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Agricultural spatial division and suggestions for the optimization of the partition space were obtained by constructing a recognition system of the dominant agricultural space. The prerequisite was to master natural economic development in agriculture. It was vital to maintain national food security and promote healthy and sustainable agriculture. The suitability evaluation of agricultural production and the dominance evaluation of agricultural development were incorporated to recognize the dominant agricultural space in Cangzhou, Hebei, China in 2020. Besides, priority scenarios were set, e.g., economic development, low-carbon protection, and coordinated development of a low-carbon economy. The NSGA-II genetic algorithm model was used to optimize the quantitative structure of cultivated lands in the agricultural space of Cangzhou in three scenarios in 2030. The research results are as follows: (1) Cangzhou had the largest number of general suitable areas for agricultural production in 2020, accounting for 27.04%; suitable areas were the least, accounting for 10.99%. The proportion of current cultivated lands in unsuitable agricultural production areas still stood at 11.26%; (2) The dominance of agricultural development in 2020 in Cangzhou was mainly at Tier III, accounting for 33.60% with the general dominance of agricultural development; (3) The total area of the dominant agricultural space in Cangzhou was 238208.75 hm2, accounting for 16.72% of the national territorial area of Cangzhou. It included 35 villages and towns beyond ecological red lines, mainly distributed in the western part of Cangzhou; (4) The agricultural space of Cangzhou in 2030, optimized by the multi-objective NSGA-II genetic algorithm model, exhibited decreased cultivated lands across three scenarios. The total amount of cultivated lands was the largest under the priority scenario of economic development, and that was the smallest under the priority scenario of coordinated development of a low-carbon economy. Meanwhile, agricultural economic benefits and carbon emission density were reduced under three scenarios. The benefits and density were moderate under the coordinated development of low carbon and economy. The work provides a reference for further formulating and improving the policies of the agricultural space in various regions.
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1 Introduction

The national-land space is divided into the functional spaces of cities and towns, agriculture, and ecology based on the requirements of the main functional area (Wang et al., 2019). The food production function in the dominant function of the national-land space corresponding to the agricultural space is the basic demand for human-society development. The 2030 Agenda for Sustainable Development of the United Nations was officially launched on January 1, 2016, to ensure food security and improve the quality and competitiveness of agriculture. The objective of eradicating hunger, achieving food security, and improving nutrition and agriculture ranks second among 17 sustainable development goals, which shows the importance of food security. As a large agricultural country, China is facing food security issues and a series of environmental challenges. The economic contributions of agriculture are significant, yet it exerts both carbon source and carbon sink impacts. On the one hand, the carbon emissions caused by agricultural production account for about 25% of the global total (Federici et al., 2015; Le Quéré et al., 2018); on the other hand, agriculture has great potential for emission reduction. Reducing carbon emissions has become a common goal pursued by people around the world with the improvement of low-carbon awareness. The rapid development of China’s urbanization leads to the decreased resources of cultivated lands and the non-grain cultivation of cultivated lands. Related to food security, the issue has a dynamic and nonlinear coupling relationship with resource and ecological and livelihood security (Cao et al., 2022). The demand for agricultural lands in certain regions has expanded beyond traditional food production, encompassing the needs for food and clothing. Various new formats represented by profitable agriculture and ecological agriculture are emerging (Ma and Yan, 2016). Therefore, optimizing the spatial arrangement of agricultural production has become an important measure closely related to the national food security strategy and spatial multi-functional planning. Then, agricultural development and national food security can be guaranteed, with the dominant agricultural space recognized. Ecological agriculture, reflecting the space for innovation in the business model, has great potential for innovation in technology and methods. In terms of technical methods, reducing carbon emissions in arable land is closely related to the carbon emission density.

There are fewer studies on the dominant agricultural space. Gu and Cao (2019) proposed permanent rural areas, focusing on determining the most suitable areas with high yield and stable production potential for agricultural development. Besides, the concept of the superior agricultural space is expanded. Su et al. (2020) introduced the evaluation of agricultural infrastructure and village protection areas based on the suitability evaluation of agricultural production. The dominant agricultural space is divided into protection zones for farmland production, village, and agricultural infrastructure. It emphasizes the assessment of farming style, agricultural facilities, and agricultural production level. The agricultural production space is expanded, with the elements of agroecological environmental protection included.

Most research complies with the Guide for Resource and Environmental Carrying Capacity and the Suitability Evaluation of National Land Space Development (hereinafter referred to as the Dual Evaluation Guide). The suitability of production is evaluated based on the resource endowment of the land. However, the economic and ecological functions of land are ignored. The evaluation system constructed based on natural factors is one-sided and lacks further subdivision of the agricultural space. The recognition of the dominant agricultural space aims to optimize resource allocation, rural economy, and ecological environment. Important support is provided for food security and rural revitalization. Therefore, the construction of a complete, unified, and comprehensive evaluation system has gradually become the research focus.

Existing research focuses on single-target space optimization based on the optimization of the national land space. They ignore that the national land space is an extremely complex system covering various elements (e.g., capital, labor, and land). The optimized allocation of the national land space is to coordinate the contradictions of multiple parties and realize the rational allocation of resources. Intelligent algorithms for solving multi-objective problems have become a hot research topic with the rapid development of computer technology. Some researchers used optimization algorithms (e.g., the multi-objective particle swarm) to study the optimal configuration of land use structures from multi-objective trade-offs and synergy (Ghoseiri and Ghannadpour, 2010).

The suitability evaluation of agricultural production is an important part of the suitability evaluation of the national land space in the Dual Evaluation Guide. It underwent multiple rounds of evolution from January 2019 to January 2020. The continuous improvement of its index system is of great significance to the layout optimization of the national land space. Researchers divided the construction of its evaluation system into two parts. One part includes topography, climate, soil, water sources, and meteorological disasters (Pan et al., 2022). The other part is to add socioeconomic indicators based on natural resources (Akpoti et al., 2019). The indicator system is enhanced; however, the selection of socioeconomic indicators remains incomplete. Evaluation methods evolve from subjective judgments (e.g., the fuzzy analytical method (Budak et al., 2024) and AHP method (Budak et al., 2024)) to 3S technology (remote sensing, geographic information system, and GPS) (Amini et al., 2020; Hossen et al., 2021). The suitability evaluation is more scientific, accurate, and objective.

A dominant evaluation of agricultural development based on the evaluation of economic, social, and ecological factors is introduced due to the imperfect selection of socioeconomic indicators. The dominance of agricultural development is considered to be the comprehensive embodiment of various advantages such as location (Branco et al., 2021), production (Rana et al., 2023), resources (Fu et al., 2022), and market (Hernández-Cruz et al., 2023). On the one hand, agricultural dominance is reflected in the selection and planting of dominant crops (Konefal et al., 2023) because of previous research on the dominance of agricultural development. Increased output of agricultural products promotes agricultural production and agriculture. On the other hand, it is reflected in the external environment as influencing factors such as location (Branco et al., 2021), agricultural economy (Ngwira et al., 2012), and agroecology (Pradeleix et al., 2022). The former conducts a more micro-evaluation of the dominant agriculture development, which is suitable for the precise analysis and improvement of certain major crops. The latter focuses on evaluating economic and ecological factors, filling the shortcomings of the Dual Evaluation Guide. The use of mathematical analysis and intelligent algorithms (Nguyen et al., 2020; Ayoub Shaikh et al., 2022) in the evaluation method enhances the evaluation process.

Located in the heart of circum-Bohai-Sea, Cangzhou is an open first-tier area of the two circles (Beijing-Tianjin Circle and circum-Bohai-Sea) determined by Hebei Province. Meanwhile, it is also the main cotton grain-grain-producing area in Hebei Province (Song et al., 2018). The continuous economic development has made it the largest salinized soil area with the poorest land production conditions in Hebei Province, caused by both natural and human factors. President Xi Jinping proposed to implement the strategy of cultivated land protection and using technology in agriculture when he visited the saline-alkali fields of Cangzhou on May 11, 2023. It is crucial to strengthen cultivated land protection, make every effort to improve cultivated land quality and fully tap the potential of comprehensive utilization of saline and alkaline lands. Then, the agricultural production space can be expanded, and the comprehensive agricultural production capacity can be improved. A definitive path is provided for agricultural developments in the future.

The dominant agricultural space is recognized, and the agricultural space pattern is optimized based on the natural economic development in agriculture in Cangzhou. It holds great guiding significance for the sustainable and healthy development of agriculture and coordinates food security and socioeconomic and ecological development in the future. Therefore, the suitability evaluation of agricultural production is incorporated into the dominant evaluation of agricultural development. The multi-element comprehensive evaluation matrix is used to recognize the dominant agricultural space in Cangzhou in 2020 beyond ecological red lines. Agricultural economic benefits and carbon emission density are calculated with the multi-objective NSGA-II genetic algorithm model. Then, the optimized quantitative structure of cultivated lands in each village and town will be obtained in Cangzhou in 2030.



2 Data sources and methods


2.1 Overview of the research area

Located in the southeast of Hebei Province, Cangzhou borders the Bohai Sea to the east, Beijing and Tianjin to the north, and Shandong to the south (Figure 1). It is located between north latitude 37°29′–38°57′ and east longitude 115°42′–117°50′. It lies in the eastern part of the vast and expansive Central Hebei Plain, characterized by a relatively flat topography with minimal undulations. The predominant soil types are moisture soil and salinized moisture soil. The organic matter content in the soil is low, which leads to insufficient fertility. The climate is manifested as warm temperate continental monsoon, with four distinct seasons and abundant sunshine. The annual average temperature is 12.5°C, and the mean annual precipitation is 581 mm. The permanent population of Cangzhou reached 7.3148 million, with a rural permanent population of 3.4496 million by the end of 2022. Besides, the per capita disposable income for rural residents amounted to 18,617 CNY.

[image: Map showing Cangzhou in Hebei Province, China. The left side highlights Cangzhou's location within Hebei, marked in yellow. The right side details land use in Cangzhou with categories: farmland, woodland, grassland, water area, construction land, and unused land, as shown in the legend.]

FIGURE 1
 Location plan of the research area.




2.2 Data sources

The land use data and soil erosion data for 2000, 2010, and 2020 were derived from the Resource and Environment Data Center of the Chinese Academy of Sciences (CAS).1 Lands were categorized as cultivated land, woodland, grassland, water, construction land, and unused land, with a spatial resolution of 30 × 30 m. The categorization referred to the remote sensing monitoring and classification system of the CAS and the actual situation. Soil texture data were obtained from the World Soil Database.2 DEM data were derived from the geospatial data cloud platform,3 and the slope database was obtained through ArcGIS processing. Soil salinization data were obtained from the global salinity data set under GEE pretreatment.4 Precipitation data were derived from the National Earth System Science Data Center.5 Data on agricultural socioeconomic development were obtained from the Cangzhou County-level statistical yearbook.



2.3 Methods

This research framework is mainly divided into the following four steps (Figure 2). Step 1 is to construct an agricultural-production suitability evaluation system through field research and obtain the results of the suitability evaluation of agricultural production in Cangzhou City in 2020. In step 2, an agricultural development advantage evaluation system is constructed based on a large number of township’s agricultural data to obtain the dominant evaluation of agricultural development in Cangzhou City in 2020. In step 3, the evaluation results of steps 1 and 2 are used to identify the dominant agricultural space that is suitable for agricultural production and has great development potential. Step 4 is to calculate the carbon emission density and agricultural economic benefits, which is used as a future optimization goal. The multi-objective genetic algorithm model is used to obtain the quantitative structure of cultivated land in Cangzhou City in 2030 under the priority scenarios of economic development and low-carbon protection as well as the coordinated development scenario of low-carbon and economy.

[image: Flowchart depicting a process for advantageous agriculture. It includes four main sections: data gathering, identification system construction, advantageous spatial identification, and optimization results. Each section outlines related activities and evaluations, such as evaluating needs, assessing agricultural production suitability, zoning for production, and using an optimization model for decision-making and economic scenarios.]

FIGURE 2
 Logical framework and flow chart.



2.3.1 Construction of suitability evaluation system for agricultural production

The work evaluated the suitability of agricultural production from the perspective of natural resource endowment with the Dual Evaluation Guide as the main basis for selecting evaluation factors. The selection of evaluation indicators fails to adequately consider numerous socioeconomic factors (Author, 2022). Therefore, the evaluation of land resources (slope, soil texture), water resources (mean annual precipitation), land environment (soil conservation), and meteorological disasters (drought, flood) were carried out, respectively, by considering the reality and pertinence of agricultural production. Figure 3 shows evaluation indices. The preliminary results of Cangzhou’s 2020 suitability evaluation of agricultural production were obtained. There were most of the saline-alkaline lands in the eastern part of Cangzhou according to field research, which accounted for a large proportion of cultivated lands. It caused waste and destruction of cultivated land resources. Therefore, the corresponding weight of each index was obtained using the analytic hierarchy process by correcting the first step result through the correction index (soil salinization). Finally, the suitability evaluation of agricultural production was obtained.

[image: Set of six thematic maps illustrating environmental variables across a geographic area: (a) slope, (b) soil texture, (c) mean annual precipitation, (d) soil conservation, (e) drought, and (f) flood, with corresponding legends indicating variable intensities.]

FIGURE 3
 Suitability evaluation index of agricultural production.




2.3.2 Construction of the dominant evaluation system of agricultural development

In terms of the allocation and input of the basic elements of agricultural production, agricultural development dominance aims to pursue the high quality and high efficiency of the agricultural economy. This concept covers Cangzhou’s multiple advantages such as natural resource endowment, economic and industrial foundation, agricultural production input, and modernization level, reflecting comprehensive advantages in the agricultural production process. Based on agricultural modernization (Zapata et al., 2023), sustainable agricultural development (Ren et al., 2022), high-quality agricultural development (Cui et al., 2022), agricultural competitiveness (Schaller et al., 2018), and agricultural suitability (Budak et al., 2024), the work adheres to typicality, scientificity, systematicness, and operability.

Ten indicators (Figure 4) were selected from agricultural production conditions (effective irrigation rate, agricultural mechanization level, and concentrated contiguous degree), agricultural quality and benefits (average agricultural output per land and average agricultural output per worker), benefits of operating organization (farmers’ per capita disposable income, agricultural industrialization rate, and the proportion of employees in the primary industry), and ecological coordination ability (agricultural plastic film load, fertilizer, and pesticide load). A comprehensive evaluation index system was constructed for agricultural development dominance. Data for each index of villages and towns were extracted into a table. The entropy weight method was then applied in SPSS to calculate index weight within the evaluation system of agricultural development dominance. Finally, the evaluation index system of agricultural development dominance for Cangzhou was obtained.

[image: A series of ten maps shows different agricultural metrics across a region. Each map uses color gradation to represent data, including effective irrigation rate, connectedness, mechanization, agricultural output per land and worker, farmers' disposable income, industrialization rate, employee proportion in primary industry, agricultural plastic film load, and fertilizer/pesticide use. The maps are labeled from a to j and include a north arrow for orientation.]

FIGURE 4
 Evaluation indicators of agricultural development dominance.




2.3.3 Recognition of the dominant agricultural space

The work defined the dominant agricultural space as a specific regional area with suitability for agricultural production and high agricultural development dominance. It was recognized through a comprehensive assessment of natural conditions, agricultural production potential, and ecological environment. These areas were suitable for specific crop cultivation, livestock breeding, or other agricultural activities under natural conditions. Meanwhile, these specific regional areas boasted favorable market prospects, policy support, and resource conditions under socioeconomic conditions, with the potential to prioritize agricultural industries.

Based on the comprehensive analysis of the suitability evaluation of agricultural production and the evaluation of the superiority of agricultural development, the multi-element comprehensive evaluation matrix is used outside the red line of ecological protection to make qualitative decisions and delineate the dominant agricultural space. Single-element evaluation levels I-V for agricultural production suitability and agricultural development dominance were classified into weak, medium, and strong based on levels I-II, III, and IV-V. A 2D matrix of 3 × 3 was constituted and theoretically offered 9 combinations for elements.

The dominant agricultural space includes the following aspects: (1) units with level-V agricultural development dominance in a suitable area for agricultural production; (2) units with a level-V agricultural development dominance in a relatively suitable area for agricultural production; (3) units with level-IV agricultural development dominance in a relatively suitable area for agricultural production. Besides, the agricultural space units other than the dominant agricultural space are divided into the potential area and unfavorable development area for agriculture.



