem (slip/non-slip). With the 
rapid advancements in machine learning and the growing diversity of 
tactile sensors, machine learning techniques have been increasingly 
applied to slip detection, resulting in impressive outcomes.

In the field of machine-learning-based slip detection, the work of 
James and Lepora (2021) is particularly noteworthy. They utilized a 
sensor array to calculate the rate of change of pin positions per frame 
and compared three distinct binary classifiers (Threshold Classifier, 
SVMs, and Logistic Regression), achieving promising results in real-
world scenarios.

In previous research, most studies are based on two-finger 
grippers and use LSTM network. Zhang et al. (2018) developed a 
novel optical-based tactile sensor (FingerVision), and proposed a 
sliding classification framework based on ConvLSTM (Convolutional 
Long Short-Term Memory) networks. Begalinova et  al. (2022) 
employed an LSTM model trained on low-cost tactile sensors and 
evaluated the model using a two-finger gripper. Xie et  al. (2023) 
employs LSTM networks for sliding detection and found that robotic 
grasping with slip detection has a success rate nearly 15% higher than 
grasping without slip detection. Fiedler et al. (2023) utilizes sliding 
detection based on a two-finger gripper to achieve grasping of textile 
objects. Yan et al. (2022) employed multimodal machine learning, 
combining visual and tactile information using a convolutional neural 
network-temporal convolutional neural network (CNN-TCN), 
achieving a detection accuracy of 88.7% for sliding detection with a 
two-finger gripper. James et al. (2018) used the TacTip sensor and 
Support Vector Machine (SVM) algorithm to classify sliding and 
stationary states, achieving an accuracy of 99.88%. However, this 
result was obtained only in structured environments, and the actual 
performance was not tested.

In addition, there are some studies based on five-finger robotic 
hands, but they have only achieved slip detection for a single grasp 
type. Zapata-Impata et al. (2019) utilized ConvLSTM to detect the 
direction of object sliding on the fingertip. The sensors used in the 

FIGURE 2

Grasp types and items for training the model. The first column represents the grasp type names. The second column indicates the grasping type for a 
human hand. The third column represents the corresponding grasping posture for the robotic hand. Columns 4, 5, 6, and 7 depict the items grasped 
for the corresponding grasp types.
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papers are BioTac, which is very expensive. Mi et al. (2021) propose 
two novel methods based on Graph Convolution Network (GCN) for 
robotic stability classification. Grover et al. (2022) train a temporal 
convolution neural network (TCN) to detect slip that achieves an 
accuracy of over 91% on average on validation dataset. These two 
methods are based on three-finger grippers. Garcia-Garcia et  al. 
(2019) constructed a graph neural network to predict the stability of 
grasping, but their work was based on three fingers. Deng et al. (2020) 
utilized sliding detection based on LSTM networks as feedback to 
control the grasping force.

The above studies demonstrate the effectiveness and robustness of 
learning-based slip detection methods utilizing tactile sensing. 
However, there remain several challenges in this field, as 
outlined below:

	(1)	 Traditional analysis-based methods require manual adjustment 
of thresholds and filters, which is not only time-consuming and 
cumbersome but also demands a certain level of 
engineering expertise.

	(2)	 Tactile sensors are becoming denser arrays, capable of 
perceiving multi-dimensional forces and more diverse sensing 
modalities. Analysis-based methods struggle to construct 
suitable mathematical models to handle this complexity.

	(3)	 Previous learning-based studies have primarily focused on 
grippers or two−/three-finger robotic hand platforms, which 
are limited to a single grasping style. In contrast, five-finger 
dexterous hands are capable of performing a wide range of 
grasp types, making slip detection significantly more complex. 
As shown in Table 1, models trained solely on state data from 
a single grasp type exhibit poor performance in detecting slips 
for other grasp types, indicating a lack of 
generalization capability.

	(4)	 Slip detection for five-finger robotic hands usually detect 
slippage in individual fingertip regions. This study treats across 
all five fingers as a whole for slip detection. However, this 
approach lacks sufficient datasets and requires further 
exploration of suitable network architectures.

In this study, we focus on universal slip detection for different 
grasp types. Inspired by prior work and integrating analysis-based and 
learning-based methods, we propose a novel slip detection framework 
and network.

3 Method

To achieve universal slip detection across different grasp 
types, we  propose a general slip detection framework: 
USDFrame-DG, as shown in Figure 3. The framework consists of 

four key components: Grasp Force Control Module, Data 
Collection for Six Grasp Types, Data Preprocessing, and Model 
Training, each of which will be detailed below. Over 200 k data 
samples covering slipping, stable grasping, and non-touch states 
were collected to train the models. The dataset for slipping and 
stable grasping states was collected using various grasp types and 
everyday objects, ensuring the model’s applicability to real-
world scenarios.

3.1 Hardware setting

The model of five-finger robotic hand used in our experiments is 
RH8D, designed by Seed Robotics, as shown in Figure 4. Inspired by 
the human hand, it is capable of performing essential grasp types, 
featuring tendon-driven mechanisms and underactuated design. The 
RH8D can be mounted at the end of a six-degree-of-freedom robotic 
arm and features 19 degrees of freedom, including an opposable 
thumb and a full spherical wrist joint. It’s three-segment fingers are 
powered by smart actuators housed entirely within the unit, offering 
payload capabilities (750 g in 3D space and 2.5 kg vertical pull). 
Inspired by the human hand, the RH8D provides advanced sensing 
and data acquisition on all actuated joints, including real-time 
feedback on position, speed, current, and PWM output. Additional 
features include a palm Time of Flight (ToF) distance sensor, optional 
capacitive touchpads for enhanced human-robot interaction, and 
reinforced design elements like Dyneema tendons and magnetic 
detachment for durability.

The Fingertips Tactile Sensors (FTS) used in this study are 3-axis 
force sensors designed for precise force measurement, as shown in 
Figure 4. These sensors measure forces along the X, Y, and Z axes and 
are optimized for forces in the 0–10 N range, offering a resolution of 
1mN. For higher forces (10–30 N), an extended range model is used, 
with a resolution of 10mN in this range. The sensors operate with a 
sampling frequency of 50 Hz and have an overload capability of up to 
50 N. Additionally, there is a 20mN offset when the sensors do not 
touch objects. The FTS works via an array of MEMS (Micro-
Electromechanical System) sensors, which are highly resistant to 
magnetic field interference. Noise levels are minimal (on the order of 
millinewtons), making the sensors well-suited for practical 
applications. The sensors are pre-calibrated and exhibit linear 
performance in the typical force range of 10°–30° and beyond. While 
fast temperature changes may cause slight drift (up to 100mN in 
extreme conditions), these effects are generally negligible in most 
scenarios. For more technical details on the sensor specifications and 
design, we refer readers to the Seed Robotics documentation and 
related resources.

3.2 Grasp types

The five-finger robotic hand offers a higher degree of freedom 
compared to two-finger and three-finger grippers, allowing it to 
generate many more grasp types. Feix et al. (2016) summarized 33 
common grasp types used by humans, which can be grouped into six 
categories. When considering only hand configuration, without taking 
into account object shape or size, these 33 grasp types can be reduced 
to 17 more general types. Although the RH8D features 19 degrees of 

TABLE 1  Accuracy of USDConvNet-DG trained with varying numbers of 
grasp types.

Grasp 
types

1 2 3 4

Training 

dataset

A, B, C, D AB, AC, AD, 

BC, BD, CD

ABC, ABD, 

ADC, BCD

ABCD

Accuracy 45.1 ± 6.12% 80.7 ± 6.43% 93.7 ± 2.92% 95.7 ± 2.41%
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freedom, human hands possess 27 degrees of freedom (Agur and 
Dalley II, 2023), meaning the RH8D is unable to perform all the grasp 
types like human.

We initially collected slip and non-slip data for one grasp type and 
used this data to train a USDConvNet-DG model. The recognition 
accuracy exceeded 96% for the trained grasp type (A), but dropped 
below 70% for another grasp type (E). Although the model showed 
some generalization ability, its accuracy was insufficient for adjusting 
grasp force and strategy. Surprisingly, we discovered that it wasn’t 
necessary to collect sliding data for all 33 grasp types. By gathering 
data for a few significantly different grasp types, the model could 
generalize effectively to other grasp types.

In the end, we selected four significantly different grasp types that 
the robotic hand could perform, as shown in Figure 2. These four 
types are suited for various scenarios: “Wrap (A)” for grasping long 

and large objects, “Lateral (B)” for flat objects, “Pinch (C)” for small 
and delicate objects, and “Tripod (D)” for smaller objects. The 
remaining two grasp types (E and F) are used to test generalization.

In our experiment, we chose 16 common items to collect grasping 
data, as shown in Figure 2. The weight of these objects ranged from 
10 g to 300 g, and the materials included plastic, metal, wood, paper, 
and other commonly encountered substances.

3.3 Grasp force control

A PID (Proportional Integral Derivative) controller with a dead 
zone is used to control the robotic hand’s grasping force. The grasping 
force of each finger can be controlled individually. As shown in the 
Figure 5. ( )If i  represents the aim grasping force, and ( )pf i  represents 
the synthesis of the three-directional force detected by the FTS, 
calculated as follows:

	 ( ) 2 2 2
p x y zf i f f f= + +

The difference between ( )If i  and ( )pf i  is denoted as ( )re i . To 
prevent oscillation of the robotic hand during grasping, the range of 
change in ( )re i  needs to be limited, as shown in the following formula. 
After multiple tests, setting the threshold 𝑡ℎ𝑟 to 150mN was the 
most suitable.

	
( ) ( ) ( )

( )
0.01 r r

r

e i if e i thr
e i

e i else
 <= 


The value 𝑢 is obtained from the PID controller, which represents 
the flexion degree of each finger (range: 0–4,095). The formula is 
as follows:

FIGURE 3

USD Frame-DG: universal slip detection framework for different grasp types.

FIGURE 4

RH8D adult robot hand and FTS-3.
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After extensive testing, the most suitable values for pK , iK  and dK  
were found to be 0.4, 0.04, and 0.5, respectively.

3.4 Data collection

In this work, slip detection is treated as a classification problem 
with three categories: no-touch, no-slip, and slipping. Deep learning 
methods rely on large amounts of data. It is easy to collect data for the 
no-touch and no-slip states, but collecting enough data for the slipping 
state is challenging because it occurs in an instant. Data from the FTS 
is directly saved as no-touch when no object is being grasped. During 
stable grasps of six types, the collected data belongs to the no-slip 
category. We tried two methods to deal with the challenge of collecting 
slipping data.

The first method involves slowly pulling out the object after the 
robotic hand has stably grasped it. Approximately 2000 data points 
can be collected within 5 s when the sampling rate is set to 50 Hz. 
Although training a network with this data results in high accuracy 
on the validation set, its performance on the test set and in real-world 
applications is poor. Through continuous reflection and analysis, 
we  found that the abrupt change in force during slipping is the 
key feature.

To capture this feature, we  proposed another data collection 
method: after the robotic hand grasps the object, an external force is 
applied by hand to move the object back and forth quickly in the 
direction shown in Figure 1. This allows for the rapid collection of a 
large amount of slipping data, making it possible to use neural 
network-based classification methods. The final test results 
demonstrated significant improvements. We believe that this method 
can also be used to quickly collect a large amount of effective slipping 
data for robotic hands equipped with other types of sensors. For grasp 
types A, B, C, and D, the data is used for training and validation, while 
grasp types E and F are used for testing to evaluate the generalization 
of the detection model.

3.5 Data preprocessing

Each data record comprises 15 measurements, corresponding to 
the force components along three axes (X, Y, Z) for each of the five 
fingers. Noise removal from the dataset is manually performed, with 

particular attention given to the initial and final segments of the data 
sequences. To maintain sample balance, excessively long sequences are 
trimmed. Once processed, the data is ready to construct the training 
and test sets. The final dataset includes over 200,000 scalar data points 
sampled at a frequency of 50 Hz.

Since the collected data represents time series information with 
inherent periodicity and autocorrelation characteristics, training the 
model using a single data record results in suboptimal performance. 
Instead, combining multiple adjacent data records into a single 
sample is more effective, as it enables the system to observe force 
variations over a period of time, which is crucial for detecting 
slippage. However, using an excessively long observation period 
compromises real-time performance. After conducting extensive 
tests, we found that using a stride of 1 and combining 16 adjacent 
data records into a 16 × 15 array yields the best practical results. For 
example, if 2000 data points are collected in one session, the first 16 
records form the first array, the second to the 17th records form the 
second array, the third to the 18th records form the third array, and 
so on, until the final 16 records form the last array. This structure also 
facilitates the application of FFT analysis.

