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Editorial on the Research Topic
The role of natural and synthetic antioxidants in the therapeutic targeting
of oxidative stress

Oxidative stress is involved in a wide range of diseases, including neurological
(Pizzino et al., 2017), cardiovascular (Valaitiené and Laucyte-Cibulskiene, 2024), and
pulmonary diseases, diabetes and cancer (Forman and Zhang, 2021). However, attempts at
the prevention and treatment of such diseases using small-molecule antioxidants have often
been unsuccessful. It was then suggested that the focus should be shifted towards disease-
specific and target-directed therapy (Firuzi et al., 2011), leading to antioxidant compounds
being accepted for clinical use. This Research Topic includes studies exploring the role of
natural and synthetic antioxidants in the therapeutic targeting of oxidative stress, assessing
the efficacy and the mechanisms by which antioxidants exert their effects.

Plant-derived antioxidants are a large group of natural compounds possessing ROS-
scavenging activity (Remigante et al, 2023; Pirtskhalava et al, 2024). Despite the
accumulated data on antioxidant structures and properties, the bioactivity of many
natural compounds remains unknown. The action mechanism and therapeutic potential
of licochalcone B, a plant-derived chalcone, were examined in the extensive review by
Shaikh et al. Licochalcone B has antioxidant properties, possessing anti-inflammatory,
anti-cancer, hepatoprotective, and neuroprotective effects. These diverse pharmacological
activities were linked to autophagy, apoptosis, inflammation, and oxidative stress. The
signalling mechanisms that modulated these responses were identified, and the potential
of licochalcone B as a lead compound for drug discovery was demonstrated.

The review of Ghosh etal. discusses the biological activities of Vaccinium-
derived anthocyanins (quercetin, myricetin and their glycosidic derivatives),
which demonstrated cardioprotective, antidiabetic, anticancer, neuroprotective, anti-
inflammatory, antimicrobial and antiviral effects. The review discusses the experimental
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results, which indicate that total anthocyanin, phenolic and
antioxidant contents may be associated with the berry’s effectiveness.
However, challenges regarding in vitro and in vivo studies for
elucidating the mechanism of action and health benefits for various
groups of patients remain.

The action of another natural antioxidant, flavonoid chrysin,
against the effects of organophosphorus pesticide methidathion
on ovaries was demonstrated in the study of Hamed etal
Chrysin efficiently alleviated pesticide-induced ovarian damage,
as was demonstrated by significantly improved lipid peroxidation
and the content of non-enzymatic and enzymatic antioxidants,
preventing hormonal imbalance and histopathological changes in
methidathion-treated rats.

For the first time, the antimalarial potential of bioactive
constituents derived from the bark of Schleichera oleosa was
reported in the study of Vanaja etal. The novel compounds
scillarenin, possessing antioxidant properties and 4-[(Z)-(6-
hydroxy-3-oxo-1-benzofuran-2(3H)-ylidene) methyl] phenyl beta-
D-glucopyranoside were identified, using GC-MS and LC-MS.
Molecular docking confirmed the strong binding affinities of these
compounds to malaria target proteins ICEQ and 4ZL4, surpassing
some standard drugs in efficacy.

Since oxidative damage is strongly implicated in the
pathogenesis of neurodegenerative (Kamat et al, 2008) and
neuropsychiatric diseases (Pandya et al., 2013), the mechanism
of oxidative damage and the role of antioxidants in the prevention
and treatment of these diseases were explored in several studies.

Thus, the review by Yao et al. discusses the role of potential
oxidative biomarkers in the prognosis of intracerebral haemorrhage
(ICH) and the development of antioxidative treatments. The higher
levels of oxidative stress indicators (malondialdehyde, hydroxy-
2-nonenal, F2 isoprostanes, and ischemia-modified albumin)
were detected in ICH patients. ICH also increased the activity
of antioxidant enzymes (SOD, CAT, GPX) and non-enzymatic
antioxidants (vitamins A, E and C). However, the results of ROS-
targeted therapy of ICH did not demonstrate high effectiveness.
It was suggested that the successful treatment of ICH requires
an increase in the degradation and neutralisation of ROS, which
could be achieved via modulation of several signalling pathways
(Nrf2/ARE, Wnt/B).

Liu etal. demonstrated the role of oxidative stress in the
pathogenesis of schizophrenia, major depressive disorder, anxiety
and bipolar disorder and explored the role of antioxidants
in the prevention of these diseases. The functions of such
antioxidants as N-acetylcysteine, sulforaphane, alpha-lipoic acid,
L-carnitine, ascorbic acid and flavones in the alleviation of
symptoms of neuropsychiatric disorders via the provision of
antidepressant, neurotropic and anti-inflammatory effects were
discussed. The authors concluded that antioxidants maintain
the normal functioning of the nervous system by regulating
the balance of neurotransmitters, inhibiting inflammatory
responses and improving the efficiency of the mitochondrial
energy metabolism.

Micucci et al. assessed the toxicity of Q10-diacetate, a derivative
of coenzyme Q10, on the mouse hippocampal neuronal cell line
under rotenone-induced oxidative stress. Q10-diacetate possesses
antioxidant properties and is not toxic under normal conditions.
Q10-diacetate reduced superoxide production, enhanced the
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expression of mitochondrial biogenesis genes, and contributed
to sustained ATP synthesis under oxidative stress conditions.
These findings indicate the need for an in vivo investigation
into the pharmacokinetics of QIl0-diacetate for therapeutic
application.

Several studies revealed the association between the reduced
expression and activity of antioxidant enzymes and the development
of vascular diseases (Radovanovic et al., 2021), but the data on
the use of antioxidant enzymes as markers of such disease are
contradictory. The clinical study by Chung etal. performed on
randomly selected immunosuppressive drug-naive patients with
antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis
(AAV) demonstrated for the first time that the activity of the one of
first-line antioxidant defence enzyme, serum glutathione peroxidase
isoenzyme (GPX-3) correlates with vasculitis activity and was
significantly lower in patients with general AAV manifestation in
comparison with those without. The study suggests using serum
GPX-3 as a complementary biomarker for assessing AAV activity in
clinical practice.

The magnetically targeted nanocomposite for the delivery
of hydrophobic antioxidant curcumin and a calcitonin gene-
related peptide (CGRP) antagonist (CGRPi) for the treatment of
neuropathic pain was obtained in the study of Zhu et al. Curcumin
provides an analgesic effect, and CGRP expression levels increase
after nerve injury. An in vivo study demonstrated that the drug-
delivery system can effectively enter the site of sciatic nerve injury
in mice, alleviating the injury, inflammatory and neuropathic
pain response. The introduction of nanocomposites also inhibited
oxidative stress and ROS production, indicating the feasibility of the
application in the treatment of neuropathic pain.

The studies presented in this Research Topic provide important
insights into the structure and mode of action of synthetic and
natural antioxidants. We are grateful to all authors, reviewers, and
contributors who helped to make this Research Topic a success.
Their studies have increased our comprehension of the role of
antioxidants as therapeutic agents and enabled future developments
in this field.
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Therapeutic potential and action
mechanisms of licochalcone B: a
mini review

Sibhghatulla Shaikh*?, Eun Ju Lee™?, Khurshid Ahmad®?* and
Inho Choi?*
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Licochalcone B (LicB), a chalcone derived from Glycyrrhiza uralensis and
Glycyrrhiza glabra, has received considerable attention due to its diverse
pharmacological properties. Accumulated data indicates that LicB has
pharmacological effects that include anti-cancer, hepatoprotective, anti-
inflammatory, and neuroprotective properties. The action mechanism of LicB
has been linked to several molecular targets, such as phosphoinositide 3-kinase/
Akt/mammalian target of rapamycin, p53, nuclear factor-kB, and p38, and the
involvements of caspases, apoptosis, mitogen-activated protein kinase-
associated inflammatory pathways, and anti-inflammatory nuclear factor
erythroid 2-related factor 2 signaling pathways highlight the multifaceted
therapeutic potential of LicB. This review systematically updates recent
findings regarding the pharmacological effects of LicB, and the mechanistic
pathways involved, and highlights the potential use of LicB as a promising lead
compound for drug discovery.

KEYWORDS

flavonoid, licochalcone B, anti-cancer, anti-inflammatory, hepatoprotective

1 Introduction

The pharmacological properties of various herbal preparations and natural compounds
have been the subjects of increasing research in recent years (Atanasov et al., 2021; Shaikh
etal, 2021; Ahmad et al,, 2023). Glycyrrhiza spp. (belonging to Fabaceae family), also called
licorice, sweet wood, or mulaithi, is a perennial herb found globally. The name combines the
Greek words “glykys” (sweet) and “rhiza” (root) (El-Saber Batiha et al., 2020). Glycyrrhiza
spp. contains a variety of bioactive compounds including chalcones with various biological
properties that include anti-inflammatory, antiviral, antimicrobial, antioxidant, anticancer,
immunomodulatory, hepatoprotective, and cardioprotective effects (Asl and Hosseinzadeh,
2008; Yang et al., 2015). Chalcones and their derivatives have attracted considerable interest
in the medical field due to their wide-ranging pharmacological activities and clinical
potential. At the molecular level, chalcones contain two aromatic rings linked by an

Abbreviations: LicB, Licochalcone B; SM, Skeletal muscle; NLRP3, NLR family pyrin domain containing 3;
LPS, Lipopolysaccharide; NO, Nitric oxide; 15-LOX, 15-lipoxygenase; MDA, Malondialdehyde; OS,
Osteosarcoma; DR, Death receptor; FnC60, Fullerene C60; LDH, Lactate dehydrogenase; CCl4,
Carbon tetrachloride; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; Nrf2, Nuclear
factor erythroid 2-related factor 2; HCK, Hemopoietic cell kinase; STING, stimulator of interferon genes.
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a, B-unsaturated a-carbon ketone moiety, which forms the core
structure (Zhuang et al., 2017). Pharmacologically, licochalcone A
and licochalcone B (LicB), which are components of the roots of
Glycyrrhiza spp., have emerged as noteworthy bioactive compounds.
The pharmacological effects of licochalcone A have recently been
reviewed extensively elsewhere (Li M. T. et al,, 2022), and thus, here
we focus on the pharmacology of LicB.

LicB has a variety of pharmacological effects; for example, it is
cardioprotective (Han et al, 2014), has anti-Alzheimer’s disease
effects (Cao et al, 2020), possesses anti-oxidant and radical
scavenging properties (Fu et al, 2013), and the ability to induce
cancer cell apoptosis (Yuan et al., 2014; Yu et al,, 2016). Our research
group continues to search for naturally occurring compounds that
target proteins involved in skeletal muscle (SM) and associated
disorders (Baig et al., 2017; Ahmad et al., 2021; Lee et al.,, 2021; Ali
et al, 2022; Ali et al, 2023a; Ali et al, 2023b). Recently, we
demonstrated that LicB binds strongly to the catalytic site of
DPP4 and concentration-dependently inhibits its activity, which
suggests LicB has potential use as an antidiabetic agent (Shaikh et al.,
2022). The promising therapeutic potential of LicB for the
management and prevention of clinical diseases emphasizes the
need for an updated review of its pharmacology. Thus, this review
was undertaken to summarize recent pharmacologic advances,
investigate the potential applications of LicB for the management
of various diseases, and provide critical insight into the clinical use of
LicB. In addition, we discuss the toxicity profile of LicB.

2 Pharmacological effects
2.1 Effects on skeletal muscle/myogenesis

SM is the most abundant body tissue, and in addition to body
movements and posture, it regulates temperature and physically
protects internal organs and soft tissues. In addition, SM can
regenerate in response to injury or disease and is an important
marker of diabetes, obesity, and age-related diseases. Recently, we
found that Glycyrrhiza uralensis inhibits MSTN, a key (negative)
regulator of muscle growth, and promotes myogenesis and that LicB
is a primary promoter of myoblast differentiation and proliferation
(Lee et al, 2021). This study provided a basis for a more
comprehensive investigation of the LicB’s biologic mechanisms of
LicB, especially on its ability to regulate MSTN and atroginl and
MuRF1 (markers of muscle atrophy) employing in silico, in vitro,
and in vivo approaches. A subsequent study revealed how LicB
inhibits MSTN and promotes proliferation and
differentiation, which are both required for muscle regeneration.

muscle

These studies improved our understanding of the therapeutic
mechanisms of LicB, its anti-aging properties, and its ability to
ameliorate muscle-wasting conditions. These findings enhanced the
therapeutic narrative and established LicB as a clinical candidate
(Ahmad et al., 2024).

2.2 Anti-inflammatory effects
The abnormal activation of NLRP3 (NLR family pyrin

domain containing 3) inflammasome has been linked to a
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variety of inflammatory pathologies, and LicB inhibits

NLRP3 inflammasome activation in macrophages. The
mechanism involves LicB binding directly to NEK7, thus
disrupting ~ the  interaction  between = NLRP3  and

NEK7 and suppressing the activation of

NLRP3 inflammasome. Additionally, in murine models, LicB

effectively

protected against NLRP3-mediated diseases such as non-
(LPS) and
monosodium urate stimulated septic shock, and peritonitis (Li

alcoholic  steatohepatitis, lipopolysaccharide
Q. et al, 2022). Collectively, LicB appears to be a selective
NLRP3 inhibitor with therapeutic potential for the treatment
of NLRP3 inflammasome-related disorders.

LicB has been demonstrated to suppress PKA activation
effectively, thus, to inhibit LPS-stimulated NF-xB
phosphorylation at serine 276 and activation in
RAW264.7 cells. Furthermore, LicB significantly reduced LPS-
stimulated nitric oxide (NO), TNF-a, and MCP-1 generation in
RAW264.7 cells (Furusawa et al., 2009). Similarly, in another
study, LicB exhibited potent inhibitory activity against LPS-
induced NO production in RAW 264.7 cells with an ICsq of
8.78 uM (Lin et al., 2017b). In addition, LicB attenuated BDE-47-
stimulated oxidative damage in RAW264.7 cells by activating the
Nrf2 pathway and inhibiting the NF-xB pathway, thereby
preventing immunological dysfunction and apoptosis (Dong
M. et al.,, 2024).

LicB also potently scavenged ABTS(+) radicals and inhibited

and

lipid peroxidation in rat liver microsomes, dose-dependently
suppressed ROS generation in RAW264.7 cells, and effectively
inhibited NO, IL-6, and prostaglandin E2 generation in LPS-
stimulated macrophages (Fu et al., 2013).

The enzyme 15-lipoxygenase (15-LOX) is a critical target for
treating various inflammatory disorders, and LicB inhibits 15-
LOX with an IC5y 0f 9.67 uM (Li et al., 2021). Furthermore, LicB
inhibits TNF-a release by LPS-induced RAW264.7 cells.
Computational analysis demonstrated that the targeting of
Thr412, Arg4l5, Val420, Thr429, Ile602, and Trp606 of 15-
LOX by LicB was largely responsible for 15-LOX inhibition
(Li et al, 2021). This study identified LicB as a 15-LOX
inhibitor and laid the groundwork for future 15-LOX
inhibitor research.

LicB reduced inflammation and oxidative stress in LPS-
stimulated periodontal ligament cells. LicB inhibited the NEF-
kB/NLRP3

inhibition of osteogenic differentiation. These findings suggest

signaling pathway and reversed LPS-induced
that LicB has the potential to be a periodontal therapeutic agent
(Du et al., 2024).

2.3 Neuroprotective effects

Interestingly, LicB was also found to ameliorate memory
impairments and neurological deficits in a mouse Middle

Cerebral Artery Occlusion (MCAO) model of stroke.
Histological examinations revealed that LicB-mediated
improvements in neuronal injury and apoptosis were

accompanied by the downregulation of apoptosis-related
proteins. Furthermore, LicB attenuated post-MCAO reductions
in brain-derived neurotrophic and nerve growth factor levels.
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Furthermore, LicB suppressed oxidative stress and inflammation,
as evidenced by increased SOD and GSH levels, elevated IL-4
levels, reduced malondialdehyde (MDA), iNOS
(inducible nitric oxide synthase), and TNF-a levels (Zhou
et al., 2021).

Qu et al. (2022) investigated the neuroprotective abilities of

and

LicB on oxidative stress-stimulated damage in neural cells. H,O,
was used to simulate ROS-induced cell apoptosis in PC-12 cells,
and in these stimulated cells, LicB reduced apoptosis and cell
cytotoxic and enhanced the levels of apoptosis-related proteins
such as caspase-3 and cleaved caspase-3. Notably, LicB
effectively reduced MDA, SOD, and ROS in H,0,-induced
cells. In the same study, LicB inhibited apoptosis by
activating ATG7-dependent autophagy and the SIRT1/AMPK
signaling pathway, as demonstrated by an increase in LC3-II
levels and a reduction in p62 levels in neural cells and
Caenorhabditis elegans models. Altogether, LicB has exhibited
promising neuroprotective effects in models of oxidative damage
and has been found to employ a variety of pharmacological
mechanisms.

LicB has also been shown to inhibit the self-aggregation of A4,
and to disassemble pre-formed AP,, fibrils. Furthermore, LicB
reduces chelating metal ion-induced A4, aggregation. In silico
analysis showed that LicB inhibits Ap,, self-aggregation by
forming two H-bonds with Lys28 and obstructing the salt bridge
interaction at the C-terminus of Ap,,. Furthermore, LicB exhibits
neuroprotective properties in SH-SY5Y cells against H,O,-induced
cell death (Cao et al.,, 2020).

2.4 Anti-cancer effects

LicB had a dose-dependent inhibitory effect on the growth of
osteosarcoma (OS) cells, specifically MG-63 and U20S cells. In
these cells, LicB induced autophagy and apoptosis and, at the
molecular level, reduced Bcl-2, p62, caspase-3, and Ki67 protein
levels but increased cleaved caspase-3, Beclinl, Bax, Atg7, and
LC3B levels, and thus, promoted apoptosis. Furthermore,
LicB  inhibited the PI3K/AKT/mTOR pathway and
induced autophagy in MG-63 and U20S cells (Huang and Jin,
2022). These findings shed light on the intricate molecular
mechanisms underlying the anti-cancer effects of LicB in
osteosarcoma.

Wang et al. reported LicB inhibited HepG2 cell growth (ICsy =
110.15 pM), causing morphological distortions, cell cycle arrest at
the G2/M phase, apoptosis, and accompanying intracellular ROS
generation. LicB also significantly altered mRNA and protein
of the Notably, the
inhibitions of caspase 8 and 9 reduced LicB-stimulated apoptosis
(Wang et al., 2019).

In addition, the transcriptome and small RNA levels of LicB-
responsive. mRNAs and miRNAs in HepG2 cells have been

expressions cell cycle-related genes.

investigated. A thorough examination revealed 85 differentially
expressed miRNAs (DEMs) and 763 differentially expressed
genes (DEGs) and that DEGs in LicB-treated cells were
significantly enriched in components of the MAPK signaling
pathway, a key regulator of hepatocellular carcinoma. Two key
DEMs, namely, hsa-miR-29b-3p and has-miR-96-5p, were
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identified. These findings emphasized the importance of
of LicB in
HepG2 cells and confirmed its potential as a functional

understanding the regulatory mechanisms
dietary ingredient in liver cancer therapy. Understanding of
the potential anti-tumor effects of LicB was also improved by
omics data suggesting that miRNA and mRNA expression
patterns might serve as promising biomarkers for identifying
novel therapeutic liver cancer
Wang, 2021).

LicB significantly inhibited oral squamous cell carcinoma
(SCC) cell proliferation, particularly HN22 and HSC4 cells.

LicB arrested the cell cycle at GI, downregulating cyclin

targets in (Wang and

D1 while upregulating the expression of p21 and p27 proteins.
Additionally, LicB translocated phospholipid phosphatidylserine
from the inner to outer leaflets of the plasma membrane, causing
chromatin condensation, DNA fragmentation, and sub-Gl1 cell
accumulation. LicB also increased ROS production, which
induced CHOP, death (DR) 4, and DR5.
Furthermore, anti-apoptotic proteins (Bid, Bcl-xl, and Mcl-1)

receptor

were downregulated, while the pro-apoptotic protein (Bax) was
upregulated by LicB, and LicB-induced MMP loss resulted in the
release of cytochrome c. Apoptotic protease activating factor-1
and survivin expression were also altered to promote apoptosis
(Oh et al,, 2016). Altogether, LicB shows significant promise as a
therapeutic agent for managing human oral cancer by inducing
apoptotic cell death.

LicB  inhibited
proliferation and induced DNA damage, cell cycle arrest, and
LicB inhibited the AKT/mTOR pathway and
simultaneously activated ER stress and the MAPK signaling

In hepatocellular  carcinoma cells,

apoptosis.
pathway. Furthermore, in these cells, co-treatment with LicB

TRAIL  (TNF-related
significantly enhanced LicB-induced viability reduction and

and apoptosis-inducing  ligand)
apoptosis. LicB also increased the protein expressions of
DR4 and DR5. On the other hand, treatment with PD98059 or
SP600125 (ERK inhibitor and JNK inhibitors, respectively)
significantly decreased the LicB-stimulated upregulation of
DR5 attenuated LicB-mediated TRAIL

sensitization (Zhang et al., 2022).

expression and

In a recent study, Kwak et al. (2023) investigated the anti-
tumor efficacy of LicB against human colorectal cancer (CRC)
and the underlying molecular mechanisms involved. LicB
treatment significantly decreased cell viability, increased ROS
potential (MMP)
and JNK/p38 MAPK
signaling pathway activations, and induced apoptosis and G2/

generation, mitochondrial membrane

depolarization, caspase activation,
M cell cycle arrest. However, pretreatment with SB203580 or
SP600125 (p38 and JNK inhibitors, respectively) suppressed
LicB-stimulated reductions in cell viability. In addition, the
ROS scavenger N-acetylcysteine effectively prevented the
effects of LicB on tumor cell viability, apoptosis, ROS
MMP depolarization, and
upregulations of the activities of caspases and JNK/
p38 MAPK. This study demonstrated LicB has therapeutic
potential in CRC.

Sadek et al. (2020) investigated the combined effects of LicB
and fullerene Cy (FnCgy) nanoparticles on diethylnitrosamine-

production, cell cycle arrest,

induced hepatocarcinoma in vivo. Treatment with LicB alone or
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FIGURE 1

The molecular mechanisms underlying LicB's anti-cancer effects.

in combination with FnCg, reduced diethylnitrosamine-induced
DNA fragmentation and oxidative DNA damage and
downregulated the mRNA expressions of APE1/Ref-1, CDK-4,
retinoblastoma, Bcl-2, B-cell lymphoma-xL, and P-arrestin-
2 and the protein expressions of APE1/Ref-1 and CDK-4.
Furthermore, these LicB-induced changes increased the
protein expressions of p53 protein, Bcl-2-associated X, and
caspase-3.

In addition, LicB inhibited esophageal SCC growth by
directly inhibiting the activity of JAK2 and its subsequent
signaling pathway. LicB also inhibited the growth of
KYSE450 and KYSE510 esophageal SCC cells by arresting the
cell cycle at the G2/M phase and increasing apoptosis. Notably,
the effect of AZD1480 (a JAK2 inhibitor) on esophageal SCC
cells was comparable to that of LicB. Furthermore, LicB reduced
the phosphorylation of STAT3 at Y705 and S727 and the
expression of Mcl-1 (a target of STAT3) (Song et al., 2020).
These findings point to the potential therapeutic role of LicB for
managing esophageal SCC based the
JAK2 signaling pathway.

LicB was also found to inhibit the proliferation of SCC and
human melanoma cells by causing apoptotic cell death through
specificity protein 1 (transcription factor) and other apoptosis-

on targeting
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related proteins, including CCAAT/enhancer-binding protein
homologous protein, DRs, and poly (ADP-ribose) polymerase
(PARP) (Kang et al., 2017).

In human non-small cell lung cancer (NSCLC) cells, Oh et al.
(2019) found that LicB inhibited the activities of EGFR and MET
kinase and cell viability in HCC827 and HCC827GR cells. In
addition, LicB stimulated G2/M cell-cycle arrest and apoptosis,
caused ER stress, ROS production, and MMP loss, and activated
caspases. Also, the inhibitions of EGFR and MET reduced
activation of the ERBB3/AKT axis. These observations indicate
LicB is a promising, novel therapeutic candidate for the treatment
of NSCLC.

LicB inhibited proliferation, caused S phase arrest, reduced
cyclin A, CDK1, and CDK2 levels and the expression of cell
division cycle 25 (Cdc25A and Cdc25B) in T24 EJ human
bladder cancer cells, upregulated the expressions of Bcl-2,
survivin, and Bax expression, and caused PARP cleavage. LicB
also markedly reduced the tumorigenicity of LicB-treated
MB49 cells in vitro, and this finding was supported by in vivo
studies on an MB49 mouse model of bladder cancer (Yuan et al,,
2014). Similarly, in another study, LicB inhibited the cell
migration, adhesion, and invasion of T24 cells, inhibited the
expressions of MMP-9 mRNA and protein, reduced NF-kB
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p65 levels, and impeded the nuclear translocation of NF-kB
(Zhao et al., 2014).

Yu et al. (2016) reported that LicB inhibited the proliferation of
MCE-7 breast cancer cells using a mechanism involving S phase
arrest attributed to decreases in Cyclin A, Cdk2, and Cdc25 A levels
and an increase in p21 protein levels and that it induced apoptosis, as
evidenced by morphological changes including phosphatidylserine
externalization and DNA fragmentation. LicB also disrupted MMP
causing cytochrome C release, and molecular analysis revealed that
LicB increased the expressions of Caspase-3, Caspase-9, and Bax
expression but reduced Bcl-2 expression. Furthermore, these effects
were attributed to an increased p53 protein level in LicB-treated
cells. Collectively, LicB has potential use as a therapeutic agent for
the management of breast cancer. The anti-cancer molecular
mechanisms of LicB are depicted in Figure 1.

2.5 Cardioprotective effects

ROS production is a major contributor to ischemia-
reperfusion-induced cardiac injury. In a study by Han et al
(2014), pretreatment with LicB improved heart rate, left
ventricular developed pressure, and reduced creatine kinase
and LDH levels in coronary flow in Sprague-Dawley rat
model. LicB treatment also increased SOD levels and GSH/
GSSG ratios and reduced IL-8 and IL-6 activities and MDA,
TNF-a, and C-reactive protein (CRP) levels. Furthermore, LicB-
treated group had smaller infarct size and exhibited less apoptosis
than ischemia/reperfusion control group. The authors suggested
that its cardioprotective effects were probably due to its

antioxidative, anti-apoptotic, and anti-inflammatory
properties. In another study, LicB potently inhibited
angiotensin-converting enzyme (a  critical target in

cardiovascular disease) with an ICsy value of 0.24 pM
(Li et al., 2023).

2.6 Hepatoprotective effects

LicB also exhibits hepatoprotective effects against carbon
tetrachloride (CCly)-induced injury, which was characterized
by elevated ALT, AST, MDA, IL-6, CRP, and TNF-a levels
and a reduction in serum SOD and GSH/GSSG ratio. A
histopathologic examination of CCly-treated animal liver
sections revealed inflammation and necrosis. However, LicB
pretreatment prevented these CCly-induced effects, reduced
ALT, AST, MDA, GSSG, IL-6, CRP, and TNF-a levels and the
protein expressions of p38 and NF-«B but enhanced SOD and
GSH levels (Teng et al., 2016). Similarly, in another study, LicB
ccl,
hepatocellular injury in HepG2 cells and increased cell
viability by more than 80% (Kuang et al., 2017).

Nrf2 protein is a basic-region leucine zipper transcription factor

protected  against and  acetaminophen-induced

that protects against endogenous and exogenous stressors.
Nrf2 increases cellular sensitivity to oxidants and electrophiles by
inducing the expressions of various cytoprotective and detoxifying
genes. Interestingly, transient Nrf2 activation, facilitated by specific
activators, protects against cancer development (Pouremamali et al.,
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2022), and notably, LicB activation of Nrf2 in HepG2 cells
significantly reduced CCly-stimulated acute liver injury in animal
model (Lin et al., 2017a).

Oxidative stress is a major contributor to alcohol-induced
and LicB
damage and inhibited apoptosis in BRL cells, suggesting a
injury.
addition, LicB markedly reduced ethanol-induced intracellular

hepatotoxicity, reduced ethanol-induced cellular

hepatoprotective effect on alcohol-induced cell In
ROS levels, increased p-Erk expression, and induced the nuclear
translocation of Nrf2 (Gao et al., 2017). These results indicate LicB
has the potential to treat liver disorders caused by alcohol

consumption.

2.7 Protective effects on lung injury

Acute lung injury (ALI) is a severe and often fatal pulmonary
disorder. Huang et al. recently explored the effects of LicB on human
pulmonary microvascular endothelial cells and LPS-challenged
mice. LicB promoted cell viability, had no cytotoxic effect,
suppressed apoptosis, and reduced ROS levels. In addition, LicB
reduced lung tissue weights, oxidative stress, and inflammatory
markers in the ALI murine model. LicB also increased the
expressions of Nrf2, HO-1, and NQO1 but decreased the
expression of Keapl (Huang et al., 2023). Collectively, LicB has
potential as a therapeutic strategy for alleviating LPS-induced ALI. A
summary of the pharmacological properties of LicB is provided
in Figure 2.

The optimal combination of LicB and liquiritin showed
increased anti-inflammatory, antioxidant, and anti-fibrotic
activity. The hemopoietic cell kinase inhibitor (iHCK-37)
confirmed that LicB and liquiritin prevent chronic obstructive
pulmonary disease (COPD) by inhibiting HCK, resulting in
antioxidative, anti-inflammatory, and anti-fibrotic effects. A 1:
1 ratio of LicB and liquiritin demonstrated synergistic efficacy
in treating COPD by inhibiting HCK activity (Dong S.
et al., 2024).

2.8 Antiviral effects

LicB has been shown to deactivate herpes simplex virus two
particles and prevent viral multiplication via inhibiting Akt
In
investigations revealed that LicB dramatically lowered viral

phosphorylation and  downstream  targets. vivo

titers, delayed weight loss, and reduced pathological
alterations in vaginal tissues in mouse models of vaginal
infection (Li et al., 2024).

2.9 Effect in autoimmune diseases

Abnormal activation of the cGAS-stimulator of interferon
genes (STING) pathway by abnormal DNA has been linked to
autoimmune diseases (Liu and Pu, 2023). LicB inhibited the
STING signaling cascade in macrophages by disrupting the
STING-TBK1-IRF3
activation. In addition, LicB lowered type I interferon levels in

axis and preventing downstream
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Pharmacological properties of LicB and its underlying mechanisms.

mice treated with the STING agonist CMA and dramatically
reduced systemic inflammation in Trex1™~ animals (Luo
et al., 2024).

3 Toxicity and safety

The toxicological properties of LicB are poorly understood.
The enzyme 11B-HSD2 regulates cortisol levels by converting
cortisol, an active glucocorticoid hormone, to cortisone, its
inactive form (Chapman et al, 2013; Adamidis et al., 2019),
and a recent study demonstrated that LicB inhibits human and
rat 11B-HSD2 with ICs, values of 31.85 uM and 56.56 uM,
respectively (Lin et al., 2024).

Frontiers in Molecular Biosciences

4 Conclusion and future prospective

As described above, LicB has wide-ranging pharmacological
activities, which include anti-inflammatory, hepatoprotective,
anti-cancer, and neuroprotective effects. These activities are
closely related to cellular responses involving inflammation,
autophagy, apoptosis, and oxidative stress, which are modulated
by signaling pathways such as NF-«f, SIRT1/AMPK, Nrf2, PI3K/
Akt/mTOR, p53, CHOP, DRs, p38, and iNOS, and involve multiple
targets such as TNF-a, PI3K, AKT, Bid, Bcl-xl, Mcl-1, and caspases.
Hence, we believe that LicB has great promise as a lead compound
for drug discovery. Nonetheless, it is essential to remember that
most reported LicB findings are based on cellular experiments.
Therefore, more clinical research is required to confirm its
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pharmacological efficacy. Furthermore, its toxicological profile is
less well characterized and requires further investigation.
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Introduction: Methidathion (MD) is commonly used in agriculture and has
adverse effects on reproduction. Chrysin (CHR) has several advantageous
properties, such as anti-inflammatory, anti-cancer, and antioxidant properties.
The purpose of the current investigation was to assess CHR's therapeutic
efficacy in reducing ovarian toxicity brought on by MD.

Methods: Twenty-four female rats were divided into four groups of six animals
each. Group 1 served as a control, while group 2 rats received MD (5 mg/kg).
Rats in Group 3 received CHR at a dose of 50 mg/kg. Rats in group 4 received
treatment with CHR after MD intoxication.

Results and Discussion: Our research revealed that MD significantly (p < 0.001)
increased the levels of MDA, caspase-3, FSH, LH, CA-125, and TNF-a but
significantly (p < 0.001) decreased the levels of SOD, GSH, E2, and progesterone
when compared to the control and CHR groups. After receiving CHR therapy,
damage induced by MD was significantly (p < 0.001) repaired.

Conclusion: This study showed that CHR could mitigate the adverse effects
that MD causes to the ovaries by decreasing oxidative stress, inflammation,
and apoptosis; improving antioxidant status; and restoring the correct ratio of
sex hormones.

KEYWORDS

methidathion, chrysin, inflammation, ovarian damage, oxidative stress

1 Introduction

Since organophosphorous pesticides (OPPs) are used for eliminating insects that
harm crops in the field, they fall under the category of insecticides. Nevertheless,
other data indicates that these substances may also be employed as herbicides by
influencing the soil biota population and subsequently changing the biomass of plants,
leading to their deterioration (Ajiboye et al., 2022). OPPs, one of the main chemicals
used to control pests, have been widely utilized in agriculture since the ban on
organochlorine pesticides (Costa, 2018). Acetylcholinesterase (AChE), a vital and essential
enzyme to produce nerve impulses, is inhibited by the chemical organophosphate.
Acetylcholine accumulates as a result of AChE inhibition, permanently depolarizing
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the organism and causing tremors, respiratory arrest, and eventually
death. Owing to the widespread application of these chemicals on
agricultural products, they have infiltrated groundwater through
seepage, entered rivers via agricultural runoff, and appeared on
the surfaces of sprayed plants. Thus, food, inhalation, and skin
adsorption have been the primary routes by which people have been
exposed to lower concentrations of these pesticides (Costa, 2018;
Gonzdlez-Alzaga et al., 2014). There are 220,000 deaths and one
million cases of severe poisoning each year; most of these poisonings
and 99% of the deaths they cause happen in developing countries
(Abdulrahman et al., 2023).

OPPs toxicological effects are classified as mild, moderate,
or high depending on when the person is exposed to them and
what proportion of their enzymes are inhibited afterward. Due
to the rising levels of pesticides in the environment, established
and developing nations that rely heavily on agriculture for
their economies now have virtually no choice but to expose
living things to them (Georgiadis et al, 2018). OPPs have
been demonstrated to trigger biochemical and histological
alterations in various organs, including the kidney, immune
system, pancreas, liver, heart, and vascular walls. The ovary
is one of the organs discussed, and it has a crucial function
by generating oocytes and synthesizing hormones in a normal
reproductive process (Giiney et al, 2007). Moreover, additional
studies indicate that oxidative stress can play a major role in
the toxicity mechanism of OPPs. These pesticides can cause
oxidative stress, which can result in the generation of free
radicals and changes to antioxidants or the enzymes that scavenge
reactive oxygen species (ROS) (Sharma et al, 2014), which
coexist in a healthy body and are balanced with antioxidants.
The process that results in an imbalance that generates an excess
of ROS is known as oxidative stress. A woman is affected by
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oxidative stress throughout her whole reproductive life, even
after menopause. An imbalance between the body’s ability
to scavenge free radical species and antioxidants results in
oxidative stress. In addition to being crucial signaling molecules
in physiological processes, ROS are involved in pathological
processes that impact the female reproductive system. ROS
influences a wide range of physiological processes, including oocyte
maturation, fertilization, embryo development, and pregnancy.
Both DNA damage to the ovarian epithelium and oxidative base
damage caused by ovulation can be prevented by antioxidants
(Agarwal et al., 2005).

Methidathion [S-(5-methoxy-2-0x0-2,3- dihydro-1,3,4- thiadiazol-
3-yl)methyl O,0-dimethyl phosphorodithioate] (Kim et al.,, 2011) is
one of the OPPs that is most frequently employed in public health and
agriculture initiatives (Bhattu et al., 2022).

A flavonoid called chrysin (5, 7-dihydroxyflavone) is taken
from propolis, passion flowers, and honey (Naz et al., 2019).
Chrysin is used to treat liver, nervous system, and reproductive
disorders (Mentese et al,, 2022; Souza et al, 2015). Numerous
biological characteristics of chrysin, such as its antioxidant, anti-
apoptotic, anti-inflammatory, and anti-cancer capabilities, have
been demonstrated by previous studies (He et al., 2012; Rashno et al.,
2019). Moreover, the protective benefits of chrysin against oxidative
stress in rats have been determined. According to the study,
chrysin therapy lowers MDA levels and increases antioxidant
enzyme activity (Anand et al, 2012). Additionally, it has been
demonstrated to regulate the level of sexual hormones, protect
ovarian tissues from oxidative stress and tissue damage, and reduce
apoptosis (Mohammadi et al., 2022). Therefore, this study aimed to
investigate the ameliorative effect of chrysin against MD-induced
ovarian damage in female rats by evaluating serum biochemical
antioxidative markers, sex hormones, and inflammatory and
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apoptotic markers, in addition to histopathological examinations of
ovarian tissue.

2 Materials and methods
2.1 Chemicals

Methidathion (CAS No. 950-37-8), Chrysin (CAS No. 480-
40-0), and other reagents were supplied by Sigma-Aldrich (St.
Louis, MO, United States). The selection of MD and CHR
doses was based on previously published studies by Sulak et al.
(2005) and Mantawy et al. (2017) respectively.

2.2 Ethical considerations

The housing accommodations and experimental protocols
followed the European Union Council’s (2010/63/EU) guidelines for
the use of laboratory animals. The animal study and all experimental
procedures have been approved by the veterinary medical research
ethics committee, Faculty of Veterinary Medicine, Sohag University,
Sohag, Egypt, with protocol number Soh. un.vet/00066R. Every
precaution was taken to prevent pain and suffering for the animals.

2.3 Animals

Female Wistar albino rats, weighing between 180 and 200 g and
aged 10-12 weeks, were obtained from the animal house at Sohag
University in Sohag, Egypt. The rats were maintained at a constant
temperature of 24°C + 1°C with a 12-hour light/dark cycle and 45%
+ 5% humidity. They were acclimated to their new environment for
1 week before the experiment. Throughout the study, water and food
were provided ad libitum.

2.4 Experimental design

Animals were randomly divided into four groups (6 rats/group)
as follows: Group 1 (vehicle control): healthy rats that received
DMSO orally only, Group 2 (MD): ovarian toxicity was induced
by methidathion (5 mg/kg.b.w), Group 3 (CHR): healthy rats that
received chrysin (50 mg/kg), and Group 4 (MD + CHR): ovarian
toxicity was induced by MD the same as in group 2, then rats
received chrysin at the same dose mentioned in group 3. Treatment
with CHR started 4 weeks after ovarian toxicity induction by gavage
5 days a week and continued for 5 days a week for 4 weeks by gavage
administration. MD and CHR were dissolved in DMSO, and doses of
MD and CHR were determined from previous studies of Sulak et al.
(2005), Mentese et al. (2022), Mantawy et al. (2017). At the end of
the treatment, animals were sacrificed and dissected.

2.5 Blood sampling for hormonal and
biochemical analyses

Blood samples were collected and centrifuged for 10 min at
3,000 rpm to obtain a clear serum and stored at —20°C for hormonal
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and biochemical analyses. Ovarian tissue samples were dissected
and processed for biochemical analysis, and histopathological
examination.

2.6 Determination of sex hormone

Rats’ serum levels of progesterone, estrogen (E2), follicular
stimulating hormone (FSH), and luteinizing hormone (LH) were
quantitatively assessed by ELISA using kits [PerkinElmer Company,
Hayward, CA 94545 for progesterone (Catalogue Number: 10005),
and BIOS Company, South San Francisco, CA 94080, United
States for LH (Catalogue Number: 1004), FSH (Catalogue Number:
10001), and (E2 (Catalogue Number:1009)]. The experiment was
carried out according to the manufacturer’s guidelines.

2.7 Determination of oxidative stress

All the rats’ ovaries were removed immediately and weighed. In
a glass homogenizer, each rat’s right ovary was homogenized in cold
phosphate-buffered saline (1:4) (pH 7, 0.01 mol/L). The homogenate
that was created was centrifuged at 5,000xg for 5 min, filtered, and
utilized to measure markers of oxidative stress. The experiments
were repeated three times.

2.7.1 Determination of SOD

The body’s antioxidant capacity and oxidative balance can
be determined by measuring the activity of SOD, an enzyme
that scavenges superoxide anion-free liquid (O2 - ») to protect
cells from damage (Liang et al., 2022). The total SOD assay kit
(MyBioSource, China, Catalogue Number: MBS036924) was used in
this experiment to measure SOD activity (U/mg protein) in ovarian
homogenates of each group, according to the instructions.

2.7.2 Determination of MDA

Through the action of its enzyme system, which can target
polyunsaturated fats in biological membranes, initiate lipid
peroxidation, harm cells, and generate lipid peroxides like MDA, the
body produces oxygen-free fluid. As a result, the body’s measured
MDA concentration may indicate the level of lipid peroxidation
and, in consequence, indicate the degree of cell damage (Yang et al.,
2022). Using the TBA method MDA detection kit (MyBioSource,
China, Catalogue Number: MBS268427), the researchers measured
the amount of MDA in each groups ovarian tissue. Following
the instructions provided in the kit, the ovarian tissues were
homogenized and the concentration of MDA per mg protein
(nmol/mg protein) was determined.

2.7.3 Determination of GSH

GSH is an essential enzyme that is extensively distributed
throughout the body and catalyzes the breakdown of H202. Its
action may contribute to maintaining the cell membrane’s structural
and functional integrity. Consequently, assessing the GSH activity
in tissues may provide information regarding the body’s oxidative
equilibrium and antioxidant potential (Yang et al., 2022). In this
work, the reduced GSH activity in ovarian homogenates of each
group was measured according to the instructions using a GSH
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test kit (Shanghai BlueGene Biotech Co., Ltd., Shanghai, China,
Catalogue Number: E02G0367).

2.8 Detection of ovarian apoptosis

One important protease in the pathway of mitochondria-
mediated cell death is caspase 3. This factor is released into the
cytoplasm in response to apoptotic stimuli, where it sets off a series
of processes that lead to cell death. Using an ELISA kit (United States
of America, from Elbscience Biotechnology Company, Catalogue
Number: E-EL-R0160), we determined the concentration of
Caspase3 in each group’s serum by the manufacturer’s instructions.

2.9 Detection of tumor marker

A significant percentage of epithelial ovarian tumors exhibit the
high molecular weight glycoprotein known as carcinoembryonic
antigen (CA) 125 (Moss et al., 2005). Serum level was quantitatively
assessed by ELISA using a kit from BIOS Company, South
San Francisco, CA 94080, United States of America, Catalogue
Number: 10,103. The experiment was carried out according to the
manufacturer’s guidelines.

2.10 Detection of cytokine

The oocytes and macrophages of the neonatal rat ovary contain
the multifunctional cytokine known as tumor necrosis factor
a (TNFa). TNFa may play a role in follicle construction or
oocyte atresia, as evidenced by the presence of both the TNFa
and its receptors in the ovary of a newborn rat (Morrison and
Marcinkiewicz, 2002). The serum level was quantitatively assessed
by ELISA using a kit from R&D Systems in Minneapolis, MS, United
States of America, Catalog Number QK210. The experiment was
carried out by the manufacturer’s guidelines.

2.11 Histopathological examination

Animals were sacrificed after the experimental duration,
and tissue samples from left ovaries were collected, dissected,
and immediately fixed in 10% formalin for 24 h, dehydrated
in a succession of graded alcohols, clarified in xylene, and
encapsulated in paraffin (Suvarna and Layton, 2013). Tissue
sectioning was done at 3-5um thickness and stained with
hematoxylin and eosin (H&E) (Bancroft et al., 1996) for histological
evaluation. All sections were inspected and photographed using
an OLYMPUS CX43 microscope and a microscope-adapted
OLYMPUS SC52 camera.

2.12 Morphometric study

Each animal was assigned a score based on histopathological
examination of the tissue samples (Gibson-Corley et al., 2013). The
section samples were scored semi-quantitatively, depending on the
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visual field inspection of 10 sections from each group. Photographs
of ovarian tissues were taken, and the cellular alterations were
counted in 10 random areas (each 1 mm?) ata magnification of 20x.
The degree of follicular degeneration, stromal degeneration, and
stromal fibrosis was scored between 0 and 3 according to the severity
of the damage. A value of 0 means no pathological damage, +1 value
is less than 33% of ovarian damage, +2 is damage between 33% and
66%, and +3 is more than 66% (Pala et al., 2014; Kaplan et al., 2021).

2.13 Statistical analysis

The Statistical Package for the Social Science (S.P.S.S. version 27)
was used to analyze the data. The mean + SD was used to express
the results. To test differences between groups, statistical analysis
was performed using analysis of one-way variance (ANOVA) and
Tukey’s post-hock multiple comparison test. Each group’s results
were characterized by identical variance and a normal distribution.
A value of p of <0.05 means that differences between all groups are
statistically significant.

3 Results
3.1 Clinical observation

Following MD administration, the rats displayed intense,
uncontrolled behaviors that lasted for nearly 2 hours, after which
they showed signs of exhaustion. In the subsequent days, the severity
of these behaviors persisted but gradually diminished. No mortality
was observed in any group.

3.2 Biochemical findings

3.2.1 Chrysin regulate serum hormonal markers
in methidathion-treated rats

The hormone values of experimental groups are displayed in
(Figure 1). In the current investigation, the FSH and LH hormone
serum levels were considerably higher (p < 0.001) in the MD group
than in the control and CHR groups. There was no significant
difference (p > 0.05) in the serum levels of LH and FSH hormones
between the CHR and control groups. In contrast to the MD group,
the LH and FSH hormone levels were considerably lower in the MD
+ CHR treated group (p < 0.001). (Figures 1A, B).

Comparing the MD group to the control and CHR groups, the
MD group’s serum levels of progesterone hormone and E2 were
significantly lower (p < 0.001). Progesterone hormone and E2 levels
in the MD + CHR group’s blood increased significantly (p < 0.001)
following CHR treatment. There was no discernible difference in
progesterone hormone and E2 serum levels between the CHR and
control groups. (Figures 1C, D).

3.2.2 Chrysin improved ovarian tissue
antioxidants and oxidative stress markers in
methidathion-treated rats

When comparing the MD untreated group the
control group, (Table 1), the levels of MDA were substantially

to
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FIGURE 1
Effect of CHR on the serum hormonal markers in experimental groups. (A) LH concentration, (B) FSH concentration, (C) Estradiol concentration, (D)
Progesterone concentration. Data expressed as mean + SD, ?p < 0.001 versus the control group; °p < 0.001 versus MD group, (n = 6).

TABLE 1 Effect of CHR on the ovarian tissue antioxidants and oxidative
stress markers in experimental groups.

TABLE 2 Effect of CHR on the ovarian inflammation and tumor markers
in experimental groups.

Groups | MDA nmol/mg | GSHpg/g SOD U/mg CA-125 (U/mL) TNF-a (pg/mL)
Control 0.34+0.05 2.79 +0.03 6.19 +0.05 Control 22.35+0.68 52.30 + 0.38

MD 5.05 +0.08" 0.48 +0.03 2.20 +0.16* MD 54.32 +0.57* 234.79 +0.78"

CHR 1.14 +0.09° 3.55 +0.04° 7.38 +0.09° CHR 30.54 + 0.63" 61.83 +0.61°
MD+CHR | 0.80+0.01° 2.19 +0.034° 5.64 +0.06" MD + CHR 27.28 +0.33" 49.63 + 0.51°

Values are presented as mean + SD; n = 6 rats in each group; values with different
superscripts (a, b) among experimental groups are significantly different (p < 0.001).
“Versus the control group.

bVersus MD, group using ANOVA, and post hoc test; SD, standard deviation.

elevated (p < 0.001) along with a significant decline in GSH level
and SOD activity. Surprisingly, the CHR treatments improved
GSH and SOD activity and dramatically downregulated (p <
0.001), MDA levels in the MD + CHR group in comparison
with the MD group. These findings indicated that CHR mitigated
the oxidative stress induced by MD treatment in the rats that
received it.

3.2.3 Effect of chrysin on the serum ovarian
inflammation and tumor markers in
methidathion-treated rats

The levels of TNF-a and CA-125 in the MD rats were greatly
higher (p < 0.001) than those in the control rats. However,
after CHR treatment, the values in the MD + CHR group were
notably lower (p < 0.001). Additionally, there was no significant
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Values are presented as mean + SD; n = 6 rats in each group; values with different
superscripts (a, b) among experimental groups are significantly different (p < 0.001).
*Versus the control group.

bVersus MD, group using ANOVA, and post hoc test; SD, standard deviation.

difference (p > 0.05) in the levels of TNF-a and CA-125 between
the control and CHR groups. These findings suggest a strong
association between the cytokine system and the tumor marker CA-
125. (Table 2). Consequently, it can be concluded that CHR
treatment effectively reduces the inflammation caused by MD
treatment in rats.

