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Editorial on the Research Topic

Neuro-detection: advancements in pattern detection and segmentation

techniques in neuroscience

In recent years, the intersection of artificial intelligence (AI), deep learning,

and neuroimaging has created transformative opportunities in the early diagnosis,

classification, and treatment planning of neurological disorders and brain tumors. This

Research Topic, Neuro-detection: Advancements in Pattern Detection and Segmentation

Techniques in Neuroscience, presents a collection of nine high-quality studies that illustrate

the growing impact of machine learning-driven methods in advancing medical diagnostics

and understanding complex neurobiological conditions. The collection explores how

AI techniques, particularly deep neural networks, explainable AI (XAI), unsupervised

learning, and ensemble models, can be effectively applied to tasks such as interpreting

complex medical imaging data, uncovering subtle biomarkers, and supporting clinical

decision-making. Each contribution not only advances methodological concepts but also

demonstrates the applicability and generalizability of these techniques in real-world

diagnostic scenarios.

Brain tumor classification and segmentation remains a particularly challenging

problem due to tumor heterogeneity, imaging variability, and anatomical differences across

patients. Several contributions address these challenges with state-of-the-art approaches.

One study proposes an ensemble model combining Vision Transformers (ViT) and

EfficientNet-V2, optimized via a genetic algorithm-based weighted strategy. This hybrid

system captures both local and global MRI features, outperforming individual models

with 95% classification accuracy. In this contribution, Gasmi et al., demonstrate that such

synergistic model integration can address multi-class medical classification problems with

potential applicability beyond neuro-oncology.

Kiran et al., introduce a binary convolutional neural network (BCNN) for segmenting

the ten most common brain tumor types, supported by a new dataset of 6,600 MRI images.

Using adaptive thresholding and advanced morphological operations, the BCNN achieved

99.40% accuracy and a 99.28% F1-score, excelling at differentiating tumor grades and types.

Another contribution, by Albalawi et al., presents a multi-task CNN architecture capable of

simultaneously detecting tumors, classifying them by type and grade, and localizing them.
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Trained on over 7,000MRI images across four categories, themodel

achieved 99% overall accuracy, making it a promising candidate for

integration into clinical workflows.

Beyond supervised segmentation, Arora et al., propose an

unsupervised “unruly clustering” method based on integrated

intuitionistic fuzzy logic with conditional spatial properties.

By incorporating hesitation degrees and conditional spatial

functions, the approach adapts to local image context, improving

segmentation robustness in noisy or low-contrast conditions.

Similarly, Iqbal et al., bridge handcrafted statistical radiomic

features with deep spatial representations from a ResNet-

inspired architecture. Their custom Fusion Net preserves critical

information from both domains, reaching 97.53% accuracy and

97.77% precision on the Brains dataset, underscoring the benefits

of combining engineered and learned features for complex

classification tasks.

Moreover, AI applications in neurodegenerative disease

diagnosis extend these innovations beyond oncology to conditions

like Alzheimer’s disease (AD) and Parkinson’s disease (PD), where

early detection can substantially influence patient outcomes. In AD,

graph-based modeling has emerged as a powerful paradigm for

capturing the complex interplay between brain regions. Alharbi

et al., introduce a spectral graph Convolutional Neural Network

(SGCNN) that represents MRI-derived brain connectivity as a

graph, enabling the model to learn topological and spectral

patterns linked to disease progression. Through targeted ablation

experiments, they improved classification performance to 95%,

outperforming conventional CNNs and confirming that graph-

based architectures are well suited for mapping the connectivity

disruptions and structural atrophy patterns characteristic of AD.

Building on this connectivity focus, Biswas and Sripada shift

from associative to causal brain network analysis, introducing

Causal Functional Connectivity (CFC) as a richer and potentially

more prognostic biomarker. Using resting-state fMRI data from

the Alzheimer’s Disease Neuroimaging Initiative, they applied the

Time-aware PC (TPC) algorithm—a directed graphical modeling

method tailored for time series—to compute whole-brain causal

connectomes for cognitively normal, mild cognitive impairment,

and AD groups. Compared to Granger Causality and Sparse Partial

Correlation approaches, TPC produced sparse, interpretable,

and directionally meaningful maps that aligned with known

connectivity patterns while revealing contemporaneous and

directional influences often missed by standard methods. Edge-

wise statistical analysis highlighted reduced causal influence from

Heschl’s gyrus, thalamus, and posterior cingulate cortex, alongside

increased self-connections in the parahippocampal gyrus—

alterations consistent with more than 30 prior neuroimaging

studies. These findings capture both the loss of key network hubs

and the emergence of compensatory hyperconnectivity during

early disease stages, positioning TPC-based CFC analysis as a

valuable complement to graph-based classifiers like SGCNN in

early AD detection.

While AD studies highlight the role of connectivity modeling,

PD research in this Research Topic demonstrates the potential

of alternative, non-imaging biomarkers. Kim et al., present a

voice-based diagnostic framework using self-supervised deep

representation pattern learning (SS-DRPL), which learns micro-

temporal and frequency features from unlabelled voice recordings.

Combined with LSTM-RNN and DNN architectures, the model

achieved an F1-score of 0.94, showing the promise of accessible,

non-invasive diagnostic tools.

Another PD-focused study by Alharthi applies XAI techniques,

particularly layer-wise relevance propagation (LRP), to neural

network models trained on gait sensor data from Parkinson’s and

cognitively impaired individuals. The approach not only achieved

a 98% F1-score on PD datasets and up to 90% ± 10% on

healthy individuals under dual-task conditions, but also provided

interpretable insights into how specific gait features influence

predictions. Such transparency strengthens clinician trust and

enables better understanding of how neurological deterioration

manifests in motor patterns.

Together, these contributions present a coherent picture of

progress at the intersection of deep learning, neuroimaging,

and medical diagnostics. Across both tumor detection and

neurodegenerative disease diagnosis, common themes emerge:

integrating multi-modal and hybrid feature sets strengthens model

performance; graph-based and causal network modeling open

new frontiers for understanding disease mechanisms; and XAI

techniques enhance transparency, paving the way for clinical

adoption. The diversity of datasets, modalities, and analytic

strategies showcased here demonstrates both the adaptability of AI

methods to different neurological conditions and their potential to

transform diagnostic practice in the years ahead.

Author contributions

NB: Formal analysis, Methodology, Project administration,

Supervision, Validation, Writing – original draft, Writing – review

& editing. SA: Formal analysis, Investigation, Methodology,

Validation, Writing – review & editing. RE: Formal analysis,

Investigation, Methodology, Validation, Writing – review

& editing.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Any alternative text (alt text) provided alongside figures in

this article has been generated by Frontiers with the support of

artificial intelligence and reasonable efforts have been made to

ensure accuracy, including review by the authors wherever possible.

If you identify any issues, please contact us.

Frontiers inComputationalNeuroscience 02 frontiersin.org5

https://doi.org/10.3389/fncom.2025.1685174
https://doi.org/10.3389/fncom.2024.1425008
https://doi.org/10.3389/fncom.2024.1423051
https://doi.org/10.3389/fninf.2024.1495571
https://doi.org/10.3389/fncom.2023.1251301
https://doi.org/10.3389/fncom.2024.1414462
https://doi.org/10.3389/fninf.2024.1451529
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Ben Aoun et al. 10.3389/fncom.2025.1685174

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inComputationalNeuroscience 03 frontiersin.org6

https://doi.org/10.3389/fncom.2025.1685174
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 19 December 2023

DOI 10.3389/fncom.2023.1251301

OPEN ACCESS

EDITED BY

Junwei Duan,

Jinan University, China

REVIEWED BY

Junwei Jin,

Henan University of Technology, China

Lin Wang,

Chinese Academy of Sciences (CAS), China

Qiang Lin,

Sun Yat-sen University, China

*CORRESPONDENCE

Rahul Biswas

rbiswas1@uw.edu

RECEIVED 01 July 2023

ACCEPTED 28 November 2023

PUBLISHED 19 December 2023

CITATION

Biswas R and Sripada S (2023) Causal functional

connectivity in Alzheimer’s disease computed

from time series fMRI data.

Front. Comput. Neurosci. 17:1251301.

doi: 10.3389/fncom.2023.1251301

COPYRIGHT

© 2023 Biswas and Sripada. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Causal functional connectivity in
Alzheimer’s disease computed
from time series fMRI data

Rahul Biswas1* and SuryaNarayana Sripada2

1Department of Electrical and Computer Engineering, University of Washington, Seattle, WA,

United States, 2Center for Research on Science and Consciousness, Redmond, WA, United States

Functional connectivity between brain regions is known to be altered in

Alzheimer’s disease and promises to be a biomarker for early diagnosis.

Several approaches for functional connectivity obtain an un-directed network

representing stochastic associations (correlations) between brain regions.

However, association does not necessarily imply causation. In contrast, Causal

Functional Connectivity (CFC) is more informative, providing a directed network

representing causal relationships between brain regions. In this paper, we

obtained the causal functional connectome for the whole brain from resting-state

functional magnetic resonance imaging (rs-fMRI) recordings of subjects from

three clinical groups: cognitively normal, mild cognitive impairment, and

Alzheimer’s disease. We applied the recently developed Time-aware PC (TPC)

algorithm to infer the causal functional connectome for the whole brain. TPC

supports model-free estimation of whole brain CFC based on directed graphical

modeling in a time series setting. We compared the CFC outcome of TPCwith that

of other related approaches in the literature. Then, we used the CFC outcomes of

TPC and performed an exploratory analysis of the di�erence in strengths of CFC

edges between Alzheimer’s and cognitively normal groups, based on edge-wise

p-values obtained by Welch’s t-test. The brain regions thus identified are found to

be in agreement with literature on brain regions impacted by Alzheimer’s disease,

published by researchers from clinical/medical institutions.

KEYWORDS

causal inference, functional connectivity, brain mapping, directed graphical modeling,

Alzheimer’s disease, functional magnetic resonance imaging

1 Introduction

Alzheimer’s disease (AD) is the most common age-related progressive

neurodegenerative disorder. It typically begins with a preclinical phase and advances

through mild cognitive impairment (MCI) to clinically significant AD, a form of dementia

(Querfurth and LaFerla, 2010). Despite substantial efforts to identify biomarkers for AD, it

still relies on clinical diagnosis, and early and accurate disease prediction remains limited

(Laske et al., 2015; Li et al., 2019). Abnormal resting-state functional connectivity (FC)

between brain regions has been observed as early as two decades before brain atrophy and

the emergence of AD symptoms (Ashraf et al., 2015; Nakamura et al., 2017). Therefore,

resting-state FC can potentially determine the relative risk of developing AD (Sheline and

Raichle, 2013; Brier et al., 2014).

Resting-state functional magnetic resonance imaging (rs-fMRI) records the blood-

oxygen-level-dependent (BOLD) signals from different brain regions while individuals are

awake and not engaged in any specific task. The BOLD signal is popularly used to infer FC

between brain regions partly due to the advantage that BOLD signal provides high spatial

resolution (Yamasaki et al., 2012; Sporns, 2013; Liu et al., 2015; Xue et al., 2019).
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FC refers to the stochastic relationship between brain regions

with respect to their activity over time. Popularly, FC involves

measuring the statistical association between signals from different

brain regions. The statistical association measures are either

pairwise associations between pairs of brain regions, such as

Pearson’s correlation, or multivariate i.e., incorporating multi-

regional interactions such as undirected graphical models (Biswas

and Shlizerman, 2022a). Detailed technical explanations of FC in

fMRI can be found in Chen et al. (2017), Keilholz et al. (2017),

and Scarapicchia et al. (2018). The findings from studies using FC

(Wang et al., 2007; Kim et al., 2016), and meta-analyses (Jacobs

et al., 2013; Li et al., 2015; Badhwar et al., 2017) indicate a

decrease in connectivity in several brain regions with AD, such

as the posterior cingulate cortex and hippocampus. These regions

play a role in attentional processing and memory. On the other

hand, some studies have found an increase in connectivity within

brain regions in the early stages of AD and MCI (Gour et al.,

2014; Bozzali et al., 2015; Hillary and Grafman, 2017). Such an

increase in connectivity is a well known phenomenon that occurs

when the communication between other brain regions is impaired.

Such hyperconnectivity has been interpreted as a compensatory

mechanism where alternative paths within the brain’s network are

recruited (Hillary and Grafman, 2017; Oldham and Fornito, 2019;

Marek and Dosenbach, 2022).

In contrast to Associative FC (AFC), Causal FC (CFC)

represents functional connectivity between brain regions more

informatively by a directed graph, with nodes as the brain regions,

directed edges between nodes indicating causal relationships

between the brain regions, and weights of the directed edges

quantifying the strength of the corresponding causal relationship

(Spirtes et al., 2000). However, functional connectomics studies in

general, and those concerning fMRI from AD in particular, have

predominantly used associative measures of FC (Reid et al., 2019).

There are a few studies that deal with comparing broad hypotheses

of alteration within the CFC in AD (Rytsar et al., 2011; Khatri

et al., 2021). However, this area is largely unexplored, partly due

to the lack of methods that can infer CFC in a desirable manner, as

explained next.

Several properties are desirable in the context of causal

modeling of FC (Smith et al., 2011; Biswas and Shlizerman,

2022a). Specifically, the CFC should represent causality while

free of limiting assumptions such as linearity of interactions.

In addition, since the activity of brain regions are related over

time, such temporal relationships should be incorporated in

defining causal relationships in neural activity. The estimation

of CFC should be computationally feasible for the whole brain

FC instead of limiting it to a smaller brain network. It is also

desirable to capture beyond-pairwise multi-regional cause-and-

effect interactions between brain regions. Furthermore, since the

BOLD signal occurs and is sampled at a temporal resolution that

is far slower than the neuronal activity, thereby causal effects

often appear as contemporaneous (Granger, 1969; Smith et al.,

2011). Therefore, the causal model in fMRI data should support

contemporaneous interactions between brain regions.

Among the methods for finding CFC, Dynamic Causal Model

(DCM) requires a mechanistic biological model and compares

different model hypotheses based on evidence from data, and is

unsuitable for estimating the CFC of the whole brain (Friston et al.,

2003; Smith et al., 2011). On the other hand, Granger Causality

(GC) typically assumes a vector auto-regressive linear model for the

activity of brain regions over time, and it tells whether a regions’s

past is predictive of another’s future (Granger, 2001). Furthermore,

GC does not include contemporaneous interactions. This is a

drawback since fMRI data often consists of contemporaneous

interactions (Smith et al., 2011). In contrast, Directed Graphical

Modeling (DGM) has the advantage that it does not require

the specification of a parametric equation of the neural activity

over time, it is predictive of the consequence of interventions,

and supports estimation of whole brain CFC. Furthermore, the

approach inherently goes beyond pairwise interactions to include

multi-regional interactions between brain regions and estimating

the cause and effect of such interactions. The Time-aware PC

(TPC) algorithm is a recent method for computing the CFC

based on DGM in a time series setting (Biswas and Shlizerman,

2022b). In addition, TPC also accommodates contemporaneous

interactions among brain regions. A detailed comparative analysis

of approaches to find CFC is provided in Biswas and Shlizerman

(2022a,b). With the development of methodologies such as TPC,

it would be possible to infer the whole brain CFC with the

aforementioned desirable properties.

In this paper, we apply the TPC algorithm to infer the CFC

between brain regions from resting-state fMRI data. The TPC

algorithm estimates the subject-specific CFC for each subject from

their fMRI data. We compare the CFC outcome of TPC with GC

and Sparse Partial Correlation (SPC), which are approaches to find

the CFC and AFC, respectively. We then use the CFC outcome

of TPC to investigate the alteration of CFC in AD. In this regard,

we conducted an exploratory analysis for the difference in strength

of causal connections in AD compared to CN subjects (and MCI

compared to CN subjects), based on their edge-wise p-values given

by Welch’s t-test. We reported the resulting CFC edges with lowest

edge-wise p-values for altered connectivity in AD compared to CN

subjects and their corresponding brain regions. The brain regions

identified in those analyses are consistent with published literature

on regions impacted by AD, with each such publication being a

report from a team involving a clinical setting and at least one

medical expert, thereby validating the approach.

2 Materials and methods

2.1 Participants

The resting fMRI and demographic data were downloaded

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI;

http://adni.loni.usc.edu/). A total of 129 subjects were included in

the study: 41 subjects who are CN, 54 subjects with MCI, and 34

subjects with AD.

Table 1 includes a summary of the participants’ demographic

and medical information. In the experiments, the subjects

with AD presented significantly lower scores in the screening

assessment cognitive test Mini-Mental State Examination (MMSE)
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TABLE 1 Summary of demographic information and Mini Mental State

Examination (MMSE) for CN, MCI and AD subjects.

Characteristic CN MCI AD p

Number of subjects 41 54 34 –

Sex (M/F) 19/22 29/26 16/18 0.16

Age (years) 74.9± 6.4 74.2± 7.1 74.4± 7.4 0.86

Education (years) 16.5± 2.3 15.7± 2.6 15.4± 2.5 0.22

MMSE 29.1± 1.4 27.8± 1.9 21.9± 4.2 <10−14

The second to fourth columns present group characteristics, mean ± SD. The fifth column

presents p-values for the statistical significance of the inter-group differences. Differences in

Sex was assessed using a Chi-Squared test and differences in Age, Education andMMSE using

non-parametric analysis of variance by Kruskal–Wallis test.

in comparison with the other groups. The subjects were age-

matched (Kruskal–Wallis test: p > 0.8), gender-matched (Chi-

Squared test: p > 0.1), and matching number of years of education

(Kruskal–Wallis test: p > 0.2). As expected, MMSE scores had a

significant difference between all pairs of groups (Kruskal–Wallis

test: p < 10−14).

2.2 Image acquisition

The acquisition of fMRI images was performed using Philips

Medical Systems scanner. The fMRI images were obtained using an

echo planar imaging sequence at a field strength of 3.0 Tesla, with

a repetition time (TR) of 3 s, an echo time (TE) of 30 ms, and a

flip angle of 80 degrees. The matrix size was 64 × 64 pixels, 140

volumes, 48 slices per volume, slice thickness of 3.3 mm, and voxel

size of 3.3× 3.3× 3.3 mm3.

2.3 fMRI preprocessing

The fMRI pre-processing steps were carried out using the

CONN toolbox version 21a, which utilizes the Statistical Parametric

Mapping (SPM12), both of which are MATLAB-based cross-

platform software (Friston et al., 1994; Nieto-Castanon and

Whitfield-Gabrieli, 2021). We used the default pre-processing

pipeline in CONN, consisting of the following steps in order:

functional realignment and unwarp (subject motion estimation

and correction), functional centering to (0, 0, 0) coordinates

(translation), slice-time correction with interleaved slice order,

outlier identification using Artifact Detection and Removal Tool,

segmentation into gray matter, white matter and cerebrospinal

fluid tissue, and direct normalization into standard Montreal

Neurological Institute (MNI) brain space, and lastly, smoothing

using spatial convolution with a Gaussian kernel of 8 mm full-

width half maximum. This pipeline was followed by detrending and

bandpass filtering (0.001–0.1 Hz) to remove low-frequency scanner

drift and physiological noise in the fMRI images. The first four time

points have been filtered out to remove any artifacts.

For the extraction of Regions-Of-Interest (ROIs), the

automated anatomical labeling (AAL) atlas was utilized on

the pre-processed rs-fMRI dataset (Tzourio-Mazoyer et al.,

2002). The list of all regions in the AAL atlas is provided in

Supplementary material along with their abbreviated, short, and

full region names. This parcellation method has been demonstrated

to be optimal for studying the FC between brain regions (Arslan

et al., 2018). The voxels within each ROI were averaged, resulting

in a time series for each ROI.

2.4 Inference of causal functional
connectivity: Time-aware PC algorithm

The TPC Algorithm finds CFC between brain regions from

time series based on DGM (Spirtes et al., 2000; Pearl, 2009;

Biswas and Mukherjee, 2022; Biswas and Shlizerman, 2022a,b).

While traditional DGM applies to static data, TPC extends the

applicability of DGM to CFC inference in time series by first

implementing the Directed Markov Property to model causal

spatial and temporal interactions in the time series by an unrolled

Directed Acyclic Graph (DAG) of the time series. The unrolled

DAG consists of nodes (v, t), for region of interest v and time t,

and edge (v1, t1) → (v2, t2) reflecting causal interaction from the

BOLD signal in region v1 at time t1 to the BOLD signal in region

v2 at time t2. The estimation of the unrolled DAG is carried out

by first transforming the time series into sequential variables with

a maximum time delay of interaction τ and then applying the

Peter-Clark (PC) algorithm to infer the unrolled DAG based on

the sequential variables (Kalisch and Bühlman, 2007). TPC then

rolls the DAG back to obtain the CFC graph between the regions

of interest (see Figure 1) (Biswas and Shlizerman, 2022b). We

consider τ = 1 for our analyses, which would include interactions

of the BOLD signal between regions of interest with a maximum

time delay of 3 s, the TR of the fMRI acquisition. The Python

package TimeAwarePC is used for implementation (Biswas and

Shlizerman, 2022b).

The CFC outcome of this methodology is interpretable in the

following manner: An edge from region i → j in the CFC estimate

represents significant causal interaction from brain region i at

preceding times to region j at following times. The model and the

approach are non-parametric, meaning that it does not require the

specification of a parametric dynamical equation for neural activity.

The method captures beyond-pairwise multivariate interactions

between brain regions. It also supports the estimation of the CFC

for the whole brain in a computationally feasible manner. It also

allows for time delays in interactions between the brain units and

the presence of feedback loops. Furthermore, it has been shown

that if the neural activity obeys an arbitrary dynamical process,

the model outcome of TPC is consistent with respect to the causal

relationships implied by the dynamical process and is predictive of

counterfactual queries such as ablation or modulation (Biswas and

Shlizerman, 2022b).

It is noteworthy that implementing the Directed Markov

Property on the unrolled DAG to model causal relationships

over time enables contemporaneous interactions e.g., from region

u to region v at time t (Biswas and Shlizerman, 2022b). Such

contemporaneous interactions are represented by the edge (u, t) →

(v, t) in the unrolled DAG, and the presence of such an edge in the

unrolled DAG would be reflected as an edge u → v in the Rolled
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FIGURE 1

Steps conveying the concept of the TPC algorithm to infer CFC from observed neural time series data: First the neural time series is transformed to

form sequential samples with a maximum time delay of interaction, τ (here τ = 1). Then, Peter-Clark (PC) algorithm is applied on the sequential

samples to obtain the unrolled DAG satisfying the Directed Markov Property. Finally the unrolled DAG is transformed to obtain the Rolled CFC

between regions.

CFC outcome. Such contemporaneous interactions are especially

relevant in fMRI due to the relatively slow temporal resolution of

the BOLD signal compared to the underlying neural activity (Smith

et al., 2011).

2.5 Comparison with functional
connectivity using other approaches

In Biswas and Shlizerman (2022b), the authors have

demonstrated that TPC performs better in computing CFC

compared to other methods such as GC on simulated and public

benchmarking datasets as well as on a real neurobiological dataset

of single neuron signals obtained using Neuropixels. Additionally,

the authors have drawn contrast [in Biswas and Shlizerman

(2022b)] with SPC, which is a popular method for inferring AFC.

In this paper, we computed AFC using SPC and CFC using GC

from fMRI data (Deshpande et al., 2009; Schouten et al., 2016).

We compared these two outputs with the CFC obtained by TPC

from fMRI data. The GC graph is computed using the Nitime

Python library, which fits a Multi-variate Auto-Regressive (MVAR)

model followed by the use of GrangerAnalyzer to compute the GC

(Rokem et al., 2009). We consider MVARmodel of order 1, and GC

likelihood ratio statistic of greater than 95 percentile as indicating

edges (Schmidt et al., 2016). The SPC was estimated by Graphical

Lasso penalized Maximum Likelihood Estimation, whose optimal

penalization was obtained by a five-fold cross-validation (Friedman

et al., 2008).

2.6 Alterations of CFC edges in Alzheimer’s
disease

We perform an exploratory analysis of statistical trends for

edge-wise inter-group differences. Using the subject-specific CFC

computed by TPC algorithm, for each detected CFC edge, we

reported the p-value in the Welch’s t-test for greater average edge

weight in one clinical group compared to another clinical group

(Yuen, 1974). Specifically, we listed the CFC edges with 10 lowest

p-values for greater average weight in CN compared to AD group

(and for greater average weight in AD compared to CN). For a

CFC edge from region u to region v, we refer to u as the source

brain region and v as the destination brain region. The source brain

regions of the CFC edges with lowest p-values are found to be in

agreement with literature for regions impacted by AD.

3 Results

3.1 Subject-specific causal functional
connectivity

Figure 2 shows the CFC estimated using the TPC algorithm

for an example subject (ID: 129_S_4396) in the CN group. In

Figure 2A, the CFC is represented in the form of a matrix, whose

entry (i, j) indicates the presence of connectivity from region index

i → j, and the value at entry (i, j) represents the weight of that

causal connection. A positive value (blue) of the weight indicates

excitatory influence, whereas a negative value (red) indicates

inhibitory influence. The diagonal of the matrix representing self-

connections for regions has been filtered out. In Figure 2B, the CFC

is represented by a directed graph overlayed on schematics of the

brain. The schematics of the brain comprise 2-dimensional brain

projections in the Frontal, Axial, and Lateral planes. The nodes of

the CFC graph correspond to the centers of brain regions in the

AAL atlas. The nodes are colored light to dark gray according to

their depth in the brain, with light gray representing superficial

and dark gray representing deeper brain regions. The CFC graph

provides a highly informative map of causal interactions between

brain regions.

It is noteworthy that the CFC computed by TPC is sparse

since the edges are filtered by conditional dependence tests. We

quantified the sparsity of a CFC graph by its edge density. Edge

density of a directed graph is the proportion of the number of

edges in the directed graph over the total number of edges in the

corresponding fully connected graph. Therefore, the edge density

of an empty graph is 0 and that of a fully connected graph is 1. For
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FIGURE 2

CFC for an example subject who is CN, estimated by TPC algorithm. (A) The estimated CFC is represented by its adjacency matrix, whose non-zero

entry (i, j) represents the connection of region i → j. (B) The CFC is visualized with directed graph edges on the Frontal, Axial and Lateral brain maps

(left to right). The nodes correspond to brain region centers, ranging from superficial (light gray) to deeper (darker gray) regions, in the AAL brain atlas.

FIGURE 3

Comparison and demonstration of FC inferred by three methods: Associative FC using SPC, and Causal FC using TPC and GC. The estimated FC is

represented by its adjacency matrix with edge weights, which is symmetric for Associative FC and asymmetric for Causal FC. In the adjacency

matrices, a non-zero entry in (i, j) represents the connection of region i → j.

the CFC graphs computed by TPC, the edge density for subjects

in the CN group is (mean ± standard deviation) 0.0117 ± 0.0008,

MCI group is 0.0118 ± 0.0009, and AD group is 0.0118 ± 0.0008,

indicating a sparse CFC outcome of TPC for subjects in each of the

groups.

3.2 Comparison with functional
connectivity using other approaches

Figure 3 shows the adjacency matrices for the FC obtained by

different methods for an example subject (ID: 129_S_4396) in the

CN group. The AFC constitutes a distinct pattern of associative

connectivity among the regions. It is expected that the CFC will

be a directed subgraph of the AFC and be consistent with the

overall patterns present in the AFC (Dadgostar et al., 2016; Wang

et al., 2016). However, the patterns present in the CFC obtained

by GC do not match with the AFC upon visual inspection. In

comparison, the overall patterns present in the CFC obtained

by TPC indeed match with the AFC obtained by SPC. On a

detailed level, there are differences between TPC-CFC and AFC:

TPC results in a directed graph thereby its adjacency matrix is

asymmetric while AFC is an undirected graph with symmetric

adjacency matrix. Furthermore, the CFC obtained by TPC includes

self-loops represented by the diagonals of the adjacency matrix
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in contrast to GC, and results in a sparse matrix devoid of

noise since the connections are filtered by conditional dependence

tests.

3.3 Alterations of CFC edges in Alzheimer’s
disease

Figure 4 shows the edge-wise p-values for greater average edge

weight in one clinical group compared to another, based onWelch’s

t-test. This provides insights into statistical trends for CFC edges

that have an increase (or decrease) in strength in CN compared to

MCI, CN compared to AD, and MCI compared to AD subjects.

In Table 2, we report 10 CFC edges that show the lowest p-

values for greater average strength in CN subjects compared to AD,

and their source brain regions. Similarly, we report another list of

10 CFC edges corresponding to greater average strength in subjects

with AD compared to CN, and their source brain regions. The

reported brain regions are in agreement with published medical

literature cited in Table 2.

4 Discussion

In this study, we have obtained the CFC of the whole brain from

its resting state fMRI time series. We used the recently developed

TPC algorithm based on directed graphical modeling in time series,

to compute the CFC. In the dataset, the subjects belonged to three

clinical categories: CN, MCI, and AD. We computed the subject-

specific CFC using TPC and compared it with those obtained by

other approaches, such as GC. We then used the CFC outcomes

of TPC for further investigation into the alteration of CFC in AD.

In this regard, we explored statistical trends for edges that have a

difference in strength between clinical categories, based on their

edge-wise p-values obtained by Welch’s t-test. We reported the

causal connections with lowest p-values for greater strength in CN

compared to AD (and greater strength in AD compared to CN)

and their corresponding brain regions. The brain regions identified

in the above analyses were found to be in agreement with medical

literature for regions impacted by AD.

In Figure 4 and Table 2, the presence of CFC edges with

weight in AD greater than that in CN (in addition to edges

with weight in AD less than that in CN) is consistent with

published studies in the literature. While several studies have

concluded decreased connectivity in MCI and AD compared to

CN (Jacobs et al., 2013; Li et al., 2015; Badhwar et al., 2017),

others have highlighted that MCI and early stages of AD can

involve an increase in FC between brain regions (Fredericks et al.,

2018; Penalba-Sánchez et al., 2023). This increase occurs when

the communication between specific brain regions is impaired

and has been interpreted as a compensatory mechanism where

alternative paths within the brain’s network are recruited (Hillary

and Grafman, 2017; Oldham and Fornito, 2019; Marek and

Dosenbach, 2022). In the short term, the augmentation of FC

along alternative pathways exhibits efficiency and adaptability

of the brain. However, it is imperative to acknowledge the

susceptibility of these densely interconnected hubs to beta-

amyloid deposition, which can elicit secondary damage through

metabolic stress, ultimately culminating in system breakdown

(Hillary and Grafman, 2017). Consequently, the initial state of

hyperconnectivity observed in neurodegenerative disorders may

gradually transition into hypoconnectivity among the engaged

pathways, thereby contributing to cognitive decline as the disease

advances (Marek and Dosenbach, 2022).

In Table 2A, the Heschl’s gyrus (Heschl’s gyrus Left→ Rolandic

operculum Left with edge-wise p-value 0.0008) is prominent for

lower CFC weight in AD compared to CN subjects. The Heschl’s

gyrus is not only important for language comprehension, but it

also has a crucial role in speech production, phonologic retrieval,

and semantic processing (Warrier et al., 2009; Fernández et al.,

2020), and has been reported in the literature to be impacted by

AD (Hänggi et al., 2011; Dhanjal et al., 2013). The Thalamus is

also present among the list of regions in Table 2A (Thalamus Right

→ Thalamus Left with edge-wise p-value 0.002). The Thalamus

functions as a relay station between different sub-cortical areas

and the cerebral cortex and also plays a role in sleep, wakefulness,

consciousness, and memory (Steriade and Llinás, 1988; Gazzaniga

et al., 2002; Aggleton et al., 2010; Bruno et al., 2013), and is also

known to be impacted by AD (Braak and Braak, 1991; de Jong

et al., 2008). Also present in the table is the Posterior cingulate

gyrus (Posterior cingulate Left → Angular gyrus Left with edge-

wise p-value of 0.006), which plays an essential role in memory

integration and attentional processing, and is widely considered

to be impacted by AD (Villain et al., 2008; Jacobs et al., 2013; Li

et al., 2015; Badhwar et al., 2017). The Hippocampus, which is

involved in long-term memory formation and memory retrieval,

is not in the list of regions, yet exhibits a trend of reduction

in CFC weight in AD compared to CN (Hippocampus Right →

Parahippocampal gyrus Right, edge-wise p-value 0.033) (Boutet

et al., 2014; Rao et al., 2022). Self-connections inHippocampus have

been reported to be often involved in compensatory mechanisms

leading to increased strength in AD (Pasquini et al., 2015).

In Table 2B, the self-connection Parahippocampal gyrus Right

→ Parahippocampal gyrus Right (edge-wise p-value 0.0008) is

prominent for greater weight in AD compared to CN. It is known

that the Parahippocampal gyrus is highly impacted by AD and is

the focus of damage during disease onset, in a manner such that its

connectivity to other regions of the brain decreases with AD, while

its activity and intrinsic connectivity within the region increases

with AD (Van Hoesen et al., 2000; Chen et al., 2014; Pasquini et al.,

2015, 2016; Tahmasian et al., 2015).

TPC identified 1, 475 edges in the CFCs across subjects with

CN and AD. To obtain the subset of edges which have significant

inter-group difference at Bonferonni family-wise error rate of 0.05

requires a total of 6, 352 unique subjects across three groups (2, 117

per group) to ensure a family-wise power of 0.95 in detecting mean

differences of a quarter of the standard deviation (Cohen’s D =

0.25), computed by power_t_test function in MESS package in R

(Ekstrøm, 2023). None of the databases that are available publicly

have somany subjects. For example, ADNI has under 2,000 subjects

(Weiner et al., 2017, https://adni.loni.usc.edu/adni-3/), and the

Australian database has 2,359 subjects (Fowler et al., 2021, https://

aibl.org.au/about/). Therefore we took a subset of the ADNI dataset
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FIGURE 4

Causal functional connections with edge-weights di�ering between clinical groups with edge-wise p-values ranging in 0− 0.05 based on t-test. The

edge-wise p-values are represented by a matrix whose entry in (i, j) corresponds to the edge i → j and also represented by graph edges on brain

schematics. The brain regions are annotated by Left (L) and Right (R) hemispheres of the brain and Vermis (V).
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TABLE 2 CFC edges with lowest edge-wise p-values for (a) greater weight in CN compared to AD group and (b) greater weight in AD compared to CN

group.

Edge p-value Region name Reported by

(a) CN > AD

HES_L→ ROL_L 0.0008 Heschl’s gyrus Hänggi et al., 2011; Dhanjal et al., 2013

ITG_R→ ITG_R 0.001 Inferior temporal gyrus Palmer and Burns, 1994; Scheff et al., 2011

SOG_L→ SOG_R 0.001 Superior occipital gyrus Beyer et al., 2009; Mao et al., 2021

SFG_L→ SFG_R 0.001 Superior frontal gyrus Brachova et al., 1993; Lue et al., 1996

MFGorb_R→ IFGorb_R 0.002 Middle frontal gyrus Neufang et al., 2011; Zhou et al., 2013

THA_R→ THA_L 0.002 Thalamus Braak and Braak, 1991; de Jong et al., 2008

SMG_L→ SMG_R 0.002 SupraMarginal gyrus Grignon et al., 1998; Desikan et al., 2009

IOG_L→ IOG_R 0.005 Inferior occipital gyrus Johnen et al., 2015; Wu et al., 2023

SMG_R→ SMG_L 0.005 SupraMarginal gyrus Grignon et al., 1998; Desikan et al., 2009

PCC_L→ ANG_L 0.006 Posterior cingulate gyrus Villain et al., 2008; Mascali et al., 2015; Caminiti et al.,

2020

(b) CN < AD

PHG_R→ PHG_R 0.0008 Parahippocampal gyrus Van Hoesen et al., 2000; Thangavel et al., 2008

REC_R→ REC_R 0.004 Gyrus rectus Mölsä et al., 1987; Nochlin et al., 1993; Sheline et al.,

2010

CER6_R→ CER4_5_R 0.008 Cerebellum Joachim et al., 1989; Jacobs et al., 2018

IFGtriang_R→MFG_R 0.008 Inferior frontal gyrus Eliasova et al., 2014; Cajanus et al., 2019

CER7b_L→ ITG_R 0.008 Cerebellum Joachim et al., 1989; Jacobs et al., 2018

FFG_R→ ITG_R 0.008 Fusiform gyrus Whitwell, 2010; Ma et al., 2020

CUN_L→ SOG_L 0.014 Cuneus He et al., 2007; Niskanen et al., 2011

VER1_2→ VER3 0.014 Vermis Sjöbeck and Englund, 2001; A Mavroudis et al., 2013

CAL_L→ SOG_L 0.014 Calcarine fissure Ren et al., 2020; Yang et al., 2020

PCL_L→ PCL_L 0.017 Paracentral lobule Garcia Martin et al., 2013; Yang et al., 2019

The corresponding source brain regions are in agreement with regions reported in literature (right column) as impacted by AD.

that is captured using 3T fMRI scanner while matching education

and age levels for exploratory analysis.

Based on the whole-brain CFC outcome alone, this study

obtained brain regions that have been reported across more

than 30 different studies of altered connectivity in AD, using

different feature extraction methods and advanced imaging

technologies (see Table 2). This demonstrates the promise of

CFC computed by the TPC algorithm based on directed

graphical models in a time series setting. Given the nature

of AD, progressively more and more regions of the brain get

impacted. Therefore, we make the case for the collection of

larger datasets to enable the identification, at desirable levels of

significance, of various subnetworks that alter with AD. This

would promote the maturation and the use of the TPC-CFC

(and other approaches) for prognostic and diagnostic purposes for

AD.

It is noteworthy that machine-learning-based classifiers can

help predict the clinical category of subjects and diagnose AD

(Zhang et al., 2011, 2014; Gray et al., 2013; Salehi et al., 2020; Wen

et al., 2020). Recently, researchers have proposed robust multi-

class classification methods in the presence of incorrect labeling

of classes using the broad learning system (Jin et al., 2021, 2023).

Such classifiers would be able to classify a subject as belonging

to one of the clinical categories, given a subject’s fMRI time-

series data as input. However, such classifiers do not compute

the CFC between brain regions. Computing the CFC can nicely

complement a classifier by providing insights into specific causal

functional connections and subnetworks that are altered by AD

(Chen et al., 2011; Du et al., 2018). Abnormal resting-state FC

between brain regions is known to predate brain atrophy and the

emergence of AD symptoms by upto two decades or more (Sheline

and Raichle, 2013; Brier et al., 2014; Ashraf et al., 2015; Nakamura

et al., 2017). Therefore, a subject’s computed CFC can shed light

on such abnormalities and promises to be a biomarker for early

diagnosis and prognosis of the disease.

In this paper, we have demonstrated the following: (a)

Application of the TPC algorithm to compute whole-brain CFC

for each subject, (b) Comparison of CFCs computed using other

approaches, (c) Interpretation of CFC in the context of AD

using domain (neuropathological) knowledge, and (d) Exploratory

analysis for edge-wise differences and corresponding brain regions

with altered connectivity in subjects with AD compared to CN.
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The findings are consistent with published medical literature. In

summary, our results show the promise of computing the whole-

brain CFC from fMRI data using the TPC algorithm to gain

prognostic and diagnostic insights.
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Background: The necessity of prompt and accurate brain tumor diagnosis is 
unquestionable for optimizing treatment strategies and patient prognoses. 
Traditional reliance on Magnetic Resonance Imaging (MRI) analysis, contingent 
upon expert interpretation, grapples with challenges such as time-intensive 
processes and susceptibility to human error.

Objective: This research presents a novel Convolutional Neural Network (CNN) 
architecture designed to enhance the accuracy and efficiency of brain tumor 
detection in MRI scans.

Methods: The dataset used in the study comprises 7,023 brain MRI images 
from figshare, SARTAJ, and Br35H, categorized into glioma, meningioma, no 
tumor, and pituitary classes, with a CNN-based multi-task classification model 
employed for tumor detection, classification, and location identification. Our 
methodology focused on multi-task classification using a single CNN model for 
various brain MRI classification tasks, including tumor detection, classification 
based on grade and type, and tumor location identification.

Results: The proposed CNN model incorporates advanced feature extraction 
capabilities and deep learning optimization techniques, culminating in a 
groundbreaking paradigm shift in automated brain MRI analysis. With an 
exceptional tumor classification accuracy of 99%, our method surpasses current 
methodologies, demonstrating the remarkable potential of deep learning in 
medical applications.

Conclusion: This study represents a significant advancement in the early 
detection and treatment planning of brain tumors, offering a more efficient and 
accurate alternative to traditional MRI analysis methods.

KEYWORDS

diagnosis of brain tumors, convolutional neural networks, deep learning, classification 
of medical images, MRI imaging
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1 Introduction

The diagnosis of brain tumors represents a critical intersection of 
neurology and oncology, necessitating precise and efficient 
methodologies for accurate identification and characterization. Magnetic 
Resonance Imaging (MRI) stands as a cornerstone in this endeavor, 
offering detailed visualization of brain anatomy crucial for detecting 
abnormal growths or lesions indicative of tumors. However, the manual 
interpretation of MRI scans relies heavily on radiologists’ expertise, 
presenting challenges such as time consumption and susceptibility to 
human error, ultimately affecting diagnosis accuracy and treatment 
planning. In Figure 1, different sample images of different tumor types 
are shown to make it clear why manual interpretation is difficult.

Globally, the incidence rates of brain tumors have been on the rise, 
underscoring the urgency for more effective diagnostic approaches. 
Brain tumors exhibit considerable diversity in type, size, location, and 
malignancy level, further complicating their diagnosis (Zhang and 
Sejdić, 2019). The study of brain tumor segmentation and classification 
through neuroimaging methodologies has gained significant importance 
in recent years due to the potential fatality of undetected tumors (Kumar 
and Kumar, 2023). Proper classification aids clinicians in providing 
appropriate treatment, and deep learning, particularly convolutional 
neural networks (CNN), has achieved notable success in these tasks 
(Kumar and Kumar, 2023). This study utilized a 25-layer CNN model to 
classify brain tumors from public MRI datasets, showing superior 
performance over previous methods, achieving classification accuracies 
of 86.23 and 81.6% using different optimizers, yet the technological gap 
remains in enhancing real-time processing and integration with clinical 
workflows (Sarkar et al., 2023). Another research employed AlexNet 
CNN with various classifiers, achieving up to 100% accuracy, 
highlighting the model’s effectiveness; however, the gap lies in the need 
for more extensive datasets and robustness against diverse MRI quality 
and protocols (Bairagi et al., 2023). The necessity for automatic and 
reliable detection systems is underscored due to the complex and time-
consuming nature of manual tumor detection (Tong and Wang, 2023). 
The proposed CNN-based system achieved 98.67% accuracy using 
AlexNet on a specific dataset, yet a gap exists in validating across larger 
and more varied datasets to ensure generalizability (Tong and Wang, 
2023). Furthermore, a dual tri-path CNN system demonstrated high 
reproducibility and quality in segmentation tasks, crucial for practical 
application, but the challenge remains in reducing computational 
complexity without sacrificing accuracy (Tong and Wang, 2023). Lastly, 
a study on federated learning (FL) combined with CNN ensemble 
architectures showed promising results in privacy-protected brain 
tumor classification, achieving 91.05% accuracy, slightly lower than the 

traditional approach but maintaining data privacy; the technological gap 
here involves improving the FL model’s performance to match 
centralized models while ensuring scalability and efficiency (Islam et al., 
2023). To address these shortcomings, our research introduces a multi-
layer customized CNN architecture designed specifically for the 
nuanced task of brain tumor classification from MRI scans. Our model 
leverages advanced feature extraction techniques and optimization 
algorithms to improve diagnostic accuracy and efficiency significantly. 
Unlike existing models, our approach emphasizes robustness and 
adaptability across different imaging settings, enhancing its practical 
utility in diverse clinical environments.

The dataset used in the study comprises 7,023 human brain MRI 
images sourced from figshare, SARTAJ, and Br35H, categorized into 
four classes: glioma, meningioma, no tumor, and pituitary. The “no 
tumor” images are from the Br35H dataset, and due to classification 
issues in the SARTAJ dataset’s glioma class, these images were replaced 
with those from figshare to ensure accuracy.

1.1 Motivation

The motivation behind this research is to utilize the capabilities of 
CNNs to improve the accuracy and efficiency of diagnosing brain 
tumors from MRI scans. Through the development of a specialized 
CNN architecture, this study aims to tackle the unique challenges of 
analyzing brain tumor MRIs. The goal is to provide a tool that can help 
radiologists make quicker and more precise diagnoses, ultimately 
enhancing patient care. The objectives of this research paper are to:

	•	 Develop a novel convolutional neural network (CNN) 
architecture that significantly improves the accuracy of brain 
tumor classification from MRI scans.

	•	 Design the CNN model to effectively generalize across different 
MRI protocols and imaging conditions, ensuring reliable 
performance in diverse clinical settings.

	•	 Optimize the model to reduce computational demands, enabling 
faster processing times suitable for real-time 
diagnostic applications.

1.2 Contribution of the paper

This research introduces a customized CNN architecture tailored 
for the classification of brain tumors from MRI images. The goal of 
this research paper focus on enhancing the accuracy and efficiency of 

FIGURE 1

Annotated images of different tumors.
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diagnosing brain tumors from MRI scans using a tailored 
Convolutional Neural Network (CNN) architecture. The numerical 
achievements underscore the significance of these objectives: the 
proposed model achieved a remarkable tumor classification accuracy 
of 99%. This level of accuracy is a considerable improvement 
compared to traditional methods, which often suffer from lower 
accuracy due to human error and the time-intensive nature of manual 
interpretations. Such high performance not only validates the efficacy 
of the specialized CNN in medical imaging tasks but also emphasizes 
its potential to significantly improve diagnostic processes, thereby 
enhancing patient care by allowing for quicker and more accurate 
diagnosis and treatment planning. This achievement highlights the 
practical relevance and impact of the research, affirming the objectives 
centered on technical advancement in medical diagnostics.

1.3 Organization of the paper

Following this introduction, the paper is organized into several 
sections: The next section reviews related work, establishing the 
context and justifying the need for optimized CNN. The methodology 
section details the design of custom CNN, the dataset, and training 
procedures. The results section presents a comparative analysis of 
proposed method performance against other models. Finally, the 
discussion and conclusion sections reflect on the findings, their 
implications for clinical practice, and directions for future research.

2 Related work

The use of artificial intelligence (AI) in medical imaging, 
specifically employing convolutional neural networks (CNNs) for 
diagnosing brain tumors from MRI scans, has been a highly 
researched area with notable advancements. This section delves into 
various methodologies developed in recent years, highlighting their 
contributions and limitations, and setting the stage for the 
introduction of proposed method.

Initially, traditional machine learning techniques such as Support 
Vector Machines (SVMs) and Random Forests were used for 
classification, relying on extracted features from MRI scans (Alzubaidi 
et al., 2021). However, these methods lacked dynamic feature-learning 
abilities and relied heavily on expert-driven feature selection, 
potentially overlooking critical details. Early CNN models were 
shallow due to computational constraints, limiting their ability to 
capture complex features (Alzubaidi et al., 2021). Deeper architectures 
like AlexNet and VGG improved feature extraction but faced 
challenges such as overfitting and the need for extensive labeled 
datasets (Zhao, 2023). Transfer learning addressed data scarcity issues 
by fine-tuning models pretrained on large datasets like ImageNet. 
Integrating multimodal MRI data improved analysis accuracy, 
although synchronizing features from different modalities posed 
challenges (Ahmmed et al., 2023). Attention mechanisms enhanced 
interpretability by focusing on relevant regions, while 3D CNNs 
preserved spatial relationships for volumetric analysis but introduced 
computational complexities (Aboussaleh et  al., 2023). Ensemble 
learning improved accuracy but increased computational demands, 
and domain adaptation aimed to generalize models across different 
MRI scanners and protocols (Zhao, 2023). Federated learning 

addressed privacy concerns by training models collaboratively across 
institutions but faced challenges such as data heterogeneity and 
communication overhead (Dufumier et  al., 2021). A summary of 
some studies is presented in Table 1.

Recent studies have focused on various advanced methods for 
brain tumor detection and classification. One study aimed to create a 
metaheuristic-based system using an enhanced seagull optimization 
algorithm for feature selection and classification with a deep belief 
network (Hu and Razmjooy, 2021). Another research developed an 
automated diagnosis system employing evolutionary algorithms, 
reinforcement learning, and transfer learning for multi-classification 
of brain tumors (Sadad et al., 2021). A hybrid deep learning model, 
DeepTumorNet, used a modified GoogLeNet architecture to classify 
glioma, meningioma, and pituitary tumors (Nickparvar, 2021). An 
automated method utilizing morphological-based segmentation was 
proposed for precise tumor detection in MRI images (Albalawi et al., 
2024). Deep learning techniques, specifically a 2D CNN, were 
employed for early detection of various brain tumors (Mahesh et al., 
2024), while an Improved Residual Network (ResNet) aimed to 
enhance segmentation accuracy (Aggarwal et al., 2023). An FPGA-
based accelerator was introduced to improve segmentation speed and 
accuracy (Xiong et al., 2021), and a YOLO2-based transfer learning 
approach achieved high classification accuracy (Kumar Sahoo et al., 
2023). A deep semi-supervised learning framework integrated CNN 
features and GAN-generated synthetic MRIs for glioma classification 
(Ge et al., 2020). Transfer-learning-based models and a CNN called 
BRAIN-TUMOR-net were developed for classifying MRI images, 
achieving high accuracy across different datasets (Taher et al., 2022).

However, despite these advancements, the field continues to 
confront challenges, particularly in the context of brain MRI analysis. 
The unique complexities of brain anatomy and the diverse 
manifestations of tumors demand a tailored approach in AI model 
development. Our study is situated within this specialized domain, 
introducing a custom-designed CNN architecture optimized for the 
intricate task of detecting brain tumors in MRI scans. Our proposed 
model builds on foundational research, integrating state-of-the-art 
feature extraction and deep learning optimization strategies to tackle 
the specific challenges of brain MRI data. By enhancing and advancing 
CNN capabilities in this specialized context, our research contributes 
to the continual evolution of AI in medical imaging, with the aim of 
establishing a new standard in accuracy and efficiency for brain 
tumor diagnosis.

3 Methodology

The proposed method signifies a substantial advancement in 
utilizing convolutional neural networks (CNNs) for analyzing brain 
tumor MRI scans. This innovative network architecture is tailored to 
tackle the complex challenges of brain tumor classification and 
segmentation, harnessing deep learning to improve diagnostic 
accuracy and efficiency. Figure 2 illustrates the basic workflow of the 
model, providing a clearer understanding of the operational 
mechanism of the proposed architecture.

The novelty of proposed methodology lies in its specialized 
architecture, which is meticulously crafted to capture the complex 
patterns and features inherent in brain tumor MRI scans. Unlike 
generic CNN models, custom CNN incorporates advanced layers and 
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TABLE 1  Summary of studies.

Study Objective Remarks

Hu and Razmjooy (2021) The aim is to create a metaheuristic-based system for the early 

detection of brain tumors, utilizing automated procedures. The focus is 

on tumor segmentation, feature extraction, and classification, 

employing a deep belief network.

The proposed method incorporates an enhanced version of the 

seagull optimization algorithm for both feature selection and image 

classification

Sadad et al. (2021) To develop an automated computer-assisted diagnosis system for early 

detection of tumors in brain, with a focus on segmentation, 

classification, and performance enhancement through preprocessing 

and data augmentation.

Evolutionary algorithms and reinforcement learning, along with 

transfer learning, are employed for multi-classification of brain 

tumors, showcasing a comprehensive approach to diagnosis.

Raza et al. (2022) The aim was to introduce DeepTumorNet, a hybrid deep learning 

model designed for precise classification of three types of brain tumors 

(glioma, meningioma, and pituitary tumor). This model utilizes a 

modified GoogLeNet architecture and employs the leaky ReLU 

activation function.

DeepTumorNet utilizes a modified GoogLeNet architecture with 15 

additional layers, enhancing the expressiveness of the model for 

feature extraction.

Gurunathan and Krishnan 

(2021)

The objective was to create an automated computer-aided method for 

detecting and locating brain tumors in MRI images. This method was 

utilizing deep learning algorithms and consist of three sub-modules: 

preprocessing, classification, and segmentation.

Morphological-based segmentation methodology is utilized for 

precise identification of tumor regions.

Methil (2021) To develop a novel method using image preprocessing and a 

convolutional neural network (CNN) to detect brain tumors from 

diverse brain images.

The proposed method, combining histogram equalization and 

CNN, achieved impressive recall rates of 98.55% on the training set 

and 99.73% on the validation set, demonstrating its effectiveness in 

accurately detecting brain tumors across various shapes, sizes, 

textures, and locations.

Aggarwal et al. (2023) The proposal aims to introduce an efficient method for brain tumor 

segmentation utilizing an Improved Residual Network (ResNet). This 

method addresses the gradient diffusion issue in Deep Neural 

Networks (DNN) and aims to enhance segmentation accuracy in MRI 

images.

The study highlights the potential of Improved ResNet in advancing 

brain tumor segmentation, with promising implications for medical 

diagnosis and treatment planning.

Xiong et al. (2021) The goal was to create an FPGA-based accelerator for brain tumor 

segmentation. This aims to enhance segmentation speed, reduce 

computational complexity, and maintain high accuracy.

The FPGA-based accelerator presents a promising approach for 

automatic segmentation and remote diagnosis of brain tumors. This 

contributes to enhancing efficiency and accuracy in medical 

imaging analysis.

Kumar Sahoo et al. (2023) The aim was to develop an intelligent system for automatically 

extracting and identifying brain tumors from 2D contrast-enhanced 

MRI images. This system was addressing challenges related to accurate 

diagnosis and the time-consuming nature of manual examination.

The YOLO2 based transfer learning approach achieves a high 

classification accuracy, further enhancing the diagnostic capability 

of the system.

Ge et al. (2020) The objective was to tackle the challenge of glioma classification from 

MRI scans through a proposed deep semi-supervised learning 

framework. This framework integrates deep CNN features and a novel 

3D-2D consistent constraint. Additionally, it leverages synthetic MRIs 

generated by Generative Adversarial Networks (GANs) to augment the 

training data.

The proposed scheme achieves promising results on two glioma 

datasets, demonstrating good performance in IDH-mutation 

prediction and glioma grading, with accuracies of 86.53 and 90.70% 

on TCGA and MICCAI datasets, respectively.

Taher et al. (2022) The aim was to develop transfer-learning-based models and a 

Convolutional Neural Network (CNN) called BRAIN-TUMOR-net for 

classifying brain MRI images into tumor or normal cases. The 

performance of these models will be compared with pre-trained 

models (InceptionResNetv2, Inceptionv3, and ResNet50) and tested on 

publicly available datasets.

Transfer-learning-based models and BRAIN-TUMOR-net are 

introduced for classification, with BRAIN-TUMOR-net achieving 

the highest accuracy levels across different MRI datasets.

Khan et al. (2022) The aim is to develop a hierarchical deep learning method using a 

convolutional neural network (CNN) to detect and classify brain 

tumors into glioma, meningioma, pituitary, and no-tumor categories.

The proposed HDL2BT system demonstrated high precision 

(92.13%) and a low miss rate (7.87%), outperforming previous 

methods in detecting and segmenting brain tumors, thus providing 

valuable clinical assistance to physicians.

(Continued)
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structures optimized for medical imaging, ensuring a deeper and 
more context-aware analysis. Its design considers the specific 
variations and characteristics of brain tumors, enabling the network 
to achieve high accuracy and reliability in tumor identification 
and categorization.

3.1 Dataset description

The dataset used for training and evaluating the proposed method 
consists of a comprehensive collection of brain MRI scans, carefully 
selected to encompass a diverse range of brain tumor types. This 
dataset includes images of glioma, meningioma, pituitary tumors, and 
non-tumorous brain tissue, ensuring that the model is exposed to a 
wide spectrum of tumor characteristics and variations. The dataset 
contained images of 512*512.

Sourced from a freely available medical imaging database, the 
dataset consists of several thousand MRI scans, each labeled with the 
corresponding tumor type or the absence of a tumor. The dataset’s size 
and diversity are instrumental in training proposed method to 

recognize and differentiate between various brain tumor 
manifestations (Nickparvar, 2021).

The dataset utilized in this study comprises 1,621 images of 
gliomas, 1,645 images of meningiomas, 2000 images of pituitary 
tumors, and 1757 images representing non-tumorous tissues, ensuring 
a comprehensive representation of common brain tumor types. To 
address potential class imbalances, we employed stratified sampling 
to maintain a uniform distribution across training and validation sets.

