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Editorial on the Research Topic

Clinical application of artificial intelligence in emergency and critical

care medicine, volume V

This Research Topic explores the clinical applications of artificial intelligence (AI)

in emergency and critical care medicine through 13 research articles. These studies

systematically investigate how advanced data mining and AI techniques enhance risk

assessment, diagnostic assistance, prognosis prediction, and treatment decision-making.

Leveraging large-scale data resources and machine learning (ML) algorithms, these

studies provide detailed analyses of complex conditions such as sepsis, acute pancreatitis,

gastroparesis, acute kidney injury, disseminated intravascular coagulation (DIC), and heart

failure with sepsis. From a data-driven perspective, this research offers a robust theoretical

foundation and practical support for precision medicine.

AI is expected to significantly improve the prognosis of critically ill patients by

assisting in disease identification, predicting disease progression, and supporting clinical

decision-making (1). One key area of focus is the early prediction of sepsis, Yadgarov

et al. conducted a systematic review of studies published from database inception to

October 2023, searching Medline, PubMed, Google Scholar, and CENTRAL. Out of 3,953

studies, they analyzed 73 articles encompassing 457,932 sepsis patients and 256 models.

Their findings demonstrated that ML models significantly outperformed traditional

scoring systems in early sepsis prediction, with neural networks and decision tree models

achieving the highest performance. Kim et al. developed a Transformer-based deep

learning model for predicting ICU length of stay in sepsis patients, achieving a mean

absolute error of only 2.05 days, demonstrating high accuracy and reliability. Beyond

sepsis detection, Zhang et al. constructed a 28-day mortality prediction model specifically
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for sepsis patients with concurrent heart failure. Using the eICU-

CRD database for model development and validating it externally

on the MIMIC-IV database, they found that a logistic regression-

based model achieved an AUC of 0.746 on the validation set,

outperforming more complex algorithms such as XGBoost. The

final model identified 10 key predictive features and employed

the SHAP method to enhance interpretability, aiding clinicians

in early identification of high-risk patients and optimizing

resource allocation.

Traditional early warning systems primarily rely on vital

signs and basic laboratory tests, whereas AI models integrating

multi-source data allow for the incorporation of molecular and

biological information into clinical decision-making. Hu et al.

explored the combination of metagenomics, radiomics, and ML for

sepsis diagnosis. By performing metagenomic sequencing on blood

samples from sepsis patients and extracting radiomic features,

they developed a fusion model that achieved an AUC close to

0.88 in its best-performing version. The integration of multimodal

data helps overcome the limitations of single-indicator approaches,

providing a novel strategy for the early and precise diagnosis

of sepsis.

Furthermore, interpretable AI-based risk prediction models

offer refined and individualized decision support in critical

care medicine (2). Zhai et al. developed an interpretable

XGBoost model for predicting in-hospital mortality risk

in patients with severe pulmonary infections, achieving an

AUC of 0.956. More importantly, the model incorporated

SHAP and LIME methodologies to enhance interpretability.

Such personalized risk assessment tools assist in mortality

risk stratification and provide valuable clinical decision

support. However, for AI models to truly assist in ICU

decision-making, they must evolve from purely “predictive

AI” to “actionable AI” capable of comparing the effects

of different interventions. This transition necessitates the

integration of causal inference to guide optimal treatment

selection (3).

Beyond sepsis, AI technologies also hold significant

clinical potential in other critical conditions. Tan et al.

reviewed advancements in ML applications for predicting

disease severity and complications in acute pancreatitis. Liu

et al. utilized explainable ML to construct a postoperative

gastroparesis risk prediction model, providing empirical

evidence for early intervention. In another study, Wei et al.

developed a nomogram for predicting early acute kidney

injury (AKI) in patients with acute non-variceal upper

gastrointestinal bleeding (NVUGIB) using data from the

MIMIC-IV database, subsequently implementing it as a web-based

clinical calculator.

AI also demonstrates immense potential in personalized

treatment strategies. Traditional clinical guidelines often struggle

to account for the unique physiological characteristics of individual

patients, whereas AI-driven approaches offer the ability to support

clinicians in devising more precise and tailored treatment plans (4).

Nevertheless, while AI has demonstrated outstanding performance,

it is crucial to recognize its limitations and reinforce validation and

regulatory oversight in real-world applications to ensure tangible

patient benefits (5).

Overall, Clinical application of artificial intelligence in

emergency and critical care medicine, Volume V presents a

comprehensive workflow from data acquisition and feature

extraction to model construction and result interpretation. With

advancements in multimodal data integration, causal inference

modeling, and improvements in AI interpretability, AI is poised

to become a powerful tool in sepsis management. We anticipate

the deep integration of AI technologies into clinical medicine,

fostering more precise and efficient workflows from early

disease identification to treatment decision-making, ultimately

contributing to lower mortality rates worldwide.
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Estimated plasma volume status 
as a simple and accessible 
predictor of 28-day mortality in 
septic shock: insights from a 
retrospective study of the 
MIMIC-IV database
Beijun Gao 1, Rongping Chen 1, Hua Zhao 1*, Hongmin Zhang 2, 
Xiaoting Wang 1 and Dawei Liu 1*
1 Department of Critical Care Medicine, Peking Union Medical College, Chinese Academy of Medical 
Sciences, Peking Union Medical College Hospital, Beijing, China, 2 Department of Health Care, Peking 
Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College 
Hospital, Beijing, China

Background: Assessing volume status in septic shock patients is crucial for 
tailored fluid resuscitation. Estimated plasma volume status (ePVS) has emerged 
as a simple and effective tool for evaluating patient volume status. However, the 
prognostic value of ePVS in septic shock patients remains underexplored.

Methods: The study cohort consisted of septic shock patients admitted to the 
ICU, sourced from the MIMIC-IV database. Patients were categorized into two 
groups based on 28-day survival outcomes, and their baseline characteristics 
were compared. According to the ePVS (6.52  dL/g) with a hazard ratio of 1 in the 
restricted cubic spline (RCS) analysis, patients were further divided into high and 
low ePVS groups. A multivariable Cox regression model was utilized to evaluate 
the association between ePVS and 28-day mortality rate. The Kaplan–Meier 
survival curve was plotted, and all-cause mortality was compared between the 
high and low groups using the log-rank test.

Results: A total of 7,607 septic shock patients were included in the study, 
among whom 2,144 (28.2%) died within 28  days. A J-shaped relationship 
was observed between ePVS at ICU admission and 28-day mortality, with an 
increase in mortality risk noted when ePVS exceeded 6.52  dL/g. The high ePVS 
group exhibited notably higher mortality rates compared to the low ePVS group 
(28-day mortality: 26.2% vs. 30.2%; 90-day mortality: 35% vs. 42.3%). After 
adjustment for confounding factors, ePVS greater than 6.52  dL/g independently 
correlated with an increased risk of 28-day mortality (HR: 1.20, 95% CI: 1.10–
1.31, p  <  0.001) and 90-day mortality (HR: 1.25, 95% CI: 1.15–1.35, p  <  0.001). 
Kaplan–Meier curves demonstrated a heightened risk of mortality associated 
with ePVS values exceeding 6.52  dL/g.

Conclusion: A J-shaped association was observed between ePVS and 28-
day mortality in septic shock patients, with higher ePVS levels associated with 
increased risk of mortality.

KEYWORDS

estimated plasma volume status, septic shock, fluid therapy, 28-day mortality, 
MIMIC-IV database
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1 Introduction

Septic shock is a form of circulatory failure characterized by a 
combination of mechanisms including hypovolemia, vascular tone 
depression, cardiac dysfunction, and disturbances in microcirculation 
(1). Fluid infusion is the most used treatment method in clinical 
practice (2). The purpose of fluid infusion is to increase cardiac output 
and improve tissue perfusion. However, in practice, fluid infusion can 
yield different outcomes (3, 4). Sepsis reduces vascular tone through 
various mechanisms, resulting not only in arterial hypotension due to 
vasodilation but also in venous dilation, altered blood flow 
distribution, and microcirculatory dysfunction (5). However, reduced 
venous tone increases unstressed volume, leading to venous return 
impairment, causing an increase in total body volume but failing to 
enhance venous return (6). Therefore, the effect of intravenous fluid 
infusion is difficult to maintain and can cause subsequent damage, 
leading to poor prognosis (7). We hypothesize that the total vascular 
volume in septic patients can reflect the extent of venous dilation 
in sepsis.

The traditional Strauss et al. formula, developed in 1951, utilizes 
an equation based on hematocrit and hemoglobin to provide 
estimations of plasma volume status (ePVS) (8). In 2015, Duarte et al. 
introduced a single time-point ‘instantaneous’-derived measurement 
of plasma volume for estimating PV derived from the Strauss formula 
(9). They found that, in cases of myocardial infarction complicated by 
heart failure (HF), ePVS, as an indicator of total vascular volume, 
holds significant prognostic value for early cardiovascular events 
beyond routine clinical evaluations.

ePVS offers a straightforward method to estimate plasma volume. 
As a surrogate marker for total vascular volume, it has been validated 
for its reliability, with multiple studies demonstrating its independent 
association with outcomes in various heart failure phenotypes (10–
12). Moreover, ePVS has shown prognostic relevance in patients with 
acute respiratory distress syndrome and fever (13, 14). We hypothesize 
that in patients with septic shock, the total vascular volume will 
increase following fluid resuscitation due to the systemic vasodilation 
caused by the inflammatory response, and this increase in total 
vascular volume is related to the prognosis.

Despite the clinical utility and simplicity of ePVS, alongside its 
cost-effectiveness and efficiency, its adoption in clinical practice 
remains limited. This study aims to explore the impact of ePVS on the 
mortality of patients with septic shock, thereby contributing to the 
optimization of septic shock management.

2 Methods

2.1 The database

The Medical Information Mart for Intensive Care IV (MIMIC-IV 
version 2.2) database was utilized to gather the data for this 
investigation (15). The MIMIC-IV database collected clinical data on 
patients who visited Beth Israel Deaconess Medical Center (BIDMC) 
between 2008 and 2019. Access to the database is available for 
download upon completion of an authorized course on their official 
website. The author, Beijun Gao, has completed the accredited course, 
had database access, and oversaw data extraction (Record ID: 
12338471). All patient information is hidden to protect their privacy.

2.2 Cohort information

2.2.1 Selection of participants
Selection of patients diagnosed with septic shock in version 2.2 of 

the (MIMIC)-IV database. Septic shock is defined as patients who 
received appropriate fluid resuscitation but still require vasopressors 
to maintain mean arterial pressure (MAP) >65 mmHg, and serum 
lactate levels above 2.0 mmol/L (16), ICD9 and ICD10 codes are used 
to identify patients with septic shock. Inclusion criteria are as follows: 
first admission to the intensive care unit (ICU), age over 18 years, and 
ICU stay of at least 1 day. Exclusion criteria are: (i) multiple 
admissions; (ii) age < 18 years; (iii) during pregnancy and postpartum 
period; (iv) hospital stay <24 h; (v) Lack of data on hemoglobin levels 
and hematocrit values, or substantial baseline data absence.

2.2.2 Variable extraction
We selected the first data point upon the target patient’s admission 

to the ICU. Baseline characteristics of patients include age, gender, 
weight, history of diabetes, history of hypertension, and history of 
malignant tumors. Vital signs data extracted from ICU patients 
include heart rate (HR), systolic blood pressure (SBP), diastolic blood 
pressure (DBP), mean arterial pressure (MAP), and respiratory rate 
(RR). Blood gas analysis indices include potassium (K+), sodium 
(Na+), anion gap, and lactate. Laboratory parameters include white 
blood cell count (WBC), platelet count (PLT), hematocrit (HCT), 
hemoglobin (HB), potassium (K+), sodium (Na+), anion gap, lactate, 
alanine aminotransferase (ALT), aspartate aminotransferase (AST), 
total bilirubin, prothrombin time (PT), international normalized ratio 
(INR), blood urea nitrogen (BUN) and creatinine (Cr). Intervention 
measures include ventilation, continuous renal replacement therapy 
(CRRT), and vasopressors. Vasopressor use is defined as the 
administration of norepinephrine, epinephrine, dopamine, 
dobutamine, or vasopressin during the first day of ICU hospitalization. 
Additionally, Charlson comorbidity index, Sequential Organ Failure 
Assessment (SOFA) score, Acute Physiology And Chronic Health 
Evaluation (APACHE) score, and worst renal function stage during 
hospitalization based on the Kidney Disease: Improving Global 
Outcomes (KDIGO) AKI Guideline Work Group criteria were 
calculated for each patient (17).

2.3 Evaluation of ePVS

The Duarte formula incorporating hematocrit and hemoglobin 
was utilized as follows (7):

 ePVS dL g hematocrit hemoglobin g dL/ % / /( ) = − ( )( ) ( )100

2.4 Grouping and study endpoints

Based on the 28-day follow-up outcomes, enrolled patients were 
categorized into the survival group (n = 5,463) and the death group 
(n = 2,144). Additionally, patients were further stratified into a high 
ePVS group (n = 3,789) and a low ePVS group (n = 3,818) based on the 
ePVS value (6.52 dL/g), which was determined through restricted 
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cubic spline (RCS) analysis, as described later in this study. The 
primary outcome assessed in this study was 28-day mortality. The 
secondary outcomes included 90-day mortality, duration of ICU stay, 
and occurrence of acute kidney injury.

2.5 Statistical analysis

Data management procedures were implemented to address 
missing data issues. Cases with severely missing data, exceeding 20% 
of the dataset, were excluded from the analysis (Supplementary Table S1 
for details on missing data). Acceptable missing data were imputed 
using the multiple imputation method with random forests, 
implemented in the R software package (18). Continuous variables 
underwent an initial assessment for normal distribution. Those 
adhering to a normal distribution were summarized as mean 
(standard deviation) and analyzed using the t-test method. 
Alternatively, continuous variables not conforming to a normal 
distribution were presented as median (interquartile range) and 
analyzed using nonparametric methods (Mann–Whitney U test). 
Categorical data were summarized as frequencies and percentages and 
analyzed using the chi-square method.

To investigate the relationship between ePVS and 28-day all-cause 
mortality risk in patients with septic shock, RCS analysis was 
performed. Subsequently, a cut-off value of 6.52 dL/g for ePVS was 
determined based on the RCS analysis, stratifying patients into high 
and low ePVS groups. Univariate and multivariate Cox regression 
analyses were conducted to assess the independent association 
between increased ePVS and higher 28-day and 90-day all-cause 
mortality in patients with septic shock. Results were expressed as 
hazard ratios (HR) with 95% confidence intervals (CI). Model 
I  analysis involved no adjustments for covariates. In Model II, 
adjustments were made for Age, Gender, and Weight. Model III 
further adjusted for SOFA score, Charlson Comorbidity Index, 
APACHE II score, SAPS II score, HR, SBP, DBP, MAP, RR, lactate, K+, 
Na+, anion gap, WBC, PLT, ALT, AST, total bilirubin, PT, INR, BUN, 
Cr, mechanical ventilation, CRRT, vasopressor use, metastatic cancer, 
DM, and HT. Kaplan–Meier curves were generated to visualize the 
survival probability between high and low ePVS groups, with 
comparison done using the log-rank test. Stratified analyses were 
conducted based on the variables Gender, Age (>65 vs. <=65), 
Ventilation, CRRT, and Vasopressor use. Calibration curve was also 
included to better substantiate the predictive value of ePVS. Data 
analysis was performed using R programming language version 4.2.0, 
with statistical significance set at a two-tailed p-value of <0.05.

3 Results

3.1 Demographics and baseline 
characteristics

The study included 7,607 patients, with 5,463 (71.8%) surviving 
and 2,144 (28.2%) deceased (Figure 1). Deceased patients had a higher 
mean age (70.62 vs. 66.24 years) and lower body weight (79.60 vs. 
82.63 kg) than survivors. Comorbidities like diabetes mellitus (DM: 
3.7% vs. 2.8%) and hypertension (HT: 79.9% vs. 77.6%) were more 
prevalent in the deceased. Severity scores, including SOFA (9.60 vs. 

6.99), Charlson (6.80 vs. 5.66), APACHE (73.59 vs. 55.57), and SAPS 
II (53.06 vs. 41.44), were higher in the deceased. Vital signs such as 
heart rate, systolic blood pressure, and respiratory rate were slightly 
elevated in the deceased. Laboratory findings showed deviations in 
lactate, potassium, WBC count, PLT count, liver function (ALT, AST, 
total bilirubin), and renal function (BUN, Cr) in the deceased, with 
significant differences compared to survivors. Mechanical ventilation, 
CRRT, and vasopressor usage were more frequent in the deceased 
cohort (Table 1).

3.2 Restricted cubic spline (RCS) analysis 
between ePVS level and 28-day mortality

The relationship between admission ePVS level and 28-day 
mortality demonstrates a nonlinear pattern. Figure 2A presents the 
restricted cubic spline (RCS) curve illustrating this relationship in 
patients with septic shock, without adjusting for potential confounders. 
Upon adjustment for potential confounders, as shown in Figure 2B, 
both figures indicate that the cutoff value of ePVS was identified as 
6.52 dL/g, corresponding to a hazard ratio of 1. Significant escalation 
in mortality risk was observed when ePVS exceeded 6.52 dL/g.

3.3 Outcomes by ePVS level in patients 
with septic shock

Table 2 presents outcomes based on ePVS levels in patients with 
septic shock. The 28-day and 90-day all-cause mortality rates were 
28.2 and 38.6%, respectively. Notably, the 28-day mortality rate in the 
high ePVS group (30.2%) was significantly elevated compared to the 
low ePVS group (26.2%, p < 0.001). Similarly, the 90-day mortality rate 
in the high ePVS group (42.3%) was also higher than that in the low 
ePVS group (35%, p < 0.001). There was no significant difference in 
length of stay in the ICU between the two groups. Additionally, 39.5% 
of patients experienced stage 3 acute kidney injury (AKI), with a 
higher proportion observed in the high ePVS group (40.9%) compared 
to the low ePVS group (38.1%).

3.4 Survival analysis

The Kaplan–Meier curve showed that the 28-day and 90-day 
cumulative survival rates were lower in the high ePVS group than that 
in the low ePVS group (log-rank test, χ2 = 12.6, p < 0.001; χ2 = 35.9, 
p < 0.001) (Figures 3A,B).

3.5 Correlation between ePVS and 
all-cause mortality

The Cox regression models presented in Table 3 demonstrate the 
relationship between ePVS levels and the risk of 28-day and 90-day 
mortality. In the unadjusted model (Model I), ePVS as a continuous 
variable shows a significant positive correlation with 28-day and 90-day 
all-cause mortality (HR 1.05, 95% CI 1.03–1.08, p < 0.001 and HR 1.08, 
95% CI 1.05–1.10, p < 0.001). When ePVS is categorized, higher levels 
(>6.52) are associated with increased 28-day and 90-day all-cause 
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mortality (HR 1.17, 95% CI 1.07–1.27, p < 0.001 and HR 1.25, 95% CI 
1.16–1.34, p  < 0.001). In Model II, ePVS as a continuous variable 
remains positively correlated with 28-day and 90-day mortality. After 
categorization, high ePVS (>6.52) is still linked to increased 28-day 
mortality (HR 1.18, 95% CI 1.08–1.29, p < 0.001) and 90-day mortality 
(HR 1.26, 95% CI 1.17–1.36, p < 0.001). Model III results indicate that 
higher ePVS is an independent risk factor for adverse outcomes in 
patients with septic shock, with significantly higher 28-day (HR 1.20, 
95% CI 1.10–1.31, p < 0.001) and 90-day (HR 1.25, 95% CI 1.15–1.35, 
p  < 0.001) all-cause mortality rates in the high ePVS group. The 

calibration curve (Figure 4) demonstrates that the ePVS model reliably 
predicts 28-day mortality in septic shock patients, with predicted 
probabilities closely matching observed outcomes. This supports the 
potential utility of ePVS as a prognostic tool in clinical settings.

3.6 Subgroup analyses

Subgroup analyses revealed significant associations within specific 
strata (Figure 5). Female gender exhibited a heightened risk for the 

FIGURE 1

Flow chart of the study.

FIGURE 2

Restricted cubic spline (RCS). (A) Unadjusted model. (B) Adjusted model: Adjusted for Age, Gender, Weight, SOFA score, Charlson Comorbidity Index, 
APACHE II score, SAPS II score, Heart Rate (HR), Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Mean Arterial Pressure (MAP), Respiratory 
Rate (RR), Lactate, Potassium, Sodium, Anion Gap, White Blood Cell (WBC) count, Platelet (PLT) count, Alanine Aminotransferase (ALT), Aspartate 
Aminotransferase (AST), Total Bilirubin, Prothrombin Time (PT), International Normalized Ratio (INR), Blood Urea Nitrogen (BUN), Creatinine (Cr), 
Mechanical Ventilation, Continuous Renal Replacement Therapy (CRRT), Vasopressor Use, Metastatic Cancer, Diabetes Mellitus (DM), and Hypertension 
(HT).
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TABLE 1 The characteristic of included subjects between different groups.

Variable Level Overall
n  =  7,607

Survival
n  =  5,463

Death
n  =  2,144

p-value

General information

Age [mean (SD)] 67.47 (15.08) 66.24 (15.11) 70.62 (14.55) <0.001

Gender (%) Female 3,329 (43.8) 2,376 (43.5) 953 (44.4) 0.465

Male 4,278 (56.2) 3,087 (56.5) 1,191 (55.6)

Weight [mean (SD)] 81.78 (26.11) 82.63 (26.91) 79.60 (23.84) <0.001

Comorbidities

Metastatic cancer (%) No 7,600 (99.9) 5,459 (99.9) 2,141 (99.9) 0.658

Yes 7 (0.1) 4 (0.1) 3 (0.1)

DM (%) No 7,345 (96.6) 5,260 (96.3) 2,085 (97.2) 0.045

Yes 262 (3.4) 203 (3.7) 59 (2.8)

HT (%) No 5,956 (78.3) 4,242 (77.6) 1,714 (79.9) 0.031

Score system

SOFA [mean (SD)] 7.73 (3.79) 6.99 (3.41) 9.60 (4.04) <0.001

Charlson [mean (SD)] 5.98 (2.89) 5.66 (2.83) 6.80 (2.87) <0.001

APACHE II [mean (SD)] 60.65 (22.49) 55.57 (19.45) 73.59 (24.44) <0.001

SAPSII [mean (SD)] 44.72 (14.73) 41.44 (13.20) 53.06 (15.11) <0.001

Vital signs

HR [mean (SD)] 111.40 (22.44) 110.14 (22.11) 114.61 (22.97) <0.001

SBP [mean (SD)] 141.26 (22.75) 141.93 (22.51) 139.55 (23.28) <0.001

DBP [mean (SD)] 86.92 (21.07) 87.14 (20.67) 86.38 (22.04) 0.159

MAP [mean (SD)] 103.52 (28.64) 103.40 (27.40) 103.83 (31.58) 0.557

RR [mean (SD)] 30.14 (6.96) 29.80 (6.93) 30.99 (6.98) <0.001

Laboratory results

ePVS [mean (SD)] 6.64 (1.80) 6.58 (1.77) 6.79 (1.85) <0.001

Lac [mean (SD)] 3.21 (2.77) 2.78 (2.14) 4.31 (3.74) <0.001

Potassium [mean (SD)] 4.73 (0.96) 4.68 (0.96) 4.83 (0.95) <0.001

Sodium [mean (SD)] 139.71 (5.89) 139.68 (5.57) 139.81 (6.65) 0.392

Anion gap [mean (SD)] 18.41 (5.77) 17.77 (5.34) 20.06 (6.45) <0.001

WBC [mean (SD)] 17.13 (12.56) 16.54 (10.68) 18.65 (16.30) <0.001

PLT [mean (SD)] 230.71 (143.75) 236.69 (144.20) 215.46 (141.49) <0.001

Hemoglobin [mean (SD)] 10.63 (2.07) 10.69 (2.06) 10.45 (2.07) <0.001

ALT (median [IQR]) 43.00 [20.00, 99.00] 43.00 [20.00, 93.97] 43.00 [20.00, 112.35] 0.042

AST (median [IQR]) 71.00 [31.00, 152.00] 67.00 [29.00, 139.16] 82.00 [35.00, 194.25] <0.001

Total bilirubin (median [IQR]) 1.20 [0.50, 2.68] 1.20 [0.50, 2.50] 1.40 [0.60, 3.50] <0.001

PT [mean (SD)] 21.51 (15.45) 20.26 (13.86) 24.72 (18.52) <0.001

INR [mean (SD)] 1.99 (1.46) 1.87 (1.32) 2.29 (1.75) <0.001

Bun [mean (SD)] 40.36 (28.36) 37.60 (26.84) 47.38 (30.83) <0.001

Cr [mean (SD)] 2.21 (1.98) 2.13 (2.04) 2.41 (1.80) <0.001

Treatment

Ventilation (%) No 4,472 (58.8) 3,403 (62.3) 1,069 (49.9) <0.001

Yes 3,135 (41.2) 2,060 (37.7) 1,075 (50.1)

CRRT (%) No 6,575 (86.4) 4,930 (90.2) 1,645 (76.7) <0.001

Yes 1,032 (13.6) 533 (9.8) 499 (23.3)

Vasopressor (%) No 5,668 (74.5) 4,532 (83.0) 1,136 (53.0) <0.001

(Continued)
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primary outcome, with a hazard ratio (HR) of 1.19 (95% CI: 1.06–
1.33), compared to male patients (HR: 1.13, 95% CI: 1.00–1.29). 
Patients aged 65 years or younger demonstrated an HR of 1.38 (95% 
CI: 1.19–1.59). Non-ventilated patients were at a significantly 
increased risk for the primary outcome (HR: 1.32, 95% CI: 1.18–1.49) 

compared to ventilated patients (HR: 1.19, 95% CI: 1.06–1.35). The 
HR for patients not receiving Continuous Renal Replacement Therapy 
(CRRT) was 1.21 (95% CI: 1.10–1.34), whereas for those receiving 
CRRT, the HR was 0.90 (95% CI, 0.76 to 1.08). Non-vasopressor use 
was associated with an elevated risk of the primary outcome (HR: 

FIGURE 3

(A) Kaplan–Meier survival curve of 28-day cumulative survival rate for low and high ePVS groups. (B) Kaplan–Meier survival curve of 90-day cumulative 
survival rate for low and high ePVS groups.

TABLE 2 The comparison of outcomes between the low ePVS group and high ePVS group.

Outcome Level Overall Low ePVS
≤6.52  dL/g

High ePVS
>6.52  dL/g

p-value

AKI stage (%) 0 1,475 (19.4) 731 (19.1) 744 (19.6) 0.014

1 949 (12.5) 478 (12.5) 471 (12.4)

2 2,177 (28.6) 1,153 (30.2) 1,024 (27.0)

3 3,006 (39.5) 1,456 (38.1) 1,550 (40.9)

Losicu [mean (SD)] 6.89 (8.08) 7.06 (8.53) 6.72 (7.59) 0.067

28-day mortality (%) 2,144 (28.2) 1,000 (26.2) 1,144 (30.2) <0.001

90-day mortality (%) 2,940 (38.6) 1,336 (35.0) 1,604 (42.3) <0.001

Results are expressed as mean (SD), n (%). ePVS, Estimated plasma volume status; AKI, Acute Kidney Injury; Losicu, Length of ICU Stay.

Variable Level Overall
n  =  7,607

Survival
n  =  5,463

Death
n  =  2,144

p-value

Yes 1,939 (25.5) 931 (17.0) 1,008 (47.0)

Outcomes

AKI stage (%) 0 1,475 (19.4) 1,331 (24.4) 144 (6.7) <0.001

1 949 (12.5) 779 (14.3) 170 (7.9)

2 2,177 (28.6) 1,728 (31.6) 449 (20.9)

3 3,006 (39.5) 1,625 (29.7) 1,381 (64.4)

Losicu [mean (SD)] 6.89 (8.08) 7.00 (8.89) 6.61 (5.47) 0.059

Results are expressed as mean (SD), median [IQR] or n (%). DM, Diabetes Mellitus; HT, Hypertension; SOFA, Sequential Organ Failure Assessment score; Charlson, comorbidity index; 
APACHE II, Acute Physiology And Chronic Health Evaluation II; SASPII, Severe Acute Pancreatitis Score II; HR, Heart Rate; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; 
MAP, Mean Arterial Pressure; RR, Respiratory Rate; ePVS, Estimated plasma volume status; Lac, Lactate; WBC, White Blood Cell count; PLT, Platelet count; ALT, Alanine Aminotransferase; 
AST, Aspartate Aminotransferase; PT, Prothrombin Time; INR, International Normalized Ratio; BUN, Blood Urea Nitrogen; Cr, Creatinine; CRRT, Continuous Renal Replacement Therapy; 
AKI, Acute Kidney Injury; Losicu, Length of ICU Stay.

TABLE 1 (Continued)
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1.32, 95% CI: 1.18–1.49) compared to vasopressor use (HR: 1.19, 95% 
CI: 1.06–1.35).

4 Discussion

In this retrospective cohort study, we analyzed 7,607 ICU patients 
with septic shock, finding that 2,144 (28.2%) succumbed within 
28 days. We  identified a J-shaped relationship between estimated 
plasma volume status (ePVS) at ICU admission and 28-day mortality, 
with a significant increase in mortality risk when ePVS exceeded 
6.52 dL/g. Multivariable Cox regression analysis showed a positive 
correlation between baseline ePVS above 6.52 dL/g and the risk of 
death at both 28 and 90 days. Kaplan–Meier curves demonstrated an 
increased risk of in-hospital mortality for ePVS values over 6.52 dL/g. 
Calibration curves further confirmed the predictive value of 
ePVS. Our findings suggest that ePVS, being readily accessible, holds 
promise as a prognostic tool for patients with septic shock.

ePVS was initially utilized in heart failure patients, with Duarte et al. 
leading its application by demonstrating its predictive value for early 
cardiovascular events in heart failure complicating myocardial 
infarction (9). Subsequent studies have consistently revealed its 
association with early clinical outcomes of decompensated heart failure 
and its potential to enhance risk stratification for heart failure (19). 
Another investigation conducted among US adults unveiled a robust 
correlation between increasing ePVS and elevated rates of all-cause 
mortality, cardiovascular mortality, and cancer-related mortality (4). In 
the emergency department, ePVS has been confirmed to be associated 
with the diagnosis and prognosis of dyspneic patients (20), as well as in 
ARDS (14), and also with febrile emergency department patients (21). 
Furthermore, ePVS has demonstrated a correlation with the severity of 
lower limb arterial disease and clinical outcomes (22).

In our study involving patients with septic shock, we found that 
ePVS levels were higher compared to those with cardiovascular 
diseases. Our cutoff value was set at 6.52 dL/g. This is an intriguing 
result, as in patients with acute myocardial infarction, an ePVS 
≥5.28 mL/g emerged as a risk factor for in-hospital mortality and was 
associated with an elevated risk of 30-day mortality (23). However, in 
the report by Kim et al. (24), they investigated ICU patients with 
sepsis or septic shock. Their findings revealed an ePVS of 
7.7 ± 2.1 dL/g, which stood out prominently, emphasizing a significant 
correlation between ePVS and the amount of intravenous fluid 
resuscitation in deceased patients. Additionally, they evaluated the 
utility of ePVS in predicting in-hospital mortality and identified a 
cutoff point of 7.09 dL/g. They observed a significant association 
between higher ePVS and increased in-hospital mortality (OR, 1.39; 
95% CI, 1.04–1.85, p = 0.028). Gianni Turcato et al. conducted three 
studies on the application of ePVS in emergency department (ED) 
patients. Among 1,502 febrile patients in the emergency department, 
the median ePVS value in patients diagnosed with sepsis was 5.54 
(4.43–6.51) dL/g, compared to a median ePVS value of 4.51 (3.89–
5.24) dL/g in non-septic patients (p < 0.001). In multivariate analysis, 
an ePVS higher than 4.52 dL/g was associated with a odds ratio of 
1.824 (95% CI 1.055–3.154, p = 0.030) for 30-day mortality (21). For 
emergency department patients diagnosed with sepsis, it was 
observed that the average ePVS among those surviving to 30 days was 
5.19, while the average ePVS among those who died within 30 days 
was 5.74 (p = 0.004). ePVS emerged as an independent risk factor for 
30-day mortality, with an adjusted odds ratio of 1.211 (95% CI 1.004–
1.460, p = 0.045) (25). A recently published prospective study 
measured ePVS in 949 infected patients included in the study. The 
median ePVS value for patients who died within 30 days was higher 
than that of survivors (5.83 vs. 4.61, p < 0.001). Multivariate analysis 
demonstrated that ePVS, both in continuous and categorical forms 

TABLE 3 ePVS levels and all-cause in-hospital mortality of septic shock.

Model I, HR 95%CI, p 
value

Model II, HR, 95%CI, 
p value

Model III, HR, 95%CI, p 
value

28-day mortality

ePVS (continuous variable) 1.05 (1.03–1.08, p < 0.001) 1.06 (1.03–1.08, p < 0.001) 1.07 (1.04–1.09, p < 0.001)

ePVS [Categorical variables (quartile)]

≤6.52 Ref Ref Ref

>6.52 1.17 (1.07–1.27, p < 0.001) 1.18 (1.08–1.29, p < 0.001) 1.20 (1.10–1.31, p < 0.001)

P for trend p < 0.001 p < 0.001 p < 0.001

90-day mortality

ePVS (continuous variable) 1.08 (1.05–1.10, p < 0.001) 1.08 (1.06–1.10, p < 0.001) 1.08 (1.06–1.10, p < 0.001)

ePVS [Categorical variables (quartile)]

≤6.52 Ref Ref Ref

>6.52 1.25 (1.16–1.34, p < 0.001) 1.26 (1.17–1.36, p < 0.001) 1.25 (1.15–1.35, p < 0.001)

P for trend p < 0.001 p < 0.001 p < 0.001

HR, hazard ratio; CI, confidence interval; Ref, reference.
Model I: No adjustments.
Model II: Adjusted for Age, Gender, and Weight.
Model III: In addition to Model II adjustments, further adjustments were made for SOFA score, Charlson Comorbidity Index, APACHE II score, SAPS II score, Heart Rate (HR), Systolic 
Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Mean Arterial Pressure (MAP), Respiratory Rate (RR), Lactate, Potassium, Sodium, Anion Gap, White Blood Cell (WBC) count, 
Platelet (PLT) count, Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), Total Bilirubin, Prothrombin Time (PT), International Normalized Ratio (INR), Blood Urea 
Nitrogen (BUN), Creatinine (Cr), Mechanical Ventilation, Continuous Renal Replacement Therapy (CRRT), Vasopressor Use, Metastatic Cancer, Diabetes Mellitus (DM), and Hypertension 
(HT).
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around the median, was an independent risk factor for 30-day 
mortality even after adjusting for severity, comorbidity, and 
urgency (13).

We observed that ePVS levels were elevated in patients diagnosed 
with sepsis compared to those with fever, and notably higher in 

patients with septic shock. Our study revealed a significant increase in 
mortality risk when ePVS exceeded 6.52 dL/g. These differing cutoff 
values may be linked to the pathophysiology of septic shock. Primarily, 
a hallmark of sepsis is vascular paralysis, characterized by a decrease 
in arterial pressure and extensive venous dilation in both visceral and 
cutaneous vascular beds (26). Throughout the progression of sepsis, 
plasma volume does not decrease but rather increases the unstressed 
volume, thereby reducing venous return and cardiac output (1, 27). 
Secondly, the microcirculatory disturbances caused by systemic 
inflammatory response alter vascular permeability, irreversibly 
affecting the body’s volume regulation and the balance between 
interstitial and intravascular spaces (27). Additionally, early treatment 
for septic patients involves intravenous fluid resuscitation to restore 
tissue perfusion (28). Thus, as mentioned earlier, ePVS correlates with 
the volume of fluid administered before admission to the intensive 
care unit (24). The gradual accumulation of resuscitative fluids 
ultimately leads to intravascular congestion.

The association between ePVS and mortality in septic shock has 
been unequivocally established in our study. After multiple 
adjustments for variables, we consistently confirmed that an elevated 
ePVS serves as an independent risk factor for 28-day mortality in 
septic shock. One of the reasons for this correlation is the association 
between ePVS and venous congestion, which can serve as a marker 
of hemodynamic congestion. Research correlating ePVS with 
hemodynamic indices has shown a notable correlation between 
higher ePVS derived from the Duarte formula and higher E/e’ ratios. 
Interestingly, only in females, left ventricular end-diastolic pressure 

FIGURE 4

Calibration curve for EPVS in predicting 28-day mortality. The x-axis 
represents the predicted 28-day mortality based on ePVS 
measurements, while the y-axis shows the actual 28-day mortality. 
The blue crosses compare the predicted values with the actual 
outcomes, and the error bars indicate the confidence intervals of the 
predictions. The red line shows the trend between predicted and 
actual values.

FIGURE 5

Subgroup analysis of the association between ePVS and 28-day mortality.
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(LVEDP) is associated with ePVS (29). Moreover, in our subgroup 
analysis, we  observed differences in ePVS between genders, 
indicating that the influence of gender on plasma volume regulation 
requires further investigation. While studies have suggested that 
ePVS is not correlated with pulmonary artery wedge pressure 
(PAWP) and intracardiac filling pressures (30), this may indirectly 
suggest that ePVS is more closely associated with the regulation of 
systemic venous beds and venous return rather than with cardiac 
function. It is essential to prioritize venous return function during 
fluid therapy. In summary, our study identified ePVS as an 
independent predictor of 28-day mortality in septic shock. Elevated 
ePVS levels may indicate the need for clinicians to prioritize venous 
return function during fluid therapy and to be vigilant about fluid 
redistribution in patients with septic shock, thereby assessing their 
volume status accordingly.

Our study has several limitations. Firstly, retrospective cohort 
studies inevitably entail biases. However, we attempted to adjust for 
potential confounders in our data analysis to minimize bias. Secondly, 
in our inclusion of patients with septic shock in the ICU, we did not 
extract information on fluid resuscitation in the emergency department, 
making it difficult to explore the relationship between fluid infusion and 
ePVS. Thirdly, we  only selected ePVS at ICU admission. While 
we believe ePVS can serve as a continuous target variable to assess its 
impact on the prognosis of patients with septic shock, we  plan to 
conduct further prospective studies to explore the continuous changes 
in ePVS and the prognosis of sepsis. Fourthly, although there is a 
correlation between the ePVS formula and actual plasma volume, this 
relationship needs to be validated against a gold standard (31). Fifthly, 
patients known to have chronic anemia were not excluded. Certain 
ePVS values may be  altered due to these conditions. Lastly, due to 
limitations in the database, there were no echocardiographic data or 
hemodynamic data related to patient blood volume status and ePVS 
values in this dataset.

5 Conclusion

In patients with septic shock admitted to the ICU, there exists a 
J-shaped relationship between the first obtained ePVS values during 
routine blood tests and the 28-day mortality rate. When blood ePVS 
exceeds 6.52 dL/g, it is associated with an increased risk of mortality 
at both 28 and 90 days. However, prospective evidence is needed to 
confirm these clinical observations and to study the pathophysiological 
reasons behind elevated ePVS values. Nonetheless, high ePVS levels 
can serve as important indicators of the severity of illness in patients 
with septic shock.
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Objective: The objective of this research was to create a machine learning

predictive model that could be easily interpreted in order to precisely

determine the risk of premature death in patients receiving intensive care after

pulmonary inflammation.

Methods: In this study, information from the China intensive care units (ICU)

Open Source database was used to examine data from 2790 patients who had

infections between January 2019 and December 2020. A 7:3 ratio was used to

randomly assign the whole patient population to training and validation groups.

This study used six machine learning techniques: logistic regression, random

forest, gradient boosting tree, extreme gradient boosting tree (XGBoost),

multilayer perceptron, and K-nearest neighbor. A cross-validation grid search

method was used to search the parameters in each model. Eight metrics

were used to assess the models’ performance: accuracy, precision, recall, F1

score, area under the curve (AUC) value, Brier score, Jordon’s index, and

calibration slope. The machine methods were ranked based on how well they

performed in each of these metrics. The best-performing models were selected

for interpretation using both the Shapley Additive exPlanations (SHAP) and Local

interpretable model-agnostic explanations (LIME) interpretable techniques.

Results: A subset of the study cohort’s patients (120/1668, or 7.19%) died in

the hospital following screening for inclusion and exclusion criteria. Using a

cross-validated grid search to evaluate the six machine learning techniques,

XGBoost showed good discriminative ability, achieving an accuracy score of

0.889 (0.874–0.904), precision score of 0.871 (0.849–0.893), recall score of

0.913 (0.890–0.936), F1 score of 0.891 (0.876–0.906), and AUC of 0.956 (0.939–

0.973). Additionally, XGBoost exhibited excellent performance with a Brier score

of 0.050, Jordon index of 0.947, and calibration slope of 1.074. It was also

possible to create an interactive internet page using the XGBoost model.

Conclusion: By identifying patients at higher risk of early mortality, machine

learning-based mortality risk prediction models have the potential to
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significantly improve patient care by directing clinical decision making and

enabling early detection of survival and mortality issues in patients with

pulmonary inflammation disease.

KEYWORDS

intensive care unit, infection, mortality, machine learning, precision therapy

1 Introduction

Worldwide, the incidence of infections in intensive care units
(ICUs) surpasses that in general wards by approximately 5 to 10
times (1). Particularly prevalent among ICU patients are lower
respiratory tract infections, which can constitute 40 to 50% of all
infections (2, 3). Among these, lung inflammation is the most
common respiratory disease ailment in the lower respiratory tract,
contributing significantly to global mortality rates (4).

As the core organ of the respiratory system, impaired lung
function can disrupt the balance of oxygen and carbon dioxide
in the blood and cause a buildup of metabolic products. This
can worsen the body’s physiological stress response and lead
to serious complications such as acute respiratory failure and
sepsis, significantly increasing the risk of death (5, 6). Notably,
approximately 20 to 30% of patients with pneumonia admitted
to the ICU die within 1 week (7). Thus, early detection of
patients with inflammatory lung disease who are at high risk of
death is crucial.

Current studies aiming to predict the probability of death
in ICU patients encompass various factors, including cerebral
infarction (8), acute heart failure (9), sepsis (10), healthcare-
associated infections (HAIs) (11), and other domains. However,
there have been few investigations on the risk of death from lung
inflammation. Sepsis emerges as the most extensively studied area
in ICU mortality risk research. Typically triggered by an underlying
condition such as a lung infection, its presence indicates that
the disease has progressed to a severe level. As a result, early
detection of the onset and progression of pulmonary inflammation
has major implications for optimizing therapy and improving
patient outcomes.

Existing mortality risk models primarily use demographic data
from patients outside of China, and Chinese patients are not
adequately represented. This limits the ability of existing models to
accurately forecast the probability of death in Chinese ICU patients.
Hence, patients in China may differ significantly from those
in other countries in terms of demographics, disease spectrum,
medical procedures, and lifestyle.

Today, determining a patient’s risk of death is a challenging
clinical task. Machine learning emerges as a potential approach for
identifying this risk (12), capable of capturing complex non-linear
relationships to accurately identify patterns and features associated
with the risk of death by learning from a large amount of clinical
data and biochemical indicator data, allowing physicians to make
more accurate diagnostic and therapeutic decisions (13).

The goal of this study was to create and verify an interpretable
machine learning-based mortality risk prediction model for
Chinese ICU patients with pulmonary inflammatory illness.

It provides guidance to healthcare practitioners by exploring
in-depth the risk factors associated with death. By identifying
unfavorable patient outcomes in the early stages of the disease,
timely intervention can be implemented, leading to improved
patient survival and ultimately enhancing clinical decision making
and patient outcomes.

2 Materials and methods

2.1 Study population and outcome

The data used in this study to estimate the probability of
death in patients with pulmonary inflammation were obtained
from the Critical Care Database version 1.1. This database is
an open-source database for intensive care units in Zigong City,
Sichuan Province, China, and specifically contains patients with
infection (14). The Ethics Committee of the Fourth People’s
Hospital in Zigong approved the use of this data (Ethics Approval
No. 2020-065). The database includes information from 2790
infected individuals (excluding those with COVID-19 pneumonia),
such as laboratory test results, baseline characteristics, medication
use records, International Classification of Diseases (ICD) codes,
nursing records, and follow-up information.

The inclusion criteria for this study were as follows: (1) age
≥18 years old and (2) infection site identified as “lung” according
to ICD codes. The exclusion criteria were: (1) missing data values
>25% and (2) missing key variables. A total of 1668 cases were
included in the analysis. The patients were divided into two groups:
Survivors and Non-survivors, based on their deceased or alive
status. The study’s results were reported following the criteria for
developing and publishing machine learning predictive models in
biomedical research (15). Figure 1 illustrates the flowchart for the
patients included in this study and the study design.

2.2 Variable selection and pre-processing

This study selected variables that reflect the disease and
treatment effects based on clinical experience and database
characteristics, including:

(1) General information: gender, age, history of chronic
pulmonary disease, and history of diabetes mellitus;

(2) vital signs: diastolic blood pressure, systolic blood pressure,
body temperature, respiration, heart rate, and type of
respiratory support;
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FIGURE 1

Patient selection flowchart and study design routes.

(3) laboratory tests: oxygen saturation in arterial blood (SaO2),
white blood cell, albumin, blood creatinine, sodium
ions, calcium ions, potassium ions, platelets, Alanine
amioTransferase (ALT), Aspartate Aminotransferase (AST),
hemoglobin (Hg), activated partial thromboplastin time
(APTT), serum total bilirubin, high-sensitivity troponin-i
(Tn-i), and international normalized ratio (INR). In total, 25
variables were included.

All variables were checked for outliers and missing values.
Missing values greater than 25% were removed, while those
less than 25% were addressed using multiple interpolations with
the “mice” package in R. Additionally, all variables were mean
standardized. Gender, history of chronic obstructive pulmonary
disease, history of diabetes, and type of respiratory support were
considered discrete variables, while the rest were considered
continuous variables. Positive events are represented by a variable
value of 1, while negative events are denoted by 0. Vital signs
were also selected as the first recorded data upon ICU admission.
Supplementary File 1 provides further details.