In the collected slipping dataset, a small portion of noise is 
difficult to manually remove, which can significantly affect the trained 
model. A high-pass filter is used to preprocess the slipping data 
because the frequency of the slip signal is higher. The calculation 
formula is as follows:

	 ( ) ( ) ( )y i 0.2x i 0.8y i 1= − −

( )x i  represents the i-th array. By applying a filtering method, the 
model’s accuracy improved to a certain extent. Since an object 
generates vibrations during slipping, there is a distinctive spectral 
distribution in the frequency domain that can be used as a feature 
for training the model. A Fast Fourier Transform (FFT) is applied 
individually to each column of the data, resulting in a 16 × 15 
matrix. This matrix is then combined with the filtered time-domain 
matrix, producing a 32 × 15 matrix where the first 16 rows represent 
the frequency domain, and the last 16 rows represent the 
time domain.

Labels in a one-hot format are assigned based on the grasping 
states: [1,0,0] for no-slip, [0,1,0] for slip, and [0,0,1] for no-touch. A 
total of 177,555 matrices (A, B, C, and D) are randomly divided into 
training and validation sets in an 80%:20% ratio, while 26,329 matrices 
(E and F) were reserved for testing, as shown in Table 2. The ratio of 

FIGURE 5

Grasp force control module.
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the three classes—no-touch, slip, and no-slip—is approximately 
24%:38%:38%.

3.6 Network architecture

For slip detection, different types of sensors generate different data 
types, so there is no single model that fits all sensors. To address this, 
we  designed four three-classification algorithms based on four 
classical models (SVM, LSTM, Residual Convolutional Neural 
Network and Transformer). These three categories are sliding, 
non-sliding, and no-touch. Below, we will describe these four models 
in detail.

Based on the SVM (Cortes and Vapnik, 1995) method: As shown 
in the Figure 6A, two support vector machines were trained to achieve 
the three classifications of “no-touch” “no-slip” and “slip.” Because 
both “no slip” and “slip” indicate contact with an object, these two 
categories belong to “touch.” Therefore, the first support vector 
machine is used to recognize whether there is contact (“touch”), the 
second support vector machine detects sliding within the “touch” 
category.

Based on the LSTM (Hochreiter and Schmidhuber, 1997) 
model, as shown in Figure 6B: Inputting a 16×15 array, it passes 
through an LSTM network, a flattening layer, two fully connected 
layers, and finally outputs the probabilities of belonging to each 
category. The hidden layer dimension and the number of recurrent 
neural network layers in the LSTM network are both set to 10. 
During testing, we observed that increasing the size of the LSTM 
network initially increased the classification accuracy, but then 
decreased. The best performance was achieved when the hidden 
layer dimension and the number of recurrent neural network layers 
reached 10. However, when the number of layers reached 50, the 
accuracy dropped to 56%.

Based on the ResNet18 (He et  al., 2016) model, as shown in 
Figure 6C: Compared to the standard ResNet18, the number of input 
channels in the first convolutional layer has been reduced from three 
to one, and the output dimensions of the final fully connected layer 
have been adjusted from 1,000 to 3 to match the classification task. 
The rest of the architecture remains unchanged.

Based on the Transformer (Vaswani et al., 2017) model, as shown 
in Figure 6D: The input to the model is a 16×15 array. An average 
pooling layer and a fully connected layer are added after the 
Transformer. The best performance is achieved when both the encoder 
and decoder consisting of a single layer.

Although ResNet18 achieved over 99% accuracy on the validation 
set, its accuracy just reached 70% on the test set, which is unacceptable 
for practical applications. ResNet18 has over 10 million parameters, 
which does not match the scale of our training dataset. Therefore, as 
shown in Figure  7, we  designed USDConvNet-DG based on the 
design principles of ResNet18:

	(1)	 Residual connections: these connections help mitigate the 
vanishing gradient problem in deep networks, allowing more 
efficient gradient flow and facilitating the training of 
deeper architectures.

	(2)	 Hierarchical feature extraction: ResNet18 employs a 
progressively deeper hierarchical structure, extracting features 
from lower to higher levels through multiple convolutional 
layers. Similarly, USDConvNet-DG adopts a block-based 
design, where each block consists of multiple convolutional 
operations, enabling finer feature extraction while enhancing 
the network’s representation capacity.

	(3)	 Batch normalization (BN): USDConvNet-DG retains BN layers 
after each convolution, standardizing data distribution to 
accelerate convergence, reduce the risk of gradient vanishing, 
and stabilize the training process for slip detection.

	(4)	 Multi-scale feature integration: ResNet18 integrates multi-scale 
features through residual blocks and layer-wise feature 
extraction. USDConvNet-DG combines multi-layer 
convolution and residual connections to effectively extract 
multi-scale features across different grasp types and contact 
states, improving performance in slip detection tasks.

The network takes a 2D input, which is processed by a series of 
convolutional layers. The first layer is a Conv2d (2D convolution) 
followed by Batch Normalization and a ReLU activation function 
being followed by MaxPooling, which reduces the spatial dimensions 
of the feature map. After multiple tests, we found that four blocks are 
the most suitable. Each block consists of two convolutional layers 
(Conv2d) with Batch Normalization. The blocks represent different 
levels of feature extraction with increasing depth, and contributing to 
a more complex and rich feature representation. The feature map is 
then flattened and passed through a fully connected layer 
(FullConnection), which helps in classification. The final layer outputs 
one of the three categories: slip, no-slip, or no-touch. 
USDConvNet-DG achieved a maximum accuracy of 97% on the 
test set.

3.7 Training

Furthermore, all tactile sensing, slip detection networks, and 
robotic five-finger hand control algorithms are executed on a PC 
equipped with an Intel Core i7-12700K processor (3.60 GHz, 12 cores, 
20 threads) and an NVIDIA RTX 3080 Ti GPU. The codes are 
implemented using PyTorch and Python, running on the Windows 11 
operating system.

4 Results

This section primarily discusses related test results based on 
different methods. The result is based on four trained grasping 
gestures. Overall, the recognition accuracy for the “no-touch” state is 
higher than other two categories. The classification performance of the 
method based on USDConvNet-DG is the best, while the performance 
of SVM method is poorest.

The performance of different models as shown in Table 3, which 
provides a detailed comparison in terms of accuracy on the validation 

TABLE 2  Class distribution of grasp states across different grasp types.

Grasp 
type

A B C D E F Total

Slip 15,448 16,512 16,752 16,137 6,643 6,587 78,079

No-slip 15,948 15,538 15,987 16,392 6,513 6,586 76,964

No-touch 48,841 48,841
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dataset (grasp types A, B, C, D) and the test dataset (grasp types E and 
F), prediction time, and the number of parameters. We selected the 
highest accuracy from the 24 epochs, then averaged and calculated the 
standard deviation of the ten accuracy values. Given the high demand 
for real-time performance in slip detection, we  also tested the 
prediction time of various methods.

The SVM-based classification method had the shortest prediction 
time, only 0.08 ms, but with low accuracy. When the number of 
parameters reaches the scale of 10 million, the LSTM and Transformer 
models achieve approximately 63% accuracy on the validation dataset 
and 43% on the test dataset, which is about 30% lower than the 
accuracy of ResNet18. Particularly, the prediction time of the 
Transformer exceeds 129.55 ms, which is unacceptable for real-time 
tasks. Additionally, both LSTM and Transformer exhibit slow 
convergence. The original LSTM lacks residual connections, so 
multiple LSTM layers can lead to gradient vanishing issues, making it 
difficult to converge. Moreover, slip detection primarily focuses on 
local changes in force tactile data, such as short-term high-frequency 
features. While the self-attention mechanism of the Transformer is 
applied to capture global long-range dependencies, this capability may 
not align well with the requirements of slip detection tasks. The 
complexity of the Transformer may introduce unnecessary 
computational overhead, whereas convolutional networks are more 
straightforward and effective for this application.

The ResNet-based classification method has very high 
accuracy on the validation dataset, but its prediction time is the 
longest, with over 10 million parameters, making its scale too large 
to be  conveniently integrated into a robotic hand. Thus, 
we attempted to decrease the number of parameters for ResNet 
network. We found that the accuracy on the validation dataset 
decreased by less than 1% when the parameter exceeded 40 k. 
However, reducing the parameters further resulted in a more 
pronounced decrease, with accuracy dropping by more than 5%. 
Specifically, when the parameters are reduced to approximately 
2 k, the accuracy on the training dataset decreased by around 4%, 
but the accuracy on the test dataset improve to 77.38%. These 
findings suggest that a smaller parameter count may enhance 
generalization on the test dataset, though it slightly compromises 
performance on the training and validation datasets. This 
phenomenon is known as “DEEP DOUBLE DESCENT,” which is 
common in ResNet and convolutional networks (Nakkiran 
et al., 2021).

The combination of FFT and filtering with USDConvNet-DG 
yields the best overall results, with over 97% accuracy on validation 
dataset and test dataset. These results provide stronger evidence that 
the network demonstrates robust generalization across diverse grasp 
types, not limited to the initially trained or tested categories. This 
model maintains a short prediction time (1.26 ms) and the same low 

FIGURE 6

Four classical architectures for slip detection models: (A) based on SVM model, (B) based on LSTM model, (C) based on ResNet model, (D) based on 
Transformer model.
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number of parameters (2,395), making it the most effective and 
efficient model among those tested.

Figure 8 presents the performance of different models on the 
validation and test dataset. The epoch was set to 24. The six methods 
are tested ten times, and the accuracy of each epoch was averaged to 
capture the overall trend. The following observations can be made:

The accuracy of all models is higher on the validation set than on 
the test set, and exceeds 90%. For validation, LSTM performs worst, 
and the accuracy of the Transformer gradually increases to around 
90% as the number of epochs increases. However, both models only 
achieve about 60% accuracy on the test dataset, showing weak 
generalization in this problem and struggling to generalize well to 

FIGURE 7

USD ConvNet-DG: universal slip detection convolutional network for different grasp types.

TABLE 3  Quantitative comparison of different methods

Model Accuracy Prediction time Parameters

Validation dataset Test dataset

SVM 62.81 ± 1.03% 51.34 ± 3.24% 0.08 ms <100

LSTM 91.24 ± 1.40% 65.69 ± 4.85% 1.30 ms 10,163

63.38% 42.85% 12.26 ms 10,630,403

Transformer 96.09 ± 0.89% 68.38 ± 2.35% 1.57 ms 129,499

63.33% 42.76% 129.55 ms 11,034,156

ResNet 99.67 ± 0.06% 78.35 ± 5.27% 2.66 ms 11,171,779

99.84 ± 0.06% 75.10 ± 5.50% 2.12 ms 709,155

99.14 ± 0.20% 72.71 ± 6.72% 1.66 ms 47,499

95.75 ± 0.67% 77.38 ± 10.54% 1.23 ms 2,305

ResNet18 + FFT + Filter 99.02 ± 0.11% 97.09 ± 1.40% 2.66 ms 11,171,779

USDConvNet-DG 97.07 ± 0.18% 86.46 ± 9.58% 1.26 ms 2,395

USDConvNet-DG + FFT 97.78 ± 0.20% 96.65 ± 1.34% 1.26 ms 2,395

USDConvNet-DG + Filter 97.02 ± 0.32% 89.62 ± 4.25% 1.26 ms 2,395

USDConvNet-DG + FFT + Filter 97.71 ± 0.29% 97.12 ± 1.08% 1.26 ms 2,395
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untrained grasp types. ResNet shows the highest accuracy on the 
validation set, and its accuracy on the test set is about 10% higher. 
The USDConvNet-DG we  propose performs slightly lower than 
ResNet on the validation set, but it outperforms ResNet on the test 
set. When applying FFT and filtering to ResNet, the validation 
accuracy remains consistently high, and the test accuracy improves 
compared to using ResNet alone.

When FFT is used to preprocess the training data, the test 
accuracy of USDConvNet-DG improves significantly. The 
improvement is relatively smaller with filtered data. Overall, 
combining FFT and filtering with USDConvNet-DG results in the 
most stable and high accuracy on the test dataset, closely approaching 
the validation accuracy. This model appears to effectively balance 
feature extraction and generalization, making it the most robust 
among the tested configurations.

It is worth exploring whether the data collected from different 
grasp types contributes differently to universal slip detection. 
Therefore, we designed a controlled experiment as follows: five of the 
six grasp types were used to train the model, and the remaining one 
was used to test the model to obtain the accuracy. The test results for 

the six grasp types are shown in Table 4. The accuracy is lower when 
Type A is not included in the training set, indicating that Type A 
contributes more to universal slip detection.