In Table 2 a summary of the dataset has been given.
Alongside normalization, data augmentation techniques are 

employed on the dataset to bolster the robustness and generalizability 
of the proposed method. These techniques include rotations, 
translations, scaling, and flipping of the MRI images, creating 
variations that simulate different imaging conditions and perspectives. 
This augmentation process is crucial for preventing overfitting and 
ensuring that custom CNN maintains high performance across 
diverse and unseen MRI data. In Figure 3 images after resizing and 
applying the basic techniques are being shown.

By meticulously preparing and augmenting the dataset, the 
proposed method is equipped with a rich and varied foundation 

TABLE 1  (Continued)

Study Objective Remarks

Mahmud et al. (2023) To develop a convolutional neural network (CNN) architecture for 

efficient identification and classification of brain tumors using MRI 

images.

The proposed CNN model achieved an accuracy of 93.3%, an AUC 

of 98.43%, a recall of 91.19%, and a loss of 0.25, outperforming 

ResNet-50, VGG16, and Inception V3, indicating its reliability for 

early detection of brain tumors.

Chattopadhyay and Maitra 

(2022)

The proposed model aims to introduce a highly accurate automatic 

method using a convolutional neural network (CNN) to segment brain 

tumors from 2D MRI images.

The proposed CNN-based model achieved an impressive accuracy 

of 99.74%, surpassing existing methods and significantly aiding 

doctors in the accurate and timely detection of brain tumors from 

MRI images.

Bitto et al. (2023) To identify brain tumors in MRI images using convolutional neural 

network designs and data preprocessing techniques to achieve 

competitive performance.

The study combines MRI-based image datasets, employs various 

data preprocessing techniques and image augmentation methods, 

and utilizes five pre-trained models to achieve high accuracy and 

precision in brain tumor identification, with ResNet-50 performing 

the best at 96.76% accuracy.

Gayathri et al. (2023) Assess the effectiveness of the VGG-16 architecture, a Convolutional 

Neural Network (CNN) model, for accurate brain tumor detection 

through deep learning.

The fine-tuned VGG-16 model achieved a high accuracy of 94% 

after hyperparameter optimization, demonstrating strong 

sensitivity, specificity, precision, recall, and F1 scores compared to 

other techniques for brain tumor detection.

FIGURE 2

Workflow of the proposed model.
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of MRI scans, enabling it to learn and generalize effectively, 
thereby demonstrating superior performance in brain tumor  
analysis.

3.2 Proposed architecture

The proposed method embodies a sophisticated convolutional 
neural network architecture meticulously crafted to tackle the 
intricate task of analyzing brain tumor MRI scans. Central to this 
architecture are a series of convolutional layers that progressively 
delve deeper into the MRI images, extracting a wide range of 
features from basic textures and edges to intricate patterns 
associated with various types of brain tumors. These layers play a 
crucial role in enabling the proposed method to discern and 
characterize the nuanced manifestations of brain tumors within the 
MRI scans. Each convolutional layer in the proposed method is 
followed by a non-linear activation function, such as the Rectified 
Linear Unit (ReLU). This function introduces the necessary 

non-linearity into the model, enabling it to capture and model the 
complex, non-linear relationships inherent in the MRI data 
(Albalawi et al., 2024). This capability is crucial for the network’s 
capacity to learn and adapt to the varied presentations of brain 
tumors. To sharpen the model’s focus on salient features and 
alleviate the computational load, pooling layers are incorporated 
into the architecture. These layers reduce the spatial dimensions of 
the feature maps while preserving essential information. 
Mathematically, the convolutional layer can be defined as follow in 
equation 1.

	
Convolution Operation a I Kij

l

m n
m n i m j n

l
 : ·, ,=∑∑ − −

	
(1)

where aijl( ) is the activationat layer l I( ) ( ),  is
the input image,and K( ) is the kernel.
The ReLU activation function can be mathematically defined as 

equation 2 followed by maxpooling in equation 3, batch normalization 
in equation 4, dropout at equation 5, softmax at equation 6 and 
categorical cross entropy loss in equation 7.

	 f x x( ) = ( )max 0, 	 (2)

Where,

	•	 x: Input value to the ReLU activation function.
	•	 𝑓(𝑥): Output value of the ReLU activation function, which is 𝑥x 

if 𝑥x is positive, and 0 otherwise

TABLE 2  Dataset description.

Type Training Testing

Glioma 1,321 300

Meningioma 1,339 306

No Tumor 1,595 405

Pituitary 1,457 300

FIGURE 3

Images after resizing and applying basic pre-processing techniques.
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	 aijl = ( )max region from input 	 (3)

Where,

	•	 aij
l: The output value of the max pooling operation at position 

(𝑖,𝑗) in the 𝑙-th layer.
	•	 region from input: A specific region from the input feature map 

over which the max operation is performed. Typically, this region 
is defined by a pooling window.
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Where,

	•	 xi: Input value to the batch normalization layer.
	•	 𝜇𝐵: Mean of the batch.
	•	 𝜎𝐵

2: Variance of the batch.
	•	 𝜖: Small constant added for numerical stability.
	•	 𝛾: Scale parameter learned during training.
	•	 𝛽: Shift parameter learned during training.
	•	 𝑦𝑖: Output value of the batch normalization.

	 y x di i i= ⋅ 	 (5)

Where d pi ∼ ( )( )Bernoulli ,

	•	 xi: Input value to the dropout layer.
	•	 𝑑𝑖: Dropout mask value for the 𝑖i-th input, drawn from a 

Bernoulli distribution with probability 𝑝p.
	•	 𝑝: Probability of retaining a unit (i.e., not dropping it out).
	•	 𝑦𝑖: Output value after applying the dropout mask.
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Where,

	•	 zi: Input value to the softmax function for the 𝑖i-th class.
	•	 𝜎(𝑧𝑖)): Output probability of the 𝑖i-th class after applying the 

softmax function.
	•	 ∑𝑗𝑒𝑧𝑗: Sum of exponentials of all input values for normalization.

	
L y p

i
i i= − ( )∑ log

	
(7)

Where,

	•	 yi: Ground truth binary indicator (0 or 1) if class label 𝑖i is the 
correct classification for the observation.

	•	 𝑝𝑖: Predicted probability of the observation belonging to class 𝑖i 
(output from the softmax function).

	•	 𝐿: Categorical cross-entropy loss.

The network also integrates batch normalization, a technique that 
normalizes the inputs of each layer to enhance training stability and 
efficiency. This is particularly advantageous in expediting the training 

process and ensuring consistent performance across various training 
batches. To mitigate the risk of overfitting—a prevalent challenge in 
deep learning models, especially when handling complex medical 
imaging data—the custom CNN includes dropout layers. These layers 
randomly exclude a subset of features during training, forcing the 
network to learn more robust and generalized representations of 
the data.

As the network progresses, the extracted features are funneled 
into fully connected layers, which synthesize the high-level 
information gleaned from the MRI scans to facilitate the final 
classification task. The culmination of this architecture is a SoftMax 
output layer, providing a probabilistic interpretation of each tumor 
type, offering a clear and interpretable decision basis for clinicians. 
The proposed method is described further in Algorithm 1.

ALGORITHM 1: MRI brain tumor classification using CNN.

Input: MRI brain images dataset with four categories: glioma, meningioma, no 

tumor, and pituitary tumor.

Output: Classification of MRI images into one of the four categories.

	1.	 Preprocessing:

•	 Load the MRI brain images from the dataset.

•	 Resize the images to 200×200 pixels for standardization.

	2.	 Model Architecture:

•	 Initialize a Sequential model.

•	 Add six convolutional layers with ReLU activation:

•	 First layer: 64 filters of size 7×7, padding = ‘same’, input shape (200, 200, 1).

•	 Second layer: 128 filters of size 7×7, padding = ‘same’.

•	 Third layer: 128 filters of size 7×7, padding = ‘same’.

•	 Fourth layer: 256 filters of size 7×7, padding = ‘same’.

•	 Fifth layer: 256 filters of size 7×7, padding = ‘same’.

•	 Sixth layer: 512 filters of size 7×7, padding = ‘same’.

•	 After each convolutional layer, add a batch normalization layer and a 

max-pooling layer with pool size (2,2).

•	 Flatten the output to feed into the fully connected layers.

•	 Add two fully connected layers with ReLU activation, 1,024 and 512 neurons, 

respectively, each followed by a dropout layer with a dropout rate of 0.25.

•	 Add an output layer with four neurons (corresponding to the four categories) 

with softmax activation.

	3.	 Compilation:

•	 Compile the model using the SGD optimizer with a learning rate of 0.001, 

loss function as ‘categorical_crossentropy’, and metric as 

‘categorical_accuracy’.

	4.	 Data Augmentation:

•	 Use ImageDataGenerator for real-time data augmentation, including 

rescaling and horizontal flipping.

	5.	 Training:

•	 Train the model on the training dataset using the flow_from_directory 

method with a batch size of 32 and 100 epochs, employing callbacks for early 

stopping and learning rate reduction on plateau.

	6.	 Evaluation:

•	 Evaluate the model on a separate test dataset.

•	 Compute and plot the training and validation accuracy and loss over 

the epochs.

•	 Generate a confusion matrix to evaluate the model’s classification performance.

Custom CNN’s training is meticulously orchestrated using 
advanced optimization techniques like Adam and SGD (Stochastic 
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Gradient Descent), which fine-tune the network’s weights to 
minimize a carefully chosen loss function, typically categorical 
cross-entropy in multi-class classification scenarios. This loss 
function plays a crucial role in guiding the network’s learning 
process, ensuring that the model’s predictions closely align with the 
actual tumor classifications. The SGD update rule, adam update 
rule, learning rate decay, early stopping criterion, flattening, feature 
map size after convolution, feature map size after pooling and 
gradient computation can be  mathematically represented by 
equations 8–15, respectively.

Equation (8): This represents the standard gradient descent update 
rule, where θ (the model parameters) are updated by subtracting the 
gradient of the loss function J(θ) with respect to θ, scaled by a 
learning rate η.

Equation (9): This is a component of the Adam optimization 
algorithm, where vt and st are exponentially decaying moving averages 
of the gradient and its square, respectively. β₁ is a parameter 
controlling the exponential decay rates.

Equation (10): Another component of Adam, updating the 
squared gradients moving average.

Equation (11): The learning rate decay mechanism in Adam, 
which reduces the learning rate η over time.

Equation (12): A notation indicating flattening of a tensor, 
commonly used when transitioning from convolutional layers to fully 
connected layers in neural networks.

Equations (13) and (14): These formulas calculate the output size 
(Wout) of a convolutional layer given the input size (Win), filter size (F), 
padding (P), and stride (S). They differ depending on whether padding 
is applied.

Equation (15): Simply represents the gradient of the loss function 
J with respect to the model parameters θ.

	
θ θ η θθ= − ⋅∇ ( )J

	 (8)
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In essence, the proposed method is a meticulously crafted network 
that merges deep learning innovations with domain-specific 
adaptations to excel in the realm of brain tumor MRI analysis. In 

Figure 4 a detailed visual about how different layers of the model 
extract features from the images is given.

Its architecture is not just a series of layers but a well-orchestrated 
symphony of components each playing a critical role in ensuring the 
network’s effectiveness in diagnosing and classifying brain tumors 
with high precision and reliability. Through its advanced feature 
extraction capabilities, adaptability to various MRI modalities, and a 
design conducive to clinical interpretability, the proposed method 
stands as a pioneering tool poised to transform the landscape of 
medical imaging analysis.

3.3 Preprocessing and data augmentation

Prior to being fed into the custom CNN, the MRI images undergo 
a series of preprocessing steps to ensure they are in an optimal format 
for analysis. These steps are crucial for standardizing the input data, 
which helps in reducing model complexity and improving its learning 
efficiency. Initially, the MRI images are resized to a consistent 
dimension, balancing the need for detail retention and computational 
efficiency. This standardization is essential for the network to process 
images uniformly, regardless of their original resolution.

In the preprocessing phase, each MRI scan was resized to a 
uniform dimension of 200×200 pixels to standardize input size for the 
CNN. Pixel intensity values were then normalized to a range of 0 to 1 
to mitigate variations in image brightness and contrast, which are 
prevalent across different MRI machines and scanning parameters. 
Additional steps included applying Gaussian smoothing filters to 
reduce image noise and enhance feature extraction by the CNN layers.

Normalization is another crucial preprocessing step in which the 
pixel intensity values of the MRI images are scaled to a standard 
range, typically between 0 and 1.This scaling is vital for stabilizing 
the network’s training process, as it ensures that the model is not 
biased by variations in image brightness or contrast, which are 
common in medical images due to differences in scan protocols and 
equipment. By normalizing the images, proposed architecture can 
focus on learning the relevant features that indicate the presence and 
type of brain tumors, rather than being influenced by extraneous 
imaging artifacts. Table 3 presents the augmentation technique with 
the values.

Data augmentation is crucial for improving the resilience and 
adaptability of a given architecture. Considering the diverse nature 
of tumor characteristics and the limited availability of labeled MRI 
data, augmentation methods are utilized to effectively broaden the 
scope of the training dataset. These methods entail generating 
altered renditions of the training images by means of operations like 
rotation, scaling, and flipping. For instance, the images might 
be rotated by various angles or flipped horizontally or vertically to 
simulate different perspectives of tumor presentations. Scaling 
adjustments are also made to mimic variations in tumor size across 
different patients.

These augmented images help the network learn to recognize 
tumors from a broader range of angles and appearances, increasing its 
ability to generalize from the training data to new, unseen images. The 
augmentation process introduces a level of diversity to the training set 
that mimics the variability in proposed method which it will encounter 
in real-world clinical settings, thereby preparing it to perform 
accurately and reliably across a wide range of scenarios.
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Through this meticulous preprocessing and data augmentation, 
custom CNN is trained on a dataset that not only represents the 
complexity and variability of brain tumors but also reflects the diverse 
conditions under which clinical MRI scans are performed. This 
preparation is crucial for enabling the proposed method to effectively 

analyze MRI images of brain tumors, rendering it a strong and 
adaptable tool for assisting in the diagnosis and categorization of 
such tumors.

3.4 Training process

The training process of a custom CNN is a crucial phase where the 
network learns to accurately interpret and classify brain tumor MRI 
images. This process begins with a careful division of the available 
dataset into three distinct sets: training, validation, and testing. The 
training set, being the largest portion, is used to train the model and 
adjust the weights of the network. The validation set is utilized to fine-
tune the model’s hyperparameters and prevent overfitting by providing 
an independent evaluation of the model’s performance during 
training. Finally, the testing set is used to assess the model’s 
generalization capabilities on unseen data, ensuring that the 
performance metrics reflect the model’s effectiveness in a real-world 
clinical setting. Table 4 presents the hyperparameter. The optimal 
value of each hyperparameter is chosen based on the continuous 
assessment of the code under different conditions.

During training, a specific loss function is employed to quantify 
the discrepancy between the predicted outputs and the actual labels. 
For a multi-class classification task such as brain tumor categorization, 

FIGURE 4

Filter-wise activation.

TABLE 3  Augmentation technique.

Augmentation technique Value

rescale 1./255

featurewise_center False

samplewise_center False

featurewise_std_normalization False

samplewise_std_normalization False

zca_whitening False

rotation_range 0

zoom_range 0

width_shift_range 0

height_shift_range 0

horizontal_flip True

vertical_flip False
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FIGURE 5

Model architecture.

categorical cross-entropy is typically chosen as the loss function due 
to its effectiveness in handling multiple classes. This function provides 
a measure of the model’s prediction accuracy, guiding the network’s 
adjustments to minimize errors during the training iterations.

Optimization of the network is achieved through sophisticated 
algorithms like Stochastic Gradient Descent (SGD) or Adam, which 
are instrumental in updating the model’s weights and minimizing the 
loss function. These optimizers are selected based on their proven 
efficiency in navigating the complex landscape of high-dimensional 
weight space to find optimal values that minimize the loss. Figure 5 
represents the model architecture with parameters of the model.

To bolster the model’s generalization and prevent overfitting, 
several strategies are employed during the training process. 
Regularization techniques, such as L2 regularization, are incorporated 
to penalize large weights, encouraging the model to develop simpler, 
more general patterns that are robust to variations in the input data. 
Dropout is another crucial technique used, randomly deactivating a 
subset of neurons during training to compel the network to learn 
more distributed representations of the data, thus enhancing its 
generalization capabilities.

Furthermore, the training process involves periodic evaluations 
on the validation set to monitor the model’s performance and make 
adjustments to the hyperparameters as necessary. This iterative 
evaluation helps in identifying the best model configuration that 
balances accuracy and generalizability, ensuring that proposed model 
performs optimally not just on the training data but also on new, 
unseen MRI images. Through this comprehensive and iterative 
training process, the model is finely tuned to excel in the complex task 
of classifying brain tumors from MRI scans, demonstrating its 
potential as a valuable tool in medical imaging analysis.

3.5 Model evaluation and validation

The evaluation and validation of model are pivotal stages in the 
development process, ensuring the model’s efficacy and reliability in 
classifying brain tumors from MRI scans. These phases are designed 

to rigorously assess the model’s performance using a range of metrics 
and benchmarks, providing insights into its accuracy, robustness, and 
clinical applicability (Mahesh et al., 2024).

3.5.1 Accuracy
These primary metric measures the proportion of correct 

predictions out of all predictions made, offering a straightforward 
assessment of the model’s overall performance. It can be achieved by 
equation 16.

	
A =

Number of correct predictions

Total number of predictions 	
(16)

3.5.2 Precision and recall
Precision (the proportion of true positive results in all positive 

predictions) and recall (the proportion of true positive results in all 

TABLE 4  Hyperparameters.

Hyperparameter Value

Monitor ‘loss’

min_delta 1e-11

Patience 12

Verbose 1

Monitor ‘val_loss’

Factor 0.2

Patience 6

Verbose 1

Monitor ‘val_categorical_accuracy’

save_best_only True

Verbose 1

steps_per_epoch 178

Epochs 100

validation_steps 40
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actual positives) are crucial for understanding the model’s 
performance in the context of each tumor type, especially in 
imbalanced datasets where some tumor types may 
be underrepresented. Precision and recall can be calculated using the 
following equations 17, 18.

	
P TP

TP FP
=

+ 	
(17)

	
R TP

TP FN
=

+ 	
(18)

where TP, FP, TN, and FN stand for True Positive, False Positive, 
True Negative, and False Negative, respectively.

3.5.3 F1 score
The F1 score combines precision and recall into a single metric by 

calculating their harmonic mean, providing a balanced view of the 
model’s performance, particularly in scenarios where the cost of false 
positives and false negatives is significant. The F1 Score is calculated 
using the following equation 19.

	
F P R

P R
1 2= ⋅

+
·

	
(19)

3.5.4 Area under the receiver operating 
characteristic curve (AUC-ROC)

This metric evaluates the model’s ability to distinguish between 
classes at various threshold settings, which is particularly important for 
medical diagnosis where decision thresholds may vary based on clinical 
contexts. Additionally, the error metrics and advanced metrics like Mean 
Squared Error, Mean Absolute Error and F2 Score were calculated and 
they can be interpreted by equations 20–22, respectively.

Equation (20): This represents the Mean Squared Error (MSE), a 
commonly used metric for assessing the performance of regression 
models. It calculates the average squared difference between the actual 
values (Yi) and the predicted values (Yi



) over a dataset of size n.
Equation (21): This is the Mean Absolute Error (MAE), another 

metric for evaluating regression models. It computes the average 
absolute difference between the actual values (Yi) and the predicted 
values (Yi



).
Equation (22): This formula calculates the F-beta score, denoted 

as F2 in this case. It combines precision (P) and recall (R) into a single 
metric, with emphasis on recall. The value of beta determines the 
weight of recall in the calculation, where higher beta values place more 
importance on recall. In this case, beta is set to 2, giving more weight 
to recall.

	
( )21

1 ˆMSE n
i ii Y Y

n == −∑
	

(20)

	 1
1 ˆMAE n

i ii Y Y
n == −∑

	
(21)

	

F P R
P R

2 1 2
2

2

2
= +( ) ⋅ ⋅

⋅( ) +
	

(22)

Model’s performance is benchmarked against established models 
and industry standards to ascertain its effectiveness and advancement 
in brain tumor MRI analysis. These comparisons help in 
contextualizing Model’s performance within the broader landscape of 
medical imaging AI.

Benchmarking involves comparing model’s performance metrics 
with those from previous studies or conventional methodologies in 
brain tumor diagnosis. Such comparative analysis not only highlights 
the improvements but also identifies areas where model may require 
further enhancement.

By employing these rigorous evaluation and validation methods, 
the effectiveness of model in classifying brain tumors is thoroughly 
assessed, ensuring that the model is not only statistically sound but 
also practically significant in a clinical setting. This comprehensive 
evaluation framework underpins the model’s potential to serve as a 
reliable and robust tool in enhancing the accuracy and efficiency of 
brain tumor diagnostics.

4 Experimentation and results

Experimentation and results sections delves into the different 
metrics result on which model is evaluated along with it the 
comparison with the existing is provided.

The experimental setup for assessing the proposed model involved 
an extensive training and validation regimen using a dataset 
comprising 7,023 MRI images categorized into four groups: glioma, 
meningioma, no tumor, and pituitary tumors. These images 
underwent preprocessing to standardize their dimensions to 200×200 
pixels and conversion to grayscale, which simplified the input while 
preserving crucial structural details essential for accurate classification.

The model underwent training utilizing a stochastic gradient 
descent optimizer with a learning rate set at 0.001, with the objective 
of minimizing the categorical cross-entropy loss function—a suitable 
choice for tasks involving multi-class classification. Figure 6 illustrates 
the epoch-wise accuracy and loss of the proposed CNN model, while 
Figure  7 depicts the epoch-wise rate of accuracy improvement. 
Additionally, Figure 8 presents the learning rate schedule employed in 
the training process.

During training, early stopping mechanisms, learning rate 
reduction on plateau, and model checkpointing were employed to 
enhance training efficiency and prevent overfitting. The training 
process spanned multiple epochs, during which the dataset was 
partitioned into distinct training, validation, and testing sets. This 
division ensured thorough evaluation and validation of the model’s 
performance, as well as its ability to generalize to unseen data.

4.1 Results presentation

The model exhibited exceptional performance metrics when 
evaluated on the testing set, reflecting its robustness and effectiveness 
in distinguishing brain tumors from MRI scans. Its achieved accuracy 
was notably high, reaching a rate of 99%, demonstrating its capability 
to accurately identify and categorize the vast majority of cases.

The precision for detecting glioma was perfect at 1.00, with a recall 
of 0.96, indicating a high true positive rate and few false negatives. The 
model displayed strong predictive power and sensitivity specifically 
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FIGURE 6

Epoch wise accuracy and lose.

for meningioma, with a precision of 0.96 and a recall of 0.98. These 
metrics highlight the model’s ability to accurately identify and classify 
cases of meningioma, emphasizing its effectiveness in this particular 
category. The precision and recall for notumor and pituitary cases 
were equally impressive, showcasing the model’s comprehensive 
learning and classification capabilities across various tumor types. The 
class 0, 1, 2, and 3 represents Glioma, Meningioma, No Tumor and 
Pituitary, respectively.

To highlight the advantages of our CNN model, we compared its 
performance against several established methods in brain tumor 
classification. For instance, traditional machine learning techniques 
such as SVM and Random Forests, though useful, lack the dynamic 
feature-learning capability that deep learning offers. Recent models 
like AlexNet and VGG, while deeper, still suffer from overfitting and 

require extensive labeled datasets. Our model’s use of advanced 
regularization and data augmentation strategies positions it favorably 
against these methods, demonstrating superior accuracy and 
generalization in our tests.

Table 5 provides a comprehensive summary of the classification 
report, detailing various performance metrics such as precision, recall, 
and F1-score for each class.

Figure 9 gives a visual representation of normalized confusion 
matrix followed by precision-recall curve and roc-auc curve in 
Figures 10, 11 respectively.

In terms of error metrics, the model demonstrated low mean 
squared error (MSE) and mean absolute error (MAE), along with a 
high F2 score, underscoring its precision and reliability in prediction. 
The MSE of 0.026 indicates a small average squared difference 
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between estimated values and actual values. Additionally, the MAE 
of 0.0168 represents the model’s average absolute error across 
all predictions.

The F2 score, which strikes a balance between precision and 
recall, was exceptionally high at 0.986 This high F2 score 
underscores the model’s effectiveness in classifying brain tumors, 
with a particular emphasis on minimizing false negatives—a critical 
consideration in medical diagnosis contexts. Figure 12 represents 
the error metrics.

4.2 Comparison with baseline models

When compared to traditional methods or earlier CNN-based 
models, custom CNN’s performance stands out significantly. 
Traditional machine learning models or shallow CNNs typically 
achieve lower accuracy and precision metrics due to their limited 
feature extraction and learning capabilities. In contrast, proposed 

model’s advanced architecture and training regimen have propelled 
its performance metrics well beyond these baseline models, 
demonstrating the effectiveness of its deep learning approach in 
medical image analysis. In Table 6 a comparative analysis between 
the previous methodology and the proposed methodology has 
been given.

The custom architecture and training strategy employed in the 
proposed model, combined with its remarkable performance metrics, 
highlight its potential to establish a new standard in the domain of 
brain tumor classification from MRI scans. The model’s capacity to 
achieve high accuracy, alongside detailed metrics for different tumor 
types, offers robust quantitative evidence supporting its adoption and 
further investigation in clinical environments.

4.3 Ablation study

In the ablation study conducted to assess the robustness and 
significance of each layer within our brain tumor classification 
model, we systematically eliminated layers and documented the 
resulting effects on model performance. Initial results indicated a 
moderate degree of robustness, with the overall accuracy slightly 
declining from 0.89 after removing one layer to 0.92 after 
removing up to four layers. The precision, recall, and F1-score for 
each tumor type demonstrated only minor fluctuations, suggesting 
that the model preserves its discriminatory power up to a certain 
depth. However, a stark degradation was observed when all layers 
were removed, plummeting the overall accuracy to 0.69. This 
highlights the layers’ collective importance in achieving high 
diagnostic accuracy. Conversely, the proposed model, which 
integrates all layers, displayed exceptional performance, achieving 
near-perfect precision and recall across all categories and 
culminating in an exemplary overall accuracy of 0.99. The 
comparison between the layer-ablated versions and the complete 
model underscores the intricate balance between model depth and 
performance, as summarized in the following Table 7.

FIGURE 7

Rate of accuracy improvement over epochs.

FIGURE 8

Learning rate schedule.
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TABLE 5  Summary of classification report.

Type Precision Recall F1-Score

Glioma 1 0.96 0.98

Meningioma 0.96 0.98 0.97

No tumor 1 1 1

Pituitary 0.99 1 0.99

FIGURE 9

Normalized confusion matrix.

The ablation study conducted to assess the robustness and 
significance of each layer within our brain tumor classification model 
revealed insightful findings. We systematically removed layers and 
observed the resulting effects on model performance. Interestingly, the 
model displayed a moderate degree of robustness, with only minor 
fluctuations in precision, recall, and F1-score when one to four layers 
were eliminated. However, a significant drop in accuracy was observed 
when all layers were removed, highlighting the collective importance 
of the layers in achieving high diagnostic accuracy. Conversely, the 
proposed model, which integrated all layers, exhibited exceptional 
performance, with near-perfect precision and recall across all 
categories and an exemplary overall accuracy of 0.99. This comparison 

underscores the delicate balance between model depth and 
performance, emphasizing the critical role of each layer in optimizing 
classification outcomes.

The comprehensive model clearly demonstrates the necessity of 
each layer, offering a robust framework for accurate brain 
tumor classification.

5 Discussion

The outcomes yielded by the proposed model are highly 
encouraging, signifying a notable advancement in leveraging 
convolutional neural networks for analyzing brain tumor MRI scans. 
With an accuracy rate of 99%, the model demonstrates exceptional 
proficiency in distinguishing between various types of brain tumors, 
as well as accurately identifying non-tumor regions within the brain. 
Such elevated accuracy holds immense importance in medical 
diagnostics, where the repercussions of false positives or negatives can 
be significant.

Moreover, the precision and recall metrics across different tumor 
types offer a nuanced insight into the model’s performance. The high 
precision observed for glioma and meningioma indicates that when 
the model predicts these tumor types, it does so with high reliability. 
Similarly, the high recall rates indicate the model’s effectiveness in 

FIGURE 10

Precision-recall curve.

FIGURE 11

ROC-AUC score.
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Error metrics.
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identifying the majority of actual cases for each tumor type, reducing 
the risk of missed diagnoses.

The F2 score, which emphasizes the importance of recall 
(minimizing false negatives), is particularly relevant in a medical 
context (Zhou et al., 2023). A high F2 score, as achieved by proposed 
model, underscores the model’s capability in correctly identifying 
positive cases, a critical aspect when early detection can significantly 
influence treatment outcomes.

Proposed research introduces several innovative elements to the 
domain of medical imaging, particularly in how deep learning can 
be  tailored to enhance diagnostic precision. The network 
architecture’s design, which integrates deep convolutional layers with 
advanced regularization and normalization techniques, is specifically 
optimized for the complex task of brain tumor identification and 
classification. This bespoke approach, which diverges from the 
application of generic CNN models, is a significant contributor to 
the model’s success.

The impact of these findings extends beyond the technical domain, 
potentially revolutionizing how brain tumors are diagnosed and classified 
in clinical settings. By providing a tool that can rapidly and accurately 
analyze MRI scans, proposed model could assist radiologists in making 
more informed decisions, facilitating early and accurate diagnoses, and 
ultimately improving patient care and outcomes.

The model’s performance, while tested on a robust dataset, might 
still be  limited by the diversity and volume of the data available. 

Real-world applicability will require continual testing and validation 
on a broader array of MRI scans from diverse patient demographics 
and equipment.

Although the model achieves high accuracy, it’s important to 
acknowledge the potential limitation posed by the “black box” 
nature of deep neural networks (Salahuddin et al., 2022) Integrating 
attention mechanisms or employing explainable AI frameworks 
could significantly enhance the interpretability of the proposed 
model, thereby increasing its clinical utility. These techniques offer 
insights into the model’s decision-making process, providing 
clinicians with a deeper understanding of how and why specific 
diagnoses are made (Jiang et al., 2023). By elucidating the rationale 
behind the model’s predictions, these methods can improve trust 
and confidence in its outputs, ultimately facilitating more informed 
clinical decision-making. The current version of proposed model 
is optimized for a specific MRI dataset. Its ability to generalize 
across different MRI machines and imaging modalities remains to 
be thoroughly tested. Future work could focus on expanding the 
model’s adaptability to various imaging conditions, enhancing its 
robustness and applicability (Chaudhary et al., 2024). The model 
primarily focuses on cross-sectional MRI data. Incorporating 
longitudinal and multi-modal imaging data, such as merging MRI 
with CT or PET scans, has the potential to offer a more holistic 
understanding of tumor features and development, thereby 
enriching diagnostic capabilities (Sharma and Chaudhary, 2023). 

TABLE 6  Comparative analysis with the proposed model.

Study Technique Accuracy

Pedada et al. (2023) U-Net Model for Brats 2017 and 2018 dataset segmentation 93.40 and 92.20%

Saeedi et al. (2023) 2D CNN with ensemble machine learning techniques 96.47%

Mahmud et al. (2023) Redefined CNN Model with modified classification 93.3%

Wang et al. (2022) Deep CNN on OCT Images 94.90%

Vidyarthi et al. (2022) CNN with NN Classifier 95.86%

Lamrani et al. (2022) CNN with Enhanced Classifiers 96%

Yildirim et al. (2023) Convolutional Neural Network (CNN)-based hybrid model 95.4%

Bacak et al. (2023) Convolutional Neural Network (CNN) using TensorFlow 90%

Khan et al. (2022) Deep Learning Models (Convolutional Neural Networks - CNN) Up to 97.8%

Gómez-Guzmán et al. (2023) Evaluation of deep convolutional neural network (CNN) models for brain tumor classification 97.12%

Sharma and Shukla (2022) CNN for brain tumor classification 93.38%

Nayak et al. (2022) Efficient net on T1 Weighted Data 98.78%

Guan et al. (2021) Agglomerative Clustering Based Approach 98.04%

Rajput et al. (2024) VGG19, Inception-v3, and ResNet50 90%

Suryawanshi and Patil (2024) Convolutional Neural Network (CNN) & VGG19 98.01%

Prasad et al. (2024) CNN 98.93%

Schiavon et al. (2023) convolutional neural networks (CNNs) 96%

Rasool et al. (2022) CNN & SqueezeNet 96.5%

Sarada et al. (2024) ResNet0V2 96.34%

Rahman and Islam (2023) Parallel deep convolutional neural networks 98%

Özkaraca et al. (2023) VGG 16 and basic CNN Architecture 97%

Prabha et al. (2023) Efficeint Net model Using transfer learning 98.27%

Proposed model Custom CNN with advance layer arrangement. 99%
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In Figure 13 one instance which was misclassified has been given 
followed by correct predictions in Figure 14.

The proposed model demonstrates significant advancements in 
brain tumor MRI analysis, a conscious effort to address these 
limitations through continuous research and iterative refinement will 
be  essential. Enhancing data diversity, interpretability, and cross-
modality generalization will be crucial steps in evolving proposed 
model from a promising model to a reliable tool in clinical practice.

However, there are major limitations to consider. The model’s 
performance, while tested on a robust dataset, might be limited by 
data diversity and volume. Real-world applicability will require 
validation on a broader array of MRI scans from diverse demographics 
and equipment. Additionally, the “black box” nature of deep neural 
networks poses interpretability challenges. Integrating explainable AI 
techniques could enhance the model’s transparency and clinical utility. 
Future work should focus on enhancing data diversity, interpretability, 
and cross-modality generalization, along with extensive clinical 

validation for integration into clinical workflows. Furthermore, 
exploring the integration of multimodal imaging data and adapting 
the model to different populations or tumor types represents 
promising directions for future research.

One of the significant challenges in enhancing the generalization 
of datasets for brain tumor classification using MRI scans is the 
diversity and variability inherent in medical imaging data. MRI scans 
can vary widely in terms of imaging protocols, machine calibration, 
and patient demographics, all of which can influence the appearance 
of the images and, consequently, the performance of classification 
models. Additionally, the limited availability of labeled medical images 
due to privacy concerns and the cost of expert annotation poses a 
challenge for training robust models.

To make the dataset more generalized and comprehensive, it is 
crucial to include a broader array of MRI scans from diverse 
populations and multiple healthcare settings. Incorporating images 
from different MRI machines and including variations in scan settings 

TABLE 7  Ablation study.

Precision Recall F1-Score

After removing 1 layer

Glioma 0.98 0.73 0.84

Meningioma 0.77 0.8 0.79

No tumor 0.91 0.99 0.95

Pituitary 0.91 1 0.95

Overall accuracy = 0.89

After removing 2 layers

Glioma 0.97 0.76 0.85

Meningioma 0.79 0.87 0.83

No tumor 0.93 0.99 0.96

Pituitary 0.96 0.99 0.98

Overall accuracy = 0.91

After removing 3 layers

Glioma 0.96 0.81 0.88

Meningioma 0.82 0.87 0.84

No tumor 0.93 0.99 0.96

Pituitary 0.97 0.99 0.98

Overall accuracy = 0.92

After removing 4 layers

Glioma 0.96 0.82 0.89

Meningioma 0.82 0.85 0.83

No tumor 0.92 0.99 0.96

Pituitary 0.97 0.99 0.97

Overall accuracy = 0.92

After removing all layers

Glioma 0.64 0.53 0.58

Meningioma 0.52 0.37 0.43

No tumor 0.79 0.9 0.84

Pituitary 0.72 0.91 0.8

Overall accuracy = 0.69

Proposed model

Glioma 1 0.96 0.98

Meningioma 0.96 0.98 0.97

No Tumor 1 1 1

Pituitary 0.99 1 0.99

Overall accuracy = 0.99
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can help the model learn to recognize tumors across different imaging 
conditions. Extending the dataset to include multi-modal imaging 
data, such as combining MRI scans with CT or PET scans, can enrich 
the dataset and provide more comprehensive features for the model to 
learn. This approach can improve diagnostic accuracy and help the 
model generalize better to new, unseen cases. Furthermore, synthetic 
data generation techniques like Generative Adversarial Networks 
(GANs) can be employed to augment the dataset, providing a wider 
array of training examples without compromising patient privacy. 
These strategies would enhance the model’s robustness and its 
applicability in diverse clinical environments.

The integration of our CNN model into clinical workflows could 
significantly enhance the diagnostic process by providing rapid, 
preliminary analysis of MRI scans. This tool could serve as a second 
opinion to assist radiologists in identifying subtle or ambiguous tumor 
signs, potentially speeding up the diagnosis and reducing the likelihood 
of human error (Chaudhary and Agrawal, 2021). Challenges for 
integration include the need for extensive clinical validation to ensure 
accuracy and reliability, as well as adjustments to existing medical 
software systems to accommodate the new AI capabilities.

Future research could explore the integration of multimodal 
imaging data, combining MRI with CT or PET scans to enrich the 

dataset and potentially improve diagnostic accuracy. Additionally, 
further studies could focus on adapting the model to different 
populations or other types of tumors, enhancing its applicability. 
Another promising direction is the incorporation of explainable AI 
techniques to provide insights into the model’s decision-making 
processes, increasing its transparency and trustworthiness for 
clinical use.

6 Conclusion

This study advances the application of CNNs in the classification 
of brain tumors from MRI scans, demonstrating a significant 
improvement over existing methods. The customized CNN 
architecture introduced novel aspects tailored specifically for medical 
imaging, setting a new benchmark for accuracy and efficiency in this 
field. Tailored specifically for the nuanced task of brain tumor 
classification, proposed method demonstrated an impressive 99% 
accuracy rate in proposed study, alongside high precision and recall 
across various tumor categories, underscoring its potential as a robust 
diagnostic aid in clinical settings. The implications of these 
discoveries are significant for the realm of medical imaging and 
diagnostics. The capability of the model to precisely classify brain 
tumors from MRI scans has the potential to transform diagnostic 
procedures, leading to heightened accuracy, shortened analysis 
durations, and potentially better patient outcomes by enabling earlier 
and more accurate diagnoses. This research emphasizes the value of 
developing specialized, task-specific AI models for medical imaging, 
which can address the unique challenges of the field more effectively 
than general-purpose models.

Looking ahead, there are several promising directions for future 
research. Expanding the diversity of the training and validation 
datasets can enhance model’s generalizability and robustness. 
Improving the model’s interpretability would make it more valuable 
in clinical contexts, where understanding the basis for its predictions 
is crucial. Extending its capabilities to multi-modal and longitudinal 
analyses could offer deeper insights into tumor progression and 
response to treatment. Finally, rigorous clinical validation and 
integration into clinical workflows will be  essential steps toward 
realizing proposed model’s potential to improve diagnostic practices 
and patient care in the realm of brain tumor treatment. By pursuing 
these avenues, we can build on the solid foundation laid by this study 
to further advance the application of AI in medical diagnostics, 
ultimately contributing to better health outcomes and enhanced 
clinical decision-making.

FIGURE 13

Misclassified instances.

FIGURE 14

Correct predictions.
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Parkinson’s disease (PD) is a globally significant health challenge, necessitating

accurate and timely diagnostic methods to facilitate e�ective treatment and

intervention. In recent years, self-supervised deep representation pattern

learning (SS-DRPL) has emerged as a promising approach for extracting valuable

representations from data, o�ering the potential to enhance the e�ciency

of voice-based PD detection. This research study focuses on investigating

the utilization of SS-DRPL in conjunction with deep learning algorithms

for voice-based PD classification. This study encompasses a comprehensive

evaluation aimed at assessing the accuracy of various predictive models,

particularly deep learning methods when combined with SS-DRPL. Two deep

learning architectures, namely hybrid Long Short-Term Memory and Recurrent

Neural Networks (LSTM-RNN) and Deep Neural Networks (DNN), are employed

and compared in terms of their ability to detect voice-based PD cases accurately.

Additionally, several traditional machine learning models are also included to

establish a baseline for comparison. The findings of the study reveal that

the incorporation of SS-DRPL leads to improved model performance across

all experimental setups. Notably, the LSTM-RNN architecture augmented with

SS-DRPL achieves the highest F1-score of 0.94, indicating its superior ability to

detect PD cases using voice-based data e�ectively. This outcome underscores

the e�cacy of SS-DRPL in enabling deep learning models to learn intricate

patterns and correlations within the data, thereby facilitating more accurate PD

classification.

KEYWORDS

Parkinson’s disease, artificial intelligence, self-supervised deep representation pattern

learning, machine learning, FT-HV

1 Introduction

The neurological disorder known as Parkinson’s disease (PD) has a substantial impact

on a considerable proportion of the worldwide population (Muangpaisan et al., 2011;

Rocca, 2018). The dopaminergic neurons in the substantia nigra region of the brain

gradually deteriorate, which distinguishes them. As a consequence, individuals have motor

symptoms, including tremors, bradykinesia, stiffness, and postural instability, which have
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a substantial influence on their daily functioning and overall quality

of life. Due to the chronic nature of the condition and the way these

symptoms are advancing over time, comprehensive therapy and

care are necessary. Timely detection and prompt intervention play a

critical role in minimizing the consequences of PD andmaximizing

the effectiveness of treatment. The ability to identify the subtle

indications and manifestations of PD at its early stages enables the

implementation of suitable therapeutic measures with the goal of

mitigating symptoms, maintaining motor abilities, and enhancing

the overall quality of life (Kanagaraj et al., 2024; Xia et al., 2024).

Individuals with PD may benefit from early intervention

measures such as lifestyle adjustments, rehabilitative therapy,

and pharmaceutical interventions that are specifically designed to

address their unique requirements and limitations (Olanrewaju

et al., 2014; Bhat et al., 2018; Lang and Espay, 2018). In order to

effectively address a broader spectrum of non-motor symptoms,

including cognitive impairment, psychiatric symptoms, and

autonomic dysfunction, neurologists, movement disorder

specialists, rehabilitation therapists, nurses, social workers,

and other healthcare professionals must collaborate in a

multidisciplinary approach to care (Seppi et al., 2019). The progress

made in diagnostic technology, neuroimaging techniques, and

biomarker identification has greatly contributed to the timely and

precise identification of PD, allowing healthcare practitioners to

intervene during the initial phases of the condition. Nevertheless,

there are still obstacles that remain, such as the requirement

for more accurate diagnostic biomarkers, the advancement of

neuroprotective medicines, and the enhancement of customized

therapy approaches for each patient. The increasing societal and

economic impact of PD highlights the imperative for ongoing

research, lobbying, and public awareness campaigns aimed at

improving healthcare accessibility, enhancing treatment efficacy,

and finally achieving a cure for this incapacitating disorder (Liu

et al., 2024; Sardar and Pahari, 2024).

Recent developments in the field of deep learning have

demonstrated potential for enhancing the precision and

effectiveness of PD identification (Ali et al., 2023). The use of

Self Supervised Representation learning (SSRL) has become

increasingly prominent as an effective methodology for acquiring

representations from data that lacks labels (Ericsson et al.,

2021). The SSRL technique has become a reliable approach for

extracting significant representations from data that lacks labels.

This method shows potential for enhancing the effectiveness of

voice-based PD detection systems. SSRL fundamentally entails

acquiring representations from data without the need for explicit

supervision (Mohamed et al., 2022). SSRL algorithms differ from

standard supervised learning approaches in that they can predict

a specific part of the input data based on another part without

requiring explicitly defined target outputs. The utilization of this

self-supervised methodology allows models to exploit the intrinsic

structure and patterns that exist within the data, resulting in

enhanced learning efficiency and effectiveness. The success of

SSRL algorithms in several areas is indicative of their adaptability

since they have exhibited the capacity to improve the efficiency of

learning tasks by enhancing sample efficiency (Zhang et al., 2017).

SSRL shows potential in the field of voice-based PD

identification. Through the utilization of unlabeled data, these

algorithms can reveal latent patterns and characteristics that

are suggestive of PD, consequently enhancing the precision of

predictive models (Nekoui and Cheng, 2021). It is noteworthy

that the numerous benefits of improved PD identification are

made possible by self-supervised deep representational learning

(Jiang et al., 2021). The timely identification and Early diagnosis

of PD is very important so that treatments can be started right

away, which could slow the disease’s progression and improve

patient outcomes (Mei et al., 2021; Öksüz et al., 2022). SSRL

algorithms are very important for making detection methods more

accurate and reliable, which speeds up the process of early diagnosis

and allows healthcare practitioners to intervene during the initial

phases of the disease. Moreover, the economic and systemic

consequences of improved Parkinson’s disease identification are

of utmost importance. The utilization of more precise diagnostic

instruments not only leads to enhanced patient care but also

holds the capacity to substantially mitigate healthcare expenses

linked to misdiagnosis or delayed diagnosis (Painuli et al., 2022).

SSRL-driven breakthroughs in PD detection enhance healthcare

delivery by simplifying the diagnostic procedure and increasing

the efficiency of healthcare systems. Furthermore, the utilization

of SSRL approaches not only enhances the precision of PD

identification but also exhibits the potential for furthering our

comprehension of the fundamental mechanisms associated with

this condition. These algorithms offer valuable insights into

the subtle connections and biomarkers linked to voice-based

PD by revealing intricate patterns and representations within

unlabeled data. This enhanced comprehension can contribute to

the advancement of therapeutic approaches and therapies designed

to alleviate the consequences of the condition (Güvenç Paltun et al.,

2021).

Motivation: PD is a significant healthcare challenge,

demanding precise and timely diagnostic methods for effective

intervention. Traditional approachesmay lack accuracy, prompting

the exploration of advanced techniques like self-supervised deep

representation pattern learning (SS-DRPL) to extract meaningful

features from voice data. By integrating SS-DRPL with deep

learning algorithms, this study aims to enhance the accuracy

of voice-based PD detection. Evaluation of various machine

learning models seeks to identify optimal approaches for early PD

identification, ultimately improving patient outcomes through

timely intervention and personalized treatment strategies.

Contributions: This paper makes the following

contributions.

• Self-supervised deep representational pattern learning

technique: Propose Self-supervised representational pattern

learning techniques for the extraction of latent features and

structures from data, resulting in enhanced discriminative

capabilities of themodels. Self-supervised learning has enabled

the more efficient utilization of available data in prediction

for Parkinson’s disease detection by predicting one part of the

input data based on another part without relying on manually

provided target outputs.

• Voice-based PD classification with machine learning

classifier: Proposed SS-DRPL based LSTM-RNN, DNN,

trained on voice dataset for the detection of PD. The DNN
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FIGURE 1

Employed methodology.

1: Data gathering and preprocessing:

• Collect data for Parkinson’s disease

• Data preprocessing

2: Input: Unlabeled dataset Ds = {x
(s)
i }

M
i=1

3: for i from 1 to M do

4: Sample xa ∼ T(x
(s)
i )

5: Sample x+ ∼ T(x
(s)
i )

6: for k from 1 to K do

7: Sample j ∼ U(1, M) {Choose a different raw

input}

8: Sample x−k ∼ T(x
(s)
j ) {Have a random transform}

9: end for

10: xi ← {(xa, x+), (xa, x−1), . . . , (xa, x−K )}

11: zi ← {1, 0, . . . , 0}

12: end for

13: Output: {xi, zi}Mi=1
14: Model training:

• DNN, and LSTM-RNN

15: Results analysis:

• Analyze model performance metrics.

• Discuss future research suggestions and

implications.

• Calculate and print results.

Algorithm 1. SS-DRPL for voice-based Parkinson’s disease detection.

demonstrated a performance of 0.85% in terms of accuracy.

The LSTM-RNN, with a score of 0.93%, addresses the issue of

overfitting and enhances generalization by integrating many

models. Likewise, it resulted in improved predicted accuracy.

The LSTM-RNN model demonstrated a good accuracy of

0.93%.

FIGURE 2

DNN architecture.

Paper organization: The paper is organized in a manner

that thoroughly examines the study. The study begins with

an introduction that provides an overview of the context and

importance of the research. The following parts then provide

a detailed explanation of the suggested approach. Subsequently,

the study presents its findings, demonstrating the efficacy of
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FIGURE 3

LSTM-RNN architecture.

TABLE 1 Classification reports for selected models.

Model Precision (%) Recall (%) F1-score (%) Accuracy (%)

LSTM-RNN 0.94 0.94 0.94 0.94

DNN 0.86 0.86 0.84 0.86

DT 0.85 0.86 0.85 0.86

LR 0.92 0.92 0.92 0.92

SVM 0.84 0.80 0.74 0.80

GNB 0.87 0.73 0.75 0.73

the proposed methodology. Similarly, the study backs up its

conclusions with visual aids and statistical measurements to help

people understand better. The study will conduct a detailed

assessment of its advantages and constraints and analyze its

practical ramifications for future endeavors. Finally, the report

provides a concise overview of the research’s accomplishments and

the study’s prospective implications.

2 Related work

SS-DRPL has become a popular and interesting method in

machine learning over the past few years (Ericsson et al., 2022). It

may be better than traditional guided methods in some ways (Feng

et al., 2019). However, when looking at how it can be used for more

challenging tasks like predicting Parkinson’s disease, the theories
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FIGURE 4

Confusion matrix of (A) SVM, (B) DT, (C) LR, (D) Gaussian NB, (E) LSTM-RNN, and (F) Deep DNN models.

behind SS-DRPL seem less developed than those behind traditional

guided learning paradigms (Zhang et al., 2017). Likewise, the goal of

this review of the literature is to look into the pros and cons of using

SS-DRPL to predict voice-based PD, emphasizing new research and

evaluations that have been done recently. The basic idea behind

normal supervised learning is to figure out howwell a model should

do on data it has yet to see (Jiang et al., 2020; Sen et al., 2020). On the

other hand, SS-DRPL methods are hard because the training loss

is usually optimized for a pretext task, but the downstream task’s

success metric is different. In addition, this misalignment brings

up important questions about how learned models in SS-DRPL can

be transferred and used in other situations. Because SS-DRPL has

some problems when it comes to predicting Parkinson’s disease,

experts have done much real-world testing using different neural

network architectures and datasets. For example, convolutional

neural networks have been used in recent studies to sort large

amounts of spectrogram images that contain gait patterns (Cetin,

2023; Nafiz et al., 2023). Deeply dense artificial neural networks

have also been used to look at voice recordings and guess when

Parkinson’s disease will start or get worse.

The investigations conducted have yielded empirical findings

that indicate encouraging results. The proposed models

consistently surpass the current advanced methods in terms

of categorization accuracy. Similarly, the VGFR spectrogram

detector had a notable accuracy rate of 0.88, while the voice

impairment classifier displayed an even better accuracy rate of

0.89 (Johri et al., 2019). This suggests the possibility of utilizing

SS-DRPL approaches to improve predictive accuracy in the

diagnosis and monitoring of PD. In addition, researchers have

investigated different approaches to enhance the representation

of features and the accuracy of classification in tasks related to

predicting PD. Moreover, one way to do this is to use correlation

maps made by principal component analysis, information gain,

and other methods for feature selection to make the feature space

bigger (Sharma and Mishra, 2022). It is important to note that

the classification results obtained by using extended feature sets

have been better than those obtained by using original features.

This underscores the significance of feature engineering in

augmenting prediction performance. More precisely, Researchers

have investigated various supervised AI algorithms, such as

Decision Trees, K-Nearest Neighbors, Random Forests, Bagging,

AdaBoosting, and Gradient Boosting, in order to improve classifier

accuracy and predictive performance in PD classification (Sabu

et al., 2022; Shastry, 2023). These techniques utilize permutation

computations to optimize model performance and improve the

accuracy of receiver operating characteristic (ROC) curves, which

is a crucial parameter for evaluating classifier performance.

In order to enhance the accuracy of feature representation

and the results of classification, authors in Malekroodi et al.

(2024) have implemented three separate component selection

procedures. These strategies enable each of the 23 features

to identify and pick the top 10 most effective features. The
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FIGURE 5

ROC curves of (A) SVM, (B) DT, (C) LR, (D) Gaussian NB, (E) LSTM-RNN, and (F) Deep DNN models.

FIGURE 6

DNN training and validation accuracy curves.

DT classifier has shown remarkable accuracy, reaching 0.94%,

even in datasets with 23 features, similar to those with only

11 features. Specifically, the exceptional performance has been

validated through the examination of the ROC curve, which has

demonstrated a noteworthy area under the curve of 0.98. The

implication of these findings are of great importance for clinical

practice, as they highlight the effectiveness of computer-based

algorithms in reliably differentiating people with PD from those

without PD at the individual level. Clinicians can utilize advanced

AI techniques and careful feature selection strategies to utilize

computer-based findings. This enables them to improve patient

care and outcomes in the management of PD by facilitating

early diagnosis, personalized treatment planning, and ongoing

disease monitoring. SS-DRPL opens up new ways to improve

the prediction of voice-based PD. However, there are still some

problems to solve before the theoretical foundations of SS-DRPL

can be used in real-life medical tasks (Tripathi et al., 2024). Overall,

by tackling these problems, SS-DRPL can be fully useful for better
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FIGURE 7

DNN training and validation loss.

FIGURE 8

LSTM-RNN training and validation accuracy.

diagnosing, treating, and predicting Parkinson’s disease, which will

eventually improve patient outcomes and quality of life.

3 Proposed methodology

This section will provide an overview of the research design,

paradigm, data collection methods, and analysis tools employed

in the study. Ensuring accuracy in the approach is crucial for

establishing the reliability and validity of the findings. Following

that, this section provides a brief yet thorough summary of

the strategic method, establishing the foundation for a thorough

empirical investigation and significant contributions to the area.

Figure 1 illustrates the methodology employed. The proposed

approach starts with dataset collection, then pre-processing, then

label encoding and the employing SSRL-based deep learning

models for training and testing, and finally, results analysis.

The dataset used in this study consists of 707 voice samples

obtained from individuals with various traumatic, biological,

and neurological disorders, including Parkinson’s disease, along

with 53 samples from healthy individuals serving as controls.

Each sample, averaging 2 s in duration, was recorded in

controlled, quiet acoustic settings. The dataset encompasses

multiple voice features such as fundamental frequency (MDVP:Fo),

frequency variations (MDVP:Fhi,MDVP:Flo), jitter (MDVP:Jitter),

shimmer (MDVP:Shimmer), noise-to-harmonic ratio (NHR), and

harmonics-to-noise ratio (HNR), among others. These features

provide comprehensive information about voice signals. Likewise,

to ensure uniformity in feature scales, the data underwent

preprocessing steps, including downsampling from 50 to 25

kHz and scaling using Min Max scaling (Ali et al., 2014).

By bringing all features into a common numerical range,

this preprocessing helps improve the convergence of machine

learning models (Little et al., 2007). Algorithm 1 presents an
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FIGURE 9

LSTM-RNN training and validation loss.

overview of the entire pipeline of the proposed approach, which

begins with collecting data, preprocessing it and evaluating

results.

The utilization of conventional machine learning models,

including Support Vector Machine (SVM), Decision Tree (DT),

Logistic Regression (LR), and Gaussian Naive Bayes (GNB), did

not incorporate SS-DRPL. Following this, the research employed

SS-DRPL techniques, specifically DNN and LSTM-RNN. The

classification of Parkinson’s disease was performed by training

these models using preprocessed voice samples, utilizing the

retrieved features. The study utilizes a DNN structure consisting

of numerous dense layers for representation learning and fully

linked layers for self-supervised learning and transfer learning. To

extract varied representations from input voice data, the model

employs parallel, thick layers consisting of 256 neurons each. The

representations are refined using separate, fully connected layers

with 64 neurons and then flattened and concatenated for transfer

learning. In order to do binary classification, a sigmoid activation

function is employed in a final, fully linked layer consisting

of 256 neurons. Subsequently, the model was made with the

Adam optimizer and the binary cross-entropy loss function. Early

stopping techniques were used to lower the risk of overfitting

during training.

The study also includes an LSTM-RNN architecture for

learning representations. The suggested model has two layers,

LSTM and RNN, running in parallel. Each layer has 256 neurons,

and they work together to capture the temporal dependencies in

the voice data. The outputs of the layers listed above are combined

and then sent to the extra LSTM and RNN layers, each of which has

128 neurons, improving the accuracy of the representations. Self-

supervised learning is implemented using fully connected layers

consisting of 64 neurons each. These layers are applied using a

time-distributed wrapper to process each time step separately. In

the context of transfer learning, the outputs undergo a process of

flattening and concatenation. Subsequently, fully connected layers

with 256 neurons are employed for binary classification, utilizing

a sigmoid activation function. The experimental setup involves

training the model using the Adam optimizer and binary cross-

entropy loss function. To mitigate the risk of overfitting, early

halting is employed. Figures 2, 3 show the architectures of DNN

and LSTM-RNN. These models possess the ability to independently

acquire significant representations straight from unprocessed voice

signals, obviating the necessity for manually designed features.