2.3 Sample equalization processing

The overall mortality rate at discharge in this trial was 7.19%,
with a positive-to-negative ratio of approximately 1 to 13. In
supervised learning, classification algorithms whose learning goal
is overall classification accuracy tend to focus too much on the
majority class and fail to learn characteristics from the minority
class. To ensure the efficiency of machine learning, this study
utilized the SMOTE Tomek Link algorithm, which combines
oversampling and undersampling (16). This approach removes
noise from samples and balances the sample size.

2.4 Model construction

2.4.1 Machine learning model
In this study, Python software (version 3.10) was used to

process the data. Logistic regression (LR), random forest (RF),
gradient boost decision tree (GBDT), extreme gradient boosting
tree (XGBoost), multilayer perceptron (MLP), and k-nearest
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neighbor (KNN) algorithms were used to predict the risk of death
in patients with pneumonia.

2.4.2 Model training
The dataset was divided into training and test sets in a

7:3 ratio. To improve the model’s generalization ability, 10-fold
cross-validation was applied to the test set, and the model’s
hyperparameters were adjusted using the GridSearchCV method.
The model’s accuracy was estimated by averaging the data in the test
set along with its 95% confidence interval. Eight metrics were used
to evaluate the model outcomes: accuracy, precision, sensitivity,
F1 score, area under the curve, Brier score, Jordan’s index, and
calibration slope. Due to minimal variations in the performance
metrics among most of the machine learning models, selecting the
final model posed a challenge (17). In this study, each measure
(such as accuracy, precision) was evaluated from highest to lowest
and given a score ranging from 6 to 1, all the points are added
together to make the total score. Therefore, The model with the
highest score was chosen for further model interpretation.

2.4.3 Model interpretability and variable
importance

Variable importance was assessed using the Shapley Additive
exPlanations (SHAP) method. For each predicted sample, the
model generates a predicted value, and the SHAP value is the
value assigned to each feature in that sample (18). SHAP allows
for a global evaluation of the model by determining the marginal
contribution of features to the model output. Complementing
the SHAP method, the Local Interpretable Model-Agnostic
Explanations (LIME) method improves the interpretability of the
best model and its transparency in clinical practice (19). LIME
calculates the risk of premature death and assigns individual
weights to each variable, helping to understand changes in
estimated probabilities under different observation settings and
making the model more distinct.

2.5 Dataset description

The count data in the baseline data are expressed as
frequencies and percentages, while the measurement data are
expressed as mean ± standard deviation or median (interquartile
range), depending on the numerical distribution. The appropriate
statistical tests (t-test/Chi-square test/non-parametric tests) were
used according to the data distribution shape, with α = 0.05.

3 Results

The average age of the patients was 67.55 ± 16.37 years,
17.03% had diabetes, and 14.09% had chronic lung disease.
There were statistical differences in gender, temperature, systolic
blood pressure, diastolic blood pressure, SaO2, type of respiratory
support, APTT, albumin, AST, calcium ions, Tn-i, INR, and white
blood cells between surviving and deceased patients. The other
characteristics did not show statistical significance. The baseline
characteristics of the dataset are summarized in Table 1. The

“Total” category represents the information of the entire study
population, including survivors and non-survivors groups.

The study adjusted some of the hyperparameters of the
models using the GridSearchCV method, and the adjustment space
and determined values of the hyperparameters can be found in
Supplementary File 2. Table 2 displays the final 10-fold cross-
validated model efficacy along with its 95% confidence intervals.
In terms of individual model performance, the GBDT model has
the highest accuracy, precision, F1-score, AUC value, Brier score,
and Youden index, the KNN model had the highest recall, and the
MLP model had the highest calibration slope. By calculating the
distribution F1 value and AUC value (score = 0.6 F1 + 0.4 AUC),
the optimal cutoff value for XGBoost was determined to be 0.510,
achieving the highest score of 0.957.

Figure 2 displays an AUC visualization for ten-fold cross-
validation. The AUC of the GBDT model was 0.971 (0.957–0.986),
followed by the XGBoost model at 0.956 (0.939–0.973) and the
RF at 0.955 (0.936–0.974). The probability curves for each model
are displayed in Figure 3. The GBDT, XGBoost, and MLP models
exhibited the least overlap and demonstrated a large separation
between positive and negative events. These models revealed
significant differences between patients who died and those who
survived, indicating a higher capacity for discrimination. Figure 4
displays the calibration curves for each model, providing further
quantification of this discrimination. The calculation of their
calibration slopes in Table 2 confirms the improved effectiveness
of the GBDT, XGBoost, and MLP models in differentiating patients
with various outcomes. The analysis above demonstrates the
usefulness of these three models in clinical decision making.
Furthermore, Box plots of the six models are in Supplementary
Figure 1 in Supplementary Material 2. Among all models, RF and
XGBoost perform better in distinguishing positive and negative
samples.

After assigning scores to each performance in turn, GBDT
exhibited the highest prediction performance score (45 points),
followed by XGBoost (36 points, Table 2). Given that the GBDT
calibration curve oscillates between rising and falling values around
the ideal curve and it performs mediocrely in distinguishing
positive and negative samples Supplementary Figure 1 in
Supplementary Material 2, XGBoost was chosen for additional
model interpretation in this investigation.

Model interpretability, based on the XGBoost model, rates
the variables and visually represents their contribution to the
probability of death. Figure 5 presents four cases using the LIME
validation set, including two death cases (Figures 5A, B) and
two survival cases (Figures 5C, D). These charts showcase the
top ten factors that have the greatest impact on patient survival
or death and explain how these characteristics influence patient
outcomes. Specifically, Figure 5A illustrates that male gender,
absence of diabetes, absence of chronic pulmonary disease, use
of non-invasive ventilation, and presence of low albumin levels
(≤29.48 g/L) increase the risk of death. On the other hand,
low potassium levels (≤3.24 mmol/L), normal white blood cell
counts, normal systolic blood pressure values (128∼159 mmHg),
and normal APTT (30.1∼35.74 s) reduce the risk of death. The
comprehensive evaluation of this model predicted a probability of
death of 0.95 for the patient in question and correctly classified
them as deceased.
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TABLE 1 Comparison of various characteristics in the two groups of patients (n = 1668).

Characteristics Total (n = 1668) Survivors (n = 1548) Non-survivors (n = 120) P-value

Age (year) 67.55 ± 16.37 67.63 ± 16.20 66.45 ± 18.53 0.445

Gender 0.028

Male 1025 (61.45%) 940 (56.35%) 85 (5.10%)

Female 643 (38.55%) 608 (36.45%) 35 (2.10%)

Temperature (◦F) 97.70 (97.16, 97.88) 97.70 (97.16, 98.06) 97.16 (96.80, 97.70) 0.001

Heart rate 98.00 (80.00, 118.00) 98.00 (80.00, 118.00) 98.50 (76.00, 121.00) 0.586

Systolic blood pressure (mmHg) 135.00 (110.00, 162.00) 136.00 (112.00, 163.00) 113.00 (150.75, 89.25) <0.001

Diastolic blood pressure (mmHg) 80.00 (65.00, 95.00) 80.00 (66.00, 95.00) 72.00 (51.50, 91.50) <0.001

SaO2 (%) 98.10 (96.80, 99.00) 98.20 (97.00, 99.00) 98.00 (95.10, 99.18) <0.001

Respiratory rate 20.00 (16.00, 26.00) 20.00 (16.00, 26.00) 18.00 (15.00, 25.00) 0.195

Diabetes 0.913

Yes 284 (17.03%) 264 (15.83%) 20 (1.20%)

No 1384 (82.97%) 1284 (76.98%) 100 (6.00%)

Chronic pulmonary disease 0.766

Yes 235 (14.09%) 217 (13.01%) 18 (1.08%)

No 1433 (85.91%) 1331 (79.80%) 102 (6.12%)

Type of respiratory support 0.002

Invasive 499 (29.90%) 448 (26.85%) 51 (3.05%)

Non-invasive 1169 (70.10%) 1100 (65.96%) 69 (4.14%)

Activated partial thromboplastin time 29.00 (25.50, 33.10) 28.80 (25.40, 32.70) 31.80 (26.43, 44.80) <0.001

Alanine aminotransferase 24.30 (15.30, 43.55) 24.00 (15.00, 42.00) 35.30 (19.78, 86.95) 0.053

Albumin 35.40 (30.13, 39.88) 35.50 (30.40, 39.98) 32.20 (27.15, 38.75) 0.003

Aspartate aminotransferase 32.55 (22.40, 61.08) 32.00 (21.93, 58.18) 51.80 (29.03, 96.15) 0.048

Calcium 2.19 (2.07, 2.31) 2.19 (2.08,2.31) 2.16 (2.01, 2.30) 0.046

Creatinine 71.55 (53.03, 104.53) 70.75 (52.73, 103.13) 78.75 (56.98, 126.65) 0.582

Hemoglobin 118.00 (99.00, 137.00) 118.00 (98.25, 137.00) 120.00 (100.50, 139.75) 0.535

High sensitivity troponin I 0.04 (0.01, 0.17) 0.03 (0.01, 0.16) 0.08 (0.02, 0.57) <0.001

International normalized ratio 1.30 ± 0.53 1.27 ± 0.43 1.65 ± 1.23 <0.001

Platelet 147.00 (106.00, 204.00) 146.00 (106.00, 202.75) 153.50 (111.25, 121.75) 0.344

Potassium 3.58 (3.21, 4.08) 3.58 (3.21, 4.07) 3.54 (3.20, 4.20) 0.227

Sodium 138.65 (135.40,141.20) 138.70 (135.50,141.20) 138.05 (134.70,141.18) 0.740

Total bilirubin 13.70 (9.30, 20.30) 13.70 (9.30, 13.70) 13.90 (8.93, 21.25) 0.448

White blood cell 11.76 (7.99, 16.18) 11.60 (7.98, 16.05) 12.82 (8.30, 18.27) 0.014

In Figure 5D, factors such as female, INR value ≤1.13, and
use of invasive ventilation were identified as reduce the risk of
death in a patient. Conversely, the absence of diabetes, absence of
chronic pulmonary disease and normal body temperatures, systolic
blood pressure values, PLT, and sodium levels helped increase the
risk of death. The combined evaluation of this model predicted
a probability of death of 0.07 for the patient in question and
correctly classified them as surviving. Meanwhile, Figures 6A, B
demonstrate that gender, SaO2, Tn-i, INR, and PLT are the top
five variables associated with death. The figures use a color scale,
ranging from blue to red, to represent values from low to high.
The axis at 0 serves as a critical divider: variables positioned to
the left are considered protective factors, reducing the risk of

death, while those on the right are risk factors, increasing the
likelihood of death. For instance, an increase in Tn-i implies a
higher risk of death.

In Figure 7, the SHAP dependence plot reveals that within the
age group of 50 to 70 years, when systolic blood pressure exceeds
140 mmHg, SHAP values increase significantly and mainly fall
within the positive value range. This suggests that hypertension
patients in this age group face a higher risk of death from lung
inflammation. However, after age 70, high systolic blood pressure
seems to act as a protective factor against the risk of death from
lung inflammation.

Using the XGBoost model, we explored the interactions among
key variables and presented an interaction diagram for the first six
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TABLE 2 Predictive performance of six machine learning models.

Measure LR RF GBDT XGBoost MLP KNN

Accuracy 0.752 (0.727–0.777) 0.883 (0.852–0.914) 0.919 (0.901–0.937) 0.889 (0.874–0.904) 0.853 (0.821–0.886) 0.860 (0.836–0.883)

Precision 0.751 (0.723–0.780) 0.882 (0.848–0.917) 0.917 (0.895–0.939) 0.871 (0.849–0.893) 0.839 (0.806–0.871) 0.816 (0.793–0.840)

Recall 0.755 (0.712–0.799) 0.885 (0.856–0.915) 0.922 (0.894–0.951) 0.913 (0.890–0.936) 0.875 (0.831–0.918) 0.929 (0.901–0.957)

F1-score 0.752 (0.726–0.777) 0.883 (0.853–0.914) 0.919 (0.901–0.937) 0.891 (0.876–0.906) 0.855 (0.822–0.889) 0.869 (0.847–0.890)

AUC 0.822 (0.789–0.856) 0.955 (0.936–0.974) 0.971 (0.957–0.986) 0.956 (0.939–0.973) 0.920 (0.895–0.944) 0.873 (0.854–0.892)

Brier Score 0.170 0.064 0.032 0.050 0.061 0.112

Youden index 0.763 0.940 0.967 0.947 0.922 0.915

Calibration slope 0.961 1.302 0.957 1.074 0.985 0.886

Total score 13 28 45 36 25 22

FIGURE 2

Ten-fold cross-validated ROC graphs for six learning models. (A) Logistic regression, (B) random forest, (C) gradient boosting decision tree,
(D) XGBoost, (E) multilayer perceptron, (F) K-nearest neighbor. The shaded area in the figure represents the 95% confidence interval.
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FIGURE 3

Predicted probability curves for the six learning models. (A) Logistic regression, (B) random forest, (C) gradient boosting decision tree, (D) XGBoost,
(E) multilayer perceptron, (F) K-nearest neighbor. The green curve indicates patient survival, and the red curve indicates patient death.

FIGURE 4

Calibration curves for the six learning models. (A) Logistic regression, (B) random forest, (C) gradient boosting decision tree, (D) XGBoost, (E)
multilayer perceptron, (F) K-nearest neighbor.

variables (Figure 8). These charts display the interaction between
different variables using the distribution of SHAP values. When the
interaction between two variables is significant, their corresponding
SHAP values are distributed at both ends of the graph. On the other
hand, variables with minimal interactions tend to have SHAP values
concentrated near zero.

Taking gender and high-sensitivity troponin as an example,
as shown in Figure 8, the interaction between these two
variables is evident. Areas with a SHAP value of 0 contain
mostly blue values, indicating that these variables contribute
relatively little to the model output, without significant
interactions. In contrast, red values are mainly distributed
at both ends of the SHAP value, suggesting that under a
specific combination of gender and Tn-i levels, these two

variables have a substantial impact on the model prediction.
This analysis provides a deeper understanding of the model’s
behavior.

In addition to the above analyses, we also developed a
web-based calculator that can potentially be integrated with
hospital information management systems for automated entry
and recognition. The website is as follows: https://xgboost-
project-app.streamlit.app/. On this website, users can simply input
the actual measured values corresponding to the 25 variables
mentioned above into the designated content boxes to trigger
the model’s calculation and prediction process. Figure 9 provides
an example diagram of the model home page. The XGBoost
model can perform complex calculations and analyses based
on these data.
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FIGURE 5

Local interpretable model-agnostic explanations (LIME) locally interpretable model agnostic interpretation map. Positive event: 1; Negative event: 0;
Male: 1, Female: 2; (A) Deceased patients, true-positive cases; (B) deceased patients, true-positive cases; (C) surviving patients, true-negative cases;
(D) surviving patients, true-negative cases. The picture presents the top 8 variables that had the greatest impact on survival or death from top to
bottom. The length of the bar for each feature indicates the importance (weight) of that feature in making the prediction. A longer bar indicates a
feature that contributes more to survival or death. Green bars indicate protective factors and red bars indicate risk factors. x-axis indicates the extent
to which each predictor variable affects the final probability of a particular patient. The predicted probability of a patient’s death, as well as the actual
outcome, is shown in each graphic caption.

FIGURE 6

Importance ranking of SHAP variables based on the XGBoost model. (A) XGBoost SHAP graph on the training set. (B) XGBoost SHAP graph on the
test set; Each line represents a feature, and the abscissa is the SHAP value. Red dots represent higher feature values, and blue dots represent lower
feature values. In terms of Gender, red dots represents female.
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FIGURE 7

Shapley Additive exPlanations (SHAP) dependence plot based on
the XGBoost model. SHAP values for specific features exceed zero,
representing an increased risk of death.

4 Discussion

Research has indicated that patients admitted to ICU have
a comparatively high death rate, which can range from roughly
15 to 40% (20–22). Previous studies have mainly focused on
ICU-acquired infections (23) and the forecasting of COVID-19
pneumonia cases and fatalities (24, 25). Moreover, studies indicate
that the Acute Physiology and Chronic Health Evaluation II
(APACHE II) and the quick Sequential Organ Failure Assessment
(qSOFA) scoring systems have a moderate predictive value for
mortality among pneumonia patients admitted to the ICU (26, 27).

In practical clinical settings, doctors must undertake strenuous
and complex efforts to consider a patient’s medical history, physical
examination, and trends in vital signs. Accurate, reliable, quick,
convenient, and rapid health assessments are crucial for doctors
to make decisions that allow them to take appropriate emergency
actions in a timely manner, especially for ICU patients. However,
predicting the risk of death from pulmonary inflammation with
machine learning techniques remains challenging. Therefore, we
were able to effectively develop an interpretable machine learning
model in this study to predict the in-hospital mortality probability
of ICU patients with pulmonary inflammation. Our model excels
in rapidly analyzing complex medical data to identify high-
risk patients, thereby enabling timely intervention, optimizing
resource allocation, and improving outcomes. It also supports
personalized medical decision making, helping physicians develop
optimal treatment plans for each patient and enhancing the overall
efficiency of the healthcare system through precise risk assessments.
In short, our model contributes to improved treatment effectiveness
and medical resource utilization efficiency.

Prior to this study, previous research has predominantly
focused on ICU-acquired infections and the progression of
COVID-19 pneumonia, with an emphasis on mortality prediction.
However, there has been a scarcity of interpretable machine
learning methods tailored for lung inflammation mortality risk
prediction. Our model addresses this gap by enabling clinicians
to swiftly analyze complex medical data, thereby identifying
patients at high risk. This facilitates timely interventions, optimizes
the allocation of medical resources, and supports personalized
treatment planning, enhancing both patient outcomes and the
efficiency of medical care systems. The model’s interpretability
ensures that clinicians can make informed decisions, thereby

FIGURE 8

Variable interaction graph based on the XGBoost model. Red dots indicate higher values of a feature, while blue dots represent lower values. The red
area on the plot signifies that both variables under consideration are registering high values simultaneously. when this interaction is observed on the
right side of the SHAP plot, it correlates with an increased risk of death. Conversely, positions on the left side indicate a reduced risk. Specifically
regarding the feature “Gender,” red dots denote female patients.

Frontiers in Medicine 09 frontiersin.org26

https://doi.org/10.3389/fmed.2024.1399527
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1399527 June 12, 2024 Time: 13:33 # 10

Zhai et al. 10.3389/fmed.2024.1399527

improving the overall effectiveness of patient management
in critical care settings. Specifically, in our entire cohort,
7.19% (120/1668) of patients experienced early death. Notably,
lung infections can progress to sepsis, the leading cause of
infection-induced death. Table 3 compares our study to several
others, where our study showed excellent performance in
specific indicators. Based on the significance of SHAP variables,
it was determined that gender, SaO2, Tn-i, INR, and PLT

were the top five important variables associated with early
death.

The INR value is a key indicator for measuring the activity
of the coagulation system. It reflects the status of blood
coagulation function and is an important indicator for evaluating
liver dysfunction. In our study, we discovered that patients
with pulmonary inflammation exhibited abnormal liver function
indicators, such as altered levels of INR, albumin, and ALT. These

FIGURE 9

Interactive website.

TABLE 3 Comparison with previous studies.

References Region Deaths (number of patients) Disease Performance

Jeon et al. (41) Republic of Korea 27.3% (223/816) Severe pneumonia ACC: 0.822

PRE: 0.860

REC: 0.440

AUC: 0.856

Brier score: 0.120

Hu et al. (42) United States 12.56% (1107/8817) Sepsis ACC: 0.895

AUC: 0.884

Pan et al. (43) China 47.2% (58/123) COVID-19 ACC: 0.760

Sensitivity: 0.667

AUC: 0.913

Youden index: 0.733

Wen et al. (44) China 18.4% (41/223) Hospital-acquired pneumonia AUC: 0.863

This work China 7.19% (120/1668) Pneumonia ACC: 0.889

PRE: 0.871

REC: 0.913

AUC: 0.881

Brier Score: 0.050

Youden index: 0.947

Calibration slope: 0.957
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abnormalities suggest a potential impairment in liver function. The
liver serves as the primary organ responsible for the metabolism
and detoxification processes in the human body. Consequently,
even a modest decline in liver function can result in metabolic
alterations, leading to the accumulation of toxins and worsening
the disease’s systemic inflammatory response.

Studies have shown that lung inflammation leads to the release
of numerous inflammatory mediators, which can, in turn, trigger
immune-mediated liver damage, creating a harmful cycle (28). This
suggests that when liver dysfunction causes an elevated INR, it
impairs coagulation and indicates a weakened ability to respond
to inflammation. For instance, studies have found that among
patients with liver dysfunction, pulmonary inflammation is one
of the most common infectious diseases. In viral pneumonia, the
disease can cause cytopathic effects and damage to the endothelial
cells, activating platelet and subendothelial aggregation, resulting
in hypercoagulability (29, 30). At the same time, the pathogen
recognition ability of the immune system and acquired immune
system is strengthened, triggering the release of many inflammatory
mediators, activating macrophages and T cells to clear viruses
and kill infected cells. This not only causes a hypercoagulable
state but also severe liver damage. This interaction is directly
reflected in the observed increase in INR and exacerbation of
liver function in patients with lung inflammation, making these
indicators important in predicting a patient’s risk of death.

Elevated Tn-i is generally considered a biochemical marker of
cardiomyocyte damage, reflecting the degree of damage to the heart
muscle cells. In our study, the death group had significantly higher
levels of Tn-i compared to the survival group. In cases of lung
inflammation, especially severe ones, the heart may be indirectly
affected. For example, severe lung infection can trigger a systemic
inflammatory response, leading to an increase in inflammatory
mediators in the blood, such as interleukin-2 (IL-2), IL-4, IL-
6, IL-7, IL-18, and interferon- γ (31), and these mediators lead
to cardiac dysfunction and structural damage (32). Specifically,
these mediators can cause cardiac dysfunction and structural
damage. Infections and inflammatory reactions may also increase
the metabolic demand of the heart, and insufficient oxygen supply
can further disrupt the metabolism of cardiomyocytes, increasing
the risk of cell damage. Additionally, cell infiltration caused by
the inflammatory response can lead to inflammatory damage to
myocardial tissue and accelerate the release of troponin (33).
Therefore, in the context of lung inflammation, elevated troponin
is strongly associated with the risk of death.

In conclusion, the key features of the SHAP chart provide
crucial insights into the progression and poor prognosis of
pneumonia. Most of the indicators support our knowledge
from clinical experience. By monitoring these indicators, medical
personnel can gain valuable clues that may aid in the early detection
of potential risks. This early recognition enables healthcare
providers to swiftly implement appropriate interventions. As a
result, this proactive approach can significantly enhance the clinical
management of patients with pulmonary inflammation disease,
ultimately improving their overall care and outcomes.

In the process of building a machine learning model, we utilized
various methods for training and optimizing the model, such as the
LR, RF, GBDT, XGBoost, MLP, and KNN algorithms. We initially
focused on prediction probability plots, visually illustrating how
well the model performs under different prediction probabilities.
The areas where the curves overlap for positive and negative

outcomes are particularly important because they indicate the level
of uncertainty the model faces when predicting different outcomes.
We noticed a significant overlap in the curves of the LR model,
suggesting that the model struggled to distinguish between positive
and negative results. This difficulty may be due to the model’s linear
assumption of the data, which limits its performance.

Another crucial factor in interpreting the model’s predictions
is the position of the peak on the predicted probability curve.
A peak closer to 1 or 0 signifies higher confidence and accuracy in
predicting a specific outcome. For example, the GBDT, XGBoost,
and MLP models exhibited more concentrated peaks, indicating
that these models can provide more accurate predictions when
dealing with complex data structures. Furthermore, We conducted
a thorough evaluation of multiple machine learning models to
determine the most suitable one for deployment. This process
can be particularly challenging when the performance metrics of
the models are closely matched. To address this, we meticulously
assessed each performance indicator, ranking the models from
highest to lowest based on their scores. Our analysis revealed that
the Gradient Boosting Decision Tree (GBDT) model achieved the
highest overall score, closely followed by XGBoost.

Although the GBDT model exhibited strong performance
across several metrics, its calibration curve showed significant
deviations from the ideal. This was particularly noticeable within
the prediction probability range of 30–80%. Moreover, the
GBDT model’s predicted probabilities were consistently lower
than the actual observed probabilities, indicating a potential
underestimation issue. These observations necessitate a careful
consideration of how the GBDT model’s calibration affects its
reliability and accuracy in practical applications. On the other
hand, although the XGBoost model slightly lags behind GBDT on
some performance indicators, its built-in regularization measures
and sensitivity to calibration optimization strategies make it more
accurate in terms of probabilistic predictions. In the medical
field, the requirements for the interpretability and probabilistic
accuracy of predictions are particularly stringent. Taking these
requirements into consideration, and after thoroughly evaluating
the prediction probability curve, calibration curve, box plots, and
other performance indicators such as accuracy, we selected the
XGBoost model for further application and interpretation. This
choice will facilitate its clinical use.

In the field of medical data mining and processing, machine
learning has significant advantages over traditional statistical
methods. It not only compensates for the limitations of linear
models in handling complex data (34), but has also been widely
used to develop prediction models for various diseases, such as
lung cancer (35), liver cancer (36) and other chronic diseases
(37, 38). However, machine learning models are often criticized
for their “black box” characteristics in practical applications. This
characteristic makes the internal decision making mechanism of
the model difficult to intuitively understand, thereby affecting users’
trust and acceptance of the model (39). To address this issue, this
study incorporates an efficient gradient-boosting machine learning
framework: the XGBoost algorithm. It also utilizes a SHAP global
variable importance map, LIME personalized explanations, and
a web calculator to enhance the interpretability, accuracy, and
transparency of the model. This enhancement aims to foster users’
trust in the model.
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5 Limitations

First, this study was retrospective; therefore, we could
not determine the severity of pneumonia. However, the study
demonstrates that severe pneumonia comprises approximately
1.3% of all pneumonia patients (40). A more detailed discussion can
aid in better disease management by considering the mortality rates
of patients with mild/severe pneumonia. Second, this study has
limitations regarding the population sample, as its relatively small
number of participants may not adequately capture the potential
diversity and heterogeneity within the patient population. Third,
certain parameters and indicators are absent from the database,
which hinders the analysis of factors such as organ failure sequential
score and ventilator-specific parameters.

6 Conclusion

This study utilized XGBoost to develop a machine learning
model for predicting the risk of death in ICU patients with
pulmonary inflammation. The top five important variables were
gender, oxygen saturation in arterial blood, high-sensitivity
troponin-i, international normalized ratio, and platelets. To gain
a deeper understanding of these variables in relation to mortality
risk prediction, the LIME method was also used. This model aims
to identify patients at a higher risk of early death to guide clinical
decision making and improve patient care. However, further
research is still needed to expand the sample size and conduct
a stratified analysis of patients with mild and severe pneumonia
in order to explore more practical treatments for patients with
pulmonary inflammation.
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Development and validation of a 
nomogram to predict mortality of 
patients with DIC in ICU
Qingbo Zeng 1,2†, Qingwei Lin 1†, Lincui Zhong 1, Longping He 1, 
Nianqing Zhang 2 and Jingchun Song 1*
1 Intensive Care Unit, The 908th Hospital of Chinese PLA Logistic Support Force, Nanchang, China, 
2 Intensive Care Unit, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, China

Background: Disseminated intravascular coagulation (DIC) is a devastating 
condition, which always cause poor outcome of critically ill patients in intensive 
care unit. Studies concerning short-term mortality prediction in DIC patients is 
scarce. This study aimed to identify risk factors contributing to DIC mortality and 
construct a predictive nomogram.

Methods: A total of 676 overt DIC patients were included. A Cox proportional 
hazards regression model was developed based on covariates identified using 
least absolute shrinkage and selection operator (LASSO) regression. The 
prediction performance was independently evaluated in the MIMIC-III and 
MIMIC-IV Clinical Database, as well as the 908th Hospital Database (908thH). 
Model performance was independently assessed using MIMIC-III, MIMIC-IV, and 
the 908th Hospital Clinical Database.

Results: The Cox model incorporated variables identified by Lasso regression 
including heart failure, sepsis, height, SBP, lactate levels, HCT, PLT, INR, AST, 
and norepinephrine use. The model effectively stratified patients into different 
mortality risk groups, with a C-index of >0.65 across the MIMIC-III, MIMIC-IV, 
and 908th Hospital databases. The calibration curves of the model at 7 and 
28  days demonstrated that the prediction performance was good. And then, 
a nomogram was developed to facilitate result visualization. Decision curve 
analysis indicated superior net benefits of the nomogram.

Conclusion: This study provides a predictive nomogram for short-term overt 
DIC mortality risk based on a Lasso-Cox regression model, offering individualized 
and reliable mortality risk predictions.

KEYWORDS

nomogram, Lasso-Cox regression, disseminated intravascular coagulation, prediction, 
short-term mortality, intensive care unit

Introduction

Disseminated intravascular coagulation (DIC) frequently occurs in critically ill patients 
admitted to the intensive care unit (ICU) and is associated with high mortality. DIC is a severe 
syndrome characterized by systemic activation of coagulation, and plenty of thrombin with 
fibrin deposition in the micro- and macrovascular systems (1, 2), which is provoked by various 
underlying diseases, such as serious infections, trauma, malignancies, and liver disease. The 
complex pathophysiology of DIC involves impairment of anticoagulant mechanisms, 
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uncontrolled activation of the tissue factor pathway, and suppression 
of fibrinolysis (3, 4). These changes can lead to life-threatening 
thrombosis and bleeding event, as well as organ dysfunction, which 
will substantially increase mortality (5, 6). Therefore, the key to therapy 
for DIC is to control activation of blood coagulation and decrease 
bleeding and thrombosis risk. Currently, the clinically therapeutic 
strategies for DIC are limited and prognosis is often poor although 
treatment of the underlying condition may improve DIC (7). Obviously, 
it is necessary to identify its potential death risk factors if DIC occurred.

Close monitoring of coagulation parameters is required for 
patients with DIC given their severely abnormal and dynamic 
laboratory values and clinical status. However, quantification of 
mortality risk based on the large volume of data available in electronic 
health records poses a challenge for ICU physicians. Rapid 
identification of high-risk patients and timely intervention remain 
clinically difficult.

Recent advancements in prognostic and diagnostic tools, such as 
nomogram and artificial intelligence algorithms, have demonstrated 
efficacy in a range of medical disciplines (8, 9). Previous studies have 
shown that the models established by these methods can be used in 
the survival analysis of multiple diseases and show more promising 
performance than traditional illness severity scoring systems (10–14). 
Regrettably, prognostic models specifically catering to overt DIC 
patients within ICU settings remain conspicuously absent. Therefore, 
this study aims to construct a new prediction model based on the 
Lasso-Cox method to predict the survival probability of critically ill 
patients with overt DIC during hospitalization accurately, which 
would be helpful to provide timely management of overt DIC.

Methods

Source of data

This retrospective observational cohort study utilized data from 
the MIMIC-III version 1.4 and MIMIC-IV version 2.0 databases. Both 
MIMIC-III and MIMIC-IV are openly available critical care databases 
containing ICU patient data from Boston’s Beth Israel Deaconess 
Medical Center. Permission to extract data from these databases was 
granted following a rigorous deidentification process overseen by the 
Harvard Medical School’s Ethics Review Board and the Massachusetts 
Institute of Technology (Record ID: 11763035). We also included the 
patients from the 908th Hospital of Chinese PLA Logistic Support 
Force as the external validation set. The institutional review board of 
the 908th Hospital of Chinese PLA Logistic Support Force approved 
our study and waived the requirement for informed consent because 
of the retrospective nature of the present study.

Study population and data extraction

The following data were obtained from the MIMIC-III, 
MIMIC-IV, and the 908th Hospital databases: (1) demographic 
data; (2) comorbidities, including Atrial fibrillation, sepsis, 
congestive heart failure, hypertension, chronic obstructive 
pulmonary disease, and diabetes; (3) outcomes, including ICU stay 
time, 7-day mortality, and 28-day mortality; (4) severity score, 
including simplified Acute Physiology Score II (SAPSII), sequential 

organ failure assessment (SOFA) score; (5) mean value of vital signs 
and the laboratory test value within 24 h of admission to the ICU; 
and (6) treatment measures (renal replacement therapy). Data were 
extracted using PostgreSQL program (version 12). Adult DIC 
patients (≥18 years) were included as defined according to the 
ISTH criterion (15): platelet count<100*109/L = 1 point, 
<50*109/L = 2 points; PT prolongation of >3 s = 1 point, >6 s = 2 
points; FIB<1.0 g/L = 1 point; a moderate increase in FDP or 
D-dimer levels = 2 points, a strong increase = 3 points. Overt DIC 
was diagnosed if a total score was not less than 5. Exclusion criteria 
were: (1) age < 18 years; (2) pregnant women; (3) patients with 
congenital coagulopathy; (4) the coagulation function was 
frequently affected by the pathologic states of tumors and the 
chemotherapy agent used; and (5) dying or leaving within 24 h after 
ICU admission.

Statistical analysis

Categorical variables were compared using the chi-squared test, 
while continuous variables were analyzed using the Student’s t-test 
or the Wilcoxon–Mann–Whitney test. Lasso regression was 
employed to identify significant risk factors. The prediction model 
including variables screened by Lasso regression were constructed 
based on Cox regression. The performance of predictive nomogram 
was evaluated by the C-index and calibration curve. DCA analysis 
was applied to assess the clinical usefulness. Clinical applicability 
was assessed using the Kaplan–Meier method. All of statistical 
analyses were conducted with R software v4.1.1 and SPSS 27.0 
software. Variables missing more than 5% of values were handled 
using the random forest (RF) method, based on 
the“randomForest”package of R. For variables missing less than 5% 
of values, median imputation was used. Variables with more than 
30% missing values were excluded. A p value of <0.05 was considered 
statistically significant.

Results

Characteristics of the study participants

The study integrated 39 routinely available variables from ICU 
patients, comprising of 32 continuous and seven categorical 
variables (see Table  1). The correlative data of patients in the 
MIMIC-III were extracted. After data preprocessing and removal 
of samples with missing values, the MIMIC-III database 
contributed 148 patients. Employing the same inclusion and 
exclusion criteria, 386 patients were drawn from MIMIC-IV and 
142 additional patients were randomly selected from the 908th 
Hospital (Figure 1).

A total of 676 overt DIC patients were included. Of these, 32.5% 
experienced short-time mortality. The patient baseline characteristics 
are detailed in Table  1. The median patient age was 60, with 382 
(56.5%) being male. 179 (26.5%) individuals were diagnosed with 
hypertension, 215 (31.8%) with atrial fibrillation, 170 (25.1%) with 
heart failure, 294 (43.5%) with sepsis, 212 (31.4%) with diabetes, and 
29 (4.3%) with trauma. There were 140 (20.7%) patients who received 
continuous renal replacement therapy (CRRT).
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Variables selection

We utilized Lasso regression to identify significant predictors and 
the variation characteristics of these variables were shown in Figure 2. 

This analysis indicated heart failure, sepsis, height, SBP, lactate, HCT, 
PLT, INR, AST, and norepinephrine as relevant variables. Finally, Cox 
regression model was further established based on variables screened 
by Lasso regression (Table 2).

TABLE 1 Comparison of clinical data.

Variables Training set (N  =  148) Testing set (N  =  386) External testing set (N  =  142)

Male, n (%) 83 (56.1) 213 (55.2) 86 (60.6)

Age, (years) 63 (51–75) 58 (50–72) 60 (44–75)

Weight (kg) 78 (65–96) 79 (67–98) 75 (59–95)

Height (cm) 169 (163–178) 170 (160–178) 168 (161–176)

Hypertension, n (%) 50 (33.8) 82 (21.2) 47 (33.1)

Diabetes, n (%) 46 (31.1) 121 (31.3) 45 (31.7)

COPD, n (%) 2 (1.3) 7 (1.8) 3 (2.1)

Atrial fibrillation, n (%) 42 (28.4) 134 (34.7) 39 (27.5)

Heart failure, n (%) 44 (29.7) 90 (23.3) 36 (25.3)

Sepsis, n (%) 78 (52.7) 159 (41.2) 57 (40.1)

Trauma, n (%) 3 (2.0) 21 (5.4) 5 (3.5)

Temperature (°C) 36.7 (36.2–37.5) 36.7 (36.4–37.2) 36.6 (36.1–37.3)

RR (rate/min) 21 (18–25) 20 (17–23) 20 (18–25)

HR (rate/min) 93 (80–107) 88 (79–104) 91 (76–105)

SBP (mmHg) 110 (102–122) 107 (102–117) 116 (96–135)

DBP (mmHg) 60 (53–67) 58 (52–65) 65 (56–77)

MBP (mmHg) 74 (67–83) 73 (67–79) 77 (65–86)

WBC (×109/L) 10.3 (6.3–14.5) 10.4 (6.4–15.8) 12.1 (8.1–16.5)

RBC (×1012/L) 3.1 (2.8–3.6) 2.8 (2.5–3.4) 3.0 (2.4–3.5)

HB (g/L) 94 (83–109) 90 (77–104) 90 (72–111)

HCT (%) 28 (25–31) 28 (24–32) 28 (22–33)

PLT (×109/L) 92 (49–199) 93 (58–173) 68 (38–107)

ALT (U/L) 34.5 (20.3–103.8) 34.0 (20.0–74.8) 84.9 (40.6–407.7)

AST (U/L) 55.5 (30.0–159.8) 59.0 (38.0–137.3) 60.1 (28.3–323.0)

Tbil (mg/dL) 1.5 (0.6–4.5) 1.9 (0.9–4.9) 0.8 (0.5–1.6)

BUN (mg/dL) 32 (19–51) 29 (18–46) 33 (21–53)

Cr (mg/dL) 1.4 (0.9–2.4) 1.2 (0.9–2.0) 1.2 (0.8–1.7)

Glu (mg/dL) 117 (101–150) 120 (99–163) 119 (103–161)

PT (s) 16.8 (14.8–19.7) 20.7 (18.7–26.7) 21.9 (18.7–27.5)

INR 1.5 (1.3–2.0) 1.9 (1.7–2.5) 1.8 (1.5–2.1)

FIB (g/L) 3.36 (1.85–5.60) 1.99 (1.39–3.43) 1.36 (0.81–2.57)

D-dimer (mg/L) 6.32 (4.04–9.61) 2.46 (1.12–6.74) 10.66 (4.98–20.49)

PH 7.33 (7.26–7.42) 7.38 (7.28–7.44) 7.34 (7.26–7.42)

PaO2 (mm) 102 (78–130) 137 (76–291) 125 (71–174)

PaCO2 (mm) 39 (33–44) 38 (32–44) 36 (29–42)

Lactate (mmol/L) 2.0 (1.4–3.0) 2.4 (1.6–4.0) 4.3 (2.4–7.4)

CRRT, n (%) 39 (26.4) 78 (20.2) 23 (16.2)

Epinephrine, n (%) 4 (2.7) 9 (2.3) 6 (4.2)

Norepinephrine, n (%) 62 (41.9) 194 (50.2) 79 (55.6)

SAPSS II 50 (36–61) 45 (36–56) 47 (35–58)
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Development of a multivariate prognostic 
nomogram

The patients were divided into the training, testing, and external 
validation sets. The training set was used to develop the predictive 
model, while the testing and external validation sets were applied to 
validate. On the basis of the LASSO regression, a prognostic 

nomogram was constructed, integrating the nine significant factors 
(Figure 3). This nomogram was subsequently validated using both 
testing and external validation sets.

Validation of the prediction nomogram

The nomogram demonstrated good accuracy for predicting overt 
DIC patient short-term mortality. The nomogram exhibited the 
C-index of 0.81 and 0.77 for predicting 7- and 28-day mortality in the 
training set, and the C-index of 0.63 and 0.67 in the testing set. In the 
external validation set, C-index was 0.65 and 0.68 in predicting 7- and 
28-day mortality. The AUCs for the 7-day mortality probabilities were 
0.78, 0.71, and 0.70 in the training, testing, and external validation 
sets, while the AUCs for the 28-day mortality probabilities 0.82, 0.69, 
and 0.68, respectively (Figures 4A,B).

Calibration and clinical application of 
nomogram

The calibration curves of the nomogram established for predicting 
mortality of 7 and 28 days showed a good consistency between 
observed and predicted outcomes in the training, testing, and external 
validation sets (Figures 5A–F). In addition, the decision curve analysis 
displayed the prediction model provides useful prognostic information 
to assist clinical decision making (Figures 6A,B).

Risk strata were generated based on tertiles of predicted 7- and 
28-day mortality. K-M curves of mortality were plotted based on the 
risk strata in the training, testing, and external validation sets. The 

FIGURE 1

Flowchart of patient inclusion in the study.

FIGURE 2

Screening of variables based on Lasso regression. (A) The variation characteristics of the coefficient of variables; (B) the selection process of the 
optimum value of the parameter λ in the Lasso regression model by cross-validation method.
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results demonstrated that the model can effectively stratify patients 
and predict 7- and 28-day mortality (Figures 7A–F).

Discussion

Disseminated intravascular coagulation is a devastating 
condition and associated with high mortality. For instance, 30-day 
mortality rates in septic DIC have been observed to reach 
approximately 20%, while the 30-day mortality is up to 45% in a 
heterogeneous DIC population (16, 17). Therefore, we deemed 7- 
and 28-day mortality as suitable outcomes for this study. The 
assessment of the short-term death probability of overt DIC 
patients is an important reference for physicians to select 
appropriate intervention times and decide individual treatment 
strategies. Hence, it is necessary to analyze the risk factors 

affecting the outcome of overt DIC patients and establish a 
prognostic model to make the individualized prediction of 
mortality risk.

This study utilized Lasso regression to screen potential factors and 
establish a predictive nomogram. Lasso regression provides an 
advantage over univariate analysis in addressing the problem of 
multicollinearity among variables (18). And it was confirmed in this 
study that the Cox regression had a good C-index, which indicated the 
prediction effect of this nomogram model was better. This model 
integrated 10 clinically relevant variables encompassing underlying 
diseases (sepsis and heart failure), vasopressor use, coagulation 
function status (PLT and INR), hematologic condition and 
metabolism (HCT and Lactate), liver function status (AST), and 
demographic data (height and SBP). These indicators could 
comprehensively assess the specific situation of individuals so as to 
better predict the mortality risk of overt DIC. All indicators included 

TABLE 2 Cox regression to predict prognosis based on Lasso regression.

Variables HR (95%) Coefficient p value

Heart failure 1.74 (0.97–3.13) 0.550 0.062

Sepsis 1.86 (0.99–3.49) 0.727 0.053

Height 0.99 (0.97–1.00) −0.015 0.116

SBP 0.99 (0.97–1.02) −0.005 0.719

Lactate 1.09 (0.98–1.21) 0.101 0.119

HCT 1.07 (1.01–1.14) 0.063 0.019

PLT 0.99 (0.98–1.02) −0.003 0.031

INR 1.60 (1.17–2.19) 0.499 0.003

AST 1.02 (1.00–1.03) 0.002 0.042

Norepinephrine 1.53 (0.82–2.85) 0.424 0.183

FIGURE 3

Nomogram to predict the risk of short-term mortality of patients with DIC.
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were scored on the basis of their contribution to the prognosis, and 
the scores of these variables were finally summed. A vertical line at the 
position of total scores would be drawn to make it cross with the other 

two lines representing the predictive risk of death. Additionally, this 
model does not only incorporate patient death or survival outcomes 
but also the patient length of stay and survival, thus reflecting the risk 

FIGURE 4

ROC plot. ROC curves in (A) 7  days and (B) 28  days in training, testing, and external validation cohort population.

FIGURE 5

Calibration plots of predicted 7- and 28-day mortality based on Cox regression modeling in the training, testing, and external validation sets (A–F).
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FIGURE 6

DCA of predicted 7- and 28-day mortality based on Cox regression modeling (A,B).

FIGURE 7

The Kaplan–Meier curves by tertiles of predicted 7- and 28-day mortality in training, testing, and external validation sets (A–F).
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of events at every stage following ICU admission. In other words, this 
prediction model could evaluate patients’ survival probability in the 
dimension of survival time.

In terms of model evaluation, we employed DCA, calibration and 
C-index to estimate the predictive efficacy of our model in the 
training, testing and external validation cohorts. These methods are 
widely used to assess a model’s performance (19, 20). Despite a 
decrease in evaluation accuracy in the testing and external validation 
sets, the developed Lasso-Cox regression-based prediction model 
remained effective in predicting 7- and 28-day prognoses. The 
decrease could be attributed to data heterogeneity across the three 
datasets. From our perspective, the ICU data from different medical 
centers were biased, as they were collected retrospectively and there 
are no restrictions on the conditions of laboratory examination 
equipment and the measurement methods of vital signs.

Our established predictive model facilitated clear stratification of 
patients into three groups based on individualized death risk. As 
shown in Figures 6A–F, the model could perform well in predicting 
short-term mortality and identify patients at high mortality risk, 
which indicated this nomogram had considerable predictive strength. 
To validate our result again, survival curves were plotted to explore 
whether patients with varying predicted mortality risks experienced 
different outcomes in the testing and external validation sets. As 
we  expected, a higher risk of death did correspond to a poorer 
prognosis, reaffirming the robustness of our model. Therefore, a 
prediction model based on the Lasso-Cox regression model possessed 
a significant reference value for clinicians to identify the individual 
risk of mortality intuitively. In other words, the higher the mortality 
probability reflected in the nomogram indicated the shorter the 
survival time of patients, and these patients need to be treated sooner.

The present study acknowledges certain limitations. Firstly, it is a 
retrospective study using ICU databases, which may encompass missing 
data and data collection errors. Secondly, the DIC in this study is 
primarily attributed to sepsis, which may impact the predictive 
performance of our prediction model for bleeding-induced DIC. Thirdly, 
regarding treatment, we only examined CRRT and vasopressor use. The 
prognosis of overt DIC patients could also be  influenced by other 
therapeutic measures such as plasma transfusion, cryoprecipitate 
transfusion, and platelet transfusion, but such data were unavailable in 
the MIMIC database. Finally, to validate our findings, multicenter 
registry and prospective studies may be necessary.

Conclusion

The present study developed a nomogram for predicting mortality 
in patients with overt DIC based on the Lasso-Cox regression model. 
This prediction model may help ICU doctors detect overt DIC patients 
with a higher mortality risk ahead of time, enabling timely care and 
allocating appropriately medical resources to increase the overall 
patient population survival.
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Introduction: Sepsis poses a serious threat to individual life and health. Early and 
accessible diagnosis and targeted treatment are crucial. This study aims to explore 
the relationship between microbes, metabolic pathways, and blood test indicators in 
sepsis patients and develop a machine learning model for clinical diagnosis.