Table 1 shows the accuracy of USDConvNet-DG with varying 
numbers of grasp types. The test dataset consists of Grasp Types E and 
F, and the number of epochs is set to 20. As the grasp type is 1, the 
model was trained separately on the four training sets (A, B, C, D). The 
test was repeated five times. Finally, the average and standard deviation 
of the 20 accuracy results were calculated. When the grasp type is 2, the 
training dataset is a combination of two grasp types. The model was 
trained separately on the six training sets (AB, AC, AD, BC, BD, CD), 
and the accuracy improved significantly. When the grasp type is 3, the 
training dataset consists of three grasp types. When the grasp type is 4, 
all four grasp types together form a single training dataset, and the 
improvement in accuracy is minimal. Overall, with the number of 
grasp types increases, the accuracy on the test dataset improves.

To test the effectiveness of recognizing tactile events locally (i.e., per 
fingertip), we trained USDConvNet-DG using individual sensor data 
(3 × 16 arrays). Each fingertip was independently detected whether 
slippage occurred. If any one of the five fingertips detected slippage, the 

FIGURE 8

Performance of learning-based method during training.
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system classified the event as slippage; otherwise, it was classified as no 
slippage. The results showed that the model’s accuracy decreased to 
93.48% on the training dataset and 80.58% on the test dataset. 
Additionally, the computation time increased to 5.34 ms because the 
detection process was repeated five times to evaluate the tactile events 
for all five fingertips individually. These findings indicate that considering 
all five fingertips as a whole is more effective than recognizing tactile 
events locally. Treating the five fingertips as a unified system not only 
improves the model’s accuracy but also reduces computational overhead.

We applied 5-fold cross-validation to measure the accuracy for all 
six types, where the datasets for all six grasp types and the no-touch 
state were randomly and evenly divided into six groups. One group 
was used as the test set, while the other five groups were used for 
training and validation. The test was repeated five times. The accuracy 
on the validation set is 97.60%, with a standard deviation of 1.06%. 
The accuracy on the test set is 97.15%, with a standard deviation of 
1.05%. These results provide evidence that the network demonstrates 
robust generalization across diverse grasp types.

Overall, the USDConvNet-DG model combined with FFT and 
filtering demonstrates the best generalization on the test set while 
maintaining high validation accuracy and short computing time, 
suggesting that this configuration is the most effective for slip 
detection in this experiment.

Moreover, we designed two groups of physical experiments to test 
the accuracy and real-time performance of USDConvNet-DG in real-
world scenarios. In one group, the grasp state was detected in real-
time while external force was applied to the object. In the other group, 
the grasping force was increased (from 100mN to 700mN) upon slip 
detection, demonstrating that the force adjustment could be completed 
with the object slipping by less than 1 cm. However, there were still 
limitations in accurately detecting minimal contact and slight slippage. 
For instance, slight slippage around the 6-s mark in Video 1 was not 
detected, and the contact state was misclassified in Video 3 due to 
minimal contact. Additionally, a clear delay existed between the end 
of slip and switching back to the no-slip state, as robotic hand 
re-established a stable state after detecting slippage. Video 
demonstrations are available at https://github.com/sunshine486/show.

5 Conclusion

Overall, this work presented a novel framework, USDFrame-DG, 
that performs slip detection across different grasp types for a five-
fingered robotic hand equipped with integrated 3-axis force sensors. The 

proposed framework achieved this by utilizing a large dataset of various 
grasp types to train models, enabling it to detect slip across a wide range 
of untrained grasp types. It is found that the accuracy on the test 
gradually improve as the number of grasp types in the training set 
increased. To identify the most suitable network for universal slip 
detection, we designed three deep networks based on three classic deep 
learning models. Then, a lightweight network called USDConvNet-DG 
was designed based on the structure of the best-performing ResNet18. It 
has fewer parameters, shorter computation time, and no significant drop 
in accuracy. Using FFT and a digital high-pass filter for data 
preprocessing facilitated the extraction of spectral features and reduced 
low-frequency noise, significantly improving recognition accuracy. 
Physical experiments were conducted to demonstrate that the proposed 
framework can quickly detect the state of a grasp and adjust grasp force 
in real-time. These experiments also demonstrated that the ability to 
detect slip serves as a useful and reliable metric for determining grasp 
stability. Future research will focus on three aspects: First, we will explore 
the implementation of our framework on robotic hands with varying 
numbers of fingers and a diverse range of sensors. Second, the framework 
can be applied to adjust grasp strategies to achieve grasp stabilization. 
Third, a robotic hand equipped with slip detection should be capable of 
grasping unknown objects using minimal force while preventing them 
from slipping or being dropped.
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Type A Type B Type C Type D Type E Type F

LSTM 56.73% 67.73% 65.35% 68.28% 66.31% 64.39%
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TS-Resformer: a model based on 
multimodal fusion for the 
classification of music signals
Yilin Zhang *

Dalian University of Foreign Languages, International Art College, Dalian, China

The number of music of different genres is increasing year by year, and manual 
classification is costly and requires professionals in the field of music to manually 
design features, some of which lack the generality of music genre classification. 
Deep learning has had a large number of scientific research results in the field 
of music classification, but the existing deep learning methods still have the 
problems of insufficient extraction of music feature information, low accuracy 
rate of music genres, loss of time series information, and slow training. To address 
the problem that different music durations affect the accuracy of music genre 
classification, we form a Log Mel spectrum with music audio data of different 
cut durations. After discarding incomplete audio, we design data enhancement 
with different slicing durations and verify its effect on accuracy and training time 
through comparison experiments. Based on this, the audio signal is divided into 
frames, windowed and short-time Fourier transformed, and then the Log Mel 
spectrum is obtained by using the Mel filter and logarithmic compression. Aiming 
at the problems of loss of time information, insufficient feature extraction, and 
low classification accuracy in music genre classification, firstly, we propose a Res-
Transformer model that fuses the residual network with the Transformer coding 
layer. The model consists of two branches, the left branch is an improved residual 
network, which enhances the spectral feature extraction ability and network 
expression ability and realizes the dimensionality reduction; the right branch uses 
four Transformer coding layers to extract the time-series information of the Log 
Mel spectrum. The output vectors of the two branches are spliced and input into 
the classifier to realize music genre classification. Then, to further improve the 
classification accuracy of the model, we propose the TS-Resformer model based 
on the Res-Transformer model, combined with different attention mechanisms, and 
design the time-frequency attention mechanism, which employs different scales 
of filters to fully extract the low-level music features from the two dimensions 
of time and frequency as the input to the time-frequency attention mechanism, 
respectively. Finally, experiments show that the accuracy of this method is 90.23% 
on the FMA-small dataset, which is an improvement in classification accuracy 
compared with the classical model.

KEYWORDS

music genre classification, Fourier transform, residual network, transformer, attention 
mechanism

1 Introduction

With the popularization of the Internet and the development of artificial intelligence, the 
medium of music is no longer confined to records or tapes, but digital media such as cell 
phones, computers, mp3, and so on. Digital media and streaming platforms have provided 
strong support for the music industry, and a huge amount of music tracks have been made 
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available to more and more people through diversified communication 
media, allowing them to access their favorite music anytime and 
anywhere. After 2015, the global music industry has entered the digital 
era. As of December 2023, China’s Internet penetration rate has 
reached 76.4% (Zhai and Luo, 2025). Thanks to the popularization of 
the Internet, the music industry has had better development. The 
global music streaming market size grew from about $15 billion in 
2015 to about $43 billion in 2020, with a CAGR of about 23%. On this 
trend, the global music streaming market size will reach USD 82 
billion by 2025. This growth trend is mainly driven by factors such as 
digitalized music consumption methods and the popularity of mobile 
internet. At the same time, competition among music streaming 
platforms is becoming more and more intense, with platforms 
constantly introducing new features and services to attract more users 
and increase user retention. In future development, music streaming 
media should not only provide high-quality audio services to attract 
more users but also apply artificial intelligence technology to introduce 
more intelligent recommendation systems and personalized services 
to improve user experience. There are various styles of music, and 
different genres have different audiences. Accurate identification of 
the genre for a new music track is a highly concerning issue, directly 
affecting the effectiveness of recommendation and user satisfaction. 
The traditional music genre classification method is mainly realized 
by manual classification, and the classifiers need to have high 
professional quality in music. Therefore, traditional music 
classification has the following drawbacks:

	(1)	 Not suitable for large-scale datasets.
	(2)	 The feature extraction method is complex and requires the 

designer to have a high level of expertise in music.
	(3)	 The feature extraction method lacks generalization, and 

different classification tasks need to compute music features 
separately and individually.

Therefore, there is a need for a music genre classification model 
with high accuracy, which utilizes the powerful arithmetic power of 
computers to achieve automated classification. In recent years, neural 
networks have made impressive achievements in image recognition, 
optimizing the tedious step of manually designing features in 
traditional machine learning and providing a new direction for music 
genre classification. Applying neural networks to the music genre 
classification task has much room for development, and deep learning 
technology provides theoretical support for it. The research on music 
genre classification methods based on deep learning mainly has the 
following problems:

	(1)	 The current research mainly analyzes the overall accuracy rate 
of all categories in the dataset, ignoring the lower accuracy rate 
of individual genre music classification.

	(2)	 Music has a strong time-series relationship, and the serial 
model architecture design has the problem of losing time-
series information.

To address the above problems, we  analyze and improve the 
model, and the main contribution consists of the following aspects:

	(1)	 For data processing, we design a cut-score method to cut music 
audio into different time durations. Experimentally, we analyze 

the effect of different time lengths on classification accuracy 
and training time, select the applicable cut time length for 
music, and realize data enhancement. The audio signal is 
converted to Log Mel spectrum by short-time Fourier change, 
Mel scale filter, and logarithmic compression. Compared with 
other features, the Log Mel spectrum fully preserves the 
characteristic information of the musical work by describing 
the energy intensity of the audio signal and the distribution of 
information in the time and frequency domains.

	(2)	 In terms of network model design, Res-Transformer, a parallel 
music genre classification model based on residual network 
and Transformer coding layer, is proposed, with the following 
design idea: unlike ordinary audio, music has a strong time-
series relationship. Existing serial architectures use RNNs as 
temporal summarizers to extract time-series information, and 
their performance depends largely on the results of previous 
convolutional layers, and the time-series information of the 
original music is partially lost during the convolution process, 
resulting in unsatisfactory classification accuracy. To preserve 
the spatial characteristics and temporal order of the original 
music samples, the Transformer Encoder is used to extract the 
time series information of the music directly from the Log Mel 
spectrum. The RNN network predicts the frequency changes 
based on the neighboring time steps, while the Transformer’s 
multi-head self-attention layer enables the network to look at 
multiple previous time steps when predicting the next time 
step, which is better than the RNN. The effect is superior to 
RNN. Improve the residual network to enhance music genre 
feature extraction while avoiding gradient vanishing, add 1 × 1 
convolution kernel in the jump connection to achieve 
dimensionality reduction, and introduce nonlinear 
transformations to increase the expressive power of 
the network.

	(3)	 In terms of model optimization, a parallel music classification 
model TS-Resformer is proposed based on the fusion of time-
frequency and channel attention mechanisms in the residual 
network and Transformer coding layer. By adding the designed 
time-frequency attention mechanism in front of the residual 
module, the convolution adopts the different scales of filters to 
capture the features from the two dimensions of time and 
frequency, respectively. Experimenting with different scale 
convolution kernels for categories with low classification 
accuracy, the shapes of the two filters were analyzed and 
determined. After the time-frequency convolutional features 
are extracted and input into the time-frequency attention 
mechanism respectively, the feature map with time-frequency 
weights is formed by feature fusion.

2 Related work

Music is created by the inspiration of human beings, different 
combinations of instruments and different vocal choruses form a 
unique musical repertoire, and each song has a unique melody, 
rhythm, timbre, and other artistic elements, which are far different 
from ordinary audio. Music Genre Classification (MGC) is one of the 
branches of Music Information Retrieval (MIR), which is mainly used 
to classify different music genres.
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As a classification task, Music Genre Classification mainly 
includes three steps:

	(1)	 Data preprocessing, which prepares for the next step of feature 
extraction by processing the original audio.

	(2)	 Feature extraction, which extracts the features that represent 
the information of music genres.

	(3)	 Classification, the extracted audio feature vectors are input into 
the classifier to realize music genre classification.

The results of traditional music classification scientific research 
are mainly reviewed from two perspectives: feature extraction and 
classification model.