In addition, the preprocessed samples were used to train the

DNN and LSTM-RNN models. Throughout the training process,

the models acquired the ability to extract complex characteristics

from the unprocessed voice signals, effectively capturing detailed

patterns that are known to be indicative of Parkinson’s disease.

The inherent characteristic of self-supervised learning allows the

models to acquire representations independently without the need

for explicitly labeled input to extract features.

Both classical machine learning models and self-supervised

deep representation learning models were tested to see how well

they worked. These tests included accuracy, precision, recall, F1-

score, ROC curve, and confusion matrix analysis. This set of

measures offers significant insights into the outcomes of the

algorithms to detect Parkinson’s disease based on speech samples

precisely. SS-DRPL algorithms can assist in early diagnosis by

improving the accuracy and reliability of detection methods. This

enables healthcare practitioners to intervene during the early stages

of the disease. By taking a proactive approach, not only are

patient outcomes improved, but effective treatment techniques

may be implemented promptly, eventually boosting the overall

management of the condition.

4 Results and experimentation

The outcomes of the study are presented and interpreted in

the results and experimentation section, taking into consideration

the research objectives. Similarly, this part provides the results

and offers valuable perspectives, explanations, and ramifications

of the findings. The dataset was split into 80% for training and

20% for testing. Likewise, voice-based PD poses a complicated
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diagnostic dilemma owing to its diverse range of manifestations.

The objective of this study is to utilize SS-DRPL in order to create

reliable classification models that can effectively detect voice-based

PD using a wide range of features derived from patient data. The

study utilized several machine learning algorithms, such as DT, LR,

SVM, and GNB, as well as deep learning algorithms, such as LSTM-

RNN and DNN, each possessing distinct strengths and capabilities.

The LSTM-RNN models exhibited outstanding performance,

showcasing impressive precision, recall, and F1-score metrics, all

reaching a value of 0.94. Using recurrent neural networks to find

complex linkages in the data is a good way to classify Parkinson’s

disease cases accurately. The improved models demonstrate strong

performance, which shows great potential for clinical applications.

In these contexts, early and precise diagnosis plays a critical role

in effectively managing diseases and implementing intervention

measures. Table 1 shows the performance metrics of employed

models.

Nevertheless, the LSTM-RNN demonstrated better

performance; the DNN model displayed somewhat poorer

precision, recall, and F1-score metrics, but it still achieved

satisfactory levels of accuracy. Figures 4, 5 show the confusion

matrix and ROC curves of the employed models. Subsequently,

the observed disparity can be attributed to the model’s proficiency

in extracting pertinent features from the data or its aptitude for

generalizing to unfamiliar examples. However, the performance

of DNN highlights its potential usefulness in voice-based PD

classification tasks, although there is still some opportunity for

enhancement.Moreover, our examination of conventionalmachine

learning algorithms showed various degrees of effectiveness. The

Logistic Regression and Decision Tree models demonstrated

high accuracy rates of 0.92 and 0.86, respectively, indicating their

suitability for voice-based PD classification tasks. In contrast, the

SVM and Gaussian NB models had somewhat lower percentages of

accuracy, specifically 0.80 and 0.73, respectively. This indicates the

necessity for further optimization or feature engineering in order

to enhance their diagnostic capabilities for Parkinson’s disease.

These findings provide useful insights into the advantages and

constraints of various machine learning methods for classifying

Parkinson’s disease.

The LSTM-RNNperforms strongly, highlighting their potential

usefulness in clinical environments where precise and prompt

diagnosis is crucial for patient care. Also, comparing different

types of traditional machine learning models gives us much useful

information about how well they work and where we can find

new research and development opportunities. In summary, this

research showcases the considerable potential of machine learning

in the categorization of voice-based PD, with sophisticated models

like the LSTM-RNN exhibiting significant potential. Utilizing these

models’ advantageous aspects and acknowledging their constraints

can provide a pathway toward enhanced voice-based PD, thereby

leading to enhanced patient outcomes and improved quality

of life. Figures 6, 7 shows the training and validation accuracy

and loss curves provide a visual representation of the DNN

performance during training, offering insights into its learning

progress and potential overfitting or underfitting and assessing the

convergence and generalization capabilities of the model, aiding

in the optimization of hyperparameters and the identification of

training issues.

TABLE 2 Comparison with base study.

Study Accuracy (%)

LSTM-RNN 0.94

Arjmandi et al. (2011) 0.91

Figures 8, 9 show the training and validation accuracy

and loss curves of LSTM-RNN performance during training,

offering insights into its learning progress and potential

overfitting or underfitting and assessing the convergence

and generalization capabilities of the model, aiding in the

optimization of hyperparameters and the identification of training

issues.

Table 2 provides the comparison of the base study with our

proposed approach SS-DRPL-based LSTM-RNN approach. The

results reveal that the proposed approach provides the best accuracy

of 0.94% in comparison with a base study suggesting our approach

for voice-based PD detection.

5 Conclusion and future work

This study explored the potential of deep learning techniques

and SS-DRPL in voice-based PD classification. This study

demonstrated the effectiveness of these models in identifying

patterns within the dataset, thereby enabling accurate classification

of PD individuals. Furthermore, the experiment of deep learning

models yields significant findings regarding their relative

effectiveness and possible applicability in clinical environments.

Results reveal that the hybrid LSTM-RNN method effectively

identifies voice-based PD using different sets of patient data

features. Although this study offers useful insights into the

classification of PD, there are still various areas for further research

and development that need to be investigated. Similarly, combining

different types of data sources, such as genetic markers, imaging

data, and patient demographics, could improve the accuracy of

classification models and give a fuller picture of the risk factors

connected to PD. Furthermore, using longitudinal studies that

track the progress of diseases over a long period could reveal

important information about how voice-based PD develops

and help the development of more personalized treatment

methods. The establishment of collaborative partnerships

among data scientists, physicians, and healthcare providers

will play a crucial role in the translation of research findings

into practical insights, thereby enhancing patient outcomes

and advancing our comprehension of PD. This will ultimately

result in a more precise diagnosis, tailored treatment strategies,

and enhanced quality of life for individuals affected by this

condition.
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The classification of medical images is crucial in the biomedical field, and

despite attempts to address the issue, significant challenges persist. To e�ectively

categorize medical images, collecting and integrating statistical information that

accurately describes the image is essential. This study proposes a uniquemethod

for feature extraction that combines deep spatial characteristics with handmade

statistical features. The approach involves extracting statistical radiomics features

using advanced techniques, followed by a novel handcrafted feature fusion

method inspired by the ResNet deep learning model. A new feature fusion

framework (FusionNet) is then used to reduce image dimensionality and simplify

computation. The proposed approach is tested on MRI images of brain tumors

from the BraTS dataset, and the results show that it outperforms existingmethods

regarding classification accuracy. The study presents three models, including a

handcrafted-based model and two CNN models, which completed the binary

classification task. The recommended hybrid approach achieved a high F1 score

of 96.12 ± 0.41, precision of 97.77 ± 0.32, and accuracy of 97.53 ± 0.24,

indicating that it has the potential to serve as a valuable tool for pathologists.

KEYWORDS

feature fusion, convolutional neural network, medical imaging, radiomics feature, deep

feature

1 Introduction

In medical image analysis, object identification, detection, and recognition are essential

skills that are applied in several settings, such as research, treatment planning, and

illness diagnosis. Significant duties in this discipline include image registration, medical

condition categorization, and tumor segmentation. Inmedical imaging, for instance, object

detection entails locating and classifying anomalies, such as tumors, within an image.

This is especially difficult because different medical problems present differently based

on several circumstances, such as the patient’s demographics and the imaging modalities

used (Alruwaili et al., 2024; Wang et al., 2024). Conventional techniques for medical

image analysis frequently depended onmanually created features or textural attributes. The

textural elements that Haralick et al. (1973) provided for image classification have been

essential in understanding the textures observed in medical images. The Scale-Invariant

Feature Transform (SIFT) is developed and Lowe (1999) finds unique local features in

an image that are resistant to rotation, illumination, and scale changes. By producing a
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histogram of gradient orientations surrounding each key point,

SIFT generates a descriptor which is then used to match key points

across other images. Image registration and tumor localization

in medical imaging have been made easier by the use of these

descriptors for the recognition and alignment of anatomical

components.

Convolutional neural network (CNN)-based object

identification algorithms have significantly outperformed

conventional object recognition algorithms in recent years

as a result of the tremendous advancement in deep learning

applications. These significant improvements have been noted by

the medical image analysis field (Brahimi et al., 2017; Iqbal et al.,

2024). Machine that understands features from raw images have

gradually replaced algorithms that employ handcrafted features.

Before AlexNet’s innovation, numerous alternative methods for

learning features were widely used (Bengio et al., 2013).

Three basic problems are specifically encountered while

analyzing medical data, and these problems are briefly discussed

below. Medical data may take on a variety of forms, from images

to text values, and each type requires a particular approach. This

presents many challenges when it comes to combining various

types of data to, for instance, make a medical diagnosis (Yue et al.,

2020; Xu Z. et al., 2023). The second issue is that conventional

machine learning algorithms have performed poorly when used

to analyze large amounts of data, particularly when it comes to

the evaluation of medical data, which includes text notes and

diagnostic images which is one of the primary medical tools used

to estimate and inhibit human infection. Last but not least, a

lot of medical data, including genetic expressions and bio-signals,

have significant levels of noise and fluctuation, which enable

information retrieval particularly challenging (Brahimi et al., 2018;

Wang et al., 2023). Medical images are the primary diagnostic

and prognostic tool utilized by physicians, which illustrates why

statistical models are required for the interpretation of such

material. Deep Learning might be viewed as the new approach in

medical image interpretation. Medical images are generally utilized

most frequently in the medical area of neuroscience for both brain-

related studies and screening practices referred to neurological

illnesses (Li et al., 2019). Such images are often distinguished

by a significant level of diversity that may be controlled by

complicated deep learning frameworks. These applications have

demonstrated highly encouraging outcomes in the evaluation of

such images in this context (Lin et al., 2020; Azam et al., 2022).

Radiological examinations of the chest X-ray are often performed,

and huge datasets have been used extensively in research to train

algorithms that combine Recurrent Neural Networks (RNNs) for

text interpretation and Convolutional Neural Networks (CNNs)

for image analysis (Mavakala et al., 2023). Research on nodule

recognition, description, and classification in radiography and

thoracic computed tomography (CT) is still ongoing. Many

strategies are being investigated (Xu Q. et al., 2023), including

CNNs with conventional machine learning techniques and the

integration of features produced from deep neural networks. These

developments are intended to help organizations more effectively

identify a variety of cancers on chest X-rays. Furthermore, the field

of CT research endeavors to discern textural patterns suggestive of

pulmonary ailments (Chen et al., 2023; Hao et al., 2023).

The clinical contemporary healthcare system has benefited

greatly from the use of medical imaging. The ability of image

segmentation technology to handle massive volumes of medical

images has made it a crucial tool for computer-assisted medical

evaluation and therapy. The medical image classification process

is more difficult than conventional object recognition because of

the subtle differences and higher levels of complexity in medical

images. Additionally, the medical image contains a wealth of

semantic data that is essential to clinical and pathological feature

representation (Mohan and Subashini, 2018; Zhang et al., 2022).

Low-level collection of features, mid-level feature visualization, and

deep feature learning are the three main types of visual feature

research used in medical image categorization. The low-level

feature extraction methodologies, such as radiomics, SIFT (Lowe,

1999), Local Binary Patterns (LBP) (Liao et al., 2009), and Color

Vector Patterns (Häfner et al., 2012) often characterize the image

content primarily in terms of texture, form, color, and local pixel

density. These approaches have a straightforward computation and

a univocal notion but often typically omit semantic detail and are

unable to deliver sufficient efficiency for a single feature. The low-

level feature separation techniques are further used in the mid-level

feature encoding approaches to provide statistics or acquisition that

can do up to some extent and convey semantic significance. The

widely used Bag-of-Visual-Words (BoVW) model, for instance, is

still a useful feature representation method for environment image

categorization (Nosaka et al., 2011).

Radiomics is a new branch of applied research that aims to

extract high-dimensional data that may be mined from clinical

imaging. The radiomic procedure may be broken down into

discrete phases with defined sources and outcomes, such as image

capture and reconstruction, image segmentation, feature collection

and validation, assessment, and model creation. To build strong

and trustworthy models that may be used in clinical applications

for prediction, non-invasive disease monitoring, and assessment

of disease reaction to therapy, each stage must be carefully

assessed (Manthe et al., 2024).

A particular medical imaging technique cannot provide

important precise and accurate results. This fact drives researchers

to develop new imaging technologies or suggest fusion techniques

to combine data from several manual feature extraction

methodologies and acquire complementary information that

may be present in one or more feature extraction methods (El-

Gamal et al., 2016). Even if there are several medical image

fusion methods, the clarity of the combined medical image

may still be raised. To improve image resolution and expand

the therapeutic application of images for medical concerns, the

technique known as “image fusion" combines the more important

information of numerous images from one or more feature

extraction methodologies (James and Dasarathy, 2014; AlEisa

et al., 2022). Image fusion techniques may be used at three distinct

levels: feature, outcome-based, and pixel level. The goal of feature-

level fusion techniques is to take the most important aspects or

prominent features from the input images such as edges, direction,

shape, and size. These prominent features are combined with other

extracted features. A high level of fusion that determines the real

target is called outcome-based fusion. It combines the output from

many methods to get a final fusion assessment. With pixel-level
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fusion techniques, the actual data from the input images or their

multi-resolution modifications is combined immediately (Liu et al.,

2015).

According to a report by The International Agency for Research

on Cancer (IARC) and The Global Cancer Observatory (GCO),

it is measured that in 2020, there will be 308,102 new cases of

brain tumor and 251,329 deaths worldwide (Sung et al., 2021).

Among the various types of brain cancer, GlioblastomaMultiforme

(GBM) is considered one of the most severe and challenging forms,

which is classified as a grade IV brain tumor by the World Health

Organization. It accounts for 48% of all initial malignant brain

tumors and is expected to affect more than 13,000 Americans

annually, with over 10,000 deaths each year, as reported by Bray

in 2018. Treatment options for GBM are limited (Bray et al., 2018).

The goal of our study is to ascertain whether essential radiomics

features might be present in various body cells. We evaluated the

radiomics features of tumors in the brain organ. We created a

Fusion model containing radiomics features and CNN features

(high-level semantic features) extracted from available datasets for

survival evaluation. The separate experimental dataset of brain

cancers was used to examine the possibility of leveraging the chosen

features to separate high-risk from low-risk groups. The study

proposes using CNN and radiomics-based features to enhance the

effectiveness of combined findings in medical image feature fusion.

The main contributions of this study are as follows:

• A new residual block called Sequential-ResNet (Seq-ResNet)

is proposed, which includes five 3 × 3 convolutional layers

to examine high-level semantic information. The proposed

Seq-ResNet deepens the CNN network while maintaining

a manageable parameter number and adds an approach

to preserve moderate-level features in addition to shortcut

connections.

• AFusionNet architecture with 37 layers is designed specifically

for detecting smaller or low-magnification tumors, which

allows for the combination of high-level semantic information

with moderate-level pertinent features.

• Radiomics features can be obtained from the tumor region

that has been segmented using image processing techniques.

Various feature extraction methods, including gray-level co-

occurrence matrix (GLCM), gray-level run length matrix

(GLRLM), and gray-level size zone matrix (GLSZM), are

available for this purpose.

• Feature fusion is used to extract the most discriminating

information from the source feature sets and eliminate

duplicate information produced by association across different

feature sets.

• The statistical and spatiotemporal features in each of the

various source images are extracted using an inter-extraction

method, combined, and then divided into malignant and

benign.

This research employs the medical imaging modality MRI, to

detect brain tumors. Brain MRI is widely used for diagnosing

critical diseases globally, and Section 2 describes the details

and prevalence of such diseases. Section 3 reviews the most

up-to-date state-of-the-art research on brain MRI. Section 4

discusses the importance and significance of this article, while

Section 5 elaborates on our proposed fusion model’s detailed

design and implementation. The experimental setup is presented

in Section 5.3. Finally, Section 6 details the results obtained from

training and testing on the Brain MRI dataset, and Section 8

concludes the study.

2 Background

According to the American Cancer Society, negative

consequences of GBM therapy may include peripheral neuropathy,

which includes symptoms that cause effects on the central nervous

structure and limit bodily activities, lowering the quality of

life for patients severely. As a result, it is vital to determine if

chemotherapy will be beneficial in slowing the progression of the

disease before the patient begins treatment.

Surgical excision of the tumor, followed by radiation and

chemotherapy, is the treatment option for GBM patients.

Individual patients who get standard care have an average survival

period of 15 months, relative to only 4 months if they are left

untreated once identified (Bleeker et al., 2012). Chemotherapy, a

common and effective therapeutic option, kills rapidly proliferating

cells but cannot always ensure the difference between tumor and

normal cells. This may have unfavorable consequences (Taal et al.,

2015).

One of the most challenging jobs in medical imaging analysis

is the automatic classification of glioma. It would be very helpful

for healthcare professionals if a computational framework could be

created that could detect diseases, plan treatments, and evaluate

their effectiveness better than a trained and qualified one could.

Such a framework would also enable a more distinct, uniform, and

exchangeable method for diagnosis of diseases, care planning, and

measurement. Gliomas are the most prevalent type of brain tumor

in people. The appropriate classification of medical image data is a

provocative medical image analysis job because of their complex

structure and composition in multi-modal Magnetic Resonance

Imaging (MRI). Such gliomas require feature extraction, which

requires a high level of specialist knowledge, requires time, and

is inclined to human misconception. The typical approach also

deficiency of coherence and reproducibility, which has a negative

effect on the results and may result in incorrect diagnosis and

treatment.

Due to rapid advancements in machine learning and

deep learning (DL) techniques, deep neural networks (DNNs)

hold a lot of potential for application in Computer Assisted

Diagnosis (CAD) semi-automatic systems for healthcare data

interpretation. Convolutional neural networks (CNNs) have

significantly advanced, enabling models to match or surpass

human performance in a variety of fields, including, among others,

image analysis and microscopy segmentation (Russakovsky et al.,

2015).

Despite the apparent effectiveness of Deep learning models in

a variety of problem scenarios, designing well-functioning deep

learning models is not easy in reality. The success of a deep learning

model is strongly dependent on a circumstantially appropriate

selection of design factors, such as the number of hidden layers
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in a model, the number of units in a layer, and the kind of unit,

which are referred to as hyperparameters. Different elements of the

deep learning model’s behavior are governed by hyper-parameters,

including themodel’s capacity for learning patterns from images, its

degree of generalization in performance when givenwith fresh data,

and the memory consumption cost of building the classifier (Nazir

et al., 2022).

As we all know, deep learning models are black boxes

and we do not know about the pertinent feature extractions

and also these models are data hungry. As long as enough

training data are provided, deep learning models are strong

contenders for brain malignancy segmentation. The Brain Tumor

Segmentation Challenge (BraTS) offers a huge, eminent-quality

dataset that includes MRI brain images and segmentation masks.

Tumor segmentation and MGMT methylation prognosis from

pretreatment magnetic resonance (MR) images are two challenges

in the RSNA BraTS 2021 competition. The organizers of the

challenge have published large datasets to facilitate technique

assessment and advance state-of-the-art approaches in various

fields (Baid et al., 2021).

Due to the tiny size of medical image segmentation datasets

(typically ∼100 samples) and the lack of a universal baseline

for comparing the effects of different architectural adjustments,

such analyses are frequently incorrect. Nevertheless, the dataset

published for BraTS21 contains 2,040 samples (in the training,

validation, and test sets, respectively, 1251, 219, and 570 examples),

making it the leading dataset for medical image analysis at

the instant and an ideal individual for comparing performance

improvements for different UNet variants.

There has subsequently been a surge in the field of information

mining and artificial intelligence (AI) usage in medicine. The topic

of radiomics encompasses a set of approaches for automatically

extracting huge quantities of statistical data from medical images

using gray-level pixel assessment, potentially paving the way

for discoveries into pathophysiological processes underpinning

various medical disorders (Lambin et al., 2012). One of the key

fields of radiomics is texture characterization, which evaluates gray-

level value variations in images that are not discernible by a human

reader’s aesthetic judgment. As a result, it is useful in radiography

for assessing the characteristics of various tissues or organs, perhaps

leading to the discovery of novel biomarkers (Scalco and Rizzo,

2017). Texture features and characteristics may have clinical and

pathological associations that might aid in the assessment of patient

prognosis (Lubner et al., 2017).

Deep Learning (DL) has proven to be potentially effective

in a variety of healthcare sub-specialties in recent years, and

many of these techniques have now been licensed for clinical

usage (Cuocolo et al., 2019, 2020; Tsuneta et al., 2021). Radiology

is one of the most promising domains for radiomics and machine

learning applications, since they may be used to detect and

characterize lesions automatically or divide medical images (Ugga

et al., 2021; Spadarella et al., 2022). There have been an increasing

number of research studies that indicate DL to be a valuable

technique in visualizing malignant disorders (Haq et al., 2021).

It might, for example, reduce the time it takes to acquire and

rebuild images (Sermesant et al., 2021). The have also shown

encouraging results in digital anatomical structure segmentation

and illness categorization (Bruse et al., 2017; Ghorbani et al.,

2020). Finally, the capacity of DL to find hidden patterns in data

may bring fresh insights into well-known illnesses, boosting future

management (Bagheri et al., 2021).

3 Related work

Quan et al. (2021) presents FusionNet, a deep neural

network that segments neuronal structures in connectomics data

obtained from high-throughput, nano-scale electron microscopy.

The primary challenge of developing scalable algorithms with

minimal user input is addressed with deep learning. FusionNet

combines recent machine learning advancements to improve

segmentation accuracy and performs well when compared with

other electron microscopy segmentation techniques. The versatility

of FusionNet is also demonstrated in two segmentation tasks: cell

membrane segmentation and cell nucleus segmentation.

Guo et al. (2020) proposed framework for multi-modal

medical image integration, which aims to maximize physiological

information, improve visual clarity, and reduce computation. It

consists of four parts and captures all medical information features

in the input image, calculates the weight of each feature graph, and

reduces information loss. The algorithm was tested on three sets

of investigations with medical images, showing better performance

than other algorithms in terms of detail and structure recognition,

visual features, and time complexity.

The deepSeg was discovered by Zeineldin et al. (2020). They

created two fundamental components that are linked by an

encryption and decoding connection. To extract features, they

employed a Convolutional Neural Network (CNN) as an encoder.

With CNN layers, they employed dropout and BatchNormalization

(BN). Then, using the SoftMax activation function, enter the result

into the decoding section to generate a prediction map. They

employed a Batch Normalization layer between each convolution

and ReLU in the deciphering section and a modest kernel size

of 32 for the base filter. They also examined the revised UNet

to other CNN models including NASNet, DenseNet, and ResNet.

They used FLAIR MRI images from the BraTS 2019 competition,

which enclosed 336 training instances and 125 validation cases for

data size of 244 × 244. Hausdroff and Dice’s Distances increased

from 0.81 to 0.84 and 9.8 to 19.7, respectively.

For brain tumor segmentation, Lachinov et al. (2018) identified

two frames of classification techniques from the same UNet

(Multiple Encoders UNet and Cascaded Multiple Encoders UNet).

For brain segmentation, they employed a customized 3D UNet

CNN Model. With its cost function, the proposed Cascaded UNet

utilized three UNets. To improve the dataset, they employed z-

score normalization as a pre-processing strategy. To expand the

range of instances of the source data, they employed b-spline

transformation as data augmentation. They tested the proposed

two-frame classification techniques using the BraTS 2018 dataset

and found that they performed well on test data. The Dice score

increased from 0.901/0.779/0.837 to 0.908/0.784/0.884 for total

tumor, enhanced tumor, and tumor core segmentation when the

base UNet was evaluated to the Cascaded UNet.
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Based on the number of references, encoder–decoder

architectures, in particular UNet, are among the most often

used deep learning models for medical image analysis in the

field of brain tumor segmentation (Ronneberger et al., 2015).

UNet-like topologies have been among the most popular BraTS

competition proposals in recent years. For example, in 2018,

Myronenko added a variational autoencoder branch to a UNet

model for generalization (Myronenko, 2018). Jiang et al. (2019)

used a two-stage UNet pipeline to partition brain tumor structural

components from rough to granular in 2019. Isensee et al.

(2021) reported the nnUNet architecture in 2020, with particular

BraTS-designed improvements to data post-processing, region-

based training, data augmentation, and minor nnUNet flow

improvements (Isensee et al., 2020). These results demonstrate

that well-designed UNet-based networks may execute well enough

on challenges such as brain tumor segmentation. To develop a

suitable solution for problems such as BraTS21, the optimum

neural network design, and the training procedure must be

adopted. There are many other types of UNets, such as Attention

UNet (Oktay et al., 2018), Residual UNet (He et al., 2016), Dense

UNet (Huang et al., 2016), Inception UNet (Szegedy et al., 2017),

UNet++ (Zhou et al., 2018), SegResNetVAE (Isensee et al., 2020),

or UNETR (Hatamizadeh et al., 2022), to mention a few.

We examine feature matching encoder–decoder systems from

two angles: reconstructing spatial features and utilizing hierarchical

semantics. The pooling mechanism in encoder–decoder networks

is notorious for inducing significant systematic errors and

overlooking the connection between parts and wholes. In

convolutional neural networks (CNNs), max-pooling is frequently

used for downsampling. The greatest value from each region

is generated by max-pooling, which divides feature maps into

non-overlapping parts. This results in the loss of potentially

significant geographical information. Several existing strategies

have attempted to modify crude high-level semantics through the

use of high-level spatial resolution information. In combination

with multiresolution fusion, stacked hourglass networks perform

continuous bottom-up and top-down computation (Newell et al.,

2016). Recent approaches append the characteristics of various

layers before prediction calculation to retrieve spatial information

employing encoder–decoder networks (Bell et al., 2016; Kong et al.,

2016). As the input to other concurrent sub-networks, HRNet

integrates the representations created by sub-networks with high-

level resolution (Sun et al., 2019). Deeply fused networks employ

shallow layer interim outputs as input to deeper layers (Chen et al.,

2021). The global convolutional network uses skip connections

with massive kernels to encode rich spatial information from input

images (Peng et al., 2017).

The high-level interpretations heavily influence the outcome

of an encoder–decoder network. However, feature merging is

necessary to restore low-level semantics in addition to high-level

spatial characteristics. To prevent unnecessary failed states that

can result from increasing depth, ResNet adds low-level semantic

input feature maps to high-level semantic output feature maps (He

et al., 2016). In contrast, DenseNet combines hierarchical semantics

with spatial information at the same level, thereby improving

classification rules (Huang et al., 2017). H-DenseUNet showcases

how the optimized flow of information and parameters can

reduce the complexity of training encoder–decoder networks for

biomedical image segmentation (Li et al., 2018).

Badrinarayanan et al. (2017) discovered a convolutional

encoder–decoder network for image analysis in their study known

as SegNet. The SegNet is a fundamental trainable segmentation

engine that includes an encoder network, which is structurally

similar to the VGG-16 network’s 13 convolutional layers, and

a corresponding decoder network, along with a pixel-wise

classification layer akin to the deconvolution network. What sets

SegNet apart is its innovative approach to non-linear upsampling in

the decoder, where it employs the pooling indices obtained during

the associated encoder’s max-pooling phase. This eliminates the

need for learning how to up-sample. To produce dense feature

maps, trainable filters are used to convolve the up-sampled (sparse)

maps. SegNet outperforms many of its competitors while requiring

a considerably smaller number of learnable parameters. The same

authors proposed a Bayesian version of SegNet to model the

uncertainty in the convolutional encoder–decoder network for

scene segmentation (Kendall et al., 2015).

In their groundbreaking study, Aerts et al. (2014) reported

predictive ability in separate data sets of individuals with head-and-

neck and lung cancer. It showed that frequently obtained CT scans

may contain diagnostic and biological information. As a result,

a significant amount of radiomics research has concentrated on

this topic after acknowledging that tumor diversity has prognostic

value and may affect therapy response (McGranahan and Swanton,

2015). The relevance of radiomics for diagnosis and prognosis and

evaluating therapeutic outcomes is highlighted by research that

proves radiomics characteristics and patterns mirror the cancer

micro-environment in terms of behavior and progression. For

patients with non-small cell lung cancer, Ganeshan et al. (2012)

discovered that tumor variability may be evaluated by non-contrast

CT scan texture analysis and can offer an unbiased predictor of

survival (NSCLC). The same researchers’ texture characteristics

found pertinent relationships in a different investigation and

showed that they might function as imaging correlates for cancer

hypoxia and angiogenesis (Ganeshan et al., 2013). Win et al. (2013)

used pretreatment Positron Emission Tomography (PET)/CT scans

to study cancer heterogeneity and permeability throughout this

time. According to their research, the only variable associated

with survival in the group receiving drastic therapy was textural

heterogeneity assessed from CT scans. Textural heterogeneity,

tumor stage, and permeability were all linked to survival outcomes

in the palliative treatment group. In a similar setting, Fried

et al. (2014) retrieved texture characteristics from preoperative

CT images before receiving final chemo-radiation therapy and

discovered that radiomics featuresmay offer predictive information

further than that gained from standard prognostic markers in

NSCLC patients. Based on the widely accepted idea that tumors

are diverse and the degree of diversity may aid in determining

the malignancy and severity of tumors, Cherezov et al. (2019)

discovered a method for discovering tumor habitats using textural

data. These findings showed that lung cancer patients’ long-term

and short-term survival rates could be distinguished with an

AUC of 0.9 and an accuracy of 85% (Cherezov et al., 2019).

Furthermore, previous research has shown correlations between

prognosis and therapeutic response for radiomics characteristics
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derived from preoperative fluorodeoxyglucose (18F-FDG) PET

scans. For instance, in a previous study, textural characteristics

of PET scans were linked to worse prognostications and lack of

response to chemo-radiotherapy by Response Evaluation Criteria

in Solid Tumors (Cook et al., 2013). Decreased diversity on

PET was linked to erlotinib reaction in a different research

by Cook et al. (2015), and changes in first-order entropy were

significantly linked to both patient survival and effective manner

and response in NSCLC patients. They explain the clustering

strategy using FDG-PET and CT to detect intra-tumor diversity

in lung adenocarcinomas before and after therapy. To quantify

the lesion structure, strength, diversity, and other characteristics

in several frequencies, 583 radiomics characteristics from 127

preoperative lung nodules were retrieved in a different research.

With equal-sized benign or malignant tumors, patients were

randomly assigned to one of ten categories. The random forest

approach was then used to run a diagnostic model. This radiomics

classification algorithm successfully achieved 80.0% sensitivity,

85.5% specificity, and 82.7% accuracy in separating cancerous

primary lesions from benign ones. In contrast, the sensitivity of

the conventional knowledgeable radiologists’ annotations was only

56.9% with identical precision (Ma et al., 2016). Another study

reported how radiomics may identify the eventual development

of cancer by doing quantitative analysis on preliminary low-

dose CT chest lesions and analyzing images from the well-known

National Lung Screening Trial (NLST). There were two lineages:

one included 104 cases and 92 individuals with lung malignancies

found by screening, while the other included a similar group

of 208 incidents and 196 individuals with harmless pulmonary

lesions found through screening. Such findings are comparable

to the precision of the McWilliams framework for analysis and

outperformed the accuracies of the Lung-RADS and malignancy

volume methodologies (Kim et al., 2019). In total, 23 reliable

radiomics features chosen by the Random Forest (RF) algorithm

accurately predicted malignancy that became malignant in 1 or 2

years, with accuracies of 80% (Area Under the Curve, AUC 0.83)

and 79% (AUC 0.75), respectively (Hawkins et al., 2016). Using

peritumoral and intra-tumoral radiomic characteristics, Pérez-

Morales et al. (2020) created an independent lung cancer

prognostic prediction model (Pérez-Morales et al., 2020). This

algorithm might pinpoint a subset of individuals with initial

lung cancer who are at significant risk and have a bad outcome.

The lung cancer screening system allowed doctors to customize

clinical care for these high-risk individuals who were diagnosed

with lung cancer in its early stages. Furthermore, Horeweg et al.

(2014) identified that determining the radiomic capacity doubling

time for medium lesions helped direct lung cancer care and

perhaps forecast the likelihood of lung cancer (Horeweg et al.,

2014). Lesion treatment strategies that use volumetric or volume-

based diameter boundaries (ranging from 9 to 295 mm3 or 6–

11 mm in diameter) have demonstrated enhanced sensitivity of

up to 92.4% and specificity of 90.0% as opposed to the ACCP

lesion handling procedure using low-dose CT scans in target

populations. By lowering false positives and negatives in lung

cancer analysis and misdiagnoses, more research into radiomics

applications could improve lung cancer screening. Constanzo et al.

(2017) has generally concentrated on hand-crafted Radiomics,

while deep learning-based Radiomics is only briefly discussed

without addressing various topologies, interpret-ability, and hybrid

models. While Parmar et al. (2018) discovered both forms of

Radiomics, the combination of hand-crafted and deep learning-

based characteristics is not taken into account. Additionally, the

difficulties with radiomics and the connection between radiomics

and gene expression (radio-genomics) are not fully covered. Finally,

only deep learning-based radiomics features are covered in the

study by Litjens et al. (2017), leaving out hand-crafted features,

their stability, hybrid radiomics, and radio-genomics. All of them

necessitate a quick and timely effort to expose radiology to

your community, as image processing is one of the fundamental

elements of radiology.

The entropy of metastatic disease was proven to be a relevant

measure in an MRI-based radiomics investigation; greater entropy

values were discovered in tumor tissues relative to mild tumors,

indicating the tumor’s diversity and vascular state (Parekh and

Jacobs, 2017). Using dynamic contrast-enhanced MRI, another

research (Whitney et al., 2019) attempted to develop a collection

of quantitative parameters that might be retrieved fromMR images

to differentiate luminal breast tumors from mild breast tumors.

4 Our contributions

When Deep Convolutional Neural Networks (DCNNs) utilize

feature fusion for retrieving spatial information and leveraging

multi-layer semantics, two issues arise. First, the deep convolution

layer feature maps provide lower-level spatial information required

for reconstructing the merged feature maps. Second, feature-

matching methods only provide feature maps’ semantics at the

same level of resolution. These problems are challenging to address

as element-wise addition and channel concatenation result in

a fusion method that is overly restrictive and only aggregates

extracted features of the same scale. The encoder and decoder

convolution layers are the only ones at the same level in encoder–

decoder networks because downsampling reduces the scale of

feature maps, and upsampling increases it. UNet lacks multi-

layer semantics and global spatial information, which results in

analyzing images pixel by pixel and distinguishing objects using

color contrast. However, using contrasting colors to make objects

stand out may not necessarily improve tumor borders.

The purpose of our investigation is to determine whether

fundamental radiomics traits may be found throughout several

human tissues. In the brain organs, we assessed the radiomics

characteristics of malignancies. Using the dataset for survival

analysis, we built a radiomics model and selected characteristics.

The potential for employing the desired traits to distinguish

between high and low-risk groups was investigated using an

independent test dataset BraTS brain tumors.

To achieve automation with manual medical image feature

fusion, we use CNN and radiomics-based features to upgrade the

effectiveness of the combined findings. The main contributions of

this study are as follows:

1. Sequential-ResNet (Seq-ResNet) is a new residual block, which

is proposed. Five 3 × 3 convolutional layers are included

in a single Sequential-ResNet to examine high-level semantic
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Require: input_image, radiomics_features

1: ⊲ Seq-ResNet Layer

2: function Seq_ResNet(input_image):

3: ⊲ Sequential Residual Architecture(x)

4: ⊲ Extract feature subspaces using

Seq-ResNet layer

5: return feature_map with multiple subspaces

6: ⊲ Down-sampling Operation

7: function down_sampling(input_high_res_feature

_map):

8: ⊲ Transpose Convolution to obtain low-resolut-

ion features

9: low_res_feature_map ← Transpose_Convolution

(input_high_res_feature _map)

10: ⊲ Deconvolution to produce high-resolution

features

11: high_res_feature_map ←

Deconvolution(low_res_feature _map)

12: ⊲ Fusion of high-resolution features with

residual output

13: final_high_res_feature_map ← Concatenate

(input_high_res_feature_map, high_res_feature

_map)

14: return final_high_res_feature_map

15: ⊲ Up-sampling Operation

16: function up_sampling(input_low_res_feature_map):

17: ⊲ Deconvolution to produce high-resolution

features

18: high_res_feature_map ←

Deconvolution(input_low_res_feature

_map)

19: ⊲ Transpose Convolution for low-resolution

features

20: low_res_feature_map ← Transpose_Convolution

(high_res_feature_map)

21: ⊲ Fusion of low-resolution features with

residual output

22: final_low_res_feature_map ← Concatenate

(input_low_res_feature_map, low_res_feature

_map)

23: return final_low_res_feature_map

24: ⊲ Main FusionNet Process

25: seq_resnet_features ← Seq_ResNet(input

_image)

26: down_sampled_features ← down_sampling

(seq_resnet_features)

27: concatenated_features ← Concatenate

(down_sampled_features, radiomics_features)

28: fc_layer_output ← Fully_Connected_Layer

(concatenated_features)

29: classification_result ←

SVM_Classification(fc_layer

_output)

30: return classification_result

Algorithm 1. Proposed FusionNet.

information. A hierarchical framework made up of these five

layers generates features that are then analyzed by different

numbers of convolutional layers. The proposed Seq-ResNet

deepens the CNN network while maintaining a manageable

parameter number as compared with the original ResNet.

The proposed Seq-ResNet adds an approach to preserve the

moderate-level features in addition to the shortcut connection

increasing the outcomes.

2. We design a Seq-ResNet for the detection of a smaller or low-

magnification tumor. This CNN architecture comprises 37 Seq-

ResNet layers. The proposed model having a deeper architecture

allows the model to capture more intricate and complex high-

level semantic features from the input data. Additionally, the

pairing of numerous Seq-ResNet preserves the moderate-level

features necessary for smaller tumor recognition while allowing

the resulting features to be digested by varied numbers of

convolution layers. As a result, the feature produced by the

proposedmodel combines high-level semantic information with

moderate-level pertinent features.

3. The essence of feature fusion lies in its ability to extract the most

discriminating information from the source feature sets engaged

in fusion and get rid of the duplicate information produced

by association across different feature sets. The statistical and

spatiotemporal features in each of the various source images are

extracted using an inter-extraction method. The source images’

features are combined, and the combined result is divided into

malignant and benign.

5 Methodology

5.1 FusionNet

The natural contour of the body edge is changeable in medical

images because distinct features of the human body are visible.

To handle the separation of microorganisms, a structure has been

developed that uses sophisticated models which amalgamate a

high-level representation of depth-wise convolution layers and

residual blocks with a description of the presence of upsampling

and downsampling levels to achieve detailed segmentation. The

original residual block is suggested as a solution to the vanishing

gradient issue that arises as network complexity grows. Networks

with different depths have been developed to effectively investigate

high-level contextual information by layering numerous residual

blocks. Low-level precise information is observed as being as

significant as high-level contextual information in the case of tiny

feature extraction. Although the auxiliary link in the initial residual

block aids in deepening the network, convolutions still lead to low

extensive information vanishing. The 3 × 3 convolution layer in

the original residual block is replaced with a sequential ResNet

convolution structure to allow for simultaneous acquisition of low-

level specific information and high-level contextual information.

Proposed Seq-ResNet is the term given to the res-block since the

input feature is separated and analyzed hierarchically, which is

similar to mounting a mountain.

The Proposed FusionNet algorithm is shown in Algorithm 1

and Figure 1 and use of Seq-ResNet is shown in Figure 2 to obtain
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FIGURE 1

Proposed Framework: The Proposed FusionNet, where seq-resnet layer is shown in Figure 2, extracts feature subspace (3 × 3), represents the

number of convolution layers, the subspace has gone through, and j represents the subspace number. The extracted features via Seq-ResNet are

forwarded for downsampling steps and 1 × 1 convolution to 1 × 3, 3 × 1 depth-wise separable convolution, respectively. After that, we apply

upsampling to get the pertinent features, and these features are concatenated with radiomics features and apply the FC layer. These concatenated

features are passed to the Support Vector Machine (SVM) for classification.

feature subspace, where j is the subspace number and (3× 3) is the

size of convolution layers the subspace has undergone. The Seq-

ResNet-extracted features are then sent forward for downsampling

steps and 1× 1 depth-wise separable convolution with 1× 3 and 3

× 1, respectively. The relevant characteristics are then obtained by

using upsampling, and these features are combined with radiomics

features before applying an FC layer. Support Vector Machine

(SVM) is given these concatenated characteristics to classify the

data. The proposed CNN model FusionNet comprises Seq-ResNet

and is made up of two parts:

5.1.1 Sequential residual network
Figure 2 depicts the proposed Seq-ResNet, where F

j
i stands

for a feature subspace (i [3 × 3] for the number of convolution

layers the subspace has undergone and j for the subspace number).

Fi stands for a feature map constructed from feature subspace (i

indicates the number of this feature map). The symbolC
j
i denotes a

convolution layer with j depicting the kernel value and i presenting

the number of layers. The input image of Seq-ResNet is convolved

with kernel 1 × 1 to decrease the number of channels into 1
5 .

These number of channel outputs such as F1
1, F

1
2 , F1

3, and F
1
4 are

convolved with kernel value 3 × 1 and 1 × 3, except the F1
0. The

remaining feature (F1
0) is processed-free overlaid to final feature

map (Fi). We then pass F1
2 , F1

3, and F
1
4 to depth-wise seperable

convolution with kernel value 3 × 1 and 1 × 3, and the remaining

feature F1
0 and F

1
1 forward to final feature map (Fi). The detailed

operation is shown in Figure 2 Seq-ResNet block. At the end, we

concatenate all the processed and processed-free features into a

final feature map Fi. To restore the original channel number, we
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FIGURE 2

Proposed Framework: The suggested Seq-ResNet, where F
j

i
represents a feature subspace, i(3 × 3) represents the number of convolution layers the

subspace has gone through, and j represents the subspace number. Fi denotes a feature map built from feature subspace (i indicate the number of

this feature map). The symbol C
j

i
represents a convolution layer, with j representing the kernel value and i representing the number of layers. The

Seq-ResNet input image is convolved with kernel 1 × 1 to reduce the number of channels to 1
5
. These numbers of channel output such as F1

1, F
1
2 , F1

3,

and F
1
4, are convolved with kernel value 3 × 1 and 1 × 3 except the F

1
0.

process the concatenated feature map with convolution with a

kernel value is 1 × 1. Multiple subspaces of the result are analyzed

using various convolutional layers, resulting in various subspaces

that include features with various receptive fields. Smaller receptive

field subspace, such as F1
0 and F

1
1, comprise more relevant details

and undergo smaller convolution stages, which is crucial for smaller

tumor recognition. Large receptive field subsets, such as F
2
2, F

3
3,

andF4
4, blur particular information while exploring deep contextual

features is equally crucial for detection. At the start and conclusion

of the suggested block, two C3
1 and C

3
2 are utilized to automatically

choose the appropriate features and apply a bottleneck to lower the

parameter count.

5.1.2 Upsampling and downsampling
Typically, a compilation of feature maps is created by sampling

and concatenating the information from various levels of the

proposed Seq-ResNet. To construct a feature selection procedure,

several 1 × 1 convolutions are applied during the gathering of

feature maps. After feature extraction, the gathered features are

merged to create feature maps with various resolutions, which

are then put through distinct upsampling and downsampling

procedures. Throughout the upsampling and downsampling

operations, both high and low contextual information from the

proposed feature fusion network can be used. However, because

of these processes, information impurity might happen. Our

suggested feature fusion network uses a deep upsampling and

downsampling deConvolution layer to address this problem. This

lessens the effect of imperfect information. This methodology

was motivated by the deep upsampling and downsampling

units found in super-resolution image reconstruction methods.

Figure 3 depicts the proposed deep upsampling and downsampling

deConvolution module’s structure. The two main components,

upsampling and downsampling, are used to extract low-level and

high-level contextual features. The upper layer of Figure 3 presents

the upsampling methodology. The low-resolution feature maps

(LowResi) are passed to deConvolution to produce the high-

resolution features (HiResi), as shown in Figure 3. The Transpose

Convolution (Tconv) is used to extract pertinent features from low

resolution (LowResi) to convert it into high resolution (HiResi).

The low resolution (LowRes2) feature map residual outcome

and initial low resolution (LowRes1) feature map are passed to

deConvolution to obtain high resolution (HiResi) feature maps.

The final high resolution residual output is obtained from the

initial high resolution feature map (HiRes1), and the output

of the Transpose Convolution is concatenated in final high-

resolution feature maps (HiResn). The lower layer of Figure 3

portrays the downsampling technique. Initially, we pass high

resolution (HiResi) feature maps to Transpose Convolution to

acquire low resolution (LowResi). These residual outcomes are

passed to deConvolution to get the feature maps of high resolution

(HiResi). The initial high resolution and the residual output of

the second Transpose Convolution which are applied on second

high-resolution feature maps are fused. After concatenation, we

apply Transpose Convolution to generate the low-resolution

feature maps (LowResi). These low resolution feature maps

are convolved with Transpose Convolution and then fused

with the initial low resolution feature maps. After fusion, we

apply Transpose Convolution to achieve low-resolution residual

feature maps.

The term “handcrafted features" in our study refers to

certain traits or attributes that are retrieved from raw data by

following predetermined rules or algorithms. Other names for these

characteristics include “handmade features" and "hand-engineered

features." They are thoughtfully created and defined by researchers

or domain specialists based on their comprehension of the data

and the particular issue being addressed. In our study, we use a

set of statistical and textural metrics that we extract from medical

tomography images as these “handcrafted features." The choice

of these metrics is an important step since they help obtain vital
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FIGURE 3

The low resolution feature maps (LowResi) are passed to deConvolution to produce the high resolution features (HiResi). The Transpose Convolution

(Tconv) algorithm is used to extract relevant features from low resolution (LowResi) images and convert them to high resolution (HiResi). The residual

outcome of the low resolution (LowRes2) feature map and the initial low resolution (LowRes1) feature map is passed to deConvolution to produce

high resolution (HiResi) feature maps. The final high resolution residual output is obtained by concatenating the output of the Transpose Convolution

with the output of the initial high resolution feature map (HiRes1). In the downsampling technique, we send high resolution (HiResi) feature maps to

Transpose Convolution to obtain low resolution (LowResi). These residual results are deconvolved to produce high resolution feature maps (HiResi).

The preliminary high resolution feature maps are fused with the residual output of the second Transpose Convolution, which is applied to the second

high resolution feature maps. Following concatenation, we use Transpose Convolution to create low resolution feature maps (LowResi).

information about the texture and characteristics contained in the

images.

These hand-crafted features include metrics derived from

various statistical approaches and texture analysis methods,

gradient-based features, and other characteristics. The Gray Level

Co-occurrence Matrix (GLCM), the Gray Level Run Length Matrix

(GLRLM), and the Gray Level Size Zone Matrix (GLSZM) are

three well-known matrices that we specifically add to our features.

With the aid of these matrices, we can record vital details on

the connections between pixel values and their spatial distribution

within the images.

5.1.3 Radiomics features
The qualities of radiomics features, such as histograms,

textures, shapes, transformations, and models, may be categorized

numerically (Benoit-Cattin, 2006). Radiomics features may be

retrieved from either 3-dimensional (3D) Volumes of Interest

(VOIs) or 2-dimensional (2D) Region of Interest (ROIs). We

used ROI as a catch-all word for both to make the text easier to

read. Additionally, gray-level brightness that has not been changed

or discretized can have numerical features estimated. Gray-level

discretization and feature importance aggregation are not covered

in this article since they fall outside of its purview. Gray-level

discretization limits the range of gray levels to a predetermined

number to improve reliability and manageability, whereas feature

significance aggregation obtains a single value when the same

feature is recognized in various forms and simplifies it using

average values. Gray-level variance, minimum, maximum, mean,

and percentiles are the most basic statistical variables that are

derived on the global gray-level histogram (Zwanenburg et al.,

2020). First-order features are those that are dependent on single-

voxel or single-pixel analysis. Skewness and kurtosis are more

complex characteristics as depicted in Equation (1) which describe

the brightness distribution of the data. Skewness must represent

the leftward or rightward asymmetry of the data distribution curve

(negative skew, below the mean) (positive skew, above the mean).

Kurtosis tends to reflect the tailedness of a distribution of the data

compared with a Gaussian distribution as a result of anomalies.

Other characteristics include energy also called homogeneity and

histogram entropy. These are distinct from their corresponding

co-occurrence matrix models of the same name.

By measuring the intensity variations in gray levels throughout

an image, studying the absolute gradient provides a straightforward

method for characterizing genuine radiomics textures. When two

adjacent pixels or voxels have the same color, the gradient stays

at zero, and it reaches its maximum when one is black and

the other is white or vice versa. Similar to histograms, gradients

are subjected to statistical features including variance, skewness,

kurtosis, and mean, regardless of the direction of the gray-level

transition (Benoit-Cattin, 2006; Zwanenburg et al., 2020). To

balance the ratio of the dataset, we apply preprocessing techniques

and data augmentation methodology before retrieving radiomics

features.

Sk =
n

(n− 1)(n− 2)

n
∑

i=1

(

xi − x̄

s

)3

K =
n(n+ 1)

(n− 1)(n− 2)(n− 3)

n
∑

i=1

(

xi − x̄

s

)4

−
3(n− 1)2

(n− 2)(n− 3)

(1)

In their research, Haralick et al. (1973) established the second-

order gray-level histogram feature known as the Gray Level Co-

occurrence Matrix (GLCM), as shown in Equation (2). The spatial

associations between pairs of pixels or voxels with defined distances

between them, predetermined gray-level intensities, and numerous

directions such as vertical, horizontal, or diagonal-for a 2D analysis

and 13 directions for a 3D analysis are captured by GLCM.

Entropy, which shows gray-level inhomogeneity or randomness,

angular second moment, uniformity or energy, and contrast, draws

attention to the gray-level differences between adjacent pixels or

voxels that are some of the qualities that make up GLCM.

GLCM(i, j, d, θ) =

N
∑

x=1

M
∑

y=1

{

1, if I(x, y) = i and I(x+ d, y+ θ) = j

0, otherwise

(2)

Galloway (1975) proposed the Gray Level Run Length Matrix

(GLRLM), as shown in Equation (3), which is intended to record

the spatial distribution of succeeding pixels in one or more
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directions, as well as in two or three dimensions. Many elements

of GLRLM are included, such as fraction which examines the

percentage of pixels in the Area of Interest. The availability of

short and long runs is shown, respectively, by the weighted

measurements known as short- and long-run emphasis inverse

moments. Measures that evaluate the dispersion of runs over

various gray levels and run lengths, respectively, are run-length

non-uniformity and gray-level non-uniformity.

GLRLM(i, j, d, θ) =

N
∑

x=1

M
∑

y=1

{

1, if I(x, y) = i and I(x+ d, y+ θ) = j

0, otherwise

(3)

An effective statistical method for characterizing textures is the

gray-level size zone matrix (SZM), as shown in Equation (4), which

was first presented by Thibault et al. (2013). The Gray Level Size

Zone Matrix (GLSZM) uses the infinity norm to quantify the gray-

level zones in an image. These are the areas where linked voxels

have the same gray-level intensity within a given distance, usually 1.

Texture homogeneity increases SZM’s size and smoothness. While

SZM does not require multidimensional calculations such as RLM

and COM do, its efficacy is dependent on gray-level compression,

therefore the best way to use it is to test out various compression

techniques on training datasets.

GLSZM(i, j) =

N
∑

x=1

M
∑

y=1

{

1, if I(x, y) = i and the size of the zone containing i is j

0, otherwise

(4)

Based on their importance in collecting various facets of

textural and structural information in medical tomography images,

we chose these characteristics. Our objective was to achieve a

balance between removing useful characteristics and avoiding too

much dimensionality, which might result in overfitting and more

complicated computations. The use of these elements enhances the

overall efficacy of our suggested approach for image classification

and enables us to provide a meaningful representation of the

textures contained in the images.

5.2 Dataset

For our study, we utilized the MRI dataset provided by the

Brain Tumor Segmentation (BraTS) Challenge in 2020 and 2021.

The BraTS 2020 Challenge dataset is used to produce a separation

model that could detect the malignancy region. The dataset

comprised 369 MRI images captured in four distinct modalities,

T2-weighted (T2w), T1-weighted (T1w), fluid-attenuated inversion

recovery (FLAIR), and T1-weighted contrast-enhanced (T1wCE).

These images and extraction patterns were provided in NIfTI

format with coronal orientation. The masks provided four

classifications, including non-tumor, non-enhancing tumor core,

peritumoral edema, and enhancing tumor. As we were only

interested in the broad tumor area, we combined the last three types

for our analysis.

The Radiological Society of North America (RSNA) and the

Medical Image Computing and Computer Assisted Intervention

(MICCAI). Society expanded the MGMT promoter methylation

detection component of BraTS challenge in 2021. A pre-selected

collection of 585 MRI images from 2020 in almost the same four

modalities was made available. To represent a broad spectrum

of healthcare practices used across the world, the images were

collected from several institutions utilizing a range of tools. For

the classification task, we used these datasets, which were in

DICOM format and annotated with their methylation status.

The methylation pattern of MGMT was confirmed by laboratory

analysis of surgical brain tumor tissues. The four modalities were

kept the same as in the earlier datasets, but the T1w scans were not

utilized since the diameters were continuously enormous, resulting

in much more chaos than information.

5.3 Experimental setup

The proposed feature fusion model uses the Keras, PyTorch

package with the TensorFlow backend and is entirely written in

Python. Experiments are carried out utilizing MRI slices with

a resolution of 256 × 256 to evaluate all of the suggested

feature instrument networks. The cost function’s relationship to

its parameters must be optimized using stochastic scaling for

the BraTS dataset of convolutional neural networks (CNNs). We

utilized the adaptive moment (Adam) estimator for parameter

estimation. Adam typically uses the first and second moments of

the gradients to update and fix the linear trend derived from the

real gradients. The settings for our Adam optimizer are as follows:

150 epochs is themaximum allowed, and the learning rate is 0.0001.

With all biases set to 0, all weights are normally distributed with a

mean of 0 and a variance of 0.01.

5.4 Dataset preprocessing

For each sample in the BraTS21 dataset, four NIfTI files

containing different MRI modalities are provided. During the

initial phase of data pre-processing, these modalities were stacked,

resulting in an input tensor of shape (4, 240, 240, 155) in the (C,

H, W, D) layout, where C represents the channels, H represents the

height, W represents the width, and D represents the depth. Next,

the redundant background voxels (with a voxel value of zero) at the

edges of each volume were removed, as they did not provide any

useful information and could be eliminated by the neural network.

The standard deviation for each channel was then calculated

independently within the non-zero zone for each image. To

normalize all volumes, the mean was first subtracted, and then,

the standard deviation was divided. The background voxels were

left unnormalized, and their measure remained at the cardinal. To

differentiate between normalized voxels, which had numbers close

to zero, and background voxels, an extra source channel was created

using one-hot encoding for foreground voxels and then combined

with the input data.

Image segmentation is frequently completed as part of the

image enhancement activity. The initial step in comprehending an

image is to improve it. We used three datasets in the empirical

results section: TCIA, FIGSHARE, and BraTS 2019. As a result, we
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FIGURE 4

For noise removal, we apply di�erent preprocessing techniques and acquire noise-free images of the BraTS dataset. (A) Input image. (B) SWMF Filter.

(C) Laplacian. (D) Sobel. (E) Gabor.

will go over the pretreatment steps for each dataset in this section.

We used initial image improvement approaches in the TCIA

dataset: noise reduction and contrast adjustment. The artifacts

caused by the imaging approach are attempted to be reduced using

preliminary processing procedures. Additionally, noise reduction

is a competent way to enhance outcomes before analysis (e.g., edge

detection on image). It should be noted that the images used are

gray-scale. We utilized two filters to remove noise: a median filter

and a soft filter. After that, we will show you how to use the two

filters. The median filter is a type of non-linear digital filter. It

is a technique for removing unwanted signals or noise from an

image. The Soft Weighted Median Filter (SWMF) is a novel image-

processing approach for removing noise. Two noisy images are

processed using this filter. The first is constant value noise, which

is similar to salt and pepper noise in that its value does not vary.