2.3.4 Construction of multi-objective NSGA-II genetic algorithm model

Considering the agricultural economic benefit target and the low-carbon target, the work used a multi-objective NSGA-II genetic algorithm for optimization. The genetic algorithm evolves the entire population based on natural selection and genetic mechanisms in the biological world through large-scale calculations and parallel searches. Traditional genetic algorithms transform the multi-objective optimization problem into a single-objective problem by the fitness function. The selection of the fitness function affects the convergence speed of the algorithm and whether the optimal solution can be obtained. Improper selection of the fitness function will cause local optimization during the solving process.

An improved genetic algorithm (NSGA-II) is used in the work. The algorithm can solve nonlinear optimization. Traditional multi-objective optimization methods (the weight-adding summation method, linear programming method, and ε-constraining method) are ineffective or even counterproductive without experience (Bu et al., 2021). Three major advantages of the algorithm in solving multi-objective problems include fast non-dominated sorting, individual congestion degree, and elitist strategy. The purpose of genetic algorithms is to find the individual with the highest fitness value, that is, the optimal solution to the fitness function. According to the objective function for solving the problems, the fitness function is designed under normal circumstances to reflect the merits of the individual. The fitness function only needs to accurately reflect the merits of the individual. Its crossover probability is 0.9; the crossover-distribution index is 20; mutation probability is 0.1; the variation-distribution index is 20; the population quantity is 100; the iteration number is 200. Matlab programming is used to obtain the Pareto-optimal solution set (Figure 5).

[image: Flowchart depicting a genetic algorithm process. It begins with population initialization, followed by non-dominated sorting and congestion calculation. Algebra is set to one, and a pairwise comparison for order numbers is conducted. Based on results, individuals with small sequence numbers or high congestion are chosen. Thereafter, crossover and variation occur, and populations merge. Non-dominated sorting is reiterated before introducing an elitist strategy. The algebra is incremented, and the process repeats if algebra is less than a set value; if not, it ends.]

FIGURE 5
 Optimization process of the NSGA-II genetic algorithm.




2.3.5 Setting of optimized decision variables

The work recognizes the dominant agricultural space by taking cultivated lands as the research object. The decision variable in the multi-objective NSGA-II genetic algorithm model is set to be the cultivated land area across 176 villages and towns within Cangzhou ([image: Mathematical notation displaying the variable "x" with the subscript "1".], [image: Mathematical notation showing "x squared," where the variable x is raised to the power of two.], [image: "x subscript three", a mathematical notation where the lowercase letter x is followed by the number three in subscript. ], [image: Mathematical notation of the variable x raised to the power of 4.]……, and [image: The image shows the mathematical notation for the variable \( x \) with a subscript of 176, represented as \( x_{176} \).]).



2.3.6 Construction of the optimized objective function


2.3.6.1 The objective of agricultural economic benefits

The dominant agricultural space aims to maximize the agricultural economic output on cultivated lands under the premise of food security. Therefore, agricultural economic benefits are maximized for economic benefits.

[image: The mathematical expression shows a function \( f(X_1) \) equal to the maximum of the summation of \( c_k \times x_i \) from \( i = 1 \) to \( n \). This is equation (1).]

[image: The image shows a mathematical equation: c sub k equals the summation from k equals one to m of s sub k times p sub k. The equation is labeled as equation (2).]

[image: \( p_k = \left(\frac{\text{actual value of single index}}{\text{standard value}}\right) \times 100\% \quad (3) \).]

where [image: Mathematical expression "f" of "X" subscript "1".] is the economic benefit of the research area; [image: Lowercase "c" with subscript "k".] is the comprehensive index of agricultural economic benefits; [image: Mathematical notation showing a variable \(x\) with a subscript \(i\).] is the cultivated land area in different villages and towns; [image: Text "s" with a subscript "k".] is the weight of indices for various agricultural achievements; [image: The image shows the mathematical notation "p" with a subscript "k".] is the target index for various agricultural achievements.

The selection of agricultural achievement indicators and the comprehensive indicator of agricultural economic benefits refer to the selection of some indicators proposed by Liu et al. (2003). Land productivity is measured by the average output and income per acre. Labor productivity is measured by the average output value and income of labor. The entropy value method is employed to determine the weight of each index based on the construction of an index system. Finally, the comprehensive index of agricultural economic benefits is calculated according to Equation 2.



2.3.6.2 The objective of carbon emissions

Enhanced economic benefits in agriculture inevitably lead to carbon emissions during agricultural production in the pursuit of food security. Therefore, reducing carbon emissions per unit area of cultivated land in the agricultural process has become the optimization goal of the dominant agricultural space under low carbon.

[image: A mathematical expression: \( f(X_2) = \min \left( \sum_{i=1}^{n} \frac{k_{ij} q_j}{x_i} \right) \).]

where [image: \( f(X_2) \)] is the carbon emission density of agriculture; [image: The image shows the mathematical expression "k" with subscript "i" and "j".] is the usage amount of fertilizers, pesticides, agricultural films, and agricultural diesel in each village and town (t) and the effective irrigation area (hm2); [image: Mathematical expression showing the letter "q" with a subscript "j".] is the carbon emission factor of the emission source from the jth category of agricultural production activities (Table 1); [image: The image shows the mathematical symbol \(x_i\), representing an element in a sequence or vector, where \(x\) is indexed by \(i\).] is the cultivated area in different villages and towns. Among them, the usage amount of fertilizers, pesticides, agricultural films, agricultural diesel fuel (t) and effective irrigated area (hm2) in each village and town were predicted by the GM model to get the corresponding data of each village and town in 2030, and combined with the known carbon emission factors of each type of emission source as shown in Table 1.



TABLE 1 Carbon emission factors of emission sources in agricultural production activities.
[image: Table displaying emission sources, factors, and references. Fertilizers have an emission factor of 0.8956 grams of carbon per kilogram, referenced by Oak Ridge National Laboratory. Pesticides: 4.9341 kilograms of carbon per kilogram, Agricultural films: 5.18 kilograms of carbon per kilogram, Agricultural diesel: 0.5927 kilograms of carbon per kilogram, referenced by Zaman et al. (2012). Effective irrigation area: 20.48 kilograms of carbon per hectare, referenced by Liu et al. (2021).]

Establishment of the optimized constraint equation

	1. The total cultivated area in Cangzhou does not exceed the predicted value of 1,070,319.96 hectares by the Markov Chain model for 2030. The tested kappa coefficient is 0.86, which meets the consistency test. The prediction result is reliable. Besides, it is not lower than the cultivated land quantity of 633,473.33 hectares.
	2. The cultivated land area in each village and town is not higher than that in 2020.






3 Results


3.1 Suitability evaluation and analysis of agricultural production

The suitability evaluation of agricultural production for Cangzhou in 2020 is categorized into five levels (from unsuitable to suitable) (Figure 6). The ArcGIS software analysis and the natural breakpoint method are bused based on the suitability evaluation index system of agricultural production (Table 2). The total number of unsuitable and less suitable areas for agricultural production reached 39.47% of the national territorial area (Table 3), with the most generally suitable areas and the least suitable areas. 11.26% of current cultivated lands in Cangzhou are still unsuitable for agricultural production by comparing the suitability evaluation of agricultural production with the current cultivated lands in Cangzhou. However, there are more cultivated lands in suitable and relatively suitable areas, which account for 28.16 and 25.87%, respectively (Table 3).

[image: Map of a region divided into townships, showing suitability areas for a specific purpose. Areas are color-coded: green for suitable, yellow for relatively suitable, orange for generally suitable, brown for less suitable, and pink for unsuitable. Township and county boundaries are marked, with a scale bar indicating distances. Names of townships like Qingxian, Huanghua, and Cangxian are labeled.]

FIGURE 6
 Spatial distribution of the suitability evaluation of agricultural production in Cangzhou in 2020.




TABLE 2 Suitability evaluation system of agricultural production.
[image: Table detailing the suitability valuation of agricultural production, divided into criterion layers with weights and indices. Categories include land, water, land environment, and meteorological disasters, with factors like slope, soil texture, and precipitation. Grading levels range from one to five, indicating different suitability based on specified indices such as slope degrees, soil texture percentages, and precipitation in millimeters. Each criterion and index has associated weights, contributing to the overall evaluation.]



TABLE 3 Areas of agricultural production suitability in Cangzhou in 2020.
[image: Table showing the suitability evaluation of agricultural production. Five grading areas are listed: unsuitable, less suitable, generally suitable, relatively suitable, and suitable. Total land area and current cultivated land are displayed with respective areas in hectares and proportions in percentages. For total land: unsuitable (214,680.15 ha, 15.07%), less suitable (347,483.61 ha, 24.40%), generally suitable (385,129.89 ha, 27.04%), relatively suitable (320,509.80 ha, 22.50%), suitable (156,787.95 ha, 10.99%). For cultivated land: unsuitable (123,494.13 ha, 11.26%), less suitable (266,057.10 ha, 24.27%), generally suitable (308,653.29 ha, 28.16%), relatively suitable (283,646.34 ha, 25.87%), suitable (114,511.95 ha, 10.44%). Total land areas are 1,424,591.40 hectares for both categories.]

Affected by the dual influence of sea tide and seawater-type groundwater, the soil type in Cangzhou City is mainly coastal saline-alkaline soil. Therefore, unsuitable and less suitable areas for agricultural production are mainly distributed in Huanghua City, Haixing County, and most towns in Qing County in the east of Cangzhou, which are not conducive to agricultural cultivation and development.



3.2 Analysis of the dominant evaluation of agricultural development

Level grading (I-V) of agricultural development dominance in Cangzhou in 2020 is obtained by ArcGIS software based on the natural breakpoint method (Figure 7) and dominant evaluation system of agricultural development (Table 4). Construction-land planning is preferred in the future due to limited agricultural lands or cultivated lands in the sub-districts of Cangzhou. Therefore, sub-districts are categorized as non-agricultural spaces. Table 5 lists the division area of agricultural development dominance. The majority of areas in Cangzhou in 2020 are classified as Level-III, with general agricultural development dominance. Level-III areas are mainly distributed in the central part of Cangzhou from spatial distribution. Dominant areas of agricultural development are primarily concentrated in Huanghua City in the east of Cangzhou, Qing County in the north, Hejian City in the west, and some towns in Botou City in the southwest. Level-I areas are mainly distributed in Mengcun Hui Autonomous County, Haixing County, and some villages and towns in Yanshan County.

[image: Map of a region with township and county boundaries. Areas are color-coded by levels: non-agricultural (gray), Level I (dark blue), Level II (blue), Level III (yellow), Level IV (orange), and Level V (red). Locations like Hejian and Huanghua are labeled. A compass indicator shows north.]

FIGURE 7
 Spatial distribution of dominant evaluation for agricultural development in Cangzhou in 2020.




TABLE 4 Index system of dominant evaluation for agricultural development.
[image: Table detailing the dominant evaluation of agricultural development across four categories: production conditions, quality and benefit, organization benefit, and ecological coordination. Each category is subdivided into specific criteria such as irrigation rate and mechanization level, with corresponding weights and index levels. Five factor grades assign levels based on numerical ranges for analysis.]



TABLE 5 Area of agricultural development dominance in Cangzhou in 2020.
[image: Table showing the dominant evaluation of agricultural development with total land area. Non-agricultural area is 33,132.47 hectares, 2.32%. Level I: 125,584.83 hectares, 8.80%. Level II: 188,030.97 hectares, 13.17%. Level III: 479,636.46 hectares, 33.61%. Level IV: 358,908.3 hectares, 25.14%. Level V: 242,147.07 hectares, 16.96%. Total: 1,424,591.4 hectares, 100%.]



3.3 Recognition of the dominant agricultural space

The total area of dominant agricultural space in Cangzhou in 2020 is 238208.75 hm2, accounting for 16.72% of the national territorial area of Cangzhou. The area includes 35 village-and-town units (Figure 8). They are mainly distributed in most villages and towns in Suning County and Hejian City in the western part of Cangzhou as well as some villages and towns in Botou City in the southwest. Non-agricultural area, agricultural unfavorable development area, agricultural potential development area, and ecological protection area proportions are 2.32, 8.80, 70.31, and 1.85%, respectively (Table 6). The agricultural unfavorable development areas in Cangzhou are limited, primarily concentrated within certain villages and towns located in the eastern part of Haixing County. The majority of Cangzhou is agricultural potential development areas, with great potential for agricultural development.

[image: Map showing township and county boundaries with color-coded regions indicating land use types: non-agricultural areas in gray, ecological protection in green, and various agricultural development zones in yellow, orange, and red. A compass rose is in the top right.]

FIGURE 8
 Distribution of the dominant agricultural space in Cangzhou in 2020.




TABLE 6 Area of agricultural advantage development in Cangzhou in 2020.
[image: Table showing the recognition of dominant agricultural space by graded area. The total land area and proportions are as follows: Non-agricultural area: 33,132.47 hm² (2.32%), Unfavorable development area: 125,409.70 hm² (8.80%), Potential development area: 1,001,547.12 hm² (70.31%), Advantage development area: 238,208.75 hm² (16.72%), Ecological protection area: 26,293.36 hm² (1.85%), Total: 1,424,591.40 hm² (100%).]

Natural resources and economic and social benefits should be fully utilized based on dominant agricultural spaces. The formulation of agricultural development plans tailored to local conditions is essential to maximize the potential for agricultural industries. The act helps to clarify the core spatial layout of future agricultural production. Then, the safety of food production and the modernization of rural areas can be guaranteed. Meanwhile, rural ecological environment and regional characteristics can be protected and inherited by combining ecological red lines. The upgrading and transformation of agricultural potential development areas are the focus of future agricultural work. An agricultural potential development area can be transformed into an agricultural dominant development area. The transformation is based on the gradual improvement of production conditions with the goal of food efficiency and sustainable development.



3.4 Optimized analysis of the multi-objective NSGA-II genetic algorithm

The multi-objective NSGA-II genetic algorithm can be used to coordinate contradictions between goals during optimization. The solution set of objective functions includes 100 Pareto-optimal solutions (Figure 9) under the coordinated development of low carbon and economy. Solutions with maximum economic benefits, minimal carbon emission density, and the intermediate of both are selected, respectively (Table 7).

[image: Scatter plot showing a Pareto Optimal Front, illustrating the trade-off between agriculture economic benefit (horizontal axis, \(-9.35\) to \(-9.15\) × 10\(^5\) W) and carbon emission density of agriculture (vertical axis, 3.4 to 4.4 × 10\(^5\) g/hm\(^2\)). Points are concentrated in an L-shape, indicating a negative correlation.]

FIGURE 9
 Pareto-optimal solution of the multi-objective scheme in the last iteration.




TABLE 7 Comparison of optimized schemes of the multi-objective NSGA-IIgenetic algorithm.
[image: A table compares four scenarios: "Basis period (Year 2020)," "Priority for economic development," "Priority for the," and "Coordinated development of low carbon and economy." For each scenario, it lists "Cultivated land area," "Agricultural economic benefit," and "Carbon emission density" with corresponding values. The basis period has 1,088,098.84 hectares, 979,288.96 w economic benefit, and 522,360.74 grams per hectare of carbon emission density. Subsequent scenarios show varying values with a decrease in carbon emission density and cultivated land area for "Coordinated development."]


3.4.1 Priority scenario of economic development

The agricultural economic benefits of cultivated lands in Cangzhou were maximized under the priority scenario of economic development. The total cultivated land area was reduced by 331,123.96 hm2 compared with that in the basis period (2020). The benefits decreased by 45,181.95 w compared to that in 2020 due to the decreased cultivated land area. However, it increased by 14,955.46 w and 7,905.14 wan yuan, respectively, compared with the other two scenarios. Prioritized economic interests can reduce the negative impact of carbon emissions on sustainable economic development according to the sustainable development principle of resources and the environment. Besides, farmers’ income and rural industrial structure can be upgraded.

The following measures can be adopted for the above goal.