In terms of feature extraction, traditional music classification 
extracts handmade features from the original audio signal. Arabi and 
Lu (2009) introduced chordal features in the process of feature 
extraction to better represent the characteristics of the music signal 
and combined them with low-level music features, using a support 
vector machine as a classifier, and experiments proved that combining 
low-level music features with high-level music features can improve 
the classification accuracy rate The paper is a comprehensive study of 
the classification of chord features in songs. The paper extracts chord 
features by counting the root notes of chords in each song, which is 
computationally complex and cannot realize end-to-end music 
classification. Logan (2000) proposed the Mel-Frequency Cepstral 
Coefficient (MFCC) and experimentally demonstrated the importance 
of the MFCC features in the field of audio recognition and the 
importance of the MFCC features in the field of music retrieval. And 
experimentally demonstrates the importance of MFCC features in the 
field of audio identification and its advancement and applicability in 
the field of music retrieval. Based on MFCC features, Baniya et al. 
(2014) used wavelet decomposition-based timbre texture (MFCC and 
other spectral features) and rhythmic content features to improve the 
performance. The paper retains the features that are useful for 
classification and discards those that are not effective, but there is a 
possibility of misclassification in the manual selection of features. 
Sarkar and Saha (2015) use empirical pattern decomposition to 
capture local features of different genres, and then compute pitch-
based features from the decomposed songs, but the pitch features 
alone do not adequately characterize the musical features, and the 
method is only suitable for simple classification of music genres.

In terms of music classification models, Tzanetakis and Cook 
(2002) realized music classification by several models such as the 
Gaussian classifier, Gaussian mixture model (Duda et al., 2012) and 
K-nearest neighbor and the input features are hand-designed rhythmic 
content, pitch, and timbre features. This paper achieved the automatic 
classification of music genres earlier but did not design classification 
models for music features. Xi et al. (2004) extracted inverted spectral 
domain features of music, performed feature engineering to extract 
discriminative music features and achieved classification through 
Hidden Markov Models, but such models need to appropriately adjust 
the complexity of the model to avoid overfitting. Ali and Siddiqui 
(2017) used Principal Component Analysis to compare the 
performance of KNN vs. Support Vector Machines (SVMs) using 
Principal Component Analysis (PCA), and without dimensionality 
reduction, KNN and SVMs perform well, and SVMs are more efficient.

In addition, Sturm (2012) analyzed the GTZAN dataset, which is 
widely used in the field of music genre classification, and 

experimentally proved that this dataset has the problem of missing 
labels and errors, and the experimental results obtained on this dataset 
in the past are not accurate.

Deep learning models can achieve end-to-end learning, i.e., the 
complete learning process from the original data to the final prediction 
result, simplifying the design and optimization process of the system 
and improving the overall efficiency of the model. In recent years 
neural networks have gained great success in the fields of computer 
vision as well as speech recognition, and the field of music information 
retrieval has also begun to widely use deep learning neural networks 
(Orjesek et al., 2022; Ostermann et al., 2023) to realize end-to-end 
music genre classification (Solanki and Pandey, 2022; Lin, 2022). For 
deep learning music classification methods are mainly introduced in 
terms of feature extraction, network model, and attention mechanism.

In terms of feature extraction, researchers have investigated a 
variety of audio feature extraction methods. Pelchat and Gelowitz 
(2020) reviewed some of the machine learning techniques used in the 
field, utilizing spectrograms generated from song time slices as inputs 
to a neural network. Spectrograms contain information about multiple 
musical features, which facilitates model training. Chen et al. (2024) 
achieved 68.78% accuracy on the FMA-small dataset by using a CNN 
with residuals in series with bi-GRU, and Mel spectrograms as inputs 
were better compared to acoustic spectrograms obtained from short-
time Fourier transform. Traditional MGC methods only consider 
audio information or lyrics information, which leads to unsatisfactory 
recognition results. Li et al. (2023) proposed a multi-modal music 
genre classification framework that integrates audio information and 
lyrics information. The framework uses a convolutional neural 
network to extract audio features from the Mel spectrogram while 
obtaining a distributed representation of the lyrics. The two modal 
information is fused through two different strategies, feature level, and 
decision level, but this approach increases the computation time.

Deep learning network models mainly utilize the strong 
recognition ability of convolutional networks on image information 
to achieve music genre classification. Zhang et al. (2016) proposed a 
CNN model that combines residuals with maximum-minimum 
pooling to provide higher statistical information for neural networks, 
but this model does not take into account the time-series information 
of the music. Choi et  al. (2017) proposed a two-dimensional 
convolutional recurrent CRNN model the convolutional layer extracts 
features followed by a recurrent and fully connected layer to perform 
the classification task. This model is popular and many variants have 
evolved from it. Yang et  al. (2020) parallelized CNN and RNN 
networks to process the inputs, allowing the RNN network to process 
the original spectrogram instead of processing the output of the CNN 
but suffered from insufficient feature information extraction. Vaibhavi 
and Krishna (2021) demonstrated the effectiveness of the CRNN in 
exploiting the spatial feature extraction capability of CNN and the 
RNN summarization time of the RNN in the GTZAN dataset. The 
capability of CNNs and the ability of RNNs to summarize temporal 
patterns (Verma et  al., 2023). Kostrzewa et  al. (2021) proposed 
multiple integrations of CNNs, RNNs, and CRNNs to combine the 
advantages of different deep neural network architectures, and 
evaluated this approach on the FMA-small dataset, obtaining an F1 
score of 54.9%.

Incorporating the attention mechanism in the model and utilizing 
the attention mechanism to further improve the accuracy of music 
classification is one of the more popular research directions in recent 
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years. Zhuang et  al. (2020) proposed a method to achieve music 
classification using a Transformer classifier without using loop and 
convolutional structure and achieved 76% accuracy on the GTZAN 
dataset, which is not ideal. Prabhakar and Lee (2023) utilized a 
classifier with a graphical attention model to improve image 
processing, image attention network can automatically learn 
important regions and features in an image to improve the 
effectiveness of an image processing task. By weighting different 
regions in the image, the network can pay more attention to the 
important information. Khasgiwala and Tailor (2021) learned different 
levels of self-attention, i.e., learning to find relationships between 
different parts of the image by Vision Transformer X by retaining the 
positional information of the features in the image, comparing CNN, 
RNN-LSTM, Vision Transformer X on FMA. Wen et al. (2024) to 
solve the problem that the limited sensory field of a convolutional 
neural network cannot capture the correlation between the time 
frames of vocalization at any moment and the sound frequencies of all 
vibrations in the song, applied dual parallel attention to focus on 
global dependencies in CNN-5, proposed parallel channel attention 
to constructing the global time-frequency dependencies in the song, 
and designed the double parallel attention to focus on the global time-
frequency dependence in songs. Many models do not effectively 
design the feature extraction layer of the convolutional structure for 
the music signal features, and the feature extraction part is relatively 
simple, which causes the models to neglect the extraction of local 
features. To solve the above problems, Xie et al. (2024) proposed a 
model using a one-dimensional res-gate CNN to extract local 
information of audio sequences. To aggregate the global information 
of audio feature sequences, the Transformer is applied to the music 
genre classification model, and the decoder structure of the 
Transformer is modified according to the task. Zhang et al. (2025) 
proposed and applied a novel talking face generation framework, 
termed video portraits transformer (VPT) with controllable blink 
movements. In the audio-to-landmark stage, the transformer encoder 
serves as the generator used for predicting whole facial landmarks 
from given audio and continuous eye aspect ratio (EAR). Zhang et al. 
(2024) proposed a convolutional dynamically convergent differential 
neural network (ConvDCDNN) to solve the classification problem of 
the electroencephalography (EEG) signals. First, a single-layer 
convolutional neural network is used to replace the preprocessing 
steps in previous work. Then, focal loss is used to overcome the 
imbalance in the dataset. After that, a novel automatic dynamic 
convergence learning (ADCL) algorithm is proposed and proved for 
training neural networks.

3 Methods

3.1 Music data preprocessing

In Section 3.1, first of all, we introduced and presented the dataset 
we  selected. Then, we  perform file integrity checking, data 
normalization, data augmentation and dataset splitting on the original 
audio, and then transform the audio file to generate the Log Mel 
spectrum as the input for the subsequent TS-Resformer model 
we proposed.

The most commonly used datasets for music genre classification 
tasks are GTZAN and the Free Music Archive (FMA) dataset. The 

dataset we  use is FMA, a large music audio dataset designed 
specifically for MIR studies, which is larger and more specialized than 
the other datasets, providing 106,574 songs from 16,341 artists 
arranged in a 161-genre hierarchical structure and associated with 
dedicated metadata. It is categorized into three versions: large, 
medium, and small. Considering the computational resources, 
we  adopt the small version, which has far more songs than the 
commonly used GTZAN dataset.

The FMA-small dataset contains a balanced subset of 8,000 songs 
distributed in 8 genres: Electronic, Experimental, Folk, Hip-Hop, Pop, 
Rock, Instrumental, and International. Each music clip is saved in 
map3 format, with a time length of about 30s and a sampling rate of 
44,100 Hz. The number of music in each genre in the FMA-small 
dataset is shown in Figure 1.

To exclude interference from corrupted files as well as to improve 
classification accuracy, the following data processing steps are 
performed on the raw audio:

	(1)	 Verify track integrity

Corrupted audio tracks with unsatisfactory sampling rates and 
unsatisfactory time lengths are discarded to ensure that the audio files 
left behind can be recognized properly. The processed dataset has 
7,992 music tracks.

	(2)	 Data augmentation

Addressing the issues of how varying audio durations affect the 
accuracy of music genre classification and training time, an approach 
of segmenting the original audio is adopted. Separate experiments 
are conducted to select an optimal audio duration suitable for the 
task of music genre classification. On the other hand, segmenting the 
original audio can achieve data augmentation, where more training 
data enhances the model’s generalization performance. The model 
designed for the music genre classification task should be suitable 
for large-scale datasets. In the FMA-small dataset, each excerpt C of 
a song’s genre has a duration of 30 s. Data augmentation is achieved 
by segmenting these music excerpts, with each resulting sub-segment 
ci having a duration of l seconds and a 50% overlap between two 
adjacent sub-segments. After segmentation, N sub-segments of l 
seconds each can be obtained, and each segmented sub-segment 
carries the same genre information as the original excerpt, defined 
as per the Equation 1:

	 { }= 1 2, , , nC c c c 	 (1)

For example, slicing a Rock genre music clip in the dataset will 
result in 4 sub-clips of 12 s duration, each of which is labeled with the 
Rock genre.

	(3)	 Z-score normalization of raw audio

The Z-Score method calculates the amplitude mean of the audio 
by taking the absolute values of all the music amplitudes and then 
summing and dividing them by the number of samples. The Z-Score 
method normalizes the audio based on the mean and standard 
deviation of the original audio. Normalization is applied to the 
original audio to prevent numerical overflow, improve the stability of 
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model training and convergence speed, and better adapt to the input 
requirements of the model, Z-Score the Equation 2.

	
µ

σ
′ −
=
xx

	
(2)

where x denotes the original data, μ denotes the mean of the 
original data, σ denotes the standard deviation of the original data, 
and x’ denotes the normalized data.

	(4)	 Slicing the data set

The dataset is sliced into training set, validation set, and test set 
according to 8:1:1, and the number of songs of different genres in the 
three sets is guaranteed to be balanced. The librosa library is utilized 
to load audio clips in each training selection generation.

The audio waveform graphs show the amplitude changes of the 
audio signal at different time points, and the original audio waveforms 
are shown in Figure 2.

The horizontal axis of the graph is time, and the vertical axis is the 
sound amplitude; when the amplitude is larger, the greater the 
vibration amplitude of the waveform; a smaller amplitude means that 
the vibration amplitude of the waveform is relatively small.

Although the time domain can be converted to the frequency 
domain by Fourier transform, so that the frequency distribution 
expression is intuitive, the time domain information is lost. Therefore, 
the use of a short-time Fourier, wavelet time-frequency domain 
analysis method is more effective in avoiding such problems. 
We mainly use short-time Fourier transform to process the music 
audio. Through a series of processing methods, the audio is 

transformed into a Log Mel spectrum, which describes the energy 
distribution of the music at different times and corresponding 
frequency ranges, provides the conditions for the model to fully 
extract the audio features, and has the following advantages:

	(1)	 Distribution of time-frequency information

The Log Mel spectrum contains more information about music 
features, and the time-frequency distribution is clearer, which 
describes the change of the music signal frequency over time 
respectively, and uses the depth of the color in the third dimension to 
indicate the magnitude of the sound intensity in decibels (dB). The 
change of frequency peaks can be  observed and contains more 
information about the music features compared to the 
traditional spectrogram.

