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Editorial on the Research Topic

Advanced EEG analysis techniques for neurological disorders

1 Introduction

Electroencephalogram or EEG analysis has undergone a profound transformation

with the addition of advanced artificial intelligence and computational methods to the

domain. Contemporary EEG analysis expands beyond traditional methods that relied

on visual inspection, employing refined algorithms that are capable of detecting subtle

patterns that are not evident in time signals and to the human eye. Such state-of-the-art

techniques include artificial intelligence, advanced statistical methods, and sophisticated

signal processing approaches to unlock deeper insights into brain signals and dysfunctions.

From using large language models (LLMs) for enhanced diagnostic interpretation to real-

time Brain-Computer Interfaces (BCI), recent research has pushed the boundaries of EEG

signal analysis.

2 Discussion of recent research in advanced EEG
analysis

The technical summaries that follow are intended to provide an overview of recent

and impactful peer-reviewed research that illustrates advanced approaches that address

critical challenges in neurological care. Each of the topics represents a valuable leap

forward in terms of the diagnosis and monitoring of complex neurological conditions with

unparalleled precision and efficiency. The research papers included in this Research Topic

address the following categories in this area of research.

2.1 Foundation AI models for neuroscience

Recent advances in large language models (LLMs) and the application of such models

to EEG-based disease diagnostics, by tuning with a vast background knowledge base

from neuroscience, disease diagnostics, and signal processing techniques, have helped

in the transformation of such systems. Chandrasekharan et al. provide an overview of
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the context, starting with a comparison of LLMs against traditional

neural networks, such as sequence-to-sequence networks, which

require large datasets, comprehensive training strategies, and

learning parameter adjustments through hyperparameter tuning,

demanding expert-level knowledge in Artificial Intelligence (AI).

In contrast to such traditional systems, LLMs achieve expert-

level performance through minimal training data, minor tuning

through prompt engineering, and much less computational

requirement, leading to shorter deployment times for highly

effective diagnostic solutions. Such diagnostic methods not only

aid in disease classification and analysis, but also generate

human expert-like reasoning, justifying the decisions they make,

which allows for review and further improvements under

expert supervision. Optimization of such systems is achieved

through Low-Rank Adaptation of Large Language Models (LoRA),

addressing bottlenecks introduced by computational requirements.

Furthermore, this survey highlights deployment challenges and

ethical considerations, and stimulates research in EEG signal

analysis through LLMs and related machine learning pipelines.

2.2 Brain-computer interface systems

The domain of the brain computer interface (BCI) generally

requires a large amount of subject-specific labeled data for the

training phase to achieve effective calibration of the models and

ensure reliable classification on each new subject. With the motor

imagery encephalographic signal analysis system (MI-EEG), the

use of extended least squares regression-based inductive transfer

learning helps achieve this knowledge transfer from the source

domain to the target domain in the event of data insufficiency, as

described in the study by Jiang et al.. By this approach, broader

applications can be addressed with the inclusion of several classic

basemodels such as neural networks, a custom fuzzy logic approach

namely the Takagi-Sugeno-Kang fuzzy system and kernel methods,

which can find patterns in complex data. In the context of the

classification of physical actions studied by Gordienko et al.,

a fully connected deep neural network (FCN) in combination

with layers of convolutional neural networks (CNN) classifies

finger-palm-hand from the grasp-and-lift dataset. This study uses

Natural Noise Augmentation (NDA) in contrast to a synthetic

approach by increasing the sampling size and using different offset

values for labeling introducing Gaussian noise and thus providing

improved performance. The study performed with Detrended

Fluctuation Analysis (DFA) investigated fluctuation properties and

calculated Hurst components that revealed the ability of shorter

EEG fragments to demonstrate higher complexity and enabled the

system to run on low-resource-requirement systems.

2.3 Clinical data integration and
visualization tools

EEG reports predominantly exist in unstructured textual

formats, complicating data extraction and analysis for large-

scale studies. A hierarchical algorithm transforms these reports

using natural language processing (NLP) techniques through

two phases: deep learning-based text classification followed

by rule-based keyword extraction procedures in the study by

Chung et al.. The algorithm categorizes reports into normal and

abnormal groups, then systematically identifies key indicators

of cerebral dysfunction or seizures, distinguishing between

focal (localized) and generalized seizures while identifying

epileptiform discharges and their anatomical locations. Analysis

of 17,172 EEG reports from 3,423 pediatric patients achieved

accuracy exceeding 98.5% for seizure type determination and

over 88.5% for epileptiform discharge detection. In another

study by Evans et al., stereoelectroencephalography (sEEG),

combines preimplantation magnetic resonance imaging, post-

implant computed tomography for electrode visualization,

and temporally recorded electrophysiological data for surgical

planning. SEEG4D creates automated containerized pipelines

segmenting tissues and electrode contacts, aligning contacts

with electrical activity, and animating based on relative

power. This generates four-dimensional virtual reality

components that allow simultaneous viewing of anatomy and

seizure activity with automated contact segmentation within

1mm accuracy.

2.4 Disease specific diagnostic applications

The various EEG signal analyses have had a high impact

in disease diagnosis and prediction, specifically in neurological

diseases such as epilepsy, Alzheimer’s disease, and even in the

prediction of seizures and the diagnosis of early diseases such as

dementia. In this Research Topic, Hernandez et al. analyzed the

effects of Multiple sclerosis treatment using sample entropy that

can measure signal regularity and Higuchi’s fractal dimension

that can quantify signal complexity in EEG signals from 175

subjects including Interferon-β (n=39), dimethyl fumarate (n=53),

and healthy controls (n=83). Both treatment groups exhibited

more complex EEG signals than controls, with sample entropy

(SampEn) demonstrating significant sensitivity to treatment

effects while Higuchi’s fractal dimension (HFD) showed greater

sensitivity to temporal changes. Absence seizure classification

utilized power-to-power cross-frequency coupling (PPC) analysis

in Medvedev et al., measuring interactions between oscillations

across different time scales in brain rhythm organization. Stacked

Sparse Autoencoder (SSAE) networks trained on coupling

matrices between frequencies 2–120 Hz achieved 93.1% sensitivity,

99.5% specificity, and 96.8% overall accuracy. In another study

in absence seizure, EEG phase synchronization analysis using

wavelet phase Glaba et al., synchronization index with normalized

amplitude features detected generalized spike-and-wave discharges

with 99.2% identification rate. However, ictal-interictal overlap

limited pure synchronization-based detection. In Hadeethi

et al., alcoholism detection employed clustering technique-

based bootstrap (CT-BS) to model sample selection, covariance

matrix eigenvalue methods (Cov-Eig) for feature extraction,

and the fruit fly optimization algorithm with radius-margin-

based support vector machines (FOA-F-SVM). This approach

achieved 99% accuracy in the classification of multichannel

EEG signals.
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3 Conclusion

The papers featured in this Research Topic demonstrate

how advanced artificial intelligence and computational methods

are revolutionizing EEG-based neurological diagnosis and brain-

computer interface technologies. From leveraging foundation AI

models like Large Language Models to developing sophisticated

disease-specific diagnostic tools, these studies collectively address

critical challenges in translating complex brain signals into

actionable clinical insights. The integration of transfer learning

approaches for brain-computer interfaces, advanced visualization

tools for surgical planning, and precision diagnostic applications

for conditions ranging from epilepsy to alcoholism illustrates the

breadth and depth of current EEG research capabilities.
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Identification of alcoholism is clinically important because of the way it affects the
operation of the brain. Alcoholics are more vulnerable to health issues, such as immune
disorders, high blood pressure, brain anomalies, and heart problems. These health
issues are also a significant cost to national health systems. To help health professionals
to diagnose the disease with a high rate of accuracy, there is an urgent need to create
accurate and automated diagnosis systems capable of classifying human bio-signals.
In this study, an automatic system, denoted as (CT-BS- Cov-Eig based FOA-F-SVM),
has been proposed to detect the prevalence and health effects of alcoholism from
multichannel electroencephalogram (EEG) signals. The EEG signals are segmented into
small intervals, with each segment passed to a clustering technique-based bootstrap
(CT-BS) for the selection of modeling samples. A covariance matrix method with its
eigenvalues (Cov-Eig) is integrated with the CT-BS system and applied for useful feature
extraction related to alcoholism. To select the most relevant features, a nonparametric
approach is adopted, and to classify the extracted features, a radius-margin-based
support vector machine (F-SVM) with a fruit fly optimization algorithm (FOA), (i.e., FOA-
F-SVM) is utilized. To assess the performance of the proposed CT-BS model, different
types of evaluation methods are employed, and the proposed model is compared
with the state-of-the-art models to benchmark the overall effectiveness of the newly
designed system for EEG signals. The results in this study show that the proposed
CT-BS model is more effective than the other commonly used methods and yields a
high accuracy rate of 99%. In comparison with the state-of-the-art algorithms tested
on identical databases describing the capability of the newly proposed FOA-F-SVM
method, the study ascertains the proposed model as a promising medical diagnostic
tool with potential implementation in automated alcoholism detection systems used by
clinicians and other health practitioners. The proposed model, adopted as an expert
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system where EEG data could be classified through advanced pattern recognition
techniques, can assist neurologists and other health professionals in the accurate and
reliable diagnosis and treatment decisions related to alcoholism.

Keywords: alcoholism, electroencephalogram, covariance matrix, support vector machine (SVM), eigenvalues
and fruit fly optimization

INTRODUCTION

The human brain, as an integral part of the central nervous
system (CNS), operates normally by receiving signals from
the body’s organs and providing information to the muscles
(Pelvig et al., 2008). The effects of alcohol on the CNS
can lead to long- and short-term issues such as impaired
vision, impaired hearing, dementia, and depression (Deiner
and Silverstein, 2009). Alcoholism is a common neurological
disorder caused by excessive and repetitive drinking of alcoholic
beverages; the harmful effects of alcoholic beverages could be
physical and mental as well as social, legal, and economic
(Lieber, 1995; Volkow et al., 2017). The heavy consumption
of alcohol disturbs the functioning of the entire nervous
system, especially the brain. It not only weakens the brain
neurons but also leads to cognitive and mobility weakness
(Knight and Longmore, 1994; Oscar-Berman et al., 1997). Based
on the latest reports issued by the WHO https://www.who.
int/health-topics/alcohol#tab=tab_1, three million deaths every
year are caused by the harmful use of alcohol. In addition,
more than 200 disease- and injury-related conditions are
caused by the excessive use of alcohol. An effective method
of recognizing alcoholics from nonalcoholics could decrease
unnecessary economic losses and social problems as well as
expedite diagnosis in clinical settings.

Electroencephalogram (EEG) technology is becoming
increasingly important in the identification, diagnosis, and
treatment of mental and neurodegenerative diseases and
abnormalities (Isaksson et al., 1981). The function of the EEG
assists physicians in establishing an accurate diagnosis. Thus, it
can be utilized as a diagnostic tool to discern alcoholics from
nonalcoholic subjects based on the variation in the signals.

Much effort has been expended in deducing the preferred
classification method in analyzing EEG signals for alcoholism.
For instance, Faust et al. (2008) analyzed normal, epileptic, and
alcoholic EEG signals utilizing fast Fourier transform (FFT) and
autoregressive (AR) model and their techniques. Their results
showed that the power spectral density (PSD) of these signals
was varied. Patidar et al. (2017) applied tunable Q-wavelet
transform (TQWT) to decompose EEG rhythms into different
bands. The principal component analysis (PCA) was utilized for
feature extraction and then fed to a least squares-support-vector
machine (LS-SVM). Cao et al. (2017) utilized a synchronization
likelihood to measure synchronization variations among 28
alcoholics and 28 control subjects. The study showed that the
synchronization for the control group reflected the complexity
levels of the cognitive tasks, while the alcoholics only displayed
erratic changes. Lin et al. (2009) analyzed the clinical alcoholic
and normal control FP1 EEG signals based on a Hilbert-Huang

Transformation. The PCA and WT were also applied to analyze
EEG data by Sun et al. (2006), and other studies have used the
power spectrum of Haar mother wavelet, approximate entropy,
sample entropy, and empirical mode decomposition. Kousarrizi
et al. (2009) applied the power spectrum of the Haar mother
wavelet to extract the features with PCA. The extracted features
were fed to a support vector machine (SVM) and neural
networks. The simulation results showed that their method
achieved a higher rate of classification accuracy than other
methods. Shooshtari and Setarehdan (2010) proposed a reduction
method to select an optimum subset of EEG channels based on
spectral analysis and correlation matrices: their technique was
successful in selecting an optimal number of channels. Kumar
et al. (2012) employed an approximate entropy and sample
entropy to extract entropy features from EEG time series: they
illustrated that the average value of ApEn and SampEn for
an epileptic time series was less than that of a nonepileptic
time series. The study of Priya et al. (2018) has used mode
decomposition (EMD) for features extraction.

Time-frequency (T–F) image information, high-pass infinite
impulse response (IIR) filter with zero phase distortion,
Separability and Correlation analysis (SEPCOR), computer-aided
diagnosis, and EEG rhythms-based features were utilized in many
studies that follow. Bajaj et al. (2017) proposed a new hybrid
method to classify automatically an alcoholic and a control EEG
signal based on T–F image information and found it useful
in conveying key characteristics in EEG signals. The results
of this study were promising. Fattah et al. (2015) proposed a
new method based on a high-pass IIR filter with zero phase
distortion, which aimed to preserve the Gamma band and all
higher frequencies with K-nearest neighbor (KNN) classifier
and leave-one-out cross-validation technique. Their proposed
scheme also classified alcoholic and nonalcoholic subjects with
a higher rate of accuracy than did existing methods. To
select an optimal feature subset automatically and to obtain a
minimum correlation between selected channels and maximum
class separation, a statistical feature selection technique based
on SEPCOR was proposed by Shri and Sriraam (2016); a
significant improvement in the classification accuracy based on
the SEPCOR method was noted in that study compared with
feature selection methods used in previous studies. The study of
Acharya et al. (2014) presented a review of the known features
of EEGs gained from people with alcoholism. EEG-rhythms-
based features for automatic identification of alcohol EEG signals
were also proposed by the study of Taran and Bajaj (2017);
in that study, an extreme learning machine (ELM) and a least
squares SVM classifiers were used to detect nonalcoholic and
alcoholic EEG signals, with the investigators’ techniques showing
an accuracy of 97.92%.
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Recently, there is a trend of using deep learning models
for BP estimation; for example, Gao et al. (2021) designed an
approach that combined recurrence plots and convolutional
neural network to recognize fatigue driving. They showed that
that complex network based on a deep learning model gave a
high recognition rate. Tao et al. (2020) developed an attention-
based convolutional recurrent neural network mode to classify
emotion EEG signals. In that study, the convolutional recurrent
neural network was used to extract spatial characteristics of EEG
signals. Singhal et al. (2021) integrated FFT, a convolution neural
network, and long short-term memory to classify EEG recordings
into an alcoholic or control. Buriro et al. (2021) utilized wavelet
scattering transform with a convolutional neural network and
SVM to classify alcoholism from EEG signals. They found that
wavelet scattering transform-based features with a conventional
neural network had a high potential to detect alcoholic subjects.

As demonstrated in previous studies, finding new techniques
for the detection of alcoholism can help in further clinical
applications and research. The present study provides a new
mechanism for the classification of alcoholism from multichannel
EEG signals. This study has developed a new machine learning
model for the reduction of data prior to the classification
process by integrating the clustering and bootstrapping clustering
technique-based bootstrap (CT-BS) technique in one phase of
model design. To detect and further analyze the abnormalities
in the EEG signal, the eigenvalues of the covariance matrix,
determined from EEG signals, are investigated using a statistical
method by extracting ten statistical features from the eigenvalues
of the covariance matrix. These features are represented by the
mean, median, maximum, minimum, mode, range, SD, variation,
skewness, and kurtosis commonly used in EEG classification
problems. To improve the automated detection system, a
combination-based approach using the F-SVM and fruit fly
optimization algorithm (FOA), i.e., FOA-F-SVM, has been
proposed to correctly classify alcoholism from multichannel EEG
signals. Based on an extensive literature search, the CT-BS-
covariance matrix method with its eigenvalues (Cov-Eig)-based
FOA-F-SVM model is proposed in this study for the first time to
analyze and detect alcoholism from EEG signals. In respect to the
results, compared with the other algorithms, the proposed model,
CT-BS-Cov-Eig-based FOA-F-SVM, has promising performance,
and can, therefore, be adopted as a classification technique for
alcoholism-detection in EEG signals.

This research article is divided into several sections: Section
2 presents the methodology; Section 3 contains a description
and explanation of the datasets, segmentation, sampling, feature
extraction, and feature selection; Section 4 contains performance
evaluation methods; Section 5 includes radius-margin-based
SVM (F-SVM), fruit fly optimization algorithm (FOR), and the
proposed classification model FOR-F-SVM; Section 6 includes
experimental results, evaluation of the performance of the
proposed FOA-F-SVM model, channels selection based on
classification accuracy, comparison of classification accuracy
of the proposed model FOA-F-SVM with KNN, k-means,
and SVM, and comparison the proposed model, FOA-F-SVM,
with previous studies and discussion; and Section 7 presents
the conclusions.

MATERIALS AND METHODS

Experimental Effects of Alcoholism From
Multichannel Electroencephalogram
Dataset
In the work described in this study, we have utilized a
public database known as the machine learning repository
(UCI) Knowledge Discovery in Databases (KDD) Archive
www.kdd.ics.usi.edu from Irvine, CA: the University of
California, Department of Information and Computer
Science (Hettich and Bay, 1999). Data were collected from
122 participants; for each participant, there were 120 trials with
three kinds of stimuli (Zhang et al., 1997). The EEG signals
were recorded from 64 channels, two electrooculography (EOG)
channels, and one reference electrode. The duration of each trial
was one second and the sampling rate of all channel data was
256 Hz. UCI KDD contains three types of datasets, which are
SMNI CMI TEST, SMNI CMI TRAIN, and FULL, respectively.
FULL datasets contain a few all-zero recordings (Zhu et al.,
2011); therefore, the first two databases were utilized. There are
600 recorded files in SMNI CMI TEST and the same number in
the SMNI CMI TRAIN, which equals 1,200 recorded files, and
for each recording, there are signals from 64 electrode caps.

Methodology
This article describes the design of a new technique trained to
classify alcoholism from multichannel EEG signals. A hybrid
method called (CT-BS) by integrating clustering technique (CT)
and bootstrapping (BS) has been developed to reduce the
dimensions of the EEG data. Then, the covariance matrix with
its eigenvalues, coupled with the FOA-F-SVM, is proposed to
predict alcoholism in patients’ recordings. KDD recorded at
the University of California, Department of Information and
Computer Science (Gao et al., 2021) is used for the evaluation
of the proposed model. Figure 1 demonstrates the proposed
model. The EEG signals are divided into four segments; after
that, each segment is sent into the CT-BS method for the
sampling phase. To extract EEG features, the covariance matrix
with its eigenvalues is applied. Following this, to detect and
analyze abnormalities in the EEG signal, the eigenvalues of the
covariance matrix are investigated and ten statistical features
were extracted from eigenvalues of each covariance matrix. These
features are mean, median, maximum, minimum, mode, range,
SD, variation, skewness, and kurtosis. In this study, we used a
nonparametric method, named the Kolmogorov–Smirnov test
(KST), for selecting the most relevant features. The selected
features are fed to the FOA-F-SVM to classify EEG signals.
To estimate the performance of the proposed model, different
types of assessment metrics, such as accuracy, sensitivity, and
specificity, are used in the performance evaluation.

Segmentation
Based on our previous work (Diykh et al., 2018, 2019a,b, 2020,
2021), this project has applied the sliding window technique
to split the EEG signals into their respective periods. It was
found that the proposed method generated highly satisfactory
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FIGURE 1 | A flow diagram representation of the algorithm developed for detection and classification of alcoholism-based EEG signals.

classification accuracy. Mathematically, let an EEG signal be
denoted as: X = x1,x2, .....,xn with n being the data points. In
this study, the EEG signal X was segmented into m segments,
with each segment containing k datapoints (Diykh et al., 2020,
2021). Figure 2 shows an example of an EEG signal being
partitioned into segments.

Clustering Technique Coupled With-Based Bootstrap
To design a powerful sampling technique, a hybrid method that
integrates the CT and BS, (CT-BS), is proposed in this study for
reducing the dimensionality of EEG signals. This also prevents
problems such as bias and variation that may occur when
applying a CT. Not only is BS a method that depends on random
sampling with replacement, but it also estimates the properties
of an estimator. Adapting standard errors for clustering can be
a very important part of any statistical analysis (Hennig, 2007);
further, in terms of statistical modeling, validation is extremely
important in cluster analysis because CTs resort to generate
clustering even for completely homogeneous data groups. Most
CTs suppose a certain paradigm for clusters, and this could be
adequate for some portions of data, but not for others. The issue
of stability in cluster analysis is complex, but it is considered

an important part of cluster validity (Alonso et al., 2007). We
propose to use the bootstrap method to reduce the error rate,
which leads to reducing the bias and variation. The main concept
behind utilizing the nonparametric bootstrap for the estimation
of cluster constancy or stability is the following:

Suppose that there is a mixture distribution K =
∑z

i=1 εiKi
where i = 1, 2, 3, . . ., z, are the distributions generating z “true”
clusters, and εi is the probability that a point from Ki is drawn
(Hira and Gillies, 2015). For a given dataset with n points, the
“true” clustering would then be composed of z clusters, each of
which includes precisely the points generated by Ki, i = 1, 2, 3,...,
z. The dataset, when generated from K, is clustered; the generated
clusters vary from the “true”’ clusters because the clustering
approach introduces an assured bias and variation.

The concept of bias and variation can be expressed via the
maximum Jaccard coefficient. It is a measure of similarity for the
two sets of data, with a range from 0 to 100%. A high percentage
refers that two populations are similar among all the points
created via Ki and the two sets belong to an identical cluster.
The bootstrap is habitually utilized to grant an idea of bias and
variation caused via a certain statistical approach because no true
clustering is known and there is no true underlying distribution.
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FIGURE 2 | An example of EEG being partitioned into segments.

To simulate K, the empirical distribution of the observed dataset
is taken. The originally found clusters can be treated as the “true”
ones, and the points can be drawn from the dataset. The mean
maximal Jaccard coefficient can be explained as denoting the
stability of the authentic clusters. Given a number b of bootstrap
replications and a cluster C from the original clustering En(y), the
schema works as below:

Reiterate for i = 1, 2, 3, . . ., b:

• For n points, draw a bootstrap sample yi
n with replacement

from the original dataset yn.
• Calculate the clustering En

(
yi

n
)
.

• Suppose yi
∗ = yn∩yi

n be the points of the original dataset
that are also in the bootstrap sample. Suppose Ci

∗ = C∩yi
n,

4 = En
(
yi

n
)
∩yi
∗.

• If Ci
∗ 6=∅, calculate the maximum Jaccard similarity between

the induced cluster Ci
∗ and the induced new clustering 4

on yi
∗:τC,i = maxD∈4τ

(
Ci
∗, D

)
(i.e., D is the maximizer of

τ
(
Ci
∗, D

)
; else τ C,i = 0).

where Jaccard coefficient (Jaccard, 1901): τ (C, D) =
|C∩D|
|C∪D| , C, D ⊆ yn.

This generates a sequence τ(C,i), i = 1, 2, 3, . . .,b. Based on
(Cameron et al., 2008; Diykh et al., 2019b) they suggested the
mean: τC =

1
b∗
∑b

i=1 τ(C,i) as stability measure (b∗ being the
number of bootstrap replications for which Ci

∗ 6=∅ and is utilised
here because in all other cases τ(C,i) = 0).

Features Extraction
In machine learning, with huge dimensions of data, the necessity
to provide a reliable analysis grows exponentially (Alonso et al.,
2007; Hira and Gillies, 2015). There are diverse types of mental
and neurological conditions where the EEG data size is huge
and requires observation by the clinician over an extended
period. Alcoholism EEG signals may contain valuable and useful
information about the different states of the brain. Since the
biological signal is highly random in both the time and frequency
domain, computerized analysis is indispensable. Due to the
signals being nonstationary, appropriate analysis is fundamental
for EEG to differentiate the alcoholic/control EEG signals.
A covariance matrix method that was used in previous work
(Al-Hadeethi et al., 2020) is proposed to reduce the EEG signal

(and data) dimensionality while extracting the most important
features for better classification accuracy.

The time series (EEG signals) can be defined as a vector of
length X = {x1, x2, .....,xn}. Feature nominees can be integrated
into a feature vector for a point in time series. Let Pi the
number of features. The feature vector for the Nth point of the
subsequence can be manifested as (Ergezer and Leblebicioǧlu,
2016, 2018):

hN =
[
PN1, PN2, ..., PNQ

]
(4.1)

After combining the feature vectors for all points, this study gets
a feature matrix H,

H =

 P11 · · · P1Q
...

PW1 · · · PWQ

 (4.2)

It can be calculated as the covariance of the feature matrix as
follows:

COV =
1

W − 1

W−1∑
i=1

(Hi − µ) (Hi − µ)T (4.3)

where µ is the mean vector of feature vectors {h1, h2, ..., hW}.
Based on separating the time series into L overlapping

subsequences with each having a length W, the general
representation was adapted for the time series classification
problem. In this study, to decrease the dimensionality of data
which leads to enhance detection of possible abnormalities in the
prescribed EEG signal, the eigenvalues of the covariance matrix
are investigated by extracting 10 features from each eigenvector.

In this research, the data were derived from multichannel EEG
signals, where each channel consists of a matrix (256 × 30),
where 256 represents the number of rows and 30 represents the
number of columns. For more clarification, we will explain using
the following example: an experiment of 61channels that consists
of a matrix (15,616× 30) was used in this article. The time series
was divided into four segments (n = 4), each segment containing
(3,904× 30) data points. Then, each segment of 3,904 datapoints
was divided into 32 clusters with each cluster containing 120
data points. Based on our previous work (Zhu et al., 2011), it
was found that dividing each EEG segment into 32 clusters gave
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satisfactory results. As a result, each segment was represented
by a matrix of 120 × 32. To reduce the dimensionality of
each segment, the sampling technique was applied to reduce the
number of clusters. The number of clusters was reduced from 32
to 30. Consequently, each segment was represented by 120 × 30
instead of 120 × 32. To remove any redundant information
and extract features from each cluster, each cluster was divided
into 4 sub-clusters, and a covariance matrix was applied to each
subcluster, from each its eigenvector, 10 statistical features were
selected to form a vector of 40 statistical features. As a result, each
segment was represented by a matrix of 40 × 30, where 40 refers
to the number of features and 30 indicates the number of clusters.

Feature Selection
In the work described in this study, one of the primary objectives
of conducting many experiments was to find the optimal features
that improved results. The features briefly summarize the most
important information in the data, thus, this is used in cases
where there is a large number of dimensions (Abdulla et al.,
2019). Selecting the optimal features could lead to a high
rate of classification accuracy. Therefore, six experiments were
conducted on EEG channels to determine the features set using
KST. More details are given in the results section.

CLASSIFICATION APPROACH BASED
ON SVM

Radius-Margin-Based Support Vector
Machine
Given the training set q =

(
x1, y1

)
,
(
xn, yn

)
, the fundamental

SVM paradigm is displayed below. The paradigm only deems
the maximization of margin. However, an accurate description
can explain that the generalization error bounds of SVM are the
function of radius and margin (Hedges et al., 1999).

min
d,b,δ

1
2|| (n) ||22 + Z

∑
i

δi

s.t. yi

(
nTxib

)
≥1− δi∀i (4.4)

δi = 0, i = 1, 2, 3, ...,

Given the radius, a group of researchers, (Ergezer and
Leblebicioǧlu, 2016) have proposed a novel formula 1

2 R≤R≤R.

Let the matrix K = ATA where A is denoted as transform matrix,
the slack variables δi (i = 1, 2, 3, n). The paradigm of linear
F-SVM is represented in (2):

min
w, b,δ,K

1
2

(
wTK−1w

)
Z

n∑
i=1

δi + ρtr (KS)

s.t. yi

(
wTxib

)
≥1− δi ∀i (4.5)

δi = 0, i = 1, 2, 3, ...,

K � 0

Wu et al. (2018) solved the nonlinear classification problems
by incorporating kernel PCA into linear F-SVM. The proportion
of cumulative eigenvalues to the sum of all eigenvalues is set as
0.9 in the dimension selection of kernel PCA. The paradigm can
be formulated as follows:

min1
2

(
wTK−1w

)
Z

n∑
i=1

δi + ρtr
(
KNq

)
s.t. yi

(
wT fi + b

)
= 1− δi ∀i (4.6)

δi = 0, i = 1, 2, 3, ...,

K � 0

where Nq =
∑n

i=1 wiqiqT
i , qi = QT

∅ (xi) , Q = [q1, q2, q3, ..., qGo]

is indicated tothe eigenvectors corresponding to the first G
eigenvalues. The mapping function of kernel F-SVM that is
always utilized is radial-basis-function (RBF), i.e.,

(
xi, xj

)
= exp(

−γ||xi − xj||
2), where γ is the specified parameter to limit the

width of the RBF (Chen et al., 2014). Between the minimization
of training error and maximization of the classification margin
in the paradigm, factor Z controls the trade-off (Tharwat
and Hassanien, 2018). The classification accuracy differs
between these two parameters. Therefore, defining the values
of the parameters is essential to the performance of the
SVM classifier.

Fruit Fly Optimization Algorithm
The fruit fly optimization algorithm is based on the foraging
behavior of the insect after which it is named (Pan, 2012). The
main concept of the algorithm is that the insect primarily flies
toward food via utilizing its olfactory sensory neurons: one of
the groups of neurons will emit a pheromone when it is near
to food. Thereafter, the fruit fly will change its direction and fly
to meet its peers. Through continually updating its status and
flying direction, the fruit fly will finally get nearer to the food, the
position of which is the optimum solution. The algorithm will be
completed if the iteration reaches maximization or the outcome
is to archive the permissible accuracy. The algorithm can be split
into a number of steps:

1) The position of the fruit fly is random initialization
(InitX, InitY).

2) For each fruit fly, given a random direction and distance to
hunt for food via its olfactory sensory neurons:

Xi = X + Random value

Yi = Y + Random value

3) Due to the unknown exact location of food, the distance
will be computed from the location of the fly to the origin;
thereafter, the mutual distance is computed. As a result,
the value will be defined as a smell concentration judgment
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value (d):

Disti =
(
X2

i + Y2
i
)1/2

d1i =
1

Disti

4) to detect a better smell concentration, set the above
smell concentricity judgment value into smell concentricity
judgment function:

Smelli = Function (ni)

5) discover individuals with the raised concentricity in the
population:

[
bestSmell, bestIndex

]
= max(Smell)

6) preserve the most appropriate concentricity and an
assortment of the fruit fly, and other fruit flies to that
coordinates utilizing vision:

X = X
(
bestindex

)
Y = Y(bestindex)

7) In Steps 2-5, the iterative optimization was performed.
Thereafter, judge whether the concentricity is higher than
that of the former level. If so, perform Step 6.

Classification Based on FOA-F-SVM
Model
This section introduces the main idea used in developing the
newly proposed FOA-F-SVM system. In order to improve and
further develop the performance accuracy of the traditional
SVM model, the F-SVM for joint learning of the feature
transformation and SVM classifier integrated with FOA were
proposed for the analysis of alcoholism through multichannel
EEG signals. As shown in Figure 3, the proposed model
consists of different stages. The first five steps represent internal
parameter optimization and the next five steps display the
external evaluation of the classification performance. The path
of the proposed model is this: tune parameters depend on the
FOA, after that gain an optimum classifier. Eventually, by testing
the dataset through external assessment, the performance of the
classifier was measured.

The fruit fly optimization algorithm was utilized to set the
parameters in the section of parameter optimization. Depending
on the RBF kernel of the SVM classifier, the fruit fly’s solution
was used to represent the classifier parameters Z and γ. To direct
the updating of the fruit fly location, the rate of classification
accuracy of the structure SVM classifier was used. The optimum
solution was gained via the iterative optimization procedure,
depending on the location. The SVM classifier was built up with
the optimum parameters gained above in the external assessment
section; thereafter, the eventual classification outcomes were
gained on the test set via this classifier.

Optimization Algorithm
In the FOA-F-SVM model, there are many unknown variables,
such as in the formula (11). To solve obscure variables (matrix K
and hyperplane (w,b)) of the FOA-F-SVM model, there are three
main steps:

(i) Initiating K
Suppose the weighted covariance Nq performs eigenvalues
decomposition, i.e., Nq = D

∧
DT , where

∧
= Diag{λ1,2...,

λn} and λ is arranged in order from highest to lowest. After
algebraic computation, matrix K0 can be denoted as K0 =

D∧−(1/2)DT . Due to K = ATA, the transformation matrix A
can be written as A0 = ∧

−(1/4)DT . Therefore, the samples
are transformed into z = dataset ∗ A0.
(ii) Resolve hyperplane (w, b)
This step consists of an explanation of how the FOA
model is adopted to gain an optimum SVM classifier. The
particular operation is that: the range of each parameter
is given; thereafter, various values are randomly allocated
within this range for every fruit fly. In the meantime,
the fruit fly is represented in every group solution.
Subsequently, find the preferable of these solutions. The
finding operation includes two portions: via a smell search
procedure, every fruit fly adjusts its position; based on
the preferable fruit fly through the vision-based search
procedure, the worst fruit fly in the population will be
encouraged. This will then lead to obtaining a solution
of the parameters via the iteration. Eventually, the test
samples from z and gained optimum parameters are fed to
the F-SVM prediction model.
(iii) Resolve matrix K
Now, having gained the SVM classifier, formula (11) can be
formulated again as follows:

min
K f (K) = 1

2

(
wTK−1w

)
Z

n∑
i=1

δi + ρtr (KN) (4.7)

s.t. K � 0

The function is cambered and is able to be differentiated
for K, thus, to solve K, the gradient-projection method was
chosen. The derived function for this term is given below.
Thereafter, update K via Kh1 = PN(Kh − t1∇f (Kh)) until
K converges.

∇f (K) = −
1
2

K−1wwTK−1
+ ρN (4.8)

(iv) From all the illustrations and explanations above,
it is clear that the matrix K is a significant parameter
in the FOA-F-SVM. Only via initializing K, it can
transform the dataset into a new feature space. Thereafter,
an SVM classifier is gained via optimizing parameters
through FOA. Eventually, an optimal classifier is gained by
constantly updating K.
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FIGURE 3 | Flow diagram representation algorithm of the proposed FOA-F-SVM model.

PERFORMANCE EVALUATION
METHODS

It is important to evaluate the performance of any classification
or detection system. A set of methods was used to assess the
performance of the alcoholism classification and detection system
based on the proposed FOA-F-SVM technique, as described
below:

(a) Accuracy (Acc.) is a degree of proximity of a measured
or calculated quantity to its actual (true) value. The term
accuracy is utilized to assess the performance of the SVM
method depending on the formula as given below:

Acc. = (TPTN)/(TPTNFPFN) (4.9)

(b) Sensitivity (Sen.) is a statistical measure of the performance
of a binary classification test used to measure the rate of the
real positive prediction. This is defined as follows:

Sen. = TP/(TPFN) (4.10)

(c) Specificity (Spe.) is utilized to measure the proportion of
the real negative predication and is defined as follows:

Spe. = TN/(TNFP) (4.11)

(d) Predictive positive value (PPV) is defined as the rate of
positives that correspond to the presence of the condition
described via the formula as below:

PPV = TP/(TPFP) (4.12)

(e) Predictive negative value (PNV) is the ratio of negatives
that correspond to the absence of the condition and is
defined as follows:

PNV = TN/(TNFN) (4.13)

EXPERIMENTAL RESULTS

To conduct the simulation effectively, the same number of
iterations and the same population size were set for particle
swarm optimization (PSO), genetic algorithm (GA), and FOA.
According to our preliminary experiment, when the number
of maximum iteration and population size are, respectively,
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set as 100 and 20, the methods involved result in satisfactory
classification performance. Furthermore, in the experiment,
parameter Z is in range Z ∈ {2−10,1,20

}, parameter g is set
as g ∈ {220,1,10

}. The parameters of each model are as follows:
for FOA-F-SVM, the x and y are denoted to initialize the
location of fruit fly and the search direction ax, bx, ay, and by
are set as 10, 20, 20, and 10, respectively, in the distance
function. For PSO-SVM, the maximum velocity is 0.5 times the
maximum parameter Z. The learning factors Z1, Z2 were set
as 1.6, 1.5, and the intermediate variable w was set as 1 in the
updating velocity function and updating location function. All
experiments were carried out on a desktop computer with a
CPU (2.30 GHz) and 8.00 GB RAM under the MATLAB 2020
programming environment.

The experimental EEG data used to assist the proposed
model were obtained from the University of California, Irvine
Knowledge Discovery in Databases Archive UCI KDD. The EEG
signals were collected from 122 participants, and each subject
performed 120 trials with three types of stimuli (Tao et al., 2020).
The recordings were obtained from 61 channel EEG signals,
two EOG channels, and one reference electrode. There are three
datasets, named SMNI_CMI_- TRAIN, SMNI_CMI_TEST, and
FULL, respectively. In this study, only the first two databases were
utilized because the full datasets contain a few all-zero recordings.
There were 600 recorded files in SMNI_CMI_TRAIN, with each
recording containing the signals from 64 electrodes caps. The 64
electrodes are FC4, FC3, C6, C5, F2, F1, TP8, TP7, AFZ, CP3, CP4,
P5, P6, C1, C2, PO7, FP1, FP2, F7, F8, AF1, AF2, FZ, F4, F3, FC6,
FC5, FC2, FC1, T8, T7, CZ, C3, C4, CP5, CP6, CP1, CP2, P3, P4,
PZ, P8, P7, PO2, PO1, O2, O1, X, AF7, AF8, F5, F6, FT7, FT8, FPZ,
PO8, FCZ, POZ, OZ, P2, P1, CPZ, nd, and Y. The electrodes X
and Y are EOG signals, and nd is reference electrode. The EOG
and nd were removed in our analysis. However, the features were
extracted from 61 channels.

Features Selection Using KST
In this section, six experiments were conducted to select the most
powerful features to classify EEG signals.

In the first experiment, 11 channels were tested (AF1, AF2,
AF7, AF8, AFZ, C1, C2, C3, C4, C5, and C6) to determine
whether these channels were adequate to analyze the alcoholism
signals. Table 1 reports the results of feature selection using KST.
Based on statistical analysis, the results showed that using these
channels could explain 60% of the data.

In the second experiment, the channels AF8, C1, C2, C3,
C4, CP1, CP5, CP6, FC5, FT7, P8, PO8, and P were utilized
in the second experiment below. The outcomes indicate that
the acceptance rate was high, reaching 90%, which means that
the signal in these channels was suitable for detecting the EEG
signals. Table 2 reports the obtained results.

In the third experiment, the number of channels tested was
23. The success rate was 70%. The channels were CP1, CP2, CP3,
CP4, CP5, CP6, CPZ, CZ, F1, F2, F3, F4, F5, F6, F7, F8, FC1,
FC2, FC3, FC4, FC5, FC6, and FCZ. Table 3 reports the results
of experiment 3.

In the fourth experiment, the acceptance rate was 50%. A total
of twenty-eight channels passed the test in this experiment. The

channels used in this experiment were FP1, FP2, FPZ, FT7, FT8,
FZ, O1, O2, OZ, P1, P2, P3, P4, P5, P6, P7, P8, PO1, PO2, PO7, PO8,
POZ, PZ, S1, T7, T8, TP7, and TP8 (Table 4).

In the fifth experiment, the channels AF1, AF2, AF7, AF8, AFZ,
FP1, FP2, FPZ, FT7, FT8, P1, P2, P3, P4, P5, P6, P6, P7, P8, PO1,
PO2, PO7, PO8, POZ, F1, F2, F3, F4, F5, F6, F7, F8, T7, T8, TP7,

TABLE 1 | Feature set outcome of Experiment No. 1.

Features Testing Training Compared with
the p-values

Controlled vs. Alcohol Controlled vs. Alcohol

Mean 0.1088 0.2003 Rejected

Max 0.46 0.342 Rejected

Med 0.0017 2.9480 × 10−09 Accepted

Min 0.011 0.02 Accepted

Mod 0.011 0.02 Accepted

Range 1.7552 × 10−05 0.034 Accepted

Skew 0.1088 0.94 Rejected

Kur 0.1 0.93 Rejected

Std. 2.0212 × 10−04 0.01088 Accepted

Var. 1.7552 × 10−05 0.02003 Accepted

TABLE 2 | Feature set outcome of Experiment No. 2.

Features Testing Training Compared with
the p-values

Controlled vs. Alcohol Controlled vs. Alcohol

Mean 5.5870 × 10−08 0.02585 Accepted

Max 2.0480 × 10−09 0.00455 Accepted

Med 1.7973 × 10−14 3.5202 × 10−10 Accepted

Min 1.4977 × 10−13 0.00165 Accepted

Mod 1.4977 × 10−13 0.00165 Accepted

Range 2.0480 × 10−09 2.6199 × 10−07 Accepted

Skew 0.10875 0.935 Rejected

Kur 0.045 6.1578 × 10−04 Accepted

Std. 0.00465 0.045 Accepted

Var. 1.1088 × 10−08 0.00165 Accepted

TABLE 3 | Feature set outcome of Experiment No. 3.

Features Testing Training Compared with
the p-values

Controlled vs Alcohol Controlled vs Alcohol

Mean 0.055 0.3420 Rejected

Max 0.0259 0.0017 Accepted

Med 0.0113 1.7552 × 10−05 Accepted

Min 1.1615 × 10−12 5.6313 × 10−11 Accepted

Mod 1.1615 × 10−12 5.6313 × 10−11 Accepted

Range 0.05 0.0113 Accepted

Skew 0.2003 0.76 Rejected

Kur 0.5372 0.9360 Rejected

Std. 6.1578 × 10−04 0.011 Accepted

Var. 0.0113 0.002 Accepted
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TABLE 4 | Feature set outcome of Experiment No. 4.

Features Testing Training Compared with
the p-values

Controlled vs Alcohol Controlled vs Alcohol

Mean 0.34 0.2 Rejected

Max 0.53 0.20 Rejected

Med 0.002 0.005 Accepted

Min 0.06 0.2003 Rejected

Mod 0.06 0.2003 Rejected

Range 0.012 0.0017 Accepted

Skew 0.8 0.54 Rejected

Kur 0.026 0.0259 Accepted

Std. 0.005 0.0046 Accepted

Var. 6.1578 × 10−04 0.005 Accepted

TABLE 5 | Feature set outcome of Experiment No. 5.

Features Testing Training Compared with the
p-values

Controlled vs Alcohol Controlled vs Alcohol

Mean 6.1740 × 10−05 0.012 Accepted

Max 2.0212 × 10−04 0.109 Accepted

Med 1.7973 × 10−14 0.03 Accepted

Min 0.34 0.9 Rejected

Mod 0.34 0.9 Rejected

Range 2.0212 × 10−04 0.005 Accepted

Skew 0.55 0.54 Rejected

Kur 0.93 0.4 Rejected

Std. 0.76 0.46 Rejected

Var. 0.1088 0.01 Rejected

TABLE 6 | Feature set outcome of Experiment No. 6.

Features Testing Training Compared with the
p-values

Controlled vs Alcohol Controlled vs Alcohol

Mean 0.045 0.0446 Accepted

Max 0.3420 0.1088 Rejected

Med 6.1740 × 10−05 1.7973 × 10−14 Accepted

Min 1.4977 × 10−13 0.026 Accepted

Mod 1.4977 × 10−13 0.026 Accepted

Range 0.011 0.03 Accepted

Skew 0.1 0.76 Rejected

Kur 0.046 0.034 Accepted

Std. 0.00238 0.01 Accepted

Var. 0.0476 0.02 Accepted

TABLE 7 | Classification accuracy of the comparison among FOA-F-SV,
PSO-SVM, GA-SVM, F-SVM, and SVM.

Approach Accuracy Sensitivity Specificity

FOA-F-SVM 99.2% 98.4% 98.5%

PSO-SVM 95.5% 94.3% 95.9%

GA-SVM 96.5% 95.2% 95.3%

F-SVM 92.5% 91.7% 92.4%

SVM 85.5% 86.2% 84.6%

and TP8 were used in this experiment. The acceptance rate was
very low, that is, 40%. This indicates that the channels used were
not valid for classification (Table 5).

In the sixth experiment, the results obtained from Experiment
No. 6 indicate that the use of 61 channels was efficient in the
analysis. They could, thus, be used to classify EEG signals. The
61 channels were as follows: FC4, FC3, C6, C5, F2, F1, TP8, TP7,
AFZ, CP3, CP4, P5, P6, C1, C2, PO7, FP1, FP2, F7, F8, AF1, AF2,
FZ, F4, F3, FC6, FC5, FC2, FC1, T8, T7, CZ, C3, C4, CP5, CP6, CP1,
CP2, P3, P4, PZ, P8, P7, PO2, PO1, O2, O1, AF7, AF8, F5, F6, FT7,
FT8, FPZ, PO8, FCZ, POZ, OZ, P2, P1, CPZ (Table 6).

As a result, with the highest acceptance rates, the second
and sixth experiments performed the best. The last group of
features utilized to identify each pair of EEG groups (Controlled
vs. Alcoholic) were [Mean, Median, Minimum, Mode, Range,
Kurtosis, SD, and Variance]. Therefore, by conducting a number
of experiments, we were able to thoroughly investigate the feature
selection in order to select the most effective feature set to
recognize EEG groups.

Evaluating the Performance of the
Proposed FOA-F-SVM Model
To evaluate the performance of the FOA-F-SVM in alcoholic
EEG signals, a comparison was made with SVM, PSO-SVM,
GA-SVM, and F-SVM. Table 7 shows the average results of
the comparison among the FOA-F-SVM, PSO-SVM, GA-SVM,
F-SVM, and SVM. Based on the results, the performance of
the FOA-F-SVM attains higher classification accuracy than other
approaches. However, the PSO-SVM and GA-SVM scored the
second highest results, and they outperformed the basic SVM.
These research findings indicate that tuning parameters were
important in improving classification accuracy of EEG signals.
In addition, the classification accuracy obtained by the F-SVM
is higher than the basic SVM.

Figure 4 shows the detailed classification accuracy of 10 runs,
as well the results of FOA-F-SVM, which are up to 98%, while the
results of PSO-SVM and GA-SVM are distributed in the range
from 90 to 94%. While the F-SVM and SVM gained a rate of
accuracy from 86 to 93%. As a result, it can be observed that
the FOA-F-SVM obtained the highest accuracy on each run and
the best value is 100%. However, because of the robustness of the
proposed method, the average result is the highest with 99.2%.

Channel Selection Based on
Classification Accuracy
The accuracy of the proposed model based on 61-channel EEG
signals is shown in Figure 5. In this experiment, the features
were extracted from each channel and forwarded to the proposed
model. The results show that not all channels yielded high
classification accuracy. As a result, 13 optimal channels, including
AF8, C1, C2, C3, C4, CP1, CP5, CP6, FC5, FT7, P8, PO8, PZ, were
selected and used to classify EEG signals as shown in Figure 5.

The results in Figure 5 are compatible with the results
obtained by statistical metrics in the feature selection and
enhanced the results (not all channels gave high classification
accuracy). The present study thus demonstrates the ability
of the proposed model to assess alcoholic EEG signals from
multichannel EEG signals. The extracted features from electrodes
C1, C3, and FC5 were found to be significantly effective in
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FIGURE 4 | The detailed classification accuracy of 10 folds.

FIGURE 5 | The accuracy based on EEG channels.

classifying EEG signals: an accuracy of 87.6 % was achieved. In
addition, it was found that when the 13 channels were used to
extract the features, the classification accuracy was close to the
whole 61-channel performance. Table 8 presents the classification
accuracy based on the number of channels.

DISCUSSION

This study carried out an analysis of EEG signals to detect the
prevalence and health effects of alcoholism from multichannel
EEG signals. We integrated the CT with BS, CT-BS, to reduce

TABLE 8 | Classification accuracy based on the number channels.

Channel No. Accuracy Sensitivity Specificity

C1, C3 and FC5 85.6% 83.8% 82.4%

AF8, C1, C2, C3, C4, CP1, CP5,
CP6, FC5, FT7, P8, PO8, P

99.4% 98.7% 99.1%

All 61 channels 99.5% 98.3% 99.2%

the dimensionality of EEG signals. Then, the covariance matrix
with its eigenvalues was applied to investigate the EEG signals,
and to extract the important features. Arithmetic operators based
on the KST technique were utilized to remove the noisy features
from the obtained features set. The FOA-F-SVM was proposed to
classify the EEG signals. The proposed FOA-F-SVM classification
mode was compared with different methods such as SVM, PSO-
SVM, GA-SVM, and F-SVM. In this section, we summarized the
following main findings:

(1) The novelty of this article lies in the utilization of CT and
BS (CT-BS) coupled with the covariance matrix for feature
extraction. It has been shown that the low dimensionality
of EEG signals achieved by CT-BS can efficiently improve
the classification rate. In comparison to other dimension-
reduction techniques such as linear discriminate analysis
(LDA) and PCA, the experimental results indicate that
CT-BS performs better than PCA and LDA, and the
classification rate of the FOA-F-SVM was increased with
CT-BS by more than 9%. Table 9 reports the classification
rate based on dimension reduction techniques.
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TABLE 9 | Classification rate based on different features reduction algorithms.

Technique \metrics Accuracy Sensitivity Specificity

PCA with OA-F-SVM 89.1 90.2 88.2

LDA with OA-F-SVM 87.4 85.3 86.3

CT-BS with OA-F-SVM 99.2 98.1 99.3

(2) The proposed approach is a simple classification method
for the identification of normal versus alcoholic EEG
signals. The complexity of the proposed method was tested
using a different number of samples. The results of the
simulation showed that the proposed method achieved
a better performance among traditional classification
algorithms with acceptable time consumption. Therefore,
this method could be a practical and feasible model for a
real-time brain–computer interface (BCI) system. Figure 6
reports the run time of the proposed classification model
compared with LS-SVM, k-nearest, f-SVM, and GA-SVM.
It can be noticed that the proposed model is faster than
LS-SVM, k-nearest, f-SVM, and GA-SVM.

(3) The proposed model is still at the experimental stage.
Larger datasets are required to make further validation of
this model before it could be utilized as a tool in real-
time applications.

(4) In this article, a small EEG dataset was used to evaluate the
proposed model. The next work will focus on the use of a
large EEG dataset such as EEG sleep stages, aesthetic EEG
data, to analyze the performance of the proposed model
under a huge dataset. This can guide us to improve the
effectiveness of the proposed model.

(5) Although the CT-BS technique improved the performance
of the classification model, it took more time than the PCA
and LDA. In the future, we will work on how to reduce the
complexity time of the CT-BS model.

(6) Comparison of classification accuracy of the proposed
model FOA-F-SVM with KNN, k-means, and SVM: In this
experiment, on the performance of the proposed model,
FOA-F-SVM based on 13 EEG channels was reported.
For further verification and to reach the highest level of
reliability, the results were compared with KNN, k-means,

FIGURE 6 | A Comparison of run time among the proposed model with other.

FIGURE 7 | A Comparison among the proposed model with SVM, k-means, and KNN.
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TABLE 10 | Comparison with existing methods using the same database.

Authors Features/ techniques Analysis Accuracy

Acharya et al. (2012) APPENT, SAMENT, LLE SVM 91.7%

Faust et al. (2013b) WPT, energy measures KNN 95.8%

Patidar et al. (2017) TQWT, CE LS-SVM 97.02%

Faust et al. (2013a) HOS cumulants FSC 92.4%

Kannathal et al. (2005) CD, LLE, entropy, H Unique ranges 90%

Anuragi and Sisodia (2020) Empirical wavelet transform LS-SVM, KNN 98.75%

Bavkar et al. (2021) Empirical Mode Decomposition KNN 93.87%

The proposed model CT-BS-Cov-Eig FOA-F-SVM 99%

and SVM. To the best of our knowledge after extensive
research, this is the first time the FOA-F-SVM model has
been proposed and applied to the analysis and detection of
alcoholism EEG signals. The results showed that compared
to other algorithms, the proposed model FOA-F-SVM
has promising performance that can be adopted as a
classification technique of alcoholism EEG signals. The
database SMNI_CMI_TRAIN was used for the training,
and the database SMNI_CMI_TEST was utilized for the
testing set. To show clearly the classification results based
on the 13 selected channels, Figure 7 depicts the accuracy
of the proposed model FOA-F-SVM with KNN, k-means,
and SVM. The proposed model outperformed KNN,
k-means, and SVM over all the 13 channels. In addition,
the proposed model achieves 99% when all channels are
used for the classification of EEG signals.

(7) Many studies were focused on finding a system that could
be utilized for the automated detection of alcoholism
EEG signals to estimate the effect of treatment and help
significantly with clinical diagnosis. In this point, we shall
review some of the previous studies that used the same data
as this work did; for each, we shall provide a comparison
of results. The identification of nonlinear features such
as SAMENT, APPENT, largest Lyapunov exponent (LLE),
and higher-order spectra (HOS) with LS-SVM classifier
was used by Acharya et al. (2012), who obtained an
average classification accuracy of 91.7%. However, the
classification accuracy that is achieved by the proposed
model is significantly higher than that of Acharya et al.
(2012). Another group of researchers (Faust et al., 2013b)
has improved an automated system utilizing wavelet
packet-based energy measures with the KNN classifier; this
method achieved a classification accuracy of 95.8%, which
is less than the rate obtained by the proposed model.

A study by Patidar et al. (2017) suggested an automated system
for the diagnosis of alcoholism. The study utilised TQWT to
decompose EEG signals into various bands (SBS). Compared
to the results obtained by the proposed method, the model
of Patidar et al. (2017) obtained a classification accuracy of
97.02%, which is, again, less than our classification accuracy
of 99%. For the detection of alcoholic-related changes in EEG
signals, (Pan, 2012) have proposed the use of HOS cumulants-
based features. Based on the fuzzy Sugeno classifier (FSC),

the investigators achieved a classification accuracy of 92.4%,
which is considerably less than the 99% obtained in the present
work. Finally, the largest Lyapunov exponent (LLE), entropies,
correlation dimension (CD), and Hurst exponent (H) were
proposed by (Kannathal et al., 2005) to obtain the features for
detecting alcoholism from EEG signals: the rate of accuracy was
90%, which is considerably less than the classification accuracy
achieved by the model proposed in this study. Anuragi et al.
(Anuragi and Sisodia, 2020) proposed an adaptive filtering model
to extract time–frequency-domain characteristics from Hilbert–
Huang transform. LS-SVM and KNN were used to classify the
extracted features into alcoholic and normal signals. Bavkar et al.,
2021) also applied empirical mode decomposition to classify
alcoholic EEG signals. The extracted features using empirical
mode decomposing were sent to the KNN classifier.

The results in Table 10 show that the method proposed
was superior to other studies and obtained a higher level of
accuracy. After conducting many experiments and various types
of comparisons, it has become clear that the proposed CT-BS-
OFA-F-SVM model has a promising future in analyzing and
classifying EEG signals with a high rate of accuracy. It was
also noted that most of the previous studies were working on
developing one part of the analysis, whereas, in this study, the
focus was on most of the analysis steps.

CONCLUSION

Accurate detection algorithms can be used effectively to help
clinical research as a fast, reliable, and easy-to-use tool in
the diagnosis and monitoring of neurological disorders and
in alcoholism. We developed an effective method that was
designed for sampling by integrating CT and BS (CT-BS)
in one phase. To detect and analyze abnormalities in the
EEG signal, the eigenvalues of the covariance matrix were
investigated utilizing a statistical method that extracted ten
statistical features from the eigenvalues of the covariance matrix.
To classify EEG signals, the FOA-F-SVM was proposed to
detect and analyze multichannel EEG signals. The proposed
model was compared to previous studies, and the results
showed that the proposed model was superior, with a high
accuracy rate of 99%.

The acquired results clearly illustrate the superior
performance of the proposed CT-BS model coupled with
FOA-F-SVM to the existing state-of-the-art methods. The
proposed model can be used to assist neurologists and other
medical specialists in the precise diagnosis of alcoholism EEG
signals. Future studies may investigate the improvement of the
performance of the proposed model by decreasing the number
of features used in this initial study. Also, because there is a
great similarity between the results of feature selection and
the results of channel selection, the possibility of proposing
and implementing feature selection methods will be studied to
find the optimal channels. Furthermore, with regard to the few
numbers of studies focused on designing feature extraction as
well as a detection model for the reliable diagnosis of alcoholism
EEG signals, there is a need for further research in this area.
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Absence seizures—generalized rhythmic spike-and-wave discharges (SWDs) are

the defining property of childhood (CAE) and juvenile (JAE) absence epilepsies.

Such seizures are the most compelling examples of pathological neuronal

hypersynchrony. All the absence detection algorithms proposed so far have been

derived from the properties of individual SWDs. In this work, we investigate EEG

phase synchronization in patients with CAE/JAE and healthy subjects to explore

the possibility of using the wavelet phase synchronization index to detect seizures

and quantify their disorganization (fragmentation). The overlap of the ictal and

interictal probability density functions was high enough to preclude e�ective

seizure detection based solely on changes in EEG synchronization. We used a

machine learning classifier with the phase synchronization index (calculated for

1 s data segments with 0.5 s overlap) and the normalized amplitude as features

to detect generalized SWDs. Using 19 channels (10-20 setup), we identified

99.2% of absences. However, the overlap of the segments classified as ictal with

seizures was only 83%. The analysis showed that seizures were disorganized

in approximately half of the 65 subjects. On average, generalized SWDs lasted

about 80% of the duration of abnormal EEG activity. The disruption of the ictal

rhythm can manifest itself as the disappearance of epileptic spikes (with high-

amplitude delta waves persisting), transient cessation of epileptic discharges, or

loss of global synchronization. The detector can analyze a real-time data stream.

Its performance is good for a six-channel setup (Fp1, Fp2, F7, F8, O1, O2), which

can be implemented as an unobtrusive EEG headband. False detections are rare

for controls and young adults (0.03% and 0.02%, respectively). In patients, they

are more frequent (0.5%), but in approximately 82% cases, classification errors

are caused by short epileptiform discharges. Most importantly, the proposed

detector can be applied to parts of EEGwith abnormal EEG activity to quantitatively

determine seizure fragmentation. This property is important because a previous

study reported that the probability of disorganized discharges is eight times

higher in JAE than in CAE. Future research must establish whether seizure

properties (frequency, length, fragmentation, etc.) and clinical characteristics can

help distinguish CAE and JAE.

KEYWORDS

epilepsy, absence seizure, synchronization, wavelets, seizure detection, childhood

absence epilepsy, juvenile absence epilepsy, seizure fragmentation
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1. Introduction

Idiopathic generalized epilepsies (IGEs) are a subgroup

of genetic generalized epilepsies (GGEs), composed of four

syndromes: childhood absence epilepsy (CAE), juvenile absence

epilepsy (JAE), juvenile myoclonic epilepsy (JME), and epilepsy

with generalized tonic-clonic seizures alone (GTCA) (Hirsch et al.,

2022). Absence seizures—generalized rhythmic (2.5–5.5 Hz) spike-

and-wave discharges are the defining property of CAE and JAE.

They can also be observed in about 33% of patients with JME.

CAE starts in otherwise normal children between 4 and 10 years

of age and is more common in girls (60 to 75% of cases). It accounts

for approximately 18% of epilepsy in school-aged children. Typical

absence seizures begin suddenly and, in most children, lead to a

deep loss of awareness and interruption of previously conducted

activity. Seizures can be accompanied by staring, loss of facial

expression, oral/manual automatism, blinking, or eye opening.

Return to regular activity seems immediate, although children may

initially be confused as they reorient themselves. The duration of

seizures, which can occur multiple times a day, typically varies

between 3 and 20 s, with a median of 10 s. CAE relapses in early

adolescence in 60% of patients. In the rest, the disease can evolve

into other IGE syndromes.

JAE is less common than CAE, accounting for 2.4–3.1% of

new-onset epilepsy in children and adolescents, with a nearly

equal distribution between men and women. However, it may be

underdiagnosed as absences are less frequent (less than daily) and

more subtle (less complete impairment of awareness). The age of

onset is 12 ± 3 years (Asadi-Pooya et al., 2013). The ictal EEG

is similar in CAE and JAE. However, disorganized (fragmented)

discharges, defined as brief (<1 s) and transient interruptions in

the ictal rhythm, are eight times more frequent in JAE (Sadleir

et al., 2009). In most patients with JAE, lifelong seizure control

pharmacotherapy is required.

The diagnosis of IGE requires the analysis of long video EEGs

(on average about 30 min long) to detect seizures, their clinical

manifestations (consciousness impairment, motor symptoms) and

abnormal features in the interictal EEG. The 2010 Childhood

Absence Epilepsy Study (Glauser et al., 2013) showed that after 1

year, the initial seizure-control pharmacotherapy was effective only

in 37% of patients with CAE and JAE. Therefore, follow-up EEG

recordings are necessary to ensure treatment efficacy and minimize

potential side effects. It should be noted that parents notice only a

small fraction (approximately 6%) of absences (Keilson et al., 1987),

the estimate corroborated by a more recent study (Akman et al.,

2009).