3.2.4 Effect of chrysin on the serum caspase 3
(Apoptosis Marker) of methidathion-treated rats

There was a significant increase (p < 0.001) in the serum
Caspase-3 activity level in the MD group compared to the control
group. In contrast, the MD + CHR group receiving CHR therapy
saw a significant drop in the mean value of Caspase-3 activity.
Serum Caspase-3 levels showed no noticeable variations between the
control and CHR groups. (Figure 2).
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FIGURE 2

Effect of CHR on the serum caspase3 (Apoptosis Marker) in
experimental groups. Data expressed as mean + SD, ?p < 0.001 versus
the control group; ®°p < 0.001 versus MD group, (n = 6).

3.3 Histopathological assessment

The histological examination of ovarian tissue samples revealed
distinctive morphological differences between the treated groups
and the control as shown in (Figure 3). In the control group,
normal ovarian tissue exhibited various stages of ovarian follicles,
including a Graafian (secondary) follicle with a well-defined
follicular antrum housing an eccentrically positioned secondary
oocyte, surrounded by the zona pellucida and corona radiata.
This follicle was enveloped by layers of granulosa and theca cells.
Furthermore, the corpus luteum maintained a typical size and
structure (Figures 3A-C). Contrarily, the MD group displayed
numerous atretic follicles characterized by degenerated follicular
cells and compromised corpora bodies. Aberrant secondary follicles
lacking oocytes were observed alongside the corpus luteum
exhibiting luteal cell vacuolation. Degenerative changes, including
cellular loss of features and vacuolation, were evident in the
corpora, accompanied by an increase in inter-corpora stromal
fibrous connective tissue (Figures 3D-F).

In comparison, the CHR group showed a comparable number
of normal ovarian follicles and corpus luteum structures to the
control (Figures 3G-T). Remarkably, the MD + CHR group exhibited
a notable improvement in ovarian structures. Healthy growing
follicles containing intact oocytes surrounded by normal granulosa
cells were observed, alongside more or less normal corpus luteum
structures with polyhedral luteinized cells (Figures 3]-L).

Histomorphometric evaluation of ovarian lesions such as
follicular degeneration, stromal degeneration, and stromal fibrosis
recorded in the examined tissue sections exhibits a significant (p <
0.001) increase in the MD group compared with the control group.
Interestingly administration of CHR dramatically decreased those
recorded lesions (p <0.001) compared with the MD untreated group.
The histological picture in MD + CHR showed non-significant
change compared with the control group (Figure 4).

4 Discussion

The present study investigated the therapeutic potential of CHR
against MD-induced ovarian damage in female rats.
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Concerning hormonal balance, the MD group in this study had
considerably higher serum levels of FSH and LH and significantly
lower serum levels of progesterone and E2. Severe toxicity to the
follicular ovarian reserve and function is another explanation for
this effect. The presence of these hormonal alterations is utilized as
a sign of ovarian failure (Afifi and Reyad, 2013). Our findings match
up with a previous study (Giiney et al., 2007), which reported that
MD induced ovarian toxicity in female rats. Additionally, compared
to the MD group, the group treated with CHR after intoxication
with MD showed a significant decrease in FSH and LH levels along
with a significant increase in estradiol and progesterone levels.
The beneficial effects of CHR on the reproductive processes of
female rats may have contributed to our findings (Mentese et al.,
2022). Our findings are consistent with those of Mentese et al.
(2022), who displayed that CHR prevention female rats from
ovarian toxicity.

Additionally, our results suggested that administering MD
to normal rats resulted in a substantial drop in GSH and SOD
levels that were comparable to those of normal rats as well
as a significant increase in MDA levels. This may be because
MD poisoning causes a variety of metabolic disturbances
(Kose et al, 2009). Oxidative stress is caused by antioxidant
enzyme deactivation (Mobasher and Valverde, 2014). This
finding is consistent with the results of Wang et al. (2018),
which associated increased MDA levels and decreased GSH
in antioxidant

and SOD levels with acrolein’s interference

defense mechanisms. Oxidative stress can lead to ovarian
failure by impairing CYP450 in two ways: disrupting normal
oocyte development and inducing apoptosis. Since oxidative
stress hinders both nuclear and cytoplasmic maturation of
oocytes while promoting cell death, it disturbs the intraovarian
environment by creating an imbalance between ROS production
and elimination. In the present study, elevated ovarian MDA
levels may be linked to increased reactive oxygen species induced
by MD (Giiney et al, 2007). These observations support the
hypothesis that MD-induced ovarian damage results from lipid
peroxidation (LPO), a biochemical mechanism. Developing
effective antidotes, particularly those with strong antioxidative
properties, is crucial to counteracting MD toxicity. Chrysin, a
flavonoid with potent antioxidant activity, represents a promising
candidate in this regard (Alsawaf et al., 2022).

According to the author’s knowledge, there is limited
information about the potential benefits of CHR in combating
MD toxicity. Chrysin is a potential naturally occurring flavonoid
that is usually found in propolis and honey. Because of its anti-
inflammatory and antioxidative features, it has a protective effect
(Farkhondeh et al, 2019). Chrysins mode of action involves
reducing inflammation, inducing apoptosis in cells, and decreasing
cell proliferation without harming healthy cells or having any
unfavorable side effects (Xue et al, 2016; Kasala et al, 2015;
Samarghandian et al., 2011). In comparison to the MD group,
treating MD rats with CHR resulted in significant increases in
ovarian levels of GSH and SOD and significant decreases in ovarian
MDA levels. These results are consistent with those of Ye et al.
(2022), who discovered that rats receiving CHR therapy showed
a significant return of these parameters to normal. Additionally,
CHR demonstrated improved antioxidant status, a decrease in
oxidative stress, and the prevention of the generation of free radicals
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MD+CHR

FIGURE 3

Representative photomicrographs of ovarian tissue samples from treated groups stained by hematoxylin and eosin (H, E) demonstrate the control
group: (A): different stages of ovarian follicles (arrows), and corpus luteum (CL). (B): Graafian (secondary) follicle with a large follicular antrum.
Secondary oocyte located eccentrically and surrounded by the zona pellucida and a layer of several cells known as the corona radiata (arrow),

surrounded by multiple cellular layers of granulosa cells (star), and theca cell layers (arrowheads). (C): normal size and structure of corpus luteum (CL).
MD group (D-F): (D): Number of atretic follicles with degenerated follicular cells (arrows), degenerated corpora bodies (CL). (E): Abnormal secondary
follicles without oocyte (star), Corpus luteum showing deteriorating luteal cells with vacuolation (arrowheads). (F): Corpora showed degenerative
changes marked by loss of cellular features and cellular vacuolation (CL) with increased inter-corpora stromal fibrous connective tissue (arrows). CHR
group (G-1): Number of normal ovarian follicles (arrows), and corpus luteum (CL). MD + CHR group (J-L): the presence of growing healthy follicles
containing an oocyte with an intact zona pellucida and surrounded normal granulosa cells (arrows), more or less corpus luteum containing polyhedral

luteinized cells (CL).

(Temel et al., 2020). It has been found that phytocompounds,
especially flavonoids, can shield biological macromolecules and
membranes against damage caused by free radicals (Karak, 2019).
Consistent with these outcomes, the current research demonstrated
that flavonoid compounds found in CHR may reduce the oxidative
stress that MD causes in MD rats by increasing antioxidant status
and lowering lipid peroxidation levels (Alsawaf et al, 2022).
According to earlier research, the compound’s antioxidant qualities
and ability to eliminate free radicals are assumed to be attributed to
the hydroxyl groups at positions 5 and 7 in the CHR structures
(Eldutar et al, 2017). CHR therapy has been shown by some
other authors (Rehman et al., 2013) to enhance antioxidant enzyme
activity and protect tissues from oxidative damage.

The cytokine TNF-a was first discovered to play a part in
inflammatory processes. This factor activates by attaching itself
to one of its two receptors, a type 1 receptor (INFRI) and a
type 2 receptor (TNFR2). TNF-a stimulates CA-125 in breast,
endometrial, and ovarian cancers through nuclear factor kappa B
(NF-xB) (Morgado et al., 2016). Moreover, TNF-a plays a role in
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controlling physiological processes like corpus luteum function,
steroidogenesis, ovulation, and follicular growth. Additionally,
it has been documented that TNF-a may control granulosa
cell differentiation and death according to the embryonic stage
(Silva et al., 2020). According to certain research, serum TNF-
a receptor 1 binds to CA-125 more frequently than receptor 2
(Rzymski, 2005). TNF has been linked to elevated serum CA 125
levels, according to a prior study. These findings imply that cytokines
and CA-125 might be related (Kosar et al., 2006). Furthermore,
ovarian follicular loss is significantly impacted by the inflammatory
response (Mantawy et al., 2019). An increasing number of research
has shown that abnormal inflammation can change the dynamics
of the ovarian follicles in a way that can lead to infertility (Boots
and Jungheim, 2015; Urieli-Shoval et al., 2013). In rats exposed to
Organophosphate-Pesticide, serum level of TNF-a was increased
(Alam et al, 2019). Our study revealed that CHR administration
significantly reduced the rise in TNF-a levels in MD-treated rats,
suggesting that CHR alleviated the overexpression of inflammatory
markers in their ovaries. Concurring with the results of the present
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FIGURE 4
Histomorphometry graph showing semiquantitative measurements of lesion scores recorded in ovarian tissue sections among the experimental groups
(A): Follicular degeneration, (B): Stromal degeneration, and (C): Stromal fibrosis. Results were analyzed using one-way ANOVA and Tukey's post hoc
tests. Results are shown in mean + SD. ™ - ###p < 0.001 compared to control, and MD groups respectively. ns = p > 0.05 (non-significant vs. Control).

investigation, Ai et al. (2013) discovered possible suppression of the
pro-inflammatory TNF-a pathway by additional flavonoids.

In the current study, feeding rats MD resulted in a considerable
increase in CA-125 levels compared to the control group. CA-125isa
protein produced by various cell types, including ovarian cancer cells
(Raoetal,2021). CA-125is commonly referred to as a tumor marker
or biomarker for ovarian cancer because it provides information
about the history of the disease. Measuring CA-125 is the most
frequently used test to assist in the diagnosis and follow-up of
ovarian cancer (Nossov et al., 2008). According to our findings, the
MD-induced increase in CA-125 may indicate a heightened risk of
ovarian cancer. However, CHR treatment reduced the elevated CA-
125 levels. As per prior reports, oxidative damage and the ROS it
produces are thought to be one of the primary initiators of cell death
(apoptosis) (Matés et al., 2008; Newsholme et al., 2016; Sifuentes-
Franco et al,, 2018). The Caspase family of proteases mediates
apoptosis, a type of controlled cell death characterized by particular
structural alterations (Elmore, 2007). MD treatment caused a state
of cell death (Wu et al., 2023). Our findings suggested that marked
activation of caspase-3 induced by MD caused inflammation and
fibrosis of the ovary. In contrast, CHR treatment inhibited the
elevation of caspase-3 level. Thus, the results of the current study
suggested that inhibition of caspase-3 activation by CHR results in
the prevention of ovarian fibrosis with a significant impact on the
production of pro-inflammatory cytokines such as TNF-a and IL-6.
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Chemicals that destroy oocytes in primordial follicles might
exhibit a delayed effect on the estrous cycle or prolonged
reproductive dysfunction, persisting until the recruitment of
growing and antral follicles can no longer be sustained (Pocar et al.,
2003). Consequently, an increase in ROS in the ovaries leads to fast
corpus luteum deterioration, granulosa cell mortality, and a loss of
oocyte quality which was present in our histopathological findings
in the presence of atretic follicles with degenerated cells and altered
corpus luteal size and structure (Peters et al., 2020; Khirallah et al.,
2022). Surprisingly, treatment with CHR could restore ovarian
tissue damage.

Our research indicates that chrysin, a polyphenol compound
with a variety of health-promoting properties, particularly
flavonoids, the most prevalent chemical class of phytochemicals, is
a promising compound for use in the prevention of ovarian toxicity
against toxic agents. In nature, flavonoids can be found everywhere.
They can be found in food as well, which makes the connection
between nutrition and illness prevention crucial.

5 Conclusion

Our study provides novel findings, that exposure to MD
in female rats could diminish fertility by inducing oxidative
stress, disrupting hormonal balance during reproduction, causing
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histopathological changes, triggering ovarian inflammation,
altering tumor marker levels, and affecting ovarian cell apoptosis.
Furthermore, our study illustrated that CHR could mitigate the
ovarian damage induced by MD. These findings shed light on the
reproductive health risks associated with MD exposure. Further
research is needed to fully understand the potential benefits of CHR
in preventing MD-induced ovarian damage.
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The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and
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Oxidative stress, caused by an imbalance between the generation of reactive oxygen
species (ROS) and the body'’s intrinsic antioxidant defenses, plays a critical role in
neurodegenerative diseases such as Alzheimer's, Parkinson'’s, and Huntington'’s.
Beyond these conditions, recent evidence indicates that dysregulated redox balance
is implicated in neuropsychiatric disorders, including schizophrenia, major depressive
disorder, and anxiety disorders. Preclinical and clinical studies have demonstrated
the potential of antioxidants, such as N-acetylcysteine, sulforaphane, alpha-lipoic
acid, L-carnitine, ascorbic acid, selenocompounds, flavones and zinc, in alleviating
neuropsychiatric symptoms by mitigating excitotoxicity, enhancing synaptic
plasticity, reducing microglial overactivation and promoting synaptogenesis. This
review explores the role of oxidative stress in the pathogenesis of neuropsychiatric
disorders. It provides an overview of the current evidence on antioxidant therapy'’s
pharmacological effects, as demonstrated in animal models and clinical studies.
It also discusses the underlying mechanisms and future directions for developing
antioxidant-based adjuvant therapies. Given the limitations and side effects of
existing treatments for neuropsychiatric disorders, antioxidant therapy presents a
promising, safer alternative. Further research is essential to deepen our understanding
and investigate the clinical efficacy and mechanisms underlying these therapies.

KEYWORDS

oxidative stress, neuropsychiatric disorders, antioxidants, neuroprotection, synaptic
regulation, microglia modulation, neurotrophic effects

1 Oxidative stress and brain disorders

The brain relies heavily on oxygen to generate the energy required for cognitive function.
The release of neurotransmitter-loaded vesicles at synapses demands substantial energy, with
approximately 1.64 x 10A5 ATP molecules needed per vesicle released (Alle et al., 2009;
Magistretti and Allaman, 2015). Consequently, neuronal mitochondria must consume oxygen
(O,) at a disproportionately high rate to meet the brain’s energy needs (Alle et al., 2009). The
brain depends on O, for aerobic respiration to sustain its high metabolic activity; however, this
process produces reactive oxygen species (ROS) as byproducts, including superoxide anions
(0,7), hydrogen peroxide (H,0,), and hydroxyl radicals (-OH), alongside the complete
reduction of oxygen to water (Lennicke and Cocheme, 2021). Under normal physiological
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conditions, ROS participates in cellular signaling, regulating cell
growth and maintaining homeostasis. For instance, low concentrations
of O,” and H,0, can stimulate the proliferation of adult hippocampal
progenitor cells (Dickinson et al., 2011). However, when oxidative
stress (OS) overwhelms the body’s antioxidant defenses, excessive
ROS can damage neurons, contributing to the development of
neurodegenerative (Shadfar et al., 2023) and neuropsychiatric diseases
(Rossetti et al., 2020).

While the body’s antioxidant enzymes typically neutralize
peroxidation products, ROS have evolved to fulfill critical
physiological roles, especially within the central nervous system.
Consequently, the brain’s antioxidant system must make certain
compromises (Murphy et al,, 2011). For instance, neurons contain
significantly lower levels of catalase (CAT) (approximately 50 times
less than liver cells) (Ren et al., 2017) and approximately half the
amount of cytoplasmic glutathione (GSH) compared to liver cells
(Paul etal., 2018; Cobley et al., 2018). This relatively weak endogenous
antioxidant defense makes the brain particularly vulnerable to OS
(Cobley et al., 2018).

Moreover, the brain’s neuronal membranes are rich in unsaturated
fatty acids, making them susceptible to oxidative damage, which can
produce reactive aldehydes (Maiorino et al., 2018). During immune
responses, microglia release substances such as O, and ROS (Block
et al.,, 2007). Furthermore, H,O, is produced during the metabolism
of neurotransmitters (Ren et al., 2017). Mitochondrial dysfunction
further exacerbates OS by increasing ROS production, creating a
vicious cycle in neuronal cells reliant on mitochondrial activity
(Rizzuto et al., 2012; Slimen et al., 2014).

The brain’s vulnerability to OS stems from several factors,
including its high metabolic demands, relatively weak antioxidant
defenses, and abundant unsaturated fatty acids in neuronal
membranes. These characteristics suggest that OS plays a pivotal role
in the pathogenesis of neurological and psychiatric disorders.

2 The role of oxidative stress in
neuropsychiatric disorders

The brain is particularly susceptible to OS, and its role in the
pathogenesis of neuropsychiatric disorders has gained increasing
attention in recent years (Rossetti et al., 2020). Therefore, this section
reviews the evidence linking OS to conditions such as schizophrenia
(SZ), anxiety disorders, major depressive disorder (MDD) and bipolar
disorder (BD).

2.1 Oxidative stress in schizophrenia

SZ is a severe mental disorder affecting approximately 0.3 to
0.66% of the population, significantly impairing quality of life and
imposing a substantial socio-economic burden (Maas et al., 2017).

While traditional models of SZ pathogenesis emphasize
neurotransmitter  dysfunction, particularly involving dopamine,
emerging research points to OS as an additional underlying mechanism
(Miljevic et al., 2018). This hypothesis is supported by numerous studies
and meta-analyses (Goh et al., 2021; Goh et al., 2022). For instance,
research by Li et al. (2024) and Chien et al. (2020) has shown significantly
elevated levels of malondialdehyde (MDA), a marker of lipid
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peroxidation (LP), in the blood samples of patients with SZ. Similarly, a
study by Jia et al. (2023) indicated that OS contributes to hippocampal
damage in patients with first-episode SZ, leading to cognitive
impairment. Raffa et al. (2011) identified reduced activity of antioxidant
defense systems, such as GSH and CAT, in individuals with SZ. Further
evidence from Al-Amin et al. (2016) suggests that the antioxidant
astaxanthin can ameliorate behavioral deficits in SZ mice. Concurrently,
MacDowell et al. (2016) suggested that the antipsychotic drug
paliperidone may mitigate OS by upregulating nuclear factor erythroid
2-related factor 2 (Nrf2) in the Phosphoinositide 3-kinase/Protein kinase
B (PI3K/AKT) pathway. Kulak et al. (2013) observed heightened OS in
the anterior cingulate cortex during early development in GSH synthesis-
deficient (gclm —/—) mice accompanied by microglial activation and
redox-sensitive matrix metalloproteinase 9 (MMP9) upregulation.
Inhibiting MMP9 activation can normalize parvalbumin-expressing
interneurons (PVI)/ perineuronal nets (PNN) maturation and alleviate
SZ-related psychopathology (Dwir et al., 2020).

Furthermore, extensive research suggests that OS may impact
cognitive function through various pathways, such as directly
damaging parvalbumin-expressing interneurons (PVIs) (Schiavone
et al, 2009), hindering oligodendrocyte precursor cell (OPC)
proliferation and myelin formation in the prefrontal cortex (PFC)
(Maas et al., 2021), disrupting the blood-brain barrier (BBB) (Geng
etal, 2023), and inducing mitochondrial dysfunction (Fizikova et al.,
2023). Therefore, targeting OS may be crucial for SZ prevention
and treatment.

2.2 Oxidative stress in major depressive
disorder

According to the World Health Organization (WHO), MDD was
the fourth leading cause of disability worldwide and was predicted to
rise to second by 2020. Nearly half of those affected may not receive
timely diagnosis and treatment, underscoring the urgent public health
challenge of managing depression (Lolak et al., 2014).

Traditional models attribute depression to disruptions in
monoamine and glutamate neurotransmission. However, emerging
evidence suggests that OS and pro-inflammatory signaling may also
contribute to MDD (Bader et al., 2024; Tuon et al., 2021). Jiménez and
Chung et al. found significantly elevated levels of MDA in the plasma
of patients with MDD (Jimenez-Fernandez et al., 2022; Chung et al.,
2013). Similarly, Maes et al. (2019) reported increased levels of
superoxide dismutase 1 (SOD1), nitric oxide (NO), ROS, and lipid
peroxides in patients with depressive symptoms. Conversely, Kotan
etal. (2011) identified decreased activity of antioxidant enzymes, such
as SOD and CAT, in the serum of patients with MDD. Szebeni et al.
(2014) reported significantly reduced mRNA levels of SOD, CAT, and
glutathione peroxidase (GPX) in oligodendrocytes from the white
matter of patients with MDD in post-mortem analysis. Moreover,
Moreno et al. (2013) found elevated platelet NO and platelet
mitochondrial membrane potential (PMMP) in patients with MDD,
suggesting that mitochondrial bioenergetic alterations may contribute
to the onset and progression of depression via OS. This evidence is
further supported in animal models of depression (Tuon et al., 2021).
Moreover, knockout (KO) mice lacking the antioxidant transcription
factor Nrf2 displayed depression-like behaviors in various tests (Dang
etal., 2022; Zeng et al., 2023).
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OS may disrupt neurotransmitter metabolism, such as that of
serotonin (Ding et al., 2020), impair neurogenesis and synaptic
plasticity (Hou et al, 2017), and induce DNA and RNA
hypermethylation (Wu et al., 2021; Han et al., 2022), all of which may
contribute to depression. These findings underscore the therapeutic
potential of antioxidants in treating depression.

2.3 Oxidative stress in anxiety disorders

Anxiety, an essential evolutionary mechanism for alertness and
self-protection, can become maladaptive when excessive, leading to
anxiety disorders. The lifetime prevalence of pathological anxiety
exceeds 20% (Filiou and Sandi, 2019; Koskinen and Hovatta, 2023).

Anxiety disorders, including generalized anxiety disorder (GAD)
and phobias, are not fully understood. However, emerging research
hints at a potential role for impaired antioxidant defense and oxidative
damage in their development (Kaya et al., 2013; Oktay et al., 2024).
Oktay et al. (2024) clinical study revealed significantly increased levels
of LP markers, such as MDA and F2-isoprostanes, in patients with
severe anxiety. Bellisario et al. (2014) demonstrated that deleting the
p66Shc gene, a key regulator of mitochondrial ROS production,
reduced anxiety behaviors by reducing OS. Furthermore, Bersuker
etal. (2019) discovered that Lactobacillus plantarum guanidinoacetate
(LbGp), an OS regulator, alleviated anxiety-like behavior by enhancing
glutathione peroxidase 4 (GPX4) activity and preventing ferroptosis.
Conversely, the deletion of the GPX4 gene in dopaminergic neurons
increased anxiety behaviors (Dang et al, 2022). Moreover,
overexpression of genes such as glutathione reductase 1 (GSR1) and
glyoxalase enzyme 1 (GLOL1) has been strongly correlated with anxiety
phenotypes (Hovatta et al., 2005), with GLO1 inhibitors showing
potential in alleviating anxiety (Distler et al., 2012). Moreover, OS may
exacerbate anxiety by depleting reduced GSH (Nisar et al., 2023) and
promoting N-methyl-D-aspartate (NMDA) receptor-mediated
synaptic inhibition in the basolateral amygdala (BLA) (Wu
etal., 2022).

Despite inconsistent findings across studies, a general pattern of
oxidative imbalance has been observed in patients with anxiety,
suggesting that targeting OS may offer a promising therapeutic avenue
for anxiety disorders.

2.4 Oxidative stress in bipolar disorder

Bipolar disorder (BD) is a chronic mental illness characterized by
an alternation between mania or hypomania and depression. It is often
associated with impaired functionality (Munkholm et al., 2024).

Several lines of evidence point to the presence of low-grade
inflammation and oxidative stress in patients with bipolar disorder
(Rosenblat and McIntyre, 2016), while findings to some extent are
inconsistent and have been limited by methodological issues (Garcia-
Gutierrez et al., 2020; Kirkpatrick et al., 2021; Munkholm et al., 2024).
Increased lipid peroxidation has been observed in the prefrontal
cortex and anterior cingulate cortex of patients with BD (Wang et al.,
2009). Moreover, One study conducted with 94 BD patients and 41
healthy controls reported higher OS index levels in the BD patients
compared with the controls (Yumru et al., 2009). It also found
decreased antioxidant and OS markers; however, many other studies
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have reported the opposite finding. For example, some studies
corroborated this finding of increased serum TBARS levels in BD
patients during mania, depression, and euthymia (Andreazza et al.,
2007). Moreover, Sowa-Kucma et al. (2018) found a significant
positive association between higher TBARS level and severity of BD,
including the risk of suicidality. Additionally, studies have found that
serum copper concentrations may be higher in certain subgroups,
such as patients in the early stages of the disease. Furthermore, serum
copper concentrations may be associated with certain
pathophysiological processes of bipolar disorder, such as oxidative
stress. Although this study suggests that there are differences in serum
copper concentrations among bipolar disorder patients at different
stages of the disease, these differences did not reach statistical
significance (Siwek et al., 2017).

BD is becoming increasingly understood as a condition of
aberrant neuroplasticity. Multiple factors, such as OS, imbalance of
associated with the

neurotransmitters, and genetics, are

pathophysiology of BD.

3 The role of antioxidants in treating
neuropsychiatric disorders

The antioxidant system of cells is mainly composed of two parts:
the enzymatic antioxidant system and the non-enzymatic antioxidant
system. These two systems are not isolated but form an integral whole.
The enzymatic antioxidant system includes a series of active enzymes
with antioxidant properties, such as superoxide dismutase (SOD,
including Cu-Zn SOD and Mn-SOD), catalase (CAT), glutathione
peroxidase (GPx), thioredoxin (Trx), and others (Wen et al., 2022;
Chen et al., 2023). These enzymes can catalyze antioxidant reactions,
converting free radicals into harmless substances, thereby maintaining
redox balance within organisms. The non-enzymatic antioxidant
system, on the other hand, is primarily composed of small molecular
antioxidant substances. Numerous preclinical and clinical studies
highlight the potential of antioxidants (Rossetti et al., 2020) such as
N-acetylcysteine (NAC), sulforaphane (SFN), alpha-lipoic acid (ALA),
L-carnitine (L-Car), ascorbic acid, selenocompounds, and flavones.
Beyond their direct radical-scavenging properties, these compounds
have demonstrated an ability to modulate endogenous antioxidant
systems. (Figure 1).

3.1 N-acetylcysteine

N-acetylcysteine (NAC), an essential precursor for GSH synthesis,
is a critical brain antioxidant (Raghu et al., 2021). Its antioxidant
mechanisms primarily encompass: serving as a reductant to reduce
oxidized molecules by donating electrons; activating the glutathione
(GSH) cycle to restore glutathione to its reduced form; directly
scavenging free radicals, including superoxide anions, hydroxyl
radicals, and hydrogen peroxide; and curbing inflammation by
suppressing oxidative stress and inflammatory cytokine production
(Raghu et al., 2021). Several studies have suggested that NAC can
ameliorate clinical symptoms in patients with SZ, AN, and MDD
(Sceneay et al, 2013; Hoepner et al., 2021). For instance, NAC
modulates GSH and glutamate levels, potentially reducing the negative
symptoms and cognitive impairments associated with SZ (Yang et al.,
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2022). However, while evidence supports NAC’s therapeutic effect in
stable patients with SZ, its efficacy in patients with refractory SZ on
clozapine remains inconclusive (Fornaro et al., 2024). Furthermore,
animal experiments indicate that NAC can mitigate elevated glutamate
levels in the cerebral cortex, reduce ROS levels in interneurons (Neill
et al., 2022; Buhner et al,, 2022), and upregulate brain-derived
neurotrophic factor (BDNF) mRNA and protein, leading to improved
behavioral and cognitive outcomes in SZ animal models (Phensy et al.,
2017; Aslanlar et al., 2024). Similarly, NAC has been shown to alleviate
moderate depressive symptoms (Liang et al., 2022) by curbing ROS
production in microglia (Lehmann et al., 2019) and regulating the
glutamatergic system in the PFC (Nery et al., 2022). However, a meta-
analysis of randomized controlled trials found that NAC was not
significantly better than placebo in treating severe depression or
bipolar disorder (Andrade, 2021).

Overall, NAC exhibits multiple biological activities, demonstrating
promise as a treatment for SZ, MDD, and AN; however, further
research is warranted.

3.2 Sulforaphane

Sulforaphane (SFN) is a naturally occurring organic sulfur
compound found in cruciferous vegetables such as broccoli,
cauliflower, and mustard greens, characterized by its unique
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isothiocyanate group (Kamal et al., 2020). As an indirect antioxidant,
SEN activates the Nrf2/Kelch-like ECH-associated protein 1 (Keapl)/
Antioxidant response element (ARE) signaling pathway. When cells
are stimulated by oxidative stress or other stressors, SFN binds to
specific sites on Keapl, causing a conformational change in Keapl.
This change frees Nrf2 from its binding with Keapl, allowing it to
translocate to the nucleus. In the nucleus, Nrf2 binds to ARE, initiating
the transcription of a series of antioxidant enzymes and proteins,
thereby preserving cellular redox balance and homeostasis (Mangla
etal., 2021). Additionally, by activating the Nrf2/Keap1/ARE signaling
pathway, SEN upregulates the activity of multiple antioxidant enzymes,
protecting cells from oxidative damage (Ma et al., 2023). Beyond its
antioxidant effects, SFN exhibits potent anti-inflammatory properties
(Kiser et al., 2021).

Some clinical studies indicate that SFN can prevent cognitive
impairment in SZ through its anti-inflammatory (Zeng et al., 2024)
and antioxidant effects (Shirai et al., 2015). However, other trials have
not consistently replicated these findings (Dickerson et al., 2021). In
animal models, SFN appears to be a promising adjunct therapy for SZ,
mitigating side effects such as metabolic defects, biochemical
imbalances, and liver histological abnormalities associated with
olanzapine (OLA) (El-Shoura et al., 2024). Concurrently, SEN has
been shown to improve anxiety and depression symptoms in mice by
activating the Nrf2/ heme oxygenase-1 (HO-1) signaling pathway
et al, 2018) and the

(Ferreira-Chamorro inhibiting
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hypothalamic-pituitary—-adrenal (HPA) axis and stress response (Wu
et al., 2016). Furthermore, SFN may activate Nrf2 by initiating the
transcription of trigger receptor expressed on myeloid cells-2
(TREM2) in the medial PFC (mPFC), increasing the expression of the
M2 microglial marker arginase 1 (ARG1), which may alleviate
depressive phenotypes through its anti-inflammatory and
neuroprotective functions (He et al., 2022).

In summary, SEN has demonstrated potential as a treatment for
SZ, MDD, and AN. However, further high-quality clinical and animal
studies are necessary to confirm its therapeutic efficacy and

mechanisms of action.

3.3 Alpha-lipoic acid

Alpha-lipoic acid (ALA) is a natural compound commonly found
in the diet, serving as a crucial cofactor for mitochondrial respiratory
enzymes and playing a vital role in maintaining cellular oxidative
metabolism (Holmquist et al., 2007). ALA can directly scavenge ROS,
promote the regeneration of vitamins C and E, and upregulate the
activity of antioxidant enzymes like superoxide dismutase and catalase
(El-Houseiny et al., 2023). Evidence suggests that ALA may alleviate
symptoms associated with SZ and reduce OS (Emsley et al., 2014;
Vasconcelos et al., 2015). Furthermore, ALA supplementation has been
shown to improve the psychopathology of patients with treatment-
resistant SZ (TRS) by decreasing OS (Sanders et al., 2017; Mishra et al.,
2022). However, these promising findings were not confirmed in a
subsequent double-blinded, placebo-controlled trial conducted by
Emsley et al. (2014), warranting caution due to potential side effects,
including a decrease in blood cell count associated with ALA treatment
(De Lima et al,, 2023). Tannuzzo et al. (2022) investigated ALAs
potential for treating depression, particularly in combination with
other therapies, as it can effectively mitigate drug-related side effects
such as the risk of diabetes and liver dysfunction. Moreover, ALA has
been demonstrated to regulate the neuropathology of BDNF in mice
model (Vasconcelos et al., 2015; Aliomrani et al., 2022). Furthermore,
ALA alleviates methamphetamine-induced memory deficits and
anxiety-like behavior in rats by enhancing the activity of antioxidant
enzymes, including SOD and CAT (Kargar and Noshiri, 2024).

These findings underscore ALA’s potential to enhance cognitive
function and emotional well-being while highlighting the necessity for
further clinical validation in human populations.

3.4 L-carnitine

L-Carnitine (L-Car) is an essential nutrient in human tissues,
including the brain. The antioxidant mechanism of L-Car primarily
involves facilitating fatty acid entry into mitochondria for oxidative
breakdown, reducing intracellular fatty acid accumulation,
stabilizing mitochondrial membrane potential, scavenging free
radicals, upregulating the expression of antioxidant enzyme genes,
and enhancing antioxidant enzyme activity (Da Silva et al., 2023).
These actions collectively protect cells from damage caused by
oxidative stress. Specifically, acetyl-L-Car (ALCAR), as a critical
form of L-Car, has been substantially linked to several mental health
disorders (Cao et al., 2019). Previous studies indicate that low levels
of ALCAR are closely associated with conditions such as depression
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and SZ (Cao et al, 2020). L-Car has been shown to improve
psychiatric scores in a mouse model of SZ through anti-
inflammatory and antioxidant pathways (Ebrahimi et al., 2023).
Meanwhile, clozapine can disrupt lipid metabolism in the liver by
affecting L-Car reabsorption, and concurrent L-Car supplementation
is an effective strategy to mitigate these metabolic disturbances
(Bruno et al., 2016; Wang et al., 2018). Moreover, metabolomic
analyses of serum from patients with severe depression suggest that
L-Car and ALCAR may serve as potential biomarkers for this
condition (Nie et al., 2021). Supplementation with L-Car may serve
as an effective adjuvant therapy for patients with refractory
depression. The Canadian Emotion and Anxiety Treatment Network
has established clinical guidelines recommending ALCAR
monotherapy as a third-line treatment option for mild to moderate
depression based on existing research evidence (Yatham et al., 2018).
A recent meta-analysis showed that ALCAR supplementation as a
standalone intervention significantly alleviated depressive symptoms
compared to placebo or no intervention (Veronese et al., 2018).
Animal studies suggest that ALCAR may exert antidepressant effects
through the PI3K/AKT/BDNF signaling pathway (Wang et al., 2015).

Although ALCARS’ potential in treating mental illness has been
preliminarily validated, further high-quality research is necessary to
explore its specific mechanisms and optimize treatment dosages and
regimens. Moreover, attention must be paid to the interactions
between ALCAR and other medications and their potential
adverse reactions.

3.5 Ascorbic acid

Ascorbic acid, or vitamin C, is a widely recognized antioxidant
that plays a crucial protective role in the body (Conklin et al., 2024).
Ascorbic acid directly scavenges superoxide anions, hydroxyl
radicals, and other free radicals, and regenerates antioxidants such
as vitamin E and GSH. It also modulates the expression of
antioxidant enzymes like SOD and CAT, enhancing cellular
antioxidant capacity and chelating metal ions to remove harmful
ions such as iron and copper from the body (Chen et al., 2021).
Systematic reviews indicate that ascorbic acid promotes neuronal
differentiation of precursor cells, enhances adult hippocampal
neurogenesis, and facilitates synaptic plasticity, thereby improving
behavioral and biochemical changes in psychiatric disorders such as
SZ, anxiety, MDD, and bipolar disorder (Moretti and Rodrigues,
2022). Evidence indicates that patients with SZ exhibit lower vitamin
Clevels (Myken et al., 2022). Research has shown that ascorbic acid
can alleviate phenotypic symptoms of SZ by restoring the balance
between ROS and antioxidant defenses (Dakhale et al., 2005;
Damazio et al., 2017), reducing inflammatory factor levels, and
employing other mechanisms (Supp et al., 2021). Similarly, ascorbic
acid may exert antidepressant effects by restoring antioxidant
enzyme activity (Moretti et al., 2013), activating the opioid receptor
system (particularly the p-opioid receptor), inhibiting NMDA
receptors, or both (Moretti et al,, 2018; Moretti et al., 2019).
Furthermore, a recent study indicated that ascorbic acid can alleviate
anxiety symptoms by upregulating synaptic proteins, increasing
dendritic spine density, and promoting the maturation of the ventral
dentate gyrus (DG) (Fraga et al., 2018; Fraga et al., 2020). Ascorbic
acid can also directly enhance the catalytic activity of Tet
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methylcytosine dioxygenase 2 (TET2) in the oxidation of
5-methylcytosine (5mC), promote the folding and/or recycling of
the cofactor Fe (2%) for TET2, and improve symptoms of depression
(Ma et al., 2024; Yin et al., 2013).

These findings collectively highlight the therapeutic potential of
ascorbic acid in treating mental illnesses.

3.6 Selenocompounds

Selenium is the active center of GPX, and recent advancements
have led to the development of various mimetics designed to replicate
GPX functions (Ferreira et al., 2021). The antioxidant mechanism of
selenocompounds primarily involves the direct reaction of selenium
atoms with free radicals generated by oxidative stress, thereby
reducing the number of free radicals (Bartolini et al., 2017).

Serum selenium levels are considerably lower in patients with SZ
compared to healthy controls (Li et al., 2018), suggesting a protective
role for selenium in SZ and AN (Guo et al., 2023). Moreover, GPX
activity is generally reported to be reduced by approximately 20% in
patients with SZ. Supplementation with selenium has been shown to
enhance cognitive function and improve clinical symptoms such as
appetite and memory (Alsharif et al., 2023). Furthermore, dietary
selenium appears to mitigate stress-induced depression symptoms,
with epidemiological studies linking low selenium intake to an
increased risk of severe depression (Pasco et al., 2012). However, this
association has faced scrutiny from other studies (Guo et al., 2023;
Botetal,2019). Animal studies have demonstrated the antidepressant
and anti-anxiety properties of selenium compounds. For instance,
F-DPS
alleviates depression symptoms by restoring glutamate uptake in the

[2,5-diphenyl-3-(4-fluorobenzeneselenyl) selenophenyl]
PEC of mice (Gai et al., 2014a) and activating Extracellular Signal-
Regulated Kinase (ERK) signaling (Gai et al., 2014b) pathways.
MESel [1-methyl-3-(phenylselenyl)-1H indole] exerts antidepressant
and anti-anxiety effects by reducing OS, regulating neurotransmitter
balance, and affecting glucocorticoid receptor expression (Bampi
et al,, 2020). Diphenyl diselenide (DPDS) shows anti-anxiety effects
by modulating Gamma-Aminobutyric Acid Type A (GABAA) and
5-Hydroxytryptamine (5HT) receptors (Ghisleni et al, 2008).
Similarly, ebselen reduces impulsivity in rodent models and has been
suggested as an alternative to lithium in the treatment of bipolar
disorder and other mood disorders (Singh et al., 2016). Liquiritigenin
display neuroprotection through exerting anti-oxidative and anti-
inflammatory activities to suppress neuronal apoptosis (Chiu
et al., 2018).

Selenium and its compounds show considerable potential in
regulating nervous system functions, alleviating stress responses, and
preventing mental illnesses. However, further research is necessary to
confirm these findings.

3.7 Flavones

Flavonoids are low-molecular-weight compounds that belong to
a class of plant secondary metabolites characterized by a polyphenolic
structure. Flavonoids primarily exhibit their antioxidant mechanism
by directly scavenging free radicals such as reactive oxygen species
(ROS). Through specific functional groups, they react with free
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radicals to halt radical chain reactions. Moreover, flavonoids can also
upregulate the activity of antioxidant enzymes, thereby enhancing the
antioxidant defense system (Calis et al., 2020). They are categorized
into six subcategories based on the carbon atoms connected to the C
ring by the B ring, as well as the degree of unsaturation and oxidation
of the C ring: flavanones, flavones, isoflavones, flavonols, chalcones,
and anthocyanins (Hostetler et al., 2017).

Research has shown that 7,8-dihydroxyflavone (7,8-DHF) can
alleviate SZ-like symptoms by effectively mimicing the effect of brain-
derived neurotrophic factor (BDNF) in the brain (Jachne et al., 2021)
to selectively activate tyrosine kinase receptor B (TrkB) (Emili et al.,
2022) and downstream Phospholipase C (PLC), AKT, and ERK1/2
signaling  pathways.  Similarly, the natural flavonoid
4',5,7-trihydroxyflavone boosts the neurotrophic effects of BDNF by
strengthening TrkB receptor signaling (Gao et al., 2023). Meanwhile,
Deng et al. (2024) suggest that flavonoids have a protective role against
depression, a finding supported by various animal and epidemiological
studies (Amin et al., 2020; Zhang et al., 2015; Gui et al., 2023).
Moreover, 7,8-DHF improves anxiety-like behavior in mice subjected
to chronic alcohol exposure by regulating TrkB signaling in the
amygdala (Wang et al., 2021). Natural flavonoids, such as chrysin,
have demonstrated anxiolytic effects in animal models through
mechanisms including interaction with the GABAA/benzodiazepine
receptor complex and free radical scavenging (Karim et al., 2012;
Gadotti and Zamponi, 2019; German-Ponciano et al., 2020). In
summary, flavonoids possess significant therapeutic potential in
treating SZ, depression, and AN due to their diverse biological

activities and effects.

3.8 Zinc

Zinc, as an essential trace element, possesses the ability to
modulate intracellular redox levels, preventing oxidative damage to
biomembrane systems and reducing the formation of reactive oxygen
species. Deficiency in zinc can increase the susceptibility of the body
to oxidative stress, and appropriate supplementation can alleviate the
resulting damage (Chasapis et al., 2020).

In the exploration of zinc’s potential in treating depression, a
series of literature reviews have delved into the role of zinc in
depression, including its potential mechanisms in regulating
neurotransmitter, endocrine, and neurogenesis pathways, and
have emphasized the reported antidepressant-like and mood-
enhancing activities of zinc in both human and rodent intervention
studies (Wang et al., 2019). Furthermore, a systematic review and
meta-analysis found that zinc supplementation can alleviate
depressive symptoms in patients undergoing antidepressant
treatment (Da Silva et al., 2021). Another review has discussed the
role of zinc in regulating brain-derived neurotrophic factor
(BDNF) and its impact on neural function, suggesting that the
combination of zinc supplementation with antidepressants can
effectively treat major depressive disorder (Mlyniec, 2021). A
preliminary study showed that individuals with anxiety have
significantly elevated plasma copper levels and very low zinc
levels, and supplementation with zinc significantly improved
anxiety symptoms (Russo, 2011). However, the exact molecular
mechanisms underlying the potential relevance of zinc have not
been fully elucidated. Relevant animal studies have shown that

frontiersin.org


https://doi.org/10.3389/fnins.2024.1505153
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Liu et al.

zinc can regulate 5-HT receptors, exerting antidepressant effects
(Satala et al., 2018). Additionally, zinc can block NMDA receptors,
preventing glutamate from entering cells, thus producing an
anxiolytic effect (Dou et al., 2018). It is noteworthy that the G
protein-coupled receptor 39 (GPR39) is abundantly distributed in
brain regions related to anxiety, and zinc, being a natural ligand
for GPR39, is involved in the regulation of anxiety (Laitakari et al.,
2021).These findings collectively highlight the therapeutic
potential of zinc in treating mental illnesses.

3.9 Gut microbial biotransformation

Microbiota, particularly the gut microbiota, has been confirmed
to play a significant role in neuropsychiatric health (Xiong et al.,
2023). In the small intestine, the absorption of polyphenolic
compounds is limited, hence the majority of these compounds reach
the colon where they interact with the gut microbiota, exerting their
oxidative activity (Ozdal et al., 2016; Wang et al., 2022).

Studies have shown that the gut microbiota can convert dietary
polyphenols into low molecular weight bioactive metabolites, such
as short-chain fatty acids (SCFAs) and phenolic acids, which may
exert their antioxidant and anti-inflammatory effects through
signaling pathways like Nrf2 and NF-kB (Balkrishna et al., 2024).
Not only that, but polyphenols can utilize the structural
characteristics of hydroxyl groups on their benzene rings to scavenge
free radicals through H atom transfer (Papuc et al, 2017).
Furthermore, polyphenols provide electrons to free radicals,
stabilizing them and terminating the reaction. Epigallocatechin

10.3389/fnins.2024.1505153

gallate (EGCG) from green tea can stimulate the nuclear
translocation of Nrf2 in HepG2 cells, modulating the expression of
antioxidant genes (Mi et al., 2018). Concurrently, polyphenolic
compounds can exert neuroprotective effects by regulating adult
neurogenesis, synaptogenesis, and neuroplasticity, as well as the
activation of microglia (Godos et al., 2020). These studies provide
in-depth insights into the relationship between gut microbiota and
its metabolic components with mental health and offer directions for
the development of dietary natural products for the prevention and
treatment of psychiatric disorders.

4 Mechanisms underlying the effect of
antioxidants on neuropsychiatric
disorders

antioxidants

The mechanisms through which

neuropsychiatric disorders can be summarized into several key areas:

impact

neuroprotection, synaptic regulation, modulation of microglial
activity, and neurotrophic effects (as depicted in Figure 2).

4.1 Neuroprotection

Antioxidants are crucial in promoting the proliferation and
differentiation of neural stem cells, enhancing neurons’ number
and functionality, and ultimately improving functional recovery in
the nervous system. For instance, SFN protects neurons from
inflammation-mediated damage by lowering inflammatory
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markers such as high-sensitivity C-reactive protein (hs-CRP),
restoring antioxidant enzyme expressions such as HO-1 and GSH,
and reducing OS (Zeng et al.,, 2024). Similarly, ascorbic acid
mitigates the production of ROS triggered by antipsychotic
medications, thereby providing neuroprotective benefits (Dakhale
et al., 2005; Damazio et al., 2017). Selenium supplementation can
enhance the activity of GPX, thereby reducing OS damage to
neurons (Bampi et al., 2020). Furthermore, flavonoids promote
neuronal survival and repair through their antioxidant properties
(Harvey, 2022).

4.2 Synaptic regulation

Antioxidants primarily function by mitigating OS effects on
synaptic structure and function. Synaptic plasticity, characterized by
dynamic synapse morphology, structure, and function changes, is
essential for higher cognitive functions such as learning and memory
(Magee and Grienberger, 2020). Antioxidants regulate synaptic
plasticity by modulating neurons’ metabolic and signaling processes
at pre- and postsynaptic levels.

For instance, NAC enhances synaptic transmission efficiency by
promoting NMDA receptor activation and depolarizing the
postsynaptic membrane (Phensy et al., 2017). This mechanism has
been shown to alleviate long-term behavioral deficits associated with
ketamine treatment in a preclinical SZ model during the perinatal
period (Neill et al., 2022; Buhner et al., 2022). Selenium compounds
can normalize glutamate uptake in the PFC, a process frequently
disrupted in neuropsychiatric disorders (Gai et al., 2014a). Similarly,
ascorbic acid can improve SZ symptoms by upregulating synaptic
proteins, increasing dendritic spine density, and facilitating the
maturation of ventral DG (Fraga et al., 2020).

4.3 Microglia modulation

Neuropsychiatric disorders are frequently characterized by
increased OS and inflammatory responses, with abnormal activation
and dysfunction of microglia playing a significant role (Lehmann
etal,, 2019). Antioxidants can slow the progression of these disorders
by modulating microglial function and activity. For instance, SEN
alleviates depressive symptoms by activating the Nrf2/HO-1
signaling, reducing microglial activation, and facilitating a transition
to the M2 phenotype (Ferreira-Chamorro et al., 2018; He et al., 2022).
Concurrently, NAC prevents behavioral deficits in mice by inhibiting
microglial activation (Lehmann et al., 2019).

4.4 Neurotrophic action

Neurotrophic action refers to the effects of specific substances
that promote neuron growth, development, maintenance, and
regeneration (Castren and Monteggia, 2021). For instance,
N-acetylcysteine ameliorates chemotherapy-induced impaired
anxiety and depression-like behaviors by regulating BDNF release
(Aslanlar et al., 2024). Furthermore, ALA can reverse ketamine-
induced SZ-like symptoms in mice, potentially through its
influence on BDNF in the PFC, as well as in a mouse model of
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depression (Vasconcelos et al., 2015; Aliomrani et al., 2022).
Flavones enhance the neurotrophic effects of BDNF by reinforcing
TrkB receptor signaling (Wang et al., 2021; Emili et al., 2022; Gao
2023).

neurotransmitter

et al, Moreover, flavones significantly regulate

balance and improve the neuronal
microenvironment, promoting neuronal nutrition and metabolic

activity (Jachne et al., 2021).

5 Conclusion

After a thorough review and analysis of existing literature, we have
drawn the following conclusion: Antioxidants play a pivotal role in
preventing neuropsychiatric disorders by effectively scavenging free
radicals and mitigating oxidative stress, thereby forming a protective
barrier for brain neural tissue. Specifically, antioxidants can efficiently
neutralize reactive oxygen and nitrogen species, significantly reducing the
damage these harmful molecules cause to brain neurons, and ensuring the
preservation of neuronal structural and functional integrity. Furthermore,
by regulating the synthesis, release, and reuptake of neurotransmitters,
antioxidants maintain the normal functioning of the nervous system,
providing robust support for the prevention of neuropsychiatric disorders.
Additionally, antioxidants exhibit notable anti-inflammatory effects,
inhibiting inflammatory responses and mitigating the damage caused by
inflammatory mediators to neural tissue, thereby protecting the nervous
system from inflammatory diseases. Lastly, antioxidants improve
mitochondrial energy metabolism efficiency and antioxidant capacity,
reducing the production of free radicals and further alleviating the
potential damage caused by oxidative stress to neuronal cells.