	(2)	 Robustness

The Mel filter is used in the transformation process of the Log Mel 
spectrum, which filters the interference noise in the music audio to a 
certain extent and is less affected by the noise and environmental 
changes, which makes the accuracy of the experimental 
results increase.

	(3)	 Strong modeling capability

As the Log Mel spectrum contains several features such as Mel 
inverse spectral coefficient, logarithmic amplitude spectrum, etc., it 
can better characterize the spectral characteristics of the audio signal, 
and the calculation of the Log Mel spectrum is relatively simple, which 

FIGURE 1

The proportion of eight musical analogies in FMA-small data set.
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only involves the calculation of the Mel filter bank and the operation 
of taking logarithmic numbers, whereas the MFCC needs to carry out 
the operation of the inverse spectral transform and the discrete cosine 
transform, etc. As the representation of the linear features, it is difficult 
to capture the complex structure and nonlinear features of the audio 
signal, and it is not easy to capture the complex structure and 
nonlinear features of the audio signal. As a linear feature 
representation, MFCC makes it difficult to capture the complex 
structure and nonlinear features of audio signals, while the Log Mel 
spectrum is closer to human auditory perception.

	(4)	 Easy to train the model

Log Mel spectrum converts the audio signal into a 
two-dimensional image matrix, which reduces the input data of the 
model compared to the original audio form and makes the training 
efficient. Its form is similar to an image, and the neural network model 
is suitable for processing image data, and it is easy to be integrated 
with deep learning frameworks for end-to-end training. The Log Mel 
spectrum shows the frequency of the audio signal over time, and the 
flow of the conversion of the original audio to the Log Mel spectrum 
is shown in Figure 3.

In the music genre classification task firstly the pre-processed 
music audio is sub-framed and windowed. Music audio is a continuous 
signal that changes over time, and frame splitting divides the 
continuous audio signal into short time segments, each of which can 
be considered as a steady state. Split framing helps to capture the notes 
and pitch changes of music without affecting the temporal structure 
of the whole music. At the same time, the music can be considered 
frequency stable in short time segments, which helps to deal with large 
frequency variations in music audio, such as pitch changes of musical 
instruments. Windowing the audio after frame splitting reduces the 

risk of spectral leakage, and the windowing operation makes the 
music segments transition smoothly in time and reduces noise due to 
signal discontinuities.

The short-time Fourier transform is applied to each frame of the 
audio signal, based on which the energy of each Mel band is obtained 
by applying the Mel scale filter, and finally, the Log Mel spectrum is 
obtained after logarithmic compression, which expresses the music 
information in terms of time, frequency and energy intensity. The 
short-time Fourier transform the Equation 3:

	 ( ) ( ) ( ) π∞ −
−∞

= −∫ 2, dj fkX t f x t w t k e k
	

(3)

where w(t-k) is the time window function, multiplied by the signal 
x(0) for Fourier transform, and the spectral operation the Equation 4.
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(4)

The short-time Fourier transform is a key step in the process of 
transforming the Log Mel spectrum from audio, and the choice of 
window length in the short-time Fourier transform directly affects the 
experimental results. We  experimentally created these audio clips 
using a window containing 4,096 samples, with a jump window size 
of 1,024, and used the Hanning window function to reduce the 
amplitude of the discontinuities at the boundaries, which is close to 
1 s for 4,096 samples in terms of duration. The window size is chosen 
to be a power of 2 to ensure the high efficiency of the FFT algorithm, 
and if this is not the case, a zero-completion operation can be used. In 
addition, using 4,096 samples as the window size ensures that the FFT 
is performed with uniform frequency resolution and reduces the 
occurrence of spectral leakage. Spectral leakage refers to the deviation 

FIGURE 2

Original audio waveform diagram.
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of the signal frequency waveform due to the truncation of the window 
function, which leads to a reduction in the accuracy of 
spectral estimation.

The human ear perceives low-frequency tones and high-
frequency tones nonlinearly, with low-frequency tones being low 
and thick and high-frequency tones being sharp. The human ear 
perceives mid-frequency tones, which are the dominant frequency 
range of most human voices and musical instruments, more 
strongly. The Mel filter bank simulates the nonlinear perception 

of sound frequencies by the human ear through the analog Mel 
scale. The Mel filter bank divides the frequency spectrum into 
frequency bands by the auditory characteristics of the human ear, 
and each band corresponds to the energy response of a Mel filter. 
Therefore, converting the audio signal from a linear frequency to 
the Mel frequency scale better reflects the way the human ear 
perceives sound. Mel spectrograms are created by applying a set 
of 128 overlapping Mel scale filters to calculate the spectral 
energy of each frequency band, and each Mel spectrogram has the 

FIGURE 3

Log Mel spectrum conversion process.
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shape of [128, 512], which fully preserves the characteristic 
information of the music and reduces the dimensionality of the 
model input data.

The Mel scale conversion the Equation 5:

	
( )  = ⋅ + 

 
10Mel 2595 log 1

700
ff

	
(5)

The amplitude of the Meier spectrogram is converted to a decibel 
(dB) scale, which compresses the dynamic range of the signal and 
makes it easier to identify the relative strengths of the different 
frequency components of the spectrogram. The logarithmic Mel 
Spectrogram obtained from the conversion of the audio clip 
waveform graph shown in Figure 2 is shown in Figure 4.

3.2 TS-Resformer model

3.2.1 General structure
We propose an improved residual network and transformer 

encoder parallel music type classification model-TS-Resformer. The 
model structure is shown in Figure 5. First, we parallelize the residual 
network with the Transformer Encoder module, the left branch of the 
feature extraction is the residual network to extract the spectral 
feature information, and the right branch of the feature extraction is 
the four-layer Transformer Encoder to extract the time series 
information. Then, different scales of filters are designed for the four 
types of music genres with poor left classification effect, focusing on 
extracting time domain and frequency domain features respectively, 
fully extracting the time-frequency features and designing a new 
time-frequency attention mechanism to be applied on the branch. 
Finally, to enhance the model’s attention to important features 
between channels and capture the spatial relationship between 

features, the residuals are combined with the SE Block to form a new 
SE-Res Block.

3.2.2 TF-attention module
Most attention-based MGC systems add an attention mechanism 

at the end of deep learning network architecture feature extraction to 
learn high-level musical representations (Zhang et al., 2025; Zhang 
et al., 2024). Existing time-frequency attention mechanisms mainly 
extract high-level features at the bottom of the model, but low-level 
musical features such as energy, pitch, and tone are not sufficiently 
extracted, limiting the performance of the MGC task. Therefore, the 
time-frequency attention is placed after the multi-scale time-
frequency feature extraction layer Conv1, and the extracted time-
frequency features are learned, and the TF-Attention module, which 
integrates the time-frequency attention mechanism with time-
frequency feature extraction, is shown in Figure 6.

We designed the time-frequency feature extraction layer Conv1 
applicable to Log Mel spectrums to extract more features from Log 
Mel spectrums. Two parallel convolutional filters with different shapes 
are designed to learn the feature representation across time and 
frequency as shown in Figure 7.

The data in the Conv1 layer represents input channel 1 and output 
channel 32 respectively, the filter shape in the frequency domain 
feature extraction part is M × 2, and the filter shape in the time 
domain feature extraction part is 2 × N. Music is quite different from 
normal audio, so the shape of the two parallel convolutional filters 
needs to be  re-determined, i.e., the values of M and N need to 
be determined experimentally. Finally the extracted features from the 
two branches are fed into the lower network.

Conv1 inputs the extracted music time-frequency features into 
the Time-Frequency Attention Mechanism module to mine 
effective low-level music features and assigns corresponding 
weights to the input audio in the time and frequency domain 

FIGURE 4

Log Mel-spectrogram.
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directions to form a feature map with time-frequency weighting 
information, learns the important information, and discards the 
information that is irrelevant to music classification. The internal 

structure of the time domain attention mechanism is shown in 
Figure 8.

The frequency attention mechanism is similar. The input is 
1x128x512, and the feature model is generated after average pooling 
of X along the time direction, Yt ∈ R1*1*T, operating as the Equation 6.

	
( )

=
= ∑

1

1 T

t
n

Y X n
T 	

(6)

The scaling of the first convolutional layer is set to 16, the ReLU 
activation function is used to process it, and then a layer of convolution 
is used to construct the inter-channel correlation, and finally the 
Sigmoid is used to fix the value between 0 and 1 to get the weight in 
the time direction, which is multiplied by the original input to get the 
new feature map with the time weights. Similarly, the feature map with 
frequency weights can be obtained, and the two new feature maps are 
spliced together and fed into the lower layer network for processing.

Using Sigmoid as a scaling function for audio signals avoids 
focusing attention on a few time frames. By selectively aggregating the 

FIGURE 5

TS-Resformer model network architecture.

FIGURE 6

TF-attention module.

FIGURE 7

Time-frequency feature extraction.
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front and back frames according to the time-frequency attention, 
similar musical features achieve a common facilitation, thus improving 
the compactness within the class. Channel concatenation has 
advantages: first, the lower layers are able to receive large regions in 
the time and frequency domains, providing more information for 
advanced representation learning.

3.2.3 SE-res module
Log Mel spectrums generated after the feature extraction layer 

of the time-frequency attention mechanism have a better 
representation of the music, but also do not classify well if the 
model does not focus well on important feature information. The 
SE module weights each channel of the feature map and effectively 
ignores features that are not relevant to the music classification in 
order to selectively emphasize the features that are more relevant 
to the music classification. The feature maps are extracted from 
the Log Mel spectrums, and the weights of each of these channels 
are dynamically adjusted by the channel attention mechanism to 
make the network model more representational. The channel 
attention mechanism consists of two steps: compression 
and excitation.

The structure of the SE module is shown in Figure 9.
The compression step compresses the feature map U∈RH × W × C to 

1x1xC by means of a global average pooling operation to achieve the 
conversion of spatial features to global features, and the resulting 
global information z is used as the feature weights reflecting the 
global importance of each channel, i.e., the degree of contribution of 
each channel to a particular task. The compression step is specified by 
the Equation 7.

	
( ) ( )

= =
= =
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1 1

1 ,
H W

c sq c c
l j

z F u u i j
H W

	
(7)

where uc∈RH × W represents the cth channel of U.
In the excitation step, the SE attention mechanism learns the 

weights of each channel through a fully connected layer. The network 
receives global features from the compression step as input and 
outputs a vector of channel attention weights. The specific the 
Equation 8 for the excitation operation:

	 ( ) ( )( ) ( )( )σ σ δ= = = 2 1, ,exs F z W g z W W W z 	 (8)

where vector s represents the importance level of each feature 
map, δ represents the ReLU function, σ represents the Sigmoid 
activation function, 

× ×
∈ ∈1 2,

c cc c
r rW R W R , and r is the scaling ratio, 

and the vector s is multiplied by the original feature maps to weight 
each channel, as specified in the Equation 9:

	 ( )= =
˜

scale ,c c c c cX F u s s u 	 (9)

He and Jiang (2021) built an SE-ResNet model for bone age 
assessment of hand X-ray imaging, so that the model would not lose 
important information in raw images. Kong  et al. (2023)  built the 
SE-ResNet model to form a complete glomerular classification 
framework to classify glomerular lesions. Liu et al. (2024) built an 
SE-ResNet model to classify heartbeat between patients, so that the 
model can effectively learn the long-term characteristics of heartbeat 
between patients. It can be  seen from the above literature that in 
different fields, the authors combine SE module with ResNet model, 
so that the classification ability of the model gets a good effect. 
Therefore, we apply this combination to music signal classification, in 
order to make the model pay better attention to the important feature 
information in the Log Mel spectrum and pay better attention to the 
long distance feature information in the Log Mel spectrum.

The SE layer is placed after the two convolutional layers of the Res 
Net backbone network, and the jump connections are connected to 
the output of the SE. The improvement is to replace the fully connected 
layer in the SE with a 1 × 1 convolution. Firstly, the convolutional layer 
learns and adjusts the channel attention by sharing parameters. 
Secondly, the 1 × 1 convolutional layer retains the spatial information 
when feature extraction is performed on the feature map, and the 
attention weight of each channel can be  adjusted with the spatial 
information, which is conducive to capturing the spatial relationship 
between features better. The fully connected layer, on the other hand, 
spreads the input into vectors without considering the spatial structure 
of the input Log Mel spectrum and loses the spatial information, so it 
is not suitable for the processing of the Log Mel spectrum. Finally the 
convolutional layer has the properties of local connectivity and 

FIGURE 8

Time attention mechanism structure diagram.
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parameter sharing, which can simultaneously process input data at 
multiple locations and improve the model generalization ability. The 
structure of SE-Res module is shown in Figure 10.