Methods: Blood samples from sepsis patients were sequenced. α-diversity and 
β-diversity analyses were performed to compare the microbial diversity between 
the sepsis group and the normal group. Correlation analysis was conducted on 
microbes, metabolic pathways, and blood test indicators. In addition, a model 
was developed based on medical records and radiomic features using machine 
learning algorithms.

Results: The results of α-diversity and β-diversity analyses showed that the microbial 
diversity of sepsis group was significantly higher than that of normal group (p < 0.05). 
The top 10 microbial abundances in the sepsis and normal groups were Vitis vinifera, 
Mycobacterium canettii, Solanum pennellii, Ralstonia insidiosa, Ananas comosus, 
Moraxella osloensis, Escherichia coli, Staphylococcus hominis, Camelina sativa, and 
Cutibacterium acnes. The enriched metabolic pathways mainly included Protein 
families: genetic information processing, Translation, Protein families: signaling 
and cellular processes, and Unclassified: genetic information processing. The 
correlation analysis revealed a significant positive correlation (p < 0.05) between IL-6 
and Membrane transport. Metabolism of other amino acids showed a significant 
positive correlation (p < 0.05) with Cutibacterium acnes, Ralstonia insidiosa, 
Moraxella osloensis, and Staphylococcus hominis. Ananas comosus showed a 
significant positive correlation (p < 0.05) with Poorly characterized and Unclassified: 
metabolism. Blood test-related indicators showed a significant negative correlation 
(p < 0.05) with microorganisms. Logistic regression (LR) was used as the optimal 
model in six machine learning models based on medical records and radiomic 
features. The nomogram, calibration curves, and AUC values demonstrated that LR 
performed best for prediction.

Discussion: This study provides insights into the relationship between microbes, 
metabolic pathways, and blood test indicators in sepsis. The developed machine 
learning model shows potential for aiding in clinical diagnosis. However, further 
research is needed to validate and improve the model.
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1 Introduction

Sepsis is a severe organ dysfunction endangering life, resulting from 
impaired host function triggered by infection (1, 2). Epidemiological 
survey data show (3) that sepsis is characterized by a high incidence and 
mortality, and its incidence has been increasing in recent years. Each 
year, sepsis impacts over 30 million individuals globally and leads to 
around 6 million deaths (4). According to domestic statistics, around 
20.6% of ICU patients experience sepsis, the 90-day overall mortality is 
35.5%, and the rate is as high as 51.94% combined with septic shock (5). 
Sepsis is a serious threat to physical health.

Sepsis has a variety of clinical manifestations, including fever, 
increased heart rate, shortness of breath, hypotension, changes in 
consciousness, etc. (6). Additionally, patients may experience systemic 
multiple organ dysfunction such as pneumonia, acute respiratory 
distress syndrome (ARDS), renal impairment, and cardiac 
insufficiency. Severe sepsis can lead to shock and even death. Therefore, 
an early diagnosis is particularly important for the treatment of sepsis. 
It is diagnosed based on the evidence of infection and manifestations 
of systemic inflammation (7). Currently, the diagnosis of sepsis is 
mainly based on blood culture (8), and white blood cell (WBC) count, 
classification, C-reactive protein (CRP), and procalcitonin precursor 
(PCT) are determined for auxiliary diagnosis (9).

With the advancement of big data analysis, genomics research, 
and biomarker research, the pathogenesis of sepsis will be further 
clarified (10), which will facilitate molecular biology-oriented 
diagnosis of sepsis, improve the sensitivity and specificity of 
diagnosis, and formulate more appropriate diagnostic criteria to 
reflect the infection and uncontrolled response of the body, thereby 
further contributing to the early identification and diagnosis of 
sepsis. It can also reflect the characteristics of dynamic changes in 
the disease, provide conditions for accurate treatment of sepsis, and 
improve patient survival. This project aimed to obtain a 
comprehensive bacterial infectious sepsis-specific pathogenic 
microorganism through comparative research and whole genome 
sequencing technology on the metagenomic next-generation 
sequencing (mNGS) platform, and to establish a prediction model 
of sepsis integrating radiomics and machine learning algorithms, 
hoping to provide an implication for its clinical diagnosis.

2 Materials and methods

2.1 Data analysis

Metagenomic sequencing was performed on 25 patients with 
sepsis, and nine samples from the normal group were used for 
metagenomic sequencing. After the raw data were exported, 
low-quality reads were filtered out and the obtained valid data were 
used for subsequent analyses. The host sequences were first removed, 
and sequence alignment was used to infer the species composition and 
relative abundance of the microbial community, followed by plotting 
of the species abundance profile. The function, consanguinity, and 
metabolic pathways of each gene were determined by comparing and 
annotating the genes to a known database. Through integration and 
statistical analyses of the annotated results, functional modules and 
metabolic pathways involved in the microbial community were 
identified, and their roles in the ecosystem were explored.

2.2 Radiomics analysis

The region of interest (ROI)/volume of interest (VOI) usually 
refers to a lesion that was manually segmented using 3D Slicer v5.1.0. 
Quantitative features were extracted from the digital images, which 
were stored in a shared database. The data were mined, and hypotheses 
were generated or validated. A plugin of the 3D Slicer v5.1.0 software 
PyRadiomics was used to perform radiomic feature extraction from 
each ROI. The plugin automatically extracted 851 radioactive features 
from each ROI. It includes first-order statistical features (energy, 
entropy, mean, standard deviation, maximum, etc.), shape-and size-
based features (maximum 3D diameter, volume, superficial area, etc.), 
texture features (grayscale co-occurrence matrix GLCM and grayscale 
run matrix GLRLM), and wavelet-based transform features.

2.3 Construction of a machine learning 
model

In the training set, the selection was made by 10-fold cross-validation 
and grid search 10 times, and six classification algorithms (LR: logistic 
regression; RF: random forest; adaboost: adaptive enhancement; SVM: 
support vector machine; NB: naive Bayes; GBDT: gradient enhancement 
decision tree) of the corresponding cohort were obtained. The six 
classification algorithms completed by the training were called to train the 
data and build the model, and the prediction results of the different 
models were obtained. The average value of the multiple accuracies was 
used as the final model score, and the final model was generated 
simultaneously. A receiver operating characteristic (ROC) curve was 
plotted for each training model and test result, and the area under the 
curve (AUC), accuracy, sensitivity, recall rate, and specificity 
were calculated.

2.4 Statistical analysis

Statistical analyses were performed using R software (V4.2.2). The 
measured data were tested for homogeneity and normality of variance. 
For measurement data following a normal distribution, the 
mean ± standard deviation was utilized, with t-tests employed for 
inter-group comparisons. Count data were presented as percentages, 
and differences between groups were assessed using χ2 tests, with 
significance set at p < 0.05. Correlation analysis of microorganisms, 
metabolic pathways, and blood test-related indicators was performed 
using the Spearman’s correlation coefficient. Based on R software 
(version 4.0.3) and R studio platform, Lasso feature dimensionality 
reduction, logistic regression model construction, ROC curve 
plotting, calibration curve plotting, nomographic chart and clinical 
decision analysis curve were performed using the corresponding 
software package.

3 Results

3.1 Microbiome composition analysis

The α-diversity analysis showed that ACE, Chao1, Shannon, and 
Simpson indices of sepsis patients were significantly higher than 
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those of normal group (p  < 0.05), indicating that the microbial 
abundance and diversity of sepsis patients were elevated (Figure 1A). 
The β-diversity results showed small sample differences between the 
two groups (Figure 1B). Based on the species annotation results, the 
top 20 species in terms of abundance were selected at the species 
level for each sample in the sepsis and normal groups to plot the 
relative abundance histogram (Figure 2A). The top 10 microbial 
genera in both groups included Vitis vinifera, Mycobacterium 
canettii, Solanum pennellii, Ralstonia insidiosa, Ananas comosus, 
Moraxella osloensis, Escherichia coli, Staphylococcus hominis, 
Camelina sativa, and Cutibacterium acnes. The enriched metabolic 
pathways were mainly protein families: genetic information 

processing, translation, protein families: signaling and cellular 
processes, and unclassified: genetic information processing 
(Figure 2B).

3.2 Correlation analysis

The analyses revealed (Figures  3A–C) a correlation between 
metabolic pathways, blood detection indicators, and pathogenic 
microorganisms, with a significant positive correlation (p  < 0.05) 
between IL-6 and membrane transport. Metabolism of other amino 
acids showed a significant positive correlation (p  < 0.05) with 

FIGURE 1

Diversity and abundance analyses of pathogenic microorganisms. (A) α-diversity analyses showed that ACE, Chao1, Shannon, and Simpson indices of 
sepsis patients were significantly higher than those of normal group (p  <  0.05). (B) β-diversity analyses showed that the sample difference between the 
two groups was small.
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FIGURE 2

Species annotation results and KEGG metabolic pathway enrichment. (A) Bar chart of the relevant abundance of the top 20 species in the sepsis and 
normal groups. (B) Enriched metabolic pathways.
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FIGURE 3

Correlation analysis. (A) Correlation between blood test indicators and metabolic pathways. (B) Correlation of pathogenic microorganisms and 
metabolic pathways. (C) Correlation between blood test indicators and pathogenic microorganisms.
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Cutibacterium acnes, Ralstonia insidiosa, Moraxella osloensis, and 
Staphylococcus hominis. Ananas comosus showed a significant positive 
correlation (p  < 0.05) with poorly characterized and unclassified: 
metabolism. Escherichia coli showed a significant positive correlation 
(p  < 0.05) with protein families: signaling and cellular processes, 
amino acid metabolism, and carbohydrate metabolism. WBC showed 
a significant positive correlation (p < 0.05) with Ralstonia insidiosa, 
and Staphylococcus hominis. Camelina sativa showed a significant 
negative correlation (p  < 0.05) with NEU%, CRP, WBC, and 
NEU. Solanum pennelli showed a significant negative correlation 
(p < 0.05) with NEU%, CRP, PCT, WBC, and NEU. Ananas comosus 
showed a significant negative correlation (p < 0.05) with NEU%, CRP, 
SAA, PCT, WBC, and NEU. Vitis vinifera showed a significant negative 
correlation (p  < 0.05) with NEU%, PCT, WBC, and 
NEU. Mycobacterium canettii showed a significant negative correlation 
(p < 0.05) with CRP, PCT, and WBC.

3.3 Construction of a machine learning 
model

Based on radiomics, five important image features were 
finally  screened using LASSO-Cox regression and 10-fold cross 
validation including original-shape-sphericity, original-firstorder-
10Percentile, wavelet-HHL-glcm-InverseVariance, wavelet-HHH-
glszm-ZoneEntropy, and wavelet-LLL-gldm-LargeDependenceLow
GrayLevelEmphasis (Figure 4A). Utilizing the previously outlined 
features, model performance was assessed through the ROC curve, 
revealing an AUC = 0.791 for the model’s ROC curve (Figure 4B). 
Significant features were extracted from the medical records using 
LASSO, including occupancy, inflammation, blood lipids, 
prognosis, advention, and discharge (Figure 5A). Drawing from the 
characteristics outlined earlier, the model’s performance was 
analyzed via the ROC curve, indicating an AUC = 0.873 for the 
model’s ROC curve (Figure 5B).

The model performance was evaluated and compared using the 
following seven metrics: AUC, sensitivity, specificity, accuracy, 
precision, recall (F1), and prAUC. In comparison, among all the 
machine learning models, the LR model performed the best in 
classification (AUC value was 0.897  in the training set), and the 
sensitivity, specificity, accuracy, precision, F1, and prAUC values were 
also the highest in the LR model (Table 1); therefore, the optimal 
model was LR. We visualized the LR model and plotted the nomogram 
for easy clinical application (Figure 6). A calibration curve was utilized 
to assess the model’s performance, and it can be seen that the error 
between the predicted values and the real values of the prediction 
model was small, and the result was highly accurate. The AUC = 0.879 
for the model’s ROC curve, demonstrating that LR had the best 
predictive power (Figure 7).

4 Discussion

Sepsis is a serious infectious disease, and its pathogenesis 
involves multiple factors such as the immune system, 
inflammatory mediators, and vascular endothelium. The clinical 
manifestations of sepsis are diverse and it is necessary to 
comprehensively consider infection control, inflammation 
regulation, and organ support during treatment. Studies have 
shown that there may be potential benefits in the treatment and 
prevention of sepsis through the regulation of intestinal flora and 
the use of microbial preparations. The microbiota in the 
gastrointestinal tract of the human body is composed of trillions 
of bacteria that form the mucosal barrier of the intestine and are 
present in different proportions and numbers in different parts 
of the intestine, thus playing a defensive and protective role (11). 
Dysregulation of the microbiome or a reduction in microbial 
diversity is associated with altered immune responses. Sepsis 
affects the composition of the intestinal microbiome, which is 
characterized by loss of diversity, reduced abundance of key 

FIGURE 4

Machine learning model establishment based on radiomics. (A) Five important image features screened using LASSO-Cox regression and 10-fold cross 
validation. (B) The AUC value of the model ROC curve is 0.791.
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symbiotic bacteria such as Faecium and Gastrococcus, weakened 
colonization capacity of Proteus and other conditioning 
pathogens, and overpropagation, growing as a dominant bacterial 
group (12). A prospective cohort study of over 200 preterm 
infants in 2019 found that increased bacterial diversity and 
anaerobic colonization of the neonatal gut microbiome protected 
newborns from sepsis (13). The results of metagenomic 
sequencing technology in this study showed that the microbial 
abundance and diversity in patients with sepsis were significantly 
higher than those in the normal group (p  < 0.05). The top  10 
microbial abundances in the sepsis and normal groups were Vitis 
vinifera, Mycobacterium canettii, Solanum pennellii, Ralstonia 
insidiosa, Ananas comosus, Moraxella osloensis, Escherichia coli, 
Staphylococcus hominis, Camelina sativa, and Cutibacterium 
acnes, which mainly include protein families: genetic information 
processing, translation, protein families: signaling and cellular 
processes, and unclassified: genetic information processing.

Nowadays, traditional biomarkers such as CRP, PCT and IL-6 
are widely used in the diagnosis and evaluation of sepsis (9). 
Inflammation serves as a defensive reaction aimed at eliminating 
invading pathogens, mitigating detrimental stimuli, and initiating 

tissue healing. The inflammatory response is activated when 
innate immune cells detect antigenic structures via pattern 
recognition receptors that identify molecular patterns associated 
with pathogens or damage-related molecular patterns (14). 
Excessive inflammatory response contributes to tissue damage 
and organ dysfunction in individuals with sepsis. Neutrophils 
produce reactive oxygen species through chemotaxis and 
phagocytosis, leading to widespread inflammation and increased 
microvascular permeability. Excessive inflammation causes a 
large number of neutrophil degranulation and proteolytic enzyme 
release, resulting in systemic and local endothelial damage (15). 
Therefore, neutrophils reflect the inflammatory response and 
immune status of the body during sepsis. IL-6 not only activates 
neutrophils but also delays phagocytosis of senescent and 
dysfunctional neutrophils, thereby exacerbating the production 
of post-traumatic inflammatory mediators and promoting the 
onset of post-traumatic systemic inflammatory response 
syndrome (16). Normal human serum IL-6 levels are very low, 
but when the body has an inflammatory response, IL-6 levels are 
significantly increased, and its level are increased earlier than 
other acute stage proteins, so it is helpful for the early diagnosis 

FIGURE 5

A machine learning model based on medical record data. (A) Lasso extraction of seven features from the medical records. (B) The AUC value of the 
model ROC curve is 0.873.

TABLE 1 Model construction and evaluation.

Model AUC Sensitivity Specificity Accuracy Precision F1 prAUC

adaboost 0.659 0.635 0.630 0.632 0.665 0.695 0.622

GBDT 0.559 0.410 0.685 0.547 0.613 0.609 0.742

LR 0.897 0.800 0.850 0.825 0.842 0.820 0.776

NB 0.775 0.600 0.845 0.723 0.824 0.751 0.615

RF 0.801 0.670 0.670 0.670 0.711 0.716 0.602

SVM 0.785 0.645 0.655 0.650 0.692 0.713 0.620
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of emergency infection patients and can reflect the change in the 
disease condition (17). CRP is an acute phase protein produced 
by hepatocytes under the action of IL-6, and the serum CRP level 

in healthy people is very low; however, it can be  significantly 
increased during bacterial infection, tissue damage, or stress, and 
it is significantly increased at the early stage of inflammation, 

FIGURE 6

The LR model based on the features extracted from medical records and radiomics is visualized using nomogram.

FIGURE 7

Performance evaluation of the LR model. (A) The calibrate calibration curves. (B) The ROC curve.
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which is a sensitive indicator of bacterial infection (18, 19). PCT 
is a hormone-free calcitonin peptide. Under normal physiological 
conditions, serum PCT levels are extremely low (20). However, 
under the action of inflammatory cytokines, the liver, kidneys, 
muscles, adipose tissue, and other solid organs of septic shock 
patients produce a large amount of PCT, resulting in a significant 
increase in the blood PCT levels of patients (20). Therefore, it can 
be used to diagnose, evaluate, and predict infectious diseases by 
measuring serum PCT levels in patients. Serum amyloid A (SAA) 
can be used as a sensitive indicator to reflect body infection and 
inflammation management, playing a crucial role in the adjunct 
diagnosis of infectious diseases (21). WBC is a common indicator 
of systemic inflammation, and relevant studies have reported that 
WBC count can diagnose early sepsis and is closely related to its 
prognosis (22). By analyzing the correlation between sepsis 
detection indicators and pathogenic microorganisms, it is 
possible to improve the diagnostic accuracy of sepsis, formulate 
more effective treatment options, and evaluate the prognosis of 
patients, which can help improve the recovery and survival rates 
of patients with sepsis. In this study, the correlation between 
sepsis-related inflammatory indicators, pathogenic 
microorganisms, and metabolic pathways was analyzed. The 
correlation analysis revealed a significant positive correlation 
(p < 0.05) between IL-6 and membrane transport. Metabolism of 
other amino acids showed a significant positive correlation 
(p  < 0.05) with Cutibacterium acnes, Ralstonia insidiosa, 
Moraxella osloensis, and Staphylococcus hominis. Ananas comosus 
showed a significant positive correlation (p < 0.05) with poorly 
characterized and unclassified: metabolism. Blood test-related 
indicators showed a significant negative correlation (p < 0.05) 
with microorganisms.

Radiomics is the high-throughput extraction of a large amount 
of information from medical images to achieve lesion segmentation, 
feature extraction, and model establishment. It assists clinicians in 
making the most accurate diagnosis by conducting deeper mining, 
prediction, and analysis of massive amounts of image data 
information. It can also be  intuitively understood as converting 
visual image information into deep quantitative features (23). In 
recent years, with the enhancement of computer data processing 
capabilities, improvement of image recognition technology, and 
continuous improvement of machine learning algorithms, in-depth 
data information of massive medical images can be  mined and 
analyzed (24, 25). This capability has been applied to assess the 
severity of diseases (26), construct disease monitoring systems 
(automated alerting system) (27), and enable early prediction of 
diseases (28–31). Zhang et al. (32) found that the establishment of 
an XGBoost prediction model can predict sepsis-associated 
delirium earlier and is suitable for patients who are difficult to 
evaluate using traditional methods. Ge et  al. (29) developed a 
machine learning model to accurately predict the occurrence of 
sepsis-associated acute brain injury and provide a basis for early 
intervention and treatment. In this study, the AUC value of the 
model based on the features extracted by radiomics was 0.791, the 
AUC of the medical record data features is 0.873; the AUC value of 
the logistic regression model based on the features extracted from 
medical records and radiomics was 0.879. It is proven that the 
model prediction ability is better when the two features 
are combined.

In this study, the blood samples of patients with sepsis were 
metagenomically sequenced to explore the complex relationship 
between microorganisms, metabolic pathways and blood test 
indicators, which provided a new idea and method for the 
diagnosis of sepsis. At the same time, a machine learning model 
based on medical records and radiomic features was developed 
for clinical diagnosis of sepsis, which filled some gaps in this 
field. The sample size of this study was small; the results may 
have been affected by sample selection, and further expansion of 
the sample size is required to verify the stability of the 
conclusions. Although the establishment of machine learning 
models has achieved certain prediction capabilities, they still 
need to be verified and optimized on larger datasets.

5 Conclusion

Taken together, microbial abundance and diversity were 
elevated in the sepsis group. Correlation analysis of blood test-
related indicators with microbial and metabolic pathways showed 
significant correlations, which might contribute to further 
clinical diagnosis and treatment. The LR prediction model based 
on radiomics and medical record data had good diagnostic 
efficacy and calibration for identifying patients with sepsis, 
which is a potential auxiliary tool for clinical decision-making.
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Background: Acute kidney injury (AKI) is a common and serious complication in

patients with acute non-variceal upper gastrointestinal bleeding (NVUGIB). Early

prediction and intervention are crucial for improving patient outcomes.

Methods: Data for patients presenting with acute NVUGIB in this retrospective

study were sourced from the MIMC-IV database. Patients were randomly

allocated into training and validation cohorts for further analysis. Independent

predictors for AKI were identified using least absolute shrinkage and selection

operator regression and multivariable logistic regression analyses in the training

cohort. Based on the logistic regression results, a nomogram was developed

to predict early AKI onset in acute NVUGIB patients, and implemented as a

web-based calculator for clinical application. The nomogram’s performance

was evaluated through discrimination, using the C-index, calibration curves, and

decision curve analysis (DCA) to assess its clinical value.

Results: The study involved 1082 acute NVUGIB patients, with 406 developing

AKI. A multivariable logistic regression identified five key AKI predictors: CKD, use

of human albumin, chronic liver disease, glucose, and blood urea nitrogen. The

nomogram was constructed based on independent predictors. The nomogram

exhibited robust accuracy, evidenced by a C-index of 0.73 in the training cohort

and 0.72 in the validation cohort. Calibration curves demonstrated satisfactory

concordance between predicted and observed AKI occurrences. DCA revealed

that the nomogram offered considerable clinical benefit within a threshold

probability range of 7% to 54%.

Conclusion: Our nomogram is a valuable tool for predicting AKI risk in patients

with acute NVUGIB, offering potential for early intervention and improved

clinical outcomes.

KEYWORDS

acute kidney injury, prediction, nomogram, intensive care unit, upper gastrointestinal
bleeding
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Introduction

Acute non-variceal upper gastrointestinal bleeding (NVUGIB)
is a common and serious condition frequently observed in intensive
care units (ICU), resulting in substantial morbidity and mortality
rates. The in-hospital mortality rate following acute NVUGIB
typically ranges from 5% to 15%, but may escalate to 35% among
elderly patients with acute kidney injury (AKI) (1). Approximately
5% of hospitalized patients suffer an AKI, with an incidence of
30 - 57% in intensive care units (2), with the average pooled
mortality rate of 23% but reached 49.4% in those requiring g kidney
replacement therapy (3, 4). Existing literature indicates that AKI
occurs in 1–11.4% of patients with acute NVUGIB, and those with
acute NVUGIB complicated by AKI have longer hospital stays
and higher mortality rates (1, 5). Therefore, early identification of
high-risk patients is critical for the prevention of AKI, and early
diagnosis and treatment can improve the long-term prognosis of
patients (6).

The current diagnostic criteria for AKI as outlined by the
Kidney Disease Improving Global Outcomes (KDIGO), an increase
in serum creatinine or a decline in urine output remains its
key diagnostic criteria (7). However, current clinical detection
methods, which rely on creatinine levels and urine output, are
inadequate for early AKI diagnosis, AKI is rarely diagnosed and
mild cases are often missed (8, 9). In recent years, significant
progress has been made in the early diagnosis of AKI due to
advancements in information technology, nanotechnology, and
biomedicine. Although certain studies have proposed alternative
biomarkers—such as cystatin C, neutrophil gelatinase-associated
lipocalin, kidney injury molecule-1, and liver-type fatty acid
binding protein—for the early detection of kidney damage
preceding serum creatinine elevation (4), the diagnostic accuracy of
these biomarkers remains limited (4, 10, 11). Consequently, further
research is imperative to develop tools capable of predicting AKI
at an early stage.

Machine learning, a subset of artificial intelligence, has
demonstrated efficacy in predicting AKI through the development
of predictive models that analyze extensive datasets pertaining
to medical treatments and outcomes. The nomogram, a widely
utilized visualization technique in machine learning, serves as a
dependable instrument for predicting and quantifying the risk of
clinical events (12, 13). While risk prediction models for AKI
in cirrhotic patients with gastric variceal bleeding are relatively
well-established (14, 15), there remains a notable deficiency in
risk prediction models for AKI in patients experiencing upper
gastrointestinal bleeding due to acute non-variceal causes. Our
study identified a combination of routinely available clinical
variables that could be used for the highly precise prediction of
acute NVUGIB with AKI in critically ill patients.

Materials and methods

The methodologies described in this article are consistent
with the guidelines established in the Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) statement (16).

Ethics approval and consent to
participate

The establishment of MIMIC-IV (version 2.2) was approved
by the institutional review boards of the Beth Israel Deaconess
Medical Center (Boston, MA) and Massachusetts Institute of
Technology (Cambridge, MA), thus, this study was granted a
waiver of informed consent.

Database

The study utilized data from the publicly available MIMIC-
IV database (version 2.2), a robust critical care database
situated in the United States. This database encompasses clinical
information from a vast cohort of over 190,000 patients and
450,000 hospitalizations spanning the years 2008 to 2019. The
data captured within the database includes a comprehensive
array of patient demographics, laboratory tests, medications,
vital signs, disease diagnoses, drug management, and follow-up
survival outcomes.

Participants

The study’s criteria for inclusion consisted of adult patients
aged 18 years and older who were admitted to the ICU
with acute NVUGIB. Exclusion criteria encompassed individuals
with a baseline creatinine level suggestive of stage 5 chronic
kidney disease (CKD) or those undergoing frequent renal
replacement therapy.

Patients were assigned to groups utilizing a pre-seeded
random number generator (123) in R software version 4.3.3,
and subsequently divided into training and validation sets
at a ratio of 7:3.

Data extraction

Data was extracted from the MIMIC-IV database using
PostgreSQL tools (V.1.13.1). Variables relevant to the risk of
AKI were evaluated a priori, taking into consideration scientific
literature, clinical significance, and predictors identified in prior
studies (5, 17, 18).

For included patients, we collated data relating to clinical
features as follows:

Demographic characteristics: sex, age, race.
Treatment modalities: use of diuretic use, use of

aminoglycoside, use of human albumin therapy.
Comorbidities: chronic obstructive pulmonary disease

(COPD), hypertension, hypotension, diabetes, heart failure,
chronic liver disease, CKD, coronary and acute pancreatitis.

Laboratory test: hemoglobin, blood urea nitrogen (BUN),
albumin (Alb), Serum creatinine (Scr), and glucose.

Outcome: AKI occurred during hospitalization.
For all laboratory test result parameters, we use the values at the

time AKI occurred.
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Missing data handling

In the MIMIC-IV database, a noteworthy prevalence of
missing data is observed. However, the exclusion of patients
with incomplete data may introduce significant bias into the
study. To mitigate the impact of missing data, all variables used
in the analyses were thoroughly evaluated. Less than 10% of
missing values were identified across all variables. Consequently,
imputation was conducted by replacing missing values with
means for continuous variables with normal distributions
and with medians for continuous variables with skewed
distributions (19). Additionally, no dichotomous variables
were missing from our study.

Definitions and outcomes

The primary outcome of interest during the ICU stay was AKI,
which was defined according to the Kidney Disease Improving
Global Outcomes (KDIGO) criteria (7). The use of diuretics,
human albumin and aminoglycosides was categorized as any
administration of these medications prior to the occurrence of AKI
during the ICU stay for any indication. Hypotension was defined
as any occurrence of systolic blood pressure less than 90 mmHg or
diastolic blood pressure less than 60 mmHg before the onset of AKI.

Statistical analysis

Statistical analyses were conducted using SPSS version 26.0
(IBM, Armonk, NY, USA) and R version 4.2.1. Two-sided
P-values were employed, with statistical significance defined as
P< 0.05. Categorical variables were expressed as percentages, while
continuous variables were reported as means ± SD, medians, or
ranges, depending on their normality of distribution. The chi-
square test was utilized for categorical variables, while t-tests or
Wilcoxon rank sum tests were employed for continuous variables,
depending on their distributions.

To enhance the accuracy of forecasts and the comprehensibility
of findings, the research employed least absolute shrinkage
and selection operator (LASSO) regression analysis for variable
selection and regularization (20). The variables identified in the
LASSO regression model during the training phase were further
examined using univariate logistic regression to determine their
predictive significance for AKI (21). Variables demonstrating a
p-value of less than 0.05 in the initial univariate logistic analyses
were subsequently subjected to multivariable logistic regression
analysis using a backward stepwise selection method. Additionally,
the variance inflation factor (VIF) was calculated among the
covariate variables in the multivariable logistic regression analysis,
and VIF > 4.0 was interpreted as indicating multicollinearity.
Variables with VIF > 4.0 weren’t included in the final analysis.
After constructing a predictive model through multivariable
logistic regression analysis, a clinical prediction nomogram and an
interactive web-based application were developed utilizing Shiny
apps to estimate the likelihood of AKI.

The performance of the nomogram was evaluated in both
the training and validation cohorts through assessments of

TABLE 1 Characteristics of patients in the training and
validation cohorts.

Characteristic Training
cohort

(n = 766)

Validation
cohort

(n = 316)

p-value

AKI, n (%)

No 471 (61.5) 205 (64.9) 0.329

Yes 295 (38.5) 111 (35.1)

Race, n (%)

White 500 (65.3) 208 (65.8) 0.829

Black 77 (10.1) 28 (8.9)

Other 189 (24.7) 80 (25.3)

Sex, n (%)

Female 291 (38.0) 108 (34.2) 0.266

Male 475 (62.0) 208 (65.8)

Age, years 61 (52, 73) 61 (52, 72) 0.864

CKD, n (%)

No 716 (93.5) 286 (90.5) 0.117

Yes 50 (6.5) 30 (9.5)

COPD, n (%)

No 744 (97.1) 309 (97.8) 0.688

Yes 22 (2.9) 7 (2.2)

Coronary, n (%)

No 709 (92.6) 298 (94.3) 0.370

Yes 57 (7.4) 18 (5.7)

Diabetes, n (%)

No 681 (88.9) 277 (87.7) 0.631

Yes 85 (11.1) 39 (12.3)

Hypotension, n (%)

No 734 (95.8) 304 (96.2) 0.906

Yes 32 (4.2) 12 (3.8)

Hypertension, n (%)

No 586 (76.5) 247 (78.2) 0.609

Yes 180 (23.5) 69 (21.8)

Heart faire, n (%)

No 698 (91.1) 289 (91.5) 0.954

Yes 68 (8.9) 27 (8.5)

Chronic liver disease, n (%)

No 692 (90.3) 279 (88.3) 0.368

Yes 74 (9.7) 37 (11.7)

Use of human albumin, n (%)

No 507 (66.2) 206 (65.2) 0.807

Yes 259 (33.8) 110 (34.8)

Acute pancreatitis, n (%)

No 755 (98.6) 305 (96.5) 0.054

Yes 11 (1.4) 11 (3.5)

(Continued)
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TABLE 1 (Continued)

Characteristic Training
cohort

(n = 766)

Validation
cohort

(n = 316)

p-value

Use of diuretic, n (%)

No 612 (79.9) 242 (76.6) 0.257

Yes 154 (20.1) 74 (23.4)

Use of aminoglycosides, n (%)

No 719 (93.9) 298 (94.3) 0.892

Yes 47 (6.1) 18 (5.7)

Hemoglobin, g/L 94 (84, 107) 94 (82, 105) 0.207

Scr (umol/L) 80 (62, 133) 80 (62, 139) 0.814

Blood urea nitrogen
(mmol/L)

3.4 (2.2, 6.0) 3.7 (2.2, 6.0) 0.441

Albumin (g/L) 30 (26, 35) 30 (26, 35) 0.979

Glucose (mmol/L) 6.4 (5.3, 8.1) 6.2 (5.3, 7.9) 0.447

Scr, Serum creatinine; COPD, chronic obstructive pulmonary disease; CKD, chronic kidney
disease; AKI, actue kindey injure.

discrimination and calibration (22). Discrimination was measured
using the C-index, which ranges from 0.5 (indicating no
discrimination) to 1.0 (indicating perfect prediction), indicating
the extent of predictive accuracy. Calibration was assessed by
comparing predicted and actual probabilities of AKI occurrence
through a visual calibration plot. Internal validation was conducted
using 1000 bootstrap resamples to further evaluate the nomogram’s
predictive accuracy. Additionally, a decision curve analysis (DCA),
which determines the net benefit of models and predictors, was
performed to assess the clinical value of the nomogram (23).

Results

Characteristics of patients

A total of 1,082 patients presenting with acute NVUGIB were
included in the study, with 406 patients (37.5%) testing positive
for AKI. The average age of the patients was 62 years, with
a majority (63.1%) being male. Patients were randomly divided
into training (766 patients) and validation (316 patients) cohorts.
Table 1 displays the demographic and clinical characteristics of
patients in each cohort. Baseline clinical features were found to be
comparable between the two cohorts, with AKI rates of 38.5% and
35.1% in the training and validation cohorts, respectively.

Nomogram variable screening

In this investigation, LASSO regression analysis was employed
to identify 13 predictors with significant correlation to AKI from
a pool of 21 potential predictors in the training cohort, as
depicted in Figures 1A, B. The predictors associated with AKI as
identified by the LASSO regression technique are detailed in Table 2
(lambda = 0.01038261). Following this, a multivariable logistic
regression analysis was carried out to delve deeper into the variables

that successfully passed through both univariate logistic regression
and LASSO analyses.

Based on the findings of the stepwise logistic regression
analysis, the model incorporating five independent predictors of
AKI, including CKD, use of human albumin, chronic liver disease,
glucose, and blood urea nitrogen, demonstrated the lowest AIC
value within the training cohort. Additionally, the VIF values for
all variables were less than 4, suggesting the absence of collinearity
among the screened predictors (Table 2).

Nomogram construction and
performance in the training cohort

Utilizing the outcomes of multivariate Logistic regression
analysis, a nomogram (Figure 2A) was developed to visually
represent a model incorporating independent predictors. For
instance, a patient presenting with a blood urea nitrogen level
of 14.3 mmol/L, glucose level of 12 mmol/L, absence of chronic
liver disease and AKD, and using human albumin, possesses
a current AKI risk score of 150, which equates to a 78%
probability of developing AKI. This nomogram can be accessed
online at https://risk-prediction-model-web-calculator20240327.
shinyapps.io/AKI_probability_of_UBG/, as depicted in Figure 2B.
Users are required to interact with the in-line graph by selecting
either “Yes” or “No” from the provided options, inputting pertinent
laboratory test results, and subsequently choosing “Predict” to
ascertain the probability of AKI occurrence during the patient’s
ICU admission.

The C-index of the nomogram was calculated to be 0.73
(95% CI: 0.70–0.77) for the training cohort. The calibration curve
illustrated in Figure 3A exhibits a satisfactory concordance between
the anticipated and actual occurrences for the likelihood of AKI in
the training cohort. The lack of statistical significance (P = 0.580)
in the Hosmer–Lemeshow test implies that the model did not
demonstrate overfitting.

External validation of the nomogram 2 in
the validation cohort

In the validation cohort, the nomogram exhibited a C-index
of 0.72 (95% CI 0.66–0.79) for the assessment of AKI risk.
Additionally, a well-calibrated risk estimation was demonstrated
through the calibration curve (Figure 3B).

Clinical value of the nomogram

Figure 4 illustrates the outcomes of decision curve analysis for
the nomogram, highlighting the high-risk threshold probability at
which a clinician can assess a patient’s risk of AKI and the potential
advantages of intervention. The decision curve indicates that
employing the nomogram for AKI prediction can yield substantial
benefits when a clinician’s threshold probability falls between 7%
and 54%, with the nomogram exhibiting greater predictive accuracy
compared to a single predictor within this specified range.
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FIGURE 1

LASSO Regression Analysis for Predictor Selection. (A) Tuning parameter (lambda) selection in the LASSO model using 10-fold cross-validation. The
x-axis represents the log(lambda), and the y-axis represents the binomial deviance. The red dots indicate the average deviance values, and the
vertical bars represent the standard errors. The vertical dashed lines represent the optimal values chosen by the minimum criteria and 1 standard
error of the minimum criteria (the 1-SE rule). (B) LASSO coefficient profiles of the 21 potential predictors. Each curve represents a predictor, with the
y-axis displaying the coefficient values and the x-axis representing the log(lambda). The numbers at the top of the plot indicate the number of
predictors included in the model at each log(lambda) value.

Discussion

AKI is a serious complication in patients with acute NVUGIB
significantly impacting morbidity and mortality. In this study,
we developed a nomogram to quantitatively predict the risk of
AKI in patients with acute non-variceal UGIB based on patient-
specific factors. This predictive tool can be utilized to assess
individual AKI risk, thereby facilitating personalized treatment
and surveillance strategies. The significance of the present study
lies in the development of the nomogram utilizing a substantial
cohort of ICU patients diagnosed with acute non-variceal UGIB.
Furthermore, the nomogram’s performance underwent rigorous
assessment and internal validation.

The current AKI diagnostic criteria, established by KDIGO
in 2012, rely on changes in serum creatinine and urine
output, which can miss early or subclinical AKI, depend on
baseline creatinine levels that may not always be known, and
are influenced by non-renal factors like hydration and muscle
mass. Consequently, research efforts have been directed towards
identifying susceptibility and exposure factors associated with
AKI to facilitate preemptive preventive measures. These measures
include optimizing fluid management, avoiding nephrotoxic
medications, closely monitoring renal function in high-risk
patients, and using alternative imaging methods to minimize
contrast exposure. Nonetheless, the onset and progression of AKI
involve intricate pathophysiological mechanisms, rendering the
accurate assessment of AKI risk based on individual susceptibility
and exposure challenging. This complexity often leads to the
potential for over-treatment in preventive strategies. Another
particular strength of this study is the consideration of a range of
previously reported clinical features and laboratory findings related

to AKI (5, 7, 17, 18, 24). In the present study, we similarly noted
that CKD, glucose, chronic liver disease were closely related to
AKI in patients with acute NVUGIB, which is consistent with
most studies on variceal upper gastrointestinal bleeding (20–23). In
contrast to variceal upper gastrointestinal bleeding, where albumin
administration is generally advantageous for the prevention of
AKI, our study identified a positive correlation between albumin
use and the risk of AKI in patients with acute NVUGIB. This
association may be attributable to enhanced albumin filtration and
modified tubular albumin uptake in these individuals. Nonetheless,
the relationship between human blood albumin administration and
the incidence of AKI remains a subject of ongoing debate, (25–
27), and the precise underlying mechanism remains uncertain. It
is worth mentioning that we found that blood urea nitrogen was
more predictive of AKI than Scr in patients with acute UGIB.
This disparity may be attributable to fasting-induced alterations
in muscle metabolism and renal blood flow, which influence Scr
production and excretion. Despite these physiological changes, Scr
levels tend to remain relatively stable and are less affected by short-
term dietary modifications. Conversely, blood urea nitrogen levels
are more susceptible to variations in protein catabolism and renal
perfusion, rendering blood urea nitrogen a more sensitive marker
for detecting changes in renal function and assessing the risk of AKI
in this patient population.

The capacity to precisely forecast the incidence of AKI in
patients experiencing acute NVUGIB holds substantial importance,
given that AKI represents a heterogeneous syndrome necessitating
individualized care and management approaches (28). In contrast
to the population-based or large cohort data utilized by KDIGO
clinical practice guidelines, nomograms offer a more individualized
approach to delivering prognostic information to patients. To the
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TABLE 2 Univariate and multivariate logistic regression analyses of variables relating to AKI in the training cohort.

Variable Univariate analysis Multivariate analysis

OR (95% CI) p-value OR (95% CI) p-value

Race

White Reference Reference

Black 1.03 (0.63, 1.70) 0.896 0.89 (0.51, 1.55) 0.680

Other 1.61 (1.15, 2.26) 0.006 1.40 (0.96, 2.03) 0.080

CKD

No Reference <0.001 Reference <0.001

Yes 4.54 (2.40, 8.57) 3.62 (1.83, 7.15)

Chronic liver disease

No Reference <0.001 Reference 0.003

Yes 2.92 (1.78, 4.79) 2.27 (1.33, 3.88)

Use of human albumin

No Reference <0.001 Reference <0.001

Yes 3.18 (2.33, 4.35) 2.45 (1.76, 3.42)

Acute pancreatitis

No Reference 0.445 NA

Yes 0.59 (0.16, 2.26)

COPD

No Reference 0.019 Reference 0.080

Yes 2.88 (1.19, 6.96) 2.39 (0.90, 6.31)

Hypertension

No Reference 0.017 Reference 0.315

Yes 1.51 (1.08, 2.12) 1.22 (0.83, 1.81)

Diabetes

No Reference 0.002 Reference 0.221

Yes 2.05 (1.30, 3.22) 1.40 (0.82, 2.41)

Use of diuretic

No Reference 0.007 Reference 0.297

Yes 1.64 (1.15, 2.34) 1.24 (0.83, 1.86)

Hemoglobin 0.91 (0.76, 1.10) 0.348 NA

Blood urea nitrogen 1.81 (1.51, 2.15) <0.001 1.48 (1.23, 1.78) <0.001

Albumin 0.76 (0.63, 0.93) 0.006 0.86 (0.70, 1.07) 0.177

Glucose 1.23 (1.08, 1.40) 0.002 1.21 (1.06, 1.39) 0.005

best of our knowledge, this study represents the first attempt
to develop an AKI risk prediction model that independently
evaluates previously proposed risk variables for their inclusion
in a formal nomogram specifically for patients with acute
NVUGIB. Most studies on acute NVUGIB primarily concentrate
on assessing the severity of bleeding, patient prognosis, and
the risk of rebleeding. For instance, the Rockall score is
employed to determine the necessity for further endoscopic
intervention, while the Forrest score is utilized to evaluate the
risk of endoscopic rebleeding (29). However, AKI, a complication
associated with more severe short-term and long-term prognoses,
is frequently overlooked. The lack of timely and effective
interventions for AKI significantly exacerbates the complexity

and cost of treatment. Therefore, we utilized clinically accessible
laboratory results and assessed patients’ susceptibility to AKI to
develop a nomogram aimed at providing individualized AKI risk
predictions for patients with acute NVUGIB in the intensive care
unit. This approach aligns with the contemporary emphasis on
personalized medicine.

The primary and ultimate justification for employing the
nomogram lies in its capacity to assess the necessity for
individualized supplementary treatment or care. Nevertheless, the
metrics of risk-prediction performance, including discrimination
and calibration, fail to encapsulate the clinical implications
associated with specific levels of discrimination or degrees of
miscalibration (30–32). Therefore, to substantiate the clinical utility
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FIGURE 2

Nomogram for Predicting the Risk of AKI. (A) Nomogram to predict the risk of AKI in patients with acute NVUGIB. The nomogram integrates multiple
predictors, including blood urea nitrogen (mmol/L), glucose (mmol/L), chronic liver disease, use of human albumin, and CKD. Each predictor has a
corresponding point scale, which is used to calculate the total points. The total points are then used to determine the risk of AKI, displayed on the
bottom scale. (B) Web-based calculator interface for predicting AKI risk. Users input values for blood urea nitrogen, glucose, chronic liver disease,
use of human albumin, and CKD status to obtain the predicted probability of AKI. The example provided shows a current probability of AKI at 46.1%.

FIGURE 3

Calibration Curves for Nomogram Predicted Probability of AKI. These calibration plots compare the predicted probabilities of AKI against the actual
observed probabilities, demonstrating the accuracy of the nomogram model. (A) Calibration curve for the training cohort. (B) Calibration curve for
the validation cohort. The x-axis represents the nomogram predicted probability of AKI, while the y-axis shows the actual probability. The plot
includes the apparent calibration (blue dotted line), the bias-corrected calibration (red solid line), and the ideal calibration (black dashed line). The
closer the red line is to the black line, the more accurate the model.

of our nomogram, we undertook an evaluation to ascertain whether
decisions informed by the nomogram would result in improved
patient outcomes. Considering the inherent difficulties of executing
a multi-institutional prospective validation, particularly due to the

complexities involved in aggregating clinical data from multiple
institutions, we opted to utilize decision curve analysis as an
alternative methodological approach in this study. This study
introduces an innovative methodology for evaluating the clinical
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FIGURE 4

Decision Curve Analysis for the Nomogram Predicting AKI in acute NVUGIB Patients. Decision curve analysis was conducted to compare the net
benefits of the nomogram against individual predictors across a spectrum of high-risk thresholds. The x-axis denotes the high-risk threshold for
predicting acute kidney injury (AKI), while the y-axis indicates the net benefit. The red line, representing the nomogram, demonstrates superior net
benefit across most thresholds when compared to individual predictors, including chronic kidney disease (CKD), use of human albumin, chronic liver
disease, glucose levels, and blood urea nitrogen.

implications of decisions grounded in threshold probability,
thereby facilitating the calculation of net benefit (16, 33). The
decision curve analysis conducted herein reveals that employing a
nomogram for the prediction of AKI yields greater benefits when
the threshold probability for physicians between 7% and 54%, as
opposed to the strategies of treating all patients or treating none.

This study has limitations. First, its monocentric design within
a single ICU, which restricts the generalizability of the findings
and the dynamic online nomogram to other centers or countries.
Further research is needed to validate the model in varied
settings. Second, the MIMIC database’s lack of novel biomarkers,
such as cystatin C, neutral gelatin-associated lipocalcin, NT-
proBNP, uNGAL, and uAGT, precluded us from enhancing
the model’s predictive capacity. Third, the retrospective design
of the study inherently limited our ability to eliminate bias.
However, rigorous inclusion criteria were applied to ensure
that both the control and case groups accurately reflected real-
world conditions.

Conclusion

Our study presents an innovative online nomogram that
incorporates clinical risk factors to facilitate personalized

prediction of AKI in patients with acute NVUGIB upon ICU
admission. This predictive tool holds significant potential in
identifying acute NVUGIB patients who are most likely to
benefit from targeted interventions for the prevention and
management of AKI.
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Background: Heart failure is a cardiovascular disorder, while sepsis is a common 
non-cardiac cause of mortality. Patients with combined heart failure and 
sepsis have a significantly higher mortality rate and poor prognosis, making 
early identification of high-risk patients and appropriate allocation of medical 
resources critically important.