Low-cost portable EEG devices connected to the Internet

(Krigolson et al., 2017) can be instrumental in personalizing

pediatric epilepsy management. Children and adolescents may be

more willing to tolerate regular EEGmeasurements if incorporated

into daily routines, such as watching cartoons, playing mobile

games, or listening to music. The potential benefits of remote long-

termEEGmonitoring include facilitation of diagnosis, personalized

drug titration, and determining the duration of pharmacotherapy.

Consequently, there is a strong demand for fast and accurate

computer seizure detection that can be used on devices with

as few EEG channels as possible. Global synchronization is the

most conspicuous property of EEG dynamics during absence

seizure. However, all the absence detection algorithms proposed

so far (Adeli et al., 2003; Subasi, 2007; Sitnikova et al., 2009;

Ovchinnikov et al., 2010; Xanthopoulos et al., 2010; Petersen et al.,

2011; Duun-Henriksen et al., 2012; Bauquier et al., 2015; Zeng

et al., 2016; Grubov et al., 2017; Kjaer et al., 2017; Tenneti and

Vaidyanathan, 2018; Dan et al., 2020; Glaba et al., 2021; Japaridze

et al., 2022) exploit only the properties of SWD complexes. In

this work, we investigate EEG phase synchronization in patients

with CAE/JAE and healthy subjects to explore the possibility

of using the phase synchronization index to detect seizures and

characterize their disorganization. The qualitative assessment of

absence fragmentation could be used to discriminate between CAE

and JAE, an important clinical problem.

2. Materials and methods

2.1. EEG recordings

The data set used in our previous study (Glaba et al., 2021) was

slightly modified and expanded by routine EEG of healthy young

adults (12 women and 7 men, mean age 22 years, range 20–24

years). For these adults, the EEG was recorded for 8 min, the first

half in closed eyes and the second in open eyes condition. The

recordings were made with Elmiko Digitrack (BRAINTRONICS

B.V. ISO-1032CE amplifier, 250Hz sampling frequency, impedance

below 5k�). The ethics committee of the Warsaw Institute of

Psychiatry and Neurology approved the reanalysis of the data.

Subjects gave their informed consent.

The ethics committee ofWroclawMedical University approved

a retrospective analysis of routine anonymized video EEG

recordings of patients (36 with CAE and 29 with JAE) as well as

30 EEGs of controls of the same age (Glaba et al., 2021). Epilepsy

syndrome was established based on age of onset, the properties of

the first video-EEG, and neuroimaging. Consequently, diagnosis

should be considered as preliminary. EEGs were acquired with

Elmiko Digitrack (BRAINTRONICS B.V. ISO-1032CE amplifier)

or Grass Comet Plus EEG (AS40-PLUS amplifier) using a sampling

frequency of 200 or 250 Hz. The international 10-20 standard was

used to arrange 19 Ag/AgCl electrodes (impedance below 5k�).

The total duration of the EEG was equal to 37 and 9 h for the

patients and controls, respectively.

All EEGs were acquired with the reference electrode mounted

on the subject’s forehead.

We used two filters for EEG preprocessing: a second-

order infinite impulse response (IIR) and a 6th-order high-pass

Butterworth with a cutoff frequency of 0.5 Hz. These filters remove

50-Hz power line noise and EEG baseline drift, respectively.

2.2. Synchronization matrix

We quantify the EEG synchronization using a matrix made

up of pairwise frequency-dependent synchronization coefficients

γ (k, l) calculated for EEG channels k and l (k, l = 1..19). γ (k, l)

can be defined with the help of the complex continuous wavelet
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transform (CWT) (Lachaux et al., 1999):

T[s](a, t0) =
1√
a

∫ +∞

−∞
s(t)ψ∗

(

t − t0

a

)

dt (1)

which is the convolution of the signal s(t) with waveletsψ(a, t0).

Such wavelets are generated from the mother function ψ by

translation and scaling: ψ(a, t0) = ψ(t − t0/a) (Mallat, 1999).

Motivated by the results of the previous study (Glaba et al., 2021),

we used the complex Morlet wavelet (Addison, 2017, 2018):

ψ(t) = 1

π1/4
e2π ifcte−t2/2 (2)

whose Fourier transform ψ̂(f ) is given by

ψ̂(f ) =
√
2 4
√
πe−2π2(f−fc)2 . (3)

The real parameter fc is called the center frequency, since it

equals themaximumpoint of the wavelet’s Fourier power spectrum.

The scale a corresponds to the following pseudo-frequency:

fa =
fc

a
. (4)

The instantaneous phase of a signal s can be defined as

φ(t0, fa) = −i log

[

T[s](a, t0)

|T[s](a, t0)|

]

, (5)

where i is an imaginary number. The distribution P[1φ(k, l)] of

the phase difference1φ(k, l) = φk − φl can be used to characterize

the synchronization between two EEG channels. A uniform

distribution corresponds to the absence of synchronization

(two signals are statistically independent). In contrast, a well-

pronounced peak in the distribution is a manifestation of phase

locking, which means that one time series tracks the dynamics of

the other. The stability of the phase difference1φ is quantified with

the index γ (k, l) (Quiroga et al., 2002; Latka et al., 2005)

γ (k, l) = 〈sin1φ(k, l)〉2 + 〈cos1φ(k, l)〉2. (6)

The angle brackets in the above equation denote the temporal

average of the phase-difference fluctuations. The synchronization

index can have values between 0 and 1, and in the case of

human EEG, it is frequency dependent. When the distribution

of phase differences is uniform, the time averages of both

trigonometric functions in Equation (6) are zero which in

turn makes the synchronization index equal to zero. From the

trigonometric identity, it follows that γ = 1 corresponds to perfect

synchronization (phase locking of two EEG channels).

The average synchronization index γ is the average value of the

non-diagonal elements of the synchronization matrix:

γ =
∑

k∈SN

∑

l∈SN ,k>l
γ (k, l), (7)

where SN denotes subsets of 10-20 channels. We calculate γ for

all 19 channels (N = 19) and for three subsets (N < 19):

• S4 (Fp1, Fp2, T5, T6)

• S6 (Fp1, Fp2, F7, F8, O1, O2)

• S12 (Fp1, Fp2, F7, F8, F3, F4, P3, P4, T5, T6, O1, O2).

The electrode arrangement in the above subsets is similar,

but not always identical, to the low-cost EEG headsets currently

available on the market (Pu et al., 2021). The applicability of such

headsets to home monitoring of pediatric patients was the main

reason for testing different SN .

The channel synchronization index is defined as follows:

γ (k) =
∑

k,l∈SN ,k>l
γ (k, l). (8)

We calculate phase synchronization for 1-s intervals using

a half-second overlap. We use the overlap to simulate live data

stream analysis. For patients, there were 7,270 ictal and 266,653

interictal data segments. 1,540 windows partially overlapped

absence seizures. The partitioning of the controls’ EEG yielded

58,460 segments. For students, we obtained the 9,064 and 9,121

intervals for closed and open eyes, respectively.

The value of the synchronization index γ depends on the center

frequency of the Morlet wavelet fc and the pseudofrequency fa. We

use a grid search to determine optimal values for absence detection.

In particular, we search for fc and fa that maximize the difference

between ictal and interictal synchronization.

Wewould like to emphasize that the synchronization properties

depend on the choice of reference electrode (Dominguez et al.,

2005).

In this work, we used short EEG data segments. Consequently,

when calculating the CWTwith the help of a fast Fourier transform,

boundary effects must be considered.

2.3. Absence seizure classifier

Prominent SWD and global EEG synchronization are

hallmarks of absence seizures (Figure 1). Therefore, we decided to

detect seizures using the normalized amplitude of the EEG A
(n)
m

and the synchronization index γm as machine learning features.

The former is defined as

A(n)
m = Am

Aref
, (9)

where Am is the average absolute value of the EEG signal

in segment m (we average across all channels). Aref is the mean

absolute value calculated for the 30 s segment taken from the

interictal beginning of the EEG recording. Normalization by Aref

was necessary because the amplitude of EEG in children can

decrease significantly with age and depends on the impedance of

the electrodes.

We use the k-nearest neighbor (k-NN) classifier implemented

in Matlab R2022a (MATLAB, 2022) Machine Learning Toolbox

for absence detection. We accept the default values of the

model parameters (10 neighbors, the Euclidean distance, data

point scaling, and no weighting function). We employ leave-one-

out cross-validation (LOOCV)—the number of folds equals the

number of patients (65). For each patient, k-NN is built using the

features extracted from the other 64 patients and applied to their
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FIGURE 1

(A) Archetype of high-amplitude, continuous generalized spike and wave discharges with prominent epileptic spikes. The absence seizure in (B) is

briefly interrupted two times. Panels (C, D) show the EEG from Cz channel (top panel) as well as the corresponding time series of the wavelet power

(middle panel) and the global synchronization index (bottom panel). The wavelet power and synchronization index were calculated using fc = 1 Hz

and fa = 12 Hz. These case studies demonstrate that global synchronization decreases when epileptic activity subsides.

segmented EEG (1 s windows with 0.5 s overlap). We prepare the

training set as follows. We select only those ictal windows whose

mean γ is greater than a threshold determined from the interictal

synchronization distribution. In particular, for this threshold, 95%

of interictal segments have a smaller mean γ . We disregard all data

windows that partially overlap absence seizures. The sets of ictal

and interictal segments are highly unbalanced (7,270 vs. 266,653).

Therefore, we randomly select only a small fraction of the interictal

segments for the training set. We use the 1:3 ratio of the ictal and

interictal windows.

We evaluated the performance of the detector in the same way

as in our previous article (Glaba et al., 2021) using the relative

overlap (OVR) of segments classified as ictal with absence seizures

and relative duration of false positives (PERR). During the PERR

computation, we apply the logical OR function to determine the

status of the common part of two consecutive EEG data segments.

In other words, the common part is ictal if any segment is ictal. We

also report the number of false positives (FP) and the number of

different trains of misclassified segments (MT).

Supplementary Figure 1 elucidates the relationship between

the number of erroneously classified EEG segments and PERR.

For overlapping segments, this relationship can sometimes be

counterintuitive.

Short (<2 s) epileptiform discharges, quite common in patients

with CAE/JAE, usually do not produce clinical manifestations

(Szaflarski et al., 2010). Therefore, we also tested the possibility

of reducing the number of false positives by post-processing

the k-NN classification results. In particular, we labeled any

isolated ictal segment as non-ictal. In other words, the shortest

possible ictal interval can have a length of 1.5 s (two consecutive

segments).

2.4. Seizure fragmentation

We apply the absence detector described in Section

2.3 (with the post-processing turned off) to the parts of

the EEG marked by neurologists as abnormal activity.

Then, we calculate the percentage overlap of the segments

classified as ictal with the analyzed fragment. As before, the

common part of the adjacent segments is considered ictal if

at least one of the segments is ictal. Seizure fragmentation
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is defined as

SFRAG = 100%− OVR. (10)

3. Results

3.1. Synchronization

When calculating γ , we used fc = 1 Hz and fa = 12

Hz. For these values, the percentage difference between ictal and

interictal synchronization was highest (168%). In the same vein, we

determined these parameters for each patient. The median values

were similar: fc = 0.8 Hz and fa = 13 Hz. Supplementary Figures 2,

3 elucidate the determination of the wavelet parameters.

Figure 1A shows an archetypal absence seizure with continuous

high-amplitude generalized SWDs. In contrast, the seizure in

Figure 1B was briefly interrupted twice. For both absences, for the

chosen fc and fa, the power |T|2 peaks at the location of epileptic

spikes (Figures 1C, D). It is apparent that wavelet power and

global synchronization are low when epileptic activity subsides. In

Figure 2, we compare the ictal synchronization matrices calculated

for the EEG segments presented in Figures 1A, B.

Figures 3A, B show that γ increases at the beginning and on

average gradually subsides towards the end of the seizure. For the

eight types of data segments (labeled from 0 to 7) presented in these

figures, the average γ was equal to 0.28± 0.09, 0.46± 0.17, 0.62±
0.19, 0.79±0.18, 0.75±0.19, 0.58±0.19, 0.44±0.16, 0.36±0.12. γ

in ictal segments (1 to 7) was significantly higher than the interictal

baseline 0.28± 0.09 (p < 0.0001 for the Mann–Whitney test).

The probability density function (PDF) of γ for the interictal

and ictal segments strongly overlaps. In Figure 3C, PDF was

calculated using global synchronization for the 19 channels (S19)

while Figure 3D shows PDF for the four-channel subset S4 (Fp1,

Fp2, T5, T6). The cut-off value for which 95% of the interictal

segments had smaller synchronization was equal to 0.49, 0.65, 0.45,

and 0.48 for S19, S12, S6, and S4, respectively.

3.2. Seizure detection

We detected absences with the k-NN classifier using

synchronization and normalized amplitude as features.

Supplementary Table 1 shows that the accuracy of other classifiers,

such as neural networks or decision trees, is comparable. In actual

implementations, these classifiers would be preferable because they

do not require the attachment of training samples (feature vectors

with the corresponding labels). We chose k-NN because of its short

training time, which speeds up cross-validation.

Figure 4 elucidates the building of a seizure detector for patient

P1, who had six absences with a mean duration of 10.5 s. One

of the absences of P1 is presented in Figure 1A. The training set

was created using data from the other 64 patients using the 19

channels (S19) or the four-channel subset S4. The scatter plots

in Figures 4A, C show the spread of the synchronization and the

normalized amplitude for S19 and S4, respectively. Patient P1’s EEG

was partitioned into 3,598 windows. 108 were fully embedded in

the seizures, while 24 partially overlapped them. Please note that for

testing purposes, we consider any data segment that even partially

overlaps a seizure as ictal. Of the 132 ictal windows, 14 (FN =

10.6%) and 17 (FN = 12.9%) were misclassified for S19 and S4,

respectively. For both subsets, all 3,464 interictal segments were

correctly labeled.

Supplementary Figure 4 shows the construction of a seizure

detector for patient P18. One of his absences is presented in

Figure 1B.

The overlap OVR was the largest for S19 (82.90 ± 20.83%) and

the smallest for S4 (69.31 ± 25.09%) (Table 1). For S19, PERR was

equal to 0.87 ± 1.23%, 0.12 ± 0.26%, 0.07 ± 0.14% for patients,

controls, and young adults, respectively. The corresponding values

for S4 were 0.68± 1.32%, 0.03± 0.07%, and 0.02± 0.06%.

The false detection rate of the patients was five times higher

than that of controls (0.5 vs. 0.1%) for S19 setup (Table 1). For

smaller subsets, the detector performance was markedly better.

For S6, the false detection rate was equal to 0.5, 0.03, and 0.04%

for patients, controls, and young adults, respectively. Comparison

of the number of distinct trains of misclassified segments with

the number of false positives reveals that parts of the EEG

marked incorrectly as ictal are, on average, shorter than 2 s. We

found by visual inspection that about 82% of the false positives

were caused by short epileptiform discharges, which are quite

common in epilepsy patients and rare in controls and young

adults. The EEG artifacts comprise the rest: 7% were caused

by spike-like high-amplitude artifacts and 7% by artifacts of

more complicated morphology. The seizure detection performance

for each patient is presented in Supplementary Table 2. The

post-processing cuts approximately in half the number of FP

(Table 1).

For two patients, P1 and P18, we built the detector for different

combinations of wavelet parameters fc and fa. OVR, PERR, and FP

for these calculations are presented in Supplementary Tables 3, 4.

The results show that the detector performance is weakly affected

by small changes in the wavelet parameters. For example, for P1,

the grid search yielded fc = 0.8 Hz and fa = 10 Hz. For these values

OVR = 99.17%, PERR = 0.30%, and FP = 1. For the standard

parameters fc = 1.0 Hz and fa = 12 Hz (used for all subjects),

we obtained OVR = 99.15%, PERR = 0.22%, and FP = 0. For

P1, for 10 runs, we obtained the following average values: OVR =
99.16± 0.00%, PERR = 0.22± 0.01, and FP = 1± 0. For P18, the

corresponding values were equal to 98.38± 0.15%, 1.25± 0.02, and

FP = 33± 1.

Supplementary Table 5 shows the group average characteristics

of seizure detection for different combinations of wavelet

parameters. There are a number of combinations (e.g., fa = 11

Hz and fc = 1 Hz or fa = 14 Hz and fc = 1.4 Hz) for which

the detection performance is comparable (the trade-off between

the overlap and the number of false positives) with fa = 12

Hz and fc = 1 Hz used in this study. We chose the latter

parameters because they have a clear physical interpretation (the

difference between interictal and ictal synchronization is highest)

and the number of false positives for the controls is acceptable

(Supplementary Table 6).
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FIGURE 2

Synchronization matrices for the regular (A) and disorganized (B) seizure. These seizures are shown in Figure 1.

3.3. Seizure fragmentation

In Figure 5, we compare the EEG dynamics with the classifier

output (detection function). SWDs do not emerge simultaneously

from the background EEG in all channels. At the end of the

seizure, ictal activity gradually subsides: epileptic spikes disappear,

the amplitude of the EEG decreases, and global synchronization is

lost. However, the initial and final transients were very short (< 0.5

s), and consequently, the first and last segments were classified as

ictal. Two segments during which the ictal rhythm was interrupted

were correctly identified. For the absence seizure presented, SFRAG

was equal to 6.4%. Two EEG intervals in Figure 5 were marked

blue to draw attention to the limitations of fragmentation analysis.

First, seizure disorganizations shorter than 0.5 s are, in most cases,

undetected. Second, the duration of the disorganization can be

underestimated because of the size of the data window used to

calculate the synchronization.

We analyzed all EEG segments classified as noictal that were

fully embedded in seizures to find that in approximately 98% of

these segments, seizure activity was disorganized or SWDs were

simply absent. The other 2% contained artifacts.

For S19 set-up, the group-averaged SFRAG was equal to 20 ±
24%. For 46 patients (71%), the average fragmentation of seizures

was less than 25% (Figure 6A). Of the 385 absences, 280 (73%)

had SFRAG smaller than 25% (Figure 6B). Disorganization did not

occur in 120 cases. For such seizures, SFRAG < 5%.

SFRAG was equal to 18± 24%, 24± 26%, and 30± 29% for S12,

S6, and S4, respectively.

4. Discussion

An epileptic seizure is “a transient occurrence of signs and/or

symptoms due to abnormal excessive or synchronous neuronal

activity in the brain” (Fisher et al., 2005). Childhood and

juvenile absences are the most compelling examples of pathological

neuronal synchrony. Interestingly enough, all the absence detection

algorithms proposed so far (Adeli et al., 2003; Subasi, 2007;

Sitnikova et al., 2009; Ovchinnikov et al., 2010; Xanthopoulos et al.,

2010; Petersen et al., 2011; Duun-Henriksen et al., 2012; Bauquier

et al., 2015; Zeng et al., 2016; Grubov et al., 2017; Kjaer et al.,

2017; Tenneti and Vaidyanathan, 2018; Dan et al., 2020; Glaba

et al., 2021; Japaridze et al., 2022) have been derived from the

properties of individual SWD complexes. Figures 3C, D provide

an explanation, the overlap of the ictal and interictal probability

density functions is so large that it precludes seizure detection based

solely on changes in EEG synchronization. This conclusion agrees

with previous studies on epileptic synchronization (Altenburg et al.,

2003; Slooter et al., 2006).

This paper used the phase-synchronization index and the

normalized amplitude as classification features. False detections

are rare in controls and young adults. Although the PERR for the

patients (0.55% for S6) was even lower than that of the detector

we had presented earlier (Glaba et al., 2021), the false detection

rate per hour (8/h) was an order of magnitude higher. However,

visual inspection of the EEG showed that 82% of the false positives

corresponded to epileptiform discharges.

Of 385 absences, all but three were identified (accuracy (99.2%).

Misclassified seizures were highly disorganized. The group-average

overlap of EEG segments classified as ictal with seizures never

exceeded 83%. There are two reasons for such a low value. The first

is trivial, since we calculate γ for 1-s sliding windows. For windows

that only partially cover the absences, γ is inevitably lower, which

can lead to errors. The second reason is more fundamental and

can be traced back to the disorganization of absences. Non-ictal

classification within abnormal EEG activity was always associated

with such disorganization. Apart from the segments that partially

overlap seizures, we did not find a convincing example of a false

negative.

The detection algorithm employs short data segments, making

it suitable for real-time EEG analysis as several algorithms

described previously (Xanthopoulos et al., 2010; Petersen et al.,

2011; Duun-Henriksen et al., 2012; Kjaer et al., 2017; Dan et al.,

2020; Japaridze et al., 2022). It is computationally more expensive
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FIGURE 3

EEG synchronization during absence seizures. (A) Topographic map of channel synchronization (cohort average) for all interictal segments (0), the

first window that partially overlaps seizures (1), the second partially overlapping (2), the first fully embedded in the seizure (3), all embedded without

the first and last (4), the last embedded (5), the last but one overlapping (6) and last overlapping (7). (B) Global synchronization boxplots for data

segments 0–7 (segments from all patients were used). (C, D) Probability density function (PDF) of the average synchronization index for the 19

channels (S19) and the four-channel subset S4 (Fp1, Fp2, T5, T6), respectively. One can see that global synchronization is high during seizures and

that there is a strong overlap of the interictal and ictal distributions of the synchronization index.

than those derived from the properties of SWDs. This drawback

is largely irrelevant today, except for portable EEGs with severely

limited computing power. It should be noted that while the

spectral and amplitude properties of EEG change significantly

during maturation (Schomer and da Silva, 2018), the detector

works equally well in children, juveniles, and young adults. The

classification accuracy is good for a six-channel setup (Fp1, Fp2,

F7, F8, O1, O2), which can be implemented as an unobtrusive

EEG headband—a crucial requirement from the point of view of

pediatric applications.

In the previous paper (Glaba et al., 2021), we used a delta

frequency envelope to identify abnormal EEG activity. However,

to detect absence seizures, we had to use two arbitrarily chosen

heuristic criteria. First, we checked whether there were epileptic

spikes in the envelope by calculating the percentage of EEG samples

for which the beta wavelet power was greater than the threshold

value. Second, if the envelope was shorter than 5 s, we also

calculated the variance of the beta wavelet power. Although this

algorithm was very fast and worked well, the approach presented

here is not only more elegant, but it also allows quantifying seizure

fragmentation.

The proposed detector cannot determine the fragmentation

of the seizure in the live data stream. This can only be

accomplished retrospectively when the detector (with post-

processing turned off) is applied to EEG segments with abnormal

EEG activity. Such segments can be marked by a neurologist

or by building a delta wave envelope as demonstrated in Glaba

et al. (2021). To our knowledge, we present the first qualitative

characterization of absence seizure fragmentation. The analysis

showed that seizures were disorganized in approximately half
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FIGURE 4

Example of building a k-NN seizure detector with the leave-one-out cross-validation (LOOCV) for patient P1. We used the global synchronization

index and mean normalized EEG amplitude as the features. The learning set comprised randomly chosen interictal and segments fully embedded in

absences with average synchronization greater than the cut-o� value. We used 3:1 ratio of interictal to ictal windows. Panels (A, C) show the spread

of the data generated for all 19 channels of 10-20 EEG setup (S19) and the subset S4 (channels Fp1, Fp2, T5, and T6), respectively. The confusion

matrices in (B, D) show the results of 10-fold cross-validation. The classifiers were applied to the segmented EEG of patient P1 (1 s windows with 0.5

s overlap). Panels (E, F) show P1’s confusion matrices for S19 and S4, respectively.

Frontiers inNeuroinformatics 08 frontiersin.org29

https://doi.org/10.3389/fninf.2023.1169584
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Glaba et al. 10.3389/fninf.2023.1169584

TABLE 1 Seizure detection characteristics for the 19 channels (S19) and three subsets with a smaller number of electrodes.

EEG SETUP OVR [%] PERR (FP, MT) [%, -, -]

P C Y T

Synchronization and normalized amplitude

S19 82.9 0.87 (1437, 832) 0.12 (44, 32) 0.07 (7, 6) 0.36 (1488, 870)

S12 78.01 0.71 (1147, 735) 0.23 (77, 58) 0.13 (13, 11) 0.36 (1237, 804)

S6 79.36 0.86 (1282, 775) 0.05 (18, 14) 0.04 (4, 4) 0.32 (1304, 793)

S4 69.31 0.68 (1196, 743) 0.03 (11, 9) 0.02 (2, 2) 0.25 (1209, 754)

Synchronization and normalized amplitude with post-processing

S19 80.93 0.57 (985, 381) 0.13 (21, 9) 0.03 (4, 2) 0.24 (1010, 392)

S12 75.56 0.40 (652, 267) 0.22 (35, 15) 0.03 (4, 2) 0.22 (691, 284)

S6 76.85 0.55 (868, 311) 0.06 (5, 2) 0.00 (0, 0) 0.21 (873, 313)

S4 65.10 0.38 (746, 278) 0.03 (4, 2) 0.00 (0, 0) 0.13 (750, 280)

We used a k-nearest neighbor classifier with the synchronization index and normalized amplitude as the features. The overlap (OVR) of segments classified as ictal with absence seizures and

relative duration of false positives (PERR) are presented for patients (P), controls (C), young adults (Y), and for segments from all cohorts (T). In parentheses, we give the number of distinct

trains of misclassified windows (MT) and false positives (FP). In patients, false detections are predominantly caused by short (< 2 s) epileptiform discharges. Therefore, we also tested the

possibility of reducing the number of false positives by post-processing the k-nearest neighbors classification. In particular, any isolated ictal segment was labeled non-ictal.

FIGURE 5

(A) Seizure from Figure 1B is shown with the leading and trailing interictal segments. (B) The output of the seizure detector. The detection function

equals 1 for the segments classified as ictal and 0 otherwise. The red vertical lines in both subplots delineate the abnormal EEG activity marked by a

neurologist. Note that SWDs do not simultaneously emerge from the background EEG in all channels. At the end of the seizure, ictal activity gradually

subsides: epileptic spikes disappear, the amplitude of the EEG decreases, and global synchronization is lost. The initial and final transients are shorter

than 0.5 s. The detector correctly identified the two interruptions in the ictal rhythm, marked in (A) in red. Two EEG intervals were marked blue to

draw attention to the limitations of fragmentation analysis. Seizure disorganization shorter than about 0.5 s are, in most cases, undetected. Due to

the finite size of the data window used to calculate phase synchronization, the fragmentation can be underestimated.

of the 65 subjects. On average, generalized SWDs lasted about

80% of the duration of abnormal EEG activity. The disruption

of the ictal rhythm can manifest itself as the disappearance

of epileptic spikes (with high-amplitude delta waves persisting),

transient (about 1 s) cessation of epileptic discharges, or loss of

global synchronization.

Although CAE and JAE are distinct epilepsy syndromes,

there is considerable age overlap between them. Consequently,

the diagnosis is not always obvious. This is an important

clinical problem, as JAE is a lifelong disease. Sadleir et al.

reported that disorganized discharges are eight times more

frequent in JAE (Sadleir et al., 2009). For most patients, we
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FIGURE 6

Histograms of (A) average fragmentation of the patient’s seizures and (B) fragmentation of individual seizures. Seizure fragmentation is defined as the

duration of segments classified as non-ictal embedded in the abnormal EEG activity interval divided by the length of such an interval.

only had the electroencephalogram recorded before the onset

of pharmacotherapy. Therefore, future research must establish

whether seizure properties (frequency, length, fragmentation, etc.)

and clinical characteristics can distinguish CAE and JAE.

It should be noted that some EEG synchronization properties

are unique to absence seizures. Figure 3B shows that γ peaks

at the beginning of the seizure and is approximately twice the

mean interictal value, in agreement with the recent study of

(Zhong et al., 2022). However, Majmundar et al. argue that

for most focal-onset seizures, synchronization occurs toward the

end of the seizure rather than at the time of onset (Majumdar

et al., 2014). Absence seizures exhibit longer-range synchrony

than generalized tonic motor seizures of secondary (symptomatic)

generalized epilepsy or frontal lobe epilepsy (Dominguez et al.,

2005).

Epilepsy has historically been perceived as a functional brain

disorder associated with hypersynchronization. Interestingly,

desynchronization can precede seizures (Aarabi et al.,

2008; Jiruska et al., 2013; Zeng et al., 2016). Figure 3C

shows that the peak of the interictal distribution of γ is

shifted to low values relative to the controls. Therefore, the

question arises of whether this shift is a manifestation of

desynchronization in patients with CAE / JAE. We will present

a detailed analysis of interictal EEG synchronization properties

elsewhere.
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Epilepsy is a prevalent and serious neurological condition which impacts 
millions of people worldwide. Stereoelectroencephalography (sEEG) is used in 
cases of drug resistant epilepsy to aid in surgical resection planning due to its 
high spatial resolution and ability to visualize seizure onset zones. For accurate 
localization of the seizure focus, sEEG studies combine pre-implantation 
magnetic resonance imaging, post-implant computed tomography to visualize 
electrodes, and temporally recorded sEEG electrophysiological data. Many tools 
exist to assist in merging multimodal spatial information; however, few allow 
for an integrated spatiotemporal view of the electrical activity. In the current 
work, we present SEEG4D, an automated tool to merge spatial and temporal 
data into a complete, four-dimensional virtual reality (VR) object with temporal 
electrophysiology that enables the simultaneous viewing of anatomy and seizure 
activity for seizure localization and presurgical planning. We  developed an 
automated, containerized pipeline to segment tissues and electrode contacts. 
Contacts are aligned with electrical activity and then animated based on relative 
power. SEEG4D generates models which can be loaded into VR platforms for 
viewing and planning with the surgical team. Automated contact segmentation 
locations are within 1  mm of trained raters and models generated show 
signal propagation along electrodes. Critically, spatial–temporal information 
communicated through our models in a VR space have potential to enhance 
sEEG pre-surgical planning.
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stereoelectroencephalography, SEEG, virtual reality, presurgical planning, epilepsy, 
visualization tools
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1 Introduction

Epilepsy is a chronic neurological condition affecting more than 
50 million people worldwide. Epilepsy is characterized by recurrent, 
spontaneous seizures and is defined as two unprovoked seizures 
occurring more than 24 h apart, an unprovoked seizure if the risk of 
recurrence is high, or a diagnosis of an epilepsy syndrome (Fisher 
et al., 2014; Thijs et al., 2019). EEG recordings and physical behaviors 
clearly show how seizures produce strong electrical activity and spread 
throughout other areas of the brain. The exact pathophysiology 
producing the seizures (e.g., neurotransmitters, structural 
abnormalities, environmental factors), occurring at the seizure onset 
zone (SOZ), and how the electrical signals spread throughout the 
brain is not well understood. Identification of the SOZ is critical for 
treatment, particularly for surgical interventions. Imperfect 
identification of the SOZ renders imperfect treatments, which leads to 
continued seizures, additional surgical treatments, and overall 
reduction in quality of life (Andrews et al., 2020; Paulo et al., 2022).

Approximately 30–40% of patients who are diagnosed with 
epilepsy have symptoms which are not fully controlled by currently 
available antiepileptic medications, a condition known as drug-
resistant epilepsy (DRE) (Kalilani et al., 2018). Such patients are at an 
increased risk of serious adverse effects resulting in significant 
degradation of their quality of life or premature death (Mula and 
Cock, 2015). For these patients, an effective treatment is a surgical 
resection of the area in the brain triggering the seizures, the SOZ 
(Ryvlin et al., 2014; Andrews et al., 2020). The goal of resective surgery 
planning is to outline the epileptogenic zone for an accurate surgery 
so that the patient can achieve seizure freedom (Ryvlin et al., 2014; 
Andrews et al., 2020). While the procedure is not risk free, cognition, 
behavior and quality of life can improve after resective surgery and it 
has proven to be an effective procedure (Ryvlin et al., 2014).

Determining the SOZ is often a difficult task because of the lack 
of morphological identifying characteristics distinguishable from 
healthy tissue in standard medical imaging evaluations (Ryvlin et al., 
2014; Minkin et al., 2019). Localizing the SOZ typically involves a 
multi-modal approach combining various imaging modalities, such 
as magnetic resonance imaging (MRI), functional MRI (fMRI), 
computed tomography (CT), positron emission tomography (PET), 
magnetoencephalography (MEG), and electrophysiology using 
electroencephalography (EEG), along with neuropsychological testing 
and Wada testing (van Mierlo et al., 2020; Kakinuma et al., 2022; 
Bearden et  al., 2023). A more invasive process, 
stereoelectroencephalography (sEEG), is used to obtain precise 
recordings from depth electrodes to identify SOZs that are deep in the 
brain or difficult to localize (Gonzalez-Martinez et al., 2014). In sEEG, 
neurosurgeons place electrodes into the brain, penetrating deep into 
the tissue, targeting regions that are suspected of being the SOZ to 
provide highly localized recordings in a 3D space to identify and 
confirm the seizure initiation site (Bartolomei et al., 2017). Electrode 
trajectories are often manually computed, but tools are being 
developed to assist with planning (De Momi et al., 2014).

Currently, epileptologists and neurosurgeons manually review the 
1D sEEG recordings with the 2D multiplanar views of the 3D imaging 
data to localize the SOZ and epileptogenic activity (Hassan et al., 
2020). Their goal is to construct a mental model of the patient’s 
specific anatomy when preparing for resective surgery (Minkin et al., 
2019). This multimodal information is challenging for experts to 

mentally combine and extract actionable data (Lyuksemburg et al., 
2023). Better mental representations of anatomy can be created from 
directly interacting with the 3D models as opposed to 1D and 2D 
views of the multimodal data (Guillot et al., 2007; Wu et al., 2010; 
Mattus et al., 2022). 3D models have proven useful for navigating 
through patient-specific anatomy in planning epilepsy surgery for 
both the surgeons and for patient education due to the integrated 
visualization of the complex multimodal data (Minkin et al., 2019; 
Phan et al., 2022). VR technologies can enable an interactive view of 
complex 3D models and have been used in other complex resection 
cases where they have demonstrated improvements in the operative 
experience for the surgeon (Quero et al., 2019; Louis et al., 2021). The 
seizure activity from the sEEG recordings creates even more complex 
data that are 4D, with 3 spatial dimensions and changes over time. In 
the current work, we further merge the clinical dataset from a sEEG 
study into a unified model for viewing anatomy and dynamic 
electrophysiological data in a 4D VR presurgical planning platform. 
This tool will enable surgeons to focus their attention and expertise on 
patient-specific details directly relevant to the surgery.

Several toolboxes have been developed to lessen the challenges 
involved with merging multimodal spatial information from sEEG 
studies (Armin Vosoughi et al., 2022). Some of these tools automate 
critical image information steps, such as isolating electrode contacts 
or making predictions about the SOZ or the epileptogenic zones on 
patient specific anatomy. A few examples include sEEG Assistant 
(Narizzano et al., 2017), which is a set of tools built as a 3D Slicer1 
extension (Fedorov et al., 2012), and Epitools (Medina Villalon et al., 
2018), which also uses Freesurfer (Dale et al., 1999) pial surfaces, or 
LeGUI (Davis et al., 2021). Many 2D sEEG visualization tools, such as 
Brainquake (Cai et al., 2021), opt to highlight or enlarge electrode 
contacts to indicate some degree of epileptogenicity while other 
software packages, like MNE-Python, project the data onto brain 
tissue and predict a SOZ in the brain based on the sEEG recordings 
(Gramfort et al., 2013; Cai et al., 2021). Several of the tools note if the 
contact predominately resides in gray matter or white matter, as tissue 
type can impact some of the computations made to analyze activity 
(Arnulfo et al., 2015). Some of the packages listed here require a brain 
atlas or a set of standard naming conventions which is not the case for 
all clinically acquired sEEG data sets. However, most of these tools are 
not maintained and are reliant on outdated dependencies that do not 
work with modern workstations as noted by Armin Vosoughi et al. 
(2022). Software such as EpiNav (CMIC, UCL, London, 
United Kingdom) (Vakharia et al., 2019) or CNSprojects2 are available 
in a limited manner and merge anatomical data with sEEG biomarkers. 
The virtual epileptic patient (Makhalova et al., 2022) based on Virtual 
Brain (Sanz-Leon et  al., 2015) can take sEEG data and generate 
simulations of patients seizures, compute the SOZ and display a glass 
brain model and waveforms of the epileptic data. All these 
visualizations present their models confined to a 2D display requiring 
the surgeon to mentally extrapolate the data to 3D space and merge 
this activity data with the patient’s 3D anatomy for diagnosis and 
surgical planning. These tools do not resolve challenges with taking 
data presented in a 2D format and extrapolating it to generate 3D 

1  https://www.slicer.org

2  https://cnsprojects.nl/products/
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mental representations of the surgical case. SyncAR is an augmented 
reality and virtual reality platform which works with the data from 
surgical devices and uses VR for surgical planning and augmented 
reality to navigate during the resection procedure (Louis et al., 2021). 
SyncAR’s usage highlights a need for temporally dynamic visualization 
tools for sEEG evaluation and resection planning (Louis et al., 2021).

In this work, we propose SEEG4D, an open-source tool which 
presents the pre-implant MRI, post-implant CT, and dynamic sEEG 
data as a 4D dynamic model for use in a virtual reality (VR) presurgical 
planning environment as opposed to the traditional 2D environment. 
By animating the time series data onto the electrode contacts in VR, 
we enable neurosurgeons to view the common components of the 
clinical data but in a platform that integrates spatial information with 
dynamic seizure activity to supplement the traditional resective 
surgery workflow. Users can virtually explore the 3D brain tissue, see 
electrode activation over time, and make surgical plans accordingly. 
3D model use in pre-surgical planning capitalizes on this impact by 
creating improved mental representations of patient-specific anatomy 
through a personalized medicine approach (Wu et al., 2010). Previous 
research has shown that developing 3D VR models of patient anatomy 
has the potential to assist surgeons in presurgical planning and may 
reduce complications (Herfarth et al., 2002; Oldhafer et al., 2009; Chen 
et al., 2010; Quero et al., 2019). Further, situational awareness research 
analyzing expert performance over novice performance indicates 
improved mental models of pre-surgical anatomy are characteristic of 
the expert performer by shifting the mental burden from working 
memory to long term memory (Maan et al., 2012; Sadideen et al., 
2013; Robertson et al., 2024). Additionally, VR has been shown to 
provide information which may alter the surgical approach (Quero 
et al., 2019; Mahajan et al., 2021; Robertson et al., 2024). SEEG4D 
seeks to automatically generate dynamic 4D models to supplement the 
presurgical workflow and enable VR-based presurgical planning. To 
our knowledge, SEEG4D is the first time that animated 3D VR models 
of electrical activity have been automatically generated and used for 
epilepsy pre-surgical planning.

2 Materials and methods

2.1 Software overview

Our software package is split into two components. The first 
component is a Python-based GUI to handle user preferences, inputs, 
and provide status updates. The second component is a Docker 
container to perform the neuroimaging processing steps and generate 
VR-ready models. These components automatically interconnect and 
interact; users of the software need only install Docker and the bare 
minimum requirements to run the Python graphical user interface 
(GUI). Containerization of critical software components enables 
easier use and reproducibility of medical imaging software 
technologies (Matelsky et al., 2018). Key software included in our 
container is: Python 3.8 for FSL 6.0.5.1, Python 3.9 for MNE-Python 
1.6.1 using nibabel 5.2.1 with scikit-image 0.22.0, Python 3.10 for 
Blender 4.0.0 (Python Software Foundation, https://www.python.org/) 
(Blender Foundation, https://www.blender.org/) (Woolrich et  al., 
2009; Gramfort et al., 2013; van der Walt et al., 2014; Brett, 2024). An 
overview of the multimodal image processing pipeline is shown in 
Figure 1.

There are many steps to processing sEEG data and merging the 
electrophysiology information into the patient’s 3D anatomical data. 
These steps are outlined in the flow chart in Figure  1 and briefly 
described here. More details are given in the following sections. The 
pre-implantation MRI is registered to the post-implantation CT which 
serves as the working space for anatomical images. The image 
processing steps, briefly, include: Segmentation of the pre-implantation 
MRI data into gray matter, white matter, cerebrospinal fluid (CSF), 
and any other regions of interest. Next, the electrode locations must 
be extracted, and the different electrode contacts must be merged into 
multi-contact electrodes. The naming of the electrodes is performed 
in the main GUI where the user associates the electrode names from 
the sEEG data and selects the corresponding segmented electrode in 
consultation with the sEEG implantation planning map. This is the 
only processing step which requires manual input as there is not a 
universal naming convention for implanted electrodes. sEEG data 
must be processed to identify the seizure timing and filtered according 
to a powerline noise notch filter combined with a user-selected 
bandpass filter design. By default, SEEG4D uses a frequency band of 
80–250 HZ as this band is commonly used for the detection of high 
frequency oscillations which are correlated with epileptogenic activity 
(Remakanthakurup Sindhu et al., 2020). Electrode activity is then 
converted to an average windowed power. All 3D imaging processes 
and the SEEG processing are handled in the container, along with the 
Blender processes to generate the VR-ready 4D model as output. All 
code and containers are available on https://github.com/
mrfil/SEEG4D.

2.2 3D image processing

Image processing is done automatically using pre-existing 
neuroimaging software packages and customized python scripts 
installed inside the Docker container. A brain mask is generated 
using the FSL Brain Extraction Tool (bet) on the pre-implantation 
T1-weighted MRI (Smith, 2002). FSL FAST is used to segment the 
brain into gray, white, cerebrospinal fluid (Zhang et  al., 2001). 
Registration between the CT and brain extracted MRI is performed 
by estimating a rigid body (6 DOF) transformation between the CT 
and MRI image using a mutual information cost function and FSL 
FLIRT (Jenkinson and Smith, 2001; Jenkinson et  al., 2002). 
We apply the estimated registration to the brain mask and tissue 
type maps from MRI to put all MRI information into the CT space, 
with a nearest neighbor interpolation as shown in Figure  2. 
We erode the registered MRI mask three times so that there is little 
to no remaining overlap with the skull on the resulting registered 
mask. All images in the CT space are further resampled into 1 mm 
isotropic space and flipped, if necessary to align imaging space left/
right to the future VR space left/right, to assist in the creation of 3D 
objects. SEEG contacts on the CT images are isolated from the skull 
by first applying the registered brain mask, followed by a threshold 
at the 99.5th percentile to leave only voxels containing metal and 
metal artifacts. Through iterating, we found this chosen threshold 
removes the most noise, skull and scanner artifacts, and reduced 
contact blur (streaking artifact) without deleting contacts. A 
median filter with a sphere kernel of 0.5 mm is applied to the 
thresholded image to reduce contact streaking. Then, the filtered 
image is converted to isotropic space and a 40th percentile 
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FIGURE 1

Overview of the software pipeline outlining input of CT, MRI, and sEEG data (as EDF files) through the GUI to create a VR image of the sEEG activity 
with the chosen bandwidth and window width. Labeling electrodes in the GUI with the sEEG planning map is the only manual step.
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threshold is applied to remove interpolation artifacts. We note that 
our CT data did not have metal artifact reduction enabled in the 
acquisition leading to significant metal artifacts associated with 
the electrodes.

2.3 Electrode contact segmentation and 
aggregation

With the contacts isolated, SEEG4D locates the position of the 
contacts in space using a custom automated algorithm written in 
Python. A representative contact, which is a 3 mm x 3 mm x 3 mm 
isotropic voxel cube, was manually created to act as a template for 
future processing steps. Isolated voxels are treated as outliers 
and removed.

Voxels are classified into contacts by grouping neighboring, 
non-diagonal voxels together recursively until every non-zero voxel 
has been grouped into a contact. We  note that, due to streaking 
artifacts, this may group voxels from separate contacts together. 
Preventing the contacts from acquiring diagonal voxels helps prevent 
contacts which almost touch from clumping together. To further 
isolate contacts, we iteratively apply 1D erosions to electrode contacts 
until they are smaller than or the same size as the representative 
electrode via the following procedure, which is motivated by thinning 
connecting regions between contacts: If the contact is wider along the 
z direction than the representative, an x-directional erosion is applied; 
if the contact is wider along the x direction than the representative, a 
y-directional erosion is applied; if the contact is wider along the y 
direction than the representative, an x-directional erosion is applied. 
Once an electrode has been eroded to be smaller than half the size of 
the representative, it is replaced by the representative contact by 
aligning the midpoint of the representative to the replaced contact. 
Grouping and erosion algorithms run repeatedly on the entire image 
until all contacts have been replaced by the representative. This 
electrode segmentation process is demonstrated in Figure 3.

Electrode contacts can blur together due to scanner artifacts and 
orientation of electrodes in the scanner, so a contact-by-contact 
erosion method is preferred to separate the contacts and preserve 
spatial location of the contacts. Further, this individualized erosion 
approach works even with the difficult arrangements of electrodes that 
are not aligned with a main axis of the image, i.e., diagonal electrodes 
such as in Figure 3. Contact midpoints are saved and used to label 
them and orient them in space.

Collections of contacts to form electrodes are built from the 
midpoints of contacts by computing the outermost electrode contact 
and finding the closest contact and treating the pair as an electrode. 
The next contact within a search distance of 15 mm, and that does not 
deviate more than 20° from the second most recently added contact, 
is added to the electrode. Through iterative testing, we  found 20° 
accounts for some bending along the electrode without merging 
parallel electrodes. This process repeats until all contacts have been 
classified into electrodes such as in Figure 3.

Electrodes are manually labeled using the main GUI, see Figure 4, 
but contact numbering is done automatically. Axial and sagittal MRI 
slices are plotted along with the electrodes in a rotatable, zoomable 
interface. The center of the brain is computed and contacts along an 
electrode are labeled inner-most to out-most (e.g., A1 is electrode A 
contact 1 and is the contact at the end of the electrode) following our 
clinical site’s naming conventions.

2.4 sEEG data processing

Electrical data from the sEEG electrodes is provided to the 
software as EDF files. These files are loaded, through the Docker 
container, into MNE Python for signal processing (Gramfort et al., 
2013). In the main GUI, a dropdown box is populated with the event 
flags in the EDF file where the user can select the flag belonging to the 
electrical activity of interest, such as a particular seizure. In this paper, 
we use events that were clinically marked as seizure start flags. By 
default, the signal is cropped around the chosen event with a 
two-second window on either side, creating a four-second clip in total 
for our 4D visualization. Data is notch filtered to remove power line 
noise and then any bandpass filters chosen are applied. By default, an 
80 Hz-250 Hz windowed finite impulse response filter is used as this 
filter band is commonly used to identify high-frequency oscillations 
for SOZ localization (Remakanthakurup Sindhu et al., 2020).

2.5 VR model generation

Now that the SEEG contacts have been automatically segmented, 
named, and labeled with corresponding electrical data, SEEG4D 
generates VR models using Blender’s Python scripting capabilities. 
SEEG contacts, gray matter, white matter, and cerebral spinal fluid are 
each converted to object files using Scikit-Image’s implementation of 

FIGURE 2

Results of image processing and registration as seen in three different views from the same patients’ MRI (grayscale) to their processed CT (gold) 
showing alignment of the two image spaces.
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the Lewiner Marching Cubes algorithm (Lewiner et al., 2003; van der 
Walt et al., 2014). Our sampling rate in the EDF files is approximately 
1KHz, and we chose to make 24 ms wide long frames. Meaning that 
each second of the animation contains 24 ms of data. This turns a 
4-s-long EDF clip into a 167-s-long animation. We compute the power 
over our sliding window by:

	

P
N

x nx
n

N
= = [ ]( )

=
∑1 10

1

2

2

Where N is our sliding window length (N = 24). Min-max scaling 
is applied to the power data, across all electrodes by subtracting the 

minimum power and dividing by the range of power across all 
windows and contacts.

Electrode contacts are animated by evenly scaling their size at the 
frame being animated, where the maximum size is 6 cm, to make the 
difference in power between electrodes more apparent. Visually larger 
contacts have proportionally more power at that frame than smaller 
contacts. A timeline was manually created using blender to indicate 
time along the animation. This timeline includes markers for every 
second of the electrical data and a red marker indicating the marked 
seizure start. Once all contacts have been animated, and the brain 
segmentations and timeline have been loaded into the Blender model, 
the model is saved as both an FBX file and a GLTF 2.0 file which can 
be loaded into VR.

FIGURE 3

Step by step example of electrode contact segmentation and representative replacement. The top row is a cropped coronal slice while the bottom 
row is a cropped axial slice. (A) Base CT image, note that the ends of two electrodes have blended on the imaging and there is streaking artifact 
connecting two contacts. (B) Post masking, filtered, and thresholded electrode contact mask overlaid in blue. (C) Electrode contact mask after first 
pass of erosion in red, note that the ends of the electrodes have separated. (D) Second pass of erosion in dark blue. Contacts connected by streaking 
artifact have separated. (E) Final pass of the algorithm in pink. All contacts have been replaced by the representative contact by now.

FIGURE 4

Labeling interface on the main GUI (left) with the sEEG planning map and naming scheme (right). Blue regions on the sEEG planning map indicate 
cavities.
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Our SEEG4D creates the 4D FBX model and converts other 
supplementary documents into pdf versions for loading into the VR 
software, including the electrode surgical map and the electrode 
recording data graphs. Visualizing the data and model requires a VR 
platform for viewing and interacting with the generated assets. Many 
options exist for this. In this study, we imported the data into Enduvo,3 
as shown in Figure 5, and Blender, as shown in Figure 6.

2.6 Test patient data

To test the capabilities of SEEG4D and the automated electrode 
location labeling, data from 3 temporal lobe epilepsy patients 
undergoing clinical epilepsy monitoring at the OSF Saint Francis 
Medical Center, Peoria, Illinois, were run through our software in a 

3  https://enduvo.com/

fully automated processing, except for the manual selection of the 
electrode names in the GUI based on the sEEG planning map. DIXI 
sEEG electrodes (DIXI Medical) 0.8 mm in diameter and 2 mm apart 
were sampled at 1 KHz during monitoring. Deindentifiedatient data 
was acquired through OSF HealthCare under an IRB approved by 
University of Illinois College of Medicine at Peoria IRB.

To test the accuracy of our automated electrode-contact labeling 
process, we had two trained anatomists with a combined 5 years of 
segmentation experience label the electrode contacts manually. Our 
trained manual raters used 3D Slicer to mark the location of the 
electrode contacts from all electrodes from the 1 mm isotropic CT 
image to identify the recording locations (Fedorov et al., 2012). In the 
event a rater marked a position in between voxels, their marker was 
rounded to the nearest voxel. This manually labeled electrode contact 
center was compared to the corresponding automated electrode 
contact’s center and to the positions from the other rater.

3 Results

SEEG4D processed 3 cases on a machine running Ubuntu 22.04.4 
LTS with 96 GB of memory, an Intel® Xeon® Gold 6,254 CPU @ 
3.10GHz x 72, and three NVIDIA Quadro RTX 8000. Brain extraction 
and electrode segmentation took approximately 50 min per patient. 
Processing the sEEG data took approximately 5 s per patient while 
animating the data with Blender took approximately 30 s leading to a 
total runtime of under an hour per patient.

3.1 Electrode segmentation validation

After processing our 3 cases, SEEG4D identified 271 contacts in 
total. From visual inspection, we found that the contacts had good 
concurrence with the ground truth CT data. The average distance 
between these automatically identified coordinates and the manually 
labeled coordinates was variable per case, but as shown in Table 1 the 
electrode localization algorithm was generally closer to the raters than 
the raters were to each other indicating good concurrence with the 
ground truth position. As an example, for case SEEG1, our algorithm 
was an average of 0.85 mm away with a standard deviation of 0.68 mm 
from rater 1’s midpoints and an average of 0.71 ± 0.74 mm from rater 
2’s midpoints while the raters were an average of 0.94 ± 0.52 mm from 
one another. We note that 94.8 and 85.2% of the contacts automatically 
identified were within 1 voxel of rater 1 and rater 2, respectively. 
Additionally, 89.7% of the raters’ contacts were within 1 voxel of each 
other. We define a contact that the algorithm ‘missed’ as a contact 
residing in brain tissue that was not labeled by the software. Notably, 
contacts in the skull or outside the head are not counted as ‘missed’. 
Shown in Table 2, for SEEG1, there were 2 missed contacts of 116 
(1.7%); for SEEG2, there were 3 missed contacts of 91 (3.3%), and for 
SEEG3 there were 0 missed contacts of 71 (0%). Of these 5 missed 
contacts, all were within 5 voxels of the edge of the cortex and were 
either masked out or eroded during imaging preprocessing. Table 2 
also shows that 82, 93, and 80% of segmented contacts were within 1 
voxel for cases SEEG1, SEEG2, and SEEG3. Segmented contacts that 
were more than 2 voxels away were due to blurring and streaking on 
the contacts from the CT causing the contacts to appear larger, and 
when erosions were applied it offset the midpoint of the contact.

FIGURE 5

A clinician interacting with the 4D SEEG4D generated model in 
virtual reality. Electrodes are shown in gold and their size indicates 
relative power, whereas electrodes with a higher power are larger. A 
timeline appears underneath the brain to indicate the currently 
viewed timing relative to the marked seizure event (red line).
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4 Discussion

We have developed a tool, SEEG4D, which merges pre-implant 
MRI, post-implant CT, and SEEG data to create a 3D model of an 
sEEG case with time series data mapped onto the contacts. This 
enables the automated creation of digital assets for use in a 4D VR 
surgical planning process to enable the clinical care team to localize 
the SOZ and plan surgical interventions.

4.1 Visualization analysis

Presurgical planning for resection of SOZ is a highly complex 
process involving multi-modal 2D and 1D (SEEG) medical data. When 
one considers that interpretation of this complex patient-specific data by 
one medical expert is then communicated to a different surgical expert 
to resect a specific SOZ in the brain, there is tremendous opportunity to 
improve the precision of shared mental models of the pathology.

This project was initiated to improve knowledge transfer of 
patient-specific, complex, multimodal information on the location and 

pathology of the SOZ from epileptologist to neurosurgeon. To achieve 
translational impact, automated tools were developed along with 
stereoscopic time-sequential 3D digital models. These were necessary 
to allow integration into a clinical workflow where time constraints 
prevent manual efforts of 4D model creation. We have successfully 
deployed our software package, enabled by the containerization of the 
algorithms, in the clinical environment for research purposes and ran 
cases for this study on the clinic computational hardware.

Preliminary qualitative feedback revealed that the clinical sEEG 
expert sees tremendous potential of SEEG4D to expedite review of the 
standard of care data by helping to merge multimodal information 
about a seizure to provide an improved understanding of the patient’s 
electrophysiological data. Our surgical expert indicated significant 
potential of SEEG4D to improve communication of the 3D location 
of the SOZ from epileptologist to surgeon. Our experts, combined, see 
this tool as a new framework for forming mental models to allow for 
more efficient yet robust discussion for each patient.

SEEG4D allows users to automatically animate the electrical data 
at electrode contacts over time. Since the timescale is slowed down, 
we see clear visual onset and propagation of signals between electrode 

FIGURE 6

4D signal propagation along an electrode at time points varying by 5  ms during a seizure. Contacts along this electrode become larger in sequence. 
Timepoints were extracted from Blender.

TABLE 1  Quantitative analysis of electrode localization algorithm showing the average distance and the standard deviation between the raters and 
algorithm per patient case as well as the distance between each rater.

Average distance per contact (mm)

SEEG1 SEEG2 SEEG3

Rater 1 Rater 2 Rater 1 Rater 2 Rater 1 Rater 2

0.85 ± 0.68 0.71 ± 0.74 0.76 ± 0.60 1.0 ± 0.57 0.61 ± 0.62 1.0 ± 0.71

Raters distance from each other (mm)

SEEG1 SEEG2 SEEG3

0.94 ± 0.52 0.93 ± 0.40 0.98 ± 0.49

The top table is the difference between the automated algorithm and each of the 2 manual raters. The bottom table is the differences between the 2 manual raters.

TABLE 2  Voxel distance of algorithmically determined contact midpoints to averaged rater-labeled midpoints.

Voxel distance of algorithm to rater average

Distance SEEG1 SEEG2 SEEG3

N < = 1 Voxel 92 82 57

1 < N < = 2 Voxels 17 6 14

2 < N < = 3 Voxels 3 0 0

Missed 2 3 0

Number of contacts (N) 112 88 71

82, 93, and 80% of segmented contacts were within 1 voxel for cases SEEG1, SEEG2, and SEEG3, respectively. five contacts were missed by the algorithm in total, all of which were within 5 
voxels of the edge of the brain.
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contacts during a seizure, as shown in Figure  6 and 
Supplementary Video S1. This can facilitate understanding of 
propagation of the seizure and localization of SOZ. Incorporation of 
additional data into the visualization is straightforward, such as 
including white matter fiber pathways identified through diffusion 
tensor imaging to examine the relationship between the electrical 
signal propagation and tractography. Further work is required to 
understand the impact of increasing visual complexity of the 
visualized model on improving understanding of the patient case.

One of the limitations with SEEG4D is that it requires T1-weighted 
non-contrast MRI data. Additionally, our CT scanner was configured 
in a way which caused a substantial amount of metal artifacts at 
acquisition, leading to the automatic processing steps requiring higher 
thresholds and more aggressive erosion schemes. All cases processed 
for this study used DIXI electrodes and our tool is optimized based on 
these electrodes. It will be necessary to test SEEG4D against data from 
other clinical sites to ensure that these optimizations do not degrade 
cases that have little streaking or use other electrode manufacturers. 
Additionally, our clinical data did not use a standard naming 
convention for electrodes, so the software does not support loading of 
an atlas-based automatic naming scheme for electrodes.

While our clinicians have expressed qualitative feedback indicating 
that this tool would lead to a significant reduction in the time it takes 
to determine and understand a SOZ, quantitative analysis of this impact 
will be provided in a future study. To demonstrate quantitative impact 
on the clinical workflow, we will evaluate the efficacy of this model and 
quantify the reduction in mental load during the pre-surgical planning 
period for new cases. Additionally, the inclusion of source localization 
using automated SOZ localization algorithms to show the SOZ in the 
VR space could provide useful information to the clinical team.

5 Conclusion

We developed SEEG4D, a tool for automatically visualizing SEEG 
data with 4D virtual reality models for presurgical planning for 
epilepsy resection surgery. SEEG4D improves presurgical planning in 
epilepsy resection cases by automatically merging multimodal 
imaging data from MRI, CT, and sEEG recordings to produce dynamic 
4D VR visualizations of seizure onset and propagation to facilitate the 
formation of an accurate mental model of the case. Our automated 
sEEG electrode contact detector was demonstrated to be accurate to 
within 1 mm of our ground truth raters. Models generated from 
SEEG4D provide an advantage over traditional sEEG models due to 
their interactive, 4D spatiotemporal nature. Our interactive models 
show signal propagation along electrodes and through local networks 
to additional recording sites. With this automated tool, epilepsy care 
teams may realize the potential of integrating dynamic sEEG data with 
VR for enhanced presurgical planning and the formation of shared 
mental models.
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Supplementary Videos are provided to help demonstrate the rich 
information that is present in the 4D models and VR environment for 

an epilepsy case. It is challenging to convey the breadth of information 
present in a 4D model using a 2D print format. Without being able to 
interact with the models and play the animations, sense of time, depth, 
and texture are impeded. To help alleviate this, we have included 
Supplementary Videos of the models and user interactions with them. 
In addition, our code and sample data are available on our GitHub at 
https://github.com/mrfil/SEEG4D, DOI: 10.5281/zenodo.12741316.

References
Andrews, J. P., Ammanuel, S., Kleen, J., Khambhati, A. N., Knowlton, R., and 

Chang, E. F. (2020). Early seizure spread and epilepsy surgery: a systematic review. 
Epilepsia 61, 2163–2172. doi: 10.1111/epi.16668

Armin Vosoughi, D. B., Kheder, A., Bonilha, L., Dickey, A., Drane, D., Gutman, D., 
et al. (2022). Toolboxes for SEEG electrode localization and visualization. Nashville: 
American Epilepsy Society.

Arnulfo, G., Hirvonen, J., Nobili, L., Palva, S., and Palva, J. M. (2015). Phase and 
amplitude correlations in resting-state activity in human stereotactical EEG recordings. 
NeuroImage 112, 114–127. doi: 10.1016/j.neuroimage.2015.02.031

Bartolomei, F., Lagarde, S., Wendling, F., McGonigal, A., Jirsa, V., Guye, M., et al. 
(2017). Defining epileptogenic networks: contribution of SEEG and signal analysis. 
Epilepsia 58, 1131–1147. doi: 10.1111/epi.13791

Bearden, D. J., Ehrenberg, A., Selawski, R., Ono, K. E., Drane, D. L., Pedersen, N. P., 
et al. (2023). Four-way Wada: SEEG-based mapping with electrical stimulation, high 
frequency activity, and phase amplitude coupling to complement traditional Wada and 
functional MRI prior to epilepsy surgery. Epilepsy Res. 192:107129. doi: 10.1016/j.
eplepsyres.2023.107129

Brett, M. (2024). nipy/nibabel: 5.2.1. Genève: Zenodo.