3.2.4 Transformer encoder module
Transformer’s multi-headed self-attention layer is able to look at 

multiple previous time steps when predicting the next time step, and 
the model is able to capture dependencies over longer distances. The 
music genre classification task needs to take into account longer 
contextual information, such as the connection between the intro and 
chorus parts. Transformer obtains the positional information of the 
input music sequence through positional encoding, which allows the 
model to distinguish between different positional elements, with 
different timesteps representing different pieces of music. Compared 
to RNN networks, Transformer’s property of establishing connections 
over the entire range of sequences is more suitable for the music 
genre classification task.

CNNs have excellent performance in extracting spectral features 
of music, but the network design of a CNN concatenated with an RNN 
loses time-series information during the extraction of Log Mel 
spectrum features. Therefore, a parallel Transformer module is used to 
complement the extraction of time-series information from Log Mel 
spectrums, while avoiding the problem of time-series information loss 
in CNN and RNN models. Each encoder block has 4 self-attention 
layers in each multi-head self-attention layer, and each encoder block 

has 2 linear layers in the feed-forward network. The Feed Forward is 
set to 512, and the Drouput is set to 0.4. The structure of the 
Transformer Encoder is shown in Figure 11.

4 Experiments

4.1 Experimental environment

The TS-Resformer model we designed is built on the PyTorch 
framework in Python3.8 environment. Comparison experiment and 
ablation experiment are also implemented in PyTorch framework 
based on Python3.8 environment. The detailed experimental 
environment is shown in Table 1.

FIGURE 9

Squeeze-and-excitation module structure.

FIGURE 10

SE-res module structure.

FIGURE 11

Transformer encoder module structure.

TABLE 1  Experimental environment.

Environment configuration

Operating system Windows 10

CPU AMD Ryzen 95900HX with Radeon 

Graphics 3.30 GHz

GPU NVIDIA GeForce GTX 3080 CUDA 12.1
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In the design process of TS-Resformer model, we selected the 
Adam optimizer, set the learning rate to 10−3, set the Batch size to 32, 
took the multi-class cross-entropy loss function as the loss function, 
and ReLU as the activation function. As for data preprocessing, 
we  adopted the music data preprocessing method in Section 3.1, 
applied short-time Fourier transform to each processed music audio 
segment, the window function was Hanning window, the window size 
was 4,096, the jump length was set to 1,024, and the slice length was 
12 s, with 50% repeat segments. The audio is processed according to 
the method described in Section 3.1, the Log Mel spectrum is 
generated, and the Log Mel spectrum is input into the TS-Resformer 
model for subsequent classification tasks.

4.2 Evaluation metrics

We choose the accuracy rate, confusion matrix and F1- Score as 
the evaluation indexes of the experiment, and use them as the basis 
for comparing the experimental effects.

Accuracy rate refers to the proportion of correctly predicted 
samples to the total number of samples by the classifier, and the formula 
for calculating the accuracy rate is shown below and the Equation 10:

	 =

+
=

+ + +∑
1

1 k
i i

i i i ii

TP TNAccuracy
k TP TN FP FN 	

(10)

where TPi, TNi, FPi, FNi, are True Positive, False Positive, False 
Negative, False Negative, respectively, and the variable k denotes the 
number of classes. Since the dataset in this paper is balanced, macro-
averaging is used, a method that calculates the metric for each class 
and then averages it, assigning the same weight to each class.

Precision is the ratio of the number of samples correctly predicted 
as positive classes to the number of all samples predicted as positive 
classes. It measures the proportion of samples that are truly positive 
categories out of all samples predicted as positive categories by the 
model, i.e., the accuracy of the model’s predictions. The formula for 
calculating the accuracy rate is shown below the Equation 11 for:

	 =
=

+∑
1

1 k
i

i ii

TPPrecision
k TP FP 	

(11)

Recall is the ratio of the number of samples correctly predicted to 
be in the positive category to the number of samples in all true positive 
categories, and measures the degree of coverage of the model for samples 
in the positive category, i.e., the model’s ability to recognize samples in 
the positive category. The Equation 12 for recall is shown below:

	 =
=

+∑
1

1 k
i

i ii

TPRecall
k TP FN 	

(12)

F1-Score is the reconciled average of precision and recall, which is 
a comprehensive evaluation of the performance of the classification 
model, and is a weighted average of precision and recall, which can 
consider the accuracy and coverage of the model at the same time. The 
formula for calculating the F1-Score is shown below The Equation 13 for:

	

×
− =

+
precision recall

1 2
precision recall

F Score
	

(13)

The confusion matrix is shown in Table 2.

4.3 Analysis of experimental results

4.3.1 Training process
The classification accuracy of the TS-Resformer model in each 

school of thought on the training set is shown in Figure 12.
It can be seen from Figure 12 that during the training process of 

our TS-Resformer model, around the 46th round, the accuracy rate of 
the model for various music categories has tended to be stable. This 
indicates that the model we proposed can converge at a relatively fast 
speed and achieve satisfactory results.

4.3.2 The effect of different slicing lengths of 
music on model classification accuracy and 
training time

We design the audio duration slicing method with overlap rate, 
slicing the Equation 14.

	 λ
= −1LN

I 	
(14)

Where N is the number of segments obtained by slicing an audio 
segment, L is the length of the original audio, the datasets used in this 
paper are all 30s segments, so L is 30s. λ is the overlap rate, which is 
set to 50% in this paper. i is the length of the segment obtained by 
slicing, and the complementary zero operation is performed for the 
case of insufficient sampling points. According to this formula, 30s 
audio can be sliced into [3 s,5 s,6 s,10s,12 s,15 s] according to the 50% 
overlap rate, and the corresponding number of segments is (Choi 
et al., 2017; Orjesek et al., 2022; Ali and Siddiqui, 2017; Sarkar and 
Saha, 2015; Baniya et al., 2014; Logan, 2000).

The short duration of the segment leads to insufficient feature 
extraction, and the whole audio input significantly increases the 
computational cost and affects the model design. In order to verify the 
effect of slicing audio segments of different durations on the experiments, 
experiments are conducted on the FMA-small dataset with the above 
audio slicing method. The experimental results are shown in Figure 13.

As the slice length increases, the total number of slices decreases 
and the training time decreases. a slice length of 3 s has higher 
accuracy, but makes the dataset extremely large, the training time the 
longest, and requires more equipment. As the slice length increases, 
the training time decreases. In the case of 12 s slice length, the 
accuracy is 0.36% different from the 3 s case.

Therefore, considering the above, we use 12 s to slice the 30s audio 
file into 4 segments with 50% overlap.

TABLE 2  Confusion matrix.

Real positive 
results

Real negative 
results

Predicting positive outcomes TP FP

Predicting negative outcomes FN TN
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4.3.3 Multi-scale convolutional filter shape 
determination

On the FMA-small dataset, we selected four music genres with 
poor classification effects to carry out experiments to explore the effect 
of different shapes of filters on the classification effect under the same 
experimental environment, and the evaluation index of the 

experiments is the accuracy rate. Firstly, the filter width is fixed at 2, 
and the height of the filter is adjusted between 2 and 15, and the 
experimental results are shown in Figure 14.

Then the height of the filter is fixed to 2, and the width of the filter 
is adjusted between 2 and 15, and the experimental results are shown 
in Figure 15.

FIGURE 12

Training process.
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FIGURE 13

Accuracy and training time of different segmentation duration.
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Figures 13, 15 are analyzed as follows:

	(1)	 As the height (frequency) increases, the accuracy of the four 
categories also increases. The overall trend flattens out at a 
height of about 6, beyond which further increases in frequency 
range do not result in significant improvements.

	(2)	 When the width (time) is increased, the sensory field time span 
becomes larger, and Instrumental first increases to a peak and 
then decreases rapidly, suggesting that Instrumental is 
expressed by short-term characterization, and that the overall 
accuracy is highest at a width of 10.

In summary, we chose 6 × 2 and 2 × 10 filters to apply to the 
Conv1 layer of the TF-Attention module.

4.3.4 Ablation experiments
The classification accuracy of our proposed time-frequency 

attention mechanism, SE-Res module, and different network 
architectures on the FMA-small dataset is verified by ablation 
experiments, the results of which are shown in Table 3.

As can be seen from Table 3, by comparing 1 and 2, in terms of 
the two evaluation metrics of accuracy and F1-Score, the parallel 
structure we use is higher than the serial structure by 1.01% and 
0.032, respectively, which indicates that the feature extraction of the 
parallel structure is more adequate than that of the serial structure, 
so that the model acquires sufficient features and improves the 
accuracy. By comparing 2 and 3, in terms of accuracy and F1-Score, 
the addition of our proposed TF-Attention module improves 1.51% 
and 0.019 respectively, indicating that the TF-Attention module 
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FIGURE 14

Classification accuracy of different filter heights.
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FIGURE 15

Classification accuracy of different filter widths.
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further enables the model to focus on the main feature information 
in both the time and frequency domains. By comparing 2 and 4, the 
proposed SE-Res module improves the accuracy and F1-Score by 
1.3% and 0.01 respectively, which indicates that the SE-Res module 
further focuses the model on the global feature information and 
improves the model’s expressive ability. In order to verify the 
rationality of selecting four Transformer encoder layers for our 
model, we conducted ablation experiments. We selected a different 
number of Transformer encoder layers for the model. A is a model 
containing one Transformer encoder layer, B is a model containing 
two Transformer encoder layers, C is a model containing three 
Transformer encoder layers, D is the model proposed in this paper, 
and E is a model containing five Transformer encoder layers. The 
experimental results are shown in Table 4. The experimental results 
show that the accuracy rate increases as the number of selected layers 
increases. When the number of layers increased to 4 layers, the 
accuracy reached the peak, and continued to increase the number of 
layers, the accuracy declined. According to the experiment, when the 
model chooses 4 Transformer encoder layers, the model has the best 
music signal classification ability.

4.3.5 Comparison experiment
In this experiment, we  evaluate the performance of several 

classical network structures and their combinations on the FMA-small 
dataset, including LSTM, GRU, Bi-GRU, ResNet, Transformer, and 
various combinations of them. Among them, we combine ResNet with 
LSTM, GRU and Bi-GRU in parallel, and the experimental results are 
shown in Table 5.

The experimental results show that among all the tested models, 
the one in which we  parallelized Transformer with the SE-Res 
module exhibited the highest accuracy and F1 score, and this design 
not only improves the expressive power of the model, but also enables 
the model to learn the nuances in the data more efficiently, thus 
achieving the best classification performance. This parallel 
combination not only utilizes the powerful feature extraction 
capabilities of the SE-Res module and the TF-Attention module, 
effectively solves the gradient vanishing problem in the deep network 
through its internal residual learning mechanism, and enhances the 
learning of feature representations in both the time and frequency 
domains, but also takes advantage of the Transformer encoder’s 
property of establishing connections throughout the entire range of 
sequences, allowing the model to distinguish between different 
positional elements and different time steps representing different 
music segments.

In conclusion, the experimental results show that our proposed 
multimodal fusion structure can significantly enhance the model and 
provide valuable directions for future research.

5 Conclusion and limitation

5.1 Conclusion

Relying on Internet platforms and intelligent terminals, the digital 
music market has achieved rapid growth in the number of music 
releases and the number of digital music users. At the same time, 
competition among music streaming platforms has become 
increasingly fierce, with new features and services constantly launched 
among the various platforms to attract more users and improve user 
retention. The classification of a large number of music genres is 
conducive to the realization of personalized recommendation on 
music platforms, improve people’s satisfaction with songs pushed by 
music platforms, and promote the development of music market. In 
order to improve the accuracy of music type classification, we propose 
the TS-Resformer model, which mainly completes the following tasks:

	(1)	 In the data processing part, we propose an audio slicing method 
with different time durations. This method solves the problem 
that too long audio duration in the data set is not conducive to 
model training, and at the same time, by comparing the effects 

TABLE 3  Ablation experiments.

Serial structure Parallel structure TFA SE-res module Accuracy F1 score

1 √ 87.64% 0.565

2 √ 88.65% 0.593

3 √ √ 90.16% 0.612

4 √ √ 89.92% 0.603

5 √ √ √ 90.23% 0.647

TABLE 4  Ablation experiments.