Methods: We constructed a survival prediction model for patients with heart 
failure and sepsis using the eICU-CRD database and externally validated it 
using the MIMIC-IV database. Our primary outcome is the 28-day all-cause 
mortality rate. The Boruta method is used for initial feature selection, followed 
by feature ranking using the XGBoost algorithm. Four machine learning 
models were compared, including Logistic Regression (LR), eXtreme Gradient 
Boosting (XGBoost), Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes 
(GNB). Model performance was assessed using metrics such as area under the 
curve (AUC), accuracy, sensitivity, and specificity, and the SHAP method was 
utilized to visualize feature importance and interpret model results. Additionally, 
we conducted external validation using the MIMIC-IV database.

Results: We developed a survival prediction model for heart failure complicated 
by sepsis using data from 3891 patients in the eICU-CRD and validated it externally 
with 2928 patients from the MIMIC-IV database. The LR model outperformed all 
other machine learning algorithms with a validation set AUC of 0.746 (XGBoost: 
0.726, AdaBoost: 0.744, GNB: 0.722), alongside accuracy (0.685), sensitivity 
(0.666), and specificity (0.712). The final model incorporates 10 features: age, 
ventilation, norepinephrine, white blood cell count, total bilirubin, temperature, 
phenylephrine, respiratory rate, neutrophil count, and systolic blood pressure. 
We employed the SHAP method to enhance the interpretability of the model 
based on the LR algorithm. Additionally, external validation was conducted 
using the MIMIC-IV database, with an external validation AUC of 0.699.

Conclusion: Based on the LR algorithm, a model was constructed to effectively 
predict the 28-day all-cause mortality rate in patients with heart failure 
complicated by sepsis. Utilizing our model predictions, clinicians can promptly 
identify high-risk patients and receive guidance for clinical practice.
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1 Introduction

The 2018 medical insurance data reveals that sepsis and heart 
failure, respectively, ranked first and second in 30-day readmission 
rates among patients (1). Sepsis is defined as a dysregulated host 
response to infection, leading to organ failure (2). In 2017, an 
estimated 48.9 million cases of sepsis were recorded globally, 
resulting in 11 million sepsis-related deaths, which accounted for 
19.7% of all global deaths (3). The mortality rates of sepsis in 
intensive care units and hospitals are reported to be  25.8 and 
35.3%, respectively (4), with annual losses exceeding $24 billion 
(5, 6). Heart failure is a cardiovascular disorder characterized by 
high incidence and mortality rates, representing an escalating 
global epidemic (7). Over 64 million individuals worldwide are 
afflicted with heart failure, severely compromising their quality of 
life (8). Chronic heart failure is the leading complication in septic 
patients, with two-thirds of critically ill cases having prior heart 
failure (9, 10). Heart failure patients may exhibit underlying 
circulatory dysfunction and impaired cardiac reserve, placing 
them at increased risk if they develop sepsis. Alon et al. discovered 
that heart failure patients admitted for sepsis had a higher 
mortality rate compared to those without heart failure (51% vs. 
41%; p = 0.015) (11). Walker et al. studied the effect of sepsis on 
heart failure patient mortality and found it caused one-fourth of 
deaths (12). The high incidence and mortality rates stress the 
importance of early identification, assessment, and management 
of heart failure patients with sepsis.

Currently, there are no identified predictive models for survival 
in patients with heart failure complicated by sepsis. The Sequential 
Organ Failure Assessment (SOFA), Simplified Acute Physiology 
Score II (SAPS II), and Acute Physiology Score III (APS III) are 
frequently utilized assessment tools for predicting disease prognosis 
(13, 14). Despite their extensive utilization, they exhibit limitations 
such as the complexity of assessment, insufficient specificity, and 
potential suitability restricted to specific disease types or clinical 
contexts. The current research trend is to integrate novel biomarkers 
(15, 16) into established scoring systems or to revamp these systems 
(17) to improve their predictive accuracy for disease prognosis. In 
clinical practice, machine learning is widely applied for result 
prediction, diagnosis, medical image interpretation, disease risk 
assessment, and treatment planning (18, 19). Compared to 
traditional statistical methods, machine learning excels in handling 
complex data, exhibiting higher accuracy and efficiency (20). In the 
past, the application of machine learning was constrained by limited 
interpretability. However, with the emergence of techniques like 
SHAP, users can now professionally understand model predictions 
with greater clarity (21).

Our research aims to build survival prediction models using 
various machine learning algorithms to assess the overall in-hospital 
mortality rate among patients with heart failure complicated by 
sepsis. We utilize the eICU-CRD database to build machine learning 
models, selecting the one with optimal predictive performance. 
Subsequently, we conduct external validation using the MIMIC-IV 
database. Additionally, the SHAP method is used to explain model 
predictions and assess the importance of features. The objective of 
this study is to identify critically ill patients and offer guidance for 
clinical practice.

2 Materials and methods

2.1 Data sources and study population

This study draws data from two primary sources: the eICU 
Collaborative Research Database (eICU-CRD) and The Medical 
Information Mart for Intensive Care IV database (MIMIC-IV). The 
eICU-CRD database encompasses various ICU units across the 
United  States, offering a comprehensive array of clinical data, 
physiological parameters, and medical events. Spanning from 2014 to 
2015, it meticulously documents information for over 200,000 
patients, facilitating medical research endeavors and data-informed 
clinical decision-making (22). On the other hand, MIMIC-IV (version 
2.2) represents an extensive repository of intensive care data, featuring 
detailed records of more than 190,000 ICU patients from 2008 to 2019 
(23). This database is characterized by its exhaustive collection of 
clinical details, including demographic profiles, laboratory findings, 
and medication histories, serving as invaluable resources for rigorous 
clinical investigations.

We identified patients with heart failure complicated by sepsis 
from both the eICU-CRD and MIMIC-IV databases using ICD-9 and 
ICD-10 codes. The exclusion criteria for the study population are: (1) 
age under 18 years, (2) ICU stay duration less than 24 h, and (3) 
clinical information missing rate exceeding 30% at data collection. For 
patients with multiple hospital admissions or ICU visits, only the first 
ICU experience during the initial hospital admission is considered. 
Heart failure was defined as a syndrome resulting from structural or 
functional cardiac abnormalities that lead to inadequate cardiac 
output and congestion in the systemic or pulmonary circulation, 
encompassing all types of heart failure with different ejection 
fractions. Sepsis was diagnosed based on the Sepsis-3.0 guidelines, 
which define it as life-threatening organ dysfunction caused by a 
dysregulated host response to infection. A SOFA score ≥ 2 (or a 
qSOFA score ≥ 2 for suspected infection in non-ICU settings) was 
used to diagnose sepsis.

2.2 Data extraction and preprocessing

In this study, we  included ICU patients diagnosed with heart 
failure and sepsis, and extracted the following data: (1) Demographics: 
age, gender, height, and weight; (2) Vital Signs: temperature (T), heart 
rate (HR), respiratory rate (R), systolic blood pressure (SBP), diastolic 
blood pressure (DBP), mean blood pressure (MBP), and peripheral 
oxygen saturation (SpO2); (3) Laboratory parameters: complete blood 
count, liver and kidney function tests, electrolytes, lipid profile, blood 
gas analysis, coagulation function, cardiac enzymes, and BNP; (4) 
Comorbidities: hypertension, diabetes mellitus, hyperlipidemia, 
chronic obstructive pulmonary disease (COPD), pneumonia, chronic 
kidney disease (CKD), and atrial fibrillation (AF); (5) Medication data: 
angiotensin-converting enzyme inhibitors/angiotensin II receptor 
blockers (ACEI/ARB), beta Blockers, furosemide, spironolactone, 
dobutamine, dopamine, epinephrine, milrinone, norepinephrine, and 
phenylephrine; and (6) Other Indicators: Ventilation and 24-h fluid 
balance. The primary outcome is the 28-day all-cause mortality rate.

Initially, we transformed certain indicators, such as computing 
BMI from height and weight and determining 28-day in-hospital 
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mortality using hospitalization duration and survival status. Variables 
with over 30% missing data were removed, and missing values in the 
remaining features were imputed using KNN. Outliers were identified 
using the 1.5 times interquartile range method, particularly focusing 
on BMI, mechanical ventilation time, and 24-h fluid balance, and were 
subsequently removed. Additionally, Spearman correlation coefficients 
were calculated to evaluate variable relationships, while VIF values 
assessed multicollinearity. Variables with high correlation or VIF 
exceeding 5 underwent pre-screening. Continuous variables were 
standardized for model stability, and categorical variables were 
transformed into dummy variables via one-hot encoding. Despite 
minor sample imbalances in the outcome variable, we chose not to 
employ sample balancing techniques.

2.3 Model construction and evaluation

The Boruta method is used for initial feature screening, 
determining feature importance by comparing them with randomly 
generated “shadow features” (24). The XGBoost method is employed 
for importance ranking of the preliminarily selected features. Model 
construction and validation are conducted using the EICU dataset, 
with 10-fold cross-validation to generate training and validation sets, 
and Logistic Regression (LR), eXtreme Gradient Boosting (XGBoost), 
Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes (GNB) 
models are established and validated. Model performance is evaluated 
on the validation set using metrics such as the area under the curve 
(AUC) for discrimination, calibration curve for accuracy, and DCA 
curve for clinical utility, as well as metrics including accuracy, 
sensitivity, specificity, positive predictive value, negative predictive 
value, and F1 score. The final predictive model is optimized using 
hyperparameter tuning and grid search. Additionally, the MIMIC 
dataset is utilized as external validation data, following the same data 
processing methods as the EICU dataset, with evaluation based on 
metrics including AUC, accuracy, sensitivity, and specificity to assess 
model generalization performance.

2.4 Model interpretation

SHAP (SHapley Additive exPlanations) is a technique based on 
game theory’s Shapley values (25). It’s used to interpret machine 
learning predictions by dissecting the contribution of each feature. 
This enhances model transparency and ensures fair decision-making. 
We employ SHAP to analyze the outcomes of our top-performing 
machine learning model. This method not only identifies crucial 
features for optimizing model performance but also provides detailed 
insights through feature contribution charts, summary plots, and 
explanations for individual predictions. These tools help us understand 
the extent of each feature’s influence, whether it’s positive or negative, 
and how they collectively impact model outcomes.

2.5 Statistical analysis

For continuous variables, we display using mean and standard 
deviation, and comparison is done using t-tests (or Wilcoxon 
rank-sum tests); for categorical variables, presentation is in 

percentages, and comparison is conducted using chi-square tests (or 
Fisher’s exact tests). A p-value <0.05 is deemed statistically significant. 
All statistical analyses were performed using R version 4.2.3 and 
Python version 3.11.4.

3 Results

3.1 Baseline characteristics

According to the inclusion and exclusion criteria, our study 
cohort comprised a total of 6819 patients with heart failure and sepsis. 
Among these, 3891 cases from the eICU-CRD were used for model 
construction, while 2928 cases from the MIMIC-IV database were 
used for external validation. As shown in Figure  1, the screening 
process is illustrated. During the selection process, patients with ICU 
stays less than 1 day or under 18 years old were excluded. Subsequently, 
data processing involved removing outliers and handling missing 
values. In the eICU-CRD database, 560 patients (14.4%) died within 
28 days, compared to 660 patients (22.5%) in the MIMIC-IV database. 
Differences in baseline characteristics are summarized in Table 1. In 
the eICU-CRD database, compared to the survival group, patients in 
the death group exhibited higher age, white blood cell count, 
neutrophil count, TBIL (total bilirubin), ALT (alanine 
aminotransferase), BUN (blood urea nitrogen), respiratory rate, fluid 
balance, and mechanical ventilation time, and lower BMI (body mass 
index), calcium, blood pressure, and peripheral oxygen pressure. 
Differences in comorbidities, such as atrial fibrillation, hypertension, 
and pneumonia, were also observed between the two groups. 
Additionally, there were differences in medication usage between the 
two groups, including the use of ACEI/ARB (ACE inhibitors/
angiotensin receptor blockers), beta-blockers, furosemide, 
spironolactone, dobutamine, dopamine, epinephrine, norepinephrine, 
and phenylephrine.

3.2 Feature selection

We eliminated features with a missing rate exceeding 30%, as 
demonstrated in Appendix Figure  1. Features with notably high 
missing rates are primarily found in laboratory tests such as cardiac 
enzymes, blood gas analysis, lipid profile, and coagulation function. 
Additionally, guided by the correlation heatmap showing features with 
correlation coefficients greater than 0.5 and features with VIF 
exceeding 5, as illustrated in Appendix Figure 2, we conducted further 
screening. Prior to model construction, we excluded features with 
high correlation and VIF, including hemoglobin, lymphocyte count, 
chloride, aspartate aminotransferase, blood urea nitrogen, mean blood 
pressure, and diastolic blood pressure.

The Boruta method, based on random forests, assesses feature 
importance by comparing original features with randomly generated 
“shadow features.” We applied Boruta for initial feature selection, as 
depicted in Figure 2. Green denotes important features included in the 
model to enhance predictive capability; red represents unimportant 
features excluded from consideration; yellow indicates features with 
uncertain importance requiring further investigation. Blue represents 
shadow features for comparison but not used in model training. 
Boruta identified 22 initial features, including age, WBC (white blood 
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cell count), NE (neutrophil count), MONO (monocyte count), PLT 
(platelet count), sodium, calcium, TBIL (total bilirubin), alanine 
aminotransferase, creatinine, T (temperature), R (respiratory rate), 
SBP (systolic blood pressure), oxygen saturation, ventilation time, 
BMI, atrial fibrillation, dopamine, epinephrine, norepinephrine, 
phenylephrine, and ventilation.

The XGBoost algorithm ranks feature importance based on split 
frequency and gain in decision trees. Appendix Figure 3 shows our 
feature importance ranking using XGBoost. The top 10 variables, in 
descending order of importance, are: age, ventilation, norepinephrine, 
WBC, TBIL, T, phenylephrine, R, NE, SBP.

3.3 Model construction

This study utilized four binary classification machine learning 
algorithms, Logistic Regression (LR), eXtreme Gradient Boosting 
(XGBoost), Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes 
(GNB), to construct predictive models. Employing the eICU database, 
we  implemented a 10-fold cross-validation technique to establish 
training and validation sets, followed by evaluation on a separate test 
cohort. Figure  3 and Table  2 illustrate the performance of these 
models. The ROC curve (Figure  4A) highlights LR’s superior 
performance, achieving an AUC of 0.746 in the test cohort, compared 
to XGBoost (0.726), AdaBoost (0.744), and GNB (0.722). Furthermore, 
LR’s calibration curve (Figure 4B) closely aligns with the ideal line, 
indicating excellent calibration. Decision curve analysis (DCA) 
(Figure  4C) indicates LR’s highest net benefit within the 0–80% 
threshold range. The precision-recall (PR) curve (Figure 4D) illustrates 
LR’s higher recall at sustained high precision. Additionally, LR 

demonstrates robust performance across various metrics, including 
accuracy (0.685), sensitivity (0.666), specificity (0.712), positive 
predictive value (0.285), negative predictive value (0.914), and F1 
score (0.397). Consequently, we selected the LR algorithm for model 
construction, incorporating 10 variables: age, ventilation, 
norepinephrine, WBC, TBIL, T, phenylephrine, R, NE, and 
SBP. Through hyperparameter tuning and grid search optimization, 
we  established the model parameters as follows: tol (convergence 
measure): 1e-06, penalty (regularization type): l2, max_iter (number 
of iterations): 100, C (regularization factor): 1.0.

3.4 Model interpretation

This study employs the SHAP method to interpret model results, 
presenting both SHAP summary plots and SHAP force plots. In the 
SHAP summary plot, the Y-axis represents features, while the X-axis 
indicates the impact of features on outcomes. Each point represents a 
sample, with red indicating high-risk values and blue indicating low-risk 
values. As shown in Figure 3A, the LR model’s feature importance from 
top to bottom is: age, ventilation, norepinephrine, T, R, TBIL, SBP, WBC, 
NE, phenylephrine. Older age (red points) correlates with higher SHAP 
estimated values, predicting an increased risk of mortality. Additionally, 
higher white blood cell count, total bilirubin, and respiratory rate are 
associated with increased mortality risk. Patients using ventilation, 
norepinephrine, and phenylephrine also show increased mortality risk. 
Furthermore, lower temperature and lower systolic blood pressure are 
associated with increased mortality risk. In the SHAP force plot, each 
Shapley value is represented by an arrow, indicating whether it positively 
(increases) or negatively (decreases) affects the prediction. As illustrated 

FIGURE 1

Flowchart of patient selection and research methodology.
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TABLE 1 Baseline characteristics of the eICU-CRD and MIMIC-IV databases, categorized by survival and death groups.

eICU-CRD MIMIC-IV

Survival Death
p

Survival Death

(N =  3331) (N =  560) (N =  2268) (N =  660)

Age 69.5 (13.9) 74.5 (12.2) <0.001 71.3 (13.4) 76.7 (11.2)

Gender 0.737

  0 1516 (45.5%) 250 (44.6%) 929 (41.0%) 283 (42.9%)

  1 1815 (54.5%) 310 (55.4%) 1339 (59.0%) 377 (57.1%)

BMI 29.9 (7.63) 28.5 (7.12) <0.001 29.2 (6.32) 28.0 (6.16)

WBC 11.5 (6.79) 15.5 (20.7) <0.001 13.6 (8.91) 15.2 (10.3)

RBC 3.73 (0.77) 3.69 (0.76) 0.263 3.44 (0.77) 3.54 (0.79)

NE 77.7 (12.5) 81.1 (12.3) <0.001 79.2 (10.6) 81.6 (12.0)

LYM 11.6 (8.84) 8.65 (8.24) <0.001 12.1 (8.76) 8.44 (7.73)

MONO 7.36 (3.94) 6.70 (4.20) 0.001 5.03 (3.27) 5.35 (3.24)

PLT 202 (88.5) 200 (104) 0.649 196 (99.9) 212 (121)

Hb 10.9 (2.28) 10.9 (2.21) 0.941 10.2 (2.26) 10.4 (2.26)

Na 138 (5.27) 138 (6.19) 0.047 139 (4.94) 138 (6.21)

K 4.23 (0.78) 4.29 (0.81) 0.077 4.29 (0.73) 4.47 (0.88)

Cl 102 (6.68) 102 (7.60) 0.122 104 (6.66) 102 (7.61)

Ca 8.49 (0.74) 8.33 (0.89) <0.001 8.29 (0.79) 8.25 (0.94)

GLU 151 (76.1) 155 (88.4) 0.341 151 (74.3) 169 (86.4)

TBIL 0.93 (0.91) 1.21 (1.35) <0.001 1.01 (1.55) 1.57 (3.70)

ALT 90.1 (403) 179 (480) <0.001 100 (466) 160 (509)

AST 124 (644) 266 (783) <0.001 155 (698) 279 (1258)

BUN 36.0 (23.6) 42.3 (26.0) <0.001 32.9 (25.1) 43.3 (28.6)

Cr 2.11 (2.09) 2.07 (1.49) 0.58 1.69 (1.63) 2.09 (1.75)

T 36.7 (0.79) 36.5 (1.02) <0.001 36.7 (2.04) 36.5 (2.42)

HR 89.3 (21.0) 90.6 (21.9) 0.169 88.2 (19.6) 91.2 (21.2)

R 21.7 (6.71) 22.8 (7.09) 0.001 19.0 (6.42) 20.9 (6.55)

SBP 125 (28.4) 115 (26.2) <0.001 118 (24.0) 116 (25.1)

DBP 69.4 (18.5) 64.9 (17.7) <0.001 67.7 (144) 65.6 (19.2)

MBP 87.7 (19.7) 81.5 (18.3) <0.001 77.5 (18.0) 79.4 (38.5)

SPO2 96.6 (4.80) 95.5 (7.82) 0.001 97.3 (18.7) 95.8 (5.93)

AF <0.001

  0 2585 (77.6%) 382 (68.2%) 550 (24.3%) 162 (24.5%)

  1 746 (22.4%) 178 (31.8%) 1718 (75.7%) 498 (75.5%)

CKD 0.137

  0 2749 (82.5%) 447 (79.8%) 1355 (59.7%) 385 (58.3%)

  1 582 (17.5%) 113 (20.2%) 913 (40.3%) 275 (41.7%)

COPD 0.468

  0 2726 (81.8%) 466 (83.2%) 1121 (49.4%) 368 (55.8%)

  1 605 (18.2%) 94 (16.8%) 1147 (50.6%) 292 (44.2%)

Diabetes 0.689

 0 3253 (97.7%) 549 (98.0%) 2061 (90.9%) 577 (87.4%)

 1 78 (2.34%) 11 (1.96%) 207 (9.13%) 83 (12.6%)

Hyperlipidemia 0.687

(Continued)
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TABLE 1 (Continued)

eICU-CRD MIMIC-IV

Survival Death
p

Survival Death

(N =  3331) (N =  560) (N =  2268) (N =  660)

  0 3104 (93.2%) 525 (93.8%) 1670 (73.6%) 415 (62.9%)

  1 227 (6.81%) 35 (6.25%) 598 (26.4%) 245 (37.1%)

Hypertension 0.002

  0 2435 (73.1%) 445 (79.5%) 1464 (64.6%) 367 (55.6%)

  1 896 (26.9%) 115 (20.5%) 804 (35.4%) 293 (44.4%)

Pneumonia <0.001

  0 2676 (80.3%) 396 (70.7%) 1055 (46.5%) 287 (43.5%)

  1 655 (19.7%) 164 (29.3%) 1213 (53.5%) 373 (56.5%)

ACEI/ARB <0.001

  0 2839 (85.2%) 537 (95.9%) 1393 (61.4%) 574 (87.0%)

  1 492 (14.8%) 23 (4.11%) 875 (38.6%) 86 (13.0%)

Betablockers <0.001

  0 2132 (64.0%) 409 (73.0%) 341 (15.0%) 236 (35.8%)

  1 1199 (36.0%) 151 (27.0%) 1927 (85.0%) 424 (64.2%)

Furosemide <0.001

  0 1782 (53.5%) 346 (61.8%) 252 (11.1%) 142 (21.5%)

  1 1549 (46.5%) 214 (38.2%) 2016 (88.9%) 518 (78.5%)

Spironolactone 0.001

  0 3177 (95.4%) 552 (98.6%) 2082 (91.8%) 624 (94.5%)

  1 154 (4.62%) 8 (1.43%) 186 (8.20%) 36 (5.45%)

Dobutamine <0.001

  0 3180 (95.5%) 505 (90.2%) 2100 (92.6%) 559 (84.7%)

  1 151 (4.53%) 55 (9.82%) 168 (7.41%) 101 (15.3%)

Dopamine 0.001

  0 3186 (95.6%) 517 (92.3%) 2128 (93.8%) 554 (83.9%)

  1 145 (4.35%) 43 (7.68%) 140 (6.17%) 106 (16.1%)

Epinephrine <0.001

  0 3240 (97.3%) 520 (92.9%) 1814 (80.0%) 559 (84.7%)

  1 91 (2.73%) 40 (7.14%) 454 (20.0%) 101 (15.3%)

Milrinone 0.86

  0 3232 (97.0%) 542 (96.8%) 1351 (59.6%) 214 (32.4%)

  1 99 (2.97%) 18 (3.21%) 917 (40.4%) 446 (67.6%)

Norepinephrine <0.001

  0 2871 (86.2%) 362 (64.6%) 1344 (59.3%) 370 (56.1%)

  1 460 (13.8%) 198 (35.4%) 924 (40.7%) 290 (43.9%)

Phenylephrine <0.001

  0 3215 (96.5%) 495 (88.4%) 2024 (89.2%) 612 (92.7%)

  1 116 (3.48%) 65 (11.6%) 244 (10.8%) 48 (7.27%)

Ventilation <0.001 111 (145) 119 (110)

  0 2338 (70.2%) 272 (48.6%)

  1 993 (29.8%) 288 (51.4%) 88 (3.88%) 50 (7.58%)

(Continued)
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in Figure  3B, increases in white blood cell count, decreases in 
temperature, and increases in total bilirubin push the predicted mortality 
risk higher, while younger age and lower neutrophil count push the 
predicted mortality risk lower. It’s important to note that due to 
standardization of numerical variables to a mean of 0 and a variance of 
1, the data in the plots are not in their original scale.

3.5 External validation

We selected 2928 cases of patients with heart failure and sepsis 
from the MIMIC-IV database for external validation. In the MIMIC 
database, these patients had a 28-day in-hospital mortality rate of 
22.5%, slightly lower than that of the eICU-CRD database (14.4%). 
Prior to external validation, we  applied the same data processing 
methods to the MIMIC data as we did to the eICU-CRD data. The 
validation results revealed an AUC of 0.699 and a Brier score of 0.169. 
Additionally, the accuracy, sensitivity, specificity, positive predictive 
value, negative predictive value, and F1 score were 0.699, 0.156, 0.403, 
0.673, 0.648, and 0.261, respectively. With the AUC difference between 
the external validation and validation/test sets being less than 0.1, 
we conclude that the LR model demonstrates favorable stability.

4 Discussion

This study represents the pioneering application of machine 
learning algorithms to forecast in-hospital mortality among patients 

with heart failure and sepsis. Our model can be applied to heart failure 
patients with sepsis upon ICU admission. Our model exhibits 
exceptional performance in distinguishing between survival and 
mortality outcomes, coupled with robust calibration and clinical 
relevance. The utilization of external validation bolsters the model’s 
reliability and generalizability, validating its efficacy across diverse 
datasets and fortifying the study’s scientific robustness and credibility. 
Leveraging SHAP for visual interpretation of model outcomes 
enhances the interpretability of predictive results. Furthermore, the 
model’s reliance on a concise and readily accessible set of predictive 
variables underscores its suitability for clinical deployment. Our 
model could be  integrated into clinical decision support systems 
within hospitals, especially in ICU. The model would automatically 
calculate the mortality risk for patients with heart failure complicated 
by sepsis using routinely collected clinical data, with outputs presented 
to clinicians via the electronic health record system. This would 
provide real-time risk assessments to help prioritize care and optimize 
resource allocation.

Our research findings suggest that the Logistic Regression (LR) 
model exhibits superior performance in predicting the survival rate 
of patients with heart failure complicated by sepsis. Moreover, 
studies indicate that the LR algorithm performs effectively in 
forecasting various clinical binary outcomes (26, 27). LR offers 
several advantages, including its simplicity, broad applicability, and 
straightforward result interpretation, establishing it as a pivotal and 
dependable modeling technique for binary classification problems 
(28). However, LR has its limitations; it is sensitive to the quality of 
feature engineering, vulnerable to outliers, and unable to handle 

TABLE 1 (Continued)

eICU-CRD MIMIC-IV

Survival Death
p

Survival Death

(N =  3331) (N =  560) (N =  2268) (N =  660)

Ventilation hour 357 (1664) 819 (2425) <0.001 2180 (96.1%) 610 (92.4%)

Balance −520.14 (4968) 1272 (7270) <0.001 1991 (4988) 2771 (3971)

BMI, Body mass index; WBC, White blood cell; RBC, Red blood cell; NE, Neutrophil; LYM, Lymphocyte; MONO, Monocyte; PLT, Platelet; Hb, Hemoglobin; Na, Sodium; K, Potassium; Cl, 
Chloride; Ca, Calcium; GLU, Glucose; TBIL, Total bilirubin; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; BUN, Blood urea nitrogen; Cr, Creatinine; T, Temperature; HR, 
Heart rate; R, Respiratory rate; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; MBP, Mean blood pressure; SPO2, Oxygen saturation; AF, Atrial fibrillation; CKD, Chronic kidney 
disease; COPD, Chronic obstructive pulmonary disease; ACEI/ARB, Angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; betablockers, Beta-blockers; balance: fluid 
balance in the previous 24 h.

FIGURE 2

Feature selection analyzed by Boruta algorithm.
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complex non-linear relationships. Moreover, in situations with large 
feature spaces and predominantly sparse features, LR’s performance 
may be  limited, potentially resulting in overfitting (29). Before 
model construction, we  conducted comprehensive data 
preprocessing, encompassing correlation and multicollinearity 
assessments, outlier and missing value handling, and data 
standardization, aiming to enhance the LR model’s efficacy. 
Additionally, external validation has confirmed that the LR model 
we  constructed avoids overfitting and demonstrates reliable 
generalization ability.

Sepsis and heart failure are common complications in critically ill 
patients, characterized by complex pathological conditions. Cardiac 
dysfunction in sepsis, indicated by reduced EF, may accelerate the 
progression to septic shock by lowering cardiac output and metabolic 
demand (30). Treatment strategies for sepsis and heart failure often 
conflict, influenced by varying severity and patient conditions (31). 
Fluid resuscitation, recommended in sepsis management guidelines, 
addresses tissue perfusion deficits but may exacerbate congestive 
symptoms and worsen prognosis in heart failure (32, 33). Our study 
indicates that higher fluid balance predicts increased mortality in 

FIGURE 3

(A) SHAP summary plot and (B) SHAP force plot.

TABLE 2 Model performance comparison: AUC, accuracy, sensitivity, specificity, PPV, NPV, F1 score, and Brier score.

Models AUC Accuracy Sensitivity Specificity PPV NPV F1 Score Brierscore

Validation set

  LR 0.746 0.685 0.666 0.712 0.285 0.914 0.397 0.119

  XGBoost 0.726 0.718 0.710 0.637 0.268 0.910 0.388 0.116

  AdaBoost 0.744 0.672 0.724 0.645 0.265 0.922 0.387 0.221

  GNB 0.722 0.683 0.644 0.702 0.269 0.914 0.377 0.160

External validation

  LR 0.699 0.403 0.673 0.648 0.261 0.896 0.376 0.169

LR, Logistic regression; XGBoost, eXtreme gradient boosting; AdaBoost, Adaptive boosting; GNB, Gaussian Naive Bayes; AUC, Area under the curve; PPV, Positive predictive value; NPV, 
Negative predictive value.

67

https://doi.org/10.3389/fmed.2024.1410702
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2024.1410702

Frontiers in Medicine 09 frontiersin.org

heart failure and sepsis. Singh et al. found that septic patients receiving 
>3L of fluid experienced reduced EF and higher in-hospital mortality 
(34). Additionally, other studies have shown that higher fluid balance 
during hospitalization is associated with increased mortality in 
patients with heart failure combined with sepsis (35–37). Zhang et al. 
discovered that higher fluid balance within 24 h of admission is 
strongly associated with in-hospital mortality in patients with heart 
failure and sepsis (OR 2.53, 95% CI 1.60–3.99, p < 0.001) (31). Due to 
myocardial edema and oxidative stress, excessive fluid intake is a 
factor contributing to myocardial injury. For patients with high fluid 
balance, increased atrial and venous pressures can lead to fluid shift 
into the interstitium, exacerbating tissue edema, causing tissue 
distortion and microcirculatory disturbances, thereby resulting in 
cellular metabolic dysregulation (38, 39). There remains controversy 

surrounding fluid resuscitation. Duttuluri et  al. retrospectively 
evaluated heart failure patients with severe sepsis, finding increased 
in-hospital mortality and intubation rates in the hypotensive subgroup 
receiving inadequate fluid (<30 mL/kg) (40).

Our research reveals that patients with elevated respiratory rates, 
hypotension, and those necessitating interventions such as 
norepinephrine, phenylephrine, or ventilation, exhibit a heightened 
risk of mortality prediction. Norepinephrine and phenylephrine are 
typically employed to augment cardiac contractility and blood 
pressure for organ perfusion maintenance, while ventilation is 
essential for respiratory support. This elevated predictive risk likely 
reflects the severity of patients’ conditions and the associated potential 
hazards they face. Moreover, it underscores the necessity for prompt 
and assertive therapeutic interventions tailored to these patients, 

FIGURE 4

Summary plot of machine learning performance evaluation. (A) ROC curve, (B) calibration plot, (C) DCA curve, (D) PR curve.
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alongside vigilant monitoring and comprehensive support measures. 
Sepsis guidelines recommend norepinephrine as the first-line 
vasopressor for sepsis and septic shock (33). De Backer et al. found in 
their study that among 280 cases of cardiogenic shock patients, 
norepinephrine was more effective than dopamine, significantly 
reducing the 28-day mortality rate (p = 0.03) (41). Additionally, a 
meta-analysis from 2015 also indicated that in the treatment of septic 
shock, norepinephrine, compared to dopamine, could lower the 
mortality rate (RR: 0.89; 95% CI: 0.81–0.98) (42). Additionally, there 
are studies indicating that compared to adrenaline, norepinephrine 
carries a lower risk of tachycardia [29] and is associated with reduced 
mortality risk (43, 44).

With the exacerbation of an aging society, the incidence of sepsis 
among the elderly is gradually increasing, making it one of the leading 
causes of mortality in this demographic (45). Age has been 
demonstrated as an independent risk factor for mortality in sepsis 
patients, with mortality rates showing a linear increase with advancing 
age (46). Our research findings indicate that advanced age is associated 
with a higher predictive risk of mortality in patients with sepsis 
complicated by heart failure. Elderly patients commonly exhibit 
compromised immune function, diminished organ reserve, and a 
higher prevalence of comorbidities such as diabetes and coronary 
artery disease compared to younger counterparts (47). Sepsis in this 
demographic frequently presents and swiftly evolves into multi-organ 
failure. De Matteis et al. studied 6930 elderly patients with heart failure 
and found that in-hospital mortality increased with advancing age, 
with infection correlating with an elevated risk of in-hospital death 
(48). We  also found that elevated levels of white blood cells and 
norepinephrine were associated with poor outcomes. In bacterial and 
fungal infections, elevated blood neutrophil levels serve as early and 
sensitive indicators of inflammation (49). Elevated white blood cell or 
neutrophil counts in sepsis patients suggest immune system activation 
and intensified inflammatory response, potentially indicating an 
excessively activated inflammatory state associated with increased 
mortality risk. Heightened vigilance and proactive therapeutic 
interventions are warranted to mitigate inflammation and prevent 
further deterioration in such cases. Additionally, low body temperature 
and elevated total bilirubin increase the risk of mortality assessment. 
Observing low body temperature or elevated total bilirubin (TBIL) in 
sepsis patients may suggest a severe condition and poor prognosis. 
Low body temperature could indicate suppressed inflammatory 
response or impaired metabolic function, compromising the body’s 
resistance to infection. Elevated TBIL may signify impaired liver 
function, possibly due to infection or inflammation.

This study has several limitations. Firstly, we acknowledge that the 
quality and completeness of the data in the MIMIC-IV and eICU-CRD 
databases may have certain limitations, especially with the potential 
absence of key clinical variables (such as ejection fraction or 
NT-proBNP), which could affect the accuracy of the model’s 
predictions. Future studies will need to incorporate more 
comprehensive data to improve the model and conduct further 
validation to enhance its accuracy. Secondly, as this is a retrospective 
study, the data primarily comes from ICU patients, which may 
introduce selection bias, limiting the model’s broader applicability to 
other clinical settings. Therefore, we  suggest that future research 
validate the model using multi-center data to reduce selection bias and 
improve its generalizability. Additionally, the imbalance between 
survival and death in the dataset may affect the model’s performance 

in predicting mortality. Lastly, the data were collected at different time 
points, leading to potential temporal discrepancies, which may cause 
data drift and result in inconsistent model performance across 
different periods. Thus, future research should validate and adjust the 
model using data from various timeframes to address these challenges 
and ensure the model’s robustness in different temporal and 
clinical settings.

5 Conclusion

In this study, we constructed a machine learning model to predict 
28-day all-cause mortality in ICU patients with heart failure 
complicated by sepsis. The final Logistic Regression model 
incorporates commonly used clinical indicators such as age, 
mechanical ventilation, respiratory rate, blood pressure, white blood 
cell count, and vasopressor use. This combination of variables enables 
the model to predict short-term mortality risk early, upon ICU 
admission, providing a clinical alert for high-risk patients and 
assisting clinicians in more effectively allocating medical and nursing 
resources. Furthermore, the model’s generalizability and potential 
clinical utility were validated across two large ICU databases (eICU-
CRD and MIMIC-IV). Despite its strong predictive performance, 
further updates and validations with larger, multicenter patient 
cohorts are required to enhance the model’s generalizability and 
practical application in broader clinical settings.
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Early detection of sepsis using 
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Background: With machine learning (ML) carving a niche in diverse medical 
disciplines, its role in sepsis prediction, a condition where the ‘golden hour’ 
is critical, is of paramount interest. This study assesses the factors influencing 
the efficacy of ML models in sepsis prediction, aiming to optimize their use in 
clinical practice.

Methods: We searched Medline, PubMed, Google Scholar, and CENTRAL 
for studies published from inception to October 2023. We  focused on 
studies predicting sepsis in real-time settings in adult patients in any hospital 
settings without language limits. The primary outcome was area under the 
curve (AUC) of the receiver operating characteristic. This meta-analysis was 
conducted according to PRISMA-NMA guidelines and Cochrane Handbook 
recommendations. A Network Meta-Analysis using the CINeMA approach 
compared ML models against traditional scoring systems, with meta-regression 
identifying factors affecting model quality.

Results: From 3,953 studies, 73 articles encompassing 457,932 septic patients 
and 256 models were analyzed. The pooled AUC for ML models was 0.825 and 
it significantly outperformed traditional scoring systems. Neural Network and 
Decision Tree models demonstrated the highest AUC metrics. Significant factors 
influencing AUC included ML model type, dataset type, and prediction window.

Conclusion: This study establishes the superiority of ML models, especially 
Neural Network and Decision Tree types, in sepsis prediction. It highlights the 
importance of model type and dataset characteristics for prediction accuracy, 
emphasizing the necessity for standardized reporting and validation in ML 
healthcare applications. These findings call for broader clinical implementation 
to evaluate the effectiveness of these models in diverse patient groups.

Systematic review registration: https://inplasy.com/inplasy-2023-12-0062/, 
identifier, INPLASY2023120062.
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1 Introduction

Sepsis is a critical medical condition characterized by a 
substantial risk of mortality (1). Prompt identification of sepsis is 
crucial for the successful treatment of this life-threatening condition. 
Adhering to the ‘golden hour’ principle, which suggests that patient 
outcomes are significantly improved when treatment is initiated 
within the first hour following diagnosis, is pivotal for enhancing 
patient survival rates. Concurrently, there is a robust endorsement 
for employing systematic screening procedures for early sepsis 
identification (2).

The accuracy of current clinical scales and diagnostic 
methodologies in detecting and predicting sepsis seems to 
be  significantly suboptimal, leading to delays in therapeutic 
interventions (3–5). Despite the widespread use of traditional 
sepsis scoring systems, such as SOFA, NEWS, MEWS, SIRS, and 
SAPS II, these tools exhibit several limitations, including their 
reliance on static thresholds and suboptimal predictive 
performance. As a result, traditional sepsis scoring systems often 
lack the sensitivity and specificity required for timely, accurate 
sepsis detection.

This gap underscores the urgent need for more precise and 
reliable diagnostic and prognostic tools. In this regard, there is a 
shift in focus towards innovative approaches such as 
machine learning (6–13). Particularly, right-aligned models are 
drawing significant attention for their capacity to predict the 
development of sepsis hours before its clinical confirmation (14). 
Evidence increasingly suggests that machine learning 
methodologies offer a distinct advantage over traditional sepsis 
scoring systems (6).

To date, three meta-analyses have been conducted in this area of 
study (6, 15, 16), with one demonstrating the superiority of machine 
learning over traditional clinical scales in sepsis prognosis (6). In 
second research, the evidence presented lacks robustness (16), 
whereas in a third investigation, the focus was solely on the 
comparative assessment of different machine learning methodologies 
(15). However, the significant clinical heterogeneity, not entirely 
unambiguous diagnostic criteria, diverse prognostic time frames, 
and differing approaches to data preprocessing and model 
development across patient populations preclude definitive 
conclusions about the prognostic efficacy of these machine 
learning models.

In response to these challenges, our objective was to conduct a 
pioneering network meta-analysis to address this heterogeneity and 
to surpass the confines of previous research. Through meta-regression, 
we aimed to identify key factors that influence the effectiveness of 
predictive models, thereby guiding the development of an optimal 
model for sepsis prognosis, tailored to the complexities of 
clinical scenarios.

2 Materials and methods

This study was conducted in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) Extension Statement for Reporting of Systematic 
Reviews Incorporating Network Meta-analyses of Health 
Care Interventions (PRISMA-NMA) guidelines (17) and the 

Cochrane Handbook recommendations (18). The study 
protocol was registered with the International Platform of 
Registered Systematic Review and Meta-analysis 
Protocols (INPLASY) under the registration number INPLASY 
2023120062 (doi: 10.37766/inplasy2023.12.0062). The 
completed PRISMA-NMA checklist is presented in 
Supplementary Table S1.

2.1 Search strategy

We performed a systematic search of the literature across 
Medline, PubMed, Google Scholar, and the Cochrane Central 
Register of Controlled Trials (CENTRAL) from inception to 
October 2023. The search was conducted by two independent 
investigators. Backward and forward citation tracking was also 
employed to identify additional studies, leveraging the Litmaps 
service (19). No language restrictions were applied. Details of the 
search strategy, including full queries, are provided in 
Supplementary Appendix A.

2.2 Eligibility criteria and study selection

Following the automatic removal of duplicate records, two 
independent researchers screened the remaining studies for eligibility. 
We  applied the PICOS (Population, Intervention, Comparator, 
Outcome, and Study design) framework to guide study selection 
(Supplementary Appendix B).

Studies were considered eligible if they focused on real-time 
prediction of sepsis onset (right alignment (14)) in adult patients 
across any hospital setting. Both prospective and retrospective 
diagnostic test accuracy studies were included. The target condition 
was the onset of sepsis, defined by Sepsis-3 criteria (20) or other 
operational definitions provided by the authors 
(Supplementary Table S5).

Studies were excluded if they met one of the following 
criteria: (1) were review articles, case reports or case series 
without control groups; (2) had no sepsis definition criteria; (3) 
reported no AUC for sepsis development; (4) reported AUC for 
other outcome (e.g., reported data on mortality only); (5) focused 
on pediatric patients; (6) reported no data on patient cohort 
(sample size, age, sex, etc.); (7) were published as conference 
papers or preprints only.

Any disagreement was solved by consultation until consensus was 
reached. Divergences were resolved by consensus with the involvement 
of the supervisor.

2.3 Outcome measures and data extraction

A standardized data collection form was developed 
specifically for this review. Three independent authors used this 
form to systematically evaluate the full text, supplemental 
materials, and additional files of all included studies. Data 
extraction was performed independently by three authors, 
with any discrepancies resolved through discussion to 
achieve consensus.
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Extracted information encompassed: (1) Basic study 
details such as the first author, publication year, country, journal, 
study design, data collection period, mean age, sex, hospital mortality, 
prediction method, and sample size; (2) ML model characteristics: 
data source, prediction model, sepsis definition criteria, department, 
prediction window, external validation, imputation, features; (3) 
Outcome data: area under the curve of the receiver operating 
characteristic (AUC) as performance metric.

ML prediction models were grouped as detailed in 
Supplementary Appendix C.

In an attempt to reduce the number of comparisons, when 
multiple models from the same group were used in a single article 
(employing different factor selection and optimization methods), 
the analysis focused on the highest AUC value. The standard 
deviation (SD) for AUC was either extracted directly from the 
article, requested from the authors, converted from the 95% 
confidence interval (CI) according to the Cochrane Handbook 
recommendations, or imputed using the Iterative Imputer 
algorithm based on a Bayesian regression model (Python’s 
sklearn library).

Data on the AUC metrics for traditional scoring systems were also 
extracted if available. These systems included SOFA (Sequential 
Organ Failure Assessment), qSOFA (quick SOFA), NEWS/NEWS2 
(National Early Warning Score), MEWS (Modified Early Warning 
Score), SAPS II (Simplified Acute Physiology Score), and SIRS 
(Systemic Inflammatory Response Syndrome). In cases where 
multiple traditional scoring systems were used, the best metric 
was considered.

2.4 Data analysis and synthesis

Traditional meta-analysis was conducted to calculate pooled 
AUCs. Inter-study heterogeneity was evaluated using the 
I-squared (I2) statistic and the Cochrane Q test; random-effects 
model (restricted maximum–likelihood, REML) was used. 
Statistical significance was set at 0.05 for hypothesis 
testing. We  conducted a meta-regression analysis, leveraging 
the REML random-effects model, to ascertain if the AUC 
metrics might be  affected by covariates such as study 
design and ML model characteristics (21). All covariates were 
first tested in a univariate model, significant covariates were 
then considered for a multivariable model. The results of 
the meta-regression were graphically represented using 
bubble-plots.

We also conducted a frequentist, random-effects Network 
Meta-Analysis (NMA) using CINeMA (Confidence in Network 
Meta-Analysis) approach (22), CINeMA software (23), ROB-MEN 
web application (24) and STATA 17.0 (StataCorp, College Station, 
TX) software. Articles were included in the NMA if they compared 
any two ML models with different ML models or any ML model 
with a traditional scoring system. The Mean Difference (MD) with 
corresponding 95% CI was calculated for AUCs. Results of NMA 
were presented using network plots, league tables, contribution 
tables and NMA forest plots. To assess between-study 
heterogeneity, we utilized Bayesian NMA with τ2 calculation. A 
τ2 value exceeding the clinically important effect size (MD ≥ 0.15) 
indicated significant heterogeneity.

2.5 Internal validity and risk of bias 
assessment

The internal validity and risk of bias were assessed by three 
independent reviewers (MY, AS, IK) using the ‘Quality 
Assessment of Diagnostic Accuracy Studies’ (QUADAS-2) tool 
(25) combined with an adapted version of the ‘Joanna Briggs 
Institute Critical Appraisal checklist for analytical cross-sectional 
studies’ (26) (Supplementary Table S2). Publication bias and 
small-study effects were assessed using Bayesian NMA meta-
regression and funnel plot analysis (for comparisons with 10 or 
more studies). The certainty of evidence was assessed with 
GRADE methodology integrated in CINeMA approach. 
We  conducted a sensitivity analysis using studies with low to 
moderate risk of bias.