Cai, F., Wang, K., Zhao, T., Wang, H., Zhou, W., and Hong, B. (2021). BrainQuake: an 
open-source Python toolbox for the Stereoelectroencephalography spatiotemporal 
analysis. Front. Neuroinform. 15:773890. doi: 10.3389/fninf.2021.773890

Chen, G., Li, X. C., Wu, G. Q., Wang, Y., Fang, B., Xiong, X. F., et al. (2010). The use 
of virtual reality for the functional simulation of hepatic tumors (case control study). 
Int. J. Surg. 8, 72–78. doi: 10.1016/j.ijsu.2009.11.005

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based analysis. I. 
Segmentation and surface reconstruction. NeuroImage 9, 179–194. doi: 10.1006/
nimg.1998.0395

Davis, T. S., Caston, R. M., Philip, B., Charlebois, C. M., Anderson, D. N., Weaver, K. E., 
et al. (2021). LeGUI: a Fast and accurate graphical user Interface for automated detection 
and anatomical localization of intracranial electrodes. Front. Neurosci. 15:769872. doi: 
10.3389/fnins.2021.769872

De Momi, E., Caborni, C., Cardinale, F., Casaceli, G., Castana, L., Cossu, M., et al. 
(2014). Multi-trajectories automatic planner for StereoElectroEncephaloGraphy (SEEG). 
Int. J. Comput. Assist. Radiol. Surg. 9, 1087–1097. doi: 10.1007/s11548-014-1004-1

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J. C., Pujol, S., 
et al. (2012). 3D slicer as an image computing platform for the quantitative imaging 
network. Magn. Reson. Imaging 30, 1323–1341. doi: 10.1016/j.mri.2012.05.001

Fisher, R. S., Acevedo, C., Arzimanoglou, A., Bogacz, A., Cross, J. H., Elger, C. E., et al. 
(2014). ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 
475–482. doi: 10.1111/epi.12550

Gonzalez-Martinez, J., Mullin, J., Vadera, S., Bulacio, J., Hughes, G., Jones, S., et al. 
(2014). Stereotactic placement of depth electrodes in medically intractable epilepsy. J. 
Neurosurg. 120, 639–644. doi: 10.3171/2013.11.JNS13635

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., 
et al. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7:267. doi: 
10.3389/fnins.2013.00267

Guillot, A., Champely, S., Batier, C., Thiriet, P., and Collet, C. (2007). Relationship 
between spatial abilities, mental rotation and functional anatomy learning. Adv. Health 
Sci. Educ. Theory Pract. 12, 491–507. doi: 10.1007/s10459-006-9021-7

Hassan, A. R., Subasi, A., and Zhang, Y. (2020). Epilepsy seizure detection using 
complete ensemble empirical mode decomposition with adaptive noise. Knowl.-Based 
Syst. 191:105333. doi: 10.1016/j.knosys.2019.105333

Herfarth, C., Lamadé, W., Fischer, L., Chiu, P., Cardenas, C., Thorn, M., et al. (2002). 
The effect of virtual reality and training on liver operation planning. Swiss Surg. 8, 67–73. 
doi: 10.1024/1023-9332.8.2.67

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved optimization 
for the robust and accurate linear registration and motion correction of brain images. 
NeuroImage 17, 825–841. doi: 10.1006/nimg.2002.1132

Jenkinson, M., and Smith, S. (2001). A global optimisation method for robust affine 
registration of brain images. Med. Image Anal. 5, 143–156. doi: 10.1016/
s1361-8415(01)00036-6

Kakinuma, K., Osawa, S. I., Hosokawa, H., Oyafuso, M., Ota, S., Kobayashi, E., et al. 
(2022). Determination of language areas in patients with epilepsy using the super-
selective Wada test. IBRO Neurosci. Rep. 13, 156–163. doi: 10.1016/j.ibneur.2022.08.002

Kalilani, L., Sun, X., Pelgrims, B., Noack-Rink, M., and Villanueva, V. (2018). The 
epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia 
59, 2179–2193. doi: 10.1111/epi.14596

Lewiner, T., Lopes, H., Vieira, A. W., and Tavares, G. (2003). Efficient implementation 
of marching Cubes' cases with topological guarantees. J. Graph. Tool. 8, 1–15. doi: 
10.1080/10867651.2003.10487582

Louis, R. G., Steinberg, G. K., Duma, C., Britz, G., Mehta, V., Pace, J., et al. (2021). 
Early experience with virtual and synchronized augmented reality platform for 
preoperative planning and intraoperative navigation: a case series. Oper. Neurosurg. 
(Hagerstown) 21, 189–196. doi: 10.1093/ons/opab188

Lyuksemburg, V., Abou-Hanna, J., Marshall, J. S., Bramlet, M. T., Waltz, A. L., Pieta 
Keller, S. M., et al. (2023). Virtual reality for preoperative planning in complex surgical 
oncology: a single-center experience. J. Surg. Res. 291, 546–556. doi: 10.1016/j.
jss.2023.07.001

Maan, Z. N., Maan, I. N., Darzi, A. W., and Aggarwal, R. (2012). Systematic review of 
predictors of surgical performance. Br. J. Surg. 99, 1610–1621. doi: 10.1002/bjs.8893

Mahajan, U. V., Sunshine, K. S., Herring, E. Z., Labak, C. M., Wright, J. M., and 
Smith, G. (2021). Virtual reality in presurgical patient education: a scoping review and 
recommended trial design guidelines. Am. J. Surg. 222, 704–705. doi: 10.1016/j.
amjsurg.2021.03.022

Makhalova, J., Medina Villalon, S., Wang, H., Giusiano, B., Woodman, M., Bénar, C., 
et al. (2022). Virtual epileptic patient brain modeling: relationships with seizure onset 
and surgical outcome. Epilepsia 63, 1942–1955. doi: 10.1111/epi.17310

Matelsky, J., Kiar, G., Johnson, E., Rivera, C., Toma, M., and Gray-Roncal, W. (2018). 
Container-based clinical solutions for portable and reproducible image analysis. J. Digit. 
Imaging 31, 315–320. doi: 10.1007/s10278-018-0089-4

Mattus, M. S., Ralph, T. B., Keller, S. M. P., Waltz, A. L., and Bramlet, M. T. (2022). 
Creation of patient-specific silicone cardiac models with applications in pre-surgical 
plans and hands-on training. J. Vis. Exp. 10:180. doi: 10.3791/62805

Medina Villalon, S., Paz, R., Roehri, N., Lagarde, S., Pizzo, F., Colombet, B., 
et al. (2018). EpiTools, a software suite for presurgical brain mapping in epilepsy: 
intracerebral EEG. J. Neurosci. Methods 303, 7–15. doi: 10.1016/j.jneumeth.2018. 
03.018

Minkin, K., Gabrovski, K., Sirakov, S., Penkov, M., Todorov, Y., Karakostov, V., et al. 
(2019). Three-dimensional neuronavigation in SEEG-guided epilepsy surgery. Acta 
Neurochir. 161, 917–923. doi: 10.1007/s00701-019-03874-9

Mula, M., and Cock, H. R. (2015). More than seizures: improving the lives of people 
with refractory epilepsy. Eur. J. Neurol. 22, 24–30. doi: 10.1111/ene.12603

Narizzano, M., Arnulfo, G., Ricci, S., Toselli, B., Tisdall, M., Canessa, A., et al. (2017). 
SEEG assistant: a 3DSlicer extension to support epilepsy surgery. BMC Bioinform. 
18:124. doi: 10.1186/s12859-017-1545-8

Oldhafer, K. J., Stavrou, G. A., Prause, G., Peitgen, H. O., Lueth, T. C., and Weber, S. 
(2009). How to operate a liver tumor you cannot see. Langenbeck's Arch. Surg. 394, 
489–494. doi: 10.1007/s00423-009-0469-9

Paulo, D. L., Wills, K. E., Johnson, G. W., Gonzalez, H. F. J., Rolston, J. D., Naftel, R. P., 
et al. (2022). SEEG functional connectivity measures to identify epileptogenic zones: 
stability, medication influence, and recording condition. Neurology 98, e2060–e2072. 
doi: 10.1212/WNL.0000000000200386

Phan, T. N., Prakash, K. J., Elliott, R. J. S., Pasupuleti, A., Gaillard, W. D., Keating, R. F., 
et al. (2022). Virtual reality-based 3-dimensional localization of stereotactic EEG (SEEG) 
depth electrodes and related brain anatomy in pediatric epilepsy surgery. Childs Nerv. 
Syst. 38, 537–546. doi: 10.1007/s00381-021-05403-5

Quero, G., Lapergola, A., Soler, L., Shahbaz, M., Hostettler, A., Collins, T., et al. (2019). 
Virtual and augmented reality in oncologic liver surgery. Surg. Oncol. Clin. N. Am. 28, 
31–44. doi: 10.1016/j.soc.2018.08.002

Remakanthakurup Sindhu, K., Staba, R., and Lopour, B. A. (2020). Trends in the use 
of automated algorithms for the detection of high-frequency oscillations associated with 
human epilepsy. Epilepsia 61, 1553–1569. doi: 10.1111/epi.16622

43

https://doi.org/10.3389/fninf.2024.1465231
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fninf.2024.1465231/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fninf.2024.1465231/full#supplementary-material
https://github.com/mrfil/SEEG4D
https://doi.org/10.5281/zenodo.12741316
https://doi.org/10.1111/epi.16668
https://doi.org/10.1016/j.neuroimage.2015.02.031
https://doi.org/10.1111/epi.13791
https://doi.org/10.1016/j.eplepsyres.2023.107129
https://doi.org/10.1016/j.eplepsyres.2023.107129
https://doi.org/10.3389/fninf.2021.773890
https://doi.org/10.1016/j.ijsu.2009.11.005
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.3389/fnins.2021.769872
https://doi.org/10.1007/s11548-014-1004-1
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1111/epi.12550
https://doi.org/10.3171/2013.11.JNS13635
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1007/s10459-006-9021-7
https://doi.org/10.1016/j.knosys.2019.105333
https://doi.org/10.1024/1023-9332.8.2.67
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1016/s1361-8415(01)00036-6
https://doi.org/10.1016/s1361-8415(01)00036-6
https://doi.org/10.1016/j.ibneur.2022.08.002
https://doi.org/10.1111/epi.14596
https://doi.org/10.1080/10867651.2003.10487582
https://doi.org/10.1093/ons/opab188
https://doi.org/10.1016/j.jss.2023.07.001
https://doi.org/10.1016/j.jss.2023.07.001
https://doi.org/10.1002/bjs.8893
https://doi.org/10.1016/j.amjsurg.2021.03.022
https://doi.org/10.1016/j.amjsurg.2021.03.022
https://doi.org/10.1111/epi.17310
https://doi.org/10.1007/s10278-018-0089-4
https://doi.org/10.3791/62805
https://doi.org/10.1016/j.jneumeth.2018.03.018
https://doi.org/10.1016/j.jneumeth.2018.03.018
https://doi.org/10.1007/s00701-019-03874-9
https://doi.org/10.1111/ene.12603
https://doi.org/10.1186/s12859-017-1545-8
https://doi.org/10.1007/s00423-009-0469-9
https://doi.org/10.1212/WNL.0000000000200386
https://doi.org/10.1007/s00381-021-05403-5
https://doi.org/10.1016/j.soc.2018.08.002
https://doi.org/10.1111/epi.16622


Evans et al.� 10.3389/fninf.2024.1465231

Frontiers in Neuroinformatics 11 frontiersin.org

Robertson, D. J., Abramson, Z. R., Davidoff, A. M., and Bramlet, M. T. (2024). Virtual 
reality applications in pediatric surgery. Semin. Pediatr. Surg. 33:151387. doi: 10.1016/j.
sempedsurg.2024.151387

Ryvlin, P., Cross, J. H., and Rheims, S. (2014). Epilepsy surgery in children and adults. 
Lancet Neurol. 13, 1114–1126. doi: 10.1016/S1474-4422(14)70156-5

Sadideen, H., Alvand, A., Saadeddin, M., and Kneebone, R. (2013). Surgical experts: 
born or made? Int. J. Surg. 11, 773–778. doi: 10.1016/j.ijsu.2013.07.001

Sanz-Leon, P., Knock, S. A., Spiegler, A., and Jirsa, V. K. (2015). Mathematical 
framework for large-scale brain network modeling in the virtual brain. NeuroImage 111, 
385–430. doi: 10.1016/j.neuroimage.2015.01.002

Smith, S. M. (2002). Fast robust automated brain extraction. Hum. Brain Mapp. 17, 
143–155. doi: 10.1002/hbm.10062

Thijs, R. D., Surges, R., O'Brien, T. J., and Sander, J. W. (2019). Epilepsy in adults. 
Lancet 393, 689–701. doi: 10.1016/S0140-6736(18)32596-0

Vakharia, V. N., Sparks, R., Miserocchi, A., Vos, S. B., O'Keeffe, A., Rodionov, R., et al. 
(2019). Computer-assisted planning for Stereoelectroencephalography (SEEG). 
Neurotherapeutics 16, 1183–1197. doi: 10.1007/s13311-019-00774-9

van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., 
Yager, N., et al. (2014). Scikit-image: image processing in Python. PeerJ 2:e453. doi: 
10.7717/peerj.453

van Mierlo, P., Vorderwulbecke, B. J., Staljanssens, W., Seeck, M., and 
Vulliemoz, S. (2020). Ictal EEG source localization in focal epilepsy: review 
and future perspectives. Clin. Neurophysiol. 131, 2600–2616. doi: 10.1016/j.clinph. 
2020.08.001

Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., 
Behrens, T., et al. (2009). Bayesian analysis of neuroimaging data 
in FSL. NeuroImage 45, S173–S186. doi: 10.1016/j.neuroimage.2008. 
10.055

Wu, B., Klatzky, R. L., and Stetten, G. (2010). Visualizing 3D objects from 2D cross 
sectional images displayed in-situ versus ex-situ. J. Exp. Psychol. Appl. 16, 45–59. doi: 
10.1037/a0018373

Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain MR images 
through a hidden Markov random field model and the expectation-
maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57. doi: 10.1109/42. 
906424

44

https://doi.org/10.3389/fninf.2024.1465231
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://doi.org/10.1016/j.sempedsurg.2024.151387
https://doi.org/10.1016/j.sempedsurg.2024.151387
https://doi.org/10.1016/S1474-4422(14)70156-5
https://doi.org/10.1016/j.ijsu.2013.07.001
https://doi.org/10.1016/j.neuroimage.2015.01.002
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1016/S0140-6736(18)32596-0
https://doi.org/10.1007/s13311-019-00774-9
https://doi.org/10.7717/peerj.453
https://doi.org/10.1016/j.clinph.2020.08.001
https://doi.org/10.1016/j.clinph.2020.08.001
https://doi.org/10.1016/j.neuroimage.2008.10.055
https://doi.org/10.1016/j.neuroimage.2008.10.055
https://doi.org/10.1037/a0018373
https://doi.org/10.1109/42.906424
https://doi.org/10.1109/42.906424


Frontiers in Neuroinformatics 01 frontiersin.org

The classification of absence 
seizures using power-to-power 
cross-frequency coupling analysis 
with a deep learning network
A.V. Medvedev * and B. Lehmann 

EEG and Optical Imaging Laboratory, Center for Functional and Molecular Imaging, Georgetown 
University Medical Center, Washington, DC, United States

High frequency oscillations are important novel biomarkers of epileptic tissue. 
The interaction of oscillations across different time scales is revealed as cross-
frequency coupling (CFC) representing a high-order structure in the functional 
organization of brain rhythms. Power-to-power coupling (PPC) is one form of 
coupling with significant research attesting to its neurobiological significance 
as well as its computational efficiency, yet has been hitherto unexplored within 
seizure classification literature. New artificial intelligence methods such as deep 
learning neural networks can provide powerful tools for automated analysis of EEG. 
Here we present a Stacked Sparse Autoencoder (SSAE) trained to classify absence 
seizure activity based on this important form of cross-frequency patterns within 
scalp EEG. The analysis is done on the EEG records from the Temple University 
Hospital database. Absence seizures (n = 94) from 12 patients were taken into 
analysis along with segments of background activity. Power-to-power coupling 
was calculated between all frequencies 2–120 Hz pairwise using the EEGLAB 
toolbox. The resulting CFC matrices were used as training or testing inputs to 
the autoencoder. The trained network was able to recognize background and 
seizure segments (not used in training) with a sensitivity of 93.1%, specificity of 
99.5% and overall accuracy of 96.8%. The results provide evidence both for (1) 
the relevance of PPC for seizure classification, as well as (2) the efficacy of an 
approach combining PPC with SSAE neural networks for automated classification 
of absence seizures within scalp EEG.

KEYWORDS

absence seizure, epilepsy, seizure classification, EEG, spectral analysis, 
cross-frequency coupling (CFC), power-to-power coupling

1 Introduction

Brain oscillations span frequencies across a range of several orders of magnitude from the 
Berger bands below 30 Hz (delta, theta, alpha, beta) up to the high frequency bands of gamma, 
ripple, and fast ripple (30–600 Hz). This study was inspired by emerging evidence that brain 
oscillations do not work independently from each other but interact in a very complex and 
well-coordinated way known as cross-frequency coupling (CFC) (Buzsaki and Draguhn, 2004; 
Klimesch, 2013). Cross-frequency coupling plays an important role in the functional 
organization of neural networks at different spatial and temporal scales. This coupling 
represents a high-order structure in the functional organization of brain rhythms and is likely 
to reflect different functional states of the brain (Buzsaki and Draguhn, 2004). It is reasonable 
to suppose that optimal biomarkers of complex neurological processes would have sensitivity 
to this structure, going beyond isolated features (e.g., frequency or spectral characteristics).
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In recent years, there has been a burgeoning interest in high-
frequency oscillations (HFOs) driven by emerging evidence suggesting 
their involvement in cognitive functions (Gross and Gotman, 1999; 
Hosseinzadeh et  al., 2005; Axmacher et  al., 2008; Medvedev and 
Kanwal, 2008; Buzsaki and Silva, 2012; Kucewicz et al., 2014; Pail et al., 
2020; Dickey et al., 2022). Also, heightened activity in these frequency 
ranges has been observed in pathological conditions and, in particular, 
numerous studies have demonstrated a significant increase in HFOs 
in the context of epilepsy. Those studies have revealed that HFOs are 
one of the most common early manifestations recorded within 
minutes before seizure onset and appear to be a reliable EEG correlate 
of ictal onset zone (Lee et al., 2000; Medvedev, 2002; Worrell et al., 
2004; Gardner et al., 2007; Jacobs et al., 2008; Blanco et al., 2010; 
Medvedev et al., 2011). Several research groups have suggested that 
detection of HFOs is necessary for a more accurate localization of 
epileptogenic tissue. Improvements in accuracy may improve surgical 
outcome in patients with localization-related intractable epilepsy 
because the removal of HFO-generating areas correlates with good 
surgical outcomes (Bragin et al., 1999; Worrell et al., 2004; Gardner 
et al., 2007; Besio et al., 2010; Zijlmans et al., 2012; Staba et al., 2014; 
Frauscher et al., 2017; Medvedev et al., 2019; Thomschewski et al., 
2019). Thus, in addition to epileptic discharges, HFOs are now 
considered as an important biomarker of epileptogenic tissue.

High-frequency bursts are frequently accompanied by 
low-frequency waveforms, such as sharp waves and spikes. These 
patterns may signify specific forms of cross-frequency coupling. The 
most typical examples pertinent to epilepsy include the Ripple-on-
Spike, where a high-frequency burst is riding on a spike, as well as the 
Ripple-on-Oscillation, where a high-frequency burst is riding on a 
slow wave. Given that epileptic seizures are often accompanied by 
specific patterns of cross-frequency coupling between slow and fast 
activity, it is important to explore the possibility that cross-frequency 
coupling may be used as a tool for automated detection of seizures.

Absence seizures are traditionally characterized by spike-and-
wave activity with the dominant frequency of 3–4.5 Hz. This specific 
narrow frequency range and the regular morphological features of 
absence seizures offer a good starting point from which to evaluate 
epilepsy using a new CFC approach. More specifically, these reliable 
characteristics of absence epilepsy in combination with research 
connecting HFO’s with epileptogenic tissue (Chaitanya et al., 2015) 
suggest the possibility of interaction between low and high frequency 
bands. Furthermore, approaches that can unveil these dynamic 
relationships may identify more comprehensive signatures of absence 
epilepsy (e.g., beyond describing which waveband amplitudes are 
merely involved). Therefore, such approaches hold promise both for 
optimal classification power and for advancing the understanding of 
the neurobiology of seizures.

Methods utilizing cross-frequency coupling have shown predictive 
power in various areas of EEG research including epilepsy state 
classification (Jacobs et al., 2018). There are various types of coupling 
(i.e., power-to-power, power-to-phase, phase-to-phase, etc.). These 
different types are thought to have independent neural mechanisms 
as well as different or complimentary functional significance (Jirsa and 
Muller, 2013). While many forms of CFC have not been well-
researched, one of the better-studied forms of CFC is phase-to-
amplitude coupling (PAC), which is well known to have an association 
with various cognitive processes related to memory and perception 
(Gross and Gotman, 1999; Axmacher et  al., 2008; Medvedev and 

Kanwal, 2008; Buzsaki and Silva, 2012; Kucewicz et al., 2014; Dickey 
et al., 2022). In many cases, PAC refers to the phase of a slower wave 
modulating the amplitude of the faster wave. In regards to seizure 
classification, prior studies (including both EEG and intracranial 
EEG) have linked delta-HFO coupling with epileptogenic tissue, and 
have employed this feature in discriminating between ictal and 
interictal states (Ibrahim et  al., 2014; von Ellenrieder et  al., 2016; 
Edakawa et al., 2016). For example, Jacobs et al. (2018) used a random 
forest algorithm on PAC and obtained a sensitivity (Sens) of 87.9% and 
specificity (Spec) of 82.4% for classification of pre-clinical seizure 
states. More specifically, they found increases in coupling between 
delta (2–4 Hz) and gamma (20–50 Hz) bands to be a key feature for 
classifying the seizure EEG patterns (Jacobs et al., 2018). Fujita et al. 
(2022) using a deep learning (DL) classifier found training the 
network on PAC significantly improved seizure classification over 
training on the raw data, achieving 90% accuracy (Acc) using the 
former method (Fujita et al., 2022). It is notable that the delta-theta 
activity coupled with the gamma band is not strictly pathological, and 
is thought to be  involved in working memory, sensory and other 
cognitive processes (Lisman and Jensen, 2013). While highly 
informative, PAC remains just one of many presumably 
complimentary forms of cross-frequency coupling that may hold keys 
to functional and pathological states of the brain.

Power-to-power coupling (PPC) is another type of cross-
frequency coupling having a solid research base (Llinas et al., 1999; 
Shirvalkar et al., 2010; Popov et al., 2018; Wang et al., 2018; Sheremet 
et al., 2019) attesting to its significance, yet in contrast with PAC, it has 
a surprising lack of research in the area of seizure classification. PPC 
has been used for well over two decades in both murine and human 
studies, and across data types including local field potential (LFP), 
EEG and MEG. Some examples include tracking coupling between 
theta and gamma or other sets of frequencies within the rat 
hippocampus (Sheremet et al., 2019). PPC is found to be involved with 
successful memory retrieval (Shirvalkar et al., 2010) and other PPC 
patterns have been associated with specific states including sleep and 
anesthesia (Ferraris et al., 2018). While there is a sound foundation of 
research attesting to the value of PPC for identifying biomarkers, it has 
not been researched in the area of seizure classification.

Power-to-power coupling should be  particularly amenable to 
long-term monitoring of patients due to its methodological simplicity 
(standard time course correlations). For these reasons of 
computational efficiency and speed, PPC would seem to lend itself 
well to real-time implementation when compared to other CFC 
methods. Additionally, this mode of coupling may be more robust to 
noise due to its reliance on power (or amplitude) rather than phase, 
the latter of which may be more susceptible to signal noise (Giehl 
et al., 2021). For these reasons, the PPC metric was chosen as the 
mode of analysis.

In this study we focus on absence seizures because they are the 
most common type of childhood epilepsy and represent several 
challenges to clinicians. These challenges stem from the unique 
characteristics of absence seizures and their impact on the individuals 
who experience them. Absence seizures are often subtle and brief, 
lasting only a few seconds. The lack of convulsions or dramatic 
physical movements can make them less noticeable to observers, 
including clinicians. This subtlety may lead to under-recognition and 
misinterpretation of the seizures. Furthermore, the presentation of 
absence seizures can vary among individuals. Some may experience 
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typical absences with staring spells, while others may exhibit more 
atypical features, such as subtle facial movements or eye fluttering. 
This variability makes diagnosis and recognition challenging for 
clinicians. The symptoms of absence seizures can also overlap with 
other neurological or psychiatric conditions. Clinicians must 
differentiate absence seizures from conditions like daydreaming, 
attention-deficit/hyperactivity disorder (ADHD), or other types of 
seizures. This requires a comprehensive clinical evaluation, including 
EEG monitoring.

Thus, while absence seizures are generally considered less severe 
than some other types of seizures, they present a range of challenges 
for clinicians, from the subtlety of their presentation to their potential 
impact on cognitive function and daily life. Accurate counting of 
absence seizures is crucial for optimizing therapy. Current diagnostics 
rely on clinical history, in-hospital video-EEG monitoring, and 
patient-maintained seizure diaries. However, research indicates that 
patients report only 6% of all experienced absences (Keilson et al., 
1987), while caregivers report 14% (Akman et al., 2009). Therefore, a 
multipronged approach, including careful clinical evaluation and 
long-term EEG monitoring, is essential to address those challenges 
and to provide optimal care for individuals with absence seizures.

Scalp EEG is being used for long-term continuous monitoring 
with patients both in the intensive care units (ICU) and outside of the 
hospital. Patients may have spontaneous absence seizures that are easy 
to miss by the ICU staff or others, and long-term scalp EEG 
monitoring reduces the possibility of such oversight. Detecting 
seizures is critical for proper diagnostics and the increasing 
development of more portable and wearable EEG devices is making 
long-term monitoring of patients more practical and accurate.

Automated analysis is obviously important for real-time 
monitoring, and cutting-edge artificial intelligence techniques, 
particularly deep learning neural networks, offer robust tools for the 
automated analysis of EEG, including the exploration of cross-
frequency coupling between distinct EEG rhythms. Deep learning 
stands out from other types of machine learning (ML) in that it is 
specialized for big datasets (including image matrices), complex 
features, and has superior ability to detect multifaceted latent patterns. 
For these reasons, it is not surprising that many successful 
classification studies have relied on various DL networks 
(Schirrmeister et  al., 2017; Liu et  al., 2022). This method is thus 
optimally suited for validating intricate cross-frequency coupling 
patterns for seizure classification. In this context, we  introduce a 
Stacked Sparse Autoencoder (SSAE) specifically trained to identify 
absence seizure activity based on unique cross-frequency coupling 
patterns within scalp EEG.

2 Methods

EEG records (sampling frequency = 250 Hz) from the open 
source Temple University Hospital database [the TUSZ corpus, (Shah 
et al., 2018)] were used in the study. This dataset contains de-identified 
relatively short records of EEG from epilepsy patients of different ages 
with seizures annotated by neurologists (including both the seizure 
type as well as the start and stop times of the seizure). The dataset 
contained recordings that include 19 scalp EEG channels in 
accordance with the 10–20 configuration. The recordings’ sampling 
rate of 250 Hz allows for a range of high frequencies to be evaluated 

in the data (up to 120 Hz). The studies were conducted in accordance 
with the local legislation and institutional requirements and the 
relevant ethical guidelines and regulations, and was approved by the 
Georgetown-MedStar Institutional Review Board. All records with 
absence seizures available in the TUSZ corpus were taken into 
analysis. The total number of patients was 12. The annotations for each 
EEG record contained the seizure type (as determined both by EEG 
as well as clinical/behavioral characteristics) alongside the respective 
onset and offset times of that seizure. The duration of EEG records in 
the dataset varied from 5 to 35 min and the number of seizures in each 
record varied from one to 18. Although the TUSZ EEG records are not 
very long, they do represent continuous recordings which may include 
interictal, preictal and postictal activity. For the classification 
purposes, all segments containing only seizures (i.e., from the 
annotated onsets to the corresponding offsets) were cut from the 
initial records and used as the first data class comprising 94 seizure 
segments. Non-seizure segments (the second data class) were cut from 
the initial records such that they matched the number and the 
durations of seizure segments for each patient. The second class is 
referred to as ‘background’ activity. Thus, the overall dataset was 
balanced across two classes (the same number and the same duration 
of both seizure and background segments for each patient) with the 
average segment duration = 8.6 ± 5.3 s (mean ± standard deviation).

All EEG segments were taken into analysis as raw signals (i.e., 
without any preprocessing) in order to test the suitability of the 
current method to be applied to the raw EEG either online or offline. 
The analysis was performed using a modified script based on the 
PowPowCAT toolbox for EEGLAB (Thammasan and Miyakoshi, 
2020). First, the spectrogram based on short-time Fourier transform 
was calculated for each EEG segment using the Matlab spectrogram 
function with half-overlapping one-second epochs and a Hamming 
window, for frequencies from 1 to 120 Hz (logarithmic scale: [1 1.28 
1.56 1.85 … 19.1 19.8 20.6 … 110.6 113.7 116.8 120] Hz). The 
spectrogram provided the modulations of spectral power across time 
(within a given EEG segment) for each frequency, channel and 
segment. For each pair of frequencies and each EEG channel, power-
to-power coupling was calculated as a Pearson correlation between the 
corresponding spectral-power time courses across a given EEG 
segment resulting in the channel-specific PPC matrices. Those 
matrices were averaged across all 19 EEG channels resulting in the 
CFC matrix for a given EEG segment.

The segment-specific PPC matrices (of size 100×100) were 
converted into the 4,950-point vectors by taking only the elements 
below the main diagonal (because PPC matrices are symmetrical 
around the main diagonal). These vectors were then used as training 
and testing sets for the Stacked Sparse Autoencoder (SSAE). The SSAE 
method begins by using unsupervised training to find the most 
characteristic features of the input classes and thus reduces the 
dimensionality of the inputs. This feature may be important to make 
the data analysis more robust against the intrinsic noise and individual 
variations of the EEG signal (see Results and Discussion below). The 
SSAE network was created with Matlab (v. R2023b) and consisted of 
two hidden encoder-decoder layers and the softmax layer with two 
outputs for binary classification ‘seizure vs. background’. The default 
(i.e., recommended by Matlab) values of the SSAE network internal 
hyper-parameters and structure were used which included L2 and 
sparsity regularizers. Regularizers are usually used to prevent 
overfitting of the network and increase its ability to generalize. L2 
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regularization adds the squared magnitude of coefficients to the loss 
function thus penalizing large weights while the sparsity constraint 
penalizes the loss function such that only a few neurons are active in 
a hidden layer. This helps the automatic detection of the most relevant 
features in the training sets. As a result of a preliminary exploration of 
the autoencoder with the given dataset, the optimal parameters of the 
hidden layers were found as achieving the stop condition during 
training (see Methods) in a shortest time (~6 min). The first encoder-
decoder layer had 500 elements/neurons and the second layer had 50 
elements/neurons. Thus, the reduction in input dimensionality by a 
factor of ~100 was achieved with two hidden layers.

A well-established approach ‘leave-one-subject-out’ was used for 
cross-validation purposes. For each subject, the SSAE training was 
performed using data from all other subjects and the selected subject’s 
segments (not used in training) were then tested and classified by the 
trained network. This approach eliminates bias in the results if the data 
from a single subject is included in both the train and test set and thus 
tests the model generalizability for data not used in training. The results 
from all subject-specific tests were then averaged across all subjects for 
the final values (mean ± standard deviation) of sensitivity, specificity and 
accuracy. To further evaluate the performance of the SSAE classifier, the 
receiver operating characteristic (ROC) curve as well as the precision-
recall (PR) curve were calculated using Matlab function rocmetrics. As a 
result, the following parameters: AUC (area under the ROC curve), 
AUPRC (area under the PR curve) and the F1 score were derived.

3 Results

Among the 12 patients whose data were used in this study, there 
were 5 males and 7 females. The max/min age of the patients was 
22/4 years and the average age was 10 ± 6.1 years. Demographic data 
of patients and clinical characteristics of their absence seizures are 
presented in Table 1. Half of patients had ‘atypical’ absence seizures 
due to their ‘focal’ features at the onset (for example, seizure activity 
predominantly at the frontal or temporal electrodes with rapid 
secondary generalization) or the presence of minor muscular 
phenomena (eye blinking or involuntary twitching).

Two typical examples of cross-frequency matrices for EEG activity 
during absence seizures taken from two different patients are shown in 
Figure 1. The overall pattern of the power-to-power frequency coupling 
was characterized by multiple discrete local maxima forming a ‘grid’ 
always symmetrical along the main diagonal. An approximately equal 
spacing between those maxima suggested that they reflected cross-
frequency coupling between harmonics. Harmonics are integer 
multiples of the fundamental frequency arising in the spectral domain 
as a consequence of the main waveform not being strictly sinusoidal. 
Therefore, a relatively high coupling between the main frequency and 
its spectral harmonics is expected because harmonics occur at 
predictable intervals within the main waveform. For example, in 
Figure 1A some maxima (off the main diagonal) are present at the 
xy-coordinates of (15, 30) and (30, 15) Hz and (15, 45) and (45, 15) Hz 
(black solid circles). These maxima are likely to represent harmonics of 
the main frequency 15 Hz. Also, there are maxima at (28, 56) and (56, 
28) Hz (brown dashed circles) which represent the first harmonic of 
frequency 28 Hz. Similarly, in Figure  1B there are maxima at the 
xy-coordinates of (20, 40) and (40, 20) Hz (black solid circles) which 
represent the first harmonic of the main frequency 20 Hz.

The cross-frequency patterns in the data, however, were not 
limited to the harmonics of the frequencies within the beta range. For 
example, Figure 1B also shows maxima at the coordinates of (20, 54) 
and (54, 20) Hz (the brown dashed ovals), and clearly the frequencies 
20 Hz and 54 Hz are not harmonically related. Moreover, there are 
multiple maxima within the gamma band 40–80 Hz (the pink dashed 
circle) which demonstrate the coupling of gamma frequencies not 
harmonically related to each other (e.g., 58 and 66 Hz, arrows in 
Figure 1B).

Cross-frequency coupling matrices group-averaged over all 
background as well as absence seizure EEG segments are shown in 
Figures 2A,B. Statistical testing for the difference between the two 
conditions (seizure versus background) showed that power-to-power 
coupling during seizures was significantly stronger for a wide range of 
frequencies from 6 to ~60–90 Hz (Figure 2C) (Mann–Whitney U-test, 
p < 0.05, FDR-corrected for multiple comparisons).

During training, the network with L2 and sparsity regularizers 
achieved a squared error smaller than 10−2 (the stop condition) with 

TABLE 1  Demographic information and clinical features of patients’ absence seizures.

Subject # Gender Age Clinical features of absence seizures

675 F 4, 6 Atypical absence seizure (blinking).

1113 F 20 Absence seizures.

1413 F 10, 14 3 to 6 Hz generalized spike and slow wave activity; seizures lasting 10–16 s.

1795 F 9 Atypical absence seizures. 3 to 5 Hz spike and slow wave activity preceded by symmetric focal (frontal) 

activity.

1984 M 6 Atypical absence associated with involuntary twitching and motion arrest.

2448 M 4 Typical of absence seizures but with a possibility of a secondarily generalized mechanism including the left 

frontal activity seen at the onset.

2657 M 5 Multiple absence seizures.

3053 F 5 EEG suggests more than one mechanism for seizures in this patient.

3281 M 13 The seizures were frontally predominant and relatively characteristic of absence epilepsy.

3306 F 13 Typical absence seizures.

3635 M 6 Generalized SW discharge with a clear underlying frontal focality.

8608 F 22 Atypical absence seizure with focal features (subtle focal slowing and sharp waves at T3, T5, and C3).
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about 400 iterations. After that, fine tuning was performed. Figure 3A 
shows the confusion matrix with the results of classifying seizures 
versus background segments by the SSAE network. On average, the 
trained network was able to correctly classify EEG segments (not used 
in training) at a sensitivity of 93.13%, a specificity of 99.48%, and an 
overall accuracy of 96.83%. Given the total duration of all EEG 
segments analyzed, the false positive rate of 0.52% = 100% - specificity; 
(Figure 3A) translates to 3.2 false alarms per hour.

The ROC and the PR curves are shown in Figures 3B,C with the 
corresponding values of the areas under the curve: AUC = 0.94 ± 0.057 
(for the two-class average ROC), AUPRC = 0.92 ± 0.062 (for seizures), 
and the F1 score = 0.96 ± 0.046 (mean ± standard deviation).

Although the primary analysis of EEG records described above 
was purposefully done without conventional EEG preprocessing, in 
order to see whether preprocessing might improve the classification 
results, we  repeated the same analysis after the following 
preprocessing steps: high-pass filtering at 0.1 Hz cutoff (a zero-
phase FIR filter with the filtfilt function), notch filtering (filtering 
out the line frequency and its harmonics using the CleanLine 

EEGLAB toolbox), re-referencing to common average, Independent 
Component (IC) decomposition using the AMICA algorithm, and 
the automated removal of artifactual (‘bad’) ICs using the ICLabel 
algorithm (Pion-Tonachini et al., 2019). An IC was removed based 
on the following two criteria. First, if any of its probabilities 
(assigned by the ICLabel algorithm as a percentage) of being 
‘muscle’, ‘eye’, ‘heart’, ‘line noise’ or ‘channel noise’ was greater than 
the probability of being ‘brain’ or ‘other’. Second, if the sum of the 
percentages of all the above artifactual assignments for this IC was 
greater than 50%.

The average CFC matrices after preprocessing are shown in 
Supplementary Figure S1, and, in comparison to the CFC matrices 
without preprocessing, they look very similar (compare Figure 2 and 
Supplementary Figure S1). EEG preprocessing slightly improved the 
classification of EEG segments (‘seizure versus background’) with the 
following results: Sens = 96.31%, Spec = 99.87%, and Acc = 98.51% 
(Supplementary Figure S2). However, all these classification metrics 
as well as the areas under the corresponding curves (the ROC curve 
and the precision-recall curve) were not significantly higher in 

FIGURE 1

Two examples of cross-frequency matrices of EEG activity during absence seizures from two patients (linear frequency scale is used to demonstrate 
the arithmetic progression-like frequency relationships between harmonics). Circles, ovals and arrows show examples of a relatively stronger coupling 
between different frequencies including both harmonic and non-harmonic relations. See text for details.

FIGURE 2

Cross-frequency coupling analysis without EEG preprocessing. Power-to-power matrices are group-averaged over all background segments (A) as 
well as absence seizures (B) (logarithmic frequency scale). (C) Statistically significant differences between two conditions for each frequency–
frequency pair are shown in green (Mann–Whitney test, p < 0.05, FDR-corrected for multiple comparisons).
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comparison with the metrics obtained without preprocessing (Mann–
Whitney test, p > 0.1 for all individual comparisons).

There is a question whether cross-frequency coupling, as an EEG 
feature, presents any advantage compared to the spectral power used 
in many published classification approaches. To address this question, 
we ran an additional analysis using spectral power for classification 
purposes. For each EEG segment, the output of the PowPowCAT 
function also provided power spectra (i.e., the spectrogram averaged 
across time). Similar to the PPC matrices, the channel-specific spectra 
were averaged across channels and the resulting segment-specific 
spectra were used as an input to the SSAE (Supplementary Figure S3, 
left). Classification based on the power spectrum produced slightly 
worse but non-significantly different results compared to the 
classification based on PPC: 90.1 ± 21 vs. 93.1 ± 4.98; 98.4 ± 5 vs. 
99.5 ± 1.8; 95.5 ± 10 vs. 96.8 ± 6.4 (%, mean ± st. dev.; for Sens, Spec, 
and Acc, respectively) (Supplementary Figure S3, right). Importantly, 
however, the standard deviations for the spectrum-based classification 
metrics were significantly larger compared to the PPC-based 
classification (Bartlett’s test; Table  2). The larger variance of the 
spectrum-based classification results was likely due to the individual 
differences in spectral characteristics of the EEG. Also, this result 
indicates that cross-frequency coupling may provide an EEG feature 
which is more robust against the individual variations.

To compare the performance of the SSAE-based classifier with the 
ML algorithms, we used the Support Vector Machine (SVM) and the 
Random Forest (RF) classifiers using the same PPC matrices as input 
and the same ‘leave-one-subject-out’ cross-validation approach. 
Matlab functions fitclinear and fitensemble were used for the SVM and 
RF classifiers, respectively. For each subject ‘left-out’, the SVM training 
was performed using 5-fold cross-validation on the remaining subjects 
with the subsequent testing of the excluded subject. For the RF 
classifier, the number of trees varied from 1 to 250 with the control of 
the out-of-bag error. It appeared that the error leveled out in the range 
of 20–140 trees and remained at the lowest value thereafter, 
insignificantly affecting the classification accuracy. After the 
preliminary testing, the RF-based classification was performed with 
number of trees = 140 with the same ‘leave-one-subject-out’ 
procedure. Both SVM and RF classifiers performed worse than the 
SSAE classifier with lower values of Sens, Spec and Acc as well as a 
significantly greater variance of those metrics (Table 2).

4 Discussion

Ongoing research in machine learning and deep learning is 
actively exploring absence seizures to identify their critical features, 

TABLE 2  Performance comparison of the PPC-SSAE classifier with other classifiers.

Sensitivity Specificity Accuracy

Mean, % St. Dev., % Mean, % St. Dev., % Mean, % St. Dev., %

PPC-SSAE 93.1 5.0 99.5 1.8 96.8 6.4

Spectra-SSAE 90.1 21.0*** 98.4 5.0** 95.5 10.0*

PPC-SVM 81.1 32.0** 97.1 14.0*** 90.0* 16.0**

PPC-Random Forest 78.0* 24.6*** 91.5** 13.2*** 85.6*** 11.6**

PPC, power-to-power coupling; SSAE, stacked sparse autoencoder; SVM, support vector machine. PPC-SSAE, algorithm based on PPC as a classifying feature and the stacked sparse 
autoencoder as a classifier; Spectra-SSAE, algorithm based on the EEG spectrum as a classifying feature and the SSAE classifier; PPC-SVM, algorithm based on PPC as a classifying feature and 
the SVM classifier; PPC-Random Forest, algorithm based on PPC as a classifying feature and the Random Forest classifier. The PPC-SSAE algorithm is compared to all three other algorithms 
with statistically significant differences indicated by asterisks: p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***) (t-test for the comparison of the mean values, Bonferroni-corrected; Bartlett’s test 
for the comparison of variances, Matlab function vartestn).

FIGURE 3

(A) Confusion matrix showing the results of recognition of seizures and background segments by the SSAE network. The mean values (%) ± standard 
deviations (%) are shown for sensitivity, specificity and overall accuracy (the bottom row) as well as for positive predictive values for each class (two 
upper cells in the right-hand column). (B, C) The results of two-class classification (seizure versus background) for the trained SSAE neural network. 
The ROC curve representing the classification results over both classes (B). The precision-recall curve for the seizure class (C). The corresponding 
metrics, i.e., the areas under the curves, AUC (B) and AUPRC (C), are also shown.
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aiming to gain deeper insights into the electrophysiological roles 
that these features play, with the goal of improving seizure detection 
and prediction. In both murine and human studies, successful 
training of the networks usually involves using relevant time and 
frequency domain metrics especially frequency and amplitude, and 
sometimes phase (Fanselow et al., 2000; Xanthopoulos et al., 2009; 
Richard et al., 2015; Kumar et al., 2021). Most studies use wavelet 
analysis techniques to account for non-stationarity of the EEG 
signal and improve time and frequency localization of various EEG 
patterns. Entropy-related metrics, especially permutation entropy 
(PE), was also very useful in training networks, and decreases in PE 
were found in both preictal and ictal segments in comparison to 
background (Li et al., 2007). Furthermore, specific spatial features 
were found to characterize absence seizures such as increased 
cortico-thalamo-cortical synchrony in murine models, or 
reductions in overall functional connectivity patterns during 
generalized spike-and-wave discharges in humans (van Luijtelaar 
et al., 2016; Kumar et al., 2021).

Many studies found that the harmonics of the fundamental 
frequencies of seizures are highly specific and critical to the 
classification success (Sitnikova et al., 2009; Buteneers et al., 2013). 
Harmonic spectral analysis involves broad wavebands (i.e., 1–120 Hz) 
that include HFOs which are increasingly recognized as crucially 
important in the pathophysiology of epilepsy. The energy in these 
higher frequency harmonics are found to be important signatures 
differentiating between regular sleep spindles, artifacts and true spike-
and-wave discharges that all share the same fundamental frequency 
(Sitnikova et al., 2009). The interdependent and harmonic architecture 
of the EEG frequency spectrum has been well described by authors 
such as Buzsáki Buzsaki and Draguhn (2004) and Klimesch (2013) 
and indicates that a comprehensive analysis of EEG activity should 
involve a view of the cross-frequency dynamics.

4.1 Comparison with other 
machine learning and deep learning 
methods

The use of ML algorithms and DL neural networks in studies 
attempting to recognize and predict absence seizure EEG activity has 
been rapidly advancing in the past decades, generating promise in 
improving both clinical treatment as well as the neurobiological 
understanding of this disorder. Studies since the early 1990’s describe 
the ability of ML and DL methods to recognize absence seizures with 
high level of sensitivity (~95%) albeit often with higher rates of false 
positives (Jando et al., 1993; Vadasz et al., 1995). Many of these earlier 
studies used genetic murine models of absence epilepsy and implanted 
EEG electrodes. More recent ones apply these techniques to humans 
using only scalp EEG and with the ability to run the computation not 
only offline, but also in real time (Alam et al., 2024).

This ability to differentiate the pre-seizure from the seizure state is 
now being successfully applied to humans using scalp EEG with as few 
as 19 scalp electrodes (Kumar et al., 2021). Schirrmeister et al. (2017) 
used spectral power between alpha-high gamma bands with a 
convolutional neural network (CNN) and achieved accuracies as high as 
84% (Schirrmeister et al., 2017). In a more recent exploration with a 
shallow CNN applied to scalp EEG data from human subjects, Zhang 
et al. achieved a sensitivity of 92.2% with a low false positives rate (FPR) 
of 0.12 per hour (Zhang et al., 2020). Other studies too have used various 
ML and DL models for seizure detection and/or prediction in human 
scalp EEG using different features with accuracy ranging from ~70% to 
higher than 90–95% (Li et al., 2016; Sridevi et al., 2019; Ansari et al., 
2021; Liu et al., 2022; Thara et al., 2023; Alam et al., 2024).

The current SSAE-based classification results are on par with or 
better than several studies based on other DL neural network 
classifiers such as: CNN and BiLSTM (Liu et al., 2022; Schirrmeister 

TABLE 3  Seizure classification/detection studies using deep learning neural networks.

Author and 
year

Feature Classifier Sens Spec Acc Dataset Fs, Hz No. of 
subjects

Subject-
specific 
algorithm

Lin et al. (2016) Raw data SSAE 93–100% 90–100% 96% Bonn 173 5 No

Schirrmeister 

et al. (2017)

Raw data CNN - - 84% TUH 250 14 Yes

Akut (2019) Raw data CNN 100% 100% 100% Bonn 173 5 No

Zhang et al. 

(2020)

Raw data Shallow CNN 92% - - CHB-MIT 256 - No

Liu et al. (2022) Raw data CNN, BiLSTM 86%, 89% - 97.5%

93.7%

CHB-MIT, 

SH-SDU

256 33 No

Fujita et al. 

(2022)

PAC DCNN 90% 90% 90% Innov. AI 

Hosp.

1000–

2000

180 No

Khan et al. 

(2022)

Scalogram Various CNNs 95% 95% 95% TUH 250 9 No

Yang et al. 

(2023)

Temporal 

spectral

Multiple NNs 98% 100% 85% TUH 250 14 No

Thara et al. 

(2023)

Raw data CNN, VGGNet, 

ResNet

- - 97% TUH 250 - No

This work PPC SSAE 93% 99% 97% TUH 250 12 No

Sens, sensitivity; Spec, specificity; Acc, accuracy; Fs, sampling frequency, hyphen (−), no data.
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et al., 2017; Zhang et al., 2020; Thara et al., 2023; Khan et al., 2022), 
DCNN (Fujita et al., 2022), multiple neural networks (not specified) 
(Yang et al., 2023) (see Table 3). We are aware of only one study based 
on a convolutional neural network which reported 100% for sensitivity, 
specificity and accuracy (Akut, 2019). However, this study was done 
on a dataset of only 5 patients which raises a question about the 
generalizability of this result. A comprehensive comparison of various 
CNN networks, including pretrained GoogLeNet and AlexNet as well 
as the authors’ original hybrid model (AG86), was done in Khan et al. 
(2022). Their hybrid model AG86 combined the best features of 
GoogLeNet (inception layer) and AlexNet (starting and ending layers) 
and demonstrated a better performance than several other pretrained 
networks (Khan et al., 2022). Although the proposed SSAE classifier 
showed a slightly lower sensitivity (93%) compared to the AG86 model 
(95%), it achieved better specificity (99%) and accuracy (97%) 
(Table 3). Also, the SSAE classifiers usually have just two hidden layers 
and thus have a simpler architecture compared to the CNN networks 
which require multiple hidden layers to achieve a comparable 
reduction in dimensionality (Akut, 2019), and this requires more 
computational resources. For example, in Akut’s study the training was 
done on Tesla K80 GPU to achieve faster computation time. The GPU 
used 12 GB Memory, 61 GB RAM and 100 GB SSD (Akut, 2019). In 
comparison, the proposed SSAE classifier was realized on a laptop 
(with the Windows 10 Enterprise OS) with Intel(R) Core(TM) 
i5-5300U CPU at 2.30GHz, 16 GB RAM and ~ 1 GB hard drive space. 
This speaks to an excellent computational efficiency of the SSAE 
classifier. EEG classification using SSAE is a novel approach and we are 
aware of only one study where a SSAE classifier for seizure detection 

also demonstrated very good performance (Sens = 93%÷100%; 
Spec = 90%÷100% and Acc = 96%) (Lin et al., 2016).

It is also important to compare the DL-based models with more 
traditional ML algorithms. Since 2012, emerging research in epilepsy 
classification utilizing ML has shown dramatic improvements in 
sensitivity, specificity, and/or accuracy (up to 100% sensitivity). For 
example, one of these studies used increasingly larger datasets than 
previous studies such as with the number of patients up to 23 (Chandel 
et al., 2016), and still obtaining a sensitivity of 100%. It is worth noting 
that the ML methods typically outperformed DL neural networks in 
seizure classification on certain datasets achieving sensitivity at 100% 
as well as specificity and accuracy at 99% (Saeed et al., 2016; Chandel 
et al., 2016; Khan et al., 2012; Ansari et al., 2021) (see Tables 3, 4). 
Moreover, the ML algorithms are more compact and allow an effective 
implementation in hardware (Alam et  al., 2024). However, more 
recent research on DL has shown similar capabilities (Khan et al., 
2022; Thara et al., 2023; Akut, 2019), and more research with DL is 
warranted. The DL-based classification algorithms can continue to 
improve by broadening their approach to patient-independent 
training, including larger datasets with more patients, and optimizing 
sensitivity, specificity and accuracy. In the current study, the 
performance of the SVM and Random Forest classifiers were 
significantly lower compared with the SSAE classifier and lower than 
the reported results for the ML classifiers in many other studies (see 
Tables 2, 4). It is likely that the more modest results with the SVM and 
RF classifiers were due to a more stringent ‘leave-one-subject-out’ 
cross-validation used in the current study. Also, the larger variance of 
the classification metrics (Sens, Spec, and Acc) with the SVM and 

TABLE 4  Seizure classification/detection studies using machine learning algorithms.

Author 
and year

Feature Classifier Sens Spec Acc Dataset Fs, Hz No. of 
subjects

Subject-
specific 
algorithm

Khan et al. 

(2012)

Skewness 

kurtosis

Simple linear 

classifier 100% - - CHB-MIT 256 10 Yes

Li et al. (2016) Entropy LDA - - 89.0%

Peking Univ. 

Hosp. 256 10 No

Saeed et al. 

(2016) Entropy, CSD SVM 100% - - CHB-MIT 256 10 Yes

Chandel et al. 

(2016)

Spectral, 

entropy Linear classifier 100% - - CHB-MIT 256 23 Yes

Jacobs et al. 

(2018) PAC Random Forest

87.9–

97.5% 82.4–95% 80–95%

Toronto 

Western Hosp. 500–1,024 12 Both

Liu et al. 

(2018) PAC SVM - -

97.5–

100%

CHB-MIT, 

Bonn 256, 173 28 -

Sridevi et al. 

(2019)

Spectral, 

entropy

LDA, NB, DT, 

SVM, KNN 80% 86% 83%

SCTIMST, 

Fortis Malar 

Hosp. 256–400 18 No

Ansari et al. 

(2021) Spectral Linear classifier 100% 99% 99%

AIIMS, CHB-

MIT 128–256 30 No

Alam et al. 

(2024) Various QDA classifier 100% - 99.4% Bonn 173 5 No

Sens, sensitivity; Spec, specificity; Acc, accuracy; Fs, sampling frequency, hyphen (−), no data.
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Random Forest algorithms point to the lower generalizability of the 
ML classifiers compared to the SSAE classifier in the current study.

Growing interest in using DL for seizure classification is partly 
related to how its unique characteristics may allow for increased 
generalizability including across individuals, seizure types, sleep 
vs. wake conditions, and eventually moving from dual 
classification (e.g., seizure vs. background) to ternary classification 
(e.g., seizure vs. preictal vs. background). The ability of the DL 
networks to eliminate or at least reduce the need for feature 
extraction may be part of this generalization. Getting rid of the 
human bias on what features define a seizure may improve seizure 
classification. In place of the ‘extracted-by-a-human’ features, DL 
has an ability to find more abstract and higher-level representations 
(Akut, 2019). DL’s greater number of hidden layers alongside 
nonlinear activation functions expand its abilities for finding 
intricate and nonlinear patterns in the data. Given that the brain 
is non-linear and its EEG signals are non-stationary and complex, 
it seems appropriate to continue to evaluate whether and how DL 
may match or improve traditional ML accuracy in 
seizure classification.

Our method has built on the efficacious components of the 
existing research in regard to the deep learning techniques, 
significant CFC biomarkers, and the emerging relationships of 
HFOs to epilepsy. The novelty and significance of this approach 
includes validation of a hitherto unexplored phenomenon of cross-
frequency interactions (specifically, power-to-power coupling) in 
the context of identifying new biomarkers of absence seizures. 
Building on prior research which suggests the key importance of 
HFOs in epilepsy, this approach also holds promise for clinical 
application in long-term monitoring of patients with 
absence seizures.

It is becoming clear that there is a complex interplay between 
spectral, harmonic and spatial features that can reliably characterize 
absence epilepsy. PPC analysis has a level of sensitivity to these 
features already known to have utility in seizure classification (i.e., 
spectral power), and in addition, it provides important information 
on cross-frequency interaction. In this way, PPC represents a novel 
powerful, hitherto underutilized, tool to probe the unique cross-
frequency signatures of epileptiform activity. It holds promise for 
further enhancing the optimization between sensitivity and specificity. 
This becomes particularly crucial in scenarios where data is less 
pristine or encompassing multiple states such as sleep and wakefulness. 
The results not only confirm the utility of a new approach to classify 
absence seizures with high accuracy, but also strongly suggest that 
continuing research on cross-frequency coupling will deepen our 
knowledge of the underpinnings of epileptic seizures by further 
clarifying the involvement of HFOs (which are already known to 
be  deeply related to epilepsy), harmonic patterns, as well as 
interdependent relationships between different frequency bands 
more generally.

5 Limitations of the study

A limitation of the current study is the use of a single public 
dataset (TUSZ) which has EEG records of absence seizures from just 
12 patients. Also, the available EEG records are not very long (5 to 
35 min in duration). While the number of patients (12) is comparable 

to other classification studies (Table 3; with the exception of Chandel 
et al., 2016; Ansari et al., 2021; Fujita et al., 2022), this may still limit 
the generalizability of our results. However, the absence seizure dataset 
from the TUSZ corpus is relatively balanced by the gender of patients 
(7 females and 5 males) and it also contains a wide range of patient 
ages, from pediatric to young adult (4–22 years). The ‘one-subject-out’ 
cross-validation did demonstrate good generalizability across this 
range of patients’ ages.

Another limitation is that it is unclear whether the classification 
performance in the present study is achieved due to a specific feature 
set (i.e., power-to-power coupling matrices) or a specific classifier type 
(i.e., the autoencoder). However, the use of another feature namely, 
power spectrum, which has been used in many other studies, (e.g., 
Ansari et al., 2021; Yang et al., 2023), did not improve classification. 
Importantly, the PPC-based classification had significantly smaller 
variance compared to the spectrum-based one.

6 Conclusion

The results provide evidence both for the parameters of power-to-
power coupling having utility for seizure classification and also for an 
approach using PPC alongside SSAE neural networks being efficacious 
for automated classification of seizures within scalp EEG. Importantly, 
the trained SSAE network showed generalizability in detecting 
seizures with high sensitivity (93%), very high specificity (99.5%) and 
accuracy higher than 96% with all patients tested. Automated analysis 
based on deep learning networks can significantly accelerate the 
analysis of EEG data and increase their diagnostic value.
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Analysis of electroencephalography (EEG) signals gathered by brain–computer

interface (BCI) recently demonstrated that deep neural networks (DNNs)

can be e�ectively used for investigation of time sequences for physical

actions (PA) classification. In this study, the relatively simple DNN with fully

connected network (FCN) components and convolutional neural network (CNN)

components was considered to classify finger-palm-hand manipulations each

from the grasp-and-lift (GAL) dataset. The main aim of this study was to

imitate and investigate environmental influence by the proposed noise data

augmentation (NDA) of two kinds: (i) natural NDA by inclusion of noise EEG data

from neighboring regions by increasing the sampling size N and the di�erent

o�set values for sample labeling and (ii) synthetic NDA by adding the generated

Gaussian noise. The natural NDA by increasing N leads to the higher micro and

macro area under the curve (AUC) for receiver operating curve values for the

bigger N values than usage of synthetic NDA. The detrended fluctuation analysis

(DFA) was applied to investigate the fluctuation properties and calculate the

correspondent Hurst exponents H for the quantitative characterization of the

fluctuation variability. H values for the low time window scales (< 2 s) are higher

in comparison with ones for the bigger time window scales. For example, H

more than 2–3 times higher for some PAs, i.e., it means that the shorter EEG

fragments (< 2 s) demonstrate the scaling behavior of the higher complexity

than the longer fragments. As far as these results were obtained by the relatively

small DNN with the low resource requirements, this approach can be promising

for porting such models to Edge Computing infrastructures on devices with the

very limited computational resources.

KEYWORDS

deep neural network, brain-computer interface, grasp-and-lift, physical action, data

augmentation, noise, noise data augmentation, detrended fluctuation analysis

1 Introduction

Recently, deep learning (DL) methods based on deep neural networks (DNNs) were

effectively used for processing different data (LeCun et al., 2015). In healthcare and elderly

care, they become very popular for processing the very complex multimodal medical data

(Chen and Jain, 2020; Esteva et al., 2019). Usage of DL is especially important in the view
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of availability of various brain–computer interfaces (BCI) used for

collection and analysis of electroencephalography (EEG) signals

generated by brain activities (Roy et al., 2019; Kotowski et al.,

2020; Lawhern et al., 2018). In the context of critically important

tasks, for example, for air-space applications, BCIs are intensively

used for the mental workload assessment on professional air traffic

controllers during realistic air traffic control tasks (Aricò et al.,

2016b,a; Di Flumeri et al., 2019).

DNNs were actively used for analysis of EEG data in a different

fields (Li et al., 2020; Aggarwal and Chugh, 2022; Zabcikova et al.,

2022) such as air-space (Aricò et al., 2016b,a; Di Flumeri et al.,

2019), medicine (Chen et al., 2022;Wan et al., 2019; Gu et al., 2021),

education (Xu and Zhong, 2018; Gang et al., 2018; Belo et al., 2021),

entertainment (Kerous et al., 2018; Gang et al., 2018; Vasiljevic

and de Miranda, 2020; Cattan, 2021), and other applications

(Zabcikova et al., 2022). Usually, components of convolutional

neural network (CNN) (Lawhern et al., 2018; Lin et al., 2020; Gu

et al., 2021; Gatti et al., 2019; Gordienko et al., 2021c), recurrent

neural networks (RNN) (An and Cho, 2016; Wang et al., 2018b;

Pancholi et al., 2021; Kostiukevych et al., 2021), and other including

components of fully connected networks (FCN) (Gordienko et al.,

2021c; Kostiukevych et al., 2021) are used in them. These models

combine some methods of EEG feature extraction with the use of

various filters and show significant improvement of performance

in comparison with other models. For instance, 3D CNN model

based on multi-dimensional feature combination improves the

classification accuracy of sensorimotor area activated tasks in the

brain (Wei and Lin, 2020). Some of the DNNmodels demonstrated

their quite high efficiency on some tasks such as sleep stage

classification, stress recognition, fatigue detection, motor imagery

classification, emotion recognition, and emotion classification (Gu

et al., 2021). As to the domain operator-specific scenarios, some

interesting results were obtained for EEG hand movement force

and speed forecasting with the accuracy > 80% (Gatti et al., 2019)

and the conflict prediction accuracy≈ 60% (Vahid et al., 2020).

Some hybridization approaches become popular recently. For

example, CNN components combined with RNN components

(including long short-term memory (LSTM) blocks) were

investigated recently to resolve action classification problem.

For instance, various RNN architectures were compared in

performance for identifying hand motions for GAL dataset from

EEG recordings (An and Cho, 2016; Kostiukevych et al., 2021) and

for AJILE dataset (Wang et al., 2018b).