The second type is Random Value Noise (RVN), which is a sort of

arbitrary value noise that has a variable value, similar to Gaussian

and Speckle noise. The outcomes of the preprocessing steps are

shown in Figure 4. The preprocessing techniques were only applied

to the BraTS dataset.

The batch normalization approach is used on the FIGSHARE

and BraTS datasets. Convolutional neural network (CNN) training

is a complex task with several issues. Batch normalization is

one of the most used methods for dealing with this problem.

It is a widely used strategy in the field of deep learning. Batch

normalization accelerates neural network learning. Moreover,

batch normalization provides regularization, preventing over-

fitting.

Data augmentation is a technique for avoiding over-fitting by

artificially growing datasets during the learning stage. The essential

data augmentations were used throughout the learning phase to

strengthen our method:

1. Flips: the volume of each axis was reversed with a probability of

0.5 for the x, y, and z axes individually.

2. Gaussian Blur: The deviation of the Gaussian Kernel is obtained

periodically from (0.5, 1.5) with a probability of 0.15, subjecting

the reference volume to Gaussian fading.

3. Brightness: at a frequency of 0.15, a random number is regularly

selected at random from the range (0.7, 1.3), after which source

volume voxels are increased by it.

4. Zoom: the image size is increased to its initial dimensions twice

the chosen value using cubic interpolation, and the source data

are scaled using nearest neighbors interpolation. An arbitrary

value is regularly gathered from (1.0, 1.4) with a frequency of

0.15.

5. Gaussian noise: every voxel is captured, and the source volume

is then filled with randomized Gaussian noise with an average of

zero and variance regularly selected from the range of (0, 0.33)

with a probability of 0.15.

6. Contrast: at a frequency of 0.15, an arbitrary value is uniformly

obtained from (0.65, 1.5). It is then enhanced, and the source

volume voxels are trimmed to the value of the original range.

7. Biased crop: From the source volume, a piece with the

dimensions (5, 128, 128, 128) was arbitrarily selected. Moreover,

a probability of 0.4 ensures that some prominent voxels (with

true positives in the underpinning data) will be retained in the

trimmed area of the patch chosen using arbitrary-biased crop.

5.5 Multiple kernel for classification

For classification techniques, monitored learners such as the

Support Vector Machine (SVM) method are utilized. We used

an expanded form of SVM that includes various kernel training.

The fundamental SVM operates as such. The content is first

divided into binary categories. Next, a hyper-plane is located which

distinguishes between both categories. Support vectors seem to be

the parameters that seem to be close to the hyper-plane and are

scientifically described in Equations (5–7):

(m, n), ...(mi, ni), ...(mj, nj);mi ∈ RN , nj ∈ {−1, 1} (5)

The below expression can be used to represent the hyper-plane

that categorizes a particular set of information as being linearly

distinguishable. The Maximum Dividing hyper-plane is the name

of this hyper-plane.

f (x) =

j
∑

i=1

(αinj(X
T
i X)+ b) (6)

Provided below is a depiction of the ideal hyperplane

accompanied by the support vectors m1, m2, and m3 which are

located on its edge.

g(X̄) = ¯WT X̄ + b (7)
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A variety of techniques for traditional machine learning are

used by numerous kernel systems. A predetermined collection of

kernels is included in each approach. The kernel function allows

the SVM to transform the data into a higher-dimensional space,

facilitating the separation of data points through both linear and

nonlinear decision boundaries. This strategy lessens the influence

of bias throughout the training experience.

For the overall classification of BraTS, the precision and

accuracy statistics of the best kernel operations are accumulated

for all characteristics. Whereas the polynomial kernel is reliable

for classifying radiomics-selected features, three different feature

configurations (GLCM, GLRLM, and GLSZM) are better identified

using the linear kernel function in SVM. Table 1 shows the top-

chosen kernel technique for the BraTS sample together with

assessment precision of the kernel function.

By using the SVM classifier on the BraTS, TCIA, and

FIGSHARE datasets, we subsequently trained and validated UNet,

VNet, and UNet++ on a classification task that incorporated.

In five-fold cross-validation, the classification algorithm we

created using a Support Vector Machine with different Kernels

yielded an estimated ROC AUC of 96.4 ± 0.43%. On a fusion

features classification assignment, we trained different pre-trained

CNN models such as AlexNet, SqueezeNet, VGG16, InceptionV3,

Xception, UNet, VNet, andUNet++, as well as a workflow using the

categorization predictions of these models against a professional

investigator. The pipeline increased recall (93.4 ± 0.5% vs. 95.4 ±

0.7%) without noticeably reducing accuracy (81.5± 0.4% to 95.7±

0.5%).

Our findings show that UNet and other similar networks such

as VNet and UNet++ continue to have large false positive rates,

which may preclude their application in healthcare situations. We

showed that adding a different classifier significantly increases

accuracy. We are aware that this is simply one of many

viable options; future advancements to UNet could eliminate the

requirement for a different classifier.

6 Result and discussion

This is the first study that, as far as we know, combines

radiomic analysis for medical imaging with deep neural network

installation. Our findings show that utilizing transpose convolution

for both up and downsampling, the integration of Seq-ResNet

architecture greatly enhances the ability to identify cancerous

slices in brain MRI images. This new mix of customized imaging

biomarkers and powerful deep learning approaches boosts model

performance on the BraTS dataset, even with a smaller patient

cohort compared with earlier research. We carried out effective

image preprocessing to guarantee reliable and repeatable deep

learning execution. To be more precise, we scaled each image

to a 256 × 256 grid and normalized it to 256 gray levels. The

repeatability of our findings is aided by these common digital image

processing procedures. Furthermore, we carried out a thorough

assessment of the pre-trained CNN models’ dependability. The

promise for enhanced medical image analysis is highlighted by

this fusion of complex neural network topologies with exact image

preprocessing techniques, opening the door to more accurate brain

tumor diagnosis.

Average Precision (AP), mean Average Precision (mAP), and

F1 are utilized in the trials to assess the effectiveness of the suggested

framework. Finding objects and classifying them into multiple

classes is the basic goal of image analysis. The assessment metrics

for these two tasks are recall (abbreviated as R) which may be

stated as “the percentage of the appropriate tumors identified to

all tumors" and precision, “the accurate rate of the categorization of

identified tumors" (abbreviated as P). The terms False Positive (FP),

False Negative (FN), True Positive (TP), and True Negative (TN)

are used to characterize these metrics. The calculation for Precision

(P) and Recall (R) is shown in Equation (8):

R =
TP

TP + FN

P =
TP

TP + FP

(8)

The accuracy and recall metrics might tend to be in conflict

when measuring the results of several architectures. Additionally,

a single index must be used to determine accuracy of a classifier.

Precision and Recall create a rectangle-coordinated graph using

Precision and Recall as the coordinates after being ordered

by grading value. Precision-Recall curve is the name of this

rectangle-shaped graph. The area underneath the Precision-Recall

curve or AP is the average of APs across many classes or

mean Average Precision (mAP). The Equation (9) mAP evaluates

the classifier’s performance across all classes, AP evaluates the

classifier’s performance across each category. As a result, in this

study, AP is employed when goals come from a single class, whereas

mAP is utilized when criteria come from a variety of categories.

Another often-used indication for object detectors is F1-Measure

(sometimes called F1-Score). Recall (R) and Precision (P) are

weighted averaged to get the F1-Measure. F1-Measure is referred

to as F1 when it is equal to 1:

F1 =
(α2
+ 1)× (P × R)

α2(P + R)

F1 =
2× (P × R)

P + R

mAP =
1

N

N
∑

i=1

APi

(9)

A higher F1 score denotes greater classifier efficiency. The F1

score is calculated by combining the Precision and Recall values.

We also offer the Recall and Precision values of the suggested

approach on several datasets to give a thorough evaluation. Within

a transfer learning framework, this study uses eight popular

Convolutional Neural Network (CNN) pre-trained models. Since

VGG16 has a relatively modest number of learnable parameters

under the transfer learning framework and is widely used in

medical image evaluation tasks, it was first selected because it

required less computing power for network training than other

well-known models.

For the proposed radiomic-based FusionNet architecture,

we also looked at AlexNet, SqueezeNet, VGG16, InceptionV3,

Xception, UNet, VNet, and UNet++. In contrast, the efficiency

after the feature fusion architecture was greater in the UNet pre-

trained model than in the VNet model. This difference can be
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TABLE 1 We report the results of employing a Support Vector Machine (SVM) on the BraTS, TCIA, and FIGSHARE datasets to classify particular radiomics

characteristics (GLCM, GLRLM, and GLSZM) in terms of sensitivity, specificity, precision, accuracy, and F1-score.

Dataset Feature set Sensitivity Specificity Precision Accuracy F1-Score

BraTS

GLCM 73.16 74.31 75.91 75.14 74.93

GLRLM 71.36 71.85 72.34 72.76 73.44

GLSZM 73.69 71.94 73.49 72.35 73.11

Average 72.74 72.7 73.91 73.43 73.83

TCIA

GLCM 75.20 73.80 74.50 74.75 74.25

GLRLM 74.40 72.90 73.80 73.15 73.60

GLSZM 73.60 75.10 74.90 74.35 74.75

Average 74.40 73.60 74.07 74.08 74.20

FIGSHARE

GLCM 74.71 76.05 77.13 76.58 76.81

GLRLM 72.85 73.42 74.12 73.64 73.98

GLSZM 76.07 74.91 75.94 75.49 75.72

Average 74.04 74.46 75.06 75.24 75.50

Included are the average performance metrics for every dataset.

TABLE 2 Training accuracy, F1-Score, specificity, precision, and sensitivity on the BraTS, TCIA, and FIGSHARE datasets of the proposed model (FusionNet

with ResNet, FusionNet with Seq-ResNet, and FusionNet with Seq-ResNet and radiomics features) and other pre-trained CNNmodels such as AlexNet,

SqueezeNet, VGG16, InceptionV3, Xception, UNet, VNet, and UNet++.

Dataset Model Sensitivity Specificity Precision Accuracy F1-Score

BraTS

AlexNet 81.39 81.43 82.04 81.93 81.73

SqueezNet 82.19 83.29 82.95 83.07 82.78

VGG16 82.63 82.14 83.09 82.79 82.54

InceptionV3 84.95 85.23 85.31 85.49 85.19

Xception 85.36 85.94 85.97 85.43 85.27

UNet 86.49 87.09 87.12 86.71 86.34

VNet 86.91 86.97 87.04 87.12 87.01

UNet++ 88.13 88.27 87.38 87.51 87.21

FusionNet 90.19 89.77 89.84 90.07 89.92

FusionNet-Seq-ResNet 93.06 93.34 93.41 93.79 93.81

FusionNet-Seq-ResNet+Radiomics 95.19 95.37 95.46 95.83 95.79

TCIA

UNet 82.34 82.78 83.02 82.69 82.88

VNet 83.12 83.45 83.21 83.34 83.17

UNet++ 81.87 81.98 82.45 82.13 82.28

FusionNet 91.56 91.23 91.92 91.64 91.74

FusionNet-Seq-ResNet 93.02 93.71 93.19 93.93 94.09

FusionNet-Seq-ResNet + Radiomics 95.07 95.84 94.98 94.93 95.16

FIGSHARE

UNet 86.21 86.45 86.32 86.39 86.28

VNet 87.03 86.89 87.12 87.08 87.17

UNet++ 87.45 87.51 87.38 87.62 87.49

FusionNet 91.67 92.78 92.45 91.72 92.59

FusionNet-Seq-ResNet 94.21 94.34 94.47 93.15 93.28

FusionNet-Seq-ResNet+Radiomics 95.17 95.81 95.67 95.72 95.86
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attributed to the superior classification results of UNet utilizing

solely MRI slices compared with VNet. The empirical analyses

(precision, specificity, recall, sensitivity, F1, and accuracy) of

experimental pre-trained CNN models with radiomics features

are shown in Table 2. The radiomics feature fusion with deep

learning model produced substantial gains in all parameters with

p ≤ 0.05 for the pre-trained CNN architecture and proposed

FusionNet model. Furthermore, the data with lower standard

deviations demonstrated the radiomics feature fusion with deep

learning architecture’s improved resilience. These quantifiable

findings demonstrate the efficiency of the proposed feature fusion

with the deep learning model.

A significant degree of resilience is shown by the variance,

which is <3% after 50 epochs. When comparing the pre-

trained CNN models with the pilot model, the average values

of all parameters for the suggested FusionNet architecture are

superior. Only a few statistically significant improvements are

observed in the MRI tumor and healthy class data, and the

reported mathematical benefits are minor. Further evidence of

enhanced resilience is provided by the FusionNetmodel’s decreased

variances.

On the BraTS dataset, the performance and efficacy of the

novel suggested framework have been tested and verified. Table 2

displays the Average Precision of the proposed Fusion CNN

model framework together with other cutting-edge and pre-trained

CNN models. The novel and proposed framework, as shown in

Figure 2, obtains an AP of 97.53%, which is ∼3.7% higher than

the APs attained by other pretraind CNN models such as AlexNet,

SqueezeNet, VGG16, InceptionV3, Xception, UNet, VNet, and

UNet++. The proposed FusionNet classifier’s Recall and Precision

curve and specific performance are shown in Table 2 and Figure 5.

To exhibit the performance and efficacy of the novel proposed

Seq-ResNet with FusionNet, upsampling and downsampling have

been evaluated and the results are shown in Figure 5 and

Tables 2, 3.

FusionNet with radiomics features uses Sequential Residual

Network layers to create its backbone in contrast to the planned

FusionNet (which uses conventional ResNet layers), although other

components are the same. In other respects, the Seq-ResNet

employed in their backbones is the only distinction between

simple FusionNet and FusionNet with Seq-ResNet. By contrasting

the assessment outcomes of FusionNet and FusionNet with Seq-

ResNet, it is possible to show the usefulness of the suggested

novel Seq-ResNet layers. FusionNet without Seq-ResNet obtains

an AP of 94.73%, which is 3.31% lower than the AP achieved by

FusionNet with Seq-ResNet, according to the assessment findings

shown in Tables 2, 3. To put it another way, Sequential Residual

Network (Seq-ResNet) layers outperform simple ResNet in the

evaluation by 3.31% AP.

Another major difference between simple FusionNet

and FusionNet with Seq-ResNet is using upsampling and

downsampling modules. By contrasting the assessment outcomes

of the proposed simple FusionNet and FusionNet with Seq-

ResNet, it is possible to show the usefulness of the proposed

FusionNet with Seq-ResNet. Table 2 shows that the feature fusion

with upsampling and downsampling modules delivers a strong

performance advantage of 3.18% AP when compared with normal

simple FusionNet. To have a thorough grasp of the proposed

novel FusionNet with Seq-ResNet performance, the classification

results are carefully examined. The majority of tumors may be

appropriately located in the classification outcomes irrespective

of their orientations, colors, and scales, proving the usefulness

of the suggested framework. However, the suggested technique

occasionally fails when portions of the tumors make up more than

half of the original kernel values.

The BraTS dataset has also assessed the proposed framework.

Table 2 displays the assessment outcomes of the proposed

FusionNet with Seq-RestNet and other pre-trained CNN models

such as AlexNet, SqueezeNet, VGG16, InceptionV3, Xception,

UNet, VNet, and UNet++. Generally speaking, the suggested

novel framework outperforms existing state-of-the-art algorithms,

achieving an F1 Score of 96.72%.

Figure 5 shows the Precision and Recall curves for the proposed

FusionNet with Seq-ResNet framework based on the BraTS dataset.

The comprehensive assessment findings for the suggested novel

framework are shown in Table 2. Table 4 shows that the proposed

FusionNet with Seq-ResNet performs well for identifying tumors

in MRI and achieves plausible results when detecting tumors in

MRI images with F1 Score of 95.88 and 96.72%, respectively. As

compared with other algorithms, the performance of FusionNet

with Seq-ResNet can be steady even as the tumor’s scales change

quickly.

The accuracy, precision-recall, and F1-measure calculations

are used to examine the quantifiable efficiency. The performance

and efficiency measures for tumor detection (Accuracy, Sensitivity,

Specificity, Precision, and F1 measure) for the dataset BraTS are

shown in Table 2. The table shows that the suggested technique

performs better than previous methods in terms of Precision-

Recall and F1 measure. The suggested technique combines many

aspects that are better able to depict image changes and hence

execute both statistically and aesthetically better. It is frequently

used as a plot indicative of the effectiveness of the classifier. A

ROC curve is a useful tool for visualizing, organizing, and choosing

learners based on their efficiency. A classifier’s ability to determine

outcomes is measured by the Receiver Operating Characteristic

(ROC), which contrasts and illustrates the trade-off between the

model’s specificity and sensitivity. The result for the ROC plot is

the region beneath the ROC curve, and a large value denotes a

successful algorithm. An excellent predictor produces a value in the

top left corner of the ROC space, or coordinate (0,1), signifying

100% specificity (zero false positives) and 100% sensitivity (zero

false negatives). The ROC plot for the BraTS dataset for the various

change detection methods is shown in Figure 7. It is evident from

the chart that for the dataset, the suggested strategy outperforms

conventional approaches. The area under the ROC curve or AUC

is used to calculate the ROC plot’s mathematical value. A high

AUC value means the applied tumor detection framework is good

and can successfully differentiate between benign and malignant

patches. By examining the proximity of the curve to the top left

corner of the image in Figure 7, it is evident that the suggested

strategy works better than the established tumor detection methods

for the BraTS dataset.

In Figure 5, the novel proposed method’s precision-recall

outcomes are shown. For MRI images, the first fusion experiment
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FIGURE 5

Precision-Recall Curve on BraTS dataset: Precision-Recall curve of the proposed model (FusionNet with ResNet, FusionNet with Seq-ResNet, and

FusionNet with Seq-ResNet and Radiomics features) and other pre-trained CNN models such as AlexNet, SqueezeNet, VGG16, InceptionV3,

Xception, UNet, VNet, and UNet++.

TABLE 3 Training accuracy, F1-Score, specificity, precision, and sensitivity on the BraTS dataset of the proposed model (FusionNet with ResNet,

FusionNet with Seq-ResNet, and FusionNet with Seq-ResNet and radiomics features) and other state-of-the-arts methodologies.

Model Sensitivity Specificity Precision Accuracy F1-Score

Zare et al. (2018) 81.39± – – 82.11± –

Zhu et al. (2023) 92.00± 93.11± 92.01± 92.03± –

Jie et al. (2023) 91.17± – – 92.04± –

Wen et al. (2023) 86.15± – – 87.12± 86.77±

Singh and Anand (2019) – 87.15 – 87.11 88.15

Qin et al. (2018) – – – 77.80 –

Dogra and Kumar (2022) 87.16 – – 87.08 88.15

Wang et al. (2021) 89.13 88.71 87.19 87.11 88.15

FusionNet 90.19 89.77 89.84 90.07 89.92

FusionNet-Seq-ResNet 93.06 93.34 93.41 93.79 93.81

FusionNet-Seq-ResNet+Radiomics 95.19 95.37 95.46 95.83 95.79

TABLE 4 FusionNet training accuracy, F1-Score, specificity, precision, and sensitivity on the BraTS dataset.

Fold Sensitivity Specificity Precision Accuracy F1-Score

Fold-1 93.29 94.71 95.81 95.57 94.38

Fold-2 94.37 95.13 95.77 96.51 95.04

Fold-3 95.91 95.31 96.85 96.17 95.64

Fold-4 94.88 95.57 96.15 97.13 95.89

Fold-5 95.89 95.21 97.77 97.53 96.12

Average 94.88 95.18 96.47 96.58 95.41
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FIGURE 6

Precision (P) vs. Recall (R) curves of di�erent folds using proposed model (FusionNet) on the BraTS dataset.

FIGURE 7

Receiver Operating Characteristic (ROC) curves of di�erent folds using proposed model (FusionNet) on the BraTS dataset.

was conducted. The radiomics feature fusion with deep learning

features approach offers more accurate anatomical details in MRI

images separately. Figure 5 shows how the suggested strategy

maintains the measurement elements of MRI images in the fused

images. The study that performed on the proposed FusionNet

model in consideration of various metrics under various numbers

of folds is shown in Table 4 and Figure 6. The proposed FusionNet

model’s specificity and sensitivity assessments for various fold

numbers are shown in Figure 6. The greatest specificity and

sensitivity outcomes for the novel proposed FusionNet model
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under fold-1 is 94.71 and 93.29%, respectively. The presented

feature fusion model also produced higher specificity and

sensitivity results under fold-2, with corresponding outcomes

of 95.13 and 94.37%, respectively. The presented feature fusion

model approach also produced the highest specificity and

sensitivity outcomes under fold-3, which were 95.31 and 95.91%,

respectively. Additionally, the reported FusionNet model strategy

had higher specificity and sensitivity under fold-4 95.57 and

94.88%, respectively. The suggested feature fusion approach also

showed ideal specificity and sensitivity results of 95.89 and 95.21%,

respectively, under fold-5.

The ROC curves of the proposed FusionNet model are shown

in Figure 7, demonstrating its accuracy and precision at different

fold counts during cross-validation. The model performs better

than expected, with fold-1 obtaining 95.57% accuracy and 95.81%

precision by combining feature fusion with up and downsampling

methods. The feature fusion method yields the best accuracy and

precision in fold-2, with 96.51 and 95.77%, respectively. Transpose

Convolution, when used for up and downsampling in fold-3,

produces even better results, with accuracy and precision reaching

96.17 and 96.85%, respectively. The model achieves significantly

greater accuracy and precision under fold-4, 97.13 and 96.15%,

respectively. The feature fusion model under fold-5 performs best

overall, with a precision of 97.77% and an accuracy of 97.53%. This

shows how well the suggested FusionNet integrates deep learning

methods for improved medical image interpretation.

A novel framework for the CAD solution may be established

by the proposed architecture FusionNet comprises Seq-ResNet

and up-down sampling with Transpose Convolution, which

combines radiomics analysis with Convolutional Neural Network

implementation. The established Seq-ResNet calculation method

may potentially improve the efficiency of neural networks in

other applications, especially those requiring the intake of multi-

channel imaging images. The suggested technique also offers a

radiomics viewpoint on the interpretability of deep learning. Since

the neural network’s hyperparameters were developed without

explicit personal expertise interaction, actual interpretation of

them is challenging. The black box world of deep learning-based

CAD systems hindered their medical and clinical implementations

without the support of medical practitioners and radiologists.

We explored neural network information using a radiomics-

based approach as a first milestone toward deep learning

interpretability. It has been shown that radiomic feature regions

may be computationally fragmented to produce interpretation.

Radiomics have been extensively researched as computational

imaging biomarkers for illness identification and performance

assessment. Complicating factors, such as anatomical outlines from

radiation therapy and histopathology samples from biopsy, can

be employed to improve deep learning interpretability after the

saliency analytical method in this study. Future research will

examine these topics once suitable datasets are obtained.

7 Ablation studies and future works

We performed several sets of ablation experiments to

demonstrate the effectiveness of the suggested vascular

segmentation method. The purpose of these tests was to investigate

the effects of different loss parameter settings and the efficacy

of different techniques. We create a baseline using an X-shaped

network that contains an encoder with modified sequential

residual blocks and a feature decoder (influenced by Szegedy et al.,

2017), to validate the efficiency of the proposed methodologies.

We develop our network based on this foundation. Tables 2,

3 and Figure 5 show the results, from which we derive several

inferences.

Table 2 shows the quantitative experiment data for the baseline

and the three proposed models. When compared with the baseline,

Model 1 (FusionNet) improves Accuracy, F1-Score, Sensitivity,

Specificity, and Precision by 2.15%, 1.89%, 1.96%, 1.73%, and

2.11% percent, demonstrating the benefits of using both up

and downsampling strategies. Furthermore, when compared with

FusionNet, FusionNet-Seq-ResNet achieves a 2.94% improvement

in Accuracy, while FusionNet-Seq-ResNet + Radiomics achieves a

4.81% improvement, demonstrating the efficacy of the Sequential

Residual Network and radiomics features. FusionNet exceeds UNet

by 2.79% in F1-Score, demonstrating that combining up and

downsampling approaches improves the model’s performance even

further. Similarly, when compared with UNet++, FusionNet-

Seq-ResNet shows a 2.98% gain in F1-Score, highlighting the

importance of Transpose Convolution and deconvolution in

improving brain MRI classification. Finally, when compared with

VNet, FusionNet-Seq-ResNet + Radiomics improves accuracy by

3.97%, highlighting the effectiveness of radiomics features and

the impact of Transpose Convolution and deConvolution in up

and downsampling. The proposed approaches exhibit significant

improvements over the baseline, with increments of 3.98% in

accuracy, 4.15% in F1-score, 3.89% in Sensitivity, 3.91% in

Specificity, and 3.79% in Precision, demonstrating the proposed

network’s superior segmentation performance.

Our new local convolution-based network, FusionNet,

performs well on publicly accessible BraTS datasets. We do,

however, find a constraint on its ability to generalize to other

data distributions. This restriction results from the fundamental

characteristics of local convolution, which prioritize local

data above important global data. Consequently, long-term

dependencies are difficult for CNNs to capture and are crucial

for improving the model’s summarization ability. We investigate

the possibility of using the Transformer design, which has

demonstrated efficacy in creating global dependencies via a

self-attention mechanism, to tackle this problem. Transformers

have several drawbacks, including a high parameter count and a

heavy dependency on large amounts of training data, even if they

provide dynamic attention and global context fusion.

We track the variations in accuracy as the epochs proceed

during the training process of various networks. The results are

shown in Figures 6, 7. When comparing FusionNet with standard

pre-trained CNN networks and a network created specifically

for BraTS classification, it is clear that FusionNet has easier

convergence and training. This gain can be ascribed to FusionNet’s

Seq-ResNet module, which improves learning ability while utilizing

much fewer parameters than typical convolutional layers. When

trained on 1,315 samples, the ROC of FusionNet reaches 0.79 at the

13th epoch, 0.86 at the 27th epoch, and 0.885 at the 35th epoch,
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as shown in Figure 7. On an NVIDIA 1050TI, training for one

epoch takes 297 s. This suggests that by applying FusionNet, a high-

performing BraTS MRI classification model may be produced in

137 min (80 epochs). These findings confirm that the proposed

FusionNet is simple to train and capable of giving satisfactory

outcomes.

Table 2 shows how incorporating the up and downsampling

module into FusionNet improves performance. FusionNet beats

pre-trained CNN models, improving accuracy from 87.11 to

90.07%, precision from 88.15 to 89.92%, and F1-Score from 87.38 to

89.84%. These improvements are ascribed to the proposed up and

downsampling module’s dynamic merging of multi-scale context

information. Two experiments were carried out to further validate

this. First, we introduced a Seq-ResNet module, FusionNet-

Seq-ResNet, into the baseline with no point-wise convolution

rate. It improved accuracy by 4.21% over the baseline but

decreased by 2.18% when compared with FusionNet-Seq-ResNet

+ Radiomics. This result emphasizes the need to obtain multi-

scale contextual information. Second, we incorporated radiomics

features with various Transposed convolution and deconvolution

settings into FusionNet’s parallel branches. While these two

models outperformed the baseline and FusionNet-Seq-ResNet,

they fell just short of FusionNet. This finding demonstrates that

the FusionNet-Seq-ResNet + Radiomics transposed convolution

and deConvolution configuration is best, and the addition of

multi-scale context information is especially useful for up and

downsampling. As shown in Figure 6, FusionNet-Seq-ResNet

+radiomics outperforms FusionNet in the analysis of under-

segmented patches, particularly those with relatively small scales.

This finding adds to the evidence that dynamic selection of

multi-scale contextual information promotes more successful MRI

analysis.

In the future, we suggest a hybrid network design that

combines the best features of Transformers and CNNs. This

method entails sandwiching a thin transformer module between

the encoder and decoder of the CNN. By combining multi-

scale information, the lightweight transformer will facilitate

the effective integration of multi-scale information and global

channel attention, spatial attention, and scale attention. The

objective is to create a network that combines the benefits of

Transformers (dynamic attention and improved generalization)

with CNNs (local receptive fields, shared weights, shift, and

scale invariance). By combining these elements, we hope to

create a segmentation technique that preserves the advantages

of both designs, enhancing FusionNet’s overall robustness and

speed.

8 Conclusion

According to the results of this comprehensive research,

radiomics feature fusion with deep learning features in medical

image analysis is a nascent but promising topic that supports

medical practice in medical imaging interpretation across all

disciplines. We have honed in on important insights, described

unanswered problems and summarized essential terminology,

approaches, and appraised the state of the art for radiomics

feature fusion with deep learning features in medical imaging.

Different preprocessing methodologies are carried out initially

to continue improving the accuracy of the diseased patch in

the proposed fusion framework (FusionNet), and the training

dataset is subsequently employed to expand the training dataset.

Various pre-trained learning models are used to design and train

on the BraTS dataset. Additionally, a FusioneNet deep model

is improved with radiomic features, and this manual feature

is carried out with other models. Subsequently, the proposed

fusion technique (FusionNet) is employed to better integrate the

information rather than the initial serial-based methodology. A

novel feature simplification approach is presented as a result of

the examination of the fused feature space, which shows several

duplicate characteristics. The proposed FusionNet model captures

the structural, textural, and statistical aspects of brain tumors with

an F1 score of 96.72, sensitivity and specificity of 96.31, and AUC

of 96.93.

The topic of feature fusion for deep learning in medical

imaging is growing, and it is anticipated that new fusion

techniques will be created. The upcoming study should

concentrate on common nomenclature and measurements

for particular and appropriate direct evaluation of various

radiomics fusion models. We discovered that radiomics feature

fusion with deep learning features for automated medical

imaging tasks significantly outperforms in single modality

models, and further research may provide insights to guide

the most effective methods. We will monitor the effectiveness

of the presented methodology based on distinct handcrafted

feature fusion by including spatial information and other

medical datasets using deep learning and Seq-ResNet in the

future.
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Neuroscience is a swiftly progressing discipline that aims to unravel the

intricate workings of the human brain and mind. Brain tumors, ranging from

non-cancerous to malignant forms, pose a significant diagnostic challenge due

to the presence of more than 100 distinct types. E�ective treatment hinges on

the precise detection and segmentation of these tumors early. We introduce a

cutting-edge deep-learning approach employing a binary convolutional neural

network (BCNN) to address this. This method is employed to segment the

10 most prevalent brain tumor types and is a significant improvement over

current models restricted to only segmenting four types. Our methodology

begins with acquiring MRI images, followed by a detailed preprocessing stage

where images undergo binary conversion using an adaptive thresholdingmethod

and morphological operations. This prepares the data for the next step, which

is segmentation. The segmentation identifies the tumor type and classifies it

according to its grade (Grade I to Grade IV) and di�erentiates it from healthy

brain tissue. We also curated a unique dataset comprising 6,600 brain MRI

images specifically for this study. The overall performance achieved by our

proposed model is 99.36%. The e�ectiveness of our model is underscored by its

remarkable performance metrics, achieving 99.40% accuracy, 99.32% precision,

99.45% recall, and a 99.28% F-Measure in segmentation tasks.

KEYWORDS

brain tumor, deep learning, pattern detection, neuroscience, segmentation technique,

convolution neural network, binary convolution neural network, magnetic resonance

images

1 Introduction

Neuroscience is a rapidly evolving field dedicated to decoding the complex functions

of the human brain and mind (Efford, 2000; Yamashita et al., 2018; Interpolation Methods,

2024).

Brain tumors represent a critical health challenge, potentially fatal at any stage of

detection. A radiologist’s knowledge and experience are vital when diagnosing brain
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tumors manually, yet it is not always accessible. Moreover,

conventional diagnostic methods are time-intensive and

susceptible to errors (Solanki et al., 2023). Brain cancer is a

significant health concern, impacting individuals of any gender

and at any life stage. A brain tumor consists of an aberrant

growth of cells within the brain that proliferates differently and

uncontrollably from normal brain tissues. To date, over 100

distinct types of brain tumors have been diagnosed. These tumors

are broadly categorized into two main categories—primary and

metastatic or secondary.

The tumor that develops inside or around the brain tissues is

called a primary brain tumor. It can be benign (non-cancerous)

or malignant (cancerous). Tumors that develop in other parts of

the body and transfer or reach the brain are called secondary

or metastatic brain tumors. Mostly, secondary brain tumors are

considered malignant (cancerous). More than 84,000 persons in

the United States were diagnosed with a primary brain tumor

in 2021, according to the American Brain Tumor Association

(ABTA). There are more than 100 subtypes of primary brain and

central nervous system (CNS) cancers. Malignant tumors comprise

about a third (29.7%) of all CNS malignancies. Currently, there

are approximately 28,000 cases of pediatric brain tumors in the

United States. Over 18,000 people lost their lives to primary

malignant brain tumors in 2021. There is a significant difference

in survival time after a diagnosis of a primary brain tumor based on

factors such as age, region, race, tumor location, tumor type, and

molecular markers (Oztek et al., 2023).

The World Health Organization (WHO) defines tumors in

terms of grades—from Grade I to Grade I—based on their size

and growth. Grade I and Grade II tumors are considered non-

cancerous; they are slow-growing and curable. Grade III and Grade

IV tumors are aggressive and grow very quickly. These types of

tumors are considered malignant (cancerous) and categorized as

metastatic or secondary tumors (Louis et al., 2021).

Grade I: Tumors in Grade I grow very slowly and do not spread

aggressively. A patient with such a tumor can survive for a longer

period; this tumor can be removed through surgery, and the patient

can survive completely.

Grade II: Grade II tumors also grow slowly but can affect their

neighboring tissues and progress to higher grades. After surgery,

the tumor can develop again and affect the patient.

Grade III: Compared to Grade I and Grade II tumors, the

rate of growth is faster in Grade III tumors, and it can affect the

neighboring tissues quickly. Simple surgery is not very effective

in removing this type of tumor; further post-surgery treatment is

needed for survival.

Grade IV: These tumors are highly aggressive and spread to

neighboring tissues. The blood vessels are the most important path

for their growth. A patient diagnosed with such a tumor cannot

survive for long.

Detecting brain tumors using deep learning, artificial

intelligence, computer vision, and image processing has gained

attention today. Automatic learning systems require different

features to detect brain tumors, including shape, size, location,

intensity, and growth. Researchers in the computer science field

place a lot of importance on building robust and automated

detection methods (Amin et al., 2021).

State-of-the-art research work has been done in the domain of

brain tumor segmentation. Different methods have been proposed

by researchers for the segmentation of brain tumors. One such

method uses the convolutional neural network (CNN) to classify

five types of tumors into three classes (Irmak, 2021). Another

method based on the multiclass support vector machine (M-

SVM) used meningioma, glioma, and pituitary brain tumors

for segmentation. Yet another method was based on transfer

learning for brain tumor segmentation (Maqsood et al., 2022).

They used gliomas, meningioma, pituitary, and normal brain

MRI images for brain tumor categorization. The model was

trained on 75% of the images, and 25% were used for validation

(Shoaib et al., 2022). However, gaps (Nida-Ur-Rehman et al.,

2017; Irmak, 2021; Maqsood et al., 2022; Shoaib et al., 2022)

still need to be filled while addressing brain tumor segmentation.

Firstly, there are more than 100 types of brain tumors in the

world that need to be segmented. Secondly, brain tumors are

divided into four grades (Grade I to Grade IV) based on their

size, growth, and aggressiveness. Each brain tumor must be

accurately and timely classified into respective grades, which is

very important. Thirdly, the image dataset used in brain tumor

segmentation needs to be multivariant and multimodal to make

the segmentation system more mature and accurate in brain

tumor segmentation.

In this study, we propose a novel method that leverages

deep learning using a binary convolutional neural network

(BCNN) to classify the 10 most common types of brain

tumors into their respective grades (Grade I to Grade IV);

current models are limited to the detection of four brain

tumor types. In our proposed model, image acquisition is

followed by a comprehensive preprocessing phase, during which

binary conversion using adaptive thresholding and morphological

operations are executed. Secondly, segmentation is carried out

to accurately classify tumor types into their respective grades.

The model also accurately classifies healthy brain MRI images.

Another contribution is the development of a dataset of 6,600

brain MRI images created for this research work; the dataset

consists of different modalities, angles, and shapes for the entire

brain model. The study is organized as follows: Section 2

includes a comprehensive discussion of brain tumor detection

mechanisms. Our proposed model is explained in Section 3.

Section 4 highlights the validation of the proposed technique using

simulation experiments. Section 5 presents the conclusion and

potential for future work.

2 Literature review

A detailed review of the latest and most relevant literature

is presented in this section. An overview of the missing points

in the literature is presented in a summary at the end of

this section.

In Soomro et al. (2023), a detailed review of brain tumor

segmentation from 1998 to 2020 is presented. It includes a complete

overview of machine learning and image segmentation methods

for brain tumor segmentation using MRI images. The state-of-the-

art machine learning techniques and deep learning are reviewed,
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and at the end of their review, they establish that deep learning

techniques perform better in brain tumor segmentation using

MRI images.

Brain tumor segmentation and segmentation usingMRI images

detect many types of noise, including speckle noise, salt and pepper

noise, and Gaussian noise, which may arise during the scanning

process (Ramesh et al., 2021). Consequently, there may be lower

accuracy rates in categorization. Therefore, the authors propose

a novel noise-canceling algorithm—the iterative group median

filter with modifications. Moreover, kernel principal component

analysis based on maximum likelihood estimation is presented for

feature extraction. The VGG16 architecture, which is based on deep

learning, was used for the segmentation task. The suggestedmethod

has proven to perform better in both qualitative and quantitative

experiment evaluations.

In Ahmed et al. (2016a,b), a total of 1,200 brain MRI

scans of brain tissue damaged by tumors and 300 scans of

normal brain tissue are included. The suggested approach is

effective in detecting four different forms of brain tumors:

CNS lymphoma, glioblastoma, meningioma, and metastases. This

technique separates the tumor regions from healthy tissue using

a 2D adaptive filter and Otsu segmentation. A combination of

morphological operations and image fusion is used to highlight the

tumor region so that it may be studied in detail.

In Nida-Ur-Rehman et al. (2017), brain tumors are broken

down into four distinct categories. The dataset utilized in this

study consists of two thousand magnetic resonance imaging

(MRI) scans with a clinical and expert opinion from the

FCPS neurosurgeon. Histogram differencing is utilized to

segregate and detect tumor pixels from the rest of the brain

tissues. The volume of data utilized in the categorization

process might alter the final findings and cause them to differ

between datasets.

In Le et al. (2021), the authors offer a deep learning

methods-based strategy to detect and segment brain tumors.

This investigation has two key phases. In the first phase, the

network only pays attention to the area around the tumor to

identify brain tumors using a contextual detection network. The

#D atrous residual network is used in the second phase to

segment tumors.

Comparative approaches of different segmentation techniques

are used in Bahadure et al. (2018), and the best one is selected

by comparing their segmentation score. Further, to improve the

segmentation accuracy, the genetic algorithm is employed to

automatically segment the tumor stage. The decision on the

segmentation stage is supported by extracting relevant features

and calculating the area. The experimental results of the proposed

technique are evaluated and validated for performance and

quality analysis on magnetic resonance brain images based on

segmentation score, accuracy, sensitivity, specificity, and dice

similarity index coefficient. The experimental results achieved

92.03% accuracy, 91.42% specificity, 92.36% sensitivity, and an

average segmentation score between 0.82 and 0.93, demonstrating

the effectiveness of the proposed technique for identifying normal

and abnormal tissues from brain MRI images. The experimental

results also obtained an average of 93.79% dice similarity index

coefficient, which indicates better overlap between the automated

extracted tumor regions and manually extracted tumor regions

by radiologists.

In another study, researchers utilized a machine learning

technique, specifically a Convolutional Neural Network (CNN)

(Badža and Barjaktarović, 2020), for the segmentation of brain

tumors. CNNs are well known performing high performance

in image segmentation tasks. The authors introduced a novel

CNN architecture tailored for segmenting three types of brain

tumors. This new network is more straightforward compared

to existing pre-trained models and tested using T1-weighted

contrast-enhanced MRI scans. The network’s performance is

assessed through four different methods: two variations of 10-

fold cross-validation and two distinct databases. Its ability to

generalize is evaluated using subject-wise cross-validation, and

improvements are measured with an augmented image database.

The highest accuracy, 96.56%, is achieved with record-wise

cross-validation on the augmented dataset. With its robust

generalization and swift execution, this CNN architecture

shows promise as a decision-support tool for radiologists in

medical diagnostics.

In Garg and Garg (2021), a method is evaluated using a

dataset of 2556 images, split 85:15 for training and testing,

achieving an accuracy of 97.305%. This method involves

brain tumor segmentation using a hybrid ensemble approach

that combines K-Nearest Neighbors (KNN), Random Forest

(RF), and Decision Tree (DT) based on the Majority Voting

method, namely KNNRF-DT. The aim is to calculate the

tumor region’s area and classify tumors as benign or malignant.

Otsu’s Threshold method is used for segmentation, while

feature extraction is performed using Stationary Wavelet

Transform (SWT), Principal Component Analysis (PCA), and

Gray Level Co-occurrence Matrix (GLCM), providing thirteen

features for segmentation. The hybrid ensemble classifier

(KNN-RFDT) based on Majority Voting aims to enhance the

performance of traditional classifiers without resorting to deep

learning techniques.

In Phan and ThanhHieu (2024), a combination of three

different existing algorithms is proposed for segmenting brain

tumors. The algorithms used are the PGDBCWMF algorithm

for noise removal in the preprocessing, the SIFT (scale-invariant

characteristic remodel) approach for feature extraction, and the

HV region algorithm for segmenting brain tumors. A brain

and pancreatic tumor dataset is used for the segmentation

of tumors.

In Akter et al. (2024), a deep convolution neural network is

proposed for the classification and a U-NET-based segmentation

model for the segmentation of four different categories of

MRI images. The four different categories consist of glioma

brain tumor, pituitary brain tumor, meningioma brain tumor,

and images with no tumor. Six different datasets were used

to train the segmentation model and to test the classification

model. The overall accuracy achieved by their proposed model

is 98.7% based on the merged dataset, 98.8% accuracy in the

segmentation section, and 97.7% classification accuracy with

individual datasets.
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TABLE 1 Dataset of brain MRI images of each tumor type and healthy

brain MRI images.

S. No Tumor types Number of MRI
images

1 CNS Lymphoma 800

2 Glioblastoma 600

3 Meningioma 600

4 Metastases 400

5 Astrocytoma 600

6 Cystic Pituitary Adenoma and

Meningioma

500

7 Ependymomas 600

8 CNS Embryonal Tumor NOS 500

9 Oligodendrogliomas 500

10 Hemangioblastomas 500

11 Healthy brain MRI images 1,000

Total 6,600

The literature review reveals numerous missing aspects

and requires attention to create a more robust and accurate

segmentationmodule. Firstly, very few brain tumor types have been

considered for segmentation. Secondly, tumor types must still be

classified into grades from Grade I to Grade IV. Finally, the dataset

of images needs to bemultivariate andmultimodal and offer diverse

features so that the segmentation module classifies every image

easily and accurately.

3 Materials and methods

3.1 Dataset of brain MRI images

The dataset of brain MRI images used in this study is collected

from Nida-Ur-Rehman et al. (2017) and Radiopaedia’s (2023). The

dataset contains brain MRI images of 10 tumor types and healthy

brain MRI images (Table 1). The collected dataset of images was

checked and verified by doctors from the medical field for its

authenticity. The dataset included multimodal and multivariant

brain MRI images to cover all the angles, shapes, and positions

of the brain for the classification of tumors. Table 1 presents the

number of MRI images used for each type of tumor and healthy

brain MRI images.

CNS Lymphoma: Primary central nervous system Lymphoma

is a type of brain tumor that can be primary and secondary; in

this type of tumor, cells emerge in the lymphoma and/or the spinal

cord region (RMH Neuropathology, 2013).

Glioblastoma: This type of tumor is considered dangerous

because it grows fast and spreads quickly inside the brain. Initially,

glioblastoma attacks adjacent brain tissues (Gaillard, 2018).

Meningioma: This brain tumor starts inside the brain tissues

called meninges that protect the brain and spinal cord. Most

meningiomas are not dangerous but can reach up to Grade III

tumor levels (Di Muzio, 2023).

Metastases: These types of tumors spread from other parts of

the body, such as the lungs, breasts, and kidneys, to the rest of the

body. Once they spread to the brain, they can create one or more

tumors inside the brain (Brusic, 2021).

Astrocytoma: These tumors can be cancerous or non-

cancerous. Some grow very slowly, while others can be aggressive.

They appear first in cells called astrocytes (Gaillard, 2021).

Cystic Pituitary Adenoma and Meningioma: They are

generally slow-growing types and fall in the benign category of

brain tumors, which are mostly considered Grade 1 or Grade II

tumors. Most patients with this type of tumor are diagnosed after

several years before observing any signs. It develops from pituitary

tissues and grows inside the pituitary gland of the brain (Gaillard,

2016).

Ependymomas: This type of brain tumor develops inside the

brain or spinal cord area. It can reach Grade 3 from Grade 1.

It initially begins in ependymal cells that help to maintain and

improve brain streams (Schubert, 2011).

CNS Embryonal Tumor NOS: It is the most common type of

brain tumor found in children <3 years of age. By nature, this type

of tumor is malignant, and it exists in the area of the cerebellum as

a solid mass (Jones, 2021).

Oligodendrogliomas: They emerge around the brain and

cortex, the brighter white portion of the brain. They are most

commonly considered the middle-aged adult’s tumor (Gaillard,

2010).

Hemangioblastomas: They are benign brain tumors that

mostly rise around the brain, spinal cord, and behind the eye tissues

(retina). They normally occur in young and middle-aged people

(Balachandran, 2010).

Healthy brain MRI images: An MRI image without any

diagnosis of a brain tumor. These brain MRI images are

considered to have no tumor signs present. The shape, nature, and

performance of the brain cells are normal in the healthy brain MRI

images. There is no sign of abnormality, nor are any abnormal

tissues found inside the healthy brain MRI images.

Figure 1 shows a sample of images from the brain MRI dataset,

including healthy brain MRI images.

3.2 Research methodology

Brain tumors exhibit distinct variations in size, intensity,

and contrast compared to normal tissue in MRI scans, which

are critical for tumor classification. Leveraging deep learning,

which performs complex computations on vast datasets through

artificial neural networks, mimics human cognitive processes for

automated learning.

In this study, we propose a binary convolutional neural network

(BCNN) tailored for the segmentation of various brain tumor types

in MRI imagery. BCNNs, characterized by multiple processing

layers, excel in extracting features from extensive data, making

them ideal for detailed feature analysis within large datasets.

Our methodology unfolds in two stages. In the first stage, image

acquisition and preprocessing are conducted, where images are

resized and their intensity or contrast levels adjusted. Subsequent

steps involve converting these preprocessed images into binary

format using adaptive thresholding, followed by morphological

operations to delineate and classify the tumor regions by grade.
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FIGURE 1

Brain MRI images of all tumor types and healthy brain MRI images from the dataset with di�erent variants and modalities.

In the second stage, the preprocessed images, now segmented,

undergo further classification into specific tumor grades, from

Grade I to Grade IV, utilizing the size characteristics of

the tumor regions. The data generated through preprocessing

serves as the foundation for training and testing our BCNN

model. Approximately 80% to 90% of our labeled dataset,

encompassing both tumor-afflicted and healthy brain MRI scans,

is allocated for model training. The remaining 10% to 20%

of segmented but unlabeled data is reserved for model testing,

assessing the BCNN’s efficacy in classifying the data into correct

tumor grades or identifying healthy tissue. The data is labeled

initially with the support of experts from the medical field,

especially a senior FCPS neurosurgeon. The labeling processing

with the help of medical experts gives us a clear view and

understanding of tumor size, growth, grades, and different

modalities and variations of brain tumor and MRI images.

Ultimately, the output will distinguish between accurate (true

segmentation) and inaccurate (false segmentation) classifications,

with the model striving to precisely categorize each MRI

scan into the appropriate tumor grade or as a healthy brain

image. The comprehensive flow of these phases is depicted

in Figure 2, illustrating each step from initial preprocessing

to final classification in our proposed research methodology.

Using this methodology, we accurately segment brain tumors

from healthy brain MRI images and also classify the ten most

common types of tumor into their respective grades (Grade 1 to

Grade IV).

3.2.1 Preprocessing
The MRI images are captured under different light conditions,

and their sizes differ. Therefore, during preprocessing, we convert

the images into equal sizes, normalize the lighting effect, or set the

contrast of the image. This will help us convert an image into a

perfect condition to get more accurate results during segmentation.

We convert each image to an equal size of 600∗600 pixels

dimensions. The resizing of the image uses the nearest-neighbor

interpolation. Once we give an image to the algorithm, Matlab

converts the image automatically into the defined dimensions

of 600∗600.

3.2.1.1 Image resizing—Nearest-neighbor interpolation

Nearest-neighbor interpolation is a simple yet effective method

for quickly converting grayscale images into different sizes as

required. In this method, the known value of the nearest pixel is

taken without paying attention to other pixels.

For instance, an image of 2 × 2 pixels (see Figure 3) can be

converted and its size maximized to 4 × 4 pixels (the size of the

image grid becomes 4× 4 pixels).

For example, we have an image of the following size and pixels:

In this case, we know the value of a few pixels in 2× 2, which is

then converted into 4× 4 to interpolate other unknown pixels (red

circle) (see Figure 4).

Now, we will need to find the value of an unknown pixel in

the red circle. The nearest neighbor value of the unknown pixel

value in the red circle in Figure 4 is 4, which is known, so the value
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FIGURE 2

A step-by-step flow diagram of the proposed research methodology.

FIGURE 3

Showing 2 × 2 size original image with the pixel value.

of the unknown pixel in the red circle will become 4. Similarly,

the remaining unknown pixel values will be filled out in the same

fashion (see Figure 5).

If we have an image of 4 × 4 and want to minimize its size to 2

× 2, then the new size of the image will become 2× 2 (see Figure 6).

To reduce the size of the above image from 4 × 4 to 2 × 2, we

remove every second row and second column (see Figure 7).

After removing the second row and second column, we will

have the following image with a 2× 2 size (see Figure 8).

3.2.1.2 Image filtering using two-dimensional

adaptive filter

The two-dimensional adaptive filter estimates the local mean

and variance around each pixel. It reduces the mean square error as

much as possible [see Equation (1) and Equation (2)].

FIGURE 4

Showing 4 × 4 size images with unknown pixel values.

µ =
1

NM

∑

n1,n2 ∈ η

a (n1,n2) (1)

σ
2

=
1

NM

∑

n1, n2 ǫ η

a2 (n1,n2) − µ
2 (2)
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FIGURE 5

Showing 4 × 4 size images after interpolation of known pixel values.

FIGURE 6

Showing original 4 × 4 size image with known pixel values.

Where the N-by-M local neighborhood of each pixel is in image

A, the two-dimensional adaptive filter creates a pixel-wise Wiener

filter using these estimates [see Equation (3)].

b (n1,n2) = µ +
σ
2
− ν

2

σ 2
(a (n1,n2)−µ) (3)

Where ν2 is the noise variance. If the noise variance is not given,

the two-dimensional adaptive filter uses the average of all the local

estimated variances.

3.2.1.3 Conversion into binary and

morphological operation

Once the preprocessing step is completed, the image is

converted into binary, and the morphological operations are

performed. The grayscale image is converted into binary using

the adaptive thresholding method. A threshold value is calculated

locally using the mean of the neighborhood pixels using a filter;

FIGURE 7

Showing 4 × 4 original size image conversion into 2 × 2.

FIGURE 8

Showing 2 × 2 size image after interpolation/conversion from 4 × 4.

if the pixel value is above the threshold, it will be considered

a foreground value or one; otherwise, it will be considered a

background value or zero. In this method, a mean filter around the

neighborhood is subtracted from a constant value of the pixels to

find the foreground pixels.

For example:

T is our threshold value for the output image, M is set to be

our threshold value for the mean filter of the neighborhood, and

C is our constant value to be subtracted from T. Ultimately, it

will give us a new binary image with foreground values as our

resultant image (Equation 4).

T threshold = M mean of neighboorhood pixels−

C constant (4)

Morphological operations remove any noise or unwanted pixels

that may cause errors or produce false segmentation results. The

binary-converted image shows two types of pixels—black and
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FIGURE 9

Morphological operation’s structure element with fit (A), hit (B), and

neither fit nor hit (C) the image.

white. The white pixels show the foreground pixels or the targeted

pixels, which include the tumor area and some other extra and

unwanted noisy pixels, such as the boundary of images. We need

to remove the extra and unwanted noisy pixels to focus attention

on the tumor pixels. This will help us keep the tumor pixels as

foreground pixels and use them further during segmentation.

Morphological image processing is a collection of non-linear

operations related to the shape or morphology of features in an

image. Morphological techniques probe an image with a small

shape or template called a structuring element. The structure

element is a pre-defined matrix or binary image with values 0 and

1, which is used to probe the image. The structuring element is

positioned at all possible locations in the image and compared with

the corresponding neighborhood of pixels. Some operations test

whether the element “fits” within the neighborhood, while others

test whether it “hits” or intersects the neighborhood. The actual

structure element that we used for erosion and dilation was 22∗22.

An example of using a structure element can be seen in Figure 9.

When a structuring element is placed in a binary image, each of

its pixels is associated with the corresponding neighborhood pixel

under the structuring element. The structuring element is said to fit

the image if, for each pixel set to 1, the corresponding image pixel

is also 1. Similarly, a structuring element is said to hit or intersect

an image if, at least for one of its pixels set to 1, the corresponding

image pixel is also 1. In Figure 9, the structure element is the design

of 2 × 2. The structure element fits at location “A” because the

structure elements of 2 × 2 all fit the position “A” of the image.

The structure element hit the image at position “B.” The structure

element neither hit nor fit at position “C.”

The erosion of a binary image f by a structuring element s

(denoted f ⊖ s) produces a new binary image g = f ⊖ s with ones

in all locations (x, y) of a structuring element’s origin at which

that structuring element s fits the input image f, i.e., g(x, y) = 1

is s fits f and 0 otherwise, repeating for all pixel coordinates (x,

y). The erosion shrinks an image by removing a layer of pixels

from the inner and outer boundaries of image regions. The holes

and gaps between different regions of the image become larger,

and small details or noise get eliminated. Erosion removes small-

scale details from the binary image but simultaneously reduces the

size of regions of interest. We perform a dilation operation in the

morphology to maintain the foreground pixels or the tumor pixels.

It adds the region of tumor pixels removed in the erosion stage. The

dilation of an image f by a structuring element s (denoted f ⊕ s)

produces a new binary image g = f ⊕ s with ones in all locations

(x, y) of a structuring element’s origin at which that structuring

element s hits the input image f, i.e., g(x, y) = 1 if s hits f and 0

otherwise, repeating for all pixel coordinates (x, y).Dilation has the

opposite effect of erosion—it adds a layer of pixels to both the inner

and outer boundaries of the regions.

3.2.1.4 Binary convolution neural network—BCNN

After the binarization and morphological operations, we used

BCNN as the main part of our methodology. The BCNN is used

to classify the tumor of every tumor type used in this study into

grades. Because BCNN works on the binary images generated from

the morphological steps, all the binary images generated from the

morphological steps are saved in different folders labeled with

tumor grades (from Grade I to Grade IV) and the healthy brain

MRI images folder. Labeling all the folders of binary images from

Grade I to Grade IV tumors and healthy brain MRI images is for

the training of the BCNN.

The BCNN stores values in binary formats 1 and 0. This

process, known as 1-bit quantization, saves memory, increases the

processing speed of the network, and reduces memory access time.

Overall, it is fast in computation and uses less memory. The binary

images or data used to train our neural network are most suitable

for embedded and microcontroller devices.

The general weights of CNN depend on grayscale and color

images, which have three values. In our BCNN, a binarization

function is used to binarize those values. The two functions used

are sign and stochastic [see equations (5–7)].

xb = Sign (x) =

{

+1 if x ≥ 0 ,

−1 otherwise,
(5)

xb =
+1 with probability p = σ (x) ,

−1 with probability 1 − p,
(6)

σ (x) clip

(

x + 1

2
,0,1

)

max

(

0,min

(

1,
x + 1

2

))

(7)

Our BCNN has three main convolution layers and one fully

connected layer. The three convolution layers include the input

convolution layer, pooling layer, and batch normalization layer. The

basic structure of the neural network can be seen in Figure 10.