While early studies suggest potential therapeutic effects of
antioxidants in certain conditions, many of these studies are limited by
small sample sizes, raising concerns about the reliability and
reproducibility of the findings. Furthermore, the heterogeneity among
patients remains a significant challenge in clinical trials. Factors such
as physiological status, genetics, and lifestyle can significantly influence
the effectiveness of antioxidant treatments. Moreover, the potential side
effects of antioxidants may limit their therapeutic value. Therefore, a
comprehensive evaluation of safety and efficacy is essential during drug
development. Despite the numerous challenges and limitations
associated with targeting OS for disease treatment, advances in science
and technology, coupled with continued research, offer hope for
overcoming these barriers. Future breakthroughs may provide novel
approaches to disease prevention and treatment.
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Dietary intake of Vaccinium berries has demonstrated significant potential
in preventing many risk factors associated with metabolic syndromes in the
human population. In recent years, a multitude of research has shown the
role of antioxidants derived from Vaccinium berries on chronic diseases such
as cardiovascular disorders, diabetes, obesity, and cancer. Several studies
have also investigated the effect of Vaccinium berry consumption on their
ability to modulate the risk factors associated with oxidative stress, vascular
function, inflammation, and lipid metabolism. Regarding cancer, studies showed
that the consumption of berries reduces inflammation, inhibits angiogenesis,
protects against DNA damage within the cell, and controls apoptosis and
proliferation rates in malignant tumours. However, which components are
responsible for the health benefits is still unclear. Reports show that whole
berry consumption usually confers positive effects on human health, and the
health-promoting potentials are likely due to the presence of polyphenols
with antioxidant activities. Among these polyphenols, various Vaccinium berry
species have been reported to contain anthocyanins and flavonoids. These two
polyphenolic compounds are known to have higher antioxidant activity and
are beneficial for human health. There are now several studies and human
clinical trials documenting the beneficial effects of Vaccinium berries, and
these findings suggest that they may be promising for preventing and treating
neurodegenerative diseases. This review focuses primarily on dietary Vaccinium
berries consumption effects on human health and their potential role as
therapeutic agents.
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1 Introduction

The eternal pursuit of finding and identifying health-promoting agents has changed
how we view our food sources. We have introduced superfoods, food supplements, and
nutraceuticals in developed countries, reinforcing the food industry’s further growth
(European Commission, 2006). Berries represent a large group of functional foods, also
popularly known as “superfoods” due to their high content of disease-preventing and
health-boosting chemicals (Ferlemi and Lamari, 2016). The genus Vaccinium L. (Ericaceae)
includes approximately 450 diverse species, including these main commercial crops such as
highbush blueberry (V. corymbosum L.), rabbiteye blueberry (V. virgatum Aiton, formerly
known as V. ashei ].M.Reade), lowbush blueberry (V. angustifolium Aiton), bilberry
(V. myrtillus L.), cranberry (V. macrocarpon Aiton), and lingonberry (V. vitis-idaea L.)
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(Retamales and Hancock, 2018). In general, berry fruit consumption
has increased in recent years. Several research papers show that
the increased consumption of berries is associated with a reduced
risk of disorders linked with reactive oxygen species (ROS),
such as cardiovascular disorders, cancer, and other inflammatory
processes (Gomes-Rochette et al, 2016). A large number of
scientific research cites the effect of berry consumption in three
major groups: (a) physical and mental health maintenance;
(b) reduction of the rate of obesity; and (c) decreased rate of
chronic diet-related diseases, e.g., cardiovascular and metabolic
disorders, type II diabetes (Giampieri et al., 2015). Vaccinium
berries contain high concentrations of beneficial nutrients and
other bioactive phytochemicals, which has led them to become
the center of attraction for researchers working on the potential
role of these phytochemicals in preventing chronic diseases
(Colak et al, 2016). Many research papers have shown that
these active compounds, which are present in phenolic form, are
associated with high antioxidant activity. Additionally, there are
several studies suggesting that wild Vaccinium Berries contain
higher phenolic content and antioxidant activity than cultivated
berries (Braga et al, 2013; Dinstel etal, 2013; Kangetal,
2015). Phenolic compounds present in Vaccinium berries are
classified into diverse groups, which include phenolic acids
such as hydroxybenzoic and hydroxycinnamic acids and their
derivatives, flavonoids (flavonols, flavanols, and anthocyanins,
and tannins. Tannins are further sub-grouped into condensed
tannins like proanthocyanidins and hydrolysable tannins (Ferlemi
and Lamari, 2016). Blueberries (Vaccinium spp.) contain the
highest amount of p-coumaric acid, chlorogenic acid, and other
caffeic acid derivatives, which are types of hydroxycinnamic acids
(Mattila et al., 2006; Maittd-Riihinen et al., 2004a; Kylli, 2010;
Hilkkinen et al., 1999; Taruscio et al,, 2004). When it comes to
flavonoids among the Vaccinium berries, lingonberries (V. vitis-
idaea L.), highbush blueberries, and American cranberries (V.
macrocarpon) are known to be the richest source of flavonols such
as quercetin and myricetin derivatives and aglycones (Miatta-
Riihinen et al., 2004b; Maitta-Riihinen et al., 2004a; Kylli, 2010;
Hikkinen et al, 1999; Taruscio et al., 2004). These chemical
compounds possess high antioxidant activity (Wilms et al., 2005)
and play a major role in preventing many chronic diseases
(Castaneda-Ovando et al., 2009; Duthie et al., 2006). However,
the concentration of these compounds depends on the species,
genotype, growing condition and their post-harvesting techniques
(Manganaris et al., 2014; Kresty et al., 2006).

Anthocyanins are important secondary plant metabolites,
primarily occurring as glycosides of their aglycone anthocyanidins.
The contents of the small edible berries are responsible for
their bright colours as this pigment is evenly distributed in the
epidermal tissues of the berries (Del Bo et al., 2015). The pigment
in anthocyanins is water-soluble and responsible for orange, red,
purple, and blue in fruits and vegetables (Delgado-Vargas et al.,
2000). Anthocyanins are present in substantial quantities in
glycosylated and various other forms in European cranberries
(V. oxycoccus) and blueberries (Del Bo et al., 2015). European
blueberries or bilberries contain fifteen anthocyanins, such as
delphinidin and cyanidin monoglycosides, malvidin glycosides,
petunidin, and peonidin. In the case of American cranberries, the
principal anthocyanins are cyanidins, while in the case of European
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cranberries, it is peonidins (Norberto et al., 2013; Kaume et al.,
2012; Gopalan et al., 2012; Seeram, 2008; Paredes-Lopez et al.,
2010). Similar to American cranberries, lingonberries also mainly
contain cyanidin monoglycosides. Besides cyanidins, high and
lowbush blueberries, lingonberries, and American cranberries
contain procyanidins such as catechin and epicatechin polymers
(Norberto et al., 2013; Zafra-Stone et al., 2007).

Commonly consumed Vaccinium berries have been studied for
their effects on human health, but the nature and extent of their
impact on humans remain vague. Hence, this article aims to provide
a comprehensive overview of human clinical trials investigating
the acute and chronic effects of Vaccinium berry polyphenols
derived from fruits, their extracts and their derived products on
inflammation, gut microbiota, diabetes, heart health, cancer, and
brain activities.

2 Bioactive compounds

Plants produce numerous bioactive compounds, which belong
to different classes of secondary metabolites including polyphenols,
phytosterols, lipoates, carotenoids, etc. (Acquaviva et al., 2021;
He et al., 2024). In berries, the most abundant bioactive compounds
are phenolics, which are mostly found in leaves, fruits, and
seeds but can also be present in other parts of plants. The
chemical structure of the phenolic compounds carries one or
more aromatic rings with one or more hydroxyl groups (Szajdek
and Borowska, 2008; Nile and Park, 2014; Del Bo et al., 2015;
Skrovankova et al., 2015). Phenolics are either present in free or
conjugated forms with water or fat-soluble compounds (Figure 1).
Conjugated forms of phenolics are predominantly present as
conjugated hydroxycinnamic acids, flavonol glycosides, and
anthocyanins (Maitta-Riihinen et al., 2004a). These phenolics
are not species-specific but shared across the genera. Among the
berry polyphenols, anthocyanins constitute a large percentage.
They have a characteristic C6—C3-C6 carbon structure and are
glycosylated polyhydroxy and polymethoxy derivatives of flavylium
salts (Wallace, 2011). A study has reported that anthocyanins have a
glycosidic structure containing more than two sugar molecules, such
as galactose, arabinose, xylose, and glucose, that effectively connect
with aglycon and form through the phenylpropanoid pathway.
Anthocyanins have more than 600 compounds and more than 30
anthocyanidin compounds (Bilawal et al., 2021). The major phenolic
compounds (anthocyanins) found in Vaccinium berries are listed in
Table 1. Anthocyanins are uniquely characterized by an oxonium
ion on the C ring and are highly pigmented (Pandey and Rizvi,
2009). Among these anthocyanin compounds, quercetin, myricetin
and their glycosidic derivatives reach up to 30%. Anthocyanins,
including procyanidins and anthocyanidins such as cyanidin,
malvidin, peonidin, delphinidin, and petunidin, can account for up
to 24% of all polyphenolic compounds. Phenolic acids primarily
include p-coumaric acid, chlorogenic acid, caffeic acid, ferulic
acid and vanillic acid. They account for up to 12% of the total
polyphenols (Nemzer et al., 2022).

Plant phenolics were regarded as antinutritional and toxic for
a long time as these compounds’ chemical nature of functioning
as an inhibitor to proteolytic, lipolytic and glycolytic enzymes
reduces their ability to absorb nutrients (Olas, 2018). However,

frontiersin.org


https://doi.org/10.3389/fmolb.2024.1520661
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Ghosh et al. 10.3389/fmolb.2024.1520661

* Cyanidin

HO
5. i CH:O CH:OH
* Delphinidin OH
« Malvidin { Mo
HO CH:OH O OH

* Peonidin o~
* Pelargonidin o
Ol OO
OCH:
OH OH  oH
* Quercetin OH OH
* Myricetin
» Kaempferol Proanthocyanidins
OH

* Catechin

* Gallocatechin

* Epigallocatechin OH

* Epicatechin Ellagitannins

Flavanols
Ry
OH  Caffeic acid
* Ferulic acid
R Z CooH * P-coumaric acid

Hydroxycinnamic acids

(0]
R4

! e QGallic acid )
R s Vanillicadd Pterostilbene

Rs * Protocatechuic acid HO

Hydroxybenzoic acids HO ] Z O £

Piceatannol

FIGURE 1
General classification of Vaccinium berry polyphenols and their main representatives.

the toxicity of the phenolic compounds derived from berries was such as phenolics (Singh and Basu, 2012), Vaccinium berries also
generally unnoticed in the previous studies, while the benefits were ~ contain a wide range of nutritive compounds such as simple
observed. Apart from being a source of non-nutritive compounds  sugars like glucose and fructose, minerals, for example, phosphorus,
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TABLE 1 Major polyphenols found in Vaccinium berries.

10.3389/fmolb.2024.1520661

Type of berry Scientific name Types of polyphenols References

Bilberry Vaccinium myrtillus delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, Maitta-Riihinen et al. (2004a)
malvidin-3-O-glucoside

Blueberry Vaccinium spp. delphinidin 3-O-galactoside, -arabinoside; malvidin Cho et al., 2004, Miaatta-Riihinen et al., 2004a
3-O-galactoside, petunidin 3-O-galactoside

Cranberry V. macrocarpon peonidin 3-O-galactoside, -arabinoside; cyanidin Zheng and Wang (2003)
3-O-galactoside

Lingonberry V. vitis-idaea cyanidin 3-O-galactoside, peonidin 3-O-galactoside Maéitta-Riihinen et al. (2004a)

calcium, iron, potassium, magnesium, manganese, sodium and
copper, etc. (Del Bo et al., 2015; Szajdek and Borowska, 2008).
Iron and manganese are essential components of antioxidant
enzymes among these above-mentioned minerals. Moreover, berries
contain vitamins A and E, reducing inflammation and acting
as antioxidants (Skrovankova et al, 2015). Apart from that,
berries contain high concentrations of dietary fibres and low
concentrations of lipids. These fibers reduce the concentration of
low-density lipoproteins (LDL) in blood serum and reduce the
chances of occurrence of cardiovascular and neurodegenerative
diseases and cancer. All these nutritive, non-nutritive compounds,
vitamins, and minerals in the Vaccinium berries synergistically affect
human health (Olas et al., 2016).

Apart from the polyphenolic compounds, Vaccinium berries
also contain major lipid groups such as unsaturated fatty
acids, sterols, terpenoids, and others that have high biological
activity. These lipids are different from those found in mammals,
which is why consuming these lipids has a significant role in
human metabolism (Klavins et al., 2015). The first report of the
presence of lipids was investigated in cranberries (Croteau and
Fagerson, 1969). Klavins et al. (2015) studied the lipid profile of
blueberry, bilberry, lingonberry and cranberry grown in the wild
in Latvian forests and bogs. The lipid profile revealed 111 different
types of lipid fractions, including fatty acids, sterols, triterpenoids,
alkanes, phenolic and carboxylic acids and carotenoids. Since
then, this group of compounds has been studied in many berry
species. However, there is no detailed report on lipids found in
Vaccinium berries.

3 Biological activities
3.1 Overview of biological activities

Due to the response to the biotic and abiotic stresses, plants
produce phytochemicals. They are also known as secondary
metabolites. Like other fruits and vegetables, berries were found to
be a great source of bioactive phytochemical components. Berry
phytochemicals comprise bioactive components such as tannins,
polysaccharides, alkaloids, vitamins, flavonoids, and other trace
elements. They also contain sugar and fiber, which increases fruit
taste and possesses many biological properties. In berries, these
bioactive properties are directly related to the concentrations of
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the various phytochemicals in these fruits. Berry research has
always been generally focused on their antioxidant properties. The
antioxidant properties of these phytochemicals reduce oxidative
damage to DNA, RNA, proteins and lipids at the cellular level by
scavenging reactive oxygen species (ROS) (Bilawal et al., 2021).
ROS are responsible for triggering aging and several inflammatory
conditions, as well as cancer (Sosa et al., 2013; Nemzer et al,
2022). They also promote the regeneration of other antioxidants
and endogenous antioxidant defense systems (Bujor et al., 2019).
The imbalance between oxidants and antioxidants results in
abnormalities. It produces significant ROS, including O, HO™, NO,
and RO, which interferes with the cellular processes (Bujor et al.,
2019; Maya-Cano et al., 2021). These superoxide ions can convert
into hydrogen peroxide (H,O,), which can further convert into
the highly reactive hydroxyl radical (OH™). Hydroxyl radicals, due
to their high reactivity, cause oxidative damage, including lipid
peroxidation in membranes, oxidative modification of proteins, and
oxidative damage to DNA (Sosa et al., 2013).

Various methods have been used to determine the antioxidant
activity of Vaccinium berries. Among them, the Folin-Ciocalteu
method, the copper ion reducibility assay (CUPRAC), the ferric
ion reducibility assay (FRAP), the DPPH (2, 2-diphenyl-1-
picrylhydrazyl) radical scavenging method, and the ABTS method
were mostly used in the scientific literature (Bujor et al., 2019).
Goyali et al. (2013) examined the oxidative capacity of lowbush
blueberry (V. angustifolium). It was found that the total phenolic
content (TPC) value ranged from 34.2 to 42.7 mg GAE/g FW,
total flavonoid content (TFC) from 12.7 to 22.3mg CE/g FW,
and proanthocyanidin content (PAC) from 4.7 to 6.5 mg CE/g
FW in the greenhouse-grown and their cutting counterparts. In
another study on half-high blueberries, results of the biochemical
assays of the greenhouse-grown and somatic embryogenesis-
derived plants revealed that TPC varied from 0.26 to 0.46 GAE/g
Iw, TFC varied from 7.93 to 11.65 CE/g lw, and antioxidant
activity (AA) varied from 0.08 to 14.85 GAE/g lw. The results
showed that the propagation method and genotype impact the
phenols and flavonoids in the leaves (Ghosh et al, 2018). A
study on V. oxycoccos and V. macrocarpon compared the AA
by the Folin-Ciocalteu method. It was found that polyphenol
quantity in V. macrocarpon was 296.3 mg/100 g fresh weight while
in V. oxycoccos, it was 288.5mg/100 g fresh weight. However,
DPPH revealed that V. oxycoccos had a stronger antioxidant
potential (16.4 umol TE/g FW) than V. macrocarpon varieties

frontiersin.org


https://doi.org/10.3389/fmolb.2024.1520661
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Ghosh et al.

10.3389/fmolb.2024.1520661

Anthocyanin

Vaccinium berries Polyphenolic berry extract

FIGURE 2
Bioactive properties of major Vaccinium berry-derived polyphenols.

OH

Meeeees Stilbene

Anti-inflammatory

o8

Anticancer

Phenolic acid

—

Gut-protective

Neuroprotective

Antidiabetic

Cardioprotective

(13.08 umol TE/g FW), which led to the inference that the
concentration of resveratrol in the analyzed samples of both
the species that may have an impact on the AA of the varieties
(Borowska et al., 2009). The antioxidant capacity of the Vaccinium
species has been tested in in-vivo studies as well. A study was
conducted on male Drosophila melanogaster to analyze the anti-
aging effect of anthocyanins derived from the bilberry extracts. It
was reported that the administration of anthocyanin extracts at
the concentrations of 2.5, 5.0 and 10.0 mg/mL extended the life
of the flies by 9.16%, 11.90% and 6.88%, respectively, compared
to the control sample (Zhang and Dai, 2022). Several pieces of
research show that the effect of phytochemicals derived from
Vaccinium berries is directly associated with their anticancerous
activities (Jurani¢ and Zizak, 2005). Not only anticancerous
properties, but numerous studies have shown that all these
components are believed to hold a broad spectrum of biomedical
functions, including anti-inflammatory, antimicrobial, antiviral
and antioxidant properties (Figure 2) (Puupponen-Pimia et al,
2004; Seeram, 2008; Skrovankova et al., 2015). Due to their health-
promoting activities, these berries are highly recommended for
the human diet, as their antioxidant effects have been explored
in several in vitro and in vivo studies (Jurani¢ and Zizak, 2005;
Skrovankova et al., 2015) (Table 2).

Studies have reported that adding fruits to our diet reduces
the risk of chronic diseases like cancer, type II diabetes, obesity,
and cardiovascular disorders (Skrovankova et al,, 2015). It was
revealed that dietary intake of flavonoids is associated with a
lowered risk of all-cause mortality (Liu et al, 2017), including
CVD. However, it is important to understand that all subclasses of
flavonoids are not equally involved with cardioprotection, as there
is a huge gap between flavonoids™ bioavailability and bioactivity.
Anthocyanins, a subclass of flavonoids, are one of the main
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phytochemicals present in Vaccinium berries. It was found that
anthocyanins have a greater bioavailability than was previously
estimated (Czank et al., 2013). Several in-vitro studies have shown
that anthocyanins are as bioactive as their parent compounds and
sometimes even more (Amin et al, 2015; Keane et al., 2016).
Anthocyanins are known to stimulate anti-inflammatory, anti-
atherogenic, antioxidant and vasodilatory actions (Castaneda-
Ovando et al., 2009; Edwards et al., 2015; Wang et al., 1999). Not
only that but there is also a growing body of evidence revealing
that dietary inclusion of anthocyanins improves in vivo vascular
health (Fairlie-Jones et al., 2017; Jennings et al., 2012) as they have a
potential underlying mechanism of augmenting endothelial-derived
nitric oxide (NO) bioavailability. It was found that anthocyanins can
directly or indirectly increase NO availability either by upregulating
endothelial nitric oxide synthase and L-arginine pathways or
via optimizing nitrate-nitrite-NO pathway and reducing NO
degradation by their antioxidant activities (Edwards et al., 2015;
Rocha et al,, 2014). NO is an important molecule as it regulates
endothelial homeostasis. Anthocyanin displays strong antioxidant
activities, and foods high in anthocyanin have been shown to
improve endothelial function (Rodriguez-Mateos et al, 2013).
Research on the effect of flavonoid intake on mortality showed that
intake of anthocyanidins is positively correlated with decreased
risk of CVD mortality (Summary relative risk = 0.89, 95%
CI: 0.83, 0.95) when tested amongst 5 cohorts (Grosso et al,
2017). All the available research done in vitro and in vivo on
antioxidant and anticancerous properties of Vaccinium berries has
advanced our understanding of their effects on human health and
diseases. Therefore, the current review comprehensively summarizes
what is currently known about the medicinal potential of
these berries.
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TABLE 2 Effect of Vaccinium berry consumption on metabolic syndrome and risk factors modulation.

Type of berry Intervention ‘ Results ’ References
8-week randomized (R), single bound Reduced systolic and diastolic blood Basu et al. (2010)
(SB), placebo-controlled (PC), parallel pressure
intervention (PI)

Diabetic C57b1/6] mice model with Lowered elevated blood glucose levels Grace et al. (2009)
acute feeding of blueberry extracts with

Labrasol (Gavage- 500 mg/kg body wt.)

8-week, R, double-blind (DB), Reduced systolic and diastolic blood Johnson et al. (2015)
PC, PI pressure, increased NO plasma levels

Blueberry and superoxide dismutase activity
In vitro-TC-tet model 2.8-fold increase in cell proliferation Martineau et al. (2006)
6-week R, DB, PC, crossover Reduced endogenous and oxidatively Riso et al. (2013)
intervention (CI) induced DNA damage
6-week R, DB, PC, PI Higher insulin sensitivity Stull et al. (2010)
6-week R, DB, PC, PI Increased blood pressure and insulin Stull et al. (2015)

sensitivity
4-week, R, C, P1 Decreased serum levels of CRP, IL-6, Karlsen et al. (2010)
IL-15, TNF-a, MIG
8-week R, Controlled (C), PI Reduced serum levels of hs-CRP, IL-6, Kolehmainen et al. (2012)
IL-12 and inflammation score and
decreased expression of MMD and
CCR?2 transcripts
5-week, R, CI Decreased body weight, waist Lehtonen et al. (2011)
Bilberry circumference, increased insulin
sensitivity
R, C, 2 arm, chronic feeding (24 weeks) Significantly lowered fasting plasma Lietal. (2015)
in type II diabetic patients glucose and homeostasis
model assessment for insulin
resistance index
Diabetic Mice model with chronic Improved hyperglycemia and insulin Takikawa et al. (2010)
feeding of bilberry extract for 5 weeks sensitivity
8-week, R, DB, PC, PI Reduced ox-LDL, MDA and HNE Basu et al. (2011)
plasma/serum levels
12-week R, C, PI Increased insulin levels after placebo Chambers and Camire (2003)
treatment
Post-prandial (PP) 4-week Increased flow mediated dilation and Dohadwala et al. (2011)
R, DB, CI reduced carotid-femoral pulse wave
velocity (a measure of central aortic
stiffness) and HDL-cholesterol

Cranberry
12-week, R, PC, DB, PI Lower total cholesterol Lee et al. (2008)

60 days, PI Decreased serum homocysteine levels, Lozovoy et al. (2013)
lipoperoxidation, and protein oxidation,
increased serum folic acid levels

2-week intervention Reduced BMI, plasma ox-LDL levels, Ruel et al. (2005)
and higher Total plasma antioxidant
capacity
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TABLE 2 (Continued) Effect of Vaccinium berry consumption on metabolic syndrome and risk factors modulation.

Type of berry

Intervention

12-week intervention (3x 4-week
intervention with 125, 250, and 500 mL/day
cranberry juice)

Results

Decreased body weight, BMI, waist
circumference, waist-to-hip ratio, total
HDL cholesterol apo

B, after intervention with 250 and 500 mL
cranberry juice

Increased plasma nitrite/nitrate following
intervention with 500 mL, and higher
plasma antioxidant capacity following 250-
and 500-mL cranberry juice. Higher HDL
cholesterol following 250 mL

cranberry juice

10.3389/fmolb.2024.1520661

References

Ruel et al. (2006)

12-week intervention (3x 4-week
intervention with 125, 250 and 500 mL/day
cranberry juice)

Reduced ox-LDL following 250 and 500 mL
cranberry juice and decreased systolic
blood pressure, s-VCAM, ICAM plasma
levels following 500 mL cranberry juice.
Decreased ox-LDL, ICAM plasma levels in
subjects

With previous history of metabolic
syndrome following 12-week intervention
Higher HDL cholesterol following 250 and
500 mL cranberry juice

Ruel et al. (2008)

4-week, PC, DB, CI

Reduced arterial stiffness and global blood
pressure

Ruel et al. (2013)

12-week, R, DB, PI

Reduced glucose level

Shidfar et al. (2012)

PP intervention

Decreased plasma insulin and glycemic
response

Wilson et al. (2008)

PP cross-over

Decreased glycemic and insulinemic

Wilson et al. (2010)

Intervention

response following SDC-LS

Administration of Quercetin-rich extract
from lingonberry to C2C12 myoblasts

Increased insulin-independent glucose Eid et al. (2010)

uptake and stimulated AMPK

. RCT, 4 arm, PP crossover
Lingonberry

Reduced sucrose-induced PP glucose and Torronen et al. (2012)
insulin concentrations during the first half
an hour post-intake

Prevented sucrose-induced late PP

hypoglycemic response

3.2 Anti-inflammatory effect

Inflammation is known as the first line of defense in animals
in response to the attack of pathogens, allergens, or any kind of
tissue injury. As a result of the inflammatory response, macrophages,
which are part of our immunity system, release inflammatory
mediators such as interleukins, nitric oxide (NO), tumour necrosis
factor-a (TNF-a), and prostaglandin (PGE2) (Joseph et al.,, 2014).
Usually, overexpression of such mediators is associated with a
response to type II diabetes, cancer, and cardiovascular diseases
(CVDs) (Joseph et al., 2016). Over the years, much-accumulated
data on pre-clinical studies of mice shows that Vaccinium berries,
such as blueberries, reduce adiposity while increasing insulin
sensitivity and decreasing inflammatory responses (Land Lail et al.,
2021). A study on blueberries and blackberries disclosed that a
daily dietary intake of 9-18.9 mg/kg BW of phenolic extract reduced
cholesterol in blood plasma and metabolic dysfunctions induced by
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high-fat diet (HFD) in C57BL/6] mice (Joseph et al., 2016). Another
study showed that the continuous intake of Nordic wild blueberries
with HFD (45% fat) for 12 weeks slows down weight gain because
of obesity-induced inflammation in C57BL/6 (Mykkinen et al.,
2014). Similarly, HFD mixed with blueberry powder for 12 weeks
helped to restore innate immune response and T-cell proliferation
in HFD-induced obese mice (Lewis et al., 2018). This also shows
that consuming an adequate quantity of blueberry with an HFD may
target the crucial factors in immune response and inflammation.
A study in macrophages (RAW 264.7) revealed that blueberry
anthocyanin reduced the expressions of two cytokines, such as
Tumor necrosis factor a (TNFa) and Interleukin 1p (IL-1f), after
3h of treatment by suppressing the NF-kB pathway expression
(Lee et al,, 2014). A study on V. floribundum revealed that phenolic
extract of the berries reduced lipid accumulation and inhibited the
production of anti-inflammatory response-inducing enzymes such
as PGE2, NO, COX-2, and iNOS in macrophages (LPS-RAW 264.7)
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(Schreckinger et al., 2010). The antioxidant and anti-inflammatory
effects correlate with phenolic content in berries being dependent on
the species, varieties, and geographical location (Grace et al., 2014).

3.3 Maintenance of gut microbiota and
antimicrobial and antiviral activities

Dietary consumption of berries is also known to help grow
bacteria in the gut. Berries contain polyphenols, which promote
symbiotic bacteria, reducing dysbiosis disorders (Pap et al., 2021).
Phenolics and flavonoids present in the berries are also found to
be effective against pathogenic bacteria and fungi (Kranz et al,
2020). The human gut microbiota consists of viruses, bacteria, fungi,
protozoa, and archaebacteria (Burgos-Edwards et al., 2020). A berry
diet can promote the growth of beneficial microbiota and inhibit
negative bacterial populations in the gut. Studies have shown that
black raspberries and Vaccinium berries, such as blueberries and
lingonberries, help increase the growth of Lactobacillus and some
of their subspecies, the population of Bifidobacterium, and help
in slowing down obesity-related problems (Pap et al, 2021). A
study revealed that cranberry juice has a strong activity against co-
adhesion and co-aggregation of oral plaque bacteria (Gupta et al.,
2015). In another study, several types of berry extracts, including
lingonberry (V. vitis-idaea), bilberry (V. myrtillus), were found
to have antibacterial effects against commonly found pathogenic
bacteria such as Escherichia coli, Staphylococcus aureus, Listeria
monocytogenes, and Bacillus cereus (Tian et al., 2018). Berry and
leaf extracts of lingonberry have shown maximum anti-microbial
effects against S. aureus (strain ATCC-25923) and MRSA (clinical)
oral cavity isolates (Kryvtsova et al, 2020). Research done on
Romanian blueberry (var. Elliot) showed that minimum inhibitory
concentration of leaf extract was discovered to be highly effective
against bacterial strains such as S. aureus, Escherichia faecalis,
Rhodococcus equi, E. coli, and Klebsiella pneumoniae and a few
Candida fungal strains, such as C. albicans, C. zeylanoides, and C.
parapsilosis (Stefanescu et al., 2020).

3.4 Antidiabetic effect

Diabetes mellitus (DM) is a chronic disease which is associated
with other lethal diseases, including hypertension, obesity,
cardiovascular diseases, and hyperlipidemia. DM is classified into
type I and type II; among these, type II contributes to more than
90% of all diabetes globally (Batool et al., 2021; Skyler et al., 2017).
According to the World Health Organization (WHO), 108 million
in 1980 and 422 million in 2014 were living with diabetes. A report
done by Cho and co-workers in 2018 revealed that 451 million
adults were diagnosed globally with diabetes, and it was predicted
to reach up to 693 million by 2045 (Cho et al.,, 2018). Either form
of DM is known to increase the risk of serious chronic illnesses
such as blocking heart and blood vessels and affecting kidneys,
eyes and nerve functions. This is due to the high blood sugar
level, which affects and damages the nerves and the blood vessels
controlling these organs. Blockage of the heart and blood vessels
may also cause complications like CAD and stroke (Edirisinghe and
Burton-Freeman, 2016). Not only CAD but CVD is also known to
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be the prime cause of death in patients with DM (Grundy et al.,
1999). Several researchers have investigated and supported the
idea that berry polyphenols have an antidiabetic effect, which is
usually associated with glucose homeostasis. Glucose homeostasis
can be regulated in an insulin-dependent and independent manner.
Polyphenols derived from berries have been studied for years for
their effects on insulin-dependent glucose metabolism. This can be
achieved by regulating insulin secretion via modulating pancreatic-
cell function and peripheral tissue sensitivity (Edirisinghe and
Burton-Freeman, 2016). It was found that Canadian blueberry
extracts increased 3H-thymidine incorporation in TC-tet cells and
increased cell proliferation by 2.8-fold (Martineau et al., 2006).
In another study, it was seen that dietary supplementation of
freeze-dried whole blueberry powder in a double-blinded and
placebo-controlled sensitivity had antidiabetic effects in obese,
nondiabetic, and insulin-resistant human participants (p < 0.05)
when administered for over 6 weeks and reported to improve insulin
sensitivity (Stull et al., 2010). In diabetic C57b1/6] mice, feeding
them a blueberry diet also displayed antidiabetic activity. Blueberry
fraction enriched with phenolics and anthocyanin, in addition to
Labrasol (a pharmaceutically acceptable self-micro emulsifying drug
delivery system), was reported to lower raised blood glucose levels
when fed to diabetic C57b1/6] mice. The hypoglycemic effect of
the concoction was equivalent to that of metformin, a well-known
antidiabetic drug (Grace et al, 2009). A study on postprandial
healthy women showed that the administration of either whole
lingonberries or extracts reduced sucrose-induced postprandial
glucose and insulin concentrations throughout the first 30 min of
consumption. Furthermore, it was seen that during the second-
hour post-intake, the concentration declined slowly but improved
the overall glycemic profile (p < 0.05). Additionally, the investigation
showed that whole berries and extracts stopped the sucrose-induced
late postprandial hypoglycemic response and the compensatory
free fatty acid recovery (Torronen et al., 2012). Schell et al. (2017)
experimented with the anti-diabetic activities of cranberry extract
in T2D and revealed that administration of dried cranberry
significantly improved the postprandial glucose excursion. These
situations revealed that the increasing incidence of DM and
its associated diseases can be controlled with a Vaccinium
berry-rich diet.

3.5 Cardioprotective effect

Several studies have shown a strong connection between berry-
derived anthocyanins and cardiovascular health. Clinical studies
such as the Kuopio Ischemic Heart Disease Risk Factor Study for
a follow-up of around 13 years revealed a considerably lowered
risk of CVD-associated death among men who had a significantly
higher quartile of berry intake (>408 g/day) than men with the
lowest intake (<133 g/day) (Basu et al., 2010). Although these results
positively impacted CVD risk factors, the models also showed
an inverse correlation between the intake of fruits, berries, and
vegetables and serum haptoglobin in blood, an inflammation marker
(Rissanen et al.,, 2003). A large group of postmenopausal women (n
= 34,489) contributing to a CVD mortality study associated with
blueberry intake for a 16-year follow-up period at Iowa Women’s
Health Study found that consumption of blueberries once a week
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significantly decreased coronary heart disease mortality using an
age-and energy-adjusted model (Mink et al, 2007). The most
significant conclusion drawn from all these clinical studies was
that dietary inclusion of berries in everyday diet might decrease
LDL oxidation and lipid peroxidation, reduce plasma glucose or
total cholesterol, and increase HDL cholesterol and plasma or
urinary antioxidant capacity (Basu et al., 2010). As a high content
of plasma glucose, lipids, and lipid oxidation have been associated
with coronary artery disease (CAD), these researchers suggested
that edible berries, including berries from the Vaccinium family,
can be consumed to reduce the risk factors of CAD significantly
(Krentz, 2003; Gupta et al., 2009). It was further shown that the
regular inclusion of berries in the diet also reduces the postprandial
metabolic and oxidative stresses, which are also associated with
CAD (O’Keefe et al., 2008). Cranberry has been proven to be very
effective against several health issues, including the management
of systolic blood pressure in healthy men (Ruel et al, 2008).
Another study showed that cranberry extract positively affects
lipid profiles in subjects with type I or II DM (Lee et al., 2008).
Various other studies showed that consuming blueberries and
cranberries significantly decreases postprandial oxidative stress,
specifically lipid peroxidation (Pedersen et al., 2000; Kay and
Holub, 2002; Mazza et al., 2002; Ruel et al., 2005; Ruel et al.,
2006). Many studies suggest the inverse correlation of flavonoid
(specifically anthocyanin) intake with the occurrence of CVD and
the elevated risk factors involved with CVD (Cassidy et al., 2011;
Jennings et al., 2012; McCullough et al., 2012). Berry polyphenols
positively affect the lipid profile and endothelial function of the
blood vessels by reducing blood pressure and platelet accumulation
(Pojer et al., 2013; Rodriguez-Mateos et al., 2014a; Rodriguez-
Mateos et al.,, 2014c). Not only that, but their antioxidant and
anti-inflammatory activities also support cardiovascular health
(Rodriguez-Mateos et al., 2014a; Pojer et al., 2013). Not only the
berry extracts from fresh or frozen fruits but baked goods with
lowbush blueberries (V. angustifolium) exhibited similar effects on
endothelial function (FMV) as with the drink made with freeze-
dried blueberry powder (Rodriguez-Mateos et al, 2014b). All
this available research suggests that dietary inclusion of berries
can potentially be used as a therapy for pre-hypertension and
hypertension management (Basu et al, 2010). However, none
of these clinical trials were found to interfere with biomarkers
responsible for inflammation, except in one case, it was found that
cranberry juice supplementation substantially decreases adhesion
molecules in healthy volunteers (Ruel et al., 2008).

3.6 Anticancerous effect

Among all the other healthy eating habits, including berries
in the everyday diet is one of the most promising ways to
prevent cancer (Baby et al., 2018). Phytochemicals present in the
berry extracts influence genome stability at several stages, such as
malignant transformation, initiation modulation, promotion and
progression of cancer (Duthie, 2007). In general, berry extracts
combat carcinogenesis in animal models. However, when exposed
to chemical carcinogens, blueberry extracts did not protect animal
models. DNA damage was noticed in the tumours, and there
was no evidence of a reduction in the proliferation rate of the
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cancerous cells or size of the tumours when pre- or co-treated with
blueberry extract. These results further suggested that despite having
higher antioxidant capacity than other berry species, blueberries are
deficient in one or more cryoprotective phytochemicals, preventing
chemically induced cancer in the animal model (Aziz et al., 2002).

It was reported that the growth of the HT-29 cell lines in
colon cancer was significantly inhibited using phenolics, such
as anthocyanins and flavonols extracted from cranberry juice
(Desrouilleres et al., 2020). In another study, lingonberry-derived
quercetin and procyanidin-A2 displayed anticancerous activity
against colon (HT-29), melanoma (IGR39), and renal (CaKi-
1) cancer. It was also observed that quercetin demonstrated
the best anticancerous activity against renal cell carcinoma
(CaKi-1) (Vilkickyte et al., 2020). Fermented catechol extracted
from fermented Rabbiteye blueberry (V. virgatum) extract along
with Lactiplantibacillus plantarum (CK10) resulted in inducing
apoptosis and inhibiting HeLa cell multiplication after 24-72 h of
administration (Ryu et al., 2019). Various flavonol compounds such
as kaempferol, quercetin, and genistein acid extracted from bilberry
or European blueberry (V. myrtillus) demonstrated cytotoxic effects
against HCT-116 colon cancer cells. This study further showed
that kaempferol had better anticancerous activity than other
flavonols, inducing apoptosis by preventing apoptosis proteins
(IAPs) inhibitors (Sezer et al., 2019). Extracts from Vaccinium-
berries such as blueberry, bilberry, cranberry, and lingonberry
contain anthocyanins and ellagic acid, which are known to exhibit
anticarcinogenic activities (Seeram, 2008). Other reports suggest
that cranberry extracts and press cake can significantly inhibit
cell growth in breast, prostate, skin, brain and liver cancer cases
by stopping the G1 stage of the cell cycle and initiating apoptosis
(Sun et al,, 2002; Sun and Liu, 2006). Additionally, bilberry extracts
were found to induce programmed cell death in patients with
leukemia (Katsube et al., 2003). Extracts of several fruits, including
blueberries, blackcurrant, black chokeberries, and raspberries,
showed a strong antagonistic effect on the proliferation of breast
cancer cell line MCF-7 and the colon cancer cell line HT29 and
reduced their growth by up to 74% (Olsson et al., 2004).

3.7 Neuroprotective activity

There is much evidence supporting that oxidative stress of
reactive oxygen species (ROS) in cells is responsible for the
progression of neurodegenerative diseases such as Parkinson’s
disease, Huntington’s disease, amyotrophic lateral sclerosis,
and Alzheimer’s disease (Lim et al., 2024), and berry-derived
antioxidants were effective against neurodegenerative diseases
(Nile and Park, 2014). Berry antioxidants also demonstrate
neuroprotective activities, and several studies have shown that
phenolic components from the Vaccinium species have anti-
inflammatory and neuroprotective effects. In a study done with
blueberry and lingonberry, brain-derived cell cultures from rats were
found to be significantly tolerant against glutamate excitotoxicity
when treated with blueberry extracts for 24 h. However, lingonberry
(V. vitis-idaea L.) extracts failed to provide any protection against
it. Additionally, leaf extracts of blueberry and lingonberry displayed
significant neuroprotective effects, while among the fruits, only
blueberry fruits showed neuroprotection on the same brain cells
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(Vyas et al., 2013). That is why further work has been done to
investigate the neuroprotective activity of blueberry leaf extract
in microglial cells derived from mice. Microglial cells are the
brain’s first line of defence cells; glutamate or a-synuclein was
administered to microglial cells to induce an inflammatory response.
The cells were treated with blueberry fruit and leaf extracts, which
decreased cell death and reduced inflammation after 24 h. This
result further points to the fact that a blueberry-rich diet, with
leaves or fruits, can protect against neurodegenerative disorders
(Debnath-Canning et al., 2020). Over the years, studies have
suggested that the inclusion of blueberries in a regular diet may
help with age-related and oxidative stress, which are responsible for
declined brain function (Wang et al., 2005; Krikorian et al., 2010).
Another report suggested that a blueberry-supplemented diet can
improve behavioural deficits associated with age or a high-fat diet
(Carey et al, 2014). Overproducing ROS and reactive nitrogen
species (RNS) free radicals cause aging and neurodegenerative
diseases. Cortical cell cultures derived from neonatal rat pups
were intoxicated with glutamate for 24 h, and it was seen that
glutamate was responsible for morphological disruptions such
as increased formation of dark punctae and disruption of cell
bodies. Glutamate-treated cells were administered with lingonberry
and blueberry leaf and fruit extract. They were found that, while
lingonberry fruits failed to provide any protection from glutamate
toxicity, the leaf extracts from both the berries and blueberry
fruit extract displayed no cell death in the presence of glutamate
(Kalidindi, 2014).

It was found that aged rats fed with blueberries have shown
a reduction of ischemia-induced apoptosis in brain cells which
is due to their capability of interacting with ROS and RNS,
which accumulated during the ischemic phase in the central
nervous system (Wang et al., 2005; Andres-Lacueva et al., 2005).
Krikorian et al. (2010) reported in older humans that improved
memory capabilities were detected by increased synaptic plasticity
as a result of microglial modulation of the microglia-neuron
crosstalk through the increase of the expression of CX3CRI1 receptor
was associated with a blueberry rich diet (Meireles et al., 2016).
Memory loss is often associated with oxidative damage to lipids,
proteins, and nucleic acids. Oxidative damage to all three can
disrupt neural function. It was seen that bilberry extract was
significantly effective against oxidative damage by decreasing lipid
peroxides and increasing superoxide dismutase activity in the
brain. Additionally, it was found that long-term supplementation of
bilberry extract in the diet of the OXYS rats prevented learning and
memory deficits (Rahman, 2007; Uttara et al., 2009). These findings
specifically signify the effect of Vaccinium berry antioxidants on the
neuroprotection of brain function.

4 Conclusion

Several in vitro and in vivo studies now indicate that berries
positively impact human health by acting as strong anticancer and
antioxidant agents. They are an ideal dietary source of bioactive
components and could play a role in reducing cancer risk. The
unique phytochemical constituents in berries act individually or
synergistically to provide protection against several health disorders,
including cancer and CADs. It is evident from this review that a
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lot has been done in this direction, but much more needs to be
done to pinpoint the molecular mechanisms associated with the
most beneficial phytochemicals that make up these nutritious fruits.
The review summarizes the effects of bioactive compounds present
in Vaccinium berries and their function against cardiovascular
and neurodegenerative diseases. It was seen that measurable
criteria like total anthocyanin or total phenolic content and total
antioxidant content may also be associated with the effectiveness
of health benefits. Overall, more in vivo data are required to
understand the mechanisms of action, while more human clinical
trials using different parameters such as gender, age, and any pre-
existing condition should be performed such new information
on the bioactive components of berries can be revealed, and the
existing information could be validated. Also, using berry phenolic
compounds as antimicrobial agents provides many possibilities for
use in the food and medical industry. It will also be a very interesting
topic for future research priority by developing new ways for berry
compounds to avoid and manage antibiotic-resistant infections. In
addition to the phenolic compounds, phytosterols are well-known
for their antioxidant activities. Epidemiological and experimental
reports suggest that they help reduce cholesterol and potentially
protect against several types of cancer. Furthermore, berry lipids are
also used in many commercial products. These ignited a general
interest in studying these compounds in depth to understand
their potential application in cosmetics, pharmacy and the
food industry.
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Intracerebral hemorrhage (ICH) is a non traumatic hemorrhage that occurs in
a certain part of the brain. It usually leads to brain cell damage. According
to a large number of experimental research, oxidative stress is an important
pathophysiological processes of cerebral hemorrhage. In this paper, we
aim to determine how changes in oxidative stress biomarkers indicate the
damage degree of cerebral hemorrhage, and to explore and summarize
potential treatments or interventions. We found that patients with cerebral
hemorrhage are characterized by increased levels of oxidative stress markers,
such as total malondialdehyde (MDA), F2 isoprostaglandin, hydroxynonenal,
myeloperoxidase and protein hydroxyl. Therefore, the changes of oxidative
stress caused by ICH on these markers can be used to evaluate and diagnose
ICH, predict its prognosis, and guide preventive treatment to turn to antioxidant
based treatment as a new treatment alternative.

KEYWORDS

oxidative stress, intracerebral hemorrhage, oxidative stress biomarkers, antioxidant
therapy, stroke

1 Introduction

Intracerebral hemorrhage (ICH) is a serious neurological disease with high morbidity
and mortality worldwide (GBD 2019 Stroke Collaborators, 2021). The global economic
burden of stroke is estimated to exceed 721 billion US dollars, representing approximately
0.66% of the global GDP (Feigin et al., 2022). On a global scale, the absolute incidence of
stroke has risen by 37%, with hemorrhagic stroke accounting for 47% of all cases (GBD
2016 Neurology Collaborators, 2019). As a destructive form of stroke, ICH has a higher
disability rate (Gong et al., 2021).

The risk factors of ICH are usually divided into unalterable risks (previous history of
ICH, age, gender, race, cerebral amyloid angiopathy, chronic kidney disease, congenital
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coagulation dysfunction, etc.) and changeable risk factors

(hypertension, coagulation dysfunction, current smoking,
excessive drinking, diabetes, sympathetic nerve/illegal drugs, etc.)
(Larsson et al., 2024). According to statistics, only 6 out of every
10 ICH patients can survive 1 month after the onset (Stokum et al.,
2021), and two-thirds of the survivors are moderately or severely
disabled (Chen et al., 2021a). Survivors also have motor, sensory or
cognitive impairment, which ultimately affects cognitive, work and
social abilities (Shi et al., 2021).

Although many preclinical and clinical trials have been
completed in the past decades, and these trials have clarified the
potential causes and mechanisms of cerebral hemorrhage injury,
including the correlation between edema, apoptosis and oxidative
stress (LiY. et al,, 2021; Li et al, 2020; Bobinger et al., 2018;
Helmuth et al., 2023). However, no treatment has been proved to
significantly improve the mortality and neurological prognosis after
ICH. ICH surgical treatment focuses on risk factor management
and prevention of deterioration after initial bleeding (Hanley,
2009; Mendelow, 2015). Many trials investigated the best drug and
surgical management of ICH, but did not significantly improve the
survival rate and functional outcome (Magid-Bernstein et al., 2022a;
Chen P. et al,, 2022; Kellner et al.,, 2021). Therefore, the prospect
of ICH treatment is more based on primary prevention, ultra early
hemostasis treatment and injury protection by pathobiology and
prognostic biomarkers.

Oxidative stress (OS) is a serious imbalance between the
generation of large amount of oxidative active substances and
the antioxidant system in organisms. Common oxidative active
substances include reactive oxygen species (ROS) and reactive
nitrogen species (RNS) (Yoshikawa and You, 2024). Following
ICH, the metabolism of hemoglobin released from the hematoma
results in substantial iron accumulation, disrupting cellular iron
homeostasis. This disruption further impairs mitochondrial
function and promotes the generation of ROS (Yan et al., 2023a). The
pathological injury mechanism after ICH mainly includes primary
injury and secondary injury. The term refers to the initial physical
damage to brain structures caused by rupture of small arteries and
hemorrhage, along with the rise in intracranial pressure resulting
from the mass effect of the hematoma. Secondary injury refers to
the damage of toxic substances released by hematoma to the tissues
around hematoma, which will further aggravate the tissue injury
and neurological function defect after ICH (Hilkens et al.,, 2024).
Oxidative stress induced neuronal damage is a major factor in the
secondary injury process after ICH (Magid-Bernstein et al., 2022b).
After ICH, hematoma can lead to rapid and continuous increase of
intracranial ROS, leading to neuronal death, and finally secondary
neurological dysfunction (Zhang et al., 2022). ROS can directly
attack lipids, proteins, nucleic acids and other macromolecules
to cause corresponding damage, and can also aggravate tissue
damage by activating inflammatory response (Jomova et al., 2023).
Due to the high demand for oxygen by neuronal cells to produce
ATP via the mitochondrial respiratory chain in order to sustain
normal cellular function, this process also generates substantial
precursor molecules for the production of ROS (Feng et al,
2024a). Furthermore, brain tissue is particularly susceptible to
oxidative damage due to its high content of polyunsaturated
fatty acids, which are prone to ROS-induced oxidation. This
makes the brain less equipped with robust antioxidant defense
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mechanisms (Yan et al., 2023b). The brain’s high oxidative metabolic
rate, coupled with its low antioxidant capacity, makes it highly
susceptible to ROS-induced damage. This leads to structural and
functional abnormalities in mitochondria, thereby initiating the
mitochondrial apoptosis pathway (Xie et al., 2020a; Zhao et al., 2024;
Wang M. et al., 2022).

The main source of ROS is the mitochondrial electron
transport chain and enzymatic reactions catalyzed by various
enzymes (Cheung and Vousden, 2022). The superoxide anion
produced by mitochondria is a by-product of the electron leakage
of mitochondrial respiratory chain complex. Both superoxide
anion and its product hydrogen peroxide are considered to be
mitochondrial ROS (mtROS) (Okoye et al., 2023). During the
pathogenesis of ICH, impaired energy supply leads to a partial
loss of ion channel function in maintaining the electrochemical
gradient across the cell membrane. This results in an influx
of calcium ions, a reduction in the selective permeability
of the mitochondrial permeability transition pore, and the
influx of ions, ROS, and other small molecules into the cell.
Consequently, mitochondrial dysfunction occurs, accompanied
by excessive accumulation of oxidative free radicals, contributing to
oxidative damage (Di et al., 2023).