As it is well-known in computer vision, for example, for image

classification tasks, data augmentation (DA), in general, and noise

data augmentation (NDA), in part, can improve the performance

of DNNs. Various strategies for applying DA methods to EEG

data were considered recently that allow to improve classification

accuracy when the limited volume of the data is available (George

et al., 2022). NDA methods can be performed by adding Gaussian

noise (Cecotti et al., 2015; Freer and Yang, 2020; Gordienko et al.,

2021c) or by creating synthetic EEG data (Zhang and Liu, 2018;

Aznan et al., 2019; Fahimi et al., 2020). The similar numerous

NDA-related approaches were proposed (Freer and Yang, 2020;

Gordienko et al., 2021c; George et al., 2022), and many others were

reviewed recently in several surveys (Rommel et al., 2022; Lashgari

et al., 2020; Talavera et al., 2022).

Although the results are promising and intriguing, their

statistical reliability remains uncertain due to potential external

influences under real-world conditions. That is why the main of

this study was to imitate and investigate environmental influence

by the proposed NDA of two kinds: (i) natural NDA by inclusion

of noise EEG data from neighboring regions by increasing the

sampling size N and the different offset values for sample labeling

(see details below) and (ii) synthetic NDA by adding the generated

Gaussian noise.

It should be noted that DA is a widely used technique that

enhances a model’s ability to generalize by making it more robust to

variations in input data. Common DA methods include geometric

transformations, noise-based modifications (such as roughening,

adding, or mixing), and generative approaches. However, in EEG

analysis, geometric transformations such as scaling, rotation, and

reflection are not directly applicable. Unlike structured tables,

text, or images, EEG signals are continuous and vary over

time. Even after feature extraction, they remain time series data.

Applying geometric transformations, such as rotation, to EEG

signals would disrupt their temporal structure, compromising their

meaningful features.

Among various ways for adding noise to the EEG signals in

purpose of DA Li et al. (2019); Parvan et al. (2019); Ko et al. (2021);

Sun and Mou (2023), the following are of great interest due to their

intuitive understanding:

• inject various types of noise (such as uniform, Gaussian,

Poisson, salt, and pepper noise, and various color noise

types) with different parameters (for instance: mean and

standard deviation).

• manipulate the time segment of interest by

shifting/adding/cropping/combining operations with

including/subtracting the information about background

and signal.

• synthesize the signal by encoding/decoding and

generative approaches.

Like geometric transformation methods, noise addition-based

DA has been widely applied in successful DL studies for CV

(Simonyan and Zisserman, 2014; He et al., 2016). This approach

enhances DA by introducing randomly sampled noise values into

the original data. Injecting structured noise patterns (e.g., white

Gaussian or pink noise) with a specific signal-to-noise ratio (SNR)

can alter the spectral characteristics of a time series by introducing

additional frequency components to the signal spectrum (Borra

et al., 2024).

In the context of DA for EEG, numerous studies were

performed to investigate the impact the noise-induced DA for EEG.

Some of the recent results are shortly summarized in Table 1.

DA by Gaussian noise involves adding Gaussian white noise

to recorded EEG signals (Wang et al., 2018a). In practice, a

perturbation E(t) ∼ N(0, σ 2) is independently sampled for each

channel and acquisition time and added to the original signal X,

resulting in the augmented data: [X](t) = X(t) + E(t) Here, σ

represents the standard deviation of the noise distribution. This

parameter determines the magnitude of the transformation as

larger values lead to greater distortion of the original signal. The
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TABLE 1 Examples of EEG classification studies (“Reference” column) with noise-based DA with various noise parameters (“Noise Type”) on some

standard or custom datasets (“Dataset Reference”) with the di�erent numbers of classes (“Nc”), neural network architectures (“NNA”), and the reported

improved accuracy (“Accuracy, (%)”) by absolute values or changes (denoted with + sign).

References Noise Dataset Nc NNA Accuracy (%)

Gaussian White Noise

Zhang et al., 2017 NA custom (Zhang et al., 2017) 4 CNN 97.5

Behncke et al., 2018 NA KPO (Behncke et al., 2018) 2 ConvNet 75±9

Behncke et al., 2018 NA RGO (Behncke et al., 2018) 2 ConvNet 62±7

Lashgari et al., 2021 N(0, set) BCI C 2008 2a (Brunner et al., 2008) 4 CNNwA 93.6 ≥ 91.57

Lashgari et al., 2021 N(0, set) BCI C 2008 2b (Leeb et al., 2008) 2 CNNwA 87.83 ≥ 87.60

George et al., 2022 N(0, cmean) custom (Cho et al., 2017b) 4 CNN 78.30-86.51 ≥ 77.73

George et al., 2022 N(0, cmean) EEG-BCI (Kaya et al., 2018) 2 CNN 81.74-83.01 ≥ 80.73

Tunnell et al., 2022 N(0, 1) DEAP (Koelstra et al., 2011) 2 EEGNet 77.16 ≥ 66.30

Wu et al., 2022 N(0, set) SleepEDF (Kemp et al., 2000) 5 neuro2vec 86.53 ≥ 85.49

Wu et al., 2022 N(0, set) Epilepsy (Andrzejak et al., 2001) 2 neuro2vec 44.30 ≥ 40.24

Wu et al., 2022 N(0, set) Ninapro (Pizzolato et al., 2017) 18/40 neuro2vec 86.69 ≥ 84.32

Gou et al., 2022 NA BCI-CRC-WRC (Pizzolato et al., 2017) 3 EEGNet 54.72 ≥ 48.34

Collazos-Huertas et al., 2023 NA GigaScience (Cho et al., 2017a) 10 EEGNet+ScoreCam 78.2 ≥ 69.7

Lopez et al., 2023 N(0,MW) MAHNOB-HCI (Soleymani et al., 2011) 3(a) HyperFuseNet 41.56 ≥ 40.90

Lopez et al., 2023 N(0,MW) MAHNOB-HCI (Soleymani et al., 2011) 3(v) HyperFuseNet 44.30 ≥ 40.24

Ashfaq et al., 2024 N(0, 0.01) CogAge (Nisar et al., 2020) 7 MHyCoL +5, +30

Ashfaq et al., 2024 N(0, 0.01) UniMiB-SHARMicucci et al., 2017 17 MHyCoL +5, +30

Lee et al., 2024 NA BCI C 2020 (Jeong et al., 2022) 6 DeiT +0.49 . . . 10.57

Cai et al., 2024 N(set, set) custom (Cai et al., 2024) 6 CNN 85.2 ≥ 58.6

Wang et al., 2024 NA OpenBMI (Lee et al., 2019) 2 MRCNN 82.47 ≥ 79.45

Wang et al., 2024 NA SingleArmMI (Wang et al., 2024) 4 MRCNN 43.19 ≥ 37.36

Falaschetti et al., 2024 N(0, 0.03) custom (Falaschetti et al., 2024) 6 LSTM 95.2

Borra et al., 2024 NA 9 MOABB sets (Jayaram and Barachant, 2018) 2/4 SpeechBrain-MOABB +14. . . 25.2

Cho et al., 2017b NA custom (Cho et al., 2017b) 3 CNN 93–95

Ouyang et al., 2024 NA custom Brainlink (Ouyang et al., 2024) 4 BRIEDGE 98.78 ≥ 98.07

Ouyang et al., 2024 NA custom EyeState (Ouyang et al., 2024) 2 BRIEDGE 92.51 ≥ 84.75

Ouyang et al., 2024 NA custom BCI-2000 (Ouyang et al., 2024) 4 BRIEDGE 66.02 ≥ 56.05

Ouyang et al., 2024 NA custom Hybrid (Ouyang et al., 2024) 10 BRIEDGE 86.50 ≥ 63.72

Uniform noise

Freer and Yang, 2020 [–0.5,5] scaled BCI C IV (Tangermann et al., 2012) 4 CNN +5.3

Various noise types (uniform, white, pink, impulse)

Sun et al., 2024 NA Multi-dataset (Sun et al., 2024) 3 CNN+GCN+Transf 96.7,93.3,93.3

[1] NA, the noise parameters were not detailed (not available) in the studies.

[2] set, the set of various values was investigated.

[3] cmean , the Gaussian noise is generated with zero mean and standard deviation equal to the class mean.

[4]MW, the Gaussian noise signal with zero mean is added to each sample, with its standard deviation being computed modality-wise (MW).

[5] (a), (v), two classification schemes: (a) - the arousal scheme (3 classes: calm, medium aroused, and excited), (v) - the valence scheme (3 classes: unpleasant, neutral valence, and pleasant).

primary motivation for this DA is to enhance model robustness

against noise in EEG recordings, which are known to have a

limited SNR. Gaussian noise augmentation is controlled by the

parameter σ , which dictates the standard deviation of the sampled

noise. Selecting an appropriate σ value is as crucial as choosing

the DA method itself. For example, when σ exceeds 0.2, EEG

signals become excessively noisy, making the DA systematically

detrimental to learning (Rommel et al., 2022).

For instance, spectrogram images of motor imagery EEG have

been augmented by introducing Gaussian noise (Zhang et al.,
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2020). White noise manifests as random fluctuations uniformly

distributed across all frequencies in the EEG signal. It can originate

from various sources, including thermal noise in EEG equipment,

sensor artifacts, or external electrical interference. This noise

reduces the SNR, making it challenging to discern neural patterns

and potentially masking true neural activity. The effect is especially

problematic for low-amplitude signals, such as those originating

from deep brain regions.

Another method for increasing data diversity involves injecting

random matrices into the raw data, typically sampled from

Gaussian distributions (Okafor et al., 2017). Gaussian noise

injection applies a randomly generated matrix from a Gaussian

distribution to the original data as a form of DA. While these

methods are straightforward and intuitive, they can sometimes

exacerbate model overfitting due to the high similarity between

the original and augmented data. In particular, several studies have

augmented EMG signals by adding Gaussian noise to the original

dataset and adjusting the SNR (Atzori et al., 2016; Zhengyi et al.,

2017; Tsinganos et al., 2018).

Another study uses injecting random Gaussian noise generated

based on the statistical properties of the data. The mean value of

trials for the target class is computed; then, Gaussian noise with a

zero mean and a standard deviation equal to the class mean (cmean

in Table 1) is generated. This noise is added to randomly selected

trials to create artificial frames. This simple yet effective method

preserves the original waveform characteristics while introducing

slight numerical variations across trials (George et al., 2022).

In other studies, DA has proven effective in addressing the

challenge of limited learning caused by small training sets in

EEGNet, leading to significant improvements in classification

accuracy. As a result, the data were expanded by a factor of three,

and the standard deviation of the added Gaussian noise was set to

0.1 (Cai et al., 2024).

The modality-wise approach was proposed in Lopez et al.

(2023), where the Gaussian noise signal with zero mean is added to

each sample, with its standard deviation computed modality-wise

(MW in Table 1), ensuring that the augmented signal achieves a

signal-to-noise ratio (SNR) of 5dB.

In addition to Gaussian noise, various types of colored noise

can also be present in EEG signals due to physiological and

environmental factors. These noise types typically manifest as

interference, distorting the true brain activity and complicating

accurate analysis and interpretation. Below are some examples of

how different types of colored noise may appear in EEG signals of

brain activity:

Pink noise (1/f noise) is characterized by greater power at lower

frequencies, with a gradual decrease in power as the frequency

increases. This type of noise can naturally arise from brain activity,

particularly during resting states, or be introduced by background

physiological processes such as muscle activity or skin potentials.

Pink noise can dominate low-frequency bands, potentially masking

slow-wave oscillations that are crucial for sleep studies or resting-

state EEG analysis.

Brown (red) noise displays even more power at lower

frequencies than pink noise, with a steeper decline as the

frequency increases. It can arise from long-term drift in

electrode potentials or baseline shifts in the EEG signal,

often caused by environmental factors that affect the EEG

setup. This results in large, slow oscillations that can dominate

the EEG trace, potentially masking lower-frequency brain

rhythms. While Gaussian (white) noise is frequently applied,

the specific use of brown noise has not been widely explored

in the literature, but exploring brown noise injection could

potentially offer new avenues for enhancing EEG data

augmentation techniques.

Blue noise is characterized by an emphasis on high frequencies,

manifesting as rapid, small-amplitude fluctuations in the signal.

It can originate from high-frequency environmental interference,

such as electronic devices or power lines, or from muscle activity,

including micro-movements of the scalp or jaw. This type of noise

can mask high-frequency neural signals, such as gamma rhythms

(30–100 Hz), and may lead to false-positive detections in high-

frequency analyses.

Violet noise is an extreme form of high-frequency noise,

with a stronger emphasis on higher frequencies than blue noise.

It can be caused by electronic interference within the EEG

system, such as sudden changes in electrode contact, such as

detachment or movement. This noise can introduce sharp spikes

or rapid fluctuations that resemble artifacts, potentially disrupting

the analysis of high-frequency components, such as event-related

potentials (ERPs).

In some studies, several types of noises (in addition to white

Gaussian noise) were investigated (Tangermann et al., 2012; Sun

et al., 2024). To increase the number of training samples and

address the variability and randomness of EEG signals, several noise

DA strategies were implemented (Sun et al., 2024). Specifically,

the noise DA strategies were adopted to enhance EEG data by

simulating various noise sources that may be encountered in real-

world environments. The types of noise applied were: (1) uniform

noise, (2) Gaussian noise, (3) pink noise, (4) impulse noise, and (5)

power-line noise. These noise types were randomly incorporated

into the processed clean EEG signals at different proportions

(ranging from 10% to 70% of the average amplitude of the EEG

signal), thus generating a greater number of training samples.

These DA strategies not only enhance the model’s robustness to

existing noise in the original signals but also improve the model’s

generalization capabilities in the presence of unknown noises. The

introduction of noise through DA strategies has a positive effect

on model training, particularly with Gaussian and pink noise. This

suggests that such disturbances are prevalent in real EEG data as

the noise-augmented strategies enhance the diversity of the samples

and the generalization ability of the model. Overall, as the intensity

of the added noise increases, both pink noise and Gaussian noise

initially decrease and then increase the model prediction error. The

optimal results are achieved when noise is added at 30% of the

average signal intensity.

In the field of DA for EEG, the use of random shifts has been

explored to some extent. However, dataset shift (where the data

distribution during inference differs from that during training)

is common in real biosignal-based applications. To enhance

robustness, probabilistic models with uncertainty quantification

are adapted to assess the reliability of predictions. Despite this,

evaluating the quality of the estimated uncertainty remains a

challenge. Recently, the framework was proposed to assess the
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ability of estimated uncertainty to capture various types of

biosignal dataset shifts with different magnitudes (Xia et al., 2022).

Specifically, three classification tasks were used that were based on

respiratory sounds and electrocardiography signals to benchmark

five representative uncertainty quantification methods. Extensive

experiments reveal that, while Ensemble and Bayesian models

provide relatively better uncertainty estimates under dataset shifts,

all the tested models fall short in offering trustworthy predictions

and proper model calibration. In another study, time-axis shifts

of EEG trials were applied to generate artificial signals for DA

purposes (Sakai et al., 2017). Again, the effectiveness of such

geometric transformations is debated. Given the non-stationary

nature of EEG signals, transformations like shifting may interfere

with inherent features, potentially corrupting the data (Kalashami

et al., 2022). Thus, while random shifts have been used in DA

for EEG, their effectiveness continues to be a subject of ongoing

research and discussion.

Another approach to applying DA for EEG involves noise

injection through the inclusion of neighboring regions and other

manipulations with data. A recent study utilized such DA strategies

to address the challenge of small sample sizes. Specifically,

translations and vertical flip operations were employed to capture

a broader range of temporal information. The data were extracted

from 0 to 500 ms after stimulation and then translated. Five time

points within the first 200 ms after stimulus onset were randomly

selected, and data from 500 ms later were collected. This method

increased the dataset size 6-fold. Subsequently, the data were

flipped by taking the opposite value of the augmented data, further

expanding the dataset to 12 times its original size (Gou et al., 2022).

Similarly, other research efforts explore different data

augmentation strategies, including Generative Adversarial

Networks (GANs) and Variational Autoencoders (VAEs), to

generate synthetic EEG data for training (Habashi et al., 2023;

Ibrahim et al., 2024).

GANs, initially introduced for image generation, have also

shown promise as a potential DA solution for EEG. GANs and

their variants generate artificial data by training two competing

networks: a generative network and a discriminative network.

The generative network takes random noise from a predefined

distribution (e.g., Gaussian) and attempts to create synthetic data

that resemble real samples, while the discriminative network

is trained to differentiate between real and synthetic data.

Through adversarial training, the generative network progressively

improves, ultimately producing highly realistic EEG signals (Zhang

et al., 2021; Bao et al., 2021; Carrle et al., 2023; Ibrahim et al., 2024).

VAEs offer another approach to generating synthetic EEG

data. Like a conventional autoencoder, a VAE consists of an

encoder that transforms raw data into a latent representation and

a decoder that reconstructs the data from this latent space. To

generate new samples, the VAE randomly samples points from the

learned latent distribution and passes them through the decoder,

which reconstructs them into novel data. Both GANs and VAEs

generate new samples indirectly by learning meaningful latent

representations of the original data (Bao et al., 2021; Sun and Mou,

2023).

The proposed study contributes to investigation of novel

approaches for noise-based DA for EEG classification with

emphasis on influence of adding the randomly generated artificial

noise and the natural noise created by inclusion of neighboring

EEG data segments. This exploration is crucial as it could reveal

and compare how artificial and natural noise DA can impact

EEG classification performance for various noise DA parameters,

for example, with increased sample size, varied offsets, etc. It is

especially important for lightweight DNN architectures, designed

for Edge Intelligence setups, to ensure efficient EEG processing with

minimal computational resources, advancing biologically relevant

and computationally efficient DA methods.

For effective application of noise-based DA methods, a clear

understanding of the characteristics and sources of these noise

types in real-world scenarios is necessary. That is why this study

is limited to the simplest noise types that can be intuitively

understandable and potentially interpreted. This study aims to

provide a thorough understanding of noise-based DA by Gaussian

noise injection to mimic random fluctuations evenly distributed

across all frequencies in the EEG signal that can be caused by

the environment.

The methods of statistical analysis and detrended fluctuation

analysis (DFA) are widely used to investigate the fluctuation

properties of the measured metrics and calculate the correspondent

Hurst exponents (Hurst, 1956). For this purpose, the relatively

small DNN [that was described and analyzed in details in

Gordienko et al. (2021c)] with components of FCNs and CNNs

was considered to classify physical activities (namely, hand

manipulations) from the grasp-and-lift (GAL) dataset (Luciw et al.,

2014; Kaggle, 2020). The special attention was paid to the analysis of

the previous, mid- and post-action segments of the corresponding

brain activity to anticipate them before the start of the action.

Finally, this study is targeted on investigation of EEG data

collected by BCI to resolve classification problem for some physical

activities (namely, hand manipulations) by the relatively simple

DNN. The DNN was applied for analysis of preliminary (prior-

activity), current (in-activity), and following (post-activity) parts

of the relevant brain EEG signals. This problem is very important

in the view of complex practical conditions where EEG activity

can be disturbed by other physiological activities and, especially,

external environmental noise. On the one hand, such disturbances

can worsen the classification performance but, on the other hand,

in reverse can improve it if it will be used during training as data

augmentation (DA) technique.

2 Materials and methods

In this section, several important experimental aspects are

explained: the dataset with EEG brain activities for six types of

physical activities, structure of the model, metrics, workflow, and

data augmentation techniques.

2.1 Dataset

In this study, the open “grasp-and-lift” (GAL) dataset is used

that contains information about brain activity of 12 persons (Luciw

et al., 2014; Kaggle, 2020): more than 3,900 trials (monitored and

measured by the sampling rate of 500 Hz) in 32 channels of the

recorded EEG signals. The person tries to perform six types of
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FIGURE 1

Timeline of physical actions: trigger channel vs. time.

physical activities, namely: “HandStart”—moves hand to an object

(for example, some gadget), “FirstDigitTouch”—touches the object

by finger (for example, press a button), “BothStartLoadPhase”—

takes (“grasps”) the object by fingers, LiftOff—raises (“lifts”) the

object by fingers, Replace—returns the object by fingers back,

BothReleased–releases fingers. The data from GAL dataset were

previously processed in a standard way (Kostiukevych et al., 2021;

Gordienko et al., 2021c) with taking into account the correspondent

time position of physical actions (actually hand movements here)

and their duration (Figure 1).

It should be emphasized that these kinds of physical activity

can be naively divided in three parts depending on the feasibility

of their classification: the easiest (HandStart), medium (LiftOff,

Replace, and BothReleased), and hardest (BothStartLoadPhase

and FirstDigitTouch) classification. But BothStartLoadPhase and

FirstDigitTouch activities strongly overlap in this experiment and

that is why hardly can be recognized as separate activities (this is

planned to be fixed by collection of the original data in the same

fashion in our future research).

As a part of an explanatory data analysis (EDA), visualizing and

analyzing the experimental EEG data from GAL dataset (Gramfort

et al., 2013) was performed by means of MNE open-source Python

(Gramfort et al., 2013). For example, all EEG data measured by the

BCI-sensors with their predefined spatial position can be plotted as

subtopomaps of an evoked potential trough timeline (Figure 2).

2.2 Models

From subtopomaps of an evoked potential trough timeline

(Figure 2), one can evidently see the complex distribution of

EEG sifgnals over scalp. As far as EEG signals interfere with

each other due to their electromagnetic nature (Figure 2), the

combinations of the data channels can be effectively used for

their processing on the basis of FCN, CNN, and RNN like it was

demonstrated in our previous studies (Gordienko et al., 2021c;

Kostiukevych et al., 2021). In this research, the relatively small

“vanilla” DNN (Gordienko et al., 2021c) was used here. The

main motive for the usage of CNNs was to use convolution

operations inside an EEG time sequence of each EEG channel

where all 32 EEG channels were considered to be independent

ones. Then, the workflows from 32 EEG channels were combined

in fully connected dense layers and then transmitted to the

classification layer. The idea is to use 1D convolution operations

across all 32 EEG channels for each time step. The mentioned

“vanilla” DNN contains three convolutional layers [with 32

filters and kernel (3,1); 64 filters and kernel (5,1); 128 filters

and kernel (7,1)] followed by batch normalization and max

pooling layers with pool kernel (2,1) with dropout (0.1) and

FCN layers.

2.3 Metrics

Several standard metrics were used such as accuracy and

loss that were calculated during validation phase of the model

learning with checkpointing states for the minimal value and

maximal value of loss and accuracy, respectively. In addition, the

area under curve (AUC) was measured for receiver operating

characteristic (ROC) with their micro and macro versions, and

their mean and standard deviation values. It is important because

for the given threshold, the accuracy measures the percentage of

objects correctly classified, regardless of which class they belong

to. As far as AUC is threshold-invariant, AUC can allow us to

measure the quality of the models considered here independently

from the selected classification threshold. The AUC can consider

various possible thresholds and can provide the wider range of

the classifier performance. During validation phase, the models

with the best accuracy and loss values were saved for the testing

phase. For smooth line fitting by locally weighted polynomial

regression method (LOWESS) (Cleveland et al., 2017) using

weighted least squares, giving more weight to points near the

point whose response is being estimated and less weight to points

further away.

To investigate the high level of the fluctuations of the measured

metrics, that was observed in our previous studies, DFA (detrended

fluctuation analysis) was applied here. DFA was proposed to study

some memory effects in sequences of the complex biological

structures (Peng et al., 1993). During the last decades, it was

successfully used in investigation of sequences by means of
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FIGURE 2

Topographic maps of specific time points of evoked data (from 32 EEG channels) for the considered physical actions: (A) HandStart, (B)

FirstDigitTouch, (C) BothStartLoadPhase, (D) LiftO�, (E) Replace, and (F) BothReleased actions.

the scaling properties of the fluctuation function F(n) of non-

overlapping time intervals of length n. F(n) is expected to scale as

nH , where H is the Hurst exponent (Hurst, 1956).

2.4 Workflow and data augmentation

The training, validation, and testing stages of the whole

workflow (Figure 3) for the proposed simple DNN model were

applied for the single epoch only, because the main aim was not

the highest possible performance, but feasibility analysis of reliable

classification under induced noise. The introduced noise was of

two kinds: (i) natural NDA by inclusion of noise EEG data from

neighboring regions by the different offset values (see details below)

and (ii) synthetic NDA by adding the generated Gaussian noise.

During each training iteration, the callbacks were organized to

save the best models (with the highest accuracy and lowest loss) for

the subsequent testing stage. The number of signal samples (N) in

each Input EEG time Sequence (IS) was in the range from 100 to

2,000. These ISs were collected in a random way from the whole

timeline of the experimental EEG data.

To mimic the natural NDA, the labels of physical activities for

each IS were defined by ground truth (GT) values in the following

three locations: at the beginning, medium, and end moment inside

IS. These positions were denoted by the offset values, for example,

if offset = 0, then label (IS) = GT (beginning); if offset = 0.5,

then label (IS) = GT (medium); if offset = 1, then label (IS) =

GT (end). Actually, it allowed us to get the GT labeling without

neighboring regions without the correspondent physical action

(offset = 0.5), GT labeling with some neighboring regions after

the correspondent physical action (offset = 0), and GT labeling

Frontiers inNeuroinformatics 07 frontiersin.org62

https://doi.org/10.3389/fninf.2025.1521805
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Gordienko et al. 10.3389/fninf.2025.1521805

FIGURE 3

Main stages of the whole workflow.

with some neighboring regions before the correspondent physical

action (offset = 1). Actually, GT labeling with offset = 0 and offset =

1 provides inclusion of some natural EEG noise after and before

the actual physical action. Of course, EEG activity related to the

physical action signal (PAS) can take place before and after the

actual physical action, but the increase of the number of signal

samples (N) can lead to the PAS-to-noise ratio (PAS-NR) decrease

and imitate the higher influence of the natural noise.

Under these conditions, the training, validation, and testing

stages were independently done in an iterative way for 20 values

of N with the step of 100. Finally, N values were obtained in

the range from 100 to 2,000 that resulted in 20 iterations of

training, validation, and testing phases. For each instance of N,

the dataset was distributed in approximate proportion of 82% (≈
300 examples)/9% (≈ 300 examples)/9% (≈ 300 examples) for

training/validation/testing sets, respectively. As a result, 20 trained

models were obtained for each iteration (one model per each input

sequence with N values); then, 20 sets of metrics, including AUC,

and its micro andmacro versions, were calculated and plots of these

metrics vs. N were constructed (see below).

3 Experimental

3.1 DNN training/validation/testing stages

During EDA stage, the GAL data were preprocessed in

the standard way described in details in our previous studies

(Gordienko et al., 2021c; Kostiukevych et al., 2021). In Figure 2,

the topographic maps of specific time points of evoked data (from

32 EEG channels) for some physical actions (FirstDigitTouch and

LiftOff) are shown. Here, the most characteristic parts of EEG

signals and their spatial distributions over a scalp are shown for the

better understanding the very complex details of EEG brain activity.

As it was demonstrated before (Gordienko et al., 2021c;

Kostiukevych et al., 2021), some physical actions (such as

HandStart) are followed by very pronounced patterns with the

local minimums and maximums, while many others (such as

BothStartLoadPhase, LiftOff, Replace) are hardly recognizable by

unique patterns. In addition, it should be noted for several actions

(such as HandStart, and especially Replace and BothReleased) that

significant brain activity is started some milliseconds before the

correspondent movements, but it is quite dubious tomake the same

statement about other actions in the view of the unrecognizable

different patterns. The main idea of this study is based on our

previous studies (Gordienko et al., 2021c; Kostiukevych et al.,

2021) and consists in the hypothesis that relatively small DNNs

even can classify the EEG patterns of the currently undergoing

physical actions in the presence of some induced noise even, but

the additional aspects include the investigation of impact induced

by natural and synthetic kinds of noise.

At testing stage, AUC values were measured (dotted lines in

Figure 4) and their smoothed fits were obtained by LOWESS-

method (solid lines in Figure 4). For various actions and

offsets, AUC values (Figure 4) demonstrate the high intensity of

fluctuations with increase of N that can be explained by the

influence of the non-relevant (to the current physical activity)

regions of the increased time sequence under investigation

(imitating the natural noise addition).

3.2 Noise data augmentation

The effect of the natural noise addition (by offsets 0 and 1

with various levels by increasing N) can be observed by calculation

of the correspondent macro AUC (Figure 5A) and micro AUC

(Figure 5B) values. It is evident that offsets 0 and 1 lead to the

lower micro and macro AUC values in comparison with the GT

labeling by offset = 0.5, and the AUC decrease is higher for the

higher N values.

To investigate stability of the results obtained, the additional

artificial “synthetic” NDA as the values generated with mean = 0

and different standard deviations σsynth (such as 0.001, 0.01, 0.1, and

0.2) was applied to the original normalized data (Figure 6).

Calculation of maximal (Figure 7), mean (Figure 8), minimal,

and range (Figure 9), and standard deviation (Figure 10) of AUC

values was performed for the different offset values and synthetic

noise σsynth values.

From the results obtained, the similar tendency can be observed

for all actions: maximal AUC values (Figure 7) are higher for offset

= 0.5 than for other offset values (0 and 1) and significantly bigger

than standard deviation values. The maximal AUC values for offset

= 0 are slightly higher than for offset = 1, but these differences

cannot be considered as statistically significant and they are in the

limits of standard deviation values.
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FIGURE 4

Comparison of AUC values as a function of the number of samples for the di�erent physical actions (dotted lines) and their smoothed fits by

LOWESS-method (solid lines) for the o�sets imitating the natural noise addition: (A) 0, (B) 0.5, and (C) 1.
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FIGURE 5

Comparison of macro (A) and micro (B) AUC values as a function of the number of samples for the di�erent o�set values (colors) without the

synthetic noise (dotted lines) and with the synthetic noise σsynth = 0.2 (solid lines).

ThemeanAUC values (Figure 8) are evenmore higher for offset

= 0.5 than for other offset values (0 and 1) and significantly bigger

than standard deviation values also. The mean AUC values for

offset = 0 are even more higher than for offset = 1, but again these

differences cannot be considered as statistically significant and they

are in the limits of standard deviation values.

On the contrary, the range AUC values (Figure 9), which are

differences between maximal and minimal AUC values, are lower

for offset = 0.5 than for other offset values (0 and 1), and these

differences are significantly bigger than standard deviation values.

Similarly, the range AUC values for offset = 0 are lower than for

offset= 1, and these differences are also statistically significant and

beyond the limits of standard deviation values.

As it was seen from the previous Figure 9, the standard

deviation AUC values (Figure 9) are significantly lower for offset=
0.5 than for other offset values (0 and 1). Similarly, the standard

deviation AUC values for offset = 0 are significantly lower than

for offset= 1.

To analyze the metrics for the steady region for N in the

range from 1,000 to 10,000 samples, AUC (mean ± stdev) values

were calculated (Table 2) along with the other metrics such as

maximal AUC values and ranges (differences between maximal

and minimal AUC values) (Table 3). The bold font in Table 3

denotes the highest values for the same level of σsynth, and the

italic font does the lowest ones. HandStart action demonstrates the

highest AUC values, and FirstDigitTouch and BothStartLoadPhase

demonstrates the lowest ones. The important aspect is that for

different actions, implication of the natural noise (presented by

offsets) leads to the different consequences. For example, Replace

and BothReleased actions have the lowest AUC decrease and

highest AUC values for offset 0. As a possible explanation for

these results, Replace and BothReleased actions can have the higher

PAS-NR (in comparison with other actions) for offset 0 because

of the more EEG activity for “after” (post-process) part of the

relevant sampling. At the same time, mediocre performance for

FirstDigitTouch and BothStartLoadPhase can be explained by their
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FIGURE 6

Comparison AUC values as a function of the number of samples for the di�erent o�set values (colors) without the synthetic noise (A) and with the

synthetic noise σsynth = 0.2 (B).

coincidence in time (see Figure 1) that is the real drawback of the

GAL dataset used.

3.3 Detrended fluctuation analysis

Detrended Fluctuation Analysis (DFA) (Peng et al., 1993, 1995;

Bianchi, 2020) was applied to analyze fluctuations of AUC values

and the correspondent Hurst exponent values after eliminating

the temporal trend (Figure 13). For the time sequences, the

Hurst exponent value (H) can indicate whether a process is

persistent or anti-persistent, but here the Hurst exponent is used

for the other purpose, namely, for quantitative estimation of

fluctuations svariability.

In general, the Hurst exponent, H, is intrinsically related to the

fractal dimension, which quantifies the “roughness” or variability

of a time series (Hurst, 1956). Specifically, the value of H provides

insight into the degree of smoothness in the data: Sequences

that exhibit greater variability and are more irregular (i.e., more

jagged) are associated with lower values of H, approaching zero.

Conversely, smoother sequences yield values of H closer to

one. This relationship between H and the fractal dimension is

instrumental in characterizing the long-term dependence and self-

similarity in stochastic processes. The Hurst exponent can also

characterize a process (Bianchi, 2020) depending on the range of

the measured values: H in the range [0.0, 0.5) corresponds to a

very noisy process; the value H = 0.5 relates to uncorrelated

process; H in the range (0.5, 1.0] relates to persistency where long-

range correlations and relatively little noise can be observed; and

H > 1.0 characterizes a non-stationary process with stronger

long-range correlations. The correspondent open-source Python

package “fathon” was used for DFA and further analysis of metric

fluctuations (Bianchi, 2020).

4 Discussion

The results obtained show that different actions can be classified

with the quite different reliability. The different kinds of physical

activity take the different level of physical activation and the
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FIGURE 7

Comparison of maximal AUC values as a function of the number of samples for the di�erent o�set values (colors) without the synthetic noise (A) and

with the synthetic noise σsynth = 0.2 (B). The error bars denote the standard deviation values.

correspondent EEG activity, for example, HandStart (fingers, palm,

forearm, and shoulder are activated) includes involvement of

more limbs than LiftOff (fingers, palm, and forearm) and Replace

(fingers, palm, and forearm), and even more than BothReleased

(several fingers and palm), BothStartLoadPhase (two fingers), and

FirstDigitTouch (one finger). It should be noted that the observed

performance of classification demonstrates some correlation where

the higher performance by AUC (Figure 4) corresponds to the

more pronounced physical activity in the following order from

the highest AUC values to the lowest ones: HandStart →
LiftOff → Replace → BothReleased → BothStartLoadPhase →
FirstDigitTouch (Figure 4).

In addition, for N values in the range [100, 1,500], HandStart

action demonstrates the asymmetric behavior with regard to the
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FIGURE 8

Comparison of mean AUC values as a function of the number of samples for the di�erent o�set values (colors) without the synthetic noise (A) and

with the synthetic noise σsynth = 0.2 (B). The error bars denote the standard deviation values.

offset values 0 and 1 (Figure 4C), namely: AUC values grows much

faster with N for offset = 1 (the dotted and smoothed red lines in

Figure 4A) than for offset = 0 (the dotted and smoothed red lines

in Figure 4C). It means that the related brain activity measured

as “before” (pre-process) part of the correspondent EEG time

sequences is more pronounced than “after” (post-process) part. As

a result, this phenomenon allows us to classify HandStart before

the actual physical action even as it was assumed in our previous

studies (Gordienko et al., 2021c,b; Kostiukevych et al., 2021). It is in

contrary to the kinds of activities that demonstrate similar behavior:

similar growth of AUC values for N values in the range [100, 1,500]

the offset values 0 and 1, and decay for N > 1500.

In general, AUC values are higher for the offset value 0.5 (in

comparison with the offset values 0 and 1), steadily for N values in
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FIGURE 9

Comparison of range AUC values as a function of the number of samples for the di�erent o�set values (colors) without the synthetic noise (A) and

with the synthetic noise σsynth = 0.2 (B). The error bars denote the standard deviation values.

the range [100, 1,500] and nearly constant for N > 1, 500 for all

kinds of activities (Figure 4B) as it was also shown in our previous

studies (Gordienko et al., 2021c; Kostiukevych et al., 2021). That is

why labeling by the offset of 0.5 seems to be the more significant for

the classification problem. It should be noted that the uncertainty

of AUC values estimated as their standard deviations decreases

with an increase of N up to N = 2, 000 for offset = 0.5 and up

to N = 3, 000 for offset = 0 and offset = 1. It should be noted

the visually very pronounced fluctuations of all these metrics with

N can be explained by the influence of the non-relevant (to the

current physical activity) regions of the increased time sequence

under investigation.

It should be noted that application of the natural NDA by

increasing N leads to the better micro and macro AUC values for
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TABLE 2 AUC (mean ± stdev) (Figures 8, 10) values for the steady region (Figure 4) from 1,000 to 10,000 samples.

o�set = 0

Noise (σsynth) 0 0.01 0.1 0.2

HandStart 0.845± 0.036 0.845± 0.033 0.850± 0.034 0.844± 0.035

FirstDigitTouch 0.716 ± 0.025 0.719± 0.029 0.719± 0.033 0.714± 0.032

BothStartLoadPhase 0.720± 0.022 0.720± 0.026 0.719± 0.029 0.717 ± 0.031

LiftOff 0.780± 0.040 0.781± 0.038 0.778± 0.044 0.773± 0.042

Replace 0.828± 0.022 0.824± 0.023 0.827± 0.019 0.821± 0.025

BothReleased 0.820± 0.021 0.820± 0.022 0.819± 0.026 0.819± 0.025

o�set = 0.5

Noise (σsynth) 0 0.01 0.1 0.2

HandStart 0.946± 0.011 0.945± 0.011 0.945± 0.013 0.942± 0.012

FirstDigitTouch 0.806 ± 0.023 0.804± 0.023 0.802± 0.022 0.801± 0.023

BothStartLoadPhase 0.800± 0.019 0.801± 0.019 0.801± 0.019 0.797 ± 0.020

LiftOff 0.875± 0.015 0.875± 0.016 0.878± 0.016 0.871± 0.016

Replace 0.900± 0.016 0.902± 0.014 0.900± 0.016 0.902± 0.014

BothReleased 0.888± 0.019 0.888± 0.018 0.886± 0.016 0.885± 0.019

o�set = 1

Noise (σsynth) 0 0.01 0.1 0.2

HandStart 0.743± 0.059 0.741± 0.062 0.736± 0.062 0.727± 0.062

FirstDigitTouch 0.669± 0.048 0.673± 0.042 0.671± 0.046 0.661± 0.048

BothStartLoadPhase 0.668± 0.041 0.668± 0.043 0.670± 0.040 0.660± 0.047

LiftOff 0.694± 0.055 0.700± 0.051 0.698± 0.060 0.691± 0.054

Replace 0.816± 0.037 0.822± 0.037 0.813± 0.038 0.810± 0.039

BothReleased 0.809± 0.032 0.806± 0.035 0.805± 0.032 0.800± 0.039

The bold font denotes the highest values for the same level of the noise, and the italic font does the lowest ones.

N values beyond the physical action duration which is ∼ 0.3 s

(that is equal to ∼ N=150 samples, see Figure 1) and up to ∼3

s (N = 1,500) for offset = 0.5. For example, micro and macro

AUC values are equal to ∼ 0.65 for sampling length N = 200

samples (that corresponds to ∼ 0.4 s), and increase of N up to N

= 1,500 leads to the better micro and macro AUC values equal to

∼ 0.87 (Figures 5, 6). But to the moment it is unclear whether this

improvement caused by the availability of EEG signals relevant to

the physical action beyond action itself or by natural NDA. The

additional interesting aspect is that micro and macro AUC values

are much lower for the offset 0 and 1 (in comparison with offset

= 0.5), but AUC values are improving with N (Figures 5, 6) up to

∼6–7 s (N = 3,000) for offset= 0 and offset= 1. It means that heavy

bias of labeling is not useful because it leads to distortion of PAS-NR

due to the lower signal and higher noise values. Application of the

synthetic NDA (Figures 5, 6) in the wide range of noise levels (σsynth
from 0.001 up to 0.2) demonstrates the general stability of the DNN

used for classification of all activities with the similar micro and

macro AUC values in the limits of their fluctuations.

AUC fluctuations caused by the added synthetic NDA, shown

in Figures 11, 12, are not significant in comparison with AUC

fluctuations without synthetic NDA due to increase of sampling

size N.

To characterize AUC fluctuations (Figures 11, 12) with regard

to the added synthetic NDA, the DFA was applied and analyzed

for original (non-added noise) EEG time sequences (Figure 13A)

and ones with NDA (Figure 13B). From DFA point of view,

some very intensive actions (such as HandStart and LiftOff)

demonstrate the very high stability to noise data augmentation

with negligible changes of fluctuation amplitudes measured like

differences (Figure 13) between the correspondent AUC fluctuation

values for original (without added noise) (Figure 13A) and noise-

augmented EEG time sequences (Figure 13B).

For FirstDigitTouch, BothStartLoadPhase, and Replace

activities, the synthetic NDA actually lead to decrease of the AUC

fluctuations (Figure 13C) with slow decay of this improvement

with increase of N (due to above mentioned non-relevant

noisy neighboring regions, i.e., the natural NDA). In contrary,

for HandStart and BothReleased activities, the synthetic NDA

actually lead to increase of the AUC fluctuations (Figure 13C)

with slow decay also. Liftoff activity does not demonstrate any

significant changes.

The measurements of the Hurst exponent values Hfull (the full

range of window scales with n < 10, 000, time < 20 s), Hlow (the

low window scales with n < 1, 000, time < 2 s), and Hhigh (the

bigger window scales with n > 1, 000, time > 2 s) were performed
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TABLE 3 Maximal and range AUC values for the steady region from 1,000 to 10,000 samples (Figures 4, 11, 12).

o�set = 0

AUC (max) AUC (range)

Noise (σsynth) 0 0.01 0.1 0.2 0 0.01 0.1 0.2

HandStart 0.899 0.909 0.908 0.901 0.140 0.146 0.150 0.154

FirstDigitTouch 0.771 0.787 0.795 0.767 0.126 0.131 0.143 0.137

BothStartLoadPh 0.763 0.767 0.781 0.769 0.097 0.115 0.126 0.159

LiftOff 0.844 0.861 0.848 0.844 0.180 0.186 0.245 0.181

Replace 0.872 0.873 0.867 0.869 0.094 0.101 0.094 0.136

BothReleased 0.874 0.876 0.871 0.875 0.107 0.112 0.132 0.109

o�set = 0.5

AUC (max) AUC (range)

Noise (σsynth) 0 0.01 0.1 0.2 0 0.01 0.1 0.2

HandStart 0.969 0.967 0.972 0.965 0.050 0.054 0.058 0.056

FirstDigitTouch 0.862 0.855 0.850 0.848 0.102 0.122 0.100 0.108

BothStartLoadPh 0.847 0.842 0.839 0.847 0.094 0.082 0.087 0.106

LiftOff 0.915 0.913 0.916 0.910 0.075 0.076 0.086 0.078

Replace 0.930 0.932 0.932 0.926 0.104 0.080 0.091 0.079

BothReleased 0.918 0.914 0.914 0.919 0.100 0.092 0.076 0.101

o�set = 1

AUC (max) AUC (range)

Noise (σsynth) 0 0.01 0.1 0.2 0 0.01 0.1 0.2

HandStart 0.852 0.842 0.841 0.833 0.228 0.238 0.249 0.278

FirstDigitTouch 0.762 0.758 0.749 0.747 0.243 0.183 0.193 0.228

BothStartLoadPh 0.738 0.749 0.740 0.751 0.158 0.221 0.223 0.211

LiftOff 0.796 0.809 0.791 0.775 0.288 0.289 0.261 0.229

Replace 0.882 0.886 0.883 0.875 0.168 0.158 0.167 0.191

BothReleased 0.859 0.870 0.853 0.874 0.141 0.168 0.143 0.276

The bold font denotes the highest values for the same level of the noise, and the italic font does the lowest ones.

for various actions and levels (standard deviations σsynth = 0) of the

synthetic noise (Table 4). H values are rounded to 2 decimal digits

in Table 4 because the bigger number of significant digits seems to

be statistically insignificant.

The general tendency is that for the low window scales (n <

1, 000, time< 2 s),Hlow values are higher in comparison withHhigh

values for the bigger window scales (n > 1, 000, time> 2 s) that can

be seen from the slope of curves in Figure 13 and Table 4. It means

that EEG fragments with the duration of scale n < 1, 000 (time < 2

s) demonstrate the scaling behavior of the higher complexity than

the fragments n > 1, 000 (time > 2 s), i.e., Hlow > Hhigh (Table 4).

It should be noted that step-like increases in the middle and in the

end of all curves in Figure 13 can be explained by overlapping with

the next portion of PAS data related to the other trial of recorded

physical activities which are contained in the whole timeline of the

experimental EEG data.

Despite the previously mentioned findings, the study has

several limitations that should be taken into account in future

works. First, the use of a single epoch for training (which was

observed to be enough for saturation of the training process of

the relatively small DNN with the quite small capacity) may limit

the model’s overall performance. In future research, the multiple

training epochs for the more complex DNN should be employed

to potentially improve model performance and generalization

with attention to the impact of hyperparameter tuning (e.g.,

learning rate, batch size) on model performance and convergence.

Second, the focus on feasibility analysis rather than maximizing

performance might have constrained the exploration of more

complex DNN architectures. In the next stage of the investigation,

the more complex DNN architectures (such as deeper CNNs,

recurrent neural networks, and transformer models) should be

performed with a more comprehensive hyperparameter search

to optimize model performance to potentially achieve higher

classification accuracy. Third, the study relies mainly on the GAL

dataset, which may not fully capture the variability and complexity

of real–world EEG signals. In the extended version, this study

should include investigation of the model’s performance on other

publicly available EEG datasets with different characteristics in
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FIGURE 10

Comparison of standard deviation AUC values as a function of the number of samples for the di�erent o�set values (colors) without the synthetic

noise (A) and with the synthetic noise σsynth = 0.2 (B).

the other controlled and realistic environment to improve the

generalizability of the findings. Fourth, the analysis is limited to

a specific set of NDA techniques, and the impact of other noise

sources or more sophisticated DAmethods should be also explored.

Moreover, the impact of other NDA techniques (mentioned in

the introductory part of the study, such as generative training

and others) will be necessary to improve model robustness and

explore the impact of physiological noise (e.g., muscle artifacts,

eye blinks) and environmental noise on model performance.

In addition, assessing the additional metrics particularly with

regard to Structural Similarity Index (SSIM) and Peak Signal-

to-Noise Ratio (PSNR) in future research stages will be highly

intriguing and valuable. SSIM could provide insights into the

structural similarity between original and noise-augmented EEG
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FIGURE 11

Noise influence on AUC values for o�set = 0.5: (A) HandStart, (B) FirstDigitTouch, and (C) BothStartLoadPhase.
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FIGURE 12

Noise influence on AUC values for o�set=0.5 (continued from Figure 11): (A) LiftO�, (B) replace, (C) BothReleased.
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FIGURE 13

Fluctuations vs. the number of samples (N) in the input for various actions and levels (standard deviations) of the synthetic noise: (A) σsynth = 0 (no

noise), (B) σsynth = 0.2, (C) di�erence of fluctuations from previous regimes without and with noise. The legends contain Hurst exponent values.
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TABLE 4 Hurst exponents Hfull, Hlow , and Hhigh (rounded to 2 decimal digits) for various actions and levels (by standard deviations σsynth) of the synthetic

noise.

σsynth = 0 (no noise) σsynth = 0.2 (noise)

Hurst exponent Hfull Hlow Hhigh Hfull Hlow Hhigh

HandStart 0.42 0.78 0.43 0.40 0.67 0.41

FirstDigitTouch 0.32 0.92 0.29 0.40 0.64 0.40

BothStartLoadPhase 0.26 0.92 0.23 0.38 0.67 0.37

LiftOff 0.24 0.87 0.21 0.25 0.67 0.22

Replace 0.35 1.07 0.28 0.41 0.72 0.42

BothReleased 0.32 0.77 0.30 0.28 0.50 0.24

signals, helping evaluate how natural noise preserves critical signal

features. Meanwhile, PSNR could serve as a measure of distortion,

indicating how much the augmented signals deviate from the

original ones, which is crucial for maintaining signal integrity in

classification tasks.

5 Conclusion

This research contributes to the field of EEG-based BCI

by investigating the impact of different types of noise on the

classification of physical activities by the following main novel

aspects and contributions: systematic investigation of natural

noise, quantitative analysis of noise impact, and analysis of offset

effects. The study introduces the concept of “natural noise”

by considering EEG data from neighboring regions, simulating

real-world scenarios with varying levels of background EEG

activity. The researchers utilize metrics such as AUC and DFA to

quantitatively assess the impact of both natural and synthetic noise

on classification performance, providing valuable insights into the

model’s robustness. By analyzing the impact of different label offsets

(0, 0.5, 1), the study provides valuable insights into the optimal

time window for EEG signal analysis and classification. These novel

aspects contribute to a better understanding of the challenges and

limitations of EEG-based BCI systems in real-world scenarios and

provide valuable guidance for future research in this area.

The following key aspects of the methodology contribute to

achieving the goal: DA by natural NDA and synthetic NDA, varying

NDA parameters including input sequence length, and thorough

performance evaluation including DFA Analysis. The introduction

of both natural and synthetic noise during DA helps the model to

become more robust and generalize better to real-world scenarios

with varying levels of noise. As to the natural NDA by including

EEG data from neighboring regions, the model learns to handle

variations in EEG signals due to temporal shifts and contextual

influences. As to the synthetic NDA, adding Gaussian noise

increases the model’s tolerance to random fluctuations and noise in

the EEG data. The use of input sequences with varying lengths (N)

allows the model to assess its performance under different levels

of “natural noise” introduced by the inclusion of irrelevant EEG

data. This helps to understand how the model’s performance is

affected by the amount of surrounding EEG data. For performance

evaluation, the use of multiple metrics, including AUC (micro and

macro), accuracy, and loss, provides a comprehensive evaluation

of the model’s performance. For DFA, analysis helps to quantify

the variability and complexity of the AUC fluctuations, providing

insights into the model’s behavior under different noise conditions.

By incorporating these techniques, the authors aim to understand

the feasibility and limitations of classifying EEG signals related to

physical activities in the presence of noise, which is crucial for the

practical application of BCI systems in real-world settings.

The results obtained allow us to conclude that the relatively

simple DNN with components of FCN and CNN even can

be effectively used to classify physical activities (namely, hand

manipulations) from the GAL dataset. Application of natural and

synthetic noises imitates the possible influence from environment.

It should be noted that synthetic noise influence (due to Gaussian

NDA with higher σ values) has the lower impact on the general

ability to provide the better reliable classification of physical

activities than natural noise influence (due to increase of the

sampling size N) that can significantly improve the performance

with reaching the stable metric values after some noise increase.

AUC fluctuations caused by the added synthetic NDA are not

significant in comparison with AUC fluctuations without synthetic

NDA due to increase of sampling size N. It should be emphasized

that application of the natural NDA by increasing N leads to the

better micro and macro AUC values forN values beyond the action

duration which is ∼ 0.3 s and up to ∼ 3 s (N = 1,500) for

offset = 0.5. But to the moment the open question is whether this

improvement caused by the availability of EEG signals relevant to

the physical action beyond action itself or by natural NDA. This

aspect should be resolved by further investigations and on other

open EEG datasets.

Application of the synthetic NDA in the wide range of noise

levels (σsynth from 0.001 up to 0.2) demonstrates the general

stability of the DNN used for classification of all activities

with the similar micro and macro AUC values in the limits of

their fluctuations.

DFA allows us to investigate the fluctuation properties and

calculate the correspondent Hurst exponents for the quantitative

characterization of their variability. As a result of this research,

some PAs can be divided in separate groups of actions that

can be characterized by complexity and the feasibility of

their classification: the easiest (HandStart), medium (LiftOff,

Replace, and BothReleased), and hardest (BothStartLoadPhase and

FirstDigitTouch) classification.
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A general trend is observed in the behavior of the Hurst

exponent H across varying time window scales in EEG data.

Specifically, for shorter time window scales (i.e., < 2 s), the values

of Hlow tend to be significantly higher than those for longer time

window scales (i.e., > 2 s), denoted as Hhigh. This suggests that

EEG segments with durations shorter than 2 s exhibit greater

scaling complexity than those of longer durations. In particular,

Hlow can exceed Hhigh by a factor of 2 to 3 during certain physical

actions, indicating a marked increase in complexity for these

shorter time-scale fragments.

In general, this approach of adding natural noise by extending

sampling size for small DNNs can be used during porting such

models to Edge Computing infrastructures on devices with the very

limited computational resources because the statistically reliable

results were obtained by the relatively small DNN with the low

resource requirements (Kochura et al., 2019; Gordienko et al., 2020,

2021a). The additional possible improvement can be obtained due

to analysis of the optimal configuration for training and inference

stages of the whole workflow that is especially important for

distributed infrastructures (Kochura et al., 2017b; Taran et al., 2017;

Gordienko et al., 2021a; Kochura et al., 2017a). Similar research

could be also useful for classification of GAL-like and any other PAs

before their actual start when some predictionwith PA classification

can be performed on the EEG activity before PA even. By this

approach, the human EEG activity can be estimated with some

proactive feedback such as continuation of PAs which were initiated

by brain only, but unfortunately the PAs were not continued due

to fatigue or some limited physical abilities, but the future detailed

investigation should be performed to take into account the more

various kinds of PAs.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

YG: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Validation, Visualization,

Writing – original draft, Writing – review & editing. NG:

Investigation, Methodology, Software, Visualization, Writing –

original draft, Writing – review & editing. VT: Investigation,

Software, Writing – original draft, Writing – review &

editing. AR: Writing – original draft, Writing – review &

editing. ST: Conceptualization, Funding acquisition, Project

administration, Writing – original draft, Writing – review &

editing. SS: Conceptualization, Funding acquisition, Investigation,

Methodology, Resources, Supervision, Validation, Writing –

original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The work

was partially supported by the Knowledge At the Tip of Your

Fingers: Clinical Knowledge for Humanity (KATY) project funded

by the European Union’s Horizon 2020 research and innovation

program under grant agreement No. 101017453 in the part of

research on the new neural network architectures and by the

Development of hybrid models of artificial intelligence for the

analysis of multimodal medical data project (K-I-144) funded by

the Ministry of Education and Science of Ukraine in the part of

multimodality research for medical applications.

Acknowledgments

The authors extend their appreciation to Cracow University of

Technology (Cracow, Poland) andUniversité Paris 8 (Paris, France)

that aided the efforts of the authors.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Aggarwal, S., and Chugh, N. (2022). Review of machine learning techniques for
EEG based brain computer interface. Arch. Comput. Methods Eng. 29, 3001–3020.
doi: 10.1007/s11831-021-09684-6

An, J., and Cho, S. (2016). “Hand motion identification of grasp-and-
lift task from electroencephalography recordings using recurrent neural

networks,” in 2016 International Conference on Big Data and Smart
Computing (BigComp) (IEEE), 427–429. doi: 10.1109/BIGCOMP.2016.
7425963

Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. E.
(2001). Indications of nonlinear deterministic and finite-dimensional structures in time

Frontiers inNeuroinformatics 22 frontiersin.org77

https://doi.org/10.3389/fninf.2025.1521805
https://doi.org/10.1007/s11831-021-09684-6
https://doi.org/10.1109/BIGCOMP.2016.7425963
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Gordienko et al. 10.3389/fninf.2025.1521805

series of brain electrical activity: dependence on recording region and brain state. Phys.
Rev. E 64:061907. doi: 10.1103/PhysRevE.64.061907

Aricó, P., Borghini, G., Di Flumeri, G., Colosimo, A., Bonelli, S., Golfetti, A.,
et al. (2016a). Adaptive automation triggered by EEG-based mental workload index: a
passive brain-computer interface application in realistic air traffic control environment.
Front. Hum. Neurosci. 10:539. doi: 10.3389/fnhum.2016.00539

Aricó, P., Borghini, G., Di Flumeri, G., Colosimo, A., Pozzi, S., and Babiloni,
F. (2016b). A passive brain-computer interface application for the mental workload
assessment on professional air traffic controllers during realistic air traffic control tasks.
Prog. Brain Res. 228, 295–328. doi: 10.1016/bs.pbr.2016.04.021

Ashfaq, N., Khan, M. H., and Nisar, M. A. (2024). Identification of optimal
data augmentation techniques for multimodal time-series sensory data: a framework.
Information 15:343. doi: 10.3390/info15060343

Atzori, M., Cognolato, M., and Müller, H. (2016). Deep learning with
convolutional neural networks applied to electromyography data: A resource for
the classification of movements for prosthetic hands. Front. Neurorobot. 10:9.
doi: 10.3389/fnbot.2016.00009

Aznan, N. K. N., Atapour-Abarghouei, A., Bonner, S., Connolly, J. D., Al
Moubayed, N., and Breckon, T. P. (2019). “Simulating brain signals: creating synthetic
EEG data via neural-based generative models for improved ssvep classification,”
in 2019 International Joint Conference on Neural Networks (IJCNN) (IEEE), 1–8.
doi: 10.1109/IJCNN.2019.8852227

Bao, G., Yan, B., Tong, L., Shu, J., Wang, L., Yang, K., et al. (2021). Data
augmentation for EEG-based emotion recognition using generative adversarial
networks. Front. Comput. Neurosci. 15:723843. doi: 10.3389/fncom.2021.723843

Behncke, J., Schirrmeister, R. T., Burgard, W., and Ball, T. (2018). “The signature of
robot action success in EEG signals of a human observer: decoding and visualization
using deep convolutional neural networks,” in 2018 6th International Conference on
Brain-Computer Interface (BCI) (IEEE), 1–6. doi: 10.1109/IWW-BCI.2018.8311531

Belo, J., Clerc, M., and Schön, D. (2021). EEG-based auditory attention detection
and its possible future applications for passive BCI. Front. Comput. Sci. 3:661178.
doi: 10.3389/fcomp.2021.661178

Bianchi, S. (2020). FATHON: a python package for a fast computation of
detrendend fluctuation analysis and related algorithms. J. Open Source Softw. 5:1828.
doi: 10.21105/joss.01828

Borra, D., Paissan, F., and Ravanelli, M. (2024). Speechbrain-moabb: An open-
source python library for benchmarking deep neural networks applied to EEG signals.
Comput. Biol. Med. 182:109097. doi: 10.1016/j.compbiomed.2024.109097

Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., and Pfurtscheller, G. (2008).
BCI competition 2008-graz data set a. Institute for knowledge discovery (laboratory of
brain-computer interfaces), Graz University of Technology, 1–6.

Cai, Q., Liu, C., and Chen, A. (2024). Classification of motor imagery tasks derived
from unilateral upper limb based on a weight-optimized learning model. J. Integr.
Neurosci. 23:106. doi: 10.31083/j.jin2305106

Carrle, F. P., Hollenbenders, Y., and Reichenbach, A. (2023). Generation of
synthetic EEG data for training algorithms supporting the diagnosis of major
depressive disorder. Front. Neurosci. 17:1219133. doi: 10.3389/fnins.2023.1219133

Cattan, G. (2021). The use of brain-computer interfaces in games is not ready for
the general public. Front. Comput. Sci. 3:628773. doi: 10.3389/fcomp.2021.628773

Cecotti, H., Marathe, A. R., and Ries, A. J. (2015). Optimization of single-trial
detection of event-related potentials through artificial trials. IEEE Trans. Biomed. Eng.
62, 2170–2176. doi: 10.1109/TBME.2015.2417054

Chen, X., Li, C., Liu, A., McKeown, M. J., Qian, R., and Wang, Z. J.
(2022). Toward open-world electroencephalogram decoding via deep learning: a
comprehensive survey. IEEE Signal Process. Mag. 39, 117–134. doi: 10.1109/MSP.2021.
3134629

Chen, Y.-W., and Jain, L. C. (2020). Deep Learning in Healthcare. Cham: Springer.
doi: 10.1007/978-3-030-32606-7

Cho, H., Ahn, M., Ahn, S., Kwon, M., and Jun, S. (2017a). Supporting data for “EEG
datasets for motor imagery brain computer interface.” GigaScience Datab. 10:100295.