	1. Promote agricultural high-tech technologies and agricultural modernization as well as cooperation among governments, enterprises, and farmers. Constructure extension service institutions for agricultural high-tech technologies. Enhance policy support for the promotion and application of agricultural high-tech technologies, and encourage farmers to participate in the promotion and application of these technologies;
	2. Adjust the structure and layout of agricultural production should be adjusted. Transform the industrial structure and train new agricultural industries. Optimize the production model, with the market as the guiding principle and technology as the support. Guide farmers through planting technology, product sales, and services to transform production from decentralized to regionally large-scale and professional;
	3. Land transfer and scale operation are the basis for modern agriculture under the integration of urban and rural development. The management rights can be transferred widely through the independent exercise of land management rights. It is conducive to optimizing the allocation of land resources, land productivity, labor productivity, and resource utilization rate under the market mechanism. Various business entities, large-scale agriculture, and intensive agricultural operations can be improved.



3.4.2 Priority scenario of low-carbon protection

The carbon emission density of cultivated lands in Cangzhou was minimized under the priority scenario of low-carbon protection. The total cultivated land area was reduced by 331,238.40 hm2 compared with that in the basis period (Year 2020). However, the carbon emission reduction was ideal, and the carbon emission density was reduced by 194,535.81 g/hm2 compared to that in 2020. The carbon sequestration of the cultivated land system is important to regulate carbon emissions from land use and achieve the “dual carbon” target. Specifically, increased food production in China mainly depends on the large-scale investment of fertilizers, pesticides, and other agricultural means of production. The application of fertilizers in the cultivated land system is a significant contributor to carbon emissions. Therefore, optimizing the quantitative structure of cultivated lands can promote low-carbon agriculture under the premise of food security based on the priority principle of low-carbon protection. Besides, it is of great significance for the sustainable development of cultivated land resources in the future.

The following measures can be adopted for the above goal

1. Promote new low-carbon agricultural production technologies. Use agricultural production machinery with clean energy. Update water-saving agriculture and irrigation systems to increase crop yields and reduce carbon emissions;

	2. Reduce fertilizer inputs and increase the amount of organic fertilizers to reduce pollution and waste of resources in agricultural production. Promote conservation tillage, straw turnover, and farmland shelterbelt construction for the carbon sequestration capacity of agricultural lands;
	3. Strengthen the environmental consciousness of farmers, their education on environmental awareness, and their knowledge and motivation toward carbon sequestration. Establish relevant policies and regulations to encourage farmers to adopt environmentally friendly production methods and behaviors.



3.4.3 Scenario of coordinated development of low carbon and economy

Agricultural economic benefit and carbon-emission-density level are in a medium position under the scenario of coordinated development of low carbon and economy. The benefit and density level were reduced by 79.0514 million CNY and 16454.99 g/ hm2, respectively, compared with the agricultural economic benefits in the priority scenario of agricultural development and the carbon emission density in the priority scenario of low-carbon protection. The cultivated land area of each village and town in Cangzhou is the optimal quantitative structure of cultivated land in the future under the coordinated development of a low-carbon economy. A low-carbon economy mainly emphasizes the importance and necessity of environmental protection and energy saving based on low energy consumption and low emissions. It is urgent to transform agricultural economic growth from the model of high consumption and low output to that of low consumption and high output. The green and low-carbon development of agriculture is required in the city, and the symbiotic relationship between the economy and the environment should be coordinated. Finally, a low-carbon economic growth model characterized by green-cycle development can be achieved (Zeng and Deng, 2023).

The following measures can be adopted for the above goal.

	1. Promote clean production technologies for circular agriculture based on the principles of recycling, reduction, and reuse. Besides, resource recycling mechanisms should be formulated for the reuse of resources. Increase the benefits of rural production and management to reduce carbon emissions for the sustainable development of the rural low-carbon economy;
	2. A suitable ecological development model is required to develop ecological agriculture. Then, land resources should be fully used to improve production and land utilization;
	3. The agricultural landscape construction and the ecological value assessment of agricultural products should be carried out. The incentive mechanisms of ecological compensation should be explored to promote the comprehensive management of agricultural ecosystems and the extension of value chains of agricultural products.





4 Discussion


4.1 Existing conclusions

The objective corresponded to the improved quality of cultivated lands in Cangzhou and sustainable agricultural development. Based on the suitability evaluation of agricultural production, the work explored the suitability of agricultural production under natural resources and the agricultural-development dominance hierarchy under economic, social, and ecological factors. The dominant agricultural space was determined by constructing a 2D judgment matrix. The quantitative structure of cultivated lands within each village and town in Cangzhou in 2030 was obtained under different scenarios in terms of the multi-objective NSGA-II genetic algorithm model. It is of certain significance to improve regional agricultural policies as well as the green and high-quality agricultural space in the new era.

The basis for building a recognition system of the dominant agricultural space is to explore the natural economic development of agriculture in the research area. Generally, the suitability evaluation of agricultural production is used to reflect the natural development of agriculture. Zhu et al. (2022) found that most existing ALSE studies consider soil conditions and climate. However, there is less research on socioeconomic factors, which aligns with the development of a recognition system of the dominant agricultural space in the work. The dominant evaluation of agricultural development is combined with the suitability evaluation of agricultural production to make up for the lack of socioeconomic factors in the evaluation. The two encompass natural and socioeconomic ecological elements, which reflect the versatility of the agricultural space.

Agricultural versatility and agricultural policies have always been the research focus. The quantitative expression of agricultural versatility has been widely recognized based on the index quantitative system. Studies have proved that the level of development of multifunctionality in regional agriculture depends on the region’s agricultural resource endowment and stage of socioeconomic development (Wilson, 2008). A recognition system of the dominant agricultural space is constructed. Guo et al. built an evaluation system for agricultural modernization development to analyze agricultural modernization development, regional differences, and obstacles in Hebei Province. They used comprehensive production capacity, industrial management capacity, and high-quality and high-efficiency capabilities. Cangzhou ranks second among 11 cities with a favorable trend of agricultural modernization, which is similar to the dominant evaluation of agricultural development in the work.



4.2 Limitations

However, the work still exhibits certain deficiencies.

	1. The division theory and methods of the dominant agriculture space still need to be explored. The combination of traditional suitability evaluation of agricultural production and dominant evaluation of agricultural development has yet to be further clarified. The dominant evaluation of agricultural development and suitability evaluation of agricultural production provide the basis for national land space planning and high-quality agricultural development, respectively. The evaluation results are still inconsistent due to large differences in the indices and evaluation methods of the evaluation system of the two evaluation methods. Therefore, we should fit with the research content and have certain innovative significance under the more comprehensive and practical selection of the evaluation index system. However, more attention should be paid to the adaptability between evaluation systems in the future to ensure innovation and meet rigor requirements.
	2. The work studied the actual situation of Cangzhou empirically and selected the evaluation indicators and grading thresholds mainly based on the Dual Evaluation Guide. Further systematic research on threshold division and evaluation indices is needed from the research scale and popularization and application. The data of certain indicators need to be enhanced due to the challenges in data acquisition and the demand for heightened accuracy. For example, soil texture and soil conservation quantity have not been systematically measured in relevant areas because of Cangzhou’s subsequent policy of marine reclamation land. Therefore, relevant evaluation work in the future will require close cooperation from multiple departments to fill the data gaps in certain regions and ensure the timeliness of data. This is of great significance for the future evaluation of the suitability of agricultural production.
	3. The objective function of the multi-objective NSGA-II genetic algorithm has yet to be further improved. The optimized dominant agricultural space requires multiple factors. The objective functions of the work are set to maximize agricultural economic benefits and minimize the carbon emission density, with the goal of a low-carbon economy. Conflicts among objective functions are found in the previous research, and the influence of objective functions on optimized results needs to be considered, respectively. Future research can explore more optimization conditions to improve the objective function and the multi-objective planning model for agricultural space optimization.




5 Conclusion

The work constructed the suitability evaluation system of agricultural production and the dominant evaluation system of agricultural development. Then, a novel evaluation system of the dominant agricultural space was proposed with an evaluation zoning hierarchy from natural and agricultural development potential based on the suitability evaluation of agricultural production. The dominant agricultural space in Cangzhou in 2020 was recognized, and the NSGA-II genetic algorithm was used to obtain the optimization results of agricultural space under different scenarios.

The results are as follows.

1. Most of Cangzhou were generally suitable areas for agricultural production. The unsuitable and less unsuitable areas for agricultural production were located in the saline-alkali areas in the eastern part of Cangzhou. There were still many unsuitable areas for agricultural production in current cultivated lands.

	2. Level-I areas with agricultural development dominance were mainly distributed in some villages and towns with poor agricultural industrialization in the southeast of Cangzhou. Most of Cangzhou were level-III areas, mainly distributed in Huanghua City in the east and some villages and towns in Qing County in the north with vigorously developed agricultural-economy industrial parks. These areas exhibited great potential for agricultural economic and ecological development.
	3. The recognition of 35 villages and towns in Cangzhou’s dominant agricultural areas in 2020 was based on a comprehensive assessment using a 2D judgment matrix. The majority of Cangzhou consisted of areas with potential for agricultural development, and there were fewer areas characterized by dominant agricultural development. The research focus will be on transforming areas with potential for agricultural development into regions characterized by predominant agricultural development.
	4. The total cultivated land area under three scenarios exhibited a decreased tendency in the agricultural space of Cangzhou optimized by the multi-objective NSGA-II genetic algorithm model. The total amount of cultivated lands was the largest under the priority scenario of economic development, and that was the least under the scenario of coordinated development of low carbon and economy. The agricultural economic benefits and carbon emission density were reduced under three scenarios. The benefit and density were moderate under the scenario of coordinated development of a low-carbon economy. Therefore, the quantitative structure of cultivated lands in various villages and towns was optimized under different scenarios in the agricultural space of Cangzhou in 2030.
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Introduction: Global climate change has led to increases in the temperature and decreases in the number of frost days in northern China, facilitating a shift from a single cropping system (SCS, spring maize) to a double cropping system (DCS, winter wheat-summer maize rotation).
Methods: Therefore, under the current climate conditions, DCS expansion should be evaluated, and new planting schemes should be explored. In this paper, we identified the areas with potential for DCS in northern China considering an annual accumulated temperature of >0°C. The World Food Studies simulation model was used to simulate the yield, irrigation requirement (IR), and net income under various crop management conditions when considering the maximum yield and water use efficiency (WUE) of crops.
Results: Our results indicated that the potential DCS area increased by approximately 31.51 × 104 km2 in northern China, with the primary DCS areas being located in the provinces of Gansu, Shaanxi, Shanxi, Hebei, and Liaoning. Regarding variety selection, winter wheat and summer maize varieties with early and mid-early maturation were found to be favored for the potential DCS areas. The sowing dates corresponding to the maximum WUEs of the crops were later than those corresponding to the maximum yields. In the potential DCS areas, under the maximum yield condition, the average unit total yield, IR, and net income increased to 2700 kg ha−1, 305 mm, and 607 USD ha−1, respectively, whereas under the maximum WUE condition, increases of 2862 kg ha−1, 284 mm, and 608 USD ha−1, respectively, were observed. The average unit total yield of the DCS was 15927 and 13793 kg ha−1 under the maximum yield and maximum WUE condition, respectively.
Discussion: Our findings may clarify the effects of climate change on agricultural production patterns and indicate suitable crop management practices.

Keywords
 climate change; crop management; double cropping; water use efficiency; yield


1 Introduction

The sharp continual increase in the global population necessitates a proportional increase in global grain yield to meet food demand (Wu et al., 2006). However, industrialization, climate change, and grain being increasingly used for non-consumption purposes (e.g., as biofuels) pose a major challenge in terms of grain yield (Singh et al., 2020). Food shortage translates into higher food prices, thus affecting the economic and social stability of a country (Ben Hassen and El Bilali, 2022). Improving grain yield is of substantial importance in China, one of the most populous countries in the world. Increasing yields would help ensure regional food security and the implementation of national food security strategies.

The three major elements of food security are cultivated land, planting intensity (the number of harvests per year), and crop yield (FAO, 2002). Therefore, one or more of these three elements should be improved to increase agricultural productivity (Yang et al., 2015). However, the large-scale expansion of arable lands is challenging in China because of urbanization and industrialization (Gao et al., 2019b; Zhang L. et al., 2018). Therefore, studies have focused primarily on the effects of climate change on crop yield under the current arable land conditions and the improvement of crop yield through optimization of crop management practices. For example, in their study conducted in China, You et al. (2009) demonstrated that a 1°C increase in temperature reduced wheat yield by 3–10%; they further reported that the increase in temperature in the last century decreased wheat yield by approximately 4.5% in China. Because of the influence of a continental monsoon climate, only 25–40% of the total water requirement of the winter wheat is met by precipitation in northern China during the crop’s growth period (Fang et al., 2010), and Zhao et al. (2020) demonstrated that the reduction in the yield of winter wheat under water stress conditions was 113%. On the other hand, appropriate agricultural practices have been reported to offset some of the effects of climate change on crop yield (Lehmann et al., 2013). Ma et al. (2018) indicated that sowing winter wheat on the optimal date increases yield by adjusting the growth redundancy and physiological traits of roots and stems—for example, by improving the water use efficiency (WUE) of the crop. Yin et al. (2018) also demonstrated that the nitrogen use efficiency of crops may be improved by adjusting the sowing date. A study conducted on the North China Plain revealed that crop renewal resulted in a 12.2–22.6% increase in crop yield (Xiao and Tao, 2014). Crop yield can also be increased by using optimizing irrigation strategies (Xu et al., 2020; Zhao et al., 2020; Wu et al., 2023). In general, climate appears to be the most direct factor influencing agricultural productivity. Hence, climate change is anticipated to negatively affect the agriculture sector (Ju et al., 2013). Nevertheless, global warming may offer new opportunities for agricultural production. For example, in Europe, crop acreage may move northward due to global warming (Carter et al., 1996). Furthermore, the increase in temperature has facilitated a shift from a single cropping system (SCS; spring maize) to a double cropping system (DCS; winter wheat–summer maize rotation) in northern China (Gao et al., 2019a; Yang et al., 2015). However, the appropriate field management strategies in potential DCS areas remain to be determined. Climate conditions are a crucial factor influencing the selection of planting schemes (He et al., 2020; Lehmann et al., 2013); however, the spatial variability of climate may introduce uncertainties in terms of scaling up site-specific field management strategies to the regional level. During the selection of planting schemes, not only the crops’ irrigation requirements (Gao et al., 2019a) but also factors such as planting dates and crop varieties, which considerably influence crop yield (He et al., 2015; Xiao and Tao, 2014), should be considered. However, this topic has not received sufficient attention. As a result of climate change, the yield of spring maize in China has decreased (Chen et al., 2013; Lv et al., 2015). Therefore, further evaluation of the feasibility of transitioning from an SCS to a DCS in northern China is urgently required, and suitable field management strategies must be identified.

Northern China is the primary base for grain production in China, accounting for 72 and 83% of China’s total wheat and maize production, respectively (National Bureau of Statistics of China).1 This region is highly sensitive to climate change. Therefore, to enhance land productivity and ensure regional food security, the effect of climate change on agricultural production patterns must be determined. In this paper, we sought to identify potential DCS areas in northern China and investigate the temporal and spatial effects of various crop management conditions on crop yield, irrigation requirement (IR), WUE, and net income. Our findings may offer key insights into appropriate crop management practices and help predict the effects of climate change on the patterns of agricultural production.



2 Materials and methods


2.1 Study area

The crop planting systems used in northern China can be divided into the SCS and DCS (Figure 1, Liu and Han, 1987). The SCS primarily refers to spring maize, whose growth period is generally April to October. By contrast, the DCS primarily refers to the winter wheat–summer maize rotation system; winter wheat is generally sown in October of Year 1 and harvested between late May and early June of Year 2, whereas summer maize is sown between mid and late June and harvested between late September and early October. Global warming has resulted in the continuous northward expansion of DCS areas in China. Therefore, in this study, potential DCS areas (with a shift from an SCS to a DCS) were defined as the study area. Additionally, this region is predominantly characterized by a temperate continental climate and a temperate monsoon climate. The average annual rainfall ranges from 400 to 1,000 mm; however, it is unevenly distributed throughout the year, with most precipitation occurring between July and October. The average annual temperature ranges between 8.5°C and 12.7°C, with a decreasing trend observed from south to north.

[image: Map of Northern China showing meteorological stations marked with red dots. The area is highlighted in light brown. A green line indicates the limit for DCS, while black boundary lines outline the region. A scale bar in kilometers is included at the bottom.]

FIGURE 1
 Distribution patterns of meteorological stations and crop plantation in northern China. The green line represents the boundary between SCSs and DCSs in 1968.