3 Results

3.1 Study characteristics

The initial literature search identified 3,953 studies from 
various databases, with an additional 24 studies from other 
sources (Figure  1). After removing duplicates and abstract 
screening, 97 papers underwent eligibility screening. A total of 
256 models from 73 studies (457,932 septic patients) were 
included (14, 27–98) with major exclusions list presented in 
Supplementary Table S1. The specialty journal with the 
largest number of articles was Critical Care Medicine (39, 41, 53, 
62, 87).

Most of the studies included in the analysis were conducted in 
the ICU (n  = 49; 67.1%), followed by hospital wards (n  = 12; 
16.4%) and emergency departments (ED, n  = 9; 12.3%) 
(Supplementary Tables S4–S8). The median sepsis prevalence 
across the studies was 14.3% (IQR 7.3–32.4%), with the mean 
patient age ranging from 35 to 70 years. The median (IQR) 
mortality rate was 2.3% (6.9–14.8%). Sepsis was most frequently 
defined by the Sepsis-3 criteria (57.5%), with other definitions 
including Sepsis-2, ICD-9, ICD-10, and SIRS. Prediction windows 
varied widely, ranging from immediate (0 h) to 7 days. External 
validation was performed in 16 studies (21.9%), and imputation 
techniques were employed in 44 studies (60.3%). Notably, 53% of 
studies utilized public datasets such as MIMIC, eICU, and the 
Computing in Cardiology Challenge 2019, while the remaining 
studies relied on proprietary hospital datasets.

3.2 Pooled AUCs

The pooled AUC for machine learning models was 0.825 (95% 
CI 0.809–0.840, p  < 0.001) across 73 studies 
(Supplementary Table S9). In comparison, the AUC for the SOFA 
score was 0.667 (95% CI 0.586–0.748) across 17 studies, for 
qSOFA 0.612 (95% CI 0.574–0.650) across 16 studies, for 
NEWS/NEWS2 0.719 (95% CI 0.674–0.764) across 9 studies, for 
MEWS 0.651 (95% CI 0.612–0.690) across 12 studies, for SIRS 
0.666 (95% CI 0.643–0.688) across 19 studies, and for SAPS II 
0.662 (95% CI 0.589–0.736) across 2 studies (all p  < 0.001, 
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Supplementary Table S9). Heterogeneity across studies was high 
(I2 > 95%, p < 0.001).

3.3 Network meta-analysis

3.3.1 ML vs. scoring systems
All ML models exhibited a significant performance advantage 

over traditional scoring systems when performing a NMA (Figures 2, 
3, Supplementary Tables S10–S12).

A network plot is a visual tool in network meta-analyses, 
showing interventions (groups) as nodes and their direct 
comparisons as connecting lines. This visual tool helps in 
understanding the complex relationships and the extent of 
evidence available for each comparison in the network 
meta-analysis.

Network of retrospective diagnostic test accuracy studies comparing 
the AUCs of various machine learning models and best of scoring 
system used. The size of nodes and width of the edges are 
proportional to the number of studies. The colors of edges and nodes 
refer to the average risk of bias: low (green), moderate (yellow), and 
high (red).

3.3.2 ML models
As indicated by the NMA results, Neural Network Models (NNM) 

and Decision Tree (DT) models exhibited the highest AUC metrics 
(Figure 3, Supplementary Tables S11, S12).

3.4 Meta-regression

In the multivariable model, only ML model type, dataset type 
(with non-freely available hospital datasets showing higher AUCs), 

FIGURE 1

PRISMA flow diagram for study selection.
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and prediction window (showing a negative association) had 
significant contributions to the AUC. (Supplementary Table S13, 
Supplementary Figures S1, S2).

3.5 Risk of bias and GRADE assessment

The overall risk of bias of the 73 enrolled studies was judged as 
‘low’ in 29 studies, with ‘some concerns’ in 14 studies and ‘high’ in 30 
studies (Supplementary Figure S3). The main sources of bias identified 
were insufficient description of the study population and data sources, 
along with the use of different sepsis definitions.

Risk of bias bar chart is presented in Supplementary Figure S4. 
Publication bias and small-study effects assessment results 
are summarized in Supplementary Table S14 and 
Supplementary Figure S5. Between-study variance was not 
significant (τ2 = 0.095, with the clinically important effect size 
stated as 0.1). Contribution matrices are presented in 
Supplementary Tables S15, S16.

The CINeMA ratings can be found in Supplementary Figure S6. 
The level of evidence supporting the superiority of ML models over 
traditional scoring systems was categorized as ‘low’.

4 Discussion

4.1 Key findings

This network meta-analysis is the first to comprehensively 
evaluate the performance of (ML) models in sepsis prediction, 
demonstrating that ML algorithms, particularly neural network 
models and decision trees, significantly outperform traditional scoring 
systems. These findings underscore the enhanced ability of ML models 
to analyse and interpret complex clinical data, pointing to a potential 
paradigm shift in sepsis prediction strategies.

A critical aspect of our findings relates to the impact of the type 
of ML model and the nature of the dataset on model performance. The 
choice of the ML model itself emerged as a significant determinant of 
model performance in our study. This finding indicates that the 
inherent characteristics and algorithms of different ML models 
substantially influence their ability to predict sepsis effectively. Models 
utilizing freely available datasets exhibited lower AUCs, which could 
be  a result of overfitting in models based on non-freely available 
hospital datasets.

Another key finding from our study is the temporal dynamics 
in prediction accuracy. We  observed a negative association 

FIGURE 2

Network plot. DT, Decision Tree; NNM, Neural Network Model; SVM, Support Vector Machine; LR, Logistic Regression; NB, Naïve Bayes; GLM, 
Generalized Linear Model; KNN, K-Nearest Neighbors.
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between prediction window and AUC, indicating that ML models 
are more accurate in short-term than in long-term 
sepsis prediction.

Interestingly, factors such as the size of the training dataset, sepsis 
prevalence, the department in which the study was conducted, the 
presence of imputation and external validation, the use of laboratory 
indicators, and the number of predictors did not significantly 
influence the quality of the predictive models.

4.2 Relationship with previous studies

The results of our systematic review and meta-analysis can 
be compared with those of 3 previous meta-analyses. Islam et al. in 
2019 were the first demonstrated that ML approach outperforms 
existing scoring systems in predicting sepsis (6). Fleuren et al. (15) 
suggested that ML models can accurately predict the onset of sepsis 
with good discrimination in retrospective cohorts, and this study 
was the first to indicate that the choice of ML model could impact 
AUC. The authors also suggested that NNM had advantages over 
DT, and that the inclusion of body temperature and laboratory 
indicators enhanced prediction quality. The only other meta-
analysis performed so far demonstrated the superiority of XGBoost 
and random forest models but with high heterogeneity (I2) (16). In 

other systematic reviews, quantitative meta-analysis was not 
conducted due to significant heterogeneity among studies (10–13). 
We were the first to apply a NMA technique, which allowed us to 
overcome high heterogeneity of previous meta-analyses. This 
approach enables comparisons between two ML models or an ML 
model and a traditional scoring system within the same study on a 
single patient cohort, employing a unified approach and 
standardized definition of sepsis. In our research, NNM did not 
demonstrate superiority over DT, and the use of body temperature 
and laboratory indicators as predictors did not enhance the 
predictive quality.

4.3 Significance of the study findings

Our network meta-analysis, which evaluated 73 articles 
encompassing 457,932 septic patients, revealed that ML algorithms 
significantly outperform traditional sepsis scoring systems. The 
integration of ML into sepsis prediction marks a significant step 
forward in improving the early diagnosis and management of this 
life-threatening condition in emergency and intensive care settings. 
Unlike traditional scoring systems, ML models can process vast 
amounts of real-time clinical data, offering early warning systems that 
may identify sepsis before the appearance of clinical symptoms, 
thereby facilitating timely and targeted interventions. This has 
profound implications for clinical practice, as prompt treatments such 
as early antibiotic administration are known to significantly improve 
patient outcomes, particularly when initiated within the ‘golden 
hour’ (3–5).

Our study makes a key contribution by identifying the factors 
that impact the effectiveness of sepsis prediction models. 
Specifically, we found that the number of predictors and sepsis 
prevalence do not substantially influence model performance, 
challenging the traditional assumption that larger datasets and a 
perfectly balanced cohort (with a 50/50% split) are essential for 
robust predictions. Instead, our findings underscore the 
importance of data quality and the careful selection of relevant 
predictors, which has direct implications for how ML models 
should be  developed and deployed in real-world 
clinical environments.

The heterogeneity in external validation and imputation 
methods across studies underscores a significant gap in 
standardizing ML model development and validation for sepsis 
prediction. While we did not find a notable impact of external 
validation on AUC, its role in enhancing the robustness and 
generalizability of prediction models should not be underestimated. 
Furthermore, it’s noteworthy that even in the context of established 
and stringent diagnostic guidelines for sepsis, there exists a 
number of studies where researchers have opted to utilize 
alternative definitions of sepsis in their studies.

Another notable aspect of our research pertains to the ‘black box’ 
nature of some ML models, which limits the clinician’s ability to 
understand the logic behind decision-making. Our study demonstrates 
that the use of DT is not inferior to the more complex NNM. This is a 
pivotal finding as DT models offer greater transparency in decision-
making processes, which is crucial for clinical applications where 
understanding the rationale behind predictions is as important as the 
predictions themselves.

FIGURE 3

Network meta-analysis summary forest plot for predictive efficacy of 
various ML models and best of scoring system used for sepsis 
prediction.
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While ML models show substantial promise in predicting sepsis 
onset, their clinical utility remains limited by the challenge of initiating 
treatment before the appearance of clinical symptoms.

4.4 Strengths and limitations

This research is the first to quantitatively demonstrate the 
superiority of ML models over traditional scoring systems using 
NMA. Furthermore, this study is the first to employ NMA to reveal 
the advantages of NNM and DT over other ML models in the 
prediction of sepsis. Through meta-regression, we identified several 
critical factors that influence model performance, providing 
valuable insights for future model development. The application of 
the CINeMA approach provided a structured methodology to rate 
the certainty of our evidence, enhancing the reliability of 
our findings.

However, limitations of our study must be  acknowledged: 
we found high clinical heterogeneity among the included studies and 
therefore used random-effects modelling and sensitivity analyses; 
while the AUC was pragmatically chosen as the summary measure, it 
may not be as effective in imbalanced datasets, yet it remains the most 
frequently reported measure in this field.

4.5 Future studies and prospects

The growing body of evidence supporting the advantages of ML 
models over traditional scoring systems in sepsis prediction 
underscores the need to integrate these technologies into routine 
clinical practice. Future research should focus on conducting well-
structured prospective trials to evaluate how ML-predicted sepsis 
outcomes influence the timing and initiation of antibiotic therapy. A 
critical component of these trials will be assessing the time interval 
between ML model predictions and clinical recognition by healthcare 
providers, as delays in treatment initiation can significantly affect 
patient outcomes.

We propose a randomized, double-blind controlled trial 
comparing the efficacy of early antibiotic therapy initiated based on 
ML predictions versus placebo during this pre-recognition window. 
Such a study could provide definitive evidence regarding the clinical 
utility of ML-based early warning systems and their potential to reduce 
mortality and morbidity in sepsis by enabling earlier interventions.

5 Conclusion

Our systematic review and network meta-analysis revealed that 
machine learning models, specifically neural network models and 
decision trees, exhibit superior performance in predicting sepsis 
compared to traditional scoring systems. This study highlights the 
significant impact of machine learning model type and dataset 
characteristics on prediction accuracy. Despite the promise of machine 
learning models in clinical settings, their potential is yet to be fully 
realized due to study heterogeneity and the variability in sepsis 
definitions. To bridge this gap, there is an urgent need for standardized 
reporting and validation frameworks, ensuring that machine learning 
tools are both reliable and generalizable in diverse clinical settings.
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Objective: Pneumonia is a common clinical condition primarily treated with

antibiotics and organ support. Exploring the pathogenesis to identify therapeutic

targetsmay aid in the adjunct treatment of pneumonia and improve survival rates.

Methods: Transcriptomic data from peripheral blood of 183 pneumonia patients

were analyzed using Gene Set Variation Analysis (GSVA) and univariate Cox

regression analysis to identify signaling pathways associated with pneumonia

mortality. A pneumonia mouse model was established via airway injection of

Klebsiella pneumoniae, and pathway-specific blockers were administered via

tail vein infusion to assess whether the identified signaling pathways impact the

mortality in pneumonia.

Results: The combination of GSVA and Cox analysis revealed 17 signaling

pathways significantly associated with 28-day mortality in pneumonia patients (P

< 0.05). Notably, the RIG-I-like receptor signaling pathway exhibited the highest

hazard ratio of 2.501 with a 95% confidence interval of [1.223–5.114]. Infusion

of RIG012 via the tail vein e�ectively inhibited the RIG-I-like receptor signaling

pathway, significantly ameliorated lung injury in pneumonia mice, reduced

pulmonary inflammatory responses, and showed a trend toward improved

survival rates.

Conclusion: RIG012 may represent a novel adjunctive therapeutic agent

for pneumonia.

KEYWORDS

pneumonia, RIG012, RIG-I, GSVA, treatment

Introduction

Pneumonia is a common clinical syndrome that severely jeopardizes public health. It

accounts for∼10–20% of admissions to intensive care units (ICU). The hospital mortality

rate for pneumonia patients varies between 12 and 38%, with mortality rates as high as 40–

45% among patients with severe pneumonia in the ICU (1, 2). Thus, pneumonia represents

a significant clinical challenge that both clinicians and specialists in critical care medicine

must confront.

Currently, the treatment of pneumonia primarily relies on antibiotics and organ

support therapies, with a notable lack of adjunctive treatments targeting its underlying

pathogenesis (3, 4). Investigating the mechanisms associated with the prognosis of

pneumonia patients may provide insights for developing adjunctive therapies, thereby

enhancing the efficacy of pneumonia management and improving patient outcomes.
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Utilizing algorithms such as machine learning for the

secondary analysis of patient transcriptomic data offers new

perspectives for understanding diseases and aids in uncovering

mechanisms associated with disease progression and prognosis

(5, 6). Gene Set Variation Analysis (GSVA) is an algorithm

developed by Guinney et al. that transforms transcriptomic data

into signaling pathway information through a machine learning

framework (7). This algorithm reduces the dimensionality of

high-dimensional transcriptomic data into actionable insights

about signal transduction pathways, thereby facilitating further

exploration of disease-related mechanisms and drug development

(7, 8).

This project conducts GSVA on transcriptomic data from 183

pneumonia patients to identify signaling pathways associated with

patient prognosis. Additionally, animal experiments are employed

to validate the bioinformatics findings.

Materials and methods

The transcriptomic data of pneumonia
patients

The transcriptomic data of pneumonia patients are derived

from high-throughput sequencing of peripheral blood from ICU

patients uploaded to the Gene Expression Omnibus (GEO)

public database (accession number GSE65682) by Scicluna

et al. The dataset includes information on patients diagnosed

with pneumonia, encompassing 28-day survival data and high-

throughput sequencing information. This dataset was chosen

because it represents the largest publicly available collection of

high-throughput sequencing data for pneumonia patients, along

with corresponding survival information.

GSVA

The transcriptomic data were transformed into signaling

pathway data using the GSVA algorithm developed by Guinney

and the publicly available GSVAR package (Bioconductor—GSVA).

The principles of the algorithm and detailed procedures are

referenced in the documentation provided with Guinney’s

R package.

Statistical analysis

Univariate Cox analysis was performed to identify signaling

pathways associated with the 28-day mortality rate in pneumonia

patients, using a significance threshold of P < 0.05. Based

on the median of the signaling pathway data, patients were

categorized into high-risk and low-risk groups. Survival analysis

was conducted using the log-rank test to compare the survival

outcomes between the two groups. Differential analysis was carried

out using one-way analysis of variance, with P < 0.05 considered

statistically significant.

Mouse model of pneumonia

According to previous studies on the RIG-I pathway, there

is no significant association between the RIG-I pathway and sex

(10–12). The study subjects consisted of male C57BL/6 mice aged

6–8 weeks. A pneumonia model was established by intratracheal

injection of Klebsiella pneumoniae (KP) at a dosage of 60 × 108

CFU/kg over a duration of 24 h. The sham-operated group received

an equal volume of PBS via intratracheal injection. Each group

comprised six mice, with three designated for survival analysis

and the other three euthanized after 24 h to collect lung tissue for

subsequent experiments.

KP: SHBCCD11105CMCC46117; Shanghai Bioresource

Collection Center, Shanghai, China.

RIG012 treatment

Two hours after intratracheal injection of Klebsiella

pneumoniae (KP), the RIG-I-like signaling pathway-specific

inhibitor RIG012 was administered via tail vein infusion at a

dosage of 5 mg/kg. Based on the RIG012 reagent specifications and

prior research data on RIG012 (21), we selected this dosage, and

experimental evidence confirms that 5 mg/kg is indeed effective.

The treatment control group received an equivalent volume

of PBS.

RIG012: HY-147124, MedChemExpress, America.

Western blots

Based on previous studies (9–12), the stimulation and variation

of the RIG-I-like signaling pathway were evaluated through

measuring the pIRF3 levels in mouse lung tissue proteins. Proteins

were separated using an SDS-PAGE-PVDF membrane system. The

primary antibody (1:1000) was incubated at room temperature

for 2 h. Following thorough rinsing of the PVDF membrane,

a secondary antibody was applied for 1 h. Protein detection

was performed using enhanced chemiluminescence. The antibody

information is as follows:

βTubulin Abcam, rabbit mAb, #ab108342.

IRF3 Abcam, rabbit mAb, #ab68481.

pIRF3 Cell Signaling Technology, rabbit mAb, 29047.

Evaluation of lung injury

After paraffin embedding, the right upper lobe of the lung

was sectioned into 5-micron-thick slices for histopathological

examination. The sections were stained with hematoxylin and

eosin (H&E). Histopathological features, including edema,

inflammation, hemorrhage, atelectasis, necrosis, and hyaline

membrane formation, were scored on a scale from 0 to 4. The total

score reflects the severity of lung injury.

Frontiers inMedicine 02 frontiersin.org83

https://doi.org/10.3389/fmed.2024.1501761
https://www.bioconductor.org/packages/release/bioc/html/GSVA.html#:~:text=Gene%20Set%20Variation%20Analysis%20(GSVA)%20is%20a%20non-parametric,
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2024.1501761

qPCR

Based on our previous experimental foundation, the

pneumonia model in mice becomes relatively stable 24 h after

the intratracheal injection of KP, making it suitable for further

research (20). Therefore, quantitative PCR (qPCR) was employed

to assess the expression levels of the pro-inflammatory cytokines

interleukin 1 beta (IL1B) and tumor necrosis factor (TNF), as well

as the anti-inflammatory cytokines IL10 and transforming growth

factor-beta (TGFB) in lung tissue homogenates from each group

of mice 24 h post-injection of KP. This analysis aimed to evaluate

the impact of RIG012 on the pulmonary inflammatory response in

pneumonia-induced mice. The primer information is as follows:

IL1B

F: GCCACCTTTTGACAGTGATG

R: CGTCACACACCAGCAGGTTA

TNF

F: AGGCACTCCCCCAAAAGATG

R: CCACTTGGTGGTTTGTGAGTG

IL10

F: GGTTGCCAAGCCTTATCGGA

R: GACACCTTGGTCTTGGAGCTTA

TGFB

F: ACTGGAGTTGTACGGCAGTG

R: GGGGCTGATCCCGTTGATTT

Results

RIG-I like receptor signaling pathway was
screened as a significant risk factor for
mortality in pneumonia patients

A total of 183 pneumonia patients were enrolled in the study,

with a male-to-female ratio of 111:72 and an age range of 18–

88 years. The 28-day mortality rate was 21.9% (40/183). Through

GSVA, transcriptomic microarray data were converted into 185

signaling pathway datasets.

Univariate Cox analysis revealed that 17 signaling pathways

were associated with the 28-day mortality of pneumonia patients,

with a significance level of P < 0.05 (Figure 1A). A heatmap

displayed the distribution of these 17 signaling pathways among

the 183 pneumonia patients (Figure 1B). Among these, the RIG-I-

like receptor signaling pathway exhibited the highest hazard ratio

(HR) of 2.501, with a 95% confidence interval of [1.223–5.114].

Therefore, the RIG-I-like pathway is identified as the focal point

of this research project.

Using the median value of the RIG-I Like receptor pathway

data as the cutoff, pneumonia patients were categorized into high-

risk and low-risk groups. Survival analysis indicated that patients

with high expression of the RIG-I Like receptor pathway had a

significantly higher mortality rate compared to the low-expression

group (P = 0.039), shown in Figure 1C.

These results suggest that the RIG-I Like receptor signaling

pathway may be a critical risk factor for mortality in pneumonia

patients, and inhibiting this pathway may potentially reduce the

mortality rate in these patients.

RIG012 e�ectively inhibits RIG-I like
receptor pathway in KP mouse

To investigate whether the inhibition of the RIG-I Like receptor

pathway can improve pneumonia prognosis, we first established

a pneumonia model in mice by intratracheally injecting KP.

Subsequently, the small molecule compound RIG012, a specific

inhibitor of the RIG-I signaling pathway, was administered via tail

vein injection, while the control group received an equal volume

of PBS.

Western blot analysis of lung tissue homogenates indicated that

RIG012 effectively inhibited the activity of the RIG-I Like receptor

pathway, with a significance level of P < 0.001 (Figure 2).

RIG012 e�ectively improves lung injury in
KP mice

To evaluate whether RIG012 can enhance pneumonia

prognosis, lung tissues from each group of mice were collected to

prepare pathological sections. Lung injury scores were utilized to

assess the protective effects of RIG012 on lung tissue. The results

indicated that RIG012 significantly improved the lung injury

scores in KP mice, with a significance level of P < 0.001 (Figure 3).

Further survival analysis revealed that all mice in the RIG012

treatment group survived, while two mice in the control group

(Ctrl) died within 7 days. These results suggest that RIG012 may

potentially improve outcomes in pneumonia.

RIG012 e�ectively reduces pulmonary
inflammatory response

Recent studies have indicated that the RIG-I Like receptor

signaling pathway is a significant mechanism contributing to

inflammatory lung injury. We hypothesized that the mechanism

through which RIG012 improves pneumonia prognosis in mice

is by reducing pulmonary inflammatory responses. To validate

this hypothesis, lung tissue homogenates from each group of mice

were collected, and quantitative qPCR was employed to assess the

expression levels of pro-inflammatory factors IL1B and TNF, as well

as the anti-inflammatory factors IL10 and TGFB.

The results indicated that RIG012 significantly reduced the

expression of pro-inflammatory factors in KPmice while increasing

the levels of anti-inflammatory factors, P < 0.05 (Figure 4).

Discussion

Pneumonia is a common clinical condition, with mortality

rates as high as 40% in severe cases. The treatment of pneumonia

primarily relies on antibiotics. However, if pneumonia progresses

to acute respiratory distress syndrome and sepsis, leading to

multiple organ dysfunction, necessary organ support therapies

can be crucial in sustaining the lives of patients with severe

pneumonia, providing a critical window for antibiotic efficacy.

Nevertheless, there is currently a lack of adjunctive therapies
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FIGURE 1

RIG-I like receptor pathway was screened as a significant risk factor for poor prognosis in pneumonia patients. (A) The combined analysis of GSVA

and univariate COX regression identified 17 signaling pathways associated with the 28-day mortality of pneumonia patients, with a significance level

of P < 0.05. Among these, the RIG-I Like receptor signaling pathway exhibited the highest hazard ratio of 2.501, with a 95% confidence interval of

[1.223–5.114]. (B) A heatmap displayed the distribution of these 17 signaling pathways among the 183 pneumonia patients. (C) Survival analysis

indicated that patients with high expression of the RIG-I Like receptor signaling pathway had a significantly higher mortality rate compared to the

low-expression group (P = 0.039).

FIGURE 2

RIG012 e�ectively inhibits RIG-I like receptor signaling pathway in KP mouse. (A, B) Western blot analysis of lung tissue homogenates indicated that

RIG012 e�ectively inhibited the activity of the RIG-I like pathway, P < 0.001.

targeting the pathophysiological mechanisms of pneumonia (1–4).

Pneumonia can cause dysregulation of the immune system andmay

involve other molecular mechanisms within the body. Therefore,

inhibiting harmful molecular pathways could potentially enhance

the effectiveness of antibiotic therapy in treating pneumonia (13,

14). Severe pneumonia can lead to sepsis and acute respiratory
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FIGURE 3

RIG012 e�ectively improves lung injury in KP mice. (A) H&E staining of lung tissues from mice in the RIG012 treatment group, treatment control

group, and sham surgery group. (B) Lung injury scores were utilized to assess the protective e�ects of RIG012 on lung tissue. (C) Further survival

analysis revealed that all mice in the RIG012 treatment group survived, while two mice in the control group (Ctrl) died within 7 days. KP, Klebsiella

pneumoniae.

distress syndrome (ARDS), further increasing mortality rates. This

project focuses on patients with pneumonia complicated by sepsis,

which constitutes a more severe form of pneumonia. The results

indicate that RIG012 treatment may be effective in this context.

GSVA is a non-parametric, unsupervised analytical method

primarily utilized for assessing gene set enrichment results in

transcriptomic data from microarrays. This technique involves

transforming the gene expression matrix across different samples

into an expression matrix for gene sets, thereby evaluating whether

specific metabolic pathways are enriched among the samples (7, 8).

In simpler terms, GSVA converts the gene expression matrix (with

gene names as row labels and sample names as column labels)

into a pathway matrix (with pathway names as row labels and

sample names as column labels). When combined with traditional

statistical methods such as survival analysis, the GSVA algorithm

can effectively uncover pathogenic mechanisms associated with

disease prognosis.

The RIG-I Like receptor pathway is a crucial immune activation

pathway in the human body. Initially, research suggested that

this pathway was primarily involved in the antiviral defense

mechanisms by facilitating the binding of RIG-I protein to viral

RNA, resulting in the phosphorylation and nuclear translocation

of the transcription factor IRF3, which in turn initiates the

transcription of interferons. Recent studies have demonstrated

that the RIG-I Like receptor pathway, in addition to mediating

interferon production, also interacts with classic inflammatory

signaling pathways such as NFκB, contributing to excessive

inflammatory responses (15–20). In the context of pneumonia,

the pathogenic microbes not only inflict direct damage to lung

tissue but also mediate excessive inflammatory responses that

can compromise the epithelial-endothelial barrier of the lungs.

This may elucidate the mechanism by which GSVA analysis

associates the RIG-I Like receptor pathway with poor prognosis in

pneumonia patients.

Our study found that the RIG-I-like receptor pathway has

the highest hazard ratio (HR) value of 2.501, with a wide

confidence interval of [1.223–5.114]. This suggests that for each

unit increase in the RIG-I-like pathway, the risk of mortality

from pneumonia increases 2.5-fold. This is also the rationale for

selecting the RIG-I-like pathway as the primary focus of our
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FIGURE 4

RIG012 e�ectively reduces pulmonary inflammatory response. The qPCR was employed to assess the expression levels of pro-inflammatory factors

IL1B and TNF, as well as the anti-inflammatory factors IL10 and TGFB in lung tissue homogenates from each group of mice.

research. Additionally, the wide confidence interval of the HR

indicates the presence of patient heterogeneity. Future studies

that incorporate a larger sample size and conduct comprehensive

subgroup analyses may be beneficial in exploring and elucidating

this phenomenon.

RIG012 may serve as an effective adjunctive therapy for

pneumonia. RIG012 is a small molecular compound that

specifically targets RIG-I Like receptors, effectively inhibiting the

RIG-I Like receptor pathway (21). Our animal studies have also

demonstrated that RIG012 significantly suppresses the activity of

this signaling pathway. Additionally, we observed that RIG012 can

effectively mitigate lung damage caused by Klebsiella pneumoniae

and shows a trend toward improvingmortality rates in pneumonia-

induced mice. Further experiments suggest that RIG012 may

alleviate excessive pulmonary inflammation by inhibiting the RIG-I

Like receptor pathway, thereby serving as an adjunctive treatment

for lung damage resulting from pneumonia.

This study has certain limitations. First, the included mice

were all male, and although previous research suggests that the

RIG-I-like signaling pathway is not associated with sex, the issue

of sex bias warrants attention. Second, the RIG012 treatment

experiments were based on prior research and experimental

data regarding dosage and duration; future studies should

incorporate concentration and time gradient experiments. Finally,

the databases utilized in this research are public and lack

clinical information, such as the specific pathogens causing

pneumonia. Future investigations should conduct larger-scale

clinical studies to clarify the relationship between the RIG-I-

like pathway and pneumonia prognosis, as well as to draw

conclusions from subgroup analyses considering factors such as sex

and pathogens.

Conclusion

Through bioinformatics analysis and validation in animal

experiments, we have discovered that RIG012 may represent a

novel adjunctive therapeutic agent for pneumonia.
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Comparison between traditional 
logistic regression and machine 
learning for predicting mortality 
in adult sepsis patients
Hongsheng Wu *, Biling Liao , Tengfei Ji , Keqiang Ma , Yumei Luo  
and Shengmin Zhang *

Hepatobiliary Pancreatic Surgery Department, Huadu District People’s Hospital of Guangzhou, 
Guangzhou, China

Background: Sepsis is a life-threatening disease associated with a high mortality 
rate, emphasizing the need for the exploration of novel models to predict the 
prognosis of this patient population. This study compared the performance of 
traditional logistic regression and machine learning models in predicting adult 
sepsis mortality.

Objective: To develop an optimum model for predicting the mortality of adult 
sepsis patients based on comparing traditional logistic regression and machine 
learning methodology.

Methods: Retrospective analysis was conducted on 606 adult sepsis inpatients 
at our medical center between January 2020 and December 2022, who were 
randomly divided into training and validation sets in a 7:3 ratio. Traditional 
logistic regression and machine learning methods were employed to assess 
the predictive ability of mortality in adult sepsis. Univariate analysis identified 
independent risk factors for the logistic regression model, while Least Absolute 
Shrinkage and Selection Operator (LASSO) regression facilitated variable 
shrinkage and selection for the machine learning model. Among various 
machine learning models, which included Bagged Tree, Boost Tree, Decision 
Tree, LightGBM, Naïve Bayes, Nearest Neighbors, Support Vector Machine 
(SVM), and Random Forest (RF), the one with the maximum area under the curve 
(AUC) was chosen for model construction. Model validation and comparison 
with the Sequential Organ Failure Assessment (SOFA) and the Acute Physiology 
and Chronic Health Evaluation (APACHE) scores were performed using receiver 
operating characteristic (ROC) curves, calibration curves, and decision curve 
analysis (DCA) curves in the validation set.

Results: Univariate analysis was employed to assess 17 variables, namely gender, 
history of coronary heart disease (CHD), systolic pressure, white blood cell (WBC), 
neutrophil count (NEUT), lymphocyte count (LYMP), lactic acid, neutrophil-to-
lymphocyte ratio (NLR), red blood cell distribution width (RDW), interleukin-6 
(IL-6), prothrombin time (PT), international normalized ratio (INR), fibrinogen 
(FBI), D-dimer, aspartate aminotransferase (AST), total bilirubin (Tbil), and lung 
infection. Significant differences (p < 0.05) between the survival and non-survival 
groups were observed for these variables. Utilizing stepwise regression with the 
“backward” method, independent risk factors, including systolic pressure, lactic 
acid, NLR, RDW, IL-6, PT, and Tbil, were identified. These factors were then 
incorporated into a logistic regression model, chosen based on the minimum 
Akaike Information Criterion (AIC) value (98.65). Machine learning techniques 
were also applied, and the RF model, demonstrating the maximum Area Under 
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the Curve (AUC) of 0.999, was selected. LASSO regression, employing the 
lambda.1SE criteria, identified systolic pressure, lactic acid, NEUT, RDW, IL6, INR, 
and Tbil as variables for constructing the RF model, validated through ten-fold 
cross-validation. For model validation and comparison with traditional logistic 
models, SOFA, and APACHE scoring.

Conclusion: Based on deep machine learning principles, the RF model 
demonstrates advantages over traditional logistic regression models in 
predicting adult sepsis prognosis. The RF model holds significant potential for 
clinical surveillance and interventions to enhance outcomes for sepsis patients.

KEYWORDS

machine learning, random forest, logistic regression, adult sepsis, mortality

Introduction

Sepsis represents a critical condition marked by organ dysfunction 
resulting from an imbalanced host response to infection, leading to 
high mortality rates and substantial healthcare costs (1, 2). Despite the 
establishment of the initial consensus definitions (Sepsis-1) in 1991, 
the global incidence of sepsis continues to rise, making the true 
epidemiology of sepsis a subject of ongoing concern. Further 
exploration of high-risk factors associated with sepsis-related 
mortality is essential (3). In clinical settings, the evaluation of sepsis 
severity and the identification of risk factors for mortality often rely 
on scoring systems such as Sequential Organ Failure Assessment 
(SOFA), Quick Sequential Organ Failure Assessment (qSOFA), and 
Acute Physiology and Chronic Health Evaluation (APACHE) (4–6). 
However, these scoring systems involve numerous parameters, posing 
challenges for clinical practitioners. Consequently, there has been a 
growing interest in exploring the effectiveness of biomarkers and 
clinical prediction models in predicting the prognosis of sepsis 
patients (7–9).

Over the past few years, linear regression models have dominated 
the clinical landscape for predicting sepsis mortality (10, 11). However, 
their limitations, including the inability to handle non-linearity 
among variables, sensitivity to outlier values, and the need to meet the 
linear regression hypothesis, constrain their utility with non-linear 
and imbalanced datasets (12). Machine learning (ML) is a subfield of 
artificial intelligence (AI) that focuses on developing systems capable 
of learning from data or improving performance. Specifically, machine 
learning is a technique that enables computers to create models by 
training algorithms using datasets (13). Previous studies had indicated 
that ML models play a crucial role in predicting the prognosis of sepsis 
patients. ML models had demonstrated superior predictive accuracy 
compared to traditional statistical methods. By leveraging complex 
algorithms, these models can identify non-linear relationships and 
interactions between variables that may be overlooked by simpler 
models, leading to more precise predictions of sepsis mortality (14, 
15). On the other hand, the key strengths of ML models is their ability 
to handle high-dimensional data effectively. They can incorporate a 
vast array of clinical variables, which allows for a more comprehensive 
understanding of the patient’s condition and the factors contributing 
to mortality risk (16, 17). Consequently, these above benefits position 
ML as an essential tool in the prediction of sepsis mortality, aiding in 
the improvement of clinical decision-making and patient outcomes.

Based on the methodological review mentioned above, 
we employed both traditional generalized linear regression and ML 

models to assess their predictive capabilities in adult sepsis’s mortality 
during their hospitalization duration. Notably, we conducted internal 
validation for both models and compared their performance with 
SOFA and APACHE scores in terms of discrimination, calibration, 
and clinical practicality. This comprehensive analysis offers profound 
insights into mortality risk adjustment for observational adult sepsis 
datasets, contributing valuable information to the understanding of 
predictive models and their applicability in clinical settings. This study 
closely complied with TRIPOD guidelines (18) and the PROBAST risk 
of bias tool (19).

Methods

Source of clinical data

The clinical data for this cross-sectional study were obtained from 
the electronic medical records of Huadu District People’s Hospital of 
Guangzhou, Southern Medical University. The study focused on adult 
patients diagnosed with sepsis during hospitalization from January 
2020 to December 2022, adhering to the Sepsis-3 definition (20, 21). 
Exclusion criteria included patients under 18 years old, those with 
malignant tumors, individuals with immunosuppression, those who 
died or withdrew treatment within 24 h of admission, and cases where 
clinical data could not be extracted. Following these criteria, 606 cases 
of adult sepsis were included in the study. Due to it directly reflects the 
sepsis patient’s survival and is a key performance indicator during the 
hospitalization duration, we define the mortality as the outcome of 
this study.

Variables extraction

Variable extraction involved retrieving general information (gender, 
age, and body mass index), medical history [hypertension, diabetes, and 
coronary heart disease (CHD)], clinical signs (temperature, heart rate, 
systolic pressure, and infection site), laboratory examination results 
[white blood cell count (WBC), platelet count, neutrophil (NEUT) and 
lymphocyte (LYMP) counts, neutrophil-to-lymphocyte ratio (NLR), red 
cell distribution width (RDW), C-reactive protein, procalcitonin, lactic 
acid, prothrombin time (PT), international normalized ratio (INR), 
fibrinogen (FIB), D-dimer, creatinine, alanine transaminase (ALT), 
aspartate transaminase (AST), total bilirubin (Tbil), and interleukin-6 
(IL-6)], etiologic detection (Gram-positive bacteria, Gram-negative 
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bacteria, or fungal), and severity scores of sepsis (SOFA and APACHE) 
from the electronic medical record system. All data were extracted 
within the first 24 h of patient admission. For missing values, multiple 
imputation was performed using the “mice” package in R software.

Model construction of logistic regression

The study divided the 606 adult sepsis cases randomly into a 
training set (n = 435) and a validation set (n = 171) at a ratio of 7:3. 
Based on whether the patient died or not between 24 h after admission 
and discharge, participants were categorized into a survival group 
(421) and a non-survival group (185). For traditional logistic 
regression model construction, univariate analysis identified 
significant risk factors (p < 0.05), which were then included in binary 
logistic regression. The stepwise regression with the “backward” 
method was employed to achieve the optimal model with the least 
AIC value.

Machine learning model selection and 
construction

For ML model selection, eight integrated algorithms, including 
Bagged Tree, Boost Tree, Decision Tree, LightGBM, Naïve Bayes, Nearest 
Neighbors, Support SVM, and RF, were considered. In the “tidymodels” 
framework of R software, workflow sets were used to compare these 
models, perform resampling, and tune parameters. Because of its 
ability to provide a comprehensive measure of a model’s performance 
across all classification thresholds, we select AUC as an optimum 
index in order to offer more nuanced view of model performance. The 
ML model with the highest AUC value was chosen for model 
construction. In order to perform variable shrinkage and selection, 
which may avoid the overfitting of the ML model, we utilized LASSO 
regression with ten-fold cross-validation. The count of variables in the 
ultimate model was ascertained based on the specific location of 
lambda.1SE, a coefficient that signifies the ideal equilibrium between 
model intricacy and forecasting accuracy.

Models validation and comparison

Models were validated and compared using discrimination, 
calibration, clinical benefit, and generalization. Discrimination was 
assessed by calculating the AUC of the ROC, while calibration was 
evaluated using calibration curves and the Hosmer-Lemeshow test. 
Decision curve analysis (DCA) curves were employed to assess the 
clinical benefit of the models. To estimate generalization, logistic 
regression, and ML models were compared with SOFA and APACHE 
scores using discrimination, calibration, and DCA for both the 
training and validation sets. The research design flowchart is depicted 
in Figure 1.

Variables importance

During traditional logistic regression, the importance of 
variables is determined by assessing the absolute value of each 

regression coefficient from the covariate. A larger absolute value 
indicates a more significant and important predictor. Variable 
importance is a key characteristic of ML models. In ML models, if 
changing the value of a variable leads to false prediction results, it 
implies that the variable is sensitive to classification outcomes and 
holds greater importance. The calculation of variable importance in 
the ML model such as RF involves determining the importance of 
each single decision tree, and by considering the number of trees 
set in the RF, the average of these values yields the overall variable 
importance of the RF model (22, 23).

Ethics statement

Data extraction and collection for this study were approved by 
the Ethics Committee of Huadu District People’s Hospital of 
Guangzhou (Registration Number: 2023088). Due to the 
retrospective nature of the study, the Ethics Committee of Huadu 
District People’s Hospital of Guangzhou waived the need of 
obtaining informed consent. And we  had confirmed that the 
method of this research was performed in accordance with the 
regulation of Ethics Committee of Huadu District People’s Hospital 
of Guangzhou.

Statistical analysis

R version 4.1.3 was used for data analysis and the creation of 
statistical figures. Missing values in this cross-sectional study were 
addressed through multiple imputations using the “mice” package. 
The study population of adult sepsis patients was divided into training 
and validation sets using the “caret” package. Descriptive statistics, 
including mean ± standard deviation for continuous data with normal 
distribution and median (upper and lower quartiles) for non-normally 
distributed data, were employed to characterize average values. For 
univariate analysis, the Chi-square test was used to analyze differences 
in categorical data, while t-tests and Mann–Whitney U tests were 
employed for normally and non-normally distributed continuous 
data, respectively.

For logistic regression model construction, the “glm” function was 
used to conduct univariate analysis and binary logistic regression. The 
final model was determined by stepwise regression with the least AIC 
value using the “backward” method. For machine learning models, the 
Least Absolute Shrinkage and Selection Operator (LASSO) regression 
was utilized for variable shrinkage and selection, and the “glmnet” 
package was employed with parameter tuning using lambda.1SE 
under ten-fold cross-validation to remove irrelevant variables. The 
framework of “tidymodels” facilitated model selection, construction, 
workflow settings, validation, and comparison of predictive 
capabilities. Random forest was selected as the machine learning 
model based on the highest AUC and accuracy values, and the 
“randomForest” package was used to fit the model. To optimize the 
out-of-bag (OOB) error and improve predictive efficacy, the “tuneRF” 
function was employed.

Discrimination of the models was investigated using ROC and 
AUC with the “pROC” package. Calibration was assessed using the 
“calibration” function from the “rms” package, and the Hosmer-
Lemeshow test was performed. Net benefits, reflecting model clinical 
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practicality, were calculated and compared using DCA with the 
“ggDCA” package.

Results

Baseline analysis and data splitting

The study included a total of 606 patients diagnosed with sepsis, 
categorized into a survival group (n = 421) and a non-survival group 
(n = 185) based on hospital stay duration. To facilitate model 
construction and validation, a random allocation resulted in a training 
set (n = 435) and a validation set (n = 171) at a 7:3 ratio. Details of the 
baseline analysis and data splitting are presented in Table 1.

Logistic regression model construction

We initially conducted univariate analysis for risk factor 
selection in the training set for the logistic regression model. The 
results of the univariate analysis revealed that with significant 
differences (p < 0.05) between the survival and non-survival groups 
for including variables, gender, CHD, systolic pressure, WBC, 
NEUT, LYMP, lactic acid, NLR, RDW, IL6, PT, INR, FBI, D-dimer, 
AST, Tbil, and lung infection were brought into multiple variable 
regression (Table 2). Based on these 17 variables, we utilized logistic 
step regression (backward step method) to optimize the model 
according to the Akaike Information Criterion (AIC). The results 
showed that with the least AIC value (98.65), the logistic model (OR: 
1.012, 95% CI: 2.218–3.216) included systolic pressure, lactic acid, 

FIGURE 1

Flowchart illustrating the research design.
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TABLE 1 Baseline analysis and data splitting.

Characteristics All patients
(n = 606)

Survival
(n = 421)

Non-survival
(n = 185)

Training set
(n = 435)

Validation set
(n = 171)

p-value

Gender 0.914

  Female n (%) 269 (44.4%) 207(49.2%) 62(33.5%) 192 (44.1%) 77 (45.0%)

  Male n (%) 337 (55.6%) 214(50.8%) 123(66.5%) 243 (55.9%) 94 (55.0%)

Age *x  ± sd 64.0 ± 17.5 63.6 ± 16.5 64.9 ± 17.6 64.7 ± 18.2 63.2 ± 15.8 0.163

Infection site 0.806

  Respiratory system n (%) 232 (38.3%) 132(31.4%) 100(54.1%) 166 (38.2%) 66 (38.6%)

  Urinary system n (%) 161 (26.6%) 100(23.6%) 61(33.0%) 113 (26.0%) 48 (28.1%)

  Digestive system n (%) 213 (35.1%) 189(45.0%) 24(12.9%) 156 (35.9%) 57 (33.3%)

Pathology 0.332

  Gram-positive n (%) 331 (54.6%) 223(53.0%) 108(58.4%) 230 (52.9%) 101 (59.1%)

  Gram-negative n (%) 252 (41.6%) 180(42.8%) 72(38.9%) 189 (43.4%) 63 (36.8%)

  Fungal n (%) 23 (3.80%) 18(4.2%) 5(2.7%) 16 (3.68%) 7 (4.09%)

Diabetes 0.632

  No n (%) 411 (67.8%) 288(68.4%) 123(66.5%) 298 (68.5%) 113 (66.1%)

  Yes n (%) 195 (32.2%) 133(31.6%) 62(33.5%) 137 (31.5%) 58 (33.9%)

Hypertension 0.193

  No n (%) 360 (59.4%) 262(62.2%) 98(53.0%) 266 (61.1%) 94 (55.0%)

  Yes n (%) 246 (40.6%) 159(37.8%) 87(47.0%) 169 (38.9%) 77 (45.0%)

CHD 0.304

  No n (%) 390 (64.4%) 298(70.8%) 92(49.7%) 274 (63.0%) 116 (67.8%)

  Yes n (%) 216 (35.6%) 123(29.2%) 93(50.3%) 161 (37.0%) 55 (32.2%)

BMI x  ± sd 24.3 ± 4.6 24.3 ± 4.6 24.3 ± 4.7 24.2 ± 4.7 23.9 ± 4.5 0.693

Systolic pressure (mmHg) x  ± sd 124 ± 23.5 131.1 ± 18.0 93.66 ± 24.7 124.8 ± 19.2 124.6 ± 20.3 0.907

Heart rate (time/min) x  ± sd 122 ± 9.6 116.9 ± 11.58 118.1 ± 9.1 122 ± 8.8 121 ± 10.2 0.887

Temperature (°C) x  ± sd 38.5 ± 0.7 38.3 ± 0.7 38.3 ± 0.6 38.3 ± 0.6 38.5 ± 0.5 0.387

WBC (×109/L) *M[P25;P75] 12.7 [7.6;18.2] 11.9 [7.5;16.1] 15.0 [8.2;23.4] 12.9 [8.1;18.3] 11.8 [6.9;17.6] 0.107

Platelet (×109/L) M[P25;P75] 172 [111;249] 180.0 [125.0;252.0] 150.0 [63.0;242.5] 172 [114;246] 169 [95.5;263] 0.715

NEUT (×109/L) M[P25;P75] 10.6 [6.2;16.0] 9.8 [5.9;14.2] 14.1 [7.6;20.6] 10.7 [6.54;16.2] 9.85 [5.35;15.2] 0.149

LYMP (×109/L) M[P25;P75] 0.85 [0.5;1.4] 1.0 [0.7;1.5] 0.5 [0.3;0.6] 0.86 [0.5;1.4] 0.85 [0.5;1.4] 0.973

(Continued)
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TABLE 1 (Continued)

Characteristics All patients
(n = 606)

Survival
(n = 421)

Non-survival
(n = 185)

Training set
(n = 435)

Validation set
(n = 171)

p-value

NLR M[P25;P75] 12.5 [6.6;22.1] 10.3 [5.5;16.0] 26.2 [13.0;46.5] 12.4 [6.8;22.8] 12.7 [5.9;20.4] 0.431

RDW x  ± sd 44.7 ± 8.4 45.2 ± 8.2 50.5 ± 10.5 44.3 ± 8.7 45.2 ± 9.4 0.368

CRP (mg/ml) M[P25;P75] 117 [47.6;179] 112.3 [40.5;166.7] 135.0 [56.9;194.2] 119 [46.6;179] 117 [54.9;176] 0.957

PCT (ng/ml) M[P25;P75] 12.0 [2.42;41.1] 9.1 [1.6;36.0] 18.0 [6.3;53.5] 12.0 [2.49;40.7] 12.0 [2.20;39.5] 0.879

Lactic acid (mmol/L) M[P25;P75] 2.20 [1.5;4.4] 1.9 [1.4;2.6] 4.8 [3.1;8.7] 2.15 [1.6;4.2] 2.50 [1.5;5.3] 0.390

PT (S) x  ± sd 15.1 ± 2.4 14.9 ± 2.2 18.9 ± 8.8 15.1 ± 3.1 14.9 ± 3.4 0.811

INR M[P25;P75] 1.19 [1.1;1.4] 1.2 [1.1;1.3] 1.3 [1.2;1.7] 1.19 [1.08;1.35] 1.17 [1.08;1.38] 0.634

FIB x  ± sd 4.8 ± 1.6 5.2 ± 1.8 4.4 ± 2.1 4.91 ± 1.7 4.6 ± 1.9 0.181

D dimer (ng/m) M[P25;P75] 2,532 [1,230;4,955] 2,183 [1,190;4,197] 3,365 [1,597;7,461] 2,544 [1,233;5,239] 2,251 [1,232;4,607] 0.569

Creatinine (μmol/L) M[P25;P75] 125 [74.0;246] 106.0 [70.0;214.8] 162.0 [92.5;289.0] 117 [72.6;234] 131 [79.3;272] 0.099

ALT (U/L) M[P25;P75] 28.0 [16.5;52.0] 24.0 [15.7;43.1] 36.0 [20.1;74.0] 29.0 [16.7;52.6] 26.0 [15.7;49.9] 0.350

AST (U/L) M[P25;P75] 31.0 [20.0;62.0] 26.0 [18.9;47.0] 57.1 [29.2;156.5] 31.0 [20.2;61.0] 31.5 [19.6;67.2] 0.859

Tbil (μmol/L) M[P25;P75] 15.6 [10.2;24.6] 14.5 [9.9;21.9] 18.0 [10.9;34.2] 15.7 [10.3;25.0] 14.5 [9.28;23.4] 0.428

IL6 (pg/ml) M[P25;P75] 3.70 [2.30;5.80] 3.0 [1.9;4.2] 6.5 [5.1;7.7] 3.70 [2.30;5.75] 3.70 [2.30;5.90] 0.696

SOFA M[P25;P75] 6.1 [4.2;9.5] 5.0 [4.0;6.1] 12.0 [9.1;14.0] 6.00 [4.0;9.0] 6.0 [4.0;9.0] 0.369

APACHE x  ± sd 32.0 ± 8.1 29.2 ± 7.5 40.9 ± 9.1 31.0 ± 78.3 34.0 ± 8.6 0.052

*x  ± sd: mean ± standard deviation; M[P25;P75]: M, median; P25, Lower quartile; P75, Upper quartile.
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TABLE 2 Univariate analysis of risk factors between the survival group and non-survival group.