Cho, H., Ahn, M., Ahn, S., Kwon, M., and Jun, S. C. (2017b). EEG
datasets for motor imagery brain-computer interface. GigaScience 6:gix034.
doi: 10.1093/gigascience/gix034

Cleveland, W. S., Grosse, E., and Shyu, W. M. (2017). “Local regression
models,” in Statistical Models in S (Routledge), 309–376. doi: 10.1201/97802037
38535-8

Collazos-Huertas, D. F., Álvarez-Meza, A. M., Cárdenas-Peña, D. A., Castaño-
Duque, G. A., and Castellanos-Domínguez, C. G. (2023). Posthoc interpretability
of neural responses by grouping subject motor imagery skills using cnn-based
connectivity. Sensors 23:2750. doi: 10.3390/s23052750

Di Flumeri, G., De Crescenzio, F., Berberian, B., Ohneiser, O., Kramer, J., Aricò, P.,
et al. (2019). Brain-computer interface-based adaptive automation to prevent out-of-
the-loop phenomenon in air traffic controllers dealing with highly automated systems.
Front. Hum. Neurosci. 13:296. doi: 10.3389/fnhum.2019.00296

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou,
K., et al. (2019). A guide to deep learning in healthcare. Nat. Med. 25, 24–29.
doi: 10.1038/s41591-018-0316-z

Fahimi, F., Dosen, S., Ang, K. K., Mrachacz-Kersting, N., and Guan, C.
(2020). Generative adversarial networks-based data augmentation for brain-
computer interface. IEEE Trans. Neural Netw. Learn. Syst. 32, 4039–4051.
doi: 10.1109/TNNLS.2020.3016666

Falaschetti, L., Biagetti, G., Alessandrini, M., Turchetti, C., Luzzi, S., and Crippa,
P. (2024). Multi-class detection of neurodegenerative diseases from EEG signals using
lightweight lstm neural networks. Sensors 24:6721. doi: 10.3390/s24206721

Freer, D., and Yang, G.-Z. (2020). Data augmentation for self-paced motor imagery
classification with c-lstm. J. Neural Eng. 17:016041. doi: 10.1088/1741-2552/ab57c0

Gang, P., Hui, J., Stirenko, S., Gordienko, Y., Shemsedinov, T., Alienin, O., et al.
(2018). “User-driven intelligent interface on the basis of multimodal augmented
reality and brain-computer interaction for people with functional disabilities,” in
Future of Information and Communication Conference (Cham: Springer), 612–631.
doi: 10.1007/978-3-030-03402-3_43

Gatti, R., Atum, Y., Schiaffino, L., Jochumsen, M., and Manresa, J. B. (2019).
Prediction of hand movement speed and force from single-trial EEG with
convolutional neural networks. bioRxiv, 492660. doi: 10.1101/492660

George, O., Smith, R., Madiraju, P., Yahyasoltani, N., and Ahamed, S. I. (2022). Data
augmentation strategies for EEG-based motor imagery decoding. Heliyon 8:e10240.
doi: 10.1016/j.heliyon.2022.e10240

Gordienko, Y., Kochura, Y., Taran, V., Gordienko, N., Rokovyi, A., Alienin, O.,
et al. (2020). “Scaling analysis of specialized tensor processing architectures for deep
learning models,” in Deep Learning: Concepts and Architectures (Cham: Springer),
65–99. doi: 10.1007/978-3-030-31756-0_3

Gordienko, Y., Kochura, Y., Taran, V., Gordienko, N., Rokovyi, O., Alienin, O.,
et al. (2021a). “last mile” optimization of edge computing ecosystem with deep learning
models and specialized tensor processing architectures. Adv. Comput. 122, 303–341.
doi: 10.1016/bs.adcom.2020.10.003

Gordienko, Y., Kostiukevych, K., Gordienko, N., Rokovyi, O., Alienin, O.,
and Stirenko, S. (2021b). “Deep learning for grasp-and-lift movement forecasting
based on electroencephalography by brain-computer interface,” in International
Conference on Artificial Intelligence and Logistics Engineering (Cham: Springer), 3–12.
doi: 10.1007/978-3-030-80475-6_1

Gordienko, Y., Kostiukevych, K., Gordienko, N., Rokovyi, O., Alienin, O., and
Stirenko, S. (2021c). “Deep learning with noise data augmentation and detrended
fluctuation analysis for physical action classification by brain-computer interface,” in
2021 8th International Conference on Soft Computing Machine Intelligence (ISCMI)
(IEEE), 176–180. doi: 10.1109/ISCMI53840.2021.9654829

Gou, H., Piao, Y., Ren, J., Zhao, Q., Chen, Y., Liu, C., et al. (2022). A solution
to supervised motor imagery task in the bci controlled robot contest in world robot
contest. Brain Sci. Adv. 8, 153–161. doi: 10.26599/BSA.2022.9050014

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck,
C., et al. (2013). MEG and EEG data analysis with Mne-python. Front. Neurosci. 7:267.
doi: 10.3389/fnins.2013.00267

Gu, X., Cao, Z., Jolfaei, A., Xu, P., Wu, D., Jung, T.-P., et al. (2021).
EEG-based brain-computer interfaces (BCIS): a survey of recent studies on
signal sensing technologies and computational intelligence approaches and
their applications. IEEE/ACM Trans. Comput. Biol. Bioinform. 18, 1645–1666.
doi: 10.1109/TCBB.2021.3052811

Habashi, A. G., Azab, A. M., Eldawlatly, S., and Aly, G. M. (2023). Generative
adversarial networks in EEG analysis: an overview. J. Neuroeng. Rehabil. 20:40.
doi: 10.1186/s12984-023-01169-w

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition 770–778. doi: 10.1109/CVPR.2016.90

Hurst, H. E. (1956). The problem of long-term storage in reservoirs. Hydrol. Sci. J.
1, 13–27. doi: 10.1080/02626665609493644

Ibrahim, M., Khalil, Y. A., Amirrajab, S., Sun, C., Breeuwer, M., Pluim, J., et al.
(2024). Generative ai for synthetic data across multiple medical modalities: a systematic
review of recent developments and challenges. arXiv preprint arXiv:2407.00116.

Jayaram, V., and Barachant, A. (2018). Moabb: trustworthy algorithm
benchmarking for bcis. J. Neural Eng. 15:066011. doi: 10.1088/1741-2552/aadea0

Jeong, J.-H., Cho, J.-H., Lee, Y.-E., Lee, S.-H., Shin, G.-H., Kweon, Y.-S., et al.
(2022). 2020 international brain-computer interface competition: a review. Front.
Hum. Neurosci. 16:898300. doi: 10.3389/fnhum.2022.898300

Kaggle (2020). Grasp-and-lift EEG detection. Available at:
https://www.kaggle.com/competitions/grasp-and-lift-eeg-detection (accessed October
14, 2020).

Kalashami, M. P., Pedram, M. M., and Sadr, H. (2022). EEG feature extraction and
data augmentation in emotion recognition. Comput. Intell. Neurosci. 2022:7028517.
doi: 10.1155/2022/7028517

Frontiers inNeuroinformatics 23 frontiersin.org78

https://doi.org/10.3389/fninf.2025.1521805
https://doi.org/10.1103/PhysRevE.64.061907
https://doi.org/10.3389/fnhum.2016.00539
https://doi.org/10.1016/bs.pbr.2016.04.021
https://doi.org/10.3390/info15060343
https://doi.org/10.3389/fnbot.2016.00009
https://doi.org/10.1109/IJCNN.2019.8852227
https://doi.org/10.3389/fncom.2021.723843
https://doi.org/10.1109/IWW-BCI.2018.8311531
https://doi.org/10.3389/fcomp.2021.661178
https://doi.org/10.21105/joss.01828
https://doi.org/10.1016/j.compbiomed.2024.109097
https://doi.org/10.31083/j.jin2305106
https://doi.org/10.3389/fnins.2023.1219133
https://doi.org/10.3389/fcomp.2021.628773
https://doi.org/10.1109/TBME.2015.2417054
https://doi.org/10.1109/MSP.2021.3134629
https://doi.org/10.1007/978-3-030-32606-7
https://doi.org/10.1093/gigascience/gix034
https://doi.org/10.1201/9780203738535-8
https://doi.org/10.3390/s23052750
https://doi.org/10.3389/fnhum.2019.00296
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.1109/TNNLS.2020.3016666
https://doi.org/10.3390/s24206721
https://doi.org/10.1088/1741-2552/ab57c0
https://doi.org/10.1007/978-3-030-03402-3_43
https://doi.org/10.1101/492660
https://doi.org/10.1016/j.heliyon.2022.e10240
https://doi.org/10.1007/978-3-030-31756-0_3
https://doi.org/10.1016/bs.adcom.2020.10.003
https://doi.org/10.1007/978-3-030-80475-6_1
https://doi.org/10.1109/ISCMI53840.2021.9654829
https://doi.org/10.26599/BSA.2022.9050014
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1109/TCBB.2021.3052811
https://doi.org/10.1186/s12984-023-01169-w
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1080/02626665609493644
https://doi.org/10.1088/1741-2552/aadea0
https://doi.org/10.3389/fnhum.2022.898300
https://doi.org/10.1155/2022/7028517
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Gordienko et al. 10.3389/fninf.2025.1521805

Kaya, M., Binli, M. K., Ozbay, E., Yanar, H., and Mishchenko, Y. (2018). A large
electroencephalographic motor imagery dataset for electroencephalographic brain
computer interfaces. Sci. Data 5, 1–16. doi: 10.1038/sdata.2018.211

Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A., and Oberye, J. J. (2000).
Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity
of the EEG. IEEE Trans. Biomed. Eng. 47, 1185–1194. doi: 10.1109/10.867928

Kerous, B., Skola, F., and Liarokapis, F. (2018). EEG-based bci and video games: a
progress report. Virtual Real. 22, 119–135. doi: 10.1007/s10055-017-0328-x

Ko,W., Jeon, E., Jeong, S., Phyo, J., and Suk, H.-I. (2021). A survey on deep learning-
based short/zero-calibration approaches for EEG-based brain-computer interfaces.
Front. Hum. Neurosci. 15:643386. doi: 10.3389/fnhum.2021.643386

Kochura, Y., Gordienko, Y., Taran, V., Gordienko, N., Rokovyi, A., Alienin,
O., et al. (2019). “Batch size influence on performance of graphic and tensor
processing units during training and inference phases,” in International Conference on
Computer Science, Engineering and Education Applications (Cham: Springer), 658–668.
doi: 10.1007/978-3-030-16621-2_61

Kochura, Y., Stirenko, S., Alienin, O., Novotarskiy, M., and Gordienko, Y. (2017a).
“Comparative analysis of open source frameworks for machine learning with use case
in single-threaded and multi-threaded modes,” in 12th Int. Scientific and Technical
Conf. on Computer Sciences and Information Technologies (CSIT) (IEEE), 373–376.
doi: 10.1109/STC-CSIT.2017.8098808

Kochura, Y., Stirenko, S., Alienin, O., Novotarskiy, M., and Gordienko, Y.
(2017b). “Performance analysis of open source machine learning frameworks for
various parameters in single-threaded and multi-threaded modes,” in Conference
on Computer Science and Information Technologies (Cham: Springer), 243–256.
doi: 10.1007/978-3-319-70581-1_17

Koelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., et al.
(2011). Deap: a database for emotion analysis; using physiological signals. IEEE Trans.
Affect. Comput. 3, 18–31. doi: 10.1109/T-AFFC.2011.15

Kostiukevych, K., Stirenko, S., Gordienko, N., Rokovyi, O., Alienin, O.,
and Gordienko, Y. (2021). “Convolutional and recurrent neural networks
for physical action forecasting by brain-computer interface,” in 2021 11th
IEEE International Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS) (IEEE), 973–978.
doi: 10.1109/IDAACS53288.2021.9660880

Kotowski, K., Stapor, K., and Ochab, J. (2020). “Deep learning methods in
electroencephalography,” in Machine Learning Paradigms (Cham: Springer), 191–212.
doi: 10.1007/978-3-030-49724-8_8

Lashgari, E., Liang, D., and Maoz, U. (2020). Data augmentation for
deep-learning-based electroencephalography. J. Neurosci. Methods 346:108885.
doi: 10.1016/j.jneumeth.2020.108885

Lashgari, E., Ott, J., Connelly, A., Baldi, P., andMaoz, U. (2021). An end-to-end cnn
with attentional mechanism applied to raw EEG in a bci classification task. J. Neural
Eng. 18:0460e03. doi: 10.1088/1741-2552/ac1ade

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., and
Lance, B. J. (2018). EEGnet: a compact convolutional neural network for EEG-based
brain-computer interfaces. J. Neural Eng. 15:056013. doi: 10.1088/1741-2552/aace8c

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

Lee, B.-H., Cho, J.-H., Kwon, B.-H., Lee, M., and Lee, S.-W. (2024). Iteratively
calibratable network for reliable EEG-based robotic arm control. IEEE Trans. Neural
Syst. Rehabil. Eng. 32:2793–2804. doi: 10.1109/TNSRE.2024.3434983

Lee, M.-H., Kwon, O.-Y., Kim, Y.-J., Kim, H.-K., Lee, Y.-E., Williamson, J., et al.
(2019). EEG dataset and openbmi toolbox for three bci paradigms: an investigation
into bci illiteracy. GigaScience 8:giz002. doi: 10.1093/gigascience/giz002

Leeb, R., Brunner, C., Müller-Putz, G., Schlögl, A., and Pfurtscheller, G.
(2008). BCI competition 2008-graz data set b. Graz Univ. Technol. 16, 1–6.
Available at: https://www.researchgate.net/publication/238115253_BCI_Competition_
2008_Graz_data_set_B

Li, G., Lee, C. H., Jung, J. J., Youn, Y. C., and Camacho, D. (2020). Deep learning for
EEG data analytics: a survey. Concurr. Comput. 32:e5199. doi: 10.1002/cpe.5199

Li, Y., Zhang, X.-R., Zhang, B., Lei, M.-Y., Cui, W.-G., and Guo, Y.-Z.
(2019). A channel-projection mixed-scale convolutional neural network for motor
imagery EEG decoding. IEEE Trans. Neural Syst. Rehabilit. Eng. 27, 1170–1180.
doi: 10.1109/TNSRE.2019.2915621

Lin, B., Deng, S., Gao, H., and Yin, J. (2020). A multi-scale activity transition
network for data translation in EEG signals decoding. IEEE/ACM Trans. Comput. Biol.
Bioinform. 18, 1699–1709. doi: 10.1109/TCBB.2020.3024228

Lopez, E., Chiarantano, E., Grassucci, E., and Comminiello, D.
(2023). “Hypercomplex multimodal emotion recognition from EEG and
peripheral physiological signals,” in 2023 IEEE International Conference on
Acoustics, Speech, and Signal Processing Workshops (ICASSPW) (IEEE), 1–5.
doi: 10.1109/ICASSPW59220.2023.10193329

Luciw, M. D., Jarocka, E., and Edin, B. B. (2014). Multi-channel EEG recordings
during 3,936 grasp and lift trials with varying weight and friction. Sci. Data 1, 1–11.
doi: 10.1038/sdata.2014.47

Micucci, D., Mobilio, M., and Napoletano, P. (2017). Unimib shar: a dataset
for human activity recognition using acceleration data from smartphones. Appl. Sci.
7:1101. doi: 10.3390/app7101101

Nisar, M. A., Shirahama, K., Li, F., Huang, X., and Grzegorzek, M. (2020).
Rank pooling approach for wearable sensor-based adls recognition. Sensors 20:3463.
doi: 10.3390/s20123463

Okafor, E., Smit, R., Schomaker, L., and Wiering, M. (2017). “Operational data
augmentation in classifying single aerial images of animals,” in 2017 IEEE International
Conference on INnovations in Intelligent SysTems and Applications (INISTA) (IEEE),
354–360. doi: 10.1109/INISTA.2017.8001185

Ouyang, J., Wu, M., Li, X., Deng, H., and Wu, D. (2024). Briedge: EEG-adaptive
edge ai for multi-brain to multi-robot interaction. arXiv preprint arXiv:2403.15432.

Pancholi, S., Giri, A., Jain, A., Kumar, L., and Roy, S. (2021). Source aware
deep learning framework for hand kinematic reconstruction using EEG signal. arXiv
preprint arXiv:2103.13862.

Parvan, M., Ghiasi, A. R., Rezaii, T. Y., and Farzamnia, A. (2019). “Transfer
learning based motor imagery classification using convolutional neural networks,” in
2019 27th Iranian Conference on Electrical Engineering (ICEE) (IEEE), 1825–1828.
doi: 10.1109/IranianCEE.2019.8786636

Peng, C.-K., Buldyrev, S., Goldberger, A., Havlin, S., Simons, M., and Stanley, H.
(1993). Finite-size effects on long-range correlations: implications for analyzing dna
sequences. Phys. Rev. E 47:3730. doi: 10.1103/PhysRevE.47.3730

Peng, C.-K., Havlin, S., Stanley, H. E., and Goldberger, A. L. (1995). Quantification
of scaling exponents and crossover phenomena in nonstationary heartbeat time series.
Chaos 5, 82–87. doi: 10.1063/1.166141

Pizzolato, S., Tagliapietra, L., Cognolato, M., Reggiani, M., Müller, H., and Atzori,
M. (2017). Comparison of six electromyography acquisition setups on handmovement
classification tasks. PLoS ONE 12:e0186132. doi: 10.1371/journal.pone.0186132

Rommel, C., Paillard, J., Moreau, T., and Gramfort, A. (2022). Data augmentation
for learning predictive models on EEG: a systematic comparison. arXiv preprint
arXiv:2206.14483.

Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T. H., and Faubert, J.
(2019). Deep learning-based electroencephalography analysis: a systematic review. J.
Neural Eng. 16:051001. doi: 10.1088/1741-2552/ab260c

Sakai, A., Minoda, Y., and Morikawa, K. (2017). “Data augmentation
methods for machine-learning-based classification of bio-signals,” in 2017
10th Biomedical Engineering International Conference (BMEiCON) (IEEE), 1–4.
doi: 10.1109/BMEiCON.2017.8229109

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Soleymani, M., Lichtenauer, J., Pun, T., and Pantic, M. (2011). A multimodal
database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3,
42–55. doi: 10.1109/T-AFFC.2011.25

Sun, C., and Mou, C. (2023). Survey on the research direction of EEG-based signal
processing. Front. Neurosci. 17:1203059. doi: 10.3389/fnins.2023.1203059

Sun, J., Shen, A., Sun, Y., Chen, X., Li, Y., Gao, X., et al. (2024). Adaptive
spatiotemporal encoding network for cognitive assessment using resting state EEG.
NPJ Digital Med. 7:375. doi: 10.1038/s41746-024-01384-2

Talavera, E., Iglesias, G., González-Prieto, Á., Mozo, A., and Gómez-Canaval, S.
(2022). Data augmentation techniques in time series domain: A survey and taxonomy.
arXiv preprint arXiv:2206.13508.

Tangermann, M., Müller, K.-R., Aertsen, A., Birbaumer, N., Braun, C., Brunner,
C., et al. (2012). Review of the bci competition IV. Front. Neurosci. 6:55.
doi: 10.3389/fnins.2012.00055

Taran, V., Alienin, O., Stirenko, S., Gordienko, Y., and Rojbi, A. (2017).
“Performance evaluation of distributed computing environments with hadoop and
spark frameworks,” in 2017 IEEE Int. Young Scientists Forum on Applied Physics and
Engineering (YSF) (IEEE), 80–83. doi: 10.1109/YSF.2017.8126655

Tsinganos, P., Cornelis, B., Cornelis, J., Jansen, B., and Skodras, A.
(2018). “Deep learning in emg-based gesture recognition,” in PhyCS, 107–114.
doi: 10.5220/0006960201070114

Tunnell, M., Chung, H., and Chang, Y. (2022). “A novel convolutional
neural network for emotion recognition using neurophysiological signals,” in 2022
International Conference on Robotics and Automation (ICRA) (IEEE), 792–797.
doi: 10.1109/ICRA46639.2022.9811868

Vahid, A., Mückschel, M., Stober, S., Stock, A.-K., and Beste, C. (2020).
Applying deep learning to single-trial EEG data provides evidence for complementary
theories on action control. Commun. Biol. 3, 1–11. doi: 10.1038/s42003-020-
0846-z

Vasiljevic, G. A. M., and de Miranda, L. C. (2020). Brain-computer interface games
based on consumer-grade EEG devices: a systematic literature review. Int. J. Hum.
Comput. Interact. 36, 105–142. doi: 10.1080/10447318.2019.1612213

Wan, X., Zhang, K., Ramkumar, S., Deny, J., Emayavaramban, G., Ramkumar, M.
S., et al. (2019). A review on electroencephalogram based brain computer interface for
elderly disabled. IEEE Access 7, 36380–36387. doi: 10.1109/ACCESS.2019.2903235

Frontiers inNeuroinformatics 24 frontiersin.org79

https://doi.org/10.3389/fninf.2025.1521805
https://doi.org/10.1038/sdata.2018.211
https://doi.org/10.1109/10.867928
https://doi.org/10.1007/s10055-017-0328-x
https://doi.org/10.3389/fnhum.2021.643386
https://doi.org/10.1007/978-3-030-16621-2_61
https://doi.org/10.1109/STC-CSIT.2017.8098808
https://doi.org/10.1007/978-3-319-70581-1_17
https://doi.org/10.1109/T-AFFC.2011.15
https://doi.org/10.1109/IDAACS53288.2021.9660880
https://doi.org/10.1007/978-3-030-49724-8_8
https://doi.org/10.1016/j.jneumeth.2020.108885
https://doi.org/10.1088/1741-2552/ac1ade
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/TNSRE.2024.3434983
https://doi.org/10.1093/gigascience/giz002
https://www.researchgate.net/publication/238115253_BCI_Competition_2008_Graz_data_set_B
https://www.researchgate.net/publication/238115253_BCI_Competition_2008_Graz_data_set_B
https://doi.org/10.1002/cpe.5199
https://doi.org/10.1109/TNSRE.2019.2915621
https://doi.org/10.1109/TCBB.2020.3024228
https://doi.org/10.1109/ICASSPW59220.2023.10193329
https://doi.org/10.1038/sdata.2014.47
https://doi.org/10.3390/app7101101
https://doi.org/10.3390/s20123463
https://doi.org/10.1109/INISTA.2017.8001185
https://doi.org/10.1109/IranianCEE.2019.8786636
https://doi.org/10.1103/PhysRevE.47.3730
https://doi.org/10.1063/1.166141
https://doi.org/10.1371/journal.pone.0186132
https://doi.org/10.1088/1741-2552/ab260c
https://doi.org/10.1109/BMEiCON.2017.8229109
https://doi.org/10.1109/T-AFFC.2011.25
https://doi.org/10.3389/fnins.2023.1203059
https://doi.org/10.1038/s41746-024-01384-2
https://doi.org/10.3389/fnins.2012.00055
https://doi.org/10.1109/YSF.2017.8126655
https://doi.org/10.5220/0006960201070114
https://doi.org/10.1109/ICRA46639.2022.9811868
https://doi.org/10.1038/s42003-020-0846-z
https://doi.org/10.1080/10447318.2019.1612213
https://doi.org/10.1109/ACCESS.2019.2903235
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Gordienko et al. 10.3389/fninf.2025.1521805

Wang, F., Zhong, S.-,h., Peng, J., Jiang, J., and Liu, Y. (2018a). “Data
augmentation for EEG-based emotion recognition with deep convolutional neural
networks,” in MultiMedia Modeling: 24th International Conference, MMM 2018,
Bangkok, Thailand, February 5–7, 2018, Proceedings, Part II 24 (Springer), 82–93.
doi: 10.1007/978-3-319-73600-6_8

Wang, I.-N., Lee, C.-H., Kim, H., and Kim, D.-J. (2024). Negative-sample-free
contrastive self-supervised learning for electroencephalogram-based motor imagery
classification. IEEE Access. 12, 132714–132728. doi: 10.1109/ACCESS.2024.3459866

Wang, N., Farhadi, A., Rao, R., and Brunton, B. (2018b). “Ajile movement
prediction: Multimodal deep learning for natural human neural recordings and
video,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2524–2531.
doi: 10.1609/aaai.v32i1.11889

Wei, M., and Lin, F. (2020). A novel multi-dimensional features fusion algorithm
for the EEG signal recognition of brain’s sensorimotor region activated tasks. Int. J.
Intell. Comput. Cybern. 13, 239–260. doi: 10.1108/IJICC-02-2020-0019

Wu, D., Li, S., Yang, J., and Sawan, M. (2022). neuro2vec: masked fourier
spectrum prediction for neurophysiological representation learning. arXiv preprint
arXiv:2204.12440.

Xia, T., Han, J., and Mascolo, C. (2022). “Benchmarking uncertainty
quantification on biosignal classification tasks under dataset shift,” in Multimodal
AI in Healthcare: A Paradigm Shift in Health Intelligence (Springer), 347–359.
doi: 10.1007/978-3-031-14771-5_25

Xu, J., and Zhong, B. (2018). Review on portable EEG technology in educational
research. Comput. Human Behav. 81, 340–349. doi: 10.1016/j.chb.2017.12.037

Zabcikova, M., Koudelkova, Z., Jasek, R., and Lorenzo Navarro, J. J. (2022).
Recent advances and current trends in brain-computer interface research and their
applications. Int. J. Dev. Neurosci. 82, 107–123. doi: 10.1002/jdn.10166

Zhang, K., Xu, G., Han, Z., Ma, K., Zheng, X., Chen, L., et al. (2020). Data
augmentation formotor imagery signal classification based on a hybrid neural network.
Sensors 20:4485. doi: 10.3390/s20164485

Zhang, Q., and Liu, Y. (2018). Improving brain computer interface performance
by data augmentation with conditional deep convolutional generative adversarial
networks. arXiv preprint arXiv:1806.07108.

Zhang, Y., Liao, Y., Zhang, Y., and Huang, L. (2021). Emergency braking intention
detect system based on k-order propagation number algorithm: a network perspective.
Brain Sci. 11:1424. doi: 10.3390/brainsci11111424

Zhang, Z., Huang, Y., Chen, S., Qu, J., Pan, X., Yu, T., et al. (2017). An intention-
driven semi-autonomous intelligent robotic system for drinking. Front. Neurorobot.
11:48. doi: 10.3389/fnbot.2017.00048

Zhengyi, L., Hui, Z., Dandan, Y., and Shuiqing, X. (2017). “Multimodal deep
learning network based hand adls tasks classification for prosthetics control,” in 2017
International Conference on Progress in Informatics and Computing (PIC) (IEEE),
91–95. doi: 10.1109/PIC.2017.8359521

Frontiers inNeuroinformatics 25 frontiersin.org80

https://doi.org/10.3389/fninf.2025.1521805
https://doi.org/10.1007/978-3-319-73600-6_8
https://doi.org/10.1109/ACCESS.2024.3459866
https://doi.org/10.1609/aaai.v32i1.11889
https://doi.org/10.1108/IJICC-02-2020-0019
https://doi.org/10.1007/978-3-031-14771-5_25
https://doi.org/10.1016/j.chb.2017.12.037
https://doi.org/10.1002/jdn.10166
https://doi.org/10.3390/s20164485
https://doi.org/10.3390/brainsci11111424
https://doi.org/10.3389/fnbot.2017.00048
https://doi.org/10.1109/PIC.2017.8359521
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Frontiers in Neurology 01 frontiersin.org

Data transformation of 
unstructured 
electroencephalography reports 
by natural language processing: 
improving data usability for 
large-scale epilepsy studies
Yoon Gi Chung 1†, Jaeso Cho 1†, Young Ho Kim 1, Hyun Woo Kim 1, 
Hunmin Kim 1,2*, Yong Seo Koo 3, Seo-Young Lee 4,5 and 
Young-Min Shon 6

1 Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University 
College of Medicine, Seongnam-si, Gyeonggi-do, Republic of Korea, 2 Department of Pediatrics, 
Seoul National University College of Medicine, Seoul, Republic of Korea, 3 Department of Neurology, 
Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea, 4 Department 
of Neurology, Kangwon National University School of Medicine, Chuncheon-si, Republic of Korea, 
5 Interdisciplinary Graduate Program in Medical Bigdata Convergence, Kangwon National University, 
Chuncheon-si, Republic of Korea, 6 Department of Neurology, Samsung Medical Center, 
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Introduction: Electroencephalography (EEG) is a popular technique that provides 
neurologists with electrographic insights and clinical interpretations. However, 
these insights are predominantly presented in unstructured textual formats, 
which complicates data extraction and analysis. In this study, we  introduce a 
hierarchical algorithm aimed at transforming unstructured EEG reports from 
pediatric patients diagnosed with epilepsy into structured data using natural 
language processing (NLP) techniques.

Methods: The proposed algorithm consists of two distinct phases: a deep 
learning-based text classification followed by a series of rule-based keyword 
extraction procedures. First, we categorized the EEG reports into two primary 
groups: normal and abnormal. Thereafter, we systematically identified the key 
indicators of cerebral dysfunction or seizures, distinguishing between focal 
and generalized seizures, as well as identifying the epileptiform discharges and 
their specific anatomical locations. For this study, we retrospectively analyzed 
a dataset comprising 17,172 EEG reports from 3,423 pediatric patients. Among 
them, we  selected 6,173 normal and 6,173 abnormal reports confirmed by 
neurologists for algorithm development.

Results: The developed algorithm successfully classified EEG reports into 1,000 
normal and 1,000 abnormal reports, and effectively identified the presence of 
cerebral dysfunction or seizures within these reports. Furthermore, our findings 
revealed that the algorithm translated abnormal reports into structured tabular 
data with an accuracy surpassing 98.5% when determining the type of seizures 
(focal or generalized). Additionally, the accuracy for detecting epileptiform 
discharges and their respective locations exceeded 88.5%. These outcomes 
were validated through both internal and external assessments involving 800 
reports from two different medical institutions.
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Discussion: Our primary focus was to convert EEG reports into structured 
datasets, diverging from the traditional methods of formulating clinical notes or 
discharge summaries. We developed a hierarchical and streamlined approach 
leveraging keyword selections guided by neurologists, which contributed to the 
exceptional performance of our algorithm. Overall, this methodology enhances 
data accessibility as well as improves the potential for further research and 
clinical applications in the field of pediatric epilepsy management.

KEYWORDS

natural language processing, electroencephalography, epilepsy, deep learning, 
keyword extraction

1 Introduction

Electroencephalography (EEG) is a noninvasive diagnostic 
modality that is specifically designed to record neuronal activity 
within the brain. This technique has demonstrated considerable 
efficacy in identifying clinically significant cortical electrophysiological 
markers in individuals suffering from neurological disorders. As such, 
EEG assessments serve as preliminary diagnostic measures for 
neurological conditions, especially epilepsy (1–3).

Typically, EEG reports are composed of unstructured data 
formatted as free-text, which varies in stylistic presentation depending 
on the individual neurologist. This variability necessitates that 
neurologists must manually scrutinize each report to aggregate the 
data into a cohesive database—a process that is both time-consuming 
and labor-intensive. Consequently, the potential for large-scale data 
analysis and related clinical applications utilizing EEG reports has 
been significantly curtailed. Despite these reports containing valuable 
clinical insights vital for the interpretation of patient EEG recordings, 
no systematic efforts have been achieved to convert this information 
into structured, tabulated datasets. In response to these challenges, 
recent advancements in natural language processing (NLP) 
techniques have emerged as promising solutions for managing 
unstructured data in electronic medical records (EMR) and 
identifying information from text-heavy EEG reports of epilepsy 
patients (4). Various methodologies involving rule-based systems, 
machine learning algorithms, and deep learning approaches have 
been implemented for a spectrum of tasks such as information 
extraction, text classification, and summarization (4–6). These 
innovations offer the potential to revolutionize the handling of EEG 
reports, thereby enhancing their utility in clinical and 
research settings.

Despite the significant advancements in information extraction 
and text classification, the majority of existing studies have primarily 
focused on clinical notes and discharge summaries instead of EEG 
reports. Researchers have utilized both rule-based and deep learning 
methodologies to extract epilepsy- and seizure-related variables from 
these free-text documents. The key variables include epilepsy 
phenotypes (7, 8), seizure onsets (9), seizure frequency (8, 10, 11), 
seizure types (8, 10, 12), and EEG patterns (13). Additionally, certain 
studies have focused on classifying patients based on their seizure-free 
status (11, 12). However, the extensive array of target variables for 
keyword extraction from clinical notes and summaries presents 
challenges in data selection strategies when applying NLP techniques. 
In contrast, EEG reports typically offer more concise and focused 
information, particularly regarding the electrographic findings of 

patients. This structured format allows for effective analysis in a time-
sequenced manner when processed sequentially.

Therefore, in the present study, we  propose a hierarchical 
algorithm designed to transform unstructured EEG reports from 
pediatric patients diagnosed with epilepsy into structured data that is 
clinically relevant, leveraging advanced NLP techniques. This 
algorithm was designed to achieve the following objectives: (1) 
convert large volumes of free-text EEG reports into tabular data using 
deep learning and simplified rule-based methods with high accuracy 
and (2) ensure easy adaptability to various EEG report formats 
through external validation.

2 Methods

2.1 Dataset

We retrospectively compiled 17,172 reports from 3,423 pediatric 
patients (mean age: 10.8 ± 6.0 years) diagnosed with epilepsy. These 
reports were sourced from the clinical data warehouse of Seoul 
National University Bundang Hospital (SNUBH), situated in 
Seongnam, Republic of Korea. Two neurologists, identified as 
H.K. and J.C., meticulously reviewed all the EEG reports to categorize 
them as either normal or abnormal. A report was deemed normal if it 
revealed no abnormal findings, whereas an abnormal report was 
characterized by the presence of at least one abnormal finding. Based 
on the annotations of the neurologists, we identified 6,173 reports as 
normal and 10,822 as abnormal. To facilitate a balanced dataset, 
we randomly selected 6,173 abnormal reports to match a 1:1 ratio of 
normal to abnormal cases. For the purposes of developing our 
classification algorithm, we further narrowed our selection to 5,173 
reports from both the normal and abnormal categories. The remaining 
1,000 reports from each category were reserved for the evaluation of 
our classification models and internal validation.

Additionally, we conducted a retrospective collection of 400 EEG 
reports from 229 pediatric patients (age: 9.3 ± 7.8 years) with epilepsy, 
sourced from the clinical data warehouse of Seoul National University 
Children’s Hospital (SNUCH), which is an independent tertiary 
facility located in Seoul, Republic of Korea. The same neurologists, 
H.K. and J.C., reviewed these 400 reports and confirmed that they 
were 200 normal and 200 abnormal reports. All EEG reports from 
SNUCH were employed for the external validation. The overall study 
process is illustrated in Figure 1.

This research was granted approval by the Institutional Review 
Board at Seoul National University Bundang Hospital (Approval No. 
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B-2312-873-107). Due to the retrospective nature of the study, the 
requirement for informed consent was waived. The research adhered 
to the ethical principles outlined in the Declaration of Helsinki.

2.2 Algorithm development

We executed a two-step process to transform the free-text EEG 
reports into structured tabular data. The first step involved classifying 
the EEG reports into two categories: normal and abnormal, using a 
deep learning-based model. The primary aim of this classification was 
to identify the abnormal EEG reports, which encapsulate critical 
findings from neurologists concerning various abnormalities. The 
second step focused on extracting specific keywords from the 
identified abnormal EEG reports using rule-based methodologies. The 
main goal of this keyword extraction was to pinpoint significant 
abnormal findings that could provide insights into the condition of 
patients diagnosed with epilepsy. This second step comprised three 
sequential procedures for keyword extraction. Below, we provide a 
comprehensive overview of our hierarchical algorithm:

(1) Step 1: Classification of normal and abnormal reports.

EEG reports were categorized as either normal or abnormal 
through the application of a deep learning-based classification 
model. Reports classified as normal did not proceed to further 
analysis. Conversely, those identified as abnormal prompted the 

execution of the second phase, as detailed below. Note that abnormal 
reports may include keywords that suggest both normal and 
abnormal conditions (e.g., “This is a normal waking and moderately 
abnormal stage I-II…”). In cases where a report contained solely 
abnormal keywords, it was categorized as abnormal irrespective of 
the model’s output.

(2) Step 2: Keyword extraction.

The extraction of specific keywords from the abnormal EEG 
reports was performed using rule-based methods that relied on 
regular expressions and the spaCy library in Python. This method 
facilitated the identification of relevant keywords that denote 
significant abnormal findings. All abnormal reports were structured 
into two distinct sections: impression and clinical correlation. Initially, 
each abnormal report was divided into these two sections, and one 
section was selected based on the targeted keywords. The extraction 
of keywords was conducted through a series of three hierarchical 
procedures, detailed as follows:

	 A	 Extraction of keywords related to dysfunction or seizure from 
the clinical correlation section: In instances where an abnormal 
report indicated dysfunction, it was inferred that the 
corresponding background EEG activity was abnormal (e.g., 
cerebral dysfunction or occipital lobe dysfunction). Conversely, 
if the report identified seizure activity, it was determined that 
the corresponding EEG exhibited characteristics indicative of 

FIGURE 1

Overall process of this study. Normal and abnormal electroencephalography (EEG) reports (5,173 each) from the Seoul National University Bundang 
Hospital (SNUBH), located in Seongnam, Republic of Korea, were used for algorithm development. Normal and abnormal reports (1,000 each) of 
SNUBH were used for classification model evaluation. Among the 1,000 normal and 1,000 abnormal reports, randomly selected 200 normal and 200 
abnormal reports were used for internal validation. Normal and abnormal reports (200 each) from an independent tertiary hospital in Korea (Seoul 
National University Children’s Hospital (SNUCH), Seoul, Republic of Korea) were used for external validation. IED denotes interictal epileptiform 
discharge.
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a seizure. Both keywords, dysfunction and seizure, were 
systematically extracted.

	 B	 Extraction of focal (or partial) or generalized seizure 
information from the clinical correlation section: This 
procedure was specifically applied to abnormal reports 
identified in the previous procedure (A) that indicated seizure 
activity. If the report contained references to focal (or partial) 
seizures, the corresponding seizure type was classified as focal; 
if it referenced generalized seizures, the classification was 
adjusted accordingly to generalized. Both keywords were 
extracted to ensure comprehensive categorization.

	 C	 Extraction of keywords associated with interictal epileptiform 
discharges (IEDs) and their respective locations from the 
impression section: This procedure was applied to the 
abnormal reports identified in the earlier step (A) that 
contained seizure activity. We  defined keywords relating to 
IEDs as any phrases incorporating the terms spike, discharge, 
wave, sharp, or all possible combinations of these four terms 
(such as spike discharge or sharp wave discharge). The keywords 
related to the locations of IEDs were defined as phrases with 
one or all possible combinations of the names of the 19 
channels according to the international 10–20 system (e.g., Fp1 
or F3F7).

2.3 Deep learning model

In the first phase of our algorithm development, we established 
deep learning-based binary classification models aimed at categorizing 
EEG reports as either normal or abnormal. For this purpose, 
we  employed two publicly available language models from the 
Hugging Face repository: Bidirectional Encoder Representations from 
Transformers (BERT) and Clinical BERT. BERT is a transformer-
based deep learning model pretrained on extensive datasets such as 
BooksCorpus and Wikipedia. In contrast, Clinical BERT is a 
specialized variant of BERT, pretrained on clinical text corpora, which 
includes clinical notes extracted from the MIMIC-III database 
(14–17).

We selected the BERT-base model from Hugging Face, 
characterized by 12 transformer layers, hidden size of 768, 12 self-
attention heads, and a total parameter count of 110 million, which 
aligns with the specifications of Clinical BERT. Both the BERT and 
Clinical BERT models were fine-tuned using an equal dataset 
composed of 5,173 normal reports and 5,173 abnormal reports to 
optimize their performance in classification tasks. Each report was 
tokenized with a maximum length limit of 128 tokens before feeding 
to the input layer of the model. No additional preprocessing was 
applied to the reports. AutoTokenizer from Hugging Face tokenized 
all the reports yielding input IDs, token type IDs, and attention mask 
value sets for each report. We used zero padding to the maximum 
length of tokens and truncation to provide data sets for the input layer. 
Supplementary Table 1 shows an example of a tokenized EEG report.

To augment the capability of the model in sentence recognition, 
we concatenated each model with long short-term memory (LSTM) 
networks with both BERT and Clinical BERT, resulting in two 
enhanced architectures: BERT with LSTM and Clinical BERT with 
LSTM. In these configurations, the output generated from the final 
hidden layer of each model was subsequently directed into the input 

layer of the LSTM, thereby creating a cohesive model that leverages 
the strengths of both deep learning frameworks for improved 
classification outcomes. Supplementary Figure  1 shows our 
model architectures.

We used 64 LSTM units, a dropout rate of 0.1, and a sigmoid 
activation function, which yielded a probability score between 0 and 
1. Specifically, an input report was classified as normal if the output 
was less than 0.5 and as abnormal if it was equal to or greater than 0.5. 
We used adaptive moment estimation as an optimizer with a learning 
rate of 1 × 10−5, a binary cross entropy loss function, a batch size of 32, 
and 5 epochs for model training. All algorithmic processes were 
executed using Python 3.8 and Tensorflow 2.10, facilitated by an 
NVIDIA 3080Ti graphics processing unit with 12GB of memory, in 
conjunction with the Compute Unified Device Architecture (CUDA) 
version 11.4 programming interface.

2.4 Performance evaluation

The performance of our algorithm was rigorously assessed 
through three key methodologies: (1) model evaluation, (2) internal 
validation, and (3) external validation. During the model evaluation 
phase, we examined the performance of our two deep learning models 
in classifying reports as normal or abnormal, using a dataset 
comprising 1,000 normal and 1,000 abnormal EEG reports sourced 
from SNUBH. The evaluation metrics included sensitivity, specificity, 
accuracy, and the area under the receiver operating characteristic 
curve (AUC). Internal and external validations were subsequently 
conducted to ascertain the applicability of the algorithm within a 
clinical setting, where EEG reports were systematically converted into 
structured tabular data from a clinical perspective. For the internal 
validation, we  randomly selected 200 normal and 200 abnormal 
reports from the previously mentioned model evaluation dataset. In 
contrast, the external validation utilized a separate set of 200 normal 
and 200 abnormal reports from SNUCH. Two neurologists (H.K. and 
J.K.) compared 400 reports from SNUBH and 400 reports of SNUCH 
with their corresponding algorithm outputs in terms of all hierarchical 
procedures for internal and external validations, respectively. 
We adopted the Clinical BERT with LSTM model for normal and 
abnormal classifications in the internal and external validations. For 
the performance of the Clinical BERT with LSTM model, 
we  additionally performed 6-fold cross-validation using the EEG 
reports from SNUBH. 1,000 normal and 1,000 abnormal reports were 
used for evaluation and the remaining ones were used for model 
training in each round.

3 Results

3.1 Model evaluation

In our evaluation of the classification models for distinguishing 
between normal and abnormal EEG reports from SNUBH, both the 
BERT with LSTM and Clinical BERT with LSTM models 
demonstrated impressive performance metrics: sensitivity of 100%, 
specificity of 99.90%, accuracy of 99.95%, and an AUC of 100%. 
Notably, each model produced one false-positive result. The outputs 
of the models, when averaged over 1,000 normal reports, were 
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recorded as 0.173 ± 2.410% for the BERT with LSTM and 
0.175 ± 3.137% for the Clinical BERT with LSTM. In contrast, the 
model outputs averaged over 1,000 abnormal reports were significantly 
higher, with the BERT with LSTM yielding 99.854 ± 0.175% and the 
Clinical BERT with LSTM achieving 99.870 ± 0.656%. Additionally, 
our Supplementary Table 2 includes detailed outputs from the Clinical 
BERT with LSTM model alongside the corresponding keyword 
extraction results for both 1,000 normal and 1,000 abnormal EEG 
reports. Supplementary Table 3 shows confusion matrices over 6-fold 
cross-validation of the Clinical BERT with LSTM model with the 
average sensitivity, specificity, accuracy, and AUC of 99.88, 99.98, 
99.93, and 100%, respectively.

3.2 Internal validation

During the internal validation using the EEG reports from 
SNUBH, we attained a perfect accuracy of 100% in Step 1 for the 
classification of normal and abnormal EEG reports. Furthermore, in 
Step 2, the accuracy rates for the keyword extraction processes were 
also commendable, with 100% accuracy for classification A 
(dysfunction or seizure), 98.50% for classification B (focal or 
generalized), and 97.50% for classification C (IEDs and locations). 
Among the 200 abnormal EEG reports, we  failed to extract the 
generalized information because the relevant keyword did not exist in 
the clinical correlation part in two reports, and in one report, the 
keyword was misspelled. Furthermore, we encountered challenges in 
extracting the locations of IEDs, because these characteristics were not 
specified as channel names in four different reports. Conversely, the 
model mistakenly identified a channel name that referred to locations 
of abnormal background activities in one of the reports.

3.3 External validation

During the external validation process utilizing EEG reports from 
the SNUCH, we achieved a perfect accuracy rate of 100% in Step 1 for 
classifying EEG reports as normal or abnormal. In Step 2, we recorded 
accuracy rates of 100, 100, and 88.50% for our keyword extraction 
procedures labeled A, B, and C, respectively. Among the 200 abnormal 
EEG reports analyzed from SNUCH, we were unable to extract the 
locations of IEDs in six reports due to the absence of channel name 
representation. Additionally, we erroneously extracted channel names 
indicative of abnormal background activities in 16 reports. In one 
instance, we mistakenly classified delta waves, described in a phrase 
concerning background activity, as an IED.

The detailed results from both internal and external validations 
are presented in Table 1. Furthermore, Tables 2, 3 show representative 
abnormal EEG reports from the SNUBH and SNUCH, respectively, 
highlighting both the successful and erroneous conversions into 
structured data during our validation process.

4 Discussion

The present findings confirm that the NLP-based hierarchical 
algorithm we developed effectively classified free-text EEG reports 
from pediatric patients diagnosed with epilepsy as either normal or 

abnormal. The algorithm demonstrated its capability to identify the 
presence of cerebral dysfunction or seizures within the abnormal 
reports. We demonstrated that our algorithm converted abnormal 
reports to tabular data with an accuracy higher than 98.5% for the 
determination of focal or generalized seizures and higher than 88.5% 
for the identification of IEDs and their locations. Neurologists 
identified a set of clinical keywords essential for the diagnosis of 
epilepsy prior to the analysis. Following this, we  systematically 
extracted keywords from abnormal reports through a series of 
methodical procedures. Accordingly, we  successfully developed 
structured datasets that accurately correspond to the EEG reports 
obtained from two distinct medical institutions.

4.1 Normal and abnormal classification

In Step 1 of our algorithm, we implemented a deep learning-based 
classification model designed specifically to identify abnormal EEG 
reports for subsequent keyword extraction tasks. Previous studies 
have demonstrated that BERT-based classification models perform 
exceptionally well in text classification across various medical domains 
(11, 18–20). Therefore, we were optimistic that we could apply our 
detailed rules for keyword extraction exclusively to the abnormal 
reports once we  amassed a sufficient quantity of these datasets. 
Additionally, in the deep learning-based classification, we expected to 
avoid two situations: skipping required rules due to misspelled 
abnormal, or executing unnecessary rules due to misspelled normal in 
the reports. If we  had utilized only the rule-based classification 
approach in Step  1, we  would have faced a considerable risk of 
misclassifying reports, as misspellings in both abnormal and normal 
reports could easily lead to false recognition, and thus, erroneous 
classification of normal and abnormal reports.

As most normal EEG reports contain general words describing 
waking and sleep states, our BERT and Clinical BERT models had no 
additional domain-specific fine-tuning, unlike previous studies (11, 
20, 21). We fine-tuned our models for the binary classification of 
normal and abnormal reports. Both BERT and Clinical BERT models 
exhibited high performance for binary classification, probably because 
the properties of normal and abnormal reports were highly different 
from each other in that the abnormal reports contained a significantly 

TABLE 1  Detailed results of the internal and external validations using the 
electroencephalography (EEG) reports from Seoul National University 
Bundang Hospital (SNUBH) and an independent tertiary hospital 
(SNUCH), respectively.

Step 1 Step 2

A B C

SNUBH I. Normal 200 - - -

II. Abnormal 200 200 197 195

Accuracy (%) 100 100 98.50 97.50

SNUCH I. Normal 200 - - -

II. Abnormal 200 200 200 177

Accuracy (%) 100 100 100 88.50

A, B, and C in Step 2 denote the keyword extraction procedures for dysfunction or seizure, 
focal (partial) or generalized seizure, and the existence of interictal epileptiform discharges 
and their locations, respectively. I and II in the second column represent the number of EEG 
reports that are correctly converted to structured data for the Step 1 and Step 2.
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higher frequency of epilepsy-related terminology when compared to 
their normal counterparts. Another reason of the similar performance 
of the two models to each other may have been arisen from the data 
sources of the Clinical BERT. The MIMIC-III database contained a 
large number of clinical text data across various diseases. However, its 
knowledge in the field of epilepsy could be possibly weak because it 
handled less amount of data for neurological diseases and EEG 
examinations (22). During our evaluation, we encountered a single 
false positive for both models, an occurrence linked to the unique 
sentence structure of the report in question. This structure deviated 
substantially from that of typical normal reports, as it included 
enumerated numerical values regarding background activity rather 

than descriptive sentences detailing the state of normal 
EEG recordings.

Notably, we observed that the output scores from the Clinical 
BERT model were marginally higher than those from the BERT 
model for abnormal reports. Although this difference did not reach 
statistical significance, we  hypothesized that the Clinical BERT 
model might inherently be predisposed to assign higher probabilities 
to abnormal reports than the BERT model. This observation 
prompts the necessity for further research to validate our hypothesis. 
Based on these findings, we  opted to utilize the Clinical BERT 
model for Step  1  in both our internal and external 
validation processes.

TABLE 2  Representative electroencephalography (EEG) reports from Seoul National University Bundang Hospital (top three rows) and an independent 
tertiary hospital (bottom three rows) that are correctly converted to structured data evaluated by two neurologists in the internal and external 
validations, respectively.

EEG report Step 1 Step 2 Model 
output

A B C

(Impression) This is a normal waking and mildly abnormal stage 

N1-2 sleep record due to a few low-voltage spike discharges from 

O2O1, during sleep.

Clinical correlation: this recording is suggestive of focal seizure 

(subtle axial myoclonus without EEG changes was noted).

Abnormal Seizure Focal Spike discharges O2O1 0.9991

(Impression) This is a moderately abnormal waking and stage I-II 

sleep record due to:

(1) Poorly regulated posterior rhythm for age.

(2) High amplitude irregular 1.5–2 Hz delta slowing on both 

posterior head region.

(3) Frequent spike discharge from C3P3T3 or F8T4 activated by 

sleep.

Clinical correlation: This record is indicative of diffuse cerebral 

dysfunction and consistent with partial seizure.

Abnormal
Dysfunction, 

seizure
Partial Spike discharge

C3P3T3 or 

F8T4
0.9991

(Impression) This is a mildly abnormal sedated sleep record due to 

intermittent medium to high amplitude 2.5–3 Hz delta activities 

on the anterior head region.

Clinical correlation: This recording is indicative of anterior 

cerebral dysfunction.

Abnormal Dysfunction 0.9990

This is a mildly abnormal Stage II sleep record due to a few low 

voltage spike discharges from F3C3P3 or P4T4.

Clinical correlation: this recording is consistent with focal seizure.

Abnormal Seizure Focal Spike discharges
F3C3P3 or 

P4T4
0.9992

This is a moderately abnormal Stage II sleep record due to:

(1) Frequent generalized polyspike wave discharges or paroxysmal 

fast activities.

(2) Frequent spike discharges form C3T3 or C4T4.

Clinical correlation: this recording is consistent with focal and 

generalized seizure.

Abnormal Seizure
Focal and 

generalized

Polyspike wave 

discharges, spike 

discharges

C3T3 or C4T4 0.9991

This is a moderately abnormal drowsy and sleep record due to:

(1) Intermittent delta activities on the anterior head region.

(2) Frequent low to medium voltage spike or spike wave discharges 

from Fp1F3F7 and Fp2F4F8.

Clinical correlation: this recording is suggestive of diffuse cerebral 

dysfunction and consistent with focal seizure.

Abnormal
Dysfunction, 

seizure
Focal

Spike or spike 

wave discharges

Fp1F3F7 and 

Fp2F4F8
0.9991

A, B, and C in Step 2 denote the keyword extraction procedures for dysfunction or seizure, focal (partial) or generalized seizure, and the existence of interictal epileptiform discharges and their 
locations, respectively. The model output represents the probability from 0 to 1 that its corresponding report is determined as a normal one if the model output <0.5 and as an abnormal one if 
the model output ≥0.5.
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4.2 Keyword extraction

In Step 2 of our algorithm, we systematically implemented a series 
of rules to extract specific keywords from abnormal EEG reports. 

We argue that a rule-based approach to keyword extraction is justified, 
as a finite set of key terms can effectively capture the defining features 
of abnormal EEG reports. This assertion is supported by prior research 
that examined the limitations of BERT in this context (23). Moreover, 

TABLE 3  Representative electroencephalography (EEG) reports from Seoul National University Bundang Hospital (top four rows) and Seoul National 
University Children’s Hospital (bottom three rows) that are incorrectly converted to structured data evaluated by two neurologists in the internal and 
external validations, respectively.

EEG report Step 1 Step 2 Model 
output

A B C

(Impression) This is a moderately abnormal waking and stage I-II 

sleep record due to:

(1) Frequent episodes of generalized rhythmic 3 Hz spike wave 

discharges with videographic evidence of dialeptic seizure.

(2) Occasional generalized spike wave discharges

Clinical correlation: this recording is diagnostic of electroclinical 

absence seizure.

Abnormal Seizure
Spike wave 

discharges (2)
0.9990

(Impression) This is a mildly abnormal waking and normal stage I-II 

sleep record due to two episodes of brief, rhythmic, bifrontal, 3 Hz, 

rhythmic delta activities (which cannot be discriminated from 

typical 3 Hz spike wave discharges - video is not available.)

Clinical correlation: this recording is suggestive of generalized 

seizure.

Abnormal Seizure
Spike wave 

discharges
0.9990

(Impression) This is a moderately abnormal sedated sleep record due 

to:

(1) Diffuse high amplitude irregular pleomorphic 1.5–2.0 Hz delta 

activities.

(2) Frequent spike discharges from the left or right centro-temporal 

area.

Clinical correlation; this record is indicative of diffuse cerebral 

dysfunction and consistent with partial seizure (modified 

hypoarrythmia).

Abnormal
Dysfunction, 

seizure
Partial

Spike 

discharges
0.9991

(Impression) This is a mildly abnormal waking and normal stage 

N1-2 sleep record due to brief, intermittent, high amplitude, 2–3 Hz 

rhythmic delta activities from both posterior head region or P4O2, 

during and after hyperventilation.

Clinical correlation: this recording is suggestive of both posterior 

cerebral dysfunction worse on the right hemisphere.

Abnormal Dysfunction P4O2 0.9990

This is a moderately abnormal drowsy and Stage I-II sleep record 

due to:

(1) Intermittent delta activities on T6O2 during drowsiness.

(2) A few or occasional spike discharges from T4T6

Clinical correlation: this recording is suggestive of left temporo-

occipital cerebral dysfunction and consistent with focal seizure

Abnormal
Dysfunction, 

seizure
Focal

Spike 

discharges

T6O2, 

T4T6
0.9991

This is a mildly abnormal sleep record due to a few atypical spike 

discharges from the right or left frontocentral areas.

Clinical correlation: this recording is suggestive of focal seizure

Abnormal Seizure Focal
Spike 

discharges
0.9991

This is a moderately abnormal record due to:

(1) Medium to high delta waves in right hemisphere.

(2) Slowing in both hemisphere.

Clinical correlation: this recording is indicative of diffuse cerebral 

dysfunction.

Abnormal Dysfunction Waves 0.9986

A, B, and C in the Step 2 denote the keyword extraction procedures for dysfunction or seizure, focal (partial) or generalized seizure, and the existence of interictal epileptiform discharges and 
their locations, respectively. The model output represents the probability from 0 to 1 that its corresponding report is determined as a normal one if the model output <0.5 and as an abnormal 
one if the model output ≥0.5.
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we aimed to enhance the transparency of the keyword extraction 
process in Step 2 by utilizing explicit rules, which aligns with the 
previous studies that underscored concerns regarding reproducibility 
in machine learning models (4, 24).

Rule-based techniques enable an accurate extraction of keywords 
from sentences without manipulating statistical scores, barring any 
typographical errors. Drawing on neurologists’ prior identification of 
significant clinical keywords, we established a sequential keyword 
extraction process tailored to abnormal reports. This hierarchical 
framework serves to streamline our algorithm by minimizing the 
scope of target variables within the reports. We  contend that the 
reduced complexity of our algorithm is conducive to achieving high 
performance, particularly in the detection of cerebral dysfunction, 
focal or generalized seizures, and the identification of IEDs.

However, during internal validation, we encountered a limitation: 
the keyword of generalized was not extracted from the two abnormal 
EEG reports of patients diagnosed with absence seizures. The 
generalized 3 Hz spike-and-wave complexes represent the typical 
electrographic signatures of absence seizures (25, 26). Consequently, 
although the clinical correlations observed in the abnormal reports of 
patients with absence seizures are not universally applicable, these 
reports strongly suggest the presence of generalized seizures based on 
their signatures. To address this challenge, it may be beneficial to 

implement deep learning techniques aimed at analyzing the reports at 
the sentence level, or to introduce supplementary rules to accurately 
identify the type of seizure. To overcome this issue, we may need to 
utilize specific deep learning-based models to automatically match a 
variety of regional terminologies for their corresponding 
channel names.

A significant number of failures were recorded during the final 
step of Step 2, particularly regarding the localization of IEDs in the 
abnormal reports from both medical institutions. The present 
algorithm struggled to detect channel names as the locations of IEDs 
were frequently described using regional terminologies, such as 
“centro-temporal” or “fronto-central,” in 10 abnormal reports (4 from 
SNUBH and 6 from SNUCH). Thus, these regional terms need to 
be included as target keywords; however, we are concerned about the 
vast array of potential combinations of these regional names.

Additionally, our algorithm erroneously identified the channel 
names that referred to background activities, such as “delta activities 
from P4O2,” in 17 abnormal reports (1 from SNUBH and 16 from 
SNUCH). Abnormal reports can contain both background activities 
and IEDs simultaneously. Therefore, it is crucial to develop precise 
rules for determining channel names after categorizing the data into 
distinct domains, such as background activity or IEDs. This approach 
is reminiscent of a previous study by (27), which demonstrated an 

TABLE 4  Comparison of performance metrics of our work and recent natural language processing studies in the field of epilepsy.

Study Method Objective Result

This study Rule-based and BERT
To convert EEG reports into tabular data by 

classification and keyword extraction

• �Internal: accuracy = 0.985 (focal or generalized 

seizure), accuracy = 0.975 (identification of IEDs and 

locations)

• �External: accuracy = 1.0 (focal or generalized seizure), 

accuracy = 0.885 (identification of IEDs and locations)

Beaulieu-Jones et al. (28) Clinical-longformer
To predict seizure recurrence after an initial 

seizure-like event

• �Additional domain-specific and location-specific 

pretraining: F1-score = 0.826, AUC = 0.897

• �No pretraining: F1-score = 0.739, AUC = 0.846

Tao et al. (9) Rule-based
To extract temporal information of seizure 

onset from discharge summaries
Precision = 0.750, recall = 0.651, and F1-score = 0.697

Xie et al. (11) BERT
To extract clinical information (seizure 

frequency, seizure freedom) from clinical notes

• �Median accuracy for classification: 0.837 (BioClinical 

BERT), 0.747 (RoBERTa)

• �Median F1 score for text extraction: 0.845 and 0.834 

(RoBERTa)

Decker et al. (10) Rule-based
To extract seizure data (seizures and frequency) 

from clinical notes

• �Internal test: recall = 0.70, precision = 0.95, and F1-

score = 0.82

• �External test: recall = 0.22, precision = 0.73, and F1-

score = 0.40

Rawal and Varatharajah (12) Rule-based and BERT
To extract attributes for organized reporting 

from EEG reports

• Seizure classification: F1-scores = 0.92

• Epilepsy classification: F1-scores = 0.82

• �Normal and abnormal classification: F1-scores = 0.97

Fonferko-Shadrach et al. (8) Rule-based
To extract detailed clinical information from 

epilepsy clinic letters
Precision = 0.914, recall = 0.814, and F1-score = 0.861

Cui et al. (7) Rule-based
To extract epilepsy phenotypes and anatomical 

locations from clinical discharge summaries

• �Epilepsy phenotypes: micro-averaged 

precision = 0.924, recall = 0.931, and F1-score = 0.927

• �Correlated phenotypes and anatomical locations: 

precision = 0.852, recall = 0.859, and F1-score = 0.856

Cui et al. (13) Rule-based
To extract seizure-related clinical free text from 

discharge summaries
Precision = 0.936, recall = 0.840, and F1-score = 0.885
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effective two-level keyword extraction approach from clinical notes. 
Typographical errors and inappropriate words constituted critical 
issues that require resolution in our keyword extraction procedures, 
such as misspelled generalized and delta waves instead of delta 
activities in the abnormal reports from SNUBH and SNUCH. In the 
rule-based keyword extraction, it may be  highly challenging to 
overcome those troubles due to the necessity of additional complicated 
rules for searching replaceable words based on the detection of every 
possible types of typos or approximate string matching.

During the internal and external validation procedures, 
typographical errors and improper word usage could have led to both 
false negatives and false positives. For example, EEG reports that 
misspelled the term generalized have been mistakenly classified as 
lacking generalized seizure characteristics. Similarly, reports noting 
delta waves as background activity could have been erroneously 
interpreted as containing IEDs simply due to the appearance of the 
word waves. However, because these observations were drawn from 
only a few instances, it remains difficult to make broad generalizations 
based solely on these examples. Moving forward, we plan to build 
large-scale databases comprising numerous EEG reports to more 
thoroughly investigate and address such errors, ultimately improving 
the reliability and accuracy of automated EEG report analysis.

4.3 Applications and limitations

A multitude of studies leveraging NLP techniques have focused 
on the analysis of unstructured data related to epilepsy. Rule-based 
methodologies have been effectively employed to extract various 
seizure-related parameters (8–11, 13), as well as patient clinical 
information (8) and distinct epilepsy phenotypes (7) from clinical 
notes and discharge summaries. Additionally, BERT-based models 
have been implemented to categorize clinical notes based on seizure 
occurrence, achieving a notable median accuracy of 83.7% (11). These 
models have also been applied to classify publicly available clinical 
reports with respect to epilepsy and related abnormalities, resulting in 
impressive F1 scores of 82 and 97%, respectively (12).