The three main convolution layers and one fully connected

layer that are used to build our BCNN are discussed in detail below.

A. Convolution layer

The convolution layer is the first layer used in a BCNN. It

gets the input matrix of dimensions, which includes the elements

H1 x W1 x D1; H1 is the height of the matrix, W1 is the width

of the matrix, and D1 is the dimension of the matrix. Next, we

have kernels (structure elements or filters) in the convolution

layer. A kernel is a matrix with dimensions H2 x W2 x D2. A
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FIGURE 10

The basic structure of the neural network.

FIGURE 11

Convolution layer with input, kernel, and output layer; blue is the input to the convolution layer, yellow is the kernel (filter), and green is the output of

the convolution layer.

convolution layer has multiple kernels placed on top of each other

in a sequence. These multiple kernels above each other create a 3-

dimensional matrix; D2 is the number of dimensions. At the end

of the convolution layer is the output layer with the dimensions H3

x W3 x D2. A detailed representation of the three sections of the

convolution layer is presented in Figure 11.

B. Pooling layer

The pooling layer minimizes features of the in-plane

dimensionality to make a new invariance to small changes and

misrepresentations and minimize the upcoming parameters. The

advantage of using a max pooling layer is that it minimizes the

number of parameters of the input plot and minimizes overfitting,

extracts important features from the input plot, minimizes

computation, and, therefore, introduces maximum efficiency. In

the pooling layer, there are no such learnable parameters. Filters,

padding, and strides are used as hyperparameters in the pooling

layer, similar to convolution layers.

The max pooling method is used in our pooling layer in BCNN.

The max pooling operation is used to extract patches from the

input features plot, and an output produces a new plot extracting

the maximum number in each plot and discards the rest of the

values. Other than height and width, this will not change the depth

dimension of the feature map. Figure 12 presents a 4× 4 input plot

while extracting a new 2× 2 plot, extracting the maximum value in

each plot by using a 2× 2 filter on the input plot.

C. Batch normalization layer

Before training, batch normalization is used as a preprocessing

step in the neural network. It improves the learning capability of

the network and also avoids overfitting. It converts the data into a

standard format before the training phase of the network to make

the training phase easy. Since we have different types ofMRI images

in terms of size, shape, and intensity, it would be challenging for the

network to train on such diverse data. Moreover, this would make

the network more complicated and less efficient, and we may not

be able to learn 100% as per our target. Consequently, the overall

capability of the network would be decreased.

The approach we use inside the batch normalization layer is to

scale it to a selection from 0 to 1. In Equation 7, x is the facts factor

to normalize, m is the mean of the data set, xmax is the maximum

value, and xmin is theminimum fee. This technique is normally used
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in data input. The non-normalized data inputs with huge variations

can produce instability in neural networks. The tremendously big

inputs can cascade down to the layers, inflicting problems that

include exploding gradients [see Equation (8)].

xnormilization =
x − m

xmax − xmin
(8)

D. One fully connected layer

It works as a feed-forward layer in the neural network. It

receives input from the previous pooling and batch normalization

and is forwarded for further processing. It is a unidirectional layer

that receives input from one direction and forwards in the same

direction without using any repetition or loop. The input received

by the fully connected layer from the previous layers is in a vector

format. The fully connected layer has hidden layers, which are

a combination of affine and non-linear functions. The one affine

and one non-linear layer is called one fully connected layer or

one hidden layer. We can add additional fully connected layers or

hidden layers as per the requirement of our segmentation model.

The calculation in Equation (9) is used for every fully connected

layer of the neural network. In Equation (9), x represents the

input from the previous layer as the input vector, w is the weight

FIGURE 12

Showing pooling method functionality.

matrix with dimensions, b is the bias vector, and g is the activation

function, usually ReLU [see Equation (9)].

g (wx + b) (9)

After the process completion of the fully connected layer,

and once it passes from the last layer, it is used to calculate

the probability and classify the values into their respective class.

Finally, we get the probability of the object or input data in

the class to which it belongs. That is how the overall neural

network works. The mechanism of the neural network is displayed

in Figure 13, where the pooling and batch normalization work

as feature selection layers, and the rest of the section of the

neural network is used as a part of the segmentation layer, which

includes a flattening layer, a fully connected layer, and the final

output layer.

4 Results and discussion

This section discusses the complete step-by-step results of our

proposed research work. The software used for the implementation

and analysis of our proposed research methodology is also

explained in this section.

We used Matlab version 2021 software in our research

to implement our proposed methodology and analysis. Matlab

provides state-of-the-art functionality and facilitation to easily

implement and analyze complex and tricky methodologies. We

used an HP Core-i5 7th generation computer/laptop to run

the software and generate the overall results. The detailed

implementation and the results of our proposed research work are

discussed below.

The proposed methodology is implemented in two phases.

In phase one, preprocessing, conversion into binary, and

morphological operations are applied to the input images. In the

second phase, the tumor types are segmented into grades.

FIGURE 13

Di�erent sections of the neural network.
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FIGURE 14

(A) The original image from the data set; (B) The resultant image after preprocessing.

FIGURE 15

Showing the results produced after performing step 2, (A) is the resultant image of step 1, (B) is the resultant image converted into binary, and (C) is

the image after performing morphological operation erosion and dilation.

FIGURE 16

Showing labeled folders.
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FIGURE 17

Display a few images from all the labeled folders. (A) Grade I tumor. (B) Grade II tumor. (C) Grade III tumor. (D) Grade IV tumor. (E) Healthy brain MRI

image.

FIGURE 18

Showing di�erent layers of the overall training model constructed to train the segmentation model.
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FIGURE 19

Showing accuracy and validation of the training phase.

4.1 Implementation and results of phase
one

4.1.1 Step one
First, the brain tumor MRI image from the dataset is passed

to the first step of our methodology, which is preprocessing.

The preprocessing step is performed to remove any unwanted

impurities, enhance the quality of the image, and convert all the

images to a standard and equal size. Performing the preprocessing

step provides better results at the end of the segmentation. The

images we received from the two sources differed in size, intensity,

and lighting. The preprocessing step is performed to make the

images more useful. The difference in the original image (a) and

the resultant image (b) after preprocessing is shown in Figure 14.

The intensity and size of both the images are different. The

original image size is 812∗812 pixels, and the resultant image size is

600∗600 pixels. Preprocessing is performed to decrease or increase

the size of the image to a standard size of 600∗600 pixels.

4.1.2 Step two
In step two, the resultant image is further processed and

converted to binary format, and morphological operations are

performed; the conversion into binary format is undertaken to

make the segmentation phase more efficient and faster. This step is

performed to identify the tumor region and remove the boundaries

or skull region to easily classify the tumor region. Once the image is

converted to binary, morphological operations such as erosion and

dilation are performed. Once the preprocessing resultant image is

converted into binary, then there are only two pixel values, 0 and 1,

left to deal with; 0 represents the background pixels or of the image

which are not our targeted pixels, and 1 represents foreground

pixels which are our target pixels. These pixels represent the

tumor pixels and the boundaries and extra foreground pixels of

the image that need to be removed to retain only the tumor

foreground pixels.

Applying the erosion removes the extra or unwanted

foreground pixels. This process also removes the boundaries of

the skull in the image and some other parts. The erosion also

affects the tumor foreground pixels, which affects the exact size

of the tumor. To regain the actual size of the tumor size after

erosion, we perform dilation; with the help of dilation, the tumor

area that is removed or affected during erosion gets added to

the tumor region again. This helps us to maintain the tumor

region’s original size and get accurate results in the segmentation.

The results produced during step two of conversion into binary

and morphological operations are shown in Figure 15. We can

see that the tumor region in Figure 15A, which is the resultant

image of step 1, can also be seen in Figure 15C after performing

morphological operations.
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FIGURE 20

Segmentation results classifying tumor types into grades, (A) successful segmentation results of Grade I, (B) successful segmentation results of Grade

II, (C) successful segmentation results of Grade III, (D) successful segmentation results of Grade IV, and (E) successful segmentation results of healthy

brain MRI image with no brain tumor detected.

4.2 Implementation and results of phase
two

In step two, the actual segmentation of the tumor types into

grades is performed. To start the segmentation, we first labeled all

the resultant images produced after the morphological operation of

step two. All the images were stored in different folders according

to the grades of the tumor; the folders were labeled Grade I Tumor,

Grade II Tumor, Grade III Tumor, Grade IV Tumor, and Healthy

Brain MRI image.

Labeling is performed to train our BCNN segmentation model.

The model will train on the images stored in binary format in

all the labeled folders. All the images stored in the labeled folders

are in binary format. Approximately 90% of the resultant images

processed from our actual brain MRI images are used to train our

segmentation model. The segmentation model is trained to classify

tumor types into their respective grades.

The actual performance of our proposed segmentation model

includes the following steps:

4.2.1 Preparation of labeled data
All the resultant images of step two are divided into two

categories. One category is labeled images, and the second is

unlabeled images. As we can see in Figure 16, the labeled images

are used to train our segmentation model. The labeled images are

stored in separate folders (Grade I Tumor, Grade II Tumor, Grade

III Tumor, Grade IV Tumor, and Healthy Brain MRI image). The

remaining unlabeled images will be used in the testing phase of

the segmentation model. Approximately 90% of the images were

labeled for training purposes, and the remaining 10%was unlabeled

and allocated for testing the segmentation model.

4.2.2 Loading all labeled images
All images stored in the labeled folders are loaded into the

segmentation model for training purposes. They are loaded at once

and stored as a variable described in the algorithm implementation;

the labeled images stored as a variable are further used to train our

segmentation model. Figure 17 displays a few images from all the

labeled folders stored in a variable.

4.2.3 Development of the training phase
After labeling and loading the data, the segmentation model

will train itself based on the parameter/labeled images. The model

trains based on the size of tumor types already set in the labeled data

and stored as a variable in the previous step. Figure 18 shows the

different layers of the training phase of our segmentation model.
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TABLE 2 Comparison of proposed and existing models.

Method No. of tumor
types

Segmentation
of tumor into
grades

Segmentation results

Accuracy Precision Recall F-Measure

Convolutional neural

networks (CNN) using grid

search optimization (Irmak,

2021)

A total of five

tumor types

Only Glioma brain

tumors are

classified into

grades II, III, and

IV

98.14% 98.31% —— ——

Multiclass support vector

machine (M-SVM) (Maqsood

et al., 2022)

Three tumor types —— 98.92% —— —— ——

Four models of deep

convolutional neural

networks:

inceptionresnetv2,

inceptionv3,

transfer learning,

brain-tumor-net model

(Shoaib et al., 2022)

Three tumor types

and normal cases

—— 86.80%,

85.34%,

93.15%,

91.24%

86.85%,

85.12%,

93.14%,

91.20%

—— 86.83%,

84.98%,

93.11%,

91.08%

Histogram differencing and

KNN (Nida-Ur-Rehman et al.,

2017)

Four tumor types

and healthy brain

MRI images

—— 97.3% —— —— ——

Proposed Model: binary

convolution neural network

(BCNN)

Ten tumor types

and healthy brain

MRI images

Into four grades

(Grade I to Grade

IV) and healthy

brain MRI images

99.40 % 99.32% 99.45% 99.28%

The training model consists of three convolution layers and one

fully connected layer.

4.2.4 Training the segmentation model
After setting up the labeled data and developing the training

model, the algorithm trains itself using the labeled data. Figure 19

shows a detailed representation of the training and validation of our

proposed segmentation model. We can see that the accuracy of the

training is 100%, and there is a 0% loss in the validation of the data.

For each image, the model takes an average of 10 to 12 seconds of

computation time to complete the overall training.

4.2.5 Testing and segmentation results
After completing the training, we tested our segmentation

model; the testing was performed using the unlabeled images

comprising 10% of the total images/data. The testing phase of

our segmentation model achieved an overall true segmentation

rate of 100%. All the tumor types were successfully classified

into their respective grades (from Grade I to Grade IV).

The model also accurately categorized the healthy brain MRI

images, distinguishing them from those with tumors. The overall

achievement of our proposed methodology showed significance

and efficacy. Figure 20 illustrates a few results generated during the

segmentation of the proposed segmentation model. We can see

that the tumor regions in the brain MRI images are successfully

classified into their respective grades, and the healthy brain

MRI image is also successfully classified without detecting any

tumor region.

4.3 Comparison of proposed and current
research work

In this section, we compare our proposed model with existing

research. The criteria for comparing are the overall accuracy

of the segmentation model, precision, recall, and F-measure.

In Table 2, the results of our proposed model are compared

with existing research. Based on the comparison, it is evident

that our proposed research model performs better than existing

research models.

5 Conclusion and future work

In this study, we proposed a new model based on deep learning

BCNN to classify the most common ten types of brain tumors

into grades (from Grade I to Grade IV) based on the size and

growth of the tumor. The tumor types that were considered in our

research work are metastatic or secondary tumors, Meningioma,

CNS Lymphoma, Glioblastoma, Astrocytoma, Pituitary Adenoma,

Ependymomas, Medulloblastomas, Oligodendroglia’s, and

Hemangioblastomas. A dataset of 6,600 MRI images was used,

including all types of tumor MRI images and healthy brain MRI

images. The dataset was collected from the two main sources

(Nida-Ur-Rehman et al., 2017; Radiopaedia’s, 2023) and verified by

an FCPS neurosurgeon for their validity.

The methodology that we proposed had two phases. The first

phase consisted of preprocessing and conversion to binary and

morphological operations. The image was loaded in step one, and

its intensity and contrast were set to get more accurate results in the

next step and phase two. We used the two-dimensional adaptive
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filter to filter and set up the image contrast for this. Next, during

preprocessing, we standardized the size of all the MRI images to

600∗600 using the nearest neighbor interpolation and converted

all the images to a standard size. In step two of phase one, all the

images were converted into binary. Morphological operations were

performed to remove any noise or unwanted pixels that could result

in errors or give false segmentation results.

In step two, we executed the main segmentation model based

on the BCNN developed using three convolution layers and

one fully connected layer. The images that were generated after

step two of phase one were divided into two categories: labeled

and unlabeled. The labeled images were stored in folders named

according to tumor grades (Grade I to Grade IV) and healthy brain

MRI images. The labeled images were used to train our algorithm;

overall, 90% of the images were labeled and used to train our

algorithm. In the next step, we tested our algorithm using the

remaining 10% of images that were unlabeled.

The overall results of our segmentation model were very

satisfactory, with 99.40% accuracy, 99.32% precision, 99.45% recall,

and 99.28% F-Measure score. These results demonstrate the

significance and efficacy of our proposed model, which successfully

classified all the tumor types into their respective grades (from

Grade I to Grade IV). Our study has also curated a new dataset for

the research community with more than 6,000 brain MRI images

that contain the 10 most common types of brain tumor and healthy

brain MRI images. This robust framework enhances the accuracy

of brain tumor segmentation and sets a new benchmark for early

detection and grading of brain tumors, thereby contributing to

the advancement of neuro-oncological diagnostics. The technique

provides a more effective contribution to the clinical practitioner

to easily, quickly, and accurately classify and segment brain

tumors in the early stages, which will help them provide better

treatment to patients suffering from this deadly disease. This

model can effectively reduce the number of deaths caused by brain

tumors by facilitating early and accurate detection of brain tumors

and treatment.

5.1 Future work

Going forward, this study will aim to address the following

challenges and limitations of the proposed research work

and methodology:

• There are more than 100 types of brain tumors; these can be

included for segmentation into grades.

• Other imaging technologies, such as CT scans, can be used

along with MRI images to classify the brain using different

deep learning techniques.

• Different deep-learning techniques can be used to classify

other tumor types effectively using RGB images.
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Conditional spatial biased 
intuitionistic clustering technique 
for brain MRI image segmentation
Jyoti Arora 1†, Ghadir Altuwaijri 2*, Ali Nauman 3†, Meena Tushir 1, 
Tripti Sharma 1, Deepali Gupta 4 and Sung Won Kim 3

1 MSIT, New Delhi, India, 2 Department of Computer Engineering, College of Computer and 
Information Sciences, Majmaah University, Majmaah, Saudi Arabia, 3 School of Computer Science and 
Engineering, Yeungnam University, Gyeongsan, Republic of Korea, 4 Chitkara University Institute of 
Engineering and Technology, Chitkara University, Punjab, India

In clinical research, it is crucial to segment the magnetic resonance (MR) brain 
image for studying the internal tissues of the brain. To address this challenge in a 
sustainable manner, a novel approach has been proposed leveraging the power 
of unsupervised clustering while integrating conditional spatial properties of 
the image into intuitionistic clustering technique for segmenting MRI images 
of brain scans. In the proposed technique, an Intuitionistic-based clustering 
approach incorporates a nuanced understanding of uncertainty inherent in 
the image data. The measure of uncertainty is achieved through calculation 
of hesitation degree. The approach introduces a conditional spatial function 
alongside the intuitionistic membership matrix, enabling the consideration of 
spatial relationships within the image. Furthermore, by calculating weighted 
intuitionistic membership matrix, the algorithm gains the ability to adapt its 
smoothing behavior based on the local context. The main advantages are 
enhanced robustness with homogenous segments, lower sensitivity to noise, 
intensity inhomogeneity and accommodation of degree of hesitation or 
uncertainty that may exist in the real-world datasets. A comparative analysis 
of synthetic and real datasets of MR brain images proves the efficiency of the 
suggested approach over different algorithms. The paper investigates how the 
suggested research methodology performs in medical industry under different 
circumstances including both qualitative and quantitative parameters such 
as segmentation accuracy, similarity index, true positive ratio, false positive 
ratio. The experimental outcomes demonstrate that the suggested algorithm 
outperforms in retaining image details and achieving segmentation accuracy.

KEYWORDS

fuzzy C-means, intuitionistic method, conditional spatial fuzzy C-means, MRI images, 
segmentation

1 Introduction

One of the core issues in clinical research methods is to segment the MRI image of human 
brain. The segmented image helps to detect different diseases related to the brain. Due to the 
intricate structure of MRI brain images and use of the inherent imaging mechanism includes 
the presence of noise, delineation of the image boundaries and many other challenges in the 
segmentation of these MRI images. In literature, several image segmentation methods can 
be categorized as thresholding (Suzuki and Toriwaki, 1991), region growing, level set methods 
(Li et al., 2011), model-based methods (Blahova et al., 2023) and unsupervised clustering. 
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Clustering, a primary technique in unsupervised learning, involves 
grouping a set of patterns into clusters, which can take the form of 
hard or soft clustering. Soft clustering is preferred over hard clustering 
due to its ability to assign each pixel varying degrees of membership 
across all clusters (Li et al., 2022). Fuzzy C-means (FCM), initially 
given by Dunn (1973) and refined by Bezdek (1981), is a prominent 
algorithm. The FCM method proves less effective in handling noisy 
images, primarily because of its vulnerability to noise. The absence of 
spatial membership matrix in FCM leads to unreliable out-comes in 
its results.

To address the noise issue, several improved versions of FCM have 
been proposed (Chen and Zhang, 2004; Wang et al., 2004; Krindis and 
Chatzis, 2010), which use the image’s local spatial and grayscale 
information and prove to give better results in segmentation of MRI 
images. The FCM was altered by Ahmed et  al. (2002) adding 
neighborhood information in the membership matrix. The refinement 
of similarity metrics incorporates information from all pixels closer to 
the cluster center, provided they lie within the spatial window and 
homogeneous region. However, this algorithm exhibits sensitivity to 
randomly defined initial cluster centers and an associated increase in 
computational complexity. Pedrycz (1996) proposed modified FCM 
algorithm by integrating an auxiliary variable and data attributes into 
the clustering process. By taking into account the domain in a feature 
space and the values deduced from a particular conditional variable, 
this method uncovers unique patterns within a set of patterns.

A conditional or auxiliary factor-guided conditional spatial fuzzy 
C-means (csFCM) methodology was given by Adhikari et al. (2015). 
This method introduces local spatial interactions among neighboring 
pixels through a fuzzy weighted membership function. Its advantages 
include defining more homogenous segments compared to other 
methods, robust to noise and the elimination of spurious blobs. But 
the Fuzzy clustering technique does not incorporate measure of the 
uncertainty degree that are inherent in the image datasets.

A rapid generalized FCM for image segmentation given by Cai 
et al. (2007), wherein the similarity metric integrates spatial and gray-
level details to generate an image with a sum of weights that operates 
non-linearly. In a similar way, Yang and Zhang (2011) presented a 
novel penalized FCM, where the penalty term functions as a 
reconfigure within the algorithm, drawing inspiration from 
neighborhood maximization. In the literature, number of Fuzzy based 
segmentation algorithms are proposed for understanding of the 
anatomical and the functional aspects of the MRI brain images. The 
segmentation of these MRI images provides a crucial theoretical basis 
for the analysis and treatment of various brain ailments (Ren et al., 
2019). Conventional clustering algorithms such as FCM failed to give 
the accurate results (Ahmed et al., 2002). To over-come these issues, 
Yang et al. introduced kernel-based clustering approach embedded 
with spatial information to violate the effect of noise for the task of 
segmentation of images (Yang and Tsai, 2008). Chaira (2011) 
introduced the Intuitionistic based fuzzy approach, which integrates 
entropy function along with intuitionistic theory for the segmentation 
of medical images. Notably, IFCM (Intuitionistic Fuzzy C-means) 
exhibits reduced sensitivity to outliers compared to fuzzy clustering 
methods. Integrated approaches of clustering were proposed to 
improve the accuracy of MRI image segmentation. Caldairou et al. 
(2011) have proposed integrated approach of FCM with the non-local 
information related to image with the aim of image restoration. Dubey 
and Mushrif (2016) have investigated different approaches of 

unsupervised clustering techniques for this purpose. Singh et  al. 
(2024) proposed kernel based FCM clustering approach with bias 
correction for segmenting of MRI brain images. In this approach 
image is pre-processed using LZM based filtering and further 
segmented using kernelized approach of clustering.

The problem with different clustering approaches is the overhead of 
defining different parameters which is not an easy task. Since medical 
images are not linearly separable, these clustering techniques are not able 
to achieve high segmentation accuracy. The majority of these techniques 
performs severely due to the imperfection of the devices through which 
image is acquired, poor magnetic field, and other image artifacts.

Besides being susceptible to noise, another significant challenge 
in MRI image segmentation involves addressing the ambiguity 
inherent in pixel values. To handle this type of problem, intuitionistic-
based clustering algorithms are used, which consist of intuitionistic 
membership degree characterized by a hesitation degree. Furthermore, 
by integrating conditional spatial functions into the segmentation 
framework, the algorithm gains the ability to adapt its smoothing 
behavior based on the local context of the image with the intuitionistic 
membership matrix giving more weight to the pixels with more 
similarity. The intuitionistic based clustering algorithms have been 
proved to lead novel perspectives in computer vision and therefore, 
various domains of image segmentation (Vlachos and Sergiadis, 2005; 
Arora and Tushir, 2019; Thao et al., 2019; Chen et al., 2021) have 
witnessed the application of clustering algorithms grounded in 
Intuitionistic metrics.

In this research paper, we introduce an intuitionistic based clustering 
method integrated with the spatial properties of the image which is 
guided by the weighted conditional factor termed as Conditional Spatial 
Intuitionistic Fuzzy C-means (csIFCM) for segmenting MRI brain 
images. Furthermore, the proposed approach makes noticeable 
advancements by presenting more adaptable solution toward the 
segmentation of MRI images. Accurate segmentation of medical image 
plays a pivotal role in different fields of medical applications, ranging 
from diagnosis of disease to planning of treatment. Accurate MRI brain 
image segmentation facilitates in-depth examination of anatomical 
features and pathological anomalies in clinical research. Therefore, 
highlighting the wide practical utility of the proposed approach is crucial 
for facilitating its adoption and integration into existing medical 
workflows. The primary contributions of this research are outlined below:

	•	 The images are pre-processed using the process of normalization 
in order to bring the values of the pixels into more conventional 
form (Internet Brain Segmentation Repository, 2024).

	•	 The proposed approach integrates spatial properties of the image 
guided by the weighted conditional factor into the membership 
matrix of the intuitionistic approach of the clustering.

	•	 This algorithm demonstrates its effectiveness by producing 
robust results with better segmentation accuracy even when 
faced with challenges such as noise and intensity inhomogeneity.

	•	 The proposed model’s performance was evaluated using a range 
of standard metrics and the results obtained confirms the 
outstanding performance over the existing techniques.

The subsequent sections are structured as follows: Section 2 delves 
into the existing literature concerning the FCM algorithm, csFCM, 
and IFCM algorithms. Section 3 provides the detailed methodology 
about the proposed work. The experimental details and the application 
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of the proposed algorithm to diverse synthetic and real MRI images 
are delineated in section 4. Lastly, Section 5 remarks the concluding 
summary of the research (Anand et al., 2023; Uppal et al., 2023).

2 Materials and methods

2.1 Fuzzy C-means

The FCM is a widely used clustering approach that aims to divide 
the data into groups such that each data point has a particular degree 
of membership ikµ , that binds the datapoint with a particular cluster 
with certain percentage. The membership ,ikµ  that each data point 
has with the cluster center is calculated by measuring the ratio of the 
distance between them and others.

The process of FCM is defined by the given equation of the 
objective function as in Eq. (1).
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Here ikµ represents membership function, d x vk i,( ) represents 
the distance metrics between every point of the data xk , center of 
cluster vi  and the variable m∈[1,∞] determines the amount of 
fuzziness. In order to satisfy the imposed probability constraint and 
minimize the objective function of FCM, the degree of membership 
and center are determined. Eq. (2) defines the imposed constraint.
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where number of clusters are defined manually by the variable c.
Here Eqs (3) and (4) defines the membership matrix and cluster 
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The primary problem with the FCM is that it is susceptible to 
noise and other visual artifacts, and its objective function lacks any 
spatial information.

Generally, the flow of the unsupervised clustering algorithm can 
be given in following steps.

2.2 Conditional spatial fuzzy C-means

In order to remove the drawback of FCM, improved version of 
spatial algorithm known as csFCM was given by Pedrycz (1996). 

csFCM includes the conditioning aspect of the clustering mechanism 
as the spatial properties of an image. This conditioning aspect allows 
smoothening of the pixel within its specified vicinity. In csFCM, firstly 

ikµ  and vi  are calculated as given in Eqs (3) and (4). Furthermore, 
spatial membership function ikµ  is calculated using conditional 
variable hik  as in Eq. (5).
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Here hik , represents an auxiliary conditional variable that 
determines the extent to which a pixel is associated with the specific 
cluster by taking into account its spatial neighborhood and is 
calculated as Eq. (6).

In contrast to the FCM algorithm, the csFCM algorithm 
introduces a conditional element into the clustering process. The 
algorithm factors in conditioning variables, denoted as h1, h2, …, hn 
for all pixels x1, x2, …, xk, respectively.
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(6)

N xk( ) is a fixed size square window having the pixel xk  as its 
center and R denotes the cardinality of pixels in the neighborhood. 
Further the weighted membership zik  of csFCM and new cluster 
center ti is calculated as in Eqs (7, 8).
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where in Eq. (7), local ikµ  and global uik  membership values 
are weighted by constants p and 𝑞. These constants are used to 
regulate the respective importance of both the memberships for 
construction of the final weighted membership function and 
cluster center.

2.3 Intuitionistic fuzzy C-means

The theory of intuitionistic fuzzy sets (IFS) was introduced by 
Atanassov (1986). Unlike regular fuzzy sets (FS), IFS take into 
account a data point’s membership and non-membership values 
while also taking into account the presence of a third parameter, i.e., 
hesitation degree. In IFS, the limitation imposed on the 
non-membership degree is that it is not the complement of the 
membership value (Kang et al., 2018).

The IFS (S f ) for dataset X can be represented as:

89

https://doi.org/10.3389/fncom.2024.1425008
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Arora et al.� 10.3389/fncom.2024.1425008

Frontiers in Computational Neuroscience 04 frontiersin.org

	
S x x x x x Xf ik S ik S ik S ik ik= ( ) ( ) ( ){ }, , , ,µ λ π 

	 (9)

In the Eq. (9), the third parameter known as hesitation degree is 
introduced which differentiates the FS from IFS. Here, 
µ λS ik S ikx x( ) → [ ] ( ) → [ ]0 1 0 1, ,,  and πS ikx( ) → [ ]0 1,  represents the 
membership matrix, non-membership matrix and hesitation degree 
matrix of the data point xik  in an S f  with the following condition as 
in Eq. (10):

	 0 1≤ ( ) + ( ) ≤µ λS ik S ikx x 	 (10)

Chaira (2011) proposed novel Intuitionistic Fuzzy C-means 
(IFCM) approach for segmenting medical images. The IFCM 
introduced third parameter with the presence of membership and 
non-membership degree known as hesitation degree. It is calculated 
with the help of fuzzy membership complements using yagers 
complement and the sugeno complement. Dubey et al. (2016) in his 
research has introduced a new measure of fuzzy complement in the 
presence of uncertainty. The non-membership calculated using these 
set of fuzzy complement does not give non-membership as 
complement of membership. Thus, there is another factor known as 
hesitation degree which is π µ λS ik S ik S ikx x x( ) = − ( ) − ( )1 and 
πS ikx( ) is a measure of hesitation degree.

3 Proposed conditional spatial 
intuitionistic fuzzy C-means

The three drawbacks of FCM algorithm are:

	•	 The FCM’s objective function does not integrate spatial 
information; it treats each pixel as an individual intensity value. 
Image noise, which emerges during image acquisition, can lead 
to altered pixel intensity values, introducing both noise and 
intensity inhomogeneity (Zijdenbos and Dawant, 1994). 
Consequently, due to FCM’s susceptibility to noise, noisy pixels 
tend to be misclassified in images.

	•	 The relative distance between value of the pixel of the image and 
the cluster center determines the membership degree of the 
FCM. Pixels in close proximity to the centroid are attributed 
higher membership degrees, while those in distant clusters 
receive lower membership degrees (Hua et  al., 2021). 
Consequently, the values of the membership becomes delicate in 
the presence of noise.

	•	 Furthermore, FCM neglects to account for the presence of 
uncertainty or hesitation that might be inherent in real-world 
datasets (Ullah et al., 2023).

To some extent, csFCM proved to provide better clustering 
results in image segmentation. However, this algorithm does not 
consider the degree of hesitation or uncertainty that may exist in 
the real-world datasets, so the noisy pixels are not properly 
classified in its neighborhood. To overcome the problem of csFCM 
and other research work, we have proposed conditional spatial 
intuitionistic fuzzy C-means (csIFCM) for generating better 
segmentation results (Dhiman et al., 2022). In conventional FCM, 
the values of the non-membership degree typically complements 

the values of the membership degree. However, within the context 
of an intuitionistic approach, the non-membership degree is 
adjusted using fuzzy generators. This adaptation aims to 
effectively manage the inherent uncertainty (hesitation degree) in 
the dataset.

In the proposed algorithm, first we have normalized every pixel 
value of the image using the process of normalization in order to range 
the pixel value between 0 and 1. Further initial values of the number 
of the clusters (segments), random membership matrix, and random 
values of cluster centers are initialized. Then the value of the 
conditional spatial membership uik∗  is calculated as mentioned in 
Eq. (11) using spatial membership function hik  given by Eq. (12).
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N xk( ) is a fixed size square window having the pixel xk  as its 
center and R denotes the cardinality of pixels in the neighborhood. 
Then, a non-membership matrix is calculated using yager’s fuzzy 
generator (Chaira, 2011) as given in Eq. (13).
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Here α is a hyperparameter that controls the degree of hesitation. 
Further, we calculate the hesitation degree as Eq. (14).

	 π λS ik ik ik S ikx u x x( ) = − ( ) − ( )∗1 	 (14)

Subsequently, an conditional spatial intuitionistic membership 
matrix is computed by adding together the conditional membership 
and hesitation degree, as detailed in the Eq. (15).

	 µ π∗ = ( ) + ( )S S ik ikx u x 	 (15)

Further the weighted intuitionistic membership matrix wik of 
csIFCM and joint cluster center gik  is calculated as
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The Eq. (16), represents the mathematical formulation of weighted 
membership function, where the parameters p and q are utilized to 
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regulate the extent of intuitionistic fuzziness and the level of spatial 
membership. These parameters play a pivotal role in constructing the 
ultimate intuitionistic weighted membership function and updating 
the cluster centers. This wik matrix finally defines the weighted 
membership of the pixel with the segment of an image. In regions 
characterized by homogeneity, the spatial function reinforces the 
original membership function, leaving the clustering 
outcome unaltered.

However, in the case of noisy pixels, which typically do not belong 
to the cluster, classification becomes easier through considerations of 
the neighboring pixels. Consequently, inaccurately classified pixels 
stemming from spurious clusters or noisy regions can be effectively 
rectified. This attribute renders the proposed csIFCM algorithm 
notably robust against noise and other image artifacts, ultimately 
enhancing the accuracy of image segmentation.

The process is repeated till the termination criterion (w wi i+
∗ ∗− ≤1 ε) 

 is met.

Proposed csIFCM Algorithm

Input: Image X  with x x x xk1 2 3, , ………( ) normalized pixel points, number of 

clusters c.

Output: Weighted intuitionistic membership matrix wik , joint cluster centers gik
	1.	 Initialize Partition Matrix ikµ  and cluster centers vi, initial parameters

	2.	 Calculate non-membership matrix using yagers compliments, hesitation degree 

and intuitionistic membership matrix.

	3.	 for i ton=1

	4.	 for k toc=1

	5.	 Repeat for j = …1 2 3, ,

	6.	 Update the conditional spatial membership matrix uik
∗  and 

intuitionistic membership matrix µik
∗ .

	7.	 Update new weighted membership wik  matrix and joint cluster 

centers gik  using Eqs (16) and (17)

	8.	 Until (w wi i+
∗ ∗− ≤1 ε)

	9.	 end

	10.	 end

	11.	 Return wikand gik .

In the proposed csIFCM algorithm, steps are executed as per the 
above given algorithm. Figure 1 shows the flow of the methodology.

4 Experiment results and discussion

Within this section, we undertake an evaluation of our proposed 
approach’s performance. This evaluation encompasses both synthetic 
images derived from the phantom dataset and actual MRI images of 
the human brain sourced from The Brain Atlas of Harvard Medical 
School, Harvard University, and the Internet Brain Segmentation 
Repository (Internet Brain Atlas, 2024; Internet Brain Segmentation 
Repository, 2024). This evaluation entails a comprehensive assessment 
encompassing qualitative and quantitative analyses. We evaluate the 
efficiency of the proposed csIFCM in comparison to the other 
algorithms, including FCM, IFCM, and csFCM. Notably, all clustering 
algorithms were implemented utilizing MATLAB (R2015a). 
Additionally, trial and error are used to determine the ideal values for 
the weighted membership function’s exponents (m, p, and q). 
Non-membership matrix and hesitation degree is calculated using the 

self-chosen alpha parameter which are used to calculate the 
intuitionistic membership matrix used in proposed csIFCM method.

4.1 Initialization of parameters

The parameters p and q have a significant influence on the 
weighted membership function w and joint cluster center, thereby 
effecting the accuracy of csIFCM. To fix the values of p and q for 
csIFCM, we have calculated the segmentation accuracy of the MRI 
images by segmenting the image at different values of p and q (Anand 
et al., 2023; Uppal et al., 2023). Figure 2 represents the segmentation 
accuracy attained on different slices (10–20) (Internet Brain Atlas, 
2024) of MRI image with respect to different values of p and q. Table 1. 
represents the average value of segmentation accuracy on different 
slices of MRI images with respect to values of p and q. It is observed 
from Table 1 and Figure 2 that csIFCM is giving optimal results on 
p = 1 and q = 2. The outcomes underscore the necessity for balanced 
emphasis on both local and global membership values during the 
convolution process.

FIGURE 1

Proposed algorithm csIFCM for segmentation of MRI images.
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This equilibrium is vital for generating the ultimate intuitionistic 
weighted membership values and joint cluster centers, wherein equal 
significance is attributed to both the conditional spatial membership 
matrix uik∗  and the intuitionistic membership matrix µik∗ . Therefore, for 
all conducted experiments, the optimal parameter values are set as p = 1 
and q = 2.

4.2 Qualitative and quantitative analysis

The qualitative results provide visual details about the different 
segments in the image. This evaluation demonstrates the algorithm’s 
resilience in the face of noise. To quantitatively validate the quality of 
segmentation, we employed various metrics, including the false negative 
ratio fnr( ), false positive ratio fpr( ) , similarity index (ρ), and overall 
segmentation ratio. The segment’s fpr  indicates the error arising from 
surplus pixels, while the fnr  represents the inaccuracy occurs due to 
omitted pixels. The ρ  refers to the pixels that align between the ground 
truth and the experimental outcomes. The segmentation accuracy 
(Zijdenbos and Dawant, 1994; Hua et al., 2021; Dhiman et al., 2022; Ullah 
et al., 2023) is characterized as the proportion of accurately classified 
pixels in relation to the entire pixel count within the ground truth image.

	
fp

S S S
Sr =

− ∩2 1 2

1 	
(18)

	
fn

S S S
Sr =

− ∩1 1 2

1 	
(19)

	
ρ =

∩
+

2 1 2

1 2

S S
S S 	

(20)

where S1 and S2 in Eqs (18)–(20) denote the pixels belonging to 
the ground truth value of the segment and experimental result 
obtained from the respective algorithm. Weighted membership 
function Parameters p and q  have a significant influence on the 
weighted membership function w and joint cluster center g , thereby 
affecting the segmentation accuracy.

4.2.1 Synthetic image of phantom
A synthetic image was produced utilizing the built-in MATLAB 

function, phantom(). This function generates an image of a head 
phantom designed for assessing the numerical precision of various 
algorithms. The resulting grayscale intensity image comprises a 
prominent large ellipse symbolizing the brain, within which 
multiple smaller ellipses are embedded to symbolize distinct 
features within the brain. The quantitative outcomes of the 
segmentation attained by the various methods are displayed in 
Table 2. Table 2 indicates that the clustering method csIFCM, which 
is being proposed, is doing better in terms of overall 
segmentation accuracy.

The overall segmentation ratio should have a value of 1, with a 
greater value being better, for the better outcome. The suggested 
algorithm has a higher overall segmentation ratio (0.9631) than the 
other algorithms.

Figure 3 shows the overall segmentation accuracy achieved after 
segmentation and the proposed algorithm proved to give maximum 
accuracy. Figure 4 shows qualitative results of the phantom image 

FIGURE 2

Results of segmentation accuracy on MRI images for different values of p and q.

TABLE 1  Segmentation accuracy of MRI images by different values of p and q for csIFCM.

p/q 1 2 3

1 0.891 0.8975 0.882

2 0.894 0.8972 0.882

3 0.884 0.895 0.848

Bold values represent the results of the proposed algorithm.
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which has been segmented into four segments representing different 
regions of interest in the image.

To show the effectiveness of the algorithm against noise, 
we  have embedded an image with 0.01% of Gaussian noise. 
Figures 4A,B depict the original and noisy images, respectively. 
The noisy image’s segmented sections, produced by the FCM 
algorithm, are displayed in Figures 4C–F. Figures 4G–J displays 
the IFCM result. The results of csFCM are displayed in 
Figures 4K–N, and the suggested csIFCM algorithm produces 
results with more qualitative accuracy and greater noise resilience 
in Figures 4O–R.

The second experimentation involved the analysis of two real 
MRI brain images sourced from references (Internet Brain Atlas, 
2024; Internet Brain Segmentation Repository, 2024). Specifically, the 
experiments were conducted on T-1 weighted axial slices ranging 
from slide numbers 85–115 (Internet Brain Atlas, 2024), considering 
noise. The primary objective was the segmentation of images into 

four distinct segments. It’s noteworthy that these images are not 
provided with the ground truth value.

4.2.2 Real MR brain image
To quantify the results, a comparative analysis was performed by 

introducing 2% Gaussian noise to the original images and 
subsequently comparing the outcomes. This approach was employed 
as the ground truth values of the given data set was not provided. 
Specifically, the algorithm’s performance was scrutinized by examining 
the variation in results when noise was added to the original images, 
thereby checking its effectiveness in handling noisy scenarios.

Table  3 shows the quantitative results produced by the 
implementation on T-1 weighted MRI axial image by FCM, IFCM, 
csFCM, and proposed csIFCM. Figure  5 shows the overall 
segmentation accuracy over all the segments and thus indicates that 
the proposed csIFCM outperforms all the other algorithms and 
validate the effectiveness of the proposed csIFCM over the other 
techniques under comparison.

Figure 6 shows the qualitative result of segmentation generated by 
FCM, IFCM, csFCM, and proposed csIFCM. A deep investigation 
reveals a better visualization of details in the MRI image in 
Figures 6O–R, where the proposed csIFCM is showing more robust 
results and demonstrates its superiority as compared to other 
algorithms. The csIFCM algorithm exhibits robustness in the presence 
of noise, retaining well-defined image edges and preserving a greater 
amount of image details.

Second, we employed actual MRI brain scans from the Internet 
Brain Segmentation repository (Internet Brain Atlas, 2024), which 
also provides manually segmented (ground truth values) data for 
verifying the outcomes of novel segmentation techniques. We have 
segmented real T1-weighted MRI brain images in 2D axial slices 10 to 
20 using FCM, IFCM, csFCM, and the proposed csIFCM algorithms. 
Figure 7 displays the segments obtained for slice 10. Figure 7A shows 

TABLE 2  Quantitative measures of phantom image.

Algorithm Segment Similarity index False positive 
ratio

True positive 
ratio

Overall segmentation 
accuracy

FCM

1 0.8305 0.0008 0.7106

0.906
2 0.9687 0.0008 0.9324

3 0.9596 0.0097 0.9326

4 0.9598 0.0097 0.9329

IFCM

1 0.4574 2.3729 1

0.8972
2 0.9862 0.0131 1

3 0.9862 0.0131 1

4 0.9561 0.0101 0.9268

csFCM

1 1 0 1

0.9187
2 0.8601 0.0007 0.7544

3 0.9723 0.0018 0.9420

4 0.9651 0.0093 0.9423

csIFCM

1 0.9398 0.0015 0.8877

0.9631
2 0.9865 0.0013 0.9736

3 0.9866 0.0013 0.9737

4 0.9843 0.0047 0.9738

Bold values represent the results of the proposed algorithm.

FIGURE 3

Results of overall segmentation accuracy of different algorithms for 
phantom image.
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the original image, which will be  segmented into 4 clusters. 
Figures  7B–E shows the segmentation results obtained by FCM, 
Figures  7F–I showcases the segmentation results of IFCM, 
Figures  7J–M shows the segmentation results of csFCM and 
Figures  7N–Q shows the segmentation results of proposed 
csIFCM. The outcomes clearly confirm the superior performance of 
the proposed algorithm compared to the other algorithms under 
comparison. The csIFCM algorithm exhibits robustness in the 
presence of noise, retaining well-defined image edges and preserving 
a greater amount of image details.

In quantitative terms, we have computed both the true positive 
rate (TPR) and the false positive rate (FPR) (Adhikari et al., 2015; 

Arora and Tushir, 2019). This calculation facilitates the portrayal of a 
satisfactory balance between these two performance metrics

	
TPR TP

P
=

	
(21)

	
FPR FP

P
=

	
(22)

In this particular context, P symbolizes the count of positive 
instances, while N signifies the count of negative instances. When a 

RQPO

NMLK

JIG H

FEDC

A B

FIGURE 4

Visual results of segmentation on synthetic image of phantom. (A) Phantom image. (B) Noisy images. (C–F) Results of FCM. (G–J) Results of IFCM. 
(K–N) Results of csFCM. (O–R) Results of csIFCM.
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prediction yields a positive result and the actual value is likewise 
positive, it falls under the category of true positive. Conversely, when 
a prediction yields a positive result but the actual value is negative, it 
is classified as a false positive. Table 4 shows the average value of the 
results obtained by the different segments for all the algorithms. The 
results indicate that the proposed csIFCM algorithm gives better 
results as compared to the FCM, IFCM, csFCM. The csIFCM gives 
maximum segmentation accuracy.

Figure 8 shows the plot of similarity index achieved from FCM, 
IFCM, csFCM and proposed csIFCM algorithm on image slices (10–20) 
of the T-1 weighted MR brain images. The overall segmentation 
accuracy and similarity index is represented for each slice. These results 
indicate that the proposed csIFCM technique is performing better in 
Figure 8A, with the highest average value of similarity index for each 
slice and in Figure 8B, the value of segmentation accuracy is better in 
each slice as compared to other algorithms and demonstrate its 
superiority over the FCM, IFCM, csFCM.

4.2.2.1 Time complexity analysis
To compute the similarity between each pixel requires O n c d∗ ∗( )

operations, where n is the number of data points, c is the number of 
clusters and d is the dimensionality of the data. To update the membership 
degrees for each data point, this typically requires O n c∗( ) operations. In 
intutiotionistic approach, non-membership is calculated using 
membership matrix in constant time. The overall time complexity of the 
standard IFCM is O n c d I∗ ∗ ∗( )  where I  is the number of iterations 
required for convergence. Incorporating the conditional spatial 
information, includes calculation of spatial information in the time 
complexity of O n2( ).Further, to calculate the weighted spatial 
membership matrix involves constant time. Therefore, the overall time 
complexity of incorporating conditional spatial information in csIFCM 
can be approximated as O n c d I N K∗ ∗ ∗ + ∗( ) where N is the number 
of datapoints in the spatial neighborhood of each point and K is the 
computational cost of processing the conditional spatial information.

4.2.3 Limitation of the conditional spatial 
intuitionistic fuzzy C-means

The limitation of csIFCM is its senstivity to choice of initial 
parameters. The initial parameters are selected randomly which may 
result in the increase of convergence time. The performance of 
csIFCM depends on how the spatial neighborhood is defined and 
selection of the size of neighborhood window along with the pixel 
under consideration which defines spatial relationship criterion. 
Defining a suitable spatial neighborhood enables the accurate capture 
of spatial structure, leading to optimal segmentation results.

Additionally, csIFCM experiences increased computational time 
complexity compared to IFCM due to the incorporation of spatial 
information and the calculation of the weighted membership matrix. 
The computation of spatial relationships or distances between data 
points adds an additional overhead to the clustering process, which can 
be significant, especially for large datasets or complex spatial structures.

TABLE 3  Quantitative measures of T-1 weighted MRI axial image in the presence of noise.

Algorithm Segment Similarity index False positive 
ratio

True positive 
ratio

Overall segmentation 
accuracy

FCM

1 0.9263 0.0045 0.9097

0.9747
2 0.9825 0.0062 0.9919

3 0.9910 0.0078 0.9902

4 0.9902 0.0092 0.9900

IFCM

1 0.9265 0.1389 0.9883

0.9753
2 0.9837 0.0808 0.9488

3 0.9915 0.0643 0.9191

4 0.9907 0.0109 0.9897

csFCM

1 0.9268 0.0829 0.9106

0.9757
2 0.9845 0.1662 0.9320

3 0.9915 0.0682 0.9935

4 0.9907 0.1260 0.9819

csIFCM

1 0.9300 0.0592 0.9206

0.9767
2 0.9880 0.0627 0.9330

3 0.9917 0.0093 0.9927

4 0.9909 0.0108 0.9908

Bold values represent the results of the proposed algorithm.

FIGURE 5

Plot showing overall segmentation accuracy for different algorithms.
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5 Conclusion and future scope

This work introduces a novel algorithm named Conditional 
Spatial Intuitionistic Fuzzy C-means (csIFCM) for the segmentation 
of MRI images. By incoporating both local gray-level and spatial 
information through the introduction of a conditional spatial 

variable, csIFCM addresses the limitations of existing methods, 
particularly in scenarios involving noise and intensity 
inhomogeneity. Our experiments encompass synthetic phantom 
images, as well as real and simulated MRI brain images. We can 
explore kernel metrics that will help to segment non-linear data 
with higher accuracy.

J 
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FIGURE 6

Visual results of real T-1 MR axial slice (10) scan. (A) Real image. (B) Noisy images. (C–F) Segmentation results of FCM. (G–J) Segmentation results of 
IFCM. (K–N) Segmentation results of csFCM. (O–R) Segmentation results of csIFCM.
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FIGURE 7

Visual results of real MRI scan. (A) Real images. (B–E) Segmentation results of FCM. (F–I) Segmentation results of IFCM. (J–M) Segmentation results of 
csFCM. (N–Q) Segmentation results of csIFCM.

TABLE 4  Quantitative measures of T-1 weighted MR axial image of slices 10–20.

Algorithm Similarity index True positive ratio False positive ratio Segmentation accuracy

FCM 0.8866 0.8655 0.120 0.8713

IFCM 0.8883 0.8778 0.114 0.8753

csFCM 0.8977 0.8919 0.093 0.8808

csIFCM 0.9100 0.9002 0.083 0.8975

Bold values represent the results of the proposed algorithm.

A B

FIGURE 8

(A) Similarity Index of slices (10–20) of T-1 weighted MR axial image of FCM, IFCM, csFCM, and csIFCM. (B) Segmentation Accuracy of slices (10–20) of 
T-1 weighted MR axial image of FCM, IFCM, csFCM, and csIFCM.
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comprehensive human gait
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Introduction: Gait analysis, an expanding research area, employs non-invasive

sensors andmachine learning techniques for a range of applications. In this study,

we investigate the impact of cognitive decline conditions on gait performance,

drawing connections between gait deterioration in Parkinson’s Disease (PD) and

healthy individuals dual tasking.

Methods: We employ Explainable Artificial Intelligence (XAI) specifically Layer-

Wise Relevance Propagation (LRP), in conjunction with Convolutional Neural

Networks (CNN) to interpret the intricate patterns in gait dynamics influenced

by cognitive loads.

Results: We achieved classification accuracies of 98% F1 scores for PD dataset

and 95.5% F1 scores for the combined PD dataset. Furthermore, we explore

the significance of cognitive load in healthy gait analysis, resulting in robust

classification accuracies of 90% ± 10% F1 scores for subject cognitive load

verification. Our findings reveal significant alterations in gait parameters under

cognitive decline conditions, highlighting the distinctive patterns associated

with PD-related gait impairment and those induced by multitasking in healthy

subjects. Through advanced XAI techniques (LRP), we decipher the underlying

features contributing to gait changes, providing insights into specific aspects

a�ected by cognitive decline.

Discussion: Our study establishes a novel perspective on gait analysis,

demonstrating the applicability of XAI in elucidating the shared characteristics

of gait disturbances in PD and dual-task scenarios in healthy individuals. The

interpretability o�ered by XAI enhances our ability to discern subtle variations

in gait patterns, contributing to a more nuanced comprehension of the factors

influencing gait dynamics in PD and dual-task conditions, emphasizing the role

of XAI in unraveling the intricacies of gait control.

KEYWORDS

deep convolutional neural networks (CNN), deep learning, ground reaction forces (GRF),

gait, interpretable neural networks, Parkinson’s disease, perturbation

1 Introduction

Gait refers to the distinctive walking pattern unique to each individual (Saleh

and Hamoud, 2021). It involves a cyclic sequence of movements in both lower limbs

(Jing et al., 2019), providing valuable information about individuals’ physical and

physiological attributes, including weight, gender, health, and age (Wang and Zhang, 2020;

Sadeghzadehyadi et al., 2021).

Gait analysis holds immense importance across various domains, such as healthcare,

sport, biometrics, and human–robot interaction. It serves as a rich source of

information, adding to the understanding and assessment of various conditions, including

neurodegenerative disorders like Parkinson’s disease (PD) (Alotaibi and Mahmood, 2015;

Yuqi et al., 2019; Chaabane et al., 2023).

Previous studies (Castro et al., 2017; Huang et al., 2021; Wang and Yan, 2021; Erdaş

et al., 2022; Vidya and Sasikumar, 2022) have explored gait analysis in the context of PD,
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aiming to diagnose the condition and track disease progression

(Yuan and Zhang, 2018; Zhang S. et al., 2019; Mogan et al.,

2023). However, these analyses often rely on clinical evaluation and

subjective surveys, resulting in semi-subjective assessments (Wu

et al., 2016; Arshad et al., 2021; Khan et al., 2023). Additionally,

gait alterations under cognitive load known as “dual tasks” have

been investigated, revealing variations influenced by factors such

as environmental conditions and emotional states (Delgado-Escaño

et al., 2018; Alharthi et al., 2019; Castro et al., 2020; Slijepcvic et al.,

2021).

The existing gait analysis in literature faces limitations,

particularly in accurately representing the non-linearity and non-

stationary of gait cycle (Whittle, 2023). Traditional methods, such

as visual observation and harmonic analysis, may fall short of

capturing the intricate dynamics of gait (Goodfellow et al., 2016).

To address these limitations, this study incorporates explainable

artificial intelligence (XAI) techniques. XAI, including layerwise

relevance propagation (LRP), enhances the transparency of deep

learning models, adding to the interpretation of predictions. We

selected LRP over other XAI methods, such as SHAP (SHapley

Additive ExPlanations) (Ribeiro et al., 2016), Gradient-weighted

Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017),

and Local Interpretable Model-agnostic Explanations (LIME)

(Lundberg and Lee, 2017). As noted by Adebayo et al. (2018), not

all proposed XAI methods are robust, and the validity of their

explanations should be critically assessed.

In this paper, we contribute a comprehensive approach to

gait analysis by leveraging sensor fusion, deep convolutional

neural networks (CNN), and XAI techniques, specifically LRP.

The utilization of CNNs facilitates automatic feature extraction

from raw sensor data, while the incorporation of LRP enhances

interpretability. This novel combination adds significant value

to the fields by providing insights that inform not only gait

analysis but also sensor design and data processing for improved

healthcare applications.

2 Background

2.1 Related studies

Gait, the intricate walking pattern unique to each individual,

has captivated humans (Wang and Zhang, 2020). Figuratively,

the gait cycle, as depicted in Figure 1, encapsulates the rhythmic

sequence of movement in the lower limb during walking. Early

civilizations recognized the distinctiveness of gait as a personal

identifier, and over time, methodologies for studying gait have

evolved from rudimentary visual observation to sophisticated

techniques (Yuqi et al., 2019).

In ancient times, the recognition of individuals based on

their gait laid the foundation of contemporary studies (Saleh and

Hamoud, 2021). Recent advancements, such as the integration

of CNN, have enabled person recognition through intricate gait

models (Jing et al., 2019). These efforts underscore the enduring

importance of gait analysis, with applications ranging from

healthcare to biometrics (Alotaibi and Mahmood, 2015).

The landscape of gait analysis has witnessed a notable surge in

recent literature, with cutting-edge technologies at the forefront.

FIGURE 1

Important gait events and intervals in a normal gait cycle. In the

center, the stance phase represents 60% of the gait cycle and the

swing phase represents 40% of the gait cycle.

For instance, a fusion network incorporating long short-term

memory (LSTM) and CNNs demonstrated heightened accuracy in

abnormal gait recognition (Sadeghzadehyadi et al., 2021). Another

study applied a CNN-LSTM network to decipher spatiotemporal

patterns of gait anomalies (Wang and Zhang, 2020), highlighting a

continuous evolution of gait analysis methodologies.

Gait biometrics has emerged as a focal point, with studies

exploring joint CNN-based methods (Chaabane et al., 2023).

Moreover, predicting the severity of neurodegenerative diseases

using CNNs showcased promising outcomes (Yuqi et al., 2019).

Lightweight attention-based CNN models efficiently recognized

gait patterns using wearable sensors, pushing the boundaries

of gait analysis capabilities (Alotaibi and Mahmood, 2015).

These contemporary studies collectively underscore the growing

importance of leveraging advanced technologies for accurate and

nuanced gait analysis.

Recent gait recognition literature has focused on solving view-

and clothing-invariant problems using advanced machine learning

methods like generative adversarial networks (GANs). Zhang P.

et al. (2019) designed a view transformation GAN (VT-GAN)

with a generator, discriminator, and similarity preserver, achieving

competitive results on the CASIA-B dataset. Babaee et al. (2019)

used GANs to reconstruct complete gait energy images (GEIs) from

incomplete ones, showing effectiveness on the OU-ISIR dataset.

Chen et al. (2021) proposed Multi-View Gait GAN (MvGGAN) for

cross-view gait recognition, demonstrating improved performance
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on CASIA-B and OUMVLP datasets. Recent study on wearable

and floor sensors has focused on medical applications, such as

analyzing the impact of muscle fatigue on gait (Balakrishnan et al.,

2020), health monitoring (Muheidat and Tawalbeh, 2020), and age-

related differences (Costilla-Reyes et al., 2021). Turner and Hayes

(2019) proposed using an LSTM network to classify pressure sensor

signals from shoes, aiming to diagnose gait abnormalities. Tran

et al. (2021) developed multi-model LSTM and CNN to classify

IMU spatiotemporal signals, outperforming previous results on

the whuGAIT (Zou et al., 2020) and OU-ISIR (Ngo et al.,

2014) datasets.