Characteristics *B *SE *OR 95%CI Z P-value

Gender 0.699 0.303 2.01 1.11–3.65 2.308 0.021

Age 0.014 0.008 1.01 1–1.03 1.605 0.108

Diabetes −0.142 0.336 0.87 0.45–1.68 −0.424 0.671

Hypertension −0.016 0.308 0.98 0.54–1.8 −0.052 0.959

CHD 0.663 0.302 1.94 1.07–3.51 2.198 0.028

BMI −0.033 0.033 0.97 0.91–1.03 −0.974 0.33

Systolic pressure −0.104 0.014 0.9 0.88–0.93 −7.444 <0.001

Heart rate 0.001 0.016 1 0.97–1.03 0.091 0.928

Temperature 0.015 0.239 1.02 0.64–1.62 0.064 0.949

WBC 0.055 0.018 1.06 1.02–1.09 3.051 0.002

Platelet −0.002 0.001 1 1–1.02 −1.643 0.1

NEUT 0.068 0.02 1.07 1.03–1.11 3.446 0.001

LYMP −1.605 0.35 0.2 0.1–0.4 −4.586 <0.001

NLR 0.066 0.013 1.07 1.04–1.1 5.167 <0.001

RDW 0.071 0.018 1.07 1.04–1.11 4.016 <0.001

CRP 0.004 0.002 1 1–1.01 1.957 0.05

PCT 0.005 0.004 1.01 1–1.01 1.354 0.176

Lactic acid 0.496 0.084 1.64 1.39–1.94 5.929 <0.001

PT 0.529 0.093 1.7 1.41–2.04 5.686 <0.001

INR 2.751 0.613 15.65 4.71–52.05 4.49 <0.001

FIB −0.172 0.079 0.84 0.72–0.98 −2.188 0.029

D dimer 0 0 1 1.23–2.45 4.438 <0.001

Creatinine 0.001 0.001 1 1–1.02 1.408 0.159

ALT 0.004 0.002 1 1–1.01 1.261 0.175

AST 0.005 0.001 1 1–1.01 3.198 0.001

Tbil 0.015 0.005 1.01 1–1.02 2.719 0.007

IL-6 0.728 0.102 2.07 1.7–2.53 7.157 <0.001

Infection site

  Respiratory system 1.839 0.325 6.29 3.33–11.89 5.664 <0.001

  Urinary system −0.17 0.349 0.84 0.43–1.67 −0.487 0.626

(Continued)
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NLR, RDW, IL6, PT, and Tbil as the final determinants 
(Supplementary Table S1).

Machine learning model and variables 
selection

As depicted in Supplementary Figure S1, a comprehensive 
comparison of various machine learning models revealed that RF 
stood out with high accuracy and an AUC value of 0.99. Therefore, RF 
was chosen as the preferred methodology for model construction. 
Regarding variable selection, LASSO regression, employing ten-fold 
cross-validation with lambda.1SE criteria, identified systolic pressure, 
lactic acid, NEUT, RDW, IL6, INR, and Tbil as the chosen variables 
for RF model construction (Figure  2). During the RF modeling 
process, we  initially set 500 decision trees for preliminary model 
calculation in the training set. To determine the optimal parameter for 
mortality prediction in sepsis patients, we utilized the OOB error as a 
measure of the model’s performance index. The results demonstrated 
that when the iteration reached 141 decision trees, the error rates of 
both OOB and model classification showed a noticeable decrease, 
reaching a stable state. This observation illustrated that the RF model 
achieved the most stable and optimal situation (Figure 3).

Model validation and multi-models 
comparison

To assess the predictive efficacy of traditional logistic and RF 
models, we conducted assessments of discrimination, calibration, and 
clinical net benefits. Additionally, we compared the performance of 
logistic regression and RF models with SOFA (4) and APACHE (6) to 
explore clinical practicality. Discrimination results indicated that the 
among the predictive models of RF, logistic, SOFA, and APACHE, the 
AUCs and their corresponding 95% confidence intervals (CIs) were 
significantly larger (PDelong’s test < 0.05) in both training and validation 
sets compared to other three models (Figures  4A,B). For model 
calibration, we observed that calibration curves of RF were notably 
closer to the ideal reference line compared to other models in both 
training and validation sets, which indicated that comparing to other 
models, the RF model associated with better fitting goodness and 
predictive ability (Figures 5A,B). Results of clinical practicality, as 
indicated by the Area Under Decision Curve (AUDC), showed that in 
the training set (Figure 6A) and validation set (Figure 6B), comparing 
with other three models, the AUDCs of RF model were with the 
highest values. These findings illustrated that the RF model yielded 
optimal clinical net benefit for predicting mortality in adult 
sepsis patients.

Variables importance of logistic and RF 
models

The variable importance calculations from both the logistic 
regression and RF models are presented in Supplementary Figure S2. 
In predicting mortality in the adult sepsis cohort, the logistic 
regression model identified systolic pressure, lactic acid, IL6, and NLR 
as the most important variables, followed by Tbil, PT, and T
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FIGURE 2

Variable shrinkage and selection by LASSO regression. (A) Shrinkage pathway of LASSO regression. (B) Based on ten-fold cross-validation, seven 
variables, including systolic pressure, lactic acid, NEUT, RDW, IL6, INR, and Tbil, were chosen using the lambda.1SE criteria.

FIGURE 3

Error rate chart of RF model. As the iteration reached 141 decision trees, the error rates of both out-of-bag (OOB) and model classification showed a 
noticeable decrease, eventually reaching a steady state.
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RDW. Consistently, the RF model also highlighted systolic pressure, 
lactic acid, IL6, and NLR as the most crucial variables for predicting 
mortality. However, the variables with relatively less importance in the 
RF model were RDW, NEUT, and Tbil, in contrast to the logistic 
regression model.

Discussion

In this study, we  investigated the risk factors predicting the 
mortality of adult patients with sepsis, employing both the traditional 
logistic regression approach and the RF approach. Overall, both models 

FIGURE 4

Comparison of discriminative ability among RF, logistic regression, SOFA, and APACHE scoring system. (A) Training set; (B) validation set. The blue solid 
ROC curves with the largest AUC values both in training set and validation set represented that RF associated with the best discrimination among the 
four models. AUC, area under curve; SOFA, sequential organ failure assessment scoring; APACHE, acute physiology and chronic health evaluation 
scoring.

FIGURE 5

Comparison of calibration curves among RF, logistic regression, SOFA, and APACHE scoring system. (A) Training set; (B) validation set. The blue solid 
calibration curves which were notably closer to the ideal reference line both in training set and validation set represented that RF associated with the 
best goodness-of-fit and accuracy of prediction among the four models. SOFA, sequential organ failure assessment scoring; APACHE, acute 
physiology and chronic health evaluation scoring. The left x-axis represents the observed probability; the right x-axis represents the sample size, y-axis 
represents the predicted probability.
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yielded similar results, with only slight differences in the included 
variables, with the inclusion of PT as a risk factor in the logistic 
regression model, while NEUT was included in the RF model. To assess 
the predictive capabilities of these models for adult sepsis prognosis, 
we conducted comprehensive validations, considering discrimination, 
calibration, and clinical benefits. Among the three above criterion of 
model assessment, calibration is a critical aspect of evaluating the 
performance of clinical prediction models. It refers to the degree to 
which the predicted probabilities of an event match the actual observed 
outcomes. A well-calibrated model is one where the predicted 
probabilities are reliable indicators of the likelihood of the event 
occurring in practice. This is particularly important in clinical settings, 
where accurate predictions can guide treatment decisions and patient 
management. Additionally, we compared the models with the widely 
used SOFA and APACHE scoring systems based on these criteria. The 
results of model validation and comparison demonstrated that the RF 
model exhibited significant superiority over the logistic regression 
model, as well as over the SOFA and APACHE scoring systems, in 
predicting mortality in adult sepsis patients.

Application of biomarkers in adult sepsis 
prediction

Sepsis represents an aberrant inflammatory response triggered by 
pathogenic microorganism infection. There is an increasing consensus 
suggesting that the immune system’s activation in the early stages and 
its subsequent inhibition in the later stages can both contribute to 
alterations in circulating levels of inflammatory mediators (24–26). 
While the exact mechanisms of sepsis remain incompletely 
understood, studies have highlighted the crucial role of biomarkers in 

sepsis diagnosis and prognosis prediction, significantly impacting the 
risk of mortality (27–29). Our study exhibited that besides systolic 
pressure, biomarkers such as lactic acid, RDW, NLR, IL6, NEUT, and 
Tbil were incorporated into the traditional logistic and RF models 
we constructed. A closer examination through variable importance 
analysis revealed that lactic acid, NLR, and IL6 played pivotal roles in 
determining the significance of variables in both models.

Lactic acid, a metabolic byproduct of anaerobic glucose 
fermentation, poses a threat to the human body when present at 
elevated levels. High concentrations of lactic acid not only inhibit the 
activity of various essential enzymes but also mitigate the sensitivity 
of endothelial cells to vasoactive drugs (30). Furthermore, in the 
context of microbial infection or sepsis, lactic acid assumes a critical 
role in suppressing immune cells, potentially leading to immune 
suppression and severe consequences for the individual (31). Elevated 
levels of lactic acid in patients with sepsis are associated with poor 
outcomes, as they reflect inadequate perfusion and oxygen delivery to 
tissues. Studies have shown that high lactate levels correlate with 
increased mortality rates in septic patients, making it a valuable 
prognostic marker. Over the years, numerous studies have 
underscored the association between elevated lactic acid levels and 
increased mortality rates in sepsis (4, 32, 33).

The NLR serves as a biomarker calculated by the ratio of 
neutrophil to lymphocyte counts, encompassing both the innate 
immune response, primarily mediated by neutrophils, and adaptive 
immunity, supported by lymphocytes (34). Neutrophils act as the 
frontline defenders against pathogen invasion through processes like 
chemotaxis and phagocytosis. Upon activation by pathogens, various 
cytokines, granular proteins, and reactive oxygen species (ROS) are 
produced and released by neutrophils (35). While this activation is 
crucial for pathogen resistance, excessive activation leading to 

FIGURE 6

Comparison of decision curve analysis among RF, logistic regression, SOFA, and APACHE scoring system. (A) Training set; (B) validation set. With the 
highest value of AUDC and net benefit both in training set and validation set, RF was considered as the optimum model which associated with the best 
clinical practicality. SOFA, sequential organ failure assessment scoring; APACHE, acute physiology and chronic evaluation scoring. AUDC, area under 
DCA curve.
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increased production of ROS and cytokines may damage vascular 
endothelial cells through different mechanisms, resulting in tissue 
hypoperfusion and life-threatening organ failure (36). Consequently, 
an elevated neutrophil count, or a decreased lymphocyte count, 
contributes to an increased NLR, serving as a predictor of disease 
severity and poor prognosis in various conditions such as severe 
trauma (37), stroke (38), malignant tumor (39, 40) and sepsis (41, 42). 
Previous studies on NLR in predicting sepsis prognosis have 
demonstrated its independent association with high in-hospital 
mortality rates, showcasing significant advantages over conventional 
scores like SOFA or APACHE (43, 44). In summary, NLR stands out 
as a valuable biomarker for predicting mortality in sepsis patients.

Pro-inflammatory cytokines play a critical role in sepsis 
pathogenesis. IL-6, a member of the 4-helical cytokine family, activates 
signaling pathways by binding to an 80-kDa cytokine receptor 
(IL-6R). IL-6 plays a pivotal role in the immune response to infection, 
and it is released by various cells, including macrophages and T cells, 
in response to inflammatory stimuli. During sepsis, IL-6 is produced 
in response to pathogenic stimuli, and IL-6R is generated by 
neutrophils. Consequently, the IL-6/IL-6R complex triggers the 
phosphorylation and redistribution of VE-cadherin, leading to 
vascular endothelial damage and leakage (45). Excessive vascular 
endothelial damage and leakage in sepsis patients can result in blood 
pressure decline, hemodynamic collapse, irreversible septic shock, and 
even death. Clinical predictive models have consistently shown that 
IL-6 holds favorable predictive value for sepsis severity and prognosis. 
Elevated levels of IL-6 suggest severe illness and poor prognosis (46, 
47). Moreover, studies have indicated that immunotherapeutic 
blockade of IL6 could reduce the mortality rate in sepsis (48).

Application of advanced statistical 
methods to complement common 
approaches

The RF algorithm possesses numerous statistical and 
computational advantages. This algorithm employs integrated 
learning, wherein its fundamental component is typically a decision 
tree, placing it within the broader category of integrated learning 
methods (49, 50). The terminology “random” and “forest” in RF 
signifies the amalgamation of classifiers, where each tree functions as 
an individual classifier. Notably, RF operates with hundreds of trees in 
parallel, collectively forming a forest. RF consolidates the results of all 
classification votes, designating the category with the highest votes as 
the final output, aligning with the Bagging concept and reflecting the 
core idea of RF (51). In contrast to the traditional logistic regression 
algorithm, RF demonstrates several distinct advantages: (1) RF 
employs an integrated algorithm with exceptionally high accuracy; (2) 
The randomness in model construction reduces susceptibility to 
overfitting; (3) It can handle discrete, continuous, or high-dimensional 
data without requiring data normalization; (4) The OOB feature 
allows obtaining unbiased estimates of true errors during model 
generation without losing training data. In the present study, the RF 
model demonstrated its superiority in predicting the prognosis of 
adult sepsis, exhibiting better discrimination, calibration, and clinical 
decision-making compared to traditional statistical methods (52, 53). 
Although RF model improves prediction accuracy by integrating 
multiple decision trees, but this also makes their decision-making 

process relatively complex and difficult to explain. Each decision tree 
is trained based on a randomly selected subset of features, which 
increases the model’s diversity but also makes it challenging to 
interpret. So as to address these limitations, we  can solve these 
problems by conducting feature importance analysis, visualizing 
individual decision trees, employing local explainability methods, and 
integrating doctors’ experiences and expertise, it is possible to address 
the limitations of interpretability to a certain extent.

However, the present study has limitations that should 
be acknowledged. Firstly, being retrospective and cross-sectional, it 
relies on some laboratory results reflecting the patient’s condition at 
specific time points, which may not be generalizable to the entire 
population. We expect to validate the current research and strengthen 
the impact of this study through prospective research. Secondly, 
we explicitly state that our initial predictor selection was based on 
univariate analysis, which may not capture the full complexity of the 
relationships between the predictors and the outcome variable. 
Thirdly, despite RF’s significant advantages in predicting sepsis 
mortality compared to traditional regression, its interpretability 
limitation remains noteworthy. Finally, due to this is a single center 
study and without testing on an independent dataset, the model’s 
accuracy could be artificially inflated, reducing its generalizability. 
Therefore, integrating RF with traditional regression approaches could 
enhance the predictive capabilities of healthcare research in the future.

Conclusion

In conclusion, logistic regression and RF models were developed 
to predict mortality in adult sepsis patients, with both models 
identifying consistent risk factors. The RF model outperformed 
traditional regression and the SOFA and APACHE scoring systems, 
highlighting its superiority in mortality prediction.
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Predicting the risk of
gastroparesis in critically ill
patients after CME using an
interpretable machine learning
algorithm – a 10-year
multicenter retrospective study
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Ning Zhou1*
1Department of General Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi,
China, 2Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University,
Wuxi, China

Background: Gastroparesis following complete mesocolic excision (CME) can

precipitate a cascade of severe complications, which may significantly hinder

postoperative recovery and diminish the patient’s quality of life. In the present

study, four advanced machine learning algorithms—Extreme Gradient Boosting

(XGBoost), Random Forest (RF), Support Vector Machine (SVM), and k-nearest

neighbor (KNN)—were employed to develop predictive models. The clinical

data of critically ill patients transferred to the intensive care unit (ICU) post-

CME were meticulously analyzed to identify key risk factors associated with the

development of gastroparesis.

Methods: We gathered 34 feature variables from a cohort of 1,097 colon cancer

patients, including 87 individuals who developed gastroparesis post-surgery,

across multiple hospitals, and applied a range of machine learning algorithms

to construct the predictive model. To assess the model’s generalization

performance, we employed 10-fold cross-validation, while the receiver

operating characteristic (ROC) curve was utilized to evaluate its discriminative

capacity. Additionally, calibration curves, decision curve analysis (DCA), and

external validation were integrated to provide a comprehensive evaluation of

the model’s clinical applicability and utility.

Results: Among the four predictive models, the XGBoost algorithm

demonstrated superior performance. As indicated by the ROC curve, XGBoost

achieved an area under the curve (AUC) of 0.939 in the training set and 0.876

in the validation set, reflecting exceptional predictive accuracy. Notably, in

the k-fold cross-validation, the XGBoost model exhibited robust consistency

across all folds, underscoring its stability. The calibration curve further revealed

a favorable concordance between the predicted probabilities and the actual

outcomes of the XGBoost model. Additionally, the DCA highlighted that patients

receiving intervention under the XGBoost model experienced significantly

greater clinical benefit.
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Conclusion: The onset of postoperative gastroparesis in colon cancer patients

remains an elusive challenge to entirely prevent. However, the prediction model

developed in this study offers valuable assistance to clinicians in identifying key

high-risk factors for gastroparesis, thereby enhancing the quality of life and

survival outcomes for these patients.

KEYWORDS

colonic neoplasms, intensive care unit, gastroparesis, prognosis, risk factor, machine
learning

Introduction

Colon cancer is a malignant neoplasm that originates from
the epithelial cells of the colonic mucosa, with a notably poor
prognosis for affected patients. A significant proportion of these
individuals require admission to the intensive care unit (ICU) for
close monitoring and treatment due to complex clinical conditions
or postoperative complications. Globally, approximately 8 million
new cases of colon cancer are diagnosed annually, accounting for
more than one-tenth of all newly diagnosed malignant tumors. As
the modern diet, characterized by high fat, high meat, and low
fiber intake, becomes increasingly prevalent, the incidence of colon
cancer is expected to rise steadily (1). The current approach to
treating colorectal cancer is primarily determined by the cancer’s
stage, the patient’s overall health, and other individualized factors.
However, radical surgical intervention remains the cornerstone
of treatment. Hohenberger et al. (2) were the first to introduce
complete mesocolic excision (CME), a surgical technique that
involves the meticulous removal of both the tumor and the
surrounding lymph nodes by excising the entire colonic mesentery
and the associated lymphatic tissue in the region of the tumor.
This procedure aims to achieve a higher tumor resection rate
while minimizing the risk of recurrence (3). Pedrazzani et al.’s (4)
retrospective study affirmed that the CME procedure ensures the
complete excision of all cancerous tissue, thereby preventing the
spread of the tumor to surrounding healthy tissues. Adhering to
this principle has notably contributed to a significant reduction
in local recurrence rates following surgery. Despite the notable
benefits of CME in enhancing the outcomes and survival rates of
colon cancer patients, the procedure is not without its risks, which
can lead to complications that impact recovery and subsequent
treatment. In some cases, these complications may necessitate
admission to the ICU for further management. Gastroparesis,
a condition characterized by impaired gastric emptying, is
a frequently overlooked and often misdiagnosed complication
following radical colon cancer surgery. While its incidence is more
commonly associated with gastric cancer surgeries, its occurrence
after colon cancer surgery should not be underestimated.
Gastroparesis results from dysfunction in the nerves or muscles
of the stomach, leading to delayed gastric emptying. Symptoms,
including nausea, vomiting, bloating, and loss of appetite, often
mimic the typical recovery process post-surgery. As such, these
symptoms are frequently mistaken for normal postoperative
reactions or mild dyspepsia, delaying or hindering timely diagnosis
(5). Numerous studies have demonstrated that the development

of gastroparesis in postoperative patients significantly heightens
the risk of tumor recurrence and metastasis (6–8). Moreover,
akin to other postoperative complications, gastroparesis leads to
extended hospital stays and has increasingly become a formidable
public health challenge worldwide (9). Gastroparesis, a prevalent
complication following radical colon cancer surgery, not only
imposes direct health risks but also has a profound impact on
the financial wellbeing of patients and their families. Affected
individuals may endure significant quality-of-life challenges,
including malnutrition and diminished ability to perform daily
activities, which can lead to a decrease in family income and an
increased financial burden. Consequently, accurately predicting
the onset of gastroparesis following total mesocolic excision and
identifying high-risk patients is of paramount importance.

Surgeons typically assess the risk of gastroparesis in surgical
patients based on clinical experience and examination reports;
however, this approach has its limitations. On one hand, surgeons
often rely on their own professional judgment and clinical
expertise, leading to varying assessments of the same condition,
which can be somewhat subjective. In more complex or rare
cases, exclusive reliance on experience may result in biased
evaluations. On the other hand, while clinical examinations
and laboratory tests (such as blood tests and gastric emptying
scans) provide valuable supporting information, they typically
reflect the patient’s current status and may not offer an accurate
prediction of postoperative gastroparesis risk. Some clinicians
also employ traditional linear models and logistic regression for
risk factor studies of postoperative gastroparesis in an effort to
improve prediction accuracy (10). However, the development
of postoperative gastroparesis is rarely attributable to a single
factor; rather, it results from the interplay of multiple factors, such
as the type of surgery, patient age, underlying comorbidities,
intraoperative manipulations, and anesthesia techniques.
Traditional regression models typically assume the independence
of variables, disregarding the complex interactions among these
factors. This limitation has prompted clinical researchers to
acknowledge that regression models alone are insufficient for
addressing challenges in clinical disease prediction. In recent
years, with the rapid advancements in data science and machine
learning, an increasing number of studies have shifted toward
more sophisticated algorithms, such as random forests, support
vector machines, and deep learning (11). These machine learning
techniques excel at discerning the unique characteristics of
different patient types within vast datasets, thereby facilitating
the development of personalized medical solutions. Each patient’s
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condition, genetic makeup, lifestyle, and other factors are distinct,
yet traditional medical treatments often adhere to a “one-size-fits-
all” approach. In contrast, machine learning can analyze detailed
patient data to identify specific treatment needs, enabling more
tailored and effective healthcare strategies (12).

In this study, a machine learning model was developed to
predict high-risk factors for gastroparesis following CME for colon
cancer, by analyzing the clinical data of critically ill patients in ICU
wards. This model is capable of identifying high-risk individuals at
risk of developing gastroparesis after colon cancer CME, without
the need for conventional imaging techniques, such as abdominal
CT, thereby offering a potential means to reduce healthcare costs.

Materials and methods

Study subjects

In this study, we utilized clinical data from two medical
institutions: Wuxi People’s Hospital, affiliated with Nanjing
Medical University, and Wuxi Second People’s Hospital. The
inclusion criteria for cases were as follows: (1) patients who
underwent laparoscopic-assisted CME or traditional open CME;
(2) all patients were transferred to the ICU due to postoperative
complications; (3) the surgical team consisted of senior physicians
skilled in independently performing CME; and (4) postoperative
pathology confirmed a diagnosis of colorectal cancer. Exclusion
criteria included: (1) patients with concurrent malignant tumors;
(2) patients with distant metastasis of colon cancer confirmed
through pathological examination or imaging; (3) patients with
severe cardiovascular or respiratory conditions; (4) patients with
significant organ dysfunction, such as liver or kidney disease; and
(5) patients with incomplete clinical data, missing cases, or lost to
follow-up. All patients were followed for a minimum of 3 years
post-surgery. This retrospective study was approved by the Ethics
Committees of Wuxi People’s Hospital and Wuxi Second People’s
Hospital, and was conducted with patient consent, with all personal
information anonymized. The ethical approval number for this
study is KY22086.

Study design and data collection

The dataset included 34 preoperative variables (collected within
24 h before surgery), intraoperative variables, and postoperative
variables (assessed 48 h after the initial surgery). Preoperative
variables encompassed patient demographics (gender, age, smoking
history, alcohol use, and body mass index), fundamental clinical
characteristics (American Society of Anesthesiologists score,
Nutrition Risk Screening 2002 score, history of prior surgeries,
adjuvant chemotherapy, and adjuvant radiotherapy), medical
history (anemia, diabetes, hypothyroidism, hypertension, chronic
obstructive pulmonary disease, hyperlipidemia, and coronary
artery disease), laboratory test results (albumin, carcinoembryonic
antigen, and carbohydrate antigen 19-9), and tumor characteristics
(T-stage, N-stage, peripheral nerve invasion, tumor size, and
tumor number). Intraoperative variables included the type
of surgery, surgical approach, surgery duration, intraoperative

blood loss, blood transfusions, and percutaneous arterial oxygen
saturation levels. Postoperative variables consisted of laboratory
indices (procalcitonin, C-reactive protein, and serum amyloid A).
The primary outcome of this study was the incidence of
postoperative gastroparesis.

Diagnosis of gastroparesis

The diagnostic criteria for postoperative gastroparesis are as
follows: (1) the presence of gastrointestinal symptoms, including
nausea, vomiting, early satiety, bloating, or epigastric pain; (2)
the exclusion of other conditions that may present with similar
gastrointestinal symptoms, such as mechanical obstruction, drug-
induced side effects, or metabolic disorders; (3) the elimination
of confounding factors, such as the use of medications that may
impair smooth muscle contraction; and (4) the confirmation of
delayed gastric emptying through transgastric scintigraphy or
magnetic resonance imaging (13, 14).

Development and evaluation of
predictive models for machine learning
algorithms

In the present study, statistical analyses were performed using
SPSS and R software. The construction and evaluation of the
clinical prediction models involved the following steps: (1) Data
preprocessing: colon cancer patients from Wuxi People’s Hospital
between January 2010 and January 2020 were designated as the
internal validation set, while patients from Wuxi Second People’s
Hospital during the same period served as the external validation
set. The internal validation set was randomly divided into a training
set (70%) and a test set (30%). This approach strikes a balance
between evaluating model performance and generalization ability,
allowing the model to be trained on a substantial portion of the
data while reserving a portion for testing the model’s predictive
accuracy. Furthermore, given the moderate size of the dataset,
this ratio ensures the training set contains a sufficient number
of samples to capture key patterns and features, while the 30%
test set provides an adequate sample for validating the model’s
generalizability. (2) Univariate and multivariate regression analyses
were performed on the internal validation set data. The Chi-
square test was applied to categorical variables, while the t-test
was used for continuous variables with a normal distribution. For
continuous variables that were not normally distributed, the rank
sum test was employed. A p-value of less than 0.05 was considered
statistically significant. Logistic regression analysis was conducted
on variables identified as significant in univariate analysis to assess
their independent effects on postoperative gastroparesis. Four
models—Extreme Gradient Boosting (XGBoost), Random Forest
(RF), Support Vector Machine (SVM), and k-nearest neighbor
(KNN)—were utilized to evaluate the importance of each factor
and rank them accordingly. Variables that ranked in the top
10 across all 4 models and were deemed meaningful in both
univariate and multivariate analyses were selected. These four
models represent different types of machine learning algorithms:
tree-based models (XGBoost and RF), KNN, and SVM. By
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combining these diverse model types, the limitations of any single
algorithm can be mitigated, providing a more comprehensive and
objective evaluation of factor importance. Both XGBoost and RF
are integrated decision-tree-based models that inherently produce
feature importance scores. These models are well-suited to handle
non-linear relationships and complex interactions, making them
highly effective for analyzing datasets with numerous variables
and identifying key factors. SVM, with its strong generalization
capability, is particularly suited to situations with small sample
sizes, allowing the model to remain sensitive to a few key variables
while minimizing the risk of overfitting. KNN, despite being
sensitive to data noise, offers valuable insights in small sample
or local similarity analyses, providing an intuitive reflection of
the relationship between variables and outcomes. By comparing
these different algorithms, a more holistic assessment of each
factor’s importance can be made, and key variables that perform
consistently well across multiple models can be identified, ensuring
that the selected important factors possess greater applicability
and robustness under varied prediction conditions. (3) Evaluate
and build prediction models: the refined feature variables were
used as input labels for the four machine learning algorithms—
SVM, RF, XGBoost, and KNN. Differentiation, calibration, and
clinical utility are key evaluation criteria for assessing predictive
models. Each criterion highlights a distinct aspect of model
performance and provides a comprehensive assessment of the
model’s quality and practical value. Discrimination measures the
ability of a model to distinguish between positive and negative
samples (e.g., diseased versus undiseased). A high discriminative
power indicates that the model can effectively differentiate between
distinct categories of individuals. The area under the curve (AUC)
value was derived from plotting receiver operating characteristic
(ROC) curves to evaluate the model’s performance across various
thresholds. The closer the AUC is to 1, the better the model’s
discriminatory ability. Calibration assesses the agreement between
the predicted probabilities and the actual outcomes, reflecting the
model’s “reliability.” A well-calibrated model precisely predicts the
actual occurrence rate for a given probability, ensuring that the
model’s output aligns closely with real-world observations. We
plotted calibration curves, grouping the probabilities predicted
by the model and comparing them to the actual rates of
occurrence. Ideally, the calibration curve should follow a 45
diagonal, representing perfect calibration. Deviations from this
diagonal indicate discrepancies between the predicted probabilities
and actual outcomes, which may manifest as overestimations or
underestimations. Clinical utility assesses the real-world value
of a model in clinical decision-making, specifically the benefit
it brings to both patients and healthcare providers. It focuses
on how a predictive model influences patient health outcomes
across various thresholds. To analyze clinical utility, we used
decision curve analysis (DCA), which evaluates the net benefit at
different prediction thresholds. Net Benefit (NB) is calculated as
the benefit derived from positive model predictions minus the cost
of misclassification at a given threshold. DCA helps determine
whether the model offers substantial clinical value at specific
thresholds. Internal validation was conducted using k-fold cross-
validation. In this method, the dataset is randomly divided into
k subsets (or folds) of approximately equal size. Typically, k is
set to 10 (i.e., 10-fold cross-validation), although this value can
be adjusted based on dataset size and specific needs. Ten-fold

cross-validation is commonly used as it strikes a balance between
bias and variance while optimizing computational efficiency and
model stability. In each iteration, one subset serves as the test set,
while the remaining k-1 subsets are used for training. This process
allows the model to be constructed and evaluated k times, with
each subset serving as the test set once. Evaluation metrics such
as AUC, accuracy, sensitivity, and specificity are recorded in each
iteration. The final model performance is the average result of
these k iterations, providing a comprehensive assessment of model
stability across different data divisions. (4) External validation of
the best model: the generalizability and predictive efficiency of the
optimal model were assessed by applying it to an external validation
set from an independent cohort. The model’s performance was
again evaluated using ROC curves to confirm its robustness and
ability to accurately predict postoperative gastroparesis in patients
outside the original training dataset. This step ensures that the
model’s performance is not limited to the internal dataset and that
it can be effectively used in real-world clinical settings. (5) Model
interpretation: to interpret the model’s predictions and gain insight
into the role of different features, Shapley Additive Explanations
(SHAP) were employed. SHAP values provide a clear explanation
of how each feature contributes to the model’s predictions. The
SHAP summary plot visualizes the importance of each feature,
ranking them based on their impact on the model’s decision.
For individualized patient predictions, the SHAP force plot was
used, which demonstrates the influence of each feature on the
predicted risk of gastroparesis. The SHAP force diagram calculates
and displays the contribution of each feature to the predicted value,
showing which variables increase or decrease the likelihood of
gastroparesis for an individual patient. This allows clinicians to
pinpoint the key risk factors specific to each patient and make more
informed, personalized clinical decisions.

Results

Basic clinical information of the patient

The study encompassed a total of 1,097 colon cancer patients,
of which 87 patients (7.93%) were diagnosed with gastroparesis
(Figure 1 and Table 1). The internal validation set consisted of
787 colon cancer patients, with 61 patients (7.75%) diagnosed
with gastroparesis. The external validation set included 310 colon
cancer patients, of whom 26 patients (8.39%) had gastroparesis. The
comprehensive original dataset underpinning this study is provided
in Supplementary Table 1. The code utilized in this research has
been uploaded to NutCloud, accessible via the following link: https:
//www.jianguoyun.com/p/DWh9chMQl-GKDBjEj-sFIAA.

Screening for risk factors for
postoperative gastroparesis

The results of univariate and multivariate analyses identified
several independent factors influencing the occurrence of
postoperative gastroparesis, including age, albumin (ALB)
levels, history of anemia, history of diabetes mellitus, history
of hypothyroidism, history of adjuvant radiotherapy, type of
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FIGURE 1

Flow diagram of patients included in the study.

surgery, duration of surgery, intraoperative bleeding, tumor
size, and number of tumors (p < 0.05) (Table 2). The XGBoost,
RF, SVM, and KNN models further identified key risk factors
for postoperative gastroparesis, which included advanced age,
hypoproteinemia, history of anemia, history of diabetes mellitus,
history of hypothyroidism, open surgery, long operative time,
and high intraoperative bleeding (Figures 2A–D). Based on a
comprehensive analysis of these factors, the prediction model
incorporated the following variables: age ≥65, hypoproteinemia,
history of anemia, history of diabetes mellitus, history of
hypothyroidism, open surgery, operative time ≥270 min, and
intraoperative bleeding ≥100 ml.

Model building and evaluation

The ROC curve analysis demonstrated that the XGBoost model
achieved the highest performance among the four models, with
an AUC value of 0.939 in the training set and 0.876 in the
validation set, outperforming the other three models (Table 3).
The calibration curves of all models closely followed the ideal
45 diagonal, indicating a strong alignment between the predicted
probabilities and the actual outcomes. Additionally, the DCA
curves revealed that all four models provided a net clinical benefit
when compared to both full treatment and no treatment scenarios
(Figures 3A–D). The study evaluated the generalization ability

of the four models using k-fold cross-validation. A total of 118
cases (15.00%) from the internal validation set were selected as
the validation set, while the remaining samples were used as the
training set. The models were subjected to 10-fold cross-validation.
For the XGBoost algorithm, the AUC value in the validation set
was 0.8735 ± 0.0764, and the AUC in the test set was 0.9247, with
an overall accuracy of 0.8908 (Figures 4A–C). This underscores
the exceptional discriminative power and robust generalizability
of the XGBoost model, rendering it the most suitable choice for
the present study. In contrast, the RF algorithm demonstrated
an AUC value of 0.8321 ± 0.0415 in the validation set, with a
corresponding AUC of 0.8566 in the test set, yielding an accuracy of
0.8113. The SVM algorithm exhibited an AUC of 0.8061 ± 0.0647
in the validation set and 0.7324 in the test set, with an accuracy of
0.8143. The KNN algorithm, on the other hand, recorded an AUC
of 0.7852 ± 0.0654 in the validation set, and 0.7054 in the test set,
achieving an accuracy of 0.8864. Following a thorough comparative
analysis, the XGBoost algorithm was selected as the foundation for
the predictive model in this investigation.

Model external validation

The disease prediction model demonstrated exceptional
accuracy, as reflected by an AUC value of 0.788 in the external
validation set (Figure 4D).
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TABLE 1 Preoperation and intraoperative information.

Variables All (n = 1,146) Non-gastroparesis
(n = 1,051)

Gastroparesis
(n = 95)

p-Value

Sex Female 362 (45.997) 331 (45.592) 31 (50.820) 0.431

Male 425 (54.003) 395 (54.408) 30 (49.180)

Age 65 604 (76.747) 576 (79.339) 28 (45.902) <0.001

≥65 183 (23.253) 150 (20.661) 33 (54.098)

BMI 25 kg/m2 521 (66.201) 488 (67.218) 33 (54.098) 0.037

≥25 kg/m2 266 (33.799) 238 (32.782) 28 (45.902)

ASA 3 512 (65.057) 477 (65.702) 35 (57.377) 0.19

≥3 275 (34.943) 249 (34.298) 26 (42.623)

Drinking history No 538 (68.361) 495 (68.182) 43 (70.492) 0.709

Yes 249 (31.639) 231 (31.818) 18 (29.508)

Smoking history No 541 (68.742) 507 (69.835) 34 (55.738) 0.023

Yes 246 (31.258) 219 (30.165) 27 (44.262)

ALB ≥30 g/L 568 (72.173) 543 (74.793) 25 (40.984) <0.001

30 g/L 219 (27.827) 183 (25.207) 36 (59.016)

NRS2002 score 3 543 (68.996) 499 (68.733) 44 (72.131) 0.582

≥3 244 (31.004) 227 (31.267) 17 (27.869)

Surgical history No 483 (61.372) 459 (63.223) 24 (39.344) <0.001

Yes 304 (38.628) 267 (36.777) 37 (60.656)

Anemia No 581 (73.825) 553 (76.171) 28 (45.902) <0.001

Yes 206 (26.175) 173 (23.829) 33 (54.098)

Hyperlipidemia No 641 (81.449) 597 (82.231) 44 (72.131) 0.051

Yes 146 (18.551) 129 (17.769) 17 (27.869)

Hypertension No 413 (52.478) 389 (53.581) 24 (39.344) 0.032

Yes 374 (47.522) 337 (46.419) 37 (60.656)

Diabetes No 638 (81.067) 613 (84.435) 25 (40.984) <0.001

Yes 149 (18.933) 113 (15.565) 36 (59.016)

Hypothyroidism No 585 (74.333) 558 (76.860) 27 (44.262) <0.001

Yes 202 (25.667) 168 (23.140) 34 (55.738)

COPD No 651 (82.719) 607 (83.609) 44 (72.131) 0.023

Yes 136 (17.281) 119 (16.391) 17 (27.869)

CHD No 681 (86.531) 629 (86.639) 52 (85.246) 0.76

Yes 106 (13.469) 97 (13.361) 9 (14.754)

Adjuvant radiotherapy No 597 (75.858) 559 (76.997) 38 (62.295) 0.01

Yes 190 (24.142) 167 (23.003) 23 (37.705)

Adjuvant chemotherapy No 570 (72.427) 531 (73.140) 39 (63.934) 0.122

Yes 217 (27.573) 195 (26.860) 22 (36.066)

Surgical procedure Laparoscopic
surgery

630 (80.051) 591 (81.405) 39 (63.934) 0.001

Open surgery 157 (19.949) 135 (18.595) 22 (36.066)

Emergency surgery No 576 (73.189) 535 (73.691) 41 (67.213) 0.273

Yes 211 (26.811) 191 (26.309) 20 (32.787)

Surgery time 270 min 498 (63.278) 470 (64.738) 28 (45.902) 0.003

≥270 min 289 (36.722) 256 (35.262) 33 (54.098)

(Continued)
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TABLE 1 (Continued)

Variables All (n = 1,146) Non-gastroparesis
(n = 1,051)

Gastroparesis
(n = 95)

p-Value

Intraoperative bleeding 100 ml 527 (66.963) 504 (69.421) 23 (37.705) <0.001

≥100 ml 260 (33.037) 222 (30.579) 38 (62.295)

Blood transfusion No 637 (80.940) 589 (81.129) 48 (78.689) 0.641

Yes 150 (19.060) 137 (18.871) 13 (21.311)

SPO2 ≥90% 633 (80.432) 584 (80.441) 49 (80.328) 0.983

90% 154 (19.568) 142 (19.559) 12 (19.672)

T-stage T1∼T2 559 (71.029) 530 (73.003) 29 (47.541) <0.001

T3∼T4 228 (28.971) 196 (26.997) 32 (52.459)

N-stage N0 562 (71.410) 528 (72.727) 34 (55.738) 0.005

N1∼N2 225 (28.590) 198 (27.273) 27 (44.262)

PNI No 705 (89.581) 654 (90.083) 51 (83.607) 0.112

Yes 82 (10.419) 72 (9.917) 10 (16.393)

Tumor number 2 595 (75.604) 570 (78.512) 25 (40.984) <0.001

≥2 192 (24.396) 156 (21.488) 36 (59.016)

Tumor size 5 cm 536 (68.107) 510 (70.248) 26 (42.623) <0.001

≥5 cm 251 (31.893) 216 (29.752) 35 (57.377)

CEA level 5 ng/ml 575 (73.062) 524 (72.176) 51 (83.607) 0.053

≥5 ng/ml 212 (26.938) 202 (27.824) 10 (16.393)

CA199 level 37 U/mL 583 (74.079) 539 (74.242) 44 (72.131) 0.718

≥37 U/mL 204 (25.921) 187 (25.758) 17 (27.869)

PCT level 0.05 ng/ml 571 (72.554) 526 (72.452) 45 (73.770) 0.825

≥0.05 ng/ml 216 (27.446) 200 (27.548) 16 (26.230)

CRP level 10 mg/L 530 (67.344) 497 (68.457) 33 (54.098) 0.022

≥10 mg/L 257 (32.656) 229 (31.543) 28 (45.902)

SAA level 10 mg/L 557 (70.775) 521 (71.763) 36 (59.016) 0.036

≥10 mg/L 230 (29.225) 205 (28.237) 25 (40.984)

OR, odds ratio; CI, confidence interval; BMI, body mass index; ASA, The American Society of Anesthesiologists; ALB, albumin; CA125, carbohydrate antigen 125; CA19-9, carbohydrate antigen
19-9; PCT, procalcitonin; CRP, C-reactive protein; SAA, serum amyloid A; NRS2002, nutrition risk screening 2002; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease;
SPO2 , percutaneous arterial oxygen saturation.

Model explanation

The SHAP summary plot revealed that multiple risk factors
contribute to the development of gastroparesis following CME,
with intraoperative bleeding exceeding 100 ml, a history of
anemia, diabetes mellitus, hypoproteinemia, age ≥65, open surgery,
operative duration ≥270 min, and a history of hypothyroidism
emerging as the most influential determinants (Figure 5).

The SHAP force diagram illustrates the predictive analysis of
the study model for four colon cancer patients with gastroparesis.
For patient 1, the model predicted a gastroparesis probability of
0.15, with contributing factors including a history of anemia, open
surgery, and an operative duration ≥270 min. For patient 2, the
predicted probability was 0.94, influenced by a history of anemia,
intraoperative bleeding ≥100 ml, a history of hypothyroidism,
hypoproteinemia, a history of diabetes mellitus, and age ≥65. In
patient 3, the predicted probability of gastroparesis was 0.52, with
risk factors including a history of diabetes mellitus, intraoperative

bleeding ≥100 ml, hypoproteinemia, and age ≥65. Lastly, patient
4 had a predicted probability of 0.05, with contributing factors
such as hypoproteinemia, operative time ≥270 min, and a history
of diabetes mellitus, while age ≥65 decreased the probability
(Figures 6A–D).

Discussion

In the present study, SHAP analysis was employed to
visualize and interpret the model, revealing that advanced age,
prolonged surgical duration, excessive intraoperative bleeding,
surgical approach, hypoproteinemia, anemia, and a history of
diabetes mellitus and hypothyroidism are significant risk factors for
gastroparesis following CME. Traditionally, imaging tests such as
CT, MRI, and gastrointestinal fluoroscopy are utilized to diagnose
postoperative gastroparesis. However, these diagnostic tools are
not only costly but may also subject patients to discomfort
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TABLE 2 Univariate and multivariate analysis of variables related to gastroparesis.