NADPH (NOX)
myeloperoxidase (MPO) are also critical sources of superoxide
anions, which serve as key reactive free radicals following ICH.

Beyond mitochondria, oxidase and

NOX is a specialized enzyme that regulates the generation of
ROS. ROS generated by NOX function as secondary messengers,
participating in the regulation of cell differentiation, proliferation,
and apoptosis. The NOX2 and NOX4 isoforms are particularly
important in modulating both the physiological and pathological
processes in brain tissue (Mamelak, 2024). In an experimental
model of ICH in rats, upregulation of NOX4 expression was
observed, which may contribute to the disruption of oxidative
stress balance in brain cells (Xie et al.,, 2020b). Other studies have
confirmed that the increase of NOX2 aggravates the oxidative
damage after ICH (Wang et al., 2018).

As another important source of ROS in ICH, MPO enhances
the reactivity of H,0, by producing hypochlorite, free radicals
and RNS (Lin et al., 2024). When MPO breaks out in neutrophil
respiration, heme is required as a cofactor and hypochlorite is
produced from the reaction of H,O, and chloride (Marcinkiewicz
and Walczewska, 2020). MPO tends to aggravate brain injury
(Manoharan et al., 2024). Animal experiments found that the
expression of MPO protein in rat brain tissue increased after
ICH, and inhibition of MPO can alleviate ICH induced brain
injury (Zuo et al,, 2022a).

Other major enzyme pathways that catalyze ROS release are
endoplasmic reticulum, hemoglobin, ferrous and ferritin. The
metabolism of hemoglobin released from hematoma after ICH will
cause serious iron ion overload. Excessive free iron release generates
superoxide anion and highly active hydroxyl radical through Fenton
and Haber Weiss reaction, leading to imbalance of brain iron
homeostasis and promoting ROS (Zhu et al., 2021). In addition, a
large number of free radicals are produced under the induction of
products after the decomposition of blood cells, such as thrombin
and heme. These reactions produce ROS, such as O, and HO™
(Xuetal, 2023). ICH can cause endoplasmic reticulum stress (ERS),
and decreased expression of ¢/ebp homologous protein (CHOP) will
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FIGURE 1
Oxidative stress pathways in pathophysiology of ICH. After ICH, the destruction of red blood cells in the hematoma releases hemoglobin and heme.

Both red blood cells and degraded heme components are phagocytosed, leading to the oxidation of hemoglobin into methemoglobin, which
subsequently generates reactive oxygen species (ROS). Iron is transported into the nervous system, ultimately triggering the Fenton reaction and
producing ROS. On the other hand, the opening of the mitochondrial permeability transition pore leads to the release of ROS, with Ca* influx playing a
role in this process. Additionally, the activation of NOX and NOS in microglial cells results in the production of superoxide (O,-) by NOX and nitric oxide
(NO:) by NOS through the conversion of L-arginine to L-citrulline. This activation contributes to the generation of ROS and reactive nitrogen species
(RNS). Furthermore, myeloperoxidase (MPO) and superoxide dismutase (SOD) exert inhibitory effects on the production of ROS/RNS. Hb, Hemoglobin;
HO, Heme oxygenase; NOS, Nitric oxide synthase; ICH, Intracerebral hemorrhage; MPTP, Mitochondrial permeability transition pore; RBC, Red blood
cell; Tf, Transferrin; NO, Nitric oxide; O,-, Superoxide anion radical; ROS, Reactive oxygen species; NOX, NADPH oxidase; MPO, Myeloperoxidase;
mROS, Mitochondrial reactive oxygen species; RNS, Reactive nitrogen species; SOD, Superoxide dismutase.

lead to the secondary increase of ROS level (Chen et al., 2021b).
Other factors, in the inflammatory reaction process after ICH, some
inflammatory cells are stimulated and activated, resulting in the
release of a large number of ROS, no and other substances, and the
consumption of a large number of superoxide dismutase (SOD) and
lipid peroxide (Cheng et al., 2023) (Figure 1).

Recent studies indicate that a single episode of ICH can result
in varying degrees of disability, including motor impairments,
language deficits, and, in some cases death (Sembill et al,
2021). ICH is still a disease with high morbidity and mortality
2021). Therefore, understanding the
underlying mechanisms of oxidative damage following ICH

(Gbémez-Gonzélez et al.,

is crucial for reducing associated mortality. However, it is
important to acknowledge that changes in the levels of redox
biomarkers are observed in a variety of diseases, making it
challenging to specifically associate any single biomarker with
ICH. Furthermore, alterations in the body’s redox balance can be
assessed both qualitatively and quantitatively through biomarkers,
which provide valuable information for disease prognosis.
Consequently, redox biomarkers are currently considered vital
tools for monitoring the progression of ICH and its prognosis
(Shao et al., 2019).
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At the same time, the specific correlation between various
oxidative biomarkers and ICH has been successfully confirmed
(Diao et al,, 2024). However, a major challenge lies in the direct
detection of ROS due to their high reactivity and extremely short
half-life. In other neurological disorders, OS levels have been
inferred from the measurement of oxidation products in DNA,
proteins, and lipids as indirect indicators (Wang L. et al., 2024).
Recent study showed anti OS is an important measure to improve the
neurological function of ICH and affect the prognosis (Tang et al.,
2023a; Shirzad et al., 2023; Liao et al., 2024). The detection of
oxidative biomarkers is not only important for the diagnosis and
prognosis of ICH, but also essential for the treatment of ICH.
Therefore, to explore effective laboratory indicators for evaluating
the severity of oxidative stress after ICH can provide an effective
means for early diagnosis or efficacy evaluation of secondary
brain injury.

Biomarkers are measurable indicators used to objectively
and accurately distinguish between normal biological status
and pathological status, and to respond to specific treatment
interventions. This review examines the potential role of oxidative
stress biomarkers in the diagnosis and prognosis of ICH, as well
as their utility in predicting disease outcomes. The aim is to
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improve diagnostic accuracy, optimize treatment strategies, enhance
health outcomes.

2 Lipid peroxidation

DNA, Oxidation products of proteins and lipids were recorded
as indirect readings of OS levels. Lipid peroxides are key products
resulting from brain injury. They primarily originate from the
secondary peroxidation of unsaturated fatty acids in membrane
phospholipids (Zhou SY. et al., 2020). As one of the harmful
products of oxidative damage, like -OH and other free radicals,
it can extract hydrogen ions on fatty acids to further generate
new lipid peroxides, so once the reaction is started, it will be
cascaded and amplified to produce chain reaction (Lee et al,
2023). Oxidative damage to lipids was evaluated using both
quantitative and qualitative assessments of several biomarkers,
including MDA, 4-hydroxy-2-nonenal (HNE), oxidized LDL, and
F2 isoprostaglandin, measured in blood, cerebrospinal fluid, or
other relevant bodily fluids. At present, lipid peroxides in peripheral
blood are widely regarded as a reliable marker for assessing
oxidative stress.

2.1 Malondialdehyde

MDA is the main end product of lipid peroxide and has
cytotoxicity. It can react with proteins and enzymes to destroy
the structure of brain tissue and dysfunction (Tsikas, 2023). Its
formation arises from the destruction of brain cells and the oxidation
of polyunsaturated fatty acids into peroxides, followed by their
degradation (Wei et al., 2024). Due to its involvement in lipid
peroxidation, MDA is the most commonly used biomarker for
assessing oxidative damage and is widely recognized as a key
indicator of oxidative stress (Thakkar et al., 2024).

MDA is easy to react with primary ammonia of biological
macromolecules, so it exists in free state and bound state in vivo
(Moldogazieva et al., 2023). The conventional method for the
determination of free MDA or bound MDA is thiobarbituric
acid (TBA) colorimetric analysis; Although TBA can also react
with other unsaturated aldehydes, more than 85% of the products
produced by TBA reaction (TBARS) come from the addition
polymerization of MDA and TBA molecules (Jiménez-Jiménez et al.,
2024). Other methods for determining MDA include high
performance liquid chromatography and immunological methods
(Mas-Bargues et al., 2021) (Table 1).
the relationship between MDA and ICH,
recent studies indicate that serum levels of MDA may have
a positive correlation with changes in neurological function
associated with ICH (Akyol et al., 2024).

The formation of MDA and TBARS is not solely attributed to
oxidative stress, but also results from the degradation of endogenous

Regarding

epoxides. Therefore, MDA assessment extends beyond blood
samples and is often used in conjunction with routine measurements
of serum total antioxidant status (TAS) as a more comprehensive
indicator of oxidative balance. Masomi et al. Suggested that markers
with increased OS could also be detected in cerebrospinal fluid
(CSF) and plasma, and higher MDA levels were detected in
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cerebrospinal fluid of a large number of ICH patients, leading to
adverse results after 6 months (Masomi-Bornwasser et al., 2021a).

2.2 4-Hydroxy-2-nonenal (4-HNE)

Protein oxidation induced by ROS can result in the formation
of carbonyl derivatives and nitrated tyrosine residues, with 4-HNE
being a key byproduct. Among lipid aldehydes, 4-HNE is considered
one of the most biologically active (Jaganjac etal., 2022). 4-HNE is an
advanced lipid peroxidation end product (Lamb et al., 2024). 4-HNE
is directly involved in cytotoxic processes and is strongly associated
with oxidative damage (Yamashima et al., 2024; Lee et al., 2024). Like
MDA, it can react with various cell components and can also be used
as an indicator of lipid peroxide in vivo, and is considered to be one
of the most powerful active aldehydes (Zhang Y. et al., 2024). Animal
studies indicated that the accumulation of 4-HNE progressively
increased over the 3-18 days following ICH (Wang et al., 2022b). It is
reported that Chen et al. Used rats as experimental models to inhibit
4-hne-related oxidative stress through edaravone, thus providing
neuroprotective effect after ICH (Chen Q. et al., 2022). A clinical
study, in comparison with animal model findings, demonstrated
that levels of 4-HNE in blood samples were significantly elevated
in all ICH patients compared to non-ICH subjects, providing
valuable insights into the oxidative stress-related consequences
following ICH (Jarocka-Karpowicz et al., 2020a).

2.3 F2-isoprostanes and
8-iso-Prostaglandin F2 alpha

F2 isoprostanes are a series of prostaglandin F2 like compounds
produced by lipid peroxidation reaction of arachidonic acid on
cell membrane by ROS (Mottola et al., 2024). From the varying
impacts of reactive oxygen species on arachidonic acid locations,
a total of 64 isomers of F2 isoprostane may be produced
(Cioffi et al.,, 2021). 15-F2t-isoprostane is the most studied and
most representative isomer of F2 isoprostane (Simantiris et al.,
2023). In recent years, F2 isoprostaglandin has emerged as a
reliable biomarker for oxidative stress and lipid peroxidation in vivo,
attributed to the following characteristics:® F2 isoprostaglandin
is a specific byproduct of lipid peroxidation that does not require
cyclooxygenase for its formation, and it possesses relatively stable
chemical properties and content (Katsioupa et al., 2023); @ In
some animal models of oxidative damage, its level increased
significantly; ® Its level is not affected by eating lipids (Trares et al.,
2022). Currently, F2 isoprostaglandin is recognized as among the
most dependable markers for assessing oxidative stress in vivo
(de Mello Barros Pimentel et al., 2023). Recent studies have shown
that the level of F2 isoprostaglandin has a certain correlation
with free radicals and oxidative damage in many human diseases
(including cardiovascular diseases, lung diseases, nervous system
diseases, kidney and liver diseases, etc.) (Menzel et al., 2021). In
their investigation of F2 isoprostaglandins for prognostic purposes
in ICH, Gomes etal. reported that specific markers of in vivo
lipid peroxidation, namely, F2 isoprostaglandins (F2 IsoPs) and
isoprostaglandins (isof), were elevated and influenced prognosis
following SAH (Gomes et al.,, 2022). Another study also showed
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TABLE 1 Approaches for detecting biomarkers of oxidative stress.

Oxidative stress biomarkers Detection strategy examples

Malondialdehyde

SERS

TBARS Test
Fluorescence
UV-Vis

GC-MS
Electrochemistry

10.3389/fmolb.2025.1541230

References

Mas-Bargues et al. (2021), Toto et al. (2022)

4-Hydroxy-2-Nonenal

MALDI-TOF-MS
HPLC

DNPH Derivatization
2-AP

LC-MSMS

Western blot
32P-PostlabelingGC-MS
Sandwich ELISA
FT-ICR MS

Fuloria et al. (2020), Zarkovi¢ et al. (2024), Zhou et al.
(2020Db)

F2-isoprostanes

SPE-HPLC-MS/MS

Fuloria et al. (2020), Zhou et al. (2022), Zhou et al.

ELISA (2023)
GC-MS
HPLC-MS/MS
GC-NICI-MS
8-Iso-Prostaglandin F2a HPLC-ED Steffensen et al. (2020)
LOX-1 ‘Western blot Deng et al. (2024), Sanchez-Leon et al. (2024),
ELISA Ashok et al. (2024), Bing et al. (2024)
Flow cytometry analysis
Fluorescence
8-0x0-7 Fluorescence Dong et al. (2024a), Nian et al. (2024), Fujikawa et al.
HPLC-ED (2024)
ELISA

Protein carbonyls

Levine spectrophotometric method
In-gel fluorophoric tagging

ELISA

Western blot

HPLC

Ladouce et al. (2023), Zhang et al. (2025), Nocera et al.
(2024)

RAGE

Western blot
ELISA

Han et al. (2024), Vega-Cardenas et al. (2023),
Kanikowska et al. (2024)

Homocysteine

Immunonephelometric method
HPLC-ED

EIA

LC-MS-MS

Immunoassay

HPLC with fluorometric detection
Fluorescence polarization

Alam et al. (2019)

Gluthatione

DTNB/GR enzyme recycling method
HPLC

Added et al. (2023), Carrao Dantas et al. (2022)

GFAP

Spectroscopy
Fluorescence polarization

Probert et al. (2022), Pereira et al. (2021)

HMGBI1

Western blot
LC-MS-MS
ELISA

Held et al. (2024)

IMA

Western blot
LC-MS-MS

Li et al. (2022), Karakilig et al. (2023)

S100B

ELISA
HPLC-MS/MS
Fluorescence

Bjursten et al. (2024)
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TABLE 1 (Continued) Approaches for detecting biomarkers of oxidative stress.

Oxidative stress biomarkers ‘ Detection strategy examples References

AQOPP ELISA Li et al. (2024), Wybranowski et al. (2023)
Fluorescence
HPLC-MS/MS

Myeloperoxidase BLI Gramstad et al. (2023), Majid et al. (2023)
CRET
ADHP
MPO-Gd MR imaging

SPE, polymeric weak anion-exchange solid-phase extraction; TBARS, thiobarbituric Acid Reactive Substances; GC-MS, gas chromatography-mass spectrometry; UHPLC-MS/MS,
isotope-dilution ultrahigh performance liquid chromatography electrospray ionization-tandem mass spectrometry; NICI-MS, gas chromatography-negative-ion chemical ionization mass
spectrometry; HPLC, high performance liquid chromatography; HPLC-ED, high performance liquid chromatography with electrochemical detection; EIA, enzyme-linked immunoassay;
ADHP, 10-acetyl-3, 7-dihydroxyphenoxazine; 2-AP, fluorescent probe 2-aminopyridine; CRET, chemiluminescence resonance energy transfer; DNPH, 2,4-dinitrophenylhydrazine; BLI,
bioluminescence imaging; MPO-Gd, bis-5-hydroxytryptamide-diethylenetriaminepentaacetate-gadolinium; measurement detection spectroscopy.

that F2 isoprostaglandin can be used as a non-invasive prognostic  level of s LOX-1 in patients with acute aortic dissection is extremely
biochemical marker for ICH patients (Wisniewski et al., 2017).  increased, which is speculated to be related to the rapid and severe
Nevertheless, while F2 isoprostaglandins are generally reliable  damage of vascular endothelium (Kobayashietal., 2013). ICH, LOX-
biomarkers for forecasting stroke outcomes, they do possess  1binds to red blood cells, leading to the upregulation of both LOX-1
certain limitations. Because the formation of F2 isoprostaglandin =~ and sLOX-1expressions. Inoue et al. reported that serum levels of
is disturbed under high oxygen tension, F2 isoprostaglandin is not ~ LOX-1 were elevated in ICH patients, based on analysis of blood
sensitive enough as an indicator of lipid peroxidation under high ~ samples, suggesting that LOX-1 could serve as a potential biomarker
oxygen tension (Thatcher and Peters-Golden, 2022). for ICH (Inoue et al., 2019). Similarly, a clinical study conducted by
Yokota et al. found that, compared to healthy individuals, the levels
2.3.1 8-Iso-prostaglandin F2a of soluble LOX-1 increased in patients following the onset of ICH.
8-Isoprostaglandin F2a is widely present in the body, and its  This finding supports the use of elevated sSLOX-1 levels as a potential
formation occurs independently of cyclooxygenase catalysis, which ~ biomarker for ICH (Yokota et al., 2016).
is why it is named for its structural similarity to prostaglandins. As
the most representative isomer of isoprostaglandin, both side chains
are CIS structure, which is the most widely studied isoprostaglandin 3 DINA oxidation
(Boldeanu et al., 2023). Due to the stable structure in vivo, the
content of isoprostaglandin is not affected by the lipid in food, with In biological macromolecules, proteins, lipids, and RNA
good sensitivity and specificity, and is closely related to oxidative  typically undergo degradation and recycling following oxidative
stress injury, it is currently considered to be an ideal index for  damage, whereas DNA requires repair to preserve genomic integrity
evaluating the oxidative stress state of the body (Zhang M. et al.,  (Draxler et al., 2023). Oxidative damage to DNA includes various
2021). Recent studies indicate that the levels of 8-Isoprostaglandin ~ forms such as base oxidation and deoxyribose oxidation, with base
F2a increase in response to oxidative stress following ICH oxidation being the predominant type of damage (Andrés et al,
(Yang et al, 2021). In their clinical investigation of the prognosis ~ 2023). Among the four nucleobases, guanine exhibits the lowest
and outcomes of ICH, Du etal. observed a increase in plasma  redox potential, making it particularly susceptible to oxidative
levels of 8-Isoprostaglandin F2a in ICH patients. Furthermore,  damage (Gupta and Imlay, 2023). As an oxidative adduct, 7,8-
these elevated levels were positively correlated with hematoma  dihydro-8-oxoguanine (8-0xoG) is stable within the body. Once
volume and associated with unfavorable clinical outcomes in  formed, itis not further metabolized and is not influenced by dietary
ICH (Du et al., 2014). intake or other external factors. It can be excised and removed by
specific DNA repair enzymes and subsequently excreted in urine
via the kidneys. (Dong et al., 2024b). Therefore, 8-0x0-7 may be a
2.4 Lectin-like oxidation of the LDL sensitive biomarker of brain DNA damage driven by oxidative stress
receptor-1 (LOX-1) (Shkirkova et al., 2024).
In previous preclinical and clinical studies on central and
LOX-1 is widely expressed in endothelial cells, where it can  peripheral nerve disorders and mental disorders, it was found that its
activate multiple cell death pathways, elevate reactive oxygen species, ~ content increased with the increase of brain injury (Schiavone et al.,
and contribute to endothelial dysfunction (Akhmedov et al., 2021). 2017). The study found that after ICH, the expression of 8-oxo-
LOX-1 is expressed not only on the surface of cells but also exists 7 in brain tissue increased significantly (Liu et al., 2020). In a
as soluble molecules within the bloodstream (Pyrpyris et al,, 2024).  recent observational prospective study by Lorente et al., the average
There are case reports that the expression of LOX-1 and matrix  urinary levels of 8-0x0-7 in 100 stroke patients on day 7 were higher
metalloproteinase can be significantly increased in the intima of  than those in the control group. Furthermore, the authors found a
ruptured and unruptured middle cerebral artery, and the expression ~ positive correlation between 8-o0xo-7 levels and mortality, based on
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comparisons of serum samples from patients with ICH and their
30-day mortality outcomes (Lorente et al., 2020).

4 Oxidative protein modifications

The oxidation of amino acids in protein composition usually
has reversible and irreversible effects on the function and structure
of the affected proteins, which makes protein oxidation products
a potential biomarker of ICH oxidative damage. This section
will discuss the relationship between common protein oxidation
products and ICH.

4.1 Protein carbonyls

Protein carbonylation is one of the oxidative damage of
proteins. It is an irreversible chemical modification in oxidative
stress, which means that the side chain of amino acid residues
is attacked by oxygen free radicals and finally transformed into
carbonyl products (Negre-Salvayre and Salvayre, 2024). There are
two major pathways for the formation of carbonyl proteins: (1)
ROS directly oxidizes the side chain amino acids of proteins to
form carbonyl proteins (ie., free radical oxidation); (2) proteins
generate carbonyl proteins (i.e., glycosylation); after lipid oxidation
and nonenzymatic glycosylation (Wang et al., 2023). Utilizing an
in vivo metal ion catalytic oxidation system, ROS can directly
oxidize protein side chain residues, including lysine, arginine,
proline, and threonine, leading to the formation of carbonyl groups
(Gulyak etal., 2023). Therefore, protein carbonylation as a necessary
marker of OS is of great significance because of its sensitivity and
specificity (Chen et al., 2023).

There are relatively few studies on protein carbonyl as an
oxidative marker, and there is a lack of sufficient scientific data.
One common reason is that although lc-ms/ms is an established
method for detecting and quantifying oxidative markers (including
carbonylated proteins), its huge cost and the demand for a large
amount of expertise limit its wide adoption (Martinez-Orgado et al.,
2023a). Martinez-Orgado etal. proposed a potential correlation
between plasma protein carbonyl levels and brain injury, suggesting
that these carbonyl compounds could serve as biomarkers for the
extent of brain damage induced by oxidative stress (Martinez-
Orgado et al,, 2023b). A recent clinical study on the risk factors
of aneurysm size, multiple, previous SAH history and oxidative
stress showed that when SAH and aneurysm rupture occurred,
myeloperoxidase activity, malondialdehyde and carbonyl levels
increased significantly (S¢epanovic et al., 2018). It is suggested that
carbonyl determination may be a potential marker of oxidative
stress after ICH.

4.2 Receptors for advanced glycation end
products (RAGE)

In recent years, RAGE and its soluble form (sRAGE) have
increasingly been recognized as biomarkers for ICH (Balanca et al.,
2021). The RAGE interacts with various ligands, including HMGB-
1, advanced glycation end-products (AGEs), and S100 proteins.
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The expression of RAGE is associated with oxidative stress
induction, while SRAGE exerts a protective effect by competing
with RAGE for ligand binding (Reddy, 2023). Lei etal. Carried
out an interesting study, revealing the relationship between the
soluble RAGE level and the severity of ICH, as well as the
significant increase in adverse functional outcomes (Lei et al,
2020). Another study found that the level of sSRAGE in SAH
patients increased early and then changed dynamically, which
may be a potential biomarker of poor prognosis, providing more
accurate prognostic information for sRAGE quantification after
ICH (Chu et al., 2023).

4.3 Homocysteine

Homocysteine is produced by adenosine transfer, demethylation
and hydrolysis under the catalysis of enzyme. It is metabolized by
re methylation or trans sulfur under the action of folic acid and
vitamin B group (Grande et al., 2023). Homocysteine exists in the
form of the plasma in four different forms: about 1% in plasma
in free disulfide homocysteine, 70%-80% is keeping disulfide and
plasma protein binding (mainly albumin), 20%-30% is disulfide
bond form dimer, and a few in the form of other thiol-containing
group in plasma. The concentration of plasma homocysteine that we
usually measured refers to the total concentration of (Zhilyaevaetal.,
2023). Homocysteine in plasma predominantly exists in its oxidized
state, with only a minor fraction present in its reduced form. The
auto-oxidation of homocysteine is a well-established pathway for
ROS generation (An et al., 2024). Homocysteine possesses a reactive
thiol group, which is readily subject to auto-oxidation, leading to
the generation of various reactive oxygen species (Gawel et al.,
2024). The sulthydryl group of homocysteine can also undergo one
electron oxidation reaction to generate sulfur free radical or disulfide
anion free radical with another compound containing sulthydryl
group, and these two free radicals are more likely to cause protein
oxidation (Zarembska et al., 2023). As a cell injury factor, the main
mechanism of homocysteine is to induce the occurrence of oxidative
stress (Guo et al, 2024). A clinical study involving 551 patients
with ICH found that elevated homocysteine levels were present
in 284 patients (51.5%). Significant differences in the percentage
of males, smoking and drinking behaviors, and triglyceride levels
were observed among the different homocysteine level groups.
In ICH patients, higher homocysteine levels were associated with
reduced survival rates and worse prognoses (Wang D. et al., 2020).
A recent multicenter, hospital-based study conducted nationwide
in China by the China Stroke Center Alliance (CSCA) assessed
705 patients with ICH. The results revealed a significant association
between elevated homocysteine levels and both the severity
of ICH at admission and unfavorable functional outcomes at
discharge. These findings suggest that homocysteine may be a
useful biomarker for predicting the severity of ICH and functional
prognosis at discharge (Wang et al, 2022c). Li etal. Carried
out a 6-month clinical experiment involving 84 subjects with
peripheral blood NLRP3 mRNA and Hcy as observation indicators,
suggesting that serum Hcy, blood loss and ventricular system
permeability are independent risk factors for poor prognosis in ICH
patients (Li Q. et al., 2021).
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4.4 Glutathione

Glutathione is condensed from glutamic acid, cysteine and
glycine (Lapenna, 2023). Glutathione plays a crucial role as an
intracellular regulatory metabolite by activating various enzymes,
thereby influencing cellular metabolic processes (Ferreira et al.,
2023). Glutathione participates in in vivo oxidation-reduction
processes and can effectively interact with peroxides and free
radicals, protecting sulfhydryl groups in antioxidants. It safeguards
sulthydryl-containing proteins and enzymes in cell membranes
from damage and mitigates the harmful effects of free radicals
on vital organs (Ichihara et al, 2023). Under the influence of
oxidants, glutathione (GSH) and its oxidized form (GSSG) can
interconvert through enzymatic action, establishing a dynamic
equilibrium that contributes to an effective antioxidant system
(Fernandez-Lazaro et al, 2024). As iron death has become a
recent research hotspot, the oxidative damage mechanism of GSH
has been repeatedly verified in animal experiments (Nie et al,
2024). In the human study, jarocka et al. (Jarocka-Karpowicz et al.,
2020b) reported that the plasma GSH level of 30 subjects
increased within 6-8 days of SAH compared with the matched
control group. Similarly, Akyol etal. conducted a clinical study
involving 200 subjects and observed that, compared to the control
group, GSH levels increased following ICH. Moreover, the GSH
levels in ICH patients who underwent decompression surgery
were found to be comparable to those of patients who did not
receive surgery (Akyol et al., 2024). These results underscore the
feasibility of GSH as a biomarker for oxidative damage in ICH.

4.5 Glial fibrillary acidic protein (GFAP)

GFAP is a cytoskeletal protein existing in astrocytes, which has
two forms of soluble protein and intermediate filament protein. It
is used to maintain the morphology and function of astrocytes, but
also to protect and supply neurons. It is very sensitive to oxidative
stress damage, and has been used as a clinical oxidative stress related
molecule for monitoring (Passos et al., 2022). Bhatia et al. reported
that collecting blood samples within 24 h of ICH episode revealed
significantly elevated serum content of GFAP in ICH patients
(Bhatia et al., 2020). Gyldenholm et al. also reported on a study
involving 156 participants, in which GFAP levels were measured
using ultra-sensitive single molecule array and ELISA, while clinical
data, including mortality and functional outcomes, were recorded.
The study found that serum GFAP levels were elevated in patients
with ICH compared to healthy controls, and that the increase in
GFAP levels was predictive of both mortality and poor prognosis in
ICH patients (Gyldenholm et al., 2022).

4.6 High mobility group box1 (HMGB1)

HMGBI is mainly involved in cell differentiation, stabilizing
chromatin structure, regulating gene transcription and translation,
and steroid hormone regulation and other life activities
(Chen R. et al., 2024; Zhu et al, 2024). Nuclear HMGB1 is
nonspecifically bound to DNA with low affinity, and is involved
in cell differentiation, DNA repair, DNA recombination, steroid
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hormone regulation and other life activities in the nucleus
(Tang D. et al., 2023). Rage mentioned above is a receptor in
the traditional signal transduction pathway of HMGBI, which
belongs to the immunoglobulin superfamily and is expressed on
a variety of cell surfaces (LuZ. et al., 2023). A recent study on
acetaminophen toxicity suggests that HMGB1 undergoes oxidative
modification and can be used as pathological specific biomarkers
and drug targets (Pirnie et al, 2023). A clinical experiment
showed that with the increase of HMGBI and age, the adverse
functional outcome rate of ICH patients increased significantly, and
the quantification of HMGBI1 provided more accurate prognosis
information after ICH (Lei et al., 2020). Hemmer et al. reported
on a prospective, single-blind observational study designed to
investigate the role of HMGB1 in aSAH. The study found that serum
HMGBI can serve as an independent biomarker for predicting
delayed cerebral ischemia and elucidated its potential role in the
sequelae of aSAH (Hemmer et al., 2022).

4.7 Ischemia-modified albumin (IMA)

IMA is more sensitive to ischemia and hypoxia in tissues and
organs of the body, and we can generally detect it a few minutes after
ischemia (Mangoni and Zinellu, 2024). Generally, IMA was initially
recognized as a useful biomarker in context of ischemic diseases
(Jena et al., 2017). Several studies have confirmed that free radicals
increase in patients with cerebrovascular disease during episodes of
local brain tissue ischemia, hypoxia, or local vascular reperfusion
injury (Elshony et al., 2021). In the context of acute cerebrovascular
disease, oxidative stress reactions occur progressively. The production
of IMA can be partially attributed to the concurrent generation of
reactive oxygen species and the disruption of the blood-brain barrier
(Aycan et al.,, 2024). In a study, GAD et al. Confirmed the expression
significance of IMA in ICH through clinical experiments, and also
confirmed that it can be used to distinguish ICH from is (Gad et al.,
2019). Mangoni et al. reported that in 17 previous clinical studies, the
ima concentration gradually increased in patients with SAH, ICH and
acute ischemic stroke through meta-analysis. In the sensitivity analysis,
when individual studies were deleted in turn, the merged SMD did not
change. It is suggested that IMA concentration may help to diagnose
stroke and distinguish acute ischemic stroke, ICH and SAH (Mangoni
and Zinellu, 2022).

4.8 Calcium binding protein S100

S100 protein is a kind of neural tissue protein. At present, nearly
20 kinds of S100 proteins have been found in different tissues,
which can regulate intracellular and extracellular calcium ions with
similar structure and function (Gayger-Dias et al., 2023). S100B
is specifically found in astrocytes and glial cells within the central
nervous system (Hernandez-Ortega et al., 2024). Its content in brain
tissue is much higher than that in other tissues, so it is considered
to be brain specific protein (Santing et al., 2024). Generally, after
brain injury, the expression of S100B increases with the occurrence
of oxidative damage and neuroinflammation (Chong, 2016).
Kellermann et al. reported that in patients with traumatic brain
injury (TBI) and SAH, the concentrations of S100B in cerebrospinal
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fluid and serum were significantly higher in those with poor
prognoses compared to those with favorable outcomes. Additionally,
an initial serum S100B level greater than 0.7 ug/dl was associated
with a 100% mortality rate, suggesting its potential utility in guiding
treatment strategies for severe trauma (Kellermann et al., 2016).

4.9 Advanced oxidized protein (AOPP)

The principal component of AOPP is albumin that has
been oxidized by free radicals. This compound can mediate
lipid peroxidation, activate monocytes and NADPH oxidase,
and promote the release of intracellular reactive oxygen species
(de Brum and Bochi, 2024). It is one of the specific markers of
protein oxidation (Lievykh et al., 2023). Rendevski et al. reported
that AOPP may serve as a significant prognostic biomarker for
ICH through modeling analyses (Rendevski et al., 2023). In another
study, the expression of AOPPs in cerebrospinal fluid of 50 patients
with aSAH at different time after hemorrhage was measured. The
level of CSF AOPP at each time point after hemorrhage in patients
with aSAH was independently correlated with the poor prognosis of
90 days follow-up, suggesting that AOPPs can be used as a potential
biomarker for evaluating the prognosis of aSAH (Shen et al., 2022).

5 Haem peroxidase-cyclooxygenase
superfamily

5.1 Myeloperoxidase (MPO)

MPO mainly exists in aniline blue granules of myeloid cells
and is a specific indicator reflecting the activation of neutrophils
and macrophages (Quinn et al., 2024). MPO especially reflects the
function and activity of granulocytes (Tran et al., 2024). MPO itself
is not inherently oxidative; however, under specific conditions, it
catalyzes the production of reactive species such as 3-chlorotyrosine,
which can induce oxidative damage (Wu TJ. et al., 2024). Zuo et al.
performed experimental investigations to explore the involvement
of MPO in oxidative stress after ICH. They examined the effects of
an MPO inhibitor on neurobehavior in a rodent model of ICH and
reported that inhibiting MPO can alleviate secondary injury after
cerebral hemorrhage (Zuo et al., 2022b). Witsch et al. Conducted
clinical observation on 100 patients with SAH (Witsch et al., 2022),
and pointed out the diagnostic potential of mpo-dna complex
and its possibility as a potential therapeutic target of aSAH. More
specifically, Zheng etal. (Zheng et al, 2018) reported that by
measuring serum myeloperoxidase (MPO) concentrations in 128
patients with cerebral hemorrhage and 128 controls, they assessed
dependent variables such as neurological function, mortality, and
adverse outcomes at various time points. The results indicated a
significant increase in serum MPO concentration among patients
with ICH. The study concluded that MPO concentration in ICH
patients was positively correlated with hematoma volume and the
NIHSS score. Furthermore, serum MPO detection significantly
enhanced the ability to differentiate neurological function and
prognosis related to hematoma in ICH patients.

Although the role of oxidative damage as a secondary injury
in the pathophysiology of ICH is well established, the use of
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oxidative biomarkers for ICH diagnosis remains challenging due
to the widespread occurrence of oxidative damage in various other
diseases. Nevertheless, the correlation of oxidative biomarkers with
the monitoring of ICH severity and prognosis is still acknowledged.

Although the role of oxidative stress as a mechanism of
secondary injury in the pathophysiology of ICH is well established,
the use of oxidative stress biomarkers for diagnosing ICH remains a
significant challenge. This is because oxidative stress also occurs
in various other diseases associated with energy metabolism
dysfunction, neuroinflammation, tissue damage, and cell loss
(Chen X. et al, 2024; Santos et al., 2024; Park et al., 2024).
Additionally, several biomarkers mentioned above, which are
metabolites or end products, may exhibit fluctuations in their
levels due to the impact of other diseases on liver or kidney
metabolic functions, further limiting the accuracy of these
biomarkers. Therefore, improvements in methodology and the
reliability of biomarkers are essential prerequisites for ensuring
the reliability of biomarker detection. Moreover, a comprehensive
analysis of various oxidative stress biomarkers following ICH
may provide a more accurate reflection of the collective oxidative
stress level. Currently, oxidative stress biomarkers are increasingly
recognized as important tools for monitoring the severity and
prognosis of ICH (Hu et al., 2016).

6 Assessment of antioxidant defense
modifications as potential indirect
markers of oxidative stress

Because reactive oxygen species are extremely unstable, they
will react with cellular components or be catabolized rapidly, so
it is difficult for existing clinical test methods to truly evaluate
the content of ROS (Hosoki et al.,, 2023). Therefore, oxidative
homeostasis is more indirectly assessed by evaluating oxidative
stress products. To gain insights into the mechanisms of these
changes, it is essential to examine the actual participants involved
in the regulation of oxidants and antioxidants (Jomova et al,
2024). Some studies have attempted to utilize antioxidant defense
to assess the extent of oxidative damage, which is considered a
feasible oxidative biomarker (Garcia-Giménez et al., 2024). The
antioxidant system serves as an effective protective mechanism
against potentially harmful oxidative damage. Antioxidant systems
are primarily categorized into two types: enzymatic antioxidant
systems, which include SOD, glutathione peroxidase, and catalase
(CAT), and non-enzymatic antioxidant systems. The latter is
further divided into water-soluble antioxidants, such as vitamin
C (VC), and fat-soluble antioxidants, including carotene and
vitamin E (VE) (Houldsworth, 2024).

6.1 Antioxidant enzymes

SOD is a key antioxidant enzyme in the body. It can cooperate
with CAT and other enzymes to transform and decompose harmful
superoxide free radicals into water that is harmless to the body,
effectively reduce superoxide free radicals, and repair damaged cells
and tissues in time, so as to improve the oxidative stress response
(Militello et al., 2024). CAT is broadly present in animals, plants,
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and microorganisms (Afzal et al., 2023). Glutathione peroxidase
(GPX) is a selenium containing antioxidant enzyme (Ikeda and
Fujii, 2023). SOD, CAT, and GPX have distinct roles in both
physiological and pathological processes. SOD degrades superoxide
ions by converting them into ROS, while GPX and CAT are involved
in the neutralization of these ROS, facilitating their conversion into
oxygen and water (Grzeszczak et al., 2023).

A clinical study on ICH evaluated the oxidative stress marker
SOD in cerebrospinal fluid and recorded the admission status,
treatment outcomes, and degree of neurological impairment in ICH
patients. The study found that SOD levels in the cerebrospinal
fluid increased 24 h after the onset of ICH and were associated
with poorer neurological outcomes (Krenzlin et al., 2020). Another
clinical study involving 200 participants further validated the
differences in serum levels of SOD and CAT between patients with
ICH and healthy controls (Akyol et al., 2024). The study showed that
GPX was measured by spectrophotometry and high performance
liquid chromatography, respectively. It was found that SAH was
accompanied by the change of antioxidant capacity in plasma,
including the increase of GPX activity in the first day, and then
its decrease, suggesting that the level of plasma GPX can support
the monitoring of patients’ clinical status (Jarocka-Karpowicz et al.,
2020b). Zhang etal. reported on a clinical study involving 116
patients with severe ICH admitted to the ICU from June 2018 to
June 2020. The study observed significantly elevated levels of SOD
and GPX in the plasma of ICH patients, indicating the occurrence
of oxidative damage in vivo following ICH (Zhang J. et al., 2021).

6.2 Non-enzymatic antioxidants

Compared to enzymatic antioxidants that are directly
involved in the metabolism of ROS, non-enzymatic antioxidants
primarily function as ROS scavengers (Rudenko et al., 2023).
These antioxidants terminate the redox reaction by eliminating
the intermediates of free radicals, and also generate new free
radicals (Dyachenko and Belskaya, 2023). Vitamin E can be
converted into tocopherol carboxyl radical, which has relatively
low activity. It also needs to be antioxidant and scavenged by
another kind, such as ascorbic acid (vitamin C) (Feng et al,
2023). If the clearance of tocopherol carboxyl radical is delayed,
it will promote lipid peroxidation (Lian et al., 2023). Vitamin C
is an important antioxidant because ascorbic acid free radicals
are usually disproportionately converted to ascorbic acid and
dehydroascorbic acid (Fiorentino et al., 2024). In recent years, the
antioxidant effect of natural antioxidants has become a research
hotspot. The study measured the plasma levels of vitamins A, E,
and C in patients with ICH using spectrophotometry. Compared
to healthy controls, patients with ICH exhibited elevated levels of
these vitamins, suggesting an association with oxidative stress injury
and potentially reflecting the prognostic outcomes for individuals
affected by ICH (Jarocka-Karpowicz et al., 2020b).

6.3 Total antioxidant capacity (T-AOC)

T-AOC is a comprehensive index to measure the functional
status of antioxidant system, and its content can reflect the
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compensatory ability of antioxidant system against external stimuli
and the status of free radical metabolism (Hu W. et al., 2023). T-
AOC is defined as the total antioxidant capacity of all antioxidants
in the sample to be tested. It is a clinical biochemical examination
index, which is measured by detecting the total amount and activity
of antioxidants in blood, urine or other body fluids (Mei et al., 2021).
Animal research models show that ICH is usually accompanied
by the increase of total antioxidant capacity. It is observed that
the T-AOC in the serum of ICH group increases at 24 and 72 h,
which may be the physiological mechanism against the increase of
ROS production (Mazhar et al., 2023). In a study by Zhang et al,,
it was reported that the T-AOC and other indicators of oxidative
damage in the experimental group were elevated above the average
values. This finding suggests an enhancement in oxidative stress
processes within this group (Zhang]J. et al., 2021). However, an
increase in serum antioxidant capacity may not represent optimal
state, as it could indicate the presence of ongoing pathological
processes in the body. Additionally, a subsequent decrease in
these levels may reflect a response to the reduction of active
substances (Morimoto et al., 2019). Consequently, new insights have
emerged regarding the survival strategies for patients with ICH and
the management of oxidative stress: specifically, the importance of
restoring oxidative balance while avoiding excessive activation of the
immune system.

6.4 Total antioxidant status (TAS)

TAS is an indicator of the reserve state of reduced complex,
which can more accurately assess the body’s oxidative stress
(Oktay et al.,, 2024). The general significance of TAS assessment
is to better understand the ability to resist ROS attack on cells
(Ghasemi et al, 2023). In a few published studies using TAS
to measure the antioxidant potential of diseases, animal models
showed that the occurrence of SAH was often accompanied by
the increase of TAS, suggesting that this may be a response
to the increase of ROS (Senol et al, 2021). Masomi et al.
conducted a clinical study involving 48 patients, which revealed
that the TAS of cerebrospinal fluid increased further by the
seventh day following ICH. The plasma TAS levels were found
to be independently associated with poor prognostic outcomes in
patients with ICH (Masomi-Bornwasser et al., 2021b).

7 Future treatment directions

Currently, the primary treatment options available in clinical
practice include hematoma evacuation and edema management.
While numerous clinical trials have been conducted to assess
these treatments, there is no conclusive evidence suggesting that
surgical interventions can improve neurological deficits following
ICH (Hanley et al,, 2019). Vascular edema induced by ICH has also
attracted the attention of researchers. For instance, there have been
efforts to investigate the use of glibenclamide for edema treatment,
with some progress observed in clinical trials (Zhao et al., 2022).
However, it is interesting to note that preclinical studies on the
efficacy of glibenclamide in treating ICH seem to present conflicting
results (Kung et al, 2021). Additionally, emerging therapeutic
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strategies such as miRNA-based treatments and exosome therapies
have gained attention. The use of miRNA mimics or antagonists to
improve outcomes after experimental brain hemorrhage has been
validated in numerous studies (Wu X. et al., 2024; Hou et al., 2024).
This suggests that, with proper delivery methods, miRNA-based
therapy may hold potential for improving clinical outcomes in
ICH. Exosome therapy, a more recent approach, has been shown
in preclinical studies to mitigate inflammatory damage following
ICH, thereby offering neuroprotective effects, and its potential has
been substantiated (Jiang et al., 2024; Nan et al., 2025). However,
both miRNA and exosome therapies have yet to be evaluated in
clinical trials. In summary, while hematoma evacuation and edema
management have uncertain clinical efficacy, emerging therapies
remain in the early stages of research and face challenges such as
high costs, indicating that treatment strategies for ICH still require
further optimization.

Numerous studies have demonstrated that oxidative damage
is a critical pathological mechanism involved in ICH injury.
Consequently, oxidative stress has emerged as a significant area of
research in the treatment and prevention of ICH.

7.1 Targeted oxidative stress may be a
potential treatment for ICH

The existing treatment strategies for ROS to treat ICH can
be divided into “upstream” (reducing reactive oxygen species) or
“downstream” (reactive oxygen species neutralization) strategies.
Although a large number of studies in animal and cell models
have shown the positive effect of antioxidants on ICH (Tang et al.,
2023c; Zhang Z. et al., 2024; Liu et al, 2024; Endo et al,
2024), the same sufficient data support has not been obtained in
clinical trials, which may be due to the unclear understanding
of the complex mechanism of secondary injury after ICH.
Recent studies on practical drugs for targeted treatment of
oxidative stress in ICH treatment mainly include rosiglitazone,
edaravone, atorvastatin, minocycline and deferoxamine (Luo et al.,
2021; Wang Z. et al., 2024; Sun et al., 2023; Gan et al, 2023;
Daou et al., 2019).

Rosiglitazone, by activating PPARy, reduces the expression of
NE-kB and MMPY, thereby alleviating oxidative stress damage
following ICH. However, this research is currently limited to animal
studies, and no clinical trial results are available. Edaravone, a
free radical scavenger, has demonstrated certain antioxidant effects.
Animal experiments have shown that edaravone can attenuate
oxidative damage to brain tissue in mice following ICH through
the OS/MMPY/B-DG pathway (Shan et al, 2021). On the other
hand, significant progress has been made in clinical trials involving
edaravone. In a clinical trial, Shan et al. reported that edaravone
inhibits lipid peroxidation during the process of free radical
scavenging, leading to anti-inflammatory protection of neural cells,
reducing neuronal damage, and improving neurological function
and prognosis after ICH (Munakata et al., 2009). Deferoxamine
(DFX) works by inhibiting redox reactions through competitive
binding with iron ions, thereby reducing free radical production
following ICH (Wan et al, 2025). A phase II clinical trial
involving 324 patients with spontaneous ICH demonstrated that
high-dose deferoxamine effectively reduces oxidative stress-induced
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damage and improves clinical outcomes (Yeatts et al, 2013).
Minocycline, an MMP inhibitor, has notable antioxidant properties,
lowering ROS levels in brain tissue after ICH, possibly through
the clearance of free radicals (Zheng et al., 2022a). Some studies
suggest that minocycline has significant neuroprotective effects
in acute stroke and may be a promising therapeutic agent
(Malhotra et al., 2018). Previous animal studies have found that
atorvastatin protects neurons in ICH rats by reducing MMP-9-
induced brain injury (Cui et al., 2012). Interestingly, however, the
effectiveness of this protective effect in clinical trials has not yet been
confirmed (Lei et al., 2014) (Table 2).

A possible explanation for the poor effectiveness of ROS targeted
therapy in ICH has been proposed, because it is easier to inhibit
the production of ROS than to degrade and neutralize ROS, and
oxidative damage and inflammatory damage are often accompanied
in the secondary injury of ICH. Upstream strategies targeting the
inhibition of MPO, COX-2, and MMP-9 have been proposed.
Hua etal. reported that Y-2, a drug currently undergoing Phase
I clinical trials for ischemic stroke in China, may also exert
therapeutic effects in ICH. Specifically, Y-2 appears to reduce the
levels of MPO, pro-inflammatory mediators, and oxidative products
in the brain tissue surrounding the hematoma core (Hua et al., 2021).
Tang etal. investigated the pathological mechanisms underlying
ICH and highlighted the critical role of Nrf2 within the Nrf2/ARE
signaling pathway (Yan et al., 2023c). This pathway has been shown
to attenuate the levels of serum superoxide dismutase (SOD) and
glutathione peroxidase (GSH-PX) following ICH, suggesting that
targeting Nrf2 may represent a promising strategy to mitigate
oxidative stress. In addition to the Nrf2 pathway, recent studies have
highlighted the significant role of the Wnt signaling pathway in
oxidative stress following ICH. Low-density lipoprotein receptor-
related protein 6 (LRP6), a transmembrane cell surface protein that
induces the canonical Wnt signaling pathway, plays a significant
role in the development and metabolism of the nervous system. It
is involved in regulating neuronal processes such as differentiation
and synaptic plasticity, and is particularly important in the context
of oxidative damage (Clark-Corrigall et al., 2023; Wang Y. et al,
2020). Jin et al. evaluated the pathological processes of oxidative
damage after ICH and reported the critical involvement of the Wnt
signaling pathway in this process (Jin et al., 2022). Furthermore,
intervention targeting LRP6 alleviated oxidative damage following
ICH, suggesting that modulating LRP6 and the Wnt pathway may
be an effective strategy for mitigating oxidative stress. Additionally,
Riitano et al. reported the effects of methyl-p-cyclodextrin on the
Wnt/B-catenin signaling pathway, demonstrating that it inhibited
the phosphorylation of $-catenin (Riitano et al., 2020). This finding
suggests that methyl-B-cyclodextrin, in combination with statins,
could represent a potential therapeutic strategy for intervention.
Although the effects of this drug have not been explored in the
context of oxidative damage, it provides a potential avenue for
further investigation. Recent studies have also confirmed the role of
the Notch signaling pathway (Notch1, Notch4) in the development
of the vascular system, as well as in neurovascular formation and
antioxidative effects (Jin et al., 2011; Muley et al,, 2022). Although
the role of Notch signaling in oxidative stress after ICH has not
been extensively studied, targeting the Notch pathway may offer
new insights for future research into therapies for oxidative stress
following ICH.
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TABLE 2 The development for antioxidative treatment of ICH.