Number of layers Accuracy

A 1 87.92%

B 2 88.25%

C 3 89.69%

D 4 90.23%

E 5 89.93%

TABLE 5  Comparison experiments.

Model Accuracy F1 score

LSTM 69.21% 0.462

GRU 72.32% 0.495

Bi-GRU 73.68% 0.523

Res Net 79.21% 0.562

Transformer 74.52% 0.538

Res Net + LSTM 80.22% 0.586

Res Net + GRU 82.15% 0.592

Res Net + Bi-GRU 86.21% 0.587

SE-Res Net + Transformer Encoder 90.23% 0.647
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of different slicing durations on the accuracy and training time 
of music genre classification, we determine the optimal slicing 
duration and realize data enhancement.

	(2)	 In order to obtain comprehensive and effective music audio 
feature information and better realize music genre 
classification, we propose a parallel music genre classification 
model Res-Transformer based on residual network and 
Transformer Encoder, which improves the residual network 
instead of convolution operation, improves the ability of the 
network to extract features of Log Mel spectrum, and alleviates 
the problem of gradient disappearance. The model improves 
the feature extraction capability of the network for Log Mel 
spectrum by improving the residual network instead of the 
convolution operation, which alleviates the problem of 
gradient disappearance.

	(3)	 Aiming at the problem of insufficient feature extraction in the 
Res-Transformer model, which leads to the low classification 
accuracy of individual genre, the TS-Resformer model is 
established by integrating the time-frequency and channel 
attention mechanisms. The feature extraction layer of the 
model is designed to capture features from both time and 
frequency dimensions using filters of different scales, and the 
filter scales are designed for music genres with low accuracy 
rates of individual genres, so as to extract low-level music 
features from specific time and specific frequency. The output 
of the time-frequency convolution is used as the input of the 
time-frequency attention mechanism, and the time-frequency 
attention mechanism applicable to music classification is 
designed to assign weights to the extracted music features in 
the time-frequency dimension, which mitigates the problem of 
insufficient music feature extraction and the problem of low 
accuracy rate of classification of individual category genres. By 
fusing the residual block with the improved channel attention 
mechanism, the weighting of each channel of the time-
frequency feature map is realized, which weakens the features 
that are not related to music classification and reduces the 
complexity of the global features after feature fusion.

5.2 Limitation

With the gradual expansion of the global music market, the task 
of music classification in the future should not only require higher 
classification accuracy, but also achieve non-exclusive music genre 
classification according to music styles. Therefore, there are still many 
aspects that could be improved in this paper:

	(1)	 The method of classifying music genres by deep learning is 
mainly to convert music into Log Mel spectrum like ordinary 
audio, and then use the feature extraction capability of 

convolution for images. It is necessary to further study effective 
music data processing methods based on music characteristics.

	(2)	 This paper is mainly based on single label classification, but in 
fact, some concerts have the characteristics of multiple genres, 
which cannot be simply classified into one class. In the future, 
it is necessary to establish or select multi-label data sets and 
further study music genre classification.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found at: https://github.com/mdeff/fma.

Author contributions

YZ: Data curation, Funding acquisition, Investigation, 
Methodology, Project administration, Writing  – original draft, 
Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
by 2023 Dalian University of Foreign Languages Research Fund 
project results 2024XJXM32.

Conflict of interest

The author declares that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Ali, M. A., and Siddiqui, Z. A. (2017). Automatic music genres classification using 

machine learning. Int. J. Adv. Comput. Sci. Appl. 8, 188–197. doi: 10.14569/
IJACSA.2017.080844

Arabi, A. F., and Lu, G. (2009). “Enhanced polyphonic music genre classification using 
high level features” in 2009 IEEE international conference on signal and image 
processing applications (Kuala Lumpur, Malaysia: IEEE), 101–106. doi: 10.1109/
ICSIPA.2009.5478635

Baniya, B K, Ghimire, D, and Lee, J. (2014). A novel approach of automatic music genre 
classification based on timbrai texture and rhythmic content features. 16th international 
conference on advanced communication technology. Pyeong Chang, Korea: IEEE 96–102. 
doi: 10.1109/ICACT.2014.6778929

Chen, J., Su, P., Li, D., Han, J., Zhou, G., and Tang, D. (2024). Optimizing fractional-
order convolutional neural networks for groove classification in music 
using differential evolution. Fractal Fract. 8:616. doi: 10.3390/fractalfract8110616

234

https://doi.org/10.3389/fnbot.2025.1568811
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://github.com/mdeff/fma
https://doi.org/10.14569/IJACSA.2017.080844
https://doi.org/10.14569/IJACSA.2017.080844
https://doi.org/10.1109/ICSIPA.2009.5478635
https://doi.org/10.1109/ICSIPA.2009.5478635
https://doi.org/10.1109/ICACT.2014.6778929
https://doi.org/10.3390/fractalfract8110616


Zhang� 10.3389/fnbot.2025.1568811

Frontiers in Neurorobotics 17 frontiersin.org

Choi, K, Fazekas, G, Sandler, M, et al., (2017). Convolutional recurrent neural 
networks for music classification. 2017 IEEE international conference on acoustics, 
speech and signal processing (ICASSP). Washington: IEEE. 2392–2396. doi: 10.1109/
ICASSP.2017.7952585

Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern classification. USA: John 
Wiley & Sons, 5–6.

He, J., and Jiang, D. (2021). Fully automatic model based on se-resnet for bone age 
assessment. IEEE Acc. 9, 62460–62466. doi: 10.1109/ACCESS.2021.3074713

Khasgiwala, Y, and Tailor, J. (2021). Vision transformer for music genre classification 
using mel-frequency cepstrum coefficient. 2021 IEEE 4th international conference on 
computing, power and communication technologies (GUCON). Kuala Lumpur: 
IEEE: 1–5.

Kong, X. Y., Zhao, X. S., Sun, X. H., Wang, P., Wu, Y., Peng, R. Y., et al. (2023). 
Classification of glomerular pathology images in children using convolutional neural 
networks with improved SE-ResNet module. Interdiscip. Sci.: Comput. Life Sci. 15, 
602–615. doi: 10.1007/s12539-023-00579-7

Kostrzewa, D., Kaminski, P., and Brzeski, R. (2021). “Music genre classification: 
looking for the perfect network” in International conference on computational science 
(Sanya: IEEE), 55–67.

Li, Y., Zhang, Z. H., Ding, H., et al. (2023). Music genre classification based on fusing 
audio and lyric information. Multimed. Tools Appl. 82, 20157–20176. doi: 
10.1007/s11042-022-14252-6

Lin, Q. (2022). Music score recognition method based on deep learning. Comput. 
Intell. Neurosci. 2022, 1–12. doi: 10.1155/2022/3022767

Liu, J., Liu, Y., Li, Z., Qin, C., Chen, X., Zhao, L., et al. (2024). A novel diagnosis 
method combined dual-channel SE-res net with expert features for inter-patient 
heartbeat classification. Med. Eng. Phys. 130:104209. doi: 10.1016/j.medengphy.2024. 
104209

Logan, B. (2000). Mel frequency cepstral coefficients for music modeling. Ismir. 
Plymouth 270, 11–12.

Orjesek, R., Jarina, R., and Chmulik, M. (2022). End-to-end music emotion variation 
detection using iteratively reconstructed deep features. Multimed. Tools Appl. 81, 
5017–5031. doi: 10.1007/s11042-021-11584-7

Ostermann, F., Vatolkin, I., and Ebeling, M. (2023). AAM: a dataset of artificial audio 
multitracks for diverse music information retrieval tasks. Eurasip J. Audio Speech Music 
Process. 2023:13. doi: 10.1186/s13636-023-00278-7

Pelchat, N., and Gelowitz, C. M. (2020). Neural network music genre classification. 
Can. J. Electr. Comput. Eng. 43, 170–173. doi: 10.1109/CJECE.2020.2970144

Prabhakar, S. K., and Lee, S. W. (2023). Holistic approaches to music genre 
classification using efficient transfer and deep learning techniques. Expert Syst. Appl. 
211:118636. doi: 10.1016/j.eswa.2022.118636

Sarkar, R., and Saha, S. K. (2015). Music genre classification using EMD and pitch 
based feature. 2015 eighth international conference on advances in pattern recognition 
(ICAPR). New York, USA: IEEE: 1–6.

Solanki, A., and Pandey, S. (2022). Music instrument recognition using deep convolutional 
neural networks. Int. J. Inf. Technol. 14, 1659–1668. doi: 10.1007/s41870-019-00285-y

Sturm, B. L. (2012). An analysis of the gtzan music genre dataset. Proceedings of the 
second international ACM workshop on music information retrieval with user-centered 
and multimodal strategies. Nara, 7–12. doi: 10.1145/2390848.2390851

Tzanetakis, G., and Cook, P. (2002). Musical genre classification of audio signals. IEEE 
Trans. Speech Audio Proc. 10, 293–302. doi: 10.1109/TSA.2002.800560

Vaibhavi, M., and Krishna, P. R. (2021). Music genre classification using neural 
networks with data augmentation. J. Innov. Sci. Sustain. Technol 1, 21–37.

Verma, V., Benjwal, A., Chhabra, A., Singh, S. K., Kumar, S., Gupta, B. B., et al. (2023). 
A novel hybrid model integrating MFCC and acoustic parameters for voice disorder 
detection. Sci. Rep. 13:22719. doi: 10.1038/s41598-023-49869-6

Wen, Z., Chen, A., Zhou, G. X., et al. (2024). Parallel attention of representation global 
time-frequency correlation for music genre classification. Multimed. Tools Appl. 83, 
10211–10231. doi: 10.1007/s11042-023-16024-2

Xi, S, Xu, C S, and Kankanhalli, M S. (2004). Unsupervised classification of music 
genre using hidden Markov model. 2004 IEEE international conference on multimedia 
and expo (ICME), Taibei, China: IEEE: 2023–2026.

Xie, C. J., Song, H. Z., Zhu, H., et al. (2024). Music genre classification based on res-
gated CNN and attention mechanism. Multimed. Tools Appl. 83, 13527–13542. doi: 
10.1007/s11042-023-15277-1

Yang, R., Feng, L., Wang, H. B., et al. (2020). Parallel recurrent convolutional neural 
networks-based music genre classification method for mobile devices. IEEE Access 8, 
19629–19637. doi: 10.1109/ACCESS.2020.2968170

Zhai, X., and Luo, Y. (2025). Can urban internet development attract labor force? 
Evidence from Chinese Cities. Sustainability 17:260. doi: 10.3390/su17010260

Zhang, Z., He, Y., Mai, W., Luo, Y., Li, X., Cheng, Y., et al. (2024). Convolutional 
dynamically convergent differential neural network for brain signal classification. IEEE 
Trans. Neural Netw. Learn. Syst., 1–12. doi: 10.1109/TNNLS.2024.3437676

Zhang, W. B., Lei, W. K., Xu, X. M., et al. (2016). “Improved music genre 
classification with convolutional neural networks” in Interspeech (San Francisco: 
IEEE), 3304–3308.

Zhang, Z., Zhang, J., and Mai, W. (2025). VPT: video portraits transformer for realistic 
talking face generation. Neural Netw. 184:107122. doi: 10.1016/j.neunet.2025.107122

Zhuang, Y. Y., Chen, Y. Z., and Zheng, J. (2020). Music genre classification with 
transformer classifier. Proceedings of the 2020 4th international conference on digital 
signal processing. Xiamen IEEE, 155–159.

235

https://doi.org/10.3389/fnbot.2025.1568811
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://doi.org/10.1109/ICASSP.2017.7952585
https://doi.org/10.1109/ICASSP.2017.7952585
https://doi.org/10.1109/ACCESS.2021.3074713
https://doi.org/10.1007/s12539-023-00579-7
https://doi.org/10.1007/s11042-022-14252-6
https://doi.org/10.1155/2022/3022767
https://doi.org/10.1016/j.medengphy.2024.104209
https://doi.org/10.1016/j.medengphy.2024.104209
https://doi.org/10.1007/s11042-021-11584-7
https://doi.org/10.1186/s13636-023-00278-7
https://doi.org/10.1109/CJECE.2020.2970144
https://doi.org/10.1016/j.eswa.2022.118636
https://doi.org/10.1007/s41870-019-00285-y
https://doi.org/10.1145/2390848.2390851
https://doi.org/10.1109/TSA.2002.800560
https://doi.org/10.1038/s41598-023-49869-6
https://doi.org/10.1007/s11042-023-16024-2
https://doi.org/10.1007/s11042-023-15277-1
https://doi.org/10.1109/ACCESS.2020.2968170
https://doi.org/10.3390/su17010260
https://doi.org/10.1109/TNNLS.2024.3437676
https://doi.org/10.1016/j.neunet.2025.107122


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Investigates embodied autonomous neural 

systems and their impact on our lives

Part of the most cited neuroscience series, this 

journal advances understanding of neurorobotics 

- from prosthetic devices to brain machine 

interfaces, and wearable systems to home 

appliances.