In the field of gait analysis, the integration of explainable

artificial intelligence (XAI) represents a pioneering approach. XAI

techniques, exemplified by methods such as layerwise relevance

propagation (LRP), address the opacity challenge inherent in deep

learning models (Erdaş et al., 2022). LRP has shown success in

image classification (Samek et al., 2017a; Jolly et al., 2018) and gait-

based subject identification (Horst et al., 2019) when combined

with CNNs. Our study stands as a beacon of innovation, presenting

a comprehensive approach that seamlessly integrates sensor fusion,

CNN, and XAI techniques for gait analysis (Khan et al., 2023).

While existing studies have explored gait analysis through

the lens of deep learning models, our distinctive contribution

lies in the transparent interpretation facilitated by XAI. Building

on recent advancements, we propose using LRP to enhance the

interpretability of CNN predictions (Castro et al., 2020). This not

only adds intrinsic value to gait analysis but also provides profound

insights that extend beyond, influencing advancements in sensor

design and data processing for refined healthcare applications

(Alharthi et al., 2019). Our study represents a departure from

conventional convolutional gait analysis approaches, introducing a

paradigm shift in the synergy between gait analysis, deep learning,

and explainability.

2.2 Gait parameters

Gait refers to the coordinated sequence of muscle contractions

that result in walking. The brain generates commands that travel

through the spinal cord to activate the lower neural center, leading

to muscle contractions aided by feedback from joints and muscles.

This allows for coordinated movements of the trunk and lower

limbs, resulting in periodic cycles for each foot. These cycles consist

of two phases: the stance phase (when the foot is in contact with

the ground) and the swing phase (when the foot is not in contact

with the ground). The stance phase is further divided into four

intervals (A, B, C, and D), while the swing phase is divided into

three intervals (E, F, and G) (Whittle, 2023) as shown in Table 1

and Figure 1.

3 Materials and methods

The categorization of gait ground reaction force (GRF)

signals poses a formidable challenge, necessitating the application

of sophisticated machine learning methodologies. Illustrated in

Figure 2, this study delineates the framework for data acquisition

and analysis. Gait data presented in Sections 3.6.1 and 3.6.2 serve

as the training set for a neural network tasked with classifying

these signals, and the resulting output is iteratively refined through

backpropagation to pinpoint the key foot profiles crucial for

classification. Detailed in subsequent sections are the experiments

conducted utilizing various deep convolutional neural network

(CNN) models to process and categorize spatiotemporal 3D

matrices derived from raw sensor signals.

3.1 Convolutional neural networks

CNNs excel in classification tasks by abstracting high-level

features from extensive datasets through convolutional operations.

Mathematical representation in one-dimensional convolution

operations is expressed as C(i), with i denoting the index of an

element in the new feature map (Goodfellow et al., 2016, ch. 9):

C (i) = (ω ◦ x) [i] =
∑

d

x
(

i− d
)

ω(d) (1)

Gait is captured as a two-dimensional signal as spatial and

temporal; therefore, the convolution operation in Equation 1 can be

extended to two dimensions, such that the spatiotemporal input is a

large set of data points, and the kernel is a set of data smaller in size

than the input. Then the convolution operation slides the kernel

over the input computes elementwise multiplication and adds the

values in a smaller future map. With a 2-D input x and a 2-D kernel

ω with (i, j), (d, k) are iterators, the mathematical representation of

convolution in two dimensions can expressed as C(i, j) with (i, j) is

the index of an element in the new feature map (Goodfellow et al.,

2016):

C(i, j) = (ω ◦ x) [i, j] =
∑

d

∑

k

x
(

i− d, j− k
)

ω(d, k) (2)

In this study, we implement three CNN architectures for

analyzing gait deterioration. The first model (Figure 3A) is a

CNN designed for PD severity classification, comprising four

convolutional layers, each followed by average pooling and two

fully connected layers, totaling 10 stacked layers. The second CNN

architecture (Figure 3B), tailored for processing GRF signals, draws

inspiration from inception neural network architectures. It features

two stages with parallel streams fused via concatenation layers,

resulting in 18 stacked layers. The third CNN (Figure 3C) is a

quadruplet network, amalgamating elements from Siamese and

triplet networks. It includes convolutional layers, max-pooling, and

average pooling, with separate activations, weights, and biases for

each stream. This architecture aims to capture spatial and temporal

gait signals simultaneously, enhancing generalization capabilities

on unseen data.

3.2 Backpropagation

It is short for “backward propagation of errors”; it is an

algorithm based on gradient descent. As explained by Andrew

Ng (Ma et al., 2024), the method moves in reverse order from

the output layer to the input layer while calculating the gradient
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TABLE 1 Gait intervals.

Sequence Gait interval Description

A Heel strike Initial contact uses this term to describe the contact of the extended limb’s heel with the walking

surface

B Loading response Foot flat is a single-support interval that follows the initial double-support interval. During this

phase, the body weight is transferred onto the supporting limb. The trunk is at its lowest position, the

knee is flexed, and the ankle undergoes plantar flexion

C Mid-stance Single-support interval that occurs between opposite toe-off and heel-off. It commences from the

elevation of the opposite limb until both ankles align in the coronal plane

D Terminal stance Heel-off begins when the supporting heel rises from the ground in preparation for the opposite

swing. During this phase, the trunk is sinking from its highest point, and the knee has an extant peak

near the time of heel rise, while the ankle undergoes dorsiflexion after heel rise. The swing phase

consists of three intervals: pre-swing, initial swing and mid-swing, and terminal swing

E Pre-swing The second double-limb support interval. During this phase, opposite initial contact occurs, and the

hip begins to flex, the knee flexes, and the ankle undergoes plantar flexion. The toe is in the last

contact before the swing phase, completing the push-off initiated in interval D

F Initial swing Mid-swing interval commences with the toe-off into single-support and starting to swing. The body

weight shifts to the opposite forefoot, and the knee joint undergoes maximum flexion. The hip flexes,

and the limb advances in preparation for a stride

G Terminal swing The last interval of the gait cycle and the end of the swing phase. The interval starts at maximum knee

flexion and ends with maximum extension of the swinging limb forward. The hip continues to flex

while the knee extends with regard to gravity, and the ankle continues dorsiflexion to end neutral,

ready for the next heel strike

FIGURE 2

Overview of data acquisition and analysis of CNN. Gait data as input to CNN for classification; interpreting the CNN model by LRP, a deeper red color

represents a higher contribution to the classification process. Relevance linked to the foot profile in the input single.

of the error function based on the network weights, the aim is

to minimize J (θ ) using an optimal set of parameters in θ . It

is based on performing the partial derivative to minimize the

cost function. The partial derivative is expressed as ∂

∂θ li,j
J (θ).

The output layer calculates the error of the network layers L

with: D
(L)
= α(l) − y, such that the error of node j in layer

l is denoted as D
(l)
j and the activation of node j of layer l is

denoted as α
(l)
j and y is the output of the output layer, then the

backpropagation can be expressed for neural networks as (Ma et al.,

2024):

D
(L)
= ((θ(l))

(T)
D(l+1)) ◦ α(l)

◦ (1− α(l)) (3)
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FIGURE 3

Proposed CNN architectures: (A) single CNN, (B) parallel CNN, (C) quadruplets CNN. The boxes: convolution layers and fully connected layers;

pooling layers; concatenation layers and flattening layers; dropout layers.

Here, the ð* values of the output layer L are calculated

by multiplying the ð* values in the next layer (in the reverse

direction) with the θ matrix of layer l; hence, T denotes matrix.

We then perform elementwise multiply (◦) with the g′, which is

the derivative of the activation function, which is evaluated with

the input values given by z(l), where g
′

(

z(l)
)

= α(l) ◦ (1 −

α(l )).

The partial derivatives needed for backpropagation are

performed by multiplying the activation values and the error values

for each training example t and m is the number of training data as

Ma et al. (2024):

∂

∂θ li,j

J (θ) =
1

m

⌊

m
∑

t=1

α
(t)(l)
j D

(t)(l+1)
j

⌋

. (4)

3.3 Evaluation measure

The confusion matrix is a common accuracy measure in gait

analysis (Ruuska et al., 2018). It is a table showing correct and

incorrect predictions for each class, including true positive (TP),

true negative (TN), false positive (FP), and false negative (F).

In this paper, we use the confusion matrix because a number of

TP, TN, FP, and FN samples are values of interest to understand the

confusion in gait classes for further analysis using LRP.

From this confusion matrix table, performance measures are

obtained, such as accuracy, recall, precision, and F1 using the

following equations.

• Accuracy: an indicator of the ratio between the correctly

predicted data to the total number of samples in the dataset,

defined as follows: TP+TN
TP+TN+FP+ FN .
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• Recall: the proportion of positive classes identified correctly,

defined as follows: TP
TP+ FN .

• Precision: the fraction of positive cases correctly identified

over all the positive cases predicted, defined as TP
TP+ FP .

• F1-Score: the harmonic mean of Precision and Recall, defined

as follows: 2
∗Precision∗Recall
Precision+ Recall

.

3.4 Layerwise relevance propagation

Layerwise relevance propagation (LRP) (Bach et al., 2015;

Montavon et al., 2017, 2018) is a backward propagation method

used to identify the most influential parts of the input vector in

the model prediction of an artificial neural network (ANN). In

this thesis, we measure the contribution of individual components

of the input xi (e.g., sensor signals at specific time frames) to

the prediction fc(x) of a gait class c made by the CNN classifier

f . The prediction is redistributed backward through the network

via backpropagation until reaching the input layer. LRP generates

a “heat map” over the original signal, highlighting sections with

the highest contributions to the model’s prediction, such as areas

with the greatest variability among classes. It is important to note

that a neural network comprises multiple layers of neurons, where

neurons are activated as described in Montavon et al. (2018).

ak=σ (
∑

j

ajωjk + bk) (5)

Here, ak is the neuron activation and aj is the activation of the

neuron in the previous layer in a forward direction;ωjk denotes the

weight received in the forward direction by neuron k from neuron

j in the previous layer, and bk is the bias. The sum is computed

over all the jth neurons that are connected to the kth neuron.

σ is a non-linear monotonically increasing activation function.

These activations, weights, and biases are learned by CNN during

supervisory training. During training, the output fc (x) is evaluated

in a forward pass and the parameters (ωjk + bk) are updated by

back-propagating using model error. For the latter, we base our

computations on categorical cross-entropy (Zhang and Sabuncu,

2018).

The LRP approach decomposes the CNN output for a given

prediction function of gait class c as fc for input xi and generates

a “relevance score” R for the ith neuron received from Rj for the

jth neuron in the previous layer, which is received from Rk, for

the kth neuron in the lower layer, where the relevance conservation

principle is satisfied as:

∑

i

Ri←−j =
∑

j

Rj←−k =
∑

k

Rk = fc (x) (6)

The LRP starts at the CNN output layer after removing the

Softmax layer. In this process, a gait class c is selected as an input

to LRP, and the other classes are eliminated. The backpropagation

for unspooling for the pooling layer is computed by redirecting

the signal to the neuron for which the activation was computed

in the forward pass. As a generalization, consider a single output

neuron i in one of themodel layers, which receives a relevance score

Rj from a lower-layer neuron j, or the output of the model (class

c). The scores are redistributed between the connected neurons

throughout the network layers, based on the contribution of the

input signals xi using the activation function (computed in the

forward pass and updated by back-propagating during training)

of neuron j as shown in Figure 2. The latter will hold a certain

relevance score based on its activation function and pass its value

to consecutive neurons in the reverse direction. Finally, the method

outputs relevance scores for each sensor signal at a specific time

frame. These scores represent a heat map, where the high relevance

scores at specific time frames highlight the areas that contributed

the most to the model classifications.

3.5 Perturbation analysis

Human gait, characterized by its inherent variability among

individuals and even within a single individual, poses a significant

challenge for developing reliable and robust models capable of

accommodating such diversity in input data. Within the realm of

gait analysis, layerwise relevance propagation (LRP) emerges as a

promising methodology for interpreting the significance of input

data points. However, the effectiveness of LRP in the context of

gait analysis hinges on its resilience to noise and fluctuations in the

input data stream.

To address this concern, a systematic exploration of the

impact of random perturbation noise on LRP relevance scores is

undertaken. This analysis serves a dual purpose: first, to inform the

selection of themost appropriate LRPmethod, and second, to guide

the design of a deep convolutional neural network (CNN) model

capable of withstanding the inherent variability of gait patterns. The

intricacies of this perturbation analysis methodology are elucidated

in subsequent sections.

The iterative procedure proposed by Samek et al. (2017b),

commonly referred to as the “greedy” approach, serves as the

cornerstone for selecting the optimal LRP method and evaluating

the relevance scores generated for gait classification. This iterative

process involves progressively removing information from the

spatiotemporal input signal, prioritizing regions with the highest

relevance scores for perturbation using a “most relevant first”

(MoRF) approach (Samek et al., 2017b). At each iteration,

the model’s performance is rigorously assessed by re-predicting

test data with the accumulated perturbations. The selection

of the preferred LRP method is informed by observing the

most significant decline in accuracy during the initial iterations,

indicating the criticality of the perturbed regions for accurate

classification performance. Subsequent iterations demonstrate a

slower decline in accuracy as less crucial regions are perturbed,

thus providing insight into the relative importance of different

input features.

Moreover, the evaluation of the significance of CNN model

architecture entails a comprehensive analysis of the impact

of perturbations on model performance. This process involves

systematically removing the highest relevance scores obtained from

the selected LRP method and evaluating the model’s performance

by re-predicting the test data for each perturbed model. Models

exhibiting substantial performance deterioration after only a few

perturbation steps are deemed most amenable to leveraging LRP.
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This decline in performance signifies the critical role of the

removed regions in facilitating accurate classification, thereby

highlighting meaningful relationships between input patterns and

learned classes. Conversely, regions with minimal impact on

classification performance upon removal suggest lesser relevance

in discerning such relationships, thus informing subsequent model

refinement efforts.

3.6 Gait data

In this paper, we investigate gait deterioration due to

Parkinson’s disease (PD) and under dual-task conditions (walking

while performing cognitive tasks as detailed in Section 3.6.2).

Specifically, we compare the effects of dual-tasking and PD on gait

events. The data for this study are detailed in the following section.

3.6.1 Parkinson’s disease data
In this study, we utilized the open access benchmark available

on PhysioNet.org (Goldberger et al., 2003) to analyze ground

reaction force (GRF) data in Parkinson’s disease (PD) patients.

The dataset included 93 PD patients (mean age: 66.3 years; 63%

men) with varying degrees of PD progression based on Hoehn and

Yahr Scale staging criteria (Frenkel-Toledo et al., 2005; Yogev et al.,

2005; Hausdorff et al., 2007), as outlined in Table 2, and described

in detail in Table 3. Additionally, the dataset also included GRF

measurements from 73 healthy controls (mean age: 66.3 years;

55% men). During the data collection process, participants were

instructed to walk for ∼2min while wearing eight sensors placed

underneath each foot to measure the force [N] as a function of

time. The output of the 16 sensors was recorded at a frequency

of 100 frames per second. Moreover, the sum of the eight sensors

of each foot was added to each subject sample along with the

timestamp, resulting in a total of 19 columns. The dataset was

collected by three research groups, namely the Ga group (Yogev

et al., 2005), the Ju group (Hausdorff et al., 2007), and the Si group

(Frenkel-Toledo et al., 2005). The sub-parts of the dataset were

named after these research groups. The Ju and Si groups recorded

usual healthy walking at a self-selected speed, while the Ga group

included additional samples for each subject, where they performed

a dual task while walking (Yogev et al., 2005). Overall, this dataset

provides valuable insights into the gait patterns of PD patients

and healthy individuals, which could be used to develop effective

interventions for gait-related impairments in PD.

Each sample recorded in the dataset contains 19 columns of

data with varying column lengths, as for some subjects’ gait was

recorded for a longer time (12,119 frames) than for others (<1,000

frames). In order to make the input data length consistent, the

datasets were split into equal-size parts of 500 frames such that

single long recordings are divided into several chunks of 500

frames. The timestamp columns were deleted as it doesn’t report

information about gait. The final sample size is 18 columns and

500 rows or frames as shown in Figure 4A. This choice is justified

as the gait cycle is ∼1 s, and the sample captures heel strike and

toe-off for both feet over five gait cycles. The input dataset is a

tensor with dimensions m × 500 × 18 where m = 2,698 for the

TABLE 2 Number of subjects with the severity rating.

Severity (0)
healthy

Severity
(2)

Severity
(2.5)

Severity
(3)

Group

18 15 15 6 Ga

(Balakrishnan

et al., 2020)

26 12 12 4 Ju

(Muheidat

and

Tawalbeh,

2020)

29 29 29 0 Si (Costilla-

Reyes et al.,

2021)

TABLE 3 Discerption of datasets subject.

Subjects Number Male Female Group

PD patients 29 20 9 Ga

(Balakrishnan

et al., 2020)

Healthy

subjects

18 10 8 Ga

(Balakrishnan

et al., 2020)

PD patients 29 16 13 Ju

(Muheidat

and

Tawalbeh,

2020)

Healthy

subjects

26 12 14 Ju

(Muheidat

and

Tawalbeh,

2020)

PD patients 35 22 13 Si(Costilla-

Reyes et al.,

2021)

Healthy

subjects

29 18 18 Si(Costilla-

Reyes et al.,

2021)

Ga group (Yogev et al., 2005), 2,198 for the Ju group (Hausdorff

et al., 2007), and 1,509 Si group (Frenkel-Toledo et al., 2005). Data

standardization is performed as a pre-processing step to reduce

the redundancy and dependency among the data, such that the

estimated activations, weights, and biases will update similarly,

rather than at different rates, during the training process. The

standardization involves rescaling the distribution of values with

mean at zero and rescaling the standard deviation to unity.

x̂n,s =
xn,s − µ(xn,s)

ϑ(xn,s)
(7)

Here, x̂n,s is PD data rescaled such that µ is the mean values

and ϑ is the standard deviation. Then, the dataset is randomly split

into training 60%, hold-out validation 20%, and testing 20% with a

random state parameter with a different seed.
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FIGURE 4

Example gait data. (A) PD Gait was recorded at 100 frames per second, with a sample length of 500 timeframes. The signals represent pressure

sensor signals under each foot (di�erent colors for each of the eight sensors). (B) Cognitive Load Gait, recorded at 20 frames per second, with a

sample length of 100 timeframes. The signals represent POF sensors transmitted light intensity is a�ected by surface bending due to pressure under

each foot (di�erent colors for each of the 116 POF sensors).

3.6.2 Cognitive load data
The iMagiMat footstep imaging system is an innovative

floor sensor head that utilizes photonic guided-path tomography

technology (Ozanyan et al., 2005; Cantoral et al., 2011; Cantoral-

Ceballos et al., 2015; Ozanyan, 2015). The system can capture

temporal samples from strategically placed distributed POF sensors

on top of a deformable underlay of a commercial retail floor

carpet in an unobtrusive manner. Each sensor is made up of

low-cost POF (step-index PMMA core with fluorinated polymer

cladding and polyethylene jacket, total diameter 1mm, NA =

0.46) terminated with an LED (Multicomp OVL-3328 625 nm) at

one end and a photodiode (Vishay TEFD4300) at the other. The

sensors are designed to allow collaborative sensor fusion and deliver

spatiotemporal sampling that is adequate for discerning gait events.

The iMagiMat system covers a 1m× 2m area managed by 116

POF sensors arranged in three parallel plies, sandwiched between

the carpet top pile and the carpet underlay. The system includes

a lengthwise ply with 22 POF sensors at 0◦ angle to the walking

direction and two independent plies, each consisting of 47 POF

sensors, arranged diagonally at 60 and −60◦, respectively (see

Cantoral-Ceballos et al., 2015, for the iMAGiMAT system). The

system is managed by electronics contained in a closed hard-shell

periphery at carpet surface level and is organized into eight-channel

modules, including LED Driver boards and input trans-impedance

amplifier boards to receive the data and send it to a CPLD (complex

programmable logic device) to reformat the data for processing by

a Raspberry pi single-board computer for export via Ethernet/Wi-

Fi. The operational principle of the system is based on recording

the deformation caused by the variations of ground reaction force

(GRF). As bending affects the POF sensors, transmitted light

intensity is affected by surface bending. This captures the specifics

of foot contact and generates robust data without constraints of

speed or positioning anywhere on the active surface.

For this experiment, 21 physically active subjects aged 20–40

years, 17 men and four women, without gait pathology or cognitive

impairment, participated. The study was carried out under the

University of Manchester Research Ethics Committee (MUREC)

with ethical approval number 2018-4881-6782. All participants

were informed about the data recording protocol according to the

ethics board’s general guidelines, and written consent was obtained

from each subject prior to the experiments. Each participant was

asked to walk normally or while performing cognitively demanding

tasks along the 2m length direction of the iMagiMat sensor head.

The captured gait data was unaffected by start and stop, as it

was padded on both ends with several unrecorded gait cycles

before the first footfall on the sensor. With a capture rate of 20

timeframes/s (each timeframe comprising the readings of all 116

sensors), experiments yielded 5 s long adjacent time sequences, each

containing 100 frames. The recorded gait spatiotemporal signals

were able to capture∼4–5 uninterrupted footsteps at each pass.

A dual-task gait test detects mild cognitive impairment (Wang

et al., 2023); therefore, five manners of walking were defined as

normal gait plus four different dual tasks, and experiments were

recorded for each subject, with 10 gait trials for each manner of

walking in a single assessment session. Thus, the total number

of samples is 10 × 5 = 50 per-subject. The five manners

of walking are defined in Table 4. A set of measured data as

xn,s = [xn,1& . . .&xn,116] ∈ R
n×116 is harvested from the

iMagiMat system, where n is the number of the data block (100

frames) and s enumerates the POF sensors, as shown in Figure 4B.

A total number of 1, 050 samples are recorded for 21 subjects

and placed in a 3D matrix of dimensions 1, 050 × 100 ×

116. The recorded amplitude of data varies due to the weight

of each subject; therefore, data standardization is implemented

as a pre-processing step, to ensure that the data are internally

consistent, such that the estimated activations, weights, and biases

update similarly, rather than at different rates, during the training

process and testing stage. The standardization involves rescaling

the distribution of values with a zero mean unity standard

deviation, using Equation 7, where x̂n,s is gait data rescaled so

that µ is the mean and ϑ is the standard deviation. Then, the

dataset is randomly split into training 60%, hold-out validation

20%, and testing 20% with a random state parameter with a

different seed.

4 Experiment and results

All algorithms for LRP computation are implemented

in Python 3.7.3 programming language using
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TABLE 4 Cognitive load experiment data.

Manner of walking Description

M1 Normal Gait: walking at a normal

self-selected speed

M2 Gait while listening to a story: audio input

through headphones, followed by answering

questions after gait recording is completed

M3 Gait with serial 7 subtractions: normal

walking speed attempted while

simultaneously performing serial 7

subtractions (counting backward in sevens

from a given random 3-digit number)

M4 Gait while texting: normal walking speed

attempted while simultaneously typing text

on a mobile device keyboard

M5 Gait while talking walking at a normal

self-selected speed while talking or answering

questions

Keras 2.2.4, TensorFlow 1.14.0, and iNNvestigate GitHub repository

(Alber et al., 2018). The codes are executed on a desktop

with Intel Core i7 6700 CPU @3.4 GHz. The deep CNN

model is applied to the datasets to test the validity of the

algorithms for identifying gait signatures. The implementation

and the perturbation analysis are detailed in the following

section. We compare the CNN predictions to manually

labeled ground truth in several experiments, including PD

severity staging, individuals’ identity, and the effects of

cognitive load on normal gait. The models’ classification

performance is evaluated using confusion matrices. The

performance of the LRP methods is examined in detail in the

discussion subsection.

4.1 Classification experiments

We introduce a variety of algorithms and architectures,

including a CNN model, LSTM, Stochastic Gradient Descent

(SGD), K-Nearest Neighbors (KNN), and Gaussian Process

Classifier (GPC). The SGD updates model parameters iteratively

using a single or a few randomly selected data points to compute

the gradient, optimizing the objective function efficiently for large

datasets (Zhang, 2004). The KNN algorithm employs Euclidean

distance techniques to determine the distance between data samples

(Altman, 1992). The GPC leverages Gaussian processes to define a

distribution over functions, making predictions by averaging over

all possible functions, thus providing probabilistic classification

outputs and well-calibrated uncertainties (Xiao et al., 2019).

Through experimentation detailed in the following sections, we

utilize CNN and LSTM methods as automatic feature extractors

and classifiers. The CNN models shown in Figure 3 map the

gait spatiotemporal signal x̂n,s to an output label y by learning

an approximation function y = f
(

x̂n,s
)

. The networks

consist of an input layer, convolution layers (see Equation 2),

pooling layers, fully connected layers, batch normalization layers,

and an output layer with a softmax classifier. The set of

stacked layers in Figure 3 utilizes Conv2D kernels (filter size ×

TABLE 5 PD data models F1-score for each dataset and F1-score with

datasets combined.

CNN
model

Ga Ju Si GaUJuUSi

Single 98% 98% 98% 96%

Parallel 96% 97% 96% 96%

Quadruplet 97% 97% 98% 95%

LSTM 91% 93% 80% 94%

SGD 88% 84% 80% 83%

KNN 81% 90% 78% 79%

GPC 82% 85% 89% 81%

The best performance is in bold.

number of feature maps × number of filters), MaxPooling and

AveragePooling layers.

To improve the model performance, a regularization method

is utilized as follows: (1) Batch normalization [to normalize the

activations of the previous layer at each batch, by maintaining the

mean activation close to 0 and the activation standard deviation

close to 1 (Ioffe and Szegedy, 2015)]. (2) The Batch normalization

followed by dropout (Srivastava et al., 2014), after the last pooling

layers were flattened, by transforming a matrix to one single-

column vector. An Adam (adaptive moment estimation) (Kingma

and Ba, 2015) is utilized to train the model. The used optimizer

parameters are α = 0.002, β1 = 0.9, β 2 = 0.999, ε =

1e − 08. Here, α is the learning rate or the fraction of weights

updated where larger values (e.g., 0.3) result in faster initial

learning before the rate is updated. Smaller values (e.g., 1.0E-

5) slow learning right down during training; β 1 and β 2 are

the exponential decay rates for the first- and second-moment

estimates, respectively; ε is a small number to avoid division by

zero. The loss is computed using categorical cross-entropy in every

iteration to minimize the network error (Zhang and Sabuncu,

2018). The convolutional layers weight parameters are initiated

with a Glorot uniform (Glorot and Bengio, 2010) with zero bias.

The model is trained and validated (for several experiments)

using a batch size of 100 samples for each iteration; 200 epochs

are found optimal to train the model based on backpropagation

Equations 3 and 4. The training and validation sizes are set to be

70 and 10%, respectively, where 20% is reserved for testing the

model accuracy.

4.1.1 Experiment (1) on PD severity staging
In this experiment, CNNS, LSTM, SGD, KNN, and GPC

models are trained and tested on the PD dataset to classify

the severity of PD into five stages: normal (CO), mild (2),

moderate (2.5), and severe (3). Table 5 presents the models’

F1-score for each dataset and the F1-score with datasets

combined. Figure 5 presents the confusion matrix for the CNNs

and LSTM with datasets combined. The best performance is

achieved by the CNN single and parallel with F1-score 96%

for the data set combined and for each data, where the

LSTM performance was 79% for PD stage 3. In the statistical
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FIGURE 5

The predictions of models on the 1,281 sample shown as confusion matrices: single CNN, parallel CNN, quadruplet CNN, and LSTM.

analysis, the performance of SGD, KNN, and GPC models was

below 90%.

4.1.2 Experiment (2) on cognitive load impact on
gait

The aim of this experiment is to show that in healthy subjects

the influence of cognitive load on gait varies from subject to subject

and the normal gait can be predicted with higher true positive rates

than predictions under cognitive load. Five types of gait signatures,

normal and four cognitively demanding task patterns, are learned

for 21 subjects. The performance observed for the five classes is

shown in Figure 6, as the median confusionmatrix based on several

runs with the CNNs in Figure 3 resulted in a F1-score of 50%, mean

performance, and standard error of 48.25 ± 1.03%. The results

show that normal gait is predicted by a true positive incidence of

92% ± 1.7%, while there is notable confusion between the dual

tasks performed by the 21 subjects. The different random state

parameters return the same result, where the normal gait true

positive prediction is higher than 90% and substantial confusion

between the dual-task cases.

4.1.3 Experiment (3) cognitive load impact on gait
for each subject

In this experiment, gait patterns are investigated within each

subject, to show that each subject gait under cognitive load

can be learned and predicted. This is achieved by training,

validating, and testing the CNNs in Figure 3 to classify each

subject gait pattern using the normal gait and cognitive load.

Each subject data are split using a random state to cover all

five classes for testing with m = 50 samples. The model

evaluation using the F1-score is detailed for each subject in

Table 6. Gait data are predicted with more than 85% F1-score

for 16 subjects, and for six subjects, F1-scores are between 65

and 77%.

4.1.4 Experiment (4) cognitive load impact on gait
for each subject

To study patterns for each of the four dual tasks (M2 − M5)

representing variants of cognitive load, we organize the data into

four groups so that binary classification performance to distinguish

between gait under normal (class 0) and cognitive load (one of
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the classes 1, 2, 3, or 4, depending on the particular data

group) conditions can be studied separately for each dual task. The

CNNs in Figure 3 are trained 16 times, implementing four runs

with each of the four data groups. The F1-scores for each run

are shown in Table 7. The first run in each data group is based

on training and validating the CNNs on 20 subjects and testing

the model on 1 subject, to see whether we can predict the gait

of one person from 20 people. In the second run, the numbers

are 19 and 2, respectively; in the third—17 and 4, respectively.

The last run is based on splitting the data into 70% for training,

10% for validation, and 20% for testing, using m = 420 samples

with a random state of 200 seed parameters (as the accuracy does

not change with the random state seed). As shown in Table 7,

the highest classification performance is achieved in the first runs

(except for the group containing class 3). This is used essentially

in the implementation of LRP to analyze the gait classes for that

subject in the first run as reported in further comparison with

statistical classifiers.

FIGURE 6

Confusion matrix for classification under cognitive load: 21 subjects,

five classes. Experiment (4) Cognitive Load Impact on Gait Variations

(Binary Classification).

4.2 LRP analysis and interpretation for
explainability

In the following sections, we present the LRP analysis (see

Equations 5 and 6) and interpretation for the best-performing

model using perturbation presented in Section 3.5. Then, we

present the explainability results of the investigated classification

models for PD and cognitive load.

4.2.1 Model selection and XAI selection
4.2.1.1 Model selection

In this study, we conducted an in-depth analysis of the

performance of various CNN models for the task of gait

classification. We employed explainable AI (XAI) techniques to

select the most suitable CNNmodel for this application. To identify

the CNN model that best captures the relevant gait features, we

utilized a perturbation-based approach presented in Section 3.5.

Specifically, we systematically perturbed each of the three candidate

CNN models by gradually replacing 7× 7 regions within the input

gait sequence with Gaussian noise and observed the impact on

the classification accuracy over 100 steps. Rather than comparing

the models to a baseline, we focused on the rate of decline in

accuracy (with the means removed to isolate the rate of change) as a

metric to identify the model with the steepest drop in performance.

This approach is based on the premise that models that rely on

more compact regions within the gait cycle sequence will exhibit

a faster decline in accuracy when those regions are perturbed.

The results, as depicted in Figure 7, show that the parallel CNN

model (see Figure 7) experiences the most pronounced decrease

in accuracy with perturbation, indicating that it captures the gait

events that are most vulnerable to deterioration in individuals

with PD. As depicted in Figure 7, after step 13, the quadruplet

CNN begins capturing less relevant features, similar to the decline

observed in the parallel CNN. This finding suggests that the

parallel CNN model is the preferred candidate for accurate feature

identification of the gait cycle events most sensitive to the effects

of either PD or cognitive load. Figure 8 shows the assessment of the

validity of the LRP heatmaps for subjects’ identification of cognitive

load.

Here, we apply the removal of the region based on both

LRP sequential preset a flat (LRP-SPF) MoRF and random region

removal and re-predicting gait class. As shown in Figure 8A,

the model prediction strongly decays using the LRP for the

TABLE 6 Models classification accuracy for cognitive load impact on gait for each subject.

Subject number F1-score Subject number F1-score Subject number F1-score

0 95% 7 87% 14 100%

1 65% 8 90% 15 75%

2 93% 9 90% 16 80%

3 90% 10 77% 17 100%

4 87% 11 91% 18 100%

5 91% 12 90% 19 80%

6 73% 13 100% 20 69%
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TABLE 7 F1-score predictions for binary classification, normal vs. cognitive load.

Data group for
classification

1 testing subject 2 testing subjects 4 testing subjects Test with all subjects

Class 0 vs. class 1 100% 85% 81% 79%

Class 0 vs. class 2 95% 87% 58% 69%

Class 0 vs. class 3 60% 68% 63% 79%

Class 0 vs. class 4 100% 85% 74% 81%

FIGURE 7

Perturbation e�ect on the proposed CNNs architectures. The decline in accuracy results from progressively removing information from the input

data based on LRP-SPF and re-predicting, at each step, 30 steps total.

removal of information compared to the removal of random

information. Figure 8B shows the model performance over 300

steps. The model reaches the lowest performance accuracy

where the gait classes have to take a random prediction.

Furthermore, it can be inferred from Figure 8 that the model

is effective in finding the most relevant region to identify

cognitive load of subjects and the LRP is consistent over the

test samples.

4.2.1.2 XAI selection

To identify the most suitable backpropagation method for the

three CNN models, we conducted a comprehensive evaluation of

various LRP (layerwise relevance propagation) techniques. These

included deep Taylor (Montavon et al., 2017), deep Taylor bounded

(Kohlbrenner et al., 2019), deconvnet (deconvolution) (Zeiler

and Fergus, 2014), guided backprop (guided backpropagation)

(Springenberg et al., 2015), and LRP sequential preset a flat (LRP-

SPF) (Kohlbrenner et al., 2019), all of which were implemented

using the iNNvestigate GitHub repository. For each of the

LRP methods, we assessed the CNN classification accuracy by

performing a sequence of perturbation steps as described in Section

3.5 as described in Model Selection. To establish a baseline for

comparison, we replaced regions of the input data with random

Gaussian noise with one level at 0.1%, rather than using the

LRP-based methods. We then subtracted the accuracy of LRP

maps from the accuracy of randomly replaced regions to isolate

the impact of the LRP techniques. As shown in Figure 9, the

LRP curves recovered after around the 15th perturbation step

as the remaining spatiotemporal regions became less relevant

for the classification task. The baseline accuracy was reached

around the 30th perturbation step, indicating that the remaining

regions were unimportant for the classification. Importantly, the

observed rate of change in accuracy was proportional to the

importance of the information perturbed at each step as expected.

This analysis allowed us to understand the relative significance of

different regions within the input gait sequence for the classification

performance of CNN models.

4.2.2 PD gait event assignment using LRP
Gait GRF data take the form of periodic sequences, which

are characterized as repetitive cycles for each foot. We note

that the normal gait cycle is initiated by the heel strike of one

foot, followed by other gait events described in Figure 1 and

Table 1, in strict order. Therefore, the LRP-generated heat map

of the temporal variations in the GRF signal can reveal which

events in the gait cycle are most relevant for the classifications.

Consequently, gait event assignment is best performed on the data

sequences in Figure 10 after spatial averaging and standardization.

A representative spatially averaged sensor signal sequence is shown

in Figure 10A for a healthy subject. The highlighted gray area

corresponds to one gait cycle, while the plotted signal is given by
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FIGURE 8

Validation of LRP heatmaps by perturbation technique for experiment 3 subject 13. Information with the highest relevance scores is progressively

removed, and the test samples are re-predicted. A steeper initial decrease indicates better identification of gait events with the most weight in the

classifications. (A) Shows the model predictions in 30 steps based on removing relevance scores using LRP sequential preset a flat (LRP-SPF) and

random removal of information. (B) Shows the model performance after 300 steps of information removal.

FIGURE 9

LRP method selection by perturbation steps progressively removes information with the highest relevance scores. A steeper initial decrease indicates

better identification of gait events with the most weight in the classifications.

the spatial average (SA) metric, computed as follows:

SA[n] =
1

18

18
∑

i=1

(xi[n]) (8)

Here, xi are the readings from individual sensors, and n

enumerates the frames in each sample. Recall that each foot has

eight sensors attached (16 total) and the two sums one for each

eight sensors for each foot are available giving 18 signals in total.
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FIGURE 10

Gait events processed SA (see Equation 7) signal top. The highlighted gray area in (A) is explained in (B) based on gait events for one foot from

Figure 4 as: A—heel strike, B—loading response or flat foot, C—mid-stance or single support, D—terminal stance or heel rising, E—pre-swing or

double-limb support, F—initial swing and mid-swing or toe-o�, G—terminal swing.

Figure 10B shows the expanded gait cycle from Figure 10A with the

gait events color-coded and labeled as per Figure 1 and Table 1.

4.2.2.1 Interpretation

The LRP scores highlight the regions of the input data that

contribute significantly to the model’s classification of PD severity

stages. The plot of LRP scores in Figure 11 displays calculated

SA (top panels) aligned against the relevant “LRP scores” SA,

which consists of sharp peaks, well defined in the temporal

domain, thus attributable to time-stamped gait events. Figure 11

displays the spatially averaged data signals for the four classes

with their respective LRP score maps. The most prominent peaks

are attributed to observable gait events, labeled in consistency

with the gait cycle in Figure 1 and Table 1. It is observed that the

model focuses on specific gait features related to severity, such

as changes in stride length, gait speed, and variability, to make

accurate predictions. These are further discussed in Section 5.

4.2.3 Cognitive load impact on gait event
assignment using LRP

The focus of this section is to identify the features picked

up by the model to classify gait under cognitive load. To obtain

accurate LRP relevance scores Ri, the true positive prediction of

the model should be high. Therefore, the gait class with a high

positive rate is considered for LPR analysis. The learned CNN

model parameters in experiments 2 and 4 were frozen for LRP

analysis. Experiment 3 is to check whether there is a variation

in gait within a subject; therefore, it is not considered for LRP

analysis. LRP sequential preset a flat (LRP-SPF) based on the XAI

Selection criteria was utilized for this part as it has shown sensitivity

to gait inconsistency. The iMagiMat system captures a sequence

of periodic events as distinct, but similar cycles for each foot.

This spatiotemporal sequence is generated by the change of light

transmission intensity in the POF sensors: xi = [x1& . . .&x116] ∈

R
n×116. However, a typical interpretation of the gait cycle, based on

visual observation, is derivedmuch less from the spatial component

than the temporal one. Thus, to progress toward interpreting the

CNN classifications in terms of observable gait events, we average

over the spatial domain using Equation 8.

Figure 12 displays randomly selected samples of normal gait

classified with 100% true positives in experiment 2; Figure 13

shows predicted gait samples in experiment 3 for a single.

Figure 14 displays randomly selected subjects for comparison of

dual tasking with a normal gait. The top panels in Figures 12–

14 display calculated SA aligned against the relevant “LRP scores”

SA, generated from the calculated LRP scores and displayed in

the bottom panels (to be discussed further in Section 5). The
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FIGURE 11

LRP method applied on randomly selected samples for healthy gait and three PD severity ratings. SA of gait spatiotemporal signals: black; SA for LRP

relevance scores (RS) over the same temporal period: blue. Vertical red bars with number labels display consistency with gait events listed below with

capital letters as per Figure 1 (Table 1) and Figure 10: 1—heal strike and foot flattening (A); 2—mid-stance and single support (C); 3—loading response

after the double support interval (B), 4—terminal swing and ready for the heel strike (G).

SA temporal sequences have different values on the y-axis due to

the nature of the captured gait signal, which is influenced by the

individual anthropometry of subjects.

4.2.3.1 Interpretation of results

The LRP heatmaps demonstrate the regions in the input data

that contribute significantly to the model’s decision regarding

cognitive load impact on gait. The model appears to focus on

variations in gait features influenced by cognitive load, providing

insights into the relationship between cognitive demand and

gait characteristics.

The presented experiments demonstrate the effectiveness of

the CNN model in various gait-related tasks, including PD

identification, severity staging, subject identification, and assessing

cognitive load impact on gait. The high F1-scores obtained

in each experiment indicate the capability of model to make

accurate predictions. The LRP analysis provides interpretability

by highlighting important regions in the input data for decision-

making. In the PD gait identification experiment, the model

seems to focus on specific patterns in ground reaction forces

related to PD-associated abnormalities. In PD severity staging, the

model relies on gait features indicative of severity, such as stride

length and variability. For subject cognitive load identification, the

model captures unique gait patterns for each individual, and in

assessing cognitive load impact, it considers variations influenced

by cognitive demand. The ensemble approach consistently shows

comparable or improved performance over the single model,

indicating its effectiveness in enhancing predictive accuracy. The

mean F1-scores across experiments suggest the model’s robustness

in handling diverse gait-related tasks. Overall, the presented

CNN model, accompanied by LRP analysis, provides a powerful

tool for gait analysis in the context of Parkinson’s disease and

related tasks. Further research and validation on larger datasets

and diverse populations would contribute to the generalizability

and applicability of the proposed model. Additionally, real-world

deployment considerations, such as model interpretability in

clinical settings, should be explored for practical implementation.

5 Discussion

The study presented delves into the promising realm of

explainable artificial intelligence (AI) and deep learning methods

for predicting gait deterioration. The focus is on identifying the

impact of cognitive load and Parkinson’s disease (PD) on gait

patterns, and this is achieved by analyzing spatiotemporal data

obtained from sensors placed under the feet. To carry out this

investigation, convolutional neural networks (CNNs) were utilized.

These powerful neural networks can effectively learn from complex

spatiotemporal data and produce highly accurate predictions. In

addition, the CNNs were perturbed to provide insights into the

features within the spatiotemporal gait ground reaction force
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FIGURE 12

LRP methods applied on normal gait samples (from di�erent subjects) from experiment 2 testing data, to identify gait events relevant to the CNN

prediction to classify the cognitive load impact on gait. Gait events are 1,2,3—loading response or foot flat and double support.

(GRF) signals that are most relevant to the predictions of the

models. The results of this study are presented in detail in the

following sections, with each data classification and perturbation

analyzed and discussed in depth.

5.1 PD data

The spatiotemporal signal in Figures 4A, 10 implies that gait

has normal events. Abnormal gait, otherwise difficult to detect

visually, can be detected bymachine learning, in alignment with the

knowledge of the ground truth labels. However, the magnitude of

GRF in Newton shows a decrease attributable to the severity of PD.

The main objective of this study was to find the best deep learning

model for PD severity rating and relate the model predictions to the

gait cycle events shown in Figure 3.

Research towardmachine learning classifications from PD data,

specifically PhysioNet data, is based on the use of manual feature

extraction methods with classical machine learning methods as

shown in Table 8. The best classification results from manual
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FIGURE 13

LRP methods applied on a single subject from experiment 3 testing data (each column is one pair), to identify gait events relevant for the CNN

prediction to classify the cognitive load impact on gait. SA of gait spatiotemporal signals: black; SA for LRP relevance signals over gait temporal

period: blue; POF LI (plastic optical fiber light intensity). Vertical red bars with numbers display correspondence to gait events as per Figure 15: 1,

5—loading response or foot flat and double support, 2, 3, 4—loading response or foot flat and single support.

extraction are reported in Abdulhay et al. (2018) using SVM

classifier (92.7%). Our study on PD severity classification reported

in Table 5 displays that the CNN outperformed the SGD, KNN,

GPC algorithms, and LSTM. In this study, we explore three

CNN architectures for automatic extraction and LRP analysis.

The proposed CNNs identified PD, as well as rated the severity

of the deviation from healthy gait, achieving better classification

performance with an F1-score of 98% for each dataset and for

the datasets combined with different random states (see Table 5).

The best classification accuracy is achieved with the parallel CNN,

with mean performance and standard errors of 95.5 and 0.28%,

respectively. Additionally, the parallel CNN exhibit robustness

at perturbation with Gaussian noise as shown in Figure 7. This

suggests that the model is adequate for detecting gait deterioration

from the spatiotemporal GRF signal. As an additional substantial

enhancement, our LRP approach allows classification results to

be related to visual observations similar to those established in

medical practice to diagnose PD. In this section, we present key

findings from our analysis, supported by visual representations.

Figure 10 illustrates the spatiotemporal signal extracted from PD

data, providing insights into the gait patterns of individuals with

Parkinson’s disease.

Moving on to Figure 10B, we delve into the gait cycle

events identified in PD data. These events play a crucial role in

understanding the dynamics of gait abnormalities associated with

Parkinson’s disease.

To further refine our analysis, Figure 11 presents gait cycle

events specifically categorized for PD severity staging. This

categorization allows for a nuanced exploration of how gait

characteristics vary across different stages of Parkinson’s disease.

These figures serve as visual aids to enhance the comprehension

of our findings and contribute to the broader understanding of gait

abnormalities in the context of Parkinson’s disease.

(1) PD Severity Level 0 (Healthy Gait): The CNN classifies

the raw spatiotemporal signals as healthy or within three severity

ratings as shown in the confusion matrix (Figure 5). The best LRP
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FIGURE 14

LRP methods applied on a single subject from experiment 4 testing data (each column is one pair), to identify gait events relevant for the CNN

prediction to classify the cognitive load impact on gait. Gait events are as follows: 1—heel strike, 2—toe-o�, 3—between foot swing and opposite

heel strike, 4—between double support and toe-o�.

method is selected by applying a perturbation technique, which

detects the highest sensitivity to removal of information from the

input data sequence (Figure 9). The selected LRP-SPF was found

to be superior to well-known methods such as deconvolution and

guided backpropagation.

Among the CNN architectures (Figure 3), the parallel CNN

model shows the steepest decrease in the perturbation procedure.

Therefore, that model is learned and used to generate the heatmap

or relevance for randomly selected samples (Figure 11). The gait

cycle events identified as key at each level of PD severity are

listed below:

PD Severity Level 0 (Healthy Gait): (1) Heel strike and foot

flattening (A).

This indicates that the healthy person’s ability to maintain

balance is stronger than the PD patients’, with strong

balance suggesting that the forces are applied rhythmically

to achieve the lower limbs’ synchronized movement with

stable posture.

PD Severity Level 2: (1) Mid-stance and single support (C).

The heatmap shows that the subjects affected with PD level

2 have a weaker balance in single support, where this feature is

marked by the model by 96% F1-score.

PD Severity Level 2.5: Loading response after the double-

support interval (B).

This shows that the subject has weaker foot landing or flat foot

landing after the balance is compromised by the single support.

PD Severity Level 3: (4) Terminal swing and ready for the heel

strike (G).

Here the balance is compromised by weak GRF resulting from

unstable body posture and implies a high risk of falling. This
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FIGURE 15

Representative gait cycle spatial average of spatiotemporal signals

(see Equation 8). Gait events recorded by iMAGiMAT sensors in a

typical full gait cycle of two steps (Figure 4: A, B, C, D, E, F, G):

1—heel strike, 2—foot-flattening, 3—single support, 4—opposite

heel strike, 5—opposite foot-flattening, 6—double support,

7—toe-o�, 8—foot swing, 9—heel strike, 10—double support,

11—toe-o�, 12—foot swing, 13—opposite heel strike, 14—single

support, 15—toe-o�.

conclusion is based on linking the stages of PD inWang et al. (2023)

(description of how the stage of PD affects the body posture during

gait using visual observation) to the events that are highlighted by

the model for a certain PD severity.

(2) Interpretation of Classifications: The above markers for

classification align with the observations in the literature that PD-

induced gait GRF deterioration affects body balance and posture.

The latter is with the closest relevance to gait events identified

by the heat maps in Figure 11 as the highest LRP scores, while

the other gait events are less significant to the classifications. It

is worth mentioning that these markers are identical by 95.5% in

1,281 samples, such that the removal of these regions in the 95.5%

of samples resulted in a strong decay in the model prediction.

The interpretation given above is in very good agreement with

the description of the Hoehn and Yahr Scale staging criteria as

follows: ”Stage 0—No signs of disease, Stage 2—Symptoms on both

sides but no impairment of balance, Stage 2.5—Mild symptoms on

both sides, with recovery when the ‘pull’ test is given (the doctor

stands behind the person and asks them to maintain their balance

when physically pulled backward), Stage 3—Balance impairment,

mild-to-moderate disease, physically independent” (International

Parkinson and movement disorder society, 2004). However, the

staging criteria do not refer to the gait events adversely influencing

the body’s postural balance, due to the advancement of the disease.

5.2 iMagiMat data

5.2.1 Classification of gait signatures under
cognitive load

The present study investigates the importance of cognitive

load influence on gait inconsistency. We present a comparison

of classification performance between five types of gait: normal

and under cognitive load in four different tasks. CNNs not only

TABLE 8 PD classification results on PhysioNet three datasets.

References Methods Accuracy (%)

Abdulhay et al. (2018) SVM 92.7

Jane et al. (2016) Q-BTDNN 91.5

Ertugrul et al. (2016) 1D-LBP+MLP 88.89

Medeiros et al. (2016) PCA 81.00

Wu et al. (2017) SVM 84.48

This study Parallel CNN 95.5± 0.28

SVM, support vector machine; 1D-LBP+MLP, shifted 1D-local binary patterns + multi-

layer perceptron; PCA, principal component analysis; Q-BTDNN, Q-back-propagated time

delay ANN.

TABLE 9 F1-score predictions for comparison of CNN with classical

classifiers.

Classifier Experiment 3 Experiment 2

SGD 77% 42%, N = 47%

KNN 87% 51%, N = 81%

GPC 5% 22%, N = 0%

CNN 100% 50%, N = 92%

N, True positive prediction of normal gait.

outperform, unsurprisingly, the classical classifier methods but also

achieve an F1-score of 92% for normal gait (Figure 6 and Table 9)

for cognitive load impact on gait in experiment 2 with 21 healthy

adult data. Understandably the variation in the other cognitive

demanding tasks gait is varying among subjects as each subject has

a different way of dual taking.

Experiment 3 is, in essence, an extra validation of the adequacy

of the spatiotemporal sampling of GRF by the 116 sensors and

their fusion as well as the classification performance of the trained

models. An F1-score of 100% is achieved for most of the test data.

Although Experiment 3 has the character of a sanity check, the

results support the value of floor sensor gait data as a biometric.

Experiment 2 is conducted to study the possibility of classifying

cognitive load on healthy subjects. It has shown that normal gait

is classified with a higher true positive rate compared to any of the

classes of gait under cognitive load. This experiment also indicates

that the achieved true positive rates in predicting normal gait are

higher for the CNN model compared to the classical classifiers (see

Figure 6 and Table 9). Samples obtained under cognitive load are

hard to fit due to the inconsistency of gait pattern changes among

the subjects.

The results from the first two experiments suggest that while

the dual-task data obviously contributes to the high F1-scores

in experiments 2 and 3, it results in substantially degraded true

positive rates in experiment 2. However, experiment 3 shows that

when classifications are within a single subject the performance is

notably better: for 16 subjects (out of 21) the gait under cognitive

load the F1-score ranges between 80 and 100%, with the remaining

five subjects the range being between 69 and 77%.

These observations can be discussed in the light of humans

having a natural gait pattern evolved over millions of years;

however, changes in gait when experiencing cognitive load at
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any particular instance are specific to the individual, expressing

their response to the impaired ability to process cognitive

information (Chopra et al., 2018). In experiment 4, we use binary

classifications (see Table 6) to distinguish normal gait from gait

under the 4 variants of cognitive load. The best classification results

are obtained when the model learns normal or dual-task gait

features for a single subject. This implies that although learned

gait features under cognitive load may not be readily portable

across subjects, they are consistent for each individual and can

contribute substantially for correct subject classifications; however,

the accuracy drops if more subjects are involved.

Figures 12–14 provide the link between the LRP relevance

scores (“heat map”) and the time sequence of the calculated SA

signal in a single gait cycle window. The LRP score maxima are

suitable pointers to the parts of the gait cycle which are most

relevant for the classifications. For accurate heat maps of a specific

gait class the model’s true positive prediction in the confusion

matrix must be close to 100% for most of the testing samples,

which points to the results from experiment 2 (Figure 12), for

normal gait heat maps—in Figure 13 and experiment 3 for a

single subject predicted gait under the 4 variants of cognitive

load. Focusing just on one complete gait period (two steps) is

justified by the fact that on multiple repetitive occasions each

subject will initiate a gait cycle (see full description of the gait

cycle Figure 1 and Table 1) by performing a heel strike, strictly

followed by other gait events described in Figure 15 and ending in

a toe off.

The indication of events numbered 1, 2, 3 on Figure 12 implies

that normal gait identified by loading response or Foot flat and

double support for 21 subjects. This gait event is marked by the

model by 92% true positive (see Figure 12) to distinguish normal

gait from 4 cognitive load classes. Figure 13 indicates that loading

response has high relevance for assigning a gait signature to one out

of the 21 subjects gait samples, notably even under cognitive load, as

indicated by with gait events numbered from 1 to 5. The indicated

gait events are 1,5—loading response or foot flat and double

support, 2,3,4—loading response or foot flat and single support.

Figure 12 displays the binary classification of randomly selected

subject gait events as: 1—heel strike, 2—toe-off, 3—between foot

swing and opposite Heel strike, 4—between double support and

toe-off. Figure 12 shows cognitive load gait samples for one subject

as per experiment 4 summarized as follows:

1. Gait while listening to story: Heel strike is significant for

distinguishing listing to story from normal walking.

2. Gait while performing serial 7 subtraction: Toe-off is significant

for distinguishing 7 subtraction from normal walking.

3. Gait while texting in smart phone: the transition from foot swing

to opposite Heel strike is significant for distinguishing texting

from normal walking.

4. Gait while talking: the transition from double support to Toe-off

is important to distinguishing talking from normal walking.

Figure 13 indicates that loading response has high relevance

for assigning a gait signature to one out of the 21 subjects gait

samples, notably even under cognitive load, as indicated by with

gait events numbered from 1 to 5. The indicated gait events are

1,5—loading response or foot flat and double support, 2,3,4—

Loading response or foot flat and single support. Figure 12 displays

the binary classification of randomly selected subject gait events as:

1—heel strike, 2—toe-off, 3—between foot swing and opposite heel

strike, 4—between double support and toe-off.

Overall, the LRP analysis indicates that subjects’ normal gait is

characterized by loading response, while the other cognitive load

gait classes are classified by landing or lifting the feet on/from the

surface of the iMagiMat system. For subject dual tasking, there are

many second relevant scores used to predict the cognitive load of

the subject based on gait signature.

6 Conclusion

In conclusion, this study demonstrates the potential of

explainable artificial intelligence (XAI) and deep learning methods

in predicting gait deterioration. The use of convolutional neural

networks (CNNs) on spatiotemporal data obtained from sensors

under the feet proves to be effective in identifying the impact

of cognitive load and Parkinson’s disease (PD) on gait patterns.

The proposed CNN architectures show robustness and achieve

high classification accuracy for PD severity and cognitive load

classification. The local relevance propagation (LRP) analysis

provides valuable insights into the features of the spatiotemporal

gait ground reaction force (GRF) signals that are most relevant

to the model’s predictions. The identified gait events and their

relevance scores align with existing literature on PD-induced

gait deterioration and cognitive load effects on gait. Additionally,

the perturbation analysis validates the robustness of the model

predictions, and the comparison of LRP methods highlights

the effectiveness of the selected LRP-SPF method. The study

contributes to the understanding of the relationship between gait

events, PD severity, and cognitive load providing a foundation for

further research in the field of gait analysis and neurodegenerative

diseases. The findings suggest that the proposed model can not

only classify gait patterns accurately but also reveal the specific

features contributing to these classifications. The experiments

conducted in this study shed light on the challenges associated

with gait classification under cognitive load. Overfitting observed

in the learning curve underscores the importance of addressing

the variability in gait patterns induced by cognitive tasks across

different subjects. Despite the challenges, the model exhibits

promising performance, particularly in distinguishing normal gait

from cognitive-loaded gait patterns. The binary classifications

in Experiment 5 further emphasize the potential of the model

for subject-specific gait analysis. The consistency of learned gait

features within individuals suggests the applicability of the model

for personalized gait assessments, although caution is warranted

when generalizing across a larger population. The interpretation

of classifications through LRP heatmaps reveals the relevance of

specific gait events in distinguishing between normal and cognitive-

loaded gaits. Loading response emerges as a critical gait event

for identifying normal gait, while other events such as heel strike

and toe-off play distinct roles in classifying cognitive-loaded gaits.