2.2 Dataset

Meteorological data (1968–2020) obtained from the China Meteorological Network2 comprised daily maximum and minimum temperatures, relative humidity, wind speed, precipitation, and sunshine hours. Daily solar radiation was calculated using the Angston–Prescott Equation 1 (Liu et al., 2009). The Kriging method was employed for spatial interpolation, with a spatial resolution of 1 km. However, missing data may arise from anomalies in the operation of meteorological stations. Therefore, we initially identified the latitude and longitude of the affected locations and retrieved the corresponding meteorological data from the fifth generation ECMWF atmospheric reanalysis V53 and the National Oceanic and Atmospheric Administration.4 Finally, we computed the average value of the multi-source datasets to minimize errors and replace the missing meteorological data.

We employed China 1:1,000,000 soil data obtained from the world soil database5 regarding two layers: the 0–30-cm and 30–100-cm layers. The soil parameters required for the WOFOST model were calculated using data from the aforementioned soil database, as described previously (Brunet et al., 2010; Montzka et al., 2011; Su et al., 2014). The data used in this paper can be found in Table 1.



TABLE 1 Data used in this paper.
[image: Table listing data types and sources. Meteorological data sources: data.cma.cn, ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5, noaa.gov. Soil data source: fao.org/statistics/data-dissemination/agrifood-systems/en.]

Due to the varying spatial resolutions among different data sources, we utilized the Python GDAL and Xarray libraries to resample the data to a 1 km resolution using cubic convolution interpolation prior to performing data analysis.



2.3 Methods


2.3.1 Study area identification

We divided the crop planting systems used in northern China into SCS and DCS areas (Liu and Han, 1987); the classification criteria are shown in Table 2. An annual accumulated temperature of >0° (AAT0) was calculated first. AAT0 was defined as the accumulated value of the daily mean temperature during a period when the temperature was stable at >0°C; it was calculated as follows:

[image: Mathematical equation with AAT subscript 0 equal to the sum from i equals a to b of T subscript i, where T subscript i is greater than zero, labeled as equation one.]



TABLE 2 Standards for the single and double cropping systems in China.
[image: Table comparing cropping systems. Single cropping has an AAT0 of less than 4000 to 4200°C days, an extreme minimum temperature below negative 20°C, and a period of 20°C termination from early August to early September. Double cropping has an AAT0 greater than 4000 to 4200°C days, an extreme minimum temperature above negative 20°C, and a period of 20°C termination from early September to late September.]

where a and b are the start and end dates, respectively, of a year when the daily mean temperature (Ti) is consistently >0°C. For each meteorological station, we used a 5-point moving average method on an annual basis to filter the original daily mean temperatures and to determine the period during which the temperature was stable at >0°C. This period corresponded to that between a and b. We then used ordinary kriging to spatially interpolate AAT0 calculated from different stations, in addition, Sen’s slope method (Gocic and Trajkovic, 2013) was utilized to assess trends in climate data. We chose the AAT0 method based on its proven effectiveness in previous studies and its suitability for the specific research area (Gao et al., 2019a; Yang et al., 2015). The AAT0 method is straightforward and well-suited for large-scale historical data analysis. Additionally, we considered the constraints of minimum temperature and the period of 20°C termination, ensuring the survival of winter wheat and sufficient growth time for summer maize. Based on these criteria, we employed ArcGIS (Version 10.2) to delineate the boundary lines of SCS and DCS planting areas using contour lines. In accordance with the method of Gao et al. (2019a), we considered the range of limit line changes from 1968 to 2000 as the potential DCS areas, which served as our study area. And the performance of SCSs and DCSs under different field management conditions from 2001 to 2020 were evaluated. Choosing the time range of 1968–2020 for evaluating limit line changes for DCS may increase uncertainty due to anomalous temperatures in certain years. Furthermore, a longer duration is required to assess the impact of field management on crop production, with a generally accepted timeframe of 20 years considered suitable.



2.3.2 Model simulation and crop management conditions

The WOFOST model developed at Wageningen University was used to simulate daily crop growth. The input parameters for the simulation were primarily meteorological, soil, crop management, and crop variable data; the output data included the daily crop leaf area index, biomass, yield, and evapotranspiration (Wit et al., 2019). The WOFOST model has been widely used and validated in China (Wu et al., 2022; Zhuo et al., 2022). To simulate the biophysical parameters of maize and wheat, we used PCSE 5.5,6 which is a Python package based on the WOFOST model (Wit et al., 2019).

The acreage potentially available for DCS has increased due to global warming. However, proper selection of crop management practices suitable for local climate conditions remains a challenge. In this paper, we explored three crop management conditions: crop variety, sowing date, and irrigation strategy (Table 3). The crop varieties used commonly in the five provinces (Gansu, Shaanxi, Shanxi, Hebei, and Liaoning) of northern China between 2001 and 2020 were selected. Supplementary Tables S1–S3 present the main crop parameters for each variety, and most of them were obtained from Master’s thesis of China. The statistical yearbook data for the years 2010–20207 were used to evaluate the performance of model parameters (Figure A1). The results indicated R2 values of 0.75, 0.82, and 0.76, with RMSE values of 432, 752, and 728 Kg ha−1 for winter wheat, summer maize, and spring maize, respectively. Meaning that the WOFOST model and its selected parameters can be effectively utilized for simulating the yield of wheat and maize. AAT0 is a key determinant of SCSs and DCSs (Table 2). Therefore, TSUM1 and TSUM2 are the primary parameters that differ between crop varieties. These parameters represent the accumulated temperatures from germination to flowering and from flowering to maturity, respectively, which play a crucial role in determining crop maturity dates (Ceglar et al., 2019; Zhao et al., 2013). Smaller values of TSUM1 and TSUM2 indicate that crops require less heat, and that they mature earlier. In this study, the average planting dates for different crop types in five provinces were determined on the basis of previous research (Sun et al., 2007; Lv et al., 2013; Sun et al., 2016; Gao et al., 2018) and local field management practices. Specifically, spring maize was planted on April 20, summer maize was planted on June 15, and winter wheat was planted on October 15. On the basis of the average sowing dates in the five provinces, we determined a sowing date range by considering 5 and 10 days before and 5 and 10 days after the average sowing date. Considering the key water demand stages of the varieties, the irrigation periods determined for spring maize and summer maize were the sowing and filling stages, whereas those determined for winter wheat were the wintering, green-up, and flowering stages. Irrigation was limited to 50 mm/application for maize and 75 mm/application for winter wheat. Thus, we considered two irrigation strategies for spring maize and summer maize (we assumed that irrigation must be performed on the sowing date to ensure maize growth) and four irrigation strategies for winter wheat. We set the planting density for spring maize, summer maize, and winter wheat at 70000, 65000, and 4.5 million plants per hectare, respectively, in accordance with previous research (Sun et al., 2016; Gao et al., 2018; Wang H. et al., 2018; Wang Y. et al., 2018). We also assumed the absence of nutrient stress in crops. To simplify the calculation and statistical analysis, we divided the study area into grids with a spatial resolution of 20 km × 20 km (788 grids in total). To this end, we assumed the same planting patterns and meteorological conditions in each grid. Therefore, the value (soil and climate data) for each grid was the mean of all pixels within that grid coverage.



TABLE 3 Various crop management conditions for spring maize, summer maize, and winter wheat.
[image: Table showing crop types, varieties, sowing dates, and irrigation strategies. Spring maize varieties include Liaochun18 and others with dates from April 10th to 30th. Summer maize varieties like Zhonghe107 are sown from June 5th to 25th. Winter wheat varieties include Hengguan35 with sowing dates from October 5th to 25th. Irrigation strategies are defined by codes: SPI1, SPI2, SU1, SU2, and WI1 to WI4, specifying water amounts for sowing, wintering, green-up, and flowering stages.]

SPV, SPS, and SPI represent the varieties, sowing date, and irrigation strategy, respectively, for spring maize. SUV, SUS, and SUI represent the varieties, sowing date, and irrigation strategy, respectively, for summer maize. WV, WS, and WI represent the varieties, sowing date, and irrigation strategy, respectively, for winter wheat. For each crop, the three aforementioned parameters under different sets of crop management conditions are indicated using additional numerical numbers corresponding to the conditions used in paper.



2.3.3 IR and net income

Northern China is a semi-arid region where irrigation is necessary for field crops to achieve optimal yield. Therefore, evaluating crop water requirements (CWR) and water use efficiency (WUE) under different field management practices is crucial. Although the WOFOST model can simulate changes in soil moisture, field sampling data were unavailable in this study; thus, the parameters related to the model’s water module could not be optimized. In addition, in accordance with previous research (Rötter et al., 2012; Palosuo et al., 2011), the simulated soil moisture results of the WOFOST model were deemed unacceptable. Therefore, the potential evapotranspiration (ET0) was calculated using the Penmen–Monteith equation (Equation 2), which is recommended by the United Nations Food and Agriculture Organization (Allen et al., 1998). The potential crop water requirement was calculated by multiplying the crop coefficient Kc by ET0 (Equation 3). Additionally, due to the water limitations in Northern China, this study assumed the absence of surface runoff and deep percolation; thus, IR was calculated as the difference between CWR and effective precipitation (Equations 4, 5). WUE was defined as the ratio of yield to CWR (Equation 6), This method has been used in previous studies (Liu et al., 2022; Gao et al., 2019a; Wu et al., 2019).

[image: Equation for reference evapotranspiration (ET0) displayed as ET0 equals the fraction with the numerator being 0.408 times delta times open parenthesis Rn minus G close parenthesis plus gamma times open parenthesis 900 divided by open parenthesis T plus 273 close parenthesis close parenthesis times U2 times open parenthesis es minus ea close parenthesis. The denominator is delta plus gamma times open parenthesis 1 plus 0.34 times U2 close parenthesis.]

[image: Equation for crop water requirement: \( CWR = K_c \times ET_0 \) labeled as equation three in parentheses.]

[image: Equation showing IR equals CWR minus Pe, labeled as equation 4.]

[image: The formula \( P_e \) is defined piecewise: For \( P < 8.34 \), \( P_e = P \times \frac{4.17 - 0.2 \times P}{4.17} \). For \( P > 8.34 \), \( P_e = \frac{4.17}{4.17 + 0.1 \times P} \). Equation labeled as (5).]

[image: Formula for water use efficiency (WUE) equals yield divided by crop water requirement (CWR), labeled as equation six.]

where ET0 is the daily reference evapotranspiration (mm d−1), Rn is the net radiation (MJ m−2 d−1), G is the soil heat flux (MJ m−2 d−1), [image: A letter "A" with two small dots (diaeresis) above it, resembling the character "Ä".] is the slope of a saturated vapor pressure–temperature curve (kPa °C−1), [image: Greek lowercase letter gamma: 𝛾.] is the psychrometric constant (kPa °C−1), and T is the daily average temperature (°C). U2 is the wind speed at an altitude of 2 m (m s−1), es is the saturated vapor pressure (kPa), and ea is the actual air vapor pressure (kPa). Pe is the effective precipitation (mm), and P is the daily precipitation (mm d−1).

Studies have reported strong correlations between Kc and the leaf area indices of wheat and maize (Guo et al., 2020; Kang et al., 2003); therefore, the daily leaf area index simulated using the WOFOST model was used to calculate crop coefficients (Equations 7, 8).

[image: The formula shows the relationship for maize: \( K_{c, \text{maize}} = 0.7531 \times LAI_{\text{maize}}^{0.3404} \).]

[image: Equation showing the crop coefficient for wheat, \( K_{c,\text{wheat}} \), calculated as 0.8667 multiplied by the leaf area index for wheat, \( LAI_{\text{wheat}} \), raised to the power of 0.1861.]

Where Kc,maize and Kc,wheat were Kc for maize and wheat, respectively.

In order to evaluate the economic benefits of switching from SCS to DCS, we calculated the average profit (gross income minus total costs) per kg of summer maize and winter wheat according to previous studies (Chen et al., 2022; Fan et al., 2014; Sun et al., 2021; Zhang M. et al., 2018), which were 0.172 USD Kg−1 for summer maize and 0.196 USD kg−1 for winter wheat.





3 Results


3.1 Potential DCS expansion area and its climate characteristics

From 1968 to 2000, the potential DCS expansion area increased by 31.51 × 104 km2 in northern China (Figure 2), and Liaoning had the largest potential DCS area (10.3 × 104 km2), followed by Shaanxi (6.64 × 104 km2), Hebei (5.50 × 104 Km2), Shanxi (4.98 × 104 km2), and Gansu (4.09 × 104 km2).

[image: Map illustrating potential areas for the expansion of the double cropping system in northern China. Highlighted regions include Gansu, Shanxi, Shaanxi, Hebei, and Liaoning. Areas are marked in yellow, with a scale bar indicating 500 kilometers. A north arrow is present.]

FIGURE 2
 Potential DCS expansion area in northern China.


Over the last century, global warming has substantially altered the spatiotemporal distributions of temperature and precipitation in China. In each province, the annual AAT0 was found to be higher in the southern region (Figure 3A). Gansu Province had the highest annual AAT0 (4,782°C), followed by Shanxi (4,672°C), Shaanxi (4,423°C), Liaoning (4,391°C), and Hebei (4,386°C). The annual AAT0 in the five provinces exhibited a strong increasing trend (Figure 3B; increasing from 77°C decade−1 to 100°C decade−1). This suggested that the potential DCS areas may continue to expand due to further warming.

[image: Four-panel image illustrating temperature and precipitation data over a geographic region. Panel A shows average annual temperature in shades of yellow to red. Panel B displays the temperature trend per decade, also in warm colors. Panel C presents annual precipitation in shades of green to blue, while Panel D depicts the precipitation trend per decade, using similar hues. A scale bar indicates distances up to five hundred kilometers, and the maps share longitudinal and latitudinal lines for reference.]

FIGURE 3
 Distribution of annul accumulated temperature (A) and its trend (B) during a period when the temperature was stable at >0°C, and distribution of annual precipitation (C) and its trend (D) between 1968 and 2020 in the potential DCS areas. An AAT0 trend of >18°C decade−1 indicates moderate significance (p < 0.05), whereas that of >58°C decade−1 indicates high significance (p < 0.01). A precipitation trend of less than −9 mm decade−1 indicates moderate significance (p < 0.05), whereas that of less than −18 mm decade−1 indicates high significance (p < 0.01).


Liaoning Province had the highest amount of annual precipitation (702 mm) and decreased from southeast to northwest. For the other provinces, annual precipitation was lower at greater latitude (Figure 3C); the amounts of annual precipitation in Gansu, Hebei, Shanxi, and Shaanxi were 630, 568, 536, and 530 mm, respectively. We noted a decreasing trend in annual precipitation since 1968; in particular, prominent downward trends were noted for western Liaoning and eastern Hebei, whereas no clear trends were found for the other areas (Figure 3D).



3.2 Effects of various crop management conditions on yield


3.2.1 Spring maize

The average yield in the five provinces under SPI2 was 4.29% higher than that under SPI1 over the entire period 2001–2020 (Figure 4). Considering the SPI2 condition, SPV4 and SPS5 ensured the maximum yield in Gansu (13,679 kg ha−1) and SPV5 ensured the maximum yield in the other provinces when considering SPS3 in Shaanxi, SPS4 in Shanxi, SPS3 in Hebei, and SPS5 in Liaoning; the corresponding yields were 13,182, 13,193, 12,667, and 13,783 kg ha−1, respectively.

[image: Grid of ten heat maps labeled A to J, showing yield (Kg ha⁻¹) across SPS1 to SPS5 and SPV1 to SPV5. Color gradient ranges from blue (5000) to red (12500), indicating different yield levels.]

FIGURE 4
 Effects of variety and sowing date on the average yield of spring maize in Gansu (A,F), Shaanxi (B,G), Shanxi (C,H), Hebei (D,I), and Liaoning (E,J) between 2001 and 2020 under irrigation strategies 1 (A–E) and 2 (F–J). SPV1, SPV2, SPV3, SPV4, and SPV5 represent spring maize varieties 1, 2, 3, 4, and 5, respectively. SPS1, SPS2, SPS3, SPS4, and SPS5 represent spring maize sowing dates 1, 2, 3, 4, and 5, respectively.