10.3389/fmolb.2025.1541230

Drug name Different types of Action mechanism Research progress References
intracerebral
hemorrhage
Rosiglitazone ICH Activation of PPARy reduces Animal test phase Luo et al. (2021)
the expression of NF-kB and
MMP9
Edaravone ICH Free radical scavenger Preliminary clinical trial Munakata et al. (2009)
Deferoxamine mesylate ICH Iron-chelator Phase II clinical trial Yeatts et al. (2013)
Minocycline ICH Free radical scavenger Preliminary clinical trial Malhotra et al. (2018)
Atorvastatin ICH Inhibition of MMP-9 Animal test phase Lei et al. (2014)
expression

7.2 Potential of antioxidants to prevent ICH

Antioxidants have been widely recognized and used to improve
the body’s immunity (Halliwell, 2024; Yang et al., 2024). In addition,
the application of antioxidant therapy in non communicable
diseases has also achieved exact curative effect (Gao et al., 2023;
LuX. et al., 2023; Feng et al., 2024b; Hu Y. et al.,, 2023). In animal
model experiments, antioxidants are often chemically synthesized.
Because of their potential harmful effects, they are rarely used
in clinical practice. Therefore, antioxidants from dietary sources
may be a key factor in the prevention of ICH. Food sources of
oxidants usually include fruits, vegetables and some herbs. Zheng
et al. identified several medicinal plants with potential therapeutic
benefits, categorizing them into groups such as polyphenols and
phenolic compounds, terpenoids, and alkaloids. Examples include
garlic, Ligusticum chuanxiong, Cordyceps sinensis, and bitter gourd.
These plants have been reported to exert significant effects in animal
models of ICH, primarily through their antioxidant properties
(Zheng et al., 2022b). Several studies have demonstrated that
cordycepin improves brain hemorrhage-induced neurological and
cognitive impairments in mouse models by reducing oxidative stress
(Anetal., 2022). Allicin has been shown to alleviate oxidative stress
after ICH by inhibiting MDA expression and increasing SOD levels
(Atef et al,, 2023). Gastrodin, a phenolic glycoside derived from
the plant Gastrodia elata, has been reported by Liu et al. to reduce
oxidative damage caused by ICH by suppressing levels of ROS, 8-
OHDG, 3-nitrotyrosine, and MDA, while simultaneously increasing
the activities of GSH-Px and SOD (Iu et al., 2020). Puerarin, an
extract from the plant Pueraria lobata, has been shown to reduce
oxidative damage caused by ICH by lowering the activity of 8-
OHAG and ROS (Zeng et al., 2021). Naringin, a flavonoid found
in fruits such as grapefruit, has been found to effectively reverse
oxidative damage and elevate endogenous antioxidant levels when
administered to ICH rats (Singh et al., 2017). Artemisinin, extracted
from the plant Artemisia annua, not only combats malaria but also
exerts a neuroprotective effect by upregulating the expression of the
neural cell adhesion molecule L1, contributing to its antioxidant
properties and brain protection (WangJ. et al., 2022). Similarly,
baicalin, derived from the herb Scutellaria baicalensis, has been
shown to reduce oxidative stress levels in ICH rats, with its
mechanism involving the miR-106a-5p/PHLPP2 axis to activate

Frontiers in Molecular Biosciences

the Nrf2/ARE pathway (Tang et al., 2023d). Ursolic acid, found in
plants like hawthorn and gardenia, has been demonstrated in animal
studies to effectively enhance the activity of GSH, CAT, and SOD,
thereby mitigating oxidative stress following SAH (Zhang et al,,
2014). Tetramethylpyrazine nitrate, extracted from Chuanxiong
(Ligusticum chuanxiong), possesses antioxidant properties. Wu
et al. reported that it can alleviate oxidative damage after SAH, likely
through the modulation of the Nrf2/HO-1 pathway (Wu etal., 2019).
Isorhynchophylline (IRN), a compound found in the herb Uncaria
rhynchophylla, has been shown to exert neuroprotective effects in
ICH rats by modulating oxidative stress levels (Zhao et al.,, 2021).
Polydatin, primarily extracted from grapes, red wine, and Crocus
sativus, has been found in a recent study to exert antioxidant effects
in SAH rats by downregulating NO and MDA while upregulating
SOD, GSSG, and GSH (Zhao et al., 2020). Phillyrin, a natural extract,
increases Nrf2, HO-1, and SOD-1 levels in the brain tissue of ICH
mice, likely through the modulation of the Nrf2 signaling pathway
(Guoetal.,2021). Epigallocatechin gallate (EGCG), a major catechin
in green tea, has been confirmed to suppress oxidative stress in
ICH rats by activating the Keapl1/P62/Nrf2 pathway (Hao et al,
2024). Sosa et al. reported similar antioxidant effects for black tea
(Sosa et al., 2018). Duan et al. found that Momordica charantia
polysaccharide (MCP) can scavenge ROS in the brain tissue of ICH
rats and reduce neuronal death, possibly through the inhibition of
the JNK3 signaling pathway (Duan et al., 2015) (Table 3).

While these natural products demonstrate promising
antioxidant activity in experimental studies, further research is
needed to validate their properties. In the next phase, integrating
genomics and proteomics approaches could help elucidate the
specific molecular targets of these natural products and explore
their potential for future therapeutic applications.

The antioxidant potential of many foods is also shown under
pathological conditions, such as nuts, goat milk, blueberries,
etc. (Lorenzon Dos Santos et al., 2020; Feng and Wang, 2020;
Martini et al., 2023). However, the added ingredients of foods
tend to be cytotoxic, and most evidence points out that
oxidative stress is the main mechanism of toxicity (Medina-
Reyes et al, 2020; Martinez Leo et al, 2021). Therefore, the
intake of naturally grown products without chemicals, which
show additional antioxidant properties, may be a potential
prevention method.
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TABLE 3 Antioxidant activity of nature product in ICH related studies.

10.3389/fmolb.2025.1541230

Food sources Chemical Different types of Action mechanism References
composition intracerebral
hemorrhage

Cordyceps sinensis Cordycepin ICH Increase endogenous An et al. (2022)
antioxidant levels

Garlic Allicin ICH Inhibiting MDA expression Atef et al. (2023)
and increasing SOD levels

Rhizoma Gastrodiae Gastrodin ICH Increase GSH-Px and SOD Tu et al. (2020)
activity

Pueraria lobata Puerarin ICH Reduce the activity of 8-OHdG Zeng et al. (2021)
and ROS

Grapes, cherries, tomatoes, Naringin ICH Enhance endogenous Singh et al. (2017)

beans antioxidant levels

Artemisia annua Artemisinin Upregulation of the LICAM Wang et al. (2022d)

Scutellaria baicalensis Baicalein ICH Mir-106a-5p/phlpp2 axis Tang et al. (2023d)
activates Nrf2/are pathway

Hawthorn, cranberry, gardenia | Ursolic Acid SAH Increase GSH,CAT and SOD Zhang et al. (2014)
activity

Chuanxiong Tetramethylpyrazine nitrone SAH Upregulation of the Wu et al. (2019)
Nrf2/HO-1 pathway

Uncaria rhynchophylla IRN ICH Reduction in the production of | Zhao et al. (2021)
ROS, 4-HNE, and MDA

Grapes, red wine, Crocus Polydatin ICH Downregulation of NO and Zhao et al. (2020)

sativus MDA, and upregulation of
SOD, GSSG, and GSH

Forsythia suspensa Phillyrin ICH Activation of the Nrf2 Guo et al. (2021)
signaling pathway

Green tea, black tea EGCG ICH Activation of the Nrf2 Hao et al. (2024), Sosa et al.
signaling pathway (2018)

Balsam pear Momordica charantia ICH Inhibition of the JNK3 Duan et al. (2015)

polysaccharide signaling pathway

8 Conclusion

The primary damage resulting from ICH is largely attributable
to secondary injury processes, which include local tissue damage
and programmed cell death. Experimental evidence strongly supports
the involvement of oxidative stress, stemming from an imbalance in
redox homeostasis, in the pathophysiology of ICH. Consequently,
the assessment of oxidative stress biomarkers holds promise as
a means to elucidate the underlying mechanisms of ICH, offer
diagnostic and prognostic insights, and guide the identification
of potential therapeutic targets for antioxidant-based interventions.
However, despite the recognized potential of oxidative damage
in ICH prediction and treatment, clinical studies have shown
limited reproducibility in oxidative stress marker measurements. This
inconsistency is largely due to variability in disease subtypes, as
well as limitations in sample collection, storage, and pretreatment
protocols. Furthermore, the complex interplay of other mechanisms
contributing to ICH-induced injury remains incompletely understood,
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leading to conflicting findings and inconclusive results. While
comprehensive analysis of various oxidative stress biomarkers after
ICH may provide an indication of oxidative damage levels, significant
improvements in methodology are required to enhance the reliability
and accuracy of these measures.
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Background: In this study, we investigated whether serum glutathione
peroxidase-1 (GPX-3) concentration at diagnosis could be used to assess
vasculitis activity and damage at diagnosis in immunosuppressive drug-
naive patients with antineutrophil cytoplasmic antibody (ANCA)-associated
vasculitis (AAV).

Methods: We included 71 immunosuppressive drug-naive patients newly
diagnosed with AAV. Medical records were retrospectively reviewed and serum
GPX-3 concentration was measured using serum samples collected and stored
at diagnosis. The degree of vascular activity and extent of damage were assessed
using the Birmingham vasculitis activity score (BVAS) and vasculitis damage
index (VDI), respectively. Poor outcomes including all-cause mortality, end-
stage kidney disease, and cerebrovascular and cardiovascular diseases were also
investigated.

Results: The median age of the study subjects was 63.0 years, 26 and 45
patients were males and females, respectively. The median GPX-3 concentration
was measured as 82.8 ng/mL. Serum GPX-3 concentration at diagnosis was
inversely correlated with BVAS (r = —0.280), VDI (r = -0.263), and C-reactive
protein (r = —0.261) at diagnosis, whereas, it was positively correlated with
haemoglobin (r = 0.255), and serum albumin (r = 0.240) at diagnosis,
respectively. However, serum GPX-3 concentration at diagnosis was not
significantly associated with poor outcomes during follow-up in patients
with AAV.

Conclusion: In this study, we demonstrated for the first time that
serum GPX-3 concentration at diagnosis correlates with vasculitis activity
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and damage at diagnosis in patients with AAV, suggesting a possible role of
serum GPX-3 as a complementary biomarker for assessing AAV activity in real

clinical practice.
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1 Introduction

Glutathione peroxidases (GPXs) are a group of enzymes that can
detoxify hydrogen peroxide to produce other free radicals (Handy
and Loscalzo, 2022). Glutathione peroxidase-3 (GPX-3) is one of
the 8 isozymes of GPX and particularly, as plasma GPX because
it is mainly distributed extracellularly unlike other GPX isozymes
(Rush and Sandiford, 2003). Several studies were measuring serum
GPX-3 concentrations and investigating the clinical significance
in patients with various inflammatory or cancerous diseases. Low
serum GPX-3 concentration is considered a biomarker to assess
a high degree of inflammation or poor prognosis (Bierl et al,
2004; Manzanares et al., 2009; Agnani et al., 2011), which might
be attributed to be due to the clinical properties of GPX-3
as an antioxidant enzyme (Chang et al., 2020). Antineutrophil
cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a
systemic vasculitis that invades the smallest units of arteries,
veins, and capillaries and may potentially affect almost all major
organs (Jennette et al, 2013; Watts et al., 2007). According to
the clinical, laboratory, radiological, and histological features, AAV
is divided into three subtypes: microscopic polyangiitis (MPA),
granulomatosis with polyangiitis (GPA), and eosinophilic GPA
(EGPA) (Suppiah et al., 2022; Robson et al., 2022; Grayson et al.,
2022). Although three subtypes are essentially characterized by each
subtype’s predominant features, given the affected vessel system,
they may share the common clinical manifestations related to
the three typical major organs with the largest surface area of
capillaries such as the kidneys, lungs, and skin (Kronbichler et al.,
2024). On the other hand, the pathogenesis of AAV involves many
immunological processes and responses, and particularly, the role of
reactive oxygen species (ROS) is known to contribute significantly to
vascular inflammation and damage (Kitching et al.,, 2020; Choi et al.,
2019). Therefore, it can be reasonably assumed that if the
expression of GPX isozymes with a peroxidase function to remove
ROS is reduced, the degree of vascular inflammation and damage
may increase. Moreover, it could be speculated that serum GPX-
3 concentration may be inversely associated with the current
degree of vascular inflammation and damage in patients with
AAV. However, no study has elucidated the clinical role of
serum GPX-3 concentration in assessing the current degree
of vascular inflammation and damage in patients with AAV.
Hence, in this study, we investigated whether serum GPX-3
concentration at diagnosis could be used to assess vasculitis
activity and damage at diagnosis in immunosuppressive drug-
naive patients with AAV.
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2 Materials and methods

2.1 Patients

We randomly selected 71 immunosuppressive drug-naive patients
newly diagnosed with AAV from an observational single-centre
cohort of Korean patients with AAV at the University Tertiary
Hospital and included them in this study. The inclusion criteria
were i) fulfilment of the 2007 European Medicine Agency algorithm
for AAV, the 2022 revised Chapel Hill Consensus Conference
nomenclature of vasculitides, and the 2022 American College
of Rheumatology and European Alliance of Associations for
Rheumatology classification criteria for MPA, GPA,and EGPA (Handy
and Loscalzo, 2022; Rush and Sandiford, 2003; Suppiah et al., 2022;
Robson et al., 2022; Grayson et al, 2022); ii) first diagnosis of
AAV by the specialised Rheumatologists in this tertiary hospital;
iii) sufficiently documented medical records for collecting clinical,
laboratory, radiological, and histological data; iv) well-prepared
sera obtained on patients’ consent and stored at diagnosis; v)
follow-up duration for 6 months or greater after diagnosis; vii) no
serious concomitant medical conditions mimicking AAV such as
malignancies, severe infectious diseases requiring hospitalization, and
autoantibody-medicated autoimmune diseases, or inducing ANCA
false positive at diagnosis; vii) no exposure to immunosuppressive
drugs for AAV treatment at least within 4 weeks before diagnosis.
This study was approved by the Institutional Review Board (IRB) of
Severance Hospital, Seoul, Republic of Korea (IRB number 4-2016-
0901) and, when required, written informed consent was obtained
from patients at the time of blood sampling. The IRB waived the
need for written informed consent when it was previously obtained at
entry into the SHAVE cohort.

2.2 Blood sampling and consent form
On the day of AAV diagnosis, informed consent was obtained,
AAV-specific indices were assessed, and whole blood was collected

from patients with AAV. Sera were immediately isolated from whole
blood and stored at —80°C on the day of AAV diagnosis.

2.3 Clinical data at diagnosis

Age, sex, smoking history, and body mass index (BMI) were
recorded. Data on AAV-subtype, ANCA type and positivity, and
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AAV-specific indices were also collected. In the present study,
myeloperoxidase (MPO)-ANCA and proteinase 3 (PR3)-ANCA
measured using an immunoassay as well as perinuclear (P)-
ANCA and cytoplasmic (C)-ANCA detected using an indirect
immunofluorescence assay with ethanol fixation were all recognised
as ANCA test results according to the 2022 criteria (Suppiah et al.,
2022; Robson et al, 2022; Grayson et al, 2022). AAV-specific
indices included the Birmingham vasculitis activity score (BVAS),
the five-factor score (FFS), the 36-Item Short Form Survey (SE-
36) physical and mental component summaries (PCS and MCS),
and the vasculitis damage index (VDI) (Mukhtyar et al., 2009;
Guillevin et al., 2011; Flossmann et al., 2007; Han et al., 2004). In this
study, the degrees of vascular activity and the extent of damage were
expressed using BVAS and VDI, respectively. Routinely performed
laboratory test results, including those of acute-phase reactants such
as erythrocyte sedimentation rate (ESR) and C-reactive protein
(CRP) tests, were recorded.

2.4 Measurement of serum GPX-3
concentration at diagnosis

Serum GPX-3 concentration was assessed from stored sera
at diagnosis using enzyme-linked immunosorbent assay Kits
(Mybiosource, San Diego, CA, United States) according to
the manufacturer’s instructions. In this study, a continuous

variable of serum GPX-3 concentration was used for
statistical analyses.
2.5 Clinical data during follow-up

All-cause mortality, end-stage kidney disease (ESKD),

cerebrovascular accident (CVA), and acute coronary syndrome
(ACS) were considered poor AAV outcomes during follow-
up. The follow-up duration based on each poor outcome was
defined as the period from diagnosis to its occurrence in patients
with a corresponding poor outcome, whereas the duration from
diagnosis to the last visit was defined for those without. Medications
administered after AAV diagnosis and during the disease course,
including glucocorticoids and immunosuppressive drugs, were
also assessed. Accordingly, ESKD, CVA, and ACS that occurred
before diagnosis were not considered poor AAV outcomes in the
present study.

2.6 Statistical analyses

All statistical analyses were performed using the SPSS version
26 (IBM Corporation, Armonk, NY, United States) for Windows
(Microsoft Corporation, Redmond, WA, United States). Continuous
and categorical variables are expressed as medians (interquartile
range, Q1-Q3), and numbers (percentages). The Mann-Whitney
U test was used to compare significant differences between
continuous variables. The correlation coefficients (r) between the
two variables were determined using Pearson’s correlation analysis.
Cox proportional hazards model analysis was performed to obtain
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the hazard ratio (HR) of serum GPX-3 concentration at diagnosis
for each poor outcome during follow-up. A significant area under the
curve (AUC) was determined using receiver operating characteristic
(ROC) curve analysis. A comparison of the cumulative survival rates
between the two groups was performed using Kaplan Meier survival
analysis with the log-rank test. Statistical significance was set at
P <0.05.

3 Results

3.1 Characteristics of patients with AAV at
diagnosis

The median age of the study subjects was 63.0 (51.0-74.0)
years, and 26 and 45 patients were males and females, respectively.
Two patients were ex-smokers and the median BMI was 22.4
(21.1-24.8) kg/mz. Of these 71 patients, 35, 23, and 13 were
diagnosed with MPA, GPA, and EGPA, respectively. The median
BVAS, FFS, SF-36 PCS and MCS, and VDI values were 5.0
(3.0-17.0), 0 (0-1.0), 52.5 (34.4-68.1), 58.4 (40.0-73.4), and 3.0
(2.0-4.0), respectively. The median ESR and CRP were 21.0
(7.0-85.3) mm/h and 3.8 (0.9-29.1) mg/L, respectively. The
median GPX-3 concentration was measured as 82.8 (44.3-156.0)
ng/mL (Table 1).

3.2 Correlation analysis of serum GPX-3
concentration and continuous variables at
diagnosis in patients with AAV

Serum GPX-3 concentration at diagnosis was inversely
correlated with BVAS (r = —0.280, P = 0.018), VDI (r = —0.263,
P =0.029), and CRP (r = —0.261, P = 0.028) at diagnosis, whereas,
it was positively correlated with haemoglobin (r = 0.255, P = 0.032),
and serum albumin (r = 0.240, P = 0.045) at diagnosis, respectively.
Additionally, both SF-36 PCS and ESR tended to correlate with
serum GPX-3 concentration simultaneously but the correlation was
not statistically significant (Table 2).

3.3 Comparison of serum GPX-3
concentration between the two groups

At the time of diagnosis, serum GPX-3 concentrations according
to sex, AAV subtype, MPO-ANCA (or P-ANCA) positivity, PR3-
ANCA (or C-ANCA) positivity, and comorbidities were compared
but no significant differences between the two groups were observed
(Figure 1). Additionally, since serum GPX-3 concentration was
inversely correlated with BVAS, we divided the study participants
into two groups according to each of the nine systemic items
of BVAS and compared serum GPX-3 concentrations between
the two groups (Mulkhtyar et al, 2009). We found that only
serum GPX-3 concentrations, according to general manifestation,
were significantly different between the two groups (55.8 ng/mL
for patients with general manifestation vs. 84.8 ng/mL for those
without, P = 0.021) (Table 3).
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TABLE 1 Characteristics of patients with AAV at diagnosis (N = 71).

Variables Values

Demographic data
Age (years) 63.0 (51.0-74.0)
Male sex [N, (%)] 26 (36.6)
Female sex [N, (%)] 45 (63.4)
Ex-smoker [N, (%)] 2(2.8)
Body mass index (kg/m?) 22.4(21.1-24.8)
AAV subtype [N, (%)]
MPA 35(49.3)
GPA 23 (32.4)
EGPA 13 (18.3)
ANCA type and positivity [N, (%)]
MPO-ANCA (or P-ANCA) positive 41 (57.7)
PR3-ANCA (or C-ANCA) positive 11 (15.5)
Both ANCA positive 3(4.2)
AAV-specific indices
BVAS 5.0 (3.0-17.0)
FFS 0(0-1.0)
SF-36 PCS 52.5(34.4-68.1)
SF-36 MCS 58.4 (40.0-73.4)
VDI 3.0 (2.0-4.0)
Comorbidities [N, (%)]
Type 2 diabetes mellitus 15 (21.1)
Hypertension 23(32.4)
Dyslipidaemia 13 (18.3)
Routinely performed laboratory test results
ESR (mm/hr) 21.0 (7.0-85.3)
CRP (mg/L) 3.8 (0.9-29.1)
White blood cell count (/mm?) 7,500.0 (5,930.0-9,640.0)
Haemoglobin (g/dL) 12.4 (10.4-13.6)
Platelet count (x 1,000/mm?) 243.5 (193.0-354.8)
Fasting glucose (mg/dL) 94.0 (88.0-109.0)
Blood urea nitrogen (mg/dL) 19.2 (13.1-28.7)

(Continued on the following page)
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TABLE 1 (Continued) Characteristics of patients with AAV at
diagnosis (N = 71).

Variables Values

Serum creatinine (mg/dL) 0.8 (0.6-1.5)
Total serum protein (g/dL) 6.8 (6.4-7.4)
Serum albumin (g/dL) 4.2 (3.7-4.4)

Alkaline phosphatase (IU/L) 70.0 (58.0-92.0)

Aspartate transaminase (IU/L) 20.5 (16.0-25.8)

Alanine transaminase (IU/L) 16.5 (11.0-26.0)

Serum GPX-3 (ng/mL) 82.8 (44.3-156.0)

Values are expressed as a median (25-75 percentile) or N (%).

ANCA, antineutrophil cytoplasmic antibody; AAV, ANCA-associated vasculitis; MPA,
microscopic polyangiitis; GPA, granulomatosis with polyangiitis; EGPA, eosinophilic GPA;
MPO, myeloperoxidase; P, perinuclear; PR3, proteinase 3; C, cytoplasmic; BVAS, the
Birmingham vasculitis activity score; FFS, the five-factor score; SF-36, the 36-Item Short
Form Survey; PCS, physical component summary; MCS, mental component summary; VDI,
the vasculitis damage index; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein;
GPX-3, glutathione peroxidase-3.

3.4 Poor outcomes and
immunosuppressive drugs administered
during follow-up in patients with AAV

During follow-up after diagnosis, among the 71 patients, 6
(8.5%) died, and 17, four, and one had ever experienced and
suffered from ESKD, CVA, and ACS, respectively. Glucocorticoids
were administered to 70 (98.6%) patients. Among the intravenous
induction therapeutic regimens, cyclophosphamide, and rituximab
were administered to 47 (66.2%), and 13 (18.3%) patients,
respectively. Among oral immunosuppressive drugs, the most
frequently administered was azathioprine (57.7%), followed by
mycophenolate mofetil (26.8%) (Table 4).

3.5 Cox analysis of serum GPX-3
concentration for each poor outcome

Serum GPX-3 concentration at diagnosis was not significantly
associated with all-cause mortality, ESKD, CVA, or ACS during
follow-up in patients with AAV (Table 5).

4 Discussion

Considering the clinical utility of low serum GPX-3
concentration (or GPX-3 deficiency) in various diseases, in this
study we investigated whether serum GPX-3 concentration at
diagnosis could be used to assess vasculitis activity and damage at
diagnosis in immunosuppressive drug-naive patients with AAV, and
obtained some interesting findings. First, significant correlations
were observed between serum GPX-3 concentration at diagnosis
and both BVAS and VDI at diagnosis, indicating that serum GPX-3
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TABLE 2 Correlation analysis of serum GPX-3 concentration and
continuous variables at diagnosis in patients with AAV.

Variables Correlation
coefficient (r)
Demographic data
Age (years) —-0.054 0.652
Body mass index (kg/m?) 0.013 0.917
AAV-specific indices
BVAS -0.280 0.018
FES —-0.131 0.277
SF-36 PCS 0.219 0.067
SF-36 MCS 0.197 0.100
VDI —-0.263 0.029
Acute-phase reactants
ESR (mm/hr) -0.217 0.071
CRP (mg/L) —-0.261 0.028
Routinely performed laboratory test results
White blood cell count -0.107 0.374
(/mm®)
Haemoglobin (g/dL) 0.255 0.032
Platelet count (x 1,000/mm?) -0.120 0.322
Fasting glucose (mg/dL) -0.132 0.303
Blood urea nitrogen (mg/dL) 0.021 0.862
Serum creatinine (mg/dL) —-0.051 0.675
Total serum protein (g/dL) 0.168 0.166
Serum albumin (g/dL) 0.240 0.045
Alkaline phosphatase (IU/L) -0.048 0.691
Aspartate transaminase 0.047 0.703
(IU/L)
Alanine transaminase (IU/L) 0.129 0.288

GPX-3, glutathione peroxidase-3; ANCA: antineutrophil cytoplasmic antibody; AAV,
ANCA-associated vasculitis; BVAS: the Birmingham vasculitis activity score; FFS, the
five-factor score; SF-36, the 36-Item Short Form Survey; PCS, physical component summary;
MCS, mental component summary; VDI, the vasculitis damage index; ESR, erythrocyte
sedimentation rate; CRP, C-reactive protein.

can be a potential biomarker to assess vasculitis activity and damage
at diagnosis in patients newly diagnosed with AAV. Additionally,
serum GPX-3 had another potential to reflect the inflammatory
burden as much as traditional acute-phase reactants such as CRP
and serum albumin. However, serum GPX-3 did not predict poor
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AAV outcomes during follow-up. Therefore, in the present study,
we demonstrated that serum GPX-3 concentration at diagnosis has
the potential to be a novel biomarker that can assess and estimate
activity and damage caused by AAYV, although it is confined to the
time of diagnosis.

ROS are well-known mediators of the pathophysiological signal
transduction of inflammation processes (Forrester et al., 2018).
At the site of inflammation, the increased ROS production by
polymorphonuclear cells may induce endothelial cell dysfunction
and tissue damage. Furthermore, the combination of endothelial
impairment and oxidative stress may loosen the endothelial
junction of the blood-tissue barrier and accelerate the extravascular
migration of inflammatory immune cells to the inflamed tissue
(Mittal et al., 2014). Similarly, in the pathophysiology of AAV, ROS
is also known to play an important role in the development and
exacerbation of AAV (Kitching et al., 2020; Choi et al., 2019). GPX-
3 can reduce oxidative stress by scavenging ROS, which may reduce
the nuclear translocation of transcription factors such as the p65 unit
of nuclear factor kappa-light-chain-enhancer of activated B cells,
ultimately suppressing the expression of inflammatory mediators
located downstream of the promoter sites (An et al., 2018; Nirgude
and Choudhary, 2021). Based on these findings, it is reasonable
to infer that decreased GPX-3 expression and production may
increase vascular activity and damage owing to a diminished effect
in suppressing the transcription of inflammatory mediators. This
inference supports the key finding of this study that serum GPX-3
concentration at diagnosis was inversely correlated with BVAS, VDI,
and CRP at diagnosis.

We investigated which item among the nine systemic items
of BVAS based on major organ involvement contributed to the
inverse correlation with serum GPX-3 concentration. We divided
the study participants into two groups according to each of
the nine systemic items of BVAS and compared serum GPX-3
concentrations between the two groups (Mukhtyar etal., 2009). Only
serum GPX-3 concentrations, according to general manifestation,
was significantly different between the two groups. Additionally,
otorhinolaryngologic (68.9 ng/mL vs. 88.6 ng/mL, P = 0.054) and
pulmonary (71.3 ng/mL vs. 86.5 ng/mL, P = 0.070) manifestations
showed significant differences between the two groups but they did
not reach statistical significance. Although GPX-3 has been reported
to be associated with renal pathological findings (Burk et al,
2011), this study was not able to reveal an association between
serum GPX-3 concentration and kidney involvement of AAV
(Table 3). As per the general manifestation, since its minor
items were closer to constitutional symptoms, such as myalgia,
arthralgia/arthritis, fever, and weight loss, rather than those limited
to a specific organ (Mulkhtyar et al., 2009), this subgroup analysis
was not sufficient to explain the inverse correlation between serum
GPX-3 concentration and BVAS. Therefore, we conclude that the
correlation between serum GPX-3 concentration and BVAS may be
based on the sum of the cumulative contributions of several organ
involvements, such as the ear, nose, throat or lungs, rather than that
of specific organ invasion by AAV.

In the present study, serum GPX-3 concentration at diagnosis
could not predict poor outcomes during follow-up in patients
with AAV. Given that the risk factors for all-cause mortality
among the four poor outcomes were relatively well established, to
verify the methodological error of the Cox analysis for the results
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FIGURE 1
Comparison of serum GPX-3 concentrations. No significant differences between the two groups were observed. GPX-3, glutathione peroxidase-3;
MPA, microscopic polyangiitis; GPA, granulomatosis with polyangiitis; EGPA, eosinophilic GPA; MPO, myeloperoxidase; ANCA, antineutrophil
cytoplasmic antibody; P, perinuclear; PR3, proteinase 3: C, cytoplasmic.

TABLE 3 Comparative analysis of serum GPX-3 according to the
presence of each systemic item of BVAS in patients with AAV.

Median serum

Systemic item of

BVAS GPX-3

Absence | Presence
General manifestation 84.8 ng/mL 55.8 ng/mL 0.021
Cutaneous manifestation 83.9 ng/mL 63.2 ng/mL 0.247
Mucous and ocular 81.3 ng/mL 83.4 ng/mL 0.694
manifestation
Otorhinolaryngologic 88.6 ng/mL 68.9 ng/mL 0.054
manifestation
Pulmonary manifestation 86.5 ng/mL 71.3 ng/mL 0.070
Cardiovascular manifestation 83.9 ng/mL 57.6 ng/mL 0.283
Gastrointestinal manifestation N/A N/A N/A
Renal manifestation 80.1 ng/mL 84.3 ng/mL 0.972
Nervous systemic 84.3 ng/mL 82.0 ng/mL 0.568
manifestation

GPX-3, glutathione peroxidase-3; BVAS, the Birmingham vasculitis activity score; ANCA,
antineutrophil cytoplasmic antibody; AAV, ANCA-associated vasculitis; N/A, not applicable.

in Table 4 results, we performed univariable and multivariable
Cox proportional hazards analyses including traditional, AAV-
specific, and inflammation-related risk factors along with GPX-3
concentration at diagnosis for all-cause mortality during follow-
up (Murray et al., 2013; Tan et al.,, 2017; Mukhtyar et al., 2008).
In univariable Cox analysis, dyslipidaemia, VDI, white blood
cell count, haemoglobin, and serum albumin were significantly
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associated with all-cause mortality in patients with AAV; however,
serum GPX-3 concentration was not. Nevertheless, to investigate the
predictive and independent potential of serum GPX-3 concentration
for all-cause mortality, we included serum GPX-3 concentration
in multivariable Cox analysis. However, in multivariable Cox
analysis, only dyslipidaemia was independently associated with all-
cause mortality (Supplementary Table S1). Therefore, we verified
that there was no methodological error in the Cox analysis, and
demonstrated that the independent predictive potential of serum
GPX-3 concentration for all-cause mortality was not notable.
Additionally, although a continuous value of serum GPX-3
concentration did not show significant predictive potential for
poor outcomes, we wondered whether a categorical value of serum
GPX-3 concentration according to its cut-offs of poor outcomes
such as all-cause mortality, ESKD, CVA, and ACS could be a
significant predictor of those poor outcomes. We attempted to
obtain each optimal cut-off of serum GPX-3 concentration for
each poor outcome using the receiver operating characteristic ROC
curve analyses; however, we found no significant areas under the
curve (AUC) of serum GPX-3 concentration for poor outcomes.
Therefore, we failed to obtain the optimal cut-offs of serum GPX-
3 concentration for all-cause mortality, ESKD, CVA, or ACS in
this study (Supplementary Figure S1). Meanwhile, among the four
poor outcomes, despite no statistical significance, all-cause mortality
showed a relatively higher AUC compared to the remaining ESKD,
CVA, and ACS. When the patients were divided into two groups
such as the higher and lower groups according to the median
value of GPX-3 concentration of 82.8 ng/mL, in Kaplan Meier
survival analysis, however, no significant difference in cumulative
patients’ survival rates between patients in the higher and lower
groups was observed (Supplementary Figure 52). We concluded that
serum GPX-3 can be useful in estimating the current activity and
damage of vasculitis but not anticipating future poor outcomes in
patients with AAV. This study has the advantage that this is the first
to demonstrate the significant correlations between serum GPX-3
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TABLE 4 Poor outcomes and immunosuppressive drugs administered
during follow-up in patients with AAV (N = 71).

Variables ’ Values

Poor outcomes [N, (%)]

All-cause mortality 6(8.5)
ESKD 17 (23.9)
CVA 4(5.6)
ACS 1(1.4)

Follow-up periods based on each poor outcomes (months)

All-cause mortality 26.1(10.8-45.7)

ESKD 24.3 (8.3-45.7)
CVA 25.8 (8.5-42.2)
ACS 25.8 (9.1-42.2)

Immunosuppressive drugs administered [N, (%)]

Glucocorticoids 70 (98.6)
Cyclophosphamide 47 (66.2)
Rituximab 13 (18.3)
Mycophenolate mofetil 19 (26.8)
Azathioprine 41 (57.7)
Tacrolimus 6 (8.5)

Methotrexate 3(4.2)

Values are expressed as a median (25-75 percentile) or N (%).
ANCA, antineutrophil cytoplasmic antibody; AAV, ANCA-associated vasculitis; ESKD,
end-stage kidney disease; CVA, cerebrovascular accident; ACS, acute coronary syndrome.

TABLE 5 Univariable Cox proportional hazards analysis of serum GPX-3
concentration at diagnosis for each poor outcome during follow-up in
patients with AAV.

Poor outcomes ’ HR 95% Cl P-value
All-cause mortality 0.998 0.988-1.008 0.694
ESKD 0.999 0.993-1.005 0.751
CVA 0.997 0.984-1.010 0.640
ACS 1.014 0.992-1.038 0218

GPX-3, glutathione peroxidase-3; ANCA, antineutrophil cytoplasmic antibody; AAV,
ANCA-associated vasculitis; ESKD, end-stage kidney disease; CVA, cerebrovascular accident;
ACS, acute coronary syndrome.

concentration with activity (BVAS) and damage (VDI) at diagnosis
in patients with AAV.

Antiphospholipid syndrome (APS) is a systemic autoimmune
disease characterized by thrombotic, non-thrombotic, and obstetric
manifestations in individuals with persistent antiphospholipid
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antibodies (aPL). These antibodies are commonly detected through
immunoassays for anticardiolipin (aCL) and anti-B2-glycoprotein-I
(aP2GPI) antibodies, or lupus anticoagulant tests. The interaction
between aPL and targets like B2GPI triggers the activation of
endothelial cells, platelets, monocytes, and neutrophils, as well as
the complement and coagulation systems, forming a key molecular
mechanism underlying APS pathogenesis (Knight and Erkan, 2024).
This interaction occurs at specific microdomains of the cell plasma
membrane known as lipid rafts, which are rich in glycosphingolipids
and cholesterol (Capozzi et al., 2023). Recent reviews highlight that
Mitogen-Activated Protein Kinases (MAPKs) play a crucial role in
transmitting signals from the cell surface to the nucleus, regulating
gene activity. Among the four main branches of the MAPK pathway,
p38MAPK is a key regulator in APS. Additionally, aPL stimulates the
production of ROS in endothelial cells. These ROS act as secondary
messengers, activating the p38MAPK pathway, which is involved in
the pathogenesis of APS (Feng et al., 2024). GPX-3 is an antioxidant
enzyme that plays a critical role in removing ROS, and thus, APS
patients may exhibit a decrease in serum GPX-3 concentration.
However, this study did not include patients with aPL antibodies,
and therefore, subgroup analysis related to this aspect could not be
performed.

5 Limitations

This study has several limitations. The most critical limitation
was that the number of participating patients was not sufficiently
large to generalize these results and apply them to real clinical
practice and that clinical data and sera samples from the time
of diagnosis were used retrospectively. Additionally, although
this study focused on the clinical implications of serum GPX-3
concentration among patients with AAV only, this study could not
provide the results of the comparative analysis of serum GPX-3
concentration between AAV patients and age- and sex-matched
healthy controls. However, given that this is the first pilot study
to explore the clinical utility of serum GPX-3 concentration in
patients with AAV, we believe that this study has clinical implications
in that this identified a novel biomarker that can assess and
estimate activity and damage caused by AAV at diagnosis, although
confined to the time of diagnosis. A prospective future study
enrolling more patients and equipping serial clinical data and paired
serum samples will provide more reliable and dynamic information
on the clinical significance of serum GPX-3 concentration for
not only assessing activity and damage at diagnosis but also
predicting and monitoring the prognosis during follow-up in
patients with AAV.

6 Conclusion

In this study, we demonstrated for the first time that serum GPX-
3 concentration at diagnosis correlates with vasculitis activity and
damage at diagnosis in patients with AAV, suggesting a possible role
of serum GPX-3 as a complementary biomarker for assessing AAV
activity in real clinical practice.
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potentials of Schleichera oleosa
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molecular docking and
molecular dynamics

Peetha Vanaja ® *, N. S. Hari Narayana Moorthy @ *,
Vivek Singh Rajpoot ® *, Harshawardhan Rao @® *,
Rohit Kumar Goswami ® *, Paranthaman Subash ® 2,
Sulekha Khute ® 2 and Kareti Srinivasa Rao @® *

!Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India, ?Department of
Pharmacy, Sri Shanmugha College of Pharmacy, Sangagiri, India

Purpose: To explore the phytochemical composition of Schleichera oleosa
bark and evaluate its potential antimalarial activity through in vitro and in
silico analyses.

Methods: The bark of S. oleosa was subjected to Soxhlet extraction using
petroleum ether, chloroform, and methanol. The quantitative analysis of the
extracts was performed to determine total phenolic, flavonoid, and tannin
contents. Advanced analytical techniques such as Gas Chromatography-Mass
Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS)
were employed to identify 175 phytoconstituents from the methanolic extract
In-vitro antimalarial activity was assessed against Plasmodium falciparum using
the candle jar method, measuring parasite growth inhibition. The inhibitory
concentration (IC50) values were calculated and compared with standard
antimalarial drugs, chloroquine and quinine. Furthermore, computational
analyses, including molecular docking and molecular dynamics simulations,
were conducted to evaluate the interactions of identified phytochemicals with
key malarial targets (1CEQ and 4ZL4). The efficacy of these compounds was
compared with standard drugs like artesunate and chloroquine. Additionally,
ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling
and drug-likeness assessments were performed.

Results: The methanolic extract of S. oleosa exhibited promising in-vitro
antimalarial activity with an average IC50 value of 0.780 ug/mL, which,
while higher than chloroquine (0.020 pg/mL) and quinine (0.268 pg/mL), still
demonstrated significant efficacy. GC-MS and LC-MS analyses identified 175
phytoconstituents, among which two novel lead compounds, scillarenin and
4-[(2)-(6-hydroxy-3-oxo-1-benzofuran-2(3H)-ylidene) methyl] phenyl beta-
Dglucopyranoside, exhibited the highest docking scores and favorable ADMET
profiles. Molecular docking and dynamics simulations confirmed strong binding
affinities to malarial targets, surpassing some standard drugs in efficacy.

Conclusion: This study reports, for the first time, the antimalarial potential
of bioactive constituents derived from the bark of S. oleosa. The identified
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scillarenin and 4-[(Z)-(6-hydroxy-3-oxo-1-benzofuran-2(3H)-

ylidene) methyl] phenyl beta-D-glucopyranoside, demonstrated promising
antiplasmodial activity, validating traditional medicinal claims. The findings
highlight the potential of S. oleosa as a source of novel antimalarial agents
with fewer side effects compared to existing therapies. Further in vivo studies
are warranted to confirm these results and support the development of new
antimalarial drugs. This groundbreaking discovery contributes to the growing
evidence supporting the role of medicinal plants in drug discovery.

antimalarial, in silico, in vitro, phytoconstituents, Schleichera oleosa

1 Introduction

For thousands of years, plants have been used as medicines and
have played a significant part in traditional medical practices across
many countries. In response, scientists are investigating different
phytoconstituents to discover possible treatments. Among these,
plants have geared attention due to their rich diversity of bioactive
substances. These include flavonoids, alkaloids, and terpenoids,
which possess therapeutic properties. Flavonoids, known for their
antioxidant effects, can help in reducing inflammation and boosting
the immune response. Alkaloids, with their broad spectrum of
pharmacological activities, may inhibit the growth of the malaria
parasite. Terpenoids, often noted for their antimicrobial properties,
offer potential in disrupting the lifecycle of the parasite. Herbal
remedies have been used to address a variety of health issues
since time immemorial, ranging from common colds to chronic
diseases, and play a crucial role in complementary and alternative
medicinal practices. Furthermore, about 50% of modern-day
medications originate from plant sources., thus highlighting the
ongoing importance of plants in the process of drug discovery and
development (Raj and Jhariya, 2023).

S. oleosa (Merr.) Oken. Commonly known as Kusum, which
contains 1,858 species. India has 72 plant species of the Sapindaceae
family. It's a big, almost evergreen, deciduous tree with a
somewhat short fluted trunk and can reach a height of 40 m
S. oleosa, commonly known as Kusum, is recognized for its
distinctive bark, which plays a crucial role in its identification
and usage. The bark has been traditionally utilized in various
cultures for its medicinal properties. It is typically rough and
dark grey, often fissured with vertical cracks that give it a rugged
appearance. This texture not only provides protection to the
tree but also serves as a habitat for various microorganisms
(Karthikeyan et al, 2023). This plant also has many reported
pharmacological activities like anti-inflammatory activity, analgesic
activity, anthelmintic activity, antibacterial activity, antioxidant
activity, and reproductive activity (Goswami and Singh, 2017).
According to phytochemical investigations, the bark of this plant
contains scopoletin, beta-sitosterol, betulin, betulinic acid, lupeol
and lupeol acetate (Bhatia et al., 2013). Additionally, another study
has demonstrated that the outer bark of the S. oleosa plant contains
tricadenic acid A and taraxerone (Ghosh et al., 2011). In addition
to its approximately 10% tannin content, the bark is a source of
significant anticancer agents, including betulin and betulinic acid.

Frontiers in Molecular Biosciences

These compounds have geared an interest in its phytochemical
research due to their potential therapeutic benefits.

Malaria, a potentially deadly disease caused by parasites from
infected mosquitoes, affects nearly half of the world’s population,
with approximately 3.3 billion people at risk of contracting the
disease, according to the World Health Organization (Patel et al.,
2024). It is predominantly affecting sub-Saharan Africa, also Asia,
Latin America, and parts of Europe and the Middle East. Efforts
to tackle malaria have made strides through various strategies,
including mosquito nets treated with insecticides, indoor spraying,
and effective antimalarial drugs. Research is ongoing to develop
an effective malaria vaccine, which could play a crucial role in
reducing the disease’s global burden. The pathogens that cause
malaria have several enzymes and active pathways that serve
as targets for antimalarial drugs. The treatment of malaria has
been done using chloroquine and derivatives. Quinine, the first
antimalarial medication, was extracted from the bark of the
cinchona tree in the 1940s. Due to its affordability, effectiveness,
and lower toxicity, chloroquine was the preferred treatment for
malaria for many years (Unnissa et al., 2015). However, in modern
malaria therapy, the use of chloroquine has been restricted due
to the resistance developed in the malaria parasite. Instead of
chloroquine, other noval derivatives like amodiaquine, mefloquine,
and artemisinin were developed to fight against the plasmodium
parasites to cure malaria.

The term anti-malarial activity describes a substance’s ability to
prevent or cure malaria, a parasitic illness spread by the bites of
infected mosquitoes. Antimalarial drugs work by targeting specific
stages of the parasite’s life cycle inside the human body, particularly
concentrating on the erythrocytic phase, which is responsible for
the symptoms of malaria (Na-Bangchang and Karbwang, 2019).
The WHO presently advises using artemisinin-based combination
therapies (ACTs) as the primary treatment option for uncomplicated
malaria caused by Plasmodium falciparum. However, the advent
of ACTs has largely replaced the use of quinine as the first-line
treatment due to their superior efficacy and reduced side effects.
The parasite responsible for this disease, primarily Plasmodium
falciparum, has shown an alarming capacity to develop resistance
to existing antimalarial drugs such as chloroquine and ACTs. This
resistance not only complicates treatment efforts, but also increases
the risk of transmission and severe outcomes. Consequently, the
scientific community is actively engaged in the discovery and
development of novel therapeutic agents. Research has focused
on identifying novel drug targets within the lifecycle of the
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parasite, leveraging advanced technologies, such as genomics
and bioinformatics, to accelerate drug discovery. Additionally,
alternative strategies, such as combination therapies and adjunctive
treatments, are being explored to enhance the efficacy and prevent
resistance. As the fight against malaria continues, innovation and
dedication in the field of antimalarial research remain crucial in the
quest to eradicate this debilitating disease.

In-silico methods are computational techniques and simulations
used to model, analyze, and predict biological and chemical
processes. This approach leverages the power of computer models
to predict the behavior of molecules, interactions, and reactions,
often before any physical experiments are conducted. In the
process of drug discovery and development of new drugs, in
silico techniques are frequently employed to identify promising
therapeutic candidates, forecast their effectiveness, and evaluate
their safety profiles. The primary advantage of in silico methods
is their ability to rapidly analyze large datasets and generate
hypotheses that can be tested in vitro and in vivo, thereby saving
time and resources. As computational power continues to grow, in
silico methodologies are becoming increasingly integral to modern
scientific research and development.

In vitro studies allow researchers to examine the efficacy
of plant extracts or compounds against the malaria parasite
in a controlled laboratory environment. This method is crucial
for identifying active ingredients that can potentially inhibit
the growth and survival of the parasite. Additionally, in silico
methods, which involve computer-based simulations and modeling,
provide an efficient way to predict the interaction between plant-
derived compounds and the molecular targets of the malaria
pathogen. These approaches not only accelerate the identification
of promising antimalarial agents but also help in understanding
the underlying mechanisms of action (Boniface et al, 2015).
Malarial proteins were selected based on previous reports like
1CEQ (P, falciparum lactate dehydrogenase with NADH binding
site) (Kalani et al., 2013), 4Z1L4 (plasmepsin V from P. vivax bound
to a transition state mimetic) (Onguéné et al, 2014). The study
focused on a comprehensive analysis of chemical constituents in
the bark of S. oleosa, specifically phenols, flavonoids, and tannins,
utilizing advanced techniques like GC-MS, LC-MS and molecular
dynamics. GC-MS and LC-MS are critical tools for identifying
and quantifying compounds in complex mixtures and provide
detailed molecular information that is essential for understanding
the pharmacokinetics and metabolism of potential drug candidates.
GC-MS is particularly useful for volatile compounds, whereas
LC-MS excels in the analysis of larger, non-volatile molecules,
offering high sensitivity and specificity (Kumar et al, 2024).
Molecular dynamics simulations complement these techniques by
providing insights into the structural and functional dynamics of
biological molecules at the atomic level (Huggins et al, 2019).
This computational approach helps to predict how potential
drugs interact with their targets, allowing for the optimization of
binding affinities and the identification of promising therapeutic
candidates. Together, these technologies form a powerful toolkit
for drug discovery, enabling researchers to efficiently screen,
identify, and refine new drug candidates with greater precision
and speed (Duarte et al., 2019).

Malaria remains a global health challenge that requires the
discovery of novel therapeutic agents to combat drug-resistant
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Plasmodium strains (Okombo and Fidock, 2024). In the present
study, we have investigated the potential of secondary metabolites
from the bark of Schleichera oleosa as anti-malarial agents. We
hypothesized that these compounds exhibit significant therapeutic
properties through their interaction with specific malaria-related
molecular targets. To test this hypothesis, a combination of in
vitro and in silico approaches were used. Molecular docking was
performed to evaluate the binding efficiency and intermolecular
interactions, followed by ADMET prediction to assess the
pharmacokinetic properties of the compounds. Additionally,
molecular dynamics simulations were conducted to observe the
stability and dynamics of these interactions over time. By addressing
these aspects, this study aimed to elucidate the therapeutic potential
of S. oleosa constituents and contribute to the development of novel
antimalarial drugs.

2 Results and discussion
2.1 Yield of extraction

The extract was placed in a container that had already been
weighed, and its weight was documented. To find the net weight
of the extract, the weight of the empty container was subtracted
from this measurement. The percentage yield was then determined
by dividing the extract’s weight by the initial sample’s weight. For
S. oleosa, the extractive values in petroleum ether, chloroform,
and methanol were found to be 0.1618 g, 0.115 g, and 4.1385 g,
respectively. Because methanol is highly polar, it was able to
extract more components, resulting in higher extractive values with
methanol compared to the other solvents.

2.2 Quantitative analysis

To evaluate these components, quantitative analyses were
performed on three distinct extracts to determine their total
phenolic content (TPC), total flavonoid content (TFC), and total
tannin content (TTC). The findings for the TPC, TFC, and TTC
of S. oleosa bark are detailed in Table I, with standard graphs
displayed in Figure 1. The methanolic extract of S. oleosa bark
contained higher levels of tannin, flavonoid, and phenol compared
to the other two other extracts like petroleum and chloroform
(Kyaw et al, 2019; Thind et al, 2011). In this study, we report
for the first time a quantitative analysis of the total flavonoid
and tannin content of the methanolic extract of the bark of S.
oleosa. Reddy et al. (2007) highlighted the anti-malarial properties
of tannins extracted from Punica granatum, which is commonly
known as pomegranate. Tannins are polyphenolic compounds
known for their astringent properties and have been recognized in
various traditional medicines for their therapeutic benefits (Pizzi,
2021). These compounds may inhibit the growth of Plasmodium
species, the parasites responsible for malaria, by interfering with
their lifecycle. This discovery opens new avenues for further
exploration of how natural compounds can be harnessed to
combat malaria, a disease that continues to affect millions
worldwide.
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TABLE 1 Quantitative tests with quantity of phytoconstituent present in
each solvent.