Variables Univariate analysis Multivariate analysis

OR, 95% CI p-Value OR, 95% CI p-Value

Sex Female Reference

Male 0.81 [0.48, 1.37] 0.432

Age 65 Reference Reference

≥65 4.53 [2.65, 7.72] <0.001 3.76 [1.73, 8.21] <0.001

BMI 25 kg/m2 Reference Reference

≥25 kg/m2 1.74 [1.03, 2.95] 0.039 1.34 [0.64, 2.83] 0.441

ASA 3 Reference

≥3 1.42 [0.84, 2.42] 0.192

Drinking history No Reference

Yes 0.90 [0.51, 1.59] 0.71

Smoking history No Reference Reference

Yes 1.84 [1.08, 3.12] 0.024 1.10 [0.51, 2.38] 0.809

ALB ≥30 g/L Reference Reference

30 g/L 4.27 [2.50, 7.31] <0.001 2.81 [1.30, 6.06] 0.009

NRS2002 score 3 Reference

≥3 0.85 [0.47, 1.52] 0.582

Surgical history No Reference Reference

Yes 2.65 [1.55, 4.53] <0.001 1.47 [0.69, 3.14] 0.32

Anemia No Reference Reference

Yes 3.77 [2.21, 6.41] <0.001 3.67 [1.71, 7.89] <0.001

Hyperlipidemia No Reference

Yes 1.79 [0.99, 3.23] 0.054

Hypertension No Reference Reference

Yes 1.78 [1.04, 3.04] 0.034 1.35 [0.63, 2.89] 0.442

Diabetes No Reference Reference

Yes 7.81 [4.51, 13.52] <0.001 5.12 [2.38, 11.02] <0.001

Hypothyroidism No Reference Reference

Yes 4.18 [2.45, 7.13] <0.001 3.94 [1.85, 8.39] <0.001

COPD No Reference Reference

Yes 1.97 [1.09, 3.57] 0.025 2.19 [0.91, 5.27] 0.08

CHD No Reference

Yes 1.12 [0.54, 2.35] 0.76

Adjuvant radiotherapy No Reference Reference

Yes 2.03 [1.17, 3.50] 0.011 2.40 [1.06, 5.42] 0.036

Adjuvant chemotherapy No Reference

Yes 1.54 [0.89, 2.66] 0.125

Surgical procedure Laparoscopic
surgery

Reference Reference

Open surgery 2.47 [1.42, 4.30] 0.001 3.24 [1.45, 7.25] 0.004

Emergency surgery No Reference

Yes 1.37 [0.78, 2.39] 0.274

Surgery time 270 min Reference Reference

≥270 min 2.16 [1.28, 3.66] 0.004 2.30 [1.08, 4.90] 0.032

(Continued)
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TABLE 2 (Continued)

Variables Univariate analysis Multivariate analysis

OR, 95% CI p-Value OR, 95% CI p-Value

Intraoperative bleeding 100 ml Reference Reference

≥100 ml 3.75 [2.18, 6.44] <0.001 3.46 [1.61, 7.40] 0.001

Blood transfusion No Reference

Yes 1.16 [0.61, 2.21] 0.641

SPO2 ≥90% Reference

90% 1.01 [0.52, 1.94] 0.983

T-stage T1∼T2 Reference Reference

T3∼T4 2.98 [1.76, 5.06] <0.001 1.39 [0.65, 2.98] 0.393

N-stage N0 Reference Reference

N1∼N2 2.12 [1.25, 3.60] 0.006 1.89 [0.88, 4.03] 0.101

PNI No Reference

Yes 1.78 [0.87, 3.66] 0.116

Tumor number 2 Reference Reference

≥2 5.26 [3.07, 9.03] <0.001 3.65 [1.76, 7.58] <0.001

Tumor size 5 cm Reference Reference

≥5 cm 3.18 [1.87, 5.41] <0.001 3.67 [1.74, 7.77] <0.001

CEA level 5 ng/ml Reference

≥5 ng/ml 0.51 [0.25, 1.02] 0.057

CA199 level 37 U/ml Reference

≥37 U/ml 1.11 [0.62, 2.00] 0.718

PCT level 0.05 ng/ml Reference

≥0.05 ng/ml 0.94 [0.52, 1.69] 0.825

CRP level 10 mg/L Reference Reference

≥10 mg/L 1.84 [1.09, 3.12] 0.023 1.43 [0.66, 3.09] 0.365

SAA level 10 mg/L Reference Reference

≥10 mg/L 1.76 [1.03, 3.01] 0.037 1.00 [0.45, 2.19] 0.995

OR, odds ratio; CI, confidence interval; BMI, body mass index; ASA, The American Society of Anesthesiologists; ALB, albumin; CA125, carbohydrate antigen 125; CA19-9, carbohydrate antigen
19-9; PCT, procalcitonin; CRP, C-reactive protein; SAA, serum amyloid A; NRS2002, nutrition risk screening 2002; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease;
SPO2 , percutaneous arterial oxygen saturation.

and additional medical risks. By leveraging the predictive model
developed in this study, clinicians can assess the risk of
gastroparesis in advance, based on clinical data and patient-specific
characteristics, thus minimizing the need for unnecessary imaging
procedures. This approach enhances diagnostic and treatment
efficiency while reducing the number of tests required during the
diagnostic process. The machine learning model constructed here
offers a precise method for identifying patients at high risk of
developing gastroparesis after surgery, enabling early detection
and the provision of personalized care, ultimately improving the
effectiveness of clinical intervention.

The present study sought to assess the performance of
four machine learning algorithms in developing risk prediction
models. The XGBoost algorithm exhibited remarkable accuracy,
distinguished by its efficiency, flexibility, and adaptability, making
it an optimal choice for this analysis (15). In contrast to the
RF algorithm, the XGBoost algorithm adopts a gradient boosting
integration approach that emphasizes difficult-to-classify samples,

thereby enhancing generalization performance and ensuring
greater stability of the model (16). The SVM and KNN algorithms
also exhibited high accuracy and effectively mitigated overfitting
issues. However, in the context of managing multiple features and
large datasets, the XGBoost algorithm utilizes both L1 and L2
regularization techniques to address overfitting more effectively.
Moreover, XGBoost is capable of automatically handling missing
values and offers valuable insights into the contribution of each
feature to the prediction, enhancing its interpretability. This
characteristic renders it particularly advantageous for complex,
multidimensional studies. As a result, following a thorough
comparison of the four machine learning algorithms, the XGBoost
algorithm was selected to develop the predictive model for the
occurrence of gastroparesis after CME.

Extreme Gradient Boosting is an ensemble method based
on decision trees, specifically utilizing Gradient Boosting Trees.
While it excels in numerous tasks, its inherent model complexity
can still present the risk of overfitting. One key parameter
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FIGURE 2

The variable ranking plots of the four models. (A) Variable importance ranking diagram of the XGBoost model. (B) Variable importance ranking
diagram of the RF model. (C) Variable importance ranking diagram of the SVM model. (D) Variable importance ranking diagram of the KNN model.

TABLE 3 Evaluation of the performance of the four models in the internal validation set.

AUC (95% CI) Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

F1 score (95% CI)

KNN Training set 0.936 (0.897–0.975) 0.949 (0.949–0.949) 0.417 (0.383–0.451) 0.991 (0.989–0.992) 0.542 (0.517–0.568)

Validation set 0.735 (0.604–0.866) 0.899 (0.886–0.911) 0.129 (0.121–0.137) 0.982 (0.962–1.003) 0.201 (0.181–0.220)

XGBoost Training set 0.939 (0.901–0.978) 0.892 (0.876–0.907) 0.868 (0.865–0.871) 0.894 (0.877–0.910) 0.538 (0.496–0.580)

Validation set 0.876 (0.796–0.957) 0.829 (0.817–0.842) 0.706 (0.498–0.915) 0.842 (0.807–0.878) 0.445 (0.374–0.516)

RF Training set 0.887 (0.834–0.941) 0.862 (0.839–0.886) 0.78 (0.732–0.828) 0.869 (0.840–0.898) 0.452 (0.430–0.473)

Validation set 0.852 (0.758–0.946) 0.813 (0.770–0.857) 0.74 (0.597–0.883) 0.821 (0.788–0.854) 0.439 (0.318–0.559)

SVM Training set 0.932 (0.891–0.973) 0.924 (0.923–0.926) 0.791 (0.765–0.817) 0.935 (0.935–0.935) 0.602 (0.584–0.620)

Validation set 0.858 (0.770–0.946) 0.864 (0.845–0.883) 0.677 (0.657–0.698) 0.884 (0.863–0.906) 0.494 (0.484–0.505)

CI, confidence interval; KNN, k-nearest neighbor; XGBoost, extreme gradient boosting; RF, random forest; SVM, support vector machine; AUC, area under the curve.

influencing this complexity is max_depth, which controls the depth
of the decision tree. If max_depth is set too high, the model
becomes capable of capturing intricate data patterns, including
noise and outliers present in the training set. This can lead
to overfitting, adversely impacting the model’s performance on
unseen data. Additionally, XGBoost operates through integrated
learning, constructing multiple trees. If the number of trees is
excessive, the individual fitting capacity of each tree increases,

which may result in overfitting of the training data by the ensemble
model. Furthermore, the learning rate plays a crucial role in
determining the contribution of each tree to the overall model.
A smaller learning rate causes the model to learn at a slower
pace with each iteration, necessitating a larger number of trees
to gradually fit the data. While this can enhance model stability,
an overly large number of trees can cause the model to overfit
the training set. To mitigate the risk of overfitting, we controlled
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FIGURE 3

Evaluation of the four models for predicting gastroparesis. (A) ROC curves for the training set of the four models. (B) ROC curves for the validation
set of the four models. (C) Calibration plots of the four models. The 45◦ dotted line on each graph represents the perfect match between the
observed (y-axis) and predicted (x-axis) complication probabilities. A closer distance between two curves indicates greater accuracy. (D) DCA curves
of the four models. The intersection of the red curve and the All curve is the starting point, and the intersection of the red curve and the None curve
is the node within which the corresponding patients can benefit.

max_depth to limit the tree’s depth, thereby preventing the model
from fitting noise or irrelevant data. Additionally, reducing the
number of trees (n_estimators) helps avoid overfitting. XGBoost
also offers regularization parameters, such as gamma, lambda, and
alpha, which can be adjusted to manage model complexity and
further prevent overfitting. Finally, we adjusted the learning_rate
and n_estimators to balance stability and generalization. Lower
learning rates typically require more trees to fit the data, but
they contribute to improved generalization, avoiding excessive
overfitting. Through these practices, we effectively enhanced the

stability and generalization ability of the model, enabling it to
perform optimally in practical applications.

Studies (17, 18) have highlighted the efficacy of machine
learning algorithms in clinical diagnosis and prognosis, revealing
their superior ability to predict adverse outcomes in disease
progression compared to traditional diagnostic methods. As
individuals age, the digestive system undergoes a range of changes,
including a decline in the secretion of digestive enzymes and a
reduction in the peristaltic capacity of the smooth muscles within
the gastrointestinal tract (19). Moreover, elderly patients often

Frontiers in Medicine 11 frontiersin.org113

https://doi.org/10.3389/fmed.2024.1467565
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1467565 December 23, 2024 Time: 14:32 # 12

Liu et al. 10.3389/fmed.2024.1467565

FIGURE 4

Internal validation of the XGBoost model. (A) ROC curve of the XGBoost model for the training set. (B) ROC curve of the XGBoost model for the
validation set. (C) ROC curve of the XGBoost model for the test set. (D) External validation of the XGBoost model.

suffer from chronic cardiovascular and respiratory conditions that
can affect the nerves and muscles controlling the digestive system,
leading to delayed gastric emptying. With a diminished capacity for
compensatory function, older individuals exhibit a reduced ability
to withstand surgical stress, further exacerbating disruptions in
gastrointestinal motility. As a result, postoperative gastroparesis in
the elderly arises from a convergence of multiple factors. A study
by Meng et al. (20), which included 563 oncology patients, revealed
a strong correlation between advanced age and the development of
postoperative gastroparesis following abdominal surgery, thereby
reinforcing the conclusions of the present study.

The present study corroborates prior research by identifying
surgery as a significant determinant of postoperative complications
(21, 22). The surgical procedure itself can cause damage to
the stomach’s nerves and muscles, impairing both contraction

and emptying functions. Traditional open radical colon cancer
surgery, which involves an incision in the lower left abdomen, is
associated with extended operation times, extensive resections,
considerable postoperative pain, and slower patient recovery.
In contrast, laparoscopic surgery offers superior precision
and convenience, allowing the surgeon to intuitively evaluate
lesion size and surrounding tissues, while performing intricate
procedures such as tissue dissection and intestinal anastomosis.
This approach minimizes damage to healthy gastrointestinal
tissues, promoting faster recovery of postoperative gastrointestinal
motility. Numerous studies have shown that patients undergoing
laparoscopic surgery experience more rapid gastrointestinal
recovery and a lower incidence of postoperative complications,
including those related to gastric and intestinal function (23, 24).
Consequently, we assert that the type of surgery is a pivotal
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FIGURE 5

Shapley Additive Explanations (SHAP) summary plot. Risk factors are arranged along the y-axis based on their importance, which is given by the
mean of their absolute Shapley values. The higher the risk factor is positioned in the plot, the more important it is for the model.

factor in the onset of postoperative gastroparesis. This study
further identified prolonged operative duration and increased
intraoperative bleeding as significant contributors to the
development of gastroparesis following surgery. These factors are
often associated with the complexity of the surgical procedure and
the heightened risk of inadvertent injury to gastric omental vessels
and lymph nodes, which can trigger an exacerbated inflammatory
response and disrupt the normal motility of the gastrointestinal
tract (25). Furthermore, excessive intraoperative bleeding can
compromise hemodynamics within the gastric mucosa and
other intestinal segments, thereby delaying the recovery of
gastrointestinal tissues. Prolonged surgical durations often require
increased administration of anesthetic agents, which inhibit
sympathetic constrictor nerve fibers, causing vascular smooth
muscle relaxation and a reduction in blood pressure. This drop
in blood pressure can precipitate severe complications, including
gastroparesis. Additionally, anesthetic drugs may interfere with
vagal nerve function, leading to persistent spasm of the pyloric
sphincter and impairing the efficiency of gastric emptying (26).
Therefore, it is imperative for the surgical team to meticulously
plan the procedure in advance and collaborate seamlessly during
the operation to enhance surgical efficiency, reduce operative time,
and minimize the risk of postoperative gastroparesis.

Furthermore, this study aimed to illuminate the underlying
rationale behind the postoperative gastroparesis prediction model
using four distinct samples. In the disease prediction analysis of
the second sample, the patient’s nutritional status emerged as a
pivotal predictor. Plasma albumin, despite its modest molecular
weight, plays an indispensable role in maintaining both plasma
and tissue fluid osmolality. Hypoalbuminemia results in reduced
plasma colloid osmotic pressure, heightening the risk of intestinal
wall edema and disrupting gastrointestinal motility. Moreover,

patients with hypoalbuminemia exhibit diminished numbers
and activity of antibody synthase, thereby increasing their
vulnerability to complications such as postoperative infections
and anastomotic leakage, which further hinder gastrointestinal
recovery. These findings emphasize the critical need for clinicians
to carefully assess preoperative albumin levels and promptly
manage postoperative complications. Enhancing parenteral
nutrition for patients with hypoproteinemia, coupled with the
supplementation of a high-protein diet when feasible, may help
alleviate the risk of hypoalbuminemia and reduce the likelihood of
postoperative gastroparesis (27). Similarly, patients with anemia
are more susceptible to adverse outcomes, including postoperative
gastroparesis. Right hemicolectomy patients frequently experience
tumor infiltration that disrupts mucosal and submucosal vessels in
the colon lining, contributing to malnutrition-related conditions
such as iron deficiency anemia. Hemoglobin, vital for oxygen
transport in the bloodstream, is indispensable for maintaining
adequate oxygen supply to bodily tissues. Anemia leads to tissue
hypoxia, a result of insufficient hemoglobin, which severely
impairs the normal functioning of gastrointestinal smooth
muscles. Additionally, the small perigastric vessels play a crucial
role in nourishing the perigastric vagus nerve. Al-Saffar et al.
(28) demonstrated that preoperative hemoglobin levels serve as
an independent risk factor for delayed gastric emptying. The
incidence of gastroparesis is markedly higher in anemic patients
compared to their non-anemic counterparts, underscoring the
imperative for vigilant monitoring of gastrointestinal function
in anemic individuals and the prompt initiation of preventive
strategies to mitigate gastrointestinal complications.

The present investigation further reveals that the underlying
condition significantly influences the onset of postoperative
gastroparesis. Diabetic patients often manifest neuropathic
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FIGURE 6

Shapley Additive Explanations (SHAP) force plot. The contributing variables are arranged in the horizontal line, sorted by the absolute value of their
impact. Blue represents features that have a negative effect on disease prediction, with a decrease in SHAP values; red represents features that have
a positive effect on disease prediction, with an increase in SHAP values. (A) Predictive analysis of patient 1. (B) Predictive analysis of patient 2.
(C) Predictive analysis of patient 3. (D) Predictive analysis of patient 4.

alterations that impair both their autonomic and visceral nerves,
thereby hindering the motility of the smooth muscles within
the gastrointestinal tract (29). Farrugia (30) demonstrated
that a reduction in Cajal mesenchymal cells, key regulators
of gastrointestinal motility, constitutes a critical mechanism
for delayed gastric emptying in an animal model, thereby
providing further validation for the findings of the present study.
Furthermore, we posit that fluctuations in blood glucose levels
resulting from perioperative fasting serve as a significant trigger
for the onset of gastroparesis in these patients. Postoperatively,
many of these patients develop insulin resistance, which hampers

the secretion and release of gastrin and disrupts the function
of the autonomic nervous system, thereby impairing gastric
emptying (31). The rate of gastric emptying was found to be
closely correlated with diabetes in a comprehensive, multicenter
study conducted over 30 years by clinical researchers worldwide
(31, 32). Similarly, individuals with hypothyroidism exhibit
comparable effects. Thyroxine plays a crucial role in sustaining
the body’s physiological functions, particularly in motor function.
However, clinicians often focus primarily on limb movements in
hypothyroid patients, neglecting the activity of glandular organs.
Pathologists who conducted biopsies of gastric tissues from
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hypothyroid patients observed edema and thickening of gastric
mucosal cells, accompanied by surrounding inflammatory cell
infiltration (33). Building on this, Ghoshal et al. (34) conducted
a clinical study involving 60 hypothyroid patients and found a
strong correlation between reduced thyroxine levels and impaired
gastrointestinal motility. It is posited that enhanced vagal function
in hypothyroid patients results in hyperexcitability, disrupting
the normal coordination and rhythmicity of the gastrointestinal
smooth muscles. Experimental findings by Khraisha et al. (35) in
patients with chronic atrophic gastritis and gastroparesis further
corroborate the therapeutic potential of thyroxine in addressing
gastric motility disorders.

The present study thoroughly assessed the model’s performance
across differentiation, calibration, and clinical utility. However,
several limitations warrant consideration. The predictive models
were primarily based on clinical indicators and laboratory data,
without incorporating imaging data such as CT, MRI, or ultrasound
scans. While we acknowledge the significant role of imaging
data in enhancing prediction accuracy and precision, the lack of
imaging data in our analysis was due to constraints in available
data sources. Future studies that integrate both imaging and
clinical data could potentially further refine the model’s predictive
capability. Additionally, while machine learning algorithms offer
superior accuracy, they tend to be more complex and less
interpretable. The computational and decision-making processes
of these models operate in a “black box,” which diminishes the
intuitiveness and transparency associated with more traditional
approaches, such as logistic regression modeling (36). This study
was retrospective in nature, relying on historical patient data
or electronic health records. Due to the absence of real-time
interventions and standardized treatment protocols, retrospective
data may suffer from incomplete documentation or inherent biases,
potentially affecting the reliability of the findings. Furthermore,
the study sample was not randomized, which introduces selection
bias and may limit the generalizability of the results. Additionally,
because the data were sourced from a specific hospital or region,
the patient population characteristics—such as age, gender, and
underlying conditions—may differ from those in other regions or
populations. This distributional bias could undermine the external
validity of the model, particularly its applicability to other regions
or patient groups. Variations in medical resources, treatment
standards, and genetic backgrounds across different regions could
also lead to differing disease presentations and postoperative
recovery, further impacting the model’s broader applicability.
Moreover, we acknowledge that certain potential confounders, such
as anastomotic leakage leading to severe infections and impaired
nutrient absorption, may exacerbate the risk of gastroparesis.
However, these variables were not included due to data limitations
and study design constraints. In future research, we plan to conduct
a multicenter, prospective study to enhance the external validation
of our model, ensuring its predictive accuracy across diverse
clinical settings.

Conclusion

Identifying high-risk patients for gastroparesis after CME
enables the implementation of timely interventions to enhance

patient outcomes. The predictive model exhibited exceptional
accuracy and strong clinical utility, offering surgeons a valuable
tool for early diagnosis and proactive management. The
analysis highlighted that the development of postoperative
gastroparesis in colon cancer patients is strongly associated
with advanced age, extended operative time, substantial
intraoperative bleeding, surgical approach, hypoproteinemia,
anemia, and preexisting conditions such as diabetes mellitus
and hypothyroidism.
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Introduction: Sepsis, a life-threatening condition with a high mortality rate, 
requires intensive care unit (ICU) admission. The increasing hospitalization rate 
for patients with sepsis has escalated medical costs due to the strain on ICU 
resources. Efficient management of ICU resources is critical to addressing this 
challenge.

Methods: This study utilized the dataset collected from 521 patients with sepsis 
at Chungbuk National University Hospital between July 2020 and August 2023. A 
transformer-based deep learning model was developed to predict ICU length of 
stay (LOS). The model incorporated global and local input data analysis through 
classification and feature-wise tokens, based on sequential organ failure assessment 
(SOFA) criteria. Model performance was evaluated using four-fold cross-validation.

Results: The proposed model achieved a mean absolute error (MAE) of 2.05 
days for predicting ICU LOS. The result demonstrates the ability of the proposed 
model to provide accurate and reliable predictions.

Discussion: The proposed model offers valuable insights for healthcare resource 
management by optimizing ICU resource allocation and potentially reducing 
medical expenses. These findings highlight the applicability of the proposed 
model to efficient healthcare cost management.

KEYWORDS

sepsis, intensive care unit, length of stay, sequential organ failure assessment, 
transformer, tabular data

1 Introduction

Sepsis, a life-threatening condition, arises when the body’s response to infection induces 
widespread  inflammation (1). This inflammatory response can damage multiple organ 
systems, leading to severe multi-organ failure (2). The rapid progression of sepsis can result in 
death without timely and appropriate treatment (3). Global guidelines often recommend 
intensive care for patients with sepsis (2). Despite advancements in medical technology, 
including early diagnostic methods, rapid antibiotic administration (4), and advanced 
supportive care such as mechanical ventilation and extracorporeal membrane oxygenation (5), 
sepsis continues to pose a significant healthcare challenge worldwide due to increasing 
mortality and morbidity rates (6–11).
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Treating sepsis in the intensive care unit (ICU) incurs significantly 
higher costs than treating other diseases owing to the need for 
advanced life support measures, prolonged hospitalization, and the 
complexity of managing multi-organ failure (3, 12, 13). Recent 
statistics indicate that the annual cost of treating sepsis in the 
United  States exceeds $24 billion, making it the most expensive 
treatment option for hospitals (13). This high cost is primarily driven 
by the length of stay (LOS) in the ICU because patients with sepsis 
often require prolonged intensive care. Sepsis accounts for 4.7–42.2% 
of global ICU utilization because ICU admission is recommended as 
an aggressive treatment regimen (14). Additionally, sepsis readmission 
rates are alarmingly high, with approximately 19% of survivors 
readmitted within 30 days, further escalating healthcare expenditures 
(15). Accurate prediction of ICU LOS for sepsis patients is crucial, as 
it enables healthcare facilities to optimize resource allocation, such as 
bed utilization, staffing, and equipment availability. By improving care 
efficiency, hospitals can reduce operational costs, enhance patient 
turnover rates, and ultimately contribute to cost savings for both 
healthcare providers and the broader system (16, 17).

.Efforts to predict ICU LOS have significantly advanced in recent 
years. In 2022, Wu et al. (18) demonstrated the utility of machine learning 
techniques by predicting ICU LOS (area under the receiver operating 
characteristic curve (AUROC) = 0.742) using gradient boosting decision 
trees (GBDTs). In the same year, Deng et al. (19) improved accuracy 
(AUC = 0.765) by utilizing temporal data and focusing on the changes in 
progression according to treatment stages using gated recurrent units 
(GRU) and long short-term memory (LSTM) networks. In 2023, the 
emphasis shifted to simpler, clinically interpretable models, such as linear 
regression models utilizing the sequential organ failure assessment 
(SOFA) score. Zangmo and Khwannimit (20) developed a model to 
classify sepsis patients with ICU LOS exceeding 3 days (AUC = 0.530), 
while Farimani et al. (21) proposed a model to predict ICU LOS in cardiac 
surgery patients (root mean square error (RMSE) = 5.181). Despite the 
advances, existing models have struggled to effectively capture the 
complex feature interactions inherent in structured data. GBDT 
emphasizes individual feature importance through splits (22), making it 
less effective at explicitly modeling complex interactions or high-
dimensional relationships. On the other hand, GRU and LSTM models 
are optimized for processing sequential data, the models exhibit structural 
limitations in learning complex inter-variable relationships in structured 
datasets (19). Similarly, linear regression assumes linear relationships 
between variables and is, therefore, unable to capture nonlinear 
interactions (23). The limitations underscore the necessity for innovative 
methods capable of effectively learning complex and high-dimensional 
data structures. Hence, we  present a transformer-based solution to 
address the limitations of structured data analysis by simultaneously 
capturing nonlinear feature interactions and learning global relationships 
through attention mechanisms.

Transformers have shown promise in structured data analysis by 
incorporating innovative mechanisms such as the classification (CLS) 
token, a functionality originally introduced in the bidirectional 
encoder representations from transformers (BERT) (24) in 2018. The 
CLS token serves as a global representation of the input sequence, 
summarizing overall patterns in structured data through self-
attention, and allows Transformers to effectively capture global 
dependencies across features. In 2021, Models such as self-attention 
and intersample attention transformer (SAINT) (25) and feature 
tokenizer (FT)-Transformer (26) successfully leveraged CLS tokens, 
achieving performance improvements in tabular datasets. SAINT 

enables feature-to-feature and sample-to-sample interactions, while 
the FT-Transformer captures intricate inter-feature relationships and 
global patterns. However, while the CLS token excels at capturing 
global information, achieving a comprehensive analysis of attention 
mechanisms using CLS tokens can be  challenging, as attention 
mechanisms may ignore important local feature details, particularly 
in datasets with complex interdependencies (27–29). The limitation 
of the CLS token underscores a persistent challenge in Transformer-
based models when applied to highly intricate structured data.

This study focuses on predicting the ICU LOS for patients with 
sepsis using a transformer-based DL model applied to SOFA-based 
tabular data. The proposed model uses an attention mechanism and a 
skip-connected token process, integrating global information from a 
CLS token and local information from feature-wise tokens during the 
final classification. This approach adds to the growing body of work 
on applying DL techniques to tabular data in predicting ICU LOS for 
patients with sepsis.

2 Methods

2.1 Dataset information

2.1.1 Study population
To develop the DL model, we constructed a dataset from patients 

treated for sepsis at Chungbuk National University Hospital 
(Cheong-Ju, Korea) between July 3, 2020 and August 3, 2023. The 
study, conducted following the principles of the Declaration of 
Helsinki, received approval from the Institutional Review Board of 
Chungbuk National University Hospital (IRB no. CBNUH 2021-02-
034-001). Patient information was anonymized and de-identified 
prior to analysis.

As shown in Figure 1, we initially identified patients meeting the 
Sepsis-3 guidelines for suspicion or diagnosis of sepsis, defined as a 
quick SOFA (qSOFA) score of ≥ 2. We sequentially excluded patients 
who met the following criteria: ICU admission post-surgery, 
readmission due to sepsis during treatment, ICU stays of less than 
24 h, withdrawal of life-sustaining therapy, ICU discharge, admission 
with cardiogenic shock, hypovolemic shock, or acute stroke, 
procalcitonin level of ≤0.05, missing data, death, and ICU LOS 
outliers. This process resulted in a dataset comprising 521 patients.

We collected various clinical and SOFA-related features to 
construct a sepsis-specific ICU LOS prediction model. The features 
included: (1) Clinical features: age, sex, body mass index (BMI), 
lactate, atrial fibrillation (AF), systolic blood pressure(SBP), diastolic 
blood pressure (DBP), mean blood pressure (MBP), partial pressure 
of arterial oxygen and fraction of inspired oxygen ratio (PaO2/FiO2, 
P/F ratio), Glasgow Coma Scale (GCS)]. (2) SOFA-related features: 
vasopressor (VASO), mechanical ventilator (MV), 24-h urinary 
excretion (UR), platelets (Plt), serum total bilirubin (Bil), serum 
creatinine (Cr)]. (3) Target feature: ICU LOS.

Table 1 presents detailed statistical information on the features 
used in this study. Numerical features are described using means, 
standard deviations, and min-max ranges, while categorical features 
are reported as frequencies and percentages. The Pearson correlation 
coefficient for numerical features and point-biserial correlation for 
categorical features were calculated to determine their correlation with 
the target feature. p-values in Table 1 test the null hypothesis that the 
correlation coefficient is zero.
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FIGURE 1

Flow diagram of the study inclusion and exclusion.

TABLE 1 Statistical information of features in our dataset.

Characteristics Categories Dataset (n = 521) Correlation 
coefficient

p-value

Clinical features Age Years 69.19 ± 14.65 (19–95) −0.09 0.05

Sex Female 239 (45.87%) 0.01 0.90

Male 282 (54.13%)

BMI kg/cm2 22.41 ± 4.18 (11.55–43.94) −0.07 0.11

LACTATE mmol/L 2.58 ± 2.56 (0–29) 0.16 < 0.01

AF yes 86 (16.51%) 0.06 0.19

no 435 (83.49%)

SBP mmHg 89.67 ± 19.59 (33–176) −0.08 0.08

DBP mmHg 49.31 ± 11.46 (17–90) −0.09 0.04

MBP mmHg 60.28 ± 11.83 (24–104) −0.10 0.03

PF - 290.69 ± 152.05 (16–943) −0.31 < 0.01

GCS - 11.08 ± 3.55 (3–15) −0.42 < 0.01

SOFA-related features VASO Yes 298 (57.2%) 0.11 0.02

No 223 (42.8%)

MV Yes 171 (32.82%) 0.43 < 0.01

No 350 (67.18%)

UR cm3 1803.52 ± 1332.96 (0–1,250) −0.19 < 0.01

Plt ×103/μl 154.16 ± 96.02 (4–657) −0.06 0.19

Bil mg/dl 1.31 ± 2.09 (0.09–22.58) −0.02 0.72

Cr mg/dl 2.14 ± 2.20 (0.11–16.60) 0.07 0.13

Target feature ICU LOS days 5.24 ± 3.57 (1.01–16.47)

SOFA, sequential organ failure assessment; BMI, body mass index; AF, atrial fibrillation; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; P/F ratio, 
partial pressure of arterial oxygen and a fraction of inspired oxygen ratio (PaO2/FiO2); GCS, Glasgow Coma Scale; ICU LOS, length of stay in intensive care unit; VASO, vasopressor; MV, 
mechanical ventilator; UR, 24 h urinary excretion; Plt, platelets; Bil, serum total bilirubin; Cr, serum creatinine.
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2.1.2 Data preprocessing
As depicted in Figure 2A, the ICU LOS distribution in our dataset 

exhibited a pronounced positive skew, with a concentration of values 
at the lower end and a long tail extending towards higher values. This 
necessitated the removal of outliers prior to analysis. The interquartile 
range (IQR) method was employed to handle outliers in ICU LOS 
(30). The IQR method effectively retains most data points within a 
reasonable range, excluding outliers that could potentially distort the 
analysis (31). Specifically, the IQR is the range between the first 
quartile (Q1) and third quartile (Q3) of the data, with outliers defined 
as points below Q1–1.5IQR or above Q3 + 1.5IQR (32). Our study 
identified patients with an ICU LOS > 16.52 days as outliers, excluding 
48 patients as shown in Figure 2B. Furthermore, we standardized the 
dataset to ensure that all features contributed equally to the analysis 
and to prevent any single feature from disproportionately influencing 
the results due to scale differences. This procedure was applied 
exclusively to numerical features. The standardization formula is 
defined in Equation 1 as follows:

 
( )

,
X X

Z
s
−

=
 

(1)

where X  represents the mean and s denotes the standard 
deviation (33).

2.2 Model architecture

We developed a transformer-based DL model using a CLS token 
to predict the ICU LOS. The architecture of the proposed model is 
depicted in Figure 3; it consists of three modules as shown in Figure 4.

2.2.1 Module of concatenating CLS tokens
The input data colx∈ , where col represents the number of input 

features, is batch normalized before entering the “fzCLSBlock.” As 
represented in Figure 4A, x  in the fzCLSBlock is concatenated with a 
trainable CLS token 0CLS  1∈ , which is zero-initialized to ensure 
stable training (24). The CLS token is the first special token of every 
sequence and is widely used as an aggregate sequence representation 
for classification tasks (26). The concatenated vectors are embedded 

through a dense layer to achieve a representative embedding of the 
input data and capture the complex relationships. This process is 
expressed in Equation 2 as follows:

 ( ) ( )1
0Dense CLS ,col dz x + ×= ∈   (2)

where d represents the embedding dimension and  denotes the 
concatenate function.

2.2.2 Module of multi-head self-attention
Inspired by networks in several studies using transformers (25, 34–

36), we  employed the self-attention mechanism of the transformer 
encoder. The self-attention mechanism calculates model weights to assess 
the relevance of each feature and captures interactions between features 
or instances. Recent research have demonstrated superior prediction 
accuracy by incorporating self-attention mechanisms in new networks 
such as TabNet (35) and FT-transformers (26). These findings suggest the 
efficacy of self-attention mechanisms for analyzing tabular datasets.

The projected vector ( )1col dz + ×∈  (as defined above) is analyzed 
in the “AttnEncoderBlock” illustrated in Figure 4B. The input vector 
z is linearly transformed into query (Q), key (K), and value (V) 
matrices within the single attention head of multihead self-attention 
(MSA) (37). The attention weight is calculated by taking the dot 
product of Q and K, normalizing it by the square root of the 
dimension of K, and applying a softmax function. After that, the 
attention head outputs the dot product of the attention score and V, 
which are computed in parallel five times. Besides the MSA, the 
AttnEncoderBlock includes a fully connected feedforward network 
(FFN) composed of two linear transformations with a rectified linear 
unit (ReLU) activation in between (38).

2.2.3 Module of analyzing global and local 
information

Previous research indicates that CLS tokens often fail to adequately 
capture the semantic content of the input because they focus more on 
global information than local and low-level features (39). We designed 
a skip-connected token process, which comprehensively analyzes 
global and local data information, to address this issue. A 

FIGURE 2

Distribution of ICU LOS in dataset. (A) The ICU LOS before data preprocessing and (B) the ICU LOS after handling outliers using the IQR method.
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skip-connected token process addes token values representing both 
global and local information.

As presented in Figure 4C, the output of the AttnEncoderBlock is 
batch normalized and divided into the 1CLS d×∈  token, summarizing 
all features, and the feature-wise token col df ×∈′  , maintaining the 
unique information of each feature. The f ′, containing local information, 
passes through a dense layer to convert the local information into more 
abstract and high-level features. This layer captures complex dependencies 
and correlations between local features by identifying the interactions 
between various feature dimensions and learning appropriate weights. 
Additionally, the CLS token, containing global information, is added to f
, enabling a comprehensive analysis of global and local information. These 
computations can be expressed in Equations 3 and 4 as follows:

 ( )( )Dense Flatten ,df f ′= ∈  (3)

 ( )Dense CLS .d
sct f= + ∈  (4)

The sct  token is used for the final prediction of the proposed 
model, predicting the ICU LOS via a dense layer with one unit.

2.3 Implementation details

The proposed model was implemented using Python 3.9 on a 
workstation with an 11th Gen Intel(R) Core(TM) i7-11700K processor 
at 3.60 GHz and 64 GB of RAM. We applied exponential decay to 
control the learning rate during training, gradually reducing it to 
ensure stable convergence. The proposed model was configured with 
a batch size of 32 and the Adam optimizer at a learning rate of 1e-3. 
Learning rate decay was applied every 10 steps at a rate of 0.96. 
Furthermore, we compared the prediction accuracy of the proposed 
model with that of conventional ML and DL models. Hyperparameters 
for random forest (RF) (40), extreme gradient boosting (XGBoost) 
(40), support vector regression (SVR) (41), multiple linear regression 
(MLR) (42), and TabNet (35) were set to their respective default values.

2.4 Model performance evaluation

We conducted a four-fold cross-validation to verify the reliability 
and consistency of the predictions of the proposed model. Twenty 

percent of the dataset was allocated for testing, while the remaining 
dataset was divided into four folds. Each iteration of the four-fold 
validation consisted of one fold used for validation and the remaining 
folds used for training. We adopted the following three key metrics to 
quantitatively evaluate the performance of the proposed model 
because it performed a regression task: coefficient of determination 
(R2), mean absolute error (MAE), and root mean square error 
(RMSE). Detailed descriptions of each metric are as follows:

The R2 value measures the proportion of variance in the dependent 
feature that can be predicted from the independent features. The R2 
value ranges from 0 to 1, where 0 indicates that the model does not 
explain the variability in the response data around its mean, and 1 
indicates that the model explains all the variability of the response data 
around its mean (43). R2 value for an ideal model is close to 1 and is 
computed using Equation 5 as follows:

 

( )
( )

2
2 1

2
1

R 1 ,
ˆn

i ii
n

ii

y y

y y
=

=

−
= −

−

∑
∑  

(5)

where n  denotes the number of patients, iy  corresponds to the 
observed value, ˆiy  represents the predicted value, and y  is the 
average ICU LOS. The R2 metric is crucial as it directly correlates 
with the proportion of the total variation in the target feature 
explained by the model. A high R2 indicates that the model captures 
a significant portion of the variance, vital for predictive 
accuracy (44).

The MAE represents the average absolute difference between the 
predicted and observed values of the model (45). It provides a 
straightforward and interpretable measure of the average prediction 
error (46). Ideally, the MAE value approaches zero and is computed 
using Equation 6 as follows:

 1

1AE ,ˆM
n

i i
i

y y
n =

= −∑
 

(6)

where n represents the number of data points used for model 
testing, ˆiy  corresponds to the value predicted by the model for the 
i-th sample, and iy  denotes the corresponding observed value 
(47). The MAE is advantageous due to its reduced sensitivity to 
outliers compared to metrics such as RMSE, making it a more 
reliable indicator of the average performance of a model, 
particularly when handling datasets with noisy or extreme 
values (48).

The RMSE is the square root of the average squared difference 
between the predicted and actual observations. It is widely used due 
to its ability to penalize larger errors more heavily than MAE, 
highlighting significant deviations (48). The formula for RMSE is 
calculated using Equation 7:
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1

1MSE .ˆ
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(7)

This metric provides an aggregate measure of model accuracy, 
encompassing both bias and variance components of error. RMSE is 

FIGURE 3

Architecture of the proposed model for predicting ICU LOS in 
patients with sepsis.
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valuable in applications where larger errors are more significant and 
must be minimized. Its sensitivity to large errors makes it essential for 
ensuring robustness and precision (49).

3 Results

3.1 Model performance comparison

We conducted a performance comparison of the proposed model 
using a four-fold cross-validation of the datasets. In Table  2, the 
proposed model demonstrated promising predictive performance, 
achieving an average R2, MAE, and RMSE of 0.29 ± 0.01, 2.05 ± 0.03, 
and 2.72 ± 0.02, respectively. The average R2 indicates the proposed 
model could explain approximately 29% of the variability in ICU 
LOS. Notably, the R2, MAE and RMSE values showed minimal 
variation across folds, demonstrating the stability.

Figure 5 presents the calibration plot for each model, illustrating 
the agreement between predicted and observed ICU LOS. Darker 
points in these plots represent a better fit with actual values. The plots 
indicate that while the proposed model accurately predicts shorter 
ICU stays, it exhibits noticeable deviations for longer stays. This 

finding suggests that the proposed model demonstrated strong 
performance for shorter ICU stays; however, it may require further 
refinement to improve accuracy for longer stays, which are often 
associated with more complex and variable patient conditions.

Additionally, we  compared the performance of the proposed 
model with conventional ML and DL models, as shown in Table 3. The 
proposed model leveraged the skip-connected token process to 
enhance its predictive power by capturing interactions within tabular 
data. Comparisons were made with other DL models using MSA, such 
as TabNet and FT-Transformer, as well as traditional models known 
for their strong performance on tabular data, including RF, XGBoost, 
and MLR. The proposed model demonstrated superior performance 
compared to the other models, indicating that it provides more 
accurate predictions.

3.2 Ablation study

We conducted an ablation study to evaluate the effectiveness of 
the proposed skip-connected token process. This study compared the 
information delivered to the ICU LOS output layer by altering specific 
components. The performance of models was compared across three 

FIGURE 4

Three modules of the proposed model. (A) The illustration of the process concatenating CLS token in FzCLSBlock, (B) schematic diagram of the 
module of multi-head self-attention, (C) process of global and local information analysis.
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categories: models that used only local information analysis, only 
global information analysis, or a combination of both. Detailed 
configurations and corresponding performance indicators are 
provided in Table 4.

The first model, which utilized only global information analysis, 
demonstrated poor performance. In contrast, the second model, 
relying solely on local information analysis, exhibited improved 
results. Notably, the proposed model, integrating global and local 
information analysis, achieved an R2, MAE, and RMSE of 0.29 ± 0.01, 
2.05 ± 0.03, and 2.72 ± 0.02, respectively, outperforming the other 
two models.

These results indicate that the proposed model, which uses skip-
connected token process, has the highest explanatory power and 
lowest prediction error, demonstrating a significant enhancement in 
overall model performance. This underscores the necessity of skip-
connected token process in integrating local and global information 
for improved predictions.

3.3 Model interpretation

We employed Shapley additive descriptions (SHAP) to assess the 
impact of each feature on the model predictions. Figure 6A displays 
the mean absolute SHAP values for each feature, highlighting their 
importance in the model predictions. The top three most influential 
features were GCS, MV and PF. This ranking elucidates the primary 
factors that drive the predictions of the proposed model, offering 
valuable insights into which features most significantly affect ICU 
length of stay predictions.

Figure 6B presents the SHAP summary plots for four different 
percentiles (20th, 40th, 60th, and 80th) of ICU LOS. These plots 
visualize the SHAP values for individual predictions, indicating how 
each feature affects the predicted ICU LOS. The color scale shows the 
direction of the impact, with red and blue indicating an increase and 
decrease in the predicted LOS, respectively.

Sequentially across percentiles, the high GCS score and application 
of MV reduced predicted LOS, primarily at the 20th and 40th percentiles 
of ICU LOS (see blue section). Conversely, the low PF ratio increased 
LOS. The GCS represents a level of consciousness rating of 3–15 that 
assesses neurological status, with a lower score indicating worse status 
(50). The MV and PF are important indicators of respiratory function, 
reflecting the need for mechanical ventilation and the oxygen exchange 
capacity of the lungs, respectively (49). The impact of MV application 
and low PF was also evident at the 60th percentile, significantly 
increasing ICU LOS. On the other hand, an average level of Plt indicates 
a properly functioning coagulation system and reduces ICU LOS. The 
low GCS score, high Bil level, and MV application played a significant 
role in 80th percentile ICU LOS, with severe GCS score significantly 
increasing expected ICU LOS. Bil is another important predictor of ICU 

TABLE 2 Performance of the proposed model evaluated using four-fold 
cross-validation.

Four-fold
cross-
validation

CBNUH (521 patients)

R2 MAE RMSE

Fold1 0.30 2.03 2.69

Fold2 0.28 2.06 2.73

Fold3 0.29 2.01 2.71

Fold4 0.27 2.08 2.74

Average 0.29 ± 0.01 2.05 ± 0.03 2.72 ± 0.02

FIGURE 5

Calibration plot of each fold model. ICU, Intensive care unit; LOS, length of stay.
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LOS, with elevated levels indicating liver dysfunction or hemolysis. 
However, contrarily in our study, elevated Bil was shown to reduce 
ICU LOS.

4 Discussion

This study demonstrated that the transformer-based DL model 
outperformed traditional ML and DL models in predicting ICU LOS 

for patients with sepsis using SOFA-based tabular data. The proposed 
model, leveraging a skip-connected token process to integrate global 
and local information, achieved an average R2, MAE, and RMSE of 
0.29, 2.05 days, and 2.72 days, respectively. Reliable predictions of ICU 
LOS are clinically and operationally impactful, as they enable better 
resource allocation and improve patient outcomes, particularly for 
critical conditions like sepsis (51, 52). The proposed model builds on 
these insights by providing an efficient tool that uses limited SOFA-
based data to achieve practical predictions.

The strengths of the proposed model are manifold: First, the input 
features are based on the SOFA criteria, widely used in ICUs to assess 
organ dysfunction severity in critically ill patients. The model requires 
only 16 SOFA-related clinical features collected within 24 h of ICU 
admission, making it a convenient tool for predicting ICU LOS in 
patients with sepsis due to the accessibility of SOFA criteria data. 
Second, the proposed model was designed to work with tabular data, 
the most common structured data format, which requires less 
computational power than other data types and does not necessitate 
high-end hardware. Third, the model effectively captures 
comprehensive information from the features utilizing CLS and 
feature-wise tokens, analyzing global and local information. The 
proposed model employs MSA to capture global interactions between 
features, further analyze local information through dense layers and 
then integrates both in the final prediction to enhance performance.