3.2.2 Summer maize

The average yield in the five provinces under SPI2 was 2.59% higher than that under SPI1 over the entire period 2001–2020 (Figure 5). Considering the SPI2 condition, SUV2 ensured the maximum yield in all five provinces when considering SPS1 in Gansu and Shaanxi, SPS2 in Shanxi and Hebei, and SPS3 in Liaoning; the corresponding yields were 10,493, 10,396, 10,008, 9,889, and 9,378 kg ha−1, respectively.

[image: Heatmaps labeled A to J compare yield data (kg/ha) for SUS1 to SUS5 across SUV1 to SUV4. Colors range from red (high yield) to blue (low yield), with a scale from 2500 to 10000 kg/ha displayed.]

FIGURE 5
 Effects of variety and sowing date on the average yield of summer maize in Gansu (A,F), Shaanxi (B,G), Shanxi (C,H), Hebei (D,I), and Liaoning (E,J) between 2001 and 2020 under irrigation strategies 1 (A–E) and 2 (F–J). SUV1, SUV2, SUV3, SUV4, and SUV5 represent summer maize varieties 1, 2, 3, 4, and 5, respectively. SUS1, SUS2, SUS3, SUS4, and SUS5 represent summer maize sowing dates 1, 2, 3, 4, and 5, respectively.




3.2.3 Winter wheat

The average yield of winter wheat under WI2, WI3, and WI4 was 46.51, 8.84, and 53.04% higher than that under WI1 for the entire period 2001–2020 (Figure 6). Therefore, irrigation at the green-up stage appears to be crucial for improving the yield of winter wheat. Considering the WI4 condition, WV1 ensured the maximum yield when considering WS4 in Gansu, WS3 in Shaanxi, and WS3 in Shanxi and WV2 ensured the maximum yield when considering WS2 in Hebei and WS1 in Liaoning; the corresponding yields were 7,042, 5,803, 5,582, 5,415, and 5,775 kg ha−1, respectively.

[image: Grid of heatmaps labeled A to T, illustrating yield data (kg per hectare) across five variables (WV1 to WV5) and five indices (LISA to SSMA). Color gradient ranges from blue (low yield) to red (high yield).]

FIGURE 6
 Effects of variety and sowing date on the average yields of winter wheat in Gansu (A,F,K,P), Shaanxi (B,G,L,Q), Shanxi (C,H,M,R), Hebei (D,I,N,S), and Liaoning (E,J,O,T) between 2001 and 2020 under irrigation strategies 1 (A–E), 2 (F–J), 3 (K–O), and 4 (P–T). WV1, WV2, WV3, WV4, and WV5 represent winter wheat varieties 1, 2, 3, 4, and 5, respectively. WS1, WS2, WS3, WS4, and WS5 represent winter wheat sowing dates 1, 2, 3, 4, and 5, respectively.


In general, the varieties with mid-late and delayed maturation and mid-late and delayed sowing dates were selected for spring maize to ensure high yield. For summer maize, the varieties with mid-early maturation and early and mid-early sowing dates were selected to ensure high yield. Finally, for winter wheat, the varieties with early and mid-early maturation were selected to ensure high yield; however, the sowing date varied depending on the local climate conditions.




3.3 Temporal variation in yield corresponding to different cropping systems and its driving factors

In potential DCS areas, when different crop types reached their maximum yield under various field management practices, the most significant yield increase from SCS to DCS was observed in Gansu, with an average yield increase of 2,807 kg ha−1 (Figure 7), followed by Shaanxi (1748 kg ha−1), Liaoning (1,501 kg ha−1), Hebei (1,439 kg ha−1), and Shanxi (1,197 kg ha−1). Notably, although the overall yield of DCS was higher than that of SCS in the potential DCS areas we assessed, the yield of DCS was not higher than that of SCS for all years (e.g., 2001, 2004, 2007, 2011, 2017, 2019, and 2020). This suggests that there is still uncertainty in DCS areas, and the winter wheat-summer maize rotation system is significantly influenced by climatic factors.

[image: Bar chart displaying yield gaps from 2000 to 2020 for five regions: Gansu, Shaanxi, Shanxi, Hebei, and Liaoning. Yield gaps vary annually, with notable peaks and troughs, particularly high gaps in early 2000s and around 2016. Colors differentiate regions.]

FIGURE 7
 Yield gap between DCS and SCS when spring maize, summer maize, and winter wheat reach their maximum yields under different field management practices across five provinces from 2001 to 2020.


However, the climatic drivers of yield gaps vary by region (Table 4). Temperature favors an increase in yield gaps, primarily due to a decrease in spring maize yield and an increase in winter wheat yield. A continuous rise in temperature shortens the growth cycle of spring maize while reducing the impact of low-temperature stress on winter wheat. Additionally, precipitation was negatively correlated with yield gaps because the water consumption of spring maize during its growth period is much higher than that of summer maize or winter wheat. Soil moisture replenished by precipitation significantly increases spring maize yield, thereby reducing yield gaps. The impact of solar radiation on yield differences was more complex, being negatively correlated in Shanxi and Hebei but positively correlated in other regions. Solar radiation is the direct energy source for photosynthesis and indirectly affects respiration. Different hydrothermal conditions play an important regulatory role, thereby modulating the effects of solar radiation.



TABLE 4 The partial correlation coefficients between the yields of spring maize, summer maize, winter wheat, and yield gap with temperature, precipitation, and solar radiation in five provinces.
[image: Partial correlation coefficients for temperature, precipitation, and solar radiation across five provinces: Gansu, Shaanxi, Shanxi, Hebei, and Liaoning. Data includes values for spring maize, summer maize, winter wheat, and yield gap. Significant correlations are marked with asterisks, indicating different confidence levels.]



3.4 Comparison of potential DCS areas in terms of production indicators and net income


3.4.1 Yield, IR, and WUE

Figure A2 presents the spatial distribution of crop management conditions in 2001–2020 when considering the maximum yields of spring maize, summer maize, and winter wheat. In Gansu, Shaanxi, Shanxi, Hebei, and Liaoning, the average yield of the DCS was 17,962, 16,282, 15,706, 15,520, and 15,224 kg ha−1 and the average IR was 516, 630, 624, 598, and 374 mm, respectively (Figure A3). Compared with the findings corresponding to the SCS in Gansu, Shaanxi, Shanxi, Hebei and Liaoning, the average yield of the DCS was 3,589, 2,915, 2,317, 2,338, and 2,343 kg ha−1 higher (Figure 8A) and the average IR was 285, 333, 349, 329, and 231 mm higher (Figure 8B), respectively; the average WUE was 4.7, 3.9, 5.1, 5.1, and 4.5 kg mm−1 ha−1 lower, respectively (Figure 8C). In the study area, the yield of winter wheat served as the primary factor determining the difference in yield between SCSs and DCSs, with a coefficient of determination (R2) of 0.58 for winter wheat (Figure 9), followed by the coefficients for summer maize (R2 = 0.51) and spring maize (R2 = 0.21). However, in the provinces of Shaanxi, Shanxi, and Hebei, the yield of summer maize exhibited the highest correlation with the yield difference (Table 5); this result indicated that adopting a DCS and increasing the yield of summer maize would be more effective than increasing the yield of winter wheat, thus enhancing land productivity. Similar results were obtained for winter wheat in the provinces of Gansu and Liaoning.

[image: Three maps labeled A, B, and C display spatial data for a region. A shows crop yield in kilograms per hectare with a range from 225 to 5475. B illustrates irrigation requirements in millimeters from 26 to 495. C depicts water use efficiency in kilograms per millimeter per hectare ranging from less than or equal to 0.25 to greater than 1.5. Color gradients indicate varying levels across the region. Each map includes a scale bar for distance.]

FIGURE 8
 Spatial distribution of the differences (gaps) between the DCS and SCS in terms of yield (A), IR (B), and WUE (C) in 2001–2020 when considering the maximum yields of spring maize, summer maize, and winter wheat.


[image: Three scatter plots show yield gaps versus yields for different crops and regions. Plot A presents spring maize; plot B shows summer maize, and plot C features winter wheat. Each plot includes data points representing different regions: Gansu, Shaanxi, Shanxi, Hebei, and Liaoning, identified by distinct shapes and colors. A trend line is visible in each plot, indicating a positive correlation between yield and yield gap across all regions and crop types.]

FIGURE 9
 Spatial correlation of yield gaps with the yield of spring maize (A), summer maize (B), and winter wheat (C) from 2001 to 2020 at the maximum yield of spring maize, summer maize, and winter wheat.




TABLE 5 Determination coefficients for the correlations of yield gap with the yield of spring maize, summer maize, and winter wheat in each province between 2001 and 2020 when considering the maximum yields of spring maize, summer maize, and winter wheat.
[image: Table showing crop yield significance across five provinces for three crop types: Spring maize, Summer maize, and Winter wheat. Gansu shows 0.21 for Spring maize, 0.18 for Summer maize, 0.56 for Winter wheat. Shaanxi has 0.34 for Spring maize, 0.75 for Summer maize, 0.35 for Winter wheat. Shanxi records 0.00 for Spring maize, 0.48 for Summer maize, 0.08 for Winter wheat. Hebei shows 0.04 for Spring maize, 0.46 for Summer maize, 0.22 for Winter wheat. Liaoning lists 0.02 for Spring maize, 0.02 for Summer maize, 0.52 for Winter wheat. Significance levels are denoted by *P < 0.05 and **P < 0.01.]

Figure A4 presents the spatial distribution of crop management conditions in 2001–2020 when considering the maximum WUEs of spring maize, summer maize, and winter wheat. In Gansu, Shaanxi, Shanxi, Hebei, and Liaoning, the average yield of the DCS was 16,618, 14,021, 13,007, 13,123, and 13,261 kg ha−1, and the average IR was 443, 529, 521, 510, and 291 mm, respectively (Figure A3). Compared with the findings corresponding to the SCS in Gansu, Shaanxi, Shanxi, Hebei, and Liaoning, the average yield of the DCS was 4,809, 2,434, 1,063, 2,511, and 3,493 kg ha−1 higher (Figure 10A) and the average IR was 306, 295, 288, 329, and 202 mm higher (Figure 10B), respectively; the average WUE was 8.2, 5.1, 5.5, 6.5, and 6.7 kg mm−1 ha−1 lower (Figure 10C), respectively. The determination coefficients for the correlations of yield gap with the yields of spring maize, summer maize, and winter wheat were 0.39, 0.02, and 0.44, respectively (Figure 11). Table 6 presents the determination coefficients corresponding to each province. Yield gap was most strongly correlated with winter wheat yield in Gansu and Liaoning and with spring maize yield in Shaanxi, Shanxi, and Hebei. Compared with the increases noted when considering the maximum WUEs of the crops, the DCS yield was 1,344–2,699 kg ha−1 higher and the average IR was 73–103 mm higher when considering the maximum yields of the crops.

[image: Map series illustrating different agricultural factors across a region. Panel A shows yield in kilograms per hectare ranging from 1,000 to 6,479. Panel B presents irrigation requirements in millimeters from 27 to 600. Panel C depicts water use efficiency in kilograms per millimeter per hectare ranging from 0.9 to 3.7. Each map uses a color gradient from blue to red to represent data values.]

FIGURE 10
 Spatial distribution of the gaps between the DCS and SCS in terms of yield (A), IR (B), and WUE (C) in 2001–2020 when considering the maximum WUEs of spring maize, summer maize, and winter wheat.


[image: Graphs A, B, and C display yield gaps versus yield for spring maize, summer maize, and winter wheat, respectively, in kilograms per hectare. Each graph shows data points represented by different colored shapes indicating regions: circles for Gansu, triangles for Shaanxi, diamonds for Shanxi, squares for Hebei, and inverted triangles for Liaoning. Trend lines show varying relationships between yield and yield gap for each crop and region.]

FIGURE 11
 Spatial correlations of yield gap with the yield of spring maize (A), summer maize (B), and winter wheat (C) in 2001–2020 when considering the maximum WUEs of spring maize, summer maize, and winter wheat.




TABLE 6 Determination coefficient for the correlations of yield gaps with the yield of spring maize, summer maize, and winter wheat in each province between 2001 and 2020 when considering the maximum WUEs of spring maize, summer maize, and winter wheat.
[image: Table showing significance levels of crop types across five provinces: Gansu, Shaanxi, Shanxi, Hebei, and Liaoning. Values indicate different significance levels for spring maize, summer maize, and winter wheat, with asterisks denoting levels: *P<0.05 and **P<0.01.]

Generally, converting an SCS to a DCS increases the grain yield per unit of land area. However, this conversion is accompanied by an increase in IR and a decrease in WUE.



3.4.2 Net income

Considering the maximum yields of the crops, the net income from the DCS yields in Gansu, Shaanxi, Shanxi, Hebei, and Liaoning was 787, 641, 533, 533, and 542 US dollar (USD) ha−1 higher, respectively (Figure 12A), than for the SCS. Considering the maximum WUEs of the crops, the net income in Gansu, Shaanxi, Shanxi, Hebei, and Liaoning was 978, 524, 281, 531, and 727 USD ha−1 higher, respectively (Figure 12B); in some areas of Shaanxi, Shanxi, and Hebei, the net income from the DCS yield was lower than that from the SCS yield. Furthermore, compared with the net income obtained when considering the maximum yields of the crops, those obtained when considering the maximum WUEs were 191, −117, −251, −2, and 185 USD ha−1 higher in Gansu, Shaanxi, Shanxi, Hebei, and Liaoning, respectively.

[image: Three maps labeled A, B, and C show regions with varying net incomes in USD per hectare within a geographic area marked by latitude and longitude. Colors range from blue (lower income) to red (higher income), with a scale indicating specific income ranges. All maps include a scale bar showing 500 kilometers.]

FIGURE 12
 Changes in net income from the DCS yield compared with that from the SCS yield when considering the maximum yields (A) and maximum WUEs (B) of the crops and the differences between the net income obtained when considering the maximum WUEs and that obtained when considering the maximum yields (C) of the crops in 2001–2020.






4 Discussion


4.1 Potential DCS areas and their crop management conditions

Although global warming has shortened the growth periods of crops and reduced the number of frost days (extreme low-temperature conditions; Estrella et al., 2007), it has expanded the areas available for multiple cropping. Previous studies have confirmed the northward shift of the DCS in China (Gao et al., 2019a; Yang et al., 2015), which aligns with our findings. However, the potential DCS area identified in this study is approximately 50,000 km2 larger than those of Gao (Gao et al., 2019a), with Shaanxi showing the most significant difference. This discrepancy may be attributed to differences in study periods, as the trend of global warming varies over different time frames, contributing to the uncertainty. Furthermore, with the current intensification of global warming, adhering to unchanged field management practices may no longer be effective (Chen et al., 2020; Liu et al., 2021; He et al., 2015). Therefore, we analyzed the impacts of various field management practices from multiple perspectives, including yield, water use efficiency, and economic performance. This analysis better demonstrates the feasibility of transitioning from SCS to DCS in potential DCS areas. Winter wheat is the primary cereal crop involved in northward DCS expansion in northern China. The vernalization stage is considered to be important for winter wheat (Wang et al., 1995); this indicates the ability of winter wheat to grow normally at low temperature for a certain period. However, accumulated temperature theory holds that the development rate of organisms is dependent on temperature. Sufficient effective accumulated temperature is essential if crops are to move from one phenological stage to another (McMaster and Smika, 1988).

In the present study, considering the maximum yields and WUEs of the crops, we identified a tendency favoring the selection of winter wheat and summer maize varieties with early and mid-early maturation for cultivation in the potential DCS areas (Figures A1, A3) because these varieties require relatively low accumulated temperatures for an effective phenological cycle and normal crop growth. Conversely, some studies conducted on the North China Plain have reported that to adapt to global warming, crop varieties that require higher temperatures should be introduced to ensure high yield; the dry matter accumulation time and the key growth period of winter wheat should coincide with the rainy season (Wang et al., 2013; Xiao et al., 2013). However, because of the low AAT0 in potential DCS areas, the introduction of varieties with delayed maturation may affect not only the normal development of the first crop but also the seeding of the next crop. The sowing dates should be selected by considering different purposes. The pursuit of yield requires early sowing to ensure high accumulated temperature, whereas the pursuit of WUE requires delayed sowing to reduce soil water consumption. Therefore, crop management practices must be optimized by considering local climate conditions and purposes.