Quantitative = % Of PE | % Of CE % Of ME
test

1 Total Phenolic _ 10.26% 64.09%
Content

2 Total Flavonoid 24.68% 21.22% 60.37%
Content

3 Total Tanin . 6.03% 67.06%
Content

2.3 GC-MS and LC-MS analysis

The analysis of S. oleosa bark’s methanolic extract using
GC-MS and LC-MS provides a comprehensive understanding
of its phytoconstituents. The GC-MS analysis identified 151
compounds within the extract, demonstrating the technique’s
capability to separate and identify a wide range of volatile and
semi-volatile compounds. Similarly, through the LC-MS analysis
identified 24 compounds, focusing on those with sharp peaks,
which often represent more stable, non-volatile compounds
that are better suited for liquid chromatography. Figures2, 3
likely illustrate the chromatograms obtained from these analyses,
showing peaks that correspond to different phytoconstituents.
Supplementary Table S1 appears to provide detailed information
of identified phytoconstituents from GCMS and LCMS. Both
methodologies utilize mass spectroscopy to identify compounds
through their fragmentation patterns. This process involves
comparing the observed patterns with existing spectral databases
to accurately deduce the structure and identity of the compounds
present. The exploration of phytoconstituents from plants such
as Hibiscus cannabinus, Corchorus capsularis, and Tetrapleura
tetraptera has shown promising results against malaria through
both in silico and in vitro methods. Studies by Brahma et al
(2024) and Hamidu et al. (2023) have highlighted the potential
of these plants as sources of antimalarial compounds. These
investigations used computational models to predict interactions
with malarial targets, followed by laboratory experiments to validate
these findings.

This dual approach of using GC-MS and LC-MS allows for a
more robust and detailed characterization of the phytochemical
profile of S. oleosa, highlighting its potential pharmacological
and therapeutic applications. The compounds scillarenin and
4-[(Z)-(6-hydroxy-3-oxo-1-benzofuran-2(3H)-ylidene)
phenyl beta-D-glucopyranoside have shown promising potential

methyl]

in combating malaria, as evidenced by their high binding affinity
to malaria targets in molecular docking studies. Following this
discovery, these compounds underwent comprehensive analyses
to evaluate their drug-likeness, which involved assessing their
physicochemical properties and compliance with criteria such as
Lipinskis Rule of Five, indicating their potential as orally active
drugs. Additionally, ADMET studies were also conducted to predict
the pharmacokinetic profiles and safety of these compounds to
ensure that they possessed favorable characteristics for therapeutic
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use. Furthermore, their stability was examined under molecular
dynamics conditions to verify their structural integrity and
performance under physiological conditions. These analyses provide
a robust foundation for developing an effective anti-malarial agents
from S. oleosa.

2.4 In vitro antimalarial activity

The study aimed to assess the antimalarial properties of a
methanolic plant extract against Plasmodium falciparum using the
Rieckmann micro-assay method (Rieckmann et al., 1968). After a
38-h incubation period, researchers counted the average number of
rings, trophozoites, and schizonts per 100 parasites from duplicate
wells. The effectiveness of the plant extract was measured by
comparing the percentage of maturation inhibition to a control
group. Remarkably, the extract demonstrated a minimum inhibitory
concentration (MIC) of 0.78 ug/mL, with an IC50 value matching
this MIC, indicating strong inhibitory potential against the malaria-
causing parasite. This finding suggests that the plant extract could be
a promising candidate for developing new antimalarial treatments,
offering a potential alternative to existing therapies. In vitro systems,
which are invaluable in scientific research, have notable limitations
that must be considered when interpreting their results. The primary
drawback is the inability to fully mimic intricate interactions within
living organisms. These systems typically focus on 1 cell type or a
limited combination of cell types, which restricts their ability to
replicate complex cellular interactions and physiological processes
in vivo. This limitation can affect their utility in comprehensive
pharmacokinetic or toxicokinetic studies, as they cannot accurately
simulate the distribution, metabolism, or excretion of substances
within an entire organism. Despite these constraints, in vitro systems
remain valuable for examining specific cellular responses, such
as changes in morphology, particle uptake, cell signalling, gene
expression, and protein production, which often correlate with in
vivo outcomes (Stone et al., 2009).

In the present study, the average IC50 value of the methanolic
extract (0.780 ug/mL), which was found to be higher than that
of the standard drugs, chloroquine (0.020 pg/mL) and quinine
(0.268 pg/mL), however, confirming its antimalarial efficacy. This
diminished efficacy could be attributed to the concentration
of phytoconstituent(s) which is/are responsible for antimalarial
property in the crude extract may be very low or the net antimalarial
property of the extract may not be due to a single phytoconstituent,
rather it may be due to a mixture of phytoconstituents present
in low concentration in the crude extract or the bioavailability
of active compounds in the extract may very be low. The
potential antimalarial properties of bark extract may be linked
to the presence of phenols, flavonoids, and tannins (Goswami
and Singh, 2017). These phytoconstituents are known for their
antioxidant and antimicrobial activities, which could contribute
to combating malaria (Khandekar et al,, 2015). However, due
to the complex nature of malaria treatment and the need for
precise action against the parasite, the extract may not achieve
the same level of effectiveness as established pharmaceuticals.
Further research could explore optimizing extraction methods or
combining plant-based compounds with standard treatments to
enhance their efficacy.
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GC-MS Chromatogram of methanolic extract of S. oleosa bark: 151 phytoconstituents.
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FIGURE 3
LC-MS Chromatogram of methanolic extract of S. oleosa bark: 24 phytoconstituents.
2.5 Molecular docking particularly through the integration of computational methods,

such as structure-based virtual high-throughput screening, which

AutoDock Vina is a widely-used molecular docking software  plays a critical role in drug discovery and development. This
that facilitates the study of interactions between proteins and  approach allows researchers to efficiently identify potential drug
various compounds, aiding in drug discovery and design. In this ~ candidates by simulating their interactions with target proteins.
context, the proteins 1CEQ and 4ZL4 were sourced from the  However, despite these advances, current docking methodologies
Protein Data Bank to serve as targets for docking studies. The  have several limitations. For instance, accurately modeling the
docking process involves evaluating 175 phytoconstituents, with  flexibility of ligands and proteins remains challenging, which
their scores derived from GCMS and LCMS analyses illustrated  can affect the precision of binding predictions. Additionally,
in Supplementary Table S1. These scores reflect the stability and  entropic effects, solvation/desolvation processes, and the presence
affinity of the compounds at the protein binding sites. Typically,  of water molecules and ions further complicate the simulations. The
compounds with lower docking scores are considered more stable existence of tautomers, allosteric effects, and the molecular context
and potentially more effective due to their stronger binding affinity. ~ of the binding sites also add layers of complexity. Achieving binding
Conversely, compounds that exhibit higher docking scores than the ~ and pharmacokinetic effects is crucial for developing effective
standards are highlighted in bold, indicating a potential deviation  therapeutics. Addressing these challenges requires the continual
in binding efficiency. In molecular docking studies, identifying  refinement of computational models and methodologies to improve
the most favorable docking pose is crucial for understanding the  drug discovery accuracy and reliability.
interactions between a ligand and its target protein. The lowest
binding energy conformation is often considered the most stable ~ 2.5.1 Phytoconstituents with top docking score
and thus most likely to occur in nature. This energy was calculated ~ for 1CEQ protein target
as the sum of the total intermolecular energy, total internal energy, The methanolic extract of S. oleosa bark has demonstrated
and torsional free energy, with the energy of the unbound system  promising potential in terms of binding affinity when compared to
subtracted, providing an accurate estimate of the binding affinity. In  the standard reference compound, chloroquine, which has a binding
this process, tools such as AutoDock are used to generate multiple  affinity of —8. This suggests that ten compounds might have a stronger
conformations of the ligand, typically selecting the top ones based  interaction with the target site, indicating potential therapeutic benefits
on their energy values (Hasan et al, 2015). The top 16 ligand  such as Isorhamnetin 3-glucoside (-8.8), (+)-epicatechin-3-O-gallate
conformations were generated based on the binding energy value (—8.8), (—)-Epicatechin-3-O-gallate (-8.7), Scillarenin (-8.6), (3beta,
using AutoDock. The conformation with the lowest binding energy ~ 17xi)-Stigmast-5-en-3-yl D-glucopyranoside (-8.6), (1Z, 2E)-1-
is typically considered to be the most favorable because it suggests  ({[(2R,35,4S,5R, 6S)-6-{[5,7-Dihydroxy-2-(4-ox0-2,5-cyclohexadien-
a more stable interaction (Chaniad et al., 2016). This conformation ~ 1-ylidene)-2H-chromen-3-yl] oxy}-3,4,5-trihydroxytetrahydro-2H-
is often found in the most populated cluster, indicating that it =~ pyran-2-yl] methyl} oxonio)-3-(4-hydroxyphenyl)-2-propen-1-
is not only energetically favorable but also statistically significant.  olate (-8.6), 5-(beta-D-Glucopyranosyloxy)-2-(4-hydroxyphenyl)-
Analyzing this conformation allows researchers to gain insightsinto ~ 7-chromeniumolate ~ (8.2),  (1S)-1,5-Anhydro-1-(5,7-dihydroxy-
key interactions, such as hydrogen bonds, hydrophobic interactions, ~ 4-oxo-2-phenyl-4H-chromen-8-yl)-D-glucitol  (-8.1), 4-[(Z)-(6-
and electrostatic forces, which contribute to binding affinity and ~ Hydroxy-3-oxo-1-benzofuran-2(3H)-ylidene) ~ methyl]  phenyl
specificity. Structural biology has seen significant advancements,  beta-D-glucopyranoside (-8.1) and dUDP (-8.1).
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2.5.2 Phytoconstituents with top docking score
for 4ZL4 protein target

The study on the methanolic extract of S. oleosa bark reveals that
several phytoconstituents demonstrate a higher binding affinity
than chloroquine, which has a binding affinity of —8.1. This
suggests that fifteen compounds might have a stronger interaction
with the target site, indicating potential therapeutic benefits
such as (1Z, 2E)-1-({[(2R,35,4S,5R, 6S)-6-{[5,7-Dihydroxy-2-(4-

0x0-2,5-cyclohexadien-1-ylidene)-2H-chromen-3-yl] 0xy}-3,4,
5-trihydroxytetrahydro-2H-pyran-2-yl] methyl} oxonio)-
3-(4-hydroxyphenyl)-2-propen-1-olate (-9.9), 5-(beta-

D-Glucopyranosyloxy)-2-(4-hydroxyphenyl)-7-chromeniumolate

(-9.2), 3-glucoside  (-9), (+)-epicatechin-
3-O-gallate (-9), 4-[(Z)-(6-Hydroxy-3-oxo-1-benzofuran-
2(3H)-ylidene)  methyl]  phenyl  beta-D-glucopyranoside
(-9), Glutathione (-9), (3beta, 17xi)-Stigmast-5-en-3-yl D-
glucopyranoside (-8.6), Paromomycin (—8.6), 2-Oxazolamine,
4,5-dihydro-5- (phenoxy methyl)-N-[(phenylamino)carbonyl]-
(-8.4), (-8.3), (1S)-1,5-Anhydro-1-(5,7-
dihydroxy-4-oxo-2-phenyl-4H-chromen-8-yl)-D-glucitol ~ (-8.3),
(-8.2), 1,54-dibromo-  (-8.2),
magnesium  3-[8-(1-hydroxy-3-methoxy-3-oxopropyl)-2,7,13,17-
tetramethyl-3,18-divinyl-21H-porphin-24-id-12-yl] ~ propanoate
(-8.2) and (-)-epicatechin-3-O-gallate (-8.2). These findings
suggest that these phytoconstituents could potentially offer more

Isorhamnetin

Scillarenin

aloesin tetrapentacontane,

effective binding interactions compared to chloroquine, indicating
their potential as candidates for further investigation in the
development of therapeutic agents.

2.6 Drug likeness and ADMET studies

Drug likeness and ADMET studies are crucial in the drug
development process as they assess the Absorption, Distribution,
Metabolism, Excretion, and Toxicity of potential compounds
illustrated in Table 2. In this study, based on the higher docking
score of ligands than the standard chloroquine, sixteen ligands
with high-binding affinity were evaluated using the ADMET
study and drug likeness characters. The evaluation of ADMET
properties plays a crucial role in drug development, influencing
decisions at every stage, from hit selection to preclinical
development. Despite significant advances in the assessment
of ADMET properties, several limitations hinder this process.
The major challenge is the discrepancy between the in vitro
and in vivo results. Although in vitro models provide valuable
insights, they often fail to fully replicate the complex biological
environments of living organisms. Algorithm limitations also
pose a challenge, as the computational models used to predict
ADMET properties may not always accurately reflect real-life
scenarios. Furthermore, the physiological relevance of in vitro
models is sometimes limited because they do not account for factors
such as human-specific metabolic pathways. Lastly, variability
in absorption can complicate predictions because individual
differences in physiology can lead to significant variability in
drug adsorption (Chandrasekaran et al., 2018). These factors are
vital in determining the most suitable route of administration
for drug formulations. ADMET properties help to predict how
a drug behaves in the body, thereby influencing its efficacy and
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safety. Absorption determines how well a drug is taken up into
the bloodstream; distribution assesses how it spreads through
tissues; metabolism examines how the body processes it, often
into active or inactive forms; excretion focuses on how the drug
and its metabolites are eliminated; and toxicity evaluates the
potential for adverse effects (Chandrasekaran et al., 2018). Among
them sixteen phytoconstituents, nine phytoconstituents were
common for both the targets. Only two compounds identified as
and 4-[(Z)-(6-Hydroxy-3-oxo-1-benzofuran-2(3H)-
ylidene) methyl] phenyl beta-D-glucopyranoside, exhibited the

scillarenin

highest docking scores for the selected targets. This suggests that
these two phytoconstituents have significant potential for further
development as therapeutic agents, due to their strong binding
affinity, good ADMET properties and favorable drug-likeness
properties. As a result, these two phytoconstituents have been
selected for further investigation due to their promising ADMET
profiles and drug-likeness properties from the methanolic extract of
S. oleosa bark.

2.7 Intermolecular interactions

In this study, to examine intermolecular interactions, Discovery
Studio and LigPlot were employed to analyze ligand 100, standard
chloroquine, and ligand 165. These tools are instrumental in
visualizing and understanding how ligands interact within
their target environments, often highlighting key bonds and
interactions such as hydrogen bonds and hydrophobic contacts.
The detailed findings of this analysis were systematically presented
in Supplementary Table S2 and visually illustrated in binding
site prediction through the Discovery studio (Figure4), 2D
interactions (Figure 5) and Intermolecular interactions through
the LigPlot analysis (Figure 6). These figures and tables likely
provide a comparative visual representation of the interaction
patterns of each ligand, offering insights into their binding
affinities and potential efficacy. Such analyses are crucial in
drug discovery and development, aiding in the identification of
promising lead compounds based on their molecular interactions.
In this study of intermolecular interactions, the comparison of
ligand interactions with the 1CEQ and 4ZL4 protein complexes
reveals interesting insights. For the 1CEQ complex, scillarenin
(ligand 100) formed 8 hydrophobic contacts and 1 hydrogen
bond, whereas standard chloroquine showed higher hydrophobic
interactions with 12 contacts. For the 1CEQ complex, 4-[(Z)-
(6-Hydroxy-3-oxo-1-benzofuran-2(3H)-ylidene) methyl] phenyl
beta-D-glucopyranoside (ligand 165) demonstrated a significant
affinity by establishing 8 hydrophobic contacts and 6 hydrogen
bonds, indicating a robust interaction profile. Common interaction
sites for ligand 100 and chloroquine included Gly29, Met30, Ile31,
Thr97, Ala236, and Pro246, while ligand 165 and chloroquine
also have common interactions like Asn140, His195, and Gly196.
Similarly, for the 4ZL4 complex, scillarenin formed 7 hydrophobic
contacts, chloroquine complex with 4Z14 had 11, and 4-[(Z)-
(6-Hydroxy-3-oxo-1-benzofuran-2(3H)-ylidene) methyl] phenyl
beta-D-glucopyranoside (ligand 165) complex with 4ZL4 exhibits
12 hydrophobic contacts and 2 hydrogen bonds. These findings
highlight the variability in ligand-protein interactions depending
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FIGURE 4
Binding site prediction through the Discovery studio: 1ICEQ-Ligand 100 (A), 1CEQ-standard chloroquine (B), 1ICEQ-Ligand 165 (C), 4ZL4 - Ligand 100
(D), 4ZL4 - standard chloroquine (E) and 4ZL4 - Ligand 165 (F).

on the specific protein structure and the chemical nature of the
ligands involved.

The observed anti-malarial activity of lead compounds is
often influenced by a combination of structural features such
as hydrogen bond donors and acceptors, aromatic rings, and
hydrophobic regions. Hydrogen bond donors and acceptors play
a crucial role in forming strong interactions with the active sites
of target proteins in malarial parasites, potentially inhibiting their
function. Aromatic rings contribute to the ability of the molecule
to engage in m—7 stacking interactions, which enhances its binding
affinity and specificity to the target. Furthermore, the hydrophobic
regions in the compound facilitate interactions with nonpolar
residues in parasite proteins, thereby increasing the overall binding
strength and efficacy of the compound (Chen et al., 2018; Silva-
Alvarezetal,, 2015). The interplay of these structural elements allows
the optimization of the pharmacodynamic and pharmacokinetic
properties, ultimately driving the antimalarial activity of lead
compounds. The hydrophobic regions in compounds play a crucial
role in enhancing their interactions with nonpolar residues in
parasite proteins, as demonstrated by the data. For instance, ligand
100 engages with hydrophobic residues, such as ALA236, PRO246,
and ILE31, in the 1CEQ target protein through alkyl and Pi-alkyl
interactions. Similarly, in the 4ZL4 target protein, interactions
are predominantly hydrophobic, involving residues such as
VAL153, ARG167, and PRO200, highlighting the significance of
nonpolar interactions in stabilizing the ligand-receptor complex.

Frontiers in Molecular Biosciences

These hydrophobic contacts are essential for binding affinity and
specificity because they fortify the noncovalent interactions essential
for molecular recognition. This underscores the importance of
designing ligands with strategically positioned hydrophobic groups
to optimize binding to parasite target proteins, thereby enhancing
the effectiveness of therapeutic interventions.

2.8 MD simulations

The study aimed to evaluate the stability and interaction

dynamics of protein-ligand complexes using molecular
dynamics (MD) simulations, focusing on standard (chloroquine)
scillarenin and  4-[(Z)-(6-hydroxy-3-
beta-D-

glucopyranoside against the targets - 1CEQ and 4ZL4. The

and lead compounds
oxo-1-benzofuran-2(3H)-ylidene) = methyl]  phenyl
simulations, carried out over a 50-nanosecond production phase,
provided insights into the structural and dynamic characteristics
of these complexes. An important part of the analysis focused on
evaluating the backbone root-mean-squared deviation (RMSD) and
Root Mean Square Fluctuation (RMSF), which offer insights into
the stability and flexibility of protein-ligand interactions. Figures 7, 8
present the RMSF plots for ligands and standard chloroquine protein
complexes, revealing detailed information about the flexibility
and dynamic behavior of these interactions during molecular
dynamics simulations. These plots pinpoint areas of the protein with
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FIGURE 5
2D interactions: 1CEQ-Ligand 100 (A), 1CEQ-standard chloroquine (B), 1ICEQ-Ligand 165 (C), 4ZL4 — Ligand 100 (D), 4ZL4 - standard chloroquine (E)
and 4ZL4 - Ligand 165 (F).

notable fluctuations, suggesting regions of flexibility or instability in
the complex. Furthermore, Table 3, which illustrates the average
RMSD and RMSF values, provided a quantitative overview of
the stability and conformational changes experienced by the
protein ligand and standard chloroquine complexes throughout
the simulation. The study of ligand-protein complexes through
molecular dynamics simulations provides valuable insights into
their binding modes and stability over time. Snapshots were taken
at intervals of 10, 30, and 50 ns to observe interactions within the
different complexes. For the 1CEQ protein, three different ligands
were evaluated: Ligand 100, standard chloroquine, and ligand 165.
The 4Z14 protein was analyzed using the same set of ligands. The
cartoon representations of these complexes reveal distinct binding
interactions and conformational changes over time. In the case
of 1CEQ, ligand 100 showed a stable interaction pattern, whereas
standard chloroquine and ligand 165 exhibited unique binding
characteristics that could influence their efficacy. For the 4ZL4
protein, ligand 100 and standard chloroquine exhibited different
binding dynamics, with ligand 165 showing potential for alternative
interaction pathways. Snapshots of the ligand-protein complexes
were created at specific time points (10, 30, and 50 ns) to visualize
the position and binding modes of the ligands over a 50-ns MD
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simulation, as illustrated in Figures 9A-F. These observations will
inform further research on optimizing ligand design for targeted
therapeutic applications.

Monitoring the conformational and structural changes of
malarial targets complexed with lead compounds such as scillarenin
and 4-[(Z)-(6-hydroxy-3-oxo-1-benzofuran-2(3H)-ylidene) using
RMSD and RMSF analyses provides valuable insights into their
stability and dynamics. The RMSD analysis, conducted over a
50 ns trajectory, revealed that the ICEQ - ligand 165 complex
exhibited the lowest average RMSD value of 0.281 nm, indicating
high stability. Comparatively, the standard chloroquine and ligand
100 showed slightly higher RMSD values of 0.293 nm and 0.306 nm,
respectively. In another set of analyses, the 4ZL4 - ligand 165
complex similarly demonstrated the lowest RMSD at 0.606 nm,
suggesting better stability compared to ligand 100 and standard
chloroquine, which had RMSD values of 0.647 nm and 0.690 nm
respectively. These findings suggest that ligand 165 might have a
more stable binding conformation with both targets compared to the
other compounds tested.

The RMSF analysis provides valuable insights into the
dynamic behavior of proteins during molecular simulations,
particularly in understanding protein-ligand interactions. By
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100 (D), 4ZL4 - standard chloroquine (E) and 4ZL4 — Ligand 165 (F).

Intermolecular interactions through the LigPlot analysis: 1CEQ-Ligand 100 (A), 1ICEQ-standard chloroquine (B), 1ICEQ-Ligand 165 (C), 4ZL4 - Ligand

FIGURE 7

RMSD plot of protein(s) complex with standard chloroquine and lead phytoconstituents from methanolic extract of S. oleosa bark.

examining RMSF values, researchers can discern flexible regions
1CEQ and 4714,
compare their interactions with various ligands, including lead

within protein structures, such as and
compounds and standard chloroquine. Regions with higher
RMSF values exhibit more flexibility, whereas lower values
indicate stability in secondary structures. This information is
crucial for assessing the energy and stability of ligand-binding
interactions, which can influence the efficacy of potential
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drug compounds. In the specific cases of 1CEQ, significant
RMSF values were observed with different ligands: ligand 165
(0.171 nm), standard chloroquine (0.149 nm), and ligand 100
(0.613 nm). Similarly, for 4ZL4, the RMSF values with ligand
165 (0.203 nm), standard chloroquine (0.283 nm), and ligand
100 (0.394 nm) reveal variations in flexibility and interaction
dynamics. These findings are pivotal for designing and optimizing
therapeutic agents targeting such proteins.
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FIGURE 8

RMSF plot of protein(s) complex with standard chloroquine and lead phytoconstituents from methanolic extract of S. oleosa bark.
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TABLE 3 The average values of RMSD and RMSF of lead hit from the bark of S. oleosa and standard chloroquine.

S. No Target ’ Ligand or Std RMSD (nm) Average + SD RMSF (nm) Average + SD
Ligand 100 0.306 + 0.027 0.613 +0.068
1 1CEQ Std Chloroquine 0.293 +0.031 0.149 + 0.059
Ligand 165 0.281 +0.038 0.171 +0.071
Ligand 100 0.647 + 0.294 0.394 +0.146
2 4714 Std Chloroquine 0.690 + 0.143 0.281 +0.098
Ligand 165 0.606 + 0.078 0.203 +0.081

In comparing the results of our MD simulations of
and  4-[(Z)-(6-hydroxy-3-oxo-1-benzofuran-2(3H)-
ylidene) methyl] phenyl beta-D-glucopyranoside with those of

scillarenin

chloroquine, it is essential to contextualize our findings within
the broader landscape of existing literature. MD simulations
revealed that ligand 165 exhibited a lower average RMSD,
indicating greater stability than chloroquine, which aligns
with findings from other studies that have reported similar
stability profiles for phytochemicals targeting the same protein
receptors. For instance, previous MD studies have shown
that certain natural compounds maintain stable interactions
through robust hydrogen bonding and hydrophobic contact,
similar to those observed in our simulations. However, our
results also highlight unique interaction patterns, such as the
additional hydrogen bonds formed by ligand 165, which may
enhance its binding affinity and therapeutic potential. This
comparative analysis not only underscores the promising nature
of our lead compounds but also suggests that they could offer
advantages over chloroquine in terms of efficacy and safety.
Future research should focus on the experimental validation of
these computational findings and explore additional ligands to
further elucidate the mechanisms underlying their interactions
with target proteins. By situating our results within the context
of existing studies, we can better understand the implications of
drug design and the potential for developing new antimalarial
therapies.
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Hydrogen bonds offer precise and directional connections
between the polar groups of the ligand and complementary polar
residues of the protein, thereby enhancing binding affinity through
a network of stable interactions. These bonds ensure that the
ligand is maintained in the optimal orientation, which is crucial
for effective binding. MD simulations revealed that ligand 165
formed multiple hydrogen bonds with key residues, demonstrating
increased stability compared to chloroquine. On the other hand,
hydrophobic contacts occur between the non-polar regions of
the ligand and hydrophobic residues of the protein, driven by
the principle of minimizing exposure to water. These contacts
generate a favorable entropic effect by bearing non-polar regions
within the interior of the protein. In our study, the combination
of significant hydrophobic contacts and hydrogen bonds in ligand
165 resulted in a synergistic effect, further stabilizing the protein-
ligand complex.

Molecular simulations have witnessed a transformative shift
because these techniques are closer to practical applications in drug
discovery, particulate generation, and optimization. The dynamic
nature of target-ligand interactions poses significant challenges,
especially in the accurate prediction of the thermodynamics and
kinetics of bonding. MD-based dynamic docking is a more nuanced
approach than traditional static docking because it considers the
flexibility and electronic structure of such interactions. However,
the complexity of these simulations implies that advancing them
to a point at which they can replace static docking remains a
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FIGURE 9

Snapshots at different intervals (time step = 10, 30, 50 ns) for the binding modes of the ligand-protein complexes. The cartoon representation shows
1CEQ-Ligand 100 (A), 1CEQ-standard chloroquine (B), 1ICEQ-Ligand 165 (C), 4ZL4 - Ligand 100 (D), 4ZL4 — standard chloroquine (E) and 4ZL4 —
Ligand 165 (F).

critical hurdle. Overcoming this challenge would mark a significant ~ Researchers are actively refining these techniques to enhance their
leap forward, enabling more accurate and efficient drug discovery  speed and precision, thereby promising a new era of pharmaceutical
processes that can better mimic real-world biological environments. ~ development (Riccardi et al., 2018).
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Molecular dynamics simulations serve as a powerful tool for
evaluating the potential of lead compounds like scillarenin and
4-[(Z)-(6-hydroxy-3-oxo-1-benzofuran-2(3H)-ylidene)
phenyl beta-D-glucopyranoside, particularly in comparison with

methyl]

standard antimalarial drugs such as artesunate and chloroquine.
These simulations provide a dynamic view of how these compounds
behave in a physiological setting, offering valuable insights into their
stability and flexibility. The stability of a compound in a simulated
physiological environment is a crucial factor in assessing its potential
as a therapeutic agent, particularly for treating diseases like malaria.
When compounds such as scillarenin exhibit stable interactions
with target proteins during simulations, they exhibit strong binding
affinity. This stability suggests that the compound can effectively
maintain its inhibitory action against the malaria parasite over time,
thereby enhancing its potential efficacy as a treatment.

The flexibility of lead compounds is crucial for determining their
efficacy, particularly in the context of drug design and development.
When a compound can adapt its conformation to more precisely fit
the binding site of a target protein, it often results in more robust
and specific binding interactions. This adaptability can enhance the
ability of a compound to effectively inhibit or modulate a target
proteins activity, which is essential for therapeutic applications.
In the case of antimalarial agents like scillarenin, their ability
to undergo conformational changes while maintaining favorable
interactions with the target protein can significantly contribute
to their effectiveness. This flexibility allows patients to better
navigate the complex environment of the human body and adapt
to the dynamic nature of biological systems, ultimately improving
therapeutic outcomes.

Malaria remains a significant global health challenge,
particularly in regions with tropical climates where severe cases
contribute to higher mortality rates. The disease not only affects
the health of individuals but also imposes substantial social and
economic burdens on affected communities. Although numerous
natural and synthetic anti-malarial agents have been developed, the
continued evolution of drug-resistant strains of the malaria parasite
has hindered effective disease control. This resistance underscores
the urgent need for novel and innovative therapeutic approaches
that can successfully overcome these challenges (White et al., 2014).
Research into new drugs, including those targeting different stages
of the parasite’s life cycle or employing unique mechanisms of
action, is crucial. Multidisciplinary efforts combining genomics,
drug discovery, and public health strategies are essential to develop
effective solutions and ultimately reduce the impact of malaria
worldwide.

Herbal medicines have long been recognized as a rich source of
bioactive compounds, which have the potential to be developed into
new pharmaceutical drugs. The diverse chemical structures found
in plants can lead to the discovery of unique mechanisms of action
that traditional synthetic drugs might not offer. Moreover, the study
of herbal medicines can inspire the synthesis of new compounds that
mimic the beneficial properties of these phytoconstituents, leading
to innovative treatments for various health conditions. As research
in ethnopharmacology and phytochemistry advances, the potential
for herbal medicines to contribute to modern drug development
continues to grow, offering promising avenues for both prevention
and treatment of diseases (Mustafa et al., 2017).
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The study on the bark of S. oleosa provides significant insights
into its potential medicinal properties, particularly its antimalarial
effects. By employing advanced analytical techniques such as GC-
MS and LC-MS, researchers identified 175 phytoconstituents in
the bark. Among these, phenolics, flavonoids, and tannins were
quantitatively analyzed, as they are known for their health benefits,
including antimicrobial and antioxidant properties. The methanolic
extract of the bark demonstrated promising in-vitro antimalarial
activity, particularly against the malaria-causing Plasmodium
species. The candle jar method is a simple and effective technique
for cultivating microorganisms, particularly in anti-malarial in
vitro studies. This method involves placing Petri dishes or culture
flasks containing the parasite and erythrocytes inside a sealed
jar with a light candle. The burning candle consumes oxygen
and raises carbon dioxide levels, creating a low-oxygen, high-
carbon dioxide environment that mimics the conditions found in
human blood. This environment is conducive to the growth and
replication of P. falciparum, allowing researchers to study its life
cycle and test its potential as an antimalarial drug (Hanifian et al.,
2022). These findings suggest that S. oleosa could be a valuable
source for developing new antimalarial treatments, warranting
further investigation and development. The methanolic extract’s
average IC50 value of 0.780 pg/mL, though higher than that of
standard antimalarial drugs chloroquine (0.020 pg/mL) and quinine
(0.268 pg/mL), still demonstrates promising antimalarial efficacy.
While a higher IC50 value generally indicates a lower potency, the
extract’s ability to inhibit malaria parasites suggests it could serve
as a potential alternative or complementary treatment. The bark
extract, which exhibits anti-malarial properties, is generally less
effective than the standard treatments of chloroquine and quinine.
This diminished efficacy could be attributed to the concentration
and bioavailability of active compounds in the extract.

The presence of tannins in the bark of S. oleosa is a significant
contributor to its antimalarial properties. These phytochemicals,
known for their pharmacological activity, have been extensively
studied for their ability to combat malaria parasites. Research, such
as that by Bhatia et al. (2013), confirms the presence of tannins in S.
oleosa, supporting the notion that these compounds play a crucial
role in the medicinal efficacy of the plant. Furthermore, recent
studies, such as Paes et al. (2024), emphasize the potential of tannins
as effective agents against malaria, highlighting the importance of
these compounds in developing alternative therapeutic strategies.
The high tannin content in S. oleosa may thus offer valuable insights
into natural antimalarial solutions, highlighting the potential of the
plant for medical and pharmacological applications.

Further research could explore its active compounds, optimize
its formulation, and assess its safety and efficacy in clinical settings,
potentially leading to new therapeutic options in the fight against
malaria. The study of computational analyses involving molecular
docking and dynamics has revealed promising insights into the
potential antimalarial properties of the bark of S. oleosa. By
targeting malaria-related proteins such as 1CEQ and 4ZL4, the
research aimed to compare the effectiveness of these compounds
against established antimalarial drugs like quinine and chloroquine.
The results highlighted those compounds derived from S. oleosa
exhibited the highest docking scores, suggesting a strong potential
for binding and inhibition of the target proteins. Furthermore,
comprehensive ADMET profiling and evaluation of drug likeness
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characters demonstrated the feasibility of these compounds as
viable therapeutic agents. In silico ADMET profiling involves the
use of computer-based simulations and models to evaluate the
pharmacokinetic and safety profiles of compounds before they
reach the costly and time-intensive stages of in vitro and in vivo
testing. By employing advanced algorithms, machine learning, and
molecular modeling techniques, scientists can efficiently screen
large libraries of compounds and identify those with favorable
ADMET characteristics. This not only accelerates the development
of new pharmaceuticals and reduces the likelihood of late-
stage failures, making the drug development process more cost-
effective and streamlined. In silico ADMET profiling is particularly
valuable for identifying potential safety concerns, optimizing lead
compounds, and guiding experimental design.

The evaluation of compounds as potential drug candidates for
malaria involves more than simply analyzing numerical docking
scores. Although these scores provide preliminary insights into the
binding affinities of compounds with malaria receptor targets, they
are insufficient as standalone indicators of drug viability. To fully
assess a compound’s drug candidacy, it is crucial to consider a
range of factors beyond its binding affinity. ADMET properties play
pivotal roles in determining the safety and efficacy of a compound
in a biological context. Additionally, understanding a compound’s
pharmacokinetics and pharmacodynamics, potential off-target
effects, and synthetic feasibility is essential for comprehensive
evaluation. Validation through rigorous in vitro and in vivo studies
is necessary to confirm initial hypotheses regarding biological
activity and specificity. Benchmarking these new compounds against
established antimalarial drugs, such as chloroquine and artemisinin,
can provide valuable information regarding their therapeutic
potential. By integrating these dimensions, researchers can identify
viable drug candidates and advance their development toward
effective malaria treatment.

This study highlights the of
phytoconstituents derived from the bark of S. oleosa as therapeutic

promising  potential

agents against malaria, with a focus on docking scores. Two
4-[(Z)-(6-Hydroxy-3-oxo-1-benzofuran-2(3H)-
ylidene) methyl] phenyl beta-D-glucopyranoside and scillarenin,

compounds,

demonstrated the lowest binding energies (high docking scores)
compared with the standard chloroquine, indicating a strong
affinity for the malaria target proteins 1CEQ and 4ZL4. The dual
targets of these proteins demonstrate their potential effectiveness. In
addition, the favorable drug-likeness properties of the compounds
and their ADMET profiles indicated promising safety and efficacy
profiles, which are essential for drug development. The promising
characteristics of the compounds prompted further investigation
through MD simulations, which helped to evaluate their stability
and behavior within a simulated biological setting, yielding
more in-depth information about their therapeutic potential
against malaria. The exploration of natural products with anti-
malarial activity has a rich history, with compounds such as
artemisinin from Artemisia annua and chloroquine from Cinchona
calisaya being notable successes in the fight against malaria
(Dahnum et al., 2012; Carroll et al., 2012). In particular, artemisinin
has revolutionized malaria treatment because of its rapid action
against Plasmodium parasites. Similarly, chloroquine has been a
cornerstone treatment for decades, until resistance issues emerged.
These successes underscore the potential of harnessing natural
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phytoconstituents to combat malaria. The bark of Schleichera
oleosa, a lesser-known botanical source, has been investigated
for its similar properties. Research on Schleichera oleosa has
identified novel compounds that could enhance existing anti-
malarial regimens or provide entirely new therapeutic options.
This study would benefit from including references to similar
in vitro antimalarial studies, as this would help position the
findings within the broader context of phytoconstituents research
(Deshpande et al., 2014). This research highlights the significance of
their findings, demonstrates how their work contributes to existing
knowledge, and identifies novel aspects of their study. The recent
study on the bark of S. oleosa has led to the groundbreaking
identification of two key phytoconstituents, scillarenin and 4-
[(Z)-(6-hydroxy-3-oxo-1-benzofuran-2(3H)-ylidene)
phenyl beta-D-glucopyranoside, which demonstrate promising

methyl]

antimalarial activity. Recent in silico studies have identified
compounds such as 4-[(Z)-(6-hydroxy-3-oxo-1-benzofuran-2(3H)-
ylidene) methyl] phenyl beta-D-glucopyranoside, which were
previously unreported for such activity, exhibit promising anti-
malarial properties. Although scillarenin has already been noted for
its antioxidant activity (Kakouri et al., 2019), this finding expands
the potential therapeutic applications of these compounds. This
study highlights the power of computational methods in drug
discovery and provides a foundation for further experimental
studies to explore the efficacy and safety of these compounds in
treating malaria. This discovery marks a significant step forward
in the search for new antimalarial drugs, as these compounds have
shown potential in initial testing for their ability to combat the
malaria parasite. The study not only highlights the potential of these
bioactive constituents but also supports the traditional medicinal
use of S. oleosa. Further in vivo testing is recommended to fully
assess the therapeutic potential of these compounds and to develop
them into effective treatments for malaria, a disease that continues
to have a devastating impact worldwide.

3 Conclusion

The present study highlights the promising anti-malarial
potential of bioactive phytoconstituents from S. oleosa, revealed
through advanced GC-MS and LC-MS analyses. By employing in
silico molecular docking studies, researchers identified compounds
with strong binding affinities to malarial targets 1CEQ and
4714, suggesting that these phytoconstituents could serve as
lead molecules in drug discovery. The virtual screening methods,
including ligand-based drug design and MD simulations,
demonstrated that these phytoconstituents not only possess drug-
like properties but also exhibit favorable pharmacokinetic profiles,
reducing potential side effects and the likelihood of failure in clinical
trials. The investigation into the potential antimalarial properties of
chloroquine and identified phytoconstituents from the methanolic
extract of S. oleosa bark has yielded promising results. The analysis
of drug likeness, ADMET, and molecular dynamics simulations,
particularly looking at RMSD and RMSE, has demonstrated the
effectiveness of these compounds as potential drug candidates. The
study highlighted the phytoconstituents such as scillarenin and
4-[(Z)-(6-hydroxy-3-oxo-1-benzofuran-2(3H)-ylidene) ~ methyl]
phenyl beta-D-glucopyranoside standing out as strong inhibitors
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against malaria targets. These results highlight the promise of these
compounds in malaria treatment, indicating that further research
is necessary to confirm their therapeutic potential and determine
the optimal dosage for clinical use. This research is a promising step
towards developing new plant-based antimalarial therapies, which
could provide more effective strategies in the fight against this global
health issue. The discovery of these lead compounds represents a
significant advancement in the creation of new malaria medications.

4 Experimental

4.1 Chemicals

Petroleum ether, chloroform, methanol, gallic acid, hydrochloric
acid (Molychem, Mumbai); folin-ciocalteu reagent, rutin, tannic
acid, quercetin, sodium nitrite, sodium hydroxide (CDH, Delhi);
aluminum chloride (Qualikems, Vadodara); HEPES, 1% D-glucose,
0.23% sodium bicarbonate, 10% heat-inactivated human serum, 5%
D-sorbitol, 3% hematocrit and JSB stain.

4.2 Collection, authentication, and
preparation of plant material

The process of identifying S. oleosa began with the meticulous
collection of plant material from its natural habitat. This was
followed by the preparation of a herbarium voucher specimen,
cataloged as IGNTU/DOB/2024/Sap/S0/01, to ensure accurate
documentation and future reference. The taxonomical features of S.
oleosa were thoroughly examined against descriptions found in local
flora, as outlined in published sources. Photographs and voucher
specimens were checked against trusted botanical databases such
as the Plant List, the Flora of India websites, and the International
Plant Names Index (IPNI) to guarantee accurate identification.
Furthermore, the taxonomy of the species was corroborated
using the Germplasm Resources Information Network and other
specialized databases like IMPPAT. This comprehensive approach
allowed for the confirmation of the species, genera, and family
classifications of S. oleosa, as documented by Rao et al. (2024).
The final step in this identification process involved validation by
a taxonomist at Indira Gandhi National Tribal University, located in
Amarkantak, Madhya Pradesh, India.

The fresh bark of the S. oleosa plant was collected from the
nursery in Bhadi, district Mandla, Madhya Pradesh, India. Drying,
grinding, and storing plant material as a powder before extraction
are crucial steps to ensure efficient and high-quality extraction.
Drying removes moisture content, prevents the microbial growth
and degradation of active compounds. This step helps to preserve
the plant material and extend its shelf life. The grinding of
dried plant material into a fine powder increases the surface
area, enhancing the ability of the solvent to penetrate plant cells
and extract desired compounds more effectively. This process
also ensures more uniform extraction, which improves the yield
and consistency of the active ingredients. Proper storage of the
powdered material is essential to protect it from environmental
factors such as light, air, and humidity, which can further degrade
the compound (Krakowska-Sieprawska et al., 2022). The recently
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collected bark was cut into small pieces and allowed to air dry under
shade for 10 days and was pulverized into a coarse powder using an
electric blender. Unwanted debris was removed and weighed on a
scale balance to know the initial weight of the powder. For later use,
the pulverized plant material was then stored in a dry and clean bag.

4.3 Extraction of S. oleosa bark powder

Soxhlet extraction is a widely favored technique for extracting
compounds from solid materials because of its efficiency, simplicity,
and ability to handle various sample types. One of the primary
reasons for selecting Soxhlet extraction is its ability to repeatedly
wash samples with fresh solvents, thereby enhancing the extraction
process without manual intervention. This method is particularly
effective for extracting non-volatile and semi-volatile compounds
because it allows for the continuous recycling of solvents, which
ensures thorough extraction. In addition, Soxhlet extraction is
compatible with various solvents, enabling researchers to select the
most appropriate solvent for specific compounds (Bhadange et al.,
2024). A 100 g sample of powdered S. oleosa bark underwent
ether (60°C-80°C),
chloroform, and methanol with the help of a Soxhlet apparatus,

sequential extraction using petroleum

resulting in their respective extracts. The process continued until
the siphoning tube of the Soxhlet apparatus showed no further
coloration. The obtained extracts were then processed with a rotary
evaporator to eliminate the solvent from each extract. The final
weight of each extract was measured, and stored under 4°C. The
percentage yield was determined based on the initial weight of the
powder, as demonstrated below:

Finalweighto f extract
Initialweight o fthepowdered plant bark *

% Yield = 100

4.4 Quantitative analysis

Quantitative analysis involves measuring the total quantity of
active compounds, also known as secondary metabolites, in a
plant sample. Each type of secondary metabolite requires a specific
reference standard for accurate quantification (Phong et al., 2022).

4.4.1 Determination of total phenolic content
With some adjustments, the FC reagent method was employed
to measure the total phenolic content (Georgé et al, 2005a).
A 100 mL volumetric flask was filled with 10 mg of accurately
measured standard gallic acid to prepare a working standard (WS)
solution with a concentration of 100 ug/mL. Methanol was used
as the solvent to fill the flask to the mark. Specific volumes
of this WS solution were then transferred into several 10-mL
volumetric flasks to achieve final gallic acid concentrations ranging
from 0 to 15 pg/mL, which were used to construct a calibration
curve. Each flask containing different standard concentrations was
supplemented with 2 mL of FC reagent, gently mixed, and allowed
to sit for 2 minutes. Following this, 2 mL of a 20% Na,CO; (w/v)
solution was added, and the volume was adjusted with distilled
water. The samples were then incubated in the dark for 30 min or
until a blue color developed. The absorption peaks of these solutions
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were measured against a blank solution at 755 nm using UV-visible
spectrophotometry with the UV-Probe on a UV-1900, Shimadzu
(Shimadzu, Japan). This method was similarly used on samples
prepared in triplicate by taking suitable portions of the sample
solutions to measure their concentration. The TPC is quantified by
comparing the sample data with a standard known as gallic acid, a
common benchmark in phenolic studies. The results are expressed
in terms of milligrams of gallic acid equivalents (GAE) per gram of
the dried sample, using a gallic acid standard curve (Ahmed et al.,
2017; Assefa and Keum, 2017; Georgé et al., 2005b; Rao et al., 2024).

Total phenolic content (mg GAE/g) = C']\_‘fI

Where C - is the regression equation’s predicted amount of gallic
acid (mg/mL); V - volume of extract used for analysis (mL); M -
Weight of extract used for analysis (g).

4.4.2 Determination of total flavonoid content

With only slight adjustments, the colorimetric technique was
employed to assess the total flavonoid content (TFC) of the
extract using aluminum chloride (AICl;) (Matvieieva et al., 2019a).
A 100 mL volumetric flask was used to prepare a working
standard (WS) solution by adding 10 mg of precisely measured
standard rutin, resulting in a concentration of 100 ug/mL. Methanol
served as the solvent to fill the flask to the required volume.
The described procedure outlines a method for constructing a
calibration curve for rutin concentration determination using
spectrophotometry. To begin, various aliquots of a working solution
were precisely transferred into 10 mL volumetric flasks to achieve
rutin concentrations varying from 0 to 25 ug/mL. This range
enables the creation of a detailed calibration curve. Each flask
was supplemented with 0.3 mL of a 5% sodium nitrite (NaNO,)
solution, followed by a gentle shake and a 10-min incubation to
allow for any necessary reactions. Subsequently, 0.3 mL of a 10%
AICI; solution was added to each flask, and another incubation
period was observed. To complete the process, 2mL of a 1 M
sodium hydroxide (NaOH) solution was added, and the final
volume was adjusted with distilled water. The absorbance of
each prepared sample was measured at a wavelength of 419 nm
using a Shimadzu UV/Probe 1900 UV/visible spectrophotometer.
For sample analysis, appropriate aliquots of the extracts were
prepared, and the procedure was consistently applied to all sample
solutions in triplicate. The Total Flavonoid Content (TFC) was
determined as outlined in the Total Phenolic Content (TPC)
section, with results expressed in milligrams of Rutin Equivalents
(mg RE) per gram of sample extract (Faujdar et al, 2019;
Matvieieva et al., 2019b; Rao et al., 2024).

4.4.3 Determination of total tannin content

The plant extract’s total tannin content was assessed with
tannic acid serving as the reference standard (Hagerman and
Butler, 1978). A 100 mL volumetric flask was carefully filled with
10 mg of accurately measured standard tannic acid to prepare a
working standard (WS) solution with a concentration of 100 pg/mL.
Methanol served as the solvent to adjust the volume to the
desired level. Specific aliquots of this WS solution were transferred
into several 10-mL volumetric flasks, creating final tannic acid
concentrations between 0 and 25 pg/mL, intended for a calibration
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curve. To each 10 mL flask containing these different standard
concentrations, 0.5 mL of FC reagent was added. Following this,
1 mL of a 35% Na,COj; solution was introduced into each flask
and gently mixed for 5 minutes. The solution was then placed in a
dark setting for 30 min. The plant extract was processed similarly
to produce the sample solution. The absorbance of each standard
solution was measured at 419 nm using the Shimadzu UV/Probe
1900 UV-visible spectrophotometer, with a blank reference. This
procedure quantified the TTC as milligrams of Tannic Acid
Equivalents (TTE) per gram of dried plant extract. (Muddathir and
Mitsunaga, 2013; Rao et al., 2024).

4.5 GC-MS and LC-MS instrument and
chromatographic conditions

Gas chromatography-mass spectrometry (GC-MS) is a powerful
analytical technique for the identification and quantification of
compounds in complex mixtures. One of the primary reasons
for selecting GC-MS is its ability to provide both qualitative
and quantitative data with high sensitivity and specificity. The
combination of gas chromatography, which separates volatile and
semi-volatile compounds, with mass spectrometry, which identifies
them based on their mass-to-charge ratio, allows for the precise
analysis of diverse samples. GC-MS is particularly advantageous
in fields such as environmental analysis, forensic science, and
pharmaceuticals because of its capacity to detect trace levels
of substances and its robustness in handling complex matrices
(Beale et al., 2018). GC-MS analysis of the samples was meticulously
conducted using the GC-MS-QP2010 Plus system. This GCMS
instrument was equipped with a 5-ms VF-fused silica capillary
column of length 30 m, diameter 0.25 mm, and film thickness.
Helium (99.99%) was used as the carrier gas at a constant flow rate
of 1.5 mL/min. Initially, the oven temperature was maintained at
50°C for 1 minute, then methodically increased to 300°C over a
period of 10 min at a rate of 7.5°C/min. The sample injector was
precisely controlled at 280°C, while a 2.0 mL volume of the analytical
solution was injected with a split ratio set to 1:3. The system
utilized highly pure helium as the carrier gas to ensure optimal
performance of the GC apparatus. The interface was consistently
kept at 300°C, while the ion source was maintained at a slightly lower
temperature of 250°C, optimizing conditions for efficient ionization
of the analytes. The mass spectrometer operated in acquisition
mode, which facilitated a comprehensive scan across a mass-to-
charge (m/z) range of 50-1000. This wide range was crucial for
capturing the complete fragmentation patterns of the target analytes,
enabling detailed quantitative analysis. By utilizing a full scan, the
process ensured that all relevant data points were collected, allowing
for precise identification and quantification of the compounds
under study (Patel et al., 2010). The detection was performed using
the National Institute of Standards and Technology (NIST) mass
spectral library. The NIST mass spectral library is a comprehensive
tool for identifying chemical compounds using mass spectrometry.
This library contains an extensive collection of mass spectra, which
are unique fingerprints of compounds based on their mass-to-charge
ratios. Mass spectrometry analysis of a sample yields a spectrum
that can be matched against NIST spectra. Peak alignment is a
crucial step in this process because it ensures that the observed
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peaks in a sample spectrum are correctly aligned with the reference
spectra for accurate identification. Deconvolution processes were
employed to separate overlapping peaks, which can occur when
multiple compounds are present in a sample, making it possible to
discern individual components. The identification criteria typically
involve comparing the experimental spectrum to the library spectra
using metrics such as spectral similarity scores to determine the
best match.