In a recent advancement, a transformer-based large language 
model known as clinical-longformer, pre-trained on publicly 
accessible clinical notes, was utilized to predict seizure recurrence in 
EMR data, achieving an F1 score of 82.6% (28). Note that, to date, no 
NLP-focused studies have successfully developed a method for 
transforming unstructured EEG reports into structured clinical 
components. We posit that our hierarchical algorithm could serve a 
critical function in the establishment of specialized databases, 
facilitating the organization and analysis of a significant number of 
EEG reports from patients diagnosed with epilepsy. Unlike the visual 
interface based on discharge summaries reported in a previous study 
(13), our structured outcomes in a tabular format required specific 
keywords solely from EEG reports. Table 4 presents a comparative 
overview of the performance metrics for our method alongside those 
reported in the aforementioned NLP studies. While these comparisons 
can provide useful insights, making direct parallels is challenging due 
to the distinct objectives and methodologies employed in each 
investigation. Importantly, the novelty of our work lies in the 
development of structured datasets derived from EEG reports—an 
underutilized resource in clinical research—that extend beyond 
conventional NLP techniques. By focusing on this unique data source, 

our approach has the potential to enhance clinical databases in ways 
that previous studies have not fully explored, thereby paving the way 
for more comprehensive and clinically relevant analyses. By 
integrating NLP techniques with large-scale medical records—such as 
discharge summaries and clinical notes—researchers and clinicians 
can enhance diagnostic processes for complex conditions, including 
rare and previously undiagnosed diseases. These approaches enable 
the automated extraction and analysis of relevant clinical information, 
potentially improving both the speed and accuracy of identifying 
elusive disorders that often pose significant challenges to traditional 
diagnostic methods (29). It could also potentially aid with tailored 
treatment and diagnosis of clinical diseases with text-heavy clinical 
notes such as headache patients (30).

Thus, our methodology presents an innovative NLP-driven 
framework aimed at extracting pertinent information from 
unstructured text within medical reports, specifically targeting EEG 
reports. We  customized our algorithm to align with the unique 
formatting of these reports, facilitating the extraction of key 
variables of interest. Nevertheless, this study acknowledges several 
notable limitations. First, the internal and external validation phases 
were conducted using a relatively small sample of EEG reports, 
which may impact the robustness of our findings. Additionally, the 
EEG reports utilized in the external validation phase bore a close 
resemblance to those in the internal validation, thereby limiting the 
diversity of our dataset. To enhance the validity and generalizability 
of our findings, we  strongly advocate for extensive multi-
institutional studies that can address these concerns regarding 
sample size and diversity. Our study was constrained by the use of 
internal and external datasets that were relatively similar, which may 
have limited the generalizability of our findings. To address this 
issue and improve the robustness of our text classification models, 
we  could incorporate EEG reports from multiple institutions 
representing various reporting formats and clinical settings. By 
doing so, we anticipate not only enhancing the performance of our 
classifiers but also developing more targeted keyword extraction 
strategies tailored to each institution’s unique report structure, 
ultimately leading to more accurate and widely applicable analysis 
of EEG data in the future studies. In terms of ethical concerns and 
data security, it is highly required to ensure that all the reports have 
no patients’ personal and sensitive medical records keeping them 
safe in their corresponding institutions. In terms of data access, 
federated learning can be suggested for deep learning and NLP tasks 
through multi-institutional collaborations (31). Also, future 
research should consider exploring state-of-the-art large language 
models beyond the present rule-based methods for tackling complex 
tasks such as handling typographical errors, inappropriate words, 
and regional terminologies by automated correction techniques 
(32, 33).

5 Conclusion

This study introduces a hierarchical algorithm designed to 
transform unstructured EEG reports from pediatric epilepsy patients 
into structured data presented in a tabular format through the 
application of NLP techniques. Utilizing BERT-based deep learning 
models for text classification, we subsequently applied a series of rule-
based procedures for the extraction of relevant keywords. Given that 
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neurologists pre-select specific clinical keywords, we  crafted a 
hierarchical structure that streamlines the process, enhancing the 
ability of the algorithm to manage the nuances of free-text EEG 
reports and produce standardized tables. We believe that our approach 
holds significant promise for the creation of specialized databases 
focused on EEG reports, thereby advancing healthcare research and 
clinical applications.
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Introduction: Multiple sclerosis (MS) is an intricate neurological condition that 
affects many individuals worldwide, and there is a considerable amount of 
research into understanding the pathology and treatment development. Nonlinear 
analysis has been increasingly utilized in analyzing electroencephalography 
(EEG) signals from patients with various neurological disorders, including MS, 
and it has been proven to be an effective tool for comprehending the complex 
nature exhibited by the brain.

Methods: This study seeks to investigate the impact of Interferon-β (IFN-β) 
and dimethyl fumarate (DMF) on MS patients using sample entropy (SampEn) 
and Higuchi’s fractal dimension (HFD) on collected EEG signals. The data were 
collected at Jagiellonian University in Krakow, Poland. In this study, a total of 
175 subjects were included across the groups: IFN-β (n = 39), DMF (n = 53), and 
healthy controls (n = 83).

Results: The analysis indicated that each treatment group exhibited more complex 
EEG signals than the control group. SampEn had demonstrated significant 
sensitivity to the effects of each treatment compared to HFD, while HFD showed 
more sensitivity to changes over time, particularly in the DMF group.

Discussion: These findings enhance our understanding of the complex nature 
of MS, support treatment development, and demonstrate the effectiveness of 
nonlinear analysis methods.

KEYWORDS

electroencephalogram, complexity, nonlinear dynamics, sample entropy, Higuchi’s 
fractal dimension, multiple sclerosis
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1 Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the 
central nervous system (CNS). It is defined by the spread of 
demyelinating lesions in the CNS over space and time (Siffrin et al., 
2010). Neuronal injury occurs early in the disease and is linked to 
inflammatory activity. The remaining stages of neuronal damage after 
focal axonal lesions include axon degeneration and atrophy of 
neuronal cell bodies and dendrites (Siffrin et al., 2010). Atrophy and 
long-term disability in patients with MS can be attributed to the loss 
of neurons and their processes. Since inflammation is one of the 
leading causes of neurodegeneration, a combination of neuroprotective 
agents and anti-inflammatory treatments are encouraged early on 
Siffrin et al. (2010).

There are several treatments for multiple sclerosis; however, this 
paper will focus on two treatments widely used in managing this 
disease: Interferon-β (IFN-β) and dimethyl fumarate (DMF) (Reick 
et al., 2014). There are three main types of Interferon: Interferon-
alpha, Interferon-beta, and Interferon-gamma (Jakimovski et  al., 
2018). Interferon-β treats different types of MS by reducing 
inflammation and regulating the immune response. This drug is 
administered via injection, and common side effects include flu-like 
symptoms, injection-site reactions, myalgia, depression, and increased 
liver enzymes (Jakimovski et al., 2018). Dimethyl fumarate is branded 
as Tecfidera®. Also known as B-12, it is an oral medication that 
regulates the immune system and prevents stress and inflammation 
by activating the nuclear factor erythroid 2-related pathway. Some side 
effects include gastrointestinal issues, flushing, and lymphopenia 
(Linker and Haghikia, 2016; Mills et al., 2018).

It is important to note that Sattarnezhad et al. (2022) recognized 
that patients on IFN-β experienced a higher occurrence of relapses 
and a higher number of magnetic resonance imaging (MRI) lesions. 
In contrast, those on dimethyl fumarate experienced a lower 
occurrence of relapses and a lower number of lesions (Sattarnezhad 
et al., 2022). D’Amico et al. (2021) also observed fewer relapses in 
dimethyl fumarate compared to IFN-β (D’Amico et  al., 2021). To 
further back this up, Lorscheider et  al. (2021) demonstrated that 
dimethyl fumarate had similar efficacy compared to another drug, 
fingolimod, and Cohen et al. (2010) proved fingolimod had a better 
performance than IFN-β (Lorscheider et al., 2021; Cohen et al., 2010). 
Table 1 shows a summary of the characteristics of IFN-β and DMF 
outlined in several studies (Cohen et al., 2010; D’Amico et al., 2021; 
Linker and Haghikia, 2016; Lorscheider et al., 2021; Mills et al., 2018; 
Jakimovski et al., 2018; Sattarnezhad et al., 2022).

Many illnesses exhibit irregular brain wave activity, including 
MS, which can be detected and analyzed by electroencephalography 
(EEG) (Sanei and Chambers, 2007). Structural changes observed in 
the brain wave activity of MS patients can be  identified by EEG 
analysis, as opposed to imaging methods, such as MRI (Carrubba 
et  al., 2012). Despite appearing random, EEG signals exhibit 
complex characteristics with intricate temporal organization and are 
fundamentally deterministic (Rodriguez-Bermudez and Garcia-
Laencina, 2015; Pritchard and Duke, 1995). Nonlinear analysis 
methods have successfully captured the complexities and 
nonlinearities in EEG signals, as opposed to conventional linear 
methods, such as autocorrelation (Rodriguez-Bermudez and 
Garcia-Laencina, 2015; Pritchard and Duke, 1995; Kargarnovin 
et  al., 2023). Sample entropy (SampEn) and fractal dimension 
analysis are both commonly used to analyze the complexity or 
irregularity of a signal, particularly in nonlinear contexts, and 
we opted to use both sample entropy and Higuchi’s fractal dimension 
(HFD) in our study (Kargarnovin et  al., 2023; Hernandez 
et al., 2023).

Among the algorithms used for entropy estimation, particularly 
concerning EEG data, SampEn has been successfully employed (Bruce 
et al., 2009; Cuesta-Frau et al., 2017; Zhang et al., 2021). Created to 
reduce the bias of approximate entropy (ApEn), SampEn quantifies 
time series data regardless of the signal length, providing insights into 
complexity, irregularity, and rate at which new information is 
produced, making it especially valuable in analyzing noisy signals 
(Duran et  al., 2013; Richman and Moorman, 2000). Studies have 
analyzed EEG signatures using SampEn, and a couple to note are 
studies conducted by Mohseni and Moghaddasi (2022) and Shalbaf 
et al. (2012). In Mohseni and Moghaddasi (2022), SampEn was used 
to develop a diagnostic tool for MS, and their tool attained significantly 
higher diagnostic activity compared to other MS diagnostic methods 
(Mohseni and Moghaddasi, 2022). Shalbaf et al. (2012) used SampEn 
to measure the effects of sevoflurane on electroencephalogram, and 
they concluded it outperformed response entropy (RE) (Shalbaf 
et al., 2012).

Fractal dimension (FD) is a common measure of time series 
regularity, widely used to quantify long-range correlation and power 
law dependencies by determining the scaling exponent. FD has 
demonstrated its ability to differentiate between healthy and 
pathological brains, indicating its strength in examining the 
maturation and degeneration of brain function (Marino et al., 2019; 
Smits et  al., 2016; Zappasodi et  al., 2014; Zappasodi et  al., 2015). 
Marino et al. (2019) noted that changes in FD can reflect an alteration 
in the complexity of the dynamical nature of the brain, and it could 
be potentially tied to cognitive or perceptual impairment, as seen in 
studies investigating dementia and Alzheimer’s symptoms (Zappasodi 
et al., 2015; Marino et al., 2019; Ahmadlou et al., 2011; Smits et al., 
2016). Higuchi’s fractal dimension (HFD) is the most accurate in 
estimating FD compared to other FD methods (Esteller et al., 2001; 
Raghavendra et  al., 2009; Kesić and Spasić, 2016). It has been a 
prominent method in analyzing neuronal data, such as EEG and 
electrocorticography (ECoG), because it holds advantages over linear 
and spectral analysis methods due to its speed, accuracy, and 
computational cost (Paramanathan and Uthayakumar, 2008; Spasic 
et al., 2011; Chouvarda et al., 2011; Arle and Simon, 1990). In some 
cases, HFD produces better results when combined with other linear 
and nonlinear methods (Kesić and Spasić, 2016).

TABLE 1  Summary of interferon-β vs. dimethyl fumarate.

Interferon-β (IFN-β) Dimethyl fumarate (DMF)

Injection Oral

Helps reduce inflammation and regulates 

the immune response

Regulates the immune system and 

prevents stress and inflammation

Side effects: flu-like symptoms, injection 

site reactions, myalgia, depression, and 

an increase in liver enzymes

Side effects: gastrointestinal issues, 

flushing, and lymphopenia

Higher occurrence of relapses Lower occurrence of relapses

Higher number of MRI lesions Lower number of MRI lesions
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Thus, a research gap lies in investigating the nonlinear dynamics 
in EEG signals from multiple sclerosis patients under different drug 
treatments, such as IFN-β and DMF. This study aims to compare the 
nonlinear dynamics of EEG signals between MS patients treated with 
IFN-β and DMF. The following research questions were developed 
prior to the study:

	•	 RQ1: Does the EEG of patients with MS exhibit increased 
complexity compared to the control group?

	•	 RQ2: How do the complexity characteristics of EEG signals differ 
between MS patients undergoing treatment with IFN-β and those 
treated with DMF?

	•	 RQ3: Which complexity measure is most sensitive to the effects 
of IFN-β or DMF treatment on EEG dynamics in MS patients?

	•	 RQ4: Can the observed changes in complexity characteristics of 
EEG signals be used as potential biomarkers for monitoring the 
effectiveness of IFN-β or DMF treatment in MS patients?

In response to each research question, we  hypothesize 
the following:

	 1	 EEG data collected from patients with MS demonstrates an 
increase in complexity when compared to healthy participants, 
as reflected via sample entropy and Higuchi’s fractal dimension.

	 2	 Sample entropy and Higuchi’s fractal dimension, will illustrate 
distinguishable alterations between patients treated with 
IFN-β, patients treated with DMF, and the control group 
(healthy participants). Patients treated with DMF will exhibit 
significant differences in nonlinear characteristics compared to 
patients treated with IFN-β and the control group.

	 3	 Sample entropy will demonstrate the highest sensitivity and the 
greatest predicted value in evaluating the effects of IFN-β or 
DMF treatment on MS compared to the control group.

	 4	 Nonlinear analysis of EEG signals via sample entropy and 
Higuchi’s fractal dimension will reveal significant and 
consistent changes over time in MS patients undergoing IFN-β 
and DMF treatments relative to the control group of healthy 
patients. This will serve as definitive biomarkers for assessing 
treatment effectiveness and disease progression.

2 Methodology

2.1 Location of data collection and 
participants

The data were collected at Jagiellonian University in Krakow, 
Poland. The study included two groups of subjects: patients with early 
onset relapsing–remitting multiple sclerosis (RRMS) and healthy 
subjects. In the group of MS patients, there were two subgroups: those 
treated with IFN-β and those treated with DMF. The total number of 
participants for this analysis is 175. To further break it down, 39 
patients were on IFN-β, 53 were on DMF, and there were 83 healthy 
controls. The IFN-β group consisted of participants between 22 and 
63 years old (M = 39.15, SD = 7.909), and there were 24 females 
(61.5%) and 15 males (38.5%). The DMF group contained participants 
between 18 and 54 years old (M = 32.11, SD = 7.250). This group had 

33 females (62.3%) and 20 males (37.7%). The participants in the 
control group were between 21 and 61 years old (M = 36.22, 
SD = 8.498). There were 53 females (63.9%) and 30 males (36.1%). 
There were two rounds of data collection (first measurement and 
second measurement). The data for the second measurement were 
obtained 1 year after the data for the first measurement were collected. 
MS patients’ Expanded Disability Status Scale (EDSS) scores (Kurtzke, 
1983) ranged from 1 to 4 in the first measurement and from 1 to 4.5 in 
the second measurement. The number of relapses in the year prior to 
each measurement ranged from 0 to 2. A Wilcoxon signed-rank test 
indicated that there was no significant difference between EDSS 
scores in the first and second measurements, z = −0.958, p = 0.338. 
The median EDSS score was 1  in both the first and second 
measurements. Similarly, there was no significant difference in the 
number of relapses in the year prior to each measurement between 
the first and second measurements, z = −0.915, p = 0.360. The median 
number of relapses in the year prior was 0 in both the first and second 
measurements. The control group did not undergo a second round of 
data collection because there should not be significant changes in 
resting state EEG in healthy subjects within 1 year (Kondacs and 
Szabó, 1999).

2.2 Experimental protocol

For this study, data were collected during a resting state task. The 
resting state task included a six-minute procedure without any stimuli. 
In the first 3 minutes, subjects were asked to have their eyes open 
while focusing on a fixation point, and they had to keep their eyes 
closed in the last 3 minutes. Commands were pre-recorded and played 
by speakers. A 256-channel dense array EEG system (HydroCel 
Geodesic Sensor Net, EGI System 300; Electrical Geodesic Inc., OR, 
USA) was used to collect the data. The researchers decided to remove 
channels located on the cheeks (E225, E226, E227, E228, E229, E230, 
E231, E232, E233, E234, E235, E236, E237, E238, E239, E240, E241, 
E242, E243, E244, E245, E246, E247, E248, E249, E250, E251, E252, 
E253, E254, E255, and E256) due to many artifacts of low interest in 
the signal.

2.3 Pre-processing

The EEG data underwent pre-processing using MATLAB’s 
EEGLAB software to ensure data quality and integrity (Delorme and 
Makeig, 2004). The initial pre-processing stage involved discarding 
5 seconds of data that followed sound commands—eliminating these 
potential artifacts or confounding effects because the experimental 
instruction allowed for a more precise analysis of the EEG signals. A 
high pass filter was employed to exclude any signals below the 
frequency of 0.5 Hz. Adding on, a notch filter to remove power line 
interference and its harmonics was integrated to reject 50 Hz and its 
multiplicities from the signal. Independent component analysis (ICA) 
was conducted. Fifty principal components were used for the analysis 
to identify and reject artifact components, such as components related 
to eye movements, muscle activity, or other sources of artifact. Every 
removed channel was interpolated to estimate the missing values 
based on surrounding electrodes and provide comprehensive coverage 
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of all channels. Each subject had a sampling rate of 250 Hz for 
this study.

2.4 Autocorrelation

A commonly used linear analysis with applications in 
neurophysiological data, lag-1 autocorrelation (AC1), was carried out 
to validate the use of nonlinear analysis (Meisel et al., 2017; Scheffer 
et  al., 2009). AC1 is a reliable measure of the rate at which the 
autocorrelation function decays (Huang et  al., 2018). The 
autocorrelation function (ACF) is defined in Equation 1, where ( )x t  
represents the envelope signals, N is the length, µ  is the mean, and v is 
the variance:

	
( ) ( )( ) ( )( )

1
, 1, ,

2

N s

t

x t x t s NACF s s
v

µ µ−

=

− + −
= = …∑

	
(1)

To obtain lag-1 autocorrelation, we set s = 1 (Meisel et al., 2017). 
Higher AC1 values indicate greater predictability in the signal, whereas 
lower AC1 values suggest less predictability (Huang et al., 2018).

2.5 Sample entropy

Sample entropy (SampEn), initially developed by Richman and 
Moorman (2000) to measure regularity, was used to analyze the EEG 
signals across all groups (Duran et al., 2013; Richman and Moorman, 
2000). Greater entropy values indicate that the system is complex, 
irregular, and unpredictable, often associated with a healthy system. 
Conversely, low entropy values indicate a more deterministic and 
predictable system, meaning the EEG signals show more regular 
patterns and less complexity (Duran et  al., 2013; Pincus, 2006; 
Delgado-Bonal and Marshak, 2019). Two notable parameters are 
used in calculating SampEn: m and r. The parameter m represents the 
length of the subseries, and r represents the similarity criterion 
(Ramdani et al., 2009). Following the guidance of Costa et al. (2005) 
and Duran et al. (2013) selected m = 2 and r = 0.15 as the parameters, 
and it was noted that the selection of the parameters does not 
negatively impact the overall pattern of the results (Costa et al., 2005; 
Duran et al., 2013). Thus, others typically default to the parameters 
Duran et  al. (2013) used, as they are considered standard and, 
therefore, were deemed appropriate for this study. Following the 
guidance outlined by Ramdani et al. (2009), the equation for sample 
entropy is as follows (Richman and Moorman, 2000; Ramdani 
et al., 2009):

With time series x1, x2, … xN, subsequences of length m are first 
defined in Equation 2:

	 ( ) ( )1 1, , , , 1,2, , 1i i i i my m x x x where i N m+ + −= … = … − + 	 (2)

After, the quantity is calculated by the following:
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The Heaviside function is defined by Θ , and || ||∞  represents 
the maximum norm, 
which is ( ) ( ) 0 1maxj i k m j k i ky m y m X X≤ ≤ − + +− ∞ = − .  
To explain, Equation 3 calculates the sum of the quantity of vectors, 

( )jy m , that are within the radius, r, from ( )iy m  that exist in the 
reconstructed phase space. Identical matches are excluded and are 
represented by j i≠ . Also, N  – m represents the total amount of 
vectors in the (m + 1) dimensional state space.

Equation 4 calculates the density:
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Calculations in the (m + 1) space to extend the template matching 
process are as follows:
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In Equation 5, the number of sequences ( )1jy m +  within radius r 
of ( )1iy m +  is calculated, with the term ( ) ( )1 1j iy m y m+ − +  
representing the maximum difference between the two subsequences. 
After calculating the individual template matches ( )m

iA r , they are all 
averaged across all vectors to give ( )mA r , as shown in Equation 6. Then, 
the total amount of template matches in a m-dimensional and m + 1 
dimensional phase space with r is represented by Equations 7 and 8:

	
( ) ( )( ) ( )1 1

2
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The sample entropy can then be  calculated as follows in 
Equation 9:
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(9)

The sample entropy MATLAB script provided by Richman and 
Moorman (2000) was used in conjunction with an unpublished 
modified script from Amon (2021) to conduct the analysis (Richman 
and Moorman, 2000; Amon, 2021).

2.6 Higuchi’s fractal dimension

Higuchi’s fractal dimension (HFD) was also employed to 
analyze the EEG signals. It is another method frequently used in 
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nonlinear analysis, and it details the time series’ complexity and 
self-similarity (Accardo et al., 1997). Following the outline of the 
computation summarized in Hernandez et  al. (2023), the 
calculation of HFD involves analyzing a time series data 
sequence, denoted as X (1), X (2), …, X (N), where N represents 
the total number of samples (Hernandez et  al., 2023). The 
selection of a scale factor, m, begins the process. This scale factor, 
m, defines the length of the subseries under investigation. 
The selection of k is also necessary to commence the process, as 
this is the index of the subseries. The cumulative length, L(m, k), 
is calculated by comparing the absolute differences 
between adjacent data points within the subseries, as shown in 
Equation 10 (Porcaro et al., 2020):
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N  is the length of the original time series X and 1
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normalizes the function. The average cumulative length across all 
subseries is calculated to acquire ( )L k , the average length for the given 
scale factor, as represented in Equation 11:

	
( )

( )1
k

mm L k
L k

k
==

∑
	

(11)

The Higuchi’s fractal dimension is then computed by taking the 
logarithm of ( )L k , as defined in Equation 12:
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The resulting fractal dimension value represents the fractal 
dimension of the time series, providing insight into its complexity 

(Porcaro et al., 2020). The method for calculating Higuchi’s fractal 
dimension was adopted from Jesús Monge-Álvarez1.

Typically, the fractal dimension ranges between 1 and 2, where 
higher HFD values indicate greater complexity and lower values suggest 
reduced complexity (Accardo et al., 1997; Scarpa et al., 2017).

Currently, no standard method is used to select the most 
appropriate value for the kmax parameter (Kesić and Spasić, 2016). 
The method selected in this paper is a common method used by 
Doyle et al. (2004) and Wajnsztejn et al. (2016). They considered 
the most appropriate kmax parameter to be where HFD approaches 
a local maximum or asymptote (saturation point) (Wanliss et al., 
2021; Doyle et al., 2004; Wajnsztejn et al., 2016). According to 
Figure 1, the data reaches a local maximum at kmax = 70. Therefore, 
kmax = 70 was the parameter chosen for this study.

2.7 Windowing

For the analysis, each participant’s EEG signal was divided into 
short 15-s time windows with 50% overlap. This was decided after 
following the advice of several articles that have opted to divide EEG 
signals into short time windows for computational efficiency (Mohseni 
and Moghaddasi, 2022; Ramanand et al., 2004; Er et al., 2021; Kesić and 
Spasić, 2016). The 50% overlap was chosen to prevent any discontinuity 
at the frame’s beginning or end (Er et al., 2021).

2.8 Statistical analysis

Several statistical analysis techniques were used to understand 
the data and answer the research questions comprehensively. 
Descriptive statistics provided a summary of the data. Levene’s and 

1  https://www.mathworks.com/matlabcentral/

fileexchange/50290-higuchi-and-katz-fractal-dimension-measures

FIGURE 1

The mean Higuchi’s fractal dimension of the first and second measurements is plotted for each kmax to assess where it approaches a local maximum or 
asymptote.

96

https://doi.org/10.3389/fninf.2025.1519391
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.mathworks.com/matlabcentral/fileexchange/50290-higuchi-and-katz-fractal-dimension-measures
https://www.mathworks.com/matlabcentral/fileexchange/50290-higuchi-and-katz-fractal-dimension-measures


Hernandez et al.� 10.3389/fninf.2025.1519391

Frontiers in Neuroinformatics 06 frontiersin.org

Mauchly’s tests were conducted to test for homogeneity and 
sphericity. Although homogeneity was violated in most cases, it was 
not violated in the second measurement of AC1. There was no 
indication of a violation of sphericity. Given the sample size (n > 30) 
and following guidance from Hair et al. (2010) and Byrne (2010), 
parametric tests were utilized, as skewness (between −2 and + 2) 
and kurtosis (between −7 and + 7) were within acceptable ranges 
(Hair et al., 2010; Byrne, 2010). A paired samples t-test was used to 
compare the means within subjects, and mixed analysis of variance 
(ANOVA) was used to investigate the main effects of time and 
group. Welch’s ANOVA was employed to analyze the means 
between subjects to address the violation of homogeneity, and 
standard ANOVA was used to evaluate the means between subjects 
in the second measurement of AC1, where homogeneity was not 
violated. Games-Howell post hoc test was completed to identify 
which groups demonstrated significant differences. An alpha level 
of 0.05 was used as the threshold for determining the 
effect’s significance.

3 Results

3.1 Assessment of linearity

Lag-1 autocorrelation (AC1) was carried out to assess the 
linearity of the dataset. The mean AC1 value of the IFN-β group was 
0.800 (SD = 0.044) in the first measurement and 0.815 (SD = 0.042) 
in the second measurement. For the DMF group, the mean AC1 
value was 0.812 (SD = 0.052) in the first measurement and 0.805 
(SD = 0.050) in the second measurement. The mean AC1 of the 
control group was 0.806 (SD = 0.034). Paired samples t-test revealed 
no significant differences in the means within the IFN-β group 
(t(38) = −1.676, p = 0.102) and DMF group (t(52) = 0.901, 
p = 0.372). According to the mixed factorial ANOVA, time did not 
have a significant effect, F(1, 172) = 0.727, p = 0.395. However, a 
significant interaction effect of time and group was reported F(2, 
172) = 3.396, p = 0.036, highlighting a significant change in the 
pattern over time across groups. Due to the violation of homogeneity 
in the first measurement, F(2, 172) = 3.344, p = 0.038, Welch’s 

ANOVA was conducted for between-subjects comparison. No 
significant differences were reported in the first measurement, F(2, 
82.498) = 0.651, p = 0.524. Since the data in the second 
measurement, F(2, 172) = 1.636, p = 0.198, did not violate 
homogeneity, standard ANOVA was carried out. Like in the first 
measurement, no significant differences were reported, F(2, 
172) = 0.728, p = 0.484.

3.2 Assessment of nonlinearity

To assess the complexity of the EEG data, box plots with 95% 
confidence intervals were created to understand the distribution and 
central tendency of the SampEn and HFD values across different 
groups and measurements (Figure 2). Referring to the point plots in 
Figure 3, both treatment groups at each measurement had recorded 
relatively high mean SampEn values and HFD values compared to the 
control group. Summary statistics are shown in Table 2. A paired 
samples t-test was employed to evaluate the significance of the 
difference within each treatment group.

3.2.1 Variations and trends in sample entropy 
across groups

The median, interquartile range (IQR), and potential outliers of 
SampEn are shown in Figure 2 for both time measurements across 
groups. For the IFN-β group, the median SampEn at the initial 
measurement was reported as 1.687 (IQR 1.561–1.754), and the 
median SampEn at the second measurement slightly decreased to 
1.640 (IQR 1.516–1.685). Similarly, for the DMF group, the median 
SampEn at the first measurement was 1.640 (IQR 1.515–1.721), and a 
slight decrease in median SampEn was observed in the second 
measurement at 1.635 (IQR 1.578–1.731). The median SampEn for the 
control group for the first measurement was 1.544 (IQR 1.201–1.699). 
The presence of outliers confirms the violation of homogeneity.

Referring to Figure 3, only a slight increase in mean SampEn was 
observed from the first measurement to the second measurement in 
the IFN-β and DMF groups. Results indicate that the increase in the 
mean SampEn of the IFN-β treatment group observed in the second 
measurement (M = 1.614, SD = 0.138) was not significant compared 

FIGURE 2

Box plots represent the distribution of SampEn and HFD values across groups.
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to the mean SampEn of its initial measurement (M = 1.607, 
SD = 0.219), t(38) = −0.186, p = 0.854. For DMF, the mean SampEn 
of its second measurement (M = 1.643, SD = 0.121) did not differ 
significantly from its initial measurement (M = 1.598, SD = 0.187), 
t(52) = −1.687, p = 0.098. The mean SampEn value for the control 
group was 1.475 (SD = 0.259).

3.2.2 Variations and trends in Higuchi’s fractal 
dimension across groups

Figure  2 shows the median, interquartile range (IQR), and 
potential outliers for both measurements across groups for HFD. The 
median HFD value in the first measurement of the IFN-β group was 
high at 1.979 (IQR 1.961–1.988), and it saw a minor decrease in the 
second measurement with a value of 1.965 (IQR 1.951–1.980). In the 
DMF group, the median HFD value was also high at 1.971 (IQR 1.952–
1.982), and an increase in HFD was reported in the second 
measurement with a value of 1.976 (IQR 1.965–1.986). For the control 
group, the median HFD value was 1.960 (IQR 1.794–1.979). Like in 
SampEn, the presence of outliers confirms the violation of homogeneity.

Small increases in mean HFD measurements were observed 
between measurements in both treatment groups (Figure  3). The 

mean HFD value in the second measurement of the IFN-β group 
(M = 1.966, SD = 0.017) slightly increased when compared to the first 
measurement (M = 1.951, SD = 0.065); however, it was not significant, 
t(38) = −1.372, p = 0.178. On the other hand, the second measurement 
of the DMF group (M = 1.973, SD = 0.016) significantly increased 
when compared to the first measurement (M = 1.949, SD = 0.064), 
t(52) = −2.760, p = 0.008. The significant results are shown in Table 3. 
The mean HFD value for the control group was 1.895 (SD = 0.095).

3.3 Longitudinal analysis and interaction 
effects

A mixed factorial ANOVA was conducted for SampEn and HFD 
to observe the main effects of time and group (control, IFN-β, or 
DMF). An interaction plot was created to visualize the effects.

3.3.1 Interaction effects of time and treatment on 
sample entropy

Time did not have a significant effect, F(1, 172) = 1.905, p = 0.169, 
and an insignificant interaction effect of time and group was reported 

FIGURE 3

Mean SampEn and HFD for each group with associated error bars.

TABLE 2  Descriptive statistics for SampEn and HFD across groups.

Measurement Group N Mean SD Median IQR Min Max

SampEn first measurement Control 83 1.475 0.259 1.544 0.499 1.005 1.869

IFN-β 39 1.607 0.219 1.687 0.193 1.090 1.912

DMF 53 1.598 0.187 1.640 0.206 1.045 1.852

SampEn second 

measurement

Control - - - - - - -

IFN-β 39 1.614 0.138 1.640 0.169 1.261 1.889

DMF 53 1.643 0.121 1.635 0.154 1.337 1.920

HFD first measurement Control 83 1.895 0.095 1.960 0.185 1.726 2.001

IFN-β 39 1.951 0.065 1.979 0.027 1.741 1.994

DMF 53 1.949 0.064 1.971 0.030 1.742 2.000

HFD second measurement Control - - - - - - -

IFN-β 39 1.966 0.017 1.965 0.028 1.931 1.996

DMF 53 1.973 0.016 1.976 0.021 1.925 1.995
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F(2, 172) = 1.336, p = 0.266. The results indicate that SampEn did not 
significantly change between the first- and second-time measurements 
across all groups, and the pattern of change over time was insignificant 
across all groups. Although the interaction plot (Figure 4) shows some 
level of interaction between IFN-β and DMF, the graph alone does not 
confirm any statistically significant interaction. Neither of the 
treatment groups intersected with the control group, indicating their 
trend is different from the control group. Accordingly, the results 
confirm no significance was reported when comparing the pattern of 
change in both treatment groups between measurements 1 and 2.

3.3.2 Interaction effects of time and treatment on 
Higuchi’s fractal dimension

The mixed factorial ANOVA highlighted the main effects of time 
and group (control, IFN-β, or DMF). It yielded a significant effect for 
time F(1, 172) = 12.008, p < 0.001 and the interaction effect of time 
and group F(2, 172) = 4.384, p = 0.014. The results indicate that HFD 
significantly changed between the first- and second-time 
measurements across the treatment groups, and the pattern of change 
over time was significantly different. The detailed results are displayed 
in Table 4. The interaction plot (Figure 5) illustrates these findings. 
Both treatment groups saw an increase in their mean HFD in the 
second measurement, while the control group remained stable. The 
lines representing the two treatment groups did intersect, 
demonstrating some level of interaction. No interaction between 
either of the treatment group and the control group was observed. 
Hence, this also confirms the significance of the pattern of change in 
both treatment groups between measurements 1 and 2.

3.4 Diagnostic potential of complexity 
metrics

Due to the violation of homogeneity, Welch’s ANOVA was 
performed for the between-subjects effect at the first and second 
measurements for both SampEn and HFD. A Games-Howell post hoc 
test was conducted to identify significant differences between groups.

3.4.1 Between-subjects effects of treatment on 
sample entropy

Welch’s ANOVA was conducted following the Levene’s test, which 
indicated a violation of homogeneity in the first measurement, F(2, 
172) = 12.206, p < 0.001, and in the second measurement, F(2, 
172) = 49.377, p < 0.001. The summary of the results is displayed in 
Table 5. Welch’s ANOVA revealed a significant effect of treatment in the 
first measurement, F(2, 97.945) = 6.446, p = 0.002, and the second 
measurement, F(2,104.188) = 13.059, p < 0.001. Games-Howell post hoc 
test (Table 6) revealed that IFN-β (M = 1.607, SD = 0.219) and DMF 
(M = 1.598, SD = 0.187) had significantly higher sample entropy values 
in the first measurement compared to the control group (M = 1.475, 
SD = 0.259). Specifically, the mean difference between IFN-β and the 
control group was −0.132, 95% CI [−0.240, −0.025], p = 0.012. DMF’s 
mean difference with the control group was −0.123, 95% CI [−0.214, 

TABLE 3  Paired samples T-test for HFD in the DMF treatment group.

Group t df1 Two-sided p

DMF −2.760 52 0.008

FIGURE 4

Interaction plot of mean SampEn over time across the treatment 
groups and the control group. *A second measurement for the 
control group was not collected. However, since no significant 
changes in resting-state EEG are expected in healthy subjects within 
1 year, the control group is represented as constant in the interaction 
plot (Kondacs and Szabó, 1999).

TABLE 4  Mixed ANOVA table results for HFD across groups and time 
measurements.

Source Sum of 
squares

df Mean 
square

F p

Time 0.013 1 0.013 12.008 <0.001

Time*Group 0.010 2 0.005 4.384 0.014

Error(Time) 0.188 172 0.001 - -

FIGURE 5

Interaction plot of mean HFD over time across the treatment groups 
and the control group. *A second measurement for the control 
group was not collected. However, since no significant changes in 
resting-state EEG are expected in healthy subjects within 1 year, the 
control group is represented as constant in the interaction plot 
(Kondacs and Szabó, 1999).

TABLE 5  Welch’s ANOVA for the effect of treatment group on sample 
entropy.

Measurement Statistic df1 df2 p

First measurement 6.446 2 97.945 0.002

Second measurement 13.059 2 104.188 <0.001
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−0.033], p = 0.005. There was no significant difference when comparing 
IFN-β and DMF in the first measurement (p = 0.978).

For the second measurement, the Games-Howell post hoc test 
demonstrated that IFN-β (M = 1.614, SD = 0.138) and DMF 
(M = 1.643, SD = 0.121) had significantly higher sample entropy 
values in the second measurement compared to the control group 
(M = 1.475, SD = 0.259). In this measurement, the mean difference 
between IFN-β and the control group was −0.140, 95% CI [−0.225, 
−0.054], p = 0.001, and the mean difference between DMF and the 
control group was −0.168, 95% CI [−0.246, −0.090], p < 0.001. Like 
in the first measurement, there was no significant difference when 
comparing IFN-β and DMF in the first measurement (p = 0.563).

3.4.2 Between-subjects effects of treatment on 
Higuchi’s fractal dimension

Like in SampEn, the Levene’s test confirmed a violation of 
homogeneity in the first measurement, F(2, 172) = 34.473, p < 0.001, 
and in the second measurement, F(2, 172) = 387.564, p < 0.001. 
Therefore, Welch’s ANOVA was conducted to determine the between-
subjects effect in HFD values. A significant effect of treatment was 
observed in the first measurement, F(2, 103.306) = 9.799, p < 0.001, 
and in the second measurement, F(2,107.471) = 26.777, p < 0.001 was 
observed. A breakdown of the results is outlined in Table  7. The 
Games-Howell post hoc test (Table 8) was performed to identify where 
the significance lay. IFN-β (M = 1.951, SD = 0.065) and DMF 
(M = 1.949, SD = 0.064) had significantly larger HFD values in the 
first measurement compared to the control group (M = 1.895, SD =0 
0.095). The mean difference between IFN-β and the control group was 
−0.057, 95% CI [−0.092, −0.022], p = 0.001. DMF’s mean difference 
with the control group was −0.054, 95% CI [−0.087, −0.022], 
p < 0.001. There was no significant difference when comparing IFN-β 
and DMF in the first measurement (p = 0.981).

Like the first measurement, the Games-Howell post hoc test 
demonstrated that IFN-β (M = 1.966, SD = 0.017) and DMF 
(M = 1.973, SD = 0.016) had significantly larger HFD values in the 
second measurement compared to the control group (M = 1.895, 
SD = 0.095). In this measurement, the mean difference between IFN-β 

and the control group was −0.072, 95% CI [−0.097, −0.046], p < 0.001, 
and the mean difference between DMF and the control group was 
−0.0780, 95% CI [−0.103, −0.052], p < 0.001. No significant difference 
was reported when comparing IFN-β and DMF in the first 
measurement (p = 0.170).

4 Discussion

Multiple sclerosis is a complex and progressive disease that is 
mostly diagnosed in young women. It impacts the central nervous 
system and causes various symptoms, such as deficits in complex 
attention, long-term memory, and processing speed (Chiaravalloti and 
DeLuca, 2008; Dobson and Giovannoni, 2019). It also reduces the 
brain’s ability to compensate for damage and cognitive reserve. It has 
been historically treated with immunosuppressant or 
immunomodulatory treatments, which must be ongoing to reduce 
inflammation (Dobson and Giovannoni, 2019). In line with Pritchard 
and Duke (1995), the high AC1 values highlight the deterministic 
nature of the EEG signals (Pritchard and Duke, 1995). Although a 
significant interaction between time and group was observed in the 
AC1 values, no other significant results were reported. This 
demonstrates that linear measures, such as AC1, capture only limited 
information regarding the complexity of EEG signals, emphasizing the 
need for nonlinear analyses. Thus, nonlinear analyses have been 
proven to be  effective in the analysis of EEG data of MS patients 
(Hernandez et al., 2023). So, this study provides novel insights into 
pharmaceutical treatments’ effects on MS patients’ brain dynamics, as 
measured by sample entropy and Higuchi’s fractal dimension.

TABLE 6  Games-Howell post hoc comparisons for differences in sample entropy across treatment groups.

Dependent 
variable

(I) Group (J) Group Mean 
difference (I-J)

Std. Error Sig. 95% Confidence Interval

Lower 
bound

Upper 
bound

SampEn first 

measurement

Control IFN-β −0.132 0.045 0.012 −0.240 −0.025

DMF −0.123 0.038 0.005 −0.214 −0.033

IFN-β Control 0.132 0.045 0.012 0.025 0.240

DMF 0.009 0.043 0.978 −0.095 0.112

DMF Control 0.123 0.038 0.005 0.033 0.214

IFN-β −0.009 0.043 0.978 −0.112 0.095

SampEn second 

measurement

Control IFN-β −0.140 0.036 0.001 −0.225 −0.054

DMF −0.168 0.033 <0.001 −0.246 −0.090

IFN-β Control 0.140 0.036 0.001 0.054 0.225

DMF −0.028 0.028 0.563 −0.095 0.038

DMF Control 0.168 0.033 <0.001 0.090 0.246

IFN-β 0.028 0.028 0.563 −0.038 0.095

TABLE 7  Welch’s ANOVA for the effect of treatment group on Higuchi’s 
fractal dimension.

Measurement Statistic df1 df2 p

First measurement 9.799 2 103.306 <0.001

Second measurement 26.777 2 107.471 <0.001
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4.1 Evidence of complexity in MS EEG: 
sample entropy and Higuchi’s fractal 
dimension analysis

As mentioned, higher entropy values indicate that a system is 
complex, irregular, and unpredictable, often linked to a healthy system. 
On the other hand, lower entropy values indicate a more predictable and 
deterministic system (Duran et al., 2013; Pincus, 2006; Delgado-Bonal 
and Marshak, 2019). As for HFD, greater values indicate more complexity 
in the signal (Scarpa et al., 2017). Treatment was expected to have some 
level of impact on the complexity of the signal (Shalbaf et al., 2012; 
Thomasson et al., 2000).

In the study, the control, Interferon-β, and dimethyl fumarate groups 
displayed high SampEn and HFD values at each time measurement, 
supporting the hypothesis that an increase of complexity was observed. 
It is shown that both treatment groups displayed higher SampEn and 
HFD values when compared to the control group, suggesting that the MS 
patients were found to have a greater number of nonlinear segments. 
These findings were similar to those of Pezard et al. (2001), who reported 
higher entropy values compared to the control group when investigating 
Parkinson’s disease (Pezard et al., 2001). This further reveals MS patients 
treated with IFN-β and DMF have less predictable and more complex 
electrical activity compared to the controls (Pezard et al., 2001). The high 
nonlinearity can also be  tied to the dimensionality of the electrical 
activity. Lachaux et al. (1997) described how dimensionality decreases if 
nonlinearity increases (Lachaux et al., 1997). This indicates that the MS 
patients treated with both treatments may have brain dynamics of a 
lower dimension (Pezard et al., 2001; Stam et al., 1994). Additionally, it 
has been noted that the increase in the complexity of EEG signals for MS 
patients is linked to the brain’s compensatory mechanisms and is 
indicative of the brain’s structural complexity (Wątorek et al., 2024). 
We can hypothesize that the higher complexity reported in the treatment 
groups could also be due to the brain’s adaptive response to the effects of 
the treatments, as they are responsible for the regulation of the immune 
system and reduction in inflammation (Jakimovski et al., 2018; Linker 
and Haghikia, 2016; Mills et al., 2018).

4.2 Distinct EEG patterns in MS treatments 
and sensitivity of complexity measures

There were no significant differences reported in the complexity 
characteristics of EEG signals between MS patients undergoing 
treatment with IFN-β and DMF at the first and second measurements, 
which rejects the hypothesis that patients treated with DMF will exhibit 
significant differences in complexity characteristics compared to patients 
treated with IFN-β. However, the second hypothesis was partially 
supported because the complexity characteristics (SampEn and HFD) of 
each treatment group differed significantly compared to the control 
group at each time measurement, as confirmed by Welch’s ANOVA and 
the Games-Howell post hoc test. These findings are backed by other 
studies that have concluded that nonlinear EEG measures can 
be  sensitive to treatments (Pezard et  al., 1998; Pezard et  al., 2001; 
Wackermann et al., 1993).

In particular, as seen in Tables 6, 8, the mean differences in 
SampEn between each treatment group and the control group at 
the first and second measurements were higher than the mean 
differences observed in the same scenario for HFD. This indicates 
that SampEn demonstrated the highest sensitivity and the greatest 
predicted value in evaluating the effects of each treatment group 
compared to the control group, supporting our third hypothesis. 
These results suggest that treatments, such as IFN-β and DMF, 
impact the overall brain dynamics, as reflected by the higher 
sample entropy and Higuchi fractal dimension values.

4.3 Complexity EEG metrics as 
biomarkers for MS treatment 
effectiveness

Several studies (Hossain et al., 2022; Di Ieva et al., 2015) have 
investigated using nonlinear analysis in recognizing biomarkers 
in individuals with MS and healthy controls (Hernandez et al., 
2023). Both entropy and fractal dimension have been used to 

TABLE 8  Games-Howell post hoc comparisons for differences in Higuchi’s fractal dimension across treatment groups.

Dependent 
variable

(I) Group (J) Group Mean 
difference (I-J)

Std. Error Sig. 95% Confidence Interval

Lower 
bound

Upper 
bound

HFD first measurement Control IFN-β −0.057 0.015 0.001 −0.092 −0.022

DMF −0.054 0.014 <0.001 −0.087 −0.022

IFN-β Control 0.057 0.015 0.001 0.022 0.092

DMF 0.003 0.014 0.981 −0.030 0.035

DMF Control 0.054 0.014 <0.001 0.022 0.087

IFN-β −0.003 0.014 0.981 −0.035 0.030

HFD second 

measurement

Control IFN-β −0.072 0.011 <0.001 −0.097 −0.046

DMF −0.078 0.011 <0.001 −0.103 −0.052

IFN-β Control 0.072 0.011 <0.001 0.046 0.097

DMF −0.006 0.004 0.170 −0.015 0.002

DMF Control 0.078 0.011 <0.001 0.052 0.103

IFN-β 0.006 0.004 0.170 −0.002 0.015
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either distinguish between conditions or differentiate between 
healthy and pathological brains in previous research (Marino 
et al., 2019; Smits et al., 2016; Zappasodi et al., 2014; Zappasodi 
et al., 2015; Bauer et al., 2011; Pezard et al., 2001). In this study, 
we aimed to explore whether sample entropy and HFD are reliable 
indicators for the progression of MS. We initially hypothesized 
that MS patients treated with IFN-β and DMF treatments would 
reveal significant and consistent changes over time relative to the 
control group.

Referencing Figure  2, it was observed that the initial 
measurements of SampEn and HFD demonstrated more 
dispersion compared to the second set of measurements. This 
observation could indicate the progression of MS over time, 
leading to more consistency in the results. Nevertheless, 
we  determined that the hypothesis could only be  partially 
supported because time and the interaction between time and 
treatment group significantly impacted only HFD and not 
SampEn. However, a significant increase from the first 
measurement to the second measurement was only observed in 
HFD values of the DMF group. Hence, an increase in signal 
complexity and positive neurophysiological changes can 
be attributed to DMF, which is reflected only in HFD. This finding 
is supported by Viglietta et al. (2015) and Vermersch et al. (2022). 
Viglietta et  al. (2015) concluded that DMF reduces new and 
enlarging T2 lesions, gadolinium-enhancing lesions activity, and 
the number of new non-enhancing T2 lesions (Viglietta et  al., 
2015). Similarly, Vermersch et  al. (2022) reported that more 
pediatric patients treated with DMF did not develop new or newly 
enlarging T2 lesions compared to those treated with IFN-β 
(Vermersch et  al., 2022). These findings demonstrate the 
effectiveness of DMF in reducing disease activity and may explain 
the increase in EEG complexity over time compared to IFN-β. 
Although SampEn demonstrated the highest sensitivity and 
greatest predicted value, its responsiveness was limited when time 
was factored in. This finding signifies how HFD may be more 
responsive to temporal changes in EEG dynamics than SampEn.

4.4 Limitations and future research

There are a few limitations and opportunities for future research 
to note in this study. The first limitation is centered on the selection of 
the kmax parameter. Different methods of kmax parameter selection 
have been employed previously, but researchers have yet to agree on a 
universal method (Kesić and Spasić, 2016). Different parameter 
selection methods could alter the results. However, one of the most 
common methods was chosen in this study. This method was carried 
out by selecting the parameter where HFD reached a maximum or 
asymptote (Wanliss et al., 2021; Doyle et al., 2004; Wajnsztejn et al., 
2016). Another possible limitation is the sample size of each treatment 
group. Increasing the sample size could have enhanced the results 
reported in this experiment. More specifically, the IFN-β treatment 
group had the lowest number of participants, and an increase in the 
number of MS patients on IFN-β could have highlighted clinically 
significant differences between the treatment groups.

There are several opportunities for future research. First, 
future studies could expand and balance the sample sizes for each 
treatment and collect longitudinal EEG data from the control 

group to strengthen the analysis and validate these findings. The 
next step in the study could be to analyze the EEG time series 
using multifractal methodology. This method helps quantify the 
data’s correlation structure through the set of scaling exponents, 
providing a deeper understanding of the data’s complexity 
(Wątorek et al., 2024). Furthermore, there are several methods to 
characterize complexity. One method is detrended fluctuation 
analysis (DFA), which is used to evaluate the Hurst exponent and 
can then be  recalculated to determine the fractal dimension 
(Márton et al., 2014). Another method is the Lyapunov exponent, 
which is employed to identify chaotic behavior in the data and can 
be used to quantify data complexity (Yakovleva et al., 2020). The 
presented study investigates the effects of two immunomodulatory 
treatments; however, they aren’t the only treatments for multiple 
sclerosis. MS treatments include immunosuppressants (i.e., 
fingolimod), immunomodulatory therapies (i.e., IFN-β and 
DMF), and immune reconstitution therapies (i.e., alemtuzumab 
and cladribine) (Dobson and Giovannoni, 2019). Future studies 
could investigate the effects of immunosuppressants and immune 
reconstitution therapies on the brain’s dynamics via nonlinear 
analysis. These studies could use nonlinear analysis to investigate 
how these different treatment groups compare.

As reported by Hernandez et al. (2023), several articles have 
used machine learning algorithms in studying MS (Ahmadi and 
Pechenizkiy, 2016; Torabi et al., 2017; Kotan et al., 2019; Raeisi 
et al., 2020; Karaca et al., 2021; Karacan et al., 2022; Mohseni and 
Moghaddasi, 2022). Methods include feature extraction, feature 
selection, and feature classification, and these methods could 
allow researchers to swiftly search and analyze large datasets for 
potential biomarkers (Hernandez et  al., 2023; Hossain et  al., 
2022). In future studies, researchers could build on this study’s 
approach by developing machine-learning methods that integrate 
MRI and functional magnetic resonance imaging (fMRI) to 
compare the efficacy of different MS treatments. This could 
further enhance the analysis by identifying trends and possible 
biomarkers more efficiently.

5 Conclusion

After demonstrating the limitations associated with lag-1 
autocorrelation, we employed sample entropy and Higuchi’s fractal 
dimension to analyze the nonlinearity in electroencephalogram 
signatures of MS patients treated with Interferon-β and dimethyl 
fumarate. We have shown that patients undergoing each treatment 
exhibited more complex and less predictable brain activity when 
compared to the control group. SampEn demonstrated the highest 
sensitivity to treatment effects, whereas HFD revealed greater 
sensitivity when considering the effect of time.

Thus, these results have provided insights into how the effects of 
each treatment have a different impact on brain activity. They have 
furthered our understanding of the brain’s mechanics associated with 
MS. With the knowledge gathered here and on future investigations, 
current treatment strategies could be improved, and any benefits or 
limitations associated with these treatments could be disclosed. Thus, 
our study expands the scope of the analysis of EEG signatures of MS 
patients and paves the way for an alternative approach to analyzing 
treatment effectiveness.

102

https://doi.org/10.3389/fninf.2025.1519391
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Hernandez et al.� 10.3389/fninf.2025.1519391

Frontiers in Neuroinformatics 12 frontiersin.org

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Institute of 
Applied Psychology Ethics Committee of the Jagiellonian University. 
The studies were conducted in accordance with the local legislation 
and institutional requirements. The participants provided their written 
informed consent to participate in this study.

Author contributions

CH: Conceptualization, Formal analysis, Methodology, 
Visualization, Writing – original draft, Writing – review & editing, 
Software. NA: Conceptualization, Data curation, Investigation, 
Writing – review & editing, Writing – original draft, Formal analysis, 
Methodology. MG: Writing – review & editing, Conceptualization, Data 
curation, Investigation, Writing  – original draft, Formal analysis, 
Methodology. PO: Writing – review & editing, Writing – original draft, 
Conceptualization, Formal analysis, Methodology. MF: Writing  – 
original draft, Writing – review & editing, Conceptualization, Formal 
analysis, Methodology. AS: Writing – review & editing, Data curation, 
Investigation. MW: Writing  – review & editing, Data curation, 
Investigation. MM: Writing  – review & editing, Data curation, 
Investigation. KN: Writing  – review & editing, Data curation, 
Investigation. KZ-W: Writing  – review & editing, Data curation, 
Investigation. MA: Writing – original draft, Writing – review & editing, 
Formal analysis. PH:  Writing – original draft, Writing – review & 
editing, Formal analysis. TM: Writing – original draft, Writing – review 
& editing, Conceptualization, Formal analysis, Methodology. WK: 
Conceptualization, Formal analysis, Methodology, Supervision, 
Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. The data 
collection was funded by the Foundation for Polish Science cofinanced 
by the European Union under the European Regional Development 
Fund in the POIR.04.04.00-00-14DE/18-00 project carried out within 
the Team-Net programme. The research for this publication has been 
supported by a grant from the Priority Research Area DigiWorld under 
the Strategic Programme Excellence Initiative at Jagiellonian University.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Accardo, A., Affinito, M., Carrozzi, M., and Bouquet, F. (1997). Use of the fractal 

dimension for the analysis of electroencephalographic time series. Biol. Cybern. 77, 
339–350. doi: 10.1007/s004220050394

Ahmadi, N., and Pechenizkiy, M. (2016) Application of horizontal visibility graph as 
a robust measure of neurophysiological signals synchrony. IEEE 29th international 
symposium on computer-based medical systems (CBMS), IEEE: Piscataway 273–278.

Ahmadlou, M., Adeli, H., and Adeli, A. (2011). Fractality and a wavelet-chaos-
methodology for EEG-based diagnosis of Alzheimer disease. Alzheimer Dis. Assoc. 
Disord. 25, 85–92. doi: 10.1097/WAD.0b013e3181ed1160

Amon, M. J. (2021). SampEnRun [MATLAB]. In Unpublished script.

Arle, J. E., and Simon, R. H. (1990). An application of fractal dimension to the 
detection of transients in the electroencephalogram. Electroencephalogr. Clin. 
Neurophysiol. 75, 296–305. doi: 10.1016/0013-4694(90)90108-V

Bauer, M., Glenn, T., Alda, M., Grof, P., Sagduyu, K., Bauer, R., et al. (2011). 
Comparison of pre-episode and pre-remission states using mood ratings from patients 
with bipolar disorder. Pharmacopsychiatry 44, S49–S53. doi: 10.1055/s-0031-1273765

Bruce, E. N., Bruce, M. C., and Vennelaganti, S. (2009). Sample entropy tracks changes 
in electroencephalogram power spectrum with sleep state and aging. J. Clin. 
Neurophysiol. 26, 257–266. doi: 10.1097/WNP.0b013e3181b2f1e3

Byrne, B. M. (2010). Structural equation modeling with AMOS: basic concepts, 
applications, and programming (multivariate applications series). New York: Taylor & 
Francis Group.

Carrubba, S., Minagar, A., Chesson, A. L. Jr., Frilot, C. 2nd, and Marino, A. A. 
(2012). Increased determinism in brain electrical activity occurs in association 
with multiple sclerosis. Neurol. Res. 34, 286–290. doi: 10.1179/1743132812Y. 
0000000010

Chiaravalloti, N. D., and DeLuca, J. (2008). Cognitive impairment in multiple 
sclerosis. Lancet Neurol. 7, 1139–1151. doi: 10.1016/S1474-4422(08)70259-X

Chouvarda, I., Rosso, V., Mendez, M. O., Bianchi, A. M., Parrino, L., Grassi, A., et al. 
(2011). Assessment of the EEG complexity during activations from sleep. Comput. 
Methods Prog. Biomed. 104, e16–e28. doi: 10.1016/j.cmpb.2010.11.005

Cohen, J. A., Barkhof, F., Comi, G., Hartung, H.-P., Khatri, B. O., Montalban, X., et al. 
(2010). Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. 
Engl. J. Med. 362, 402–415. doi: 10.1056/NEJMoa0907839

Costa, M., Goldberger, A. L., and Peng, C.-K. (2005). Multiscale entropy analysis of 
biological signals. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71:021906. doi: 
10.1103/PhysRevE.71.021906

Cuesta-Frau, D., Miró-Martínez, P., Jordán Núñez, J., Oltra-Crespo, S., and Molina 
Picó, A. (2017). Noisy EEG signals classification based on entropy metrics. Performance 
assessment using first and second generation statistics. Comput. Biol. Med. 87, 141–151. 
doi: 10.1016/j.compbiomed.2017.05.028

D’Amico, E., Zanghì, A., Romeo, M., Cocco, E., Maniscalco, G. T., Brescia Morra, V., 
et al. (2021). Injectable versus oral first-line disease-modifying therapies: results from 
the Italian MS register. Neurotherapeutics 18, 905–919. doi: 10.1007/ 
s13311-020-01001-6

103

https://doi.org/10.3389/fninf.2025.1519391
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://doi.org/10.1007/s004220050394
https://doi.org/10.1097/WAD.0b013e3181ed1160
https://doi.org/10.1016/0013-4694(90)90108-V
https://doi.org/10.1055/s-0031-1273765
https://doi.org/10.1097/WNP.0b013e3181b2f1e3
https://doi.org/10.1179/1743132812Y.0000000010
https://doi.org/10.1179/1743132812Y.0000000010
https://doi.org/10.1016/S1474-4422(08)70259-X
https://doi.org/10.1016/j.cmpb.2010.11.005
https://doi.org/10.1056/NEJMoa0907839
https://doi.org/10.1103/PhysRevE.71.021906
https://doi.org/10.1016/j.compbiomed.2017.05.028
https://doi.org/10.1007/s13311-020-01001-6
https://doi.org/10.1007/s13311-020-01001-6


Hernandez et al.� 10.3389/fninf.2025.1519391

Frontiers in Neuroinformatics 13 frontiersin.org

Delgado-Bonal, A., and Marshak, A. (2019). Approximate entropy and sample 
entropy: a comprehensive tutorial. Entropy 21:541. doi: 10.3390/e21060541

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of 
single-trial EEG dynamics including independent component analysis. J. Neurosci. 
Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Di Ieva, A., Esteban, F. J., Grizzi, F., Klonowski, W., and Martín-Landrove, M. (2015). 
Fractals in the neurosciences, part II: clinical applications and future perspectives. 
Neuroscientist 21, 30–43. doi: 10.1177/1073858413513928

Dobson, R., and Giovannoni, G. (2019). Multiple sclerosis–a review. Eur. J. Neurol. 26, 
27–40. doi: 10.1111/ene.13819

Doyle, T. L., Dugan, E. L., Humphries, B., and Newton, R. U. (2004). Discriminating 
between elderly and young using a fractal dimension analysis of Centre of pressure. Int. 
J. Med. Sci. 1, 11–20. doi: 10.7150/ijms.1.11

Duran, N. D., Dale, R., Kello, C. T., Street, C. N., and Richardson, D. C. (2013). 
Exploring the movement dynamics of deception. Front. Psychol. 4:140. doi: 
10.3389/fpsyg.2013.00140

Er, M. B., Çiğ, H., and Aydilek, I. B. (2021). A new approach to recognition of human 
emotions using brain signals and music stimuli. Appl. Acoust. 175:107840. doi: 
10.1016/j.apacoust.2020.107840

Esteller, R., Vachtsevanos, G., Echauz, J., and Litt, B. (2001). A comparison of 
waveform fractal dimension algorithms. IEEE Trans. Circuits Syst. I 48, 177–183. doi: 
10.1109/81.904882

Hair, J., Black, W., Babin, B., Anderson, R., and Tatham, R. (2010). Multivariate data 
analysis. Upper Saddle River, NJ: Prentice-Hall.

Hernandez, C. I., Kargarnovin, S., Hejazi, S., and Karwowski, W. (2023). Examining 
electroencephalogram signatures of people with multiple sclerosis using a nonlinear 
dynamics approach: a systematic review and bibliographic analysis. Front. Comput. 
Neurosci. 17:7067. doi: 10.3389/fncom.2023.1207067

Hossain, M. Z., Daskalaki, E., Brüstle, A., Desborough, J., Lueck, C. J., and 
Suominen, H. (2022). The role of machine learning in developing non-magnetic 
resonance imaging based biomarkers for multiple sclerosis: a systematic review. BMC 
Med. Inform. Decis. Mak. 22:242. doi: 10.1186/s12911-022-01985-5

Huang, Z., Liu, X., Mashour, G. A., and Hudetz, A. G. (2018). Timescales of intrinsic 
BOLD signal dynamics and functional connectivity in pharmacologic and 
neuropathologic states of unconsciousness. J. Neurosci. 38, 2304–2317. doi: 
10.1523/JNEUROSCI.2545-17.2018

Jakimovski, D., Kolb, C., Ramanathan, M., Zivadinov, R., and Weinstock-Guttman, B. 
(2018). Interferon β for multiple sclerosis. Cold Spring Harb. Perspect. Med. 8:32003. doi: 
10.1101/cshperspect.a032003

Karaca, B. K., Akşahin, M. F., and Öcal, R. (2021). Detection of multiple sclerosis from 
photic stimulation EEG signals. Biomed. Signal Process. Control 67:102571. doi: 
10.1016/j.bspc.2021.102571

Karacan, S. Ş., Saraoğlu, H. M., Kabay, S. C., Akdağ, G., Keskinkılıç, C., and Tosun, M. 
(2022). EEG based environment classification during cognitive task of multiple sclerosis 
patients. International congress on human-computer interaction, Optimization and 
Robotic Applications (HORA). IEEE, Ankara, Türkiye. 01–04.