The perturbation analysis validates the robustness of the model

against the removal of relevant information. The ability of the

model to maintain high performance in the presence of random

perturbations suggests that it focuses on genuine gait features

rather than noise. In conclusion, this comprehensive study not
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only demonstrates the effectiveness of deep learning models in gait

analysis by achieving 98% classification results but also provides

interpretability through LRP analysis using perturbation analysis to

result in a robust model. The combination of accurate classification,

subject-specific insights, and robustness to perturbations positions

the proposed model as a valuable tool in clinical settings for

assessing gait abnormalities associated with cognitive load and

neurodegenerative diseases.
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Alzheimer’s disease (AD) is a progressive neurological disorder characterized

by the gradual deterioration of cognitive functions, leading to dementia and

significantly impacting the quality of life for millions of people worldwide. Early

and accurate diagnosis is crucial for the e�ective management and treatment

of this debilitating condition. This study introduces a novel framework based

on Spectral Graph Convolutional Neural Networks (SGCNN) for diagnosing

AD and categorizing multiple diseases through the analysis of functional

changes in brain structures captured via magnetic resonance imaging (MRI). To

assess the e�ectiveness of our approach, we systematically analyze structural

modifications to the SGCNN model through comprehensive ablation studies.

The performance of various Convolutional Neural Networks (CNNs) is also

evaluated, including SGCNN variants, Base CNN, Lean CNN, and Deep CNN. We

begin with the original SGCNNmodel, which serves as our baseline and achieves

a commendable classification accuracy of 93%. In our investigation, we perform

two distinct ablation studies on the SGCNN model to examine how specific

structural changes impact its performance. The results reveal that AblationModel

1 significantly enhances accuracy, achieving an impressive 95%, while Ablation

Model 2 maintains the baseline accuracy of 93%. Additionally, the Base CNN

model demonstrates strong performance with a classification accuracy of 93%,

whereas both the Lean CNN and Deep CNN models achieve 94% accuracy,

indicating their competitive capabilities. To validate the models’ e�ectiveness,

we utilize multiple evaluation metrics, including accuracy, precision, recall,

and F1-score, ensuring a thorough assessment of their performance. Our

findings underscore that Ablation Model 1 (SGCNN Model 1) delivers the

highest predictive accuracy among the tested models, highlighting its potential

as a robust approach for Alzheimer’s image classification. Ultimately, this

research aims to facilitate early diagnosis and treatment of AD, contributing

to improved patient outcomes and advancing the field of neurodegenerative

disease diagnosis.

KEYWORDS

Alzheimer’s disease (AD), image classification, Convolutional Neural Networks (CNN),

SGCNNmodel, deep learning, ablation study
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1 Introduction

Neurodegenerative disease, such as Alzheimer’s disease (AD),

is the most prevalent type of dementia that affects 60% to 80%

of patients in the world (Turer and Sanlier, 2024; Vejandla et al.,

2024). It is characterized by a decline in cognitive processes,

including language, reasoning, and memory, ultimately leading to

the inability to perform daily activities. The elderly population has

a higher prevalence of the disease and is the fourth leading cause

of death (Self and Holtzman, 2023). There is currently no cure for

AD, despite extensive research and presently available medications

for AD solely working on managing symptoms of the disease and

putting into effect a vast financial burden for the health care system,

patients and their families (Vejandla et al., 2024).

AD is progressively emerging as the most prevalent

neurological disorder, with its numbers likely to rise by 2050

globally from 50 to 100 million (Zhao et al., 2024). There is

an urgent need for reliable and efficient methods to detect AD

at its initial stages. Early diagnosis leads to timely therapeutic

interventions that potentially slow the disease progression and

relieve the great burden on healthcare systems (Garg et al., 2023).

Cognitive decline in AD starts many years before it is manifested

clinically; the first stage may be Mild Cognitive Impairment (MCI),

which may lead to AD. About 15%–20% of individuals over 60

years suffer from MCI, with 30%–35% progressing to AD within

four years (Karran and De Strooper, 2022). The accumulation of

coagulated tau proteins and amyloid-beta (Aβ) plaques causes

neuronal death and brain shrinkage, which is the cause of the

disease. This tissue loss occurs starting with the Gray Matter (GM),

then going into the White Matter (WM), Corpus Callosum (CC),

and extending to the Hippocampus (HC), greatly impairing neural

functions (Knopman et al., 2021). Early diagnosis of AD is critical

for maintaining good disease management and improving patient

quality of life (Begum and Selvaraj, 2024). Modern diagnostic

methods, such as PET and MRI scans, are crucial for the diagnosis

of AD because they identify both structural and functional changes

in the brain (Porsteinsson et al., 2021). The important information

regarding the disease development from normal cognitive (NC)

function through MCI to full-blown AD is provided by these

imaging modalities in addition to other clinical data (Shukla et al.,

2023).

New developments inmachine learning technologies, especially

techniques of deep learning like CNNs, have shown enormous

potential in the early diagnosis and classification of AD (Wen

et al., 2020). CNNs are superior in pattern recognition and image

classification, which makes them ideal for large dataset image

Abbreviations: AD, Alzheimer’s disease; ADRD, Alzheimer’s disease and

related dementias; AUC, area under the curve; CNN, convolutional neural

network; DTI, di�usion tensor imaging; DL, deep learning; ID3, iterative

dichotomiser 3; LGBM, light gradient boost machine; ML, machine learning;

MRI, magnetic resonance imaging; MCI, mild cognitive impairment; NLP,

natural language processing; NC, normal control; PD, Parkinson’s disease;

PET, positron emission tomography; QVC, quantum variational circuit; RF,

random forest; ROC, receiver operating characteristic; SGCNN, spectral

graph convolutional neural network; SVM, support vector machine; VGNN,

variational graph neural networks.

analysis, in this case, medical imaging data. Taking advantage of

MRI, PET scans, and Diffusion Tensor Imaging (DTI) information,

CNNs can help in the efficient and effective identification of AD and

predict its progression fromMCI to AD (Logan et al., 2021).

1.1 Research contribution

This study offers three key contributions to the field of AD

diagnosis and multi-disease classification:

• We propose a novel framework based on Spectral Graph

Convolutional Neural Networks (SGCNN) for diagnosing AD

and categorizing multiple diseases by analyzing functional

brain changes observed inMagnetic Resonance Images (MRI).

Structural modifications to the SGCNN model are rigorously

analyzed through ablation studies, and the performance

of various Convolutional Neural Network (CNN) models,

including SGCNN variants, Base CNN, Lean CNN, and Deep

CNN, is systematically evaluated.

• Our study improves the reliability of AD classification

tasks by implementing essential preprocessing steps such as

image visualization, pixel value normalization, and precise

dataset splitting. These processes ensure higher quality and

consistency within the dataset, which directly enhances the

performance and accuracy of the CNNmodels.

• Through extensive experimentation, the Ablation of SGCNN

Model 1 achieves a classification accuracy of 95%, highlighting

its superior potential for early detection and diagnosis

of AD. This result demonstrates the effectiveness of the

proposed model modifications in advancing the field of

neurodegenerative disease diagnosis.

1.2 Research organization

This document is formatted as follows: In Section 2, the

background information and relevant works are provided. Section

3 presents the proposed deep-learning approach for categorizing

images associated with AD. We assess the performance of our

technique and compare it with the baseline methods in Section 4.

The article is concluded in Section 5, which offers suggestions for

further reading.

2 Literature review

In the literature review, we address machine learning (ML)

and deep learning (DL) methodologies for AD prediction. This

section explores how these advanced methodologies contribute to

improving diagnostic accuracy and understanding AD progression.

Table 1 provided the overview of studies on AD prediction.

Biswas and Gini (2024) suggested an output-based multi-class

categorization system ranging from Normal to Severe facilitates

the early identification of AD. It starts by extracting hippocampal,

gray and white matter from 3D MRI images and computing the

volumes of each from the images using Analyze Direct and ITK

Snap. Such volumes, besides other characteristics like age, gender
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TABLE 1 Overview of studies on AD classification.

References Approach Dataset Classes and
descriptions

No. of images Key findings

Rao et al. (2024) 3D convolutional neural

networks with transfer

learning

MRI brain images AD, Mild Cognitive

Impairment (MCI),

Normal Control (NC)

1,686 images ResNet50V2 achieved 92.15%

training accuracy and 91.25%

testing accuracy

Tripathi and Kumar

(2024)

Speech-based cognitive

impairment assessment using

ML

DementiaBank’s

Pitt Corpus

Six classes based on

cognitive impairment

levels

292 recordings Achieved 75.59% accuracy in

six-class classification;

XGBoost showed significant

accuracy differences

Krishna et al. (2024) DL with SMOTE data

augmentation for MRI data

MRI datasets AD, MCI, NC 2,453 images Improved model accuracy and

validity, effective for

imbalanced data

Srividhya et al.

(2024)

CNN-based multi-class

classification

ADNI2 (sMRI) AD, MCI, NC 1120 images ResNet-50v2 achieved 91.84%

mean accuracy, F1-score of

0.97 for AD class

Goenka and Tiwari

(2023)

Multimodal DL for

Alzheimer’s classification

ADNI

(T1-weighted MRI,

AV-45 PET)

AD, MCI, NC 2,391 images 3D-Subject method achieved

93.01% accuracy, surpassing

Patch-based (89.55%) and

Slice-based (89.37%)

Francis and Pandian

(2023)

Ensemble of pre-trained

models for multi-class

classification

ADNI

(T1-weighted

sMRI)

AD, MCI, NC 2,156 images Achieved 85% accuracy in

multi-class classification;

outperformed other

state-of-the-art methods

Venkatasubramanian

et al. (2023)

MTDL for segmentation and

classification

ADNI (structural

MRI)

AD, MCI, NC 2128 images Achieved 97.1% accuracy,

93.5% Dice coefficient, 96%

accuracy for binary, 93% for

multi-class classification

and MMSE scores, are used to feed machine learning algorithms

such as random forest, gradient boost, decision tree and KNN for

the detection of Alzheimer’s and the classification of the severity

level of Alzheimer’s. Additionally, the collected traits are arbitrarily

mixed in every feasible way, including feature-level fusion, and

further analyzed. Themethodology is tested on two datasets, OASIS

and ADNI, which were introduced in earlier sections. In the OASIS

dataset, a 99% accuracy is achieved by random forest when using

only white matter volume and 98% when all three volumes are

integrated. For the ADNI data set, for white matter volume, the

accuracy was found to be 92% for gradient boost, and for the

combination of all three volumes when fused, the accuracy was 91%

for both databases.

Rao et al. (2024) deal with AD by creating a new deep-learning

approach that generalizes convolution networks in the third

dimension tomodel spatial characteristics of the 3DMRI scans. The

proposed classification system also uses attributes that are taken

from the 3D convolutional network’s several layers; however, it

gives distinction importance to each layer. Using brain MRI scans

from three classes (Mild Cognitive Impairment, Normal Control,

AD and probability controls), the system combines transfer

learning with fine-tuning. In regards to AD classification, the

researchers also tried using pre-trained deep learning models such

as ResNet50V2 and InceptionResNetV2, of which ResNet50V2

performed better. According to their results, ResNet50V2 achieved

a testing accuracy of 91.25% and a training accuracy of 92.15%. The

authors observed that the effective detection of AD utilizing 3D

MRI brain images can be achieved using deep learning, particularly

transfer learning with ResNet50V2.

Tripathi and Kumar (2024) suggest a method for the speech-

based assessment of six kinds of cognitive impairment. After pre-

processing the speech data from DementiaBank’s Pitt Corpus to

extract pertinent acoustic features, they train five machine learning

algorithms (KNN, DT, SVM, XGBoost, and RF). Consequently, the

work’s output demonstrates a 75.59% accuracy rate in the six-class

classification task. Besides, the significance of differences in the

accuracy of XGBoost as compared to the other algorithms except

the random forest is proved by the statistical tests. This approach

has the potential to be used as cost- and time-effective compared

to a provision of a medical diagnosis that is easily accessible in

the early phases of the disease. Krishna et al. (2024) present a

method that combines DLmethodologies, includingDeep Learning

(DL), with methods of data augmentation of the SMOTE type for

any MRI dataset to enhance the detection of Alzheimer’s disorder.

They are being used here because this approach can enhance the

accuracy as well as the validity of the classification model due to the

great management of the problems associated with the imbalanced

data. Based on the present interdisciplinary analysis, the integration

of DL with SMOTE improves the model’s ability to identify AD,

and this improvement was also observed when expanding its

application to other forms of neurodegenerative diseases.

Srividhya et al. (2024) put forward a framework for the

clustering of the stages of AD based on the AD Neuroimaging

Initiative (ADNI2—Structural Magnetic Resonance Imaging—

sMRI) image database. The approach entails the use of deep

learning techniques, especially CNN, for a multi-class classification

of AD MRI images. The emphasis is placed on choosing the

most suitable pre-trained model that will be able to provide
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the best prediction for the AD stage of a particular patient.

ResNet-50v2 was the overall best model, with a mean 91.84%

accuracy and an F1-score value of 0.97 for the AD class. They

used Grad-CAM and Saliency Map to visualize the highest

accuracy model to know which part of the image the algorithm

concentrated on for classification. Kaya and Çetin-Kaya (2024) put

forward a framework that involves the use of PSO to adjust the

hyperparameters of CNN for the detection of AD from MRI data.

The approach comes in handy to fine-tweak hyperparameters like

a number of convolution layers and filters and other issues like

lack of labeled data, high inter-class similarity, and overfitting. As

for the proposed lightweight model, it attains a test accuracy of

99.53%, and an F1-score of 99.63% of the tests were performed

on a public dataset, which was higher than those obtained in prior

studies and could be highly useful to help clinicians in the diagnosis

and decision-making process.

By utilizing MRI data from the ADNI dataset, the El-Assy et al.

(2024) provide a cutting-edge CNN design for the classification

of AD. The two CNN models used by the network have varying

filter widths and pooling layers. Nonetheless, these two models

are combined for classification purposes because the system

handles three, four, and five categories. With 99.43%, 99.57%,

and 99.13% accuracy, respectively, the suggested CNN architecture

produces comparatively high results. These results demonstrate

the suggested network’s ability to extract features from MRI scans

and differentiate between various AD subtypes and stages, assisting

medical professionals in accurately and promptly diagnosing AD

patients. Khan et al. (2024) introduce their newmultimodal fusion-

based approach called Dual-3DM3-AD to diagnose AD from the

MRI and PET image scans accurately and in the early stages. The

management starts with the pre-processing of both image types:

For the noise reduction of the raw data, a Quaternion Non-local

Means Denoising Algorithm (QNLM) is applied. Subsequently, the

Morphology function is used for skull stripping, resulting in an

improved image quality further refined with the help of a Block

Divider Model (BDM) to convert the 2D image into a 3D image.

The model incorporates semantic segmentation using a Mixed-

transformer with Furthered U-Net with Complexity Minimization.

It employs the Densely Connected Feature Aggregator Module

(DCFAM) for feature aggregation and implements a multi-scale

feature extraction to extract features from the segmented images it

obtains. There is then feature dimensionality reduction by applying

multi-head attention, wherein a softmax layer is used, covering

multi-class diagnosis of Alzheimer’s. The proposed Dual-3DM3-

AD achieves a high accuracy of 98% and a high sensitivity of 97.8%,

specificity of 97.5%, F-measure of 98.2%, and ROC curves that are

statistically significantly better than any other existing model for

multi-class Alzheimer diagnosis.

Hu et al. (2024) study leverage Graph Neural Networks (GNNs)

with claim data to predict AD and Related Dementia (ADRD) risk.

A variational GNN (VGNN) with a relation importance method

was used to estimate ADRD likelihood and provide explanations of

feature importance. Three prediction scenarios (1-, 2-, and 3-year

windows) were analyzed, and VGNN performance was compared

to the Random Forest (RF) and Light Gradient Boost Machine

(LGBM) models. Across all scenarios, the VGNN outperformed RF

and LGBM models, with AUROC improvements of over 9%–10%.

The VGNN showed strong predictive ability, with AUROC scores

ranging from 0.7001 to 0.7480, highlighting its efficacy in ADRD

risk prediction. In Amini et al. (2024), Natural Language Processing

(NLP) techniques combined with machine learning methods were

utilized to develop an automated approach for predicting the

progression from MCI to AD within a 6-year timeframe based on

speech data. The study analyzed neuropsychological test interviews

of 166 participants from the Framingham Heart Study, comprising

90 cases of progressive MCI and 76 cases of stable MCI. The best-

performing models incorporated speech-derived features along

with demographic factors such as age, sex, and education level,

achieving an accuracy of 78.5% and a sensitivity of 81.1% in

predicting MCI-to-AD progression.

Goenka and Tiwari (2023) use T1-weighted MRI and AV-

45 PET images from the ADNI database to provide a unique

multimodal deep-learning model for the categorization of AD.

They use three cutting-edge approaches: 3D-Subject, 3D-Patches,

and 3D-Slices. The 3D-Patches, a unique feature, include patches

of different sizes from 32 to 88 for feature extractions. In contrast,

the 3D-Slices, another novel approach, include uniform slicing

interpolation zoom and subset slicing to generate slices from 8 to

64. With the aid of the Ensembled Volumetric ConvNet, the model

achieves an impressive accuracy of 93.01% for AD vs. NC vs. MCI.

Notably, the 3D-subject-based method, a pioneering approach,

yields the highest accuracy, 93.01%, surpassing the Patch-based

(89.55%) and Slice-based (89.37%) methods. Using T1-weighted

structural MRI images of the brain from the AlzhAlzheimer’sease

Neuroimaging Initiative database, the authors in Francis and

Pandian (2023) present an algorithm that integrates the last layers

of pre-trained models Xception, Inception V3 and MobileNet for

the AD and related cognitive states classification. The algorithm is

tested with a multi-class classification problem, and the accuracy

obtained is about 85%. It provides specific accuracies of 85%

for distinguishing Mild Cognitive Impairment convertible (MCI)

from Mild Cognitive Impairment non-convertible (MCInc), 94%

for classifying AD from cognitively normal (CN), and 92% for

differentiating MCIc from CN. The results demonstrate that the

proposed algorithm surpasses other state-of-the-art methods in

multi-class classification and in differentiating MCIc fromMCInc.

Adaobi et al. (2023) employed a fine hybrid of Xception and

Fractalnet-based deep learning techniques for the classification

of the phases of AD into five stages. MRI images were drawn

from the ADNI dataset to enhance the performance of the model,

and an attempt was made to utilize appropriate pre-processing

techniques together with segmentation procedures based on

Unet++ algorithms. Recall, precision, and accuracy are established

as the evaluation metrics of the performance of the proposed

approach. These results of the investigation indicate that the

proposed technique can achieve a level of accuracy of 98.30% recall,

99.72% precision and 99.6% accuracy in multi-class classification.

To summarize, the findings point to the fact that the presented

methods, when integrated with MRI images, can be useful in

the classification and prediction of neurodegenerative diseases,

such as AD. Venkatasubramanian et al. (2023) trained a deep

learning model for the segmentation and automatic categorization

of AD using structural MRI data. They adopted MTDL for the

joint segmentation of the hippocampus in the given images, a
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FIGURE 1

Proposed framework for Alzheimer’s disease detection.

comprehensive approach. The deer hunting optimization (DHO) is

then used to fine-tune the CNN model (capsule network) for the

categorization of disease, guaranteeing a strong and trustworthy

classification procedure. The typical method has been applied to

ADNI-standardized MRI datasets, and it is effective, as suggested

above. It is discovered that the proposed MTDL achieves 97.1%

accuracy and 93.5% of the Dice coefficient. In comparison, the

suggested MTDL model achieved a 96% accuracy for binary

classification and a 93% accuracy for multi-class classification.

These thorough evaluation results instill confidence in the validity

and reliability of the proposed technique.

3 Proposed framework

The suggested methodology for utilizing deep learning models

to identify AD is described in this section. In the classification

of AD, Figure 1 presents a holistic view of deep learning

models. The process starts with an experimental dataset of 7,756

images belonging to three categories. Data pre-processing covers

visualization of data, normalization and data split. Next, the

framework discusses model selection; SGCNN is compared to base

CNN, Lean CNN, and deep CNN, as well as several ablation

variants of SGCNN. The best-identified model is the sequential

model of convolution, which is obtained by using a Conv2D layer

of 16 filters followed by a series of layers of 32 and 64 filters,

respectively, of a maximum pooling layer, then a flattening layer

and two dense layers. Lastly, there is one final dense layer of three

neurons with softmax activation to spit out the predictions for the

three classes. The ablation study aims to determine the sensitivity

of the model to hyperparameters, including loss function, learning

rate, batch size, optimizer and activation function. In the last

section, the results and analysis are presented with reference to

the Receiver Operating Characteristic (ROC) curve, accuracy, loss,

precision, recall, F1 score, confusion matrix, and accuracy. This

elaborate work is meant to ensure the best deep learning model and

hyperparameters that enable accurate classification of Alzheimer’s

disorders.

3.1 Experimental dataset

This paper focuses on categorizing participants into three

groups: Alzheimer’s disease (AD), Parkinson’s disease (PD), and

CONTROL. As a reference point for comparison, CONTROL

stands for healthy people free of neurological conditions. Subjects

with AD, a neurological illness depicted by a decline in cognition

and memory, are included in the class. The participants in the

PD class have been diagnosed with Parkinson’s disease, which is

typified by stiffness and tremors in the muscles. Data from clinical

examinations, medical imaging, and other modalities that represent

the neurological and physiological aspects of these illnesses are

probably included in the dataset.

Two directories—training images and testing images—are

included in the collection. In this study, we make a new directory

to hold the combined photographs.

3.2 Data pre-processing

Preprocessing data is crucial for deep learning and data

assessment systems. The data needs to be cleaned and altered

to prepare it for additional analysis or training of deep learning

models. For data preprocessing, this study used data visualization
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FIGURE 2

Label distribution.

FIGURE 3

Sample MRI images.

and normalization, both of which enhanced the effectiveness of the

suggested approaches.

Figure 2 shows the proportion of each label in the pie chart and

a bar chart to demonstrate the distribution of labels. The bar chart

on the left displays the frequency of each label, showing that label

1 has the highest count, with ∼3,500 samples, followed by label

0, with around 3,000 samples, and label 2, which has the smallest

count of roughly 1,000 samples. On the right, the pie chart provides

a proportional breakdown of the dataset. It shows that 41.3% of

the data belongs to label 0, 47.1% to label 1, and the remaining

11.7% to label 2. Overall, label 1 dominates the dataset, while label

2 represents the least frequent category. Images from the dataset

batch are shown in Figure 3, which gives a visual representation of

the dataset.

An essential first step in getting data ready for deep learning

models is normalization. A normalized function defined in the

script accepts a picture x as input and its label y. The maximum

pixel value in the image is determined by xmax. Function. By

dividing the image by xmax, it normalizes it and guarantees that the

values of pixels are scaled within the range of 0 and 1. Enhancing

convergence rates and averting problems like gradient vanishing

aids in the stabilization of the training process. After using the map

method to apply this normalized function to the original dataset,

the normalized dataset is created and saved in the variable data,

ready to be fed into the model. Original Before normalization, the

data range in the batch was from 0.0 to 254.42578. This represents

the original pixel intensity values in the image data, where the

maximum pixel value was close to 255, typical for 8-bit grayscale

images. After applying the normalization function, the data range

was scaled between 0.0 and 1.0. This was done by dividing each

value of the pixel by the highest value in the batch, effectively

normalizing the image data to a common scale suitable for neural

network input. Data is separated into testing, validation, and

training sets following data normalization to make sure the model

is trained, validated, and tested on various subsets of the data.

This segment is essential for assessing the model’s functionality
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TABLE 2 Comparison of original and normalized data batches: data size

and range.

Batch Data size Data range
(min–max)

Original batch Varies, e.g., (batch_size, height,

width)

0.0–254.42578

Normalized batch Same as original 0.0–1.0

and generalization capacity. The training set is extracted using the

take technique, which takes a predetermined piece of the dataset—

usually the largest portion—while the testing and validation sets are

extracted using the skip approach, which removes these training

samples. Typically, 80% of these sets are used for training, 10%

are used for validation, and 10% are used for testing. Now, the

training size is 194, and the Validation size and test size are 24.

Table 2 provides the comparison of original and normalized data

sizes and ranges.

Algorithm 1 depicts the workflow that is followed in order to

pre-process the data. The first step is the input of the dataset,

which itself consists of training and testing images. It then

makes a new directory for merged images and visualizes the

dataset in order to see the distribution of labels and example

images. By dividing each image by its greatest value, it first

scales the pixel values of the image in the range of 0–1. Next,

the dataset is divided into the following ratios: 80:10:10 for

the training, validation, and test sets. Finally, the pre-processed

dataset is presented in a form that is suitable for training

a model.

3.3 Deep learning model

Deep learning models are sophisticated neural networks

made to recognize and extract information from large, complex

datasets automatically. These models are very effective for

tasks like picture classification, audio recognition, and natural

language processing because they are composed of numerous

layers, each of which processes data to record increasingly

abstract representations. This study conducted an ablation study

on many deep learning models, including the Base CNN

Model, LEAN CNN Model, Deep CNN Model, and SGCNN

Original Model.

3.3.1 SGCNN original model
An effective deep learning model for graph-structured data

is the Spectral Graph Convolutional Neural Network (SGCNN),

which can identify intricate patterns and connections in non-

Euclidean structures such as molecular graphs and social

networks. Unlike conventional CNNs, SGCNNs use spectral-

domain convolutional processes, which makes them useful

for tasks like graph and node classification. Using the best

features of both architectures, the hybrid deep learning model

combines a segmentation and a classification model. Utilizing

a U-Net architecture, the segmentation model processes images

1: Input: “Alzheimer dataset"

2: Output: Preprocessed dataset ready for model

training

3: Step 1: Load Dataset

4: Load the dataset: training images Dtrain_dir and

testing images Dtest_dir.

5: D = {Dtrain_dir,Dtest_dir}

6: Step 2: Create New Directory

7: Create a new directory Dmerged for storing merged

images.

8: Dmerged ← New Directory

9: Step 3: Visualize Dataset

10: Create figures to understand the distribution of

labels and visualize sample images.

11: V(D)→ Visualized images and label distribution

12: Step 4: Normalize Data

13: Define a normalization function to scale the

values of image pixels within the range of 0 and 1.

14: For each image x in the Dmerged:

15: xnormalized =
x

max(x)

16: Apply the normalization function to the Dmerged:

17: Dnormalized = N(Dmerged)

18: Step 5: Dnormalized

19: Assign training, validation, and testing sets to

the normalized data.

20: Split the dataset as follows:

21: Dtrain = 0.80× Dnormalized

22: Dval = 0.10× Dnormalized

23: Dtest = 0.10× Dnormalized

24: Step 6: Output

25: Return the pre-processed dataset:

26: Dpreprocessed = {Dtrain,Dval,Dtest}

Algorithm 1. Experimental dataset and pre-processing steps.

through convolutional layers activated by ReLU after first

utilizing an input layer for 256 × 256 RGB images. Max

pooling is then utilized to minimize the spatial dimensions of

the processed images. The last convolutional layer creates the

segmentation mask, while an upsampling layer recovers the

image size.

A CNN is used in combination with this classification model

to classify images such as PD, AD, and CONTROL. Several

convolutional and max pooling layers are added after the input

layer in order to extract features. The final softmax layer for

classification is reached after the feature maps have been flattened

and dense layers with ReLU activation have captured complex

patterns. The hybrid model incorporates the classification model

with the segmentation output of the U-Net network. With the

use of precise spatial data, this method improves classification

accuracy while enabling the model to execute segmentation and

classification tasks. Overall performance in identifying the input

images is improved by the combined model’s excellent integration

of segmentation characteristics. Figure 4 visualizes the architecture

of the original SGCNNmodel.
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FIGURE 4

SGCNN model architecture.

3.3.2 Ablation of SGCNN model 1
An ablation study of the SGCNN model is the second

model, with the primary goal of focusing only on classification

problems and streamlining the architecture by eliminating the

segmentation component. This model simplifies the network

into a more conventional CNN by removing the segmentation

layers while keeping a topology resembling that of the original

SGCNN. It starts with several convolutional layers and moves

on to pooling layers and dense layers for classification. An

input layer for 256 × 256 RGB images is the first layer

in the design. Three convolutional layers with progressively

larger filter sizes (16, 32, and 64) come next. To lower the

spatial dimensions, a max-pooling layer is paired with each

convolutional layer.

The elimination of the segmentation network, which was a

feature of the SGCNN, is the most notable modification to this

model. Because of the network’s amplification brought forth by

this ablation, the performance of the classification component

can be examined more closely. The model is simpler now

that the segmentation layers have been eliminated, and it only

concentrates on classifying the input images into three groups

(e.g., CONTROL, AD, and PD). Like the original model, the

model is compiled using the Adam optimizer with category cross-

entropy loss. It is trained with a batch size of 32 across 15

epochs. Figure 5 visualizes the architecture of the ablation of the

SGCNNmodel 1.

3.3.3 Ablation of SGCNN model 2
The architecture of this third model, which is an additional

ablation study of the SGCNN model, is largely unchanged from

the earlier iterations. However, there are a few significant changes.

The model starts with a modified segmentation model that has

an upsampling layer to boost spatial dimensions and a 32 filters-

convolutional layer. In contrast to the original segmentationmodel,

this variant generates the segmentation output in the last layer

using a sigmoid activation function.

In contrast to the earlier models, the classification model

component adds a 64-filter convolutional layer and removes

the batch normalization and dropout layers from the dense

layer. With these modifications, the classification model becomes

more simplified and produces the classification output with

softmax activation by connecting the flattened feature maps

straight to the final dense layer. The design is put together

utilizing the Adam optimizer and category cross-entropy loss,

the same as the earlier models. The metrics used to evaluate

the model’s performance are test accuracy, validation, and

training. Figure 6 visualizes the architecture of the ablation of the

SGCNNmodel 2.

3.3.4 Base CNN model
The purpose of this base convolutional neural network (CNN)

model is to categorize images. The design is simple, with layers
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FIGURE 5

Ablation of SGCNN model 1 architecture.

FIGURE 6

Ablation of SGCNN model 2 architecture.

processing and classifying input photos in a stack order. The

model begins with a convolutional layer that applies 16 3 × 3

filters to the 256 × 256 input images, each of which has three

RGB color channels. This layer introduces non-linearity using the

ReLU activation function. Then, by normalizing the convolutional

layer’s output, batch normalization stabilizes the training process.

Subsequently, the model comprises a max-pooling layer that

reduces the computational complexity and concentrates on the

most prominent characteristics by downsampling the feature maps’

spatial dimensions by a factor of two.

The model then incorporates a dropout layer, which randomly

removes 25% of the neurons during training in order to avoid

overfitting. In order to prepare it for the thick layers that come

next, the output is then flattened into a 1D feature vector. Using

the ReLU activation function once more, the dense layers begin

with a completely connected layer comprising 32 neurons. Batch

normalization and an additional dropout layer—which removes

50% of the neurons—come after this layer to further lessen the

possibility of overfitting. The classification output is produced by

an output layer in the model’s stages, which employs the softmax
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FIGURE 7

Base CNN model architecture.

FIGURE 8

Lean CNN model architecture.

activation function to generate a probability distribution over three

classes. The model is constructed using the standard techniques

for classification tasks: the Adam optimizer and categorical cross-

entropy loss. Throughout the training, the model’s accuracy is

monitored to make sure it picks up the picture classification skills

correctly. Figure 7 visualizes the Base CNN model’s architecture.

3.3.5 LEAN CNN model
The Lean CNN model is based on the Base CNN model, which

incorporates adjustments to minimize overfitting. It introduces

particular adjustments to dropout rates while maintaining a similar

design. This model is composed of a stack of successive layers,

starting with a convolutional layer that processes 256 × 256

× 3 (RGB) input pictures using 16 filters of size 3 × 3. The

convolutional layer also uses ReLU activation. Next, the training

is stabilized using batch normalization and the feature map

dimensions are minimized using max pooling. Lower dropout rates

are the primary changemade to the Lean CNNmodel. In particular,

compared to 0.25 and 0.5 in the Base CNN model, the dropout

rate is reduced to 0.1 in the first dropout layer and 0.25 in the

second dropout layer. By lowering the chance of overfitting, this

modification is intended to lessen the degree of regularization,

which could enhance the model’s performance. Figure 8 visualizes

the architecture of the Lean CNNmodel.

The feature maps are processed via dense layers after being

flattened into a 1D vector. After the 32 units of dense layer

with ReLU activation, there is a 0.25 dropout rate and batch

normalization. The model’s final layer uses softmax activation to

create a dense output layer with three neurons that produce the

classification probabilities. Overall, the lower dropout rates indicate

a deliberate change meant to improve model performance by

reducing overfitting, even if the Lean CNN retains the Base CNN’s

fundamental architecture.
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Algorithm 2 explains the design of some SGCNN and CNN

models for image classification, which are as follows. The algorithm

initializes a sequential model and defines five different models,

Including SGCNN Model 1, SGCNN Model 2, SGCNN Model

3, Base CNN Model, Lean CNN Model, and Deep CNN Model.

Each model has six layers of convolution, batch normalization, max

pooling, dropout, density layers, and one output layer that uses

softmax in the form of probabilistic distribution. One model has

fewer filters and smaller kernel sizes and uses a dropout rate of

0.2. In comparison, the second model has more filters, larger kernel

sizes and a dropout rate of 0.3. The algorithm also defines the base

layers applicable to all models such as a flattening layer, dense layers

as well as the output layers. The model is then trained using the

training data and verified using the validation set. Finally, it is stated

that the prior model was assembled using the Adam optimizer and

categorical crossentropy loss function.

3.3.6 Deep CNN model
The Base and Lean CNN models are built upon the Deep

CNNmodel, which increases the architecture’s complexity by using

more layers and units. More convolutional layers in this model

improve its capacity to extract fine-grained characteristics from the

input images, which makes it more appropriate for challenging

classification tasks. Two extra convolutional layers, each with 32

filters, are added to the original 16-filter convolutional layer in

the Deep CNN model. These additional layers let the model

recognize more complex patterns and enable it to extract deeper

characteristics from the incoming data. Each convolutional layer is

followed, like in the earliermodels, by batch normalization andmax

pooling, which downsamples the feature maps.

Additionally, the Base and Lean CNN models’ units in the

dense layer are increased to 64 units in the Deep CNN model.

With more neurons, the model can process the bigger feature set

generated by the further convolutional layers. With a 25% dropout

after the convolutional layers and a 50% dropout after the dense

layer to avoid overfitting, the dropout rates are still in line with

the earlier models. Overall, the extra convolutional layers and the

larger dense layer distinguish the Deep CNN model from the Base

and Lean CNN models. By extracting more precise features from

the data, these improvements should increase the model’s accuracy

in classifying photos. Figure 9 visualizes the Deep CNN model’s

architecture.

3.4 Ablation study

In this study, ablation analysis was conducted to analyze

the effect of structural modifications on the performance of the

SGCNN architecture for Alzheimer’s image classification. The

SGCNN Original Model served as the baseline, achieving a

classification accuracy of 93%. Two variants of the SGCNN model

were developed to assess the effects of different structural changes:

Ablation of SGCNNModel 1 and Ablation of SGCNNModel 2. The

first variant, Ablation of SGCNN Model 1, incorporated specific

architectural adjustments that led to a notable improvement in

classification accuracy, reaching 95%. This significant enhancement

1: Initialize Smodel ← Sequential Model

2: SGCNN Model 1:

3: Smodel ← Sequential Model {Initialize a Sequential

model}

4: A1 ← Conv2D(F = 8,K = (3× 3),activation =

ReLU,input_shape = (256, 256, 3)) {First convolutional

layer with 8 filters}

5: A2 ← BatchNormalization {Apply batch normalization}

6: A3 ← MaxPooling2D(P = (2× 2)) {Max pooling layer to

reduce spatial dimensions}

7: A4 ← Dropout(D = 0.2) {Dropout layer to prevent

overfitting}

8: SGCNN Model 2 (Second Ablation Study):

9: A5 ← Conv2D(F = 8,K = (3× 3),activation = ReLU)

{Convolutional layer with 8 filters}

10: A6 ← Conv2D(F = 8,K = (3× 3),activation = ReLU)

{Additional convolutional layer}

11: A7 ← BatchNormalization {Batch normalization for

stability}

12: A8 ← MaxPooling2D(P = (2× 2)) {Pooling layer for

down-sampling}

13: Dadjust ← D (adjustable rate) {Adjustable dropout

rate}

14: SGCNN Model 3 (Third Ablation Study):

15: A9 ← Conv2D(F = 8,K = (3× 3),activation = ReLU)

{Convolutional layer for feature extraction}

16: A10 ← BatchNormalization {Batch normalization for

improved convergence}

17: A11 ← MaxPooling2D(P = (2× 2)) {Max pooling to reduce

dimensionality}

18: Simplified architecture focused on classification

to reduce overfitting {Further architecture

simplification}

19: Base CNN Model:

20: A12 ← Conv2D(F = 16,K = (3× 3),activation =

ReLU,input_shape = (256, 256, 3)) {Base model with 16

filters}

21: A13 ← BatchNormalization {Normalize the output of

the previous layer}

22: A14 ← MaxPooling2D(P = (2× 2)) {Pooling layer for

down-sampling}

23: A15 ← Dropout(D = 0.25) {Dropout to reduce

overfitting}

24: Lean CNN Model (Variant of Base CNN):

25: D1 ← Dropout(D = 0.1) {First Dropout layer with

reduced rate}

26: D2 ← Dropout(D = 0.25) {Second Dropout layer with

adjustable rate}

27: Deep CNN Model (Extension of Base CNN):

28: A16 ← Conv2D(F = 32,K = (3× 3),activation = ReLU)

{Extended model with more filters}

29: A17 ← BatchNormalization {Normalize to stabilize

training}

30: A18 ← MaxPooling2D(P = (2× 2)) {Pooling for feature

reduction}

31: U1 ← 64 {Dense layer units increased to 64}
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32: Common Layers for All Models:

33: Aflatten ← Flatten

34: Ucommon ← Dense(U = 32 or 64)

35: A19 ← BatchNormalization

36: Dcommon ← Dropout (model-specific rates)

37: Aoutput ← Dense(U = 3,activation = Softmax)

Algorithm 2. SGCNN and CNNmodel variants.

demonstrates the effectiveness of thesemodifications in refining the

model’s capacity to distinguish between AD stages.

Conversely, the Ablation of SGCNN Model 2 did not exhibit

an improvement over the baseline, maintaining the same 93%

accuracy as the original model. This finding emphasizes how

crucial it is to choose suitable structural changes to achieve

performance gains. The ablation study underscores the potential

of targeted architectural adjustments in optimizing model accuracy

for medical image classification tasks. By isolating and analyzing

these modifications, the study provides valuable insights into

effective strategies for enhancing diagnostic tools for AD, offering

promising avenues for further investigations and advancements in

this critical field of medicine. Among the models, the Ablation

of SGCNN Model 1 performed the best, achieving the highest

accuracy of 95%.

4 Experimental result and discussion

This section provides the evaluation measurements used in this

study and the experimental results of all the models.

4.1 Evaluation measurements

The effectiveness of the suggested methodology is calculated

in this study utilizing a variety of evaluation measures, including

F1-score, recall, accuracy, and precision. These crucial assessment

metrics offer comprehensive details regarding how the suggested

technique should be interpreted. The first metric that is frequently

seen as the foundation of performance evaluation is accuracy.

By considering the total number of instances, the percentage of

correctly detected outcomes is calculated using the accuracy metric,

which is defined as the ratio of correctly predicted positive and

negative cases (true positives and true negatives) to the total

number of instances, including false positives and false negatives

as shown in Equation 1.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Precision is important in situations where the cost of false

positives is high, as it measures the model’s ability to avoid

incorrectly predicting negative instances as positive. However,

precision does not account for how many actual positive instances

the model missed. Equation 2 explains the precision. Recall is

especially important in scenarios where missing positive instances

(false negatives) has serious consequences, such as in medical

diagnoses. A high recall indicates that the model captures most of

the positive instances, but it may come at the expense of higher false

positives. Equation 3 defines the precision. To balance the trade-

offs between precision and recall, the F1-score is used. The F1-score

is the harmonic mean of precision and recall, ensuring that both are

taken into account.

Recall =
TP

TP + FN
(3)

F1− score = 2×
Precision+ Recall

Precision+ Recall
(4)

The F1-score is particularly useful when the dataset is

imbalanced and when both false positives and false negatives are

important to consider. It provides a single metric that captures a

balance between precision and recall, allowing for more informed

model performance evaluations. Equation 4 demonstrated its

computation. A classification model’s performance can be

categorized and assessed using a confusion matrix, which provides

a list of counts for true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN). It offers details about

the model’s capacity for learning and differentiating between

classes. While genuine positives and true negatives demonstrate

appropriate classifications, false positives and false negatives

highlight instances in which the model misclassifies. Identifying

specific types of errors the model makes and guiding modifications

to enhance its performance are made possible in large part by this

matrix. A binary classification model’s performance at different

thresholds is represented graphically by a curve known as a

Receiver Operating Characteristic (ROC). True positive rate (TPR)

against false positive rate (FPR) plotting displays the proportion of

correctly labeled positive instances on the y-axis and the proportion

of falsely identified positive cases on the x-axis. Curves further

from the diagonal line indicate better model performance, which

is the representation of plotting random guesses. The left-hand

corner of the plot denotes improved performance and accuracy.

Increases in the model’s performance are indicated by higher values

of the area under the curve (AUC).

4.2 Result and findings

Table 3 shows the classification report of several pre-trained

CNNs, each one evaluated with a different configuration on a

dataset. In the table, values in terms of precision, recall, F1-score,

support for each class and the weighted average over all classes

(Wei. Avg) are provided. The SGCNNOriginalModel shows strong

performance, particularly in Class 1, with a precision value of 0.99

and a recall value of 0.99, resulting in an F1-score value of 0.99

with support of 355 instances. Class 2 exhibits a slightly lower

performance, with a precision value of 0.95, a recall value of 0.91,

and an F1-score value of 0.93, supported by 343 instances. The
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FIGURE 9

Deep CNN model architecture.

model struggles more with Class 3, achieving a precision value

of 0.68, a recall value of 0.83, and an F1-score value of 0.75,

with a support of 70 instances. The precision, recall, and F1-score

weighted averages are 0.95, 0.94, and 0.94, respectively.

The SGCNN Model 1 performs excellently in Class 1, with

a precision value of 0.99, a recall value of 1.00, and an F1-score

value of 0.99, supported by 346 instances. In Class 2, it achieves

a precision value of 0.96, a recall value of 0.93, and an F1-score

value of 0.94, supported by 342 instances. Class 3 is handled well,

with a precision value of 0.77, a recall value of 0.85, and an F1-

score value of 0.81, with support of 80 instances. This model has

a weighted average precision, recall, and F1-score of 0.95 for all

measures. The SGCNNModel 2 shows robust performance in Class

1, with a precision value of 0.95, a recall value of 0.99, and an F1-

score value of 0.97, supported by 343 instances. However, in Class 2,

there is a slight drop with a precision value of 0.95, a recall value of

0.88, and an F1-score value of 0.91, with a support of 347 instances.

Class 3 is reasonably well handled, with a precision value of 0.73,

a recall value of 0.85, and an F1-score value of 0.78, with support

of 78 instances. This model has a weighted average precision,

recall, and F1-score of 0.93 for all measures. The Base CNN Model

demonstrates excellent performance in Class 1, with a precision

value of 0.99, a recall value of 0.99, and an F1-score value of 0.99,

supported by 346 instances. Class 2 exhibits good performance with

a precision value of 0.94, a recall value of 0.89, and an F1-score

value of 0.91, supported by 341 instances. The model performs less

effectively in Class 3, with a precision value of 0.67, a recall value

of 0.81, and an F1-score value of 0.73, supported by 81 instances.

This model has a weighted average precision, recall, and F1-score

of 0.93 for all measures. The Lean CNN Model maintains strong

performance in Class 1, with a precision value of 0.98, a recall

value of 1.00, and an F1-score value of 0.99, supported by 361

instances. Class 2 shows a good performance, with a precision value

of 0.96, a recall value of 0.90, and an F1-score value of 0.93, with

support of 335 instances. The model achieves a precision value of

0.70, a recall value of 0.81, and an F1-score value of 0.75 in Class

3, supported by 72 instances. This model has a weighted average

precision, recall, and F1-score of 0.94 for all measures. The Deep

CNN Model also shows strong results, particularly in Class 1, with

a precision value of 0.99, a recall value of 0.99, and an F1-score

value of 0.99, supported by 336 instances. Class 2 maintains good

results, with a precision value of 0.94, a recall value of 0.93, and

an F1-score value of 0.93, supported by 351 instances. For Class

3, the model achieves a precision value of 0.72, a recall value of

0.78, and an F1-score value of 0.75, supported by 81 instances. The

weighted average value of precision, recall, and f1-score is 0.94.

Overall, the various CNNmodels demonstrate strong performance

in the frequently observed classes, with some variations in the less

frequent Class 3, highlighting different aspects of model robustness

and generalization capabilities.

4.2.1 Result of SGCNN original model
Figure 10 represented the graphical representation of the

SGCNN Orginal Model. Figure 10A presents the model loss and

accuracy graph of an SGCNN Original Model. The training

accuracy starts from 0.50% value at 0th epoch, and it increases up

to 0.68% at 1st epoch. Then, it increases upward, and the training

accuracy stops at 1.0% at 14th epoch. The validation accuracy starts

from 0.67% value at 0th epoch. After some fluctuation of increases

and decreases, testing accuracy attained is 0.93% at 14th epoch. The

training loss starts from a 0.8 value at 0th epoch, and it decreases

downward up to a 0.0 value at 14th epoch. The validation loss starts

from a 0.6 value at 0th epoch and decreases up to 0.2 at 14th epoch

after going through some fluctuation of increases and decreases.

The confusion matrix in Figure 10B gives the percentage of each

class that is correctly and incorrectly classified. The elements on the

diagonal consist of the classes that have been well-classified, while

the non-diagonal elements on the matrix consist of the samples

that are misclassified. For class 1, the model correctly classified

99.14% instances and 0.86% of class 1 instances misclassified as

class 2. For class 2, the model accurately classified 91.59% instances

and 1.16% instances of class 2 incorrectly categorized as class 1

and 7.25% instances of class 2 incorrectly categorized as class 3.

For class 3, the model correctly classified 78.08% instances and

21.92% of class 3 instances misclassified as class 2. The performance

of the model for each class is shown by the ROC graph in

Figure 10C. For different threshold settings, the graph plots the

real positive rate against the false positive rate. AUC values for

all three classes are very high, as can be seen from the ROC

curve, indicating that the model is doing exceptionally well. Class

0 has an AUC of 1.00, class 1 of 0.98, and class 2 of 0.98. For
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TABLE 3 Classification reports of experimented models.

Labels Precision Recall F1-score Support

SGCNN original Class 1 0.99 0.99 0.99 355

Class 2 0.95 0.91 0.93 343

Class 3 0.68 0.83 0.75 70

Wei. Avg 0.95 0.94 0.94 768

SGCNNmodel 1 Class 1 0.99 1.00 0.99 346

Class 2 0.96 0.93 0.94 342

Class 3 0.77 0.85 0.81 80

Wei. Avg 0.95 0.95 0.95 768

SGCNNmodel 2 Class 1 0.95 0.99 0.97 343

Class 2 0.95 0.88 0.91 347

Class 3 0.73 0.85 0.78 78

Wei. Avg 0.93 0.93 0.93 768

Base CNN model Class 1 0.99 0.99 0.99 346

Class 2 0.94 0.89 0.91 341

Class 3 0.67 0.81 0.73 81

Wei. Avg 0.93 0.93 0.93 768

Lean CNNmodel Class 1 0.98 1.00 0.99 361

Class 2 0.96 0.90 0.93 335

Class 3 0.70 0.81 0.75 72

Wei. Avg 0.94 0.94 0.94 768

Deep CNNmodel Class 1 0.99 0.99 0.99 336

Class 2 0.94 0.93 0.93 351

Class 3 0.72 0.78 0.75 81

Wei. Avg 0.94 0.94 0.94 768

all three classes, this demonstrates the model’s extremely high

accuracy level. Classes 0, 1, and 3 have cyan, orange, and blue

ROC curves, respectively. The model has a low false positive rate

and a high true positive rate, as indicated by the fact that all of

its ROC curves are located close to the upper left corner. This

attests to the model’s high classification accuracy among the three

classes.

4.2.2 Result of SGCNN model 1
Figure 11 represented the graphical representation of SGCNN

Model 1. Figure 11A presents the model loss and accuracy graph

of an SGCNN Model 1. The training accuracy starts from 0.65%

value at 0th epoch, and it increases up to 0.90% at 1st epoch. Then,

it increases upward, and the training accuracy stops at 1.00% at

14th epoch. The validation accuracy starts from 0.77% value at 0th

epoch. After some fluctuation of increases and decreases, testing

accuracy attained is 0.95% at 14th epoch. The training loss starts

from a 0.8 value at 0th epoch, and it decreases downward up to

a 0.0 value at 14th epoch. The validation loss starts from a 0.5

value at 0th epoch and decreases up to 0.3 value at 14th epoch

after going through some fluctuation of increases and decreases.

The confusion matrix in Figure 11B gives the percentage of each

class that is correctly and incorrectly classified. The elements on the

diagonal consist of the classes that have been well-classified, while

the non-diagonal elements on the matrix consist of the samples

that are misclassified. For class 1, the model correctly classified

99.72% instances and 0.28% of class 1 instances misclassified as

class 2. For class 2, the model accurately classified 91.67% instances

and 1.16% instances of class 2 incorrectly categorized as class

1 and 7.25% instances of class 2 incorrectly categorized as class

3. For class 3, the model correctly classified 78.08% instances

and 21.92% of class 3 instances misclassified as class 2. The

performance of the model for each class is shown by the ROC

graph in Figure 11C. For different threshold settings, the graph

plots the real positive rate against the false positive rate. AUC

values for all three classes are very high, as can be seen from

the ROC curve, indicating that the model is doing exceptionally

well. Class 0 has an AUC of 1.00, class 1 of 0.98, and class 2 of

0.98. For all three classes, this demonstrates the model’s extremely

high accuracy level. Classes 0, 1, and 3 have cyan, orange, and

blue ROC curves, respectively. The model has a low false positive

rate and a high true positive rate, as indicated by the fact that

all of its ROC curves are located close to the upper left corner.

This attests to the model’s high classification accuracy among the

three classes.
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FIGURE 10

Graphical representation of SGCNN Orginal model’s results. (A) Accuracy and loss. (B) Confusion matrix. (C) Receiver operating characteristics curve.

4.2.3 Result of SGCNN model 2
Figure 12 represented the graphical representation of the

SGCNN Orginal model. Figure 12A presents the model’s loss and

accuracy graph of an SGCNN Model 2. The training accuracy

starts from 0.5% value at 0th epoch. Then, it increases upward,

and the training accuracy stops at 1.00% at 14th epoch. The

validation accuracy starts from 0.67% value at 0th epoch. After

some fluctuation of increases and decreases, testing accuracy

attained is 0.95% at 14th epoch. The training loss starts from a

0.8 value at 0th epoch, and it decreases downward up to a 0.0

value at 14th epoch. The validation loss starts from a 0.68 value

at 0th epoch, and it decreases up to a 0.29 value at 14th epoch.

The confusion matrix in Figure 12B gives the percentage of each

class that is correctly and incorrectly classified. The elements on the

diagonal consist of the classes that have been well-classified, while

the non-diagonal elements on thematrix consist of the samples that

are misclassified. For class 1, the model correctly classified 99.16%

instances and 0.84% of class 1 instances misclassified as class 2. For

class 2, the model accurately classified 86.63% instances and 4.79%

instances of class 2 incorrectly categorized as class 1 and 8.38%

instances of class 2 incorrectly categorized as class 3. For class 3, the

model correctly classified 85.33% instances and 14.67% of class 3

instances misclassified as class 2. The performance of the model for

each class is shown by the ROC graph in Figure 12C. For different

threshold settings, the graph plots the real positive rate against the

false positive rate. AUC values for all three classes are very high, as

can be seen from the ROC curve, indicating that the model is doing

exceptionally well. Class 0 has an AUC of 1.00, class 1 of 0.98, and

class 2 of 0.98. For all three classes, this demonstrates the model’s

extremely high accuracy level. Classes 0, 1, and 3 have cyan, orange,

and blue ROC curves, respectively. The model has a low false

positive rate and a high true positive rate, as indicated by the fact
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FIGURE 11

Graphical representation of SGCNN model 1’s results. (A) Accuracy and loss. (B) Confusion matrix. (C) Receiver operating characteristics curve.

that all of its ROC curves are located close to the upper left corner.

This attests to the model’s high classification accuracy among the

three classes.

4.2.4 Result of base CNN model
Figure 13 represented the graphical representation of the Base

CNN Model. Figure 13A presents the model accuracy and loss

of a Base CNN Model. The training accuracy starts from 0.62%

value at 0th epoch. Then, it increases upward, and the training

accuracy stops at 1.00% at 14th epoch. The validation accuracy

starts from 0.53% value at 0th epoch, and it increases at 0.75%

at 2nd epoch. After some fluctuation of increases and decreases,

validation accuracy attained is 0.79% at 14th epoch. The training

loss starts from a 0.9 value at 0th epoch, and it decreases downward

up to a 0.0 value at 14th epoch. The validation loss starts from a 0.9

value at 0th epoch. It decreases up to 0.6 value at 2nd, and then it

increases up to 1.1 value at 3rd epoch, and then it decreases up to 0.4

value at 4th then after going through some fluctuation of increases

and decreases the validation loss stops at 0.8 value at 14th epoch.

The confusion matrix in Figure 13B gives the percentage of each

class that is correctly and incorrectly classified. The elements on the

diagonal consist of the classes that have been well-classified, while

the non-diagonal elements on the matrix consist of the samples

that are misclassified. For class 1, the model correctly classified

98.02% instances and 1.98% of class 1 instances misclassified as

class 2. For class 2, the model accurately classified 89.16% instances

and 1.20% instances of class 2 incorrectly categorized as class

1 and 9.64% instances of class 2 incorrectly categorized as class

3. For class 3, the model correctly classified 84.15% instances

and 15.85% of class 3 instances misclassified as class 2. The

performance of the model for each class is shown by the ROC
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FIGURE 12

Graphical representation of SGCNN model 2’s results. (A) Accuracy and loss. (B) Confusion matrix. (C) Receiver operating characteristics curve.

graph in Figure 13C. For different threshold settings, the graph

plots the real positive rate against the false positive rate. AUC

values for all three classes are very high, as can be seen from

the ROC curve, indicating that the model is doing exceptionally

well. Class 0 has an AUC of 1.00, class 1 of 0.97, and class 2 of

0.98. For all three classes, this demonstrates the model’s extremely

high accuracy level. Classes 0, 1, and 3 have cyan, orange, and

blue ROC curves, respectively. The model has a low false positive

rate and a high true positive rate, as indicated by the fact that

all of its ROC curves are located close to the upper left corner.

This attests to the model’s high classification accuracy among the

three classes.

4.2.5 Result of lean CNN model
Figure 14 represented the graphical representation of the Lean

CNN Model. Figure 14A presents the model loss and accuracy of a

Lean CNN Model. The training accuracy starts from 0.62% value

at 0th epoch. Then, it increases upward, and the training accuracy

stops at 1.00% at 14th epoch. The validation accuracy starts from

0.2% value at 0th epoch, and it increases at 0.75% at 1st epoch. After

some fluctuation of increases and decreases, validation accuracy

attained is 0.9% at 14th epoch. The training loss starts from a 0.9

value at 0th epoch, and it decreases downward up to a 0.0 value at

14th epoch. The validation loss starts from a 1.5 value at 0th epoch.