Liquid Chromatography-Mass Spectrometry (LCMS) is a
powerful analytical technique that is widely used because of its
ability to separate, identify, and quantify complex mixtures with
high precision and sensitivity. One primary reason for choosing
LCMS is its versatility in handling a vast range of chemical
compounds, from small to large biomolecules, making it invaluable
in fields such as pharmaceuticals, environmental analysis, and
proteomics. Additionally, LC-MS offers excellent spectrometry
because of its dual-phase operation: liquid chromatography
effectively separates compounds, whereas mass spectrometry
provides detailed molecular information through mass-to-charge
ratio analysis. This combination allows the accurate identification
and quantification of compounds in trace amounts (Bhole et al.,
2020). During liquid chromatography, compounds are separated
by their interactions with a stationary phase and a mobile phase,
allowing for the isolation of individual components within a
mixture. The Waters Alliance HT 2795 system, paired with the Micro
mass Quattro Micro, offers a robust solution for analyzing complex
mixtures. LC-MS was coupled with a Micromass QTOF Micro Mass
Spectrometer (Waters, Milford, MA, United States). Separation was
performed on an XBridge C18 column (130 A, 3.5 um, 4.6 mm x
150 mm; Waters). The mobile phase was composed of 80% methanol
and 20% water and was run in isocratic mode. The flow rate was set
at 0.7 mL/min. The system’s sensitivity and precision arise from
its ability to operate in positive ion mode with an electrospray
ionization (ESI) source. This configuration allows for the effective
ionization of analytes, which are then channelled through the mass
spectrometer for analysis. The following changes have been made
to the settings: the source temperature is maintained at 100°C to
facilitate the efficient evaporation of solvents, while the temperature
drop is set to 400°C to promote desolvation. The airflow settings,
with a reduced airflow of 500 L/h and cone airflow of 50 L/h, are fine-
tuned to stabilize the ion stream. The choice of argon as the collision
gas ensures effective fragmentation of ions, critical for detailed
mass analysis. MassLynx 4.1 is an advanced software tool that
facilitates data processing and interpretation in mass spectrometry.
The MassLynx 4.1 software provides a comprehensive suite of tools
for accurate and efficient analysis of complex datasets. Intuitive data
processing and visualization capabilities allow users to effectively
interpret mass spectra and chromatograms. This process ensures
that the peaks are accurately matched across the datasets, accounting
for shifts that may occur due to experimental variations. In addition,
MassLynx 4.1 offers robust deconvolution processes, which enable
users to resolve complex spectra into individual components. This
software is particularly useful for identifying and quantifying
overlapping peaks, thereby enhancing the clarity and accuracy
of analysis. In addition, the software provides comprehensive
identification criteria, allowing users to set specific parameters
for peak identification, such as retention time, mass accuracy, and
intensity thresholds.
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This
Chromatography (LC) and Mass Spectrometry (MS), creating

software integrates seamlessly with both Liquid
a powerful hyphenated technique for comprehensive chemical
analysis. The LC component of this system plays a critical role
in isolating and separating chemical substances within a complex
mixture. This separation is achieved by exploiting the differing
affinities of the compounds to the stationary phase and the solvent
system, allowing for precise analysis of individual components.
MS component provides an in-depth examination of the ionized
particles by measuring their mass-to-charge (m/z) ratios. This
detailed analysis generates mass spectra, which are essentially
fingerprints of the molecular entities present in the sample. The mass
spectra not only reveal the molecular weights but also offer insights
into the structural characteristics of the sample’s constituents, thus
enabling researchers to identify unknown compounds, determine
the purity of a sample, and understand the molecular structure of
complex substances. Data collection and processing were performed
using Masslynx software (Mas-sLynx 4.1, Waters). It is a hyphenated
technique, such as LC and MS, where LC is a separation technique
that separates compounds in a mixture based on their affinity for
stationary and solvent (mobile phase) systems. MS is a technique
that analyzes the mass-to-charge (m/z) ratio of ions. MS spectra
show the molecular weights and structural properties of the various
components of the samples.

4.6 In vitro testing of extract for
antimalarial activity

The
microtiter plates, a widely recognized technique for assessing the

in vitro antimalarial test described utilized 96-well

efficacy of antimalarial compounds. This method, pioneered by
Rieckmann and colleagues at Microcare Laboratory and TRC,
provides a standardized approach for evaluating the growth
inhibition of Plasmodium falciparum, a parasite that causes malaria.
The 3D7 strain of this parasite was cultured in a carefully prepared
RPMI-1640 medium. This medium was enriched with 10% heat-
inactivated human serum to provide essential growth factors, 1%
D-glucose as an energy source, 0.23% sodium bicarbonate for
maintaining pH balance, and 25 mM HEPES as a buffering agent.
The parasites of P. falciparum, initially in an asynchronous state,
were synchronized to produce only ring-stage infected cells after
treatment with 5% D-sorbitol.

The use of Jaswant Singh Bhattacharya (JSB) staining in this
assay is crucial for accurately measuring the initial ring stage
parasitemia, which ranges from 0.8% to 1.5% at a hematocrit of
3% within a 200 pL volume of RPMI-1640 medium. This method
ensures that parasitemia is consistently sustained by incorporating
50% O+ red blood cells into the culture. To evaluate the efficacy
of different test samples, stock solutions were initially prepared
at a concentration of 5mg/mL in DMSO. These solutions were
subsequently diluted with the culture medium to achieve the desired
concentrations for testing. To obtain final concentrations ranging
from 0.4 ug/mL to 100 pg/mL after a fivefold dilution, 20 uL of the
diluted samples were introduced into duplicate wells that contained
parasitized cells. The culture plates were then incubated at 37°C in
a candle jar to create the ideal conditions for parasite proliferation.
After incubation, thin blood smears were made and stained with JSB
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stain to allow for detailed microscopic analysis. Results are given as
mean value of triplicate analyses of each sample and the MIC was
determined as the lowest concentration that completely inhibited
schizont development. Chloroquine was used as the reference drug.

4.7 In silico experiment

4.7.1 Hardware specification

The study leveraged the computational power of an AMD Ryzen
5 5500U processor, complemented by a Radeon graphics processor,
and operated on the Windows 11 to ensure efficient handling of tasks
and data-intensive processes.

4.7.2 Software specification

The receptor protein’s structure can be downloaded from the
RCSB website. Receptor screening was conducted using AutoDock
software (MGL Tools 1.5.7), which was obtained from the Scripps
Center for Chemical Biology’s site. The structures of the compounds
identified by GC-MS were created using Chem Draw 19.1, developed
by Perkin Elmer in Waltham, Massachusetts. Molecular docking
was carried out through Auto Dock Vina, which is available at the
Scripps Vina website. To validate the molecular docking results,
the Discovery Studio Visualizer from 2dsbiovia.com was used.
SMILES codes were converted online via the NCI's Cactus server.
Admet SAR, available at the East China University of Science
and Technology’s website, was utilized for in silico studies, and
LigPlot analysis was performed using LigPlot + V 2.1, received
academic license from the European Bioinformatics Institute in
Hinxton, United Kingdom. By using the CHARMM-GUI web
server, researchers can effectively solvate these complexes, preparing
them for molecular dynamics (MD) simulations. CHARMM-GUI
streamlines the process, allowing for the generation of input files
tailored for various simulation environments. Once the protein-
ligand complexes are solvated, MD simulations can be performed
using software like VMD and NAMD. VMD (Visual Molecular
Dynamics) provides a robust interface for visualizing and analyzing
molecular systems, while NAMD (Nanoscale Molecular Dynamics)
is renowned for its high-performance simulation capabilities.

4.8 Preparation of the receptor

The Protein Data Bank (PDB) supplied the three-dimensional
crystal structures for two enzymes that combat malaria. These
proteins were visualized using Discovery Studio 2021. All water
molecules were stripped from the protein, and Kollman charges
along with polar hydrogens were incorporated. AutoDock was
utilized to develop the grid map and identify the protein’s active site.
The grid centers, specified by coordinates (x, y, and z), along with
their respective receptors, are as follows: 1CEQ at (25.585, 27.077,
9.299) and 4ZL4 at (3.020, 71.923, 36.935) (Sazed et al.,, 2021)

4.9 Preparation of ligand
All the identified 175 phytoconstituents were considered for the

ligand preparation process, involved several steps, such as structural
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modifications and adjustments, lead optimization and removal,
and variations in structures. ChemDraw was utilized to create the
ligand’s structure, which was then converted into a 3D mol format
(Suri and Naik, 2012). The ligand preparation process is a critical
step in computational chemistry and drug design, involving a series
of meticulous transformations to ready a molecule for simulation or
analysis. This process begins with the addition of hydrogen atoms,
ensuring that all potential binding sites are satisfied, followed by the
removal of heteroatoms that may interfere with the model’s accuracy.
Neutralization of charges is essential to maintain a balanced system,
while the formation of ionization states and tautomers allows
for the exploration of different chemical possibilities. Filtration is
employed to refine the dataset by removing irrelevant or redundant
entries, and consideration of alternative chiralities ensures that all
stereochemical configurations are accounted for. Optimization of
geometries and identification of low energy ring conformers is
crucial for achieving the most stable molecular structure (Usha
etal., 2013). Docking studies utilize scoring algorithms to implicitly
screen a chemical database, enabling the prediction of the most
effective binders.

4.10 Molecular docking studies

Molecular docking analysis is a computational method
employed to anticipate the interaction between a protein receptor
and potential ligands, typically small molecules or drug candidates.
This method is crucial for understanding how these molecules
fit together in three dimensions, providing insights into their
binding affinity and potential efficacy as therapeutic agents. In
the described study, Dock Vina, a popular docking software,
was employed to analyze 175 phytoconstituents derived from
S. oleosa, identified through GC-MS/LC-MS analysis. These
compounds were docked against specific protein targets, namely,
1CEQ and 4ZL4, to assess their potential as inhibitors or
binders. For comparison, known antimalarial drugs, Artesunate
and Chloroquine, were also docked under identical conditions.
The primary aim was to evaluate the binding energy and
molecular interactions between the phytoconstituents and the
receptors to identify promising candidates for further biological
testing. Through this computational approach, researchers can
efficiently screen large compound libraries and focus on the most
promising candidates for subsequent experimental validation
(Faujdar et al., 2019; Maurya et al., 2023).

4.11 In silico ADMET analysis of selected
phytochemicals

The SMILES representations of the finalized ligands were
generated through the Chemdraw, and were submitted to
druglikeness and ADMET (Absorption, Distribution, Metabolism,
Excretion, and Toxicity) prediction programs, such as Druglikeness
and AdmetSAR (https://Immd.ecust.
edu.cn). These computational tools are essential in the early

(http://sctbio-iitd.res.in)
stages of drug discovery because they provide insights into the

pharmacokinetic and pharmacodynamic properties of compounds.
In the pursuit of discovering new antimalarial therapies, researchers
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are increasingly focusing on phytochemicals and potential efficacy.
When a phytochemical demonstrates a higher docking score than
standard antimalarial drugs, it becomes a candidate for further
ADMET analysis. This comprehensive evaluation considers several
factors critical to drug development. MR (Molar refractivity)
provides insight into the molecular volume and polarizability, while
MW (Molecular weight) is crucial for ensuring the compound can
be efficiently absorbed by the body. HBD and HBA (Hydrogen-bond
donors and acceptors) are vital for understanding the compound’s
ability to form hydrogen bonds, influencing its interaction with
biological targets. LogP, the partition coefficient, indicates the
compound’s hydrophilicity or lipophilicity, which affects absorption
and distribution. Adherence to RO5 (Lipinski’s rule of five) ensures
the compound has properties consistent with oral bioavailability.
PPB (Plasma Protein Binding) assesses how much of the drug
will be available in the bloodstream, and WS (Water solubility) is
essential for absorption and bioavailability. Together, these analyses
help identify phytochemicals with promising drug-like properties
for further development as potential antimalarial agents (Ganesan,
2008; Subash and Kareti, 2021). The in silico predictions are followed
by successful in vivo experiments, it underscores the reliability and
accuracy of the ADMETSAR model used (Abdou et al., 2024).

4.12 Intermolecular interactions

The methanolic extract of the bark of S. oleosa has been studied
for its lead phytoconstituents using advanced computational tools
like Discovery Studio Visualizer and LigPlot+. These tools are
instrumental in understanding molecular interactions, especially
in the context of protein binding sites. By utilizing Discovery
Studio Visualizer, scientists can identify important contact points
and interactions that play a critical role in the binding affinity
and specificity of the protein-ligand complex. This visualization
facilitates a deeper understanding of the molecular mechanisms
involved, aiding in the design and optimization of new compounds
for drug discovery or other biochemical applications. LigPlot+, on
the other hand, provides 2D schematic diagrams that highlight
hydrogen bonds and hydrophobic interactions, complementing the
3D visualizations from Discovery Studio to give a comprehensive
view of the binding interactions (Jain et al, 2022; Saliu et al,
2021) LigPlot analysis is an essential tool in computational
biology for visualizing the interactions between ligands and target
macromolecules, such as proteins. By transforming intricate three-
dimensional structures into clear two-dimensional diagrams,
LigPlot simplifies the understanding of how ligands—small organic
molecules, peptides, or biologically active compounds—interact
with their target proteins. This visualization is particularly
valuable to biochemists, pharmacologists, and drug designers as
it reveals critical information about the binding properties and
affinities of these compounds. The graphical maps produced by
LigPlot highlight different types of interactions, such as hydrogen
bonds, ionic interactions, and hydrophobic contacts, with the
ligand centrally positioned. These maps not only elucidate the
spatial arrangement of functional groups crucial for binding but
also facilitate comparative analysis across various ligand-target
complexes. This understanding is fundamental to optimizing the
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therapeutic efficacy of these compounds, advancing drug design,
and enhancing biochemical research (Subash and Kareti, 2021)

4.13 MD simulation

NAMD is a powerful tool for conducting molecular dynamics
(MD) simulations, allowing researchers to study the complex
movements and interactions of biomolecules over time. By
leveraging the CHARMM-GUI online platform, scientists can
streamline the process of preparing simulation inputs, particularly
in generating ligand topology files. This platform offers a user-
friendly interface and a suite of tools designed to facilitate the
integration of NAMD’s input generator. The collaboration between
these resources provides a robust framework for evaluating the
optimal binding energy of ligand-protein complexes (Thandivel
etal, 2024; Le etal, 2016). The CHARMM-GUI server is an
invaluable tool for researchers conducting MD simulations,
particularly when it comes to constructing ligand and standard
topologies. In this specific study, K+ and Cl-ions were incorporated
to neutralize the systems, which were then solvated in water. The
systems underwent a rigorous equilibration process using the
standard CHARMM-GUI Membrane Builder protocol, starting
with energy minimization through the steepest descent method
for 1000 steps. This was followed by equilibration steps under
NVT and NPT ensembles for 100 ps each, leading up to a
comprehensive 50-nanosecond MD simulation. The relatively short
timescale of 50 ns and idealized simulation conditions often used
in computational studies can pose significant limitations on the
accuracy and applicability of the results. In molecular dynamics
simulations, for example, a 50 ns timescale may only capture
transient phenomena or initial stages of molecular interactions,
potentially missing slower, more complex processes that occur over
longer periods. Idealized conditions, such as simplified molecular
models or perfect environmental settings, can further limit the
realism of the simulation because they might not account for
variables such as temperature fluctuations, impurities, or real-
world constraints. Consequently, while these simulations can
provide valuable insights and theoretical frameworks, it is crucial to
complement them with longer-timescale studies and experimental
data to ensure comprehensive understanding and applicability
to real-world scenarios (Huggins et al, 2019). The subsequent
analysis of the docked ligand-target complex yielded valuable
insights into the molecular interactions between the enzyme and
its target. This approach not only enhances the accuracy of docking
results but also provides a detailed assessment of the system’s
stability, contributing to a deeper understanding of the underlying
molecular mechanics (Eastman et al., 2017). To determine the best
configuration, a high-throughput dynamic simulation approach is
necessary for examining the ligand-target receptor binding process
during differentiation.
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neuroprotection by combating
oxidative stress and enhancing
mitochondrial function
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!Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy, ?Department of
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Background: Mitochondrial dysfunction and oxidative stress are central
mechanisms in the progression of neurodegenerative diseases. This study first
evaluated the toxicity of Q-Der (Q10-diacetate), a derivative of Coenzyme Q10,
in HT22 hippocampal neurons under normal and oxidative stress conditions.

Methods: HT22 cells were treated with Q-Der at 2.5, 5 and 10 uM with
and without rotenone. Mitochondrial superoxide production (Mitosox), gene
expression (via gRT-PCR), and protein levels (via Western blot) were measured.
Morphological analyses were performed using transmission (TEM) and scanning
(SEM) electron microscopes.

Results: Q-Der significantly reduced mitochondrial superoxide levels,
particularly at 5puM, and upregulated key mitochondrial biogenesis genes,
including PGC-1a and TFAM. Additionally, it restored the expression of MT-
ND1 and MT-COI, which were downregulated by rotenone. Western blot
results showed a significant recovery in CV-ATP5A (complex V) expression (p <
0.05), preserving mitochondrial ATP production. Morphological analyses further
confirmed Q-Der's ability to maintain cellular and mitochondrial structure under
stress conditions.

Conclusion: These findings suggest that Q-Der is non-toxic under normal
conditions and protects against oxidative stress, supporting its potential as a
therapeutic agent for neurodegenerative diseases.

KEYWORDS

coenzyme Q10, Q-Der, oxidative stress, mitochondrial dysfunction, rotenone,
neuroprotection, HT22 cells, ATP synthesis
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1 Introduction

Neurodegeneration is an inflammatory response in the
system (CNS). It
constellation of conditions characterized by the progressive

central nervous represents a complex
decline in neurons’ structure, function, and viability. This

pathological phenomenon is central to various disorders
that collectively are known as neurodegenerative diseases
(NDs). These conditions—such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS),
Huntington’s disease (HD), and multiple sclerosis (MS)—are
unified by their insidious onset and the inexorable deterioration
of cognitive, motor, or sensory functions they inflict
upon individuals.

These diseases share a gradual onset and a relentless
progression of cognitive, motor, or sensory impairments, making
them a leading cause of disability worldwide, particularly
among older populations. As society ages, the prevalence of
NDs is expected to increase, highlighting the critical need for
enhanced understanding and development of innovative preventive
strategies.

At the cellular level, neurodegeneration is characterised
by a series of events including synaptic dysfunction, neuronal
loss, and brain atrophy. These processes are driven by the
neurons inability to sustain necessary biochemical and cellular
operations, leading to apoptosis or other forms of cell death
(Granatiero et al., 2019; Angelova and Abramov, 2018; Wilson et al.,
2023). This results in the breakdown of neural networks and
neurotransmission disruption, manifesting in symptoms depending
on the affected brain regions. The molecular mechanisms at play,
such as mitochondrial dysfunction, oxidative stress, and low-
grade inflammation, are pivotal to understanding the pathology
of NDs. Mitochondrial dysfunction compromises cellular energy
metabolism, contributing to the cell death seen in NDs. Oxidative
stress, resulting from an imbalance between reactive oxygen species
(ROS) production and antioxidant defenses, further damages
neurons (Lin and Beal, 2006). Key molecular players in these
processes include oxidative stress induction and molecular networks
related to neuroinflammation and cellular dysfunction, exacerbating
neuronal damage (Sivandzade et al., 2019).

The environmental and lifestyle factors, including diet, physical
activity, and exposure to toxins, further modulate the risk and
progression of neurodegenerative diseases. Here, the role of diet
emerges as both a potential risk factor and a protective ally
against neurodegeneration (Solfrizzi et al., 2017; Zhang et al,
2021; Bianchi et al., 2021; Yang et al., 2021; Godos et al., 2024).
Nutritional patterns rich in polyphenols and healthy fats can
mitigate the risk of neurodegenerative diseases by influencing the
molecular mechanisms of neurodegeneration. Diets that reduce
oxidative stress, dampen low-grade inflammation, and improve
mitochondrial function can significantly impact the progression of
these diseases. Additionally, consistent consumption of fruits like
berries and cherries, which are high in polyphenols, may contribute
to maintaining cognitive health (Wang et al., 2023). Investigating
phytocomplexes used in folk medicine could lead to the discovery of
compounds with diverse preventive benefits across various diseases,
including cancer (Micucci et al., 2024), cardiovascular issues

(Micucci et al,, 2020), and neurological disorders (Lapi et al., 2020).
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The exploration of phytocomplexes derived from plants
such as Acacia catechu (Chiaino et al., 2021), Castanea sativa
(Brizi et al., 2016), Olea europea (Chiaino et al, 2020), and
phytochemicals like flavonoids and curcumin have unveiled their
potential to modulate critical molecular pathways involved in
neurodegeneration. These substances can inhibit the activation
of NF-«B, thereby reducing the production of pro-inflammatory
cytokines such as IL-1 and IL-6. They also promote the activation of
Nrf2, enhancing the cellular antioxidant response and protecting
against oxidative damage (Abrahams et al, 2019; Calis et al,
2020; Farzaei et al, 2019). Indeed, generally, flavonoids lead
to a reduction in ROS, regardless of their source (endogenous:
mitochondria, peroxisomes, xanthine oxidase, Fenton reaction,
NADPH oxidase, lipoxygenases, cytochrome P450 or exogenous:
visible, UV and ionising radiation, chemotherapeutics) (Kicinska
and Jarmuszkiewicz, 2020). Additionally, compounds naturally
occurring in the human body, such as melatonin and Coenzyme
Q10 (CoQ10), have also been studied and extracted, leading to
the development of novel agents to mitigate oxidative stress and
support mitochondrial function in neurodegenerative conditions
(Areti et al., 2017; Bagheri et al., 2023).

Amidst these complex interactions, CoQ10 and its derivatives
stand out for their dual role in mitochondrial function and
antioxidant defence. Coenzyme q10 provides a promising avenue
for neurodegerative disorders, acting on oxidative phosphorylation,
which occurs in the mitochondria via the electron transport chain,
the primary process responsible for ATP production (Kang et al.,
2020). However, challenges in bioavailability and optimal dosing
underscore the need for further research to harness CoQ10’s full
potential in combating NDs.

This study introduces a pioneering in vitro comparison of a
novel CoQ10 analog with CoQ10, focusing on their neuroprotective
effects and underlying mechanisms in HT22 neuronal cells. Our
investigation delves into mitochondrial ROS modulation, regulation
of genes implicated in mitochondrial biogenesis and function (PGC-
la, TFAM, MT-ND1, MT-COI, MT-COX5B), and OXPHOS subunit
protein expression, aiming to illuminate the novel analog’s superior
efficacy and mechanism profiles. Finally, SEM and TEM analyses
suggest neuroprotective effects evidence by preserved mitochondrial
integrity, reduced apoptotic cells, autophagic vacuoles, and cellular
morphology in the treatment group compared to controls. This
work represents a significant stride in overcoming CoQ10’s dosing
challenges, potentially setting a new benchmark in neuroprotective
strategies.

2 Materials and methods
2.1 Chemicals and reagents

CoQI10 was obtained from Sigma-Aldrich (C9538). CoQ10
derivative (Q-Der) was kindly provided by Umolsystem Srl.
Rotenone was used as the neurotoxin at a concentration of 5 uM.
Dimethyl sulfoxide (DMSO) was used as a vehicle control. Other
reagents included fetal bovine serum (FBS), L-glutamine (100 mM),
and antibiotics (penicillin and streptomycin). All chemicals were
sourced from Sigma-Aldrich and prepared according to the
manufacturer’s instructions.
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2.2 Cell cultures

Mouse hippocampal neuronal cell line (HT22) was maintained
in DMEM-Ham’s F12, supplemented with 10% fetal bovine
serum, L-glutamine (100 mM), and 1% antibiotics (penicillin,
streptomycin), and incubated in humidified 5% CO, atmosphere at
37°C. At 80% confluence, cells were detached with trypsin-EDTA,
washed, and sub cultivated in new flasks for 1-2 days before the
experimental procedures. Neuroprotective effects were evaluated by
pre-incubating cells with varying concentrations of Q10 and Q-Der
for 3 or 24 h, followed by a 24-h exposure to 5 uM rotenone to induce
neurotoxicity.

2.3 Experimental design

Cells
reported in Figure 1:

were divided into six experimental groups, as

— Control: cells treated with the vehicle (DMSO).

— Q10: cells treated with 5 uM Q10 for 24 h.

— Q-Der Low, Medium, High: cells treated with 2.5, 5, or 10 uM
Q-Der for 24 h.

— Rotenone: cells exposed to 5 uM rotenone for 24 h to induce
neurotoxicity.

— Q10 + rotenone: cells pre-treated with 5 uM Q10 for 3 or 24 h,
followed by 24-h rotenone exposure.

— Q-Der + rotenone: cells pre-treated with 5 pM Q-Der for 3 or
24 h, followed by 24-h rotenone exposure.

2.4 Cell viability assay (Propidium iodide
staining)

Propidium Iodide (PI) staining was performed to assess
cell viability. PI is a fluorescent dye that penetrates only
cells with compromised membranes, indicating cell death.
Control and rotenone-challenged cells treated with 2.5, 5, and
10 uM Q-Der at 24 h post-treatment, were incubated with PI
for 10 minutes. PI fluorescence was measured using a flow
cytometer (FACSCanto II). The percentage of PI-positive cells,
representing dead or necrotic cells, was calculated for each
experimental group.

2.5 Mitochondrial ROS measurement
(MitoSOX red assay)

Mitochondrial ROS production was measured using
MitoSOX Red (Thermo Fischer, M36008), a dye specifically
oxidized by mitochondrial superoxide. Control and rotenone-
challenged HT22 cells treated with 2.5, 5, and 10puM Q-
Der for 24h were incubated with 5uM MitoSOX Red
for 10 minat 37°C. Flow cytometry measured fluorescence
intensity (excitation wavelength 561 nm, emission wavelength
610 nm). The results were expressed as percentages of MitoSOX
positive cells.
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2.6 gRT-PCR analysis

Total RNA was isolated from treated and control cells using
the Omega Bio-Tek E.ZN.A.™ Total RNA Kit following the
manufacturer’s protocol. RNA concentrations were measured using
the SpectraMax® QuickDrop™ Micro-Volume Spectrophotometer.
cDNA was synthesized from 500 ng of total RNA using the Takara
PrimeScript™ RT Master Mix. Quantitative real-time PCR (qRT-
PCR) was performed using the StepOnePlus™ Real-Time PCR
System (Applied Biosystems) and PowerUp SYBR Green Master
Mix. Primers used for PGC-1a, TFAM, MT-ND1, MT-COI, COX5B,
and S16 were designed based on previous studies (see Table 1
for primer sequences). Relative gene expression was normalized
to S16 as the internal control, and data were analyzed using the
2788CT method.

The target genes and the corresponding primer sequences used
in qRT-PCR quantification are provided in Table 1.

2.7 Western blot analysis

Total protein extracts were obtained from the organic phase
following the QIAzol protocol, solubilised in ISOT lysis buffer
containing 8 M urea, 4% CHAPS, 65 mM DTE, 40 mM Tris
base, ] mM NaF, 1 mM Na;VO,, 1x complete protease inhibitor
cocktail (Roche Diagnostics), then sonicated three times for
5s on ice. After centrifugation at 12,000xg for 10 min, protein
concentration was determined using Bradford colorimetric assay
(Bio-Rad Laboratories) (Bradford, 1976). Equal amounts (30 pg)
of total proteins were resolved in precast stain-free 4%-15%
SDS polyacrylamide gels (Bio-Rad Laboratories, 4568084) and
electrotransferred to polyvinylidene difluoride (PVDF) membranes
(Bio-Rad Laboratories, 1620177) using the Power Blotter System
semi-dry transfer device (ThermoFisher Scientific). Western blot
analyses were performed using total oxidative phosphorylation
(OXPHOS) cocktail from Invitrogen (458099) diluted 1:1,000 to
detect individual complexes of the electron transport chain: CI-
NDUEFBS (20 kDa), CII-SDHB (30 kDa), CITI-UQCRC2 (48 kDa),
CIV-MTCO1 (40 kDa) and CV-ATP5A (55kDa) (Welinder and
Ekblad, 2011).

2.8 Morphological analyses environmental
scanning electron microscopy (ESEM) and
transmission electron microscopy (TEM)

Control and treated HT22 hippocampal cells were directly
processed on coverslips in Petri dishes. After careful washing
with 0.1 M phosphate buffer, monolayers were fixed with 2.5%
glutaraldehyde in the same buffer for 1h. All the specimens
were post-fixed with 1% OsO, in 0.1 M phosphate buffer for
1 h. After alcohol dehydration, they were critical point dried,
gold-sputtered, and observed with an ESEM scanning electron
microscope (UMKC, Kansas City, MO, United States). For
TEM analysis, HT22 hippocampal cells, growing adherent in
flasks, were washed, immediately fixed “in situ” with 2.5%
glutaraldehyde in 0.1 M phosphate buffer for 30 min, gently
scraped, and centrifuged at 1,200 rpm. The pellets were fixed in
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TABLE 1 Primers used in real-time RT-PCR quantification.

10.3389/fmolb.2025.1525103

Gene Primer forward (5'-3’) ‘ Primer reverse (5'-3')
PGC-1a ACTGAGCTACCCTTGGGATG TAAGGATTTCGGTGGTGACA
TEAM GGGAGCTACCAGAAGCAGAA CTTTGTATGCTTTCCACTCAGC
MT-NDI AGGCCCTAACATTGTTGGTCC TGTGAGTGATAGGGTAGGTGC
MT-COI TCTACTATTCGGAGCCTGAGC CAAAAGCATGGGCAGTTACG
COX5B CCGTCCATCAGCAACAAGAGAA GCCAAAACCAGATGACAGTACAGT
S16 TGAAGGGTGGTGGACATGTG ATAAGCTACCAGGGCCTTTGA

Note: PGC-1a, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; TFAM, Transcription Factor A, mitochondrial; MT-ND1, Mitochondrially Encoded NADH:
Ubiquinone Oxidoreductase Core Subunit 1; MT-COI, Cytochrome C Oxidase Subunit I; COX5B, Cytochrome C Oxidase Subunit 5B; S16, Mitochondrial Ribosomal Protein S16.

2.5% glutaraldehyde for an additional 30 min. All the specimens
were post-fixed in 1% OsO, for 1h, alcohol dehydrated, and
embedded in araldite (Salucci et al., 2015). Ultrathin sections of the
embedded samples were cut using a Leica UC7 ultramicrotome,
and thin sections were stained with uranyl acetate and lead
citrate and then analyzed with a Philips CM10 transmission
electron microscope.

2.9 Comprehensive statistical analysis

For a holistic analysis of data derived from various assays
discussed—including cell viability, mitochondrial functionality, and
qRT-PCR for PGC-1a, TFAM, MT-NDI, MT-COI, and COX5B
expression—statistical evaluation was meticulously designed to
ensure the accuracy and reliability of the findings. Initially, all
data were subjected to the Shapiro-Wilk test to assess normality,
a critical step in determining the appropriate statistical methods
for analysis. For data conforming to a normal distribution,
analysis of variance (ANOVA) was employed to compare the
mean values across different experimental and control groups.
Subsequent post hoc analysis, utilizing Tukey’s and Sidak’s tests,
helped identify specific groups showing statistically significant
differences. In contrast, for datasets not meeting normal distribution
criteria, the Kruskal-Wallis test was applied as a non-parametric
alternative to ANOVA for comparing means across groups. Dunn’s
post hoc test was then used for detailed pairwise comparisons
to pinpoint where significant differences lay. The statistical
analyses were performed using advanced software tools like
GraphPad Prism, ensuring high precision and reliability. The
significance threshold was consistently set at p < 0.05 across
all tests. Results were reported as mean + SD for parametric
data sets or median with interquartile range for non-parametric
datasets, appropriately representing the data’s central tendency and
dispersion, from at least three independent experiments. Statistical
significance was indicated as p < 0.05 (*), p < 0.01 (**), and
p<0.001 (***).
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3 Results

3.1 Cell viability assessment (Propidium
iodide staining)

The results from the PI staining assay reveal distinct effects of
Q-Der, both in the absence and presence of rotenone, on HT22 cell
viability (Figure 2). Under baseline conditions, healthy cells treated
with Q-Der at 5 uM show a reduction in PI-positive cells compared
to the control. However, this decrease was not significant at 2.5 uM.
These data suggest the in vitro safety profile of Q-Der under non-
stressful conditions.

The neurotoxic effects of rotenone were evident, as indicated by
a marked increase in PI-positive cells relative to the control. Pre-
treatment with Q-Der at both concentrations significantly attenuates
this rotenone-induced effect. Notably, the reduction in PI-positive
cells in the Q-Der pre-treated groups approaches levels observed in
control cells, indicating a robust protective effect against rotenone-
mediated cytotoxicity.

These findings underscore the in vitro efficacy of Q-Der in
preserving cell viability under oxidative stress conditions, with
its protective effects becoming more pronounced in the presence
of rotenone compared to the modest impact observed in the
absence of the neurotoxin.

3.2 Mitochondrial superoxide production
(MitoSOX red analysis)

The results of the MitoSOX Red assay, used to quantify
mitochondrial superoxide production, demonstrate the efficacy of
Q-Der in mitigating oxidative stress induced by rotenone. In the
control group, mitochondrial superoxide levels remain at baseline,
suggesting physiological mitochondrial function. Mitochondrial ROS
levels were not modified in healthy cells treated with Q-Der at
all concentrations. On the contrary, rotenone-induced a substantial
elevation in superoxide production. Pre-treatment with Q-Der
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FIGURE 1

Design of the experimental procedure on HT22 cells in the different experimental conditions.
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15

CTRL Q-Der Q-Der

FIGURE 2

Q-Der
2.5 5 10

Q-Der effects on HT22 viability in healthy and rotenone-treated cells. The panel shows the percentage of Pl positive cells, indicating cell death.
Ordinary one-way ANOVA, Sidak’'s multiple comparison,*P value <0.05,**P < 0.01,***P < 0.001,****P < 0.0001.

ROT Q-Der2.5 Q-Der5 Q-Der10

+ROT +ROT +ROT

at 2.5uM and 5pM reduced the rotenone-induced increase of
mitochondrial ROS levels, nearly restoring them to baseline. Q-Der
at 10 pM reduces mitochondrial superoxide levels to a lesser extent
than the lower doses, suggesting a potential dose-dependent plateau.
These findings indicate that Q-Der effectively counters oxidative stress
at optimal concentrations, with a strong statistical significance in the
protective effects observed at 2.5 uM and 5 uM. This underscores its
potential to preserve mitochondrial superoxide levels under induced
oxidative stress (Figure 3).
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3.3 Gene expression analysis (QRT-PCR)

The qRT-PCR results reveal significant insights into the impact
of Q-Der on the expression of key mitochondrial genes under basal
and rotenone-induced conditions. The genes analyzed include PGC-
la, TFAM, MT-ND1, MT-COI, and COX5B, integral to mitochondrial
biogenesis, respiratory function, and oxidative phosphorylation.

In the absence of rotenone, Q-Der at 5 uM induced a noticeable
upregulation of PGC-la expression, while CoQ10 at the same
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Evaluation of mitochondrial superoxide levels in control and rotenone-treated cells upon the treatment of 2.5, 5, and 10 uM Q-Der. Ordinary one-way
ANOVA, Sidak’'s multiple comparison,*P value <0.05,**P < 0.01,***P < 0.001,"***P < 0.0001.
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Mitochondrial-Related Gene expression. HT22 mRNA expression levels of PGC-1a, TFAM, MT-ND1, MT-COIl and COX5B in healthy and
rotenone-treated cells challenged with CoQ10 and Q-Der at 5 uM*P < 0.05,*P < 0.01,***P < 0.001

concentration did not affect this parameter. The expression of
TFAM, a gene essential for mitochondrial DNA maintenance,
was not modified by CoQ10 or Q-Der treatment. As expected,
rotenone markedly reduced TFAM expression, both CoQ10
and Q-Der partially antagonized this effect. MT-NDI and MT-
COI, which encode subunits of the mitochondrial respiratory
chain complexes I and IV, showed a similar pattern: the active
compounds partially restored their rotenone-decreased expression.
Finally, COX5B, a nuclear-encoded Cytochrome C oxidase subunit
(complex IV), increased its expression only in rotenone-challenged
cells treated with CoQl0 and Q-Der, with Q-Der showing a
higher potency.

The qRT-PCR analysis reveals that Q-Der is critical in promoting
mitochondrial gene expression, particularly under oxidative stress
conditions. The significant upregulation of PGC-1a, partial recovery
of TFAM, and restoration of MT-ND1 and MT-COI expression
highlight Q-Der’s efficacy in maintaining mitochondrial function
and biogenesis (Figure 4).
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3.4 Western blot analysis of OXPHOS
complexes

The Western blot analysis of the OXPHOS complexes reveals
key findings, particularly in relation to the expression of CI-
NDUEFB8 (complex I), CII-SDHB (complex II), CII-UQCRC2
(complex IIT), and CV-ATP5A (complex V). Despite the range of
experimental conditions, the analysis shows that the expression of
CI-NDUFBS8 remains unaffected by rotenone treatment. There is
no statistically significant alteration in CI-NDUFBS levels across
all groups, including both Q-Der and CoQl0 pre-treatments.
This stability indicates that rotenone does not exert a detectable
impact on complex I subunit expression under these experimental
conditions, and neither Q-Der nor Q10 significantly modifies CI-
NDUEBS levels. Similarly, the expression of CII-SDHB and CIII-
UQCRC?2 follows a comparable trend, with no statistical significant
differences were observed between the control, rotenone, and
pre-treatment groups. Although there is a slight trend toward
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shown on the right side of the figure.
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and V (CV-ATP5A, 55 kDa) of the OXPHOS system normalised to total proteins. A representative Western blot image of OXPHOS and total proteins is

recovery in the pre-treated groups, these changes do not meet
the threshold for statistical significance. These observations suggest
that while a minor biological effect may exist, it is not strong
enough to be conclusive in terms of altering the expression of
complex I and complex III subunits. The only subunit showing
a statistically significant change is CV-ATP5A (complex V). Q-
Der increased this subunit expression only in rotenone-treated
cells, while CoQ10 determined a similar effect both in control and
rotenone-treated cells (Figure 5).

3.5 Morphological analysis

3.5.1 Scanning electron microscopy observation

In the control condition at 24 h, cell morphology appears well
preserved, HT22 cells appear elongated, and sometimes, some
show a slightly rounded shape Figures 6A-C. The cells appear
confluent and generate a carpet by forming extracellular membrane
protrusions that create bridges between adjacent cells.

24h of rotenone treatment induces a deep change in cell
morphology; the HT22 appears predominantly rounded, probably
due to a rearrangement of the cytoskeletal structure (Figures 6D-F).

The cells show fewer cytoplasmic protrusions, and a loss of
extracellular junctions reduces cell carpet formation. Numerous
blebs on the cellular membrane and the apoptotic bodies
demonstrate the presence of numerous apoptotic cells.

After pre-treatment with QI10, the morphology is restored
to the control's; new cell junctions (Figures6G-I) can be
formed. Finally, pre-treatment with Q-Der shows the cells all
flattened, more confluent, and with characteristic microvilli on
the surface (Figures 6J-L). Both Q10 and Q-Der can reduce the
percentage of apoptotic cells and induce the percentage of apoptotic
cells and the preservation of cell communication.

3.5.2 Transmission electron microscopy
observation

For all experimental conditions we evaluate three grids. Every
grid consisted of ten thin sections. Therefore, we performed
the evaluation of the ultrastructural changes in 200-300 cells.
The ultrastructural evaluation evidence good cell viability in
control conditions (Figures 7A-C). HT22 cell morphology appeared
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elongated and confluent. After rotenone treatment, several rounded
cells with blebs and apoptotic bodies appeared (Figures 7D-F).
We can observe numerous autophagic vacuoles (G), with different
sizes ranging from 200 to 500 nm. In the nucleus, we can observe
chromatin condensation and a diffuse detachment of the nuclear
membrane. Mitochondria appear swollen and heavily damaged;
their maintained membrane is well preserved but appears well
preserved while create are completely disrupted.

After Q10 treatment, the cells appeared confluent and showed
well-preserved mitochondria (Figures 8A-C) comparable to the
control conditions. A better mitochondria morphology appeared
when cells were treated with Q10-der (Figures 8D-F). We can
see well-preserved mitochondria that appear more numerous
if compared pre-treatment to control or rotenone treatment.
Mitochondria are present in hight number but smaller than control
condition, suggesting a mitochondrial biogenesis.

4 Discussion

The findings from this study highlight the significant protective
effects of Q-Der on HT22 neuronal cells, particularly under
conditions of oxidative stress induced by rotenone. This condition
offers a targeted model for studying mitochondrial dysfunction, as
it selectively inhibits Complex I of the electron transport chain,
disrupting ATP synthesis and causing localized ROS generation
(Menke et al,, 2003; Moon et al., 2005). This inhibition leads
to mitochondrial membrane depolarization, increased expression
of mitochondrial fission markers and activation of caspase-3-
dependent apoptotic pathways. These effects are highly relevant
to neurodegenerative diseases like Parkinson’s disease, where
mitochondrial dysfunction and selective dopaminergic neuronal
death are central features (Moon et al., 2005; Li et al,, 2017).
Several stressors act on neurons through the affection of the same
pathways targeted by rotenone. For example, H,O, induces oxidative
stress generating ROS across multiple cellular compartments,
leading to generalized oxidative damage that is not specific to
mitochondria. Despite this distinction, both rotenone and H,O,
share some key effects, including ROS generation, mTOR pathway
suppression, apoptotic activation involving caspase-3 cleavage
and PARP fragmentation. These shared mechanisms provide
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FIGURE 6

SEM of HT22 hippocampal cells. Control cells (A—C); cells treated with rotenone (5 uM) for 24 h (D—F); rotenone-treated cells pretreated with Q10
(5 uM) for 24 h (G-1), rotenone-treated cells pretreated with Q-Der (5 pyM) for 24 h (3-L). (A, B, D—I), Bar = 20 um; (C, J, K), Bar = 10 pm.

complementary insights into oxidative stress and neuroprotection,
with rotenone being a specific tool for the study of mitochondria-
dependent neurodegenerative pathologies (Panee et al, 2007;
Zhou et al., 2015; Giraldo-Berrio et al., 2024; Roy et al., 2023;
Millichap et al., 2024).

Our study focuses on rotenone-induced oxidative stress due
to its mitochondria-specific effects. Our results add to a growing
body of evidence that underscores the importance of targeting
mitochondrial dysfunction in neurodegenerative diseases such as
Parkinson’s and Alzheimer’s, where oxidative stress plays a pivotal
role. Q-Der demonstrated substantial efficacy in reducing cell death,
restoring mitochondrial superoxide levels, and modulating key gene
expressions involved in mitochondrial biogenesis and respiration.
While the protective effects of Q10 have been well-documented
in similar models (Bhagavan and Chopra, 2006), the current data
suggest that Q-Der may offer superior benefits, particularly in
maintaining mitochondrial homeostasis under stress conditions.
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Chemically, Q-Der differs from Coenzyme Q10 in that it carries
two acetyl groups on its quinone ring, increasing its lipophilicity
and potentially enhancing its stability against oxidation. While
CoQ10 functions through rapid cycling between oxidized and
reduced forms to neutralize reactive oxygen species, the addition of
acetate groups in Q-Der is theorized to confer a protective effect
on the molecule itself, reducing its reactivity to oxidative agents.
This structural modification may support a prolonged antioxidant
presence within the mitochondrial membrane, thus maintaining
cellular protection over extended periods of oxidative stress. These
properties underscore Q-Der’s potential as a neuroprotective agent,
particularly in environments where mitochondrial stability and
sustained antioxidant effects are essential.

A key aspect of this study is the ability of Q-Der to preserve
mitochondrial function and ROS levels. Compared to Q10,
Q-Der consistently showed a trend toward better protection
against oxidative stress markers such as mitochondrial superoxide,
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FIGURE 7

HT22 hippocampal cells at TEM. Control (A, B), cells treated with rotenone (5 pM) for 24 h (C—F, G). m: mitochondria; n: nucleus; ab: apoptotic bodies;
av: autophagic vacuole; —: chromatin condensation. (A, B), Bar = 1 um; (C, F), Bar = 500 nm; (D, E), Bar = 2 ym.

although this trend did not reach statistical significance. This
mirrors findings in other studies where derivatives of Q10,
such as MitoQ and Ubidecarenone, have been shown to exhibit
enhanced mitochondrial targeting and antioxidant properties
compared to the parent compound (Smith and Murphy,
2010). MitoQ, a mitochondria-targeted form of CoQl0, has
demonstrated strong efficacy in reducing mitochondrial ROS

Frontiers in Molecular Biosciences

and improving bioenergetics by selectively accumulating in the
mitochondrial membrane, facilitating more effective protection
against oxidative damage (Cochemé et al, 2007). Although
MitoQ and Q-Der share similarities in their mechanisms of
action—both aim to enhance mitochondrial function by modulating
ROS levels—the differences in their molecular structures likely
contribute to their varying degrees of efficacy. For instance, MitoQ’s
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FIGURE 8

HT22 hippocampal cells at TEM. Rotenone-treated cells pretreated with Q10 (5 uM) for 24 h Q10 (A-C) and rotenone-treated cells pretreated with
Q-Der (5 pM) for 24 h Q-der (D—F). m: mitochondria; n: nucleus. (A-C, E), Bar = 2 um; (C, F), Bar = 500 nm.

triphenylphosphonium cation facilitates its direct accumulation in
the mitochondria, while Q-Der may rely more on its metabolic
conversion within cells.

The qRT-PCR analysis further underscores the potential of
Q-Der, particularly in its ability to upregulate key genes involved
in mitochondrial biogenesis, such as PGC-1a and TFAM. This is
consistent with literature indicating that compounds enhancing
PGC-1a activity could promote mitochondrial biogenesis and repair,
thereby offering neuroprotection (Wenz, 2009). The upregulation
of PGC-1a and partial rescue of TFAM under rotenone-induced
oxidative stress suggest that Q-Der helps restore mitochondrial
integrity and function, which is crucial for maintaining ATP
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production and preventing cellular apoptosis. Comparatively,
studies on other Q10 derivatives like Q10-hydroxydecyl benzoate
(IDE) have shown similar mitochondrial-protective effects,
particularly in preventing the loss of complex I and complex
II activity, further highlighting the importance of preserving
mitochondrial bioenergetics in disease models (Villalain, 2004).
However, Q-Der’s ability to modulate both mitochondrial biogenesis
and complex V expression distinguishes it as a promising candidate
for further exploration.

The Western blot analysis revealed that while there were no
significant changes in the expression of CI-NDUFBS8, CII-SDHB,
or CIITI-UQCRC?2 across the treatment groups, Q-Der significantly
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increased CV-ATP5A (complex V) expression in rotenone-treated
cells. This result is particularly noteworthy, as complex V is essential
for ATP synthesis, and its dysfunction is a critical contributor to
energy deficits observed in neurodegenerative diseases (Nicholls
and Budd, 2000). The statistically significant recovery of CV-
ATP5A in Q-Der-treated cells indicates that this novel compound
effectively preserves mitochondrial ATP production capacity under
oxidative stress conditions. This protective effect on ATP synthase
has also been observed in studies using idebenone, a synthetic
analog of CoQ10, which has shown promise in clinical trials for
conditions such as Friedreich’s ataxia and Leber’s hereditary optic
neuropathy (Schiff and Rustin, 2016; Lyseng-Williamson, 2016).
While idebenone primarily targets complex I deficiency, the broader
effect of Q-Der on many mitochondrial parameters suggests a more
comprehensive mitochondrial support mechanism.

An interesting finding in our study is that, despite QDer
improving numerous parameters of mitochondrial function, it does
not appear to increase the levels of UQCRC2, a key component
of Complex III of the electron transport chain. This result may
seem to contrast with well-established CoQ10-mediated regulation
of other mitochondrial markers (Yousef et al., 2019). One possible
explanation is that QDer exerts its effects primarily on Complex
I or V, leaving Complex III relatively unaffected. Additionally,
UQCRC2 levels might already be saturated under basal conditions,
leaving little room for further regulation. Studies on PARL-
deficient models demonstrate selective defects in Complex III
mediated by TTC19 instability without impacting other complexes
of the ETC (Spinazzi et al., 2019).

Furthermore, the partial increase in Complex III
activity observed in idebenone-treated models suggests that
increased protein expression does not always correlate with
functional recovery (Llewellyn et al., 2015). Similarly, the unchanged
GSSG:GSH ratio in the cerebellum suggests that certain oxidative
stress markers may resist modulation even under treatment.