Kargarnovin, S., Hernandez, C., Farahani, F. V., and Karwowski, W. (2023). Evidence 
of Chaos in electroencephalogram signatures of human performance: a systematic 
review. Brain Sci. 13:813. doi: 10.3390/brainsci13050813

Kesić, S., and Spasić, S. Z. (2016). Application of Higuchi's fractal dimension from 
basic to clinical neurophysiology: a review. Comput. Methods Prog. Biomed. 133, 55–70. 
doi: 10.1016/j.cmpb.2016.05.014

Kondacs, A., and Szabó, M. (1999). Long-term intra-individual variability of the 
background EEG in normals. Clin. Neurophysiol. 110, 1708–1716. doi: 
10.1016/S1388-2457(99)00122-4

Kotan, S., Van Schependom, J., Nagels, G., and Akan, A. (2019). Comparison of IMF 
selection methods in classification of multiple sclerosis EEG data. In 2019 medical 
technologies congress (TIPTEKNO). Izmir: IEEE, 1–4.

Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis: an expanded 
disability status scale (EDSS). Neurology 33:1444. doi: 10.1212/WNL.33.11.1444

Lachaux, J. P., Pezard, L., Garnero, L., Pelte, C., Renault, B., Varela, F. J., et al. (1997). 
Spatial extension of brain activity fools the single-channel reconstruction of EEG 
dynamics. Hum. Brain Mapp. 5, 26–47. doi: 10.1002/(SICI)1097-0193(1997)5:1< 
26::AID-HBM4>3.0.CO;2-P

Linker, R. A., and Haghikia, A. (2016). Dimethyl fumarate in multiple sclerosis: latest 
developments, evidence and place in therapy. Ther. Adv. Chronic Dis. 7, 198–207. doi: 
10.1177/2040622316653307

Lorscheider, J., Benkert, P., Lienert, C., Hänni, P., Derfuss, T., Kuhle, J., et al. (2021). 
Comparative analysis of dimethyl fumarate and Fingolimod in relapsing–remitting 
multiple sclerosis. J. Neurol. 268, 941–949. doi: 10.1007/s00415-020-10226-6

Marino, M., Liu, Q., Samogin, J., Tecchio, F., Cottone, C., Mantini, D., et al. (2019). 
Neuronal dynamics enable the functional differentiation of resting state networks in the 
human brain. Hum. Brain Mapp. 40, 1445–1457. doi: 10.1002/hbm.24458

Márton, L., Brassai, S. T., Bakó, L., and Losonczi, L. (2014). Detrended fluctuation 
analysis of EEG signals. Proc. Technol. 12, 125–132. doi: 10.1016/j.protcy.2013.12.465

Meisel, C., Bailey, K., Achermann, P., and Plenz, D. (2017). Decline of long-range 
temporal correlations in the human brain during sustained wakefulness. Sci. Rep. 
7:11825. doi: 10.1038/s41598-017-12140-w

Mills, E. A., Ogrodnik, M. A., Plave, A., and Mao-Draayer, Y. (2018). Emerging 
understanding of the mechanism of action for dimethyl fumarate in the treatment of 
multiple sclerosis. Front. Neurol. 9:5. doi: 10.3389/fneur.2018.00005

Mohseni, E., and Moghaddasi, S. M. (2022). A hybrid approach for MS diagnosis 
through nonlinear EEG descriptors and metaheuristic optimized classification learning. 
Comput. Intell. Neurosci. 2022, 1–14. doi: 10.1155/2022/5430528

Paramanathan, P., and Uthayakumar, R. (2008). Application of fractal theory in 
analysis of human electroencephalographic signals. Comput. Biol. Med. 38, 372–378. doi: 
10.1016/j.compbiomed.2007.12.004

Pezard, L., Jech, R., and Růžička, E. (2001). Investigation of non-linear properties of 
multichannel EEG in the early stages of Parkinson's disease. Clin. Neurophysiol. 112, 
38–45. doi: 10.1016/S1388-2457(00)00512-5

Pezard, L., Martinerie, J., Varela, F., Bouchet, F., Derouesné, C., and Renault, B. (1998). 
Brain entropy maps quantify drug dosage on Alzheimer's disease. Neurosci. Lett. 253, 
5–8. doi: 10.1016/S0304-3940(98)00603-X

Pincus, S. M. (2006). Approximate entropy as a measure of irregularity for psychiatric 
serial metrics. Bipolar Disord. 8, 430–440. doi: 10.1111/j.1399-5618.2006.00375.x

Porcaro, C., Mayhew, S. D., Marino, M., Mantini, D., and Bagshaw, A. P. (2020). 
Characterisation of haemodynamic activity in resting state networks by fractal analysis. 
Int. J. Neural Syst. 30:2050061. doi: 10.1142/S0129065720500616

Pritchard, W. S., and Duke, D. W. (1995). Measuring Chaos in the brain - a tutorial 
review of EEG dimension estimation. Brain Cogn. 27, 353–397. doi: 
10.1006/brcg.1995.1027

Raeisi, K., Mohebbi, M., Khazaei, M., Seraji, M., and Yoonessi, A. (2020). Phase-
synchrony evaluation of EEG signals for multiple sclerosis diagnosis based on bivariate 
empirical mode decomposition during a visual task. Comput. Biol. Med. 117:103596. doi: 
10.1016/j.compbiomed.2019.103596

Raghavendra, B., Dutt, D. N., Halahalli, H. N., and John, J. P. (2009). Complexity 
analysis of EEG in patients with schizophrenia using fractal dimension. Physiol. Meas. 
30, 795–808. doi: 10.1088/0967-3334/30/8/005

Ramanand, P., Nampoori, V., and Sreenivasan, R. (2004). Complexity quantification 
of dense array EEG using sample entropy analysis. J. Integr. Neurosci. 3, 343–358. doi: 
10.1142/S0219635204000567

Ramdani, S., Seigle, B., Lagarde, J., Bouchara, F., and Bernard, P. L. (2009). On the use 
of sample entropy to analyze human postural sway data. Med. Eng. Phys. 31, 1023–1031. 
doi: 10.1016/j.medengphy.2009.06.004

Reick, C., Ellrichmann, G., Thöne, J., Scannevin, R. H., Saft, C., Linker, R. A., et al. 
(2014). Neuroprotective dimethyl fumarate synergizes with immunomodulatory 
interferon beta to provide enhanced axon protection in autoimmune neuroinflammation. 
Exp. Neurol. 257, 50–56. doi: 10.1016/j.expneurol.2014.04.003

Richman, J. S., and Moorman, J. R. (2000). Physiological time-series analysis using 
approximate entropy and sample entropy. Am. J. Phys. Heart Circ. Phys. 278, H2039–
H2049. doi: 10.1152/ajpheart.2000.278.6.H2039

Rodriguez-Bermudez, G., and Garcia-Laencina, P. J. (2015). Analysis of EEG signals 
using nonlinear dynamics and chaos: a review. Appl. Math. Inf. Sci. 9:2309. doi: 
10.12785/amis/090512

Sanei, S., and Chambers, J. A. (2007). EEG signal processing. New York: Wiley, 1–34.

Sattarnezhad, N., Healy, B. C., Baharnoori, M., Diaz-Cruz, C., Stankiewicz, J., 
Weiner, H. L., et al. (2022). Comparison of dimethyl fumarate and interferon outcomes 
in an MS cohort. BMC Neurol. 22, 1–8. doi: 10.1186/s12883-022-02761-8

Scarpa, F., Rubega, M., Zanon, M., Finotello, F., Sejling, A.-S., and Sparacino, G. 
(2017). Hypoglycemia-induced EEG complexity changes in type 1 diabetes assessed by 
fractal analysis algorithm. Biomed. Signal Process. Control 38, 168–173. doi: 
10.1016/j.bspc.2017.06.004

Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., et al. 
(2009). Early-warning signals for critical transitions. Nature 461, 53–59. doi: 
10.1038/nature08227

Shalbaf, R., Behnam, H., Sleigh, J., and Voss, L. (2012). Measuring the effects of 
sevoflurane on electroencephalogram using sample entropy. Acta Anaesthesiol. Scand. 
56, 880–889. doi: 10.1111/j.1399-6576.2012.02676.x

Siffrin, V., Vogt, J., Radbruch, H., Nitsch, R., and Zipp, F. (2010). Multiple sclerosis–
candidate mechanisms underlying CNS atrophy. Trends Neurosci. 33, 202–210. doi: 
10.1016/j.tins.2010.01.002

Smits, F. M., Porcaro, C., Cottone, C., Cancelli, A., Rossini, P. M., and Tecchio, F. 
(2016). Electroencephalographic fractal dimension in healthy ageing and Alzheimer’s 
disease. PLoS One 11:e0149587. doi: 10.1371/journal.pone.0149587

Spasic, S., Kalauzi, A., Kesic, S., Obradovic, M., and Saponjic, J. (2011). Surrogate data 
modeling the relationship between high frequency amplitudes and Higuchi fractal 
dimension of EEG signals in anesthetized rats. J. Theor. Biol. 289, 160–166. doi: 
10.1016/j.jtbi.2011.08.037

104

https://doi.org/10.3389/fninf.2025.1519391
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://doi.org/10.3390/e21060541
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1177/1073858413513928
https://doi.org/10.1111/ene.13819
https://doi.org/10.7150/ijms.1.11
https://doi.org/10.3389/fpsyg.2013.00140
https://doi.org/10.1016/j.apacoust.2020.107840
https://doi.org/10.1109/81.904882
https://doi.org/10.3389/fncom.2023.1207067
https://doi.org/10.1186/s12911-022-01985-5
https://doi.org/10.1523/JNEUROSCI.2545-17.2018
https://doi.org/10.1101/cshperspect.a032003
https://doi.org/10.1016/j.bspc.2021.102571
https://doi.org/10.3390/brainsci13050813
https://doi.org/10.1016/j.cmpb.2016.05.014
https://doi.org/10.1016/S1388-2457(99)00122-4
https://doi.org/10.1212/WNL.33.11.1444
https://doi.org/10.1002/(SICI)1097-0193(1997)5:1<26::AID-HBM4>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1097-0193(1997)5:1<26::AID-HBM4>3.0.CO;2-P
https://doi.org/10.1177/2040622316653307
https://doi.org/10.1007/s00415-020-10226-6
https://doi.org/10.1002/hbm.24458
https://doi.org/10.1016/j.protcy.2013.12.465
https://doi.org/10.1038/s41598-017-12140-w
https://doi.org/10.3389/fneur.2018.00005
https://doi.org/10.1155/2022/5430528
https://doi.org/10.1016/j.compbiomed.2007.12.004
https://doi.org/10.1016/S1388-2457(00)00512-5
https://doi.org/10.1016/S0304-3940(98)00603-X
https://doi.org/10.1111/j.1399-5618.2006.00375.x
https://doi.org/10.1142/S0129065720500616
https://doi.org/10.1006/brcg.1995.1027
https://doi.org/10.1016/j.compbiomed.2019.103596
https://doi.org/10.1088/0967-3334/30/8/005
https://doi.org/10.1142/S0219635204000567
https://doi.org/10.1016/j.medengphy.2009.06.004
https://doi.org/10.1016/j.expneurol.2014.04.003
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.12785/amis/090512
https://doi.org/10.1186/s12883-022-02761-8
https://doi.org/10.1016/j.bspc.2017.06.004
https://doi.org/10.1038/nature08227
https://doi.org/10.1111/j.1399-6576.2012.02676.x
https://doi.org/10.1016/j.tins.2010.01.002
https://doi.org/10.1371/journal.pone.0149587
https://doi.org/10.1016/j.jtbi.2011.08.037


Hernandez et al.� 10.3389/fninf.2025.1519391

Frontiers in Neuroinformatics 14 frontiersin.org

Stam, K. J., Tavy, D. L., Jelles, B., Achtereekte, H. A., Slaets, J. P., and Keunen, R. W. 
(1994). Non-linear dynamical analysis of multichannel EEG: clinical applications in 
dementia and Parkinson's disease. Brain Topogr. 7, 141–150. doi: 10.1007/ 
BF01186772

Thomasson, N., Pezard, L., Allilaire, J.-F., Renault, B., and Martinerie, J. (2000). 
Nonlinear EEG changes associated with clinical improvement in depressed patients. 
Nonlinear Dynamics Psychol. Life Sci. 4, 203–218. doi: 10.1023/A:1009580427443

Torabi, A., Daliri, M. R., and Sabzposhan, S. H. (2017). Diagnosis of multiple sclerosis 
from EEG signals using nonlinear methods. Australas. Phys. Eng. Sci. Med. 40, 785–797. 
doi: 10.1007/s13246-017-0584-9

Vermersch, P., Scaramozza, M., Levin, S., Alroughani, R., Deiva, K., Pozzilli, C., et al. 
(2022). Effect of dimethyl fumarate vs interferon β-1a in patients with pediatric-onset 
multiple sclerosis: the CONNECT randomized clinical trial. JAMA Netw. Open 
5:e2230439. doi: 10.1001/jamanetworkopen.2022.30439

Viglietta, V., Miller, D., Bar-Or, A., Phillips, J. T., Arnold, D. L., Selmaj, K., et al. (2015). 
Efficacy of delayed-release dimethyl fumarate in relapsing-remitting multiple sclerosis: 
integrated analysis of the phase 3 trials. Ann. Clin. Transl. Neurol. 2, 103–118. doi: 
10.1002/acn3.148

Wackermann, J., Lehmann, D., Dvorak, I., and Michel, C. M. (1993). Global 
dimensional complexity of multi-channel EEG indicates change of human brain 
functional state after a single dose of a nootropic drug. Electroencephalogr. Clin. 
Neurophysiol. 86, 193–198. doi: 10.1016/0013-4694(93)90007-I

Wajnsztejn, R., De Carvalho, T. D., Garner, D. M., Raimundo, R. D., Vanderlei, L. C. 
M., Godoy, M. F., et al. (2016). Higuchi fractal dimension applied to rr intervals in 
children with attention defi cit hyperactivity disorder. J. Hum. Growth Dev. 26, 147–153. 
doi: 10.7322/jhgd.119256

Wanliss, J., Arriaza, R. H., Wanliss, G., and Gordon, S. (2021). Optimization of the 
Higuchi method. Int. J. Res. Granthaalayah 9, 202–213. doi: 10.29121/granthaalayah.v9. 
i11.2021.4393

Wątorek, M., Tomczyk, W., Gawłowska, M., Golonka-Afek, N., Żyrkowska, A., 
Marona, M., et al. (2024). Multifractal organization of EEG signals in multiple sclerosis. 
Biomed. Signal Process. Control 91:105916. doi: 10.1016/j.bspc.2023.105916

Yakovleva, T. V., Kutepov, I. E., Karas, A. Y., Yakovlev, N. M., Dobriyan, V. V., 
Papkova, I. V., et al. (2020). EEG analysis in structural focal epilepsy using the methods 
of nonlinear dynamics (Lyapunov exponents, Lempel–Ziv complexity, and multiscale 
entropy). Sci. World J. 2020, 1–13. doi: 10.1155/2020/8407872

Zappasodi, F., Marzetti, L., Olejarczyk, E., Tecchio, F., and Pizzella, V. (2015). Age-
related changes in electroencephalographic signal complexity. PLoS One 10:e0141995. 
doi: 10.1371/journal.pone.0141995

Zappasodi, F., Olejarczyk, E., Marzetti, L., Assenza, G., Pizzella, V., and Tecchio, F. 
(2014). Fractal dimension of EEG activity senses neuronal impairment in acute stroke. 
PLoS One 9:e100199. doi: 10.1371/journal.pone.0100199

Zhang, Q., Ding, J., Kong, W., Liu, Y., Wang, Q., and Jiang, T. (2021). Epilepsy 
prediction through optimized multidimensional sample entropy and bi-LSTM. Biomed. 
Signal Process. Control 64:102293. doi: 10.1016/j.bspc.2020.102293

105

https://doi.org/10.3389/fninf.2025.1519391
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://doi.org/10.1007/BF01186772
https://doi.org/10.1007/BF01186772
https://doi.org/10.1023/A:1009580427443
https://doi.org/10.1007/s13246-017-0584-9
https://doi.org/10.1001/jamanetworkopen.2022.30439
https://doi.org/10.1002/acn3.148
https://doi.org/10.1016/0013-4694(93)90007-I
https://doi.org/10.7322/jhgd.119256
https://doi.org/10.29121/granthaalayah.v9.i11.2021.4393
https://doi.org/10.29121/granthaalayah.v9.i11.2021.4393
https://doi.org/10.1016/j.bspc.2023.105916
https://doi.org/10.1155/2020/8407872
https://doi.org/10.1371/journal.pone.0141995
https://doi.org/10.1371/journal.pone.0100199
https://doi.org/10.1016/j.bspc.2020.102293


Frontiers in Neuroinformatics 01 frontiersin.org

Recognition of MI-EEG signals 
using extended-LSR-based 
inductive transfer learning
Zhibin Jiang 1,2, Keli Hu 1,3, Jia Qu 4, Zekang Bian 5,6, Donghua Yu 1,2 
and Jie Zhou 1,2*
1 Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China, 2 Institute 
of Artificial Intelligence, Shaoxing University, Shaoxing, China, 3 Information Technology R&D 
Innovation Center of Peking University, Shaoxing, China, 4 Department of Computer Science and 
Artificial Intelligence, Changzhou University, Changzhou, China, 5 Department of AI & Computer 
Science, Jiangnan University, Wuxi, China, 6 Department of Taihu Jiangsu Key Construction Lab of IoT 
Application Technologies, Wuxi, China

Introduction: Motor imagery electroencephalographic (MI-EEG) signal 
recognition is used in various brain–computer interface (BCI) systems. In most 
existing BCI systems, this identification relies on classification algorithms. 
However, generally, a large amount of subject-specific labeled training data is 
required to reliably calibrate the classification algorithm for each new subject. To 
address this challenge, an effective strategy is to integrate transfer learning into 
the construction of intelligent models, allowing knowledge to be transferred 
from the source domain to enhance the performance of models trained in 
the target domain. Although transfer learning has been implemented in EEG 
signal recognition, many existing methods are designed specifically for certain 
intelligent models, limiting their application and generalization.

Methods: To broaden application and generalization, an extended-LSR-based 
inductive transfer learning method is proposed to facilitate transfer learning 
across various classical intelligent models, including neural networks, Takagi-
SugenoKang (TSK) fuzzy systems, and kernel methods.

Results and discussion: The proposed method not only promotes the transfer of 
valuable knowledge from the source domain to improve learning performance 
in the target domain when target domain training data are insufficient but also 
enhances application and generalization by incorporating multiple classic base 
models. The experimental results demonstrate the effectiveness of the proposed 
method in MI-EEG signal recognition.

KEYWORDS

motor imagery, EEG, brain-computer interface, LSR, inductive transfer learning

1 Introduction

A brain–computer interface (BCI) is a technology that establishes connections between 
the brain and external devices, facilitating information exchange between them (Edelman 
et al., 2024). BCIs collect and analyze electrical signals generated by brain activity, transforming 
these signals into instructions that can be used to control external devices such as computers, 
prosthetics, and wheelchairs. As such, BCIs can assist, enhance, and repair human sensory and 
motor functions, improving human–computer interaction capabilities. BCIs do not rely on 
the peripheral nervous system or muscles, providing a new method for people who have lost 
their mobility due to illness or disability to communicate with the external environment and 
operate devices. BCIs not only open new possibilities for people with disabilities but also 
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advance our understanding of the brain, ushering in a new era of 
human–computer interaction.

1.1 Motivation

Motor imagery electroencephalographic (MI-EEG) (Mohammadi 
et al., 2022) signal recognition is an important mechanism for brain-
computer interfaces (BCIs). Moreover, with the advancement of machine 
learning, numerous classification methods based on machine learning 
have been proposed for MI-EEG signal recognition in the literature 
(Abbas et al., 2021; Ko et al., 2021; Zhang et al., 2024; Ghumman et al., 
2021; Cover and Hart, 1967; Aldea et al., 2014; Kohavi, 1996; Wang and 
Zhang, 2016; Fisher, 1936; Li et al., 2022; Bennett and Demiriz, 1999; 
Fouad et al., 2020; Siddiqa et al., 2024; Siddiqa et al., 2023; Qureshi et al., 
2022; Qureshi et al., 2023), including neural networks (NNs) (Abbas 
et al., 2021; Ko et al., 2021), fuzzy logic systems (FLSs) (Zhang et al., 2024; 
Ghumman et al., 2021), k-nearest neighbors (kNNs) (Cover and Hart, 
1967; Aldea et al., 2014), naïve Bayes (NB) (Kohavi, 1996; Wang and 
Zhang, 2016), linear discriminant analysis (LDA) (Fisher, 1936; Li et al., 

2022), support vector machines (SVMs) (Bennett and Demiriz, 1999; 
Fouad et  al., 2020), and more. Although these methods have 
demonstrated varying degrees of success, they typically require a large 
amount of subject-specific training data to adjust their parameters. 
However, this data acquisition process can be time-consuming and not 
user-friendly. When calibration data is insufficient, the classification 
performance of these algorithms can significantly deteriorate. As 
highlighted in BCI Competition III (Blankertz et al., 2006), “a challenge 
is that more expectations of training a model with a good classification 
accuracy are becoming urgent in the case that only a small number of 
training samples are available.” Therefore, it is essential to develop 
advanced machine-learning methods for MI-EEG that perform 
effectively with small calibration datasets.

Transfer learning is a promising method for addressing the above 
problem. It can be used to transfer useful information from related scenes 
(i.e., source domains) to the current scene (i.e., target domain), which 
typically has limited training data (Pan and Yang, 2010). As a result, 
transfer learning is particularly effective in improving classification 
performance during the early stages of model training when there is not 
enough subject-specific training data. Figure 1 shows the differences 

FIGURE 1

Differences between traditional machine learning (a) and transfer learning (b).
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between traditional machine learning and transfer learning. Since its 
introduction in 1995, transfer learning has been successfully applied in 
classification, clustering, and regression, with classification being the most 
extensively researched area. Some representative studies can be found in 
Zhang et al. (2022), Jiang et al. (2019), Xie et al. (2018), Pan et al. (2011), 
Wan et al. (2021), Li et al., 2019). Existing transfer learning methods can 
be  categorized into three types: inductive transfer learning methods 
(Zhang et al., 2022; Jiang et al., 2019), which consider both supervised 
source and target domains; transductive transfer learning methods (Xie 
et al., 2018; Pan et al., 2011), which involve supervised source domains 
and unsupervised target domains; and unsupervised transfer learning 
methods, which account for both unsupervised source and target 
domains (Wan et al., 2021; Li et al., 2019). In MI-EEG signal recognition, 
when labeled MI-EEG samples in the target domain are insufficient, 
inductive transfer learning methods naturally become the preferred 
choice. Furthermore, since MI-EEG signals involve personal privacy 
information, inspired by Jiang et al. (2019), we investigate a knowledge-
based inductive transfer learning method to ensure security without 
directly utilizing samples from the source domain.

Inductive transfer learning has recently attracted widespread 
attention and demonstrated strong performance in MI-EEG signal 
recognition. However, most existing inductive transfer learning 
methods are tailored to specific base models, rendering them 
inapplicable to other base models. As a result, they demonstrate poor 
performance in terms of application and generalization. To address 
this limitation, we propose an extended-LSR-based inductive transfer 
learning framework (ELSR-TL) that integrates neural networks, 
Takagi-Sugeno-Kang (TSK) fuzzy systems, and kernel methods. 
Figure 2 shows the framework of ELSR-TL.

1.2 Contributions

The main contributions of this study can be highlighted as follows:

	 1	 ELSR-TL has an inductive transfer learning mechanism that can 
be used to transfer useful knowledge from the source domain 
to enhance learning performance in the target domain when the 
training data in the target domain are insufficient.

	 2	 ELSR-TL enhances LSR by integrating multiple classic base 
models, such as neural networks, TSK fuzzy systems, and 
kernel methods. As such, ELSR-TL is not only suited for a 
specific model but also demonstrates improved applicability 
and generalization.

	 3	 Experimental studies were conducted to validate the 
applicability of the proposed method for MI-EEG 
signal identification.

The remainder of this paper is organized as follows: Section II 
describes related work, including studies on existing MI-EEG feature 
extraction and pattern recognition methods. Section III details the 
proposed extended-LSR-based inductive transfer learning method. 
Section IV provides the experimental results and analysis. Finally, 
Section VI presents the conclusions drawn.

2 Backgrounds

This section states the backgrounds underlying the proposed 
MI-EEG recognition method. It describes the datasets used to evaluate 

FIGURE 2

Framework of ELSR-TL.
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the method and reviews several classical feature extraction and pattern 
recognition methods.

2.1 Datasets

We used BCI Competition Data Set IVa, provided by Fraunhofer 
FIRST and Charité University Medicine Berlin. A detailed description 
of this dataset can be found in (Blankertz et al., 2006).

This MI-EEG dataset contains five subsets corresponding to 
five healthy testers (aa, al, av., aw, and ay). Each subset contains 
280 EEG trials, which have 128 electrodes and a trial length of 
3.5 s. Each subset was partitioned into a training set and a test 
set, as shown in Figure  3. Figure  4 shows the representative 
MI-EEG signals in the five subsets.

2.2 Feature extraction methods

EEG signals are complex, nonlinear, and non-stationary. Effective 
feature extraction is critical to pattern recognition performance. Some 
of the most representative feature extraction methods have been 
proposed to manage raw MI-EEG signals. Typically, feature extraction 
methods can be classified into four main categories: time-domain 
analysis, frequency-domain analysis, time-frequency analysis, and 
space-domain analysis.

In time domain analysis, EEG signal features are analyzed in the 
time domain. Characteristics of the waveforms, such as mean, 
variance, amplitude, and kurtosis, can be used to extract features of 
MI-EEG signals (Greene et al., 2008).

In frequency domain analysis, the features of EEG signals are 
analyzed by investigating the relationship between their frequency and 
energy. The short-time Fourier transform (Schafer and Rabiner, 1973) 
is a classical power spectrum analysis method, and adaptive 
autoregression (Pfurtscheller et al., 1998) is an improved frequency 
domain analysis method.

In time-frequency analysis (Blanco et al., 1997), the features of 
EEG signals are extracted using the joint distribution information of 

the time and frequency domains. Wavelet transform analysis 
(Antonini et  al., 1992) is the most representative method in 
this category.

In space-domain analysis, the features of EEG signals are 
extracted by analyzing the electrical activity of neurons in 
different brain spaces. Common spatial pattern (CSP) (Lotte and 
Guan, 2011) is a commonly used method in this category. In this 
method, labeled trials are used to produce a transformation that 
maximizes the variance of one class while minimizing the 
variance of the other.

2.3 Pattern recognition methods

Pattern recognition utilizes the extracted EEG features for 
classification. Some of the most representative pattern 
recognition methods include the following: (1) NNs (Abbas et al., 
2021; Ko et  al., 2021), which simulate the mechanism of the 
human nervous system. Feedforward NNs are the most commonly 
used in EEG classification. (2) FLSs (Zhang et  al., 2024; 
Ghumman et  al., 2021), which emulate the human reasoning 
process and excel at managing numerical and linguistic 
uncertainties. (3) kNNs (Cover and Hart, 1967; Aldea et  al., 
2014), which determine the class of a new sample by considering 
its k nearest neighbors. (4) NB (Kohavi, 1996; Wang and Zhang, 
2016), a simple and efficient classification algorithm based on 
probability. By utilizing known conditional probability and a 
priori probability, NB calculates the posterior probability of each 
class and assigns the test sample to the class with the highest a 
posteriori probability. (5) LDA (Fisher, 1936; Li et  al., 2022), 
which applies the Fisher criterion to find the optimal projective 
vector that maximizes the largest scatter between classes while 
minimizing the scatter within each class. (6) SVMs (Bennett and 
Demiriz, 1999; Fouad et al., 2020), which aim to maximize the 
margins between different classes.

Although existing MI-EEG classification methods have 
demonstrated their effectiveness in various applications, they all 
require a substantial amount of subject-specific training data. In 
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FIGURE 4

Representative MI-EEG signals for each subset of the BCI 
Competition Data Set IVa.

FIGURE 3

Distribution of each subset from the BCI Competition Data Set IVa.
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practice, such training data may not be  easy to obtain, and the 
classification accuracy of existing methods may drop significantly. To 
address this challenge, we use an inductive transfer learning-based 
MI-EEG classification method.

3 Extended-LSR-based inductive 
transfer learning

In this section, we  provide a detailed description of the 
proposed extended-LSR-based inductive transfer learning (ELSR-
TL) method. First, we extend LSR (Naseem et al., 2010) to its 
extended version, ELSR, by merging neural networks, TSK fuzzy 
systems, and kernel methods. Then, we develop the proposed 
ELSR-TL. Finally, we  present the learning algorithm and 
theoretical analysis of ELSR-TL.

3.1 ELSR

3.1.1 Objective function of ELSR
ELSR is an extension of the basic LSR (Naseem et al., 2010). Given 

n d-dimensional samples ( ){ } =1
, N
i i i
yx , where ∈d

ix , { }∈ − +1; 1iy , the 
objective function of ELSR can be expressed as follows:

	
ρ

λ
− +

2 21min
2 2w
X w y w

	
(1)

where the matrix ( ) ( ) ρ
ρ ρ ρ × = ∈  1 , ,

T N d
NX x x  denotes all 

the given training samples, and ( ) ρρ ∈dx is the hidden mapping 
function in the hidden mapping space. w represents the mapping 
matrix, λ is the given regularization parameter, and y is the 
corresponding label matrix.

The decision-making function of ELSR can be  expressed 
as follows:

	 ( ) ( )ρ= = Ty f x x w 	 (2)

Using different mapping functions ( )ρ x , we  can integrate 
multiple models, such as neural networks, TSK fuzzy systems, and 
kernel methods, into the proposed ELSR framework. In other words, 
ELSR can be developed for different base models, which improves its 
generalization and adaptability. We will describe its relationships with 
several base models next.

3.1.1.1 The relationship between ELSR and feedforward 
NNs

A multiple hidden layer feedforward network (MHFN) has 
an input layer, M hidden layers, and an output layer. The multiple 
hidden layers can be treated as a single complex hidden layer, 
allowing the overall activation function of these hidden layers to 
be  represented by a single complex function. Therefore, an 
MHFN can be  viewed as a generalized single hidden layer 
feedforward network (SHFN) with a more complex activation 

function. The output of a generalized SHFN can be expressed 
as follows:

	
( ) ( )θ

=
= =∑

1
,

MN
T

i i i
i

y f g wx x
	

(3)

where MN  is the number of nodes in the last hidden layer of 
an MHFN. As demonstrated in Huang et  al. (2006), if the 
activation function ( )θ,i ig x  is piecewise continuous, then the 
hidden nodes can be randomly generated independently of the 
training data, and the corresponding NN still maintains its 
universal approximation capability. Let the hidden mapping 
function ( )ρ x  as Equation 4:

	
( ) ( ) ( )ρ θ θ =  1 1, , , ,

M M

T
N Ng gx x x

	 (4)

Then, Equation 3 can be expressed as follows:

	 ( ) ( )ρ= = Ty f x x w
	 (5)

Comparing Equation 5 with Equation 2, we  can see that 
Equation 5 is a special case of Equation 2, so Equation 1 can be used 
to optimize the corresponding MHFN.

3.1.1.2 The relationship between ELSR and TSK fuzzy 
systems

The Takagi–Sugeno–Kang fuzzy system (Gu et  al., 2024; Bian 
et al., 2024) is the most widely used FLS due to its simplicity and 
flexibility. The rules in a TSK fuzzy system are typically represented as 
Equation 6:

TSK Fuzzy Rule kR :

	 ( )
∧ ∧ ∧

= + + + =



 

1 1 2 2

0 1 1

IF is is is

Then 1, ,

k k k
d d

k k k k
dd

x A x A x A

f p p x p x k Kx 	
(6)

Here, k
iA  is a fuzzy set for the ith input variable in the kth 

rule, K is the number of fuzzy rules, and ∧  is a fuzzy conjunction 
operator. The output of the TSK fuzzy system is computed as 
Equation 7:

	

( ) ( )

( )
( ) ( ) ( )µ

µ

µ ′

′

= =

=

= = ⋅ = ⋅∑ ∑
∑

˜

1 1

1

kkK K
k k

K
kk k

k

y f f f
x

x x x x
x

	

(7)

where ( )µk x  is the firing level of Rule kR , and ( )µ
˜ k

x  is the 
normalized ( )µk x , i.e., Equation 8:
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(8b)

The parameters of the antecedent fuzzy sets are usually 
derived from clustering. The output of the TSK fuzzy system can 
subsequently be expressed as as Equations 9, 10:

	 ( ) ( )ρ= = Ty f x x w
	 (9)

where

	

( )ρ
            =              



1 2˜ ˜ ˜
, , ,

TT T TK

x x x x

	

(10a)

	 ( )µ=
˜ ˜k k

ex x x
	 (10b)

	
( )= 1,

TT
ex x

	
(10c)

	
( ) ( ) ( ) 

=  
 



1 2, , ,
TT T TKw p p p

	
(10d)

	
( )= 0 1, , ,

Tk k k k
dp p pp

	
(10e)

Equation 9 suggests that training the TSK fuzzy system can also 
be treated as a special case of ELSR, and thus, it can be addressed 
using Equation 1.

3.1.1.3 The relationship between ELSR and kernel 
methods

A kernel linear regression model is expressed as follows:

	 ( )ρ= Ty x w
	 (11)

The hidden mapping ( )ρ x  can be viewed as a kernel function; 
thus, Equation 11 can also be solved using Equation 1. In this case, 
ELSR also corresponds to the classical kernel ridge regression 
(Saunders et al., 1998).

3.1.2 Solution of ELSR
Depending on the condition of the hidden mapping, the objective 

function of ELSR in Equation 1 can be efficiently solved in various 
ways ( )ρ x . Here, we discuss the different cases as follows:

Case 1: ( )ρ x is known: In this case, we can obtain explicit values 
of the data ( )ρ x  in the hidden mapping space.

Let ( ) ρ
λ

= − +
2 21

min
2 2

J
w

w X w y w ; according to the 

optimization theory (Qu et al., 2023a; Qu et al., 2023b), the solution 
for the model parameter w  can then be  obtained by taking the 
derivatives of Equation 1 and equating them to zero. That is,

	

( )

( )ρ

ρ ρ ρ

ρ ρ ρ

λ

λ
−

∂
=

∂
⇒ − + =

⇒ = +
1

T T

T T
d

J w
0

w
X X w X y w 0

w X X I X y
	

(12)

The final decision function ( )f x  can then be  expressed as 
Equation 13:

	 ( ) ( )ρ= = Ty f x x w 	 (13)

with w obtained in Equation 12.
Case 2: ( )ρ x  is unknown: In this case, the explicit formulation of the 

data ( )ρ x  in the hidden mapping space cannot be obtained, meaning 
that w cannot be  specified explicitly. Therefore, the kernel trick is 
necessary to determine the final decision function ( )f x . Although 
introducing the kernel trick into the solution strategy in Equation 12 is 
challenging, Equation 14, identity can be adopted to address this issue:

	 ( ) ( )− −− − −+ = +
1 11 1 1T T T TP Q U Q Q U PQ QPQ U

	
(14)

In Equation 14, P, Q, and U are three matrices. Let 
ρλ

=
1

dP I , 
ρ=Q X , and = NU I . With the identity of Equation 14, the solution in 

Equation 12 can then be expressed as follows:

	 ( ) ( )ρρ ρ ρ ρ ρ ρλ λ
− −

= + = +
1 1T T T T

d Nw X X I X y X X X I y
	

(15)

Define a Mercer kernel matrix as Equation 16:

	 ρ ρ
×Ω = ∈ ,T N NX X 

	 (16)

where ( ) ( ) ( )ρ ρΩ = =, ,T
i j i j i jKx x x x , and ( )·K  is a 

kernel function.
The final decision function ( )f x  can then be expressed as follows:

	

( ) ( ) ( ) ( )
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3.2 ELSR-TL

3.2.1 Objective function of ELSR-TL
ELSR-TL integrates transfer learning and ELSR. Its objective 

function can be expressed as follows:

	
ρ

λ β
− + + −

2 2 2
,

1min
2 2 2t

t t t stw
X w y w w w

	
(18)

where ρ
ρ

×∈,
tN d

tX  represents tN  training samples of ρd  

dimensions in the target domain. tw  and sw  represent the mapping 
matrices of the target domain and source domain, respectively. λ and 
β  are the given regularization parameters, and y is the corresponding 
label matrix of the target domain.

In Equation 18, the first two terms are inherited directly from 
ELSR for learning from the target domain data, while the third term 
is used to leverage knowledge from the source domain. In other 
words, ELSR-TL generalizes ELSR from the perspective of 
transfer learning.

Moreover, as a regularization parameter, β  can be used to adjust 
the role of transfer learning. When β  is large, it indicates that transfer 
learning has a significant impact, indicating that the knowledge 
obtained from the source domain has a significant positive effect on 
the target domain. In contrast, when β  is very small, it indicates that 
its role in learning of the target domain is relatively small. In extreme 
cases, when β = 0, it means that β  has no effect on the learning of the 
target domain. In other words, we can control the effectiveness of 
transfer learning by making adjustments, thus effectively avoiding 
negative transfer.

3.2.2 Solution of ELSR-TL
ELSR-TL is solved differently in different scenarios:
Case 1: ( )ρ x is known: In this case, we can obtain explicit values 

of the data ( )ρ x  in the hidden mapping space. The solution for the 
model parameter tw  can then be obtained in a similar form as that 
shown in Equation 12, that is

	

( )

( )

( )( ) ( )ρ

ρ ρ ρ

ρ ρ ρ

λ β
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w

X X w X y w w w 0

w X X I X y w
	

(19)

The final output of the proposed ELSR-TL is expressed 
as follows:

	 ( ) ( )ρ= = T
ty f x x w 	 (20)

with tw  obtained in Equation 19.
Case 2: ( )ρ x  is unknown: In this case, the explicit formulation of 

the data ( )ρ x  in the hidden mapping space cannot be obtained, and 
thus, tw  cannot be specified explicitly. Similar to the form shown in 
Equation 17, the output of the proposed ELSR-TL can be calculated 

using the kernel trick. From Equation 15, we  know that sw  can 
be expressed as Equation 21:

	
( )ρ ρ ρ λ

−
= +

1
, , , s

T T
s s s s s N sw X X X I y

	
(21)

Here, sw  is the parameter of ELSR in the source domain. For a 
similar scenario, let

	
( )ρ ρα λ

−
= +

1
, , s

T
s s s s N sX X I y

	
(22)

A Mercer kernel matrix is defined, and Equation 22 can then 
be re-expressed as Equation 23:

	 ( )α λ −
= Ω +

1
ss s s N sI y

	 (23)

where ( )ρ ρ ×
 Ω = =  , , , ,,

s s

T
s s s i s j s N N

KX X x x , in which 
( ), ,,i s j sK x x is the kernel function.

sw  can then be written as follows:

	 ρ α= ,
T

s s sw X
	 (24)

From Equation 19, we obtain the following:
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(25)

Substituting Equation 24 into Equation 25 and defining a Mercer 
kernel matrix, the equation above can then be rewritten as follows:
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	 (26)

where ( )ρ ρ ×
 Ω = =  , , , ,,

t t

T
t t t i t j t N N

KX X x x ,  

( )ρ ρ ×
 Ω = =  , , , , ,,

t s

T
t s t s i t j s N N

KX X x x

Finally, by using tw  obtained in Equation 26, the decision function 
of the proposed ELSR-TL can be expressed as follows:
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	 (27)

3.3 Learning algorithm of ELSR-TL

Considering the above discussion, we summarize the learning 
algorithm of ELSR-TL in Algorithm 1. Below, we  provide some 
remarks on ELSR-TL.

3.3.1 Remark 1
For the proposed ELSR-TL, if the hidden mapping is known and 

the amount of training data exceeds the dimensionality of the hidden 
mapping features (i.e., ( ρ ,t tN d ), obtaining the solution using 
Equation 25 is more efficient than that using Equation 19, due to the 
computational complexity of matrix; otherwise, Equation 19 is 
more efficient.

3.3.2 Remark 2
When the hidden mapping is known, only the knowledge sw  is used 

for transfer learning, and the data in the source domain are not required. 
This means that the proposed method provides good privacy protection. 
However, if the hidden feature mapping is unknown, the data in the 
source are also required, as shown in Equations 26, 27, to effectively 
implement transfer learning. In this case, the proposed method can no 
longer protect the privacy of the data in the source domain.

3.3.3 Computational Complexity
In this section, we discussed the computational complexity of 

Algorithm 1 as follows:

When the hidden mapping is known, the complexity of computing 
step  1 is about ( )ρ ρ+3 2

, ,s s sO d d N , where ρ ,sd is the dimension of 
samples and sN is the number of samples in the source domain. The 
complexity of computing the target domain model parameters tw  in 
step  2 is about ( )ρ ρ+3 2

, ,t t tO d d N , where ρ ,td is the dimension of 
samples and tN is the number of samples in the target domain. In this 
case, the computational complexity of Algorithm 1 is about 
( )ρ ρ ρ ρ+ + +3 2 3 2

, , , ,s s s t t tO d d N d d N . When the hidden mapping is 
unknown, the computational complexity of Algorithm 1 is 
about ( )+3 3

s tO N N .

4 Experiments

In this section, we adopted a real MI-EEG dataset to evaluate 
the performance of the proposed ELSR-TL method. Moreover, 
we compared it with seven non-transfer learning methods—LSR 
(Naseem et  al., 2010), KNN (Cover and Hart, 1967), SVM 
(Bennett and Demiriz, 1999), NB (Kohavi, 1996), CNN (Zhang 
et al., 2019), ELSR (NN), ELSR (TSK), and ELSR (Ker)—alongside 
two transfer learning methods—Au-SVM (Wu and Dietterich, 
2004) and Tr-Adaboost (Dai et al., 2007). The comparison was 
conducted in terms of both average classification accuracy and 
standard deviation for 10 runs. The details of the experimental 
settings and the MI-EEG recognition results are provided 
as follows.

ALGORITHM 1

The ELSR-TL.
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4.1 Data preparation and feature extraction

4.1.1 Configurations of source and target 
domains

To match the transfer learning task, we  constructed 20 
different transfer learning datasets by subject-to-subject 
transferring. Table  1 shows the 20 different configurations of 
source and target domains. All source domains have the same 
number of training data, but the target domains do not. Please 
note that in our experiments, non-transfer learning methods are 
only used on the target domain.

4.1.2 Feature extraction
As mentioned in the background section, effective feature 

extraction is critical to pattern recognition performance. Based on 
(Lotte and Guan, 2011), we primarily used the Tikhonov regularization-
based common spatial pattern (TR-CSP) (Lotte and Guan, 2011) for 
feature extraction. Furthermore, we conducted simple experiments 
using two other feature extraction methods, namely Composite CSP 
(C-CSP) and Filter Bank CSP (FB-CSP), to compare with TR-CSP. The 
three feature extraction methods are briefly introduced as follows:

	 1	 TR-CSP: It introduces a quadratic regularization into the CSP 
objective function and replaces the feature matrix of the new 
data with the prior knowledge matrix. This regularization 
prefers filters with smaller norms, reducing the influence 
of noise.

	 2	 C-CSP: It aims to perform subject-to-subject transfer by 
regularizing the covariance matrices using data from other 
subjects. Within the framework of this study, it relies only on 
theβhyperparameter and defines the generic covariance 
matrices according to the covariance matrices of other subjects.

FB-CSP: This is a feature extraction method used for motor 
imagery classification in BCI. It improves the accuracy of motion 
imagery classification by combining CSP and filter bank techniques, 
optimizing the subject-specific frequency band for CSP.

We extracted features from the time segment between 0.5 and 
2.5 s after the cue instructing the subject to perform MI. Each trial is 
bandpass filtered in the 8–30 Hz range using a fifth-order Butterworth 
filter. For TR-CSP, we applied three pairs of filters, as recommended 
in (Lotte and Guan, 2011). Some examples of features extracted from 
subset aa are shown in Figure 5.

4.2 Adopted methods and parameters 
settings

All the adopted methods (without CNN) are listed in Table 2. 
Based on the guidelines in (Jiang et al., 2019; Xie et al., 2018; Zhang 
X. et al., 2023) and our experiments, we employ a grid search strategy 
to identify the appropriate parameters for all the adopted methods. 
Table 2 also includes a list of the grid search ranges for each parameter 
related to all the adopted methods.

4.3 Performance indices

The classification accuracy defined Equation 28 is used to evaluate 
the performances of different methods:
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FIGURE 5

Features extracted from subset aa by TR-CSP.

TABLE 1  Settings of the source domain and target domain.

Source domain Target domain

Datasets Size Datasets
Size

Training Test

al 280 aa

168 112
av 280 aa

aw 280 aa

ay 280 aa

aa 280 al

224 56
av 280 al

aw 280 al

ay 280 al

aa 280 av

86 196
al 280 av

aw 280 av

ay 280 av

aa 280 aw

56 224
al 280 aw

av 280 aw

ay 280 aw

aa 280 ay

28 252
al 280 ay

av 280 ay

aw 280 ay
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4.4 Results and discussions

In all the experiments, each comparison method is implemented 
for 10 runs to report the average classification performance. The 
experimental results are shown in Tables 3, 4 and Figure 6. Please note 
that the feature extraction method used for these results is 
TR-CSP. We can make the following observations:

	 i	 In general, the performance of the proposed ELSR-TL-based 
methods significantly surpasses that of the other methods 
used, whether they are non-transfer learning methods such as 
LSR, kNN, SVM, NB, CNN, and ELSR-based methods, or 
transfer learning methods such as Au-SVM and Tr-Adaboost. 
This provides experimental evidence that ELSR-TL effectively 

enhances MI-EEG recognition through knowledge transfer 
from the source domain to the target domain.

	 ii	 Comparing the performances of the seven non-transfer learning 
methods, we can see that the performance of ELSR (TSK) is the best, 
while the performance of NB is inferior. Moreover, each method 
obtains significant performance differences on different datasets. 
Specifically, seven non-transfer learning methods obtain the best 
performance on dataset al but poor performance on datasets aw and 
ay. This is because these methods require a large amount of training 
samples to achieve satisfactory performance, while their 
performance decreases when there are few training samples.

	 iii	 Table 4 shows the performances of five transfer learning methods, 
showing that ELSR-TL (TSK) performs the best while Tr-Adaboost 
performs the worst. Furthermore, each method achieves similar 

TABLE 2  The parameter setting of different methods.

Methods Parameter settings for grid search

LSR (Naseem et al., 2010): Learns a linear regression model by using 

each class of training samples with the 2-norm regularization. The regularization parameter { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −

kNN (Cover and Hart, 1967): A classical supervised learning model 

and has been widely used for classification and regression analysis.
The number of nearest points: { }1,3,5,7,9k∈ .

SVM (Bennett and Demiriz, 1999): A classical classification method 

based on kernel trick and margin maximization.
The tradeoff parameter { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6C∈ − −

  ; the width in the Gaussian kernel 

function { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6σ ∈ − −
 

NB (Kohavi, 1996): A classification method based on Bayes’ theorem 

and independent assumption of feature conditions. The tradeoff parameter { }10 ,10 ,10 ,10 ,10 ,105 4 3 2 1 0α ∈ − − − − −

ELSR (NN): Applying the proposed ELSR for signal layer neural 

networks.

The number of hidden nodes { }10,20,30,40,50,75,100,150,200P∈ , the parameters of the 

sigmoid function: { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6κ ∈ − −
  , and the regularization parameters: 

{ }10 ,10 , ,10 ,106 5 5 6λ∈ …− −

ELSR (TSK): Applying the proposed ELSR for TSK. The number of fuzzy rules: { }5,10,15,20,25,30,40,50,80,100M ∈ ; the regularization parameter: 

{ }10 ,10 , ,10 ,106 5 5 6τ ∈ …− −
, the regularization parameters: { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −

.

ELSR (Ker): Applying the proposed ELSR for the kernel method. The width in the Gaussian kernel function { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6σ ∈ − −
   and the 

regularization parameters: { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −
.

Au-SVM (Wu and Dietterich, 2004): an inductive transfer learning 

method based on the linear programming support vector machine 

with the RBF-type kernel function by using the auxiliary data.
The tradeoff parameter { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6C∈ − −

  ; the width in RBF kernel function 

{ }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6σ ∈ − −
 

Tr-Adaboost (Dai et al., 2007): an inductive transfer learning method 

based on the LS-SVM learner with the RBF-type kernel function for 

classification.
The tradeoff parameter { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6C∈ − −

  ; the width in RBF kernel function 

{ }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6σ ∈ − −
 

ELSR-TL (NN): Applying the proposed method for transfer learning 

of signal layer neural networks.

The number of the hidden nodes: { }10,20,30,40,50,75,100,150,200P∈ , the parameters of 

sigmoid function: { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6κ ∈ − −
  , the regularization parameters: 

{ }10 ,10 , ,10 ,106 5 5 6λ∈ …− −
, { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −

.

ELSR-TL (TSK): Applying the proposed method for transfer learning 

of TSK.

The number of fuzzy rules: { }5,10,15,20,25,30,40,50,80,100M ∈ ;

the regularization parameters: { }10 ,10 , ,10 ,106 5 5 6τ ∈ …− −
, { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −

, 

{ }10 ,10 , ,10 ,106 5 5 6λ∈ …− −
.

ELSR-TL (Ker): Applying the proposed method for transfer learning of 

the kernel method. The width in the Gaussian kernel function { }2 ,2 , ,2 ,2 , ,2 ,26 5 0 1 5 6σ ∈ − −
  , the regularization 

parameters: { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −
, { }10 ,10 , ,10 ,106 5 5 6λ∈ …− −

.
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performances for each target subject, regardless of the auxiliary 
subject chosen as the source domain. Additionally, for a fixed 
configuration of the source and target domains, the three ELSR-
TL-based methods yield similar classification accuracies.

	 iv	 Comparing the performances of transfer learning methods (i.e., 
Au-SVM and ELSR-TL-based methods) with their corresponding 

non-transfer learning methods (i.e., SVM and ELSR-based 
methods), we  can see that the transfer learning methods 
outperform the others. Therefore, transfer learning strategies are 
effective for MI-EEG signal recognition. Impressively, even the 
least effective transfer learning methods still perform better than 
or are comparable to the non-transfer learning methods.

FIGURE 6

Classification accuracies of 13 different methods, where the accuracies of the transfer learning methods represent the average accuracies across four 
different source domains with a fixed target domain.

TABLE 3  Classification accuracies of the non-transfer learning method.

Datasets LSR kNN SVM NB CNN ELSR (NN) ELSR 
(TSK)

ELSR (Ker)

aa
0.6673

(0.0133)

0.5982

(0.0148)

0.6518

(0.0071)

0.6696

(0.0101)

0.6041

(0.0136)

0.6664

(0.0106)

0.6693

(0.0110)

0.6708

(0.0107)

al 1(0) 1(0)
0.9821

(0.0031)
1(0)

0.5450

(0.0029)
1(0) 1(0) 1(0)

av
0.5416

(0.0115)

0.5663

(0.0132)

0.5561

(0.0064)

0.5510

(0.0124)

0.5459

(0.0028)

0.5612

(0.0127)

0.5658

(0.0122)

0.5508

(0.0103)

aw
0.7122

(0.0139)

0.7277

(0.0129)

0.7143

(0.0158)

0.7009

(0.0125)

0.5556

(0.0072)

0.7188

(0.0103)

0.7366

(0.0109)

0.7054

(0.0128)

ay
0.7019

(0.0142)

0.7302

(0.0172)

0.7698

(0.0145)

0.5873

(0.0129)

0.5137

(0.0107)

0.7143

(0.0120)

0.7063

(0.0117)

0.7262

(0.0114)

Avg.Acc 0.7246 0.7245 0.7348 0.7018 0.5527 0.7321 0.7356 0.7306

Avg.Std 0.0106 0.0116 0.0094 0.0096 0.0074 0.0091 0.0092 0.0090

The best results are highlited in this table.

TABLE 4  Average accuracies of four different source domains for the transfer learning methods.

Target domain Au-SVM Tr-Adaboost ELSR-TL (NN) ELSR-TL (TSK) ELSR-TL (Ker)

aa 0.6583(0.0165) 0.6630(0.0242) 0.7320(0.0116) 0.7332(0.0108) 0.7352(0.0108)

al 1(0) 0.9955(0.0002) 1(0) 1(0) 1(0)

av 0.5725(0.0180) 0.5561(0.0146) 0.5840(0.0101) 0.5935(0.0114) 0.5887(0.0113)

aw 0.7359(0.0179) 0.7389(0.0117) 0.7939(0.0108) 0.7907(0.0117) 0.7929(0.0100)

ay 0.7838(0.0184) 0.7460(0.0173) 0.8277(0.0111) 0.8433(0.0110) 0.8380(0.0110)

Avg.Acc 0.7501 0.7399 0.7875 0.7921 0.7910

Avg.Std 0.0142 0.0136 0.0087 0.0090 0.0086

The best results are highlited in this table.
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	 v	 When datasets aa, al, and av are used in the target domain, the 
performance improvements achieved by the ELSR-TL-based 
methods are not very significant. This is because the target 
domain contains sufficient data to train a good model; 
therefore, the knowledge from the source domain is not critical. 
However, when datasets aw and ay are used in the target 
domain, the ELSR-TL-based methods significantly outperform 
the other methods due to the limited training data available in 
the target domain.

	 vi	 To visually compare the performances of all methods, Figure 6 
illustrates the performance of each method across all datasets for 
visual comparison. Please note that, for transfer learning methods, 
we  report the average performance of four different source 
domains with fixed target domains in Figure 6. For each dataset, 
the ELSR-TL-based methods achieve either the best accuracy or 
performance comparable to that of the other methods.

In summary, we  show that ELSR-TL-based methods can 
outperform other methods, especially when the number of training 
samples in the target domain is limited.

4.5 On different feature extraction

In this section, we  compare the effectiveness of three feature 
extraction methods. Figure 7 illustrates the classification results of 

these methods when using the same classification method. Specifically, 
we use ELSR-TL (TSK) as the classification method.

4.6 On running time

In this section, we  compared the average running times of all 
adopted methods (without CNN) over ten trials. Table 5 lists the average 
time (in seconds) for each method across all datasets. It is evident that 
LSR has the shortest computational time. However, among all transfer 
learning methods, the computational time of ELSR-TL (NN) is less than 
that of the other two transfer learning methods. Nevertheless, the 
running time of the proposed ELSR-TL is still not particularly small. 
Therefore, determining how to accelerate the proposed method for large-
scale data remains an open problem that we should explore in the future.

4.7 Statistical analysis

A nonparametric Friedman test (Zhang Y. et al., 2023) is used to 
validate whether the performance differences among different 
algorithms are statistically significant. This test uses the rankings of 
different algorithms in multiple comparisons. First, we calculate the 
sum ranking and average ranking of the accuracy of each algorithm 
(without CNN), as shown in Table 6, and find the best one. We then 
perform post hoc hypothesis testing.

FIGURE 7

Classification results of three feature extraction methods.

TABLE 5  Running time (Seconds) for all adopted methods on all datasets.

Datasets LSR kNN SVM NB ELSR(NN) ELSR(TSK) ELSR(Ker) Au-
SVM

Tr-
Adaboost

ELSR-
TL 

(NN)

ELSR-
TL 

(TSK)

ELSR-
TL 

(Ker)

aa 0.2715 0.3014 83.9542 0.3058 84.5401 85.0113 86.7844 823.7881 325.6131 269.3713 274.3649 298.0787

al 0.2646 0.3001 83.0776 0.3022 84.5932 84.9688 85.0619 819.3875 325.2478 269.0109 271.3828 293.1613

av 0.2503 0.2953 82.5644 0.2759 82.9663 83.6533 83.9803 818.7702 310.2496 260.4783 270.5006 289.3647

aw 0.2382 0.2922 82.1311 0.2801 80.6762 81.4226 82.2949 803.2313 298.1549 252.3586 266.1136 279.5312

ay 0.2344 0.2887 79.6846 0.2794 78.4760 78.6811 79.1756 801.4153 296.9221 249.3428 258.9078 268.5438
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The Friedman test statistics are as Equation 29:
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where iR  is the sum ranking of each algorithm, n is the number of 
algorithms, and kis the number of datasets.

From Table 6, we have = 26.25Q , and the corresponding p-value 
is 0.005964. This suggests that the performance differences among the 
12 methods are statistically significant, with ELSR-TL (TSK) 
performing the best. To further evaluate the performance differences 
between ELSR-TL (TSK) and the other 11 methods, we also conduct 
post hoc multiple comparison tests:

−
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0 iR R
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+
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where z is subject to the standard normal distribution that will 
be used further to calculate the value of P.

Table  7 shows the post hoc comparison results for α = 0.05 
(Friedman). The null hypothesis is rejected when ≤ 0.00625p  because 
≤p Holm. In summary, we conclude that there are significant performance 

differences between ELSR-TL (TSK) and other methods, confirming that 
transfer learning is effective in boosting classification accuracy.

In addition, Figure  8 shows the specific differences between 
ELSR-TL (TSK) and other methods. Clearly, it is consistent with the 
above conclusion that there are significant performance differences 
between ELSR-TL (TSK) and the other methods.

4.8 Sensitivity analysis

We also conduct experiments to study the sensitivity of ELSR-TL to 
various parameters. Below, we use the AW dataset as an example of 
sensitivity analysis. Figure 9 illustrates how accuracy varies with different 
values of four parameters while the others remain fixed, based on the 
grid search detailed in section 4.2. Please note that, due to the limitations 
of this paper, we only use ELSR-TL (TSK) for the sensitivity analysis.

TABLE 6  Rankings of the 12 algorithms (Friedman test).

Algorithm aa al av aw ay Sum Ranking Average 
Ranking

LSR 7 5.5 12 10 11 45.5 9.1

kNN 12 5.5 5 7 7 36.5 7.3

SVM 11 12 8.5 9 5 45.5 9.1

NB 5 5.5 10 12 12 44.5 8.9

ELSR(NN) 8 5.5 7 8 9 37.5 7.5

ELSR(TSK) 6 5.5 6 5 10 32.5 6.5

ELSR(Ker) 4 5.5 11 11 8 39.5 7.9

Au-SVM 10 5.5 4 6 4 29.5 5.9

Tr-Adaboost 9 11 8.5 4 6 38.5 7.7

ELSR-TL(NN) 3 5.5 3 1 3 15.5 3.1

ELSR-TL(TSK) 2 5.5 1 3 1 12.5 2.5

ELSR-TL(Ker) 1 5.5 2 2 2 12.5 2.5

TABLE 7  The post-hoc comparison for α = 0.05 (Friedman).

i Algorithm z p Holm Hypothesis

11 LSR 2.894291 0.0038 0.004545 Reject

10 SVM 2.894291 0.0038 0.005 Reject

9 NB 2.806586 0.005007 0.005556 Reject

8 ELSR(Ker) 2.368057 0.017882 0.00625 Reject

7 Tr-Adaboost 2.280351 0.022587 0.007143 Accept

6 ELSR(NN) 2.192645 0.028333 0.008333 Accept

5 kNN 2.104939 0.035297 0.01 Accept

4 ELSR(TSK) 1.754116 0.079411 0.0125 Accept

3 Au-SVM 1.490999 0.135962 0.016667 Accept

2 ELSR-TL(NN) 0.263117 0.79246 0.025 Accept

1 ELSR-TL(Ker) 0 1 0.05 Accept
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FIGURE 9

Accuracy changes with different values of four parameters: (a) M, (b) τ , (c) λ, (d) β .

FIGURE 8

Specific differences of ELSR-TL (TSK) compared to other methods.
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4.9 Limitations

Although the proposed ELSR-TL demonstrates effectiveness in 
these experiments, it still has some limitations. For example, there are 
four hyperparameters in the proposed method, and the hyperparameter 
optimization procedure based on grid searching and cross-validation is 
computationally expensive. The running time of the proposed method 
is significant, especially compared to traditional simple methods, 
making it unsuitable for real-time scenarios. The proposed ELSR-TL 
operates offline and cannot be used in online scenarios. The datasets 
used in this paper contain only five subjects on a small scale, and the 
effectiveness of the proposed method needs to be validated on more 
extensive and larger datasets in future studies. In addition, it is also 
worth further investigating how to provide more theoretical 
justifications for knowledge transfer and how to avoid negative transfer. 
We  primarily focused on binary MI tasks in this study; therefore, 
exploring how to extend the proposed ELSR-TL to multi-class MI tasks, 
multimodal integration, and cross-dataset transfers is worth studying.