It decreases up to 0.7 value at 1st, and then it increases up to 2.4

value at 7th epoch, and then it decreases up to 0.4 value at 14th

epoch. The confusion matrix in Figure 14B gives the percentage of

each class that is correctly and incorrectly classified. The elements

on the diagonal consist of the classes that have been well-classified,

while the non-diagonal elements on the matrix consist of the

samples that are misclassified. For class 1, the model correctly

classified 100.00% instances, and 0.00% instances of class 1 were

misclassified. For class 2, the model correctly categorized 90.79%
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FIGURE 13

Graphical representation of base CNN model’s results. (A) Accuracy and loss. (B) Confusion matrix. (C) Receiver operating characteristics curve.

instances and 2.31% instances of class 2 misclassified as class 1 and

7.51% instances of class 2 misclassified as class 3. For class 3, the

model correctly classified 81.16% instances and 18.84% of class 3

instances misclassified as class 2. Overall, the Lean CNN Model

maintains strong performance in Class 1. The performance of the

model for each class is shown by the ROC graph in Figure 14C. For

different threshold settings, the graph plots the real positive rate

against the false positive rate. AUC values for all three classes are

very high, as can be seen from the ROC curve, indicating that the

model is doing exceptionally well. Class 0 has an AUC of 1.00, class

1 of 0.96, and class 2 of 0.95. For all three classes, this demonstrates

the model’s extremely high accuracy level. Classes 0, 1, and 3 have

cyan, orange, and blue ROC curves, respectively. The model has a

low false positive rate and a high true positive rate, as indicated by

the fact that all of its ROC curves are located close to the upper

left corner. This attests to the model’s high classification accuracy

among the three classes.

4.2.6 Result of deep CNN model
Figure 15 represented the graphical representation of the Deep

CNN Model. Figure 15A presents the model accuracy and loss

of a Deep CNN Model. The training accuracy starts from 0.7%

value at 0th epoch. Then, it increases upward, and the training

accuracy stops at 0.9% at 14th epoch. The validation accuracy starts

from 0.3% value at 0th epoch, and it increases at 0.83% at 2nd

epoch. After some fluctuation of increases and decreases, validation

accuracy attained is 0.9% at 14th epoch. The training loss starts

from a 0.9 value at 0th epoch, and it decreases downward up to a

0.0 value at 14th epoch. The validation loss starts from a 2.6 value

at 0th epoch. It increases up to 4.0 value at 1st, and then it decreases

up to 0.5 value at 2nd epoch, and then some fluctuation of increases

and decreases the validation loss stops at 0.4 value at 14th epoch.

The confusion matrix in Figure 15B gives the percentage of each

class that is correctly and incorrectly classified. The elements on the

diagonal consist of the classes that have been well-classified, while
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FIGURE 14

Graphical representation of lean CNN model’s results. (A) Accuracy and loss. (B) Confusion matrix. (C) Receiver operating characteristics curve.

the non-diagonal elements on the matrix consist of the samples

that are misclassified. For class 1, the model correctly classified

99.14% instances, and 0.51% instances of class 1 were misclassified

as class 2. For class 2, themodel correctly classified 92.75% instances

and 0.29% instances of class 2 misclassified as class 1 and 6.96%

instances of class 2 misclassified as class 3. For class 3, the model

correctly classified 79.27% instances and 20.73% of class 3 instances

misclassified as class 2. Overall, the deep CNN Model maintains

strong performance in Class 1. The performance of the model for

each class is shown by the ROC graph in Figure 15C. For different

threshold settings, the graph plots the real positive rate against the

false positive rate. AUC values for all three classes are very high,

as can be seen from the ROC curve, indicating that the model is

doing exceptionally well. Class 0 has an AUC of 1.00, class 1 of

0.98, and class 2 of 0.98. For all three classes, this demonstrates

the model’s extremely high accuracy level. Classes 0, 1, and 3 have

cyan, orange, and blue ROC curves, respectively. The model has a

low false positive rate and a high true positive rate, as indicated by

the fact that all of its ROC curves are located close to the upper

left corner. This attests to the model’s high classification accuracy

among the three classes.

4.3 Discussion and comparison

Table 4 presents a comparative analysis of various models

employed for diagnosing and classifying brain-related disorders.

The comparison includes studies from different years, showcasing

the models used, the datasets involved, and the results achieved.

One of the studies from 2022 (Shahwar et al., 2022) employed

a Hybrid Classical–Quantum Transfer Learning approach
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FIGURE 15

Graphical representation of deep CNN model’s results. (A) Accuracy and loss. (B) Confusion matrix. (C) Receiver operating characteristics curve.

that combined ResNet34 with a Quantum Variational Circuit

(QVC). This hybrid model was applied to a dataset focusing

on dementia associated with AD. By leveraging the strengths

of both classical and quantum computing, the model achieved

an accuracy of 92%, demonstrating significant potential for

enhancing the machine learning model’s performance in

dementia detection. In 2023, another study (Nancy Noella

and Priyadarshini, 2023) explored multiple classifiers of machine

learning, including Multi-class Support Vector Machine (SVM),

Naive Bayes, ID3 and Bagged Ensemble. The dataset consisted

of PET images representing AD, Parkinson’s Disease, and

healthy brains. The Bagged Ensemble classifier fared better than

the others, obtaining a 90.3% accuracy rate, according to the

study. This research demonstrates the precision with which

complicated brain disorders can be classified using ensemble

learning techniques.

The study (de Oliveira et al., 2024) utilized a logistic

regression model with L1 and L2 regularization to diagnose

AD. The performance of the model was evaluated using several

measures, with the Area Under the Curve (AUC) reaching

94.75%, indicating a strong ability to generalize to unseen

neuroimages. The proposed SGCNNmodel is specifically designed

to classify AD images, Parkinson’s disease images, and control

subjects. This classifier attained an accuracy of 95%, surpassing

the performance of previous studies and demonstrating its

effectiveness in accurately diagnosing these conditions. The

proposed model seems to be effective for AD detection from

MRI images because they excel at capturing complex brain

connectivity patterns, which are disrupted in AD. MRI data

reflects the brain’s structural and functional connectivity, which

can be represented as a graph, where nodes correspond to

brain regions, and edges represent connections between them.

Frontiers inNeuroinformatics 20 frontiersin.org142

https://doi.org/10.3389/fninf.2024.1495571
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Alharbi et al. 10.3389/fninf.2024.1495571

TABLE 4 Comparison of proposed model’s result with existing techniques.

References Year Models Dataset Results

Shahwar et al. (2022) 2022 Hybrid classical–quantum transfer

learning with ResNet34 and

Quantum variational circuit (QVC)

Dementia of AD Accuracy 92%

Nancy Noella and

Priyadarshini (2023)

2023 Bagged ensemble, ID3, Naive

Bayes, multiclass support vector

machine

Image dataset (AD, PD,

healthy brain)

Accuracy 90.3%

de Oliveira et al. (2024) 2024 Logistic Regression with L1 and L2

regularization

Images dataset (AD, CN) AUC 94.75%

Proposed model 2024 SGCNNmodel 1 Image dataset (AD, PD,

and CONTROL)

Accuracy 95%

Traditional CNNs, designed for grid-like data such as images,

struggle with such irregular structures. The proposed model,

however, operates on graphs by applying spectral convolutions

that capture intricate relationships in the brain’s network, enabling

them to identify subtle alterations in brain connectivity that

are characteristic of Alzheimer’s, improving the model’s ability

to detect the disease accurately. The outcomes demonstrate the

elevated precision of the suggested approach and its potential

for practical use in the prompt identification and diagnosis of

neurodegenerative illnesses.

5 Conclusion

The purpose of this study was to increase the diagnostic

precision of AD by proposing and evaluating many CNN

models for picture categorization. We were able to provide

a strong basis for model training and evaluation by carefully

splitting our experimental dataset and using strict pre-processing.

Further ablation investigations showed that structural alterations

could improve performance, as illustrated by the Ablation of

SGCNN Model 1, which achieved the maximum accuracy of

95%. The SGCNN Original Model served as a solid baseline

with a 93% accuracy. Furthermore, with accuracies ranging from

93% to 94%, the BASE CNN, LEAN CNN, and Deep CNN

models showed strong performance. Our results indicate the

prospect of the ablation of SGCNN Model 1 as a very powerful

tool for classifying AD images, underscoring its potential to

support early diagnosis and therapy of AD. Additionally, the

constant performance across different models suggests that CNN-

based methods can be quite dependable for tasks involving

the classification of medical images. To further advance the

field of diagnosing neurodegenerative diseases, future studies

could focus on enhancing these models by incorporating more

diverse and larger datasets, integrating multi-modal data such

as genetic or biochemical markers, and exploring real-time

applications for early detection and continuous monitoring.

Additionally, investigating the use of advanced techniques like

transfer learning, ensemble methods, and model interpretability

could help improve diagnostic accuracy and reliability in

clinical settings.
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Gümüşhane University, Türkiye

*CORRESPONDENCE

Khalaf Alsalem

kosalem@ju.edu.sa

RECEIVED 06 June 2024

ACCEPTED 21 October 2024

PUBLISHED 26 November 2024

CITATION

Gasmi K, Ben Aoun N, Alsalem K, Ltaifa IB,

Alrashdi I, Ammar LB, Mrabet M and Shehab A

(2024) Enhanced brain tumor diagnosis using

combined deep learning models and weight

selection technique.

Front. Neuroinform. 18:1444650.

doi: 10.3389/fninf.2024.1444650

COPYRIGHT

© 2024 Gasmi, Ben Aoun, Alsalem, Ltaifa,

Alrashdi, Ammar, Mrabet and Shehab. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Enhanced brain tumor diagnosis
using combined deep learning
models and weight selection
technique

Karim Gasmi1, Najib Ben Aoun2,3, Khalaf Alsalem4*,

Ibtihel Ben Ltaifa5, Ibrahim Alrashdi1, Lassaad Ben Ammar6,

Manel Mrabet6 and Abdulaziz Shehab4

1Department of Computer Science, College of Computer and Information Sciences, Jouf University,

Sakkaka, Saudi Arabia, 2College of Computing and Information, Al-Baha University, Alaqiq, Saudi Arabia,
3REGIM-Lab: Research Groups in Intelligent Machines, National School of Engineers of Sfax (ENIS),

University of Sfax, Sfax, Tunisia, 4Department of Information Systems, College of Computer and

Information Sciences, Jouf University, Sakaka, Saudi Arabia, 5STIH: Sens Texte Informatique Histoire,

Sorbonne University, Paris, France, 6Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia

Brain tumor classification is a critical task in medical imaging, as accurate

diagnosis directly influences treatment planning and patient outcomes.

Traditional methods often fall short in achieving the required precision due to the

complex and heterogeneous nature of brain tumors. In this study, we propose

an innovative approach to brain tumor multi-classification by leveraging an

ensemble learning method that combines advanced deep learning models with

an optimal weighting strategy. Our methodology integrates Vision Transformers

(ViT) and E�cientNet-V2 models, both renowned for their powerful feature

extraction capabilities in medical imaging. This model enhances the feature

extraction step by capturing both global and local features, thanks to the

combination of di�erent deep learning models with the ViT model. These

models are then combined using a weighted ensemble approach, where each

model’s prediction is assigned a weight. To optimize these weights, we employ

a genetic algorithm, which iteratively selects the best weight combinations to

maximize classification accuracy. We trained and validated our ensemble model

using a well-curated dataset comprising labeled brain MRI images. The model’s

performance was benchmarked against standalone ViT and E�cientNet-V2

models, as well as other traditional classifiers. The ensemble approach achieved

a notable improvement in classification accuracy, precision, recall, and F1-score

compared to individual models. Specifically, our model attained an accuracy rate

of 95%, significantly outperforming existing methods. This study underscores

the potential of combining advanced deep learning models with a genetic

algorithm-optimized weighting strategy to tackle complex medical classification

tasks. The enhanced diagnostic precision o�ered by our ensemble model

can lead to better-informed clinical decisions, ultimately improving patient

outcomes. Furthermore, our approach can be generalized to other medical

imaging classification problems, paving the way for broader applications of AI in

healthcare. This advancement in brain tumor classification contributes valuable

insights to the field of medical AI, supporting the ongoing e�orts to integrate

advanced computational tools in clinical practice.
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1 Introduction

Brain tumor is the most prevalent condition in children

and also the most challenging sickness to identify. Despite the

advancements in technology and the vast research being conducted

to detect and categorize brain tumors, it remains a difficult

endeavor due to the varied appearance of tumors and their

similarity to normal brain structures. Magnetic resonance imaging

(MRI) is the recommended modality for the detection of brain

tumors. This procedure is remarkably effective despite being quite

time-consuming, and the results are of great quality. The main

goal of this study is to identify and categorize the tumor based

on the provided MRI imaging. The implementation of automated

tumor detection algorithms on MRI images would facilitate the

identification of tumors at the earliest possible stage, a critical factor

in the treatment of brain tumors. Once the tumor is detected, it is

classified according to its severity. This task is intricate and requires

a significant amount of time, as it is performed by radiologists

who analyze a vast collection of MRI images. The implementation

of automated brain tumor identification and classification will

mitigate human error and expedite the detection process. The

initial step in detecting and classifying brain tumors is to establish

a system that assists in segmenting MRI images. This stage include

the initial processing of MRI images, the extraction and reduction

of features, and the classification of the tumor. The next step of

the research is assisting the radiologist with the extensive database.

Automated brain tumor classification is essential for alleviating

the burden on radiologists and offering an effective tool for

tumor categorization.

Brain tumor classification is frequently discussed to assist

radiologists in accurately interpreting brain MRI images for

diagnosis (Zahid et al., 2022). Prior research has demonstrated

the enhancement of different cutting-edge deep learning models

in the categorization of brain tumors. Post-secondary tests and

categorization rely on achieving accuracy and evaluating image

quality, which is a laborious task. Upon the object’s discovery,

it is imperative to promptly identify all potential attributes and

connections among its fundamental elements. This is a broad and

abstract idea. Convolutional neural networks have demonstrated

success in image processing applications within the realm of

deep learning models. The typical architecture comprises many

convolutional layers. These layers capture and isolate different

characteristics found in the input image. However, these qualities

can be more accurately detected by further discerning the

most crucial characteristics of the layers. The pooling layer is

typically used to achieve significant features, but in the current

day, there is a pressing need to identify important features at

each layer.

Classical machine learning methods have demonstrated little

efficacy in addressing real-world problems across several domains,

despite their ability to generate scores for tasks using predefined

knowledge sets. Furthermore, the process of extracting features

from the highly-dimensional inputs of advanced medical devices

becomes insignificant when compared to the constant emergence

of new techniques in the field of deep learning. Hence, in

this study, ensemble learning methods are favored since they

allow for the simultaneous utilization of two or more classifiers

and generally exhibit superior performance compared to deep

learning algorithms. This work introduces a new ensemble

learning technique dubbed BT-ViTEff, specifically developed for

the classification of brain tumors in medical MRI scans. The

approach seeks to address difficult limits, such as intricate and ever-

changing backgrounds, which arise due to the presence of varying

backgrounds in the input medical photos. ViTEff combines the

Convolutional Neural Network EfficientNet v2 (EfficientNetV2)

with the vision transformer V2 model. EfficientNet v2 is a

newly developed convolutional neural network (CNN) structure.

The approach seeks to address the training limitation of

EfficientNet models by showcasing enhanced parameter efficiency

and accelerated learning speed as compared to similar models.

The first steps of preprocessing consist of resizing the receiving

MRI images to dimensions of 224 × 224 pixels. Afterwards,

a range of data augmentation techniques, including rotation,

shearing, shifting, and zooming, are used to enhance the diversity

of the training data. This improves the capacity of our model

to precisely categorize brain tumors into 44 different groups

and avoids overfitting. Afterwards, the MRI images are fed

into the EfficientNet v2 and ViT v2 models to extract complex

characteristics, resulting in a comprehensive representation of

various brain tumor classifications. The fusion model utilizes

Weighted Average Ensembling and Simple Average Ensembling

approaches to combine the feature maps produced by the

EfficientNet v2 and ViT v2 models. Ultimately, we utilize the

genetic algorithm to establish the optimal and superior weight for

each deep learning model employed.

The subsequent sections of the paper are structured in the

following manner. Section 2 provides an overview of previous

studies, while Section 3 provides a detailed explanation of the

materials and procedures used in our research. The experimental

findings are analyzed in Section 4, and Section 5 presents the final

conclusions of this study.

2 Related work

Recent advances in medical image classification have

leveraged various machine learning and deep learning models to

enhance diagnostic accuracy. Studies have shown that ensemble

learning, which combines multiple model predictions, often

outperforms individual models by capturing complementary

strengths. In this section, we aim to describe same previous

work proposed.

2.1 Traditional machine learning
techniques

Various machine learning models, including decision tree, K-

nearest neighbor (K-NN), logistic regression, and multiple support

vector machine (SVM) models, were created using the suggested

features to classify brain tumors.

Wisaeng and Sa-Ngiamvibool (2023) proposed a novel method,

known as fuzzy Otsu thresholding morphological approach,

for segmenting brain tumors. The values derived from each

Frontiers inNeuroinformatics 02 frontiersin.org146

https://doi.org/10.3389/fninf.2024.1444650
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Gasmi et al. 10.3389/fninf.2024.1444650

histogram in the original MRI image were modified by the

implementation of a color normalizing preprocessing approach,

together with histogram specification. The data indicates that

the accuracy rates for images of gliomas, meningiomas, and

pituitaries are 93.77 percent, 94.32 percent, and 94.37 percent,

respectively. This unequivocally confirms that these occurrences

can be precisely identified.

Jena et al. (2022) introduced a method for classifying and

segmenting brain tumors by utilizing textural data and employing

various machine learning methods. The technique is comprised of

two distinct stages: tumor categorization and tumor segmentation.

During the tumor classification stage, the MRI scans undergo

pre-processing, and texture features are taken from the images

using several techniques for texture extraction. The retrieved

features were merged to create a feature vector matrix with

dimensions of 200 × 471. Afterwards, the feature vector matrix

was employed to train five machine learning algorithms: Support

Vector Machines (SVM), k-Nearest Neighbors (k-NN), binary

decision trees, Random Forest (RF), and ensemble approaches.

The experimental findings indicate that the ensemble approaches

yielded the most favorable outcome, attaining a classification

accuracy of 96.98% and 97.01% for BraTS2017 + TCIA and

BraTS2019 + TCIA, respectively.

Varuna Shree and Kumar (2018) have proposed a method

that entails the classification of a tumor into one of two

categories: “malignant” or “benign.” To extract features, they

employ the discrete wavelet transform, and they apply a Support

Vector Machine (SVM) for classification. Compared to the other

classification algorithms, the Support Vector Machine (SVM)

consistently outperformed them in terms of accuracy.

Furthermore, Dev et al. (2019) developed a novel approach

to differentiate between malignant and non-cancerous tumors.

The term “cancerous” denotes a malignant tumor that has the

potential to spread and cause damage. Conversely, “non-cancerous”

denotes a benign tumor that is incapable of disseminating and

is not detrimental. The segmentation technique was employed to

recover segments of the tumor images. Additionally, the authors

implemented amedian filter to completely eradicate any extraneous

noise that was present in the background. Their model achieves an

accuracy of 92.31% by employing a Classification and Regression

Tree (CART) and a Support Vector Machine (SVM).

Within a comparable framework, Williams and Li (2018)

presented a classification technique that employs wavelet pooling.

The researchers found that wavelet pooling produced better results

in comparison to other pooling methods. They obtained positive

results, but, the amount of time required was significant. The

effectiveness of a pooling strategy cannot be determined due to its

reliance on multiple factors, such as the dataset and the number of

levels used in different models.

The researchers in Zacharaki et al. (2009) proposed a technique

that use a Support Vector Machine (SVM) to classify gliomas

into distinct categories. Their multi-classification accuracy rate

was 85%, while their binary classification accuracy rate was 88%.

Furthermore, the authors in Machhale et al. (2015) presented

a model that employs Support Vector Machines (SVM) to

classify brain cancers. Additionally, they performed a comparison

between two Convolutional Neural Network (CNN) models

to determine the most efficient one in terms of attaining

ideal results.

Babu et al. (2023) employed MRI images to develop a method

for classification and segmenting brain tumors. The technique

comprises four procedures: image denoising, tumor segmentation,

feature extraction, and hybrid classification. After applying the

thresholding technique to remove malignancies from brain MRI

scans, they next utilized a wavelet-based approach to extract

unique characteristics from the images. A Convolutional Neural

Network (CNN) was utilized to carry out the conclusive hybrid

categorization. The trial resulted in a segmentation accuracy of

95.23 percent for the technique, whereas the suggested optimized

CNN attained a classification accuracy of 99 percent.

An advanced version of the Support Vector Machine (SVM)

was proposed by Ansari (2023) as a novel approach. In order

to identify and categorize brain cancers using MRI data, they

suggested the implementation of the following four stages:

preprocessing, image segmentation, feature extraction, and image

categorization. The tumors were divided using a fuzzy clustering

technique, and the fundamental characteristics were retrieved using

GLCM. Improvements to the Support Vector Machine (SVM)

were eventually integrated into the categorizing procedure. The

technique used resulted in an accuracy rate of 88%.

2.2 Deep learning techniques

In order to gain a comprehensive understanding of deep

learning algorithms in the specific context of brain tumor detection

and diagnosis, it is crucial to consider the four fundamental

deep learning tasks: single label image classification (İncir and

Bozkurt, 2024b), multi-label/multi-class image classification, object

detection in images, and dense prediction at the pixel level.

The referenced study focuses on single label image classification.

However, our objective is to achieve multi-label/multi-class

image classification. This means that an input MRI scan can

be assigned many tumor kinds or no tumor at all. An

expansion of this work would involve identifying things inside

an image, specifically cancers. Ultimately, dense prediction at the

pixel level would entail accurately segmenting a tumor using

MRI data.

Deep learning is a newly emerged field in machine learning

that involves a classifier which receives an input x and converts

it into a separate domain with the same dimensions. When it

comes to annotated data classification tasks, the input domain

refers to the collection of photos, while the output domain refers

to the collection of class labels. This classifier can be seen as

a combination of numerous elementary feature extraction and

mapping modifications. Deep learning approaches have been

minimally utilized in the domain of brain tumor detection using

patient MRI data, but considerable progress has been made. This

work employs a fusion between tow deep learning models, to

classify input data into one of 44 distinct classes. Although this

method achieves generally good classification outcomes, more

sophisticated deep learning systems have the potential to effectively

categorize complex and noisy data with high dimensionality into a
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reduced dimensional feature space, which could potentially lead to

improved classification results.

In this context, Abd El Kader et al. (2021) introduced

a convolutional neural network (CNN) method for classifying

MR brain images. Their approach involved utilizing differential

deep CNNs. In conventional Convolutional Neural Networks

(CNNs), standard feature maps are generated through either

random initialization or transfer learning. Nevertheless, this

study generated distinct feature maps by utilizing user-defined

hyperactive values and a differential operator proposed by Lei et al.

(2018). The generated differential convolution maps are utilized to

examine the directional patterns of voxels and their surrounding

areas by computing the disparity in pixel activations. The study

presented multiple data augmentation approaches to enhance

the classification model’s generalization performance. The process

of data augmentation resulted in an expansion of the dataset,

increasing its size to 25,000. The results indicate that the inclusion

of differential feature maps enhanced themodel’s performance. The

results additionally demonstrate that the suggested methodology

may accurately classify a significant number of MR images. The

approach attained a classification accuracy of 99.25%, sensitivity of

95.89%, and specificity of 93.75%.

A recent study conducted by Tanvir Rouf Shawon et al.

(2023) introduced a cost-sensitive deep neural network (CS-

DNN) designed to detect brain cancers from MRI (Magnetic

Resonance Imaging) images. The suggested model employed a

DenseNet architecture, a type of convolutional neural network,

to automatically extract intricate and profound characteristics.

Additionally, cost-sensitive learning was incorporated into the

DenseNet to address the issue of class imbalance in the radiology

dataset. The researchers employed both binary andmulti-class cost-

sensitive learning techniques to identify brain tumors from the

MRI imaging dataset. CS-DNN outperformed seven alternative

models in terms of sensitivity, specificity, precision, and accuracy

for Tumor 3MRI images, making it the top performer.

Ge et al. (2020) addressed the issue of limited datasets

by utilizing augmented brain MR images. A paired generative

adversarial network (GAN) was employed to produce synthetic

MR images for four different MRI techniques. The work involved

extracting 2D MRI slices from three different perspectives of 3D

volume images: coronal, axial, and sagittal. The 2D MRI slices

that were obtained were separated into subgroups for training,

validation, and testing purposes. Moreover, a paired Generative

Adversarial Network (GAN) model was employed to produce

artificial Magnetic Resonance Imaging (MRI) for the subset utilized

in training. The pairwise GAN employed a dual input system with

two separate streams. The purpose of this system is to address

two specific situations: (a) generating artificial images of non-

existent patients in order to expand the training dataset, and (b)

generating artificial images for patients who are lacking certain

MRI modalities. The study employed the U-Net architecture.

The ultimate result of the architecture is the classification of

glioma for each individual slice in a magnetic resonance (MR)

image. Therefore, for every patient, the subtype of each MRI slice

was taken into account, and the ultimate diagnostic or subtype

categorization for the patient will be determined by a majority

consensus. The experiments evaluated many case studies, and

the case study that yielded the most favorable outcome attained

an average classification accuracy, sensitivity, and specificity of

88.82%, 81.81%, and 92.17%, respectively.

2.3 Ensemble learning approach

Ensemble learning is employed to enhance the classification

performance. Ensemble learning approaches leverage the power

of several learning algorithms to achieve superior predicted

performance compared to individual algorithms. Currently, there is

a scarcity of research studies on brain tumor classification utilizing

ensemble learning. Bansal and Jindal (2022) employed decision

tree, random forest, and k-NN algorithms to classify brain tumors

in MRI images. The classification of four types of cancers was

performed using intensity, texture, and wavelet data. The highest

level of accuracy achieved was 83.33% by utilizing the random

forest algorithm.

Sekhar et al. (2021) introduced a tumor classification model

that utilizes a modified GoogleNet pre-trained CNN model

together with two machine learning algorithms: Support Vector

Machine (SVM) and k-Nearest Neighbors (k-NN). The project

involved modifying and fine-tuning the last three fully connected

layers of the GoogleNet network using brain tumor photos. The

1,024 feature vector obtained from the final average pooling layer

was recovered after fine-tuning and utilized for training SVM

and k-NN classifiers. The method was assessed using the CE-MRI

dataset, which consists of 3,064 T1w post GBCA brain MR images

obtained from 233 patients. The experimental findings indicate that

GoogleNet achieved a precision of 96.02% and a recall of 97.00%

for glioblastoma while employing the softmax activation function.

The utilization of the SVM classifier resulted in a performance

enhancement of more than 2.5% for the model.

Jena et al. (2022) proposed a technique to classify and

segment brain tumors by leveraging textural data and employing

diverse machine learning algorithms. The technique comprises two

separate stages: tumor categorization and tumor segmentation.

During the tumor classification step, theMRI scans are subjected to

pre-processing, and texture features are gathered from the images

using several texture extraction methods. The study examined

many features that are based on texture. Data was gathered from

a combined set of 100 images of tumors and 100 images without

tumors to extract features. The extracted characteristics were

combined to form a feature vector matrix measuring 200 × 471.

Subsequently, the feature vector matrix was employed to train five

machine learning algorithms: Support Vector Machines (SVM), k-

Nearest Neighbors (k-NN), binary decision trees, Random Forest

(RF), and ensemble techniques. The ensemble methods consist

of seven distinct algorithms: Adaboost, Gentleboost, Logitboost,

LPboost, Robustboost, RUSboost, and Totalboost. After the

training was finished, the study used the photos that had tumors

to construct a hybrid technique for segmenting tumors. The

hybrid technique involves combining the k-NN and fuzzy C-means

clustering techniques. The hybrid approach was used to divide the

tumor regions in the images. The dataset used for model evaluation

consists of the BraTS2017 and BraTS2019 datasets, along with the

Frontiers inNeuroinformatics 04 frontiersin.org148

https://doi.org/10.3389/fninf.2024.1444650
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Gasmi et al. 10.3389/fninf.2024.1444650

Cancer Imaging Archive (TCIA). The experimental results indicate

that the ensemble techniques achieved the maximum outcome.

Kang et al. (2021) introduced a technique for categorizing

brain tumors by employing a combination of deep characteristics.

The methodology comprises three distinct stages. During the

initial phase, input photos undergo pre-processing, and additional

images are created by data augmentation techniques. The

preprocessed photos are subsequently utilized as input for 13 pre-

trained convolutional neural network (CNN) models. Pre-trained

convolutional neural network (CNN) models are employed to

extract features from the images. Specifically, the characteristics

are derived from the fully linked layers of the pre-trained models.

The collected features are utilized for training nine machine

learning classifiers, specifically: Gaussian Nave Bayes, Extreme

Learning Machine (ELM), Adaptive Boosting (AdaBoost), k-NN,

RF, SVM, and neural networks with a fully connected layer.

Furthermore, the three most successful pre-trained models are

identified, and the retrieved features from these models are

merged into a single sequence. Ultimately, the amalgamated

characteristics are employed to train the nine machine learning

classifiers. The method was assessed using three brain MRI

datasets obtained from Kaggle websites. The findings indicated

that DenseNet-169, Inception-v3, and ResNeXt-50 offered themost

favorable characteristics.

Deepak and Ameer (2021) introduced an automated technique

for classifying brain tumors using Support Vector Machines (SVM)

and Convolutional Neural Networks (CNN). A Convolutional

Neural Network (CNN) was employed in the research to extract

picture attributes from Magnetic Resonance Imaging (MRI) scans.

The Convolutional Neural Network (CNN) comprises of five

convolutional layers and two fully linked layers. The feature

maps obtained from the fifth convolution layer and the first fully

connected layer are isolated and utilized independently to train

a Support Vector Machine (SVM) for the purpose of multiclass

classification. The fifth convolution layer has 3,136 feature vectors,

while the first fully linked layer has 10 feature vectors. When

trained on the 10 feature vectors retrieved from the fully connected

layer, the suggested approach attained an accuracy of 95.82%. The

accuracy decreased to 93.83%when themodel was trained using the

3,136-feature set retrieved from the fifth convolution layer. These

findings indicate that Support Vector Machine (SVM) models

trained on smaller feature sets have the capacity to yield superior

outcomes compared to models trained on larger feature sets.

Multiple authors (Pereira et al., 2016) have investigated the

use of tiny kernels to construct deeper networks that mitigate

overfitting. The trials have shown that small kernels produce

effective brain segmentation results. Furthermore, specific research

has established effective and adaptable systems for the detection of

brain cancers. Sharif et al. (2021) devised a versatile framework that

can do multiple functions, including enhancing tumor visibility,

extracting and selecting characteristics, localizing tumors, and

segmenting tumors. The study includedmany advanced techniques

such as the homomorphic wavelet filter, inception-v3 model,

non-dominated sorted genetic algorithm (NGSA), YOLOv2, and

ML algorithms to achieve specific objectives. These objectives

included enhancing tumor visibility, extracting relevant features,

selecting important features, localizing tumors, and segmenting

tumors. The study’s studies illustrate that the adaptable framework

produced positive results. This method will be incredibly beneficial

for medical practitioners as it allows them to effectively handle

several responsibilities.

Binary classification is a significant obstacle for current

classification algorithms. The majority of the current

methodologies were devised to classify brain tumors into two

distinct groups: benign and malignant. The study conducted

by Sajjad et al. (2019) is among the limited number of research

works that have devised a technique for classifying multiple classes

simultaneously. Advanced multi-grade classification techniques

have the potential to enhance the decision-making and diagnosing

abilities of radiologists and other medical practitioners.

3 Proposed model

Convolutional neural networks (CNNs) have consistently

achieved the highest level of performance in computer vision

tasks, specifically in the areas of brain tumor segmentation and

classification, in recent years. Nevertheless, Convolutional Neural

Networks (CNNs) are limited in their ability to effectively collect

extensive information or interconnections because of their tiny

kernel size (Hatamizadeh et al., 2021). Long-range dependencies

refer to situations when the desired outcome is influenced by

visual sequences that were displayed at significantly earlier or

later dates. Medical images often display a series of visual

representations due to the resemblance of human organs (Dai

et al., 2021). The elimination of these sequences will have a

substantial impact on the performance of a CNN model. The

reason for this is that the interconnections among medical picture

sequences, such as modality, slice, and patch, provide substantial

information (Dai et al., 2021). Sequences that have long-range

dependencies can be effectively managed using techniques that

are capable of processing sequence relations. The self-attention

mechanism employed in ViTs (Dosovitskiy et al., 2020) possesses

the ability to effectively capture long-range dependencies, a

crucial factor in achieving accurate brain tumor segmentation.

ViT-based models are able to learn local and global feature

representations by modeling pairwise interactions between token

embeddings, as described in Raghu et al. (2021)’s work on

vision. ViT has exhibited encouraging performance on diverse

benchmark datasets (Hatamizadeh et al., 2021; Wenxuan et al.,

2021).

Although CNNs have achieved notable success, they do

have certain limitations. Initially, Convolutional Neural

Networks necessitate extensive datasets for the purpose of

training. Furthermore, Convolutional Neural Networks (CNNs)

generally lack resilience when it comes to affine rotations and

transformations, as stated by Rodriguez et al. (2019) in their study

on rotation. Moreover, the routing strategy utilized by CNN’s

pooling layers differs from the routing mechanism utilized by

the human visual system. The CNN pooling layer distributes all

the information acquired from the image to every neuron in the

following layer, disregarding crucial details or little objects in the

image (Aziz et al., 2021).
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FIGURE 1

Hybrid deep learning approach for brain tumor classification.

This paper presents a novel ensemble learning method

called BT-ViTEff, presented in Figure 1, which is designed

for classifying brain tumors in medical MRI images. The

approach aims to overcome challenging limitations such as

complex and dynamic backgrounds that are caused by the

presence of changing backgrounds in the input medical images.

ViTEff integrates the advanced Convolutional Neural Network

EfficientNet v2 (EfficientNetV2M) with the second version of

the vision transformer. EfficientNet v2 is a novel convolutional

neural network (CNN) architecture. The proposal aims to

overcome the training constraint of EfficientNet models by

demonstrating improved parameter efficiency and faster learning

speed in comparison to comparable models. The system utilizes

an enhanced progressive learning approach that dynamically

modifies regularization approaches, including data augmentation

and dropout algorithms, based on the input image size. In

order to utilize EfficientNet v2 and ViT v2 models for brain

tumor recognition, the classification layers (final layers) that were

initially designed for distinct classification tasks are eliminated.

As shown in Figure 1, the initial steps of preprocessing involve

scaling the incoming RMI photos to dimensions of 224 × 224

pixels. Subsequently, a variety of data augmentation methods,

such as rotation, shearing, shifting, and zooming, are employed

to increase the diversity of the learning data. This enhances the

capability of our model to accurately classify brain tumors into 44

distinct categories and prevents overfitting. Subsequently, the MRI

images are inputted into the EfficientNet v2 and ViT v2 models

to extract intricate features, thereby generating a comprehensive

representation of different brain tumor classifications. The fusion

model applies techniques such as Weighted Average Ensembling

and Simple Average Ensembling after concatenating the feature

maps generated by the EfficientNet v2 and ViT v2 models. This

ensemble learning model will compute a probability classification

for each image. Weighted ensembling is a form of model averaging

ensembling, which falls under the domain of ensemble methods

that aim to enhance prediction accuracy by aggregating the

predictions of numerous models. Weighted ensembling involves

assigning a specific weight or factor to each model’s prediction,

which represents the model’s relative importance or performance.

The weights allocated to the prediction of each model can

be calculated using several strategies, including cross-validation,

grid search, or meta-learning. Ultimately, we employ the genetic

algorithm to determine the most ideal and superior weight for each

deep learning model utilized.

3.1 E�cientNet model

EfficientNet utilizes a compound coefficient to scale the size of a

CNN (İncir and Bozkurt, 2024c). The EfficientNet scaling approach

employs a standardized set of scaling coefficients to evenly

change these values, hence enhancing the standard procedure. By

increasing the network depth by a factor of α, β , and γ , we are

able to utilize a total of 2N times the quantity of processors that

are currently accessible. By conducting a rapid grid search on the

initial, simplified model, we obtained these fixed coefficients. If the

input image is larger, it is logical to conclude that a network requires

extra layers and channels to expand the receptive field and capture

more detailed patterns. The EfficientNet-B0 network was built by

incorporating MobileNetV2’s inverted bottleneck residual blocks

and incorporating additional squeeze-and-excitation blocks.

3.2 Vision transformer model

The Transformer architecture, presented in Vaswani et al.

(2017), is currently at the forefront of new research in natural

language processing (NLP). Dosovitskiy et al. (2021) was inspired

by the success of self-attention-based deep neural networks in

natural language processing to design the Vision Transformer
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(ViT) architecture for picture categorization in NLP. Training

these models often requires decomposing the input image into

its individual components and subsequently considering each

embedded component as if it were a word in a natural language

processing (NLP) system. These models utilize self-observation

modules to establish the connection between the concealed

patches. Due to their exceptional efficacy, numerous scientists

have investigated ViT models for diverse visual tasks (Yu et al.,

2021). Carion et al. (2020) introduced a novel architecture for

object recognition systems. This architecture utilizes an aset-based

global loss and a transformer-encoder-decoder technique. They

obtained equivalent results to the popular R-CNN approach on the

challenging COCO dataset.

Steiner et al. (2021) initially presented his established

architecture, which closely resembled the original ViT design

by Dovosviky, but with a linear classifier instead of the MLP

header. To summarize, the initial stage of training a ViT model

involves dividing the input image into smaller segments. The

transformer encoder takes a sequence of 1D patch embeddings as

input. It employs self-attention mechanisms to compute a weighted

sum of the outputs from each hidden layer, considering their

interdependencies. This is accomplished by feeding the sequence

into an encoder. The transformers utilize this mechanism to decode

the global dependencies of the input photos. Refer to Figure 2 for a

simple vision 348 transformer architecture.

3.3 Ensemble learning for brain tumor
classification

At this point, we were concentrating on the last step to classify

the input image. Ensemble learning models strive to combine the

outcomes of several algorithms to improve overall performance and

facilitate interpretation. This section highlights the hybridization

strategy commonly employed to enhance predictive accuracy

and resilience. Numerous ensemble learning techniques are

documented in the literature, and we will use two approach:

Ensemble averaging is a technique used to enhance the accuracy

and stability of a predictive model by merging the predictions of

numerous base models. In this methodology, every foundational

model is trained using the identical dataset, but with distinct

hyperparameters, algorithms, or subsets of features. This is done

to capture various facets of the data and mitigate the likelihood

of overfitting. After training the base models, their forecasts are

consolidated into a single prediction by an averaging strategy,

such as simple averaging or weighted averaging. The arithmetic

mean is determined by summing the forecasts of each base model

and thereafter dividing by the total number of models. Simple

average ensembling is a direct and efficient method for merging the

predictions of many models, particularly when the separate models

exhibit comparable performance and reliability.

Simple average ensembling is a versatile technique that may

be used in various machine learning applications and algorithms,

including as regression, classification, and clustering, among

others. In addition, it is possible to integrate this strategy with

other ensemble methods, such as weighted averaging or bagging, in

order to enhance the model’s performance and accuracy. Weighted

ensembling involves assigning a specific weight or factor to each

model’s prediction, which indicates the model’s relative importance

or performance. The weights allocated to the prediction of each

model can be established by many strategies, including cross-

validation, grid search, or meta-learning.

Weighted ensembling is a versatile and potent strategy

that can merge the advantages of several models and alleviate

their limitations, resulting in enhanced prediction accuracy and

resilience. In our model, we use an optimal algorithm to select the

optimal weight for each model.

3.4 Optimal weight selection

In the domain of medical image classification, achieving

high accuracy is paramount and ensemble learning, which

combines the predictions from multiple models, often yields

superior performance compared to individual models; however,

determining the optimal weights for each model in the ensemble

is a challenging task and to address this, we propose the use of a

Genetic Algorithm (GA) for weight selection, aiming to maximize

the accuracy of our brain tumor classification system; a Genetic

Algorithm is an optimization technique inspired by the principles

of natural selection and genetics, operating through a process

of selection, crossover, and mutation to evolve solutions toward

optimality, with the main components including a population of

potential solutions (chromosomes) to the optimization problem,

each chromosome representing a pair of weights alpha and beta

for the deep learning models in the ensemble, and a fitness

function evaluating howwell each chromosome solves the problem,

which in our case is the accuracy of the ensemble model; the

selection process chooses the best chromosomes for reproduction

based on their fitness scores, with crossover combining pairs

of selected chromosomes to produce offspring, and mutation

introducing random variations to maintain genetic diversity, all

iterating through generations until convergence criteria are met,

such as a maximum number of generations or a satisfactory

fitness score; the implementation of the GA involves generating

an initial population with random values for alpha and beta,

evaluating the fitness function for each chromosome based on

the accuracy of the ensemble model, selecting the top-performing

chromosomes, performing crossover and mutation to create a

new generation, and repeating the process until the optimal

weights are found, thus leveraging the complementary strengths

of the Vision Transformer and other deep learning models, with

results demonstrating that the GA-enhanced weighted average

ensemble outperforms individual models and simple averaging

methods, achieving superior accuracy, precision, recall, and F1-

score, ultimately contributing to more reliable and accurate

diagnostic tools in healthcare, and highlighting the potential of

evolutionary algorithms in fine-tuning ensemble learning models

for complex medical image classification tasks.

To adapt the Genetic Algorithm for selecting the optimal

weights (alpha and beta) in our ensemble learning model, we

follow these steps, Figure 3: 1) Chromosome Representation: Each

chromosome represents a pair of weights α and β for the models in

the ensemble. The weights must satisfy the condition : α and β = 1
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FIGURE 2

A basic depiction of a vision transformer architecture. ahttps://cameronrwolfe.substack.com/p/vision-transformers.

FIGURE 3

Genetic algorithm steps (Gasmi et al., 2024).

2) Initial Population: Generate an initial population of

chromosomes with random values for α and β .

3) Fitness Function: The fitness function evaluates the accuracy of

the ensemble model for each chromosome. Given a chromosome

with weights α and β , the fitness function is defined as: Fitness(α,

β)=Accuracy;

4) Selection: Select the top-performing chromosomes based on

their fitness scores. Techniques such as roulette wheel selection or

tournament selection can be used.

5) Crossover: Combine pairs of selected chromosomes to produce
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offspring. For example, a simple crossover method could be:

Offspring1 = (α1, β2) and Offspring2 = (α2, β1)

where (α1, β2) and (α2, β1) are parent chromosomes

6) Mutation: Introduce random changes to the offspring to

maintain genetic diversity. For instance, a small random value

could be added or subtracted from (α, β), ensuring that the sum

remains 1.

7) New Generation: Replace the old population with the new

generation of chromosomes.

8) Termination: Repeat the selection, crossover, and mutation steps

until convergence criteria are met, such as a maximum number of

generations or a satisfactory fitness score.

3.5 Results and discussions

This section provides the findings of the experiments

conducted on the model described in this study. In

addition, we evaluate the outcomes achieved through various

classification techniques using deep learning models. The Python

implementation of the suggested model utilized a Rtx 2,060

graphics card and 16 GB of RAM.

In order to implement our suggested model, we conducted

multiple sets of tests utilizing deep learning models. The structure

of our model encompasses three distinct scenarios:

1. Scenario 1: Brain Tumor classification based on the deep

learning models.

2. Scenario 2: Brain Tumor classification based on the hybrid deep

learning models.

3. Scenario 3: Brain tumor classification based in the weight

selection method.

3.6 Data set description and evaluation
metrics

To assess our improved deep learning model, we

used a dataset with 44 classes,1 which is available online.

Figure 4 provides an example of each classes in the

data set.

We employed typical measures, such as accuracy, precision,

recall, and F-measure, to test our classification approach.

Accuracy = (TP + TN)/(TP + TN + FP + fN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

F1− score = TP/(TP + 0.5 ∗ (FN + FP)) (4)

Where TP stands for true positive, FP stands for false positive, P

stands for precision, R stands for recall, TPR stands for true positive

rate, and FPR stands for false positive rate.

1 https://www.kaggle.com/datasets/fernando2rad/brain-tumor-mri-

images-44c

3.7 Brain tumor classification based on
deep learning models

The main objective of this study was to utilize hybrid deep

learning models for the categorization of brain tumors. However,

in this section, we aimed to classify MRI images into 44 distinct

classes of brain tumors by leveraging various state-of-the-art deep

learning models. The models evaluated in this study include

Inception-ResNet-v2, EfficientNet V2, MobileNet V2, and the

Vision Transformer (ViT). These models were chosen because

of their strong track record in image classification, particularly

in medical imaging. They offer a good balance between high

accuracy and computational efficiency, making them ideal for

complex tasks like brain tumor classification. The decision to

use these models was based on results from similar studies in

the same field, where they consistently performed well. Each

model brings unique strengths: Inception-ResNet-v2 is excellent

at capturing detailed features in images, EfficientNet V2 is highly

efficient and scalable, MobileNet V2 is lightweight and suited for

mobile applications, and ViT uses transformer-based attention

mechanisms to extract deep features. Together, these models

form a strong foundation for evaluating and improving tumor

classification using medical image datasets. Our results, as detailed

in Table 1, demonstrate significant variation in performance

metrics such as accuracy, precision, recall, and F1-score across the

different models.

From the results, EfficientNet V2 emerges as the top-

performing model with an accuracy of 93.95%, precision of

95.02%, recall of 93.95%, and F1-score of 94.01%. This superior

performance can be attributed to EfficientNet V2’s optimized

architecture, which balances depth, width, and resolution for better

accuracy and efficiency.

The Vision Transformer (ViT B16) also performed remarkably

well, achieving an accuracy of 87.90%, precision of 89.64%, recall of

87.90%, and F1-score of 88.11%. This indicates that the ViT model,

with its ability to capture global dependencies in the image data,

is well-suited for complex image classification tasks such as brain

tumor classification.

In contrast, the Inception-ResNet-v2 andMobileNet V2models

demonstrated lower performance metrics. The Inception-ResNet-

v2 model achieved an accuracy of 70.82%, precision of 73.37%,

recall of 70.82%, and F1-score of 71.04%. MobileNet V2, known

for its lightweight architecture, attained an accuracy of 74.02%,

precision of 77.36%, recall of 74.02%, and F1-score of 73.90%.

While these models are efficient, their performance is not as robust

as EfficientNet V2 and ViT for this specific task.

The discrepancy in performance can be attributed to several

factors. EfficientNet V2’s scaling strategy allows it to adaptively

scale network dimensions, leading to better feature extraction and

classification accuracy. ViT’s attention mechanisms enable it to

handle the spatial hierarchies and complex patterns in MRI images

more effectively. On the other hand, while Inception-ResNet-v2

combines the strengths of Inception and ResNet architectures, it

might not be as finely tuned for this specific application. Similarly,

MobileNet V2’s design for mobile and edge devices might limit

its capacity to capture intricate details necessary for distinguishing

between 44 brain tumor classes.
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FIGURE 4

Examples of images taken from the dataset.

In conclusion, our findings underscore the importance of

model selection in medical image classification tasks. EfficientNet

V2 and Vision Transformer (ViT) stand out as particularly effective

for classifying brain tumors from MRI images. Future work could

focus on further optimizing these models and exploring ensemble

methods to enhance classification performance even further.
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TABLE 1 Performance metrics for di�erent deep learning models.

Accuracy Precision Recall f1_score

Inception-

resnet-v2

0.708185 0.733747 0.708185 0.710366

Efficientnet-v2 0.939502 0.950218 0.939502 0.940100

MobileNet-V2 0.740214 0.773633 0.740214 0.738958

Vision

transformer

0.879004 0.896360 0.879004 0.881115

Additionally, incorporating domain-specific data augmentation

and preprocessing techniques could potentially improve the

accuracy and reliability of the classification results.

3.8 Brain tumor classification based on an
hybrid deep learning model

In our study, we aimed to classify MRI images into 44

distinct classes of brain tumors using various state-of-the-art deep

learning models. To further enhance classification performance,

we employed ensemble learning techniques, combining the Vision

Transformer (ViT) model with other models such as Inception-

ResNet-V2, EfficientNet V2, and MobileNet V2. The ensemble

methods included both average and weighted average techniques,

with the latter varying the weights (alpha for the first model and

beta for ViT) to optimize performance. Table 2 below summarizes

the results.

From the results, the combination of ViT and EfficientNet-V2

using average ensemble learning achieved the highest performance

with an accuracy of 95.37%, precision of 96.15%, recall of 95.37%,

and F1-score of 95.41%. This demonstrates the robustness of

ensemble methods in leveraging the strengths of different models

to enhance classification performance.

The weighted average ensemble also showed promising results,

particularly with a weight distribution of α = 0.2 and β = 0.8 for

the ViT and EfficientNet-V2 combination, achieving an accuracy

of 93.95%. This suggests that placing more emphasis on the

ViT model, which effectively captures global dependencies, can

significantly boost performance.

Interestingly, the ViT and Inception-ResNet-V2 combination

also performed well, especially with the weighted average ensemble

method (α = 0.2, β = 0.8), achieving an accuracy of 90.04%.

However, the performance dropped when the weight distribution

favored the Inception-ResNet-V2 model (α = 0.8, β = 0.2),

indicating the importance of optimal weight selection in ensemble

methods.

Similarly, the combination of ViT and MobileNet-V2 showed

improved performance with the weighted average method (α =

0.2, β = 0.8), achieving an accuracy of 88.25%, while favoring

MobileNet-V2 (α = 0.8, β = 0.2) resulted in lower performance.

In summary, our findings highlight the efficacy of ensemble

learning in brain tumor classification. By integrating different

models and optimizing weight distributions, we can significantly

improve classification accuracy and other performance metrics.

The success of the ViT and EfficientNet-V2 combination, in

particular, underscores the potential of using advanced deep

learning models and ensemble techniques for complex medical

image classification tasks. Future work could explore further

optimizations and the incorporation of additional models to

continue enhancing classification performance.

3.9 Evaluation of the significance
improvement of ensemble learning by
weighted selection method for brain tumor
classification

In this section, we evaluate the significance of our optimization

method in improving the performance of ensemble learning

for brain tumor classification. By applying a genetic algorithm

to determine the optimal weights for combining deep learning

models, we aimed to enhance classification accuracy, precision,

recall, and F1-score. The results in Table 3 demonstrate the

effectiveness of our approach, highlighting the potential

of weighted ensemble learning in advancing medical image

classification tasks.

The application of a genetic algorithm to optimize the weights

(alpha and beta) for combining deep learningmodels demonstrated

significant improvements in performance metrics for brain tumor

classification. The results shown in the Table 3 illustrate the

efficacy of the weighted average ensemble learning approach across

multiple generations, where each generation represents a different

combination of alpha (α) and beta (β) values. The optimized

weighted average model with α = 0.44 and β = 0.56 achieved the

highest accuracy score of 0.9609, coupled with a precision score of

0.9691, indicating that the genetic algorithm successfully identified

a near-optimal balance between the two models, enhancing the

overall accuracy and precision of the classification. Across different

generations, the results consistently show high values for accuracy,

precision, recall, and F1-score, underlining the robustness of the

genetic algorithm in optimizing the ensemble weights. For instance,

models with α = 0.44, β = 0.56 and α = 0.73, β = 0.27 both

achieved an accuracy of 0.9609, reflecting reliable performance

improvements. The impact of varying the weights is evident, as seen

in themodel with α = 0.17, β = 0.83, which achieved a slightly lower

accuracy of 0.9395, emphasizing the importance of fine-tuning the

weights to leverage the strengths of each model optimally. The

top-3 accuracy metric remains consistently high (0.9822) across

different weight combinations, indicating the model’s robustness

and reliability in clinical scenarios. The enhanced performance

metrics obtained through the genetic algorithm optimization have

significant implications for clinical practice, ensuring more reliable

diagnoses critical for treatment planning and patient outcomes,

thus providing confidence in the model’s predictions and aiding

clinicians in making more informed decisions.

3.10 Comparative study

The Table 4 compares our work to several other studies on brain

tumor classification, highlighting differences in the methods used,

the datasets, the number of classes, and the resulting accuracy.
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TABLE 2 Performance metrics for hybrid models.

Hybrid model Ensemble learning technique Accuracy Precision Recall f1_score

ViT + InceptionResnet

V2

Average Ensemble 0.886121 0.903569 0.886121 0.888955

Weighted average:

(α = 0.2, β = 0.8)

0.900356 0.908926 0.900356 0.900590

Weighted average:

(α = 0.8, β = 0.2

0.779359 0.802382 0.779359 0.781597

ViT +MobileNet V2 Weighted average:

(α = 0.2, β = 0.8)

0.882562 0.892685 0.882562 0.882396

Weighted Average:

(α = 0.8, β = 0.2)

0.786477 0.805635 0.786477 0.781143

ViT + EfficientNet V2 Average Ensemble 0.953737 0.961463 0.953737 0.954080

Weighted Average:

(α = 0.8, β = 0.2)

0.950178 0.961736 0.950178 0.950381

Weighted Average:

(α = 0.2, β = 0.8)

0.939502 0.952808 0.939502 0.941447

TABLE 3 Performance metrics of optimized weighted average models for brain tumor classification using genetic algorithm-selected alpha (α) and beta

(β) values.

Accuracy Precision Recall f1_score top_3_accuracy

Weighted average

(α = 0.8, β = 0.2)

0.950178 0.959987 0.950178 0.951458 0.982206

Weighted average

(α = 0.44, β = 0.56)

0.9609 0.9691 0.9609 0.9616 0.9822

Weighted average

(α = 0.17, β = 0.83)

0.9395 0.9530 0.9395 0.9415 0.9822

Weighted average

(α = 0.73, β = 0.27)

0.9609 0.9673 0.9609 0.9610 0.9822

A key point of comparison is the complexity of the datasets,

particularly the number of classes, which has a significant impact

on the difficulty of the classification task.

In earlier studies, such as those proposed by Avants et al.

(2008); Hinton and Sejnowski (1986), the datasets consist of only

three classes. These studies achieved high accuracies, ranging from

88.86% to 95.82%, using CNN-based models. However, with fewer

classes, the task is relatively simpler, as the models have fewer

categories to differentiate between, making high accuracy more

achievable.

Authors in Tomasila and Emanuel (2020), are worked with a

dataset of four classes, comprising 53 images per class, and reported

accuracies between 92% and 98.41%. The highest accuracy in this

group, 98.41%, was achieved by reviewer, who used a combination

of EfficientNetV2-M and Inception-V3.

In contrast, our study takes on a much more complex task,

utilizing a dataset with 44 classes, significantly increasing the

difficulty of the classification problem. Despite this challenge,

our model–combining Vision Transformers (ViT) with

EfficientNetV2–achieved an accuracy of 96.09%. This is a

remarkable result, considering the higher number of classes. Our

model needed to differentiate between many more categories,

each with potentially subtle differences, making the classification

process more demanding.

While some studies report slightly higher accuracy, it’s

important to recognize that they were working with much simpler

datasets. Our model’s ability to maintain a high accuracy on a

dataset with 44 classes demonstrates its robustness and ability to

handle more complex tasks. This makes our approach particularly

valuable for real-world applications where models need to classify a

wide range of tumor types or conditions with high precision.

4 Conclusion

In this study, we have explored the efficacy of combining

different deep learning models, including Inception-ResNet-V2,

EfficientNet-V2, MobileNet V2, and Vision Transformers (ViT),

for the classification of MRI images into 44 brain tumor classes.

Our experiments demonstrated that ensemble learning techniques,

particularly weighted average ensembles, significantly enhance

classification performance, with the ViT + EfficientNet-V2 model

achieving the highest accuracy. Furthermore, by adopting a Genetic

Algorithm to optimize the weights in the ensemble models, we

were able to achieve even greater improvements in accuracy,

precision, recall, and F1-score. These results underscore the

potential of hybrid deep learning approaches and optimization

algorithms in advancing medical image classification. Future work
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TABLE 4 Comparative study between proposed approaches for brain tumor classification.

Study Method Dataset Number of class Accuracy

Abiwinanda et al. (2019) CNN 1 3 88.86

Sajjad et al. (2019) VGG-16 – 3 94.58

Deepak and Ameer (2021) CNN+SVM – 3 95.82

Asif et al. (2023) Xception 2 4 95.87

İncir and Bozkurt (2024a) EfficientNetV2-M + Inception-V3 – 4 98.41

Sandhiya and Raja (2024) ELM+PSO – 4 97.97

Vankdothu et al. (2022) LSTM+CNN – 4 92

Our work ViT+ EfficientNetV2 1 44 96.09

1https://figshare.com/articles/dataset/brain_tumor_dataset/1512427. 2https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri.

will focus on further refining these models and exploring their

applicability to other complex medical imaging tasks, ultimately

contributing to more accurate and reliable diagnostic tools

in healthcare.
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