4.2 Prospects and challenges of SCS to DCS conversion

The yield per unit area increased when a SCS was changed to a DCS. Notably, the increase in winter wheat yield was higher than the decrease in maize yield. Although the demand for wheat has increased only slightly in China, industrial and feeding demands have surged in recent years, particularly in 2020 and 2021, leading to a situation where the demand for winter wheat has exceeded its yield (Chen and Lu, 2019). Amidst a complex international situation, the likelihood of a food crisis in some parts of the world has been increasing (Ben Hassen and El Bilali, 2022; Sosa et al., 2022). Therefore, despite China having solved its food rationing problem, increasing food production is crucial in light of international trade and national food security strategies. Maize, used for producing biofuel, has emerged as a significant contributor to economic growth. In the United States, 35% of the total maize produced is used for ethanol production (Sarwer et al., 2022), establishing a long-term, stable, and controllable processing and conversion channel, thereby enhancing the country’s ability to regulate its food market. However, China still lags behind developed countries in biofuel production. The conversion of SCS to DCS appears to improve the utilization of arable lands, unit yield of crops, and net income of farmers.

However, the transition from SCS to DCS is often challenging. Changing the cropping structure entails increased labor, higher water consumption, and alterations in the industrial structure, which poses a significant challenge for Northern China (Liu et al., 2014; Xiao et al., 2018). Throughout the growth period of winter wheat, precipitation can only meet 25–40% of its water requirements (Fang et al., 2010). Most potential DCS areas are located in arid or semi-arid regions with scarce water resources, necessitating increased groundwater extraction, which further exacerbates environmental degradation. Additionally, terrain and economic factors are significant constraints to altering cropping structures. Currently, China is still dominated by small-scale farming, and the fragmentation of arable land, combined with the mountainous and hilly terrain in the study region, hinders the operation of large agricultural machinery. Moreover, the need to keep food prices within reasonable limits for social stability has led to more farmers seeking work outside agriculture. Our results indicate that in most areas of Gansu and Shaanxi, when accounting for maximum yield, the yield and net income increase from DCS can exceed 4,000 kg ha−1 and 700 USD ha−1, respectively. These regions benefit the most from climate change, and the increase in yield and income is a significant driving force for altering the cropping structure. Nonetheless, altering the cropping structure is a complex challenge involving social, economic, and environmental factors. Further studies are necessary to determine the optimal cropping system at the national level.



4.3 Limitations and future works

The ordinary kriging method was employed for spatial interpolation of meteorological data. However, due to the uneven distribution of meteorological stations and the variations caused by topography, this interpolation may introduce discrepancies, which could ultimately result in uncertainties in the simulation outcomes (Shen et al., 2014; Shen et al., 2018; Wang et al., 2016). Furthermore, this study primarily utilized ATT0 and temperature constraints to determine potential DCS areas. However, this process did not comprehensively account for the growing degree days and actual growth cycles of different crops. Such simplification may lead to overlapping growth periods for winter wheat and summer maize (Figures A1, A3), affecting crop growth and yield. Additionally, given the varying temperature and growth requirements of different crops, using only ATT0 and temperature constraints for regional delineation might not adequately capture the optimal planting times and growth environments for the crops. This, to some extent, constrains the accuracy and applicability of the study’s findings. Nevertheless, in this study, we compared the performance of various crop varieties and planting dates, thus providing useful guidance for local DCS field management. In future research, we will incorporate various cropping system models to accurately determine potential DCS areas. Additionally, we will synthesize local climate data with actual planting conditions to implement a series of adjustments to field management, considering various optimization objectives.




5 Conclusion

We identified the areas potentially suitable for DCS in northern China and evaluated the effects of various crop management conditions on yield, IR, and net income. The total potential DCS area in northern China (31.51 × 104 km2) was discovered to be distributed among Gansu, Shaanxi, Shanxi, Hebei, and Liaoning provinces. Winter wheat and summer maize varieties with early or mid-early maturation are likely to be selected for cultivation in the potential DCS areas to ensure a normal phenological cycle and high yield. The sowing date was found to be dependent on the actual local climate conditions and planting purposes; however, the sowing dates corresponding to the maximum WUEs of the crops were later than those corresponding to the maximum yields. Generally, under maximum yield and WUE conditions in potential DCS areas, DCSs increase the unit total yield and net income compared with SCSs. However, this increase is accompanied by an increase in IR and a decrease in WUE. Gansu exhibited the maximum increase in crop yield, and Shanxi and Hebei exhibited the largest increase in IR.
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Introduction: The objective of this study is to investigate the impact of land use changes on the coupling coordination of the regional water-food-carbon system in Hebei Province. Moreover, the findings aim to offer insights for achieving comprehensive and coordinated development of regional resources.
Methods: By constructing an evaluation index system of the coupled coordinated development of the water-food-carbon system, using the coupled coordination model to study the coupled coordination of the water-food-carbon (WFC) system in Hebei Province from 2010 to 2020, and applying the Pearson correlation coefficient and ArcGIS to analyze the impacts of land-use changes on the degree of coupled coordination.
Results: The results show that: (1) The most notable characteristics of land type changes include a decrease in cropland and an increase in construction land, primarily driven by the conversion of cropland to construction sites. The total area converted amounts to 8207.20 km2. (2) The degree of coupled coordination of the water-food-carbon system in the study area as a whole shows an upward and then downward trend, and shows a spatial distribution pattern of “high in the north-east and low in the south-west”; (3) In Hebei Province, the degree of coupling coordination within the water-food-carbon system exhibits a stable positive correlation with forest land, grassland, and water area. Additionally, the transfer of forest land and grassland are significant factors influencing the delineation of cold and hot spots within the region.
Discussion: Therefore, in addressing the coordinated development of the water-food-carbon system, it is essential to consider the influence of land. Resources should be allocated judiciously based on regional advantages to promote sustainable development effectively.
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 land use change; water-food-carbon system; coupling coordination; hotspot analysis; correlation analysis


1 Introduction

Water, food, carbon, and land are the key elements closely related to human activities in the Earth’s surface system. Among them, land, water, and food are the essential supply resources in production and life, which can provide important ecosystem service functions for human beings. As one of the key factors of regional economic society and production process, carbon is also closely connected to the development process of many resources. With the rapid increase of the global population, climate change, environmental pollution, and other problems emerge in an endless stream; human lifestyle has also changed and the global warming trend caused by massive greenhouse gas emissions is continuing, which has seriously threatened the balance of natural ecosystems and human health and survival. In this global context, with nearly 20% of the world’s annual greenhouse gasses currently coming from agriculture and land use (Chen et al., 2023). The global demand for water and food is constantly increasing; existing statistics show that in the past 50 years, the global per capita occupancy of water resources and cropland resources decreased by 20–40% (Endo et al., 2017), but in the next 20 years, human demand for them will increase by 30–50% (Kaddoura and El Khatib, 2017). Therefore, the study on the coupling of “water–food–carbon” is not only a timely response to these challenges but also an opportunity to help comprehensively assess the potential of regional human activities to cope with carbon emission reduction. It is also of great significance in promoting resource conservation and improving production efficiency, reducing the intensity of various types of resource depletion, and exploring the regional low-carbon and sustainable development model.

Resources such as food, energy, water, and land are essential to human life and advancement. However, the lack of resource availability and ecological damage has led scholars to recognize the inadequacy of single-resource and binary resource system management models and the need to incorporate more resource systems into joint management strategies in areas where resource availability is limited (Beekma et al., 2021). As a result, research on the water–energy–food triple linkage system has been carried out (Liu and Zhao, 2022; Zhang et al., 2022). Since 2011, when the triad of water, energy, and food security was first proposed as a nexus (Chen and Yan, 2020), the Food and Agriculture Organization of the United Nations (FAO), the International Renewable Energy Agency (IRENA), and other organizations have published reports on the water, energy, and food (WEF) system nexus. At present, domestic and international studies in this area focuses on the concept and content (Conway et al., 2015; Li et al., 2018; Zhan et al., 2014), quantitative assessment of the water–energy–food system (Bai and Zhang, 2018; Mahjabin et al., 2020; Sun and Yan, 2018) and simulation and prediction research (Momblanch et al., 2019; Peng et al., 2017; Wang et al., 2019). More diversified in terms of research methodology, such as the indicator system method (He and Yuan, 2021; Wang and Ye, 2022), coupled coordination degree model (Wang et al., 2024), correlation analysis (Deng et al., 2020), data envelopment analysis (Li et al., 2017), multisubject model analysis (Khan et al., 2017), system dynamics (Wicaksono and Kang, 2019), collaborative optimization model construction (Peng et al., 2017), etc. Spatial differentiation of resource coupling relationships is mostly studied with the help of the coupling cooperation index (Li and Zhang, 2020; Zhi et al., 2020), data envelopment analysis method (Han et al., 2020; Ibrahim et al., 2019; Sun et al., 2021), principal component analysis (Bai and Zhang, 2018) and other methods, which are used to compare the efficiency of water–energy–food resource coupling (Han et al., 2020; Ibrahim et al., 2019; Sun et al., 2021), the level of pressure on supply and demand (Deng et al., 2020), and the degree of security in different geographical regions (Gai and Zhai, 2021; Wang et al., 2018). At present, a large number of studies on water–energy–food systems have been carried out by scholars at home and abroad at different scales., and the existing research focuses on large-scale and mesoscale, such as national scales (Wang and Tian, 2022), watershed scales (Qin and Tong, 2021; Zhao et al., 2021), and specific regions (Bakhshianlamouki et al., 2020). Other scholars have found that the level of coordinated development and time–series evolution characteristics between water–energy–food systems at the urban scale (Dang et al., 2020; Ding et al., 2023; Wang et al., 2020; Wang et al., 2021; Wang and Ye, 2022). In addition, some scholars have also considered factors other than the water–energy–food system, such as studying WEF security in light of global climate change (Bach et al., 2016), incorporating land into the water–energy–food system, finding ways to develop more sustainably in the Beijing–Tianjin–Hebei urban agglomeration (Wang and Sun, 2022), and constructing a network of causal linkages of the water–energy–food system that includes social, economic and environmental subsystems (Li et al., 2016), and so on. In addition, carbon emission—as one of the important factors affecting ecosystem services—is also intimately related to WEF production processes. For example, by considering the “water–land–energy–carbon” linkage, we constructed an input–output measurement index of carbon emission efficiency in agriculture and industry. We concluded that the overuse of land resources is the primary factor influencing the efficiency of carbon emission in agriculture (Jiang et al., 2020). The relationship between food security and water, food, energy, and land was identified using system dynamics, and quantitatively calculated carbon dioxide emissions from various types of resources, and provided a reference for carbon emission reduction in rice cultivation in Japan (Lee et al., 2018). Summarizing the results of existing research shows that there are studies on “water–food” (Jin, 2019), “water–carbon” (Cao et al., 2020), and “food–carbon” (Li et al., 2022) coupling aspects, but lack of a systematic view of water, food, and carbon into a unified framework of research perspective.

Hebei Province, recognized as a primary grain-producing region in China, possesses abundant cropland resources. However, the province faces challenges due to its high total energy consumption and an energy structure predominantly reliant on coal, resulting in significant carbon emissions that rank among the highest in the country. As a chief food-producing area and a high-energy-consuming region, Hebei has historically supplied essential resources to Beijing and Tianjin. This intense resource flow can lead to imbalances within the regional resource system. Consequently, this study has chosen Hebei Province as the focus area for analysis. The main objectives of the study are (1) to investigate the features of land usage and how it has changed over time and space in Hebei Province for the periods 2010, 2015, and 2020; (2) to analyze the characteristics of the spatial and temporal evolution of the coupling coordination of the water-food-carbon system by constructing a system of indicators for evaluating the development of the coupled system; and (3) to explore the impacts of volume and spatial changes in land use on the coupling coherence of “water–food–carbon” system, and deeply reveal the correlation between land-use changes and the spatial and temporal changes in the coupling coordination of the system. The innovation of the study is to incorporate water–food–carbon into a unified framework to explore the impact of land-use change on the coupled coordination of the water-food-carbon system and to explore how to enhance the coordination of the overall resource allocation in the region through the rational use of land.



2 Materials and methods


2.1 Study area

Hebei Province is located in North China, between latitude 36°05′ ~ 42°40′ north and longitude 113°27′ ~ 119°50′ east, with complex and diverse topography, and a complete range of landform types, such as plains, mountains, plateaus, hills, basins, and other landform types, and it is an important ecological barrier for the Beijing-Tianjin area. Hebei Province has a temperate continental monsoonal climate, with an average precipitation of between 300 and 800 mm per year, and an average temperature of between −2°C and 14°C per year. There are obvious geographical differences in land-use types, with cropland widely distributed, mainly focusing on the center and south of the study area, and woodland and grassland mainly in the north of the study area. In 2020, the total water consumption of Hebei Province will be 18.28 billion m3, and the total water resources will be 14.63 billion m3, accounting for 3.14 and 0.46% of the total amount of water used and total water resources of the country, respectively; as one of the main grain-producing provinces, Hebei Province has always ranked at the forefront of grain production in the country, with a total grain output of 38,651,000 ton in 2022, ranking seventh in the country; the total energy consumption of Hebei Province is large, and the energy structure is still dominated by coal, and carbon emissions are at a high level in the country. It is significant for Hebei Province to realize the carbon peak and carbon neutrality for the country as a whole (Figure 1).

[image: Map of China highlighting a study area in Hebei province. The inset shows the location within China. The main map displays elevation with colors: high elevations in red and low elevations in blue. Administrative cities such as Zhangjiakou, Chengde, and Qinhuangdao are marked. Legend indicates elevation range from minus thirty-eight to two thousand seven hundred sixty meters.]

FIGURE 1
 The geographical location of Hebei Province in China.




2.2 Data sources

Acquisition of land-use data from the Resource and Environmental Sciences Data Center of the Chinese Academy of Sciences (CAS) for three periods, 2010, 2015, and 2020, for use in the study. According to the National 1:100,000 Land Use Classification System of the CAS Resource and Environment Data Center, land use is classified into six first-level land categories: cropland, woodland, grassland, water, building site, and unused land. Precipitation data are derived from the ERA5-Land data set published by the European Union (EU) and organizations such as the European Center for Medium-Range Weather Forecasts (ECMWF). The years of Defense Meteorological Program/Operational Line-Scan System (DMSP/OLS) nighttime lights are 1992–2013, and the years of National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime lights are 2012–2023. It is not possible to analyze the data of DMSP-OLS and SNPP-VIIRS in direct comparison because of the differences in resolution, product update cycle, and so on. Therefore, the nighttime light data for 2010, 2015, and 2020 are quoted from corrected year-by-year China-wide DMSP-OLS-like data for 1992–2023 obtained by Wu et al. (2021) by integrating DMSP-OLS and SNPP-VIIRS data at a resolution of 1 km in the coordinates WGS_1984_. Albers. Data from the Geographic Data Sharing Infrastructure, global resources data cloud.1 The county data of Hebei province are mainly from the Hebei Statistical Yearbook and Hebei Rural Statistical Yearbook, and the missing data are interpolated by linear interpolation method.



2.3 Analysis of the coupling mechanism of the water–food–carbon–land system

Land is an important basis for carrying water, food, and other resources and their activities smoothly, and it has an important impact on water and food that cannot be ignored; it is also an important carbon reservoir, with large differences in carbon storage and emissions between different land-use patterns. Land, water, food, and carbon interact, exchange and feedback of material and energy between each other, and its mechanism of action is shown in Figure 2. The four elements, water, food, carbon, and land, cover the raw materials, sites, drivers, and impacts of human activities in the region. “Land” is the basis and place for various human activities and the source of nutrients for plant growth; “water” is the substance and medium necessary for life activities and the raw material for most industrial production processes; “food” is the basic material for economic and social development, and the raw material of biomass for energy production; “carbon” is the material basis for major energy sources, as well as the emission and metabolism products of various activities of human beings. The land is the basis for all activities, including carrying resources such as water and food and realizing their use, the development and utilization of which are interlinked. Cultivation, irrigation, production, harvesting, and processing of food continuously consume water, energy, and soil fertility. In contrast, hazardous substances produced during food production lead to the contamination of groundwater resources, as well as chemical fertilizers, pesticides, mulch films, the use of agricultural machinery and equipment, and the use of irrigation equipment, directly and indirectly in agricultural production, generating carbon emissions. Water resources are one of the main bodies constituting the land system, and its transport and purification processes are accompanied by energy consumption. The different types and intensities of energy inputs in different parts of the utilization of land and water resources largely affect the carbon emission intensity of regional human activities. Because different natural and social territories have different WEF mix relationships and carbon footprints. Therefore, the combined configuration of various types of resources in the region needs to be considered comprehensively, especially land resources that play a basic carrier function in the system, and a reasonable land utilization approach can promote the effective configuration and coordinated development of various types of resources.