5 Conclusion

In this study, an extended LSR-based inductive transfer learning 
method was proposed to facilitate transfer learning for several classical 
intelligent models, including neural networks, TSK fuzzy systems, and 
kernel methods. We applied this method to MI-EEG signal recognition in 
BCIs. ELSR-TL provides three distinctive advantages: (1) It features an 
inductive transfer learning mechanism that allows for the transfer of useful 
knowledge from the source domain to enhance learning performance in 
the target domain when the training data in the target domain are 
insufficient. (2) It enhances application and generalization by extending 
LSR while integrating multiple classic base models such as neural networks, 
TSK fuzzy systems, and kernel methods. (3) It uses knowledge extracted 
from the source domain to train the classification model in the target 
domain, ensuring security for MI-EEG signal recognition. Experimental 
studies indicate the effectiveness of the proposed method in MI-EEG 
signal recognition. Although the proposed ELSR-TL demonstrates 
effectiveness in these experiments, there is still room for further research. 
For example, the hyperparameter optimization procedure based on grid 
searching and cross-validation is computationally expensive, so future 
research should focus on addressing this issue. The proposed ELSR-TL 
operates offline and cannot be applied in real-time scenarios. The datasets 
used in this study are relatively small in scale; thus, the effectiveness of the 
proposed method needs validation on more extensive datasets in future 
studies. Additionally, it is also worth further examining how to provide 
more theoretical justifications for knowledge transfer to avoid negative 
transfer. While this study primarily focuses on binary MI tasks, extending 
the proposed ELSR-TL to multi-class MI tasks, multimodal integration, 
and cross-dataset transfers is also worth studying.
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Electroencephalogram (EEG) signal analysis is important for the diagnosis of

various neurological conditions. Traditional deep neural networks, such as

convolutional networks, sequence-to-sequence networks, and hybrids of such

neural networks were proven to be e�ective for a wide range of neurological

disease classifications. However, these are limited by the requirement of a

large dataset, extensive training, and hyperparameter tuning, which require

expert-level machine learning knowledge. This survey paper aims to explore

the ability of Large Language Models (LLMs) to transform existing systems of

EEG-based disease diagnostics. LLMs have a vast background knowledge in

neuroscience, disease diagnostics, and EEG signal processing techniques. Thus,

these models are capable of achieving expert-level performance with minimal

training data, nominal fine-tuning, and less computational overhead, leading to

a shorter time to find e�ective solutions for diagnostics. Further, in comparison

with traditional methods, LLM’s capability to generate intermediate results and

meaningful reasoning makes it more reliable and transparent. This paper delves

into several use cases of LLM in EEG signal analysis and attempts to provide a

comprehensive understanding of techniques in the domain that can be applied

to di�erent disease diagnostics. The study also strives to highlight challenges

in the deployment of LLM models, ethical considerations, and bottlenecks in

optimizing models due to requirements of specialized methods such as Low-

Rank Adapation. In general, this survey aims to stimulate research in the area of

EEG disease diagnostics by e�ectively using LLMs and associated techniques in

machine learning pipelines.

KEYWORDS

electroencephalogram, large language model, LLM, BERT, GPT

1 Introduction

Artificial intelligence and machine learning techniques have greatly contributed to

the field of EEG signal processing. The emergence of Large Language Models (LLMs)

to interpret and understand complex brain activity patterns is a new era in EEG

signal processing. Electroencephalography (EEG) or brain signal is one of the best

techniques for measuring neural activity and provides a vast amount of temporal data that

requires efficient algorithms for analysis and thereby extracting meaningful insights and

information. As EEG signals are non-invasive, more portable, have greater potential for

use, and apply to a wider population.

EEG analysis can be performed using different methods:
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(i) Representation learning in EEG analysis: It is the basic

step in EEG analysis that can extract relevant features from

EEG signals that are useful for identifying certain states or

pathologies. It is performed using self-supervised learning

methods to develop biomarkers for various pathologies.

This analysis technique can be applied to huge brain

signal data.

(ii) Discriminative EEG analysis: As the name suggests, this

analysis technique is employed for discrimination and for

distinguishing between various groups like disease and

normal, based on various patterns in EEG signals. This can

be done using advanced architectures such as Foundation

Models, LLMs, and Graph Neural Networks (GNNs). This

architecture efficiently captures the EEG patterns, which

are capable of discrimination and are crucial for learning

complex neural processes.

(iii) Generative EEG analysis: Generative EEG analysis refers

to a set of techniques that aims to understand and

model the underlying processes that cause electrical

activity in the brain and generate EEG signals. Unlike

traditional EEG analysis, which focuses on identifying

patterns or abnormalities in the recorded EEG data,

generative approaches seek to explain how these signals are

produced by the brain and how they relate to cognitive

or neural processes. Generative methods aim to generate

new modalities or signal data from EEG signals. Innovative

approaches such as diffusion produce images or text from

EEG data, providing novel approaches to the understanding

and visualization of brain activity.

The application of LLMs to EEG interpretation addresses

several critical challenges in neuroscience research and clinical

practice. First, EEG data is inherently complex, containing

various frequency bands, spatial relationships, and temporal

patterns that cannot be completely explored by traditional analysis

methods. LLMs, with their ability to process sequential data and

identify long-range dependencies, offer a promising approach to

understanding these intricate patterns within the EEG signal.

Secondly, the medical interpretation of EEG often relies heavily

on expert knowledge and pattern recognition skills developed over

many years. The capacity of LLMs to learn from large datasets of

annotated EEG recordings and medical reports could help bridge

this expertise gap and support clinical decision making.

Furthermore, LLMs are good at understanding context and

generating natural language descriptions, which makes them

particularly valuable for translating complex EEG patterns into

clinically relevant insights. This LLM capability can revolutionize

the way EEG signals are analyzed and neurological findings

are made and communicated between healthcare providers and

researchers. This can potentially improve diagnostic accuracy

and treatment planning. The ability of such models to process

multimodal inputs also gives new possibilities for integrating EEG

data with other clinical information, thereby creating a more

comprehensive understanding of various neurological pathologies.

Generative Large Language Models (LLMs) often present

several benefits compared to pre-trained Transformer language

models (Kalajdzievski, 2024). Firstly, many generative LLMs can

perform tasks without requiring explicit fine-tuning on annotated

datasets, leading to considerable savings in time and resources

associated with data annotation. Secondly, these models frequently

overcome the limitation of a fixed maximum input length, enabling

the processing of longer sequences of text. Thirdly, task-specific

behavior in generative LLMs is often achieved through prompt

engineering, which can be a more efficient approach than extensive

hyperparameter optimization typically needed for pre-trained

Transformer models.

LLMs are less susceptible to data imbalance issues due to

the vast pre-training they receive, covering domain knowledge,

signal analysis, and related methodologies. Fine-tuning methods

in LLMs, such as PEFT, freeze base model weights, and preserve

core knowledge. This approach prevents catastrophic overwriting

compared to training approaches used with traditional deep

learning methods. Hence, LLMs are less dependent on perfectly

balanced training datasets compared to traditional models.

Recent advances in LLM architectures and training techniques

have made these applications more feasible. The development

of specialized attention mechanisms and temporal embedding

methods has enhanced their ability to process time-series data

like EEG. Additionally, the success of transfer learning in various

domains suggests that pre-trained language models could be

effectively utilized for neurological signal interpretation, thereby

reducing the amount of labeled data required for specific

applications. However, applying LLMs to EEG analysis also

presents unique challenges that must be addressed. It includes the

need for appropriate data representations, integration of domain-

specific knowledge, and development of interpretable models that

can provide clinically meaningful outputs. Understanding these

challenges and potential solutions is crucial to advance the field and

realize the full potential of LLM in neuroscience. This survey makes

an effort to consolidate the major studies related to applying LLM

in the context of EEG signal interpretation.

1.1 Understanding neural signaling

Classical research in the neurological sector is concentrated

on advancements for diagnosing particular conditions, and the

majority of this research is centered on handling neurological

signals individually. There is a clear need to bridge the gap

and pave the way toward more generalized neurological signal

processing paradigms that can be applied to the broader context

of neuroscience. Although early applications of LLMs focused

on individual neural signals, mainly EEG and fMRI, the focus

is now increasingly shifting toward unified frameworks capable

of handling a wider range of neurological signals beyond these

popular modalities. The following subsections give an overview of

neurological signals that are considered in this study and inter-

relations between them (Gentile and Barragan, 2023; Hong et al.,

2018; Baghdadi et al., 2025; Chaudhary, 2025).

1.1.1 EEG signals
Electroencephalography (EEG) signals are used to record the

electrical activity of the brain via electrodes placed on the scalp.

This non-invasive method captures the summation of postsynaptic
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potentials of numerous of neurons firing synchronously in the

cerebral cortex. The resulting EEG signal reflects the ongoing

electrical activity and exhibits its changes in response to various

stimuli or pathological states. Small metal or silver/silver chloride

electrodes are attached to the scalp for EEG recording using

standard placements like the international 10–20 system. These

electrodes detect minute voltage fluctuations on the scalp, which

are then amplified and digitized by the EEGmachine. The raw EEG

data is typically formatted as a time series of voltage values for each

electrode, representing the electrical potential difference between

the recording electrode and a reference electrode over time. A

significant strength of EEG is its high temporal resolution, as it can

capture rapid changes in brain activity on the order of milliseconds,

making it excellent for studying the timing of neural events. EEG

also provides a direct measure of neuronal activity, offering a real-

time window into brain function. Compared to other neuroimaging

techniques like MEG and fMRI, EEG equipment and operational

costs are generally lower, making it more accessible for research

and clinical applications (Baghdadi et al., 2025). Furthermore, the

non-invasive nature of EEG, with electrodes placed on the scalp

surface, poses no surgical or internal risks to the subject. EEG

systems can also be relatively compact and portable, allowing for

recordings in various settings. However, EEG suffers from low

spatial resolution because the electrical signals recorded on the

scalp are blurred and attenuated as they pass through the skull and

scalp, making it difficult to precisely localize the sources of neural

activity within the brain. EEG signals are also highly susceptible

to various artifacts originating from physiological sources (e.g., eye

blinks, muscle movements, and heart activity) and external sources

(e.g., electrical noise), requiring careful preprocessing. Finally, EEG

is primarily sensitive to activity in the superficial layers of the

cortex and has difficulty detecting activity originating from deeper

brain structures.

1.1.2 MEG signals
Magnetoencephalography (MEG) is a non-invasive

neuroimaging technique that measures the magnetic fields

produced by electrical activity in the brain. These magnetic

fields, generated by the flow of ionic currents within neurons,

are extremely weak and are detected by highly sensitive

superconducting quantum interference devices (SQUIDs)

housed in a cryogenic dewar that does not touch the patient’s

head. MEG is particularly sensitive to neuronal currents that are

tangential to the scalp, making it complementary to EEG which

is more sensitive to radial currents. During a MEG recording,

the subject sits or lies down in a magnetically shielded room to

minimize external magnetic interference. The dewar containing

the SQUID sensors is positioned around the head, capturing

the minute magnetic field changes. Simultaneously, the subject’s

head position relative to the sensors is often tracked using head

position indicator (HPI) coils. The raw MEG data consists of a

time series of magnetic field measurements for each sensor. Similar

to EEG, MEG data is susceptible to artifacts from various sources,

including environmental magnetic noise, movement of the subject,

and physiological signals like heartbeats and eye blinks (Cuffin

and Cohen, 1979). Magnetoencephalography (MEG) measures the

magnetic fields produced by the electrical activity of the brain.

These magnetic fields are less distorted by the skull and scalp

compared to the electrical potentials measured by EEG. Similar

to EEG, MEG offers excellent temporal resolution, capable of

tracking rapid neural events in the millisecond range. MEG also

directly measures the electromagnetic consequences of neuronal

activity, providing a real-time assessment of brain function. A key

advantage of MEG over EEG is its better spatial resolution because

magnetic fields are less distorted by intervening tissues, allowing

for more accurate localization of neural sources. However, MEG

systems are significantly more expensive to purchase, maintain

(due to the need for cryogenic cooling of the sensors), and operate

compared to EEG. The use of MEG is also limited to specialized

facilities due to the requirement of magnetically shielded rooms

to minimize interference from external magnetic fields (Baghdadi

et al., 2025). Despite shielding, MEG recordings can still be affected

by subtle magnetic noise from the environment or even movement

of metallic objects near the scanner.

1.1.3 fMRI signals
Functional Magnetic Resonance Imaging (fMRI) is a

neuroimaging technique that measures brain activity by detecting

changes in blood flow and oxygenation. The underlying principle

is neurovascular coupling, which posits that local neural activity is

accompanied by changes in regional cerebral blood flow (rCBF)

and blood oxygenation. fMRI most commonly utilizes the blood-

oxygen-level-dependent (BOLD) contrast, which is sensitive to

the ratio of oxygenated to deoxygenated hemoglobin in the blood.

During an fMRI scan, the subject lies inside a strong magnetic field.

Radio frequency pulses are applied, causing protons in the brain

tissue to align and then relax, emitting signals that are detected by

the MRI scanner. For fMRI, specific pulse sequences are used to

make the images sensitive to the BOLD signal. A series of 3D brain

volumes are acquired over time, capturing the dynamic changes in

blood oxygenation related to neural activity. The raw fMRI data

is a 4D dataset (3 spatial dimensions + time), where each voxel

(volumetric pixel) contains a time series of signal intensity values.

Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging

technique that measures brain activity by detecting changes in

blood flow and oxygenation using a strong magnetic field. The

most common method, Blood-Oxygen-Level-Dependent (BOLD)

fMRI, relies on the different magnetic properties of oxygenated

and deoxygenated hemoglobin. fMRI offers the highest spatial

resolution among these four techniques, allowing for detailed

mapping of brain activity down to the millimeter level. It also

provides complete brain coverage in a single scan, offering a

complete view of neural activity in different regions, and unlike

EEG and fNIRS, fMRI is sensitive to activity in both the cortical

and subcortical structures (deep brain) (Baghdadi et al., 2025).

However, the hemodynamic response measured by fMRI is

relatively slow, peaking several seconds after the onset of neural

activity, which limits its ability to precisely track the timing of

rapid neural events, resulting in low temporal resolution. fMRI

scanners are very expensive to purchase, install, and operate,

requiring specialized infrastructure and trained personnel, and

they are non-portable, being large, stationary pieces of equipment.
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A significant limitation of fMRI is the requirement for participants

to remain very still during scans to avoid motion artifacts, which

can significantly degrade the image quality, posing challenges for

certain populations.

1.1.4 fNIRS signals
Functional Near-Infrared Spectroscopy (fNIRS) is a non-

invasive neuroimaging technique that measures brain activity by

assessing changes in the concentration of oxygenated hemoglobin

(HbO) and deoxygenated hemoglobin (HbR) in the cerebral cortex.

fNIRS utilizes the principle of neurovascular coupling, similar

to fMRI, but uses near-infrared light to penetrate the scalp and

skull. Changes in neural activity may lead to changes in blood

flow and oxygen consumption, which in turn alter the absorption

and scattering of the near-infrared light that passes through the

brain tissue. An fNIRS system typically consists of light sources

that emit near-infrared light at one or more wavelengths (typically

between 700 and 900 nm) and detectors (photodiodes) placed

on the scalp. The sources and detectors are arranged in optodes,

which are positioned on the scalp using a cap or a custom-

made holder. The light emitted by the sources travels through

the head tissue and is partially absorbed and scattered before

reaching the detectors. The intensity of the detected light at each

wavelength is measured over time. The raw fNIRS data consists

of time series of light intensity measurements for each source-

detector pair (channel) and each wavelength. This raw data is then

converted to changes in optical density. Functional Near-Infrared

Spectroscopy (fNIRS) is an optical neuroimaging technique that

measures brain activity by assessing changes in the concentration

of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin

(HbR) in the cerebral cortex. It utilizes the principle that neural

activity is coupled with changes in local blood flow. fNIRS offers

the advantage of being portable, with devices that are generally

lightweight and allowing for measurements in more naturalistic

settings and with participants who may not be able to tolerate

other imaging modalities (Hong et al., 2018). Due to its portability

and tolerance to some movement, fNIRS is suitable for studying

brain activity during tasks involving movement. The non-invasive

nature of fNIRS, using light shone onto the scalp and detected

by sensors, is another benefit, and compared to MEG and fMRI,

fNIRS systems are often considered easier to set up and operate.

However, fNIRS has relatively low spatial resolution compared

to fMRI and even MEG, as the scattering of light in the tissue

limits the precision of source localization (Gentile and Barragan,

2023). The depth penetration of near-infrared light is also limited,

primarily allowing measurement of activity in the superficial layers

of the cortex. As fNIRS measures brain activity indirectly through

hemodynamic changes, which are slower than the direct neuronal

activity measured by EEG and MEG, its temporal resolution is

also limited compared to electrophysiological methods. Finally, the

presence of hair and variations in scalp and skull thickness can

affect the light transmission and signal quality, requiring careful

consideration during setup and analysis, and a baseline scalp

condition is typically needed for reliable measurements.

1.2 Overview of large language models

Advanced language models with huge parameter sizes and

remarkable learning capacities are known as large language models,

or LLMs. The self-attention module in Transformer (Vaswani et al.,

2017) is the fundamental component of many LLMs, including

GPT-3 (Floridi and Chiriatti, 2020) and GPT-4.

A crucial component of LLMs is in-context learning (Brown

et al., 2020), in which the model is trained to produce text

based on a specified context or prompt. As a result, LLMs

can produce responses that are more logical and pertinent to

the situation, which makes them appropriate for conversational

and interactive applications. Another essential component of

LLMs is Reinforcement Learning from Human Feedback (RLHF)

(Christiano et al., 2017). By using human-generated replies as

rewards, this technique fine-tunes the model, enabling it to learn

from its errors and gradually enhance its performance. Prompt

engineering is a popular method of communicating with LLMs in

which users build and provide certain prompt messages to direct

LLMs to produce the required responses or perform particular tasks

(White et al., 2023; Clavié et al., 2023; Zhou et al., 2022). People can

participate in dialogue interactions, which involve speaking with

LLMs in natural language, or question-and-answer interactions, in

which they ask the model questions and get replies. In summary,

LLMs have transformed NLP and have the potential for several uses

thanks to their Transformer architecture, in-context learning, and

RLHF capabilities.

1.2.1 Bidirectional encoder representations from
transformers

Bidirectional Encoder Representations from Transformers

(BERT) introduced a deep, bidirectional, unsupervised language

representation. BERT considers the entire context of a word, both

preceding and succeeding, during training, unlike previous models,

which process text sequentially (Koroteev, 2021). This enables

the model to capture rich semantic and syntactic information,

leading to significant performance improvements in various NLP

tasks. This powerful understanding is further enhanced by BERT’s

pre-training process, which utilizes two unsupervised learning

objectives. Firstly, Masked Language Modeling (MLM) forces the

model to deeply understand language semantics by randomly

masking words in the input and training it to predict the masked

words based on the surrounding context. Secondly, Next Sentence

Prediction (NSP) improves the model’s ability to understand

discourse by training it to predict whether two given sentences are

consecutive in the original text, thereby capturing crucial sentence-

level relationships.

BERT’s architecture is based on the Transformer model, which

utilizes self-attentionmechanisms to capture complex relationships

between words. It consists of multiple layers of stacked transformer

blocks, each containing a Multi-Head Self-Attention and Position-

wise Feed-Forward Network (FFN) (Devlin et al., 2018; Hao et al.,

2019). Multi-head self-attention allows the model to attend to

different parts of the input sequence simultaneously, capturing

diverse relationships between words. FFN introduces non-linearity

and allows the model to learn complex representations. Two
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unsupervised pre-training tasks are used by BERT: Next Sentence

Prediction, which asks the network to determine whether two

sentences are consecutive, and Masked LM, in which some words

are masked and the network infers their meaning from context.

The main limitations of BERT include high computational

cost, requiring significant resources for pre-training, and difficulty

in handling very long sequences due to its fixed maximum

sequence length. It is challenging to fine-tune the BERT model

for some specific tasks, which may require careful tuning

of hyperparameters.

1.2.2 GPT-1
There has been a long history behind GPT-1 dating back to

the groundbreaking paper “Attention is all you need” (Vaswani

et al., 2017). According to it, the Transformer is divided into two

parts: encoder and decoder, both of which perform Multi-Head

Self Attention, though the encoder is able to observe information

from the entire source sequence while the decoder does not.

Similar to filling in the gaps, the Bert model adjusts the encoder

and uses context to forecast the missing intermediate phrases

when creating pre-training tasks. GPT-1 also executes masked

multi-head self-attention by using a decoder, which anticipates the

subsequent context based on the preceding context.Making context

predictions from a huge corpus of data is the pre-training phase.

The final token’s embedding is fed into the prediction layer, which

fits the downstream data’s label distribution after the model has

been trained using downstream data during the fine-tuning stage.

The model’s accuracy and generalization abilities improve as the

number of layers increases. Zero-shot learning is a built-in feature

of GPT-1 and as themodel gets bigger, so does this capability, which

leads to the development of later GPT models.

1.2.3 GPT-2
Based on the Transformer architecture for language modeling,

GPT-2 is an improved version of GPT-1. Large amounts of

unlabeled data can be used to train models with GPT-2, and

fine-tuning improves model performance and optimizes it for

downstream tasks. GPT-2 places more focus on the language

model in a zero-shot scenario, when the model hasn’t been trained

or optimized for downstream tasks before being used. GPT-1

often relies on fine-tuning, and adjusting the model’s parameters

specifically for each downstream task. This typically involves

introducing special tokens, such as start and separator symbols, to

guide the model’s understanding of the task at hand. In contrast,

GPT-2 emphasizes zero-shot learning, aiming to perform tasks

without explicit fine-tuning. This necessitates a different approach

to task specification. Instead of modifying the model, GPT-2

primarily modifies the input sequences.

GPT-2 significantly scales up the Transformer architecture,

boasting 48 layers and 1.5 billion parameters, compared to

GPT-1’s 12 layers and BERT’s 24. This scaling necessitates a

massive training dataset, derived from WebText after basic data

cleaning. Research suggests that larger models require more

data to reach their full potential, and current models, including

GPT-2, are likely still under-trained (Radford et al., 2019).

Unlike BERT, which employs bidirectional transformers, GPT-

2 utilizes unidirectional transformers, mirroring the sequential

nature of language generation. Furthermore, GPT-2 adopts a

novel multi-tasking approach during pre-training. Instead of

focusing on a single objective, it learns across multiple tasks

simultaneously, ensuring that the model converges effectively.

Notably, the core Transformer parameters are shared across these

tasks, promoting efficient learning and enhancing generalization.

This multi-tasking strategy, inspired byMT-DNN (Liu et al., 2020),

empowers GPT-2 to achieve impressive performance even without

task-specific fine-tuning.

1.2.4 GPT-3
GPT-3 primarily focuses on the idea of a universal language

model excluding traditional fine-tuning. To address the

computational challenges associated with its massive 175 billion

parameters, GPT-3 incorporates the sparse attention mechanism

from Sparse Transformers (Floridi and Chiriatti, 2020). This

technique reduces computational load by selectively attending to

relevant parts of the input sequence. For downstream tasks, GPT-3

employs a few-shot learning approach, demonstrating remarkable

performance with just a few examples. This highlights the

significant impact of model size on few-shot learning capabilities.

The GPT-3 architecture is identical to the GPT 2, except the

transformer layers have dense and sparse attention (Child et al.,

2019; Radford et al., 2019). GPT-3 employs the gradient noise

scale as in (McCandlish et al., 2018) to determine the batch size

during training, demonstrating that big models may train on larger

batch sizes with a lower learning rate. In general, GPT-3 raises

model parameters to 175B, demonstrating that large language

models improve with the scale and are competitive with the

fine-tuned models.

One important feature of GPT-3 is its capacity for in-context

learning. By merely supplying examples within the input sequence,

in-context learning provides few-shot performance, in contrast

to traditional fine-tuning, which updates model parameters based

on downstream task examples. As the number of instances

increases, this “prompting” strategy shows a notable performance

improvement. But after eight shots, the effect of more examples

decreases and, after ten rounds, is insignificant.

1.2.5 GPT-4
In comparison to GPT-3, GPT-4 has more than a trillion

parameters and greatly enhances the GPT model scale and

training methods. The GPT-4 model may produce text more

accurately and naturally by employing a novel training method

called Reinforcement Learning from Human Feedback (RLHF). To

train through reinforcement learning, RLHF combines pre-training

and fine-tuning techniques, having conversations with human

operators. This increases GPT-4’s performance on particular tasks

and strengthens its understanding of context and questions

(Nori et al., 2023; Wang et al., 2023). GPT-4 generally employs

the same pre-training, prompting, and prediction-based training

methodology as ChatGPT. Three noteworthy improvements

are introduced in GPT-4: (1) Using a rule-based reward

model (RBRM); (2) Including multi-modal prompt learning to
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accommodate different prompts; (3) Including a chain of thought

mechanism to improve overall coherence in thinking. GPT-4 is a

strong multimodal model that can interpret text and image input,

producing text outputs that rank among the top 10% of test takers.

On conventional benchmarks, the GPT-4 language model performs

better than most cutting-edge NLP systems (Liu et al., 2021; Chang

et al., 2023).

1.2.6 Claude
Anthropic, a business started by former OpenAI researchers

with experience in language models such as GPT-3, created the AI

helper Claude (Wu et al., 2023). With a high Google investment,

Anthropic seeks to develop AI that is both beneficial and safe.

AnthropicLM v4-s3, their flagship model, is an autoregressive

model with 52 billion parameters that was trained on enormous

text datasets. Anthropic uses a novel “Constitutional AI” technique

in contrast to conventional fine-tuning techniques that depend

on human input (Bai et al., 2022). This novel system employs a

model to direct the process of fine-tuning, guaranteeing that the

AI abides by a set of principles centered on autonomy (respecting

freedom of choice), beneficence (maximizing positive impact), and

non-maleficence (avoiding giving harmful advice).

1.2.7 Open-source LLMs
Open Source Large Language Models (LLMs) stand in contrast

to proprietary models like GPT and Claude, which are often fine-

tuned to align with human preferences, enhancing their usability

and safety. This alignment process, however, can be expensive

in terms of computational resources and human annotation,

and its lack of transparency can hinder progress in AI safety

research within the wider community. Open source LLMs offer an

alternative by providing researchers and developers with the ability

to examine, modify, and build upon the underlying technology.

This fosters innovation, allows for greater customization, and

promotes a deeper understanding of these models’ inner workings.

Llama 2 prioritizes helpfulness and safety through specific training.

Qwenmodifies the Transformer architecture for efficiency and long

sequence handling.

The two notable open source LLMs are Llama 2 and Qwen.

Llama 2 is a family of pre-trained and fine-tuned LLMs developed

by Meta AI, scaling up to 70 billion parameters. Considering to

achieve the two benchmarks, helpfulness and safety, Llama 2-

Chat models reportedly outperform existing open-source models

on benchmarks for both these qualities and, in human evaluations,

appear to be comparable to some closed-source models. Meta AI

implemented several safety measures, including the use of safety-

specific data for annotation and tuning, red-teaming exercises

to identify vulnerabilities, and iterative evaluations to refine

safety. The accompanying documentation provides a detailed

account of their fine-tuning methodology and their strategies for

enhancing LLM safety. A noted limitation of Llama 2, particularly

its larger versions, is the longer computational time required

for operation.

Qwen, short for Tongyi Qianwen, is another open-source LLM

that utilizes a modified version of the Transformer architecture,

inspired from the LLama model. Qwen’s architecture incorporates

several specific modifications. It employs a unified embedding

approach, which aims to improve performance at the cost of

increasedmemory usage. For incorporating positional information,

Qwen utilizes Rotary Positional Embedding (RoPE). Additionally,

biases are added to the Query, Key, and Value layers of the attention

mechanism to enhance the model’s ability to handle longer

sequences. Qwen also replaces the traditional layer normalization

technique with RMSNorm, which is reported to offer similar

performance with greater efficiency. For the activation function,

Qwen has chosen SwiGLU, a combination of Swish and Gated

Linear Unit.

Both Llama 2 and Qwen represent significant advancements in

the realm of open-source LLMs. They provide transparency and

flexibility, enabling the AI community to understand and build

upon these technologies. Llama 2 places a strong emphasis on

safety through dedicated training and evaluation methodologies,

while Qwen introduces architectural modifications aimed at

improving performance and efficiency, particularly in handling

longer sequences. Both models contribute to the growing landscape

of accessible and powerful language models.

2 Taxonomy of AI tasks

The usage of LLMs in the context of EEG-based disease

diagnostics can be classified into generative and discriminative

tasks. Generative tasks help us create all new content, such as

textual output showing the reasoning behind a specific decision. On

the other hand, discriminative tasks are useful for the categorization

of given input data into classes, such as in the case of disease

classification. Utilization of both of the models is important

for achieving effective disease diagnostics. Use of various key

LLM models in the context of neuro signal analysis is listed in

Table 1.

The block diagram shown in Figure 1 details the modules

involved in a typical machine-learning pipeline using LLM for

EEG-based disease diagnostics. It has got 4 stages as given below:

• Input Stage

This stage reads the input data in the form of EEG which

can optionally be multimodal inputs bringing additional

information helpful for categorization or generation of data

at the output.

• EEG LLM fine-tuning stage

Fine-tuning is the key step of the pipeline and tunes

the LLM for a specific context which can be a single task

or multiple tasks in the same context. This stage uses

various adaptation methods for tuning a given LLM for a

specific task such as report generation or disease classification.

Internally it makes use of techniques such as transfer

learning and incremental adaptation for generative tasks, and

incremental adaptation and hybrid model enhancement for

discriminative tasks. It can be a mixture of both approaches

and the associated techniques based on the use case that is

being addressed.

• Output stage

The output can be generated text or labels indicating the

class of health condition of the patient. It can be a combination
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of both for hybrid models. In case of multi tasking, the labels

generated by the model can belong to different set of classes

based on the task in focus.

TABLE 1 Description of key LLMmodels in the context of neuro signal

analysis.

Research Year LLM Task

Mishra et al. (2024) 2024 Llama v3,

MISTRALv0.3,

QWEN2.5

Generative

Tung et al. (2024) 2024 Gemini 1.5 flash,

Claude 3 sonnet,

GPT-4

Generative

Chen et al. (2024) 2024 Qwen2-0.5B Generative

Wang et al. (2024a) 2024 BART Generative

Kim et al. (2024) 2024 da Vinci GPT-3 base Discriminative

Parani et al. (2024) 2024 pre trained

Longformer

Discriminative

Jiang et al. (2024) 2024 Large Brain Model

(LaBraM)

Discriminative

Zhang et al. (2023) 2023 GPT-3.5, GPT-4 Discriminative

Gijsen and Ritter

(2024)

2024 EEG Language Model

(ELM)

Discriminative

Lee and Chung (2024) 2024 GPT-3.5 turbo model Discriminative

Sano et al. (2024) 2024 GPT-4, GPT-4 Vision,

GPT-3.5

Discriminative

Zhang et al. (2024c) 2024 BERT Discriminative

Wang et al. (2024b) 2024 Llama 2 Generative

Han et al. (2024) 2024 BERT Generative

Ma et al. (2024) 2024 miniGPT-4, CLIP Generative

Yang et al. (2024) 2024 Qwen2 1.5B Generative

Zhang et al. (2024a) 2024 Llama 2 Generative

2.1 LLMs for generative tasks

2.1.1 Thought2Text
The goal of this approach is to evaluate efficiency of public

LLMs such as LLAMA v3, MISTRALv0.3, and QWEN2.5 in

translating visual thoughts from EEG signals into textual form

(Mishra et al., 2024). This is achieved by a 3 step approach,

involving capturing of EEG signals, encoding of these signals

as token embeddings and fine-tuning of language models with

these features.

For the first step, to generate embeddings, this solution

makes use off a EEG encoder derived from a deep convolutional

neural network model—ChannelNet—that converts EEG signals to

multidimensional embeddings (Heeg). Pooled image embeddings

(Hclip) are generated by a pre-trained CLIP model capable

of abstracting image representations. The encoder functions by

minimizing two set of losses—one which is a categorical cross-

entropy loss between predicted and actual labels using EEG

embeddings and secondly, the mean squared error (MSE) between

EEG embeddings (Heeg) and pooled image embeddings (Hclip). In

the following stage, these representations are further translated into

multimodal embeddings (Hmm) by passing through a projector

implementing a transformation. The LLMs learns representation in

multimodal feature form generated from an image sketch filtering

original image using Gaussian blur and Canny filters. In the next

step, it learns the representation generated by the projector using a

multichannel EEG signal that represents the response of the brain

to the image shown to the subject.

On using this trained model for inference, the EEG encoder

generates EEG embeddings and makes use of no images.

This representation is further passed through projectors to get

multimodal features for performing predictions. The embeddings

from EEG signal segments are further concatenated and given to

fine-tuned LLM which generates meaningful text descriptions.

2.1.2 Multi-stage LLM report generation
The objective of the proposed system here is to generate

and verify EEG reports with the help of a multi-stage LLM

FIGURE 1

Overview of LLM solutions for EEG diagnosis use cases.
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solution (Tung et al., 2024). Generation phase, which is first

among the two phase approach, takes EEG features as inputs and

format them to generate a structured prompt. This prompt is

also given to the Google Gemini 1.5 pro API for the processing

and generation of reports. In the second phase, the system uses 3

promising LLMs—Gemini 1.5 flash, Claude 3 sonnet, and GPT-

4—and performs verification. This solution makes use of advanced

LLM capabilities of Gemini pro to build its core language model.

The model is chosen for its advanced capabilities that include long

context memory, reasoning abilities, and optimized computational

performance. The input of this pipeline employs a hybrid AI

algorithm that generates a JSON object based on structured

EEG features. This ensures capturing of important metrics such

as background frequency, amplitude, symmetry, and detected

anomalies. These objects are further used by the LLM along with

an efficient prompt engineering method. The prompt engineering

method used in this system has four parts, namely : (1) role as

neurologist, (2) structure EEG features and interpretations, (3) task

specifications for generation of report, and (4) outline of report.

Each of the LLM model is set to assess independently and finally

decision is based on majority voting. Validation of the method by

generation of reports on a few hundred report showed effectiveness

of the system in guiding neurologist to make infallible decisions.

2.1.3 EEG emotion copilot
EEG emotion copilot uses a lighter LLM in a local server

to perform multiple tasks using EEG signals (Chen et al., 2024).

The features of this system include emotion recognition, the

generation of custom diagnostics, treatment recommendations,

and the automatic creation of medical records for patients. It also

provides an ergonomic user interface and employs strong privacy

safety measures through novel data processing protocols.

The study methodology involves pre-processing EEG signals

and transforming them via wavelet to shorten the signal length.

The final prompt is constructed using the initial context-defining

prompt, demographic data, emotional label, and treatment as

training data. Qwen2-0.5B pre-trained model is used for pruning

and achieving 50% reduction over the model parameters. A warm-

up during the fine-tuning phase using Lora gradually increases the

learning rate of the model. Finally, the RAG (Retrieval-augmented

generation) technique is used to deploy the model to enhance

retrieval performance and improve the interactivity through the

dialogue method in the user interface.

This approach addressed the issue of data redundancy inherent

in EEG signal processing. The long EEG data sequence handling

was managed through efficient data compression techniques,

thus improving computational efficiency and computing the

real-time emotion. This study highlighted the importance of

patient privacy by ensuring that the proposed model is run

locally. Model pruning strategies were explored to create a

lightweight version of the language model, making it feasible

to deploy in environments with limited computational resources

while maintaining high performance. While signal compression

improves efficiency, complex scenarios still require additional

channel signals for accurate analysis. The study proposed that

LLMs could potentially generate dense channel signals from limited

channel data, which would significantly enhance computational

efficiency. This approach could revolutionize emotion analysis

and streamline the overall process. This research demonstrates

the potential of EEG Emotion Copilot to transform emotional

recognition and treatment in clinical settings.

2.1.4 Contrastive EEG-text masked autoencoder
This research work reports a significant advancement in EEG-

based language decoding through CET-MAE (Contrastive EEG-

Text Masked Autoencoder) and E2T-PTR (EEG-to-Text using Pre-

trained Transferable Representations) (Wang et al., 2024a). While

E2T-PTR utilizes these pre-trained representations together with

BART for better text generation, the CET-MAE model combines

masked autoencoding with contrastive learning in an innovative

manner for both single-modality and cross-modality processing.

This study suggests a novel pre-trained model called Contrastive

EEG-TextMasked Autoencoder (CET-MAE) to align EEG and text.

CET MAE uses a specialized multi-stream encoder to combine

masked signal modeling and contrastive learning. By balancing

the semantic-level aligned embeddings of text tokens and text-

evoked EEG features with the latent embeddings represented by

self-reconstruction, it efficiently learns pre-trained representations

of text and EEG. Concerning masked signal modeling, CET-MAE

applies a high mask ratio (75%) to both text and EEG data, which

poses a significant challenge for the model to manage more missing

data during the reconstruction step.

CET-MAE integrates intra- and cross-modal SSL into a single

unified system utilizing a multistream architecture: (1) Using

masked modeling with a mask ratio of up to 75%, intramodality

streams investigate representative embeddings that capture the

inherent properties of text or EEG sequences. (2) The intermodality

stream constrains the encoder to maximize semantic consistency

between text and its related EEG sequences and offers dual-

modal representations to improve intramodality reconstruction.

E2T-PTR uses BART’s capabilities to generate text from these

consistent and representative features by transferring pre-trained

EEG representations. Multiple experiments using ZuCo, the latest

text-evoked EEG dataset, highlight the high standard of this study

in both qualitative and quantitative evaluations. Other inner speech

BCI data sets can also be used to study the performance of the

suggested CET-MAE model, which exhibits significant potential to

improve EEG-based language decoding tasks.

2.1.5 LLM analysis of fMRI language data in
neurocognitive disorder

A study by Wang et al. (2024b) investigates language-related

functional changes in older adults with Neurocognitive Disorders

(NCD) using LLM-based fMRI encoding. This work explores the

correlation between brain scores derived from fMRI encoding

models and cognitive scores in subjects with NCD, in contrast to

previous studies that focused on healthy young adults. This study

develops an fMRI encoding model using LLaMA2, specifically for

older adults with early stage NCD or at risk, in order to quantify

the association between brain areas and language functions.

Individuals with higher cognitive abilities were revealed to have

better brain scores compared to those with lower cognitive abilities,
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with maximum correlations observed in the middle temporal gyrus

(r = 0.368) and the superior frontal gyrus (r = 0.289). This suggests

that fMRI encoding models and brain scores have the potential

to detect early functional changes in NCD patients, offering a

promising avenue for developing interpretable machine learning

models for early detection of NCD based on language-related fMRI

signals. This study marks the beginning of applying an LLaMA2-

based fMRI encoding model to study subjects with NCD.

2.1.6 Mindformer
Mindformer, introduced by Han et al. (2024), is a novel

semantic alignment method for multisubject fMRI signals,

designed to overcome limitations in current multisubject brain

decoding techniques. MindFormer generates fMRI-conditioned

feature vectors suitable for conditioning Stable Diffusion for fMRI-

to-image generation and LLMs such as Bidirectional Encoder

Representations from Transformers (BERT) for fMRI-to-text

generation. The model incorporates two key innovations: subject-

specific tokens to capture individual differences while leveraging

multisubject data for training, and a feature embedding and

training scheme based on the Image Prompt Adapter(IP)-

Adapter to extract semantically meaningful features from fMRI

signals. By effectively embedding multisubject fMRI signals using

subject tokens and the IP-Adapter, MindFormer significantly

outperforms existing multisubject brain decoding frameworks.

This advancement provides a new framework for understanding

the decoding of the brain of multiple subjects and identifying

common neural patterns, effectively leveraging shared information

while maintaining individual-specific accuracy. The current

implementation primarily focuses on visual stimuli, and extending

it to more complex cognitive and sensory experiences requires

advancements in model architecture and training methodologies.

However, the computational complexity associated with training on

larger datasets presents a limitation.

2.1.7 LLM visual encoding model
LLM Visual Encoding Model (LLM-VEM) introduced in Ma

et al. (2024) provided a new multimodal training paradigm,

utilizingminiGPT-4 to enhance the encoding of fMRI activity in the

visual cortex. The paradigm generates detailed textual descriptions

for stimulus images using the LLM, creating a high-quality text

description set. These descriptions are then processed through a

pre-trained text encoder, namely Contrastive Language Image Pre-

training (CLIP), to obtain text embedding features. A contrastive

loss function is used to minimize the distance between image

embedding features and text embedding features, aligning the

stimulus image and text information. This alignment, facilitated

by the LLM, improves the visual encoding model learning process,

leading to higher precision. Such an effective visual encodingmodel

helps researchers investigate and predict the brain responses to

different visual stimuli.

LLM-VEM processes stimulus image features in two stages:

Stage 1 utilizes a frozen image feature extractor, Explore the limits

of Visual representation at scAle (EVA), for feature extraction,

followed by dimensionality reduction via feature projection. To

mitigate overfitting, a portion of the voxel mapping network is

replaced with a Principal Component Analysis (PCA) module,

reducing model parameters. Stage 2 refines the model by

unfreezing specific blocks within EVA while freezing others,

and incorporates the LLM-aligned loss function to further align

stimulus image and text features. By extending unimodal features to

multimodal features, this training paradigm improves the encoding

model performance. LLM-VEM integrates stimulus images and

textual descriptions, aligning them to obtain multimodal feature

information and achieve strong performance.

2.1.8 NeuGPT
NeuGPT is a multimodal language generation model designed

to unify the analysis of various neural recording types (EEG, MEG,

ECoG, SEEG, fMRI, and fNIRS) which have traditionally been

studied separately (Yang et al., 2024). The goal is to create a model

that can process various neural signals and interact with speech and

text, focusing on brain-to-text decoding.

The model is structured in two main stages:

• Stage 1: Neural signal tokenization: this stage focuses on

converting neural signals into discrete codes. It consists

of four components: an encoder that transforms raw

neural signals into embeddings, a quantizer that converts

these embeddings into discrete code indices, a decoder

that reconstructs the neural signals from the quantized

embeddings, and a discriminator that enhances the quality of

the reconstructed signals.

• Stage 2: LLM fine-tuning for neural code understanding:

this stage involves fine-tuning a large language model (LLM)

to understand and generate neural codes, facilitating cross-

modal communication between neural signals, speech, and

text. QWEN2-1.5B, a relatively small but efficient LLM with

a 32K context length, was chosen as the base model for this

fine-tuning.

This model demonstrates the feasibility of translating neural

signals into coherent speech and text, bridging the gap between

brain activity and expressive communication. Highlights the

benefits of a unified framework for processing various types of

neural signal, overcoming the traditional compartmentalization

in neural recording research. The model’s flexibility in handling

various sensor layouts and coordinates allows for broader

application across different experimental settings. The integration

of neural signals into language generationmodels offers insight into

human brain language processing and paves the way for advanced

brain-computer interfaces.

2.1.9 fNIRS and LLM for VR rehab evaluation in
mild cognitive impairment

The study addresses the challenge of effectively evaluating

Virtual Reality (VR) tasks designed for Mild Cognitive

Impairment (MCI) rehabilitation (Zhang et al., 2024b). Traditional

evaluation methods, such as post-training metrics and subjective

questionnaires, do not capture the comprehensiveness and

intensity of cognitive stimulation provided by VR tasks. To

overcome these limitations, Zhang et al. (2024b) proposed a novel

Frontiers inNeuroinformatics 09 frontiersin.org130

https://doi.org/10.3389/fninf.2025.1561401
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Chandrasekharan and Jacob 10.3389/fninf.2025.1561401

approach that integrates functional near-infrared spectroscopy

data with an LLM to evaluate and optimize VR rehabilitation tasks.

The study introduces a systematic paradigm, based on the

Diagnostic and Statistical Manual of Mental Disorders (DSM-

5), to assess the scope of cognitive domains stimulated by

VR tasks. This paradigm enables a unified assessment of

various cognitive domains, including attention, memory, executive

functions, language, visuospatial skills, and psychomotor abilities.

This study uses fNIRS technology to objectively measure cognitive

stimulation with high time resolution. They extract graph

parameters from fNIRS data to quantify brain region connectivity

and efficiency during VR tasks, providing robust neural indicators

of cognitive engagement.

LLM-enabled analysis: A key innovation of the study is

the development of a three-stage prompt strategy to facilitate

LLM-based analysis. The LLM is used to translate complex

metrics derived from fNIRS and the scope of stimulated cognitive

domains into easy-to-understand evaluation reports and actionable

recommendations for VR task optimization. This approach aims to

bridge the gap between complex neural observations and practical

insights for VR task designers.

This approach exhibits the potential of integrating fNIRS data

and LLMs to provide a comprehensive and objective evaluation

of VR rehabilitation tasks. The proposed framework improves

the design and effectiveness of VR interventions for MCI, by

automating the analysis and interpretation of complex neural data.

2.1.10 MindSpeech
A novel AI model, named MindSpeech, is designed to decode

imagined continuous speech using high-density functional near-

infrared spectroscopy (fNIRS). The study aims to develop a non-

invasive brain-AI interface that can translate imagined thoughts

into text, enhancing human-AI communication.

Zhang et al. (2024a) used high-density fNIRS to record

brain signals from participants engaged in an imagined speech

task. They developed a “word cloud” paradigm to elicit a

variety of imagined sentences across a broad semantic space.

In this paradigm, participants were presented with a central

topic word and surrounding keywords and instructed to imagine

sentences using these words. After the imagined speech period,

the participants typed the sentences, providing ground-truth

data for decoder training. In addition, a continuous-wave high-

density fNIRS system was used to collect neurovascular data.

The fNIRS data was preprocessed through several steps, including

conversion to optical density, detrending, motion artifact removal,

and bandpass filtering.

The core of the MindSpeech model involves using a prompt

tuning approach with the Llama2 model. This approach allows

the LLM to generate text guided by the fNIRS brain signals. The

process includes segmenting the imagined sentences into context

input and continuation, converting both context input and fNIRS

signals into embeddings, and concatenating these embeddings as

input to the LLM.

A brain encoding model, using a sequence-to-sequence

(Seq2Seq) neural network with transformers, maps the fNIRS

data to LLM embeddings. The model is trained to predict the

continuation text from the brain signal-generated embeddings

and the context input embeddings. The model’s performance was

evaluated using natural language processingmetrics to compare the

generated sentences with the ground truth. The study also explored

the combination of data from multiple participants to improve the

decoder performance.

2.1.11 Language postdiction vs. prediction in
MEG

A research study by Azizpour et al. (2024) investigated whether

MEG data can reveal predictive information during natural

listening, similar to findings in fMRI. The researchers examined

whether pre-onset neural encoding of upcoming words could

be detected in MEG signals, aligning with results from other

neuro signals. They also tested whether incorporating future word

embeddings, as done in fMRI studies, would enhance the alignment

between MEG data and linguistic predictions. To address

these questions, the study built encoding models using GPT-2

embeddings to map to MEG data recorded while participants

listened to approximately 10 h of narrated stories. The results

showed that the GPT-2 embeddings explain the variability in post-

onset MEG signals. Critically, consistent with electrocorticography

findings, pre-onset representations of upcoming words were

detected up to 1 second before word onset in language-related

regions. However, unlike fMRI findings, including future word

embeddings did not improve MEG encoding.

The study concludes that while MEG can capture pre-

onset representations similar to electrocorticography, the lack of

enhancement with future word embeddings suggests that these

signals might not reflect predictive processing and could be due to

correlations between nearby embeddings and word co-occurrences.

The findings also revealed robust evidence for postdiction. In

general, the study demonstrates the value of MEG combined with

LLMs for studying naturalistic language processing and emphasizes

the need for more research to define evidence for prediction in

this context.

2.2 LLMs for discriminative tasks

2.2.1 EEG-GPT
EEG GPT is an attempt to use a comparatively small training

data set to fine-tune an LLM and achieve performance comparable

to that of other classical approaches in a deep learning context, for

classification of the given EEG signal segment as normal or disease.

It shows that with zero-shot learning, the base LLM yields improved

performance in such classification tasks (Kim et al., 2024). The

pipeline used for this approach generates quantitative EEG features

that are fed to a fine-tuned LLM that uses a specific private

knowledge base. The dataset used here is the Temple University

Hospital Abnormal Corpus, which is made up of 1140 hours of

EEG data acquired from 2,993 subjects. It is balanced between

normal and abnormal recordings to some extent and is further

pre-split into train and evaluation sets for uniformity of evaluation

over experiments.
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Each of the given EEG files is segmented into non-overlapping

20-second epochs and quantitative features such as standard

deviation, kurtosis power ratios, etc. are calculated for each

epoch. Open AI’s Completions APIs are further used to fine-

tune and evaluate on da Vinci GPT-3 base LLM. The original

quantitative features are converted to verbal representation with

the use of prompts, making it generate normal/disease labels at the

output. This solution aims to use 50 times less data, yet provides

performance comparable to that of deep learning approaches such

as ChronoNet, StanfordCNN, and HybridCNN. This study also

highlights the reasoning ability and ability of EEGGPT to make use

of specialist EEG tools on several temporal scales in a gradual and

transparent way. Such a tree-of-thought reasoning approach helps

generate the reasoning behind predictions in a human-readable

form by making use of tools such as qEEG. By going through

multiple segments until the system is confident in predicting the

start and duration of a seizure or as normal, this solution helps to

allow early stoppage of seizures.

2.2.2 Pretrained longformer LLM
This method utilizes a large language model for epilepsy

classification by re-factoring the data for a pre-trained LLM model

(Parani et al., 2024). Such an approach requires minimal retraining

and still results in better performance compared to deep learning

models trained from scratch.

The data preparation stage of the mode converts EEG signals

that are in the form of real numbers into string tokens. Due

to memory limitations, the tokenization is performed on each

of the 20 EEG channels individually. The generated tokens

are divided into segments corresponding to 1 second each to

improve efficiency. Further, a locally deployed open-source LLM—

Longformer—is utilized for learning from generated features, i.e.,

tokens. By using sliding window attention to process tokens

within a specific window and symmetric global attention that

captures relationships between pairs of tokens, LLM is trained for

the given disease classification context. The training is focused

on the classifier layer of Longformer with a chosen set of

hyperparameters for 4 batches. The final classification result of

a segment corresponding to detection or otherwise is performed

by majority voting, where detection over 10 channels indicates a

positive label.

The study further compares the chosen LLM solution against

ViT methods having multiple stages of transformer blocks followed

by a classifier stage. ViT is efficient in extracting spatial features

and short-term local temporal features efficiently. However, its

incapability to capture long-term temporal dependencies and

correlations makes it inferior to the aforementioned LLM method

of disease classification.

2.2.3 NeuroLM—multitask foundation model
Even though there are many advances in large-scale pre-

training with EEG, proving significant potential for advancing

brain-computer interfaces and healthcare applications, current pre-

trained models typically require complete fine-tuning for each

downstream task (Jiang et al., 2024). This limits their flexibility and

leads to inefficient resource usage. This study develops NeuroLM,

a multi-task foundation model that treats EEG signals as a

foreign language, leveraging the capabilities of Large Language

Models (LLMs) to enable multi-task learning and inference.

NeuroLM addresses three major challenges in combining EEG

processing with LLMs: the alignment of EEG and text embeddings,

effective representation learning within the LLM framework, and

unified multi-task learning across diverse EEG applications. This

system introduces a text-aligned neural tokenizer that converts

EEG signals into discrete neural tokens through vector-quantized

temporal-frequency prediction. These tokens are then processed by

an LLM that learns causal EEG information through multi-channel

autoregression and enables the model to understand both EEG and

language modalities.

The architecture of this model is remarkable for its scale

and comprehensive training approach. It features 1.7B parameters

which have been pre-trained on approximately 25,000 h of EEG

data. The data goes into a text-aligned neural tokenizer which

is trained through adversarial training. In the next step, a VQ

encoder helps extract compressed embedding representations for

LLM processing. Finally, multitasking instruction tuning helps to

implement a vast set of downstream applications.

The dataset for the study included six different EEG datasets

to evaluate NeuroLM, TUAB (Harati et al., 2015) (abnormal

detection), TUEV (Zheng and Lu, 2015) (event type classification),

SEED (Zheng and Lu, 2015) (emotion recognition), HMC

(Alvarez-Estevez and Rijsman, 2021) (sleep stage classification),

Workload (Zyma et al., 2019) (cognitive workload classification)

and TUSL (von Weltin et al., 2017) (slowing event classification).

The model performance is demonstrated across six different

tasks, including abnormal detection, event type classification,

emotion recognition, sleep stage classification, cognitive workload

prediction, and slowing type classification. The use of instruction

tuning for multi-task learning in EEG signal processing has shown

remarkable success in this model, thus eliminating the need for

individual fine-tuning while maintaining high performance across

various applications.

2.2.4 Word-level neural state classification
This study makes use of LLMs that are provided by eye-

tracking data and EEG measurements, for the investigation of

neural responses (Zhang et al., 2023). It utilizes the Zurich

Cognitive Language Processing Corpus (ZuCo), focuses on

semantic inference processing and analyzes brain states during

word fixation periods.

The classification pipeline consists of (i) Initial word

classification where two language models evaluate sentences and

words categorized into: high-relevance words (HRW) and low-

relevance words (LRW), (ii) Data processing where joint selection

process identifies shared HRW set, eye-gaze data is used to extract

corresponding EEG signals and four feature-extraction techniques

are applied to reduce signal complexity, and (iii) Classification

System where three distinct classifiers implemented and follow

standard brain-computer interface methodology to perform binary

HRW/LRW classification. It achieved over 60% validation accuracy

across 12 subjects and successfully distinguished between high and

low-relevance word processing. This is the first study to classify
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brain states at the word level using LLM knowledge and contributes

to the understanding of human cognitive processing.

2.2.5 Zero-shot pathology detection
The study integrates clinical EEG data with language modeling

and develops a novel approach for medical diagnostics and

pathology detection, based on an extensive dataset of 15,000 EEGs

paired with corresponding clinical reports (Gijsen and Ritter,

2024). It employs contrastive learning techniques and is one of

the pioneer works in applying multimodal pre-training using

natural language and functional brain data in a medical context. It

seems that exposure to a range of textual material combined with

contrastive learning produces the most accurate representations.

In particular, retrieval performance was significantly enhanced

by integrating data on the patient’s medication and clinical

history with EEG interpretation. Zero-shot pathology detection

also proved to be possible with such multimodal models. It showed

significant performance over EEG-only SSL was noted using linear

probing, with the greatest improvements in situations with a

limited number of annotated samples.

2.2.6 LLM for neural decoding
This study aims to employ LLM to develop a novel neural

decoder for interpreting intracranial EEG (iEEG). It tried to

overcome the limitations of traditional decoders, which often

specialize in specific tasks and struggle to interpret complex, real-

world brain activity (Lee and Chung, 2024).

This novel approach can provide more comprehensive, and

faster interpretations of iEEG signals more efficiently. The GPT-

3.5 turbo model was fine-tuned with preprocessed iEEG signals

categorized by frequency bands [high-gamma (30–200 Hz), beta

(12–30 Hz), and theta (4–8 Hz)] and by the regions of the

brain. These signals were presented as prompts to the model.

A Python-based system was developed to integrate neural signal

processing with the LLM decoder. The authors observed frequent

responses corresponding to visual and auditory stimuli. This

variability in responses to identical prompts highlights a limitation,

which could be addressed through more specific fine-tuning of

the LLM.

2.2.7 LLM on human attention
This research applies LLMs in the context of human attention

and sleep and tries to estimate the stages and quality of sleep

and attention states (Sano et al., 2024). The model can generate

suggestions for improving sleep and adaptive guided imagery

scripts based on electroencephalogram (EEG) and data related

to physical activity. This study’s results show that LLMs can

estimate sleep quality based on human textual behavioral features,

even though it requires further training data and domain-specific

knowledge. The study utilized (a) zero-shot learning: LLMs (GPT-

4, GPT-4 Vision) were used without specific training, relying

on their pre-trained knowledge to interpret the input data. (b)

In-context learning: LLMs (GPT-4) were provided with input

data and label examples within the prompts to enable them to

learn from the context. (c) Fine-tuned LLMs: GPT 3.5 Turbo

was fine-tuned on specific datasets for improved performance,

and (d) traditional Machine Learning: XGBoost, a gradient

boosting algorithm, was used as a benchmark for comparison.

The study focused on using interpretable features (e.g., power

spectrum density) to understand the extent to which LLM

contributes to the detection and improvement of altered states

of sleep.

LLMs, even with fine-tuning, showed lower accuracy in directly

detecting attention states, sleep stages, and sleep quality from EEG

and activity data compared to traditional machine learning models

like XGBoost. This study is done with limited datasets and limited

LLMs. Refining prompts and using large and diverse datasets can

enhance the model’s performance. More extensive training of LLM

can be done with diverse physiological and behavioral data to

effectively capture complex human patterns.

2.2.8 LLM on human reading comprehension
This study developed a Brain-Computer Interface (BCI)

system that can predict the relevance of words during reading

comprehension tasks by integrating EEG and eye-tracking data

with a novel reading embedding representation. LLMs are used to

guide the learning process and understand the underlying semantic

relationships within the text (Zhang et al., 2024c). This study uses

the pre-trained BERT model to generate word embedding that

helps to learn the semantic context of every token within a given

sentence. In addition, it also utilizes important eye-gaze features

such as fixation duration and pupil size, as well as conditional

entropy of the EEG signal at the input. In the next step, these bio-

signal features are normalized and projected into a common space.

The final set of processed features is passed on to an attention-based

transformer encoder combining word embeddings and biosignal

features resulting in effective multimodal representations. This

approach provides a reliable LLM-guided labeling process.

This improvement highlights the superior performance of

the transformer architecture in handling complex, multi-modal

data. This representation, which combined eye-tracking and EEG

biomarkers using an attention-based transformer encoder, had

the highest single-subject accuracy of 71.2% and a mean 5-

fold cross-validation accuracy of 68.7% across nine people using

a balanced sample. This is a pioneer study in eye tracking,

EEG, and LLMs to predict human reading comprehension

at the word level. Without any prior information about the

reading tasks, the Bidirectional Encoder Representations from

Transformers (BERT) model is fine-tuned for word embedding.

The model easily achieves an accuracy of 92.7% despite the lack of

task-specific information.

3 Discussion

The studies considered here show the ability of LLMs to

generate several meaningful features, especially proving to be

promising for use cases where the available data set size is limited.

This is achieved through the use of zero-shot and few-shot learning.

Recent research has shown the effectiveness of LLMs in performing

few shot learnings in domains ranging from seizure forecasting to

EEG textual report generations. Many of these works have reported
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that these transformer architectures are efficient in making use

of in-context learning for zero-shot tasks, merely by utilization

of information given over a textual prompt resulting in better

performance for both generative and discriminative tasks.

One of the key advantages of LLMs is their ability to generate

intermediate reasoning steps for the analysis of complex problems.

The use of strategies such as Chain of Thought for multi-step

calculations with LLM was proven to be effective due to strategic

lookahead and backtracking. Moreover, LLMs are proven to be

capable of using external expert tools in the analysis of EEG

and then synergizing those outputs to generate more meaningful

results, similar to a subject matter expert of the domain.

3.1 Ethical considerations

A serious aspect of using LLMs with neurological signal

processing and analysis is its ethical considerations. The data, that

is fed to the LLMs are personal physiological and behavioral data

which can raise privacy concerns. The users might get worried

about security and confidentiality, as the data is sent to cloud

servers with the use of popular LLMs such as GPT 4, Gemini,

and Claude. Transparency and effective data anonymization are

essential in this regard for avoiding issues due to leakage of data

from cloud platforms. Additionally, concerns are raised around

the generated contents from LLMs, which potentially be harmful

and inaccurate or may intend to manipulate the user. To avoid

this, implementing comprehensive guidelines covering ethical and

safety aspects is necessary.

A possible solution to reduce concerns around privacy and

security is to run the models locally on high-end servers. However,

this requires model pruning resulting in lightweight LLMs well-

suited for local execution with limited resources. Such a solution

often results in compromises around model’s effectiveness in terms

of prediction accuracy and computational time.

3.2 Limitations and future work

The need for LLM in the context of EEG analysis arises

from the gaps that were identified from existing literature. One

major challenge is the limited availability of EEG data. Unlike

image or text data collection, acquiring EEG data is complex.

Expert annotation is particularly time-consuming and results in

small datasets of labeled EEGs for specific BCI tasks. Existing

EEG datasets are not substantial enough to support robust LLM

training required for significant model efficiency gains. Thus the

questions to address are: how can we effectively utilize large-scale

unlabeled EEG data, and what volume of data would be necessary

for training LLMs?

Varying EEG collection configurations pose another challenge

to the use of LLMs for EEG analysis. Although the international

10–20 system provides standardization guidelines for EEG testing,

clinicians often use different numbers of electrodes based on

their specific application requirements. This variability creates a

significant research challenge in adapting various EEG data formats

to align with the input specifications of the neural transformer.

An additional hurdle involves developing effective EEG

representation learning approaches. The primary difficulty is the

low signal-to-noise ratio (SNR) and various types of interference.

Successfully balancing temporal and spatial characteristics is

essential for effective learning of EEG representation. Despite the

existence of various deep learning approaches for raw EEG data

processing, including CNN, RNN, and GNN architectures, many

researchers continue to rely on manually designed EEG features

due to these inherent challenges.
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