Furthermore, the proposed model was interpreted using SHAP, 
providing valuable insights into the relative importance of various 
features in predicting ICU LOS. The top three influential features in 
this study were GCS, MV, and PF. The GCS score, underscored for its 
critical role in assessing neurological status, showed a positive 
correlation with ICU LOS. This finding is consistent with a previous 

FIGURE 6

SHAP importance of features for predicting ICU LOS. (A) Summary plot of SHAP feature importance, represented by the mean absolute Shapley values. 
The plot illustrates the significance of each covariate in the final predictive model. (B) SHAP force plots for data instances with predicted ICU LOS at the 
80th, 60th, 40th, and 20th percentiles (bottom). These plots provide an explanation for individual predictions made by the model. Note: the base value of 
4.77 days is consistent across all plots. P/F, partial pressure of arterial oxygen and fraction of inspired oxygen ratio (PaO2/FiO2); GCS, Glasgow Coma 
Scale; AF, atrial fibrillation; Cr, serum creatinine; VASO, vasopressor; Plt, platelets; MV, mechanical ventilator; UR, 24 h urinary excretion; Bil, serum total 
bilirubin; DBP, diastolic blood pressure; BMI, body mass index; SBP, systolic blood pressure; MBP, mean blood pressure; ICU LOS, length of stay in 
intensive care unit.

TABLE 3 Comparison of conventional model performance.

Model CBNUH

R2 MAE RMSE

RF 0.09 ± 0.01 2.25 ± 0.01 3.07 ± 0.01

XGBoost 0.10 ± 0.02 2.23 ± 0.02 3.05 ± 0.04

MLR 0.22 ± 0.00 2.13 ± 0.01 2.84 ± 0.01

TabNet −0.39 ± 0.21 2.77 ± 0.17 3.79 ± 0.29

FT-Transformer 0.26 ± 0.03 2.12 ± 0.02 2.76 ± 0.05

Proposed model 0.29 ± 0.01 2.05 ± 0.03 2.72 ± 0.02

TABLE 4 Ablation study on the proposed model.

Method R2 MAE RMSE

Local information analysis 0.22 ± 0.02 2.11 ± 0.06 2.84 ± 0.04

Global information analysis 0.15 ± 0.02 2.27 ± 0.04 2.97 ± 0.03

Local and Global information 

analysis
0.29 ± 0.01 2.05 ± 0.03 2.72 ± 0.02
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study (53), and highlights the importance of GCS as the most 
significant predictor. Similarly, MV and PF are respiratory indices 
associated with ICU LOS prediction in this study. The results in our 
study are consistent with previous studies showing that MV use and 
lower PF increased ICU LOS (53, 54). Conversely, this study found 
that elevated bilirubin levels were associated with a shorter ICU LOS, 
which contrasts with a previous study where higher bilirubin levels 
prolonged the length of hospital stay (55). The correlation of these 
factors indicates that these may assist in determining ICU LOS.

However, this study has several limitations. The dataset was derived 
from a single institution, potentially limiting the generalizability of the 
findings. Future research should aim to validate the proposed model 
across diverse healthcare settings and larger multicenter datasets. 
Additionally, while the transformer-based model outperformed others 
in predicting ICU LOS, it showed an opportunity for improvement, 
particularly in predicting stays longer than 8 days. This result suggests 
the need for additional data on longer durations to improve the 
prediction of extended ICU LOS in real medical scenarios.

5 Conclusion

We developed a transformer-based DL model to predict ICU LOS 
in patients with sepsis using data collected within the first 24 h of ICU 
admission. The proposed model achieved an MAE of 2.05 days. The 
proposed model effectively captures complex feature interactions by 
integrating global and local information through a novel skip-connected 
token process. Additionally, the proposed model utilizes a set of SOFA-
related features that are widely used to assess the severity of organ 
dysfunction in clinical practice. Such an approach ensures simplicity of 
data collection and wide applicability, making the proposed model 
practical for use in a variety of healthcare settings.
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Traditional disease prediction models and scoring systems for acute pancreatitis

(AP) are often inadequate in providing concise, reliable, and effective predictions

regarding disease progression and prognosis. As a novel interdisciplinary field

within artificial intelligence (AI), machine learning (ML) is increasingly being

applied to various aspects of AP, including severity assessment, complications,

recurrence rates, organ dysfunction, and the timing of surgical intervention. This

review focuses on recent advancements in the application of ML models in the

context of AP.

KEYWORDS

artificial intelligence, machine-learning model, acute pancreatitis, severity,
complications, recurrence, mortality

1 Introduction

Acute pancreatitis (AP) is an inflammatory disorder affecting the parenchyma and
peripancreatic tissue, characterized by severe abdominal pain, elevated pancreatic enzymes,
and pancreatitis-related changes on abdominal imaging. The incidence of AP has shown a
rising trend globally, with an average occurrence rate of 34 cases per 100,000 individuals.
Approximately 20% of patients progress to either moderately severe acute pancreatitis
(MSAP, accompanied by transient [≤48 h] organ dysfunction and/or local complications
such as necrosis of pancreatic or peripancreatic tissue) or severe acute pancreatitis (SAP,
accompanied by persistent [>48 h] organ failure), the mortality rate can reach as high as
20–40% (1).

Machine learning (ML) is a category of artificial intelligence tools in which virtual
agents learn an optimized set of rules through trial and error—a policy that maximizes
expected returns (2). ML has many ideal characteristics that can help with medical decision-
making, and these algorithms are able to infer the best decision from suboptimal training
sets. ML has been successfully applied to medical problems in the past, such as diabetes and
sepsis (3, 4).

Machine learning has demonstrated significant potential in the field of medicine,
particularly in disease diagnosis and prognosis. Over the past decade, the utilization of ML
algorithms based on databases for acute pancreatitis has become increasingly prevalent.
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Numerous studies have employed ML algorithms to forecast AP
mortality rates (5), severity (6–8), complications (9), recurrence
rates (10), as well as surgical or intervention strategies (7), with ML
exhibiting robust reliability in these domains.

In recent years, ML algorithms and the prediction models based
on them have generated significant interest among researchers.
A growing body of evidence indicates that ML plays a crucial role in
predicting acute pancreatitis diagnosis and prognosis. This review
aims to offer an overview of the specific applications of ML in AP,
with the expectation that artificial intelligence can furnish more
evidence-based support for clinical practice in the future.

2 The role of ML in predicting AP
mortality

According to the 2012 revision of Atlanta classification (RAC)
(11), SAP accompanied by persistent organ failure carries a high
mortality rate, ranging from 20 to 40% (1). When complicated
by late-stage infections, the mortality rate becomes exceedingly
high. Traditional scoring systems for predicting mortality are
complex and limited. A systematic review revealed that the positive
predictive values of the APACHE II score (AcutePhysiology and
Chronic Health Evaluation score, widely used in the classification
of critically ill patients and prognosis prediction, which can make
a quantitative evaluation of the patient’s condition, a higher
score indicates a more serious condition, a poorer prognosis,
and a higher rate of mortality), Ranson score (one of the
earliest scoring systems for predicting the severity of AP and
is primarily used to predict the severity of biliary pancreatitis),
and Glasgow criteria (emphasis on objective laboratory indicators,
including 8 indicators, assessed in 48h of admission to the
hospital) were only 69, 63, and 66% respectively (12). Although
APACHE II provides the best predictive value for mortality,
there is currently no single scoring system that can reliably
predict the mortality rate of acute pancreatitis. Therefore, in
recent years, numerous early prediction models based on ML
algorithms have been developed. These models offer valuable
insights for early intervention and potentially reducing the
mortality rate of SAP.

Ding et al. initially developed an artificial neural network
(ANN) model using the MIMIC-III database, achieving an area
under the receiver operating characteristic curve (AUC) of 0.769,
which outperformed logistic regression with an AUC of 0.607,
Ranson score with 0.652, and SOFA score with 0.401 in predicting
in-hospital mortality rate for AP patients (13). The ANN model
demonstrated superior overall performance and early-stage risk
stratification capability for high-risk AP patients. Building on
this, Ren et al. identified 856 AP admitted to the intensive care
unit (ICU) from the MIMIC-IV database and developed 9 ML
models. Among these, they selected the Gaussian naive Bayes
(GNB) model, which demonstrated an AUC, accuracy, sensitivity,
and specificity of 0.840, 0.787, 0.839, and 0.792 respectively—
making it the most effective among all models tested (14). The
GNB model’s ability to identify high mortality risk in AP patients
admitted to the ICU was further validated using an external
database. Similarly, ML models, especially support vector machine

(SVM) models, play a crucial role in predicting 28-day all-
cause mortality in patients with SAP and analyzing their risk
factors (15). The superior attributes of these models compared
to traditional scoring systems enhance their effectiveness in
early identification of SAP patients and reducing their mortality
risk.

However, when it comes to specific causal diagnosis of AP
for predicting mortality rates, the predictive capability of gradient
boosting machine (GBM) machine learning models appears to
be insignificant. Luthra collected 97,027 patients with biliary
pancreatitis from the Nationwide Readmission Database over a
4-year period and compared the differences in predicting AP
patient mortality between the GBM machine learning model and
multivariate logistic regression analysis, finding that the GBM
machine learning model had a higher positive predictive value
(47.3% vs 35.9%) and lower sensitivity (40.1% vs 46.7%) (16).
Therefore, he believes that in a large national database, traditional
analysis and GBM machine learning model are comparable
and not inferior, and the application of machine learning in
managing database-based models for predicting hospital mortality
due to common disease states is limited. It is worth noting that
after statistical analysis, he found that the inpatient mortality
rate of biliary pancreatitis was 0.97%, and hospital stay, age,
SAP, patient income quartile, and sepsis were determined as
the main predictors of mortality in biliary pancreatitis after
it was determined.

3 The role of ML in predicting AP
severity

A recent study in Japan showed that the mortality rate
of SAP is about 16.7% (17), and early identification and
personalized precision treatment can reduce the mortality rate
of SAP. Previous studies have shown that precision treatment
within 48 h of admission can significantly reduce mortality
from SAP (18).

Due to the severity of SAP, high mortality rate, and association
with organ failure, early identification and intervention of SAP
patients are crucial. However, traditional scoring systems often
require more than 24 h to perform and have limited accuracy. To
address this, Luo et al. constructed and compared the predictive
performance of five different ML models in training and validation
cohorts, concluding that the random forest (RF) model performed
the best and could be used to guide treatment and improve
clinical outcomes (19). The AUC, accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) of the RF model were 0.961, 86.0, 90.0, 81.5, 84.4, and
88.0% in the training cohort, and 0.969, 90.1, 88.6, 91.5, 91.2,
and 89.0% in the validation cohort, which were significantly
higher than those of other scoring systems (20, 21), the RF
model has a higher accuracy in predicting SAP in the early
stages of AP (22). Similarly, after developing and comparing
different ML prediction models in terms of their effectiveness
in predicting the severity of AP, Rahul et al. concluded that
the extreme gradient boosting (XGBoost) model showed the best
performance in predicting SAP, which can accurately predict SAP
at an early stage and provide assistance to clinicians in identifying
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and intervening in SAP earlier (8, 23, 24). XGBoost is a machine
learning technique that integrates regression tree gradient lifting
methods and has gained widespread recognition in the machine
learning literature (25–27), data mining challenges, and disease
outcome prediction. Given its ability to predict SAP by combining
imaging findings and clinical indicators, as well as its capacity
to effectively handle missing values commonly encountered in
clinical settings (8), early classification and identification of
AP can provide valuable guidance for improved integration of
medical resources.

4 The role of ML in predicting AP
complications

4.1 Organ failure (OF)

Approximately 20% of patients develop organ failure in AP
(28), and the presence of persistent organ dysfunction is a key
factor in distinguishing between MAP, MSAP and SAP. Once OF
occurs, the mortality rate can be as high as 30% (29), while also
increasing the risk of infected pancreatic necrosis. Therefore, early
identification of AP complicated by OF has a crucial impact on
the emergency management of AP patients and plays a vital role
in improving survival rates.

Four studies designed ML models to predict OF (9, 30–32).
Qiu established models based on SVM, logistic regression (LR),
and ANN to predict multiple organ failure (MOF) (30). The area
under receiver operating characteristic curve (AUROC) values
of these three models were not significantly different at 0.840,
0.832, and 0.834 respectively. Additionally, there was no significant
difference in the AUROC compared to the traditional APACHE
II score with an AUC value of 0.814 where P > 0.05. He believes
that the three ML models can all be effective prognostic tools
for predicting MOF in MSAP and SAP, and recommends using
ANN, which only requires hematocrit, kinetic-time, IL-6, and
creatinine as four common parameters. A multicenter cohort study
employed complete blood count, serum biochemical markers, and
coagulation indicators to develop 6 ML-based algorithm models
for predicting MOF (9). Among these, the Adaptive Boosting
algorithm (AdaBoost) exhibited superior predictive performance
with an AUC of 0.826, sensitivity of 0.805, and specificity of
0.733. IL-6, creatinine, and kinetic time in coagulation indicators
were identified as the three most significant independent variables,
and monitoring these features can aid in preventing AP-related
MOF. Numerous studies have indicated that the conventional
use of ANN models is superior to APACHE II scores and LR
models in predicting disease severity, MOF, and mortality, and
the ANN models can accurately classify 96.2% of patients (31,
33). Lin et al. collected data from 314 Hyperlipidemic acute
pancreatitis (HLAP) patients and established LR, NB (Naive
Bayes), KNN (K-Nearest Neighbors), DT (Decision Tree) and
RF models (32). The AUC values were 0.838, 0.824, 0.853,
0.897, and 0.915 respectively, all significantly higher than those
of traditional prediction scoring systems. Among them, the
RF model exhibited the highest predictive AUC for OF in
HLAP patients with a sensitivity of 0.828 and accuracy of 0.814
among the 5 models tested. They concluded that the RF model

outperforms other models as well as clinical scoring systems
in predicting the occurrence of OF in HLAP patients and is
beneficial for early intervention in high-risk HLAP patients
for OF prevention.

AP-related OF mainly involves respiratory, circulatory, and
renal failure. Some retrospective clinical analyses have confirmed
the role of ML in acute kidney injury (AKI) associated with AP
(34–36). Zhang et al. developed an automated machine learning
(AutoML) algorithm prediction model that intelligently selects
from a range of algorithms and hyperparameters to tailor models
for specific datasets (34), enabling early prediction of AKI in
AP patients. It demonstrates superior performance compared to
traditional LR, requiring less time and achieving higher accuracy,
thus significantly improving work efficiency. This warrants its
clinical application and promotion. Lin et al. extracted data from
the MIMIC-IV database to build a predictive ML model for SAP-
AKI using 1,235 cases of SAP patients (35). The models included
GBM, GLM, KNN, NB, ANN, RF, and SVM with AUC values
of 0.814, 0.812, 0.671, 0.812, 0.688, 0.809 and 0.810 respectively.
This highlights the significant role of GBM in predicting SAP-
AKI and can assist clinical practitioners in identifying high-
risk patients and intervening promptly to reduce mortality rates
in intensive care units. It is also worth noting that systemic
inflammatory response is inherently associated with the process
of AKI and may be caused by local inflammation within renal
tissues (37).

Acute respiratory distress syndrome (ARDS) is a common
complication of AP, with approximately 30% of SAP patients
developing ARDS (38), resulting in a mortality rate of up
to 37% (28). Two retrospective analysis studies exploring ML
models for AP-associated ARDS have yielded positive results
(39, 40), successfully establishing predictive models based on
ML. Compared with other models, the Bayesian Classifier (BC)
model achieving the highest AUC at 0.891 and demonstrating
the best predictive performance (39). The Ensemble Decision
Trees (EDT) showed good predictive capabilities, with the highest
accuracy (0.891) and precision (0.800). It is noteworthy that
lower PaO2 and Ca2+ levels upon admission, as well as elevated
CRP, Procalcitonin, Lactic Acid, Neutrophil-Lymphocyte Ratio,
White Blood Cell Count, and Amylase levels are significantly
associated with an increased risk of developing ARDS in AP
patients; among these features, PaO2 is identified as the most
important predictor.

4.2 Sepsis

ML techniques also demonstrate significant advantages in
predicting and evaluating septic shock. In a large retrospective
cohort study (41), 1,672 AP from the MIMIC III and MIMIC
IV databases were selected to construct six ML models, including
SVM, KNN, Multilayer Perceptron (MLP), LR, Gradient Boosting
Decision Tree (GBDT), and AdaBoost. The GBDT model
demonstrated superior performance in predicting sepsis among
AP patients with an AUC of 0.985 on the test set, outperforming
LR, Systemic Inflammatory Response Syndrome (SIRS) score,
Bedside Index for Severity in Acute Pancreatitis (BISAP) score,
Sequential Organ Failure Assessment (SOFA) score, quick SOFA
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TABLE 1 The clinical application of machine learning in acute pancreatitis.

References Disease Sample size ML-based model Contrast model AUC (95%CI)

Ding et al. (13) Mortality 337 ANN LR 0.769

Ren et al. (14) Mortality 856 GNB XGBoost, RF, SVM, et al. 0.840

Cai et al. (15) Mortality 534 SVM LR, XGBoost, RF, et al. 0.877

Anjuli et al. (16) Mortality 97,027 GBM LR 0.96

Qiu et al. (30) Multiple Organ Failure 263 SVM LR, ANN 0.840

Zhang et al. (34) Acute kidney Injury 437 AutoML LR, DL 0.963

Liu et al. (41) Sepsis 1,672 GBDT LR, SVM 0.985

Zhang et al. (39) Acute Respiratory Distress
Syndrome

460 BC SVM, EDTs 0.891

Xia et al. (42) Septic Shock 604 AE SVM, RF, AdaBoost, et al. 0.900

Xu et al. (9) Multiple Organ Failure 455 AdaBoost LR, et al. 0.826

Lin et al. (32) Organ Failure 314 RF LR, RF, et al. 0.915

Lin et al. (32) Acute kidney Injury 667 GBM NB, KNN, et al. 0.814

Chen et al. (48) Recurrence 389 LR SVM 0.941

Rahul et al. (8) SAP 61,894 XGBoost LR, ANN 0.921

Zhou et al. (23) Severity of AP 441 XGBoost LR, SVM, DT, RF 0.906

Lan et al. (5) Surgical Intervention Strategy 223 RF LR, SVM 0.78

Luo et al. (55) Surgical Intervention Strategy 15,813 RNN NA 0.70

ANN, artificial neural networks; LR, logistic regression; DL, deep learning; BC, Bayesian Classifier; EDTs, Ensembles of Decision Trees; AE, auto-encoder; AB, AdaBoost; RF, random forest;
NB, naive Bayes; KNN, k-nearest neighbors; XGBoost, extreme gradient boosting model; RF, random forest; RNN, recurrent neural network.

(qSOFA), and APACHE II scores in sepsis prediction. Similarly,
another retrospective study data established multiple ML models
for early prediction of septic shock in AP with sepsis (42), with
the final auto-encoder (AE) model achieving the highest AUC
on the validation set (AUC 0.900, accuracy 0.868), while the
AUC on the test set was 0.879 and the accuracy was 0.790.
The AE model performed better than traditional scoring systems
in predicting septic shock in AP with sepsis within 28 days
after admission.

5 The role of ML in predicting AP
recurrence rate

Recurrent acute pancreatitis (RAP) is defined as a history
of at least two episodes of AP with no evidence of pancreatic
tissue or functional abnormalities during the remission period.
It represents a distinct subtype of pancreatitis, and statistics
indicate that 17–22% of diagnosed AP patients will experience
recurrence (43). RAP serves as a significant risk factor for the
development of chronic pancreatitis (CP), with up to 36% of
RAP patients ultimately progressing to CP (44). CP is often
accompanied by comorbidities such as diabetes, malnutrition,
steatorrhea, and weight loss. Long-term follow-up studies have
revealed that 1.3% of CP patients may progress to pancreatic cancer
over an 8-year period (45), significantly impacting their quality
of life and prognosis. Therefore, early identification and timely
intervention for individuals at risk for developing RAP following
an episode of acute pancreatitis may mitigate the incidence rates

of both RAP and pancreatic cancer while enhancing long-term
quality of life.

Radiomics is an emerging field that optimizes existing imaging
resources to extract high-throughput quantitative features from
medical images (46, 47). These features are further analyzed using
predefined algorithms to develop models for clinical decision-
making. Currently, radiomics has been widely applied in the precise
analysis of tumors and their metastases (46).

ML models based on radiomics research for predicting RAP
are currently underutilized in clinical practice. Two retrospective
analysis studies have confirmed the role of SVM models in
predicting and distinguishing RAP (10, 48). The SVM model
demonstrates a significantly higher AUC than traditional clinical
models (0.941 vs. 0.712, p = 0.000), with similar conclusions
observed in the validation dataset (0.929 vs. 0.671, p = 0.000) (48).
The SVM model constructed using radiomic features can effectively
differentiate between patients with functional abdominal pain, RAP,
and CP, achieving an overall average accuracy of 82.1%. For patients
diagnosed with RAP solely based on symptoms of abdominal pain
and laboratory values or those for whom imaging studies during
AP episodes are unavailable, radiomics may serve as a valuable
diagnostic adjunct (10).

6 The role of ML in predicting AP
surgical intervention strategy

Infected pancreatic necrosis (IPN) is the most severe local
complication in the late stage of AP. Once IPN occurs, it
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indicates SAP, with a mortality rate as high as 30% (49).
Treatment often involves a series of surgical debridement
procedures known as "Step-up" strategies, including percutaneous
catheter drainage (PCD), endoscopic transgastric necrosectomy,
video-assisted minimally invasive surgery, and open surgery
(50). There has been significant debate regarding the timing
of surgical intervention for IPN. Research suggests that early
surgery results in a mortality rate exceeding 50% (51), while
delaying surgery until 4 weeks after the onset of IPN can
reduce both complications and mortality rates (52). With the
advancement of modern minimally invasive techniques, early
endoscopic drainage during the course of AP has also proven to
be safe and effective (53, 54). Early, timely, and accurate prediction
of IPN occurrence and determination of the optimal timing
for surgical intervention are crucial factors guiding subsequent
treatment decisions.

Lan et al. included 223 patients with IPN who underwent
surgical treatment for AP (5). They classified IPN patients based
on whether the surgery was performed within 4 weeks using
LR, SVM, and RF models. The RF model demonstrated a higher
classification accuracy (0.80) compared to SVM (0.78) and LR
(0.71). Additionally, they identified IL-6, infectious necrosis, fever,
and CRP as key factors in determining the timing of surgical
intervention for IPN patients. The ML model can effectively predict
the optimal timing for surgical intervention in IPN, providing
valuable guidance for clinicians in developing personalized surgical
strategies for IPN patients.

Another large-scale retrospective clinical study involving
15,813 patients with AP has developed a novel ML model
based on recurrent neural network (RNN) to predict the
timing of surgical intervention for IPN (55). This model,
known as Phased Long Short-Term Memory (Phased-LSTM),
achieved an AUC greater than 0.70 and demonstrated stronger
interpretability, making it suitable for predicting the optimal
timing for surgery. The developed model visualizes specific
surgical timings and changes in laboratory indicators from
onset to discharge for AP patients, enabling comprehensive
monitoring of patients with necrotizing pancreatitis throughout
their hospitalization. Due to the ability of LSTM to forget and
update long-term states, its performance surpassed that of SVM
and RF, highlighting the advantages of time series models in
handling temporal data.

7 Discussion

With the improvement in living standards, the incidence
of AP has been increasing annually in recent years, with a
rise of approximately 2–5% per year (56). Concurrently, the
proportion of SAP is also rising. SAP is closely associated
with multiple organ failure and has a high mortality and
recurrence rate. Once the condition progresses to IPN and OF,
the mortality rate can reach up to 30% (1). Therefore, early
prediction of the severity of AP, the occurrence of complications,
and the timing of intervention is crucial for clinical decision-
making and timely intervention. However, traditional clinical
prediction models, which are often based on multivariable analysis,
are challenging to construct within 24h widespread clinical

application. Consequently, it is imperative to develop a simple,
effective, and clinically implementable model for early prediction
of AP progression.

Artificial Intelligence (AI) encompasses a range of subfields
within computer science. In recent years, advancements in
algorithms such as ML, statistical learning, deep learning, and
cognitive computing have played a pivotal role in the diagnosis
and treatment of diseases such as sepsis and cancer (4, 57).
ML, a subset of AI, is a burgeoning interdisciplinary field that
integrates statistics, computer science, and other areas. It is
not only used for text mining and classification in computer
science, but is also increasingly applied in clinical practice. Various
ML algorithm models for disease prediction and diagnosis have
been developed based on AI technologies and are now widely
accepted in the medical field. Recently, ML has begun to be
applied to areas such as the severity of AP, complications,
recurrence rates, organ dysfunction, and the timing of surgical
intervention. This review focuses on recent advancements in
the application of ML models in the context of AP (refer to
Table 1).

We have observed that the majority of current ML models do
not account for several important factors, including the etiology
of AP and the stratification of severity. Additionally, most of the
data utilized are retrospective, although these models have been
validated on test and validation sets, their reliability still requires
confirmation through clinical practice. Many studies are single-
center with small sample sizes and lack external validation. Most
research focuses on binary classification of AP into SAP and non-
SAP. To date, there have been no ML models that provide accurate
prognostication based on the 2012 Atlanta classification, which
includes SAP, MSAP, and mild acute pancreatitis (MAP). Notably,
most ML models remain limited to predicting traditional severity
and complications, with a significant gap in predictive models for
recurrence rates, optimal timing for surgery, pancreatic necrosis
accumulation, and local complications such as infectious pancreatic
necrosis. Future research should address these areas.

8 Conclusion

In conclusion, ML has proven to be an excellent predictor of
mortality, severity, complications, recurrence, organ dysfunction,
and timing of surgical intervention in acute pancreatitis, and is
superior to traditional scoring systems such as the APACHE II
score, the BISAP score, the SOFA score, and other traditional
systems. However, much more prospective clinical studies are
needed to validate this idea.
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Introduction: The aim of this study is to construct and validate new machine 
learning models to predict pneumonia events in intensive care unit (ICU) patients 
with acute brain injury.

Methods: Acute brain injury patients in ICU of hospitals from January 1, 2020, 
to December 31, 2021 were retrospective reviewed. Patients were divided into 
training, and validation sets. The primary outcome was nosocomial pneumonia 
infection during ICU stay. Machine learning models including XGBoost, 
DecisionTree, Random Forest, Light GBM, Adaptive Boost, BP, and TabNet were 
used for model derivation. The predictive value of each model was evaluated 
using accuracy, precision, recall, F1-score, and area under the curve (AUC), and 
internal and external validation was performed.

Results: A total of 280 ICU patients with acute brain injury were included. Five 
independent variables for nosocomial pneumonia infection were identified 
and selected for machine learning model derivations and validations, including 
tracheotomy time, antibiotic use days, blood glucose, ventilator-assisted 
ventilation time, and C-reactive protein. The training set revealed the superior 
and robust performance of the XGBoost with the highest AUC value (0.956), 
while the Random Forest and Adaptive Boost had the highest AUC value (0.883) 
in validation set.

Conclusion: Machine learning models can effectively predict the risk of 
nosocomial pneumonia infection in patients with acute brain injury in the ICU. 
Despite differences in populations and algorithms, the models we constructed 
demonstrated reliable predictive performance.
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intensive care unit, area under the curve, acute brain injury, nosocomial pneumonia, 
machine-learning models
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Introduction

Acute brain injury (ABI) encompasses a range of neurological 
disorders that can result in acute functional deficits, including 
ischemic or hemorrhagic stroke, subarachnoid hemorrhage from 
aneurysms, and traumatic brain injury, causing approximately 12 
million deaths annually (1, 2). Due to the uncertain long-term 
functional prognosis of ABI, patients often have prolonged hospital 
stays, and the majority require endotracheal intubation for airway 
protection, along with mechanical ventilation and intracranial 
pressure reduction. Additionally, ABI is associated with immune 
system alterations mediated through inflammation and the autonomic 
nervous system, which may increase susceptibility to infections during 
and after hospitalization (3–5). In ABI patients who suffer from 
nosocomial infections, a common source of infection is the respiratory 
system, including ventilator-associated pneumonia and hospital-
acquired pneumonia. Studies have shown that nosocomial pneumonia 
significantly prolongs patients’ hospital stay and increases mortality 
and disability rates (3, 6).

Studies have indicated a significant association between the 
severity of ABI, chest trauma, smoking history, substance abuse, as 
well as interventions such as transfusion, sedation, and the need for 
tracheostomy, with the risk of nosocomial pneumonia (7–11). Given 
that nosocomial pneumonia can be  considered a continuum of a 
single disease, describing its epidemiology and influencing factors is 
clinically valuable (12, 13). This can aid in better formulating 
preventive and management measures for nosocomial pneumonia in 
clinical practice. Existing pneumonia prediction scoring tools in 
clinical practice, such as CPIS score, A2DS2 score, and AIS-APS score, 
have certain limitations, primarily due to underutilization of 
classification information, leading to information loss (14–16).

Recently, artificial intelligence (AI) has rapidly developed in the 
field of medicine, with machine learning being the most widely used 
AI method. Machine learning models generate personalized 
probabilities of events for patients. Additionally, ML models can 
capture complex non-linear relationships in medical data, making full 
use of clinical information (17). However, there is currently no 
effective tool for rapidly predicting the occurrence of nosocomial 
pneumonia in ICU patients with ABI. This study aims to collect 
factors related to the occurrence of nosocomial pneumonia in 
neurosurgical ICU patients with ABI through retrospective analysis, 
and ultimately construct a predictive model for nosocomial 
pneumonia in ICU patients with ABI.

Materials and methods

Study setting

The patients admitted to the Neurosurgery Departments of 
Jiangsu Provincial People’s Hospital and Benq Hospital from January 
1, 2020, to December 31, 2021 were selected as the training set. To 
validate the model’s generalization ability, patients from three 
healthcare systems, including Suqian First People’s Hospital, Nanjing 
Jiangning Hospital, and Jiangsu Provincial People’s Hospital, were 
selected as the external validation set. This study obtained approval 
from the Institutional Review Board of the research center. Given the 
retrospective design of this study, the requirement for obtaining 

informed consent from patients was waived. This study was reported 
in accordance with the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) 
reporting guideline (18).

Inclusion and exclusion criteria

Patients were included if they met the following criteria: (1) aged 
between 18 and 80 years old; (2) admitted to the Neurosurgery ICU 
with ABI, including cerebral hemorrhage, trauma, vascular disease, or 
tumor; (3) hospital stay longer than 48 h; (4) received standard 
treatment during hospitalization, including surgical and conservative 
treatment. Patients with the following characteristics were excluded: 
(1) occurrence of pulmonary infection within 48 h of ICU admission 
or hospitalization; (2) patients who did not receive standardized 
postoperative treatment; (3) patients with immunodeficiency diseases; 
(4) patients with severe chronic heart, lung, kidney, or other organ 
diseases. Severe chronic heart disease included end-stage heart failure, 
severe cardiomyopathies, and complex congenital heart diseases that 
demand continuous medical support and substantially affect the 
patient’s physiological function and prognosis; (5) patients with 
concomitant malignant tumors in other organs; (6) patients for whom 
data were unavailable.

Data collection

Collect demographic characteristics, vital signs, ventilator 
parameters, sputum culture results, blood test results, imaging 
findings, treatment, and prognosis data from the hospital electronic 
medical record system for ICU patients with acute brain injury, 
encompassing 61 dimensions. Nosocomial infections are defined as 
those that occur more than 48 h after hospital admission, and the 
diagnosed pneumonia based on clinical presentation, blood-related 
examinations, vital signs, radiological examinations, and 
sputum culture.

Statistical analysis

We used SPSS 26.0 and Python 3.7 for data analysis. Data cleaning 
was performed, including the removal of variables not included in the 
statistical analysis, missing values (with a missing rate exceeding 80%), 
and continuous values containing character groups. Subsequently, 
duplicate data entries were removed, and the cleaned data were 
exported. For variables with a missing rate of less than 80%, we used 
the Multivariate Imputation by Chained Equations (MICE) algorithm 
for imputation. MICE is a multiple imputation method that iteratively 
models each variable with missing values as a function of the other 
variables in the dataset. This approach allows us to capture the 
complex relationships between variables, which is essential in our 
medical dataset. By using MICE, we aimed to generate more accurate 
imputations and preserve the data’s underlying structure. After 
imputation, the dataset was further processed for subsequent analysis. 
The training set were randomly divided into training subset and 
internal validation subset at a ratio of 7:3. Out of the total 280 patients, 
196 patients were assigned to the training set, and 84 patients were 
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included in the validation set. Continuous variables that followed a 
normal distribution were presented as mean ± standard deviation, 
while those not following a normal distribution were presented as 
median and interquartile range. Categorical variables were presented 
as counts and proportions. Independent sample t-tests were used to 
compare normally distributed continuous variables, Mann–Whitney 
U tests were used for non-normally distributed continuous variables, 
and chi-square tests were used for comparisons between categorical 
variables. A p-value <0.05 was considered statistically significant.

Subsequently, the selected variables were used to build seven 
machine learning models, including the XGBoost model, DecisionTree 
model, Random Forest model, Light GBM model, Adaptive Boost 
model, BP model, and TabNet model. Selecting these models owing 
to their unique advantages in handling complex non-linear 
relationships within medical data. Ensemble models are well-equipped 
to capture interactions among multiple variables, which is crucial 
when predicting nosocomial pneumonia in ICU patients with 
ABI. Receiver operating characteristic (ROC) curves were plotted, and 
the area under the curve (AUC) was calculated. Furthermore, the 
performance of each model was evaluated by comparing their 
accuracy, precision, recall, and F1-score on both the internal validation 
subset and external validation set.

SPSS 26.0 was employed for initial data exploration and basic 
statistical tests, while Python 3.7 was used for data cleaning, machine-
learning model construction, and performance evaluation. The pandas 
library in Python was crucial for data manipulation tasks. For building 
the machine-learning models, we relied on several libraries. The scikit-
learn library was extensively used. The XGBoost model was 
implemented using the xgboost library, which offers efficient 

algorithms for gradient-boosting. The DecisionTree model was built 
using the DecisionTreeClassifier class from scikit-learn, and the 
Random Forest model was created using the RandomForestClassifier 
class in the same library. The Adaptive Boost model was implemented 
using the AdaBoostClassifier class from scikit-learn. The Light GBM 
model was built with the lightgbm library. The BP model was 
implemented using the Keras library, which is a high-level neural 
network API running on top of TensorFlow. The TabNet model was 
created using the pytorch-tabnet library designed for tabular data. For 
performance evaluation, functions from scikit-learn were used to 
assess performance evaluation.

Results

This study included a total of 280 ABI patients, and the baseline 
characteristics of the patients are shown in Table  1. A total of 67 
patients with nosocomial pneumonia, while the remaining 213 
patients without nosocomial pneumonia. There were no significant 
differences between groups for age (p = 0.899), sex (p = 0.176), history 
of heart disease (p = 0.208), and patients received chemotherapy or 
immunosuppressive therapies (p = 0.074). However, we  noted 
significant differences between groups for smoking history (p = 0.046), 
diabetes (p < 0.001), and stroke history (p = 0.012).

A total of 2,953 data points were collected from 280 patients, 
including 24 qualitative features and 35 quantitative features 
(Appendix). Fifty-nine variables were analyzed through correlation 
heatmap analysis and random forest-based feature selection. The most 
significant predictors were subsequently entered into multiple logistic 

TABLE 1 The baseline characteristics of included patients.

Variables Nosocomial pneumonia P-value

Yes (n = 67) No (n = 213)

Age 60.15 52.16 0.899

Sex (%) 0.176

  Male 44 158

  Female 23 55

Smoking history 0.046

  Yes 16 79

  No 51 134

Diabetes <0.001

  Yes 14 12

  No 53 201

Heart disease 0.208

  Yes 5 8

  No 62 205

Stroke 0.012

  Yes 8 8

  No 59 205

Chemotherapy or immunosuppressive therapies 0.074

  Yes 1 0

  No 66 213
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regression modeling. Pearson correlation heatmap analysis was used 
for correlation analysis, revealing that the duration of tracheostomy 
was the most significant associated factor for pneumonia occurrence 
in ABI patients (Figure  1). In addition, the results of the Light 
Gradient Boosting Machine algorithm showed that the top  20 
important indicators were tracheostomy duration, duration of 

antibiotic use, blood sugar, age, duration of mechanical ventilation, 
CRP, GCS score, body temperature, lymphocyte percentage, 
lymphocyte count, gastric tube, albumin, PPi, intraoperative 
hypothermia, total protein, erythrocyte count, average hemoglobin 
concentration, hematocrit, operation time, and mean corpuscular 
volume (Figure 2).

FIGURE 1

Pearson correlation heatmap between variable.

FIGURE 2

Variable importance of features included in the machine learning algorithm for prediction of nosocomial pneumonia in ABI patients.
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Through the cross-validation accuracy curve, it can be observed that 
when the number of features is 5. It should be noted that while the 
out-of-Bag (OOB) error score was relatively high at this point, our 
objective was to find the optimal number of features for overall model 
performance. The OOB error is just one of the many factors to consider. 
By examining the OOB error in combination with other performance 
metrics such as accuracy, precision, recall, F1-score, and AUC, we aimed 
to select a feature set that would provide the best generalization and 
predictive ability for the model. A slightly higher OOB error might 
be tolerated if the model shows superior performance in other aspects, 
which is crucial for practical application in predicting nosocomial 
pneumonia in ICU patients with ABI. Employing a stepwise method, 
with 5 features including tracheostomy time, duration of antibiotic use, 
blood sugar level, duration of mechanical ventilation, and CRP were 
applied to establish prediction model (Figure  3). Among the seven 
machine-learning algorithms evaluated, the XGBoost and Light GBM 
models demonstrated relatively high AUC values, indicating their strong 
discriminatory power in predicting nosocomial pneumonia in ICU 
patients with ABI (Table 2 and Figure 4). The external validation set 
found XGBoost showed highest precision (0.96), while Random Forest 
and Adaptive Boost models showed highest Light GBM (AUC: 0.883) 
(Table 2 and Figure 5). These high-performing models based on AUC 
values can potentially play a crucial role in clinical decision-making. A 
model with a high AUC can assist clinicians in early identification of 
patients at high risk of nosocomial pneumonia, enabling timely 
intervention and potentially improving patient outcomes.

Model visualization

Leveraging an XGBoost-based diagnostic model, our data 
platform conducts daily predictions of infection risk (Figure 6). 

Although we cannot provide a direct link to the platform due to 
privacy and security reasons, the platform functions in a manner 
similar to the interactive capabilities of the ‘shiny’ package in R 
software. Users input the five key parameters: tracheostomy time, 
duration of antibiotic use, blood glucose levels, the length of time 
on ventilator support, and the CRP value. The platform then 
processes these inputs using the underlying XGBoost-based 
algorithm. The output is presented in a dynamic way. A pie chart 
shows the real – time distribution of incidence probabilities, giving 
users an immediate understanding of the patient’s risk status. 
Additionally, a trend chart is available for each patient, which can 
be used to track the progression of the predicted risk over time. 
This visualization aims to assist clinicians in making more 
informed decisions regarding patient care.

Discussion

Currently, clinicians typically rely on clinical, radiological, 
and laboratory indicators to diagnose pneumonia and initiate 
empirical antibiotic therapy (19). However, early pneumonia is 
insensitive, radiological radiation causes some harm to patients, 
and clinical diagnosis of pathogenic microorganisms has some lag. 
Existing scoring systems do not cover all individual factors of 
patients and have low accuracy. Considering the impracticality of 
existing prediction models and the flexibility of machine learning 
methods in selecting predictive variables and transformation 
algorithms. This study employed machine learning to construct a 
predictive model for nosocomial pneumonia infection in ABI 
patients in the ICU. The study included 280 patients from multiple 
hospitals for model construction and validation. The results 
revealed that among the machine learning models constructed 

FIGURE 3

Accuracy chart of out-of-pocket data.
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based on tracheostomy time, duration of antibiotic use, blood 
sugar level, duration of mechanical ventilation, and CRP, the 
XGBoost model exhibited the best overall performance. It 
achieved a precision of 98% and an AUC of 95.6% in predicting 
postoperative pneumonia in ABI patients. Similarly, in the 

external validation set, we observed the highest precision with the 
XGBoost model.

Several studies have already constructed a prediction model for 
pneumonia in patients with brain injury using a machine learning 
approach (20, 21). Zheng et  al. (20) identified 468 patients with 
spontaneous intracerebral hemorrhage (sICH) and identified six 
independent variables, including nasogastric feeding, airway support, 
unconscious onset, surgery for external ventricular drainage, larger 
sICH volume, and ICU stay, and the prediction model constructed 
based on these variables could effectively predict stroke-associated 
pneumonia in patients with sICH. Lee et  al. (21) identified 5,754 
hospitalized stroke patients, and found random survival forest model 
showed superior discriminative ability for predicting post-stroke 
pneumonia. However, there are currently no studies that have 
constructed predictive models for nosocomial pneumonia infection 
in ABI populations in the ICU. Therefore, we adopted a machine 
learning approach to construct a predictive model for nosocomial 
pneumonia infection in ABI populations in the ICU, which can 
manage missing information without the need for imputation or 
preprocessing and has strong clinical applicability.

To further evaluate the performance of our proposed machine-
learning models, we compared them with existing clinical tools, namely 
CPIS, A2DS2, and AIS-APS scores. With a cut-off value of CPIS ≥ 3, in 
critically ill patients, the AUC of CPIS for predicting ventilator-associated 
pneumonia was found to be 59% (22). The AUC of the A2DS2 model for 
predicting stroke-associated pneumonia was 85% (23). At the same time, 
the AUC of the AIS-APS score for predicting ischemic stroke-associated 
pneumonia was 87% (24). The optimal model constructed in this study 
had a higher AUC than the previous prediction models in both the 
training set and the validation set, highlighting the potential advantages 
of our machine-learning-based approach in predicting nosocomial 
pneumonia in ICU patients with ABI.

The constructed prediction model based on tracheostomy time, 
duration of antibiotic use, blood sugar level, duration of mechanical 
ventilation, and CRP showed high predictive performance. The 
potential reasons for this could explained by: (1) long-term 
endotracheal intubation and mechanical ventilation may lead to 
respiratory mucosal injury and inflammatory responses, thereby 
affecting local immune function, weakening the clearance ability 
against pathogenic microorganisms, and increasing the likelihood of 
infection occurrence (25); (2) long-term use of antibiotics may lead to 
bacterial resistance to drugs and cause a series of adverse reactions, 
such as disruption of intestinal flora balance, liver and kidney damage, 

TABLE 2 The predictive performance among the constructed models.

Algorithmic Training set Validation set

Precision Recall 
rate

F1-score AUC Precision Recall 
rate

F1-score AUC

XGBoost 0.98 0.96 0.97 0.956 0.96 0.96 0.96 0.820

Decision tree 0.91 0.88 0.89 0.878 0.92 0.92 0.92 0.700

Random Forest 0.96 0.92 0.94 0.918 0.94 0.94 0.94 0.883

Light GBM 0.98 0.95 0.96 0.950 0.95 0.95 0.96 0.758

Adaptive Boost 0.96 0.91 0.93 0.913 0.93 0.93 0.93 0.883

BP network 0.86 0.81 0.83 0.815 0.84 0.84 0.85 0.758

TabNet 0.90 0.84 0.86 0.841 0.88 0.88 0.89 0.674

FIGURE 4

Receiver operating characteristic (ROC) curve and AUC among the 7 
algorithm models.

FIGURE 5

Receiver operating characteristic curve and AUC among the external 
validation set.
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thereby increasing the risk of infection (26); (3) high blood sugar may 
lead to immune suppression and exacerbate inflammation, which can 
reduce the body’s ability to clear pathogens, trigger the release of 
inflammatory mediators, increase inflammation in lung tissues, and 
thus provide an optimal environment for bacterial infection (27); (4) 
various factors related to mechanical ventilation, such as positive 
end-expiratory pressure (PEEP), tidal volume, and FiO2 levels, can 
contribute to lung injury and inflammation, further predisposing 
patients to ventilator-associated pneumonia (28); and (5) elevated 
levels of CRP often reflect the inflammatory status of the body. The 
exacerbation of pulmonary inflammation may lead to tissue damage 
in the lungs and provide a favorable environment for the growth of 
pathogenic microorganisms, thereby increasing the risk of nosocomial 
pneumonia (29).

The results of this study found that the XGBoost model had the 
best performance in predicting nosocomial pneumonia infection 
among ABI patients in the ICU. The XGBoost model is commonly 
used for data mining. It is less prone to overfitting on limited datasets 
and has lower processing requirements compared to deep learning 
methods, yet it performs well under various variable conditions (30). 
Compared to deep learning models, our study objectives and dataset 
do not require the extraction of larger datasets. This also explains why 
the XGBoost model is most suitable. Combining the results of this 
study, a data platform based on the XGBoost diagnostic model can 
be  constructed. Patient basic information, along with parameters 
including tracheostomy time, duration of antibiotic use, blood sugar 
level, duration of mechanical ventilation, and CRP, are input into the 
platform card. Through the platform calling the algorithm interface, 
diagnostic results can be  displayed on the platform, showing the 
probability of occurrence in real-time, making the diagnosis more 
intuitive and better guiding clinical treatment.

Several shortcoming of this study should be mentioned. Firstly, 
this study was retrospectively designed, and the research results 
may be affected by recall bias and confounding bias. Secondly, the 
definition of nosocomial pneumonia varies across different research 

centers, which may affect the predictive ability of the constructed 
prediction models. Thirdly, not all variables are balanced across all 
research centers, which may introduce bias into the results. 
Although consistent results were obtained based on these 
unbalanced variables, the impact of heterogeneity should not 
be underestimated.

Conclusion

This study derived a predictive model for nosocomial pneumonia 
infection in ICU patients with ABI using machine learning techniques 
from multiple centers, and conducted multiple validations to obtain 
effective and robust confirmation. The results indicate that machine 
learning-based models can more accurately predict the risk of 
nosocomial pneumonia infection in ICU patients with ABI, aiding in 
the early identification and intervention of nosocomial pneumonia 
infection. It should be noted that our study has limitations related to 
the relatively small dataset size in the context of having over 50 
variables. A small dataset may increase the risk of overfitting, as the 
machine-learning models may adapt too closely to the specific features 
of this limited sample, leading to poor generalization to new data. 
Moreover, it may not fully represent the entire spectrum of variability 
in the population of ICU patients with ABI, thus potentially limiting 
the generalizability of our findings. To address these limitations, future 
research could consider expanding the sample size. Multi-center 
studies could be conducted to gather a larger and more heterogeneous 
dataset, which would likely improve the stability and generalizability 
of the predictive models.
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FIGURE 6

The diagnosis model of XGBoost is used to predict the infection risk.
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