Discover the latest 
Research Topics

See more 

Frontiers in
Neurorobotics

https://www.frontiersin.org/journals/Neurorobotics/research-topics
https://www.frontiersin.org/journals/neurorobotics/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Advancing neural network-based intelligent algorithms in robotics: challenges, solutions, and future perspectives

	Table of contents

	HiDeS: a higher-order-derivative-supervised neural ordinary differential equation for multi-robot systems and opinion dynamics
	1 Introduction
	2 Related work
	2.1 NODEs
	2.2 Multi-robot-system control
	2.3 Opinion dynamics modeling

	3 Materials and methods
	3.1 Formulation of the HiDeS NODE
	3.2 Training of the HiDeS NODE
	3.3 Inexpressible trajectories of the HiDeS NODE
	3.4 The HiDeS NODE's utilization of historical information
	3.5 Implementation

	4 Results
	4.1 Experimental settings
	4.1.1 Settings for multi-robot-system control 
	4.1.2 Settings for opinion dynamics 

	4.2 Target chasing of multi-robot system
	4.2.1 Chasing trajectories with given target trajectory
	4.2.2 Predicted trajectories without given target position
	4.2.3 Energy cost

	4.3 Modeling and predicting of opinion dynamics
	4.3.1 One dimension, multiple initial conditions
	4.3.2 Multiple dimension, one initial condition
	4.3.3 Training dynamics


	5 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Residual learning-based robotic image analysis model for low-voltage distributed photovoltaic fault identification and positioning
	1 Introduction
	2 Related work
	3 Methods
	3.1 PV identification and fault positioning of low-voltage distributed PVPP
	3.2 PV area identification based on DL
	3.3 Fault positioning technology and model of low-voltage distributed PVPP

	4 Experimental result and analysis
	4.1 Comparative analysis of experimental results of PV area identification
	4.2 Experimental analysis of fault positioning in PV area

	5 Conclusion
	Data availability statement
	Author contributions
	 References

	An adaptive discretized RNN algorithm for posture collaboration motion control of constrained dual-arm robots
	1 Introduction
	2 Scheme formulation and algorithm design
	2.1 Rudimentary knowledge
	2.2 DAPCMC scheme
	2.2.1 LA collaborative control subsystem
	2.2.2 RA collaborative control subsystem

	2.3 Algorithm design
	2.3.1 CTT-DRNN algorithm
	2.3.2 ATT-DRNN algorithm


	3 Theoretical analyses and results
	4 Illustrative examples
	4.1 Numerical simulation verification
	4.2 Control case I of dual-arm robot
	4.3 Control case II of dual–arm robot

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Optimization of robotic path planning and navigation point configuration based on convolutional neural networks
	1 Introduction
	2 Related work
	2.1 Traditional algorithms
	2.2 Graphical algorithms
	2.3 Intelligent bionics algorithm

	3 Calculation of fraction of coverage based on polygon discretization
	3.1 Definition of fraction of coverage
	3.2 Polygon discretization
	3.3 Calculation of fraction of coverage

	4 Sample generation model of optimal point configuration
	4.1 Sample generation process of optimal point configuration
	4.2 Random polygon generation
	4.3 Traversal stride optimization
	4.3.1 Traversal stride optimization process
	4.3.2 Determination of traversal stride criteria


	5 Optimization model of point configuration based on deep learning
	5.1 Feature extraction of trigger conditions
	5.2 Construction of point configuration model based on deep neural network
	5.3 Polygon dimension reduction processing based on deletion point approximation method

	6 Simulation realization and result analysis
	6.1 Simulation realization
	6.1.1 Polygon shape feature extraction module
	6.1.2 Regression fitting module

	6.2 Conclusion analysis and future work

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Enhanced LSTM-based robotic agent for load forecasting in low-voltage distributed photovoltaic power distribution network
	1 Introduction
	2 Related work
	3 Methods
	3.1 Features of distributed PV-PDN
	3.2 Voltage data preprocessing and feature selection
	3.3 Load forecasting of distributed PV system based on FDD + LSTM

	4 Results and discussion
	4.1 Data selection and example analysis
	4.2 Analysis of load forecasting results in distributed PV-PDN
	4.3 Performance evaluation of load forecasting model under different seasons

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Online learning fuzzy echo state network with applications on redundant manipulators
	1 Introduction
	2 Preliminaries
	2.1 Forward kinematics of redundant manipulators
	2.2 Takagi–Sugeno–Kang fuzzy system
	2.3 Echo state network

	3 Online learning fuzzy echo state network
	3.1 OLFESN
	3.2 Initialization phase
	3.3 Sequential learning phase
	3.4 OLFESN-based control scheme

	4 Illustrative examples
	4.1 UR5
	4.2 Franka Emika panda manipulator

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	A novel discrete zeroing neural network for online solving time-varying nonlinear optimization problems
	1 Introduction
	2 Problem formulation and model foundation
	2.1 Problem formulation
	2.2 Mathematical model of path planning
	2.3 Continuous ZNN model and discrete ZNN model

	3 Theoretical analyzes and results
	4 Numerical simulations and verifications
	4.1 Six-node path planning simulations
	4.2 Path planning simulations of 12 nodes

	5 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Vehicle recognition pipeline via DeepSort on aerial image datasets
	1 Introduction
	2 Literature review
	2.1 Machine learning-based traffic scene analysis
	2.2 Deep learning-based traffic scene analysis

	3 Materials and methods
	3.1 System methodology
	3.2 Images pre-processing
	3.3 Semantic segmentation
	3.3.1 FCM segmentation
	3.3.2 Density-based spatial clustering (DBSCAN)
	3.4 Vehicle detection
	3.5 ID allocation and recovery based on ORB features
	3.6 Vehicle counting
	3.7 Vehicle tracking
	3.8 Vehicle trajectory estimation
	ALGORITHM 1 Trajectory estimation of tracked vehicles
 

	4 Experimental setup and datasets
	4.1 Experimental setup
	4.2 Dataset description
	4.2.1 VEDAI dataset
	4.2.2 Spanish road traffic images dataset
	4.2.3 VAID dataset
	4.2.4 UAVDT dataset
	4.3 Experiment I: semantic segmentation accuracy
	4.4 Experiment II: precision, recall, and F1 scores
	4.5 Experiment
	4.5.1 ID assignment and ID recovery
	4.6 Experiment IV: vehicle detection and tracking comparison with SOTA models

	5 Discussion/research limitation
	6 Conclusion
	References

	Recurrent neural network for trajectory tracking control of manipulator with unknown mass matrix
	1 Introduction
	2 Kinematic controller
	3 Recurrent neural network design
	4 Theoretical analysis
	5 Simulative results and comparisons
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Fast reconstruction of milling temperature field based on CNN-GRU machine learning models
	1 Introduction
	2 Related work
	2.1 Shallow artificial neural network approach
	2.2 Deep artificial neural network methods
	2.3 Deep learning model compression and acceleration method
	2.4 Temperature field reconstruction

	3 Methods
	3.1 Acquisition of data sets
	3.2 Construction of gated convolutional recurrent network model
	3.3 Temperature boundary condition estimation model based on knowledge distillation with gated convolutional recurrent networks

	4 Experimental result and analysis
	4.1 Model noise resistance test
	4.2 Simulation reconstruction

	5 Conclusion
	References

	Real-time location of acupuncture points based on anatomical landmarks and pose estimation models
	1 Introduction
	2 Materials and methods
	2.1 Landmark detection and proportional mapping approach
	2.1.1 Acupoint selection
	2.1.2 Method
	2.2 Data-driven pose estimation approach
	2.2.1 Dataset collection and preprocessing
	2.2.2 Model training and evaluation metrics

	3 Results
	3.1 Landmark detection and proportional mapping approach
	3.2 Data-driven pose estimation approach
	3.3 Application development

	4 Discussion
	5 Conclusion
	References

	A multimodal travel route recommendation system leveraging visual Transformers and self-attention mechanisms
	1 Introduction
	2 Related work
	2.1 Travel route recommendation
	2.2 Reinforcement learning
	2.3 Neural networks

	3 Methodology
	3.1 Overview of our network
	3.2 Vision-Transformer model
	3.3 LSTM model
	3.4 Self-attention mechanism

	4 Experiment
	4.1 Datasets
	4.2 Experimental details
	4.3 Experimental results and analysis

	5 Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Unmanned aerial vehicles for human detection and recognition using neural-network model
	1 Introduction
	2 Literature review
	2.1 Human action recognition by machine learning
	2.2 Human action recognition by deep learning
	2.3 Human action recognition using drones

	3 System methodology
	3.1 Preprocessing
	3.2 Human detection
	3.3 Key-points extraction
	3.4 Feature extraction for action recognition
	3.4.1 Relative angle between joints
	3.4.2 Relative distance between joints
	3.4.3 Landmark fiducial points
	3.4.4 3D point cloud
	Algorithm-1 Generating point cloud from silhouette image
	3.5 Kernel discriminant analysis
	3.6 Classification

	4 Experimental setup and datasets
	4.1 Experimental setup
	4.2 Dataset description
	4.2.1 HAV human dataset
	4.2.2 UCF dataset
	4.2.3 Drone Action dataset

	5 Results and analysis
	5.1 Confusion matrices
	5.2 Precision, recall, and F1 score values for locomotion activities
	5.3 Ablation study analysis of propose model components
	5.4 Analyzing time complexity and executing time
	5.5 Comparison

	6 Discussion
	7 Conclusion
	References

	KalmanFormer: using transformer to model the Kalman Gain in Kalman Filters
	1 Introduction
	2 Preliminary knowledge
	2.1 Kalman Filter
	2.2 Extended Kalman Filters
	2.3 Transformer
	2.3.1 Transformer architecture
	2.3.2 Self-attention mechanism
	2.3.3 Position encoding


	3 Methodology
	3.1 Information flow of KalmanFormer
	3.2 Input features
	3.3 Details of the KalmanFormer
	3.4 Training algorithm

	4 Numerical experiments
	4.1 Implement details
	4.2 Simulation experiments
	4.2.1 Test metric
	4.2.2 Non-linear Lorenz attractors

	4.3 Multi-sensor information fusion
	4.3.1 Coordinates definition
	4.3.2 State transition model
	4.3.3 Observation model
	4.3.4 Noise setting

	4.4 Model mismatch
	4.4.1 State transition model mismatch
	4.4.2 Observation model mismatch

	4.5 Evaluation results
	4.5.1 Simulation results
	4.5.2 Multi-sensor information fusion


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	LoCS-Net: Localizing convolutional spiking neural network for fast visual place recognition
	1 Introduction
	2 Related work
	3 LoCS-Net model for visual place recognition
	3.1 Overview
	3.2 VPR as a classification task
	3.3 Localizing convolutional spiking neural network
	3.3.1 The LIF neuron model
	3.3.2 ANN-to-SNN conversion
	3.3.3 LoCS-Net architecture


	4 Experiments
	4.1 Datasets and evaluation metrics
	4.2 Experimental set-up
	4.3 Quantitative results
	4.4 Neuromorphic hardware deployment

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Universal slip detection of robotic hand with tactile sensing
	1 Introduction
	2 Related works
	3 Method
	3.1 Hardware setting
	3.2 Grasp types
	3.3 Grasp force control
	3.4 Data collection
	3.5 Data preprocessing
	3.6 Network architecture
	3.7 Training

	4 Results
	5 Conclusion
	References

	TS-Resformer: a model based on multimodal fusion for the classification of music signals
	1 Introduction
	2 Related work
	3 Methods
	3.1 Music data preprocessing
	3.2 TS-Resformer model
	3.2.1 General structure
	3.2.2 TF-attention module
	3.2.3 SE-res module
	3.2.4 Transformer encoder module

	4 Experiments
	4.1 Experimental environment
	4.2 Evaluation metrics
	4.3 Analysis of experimental results
	4.3.1 Training process
	4.3.2 The effect of different slicing lengths of music on model classification accuracy and training time
	4.3.3 Multi-scale convolutional filter shape determination
	4.3.4 Ablation experiments
	4.3.5 Comparison experiment

	5 Conclusion and limitation
	5.1 Conclusion
	5.2 Limitation

	References

	Back Cover