[image: Flowchart illustrating the relationship between atmospheric carbon pool and human activities. Water resources development (left) and food resources development (right) impact carbon emissions. Water activities include pumping, storage, and irrigation. Food activities include cultivation and soil protection. Both contribute directly and indirectly to carbon emissions, linked by land management. Arrows show interactions among activities, emissions, and land use.]

FIGURE 2
 Water–food–carbon–land mechanisms diagram.




2.4 Research methodology


2.4.1 Construction of the indicator system

This study considers the dependency relation between the three resources, namely, water, food, and carbon, and combines the existing statistics on the statistical status of county scale data, following the principles of comprehensiveness, systematicness, scientificalness, representativeness, and data availability. Based on these, this study determines a comprehensive evaluation index system of water–food–carbon for the Hebei Province region (Table 1). Fertilizer application, total carbon emissions, carbon emissions from agricultural production, per capita carbon emissions, and carbon intensity are negative indicators, while the others are positive. The carbon emissions research discussed in this article mainly includes direct carbon emissions and indirect carbon emissions in the total amount. Direct carbon emissions from land-use change, including carbon emissions from cropland, forest land, grassland, water, and unused land, are obtained by using the carbon emission coefficient method (Li et al., 2023); In Hebei Province, due to the lack of energy statistics at the city and county scales, indirect carbon emission data within the study area were used to simulate carbon emissions from urban energy consumption by using DMSP/OLS nighttime lighting data and NPP/VIIRS nighttime lighting data (Wu et al., 2022).



TABLE 1 Integrated evaluation indicator system for water–food–carbon systems.
[image: Table showing layers of water resource, food production, and carbon emission. It details index layers like annual precipitation and carbon intensity, data sources such as statistical yearbooks, units like percentage and tons per capita, and directional impact signs (+/-).]



2.4.2 Measurement of land-use change

The measurement methods used in this section include land-use transfer matrices and land-use change mapping. Land-use transfer matrices are a classic means to explore the transfer direction and quantity change between land-use types, demonstrating the evolution of land-use type patterns. With the area tabulation function ArcGIS10.7, the cross-tabulated areas of the two-phase land-use raster image datasets can be calculated, and the results can be output. Land-use change mapping is mainly through the spatial superposition of land-use data in different periods to reflect the change of land-use patterns in a certain period. Drawing on the existing mapping fusion method, the mapping fusion is realized by superimposing the codes of the mapping units of the land-use types in the previous periods according to the map algebra to record the evolution process of the mapping units. The formulas and indicators are explained in Table 2.



TABLE 2 Research methodology.
[image: Table presenting measurement methods, modeling, calculation formulas, and model interpretation for land-use change and coupling coordination. It includes methods like land-use transfer matrix and coupling coordination degree model with related formulas and explanations.]



2.4.3 Measurement of coupling coordination degree

In the constructed integrated evaluation index system of the water–food–carbon system, due to the large differences in the dimensions, orders of magnitude, and positive and negative orientations of each index, it is vital to standardize the original data collected to ensure the scientific validity and rigor of evaluation results. First, the entropy weight method is used to calculate the weights of evaluation indexes, and the comprehensive evaluation indexes of the three systems of water, food, and carbon are finally calculated. Then, this study quantitatively analyses the degree of interaction between the comprehensive evaluation indices of the WFC system in Hebei Province through the coupling degree model. Although the coupling degree model can quantify the degree of dependence between different systems and describe the degree of closeness between systems, the coupling degree alone cannot reflect the level of coordinated development between systems or elements. It is not easy to reflect the overall coordinated development effect of a region, especially in the case of comparative studies of multiple regions. Meanwhile, in multidimensional systems with complex relationships, coupling alone cannot effectively represent the interaction and interdependence between different dimensions. Therefore, the level of coordinated development between WFC systems in different regions is further evaluated by constructing the coupling coordination degree. To better analyze the degree and stage of development of coordination between systems, the degree of coupled coordination is classified into levels and types concerning existing research results (Zhang et al., 2020; Table 3). At last, the hotspot analysis can be used to explore whether spatial changes in the regional water–food–carbon coupling coherence are characterized by the phenomenon of high-value clustering (hotspots) and low-value clustering (coldspots), and to determine where spatial clustering occurs in high and low-value areas. If a range of water–food–carbon system coupling degree of coordination changes compared with the surrounding higher, it turns into a statistically significant hotspot, called the coupling degree of coordination of value-added hot spot, indicating that the coupling degree of coordination in the area of the increased is larger; if a range of water–food–carbon system coupling degree of coordination changes compared with the surrounding lower, then it turns into a statistically significant cold spot, called the coupling degree of coordination loss cold spot area, indicating that the coupling coherence in the area of a larger reduction. The formulas and indicators are explained in Table 3.



TABLE 3 Coupling coordination level classification.
[image: Table showing the relationship between coupling coordination degree, type of coordination, and traits. Values range from severe disorder (0 < D ≤ 0.2) with disordered development to a high degree of coordination (0.8 < D ≤ 1) featuring enhanced positive interactions and well-coordinated relationships. Intermediate degrees include mild disorder, forced coordination, and medium coordination with varying levels of balance and competition among functions.]



2.4.4 Measurement of the impact of land-use change on the degree of coupling coordination

This study contains two aspects: the effect of quantitative and spatial land-use changes on the degree of coordination of the system coupling. First, the Pearson coefficient method was used to reflect the correlation between land-use change and the coupling coordination degree of water–food–carbon system in Hebei Province during 2010–2015 and 2015–2020. Then, using the land-use change map and the hot spot map of the coupling coherence of the water–food–carbon system as the basic data, the influence of land-use change on the coupling coordination degree in spatial dimensions was explored through the superposition of the two.





3 Results


3.1 Analysis of land-use change


3.1.1 Quantitative characteristics of changes in land-use area

From Table 4, the overall expression of changes in the mutual transfer of the area of each land-use category is the largest transfer in the area of the construction site, the largest transfer out of arable land, and the smallest transfer in the area of unused land. In terms of the area of land transferred in, the amount of construction land transferred in from 2010 to 2020 is 9,711.72 km2, and its primary source is cropland; in terms of the area of land shifted out, the amount of cropland shifted to other land-use types from 2010 to 2020 is 11,387.24 km2. From Figure 3, it can be seen that 2010–2015 was a stronger period of land transfer in Hebei Province, with a total converted area of 40,824.78 km2, of which the cropland area turned out to be the largest, 9,833.49 km2. The largest area transferred to the type is construction land, amounting to 8,881.83 km2, which is mainly converted from grassland and cropland. The next largest area transferred from cropland is 4,353.70 km2, which is mainly converted from construction sites and grassland. The total area of land transformed from 2015 to 2020 is 12,244.56 km2. Among them, the largest area of cropland is transferred in, which is 1,791.71 km2, and the main source of cropland is construction land, but at the same time, the largest area of cropland is transferred out, which is 2,545.30 km2, and it is mainly used as construction land, and the second largest area is grassland, which is transferred out, which is 11,36.32 km2, and it is mainly transformed into cropland.



TABLE 4 Land-use transfer matrix, 2010–2020.
[image: A table comparing land type changes from 2010 to 2020. Row categories: Cropland, Forest land, Grassland, Water, Construction land, Unused land, and Total. Columns show quantities in Cropland, Forest land, Grassland, Water, Construction land, Unused land, and Total for 2020. Total values for each row in 2020: Cropland 96,493.81, Forest land 36,725.46, Grassland 33,456.90, Water 3,897.42, Construction land 14,872.14, Unused land 19,197.37, and overall total 187,365.09.]

[image: Two circular diagrams compare land use changes between 2010-2015 and 2015-2020. Sections represent cropland, forest land, grassland, water, construction land, and unused land, each shown with different colors. Flow lines indicate transitions between land use types over each period.]

FIGURE 3
 Land-use change trajectory in Hebei Province, 2010–2020.




3.1.2 Characteristics of spatial differentiation in land-use change

According to formula (2), the calculation results in obtaining the characteristics of the land-use change pattern map of Hebei Province in 2010–2015, 2015–2020, and 2010–2020. As can be seen from Figure 4 and Table 5, in general, the change of land-use categories from 2010 to 2020 is dominated by the conversion of cropland to construction land, building sites to cropland, and grassland to woodlands, with the conversion area of the three beings: 8,207.20, 2,370.39, and 1,898.88 km2, and the rate of change being 34.40, 9.94, and 7.96%, respectively.

[image: Three maps depict changes in an area over time, with intervals from 2010-2015, 2015-2020, and 2010-2020. Each map is divided into regions outlined in black, with varying colors indicating different data values. A color scale at the bottom ranges from green to pink, labeled with numbers, likely representing data categories. North is indicated by arrows above each map. Scale bars show distances in kilometers.]

FIGURE 4
 Atlas of land-use changes in Hebei Province, 2010–2020.




TABLE 5 Rate of change of land-use change mapping in Hebei Province, 2010–2020.
[image: Table showing rates of change in land mapping types from 2010 to 2020. It lists types of mapping, codes, and percentage rates of change for three periods: 2010–2015, 2015–2020, and 2010–2020. Specific mappings include Grassland to Cropland, Cropland to Construction land, and others, with varying rates for each period.]

In terms of phases, from 2010 to 2015, the mapping unit with the largest variation is the conversion of cropland to the construction site, with a change rate of 36.68% and a changing area of 7,493.97 km2, which is mainly located in Baoding, Xingtai and Shijiazhuang regions; the conversion of construction land to cropland is also stronger, with a change rate of 11.07% and a changing area of 2,262.38 km2, which mainly occurs in the Cangzhou, Baoding and Hengshui areas; next is the conversion of grassland to forest land, with a change rate of 7.42% and a changing area of 1,515.35 km2, mainly in Zhangjiakou, Chengde, and Qinhuangdao areas. From 2015 to 2020, the change rate of cropland converted to construction land was 20.45%, which was 16.23% lower than that of the previous period, indicating that the expansion of building sites in this period was significantly reduced, and the area converted was 1,252.24 km2; at the same time, the conversion of the building site to arable land was also stronger, with a change rate of 10.45% and an area of 640.03 km2, which was mainly concentrated in the Baoding, Handan, and Xingtai areas; the change rate of cropland to grassland was also larger, at 9.38%, with a changing area of 574.23 km2, concentrated in Zhangjiakou and Chengde areas.




3.2 Analysis of the coupled coherence of the WFC system


3.2.1 Analysis of the degree of subsystem coupling and coupling coordination

The coupling coordination of the WFC system and its subsystems in Hebei Province in 2010, 2015, and 2020 were calculated by coupling coordination degree mode.

From Figure 5A, the overall coupling degree of the system slightly swings in the range of 0.75 ~ 0.85, maintaining a high coupling status for a long time, reflecting a strong correlation among the systems. The degree of coupling coordination fluctuates greatly and demonstrates a rising and subsequently falling trend between 2010 and 2020, and the overall performance between water, food, and carbon in Hebei Province needs to be more coordinated development level. The two subsystems have also maintained high coupling for a long time, of which the water–food system has the highest and most stable coupling, which has a pulling effect on improving the overall level of coupling and coordination, and the food–carbon system has a relatively weak degree of coupling. Figure 5B shows that the water–food system has the highest level of coupled coordination, with relatively large changes, moving from moderate coordination to barely coordinated during the 2010–2020 period, which has a higher impact on the overall level of coupled coordination of the system. The water-carbon system fluctuates slightly in the range of 0.35–0.40 and shows an overall mild level of misalignment.

[image: Two line graphs showing the degree of coupling and coupling coordination between combinations of subsystems from 2010 to 2020. Graph A shows "Water-Food" and "Water-Carbon" combinations generally stable, with "Food-Carbon" and "Comprehensive" increasing. Graph B illustrates the coupling coordination, where "Water-Food" peaks in 2015, while "Food-Carbon" and "Comprehensive" remain steady.]

FIGURE 5
 Degree of coupling and coupling coordination for two-by-two combinations of subsystems (A) Degree of coupling between two combinations of subsystems (B) Degree of coupling coordination between two combinations of subsystems.




3.2.2 Characteristics of the spatial distribution of the overall coupling coordination degree of the system

The coupling degree and coupling coordination degree of the WFC system in each county of the study area from 2010 to 2020 were calculated, and according to the change of coupling coordination type and its numerical evolution characteristics in each region, the spatial evolution map of coupling coordination of WFC system in study area at each time node was plotted.

From Figure 6, it can be seen that from 2010 to 2020, high-level coordination areas were dominated by the northeastern part of Hebei Province, showing a certain degree of spatial aggregation. From 2010 to 2020, the coupling coordination status has always maintained a medium level of coordination of a total of 26 areas, and is located in the northeastern part of Hebei Province, Chengde City, and eight districts are ranked among them, accounting for 31%, in addition to the northeastern part of the region, the development of the central and western regions is also relatively stable, the level of coupling coordination for an extended period to maintain a relatively high and spatial distribution of the concentration of the situation. The low-level coordination areas have long been laid out within the southwestern part of Hebei Province, showing a certain degree of low-value locking phenomenon. In terms of type change, the number of districts where the coupled coordination status always remains mild disorder from 2010 to 2020 is 11, and the five districts that always remain mildly dysfunctional among all districts and counties in the study area belong to Xingtai City, which are Ren, Nanhe, Julu, Pingxiang, and Guangzong counties, respectively. As a whole, the coupling degree of the WFC system in the study area during 2010–2020 appears to have a spatial pattern of “high in the northeast and low in the southwest.” In general, this feature also has strong stability, but comparing 2010–2015 and 2015–2020, it reveals that although the coupling coordination of the northern region of Zhangjiakou and the western region of Xingtai has increased, the areas with mild dislocations in the central-eastern part of study area show a tendency of shrinking and then expanding.

[image: Three maps from 2010, 2015, and 2020 show regional variations in coordination levels. Areas are colored by category: mild disorder (light beige), forced coordination (light orange), and medium coordination (dark orange). A north arrow and a scale bar indicating kilometers are included.]

FIGURE 6
 Spatial evolution of the type of coupled coordination degree of the water–food–carbon system in Hebei province.




3.2.3 Characteristics of the spatial evolution of the overall hot and cold spot pattern of the system

To analyze the spatial distribution of the variation in the coupled coordination degree of the WFC system in Hebei Province, this study employs county areas as the unit of analysis and utilizes hotspot analysis in ArcGIS as the methodological tool. The observed values are derived from the changes in the coupled coordination degree from 2010 to 2015 and from 2015 to 2020. Consequently, hotspot maps depicting the changes in the coupled coordination degree for Hebei Province during the periods of 2010–2015 and 2015–2020 are generated (Figure 7).

[image: Three maps display hot and cold spots from 2010 to 2020 in a region. The first map (2010-2015) shows varied cold and hot spots. The second map (2015-2020) predominantly highlights red hot spots in the north. The third map (2010-2020) displays persistent hot spots in the north and south. Color codes indicate confidence levels: dark red for hot spots (99% confidence) and dark blue for cold spots (99% confidence).]

FIGURE 7
 Distribution of cold hotspots for changes in the coordination degree of the coupled water–food–carbon system in Hebei Province, 2010–2020.


As illustrated in Figure 7, the cold and hot spots of the coupling coordination degree of the WFC system in Hebei Province were dispersed during the period from 2010 to 2015. Specifically, the hot spots of value-added were predominantly located in the south-central region of Zhangjiakou and the east-central area of Shijiazhuang. In contrast, the cold spots of loss were concentrated in Chengde, with additional scattered occurrences in Xingtai, Handan, Langfang, and Tangshan; From 2015 to 2020, the concentration range of cold and hot spots about the coupling coordination degree of the WFC system in Hebei Province increased. During this period, the value-added hot spots were primarily located in Zhangjiakou and Xingtai, while the cold spots of loss were mainly found in Langfang, Cangzhou, Shijiazhuang, and Chengde. A comparison of the periods 2010–2015 and 2015–2020 reveals an expanding trend in the range of cold and hot spots related to the coupling coordination degree of the WFC system in Hebei Province. Furthermore, there is a notable correlation in the spatial transformation of these cold hot spots. Specifically, areas including the eastern part of Shijiazhuang, Julu County in Xingtai, Pingxiang County, Quzhou County, and Guantao County in Handan transitioned from being cold spots of loss in 2010–2015 to becoming hot spots of value-added in 2015–2020. As a whole, the distribution range of value-added hotspots and loss cold spots in the water–food–carbon system coupling coordination degree in Hebei Province from 2010 to 2020 is large, and the distribution of hotspots has obvious spatial agglomeration, which is characteristic of the overall performance of the “large difference between the high and low values of east–west agglomeration, and distribution of hot spots in both north and south”.