Morphologically, the structural preservation observed through
SEM and TEM further supports the molecular data. Even after
rotenone exposure, cells pre-treated with Q-Der exhibited well-
preserved cellular morphology and mitochondrial structure. This
contrasts with the significant cytoskeletal and mitochondrial
damage seen in rotenone-treated cells, aligning with the concept
that maintaining mitochondrial integrity is crucial for cellular
survival under oxidative stress. Studies on other derivatives, such
as SkQ1 (a plastoquinone derivative), have also demonstrated the
importance of targeting mitochondrial health to prevent structural
damage in neurons, supporting the idea that mitochondrial-
targeted therapies can significantly affect disease progression
(Fedorov et al., 2022; Sacks et al., 2021). However, while SkQ1
is known for its anti-apoptotic properties, Q-Der offers a broader
protective mechanism by reducing oxidative stress and enhancing
mitochondrial gene expression, further solidifying its role as a
potential neuroprotective agent.

In conclusion, the results of this study place Q-Der in a
promising position as a neuroprotective agent aimed at preserving
mitochondrial function, particularly in NDs. While other
derivatives of Q10, such as MitoQ, idebenone, and SkQ1, have
shown efficacy in specific mitochondrial pathways, Q-Der appears
to provide a multifaceted approach, combining antioxidant effects,
mitochondrial biogenesis and enhanced ATP production. The
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statistical significance observed in the restoration of CV-ATP5A
expression and the trends toward improvement in mitochondrial
superoxide levels and gene expression positions Q-Der as a strong
candidate for further in vivo studies and eventual clinical translation.
Future research should aim to explore the exact molecular pathways
through which Q-Der exerts its effects and to compare its efficacy in
vivo against other Q10 derivatives in models of neurodegeneration.
Additionally, a deeper understanding of the pharmacokinetics and
bioavailability of Q-Der relative to other mitochondrial-targeted
therapies will be crucial in determining its therapeutic potential.

5 Conclusion

The present study provides compelling evidence of Q-Der’s
neuroprotective efficacy in HT22 cells, highlighting its ability
to attenuate rotenone-induced oxidative stress and preserve
mitochondrial function. Q-Der’s effects were evident through
significant reductions in mitochondrial superoxide production,
enhanced expression of mitochondrial biogenesis genes (PGC-
la and TFAM), and the upregulation of complex V ATP
synthase, contributing to sustained ATP synthesis under stress
conditions. These findings support Q-Der as a possible candidate
for further investigation in neurodegenerative disease models,
particularly those characterized by mitochondrial dysfunction and
oxidative stress.

While this study establishes Q-Der’s protective effects in vitro, its
translational potential requires further examination. The exclusive
use of HT22 cells limits applicability across broader neuronal
models, and in vivo studies are essential to confirm bioavailability
and metabolic stability. Future research should expand to diverse
cellular models and focus on Q-Der’s pharmacokinetics to
substantiate its therapeutic promise.
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Lei Wei*
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Background: Neuropathic pain (NP) is a kind of chronic pain that can lead
to neurasthenia. The effectiveness of current drug treatment for NP is still
unsatisfactory due to its side effects, addiction and withdrawal. In recent years,
researchers have begun to develop nano-drug delivery systems for the diagnosis
and treatment of NP diseases.

Methods: We developed a disulfide-bonded magnetic mesoporous silica dual-
drug delivery system consisting of curcumin (Cur) and a calcitonin gene-
related peptide (CGRP) antagonist (CGRPi), and characterized by electron
microscopy, Dynamic Light Scattering (DLS), Zeta, specific surface area
and pore size detection. At the cellular level, the biocompatibility of
CGRPi@Cur@Fe;0,@mSiO,-PEG (FMCC) nanoparticles were tested by CCK-
8 and dead/alive staining kit in BV2 cells; Inflammation levels and oxidative
stress were measured by enzyme linked immunosorbent assay (ELISA) in
lipopolysaccharide (LPS)-induced BV2 neuroinflammation model. In vivo,
chronic constriction injury (CCl) model was constructed, and the effect of
FMCC on pain behavior of CCl mice was detected by von Frey filaments test
and thermal hyperalgesia; The effects of FMCC on the anti-inflammatory and
oxidative stress of CCl were determined by pathological tests (HE and ROS
staining), RT-PCR and ELISA.

Results: FMCC had good biocompatibility and could be taken up by BV2 cells. At
the cellular level, FMCC could effectively reverse oxidative stress, inflammation
and CGRP expression in LPS-induced neuroinflammation model in vitro. At
the animal level, the mice with CCl were administered with FMCC, which
effectively reduced oxidative stress and inflammation and sustained relief of
neuropathic pain.

Conclusion: This study provides a new approach for the treatment of
neuropathic pain.

CGRP antagonist, curcumin, mesoporous materials, nanoparticles, neuropathic pain
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1 Introduction

Neuropathic pain is pain caused by damage or disease of the
sensory system, which is often manifested as spontaneous persistent
pain and hyperalgesia (Rosenberger et al., 2020). Epidemiological
studies have shown that the incidence of neuropathic pain in
the general population is about 3 %-17% (Cavalli et al., 2019),
which brings serious economic and social burden to people and
society. At present, the exact pathogenesis of neuropathic pain
is still unclear, and the clinical treatment of neuropathic pain is
mainly through drug intervention (Finnerup et al., 2021). However,
pharmacologic treatment of neuropathic pain, such as nonsteroidal
anti-inflammatory drugs and opioids, often has unsatisfactory
results (Attal and Bouhassira, 2021). Most patients do not receive
satisfactory treatment, and some drugs are often accompanied
by various adverse reactions (Macone and Otis, 2018). Therefore,
the search for drugs with better efficacy, fewer side effects and
affordability in the treatment of neuropathic pain has become one
of the hot spots in the research of neuropathic pain.

Curcumin (Cur) is a hydrophobic acidic compound extracted
from the herb Curcuma longa (Hassanzadeh et al., 2020). Cur
plays an important role in the treatment of a variety of diseases,
such as nerve injury, atherosclerosis, malignant tumors, diabetes,
autoimmune diseases and neuropathic pain (Kotha and Luthria,
2019). The analgesic effect of Cur depends on the comprehensive
action of a variety of drug mechanisms, such as: reducing the damage
caused by oxidative stress, inhibiting the release of inflammatory
cytokines and adhesion molecules, activating glial cells, and
inhibiting the activation of protein kinases (Uddin et al., 2021).

The neuropeptide calcitonin gene-related peptide (CGRP) is
the main neurotransmitter of C-nerve fibers, which is produced in
the central and peripheral nervous system, especially in the spinal
cord, dorsal root ganglion and trigeminal ganglion, and plays an
important role in the initiation and maintenance of neuropathic
pain (Kang and Govindarajan, 2021). Studies have reported that
the expression of CGRP is increased after nerve injury and plays
an important role in the generation and maintenance of pain
behavior (Hegazy et al., 2020). Inhibiting the expression of CGRP
can significantly improve the pain behavior after peripheral nerve
injury (Paige et al., 2022). Cur is a polyphenol compound extracted
from the root of turmeric, which has anti-oxidative stress effect. It
has been reported to reduce the level of CGPR in DRG neurons
and reduce lumbar (Xiao et al., 2017). Although the above studies
suggest that Cur can be used as an alternative to conventional drugs
for the treatment of neuropathic pain, the poor water solubility, poor
targeting and poor bioavailability of Cur have become difficulties in
the development of curcumin drugs.

Currently, magnetic targeting offers tantalizing possibilities
(Polyak and Friedman, 2009). It was originally developed to
optimize chemotherapy procedures for in vivo targeting with
the assistance of magnetic fields, which would allow a greater
proportion of the magnetic nanomaterials to reach the injury
site quickly (Bhattacharya et al, 2022). The Fe;O, form of
iron oxide nanoparticle is approved for clinical applications due
to their remarkable biocompatibility (Zhao et al, 2020). As
one of the most popular magnetic resonance imaging reagents,
superparamagnetic Fe;O, nanoparticles are widely used for disease
diagnosis (Park et al, 2020). Mesoporous silica nanoparticles
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(MSNs) have also been shown to deliver drug molecules to target
cells and tissues due to their plasticity in varying sizes, shapes,
and surface modifications (Garcia-Fernandez et al., 2021). Due to
its large surface area and mesoporous structure, mesoporous silica
can make it possible to deliver different drugs in a multi-stage
manner, which may become an ideal method for targeted treatment
of chronic pain.

In recent years, MSNs have attracted the interest of many
researchers in therapeutic applications as a promising drug carrier
due to their unique properties. Uribe Madrid etal. synthesized
core-shell nanostructures Fe;O,@mSiO,. The nanostructure has
reasonable biocompatibility and good drug release performance.
After loading ibuprofen, the drug release amount can reach 81%
(Uribe Madrid et al., 2015). Elbialy et al. synthesized MSNs with
pH responsive properties, which exhibited high sustained release
in the tumor microenvironment after loading Cur (Elbialy et al.,
2020). Kong etal. encapsulated Cur in MSN pores to enhance
its antioxidant activity, biocompatibility, and anticancer activity
(Kong et al.,, 2019). Due to the better bioavailability and solubility
of Cur encapsulated in the pores of MSNs compared to Cur,
the therapeutic effect of MSNs loaded with curcumin is greater
than that of Cur (Yadav et al, 2019). The polyethylene glycol
functionalized MSNs enhances the biocompatibility, stability, and
permeability of curcumin, prolonging the circulation time of the
nanomedicine delivery system in the bloodstream (Park et al,
2009). Chronic constriction injury (CCI) model of the sciatic
nerve was first proposed by Bennett and Xie as a model to
study neuropathic pain (Bennett and Xie, 1988). It has since been
widely used as one of the most commonly used animal models of
neuropathic pain.

In this study, we fabricated a disulfide-bonded magnetic
mesoporous silica dual drug delivery system (Fe;O,@msSiO,),
which allows efficient encapsulation of Cur and CGRPi due
to the high specific surface area and mesoporous channels
of mesoporous silica (Supplementary Figure S1). The safety
and efficacy of CGRPi@Cur@Fe;0,@mSiO,-PEG (FMCC)
nanocomposites in reducing pathological pain, neuroinflammation
and oxidative stress in vitro and in vivo were investigated.

2 Materials and methods
2.1 Materials

FeCl,.4H, O (cat: 220299), FeCI,.6H,0 (cat: 236489), NH,-H,0
(28 wt%, cat: 105423), chloroform, cetyltrimethylammonium
bromide (CTAB, cat: H6269), ethyl orthosilicate (cat: 131903), ethyl
acetate (cat: 650528), methanol (cat: 34860), (3-Mercaptopropyl)
trimethoxysilane (MPTMS, cat: 175617), acetone (cat: 179124),
cysteamine (cat: 30070), Curcumin (cat: C1386), hydrazine (cat:
225819), buffered saline (PBS, cat: P2272), DAPI (cat: D9542),
lipopolysaccharide (LPS, cat: 14391) and BSA (cat: V900933)
were purchased from Sigma-Aldrich (St. Louis, MO, USA).
CGRPi (BIBN4096), dimethyl sulfoxide (DMSO, cat: HY-Y0320),
fluorescein 5-isothiocyanate (FITC, cat: HY-66019) and SYBR
Green qPCR Master Mix (cat: HY-K0501A) were obtained from
MCE (USA). 0.25% pancreatic enzyme (cat: 25200072) and MEM
medium (cat: 11095080) were supplied by Gibco (USA). CCK-8
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reagent (cat: E-CK-A362) was purchased from Elabscience (China).
Calcein/PI solution (cat: C2015S) was obtained from Beyotime
Biotechnology (China). Enzyme linked immunosorbent assay
(ELISA) kit (cat: mIC50536-1, mIC50274-1, mIC50300-1 and
1C50325-1) was from Shanghai Enzyme-linked Biotechnology
(China). DCFH-DA (cat: S0033S) was supplied by Beyotime
Biotechnology (China). TRIzol Reagent (cat: 15596018CN)
was purchased from Invitrogen (Carlsbad, CA, USA). iScript™
cDNA Synthesis Kit (cat: 1708891) was obtained from Bio-Rad
Laboratories (USA).

2.2 Synthesis of
CGRPi@Cur@Fe;0,@mSiO,-PEG (FMCC)

Firstly, Fe;0,

prepared by
previous research (Albalawi et al, 2021). Briefly, 5.56g of
FeCl,.4H,0 and 10.8 g of FeCI;.6H,O were dissolved into aqueous
solution (100 mL). Then 20 mL of NH;-H,O was injected into this
solution and continued stirring for 1 h at 85°C. Next, the hydrophilic

nanoparticles are synthesized.  They

were coprecipitation  according to  the

magnetic nanocrystals were collected with magnets and washed with
ultra-pure water three times. Finally, the precipitate obtained were
dried to obtain magnetic Fe;O, nanoparticles.

Then Fe;0,@mSiO, was synthesized with ferric oxide as
substrate. 75 mg of magnetic Fe;O, nanoparticles were dispersed
into chloroform solution (1 mL), and 0.25 g of CTAB was dissolved
in DI water solution (12 mL), followed by mixing and heating to
70°C. Then 250 mL of DI water solution was immediately added to
the mixture and mechanically stirred at 40°C for 1 h, followed by
rapid addition of 7.5 mL NH;-H,O, 1.25 mL of ethyl orthosilicate,
and 12.5 mL of ethyl acetate and stirring at 40°C at 80 rpm for
6 h. The mixture was washed by centrifugation with water and
ethanol for five times, and magnetic Fe;O,@mSiO, nanoparticles
was obtained.

Then, disulfide bond modified Fe;O,@mSiO, nanoparticles
were synthesized on the basis of Fe;O,@mSiO,. Firstly, 250 mg of
Fe;0,@mSiO, nanoparticles was dispersed in 80 mL of methanol,
and then 0.7mL of MPTMS was added into the mixture. The
reaction mixtures were stirred for 20h at room temperature
under N, protection, and immediately acetone was added. The
Fe;0,@mSiO,-SH nanoparticles was obtained after centrifugation
for five times. 0.1 g of Fe;0,@mSiO,-SH was ultrasonic-dispersed
in 10 mL methanol and 0.2 g of cysteamine was added, followed by
stirring at room temperature for 24 h. The disulfide bond modified
Fe;0,@mSiO, nanoparticles were collected by washing for three
times and drying in vacuum oven for 24 h.

Then CGRPi@Fe;0,@mSiO,-PEG (CGRPi@FM) nanoparticles
were synthesized on the basis of disulfide bond modified
Fe;0,@mSiO,. 10 mg of disulfide bond modified Fe;0,@ mSiO,
and 2 mg CGRP antagonist were added to 1 mL of DMSO. The
mixture was stirred in dark place at room temperature overnight.
The CGRPi@Fe;0,@mSiO, nanoparticles were obtained after
centrifugation and drying.

10 mg of CGRPi@Fe;0,@mSiO, nanoparticles were ultrasonic-
dispersed into 10 mL of DI water solution. Subsequently, 10 mg
DCC, 5mg DMAP and 25 mg of PEG were added and stirred at
room temperature for 24 h. Then 1 mL hydrazine phosphate was
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added into the above solution and stirred at room temperature for
24 h. The resulting mixture was centrifugally (10,000 rpm, 10 min)
separated and then vacuum dried to obtain CGRPi@Fe;O0,@mSiO,-
PEG (CGRPi@FM-PEG).

Cur@Fe;0,@mSiO,-PEG (Cur@FM) were synthesized on
the basis of disulfide bond modified Fe;0,@mSiO,. 10 mg of
Fe;0,@mSiO, nanoparticles were dispersed in 2 mL of DMSO
solution containing 2.5 mg of curcumin. Then the mixture was
stirred in dark place at room temperature for 12 h. Afterwards, the
precipitation after centrifugation was Cur@Fe;0,@mSiO, 10 mg of
Cur@Fe;0,@mSiO, nanoparticles were ultrasonic-dispersed into
10 mL of DI water solution. Subsequently, 10 mg DCC, 5 mg DMAP
and 25 mg of PEG were added and stirred at room temperature for
24 h. Then 1 mL hydrazine phosphate was added into the above
solution and stirred at room temperature for 24 h. The resulting
mixture was centrifugally (10,000 rpm, 10 min) separated and then
vacuum dried to obtain Cur@Fe;0,@mSiO,-PEG (Cur@FM).

Finally, the FMCC nanoparticles were synthesized on the basis
of disulfide bond modified Fe;O,@mSiO,. 10 mg of Fe;0,@mSiO,,
2 mg of CGRPi and 2.5 mg of Cur dissolved in 1 mL of DMSO
solution. The mixture was stirred in dark place for 24 h. After washed
with DI water solution three times, CGRPi@Cur@Fe;O0,@mSiO,
was obtained. 10 mg of CGRPi@Cur@Fe;0,@mSiO, nanoparticles
were dispersed ultrasonically into 10 mL of DI water solution.
Subsequently, 10 mg DCC, 5 mg DMAP and 25 mg of PEG were
added and stirred at room temperature for 24 h. Then 1 mL
hydrazine phosphate was added into the above solution and
stirred at room temperature for 24 h. The resulting mixture was
centrifugally (10,000 rpm, 10 min) separated and then vacuum
dried to obtain FMCC.

2.3 Drug loading and release of FMCC

The FMCC nanocomposites were prepared as described above.
The resulting mixture was centrifugally (10,000 rpm, 10 min)
separated and then vacuum dried to obtain FMCC. The supernatant
was detected at 426 and 285 nm by spectrophotometer (SpectraMax
iD3, Molecular Devices, USA). The concentrations of Cur and
CGRPi in the supernatant were calculated using the standard curve.
The amount of drug encapsulated was obtained by the difference
between the initial amount of drug added and the amount of drug
remaining in the supernatant. Drug loading efficiency (%) was
calculated using the following equation. Drug loading efficiency (%)
= Amount of drug encapsulated (mg)/(weight of FMCC) x 100.

For Cur and CGRPi release studies, 1 mg of FMCC was
dispersed in 50 mL of PBS solution. The resulting mixture was
stirred regularly at 100 rpm and 37°C. While mixing was in progress,
samples were taken from the drug release medium at regular
intervals to determine the amount of drug released. For this, the
sample was first centrifuged at 12,000 rpm for 15 min. The sample
was detected at 426 nm by spectrophotometer. The concentrations
of Cur in the sample were calculated using the standard curve.
After reading, the sample was returned to the release medium. The
amount of drug released was calculated with the help of a standard
calibration curve. The same method given above was followed for the
CGRPi release from FMCC. The absorbance at 285 nm was detected
by spectrophotometer and corrected by the standard curve method.
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The concentrations of CGRPi in the sample were calculated using
the standard curve.

2.4 Characterization

SEM images were captured by scanning electron microscopy
(JEM100CXII, Japan) at 1.0kV. TEM images were captured by
electron microscopy (LVEMS5, USA) at 5kV. Sample preparation:
add 5 mg nanoparticles to ethanol, ultrasonic for 5 min. Then they
were added to the copper mesh and dried for testing.

The measurement of particle sizes and zeta potential were
performed by a nanometer particle size analyzer (Nanotrac
Flex, Germany).

The specific surface area and pore size distribution of the
samples were detected by an automatic gas adsorption instrument
(BELSORP HP, Japan) and analyzed by Brunauer-Enmett-Teller
(BET) and Barrett-Joyner-Halenda (BJH) methods.

2.5 BV2 cell culture

BV2 cells were obtained from American Type Culture
Collection (ATCC, Rockville, MD, USA) and maintained in MEM
supplemented with 10% FBS in a humidified incubator containing
5% CO, at 37°C.

2.6 CCK-8 assay

5 x 10° BV2 cells were inoculated on 96-well plates and
incubated overnight in an incubator at 37°C and 5% CO,. The cells
were treated with different concentrations of FMCC (0, 1, 5, 10,
20 pg/mL) for 24 h in the presence or absence of LPS. 10 uL CCK8
reagent was added to incubate in the incubator for 2 h, and the
absorbance value was detected at 450 nm.

2.7 Dead-living cell staining

2 x 10° BV2 cells were inoculated on 12-well plates and
incubated overnight in an incubator at 37°C and 5% CO,. The
cells were treated with 20 pg/mL Fe;O0,@mSiO, and FMCC for
6 h. Then Calcein/PI solution were added to incubate at 37°C in
dark place, washed with PBS for three times and observed with
microscope (Leica DMi8, Germany). Fluorescence intensities were
measured using a fluorescence microscope, with calcein detected
at excitation/emission wavelengths of 494/517 nm (blue filter) and
propidium iodide (PI) detected at 535/617 nm (green filter).

2.8 Cellular uptake assay

1 x 10° BV2 cells were inoculated on 24-well plates and
incubated overnight in an incubator at 37°C and 5% CO,. The cells
were treated with 20 ug/mL Fe;0,@mSiO,-FITC. Fe;0,@mSiO,-
FITC was obtained by reacting Fe;O,@mSiO, with FITC under
dark condition for 12h. At 2 and 6 h, DAPI was added to stain
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10 min, washed with PBS for three times and observed with
microscope. Fluorescence intensities were measured using a white
light laser confocal microscope (Leica STELLARIS, Germany), with
FITC detected at excitation/emission wavelengths of 490/520 nm
and DAPI at 358/461 nm. The Image] software was used for
quantitative analysis (Jensen, 2013).

2.9 In vitro neuroinflammatory model

BV2 cells were treated with 100 ngmL™' LPS for 24h to
establish an in vitro neuroinflammatory model. Then, BV2 cells
were divided into five groups: 1) Control group; 2) LPS group; 3)
LPS + CGRPi@FM group; 4) LPS + Cur@FM group; 5) LPS +
FMCC group.

2.10 Chronic constriction injury (CCl)
model

6-8 weeks-old, 18-22 g healthy C57BL/6 mice were purchased
by SPF Biotechnology Co.,Ltd. CCI surgery was performed in
accordance with previous study (Zhang et al., 2019). The mice were
anesthetized by inhaling 4% isoflurane. The right thigh hair of the
mouse was scraped and the left biceps femoris was bluntly separated
to expose the sciatic nerve. The sciatic nerve was partially ligated
at four points using 4-0 colored sutures, with each ligature placed
approximately 1 mm apart proximal to the trifurcation site. After
that, the muscles and skin were treated with iodine solution. In the
sham operation group, the operation method was the same except
that the sciatic nerve was not lapped. After CCI surgery, a small
magnet was sterilized and fixed to the skin at the surgical site.

2.11 In vivo experiment design

25 C57BL/6 mice were divided into five groups 7 days after CCI
surgery:1) Control group: the sham operation group; 2) CCI group;
3) CCI + CGRPi@FM group; 4) CCI + Cur@FM group; 5) CCI +
FMCC group. In the treatment group, 120 mg/kg nanoparticles were
injected through the tail vein on day 1 and day 6. After treatment,
the threshold of paw withdrawal threshold was detected by using
the mesh to stimulate the right plantar of mice with von Frey fibers.
And the paw withdrawal latency was detected by stimulating the
right plantar of mice with heat. Then sciatic nerve was taken and
the therapeutic effect of each group was observed by H&E staining.

2.12 Enzyme linked immunosorbent
(ELISA) assay

BV2 cells were treated with LPS for 24 h and then treated with
20 ug/mL CGRPi@FM, Cur@FM, FMCC, or PBS for 24 h. The cell
supernatant of each group was collected. In vivo, blood was collected
from the orbital vein after treatment. The samples were allowed to
clot for 30 min at room temperature and then centrifuged to isolate
the supernatant. Then the content of TNF-a, IL-1p, IL-6 and IL-
10 content was detected by Mouse TNF-a ELISA kit, Mouse IL-1p
ELISA kit, Mouse IL-6 ELISA kit and Mouse IL-10 ELISA kit.
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TABLE 1 The primer sequences of TNF-q, IL-1p, IL-6, IL-10 and p-actin.
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Gene name Forward 5’-3’ Reverse 5'-3'

TNF-a CACAGAAAGCATGATCCGCG GTGCCCTCTGTGCTTGATCT
IL-1B CCCATGTTGTAGTGACCCCC CATGGTTGGGCTTGGGAGTG
IL-6 TGAGAGAGGAGTGTGAGGCA ACAGAGAATGGCCCACTGTG
IL-10 CAGAGTGTGGCAGTGGGAAT TGCTTCAAACCCCCAAACCT
B-actin CTTCGCTCTCTCGTGGCTAG AAGAGGGGGAGAGGAAGAGC

2.13 Detection of oxidative stress indexes

BV2 cells were treated with LPS for 24 h and then treated
with 20 ug/mL CGRPi@FM, Cur@FM, FMCC, or PBS for 24 h.
The cell of each group was collected and malondialdehyde (MDA),
superoxide dismutase (SOD), catalase (CAT) and glutathione-
peroxidase (GSH-Px) content was detected by ELISA kit.

2.14 Reactive oxygen species (ROS)
detection

BV2 cells were treated with LPS for 24 h and then treated with
20 pg/mL CGRPi@FM, Cur@FM, FMCC, or PBS for 24 h. Then the
DCFH-DA were added to incubate for 30 min. And the ROS signals
were observed with microscope. Fluorescence intensities were
measured using a fluorescence microscope at excitation/emission
wavelengths of 488/525 nm (blue filter). The Image] software was
used for quantitative analysis.

The mice in each group were euthanized after treatment.
The sciatic nerve was quickly extracted and frozen with liquid
nitrogen. The ROS content was detected by DHE probe method
and photographed by microscope. Fluorescence intensities were
measured using a fluorescence microscope at excitation/emission
wavelengths of 535/610 nm (green filter).

2.15 RT-PCR assay

The total RNA was extracted from sciatic nerve using TRIzol
Reagent. The cDNA was synthesized using iScript™ cDNA Synthesis
Kit. The qPCR was performed on ABI 7500-Fast Real-Time PCR
System (Applied Biosystem, Foster City, CA, USA) using SYBR
Green qPCR Master Mix and the B-actin was used as an internal
control. The primer sequence is shown in Table 1.

2.16 Biosafety assay

6-8 weeks-old, 18-22 g of healthy C57BL/6 mice were given
a single dose of FMCC 120 mg/kg via the tail vein injection. On
0 day, 3 days and 30 days, blood was then taken from the ocular
vein for routine blood test and biochemical analysis. Routine blood
test and biochemical analysis were performed by a fully automated
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biochemical analyzer (Indiko™ Plus, Thermo Scientific, USA). The
heart, liver, spleen, lung and kidney were extracted to H&E staining.

2.17 Statistical analysis

Data are presented as the mean + standard error of mean (SEM)
from at least three separate experiments. Statistical analysis was
performed using GraphPad Prism statistical software. Comparisons
between two groups were performed using Student’s t-test.
Comparisons among multiple groups were analyzed using one-way
ANOVA, with Bonferroni correction applied. The differences were
deemed statistically significant at p < 0.05.

3 Results and discussion

3.1 Characterization of FMCC drug delivery
system

As reported the core-shell nanostructures Fe;0,@mSiO, has
been shown reasonable biocompatibility and good drug release
performance (Zhang et al, 2021). Fe;0,@mSiO, is a suitable
drug delivery carrier, and it also possesses functionalities such as
magnetic targeting, magnetic resonance imaging. Curcumin has
been reported to produce a healing analgesic effect in chronic
neuropathic pain (Caillaud et al, 2020). In addition, CGRP
expression levels are elevated after nerve injury and play an
important role in generating and maintaining pain behavior,
and inhibiting CGRP expression can significantly improve pain
behavior after peripheral nerve injury (Benarroch, 2011). Therefore,
in this study, we have synthesized Fe;O,@mSiO, with novel
structure as the combined delivery carrier for curcumin and
CGRPi. Firstly, Fe;O, nanoparticles synthesized by coprecipitation
method were extensively characterized. The SEM images showed
that it was spherical, with a particle size of about 110 nm
(Figure 1A). TEM images showed that Fe;O, nanoparticles were
round, well dispersed, and relatively uniform in particle size,
mainly about 110 nm (Figure 1B). Dynamic light scattering
(DLS) results (Supplementary Figure S2A) showed an increase in
the hydrodynamic size of Fe;O, nanoparticles to 122.4 nm.

Further, mesoporous silicon dioxide (mSiO,) was grown on the
surface of Fe;O, nanoparticles to synthesize the shell karyotype
nanoparticles Fe;0,@mSiO,. Furthermore, since disulfide bonds

frontiersin.org


https://doi.org/10.3389/fmolb.2025.1510141
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Zhu et al.

10.3389/fmolb.2025.1510141

i

N

100 nm

E F
- 015
5
2600 K’
E E
S c
. o 010
fuo -
H s
%m) Qoo
§ >
= £
0 1 0.00
0.0 0.2 04 0.6 08 10 . 10 40 50

20 30
Relative Pressure P/P, Pore size (nm)

FIGURE 1

from the FMCC nanocomplex in PBS buffer.

G 20 H .\? 80— @ Curcumin in FMCC
g o CGRPi in FMCC
£ 154 = 60 s ¢
s = *
2 g °
g 2 *
- v ~
o 10 2409 7
s g [J
3
% 5+ % 20-
) -
& ¢
0= T 5 0= T T T 1
Curcumin  CGRPi 0 20 40 60 80
Time(h)

Characterization of Fe;O,, Fes0,@mSiO, and FMCC nanoparticles. (A) SEM images of Fe;O, nanoparticles; (B) TEM images of Fe;O, nanoparticles. (C)
SEM images of Fe;0,@mSiO, nanoparticles; (D) TEM images of Fe;O,@mSiO, nanoparticles; (E) Nitrogen adsorption-desorption isotherm of
Fes0,@mSiO, nanoparticles. The adsorption volume (cm®/g STP) of N, gas was measured as a function of relative pressure (P/Py, where Py is the
saturation pressure of N, at 77 K). The specific surface area (427 m?/g) was calculated from the linear region of the BET plot based on the BET theory;
(F) Pore size distribution (dV/dD) of Fe;0,@mSiO, nanoparticles was analyzed using the BJH method, showing a predominant pore size of ~7.4 nm. (G)
The drug loading capacity of Cur and CGRP antagonist on Fe;O,@mSiO,-PEG; (H) Plots of the release curves of the drugs Cur and CGRP antagonist
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in the nanocore framework are one of the most efficient cleavable
joints in biology, they can be degraded and cleaved in the presence
of glutathione (Fu et al., 2022). Therefore, cysteamine is used to
make mSiO, doped with disulfide bonds. Then, the Fe;O,@mSiO,
nanoparticles were characterized by electron microscopy, DLS, Zeta
potential analysis and nitrogen isothermal adsorption-desorption
curves. It can be observed from SEM (Figure 1C) and TEM
(Figure 1D) that the length of mSiO, nanorods is about 60 nm, and
mesoporous pores are obvious and uniform, and they grow evenly
on the surface of Fe;O,, completely enveloping Fe;O, nanospheres.
The morphology of Fe;O, nanospheres remained intact. High
specific surface area and large pore volume can effectively adsorb
and load drugs. Therefore, the specific surface area and pore
size of Fe;0,@mSiO, were measured by nitrogen isothermal
adsorption-desorption curve. The synthesized Fe;O,@mSiO,
showed a typical type IV isotherm and hysteresis ring. This is
caused by the ordered mesopore in the mSiO, nanorods (Figure 1E).
Fe;0,@mSiO, has a Brunauer-Emmett-Teller (BET) surface
area and a Barrett-Joyner-Halenda (BJH) pore size of 427 mz/g
and ~7.4 nm, respectively (Figure 1F). In addition, the hydrated
particle size of Fe;0,@mSiO, measured by DLS was 220.2 nm
(Supplementary Figure S2B), and the hydrated particle size of
FMCC was 240.2 nm (Supplementary Figure S2C). The structure
of the nanoparticles loaded with Cur and CGRPi was not altered as
observed by TEM (Supplementary Figure S2D), and the BJH pore
size was reduced to ~6.3 nm (Supplementary Figure S2E). The Zeta
surface potentials of Fe;O,, Fe;0,@mSiO,, Fe;0,@mSiO, loaded
with Cur and CGRP antagonists, and FMCC were —19.2, —16.5,
-15.5, and -22.9 mV, respectively (Supplementary Figure S2F).
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The loading capacities of Cur and CGRPi on FMCC were
16.4% and 10.2%, respectively (Figure 1G). To investigate the
kinetics of drug release from the nanocomposites in detail, we
tracked the release of the drugs Cur and CGRPi from FMCC in
PBS solution over time. Under the experimental conditions (PBS
solution, pH7.4), both drugs demonstrated slow release (Figure 1H).
In this regime, the rate of Cur release increased slightly compared
to CGRPi. Although the release rates of Cur were only slightly
higher than those of CGRPi, the actual release amounts of Cur
were approximately twice that of CGRPi, due to the higher initial
loading of Cur in the nanoparticles. The differences in release
efficiency and drug loading between Cur and CGRPi can be
attributed to several factors. First, the molecular properties of
the drugs, such as solubility, hydrophobicity, and molecular size,
significantly influence their interaction with the nanocarrier and
subsequent release behavior. Cur is a hydrophobic molecule with
a relatively small molecular size, which facilitates its encapsulation
and sustained release from the hydrophobic core of the nanoparticle
(Wang et al., 2020). In contrast, CGRPi, being a peptide, has
higher hydrophilicity and larger molecular size, which may limit its
loading efficiency and result in slower release kinetic (Luo et al,
2023). Second, the chemical interactions between the drugs and
the nanocarrier material play a crucial role. Cur can form strong
ni-1t interactions and hydrogen bonds with the silica matrix of the
nanoparticles, leading to higher loading capacity and controlled
release (Lin et al., 2022). On the other hand, CGRPi may rely more
on electrostatic interactions or physical entrapment, which are less
stable and result in lower loading efficiency and faster initial release
(Liang et al., 2020).

frontiersin.org


https://doi.org/10.3389/fmolb.2025.1510141
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Zhu et al.

1204 * 120

100+ 100
804 804
604

404

Cell Viability (%)
2
1

Cell Viability (%)

20+ 204

10.3389/fmolb.2025.1510141

C 2004

150 aas

100+

50

Flourescence intensity

0 T T T T

0 T T T T T T 0 T
FMCC (png/mL) o 1 5 10 20 40 FMCC (pg/mL) 0

LPS (100ng/mL) t

D E
Control Fe;O0,@mSiO, FMCC
FIGURE 2

T
FMCC (pg/mL) 0 1 5 10 20
LPS(100ng/mL)  + + 1 i 4

DAPI

The safety properties and cellular internalization of FMCC in vitro. (A) Effects of different concentrations (0, 1, 5, 10, 20, and 40 pg/mL) of FMCC alone
on BV2 cell viability; (B) LPS-induced BV2 cells were pretreated with different concentrations (0, 1, 5, 10, and 20 pg/mL) of FMCC for 24 h. Cell viability
was determined using CCK-8 assay; (C) Detection of reactive oxygen species (ROS) in LPS-induced BV2 cells using the DCFH-DA kit. LPS-induced BV2
cells were treated with different concentrations (0, 1, 5, 10, and 20 pg/mL) of FMCC for 24 h. ROS levels were measured by fluorescence intensity,
which correlates with the oxidation of DCFH-DA to DCF; (D) Dead and alive staining of BV2 cells after co-incubation with Fe;O,@mSiO, or FMCC; (E)
Images of BV2 cells internalization after co-cultured with Fe;0,@mSiO,-FITC nanoparticles for 2 h and 6 h. n = 3. Data are presented as the mean +

standard error of mean.

3.2 The safety properties and cellular
internalization of FMCC jn vitro

Current studies have shown that CGRP content increases in
inflammatory pain and neuropathic pain, and the upregulation of
CGRP level contributes to the enhancement of pain perception,
which is the target of analgesic treatment (Johanes et al., 2020). Prior
to this, the toxicity of FMCC on BV2 cells was first investigated
using CCK-8 assay for a period of 24 h at different concentrations. As
shownin Figure 2A, the concentrations of FMCC less than 20 pg/mL
did not induce any detectable cytotoxicity, whereas cytotoxicity
was induced at concentrations of 40 pg/mL. Next, we treated LPS-
induced BV2 cells with different concentrations of FMCC for their
cytotoxic effects. Different concentrations of FMCC up to 20 pg/mL
had no significant toxic effect on BV2 cell viability (Figure 2B).
The ROS fluorescence was used to further detect the effect of
different concentrations of FMCC on the ROS level of BV2 cells
induced by LPS. With the increase of FMCC concentration, the
intracellular ROS level in BV2 cells gradually decreased and reached
the lowest level at 20 ug/mL (Figure 2C). These results indicate
that the incubation of FMCC significantly reduces LPS-induced
ROS production in BV2 cells without cytotoxicity, which would
potentially alleviate inflammatory pain and neuropathic pain. In
subsequent experiments, we chose FMCC at a concentration of
20 pg/mL for subsequent cell experiments.
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Based on this, cell viabilities and cellular internalization of
FMCC were studied BV2 cells.
the incubated concentration set as high as 20 pg/mL and the

As shown in Figure 2D, even

co-culture time extended as long as 24 h, the cell viabilities of
BV2 cells remained over 90%, pronouncedly confirming that the
FMCC nanocomposites possessed perfect biocompatibility. Further,
Figure 2E and Supplementary Figure S3 showed the images and
quantitative fluorescence intensities of BV2 cells after incubated with
FMCC for 2 h and 6 h, respectively. This nanocomposite material
showed a green light, and the intensity of the fluorescence becomes
stronger with the increase of time. These results indicate that FMCC
can effectively carry drugs into glial cells, consistent with previous
reports that Fe;O,@mSiO, promotes drug uptake by cells (Sun et al.,
2020). Efficient cellular uptake and drug release may be critical for
pain relief by FMCC.

3.3 Effects of FMCC on inflammatory
factors, oxidative stress and reactive
oxygen species (ROS) in LPS-induced BV2
cells in vitro

It is well known that neuropathic pain induced by chronic

constriction injury (CCI) elicits a persistent inflammatory response
(Liu P. et al,, 2023). Tumor Necrosis Factor-a (TNF-a) appears as

frontiersin.org


https://doi.org/10.3389/fmolb.2025.1510141
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

Zhu et al.

10.3389/fmolb.2025.1510141

g

TNF-a level (pg/mL.)
w -
g =

IL-1p level (pg/mL)

MDA ( nmolmL)
SOD (WmlL)

FIGURE 3

Data are presented as the mean + standard error of mean.

Effects of FMCC on inflammatory factors and oxidative stress in LPS-induced BV2 cells in vitro. (A=D) TNF-q, IL-1f, IL-6 and IL-10 content in the
supernatant of BV2 cells treated with LPS, CGRPi@FM, Cur@FM, and FMCC were detected by ELISA analysis; (E-H) MDA, SOD, GSH-PX, and CAT
content in BV2 cells treated with LPS, CGRPi@FM, Cur@FM, and FMCC were detected by ELISA analysis. ns P > 0.05 no significant difference. n = 3.

1L-6 level (pg/mL)
g &
i

IL-10 level (pg/mL)
w
2

g

LPS P
H

)
- &
- S
E ~ &
2 Ss=
N =
2 5
£ s
g z
g

LPS LPS

the earliest cytokine in the inflammatory cascade and reaches its
peak at an early stage (Jang et al., 2021). TNF-a and IL-1, as early
proinflammatory factors, have been well validated in peripheral
and central sensitization of neuropathic pain (Boakye et al., 2021).
To determine whether FMCC nanocomposites could protect BV2
cells from inflammatory injury, we used LPS treatment of BV2
cells as an in vitro model of neuroinflammation and compared
the effects of nanoparticles loading two drugs or a single drug.
Upon LPS stimulation, cells increased the production of pro-
inflammatory cytokines, including TNF-a, IL-1f, and Interleukin-
6 (IL-6), and the anti-inflammatory cytokine Interleukin-10 (IL-
10). Direct treatment with Cur@FM or CGRPi@FM decreased
TNF-a, IL-1B, and IL-6 secretion (Figures 3A-C) and increased
IL-10 production (Figure 3D). Notably, a more potent effect was
observed in cells treated with FMCC nanocomplexes, suggesting
additive or synergistic pharmacological effects of the two loaded
drugs. The intracellular CGRP mRNA expression was further
detected by RT-PCR assay (Supplementary Figure S4). Consistent
with the expected results, LPS treatment enhanced the expression
level of CGRP, which was significantly downregulated by FMCC
nanocomposites.

The neuroinflammatory process after nerve injury releases
a variety of cytokines, which in turn promotes the occurrence
of oxidative stress and the increase of reactive oxygen species,
which is also considered to be an important factor in stimulating
inflammation (Fakhri et al., 2022). Therefore, research on inhibiting
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oxidative stress and ROS after nerve injury can play a role in
the treatment of neuropathic pain. To explore the effects of LPS
induction and FMCC treatment on oxidative stress level and ROS
in BV2 cells, we used MDA, SOD, CAT and GSH-Px assay Kkits to
determine changes in the activities of MDA, SOD, GSH-Px, and
CAT in BV2 cells after LPS induction and different treatments.
Figures 3E-H showed that LPS induced significant increases in
MDA and decreases in SOD, GSH-PX and CAT in BV2 cells.
CGRPi@FM and Cur@FM were able to inhibit the increase of MDA
and the decrease of SOD, GSH-PX and CAT, and the inhibitory
effect of FMCC was more significant. DCFH-DA kit results showed
that LPS induced a significant increase in ROS production in BV2
cells, which was inhibited by CGRPi@FM and Cur@FM, and the
inhibitory effect of FMCC was more significant (Figures 4A, B).
The above results confirmed that FMCC could inhibit LPS-induced
oxidative stress and ROS production in BV2 cells.

The above results indicate that inhibiting CGRP activity can
effectively suppress the inflammatory response of glial cells and the
increase of ROS caused by inflammation. The anti ROS generation
and anti-inflammatory effects of curcumin may come from its
regulatory role in validating signaling pathways and the inhibitory
activity of CGRP (Liu et al, 2023Db), but the latter effect still
needs further investigation. The above results also indicate that
the dual drug FMCC of curcumin and CGRPi can exert the
combined anti-inflammatory and ROS effects of the two drugs,
enhancing the therapeutic effect.
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3.4 FMCC nanocomposites alleviated
CCl-induced neuropathic pain,
inflammation and oxidative stress in vivo

To elucidate the in vivo effects of the FMCC drug delivery
system, we generated a mouse model of chronic constriction
injury (CCI) of the sciatic nerve (Fonseca-Rodrigues et al., 2021).
CGRPi@FM, Cur@FM and FMCC were injected into the tail vein
of CCI mice on the first day and the sixth day after successful
modeling. At the same time, in order to make the nanocomposite
magnetic targeting, a strong neodymium magnet was placed at
the sciatic nerve injury site. Pain behavior was examined within
2 weeks after surgery (Figures 5A, B). CCI resulted in chronic
pain in mice as indicated by increased thermal hyperalgesia and
mechanical hyperalgesia compared to the sham-operated group.
In contrast, CGRPi@FM, Cur@FM and FMCC nanocomposites
significantly attenuated neuropathic pain responses, with FMCC
having the most significant effect. RT-PCR assay was used to detect
the mRNA expression of CGRP in the injured sciatic nerve tissue.
The results were consistent with the cellular level (Figure 5C). The
cross-sectional sections of sciatic nerve tissue in each group were
further stained with hematoxylin-eosin to examine whether FMCC
alleviated the histological changes in the sciatic nerve. Compared
with the sham group, in the CCI group, the intercellular space
was enlarged and the cell arrangement was disordered, which were
effectively alleviated by FMCC (Figure 5D). In addition, ROS was
significantly increased in the CCI group, while FMCC significantly
abolished ROS production (Figure 5E).

Both RT-PCR and ELISA results showed the ability of FMCC
nanocomposites to inhibit inflammation in vivo. CCI stimulated
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the expression of proinflammatory cytokines (TNF-a, IL-1p, and
IL-6), on the other hand, the CCI-induced increase in the anti-
inflammatory cytokine IL-10 was further enhanced by CGRPi@FM
and Cur@FM. The FMCC nanocomposite had the most pronounced
effect, as shown by the greatest decrease in proinflammatory
cytokines and the greatest increase in anti-inflammatory cytokine
(Figures 6A-H). Finally, the oxidative stress indicators (MDA, SOD,
GSH-Px and CAT) were detected by the kit. Compared with the
sham operation group, MDA in the CCI group was significantly
increased, and SOD, GSH-PX and CAT were significantly decreased;
CGRPi@FM and Cur@FM alleviated this phenomenon, with FMCC
having the most significant effect (Figures 61-L).

The pathogenesis of neuropathic pain is complex. In addition
to the inflammatory responses are involved in the pathogenesis
of neuropathic pain, the dorsal root ganglion (DRG) neurons
sense pain and transmit it to the central nervous system, which is
involved in the occurrence and maintenance of neuropathic pain
(Martin et al., 2019). Lim et al. found that japonica rice leaf extract
may relieve CCI-induced neuropathic pain by activating MAPK
in DRG and microglia in the spinal cord (Lim et al., 2022). Chu
et al. found that atorvastatin may inhibit neuroinflammation in rats
with chronic systolic injury by down-regulating dorsal root ganglia
and spinal cord nuclear NF-kB (Chu et al., 2015). It was found
that electroacupuncture alleviated neuropathic pain by promoting
autophagy of dorsal root ganglion macrophages mediated by
AMPK/MTOR (Xu et al, 2022). In addition, montelukast can
effectively reduce neuropathic pain in CCl rats by inhibiting the
activation of p38MAPK and NF-kB signaling pathways in spinal
microglia (Zhou et al., 2014).
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FMCC alleviated CCl-induced neuropathic pain in vivo. (A) Neuropathic pain was assessed by von Frey filaments test; (B) Thermal hyperalgesia was
assessed by a radiant heat test; (C) RT-PCR detection of CGRP mRNA expression levels in CCl model mice after CGRPi@FM, Cur@FM, and FMCC
treatment; (D) Sciatic nerve sections were stained with hematoxylin and eosin; (E) sciatic nerve sections were stained with DHE kit. n = 5. Data are

presented as the mean + standard error of mean.

These results indicate that FMCC can effectively enter the site
of sciatic nerve injury in mice, delivering the loaded curcumin and
CGRPi to damaged nerve cells, alleviating chronic sciatic nerve
injury, inflammatory response, and neuropathic pain response in
mice. This is because FMCC can leverage the magnetic targeting
effect of Fe;O0,@mSiO, to targeted delivery the curcumin and
CGRPi to the damaged nerve area under the influence of an
external magnetic field, and treats sciatic nerve pain through the
combined action of curcumin and CGRPi. Liang et al. (Liang et al,
2025) synthesized mesoporous silica nanoparticles (MSNs) coated
with Fe;O, as a drug carrier, which is similar to our nanoparticle
design. They loaded the nanoparticles with RADA16-1/RAD-
RGI peptide (PD) to construct a neurotrophic microenvironment
Additionally,
they functionalized the MSNs with the neurotargeting peptide
HLNILSTLWKYR (PT) to enhance targeting efficiency. While their
study focused on peripheral nerve regeneration, our work explores

for the treatment of peripheral nerve defects.

the application of Fe;0,@ mSiO, for drug delivery in neuropathic
pain, highlighting the versatility of this nanoparticle platform in
different biomedical contexts.

3.5 Biocompatibility assessment of FMCC
in vivo
Additionally, in vivo biocompatibility of FMCC was

determined. After intravenous injection of our nanoparticles
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for 3 days and 30 days, blood samples and major organ
and H&E
staining studies were conducted for exploring the biosafety

tissue were collected. Blood bio-chemical tests

of FMCC in vivo. Here, the serum bio-chemistry factors
include alanine transaminase (ALT, Supplementary Figure S5A),
aspartate (AST,
serum Supplementary Figure S5C),

transaminase Supplementary Figure S5B),
(CRE, blood
urea nitrogen (BUN, Supplementary Figure S5D), white blood
cell (WBC, and Platelet (PLT,
Supplementary Figure S5F).  Collectively, in comparison with

creatinine
Supplementary Figure S5E),

control group (0 day), there were insignificant discrepancy in these
indexes of the FMCC based groups at 3 days and 30 days post-
administration. In the bargain, the H&E-stained-images of the
main normal organ tissues (including heart, liver, spleen, lung
and kidney) revealed no apparent pathological injury or normal
cellular damage were discovered (Supplementary Figure S5G),
preliminarily illustrating the excellent in vivo histocompatibility
of FMCC as well as its potent bio-application for neuropathic pain
patients. These data indicate that FMCC is a nanomedicine with
good biocompatibility and in vivo targeting. It can simultaneously
load two or more drugs and deliver them to the damaged nerve
site under the action of an external magnetic field, exerting a
combined therapeutic effect. At the same time, it also indicates
that the combination of curcumin and CGRPi has a significantly
better therapeutic effect on neuropathic pain than the use of the
two drugs alone. Through in vitro and in vivo experiments, we have
provided evidence for its feasibility in treating neuropathic pain,
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FMCC alleviated CCl-induced inflammation and oxidative stress in vivo. (A=D) TNF-q, IL-1B,IL-6 and IL-10 mRNA levels in the sciatic nerve of mice and
CGRPi@FM, Cur@FM, and FMCC treatment were analyzed by RT-PCR analysis; (E=H) TNF-q, IL-1p,IL-6 and IL-10 content in the sciatic nerve of mice
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which may help promote the development of effective treatments
for chronic pain.

4 Conclusion

In this study, we successfully designed and synthesized a
magnetically targeted nanocomposite that can target the injured
area of the sciatic nerve and achieve multifunctional analgesia
for the delivery of a single or two analgesic drugs. Our results
show that this disulfide bonded magnetic mSiO, nanoparticles
can effectively load Cur and CGRPi and deliver them to the
sciatic nerve injury area. Under conditions of elevated GSH, the
disulfide bonds are cleaved, and PEG modification facilitates the
complete release of the therapeutic payloads. Through in vitro and
in vivo experiments, we provided evidence for the feasibility of its
application in the treatment of neuropathic pain, which may help
facilitate the development of effective treatments for chronic pain.
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