3.3 Impact of land-use change on the coordination of coupled WFC systems


3.3.1 Impact of changes in land-use quantities on the degree of coupling coordination

To study the impact of land-use changes on the coupling coordination of the WFC system in Hebei Province, correlation analyses were carried out between the two based on the Pearson correlation coefficient (Figure 8).

[image: Three correlation matrix plots for land use from 2010, 2015, and 2020, showing relationships between cropland, forest land, grassland, water, construction land, and unused land. Each plot includes color coding from blue to red, indicating correlation strength. Red circles indicate positive correlation, with size reflecting magnitude. Notable strong positive correlations exist between forest land and itself across all years, and varying correlations between other land types.]

FIGURE 8
 Correlation coefficients between land-use types and the degree of coordination of the coupled water–food–carbon system.


By stages, in 2010, the WFC system in the study area was significantly positively correlated with forest land, grassland, and waters, with correlation coefficients of 0.60, 0.52, and 0.46, respectively; in 2015, the WFC system in Hebei Province was significantly positively correlated with woodland, grassland, waters and construction site, with the correlation coefficient of construction land is relatively low, at 0.17; in 2020, the degree of coordination of the WFC system in Hebei Province is significantly positively correlated with cropland, woodland, grassland and water, of which the correlation with cultivated land has changed from irrelevant to relevant, with a correlation coefficient of 0.20. Overall, the WFC system in the study area during the study period had a stable positive correlation with forest land, grassland, and watersheds, but the correlation between the degree of coordination of the system coupling, and woodland and grassland, increased, and the correlation with water showed a decreasing trend. Therefore, the increase in the area of woodland and grassland can ensure regional water resources, food security, and green ecological development through water conservation, emission reduction and sink enhancement, and soil and water conservation, thus increasing the benign reciprocal feedback among the systems and facilitating the enhancement of the coupling coherence.



3.3.2 Impact of spatial land-use change on the degree of coupling coordination

The land-use change map was superimposed with the hot spot map of the change in the WFC system (hotspots and cold spots with statistical significance with a confidence level of 95% and above were selected) to analyze the land-use change in the cold hot spot regions in Hebei Province in the 2010–2015 and 2015–2020 periods.

Figure 9 shows that during the period 2010–2015, the value-added hotspot areas are distributed in the south-central region of Zhangjiakou and the east-central region of Shijiazhuang, and their increase is mainly attributed to the conversion of cropland to construction land, woodland, and grassland, in which the area of cropland converted to building site is the largest, with the converted area of 1,009.19 km2, followed by cropland converted to forest land and grassland, with the converted areas of 290.89 and 148.30 km2. The loss of cold spot area is mainly concentrated in Chengde, Langfang, and Handan areas, and its decrease mainly comes from the conversion of cropland to building land, with a conversion area of 733.34 km2; next, the biological space of grasslands and forests is converted to various types of land., with a conversion area of 542.74 and 330.47 km2; during the period 2015–2020, the value-added hotspot areas are mainly distributed in Zhangjiakou and Xingtai regions, and their increase mainly originates from the conversion of cropland, with a conversion area of 488.00 km2, of which the area of cropland converted to the building site is the largest, with a conversion area of 201.05 km2. The loss of cold spot areas is mainly concentrated in Shijiazhuang, Tangshan, and Chengde regions, and its reduction mainly originates from the conversion of woodland to arable land and woodland to grassland, with the conversion areas of 129.20 and 85.53 km2, respectively.

[image: Map comparison of hotspot and cold spot regions from 2010-2015 and 2015-2020 in a specific area. Hotspots are outlined in orange and cold spots in blue. Both maps display regions divided by boundaries, with a color-coded legend indicating different categories and a scale bar for distance reference. North is marked by an arrow.]

FIGURE 9
 Atlas of land-use changes in Hebei Province, 2010–2020.






4 Discussion and recommendations


4.1 Changes in the coupling coordination degree of water–food–carbon system

The coupled coordination degree model indicates that the overall coupled coordination level of Hebei Province in 2010–2020 shows a barely coordinated development level, which is the same as the research results of Li and Zhang (2020). Hebei Province, China’s major energy consumption province, has huge carbon emissions, and there is a considerable conflict between economic development and resource and ecological protection, which seriously affects the stable and coordinated development of the WFC system. Among them, the fluctuation of the coupling coordination of the water–food system is more obvious; Hebei Province, as a main agricultural region, the contradiction between water resources and grain is more prominent, agriculture accounts for more than 60% of the total water consumption, the water-grain system is closely related (He and Yuan, 2021). Compared with provincial-scale resource studies (Wang and Tian, 2022), county-scale studies can more accurately identify the development level of the WFC system in each region. From the viewpoint of spatial distribution, the city of Chengde, which has a high coupling coherence, resides in the northeast region of the study area; however, for the period 2010–2020, the coupling coordination in the northern part of Zhangjiakou increased, and at the same time the hotspot value-added areas are also distributed more agglomerated in Zhangjiakou. Zhangjiakou has a larger area of agricultural land, more developed agriculture, better ecological advantages, slower urban expansion than other regions, and abundant water resources.



4.2 Impact of changes in land-use quantities on the degree of coupling coordination

While studying, the building site of Hebei Province has been expanding and ecological and agricultural land has been shrinking, which in turn affects the coupling coherence of the regional WFC system. Among them, cropland area and the level of regional WFC system coupling coordination are positively connected, and the conversion of cropland to the building site is the most dominant type of land-use change during the study period. Cropland has the ecological functions of producing organic matter, gas regulation, water containment, soil retention, environmental purification, and other ecological functions, it is an important ecological landscape and the most important production resource for human survival (Ren et al., 2016), however, the area of cropland in Hebei Province has been declining year by year, thus threatening the development of the coupling coherence of the WFC system; the area of woodland, grassland, and watershed is positively correlated with the degree of coordination of regional WFC system coupling, from the point of view of the hotspot value-added areas in Hebei Province, from 2010 to 2020, the main reason for the increase in the degree of coupling coordination due to land-use change is the conversion of other types of land to woodland or grassland., and the increase in the area of woodland and watershed not only eases the demand for water resources in Hebei Province’s agricultural production but also helps to Biodiversity restoration, which in turn inhibits the living space of agricultural pests, ensuring stable food production (Dainese et al., 2019); generally speaking, the increase of construction land will squeeze the space for food cultivation and contribute to higher pollutant emissions, which will have a negative impact on coordinated development. However, in this study, the building site is not relevant to it, which may be related to the relatively low level of economic development of the study area, which indicates that the increase of the building site is at a reasonable stage of the urbanization process in Hebei Province, and will not negatively affect the coupling coordination for the time being.



4.3 Impact of spatial land-use change on the degree of coupling coordination

Analyses from a spatial perspective can be targeted to spatially regulate land-use and improve the coupling coherence of regional WFC systems according to local conditions. In terms of phasing, the value-added hotspots in 2010–2015 were distributed in the south-central region of Zhangjiakou, and the east-central region of Shijiazhuang, with the south-central region of Zhangjiakou, mainly attributed to the transformation of other spaces into grassland ecological space, and the east-central region of Shijiazhuang due to the transformation of other spaces into forest land ecological space, and the loss of the cold spot area was more clustered in scope in this period, especially in the northeastern region of study area. This is primarily because of the transformation of forest land and grassland ecological space in this region. In 2015–2020, there is a tendency to expand the scope of loss cold spot zones, so for value-added hot spot zones, based on improving the level of intensive and economical use of land, it is necessary to guide the WFC system to a higher level, and in the case of loss of cold spots, the protection of ecological resources in parts of these counties should be strengthened, and to rationally plan the land resources of cropland, forest land and waters, to promote sustainable development of the resources.

Land has a special role in water resources, food resources, and carbon emissions, and promoting the rational use of land resources is an effective way to improve the WFC system in the region. The specific recommendations are as follows:

	(1) Optimize the layout and structure and strictly abide by the red line of cropland. Hebei Province is one of the significant agricultural provinces in China. Nevertheless, due to the development of new urbanization, the area of cropland is decreasing, so we must adopt strict cultivated land protection policies, reasonably increase ecological land based on ensuring food production security, and coordinate the protection of forests, grasslands, and wetlands.
	(2) Seize regional advantages and promote coordinated development. Improving and upgrading the intercoordination between the water–food–carbon systems in Hebei Province, taking advantage of Hebei’s geographical advantages, raising the proportion of clean energy used, developing green low-carbon industries, and grasping energy-saving and carbon-reducing renovation. Hebei is the Beijing–Tianjin–Hebei resilience shortboard, but it is also where the development potential lies, narrowing the gap between Hebei and Beijing–Tianjin will help to realize the Beijing–Tianjin–Hebei synergistic development.
	(3) Developing differentiated policies to improve land-use efficiency. For areas with scarce land resources, the use of clean energy should be encouraged, technological innovation should be carried out in industries with high water and energy consumption, drought-tolerant and high-yield crops should be introduced, and the consumption of water, land, and other resources should be reduced. For regions with abundant land resources, the advantages of regional resources should be fully utilized, accelerate the upgrading of their industrial structure, introduce advanced technologies and enhance the overall competitiveness of their economic development.

Compared with most of the current studies on the water-energy-food system, this study incorporates land-use into the system, explores its impact on the degree of coordination of WFC coupling, and then looks for paths to promote the synergistic development of various types of resources. Nevertheless, there are some shortcomings, in the construction of the water–food–carbon system evaluation index system, this study to the county as a research unit, Hebei Province, due to the lack of municipal and county scale part of the index data because there are some limitations in the selection of indicators; this study to the 132 counties in Hebei Province as the object of the study, to explore spatial and temporal variations in the coupled coherence of the water–food–carbon system in 132 districts of the region, the future will be from a multiscale perspective.




5 Conclusion

In this study, by analyzing the changes in land-use types, constructing the evaluation index system for the coupling coordination development of the WFC system, calculating the degree of coupled coordination in Hebei Province from 2010 to 2020, and analyzing the impact of quantitative and spatial land-use changes on the WFC systems, the following conclusions were reached:

(1) From 2010 to 2020, the change of land-use type is characterized by the decrease of cropland and the expansion of building site, with the conversion of cropland to building site dominating in each mapping unit, with a conversion area of 8,207.20 km2, a change rate of 34.40%, and spatially concentrated in Baoding, Xingtai and Shijiazhuang; followed by the conversion of building site to arable land, with a conversion area of 2,370.39 km2 with a change rate of 9.94%, mainly in Cangzhou, Baoding and Hengshui regions.

	(2) From a temporal perspective, the coupling degree of the WFC system in the study area from 2010 to 2020 is at a high level, with the system as a whole fluctuating slightly in the range of 0.75 to 0.85, but the coupling degree of coordination of the WFC system is at a low level, fluctuating slightly in the range of 0.35 to 0.40, and the overall performance is at the level of a mild dysfunctional disorder. From a spatial perspective, the water–food–carbon system coupling coordination degree has a significant spatial differentiation law, presenting a spatial distribution pattern of “high in the northeast and low in the southwest”; from 2010 to 2020, the distribution of hot and cold spots in the coupling coherence of the WCF system in study area shows the “east–west high and low values of the agglomeration difference is too large.”
	(3) From the point of view of changes in land-use quantity, the coupling coherence of the WFC system in each county from 2010 to 2020 is positively correlated with cropland, forest land, grassland, watersheds, and building sites, and is not correlated with the unused land; regarding the spatial changes in land use, the conversion of urban and rural construction land, as well as agricultural production space, to forest ecological space in the region is primarily responsible for the hotspot value-added areas, while the conversion of forest and grassland ecological space to other land types is the primary cause of the loss of cold spot areas.
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Improving the eco-efficiency of cultivated land use (ECLU) is important for ensuring food security, promoting social and economic development, and reducing carbon emissions. However, dynamic inter-period comparisons of the ECLU and clarifications of its influencing factors are limited. We calculated the ECLU at the county level in the Beijing–Tianjin–Hebei region, China, based on the super-efficiency slacks-based measure and global Malmquist–Luenberger index and analyzed its influencing factors utilizing a geographically and temporally weighted regression model. From 2000 to 2020, the number of higher counties decreased and that of medium counties increased. Geographically, the ECLU values in the north are higher than those in other districts and counties; counties in Beijing and Tianjin maintained moderate ECLU values, whereas Zhangjiakou and Chengde maintained high ECLU values. The ECLU value in the study area showed a trend of rapid decline–slow rise–continuous rise, with the upward trend of the ECLU value in Beijing–Tianjin–Hebei region being significantly less pronounced than those in most counties of Hebei Province. Resource allocation and scale expansion where initially dominant; however, technological progress and investment eventually prevailed. The ECLU is mainly affected by the multiple cropping index, industrial structure, irrigation index, mechanized farming level, and per capita cultivated land. This study assesses the ECLU in the Beijing–Tianjin–Hebei region, providing a scientific basis for the formulation and implementation of relevant policies for its improvement. Furthermore, this study enriches the theory and methods of research on the ECLU and has practical value and theoretical significance. Overall, the results have important social value as they contribute to ensuring national food security, reducing carbon emissions, promoting regional coordinated and sustainable development.
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1 Introduction

Food security is a fundamental requirement for human survival and development, constituting a major concern worldwide (Rosegrant and Cline, 2003). According to the definition of the Food and Agriculture Organization (FAO) of the United Nations (UN), food security refers to ensuring that all humans can afford and have access to their basic food requirements at any time. Ensuring the production of sufficient food, maximizing the stability of the food supply, and ensuring that all humans in need can obtain food are connotations of food security as a concept. According to the FAO publication The State of Food Security and Nutrition in the World 2023, in 2022, between 691 and 783 million people worldwide suffered from hunger. Owing to population growth, changes in dietary structure, and increased bioenergy applications, food production will need to increase by an estimated 100–110% to meet the demand in 2050 (Tilman et al., 2011; Smith, 2013). In particular, the necessary increase of grain production requires increased grain yield and/or further expansion of the cultivated land area, which is limited by the need to protect the ecological environment and the decline of cultivated land quality (Foley et al., 2011; Smith, 2013; Liu Q. et al., 2023; Ye et al., 2024; Ye et al., 2023).

China and India are the most populous countries in the world, harboring over 1.4 billion people each. Among them, China is characterized by trends of increasing population and reduced available land; therefore, its policies are prioritizing national food security. By ensuring national food security, China is a major contributor to world food security. Having experienced a period of rapid economic growth, China is still in the stage of rapid urbanization, which has led to the expansion of the construction land area, allowing only limited potential for expansion of the cultivated land area (Liu et al., 2014; Ye et al., 2020). In this context, improving the cultivated land use (CLU) efficiency has become a key factor affecting the regional sustainable development and food security (Fei et al., 2021). The essence of the CLU efficiency is that in a certain cultivated land area, producers pursue social and economic benefits by investing in various production factors to obtain the expected output ratio (Kuang et al., 2020). Moreover, with the ongoing deterioration of the ecological environment, which is a direct consequence of global warming, CLU has acquired further connotations. For example, the ecological benefits stemming from CLU have been incorporated into the evaluation of CLU, thereby leading to the concept of the eco-efficiency of cultivated land use (ECLU) (Ma et al., 2023; Wang et al., 2023). Specifically, the ECLU is the degree to which social and economic outputs can be maximized and environmental pollution can be minimized through certain inputs of cultivated land production factors, while pursuing the broader objective of tandem social, economic, and ecological benefits (Cui et al., 2021; Ke et al., 2022; Xiao et al., 2022). Studying the spatial–temporal differentiation of the ECLU and its influencing factors can not only clarify the current situation and evolution process of CLU intensity, but also reveal its mechanism of action, which is of considerable practical significance for optimally allocating cultivated land resources, ensuring food security, and promoting regional sustainable development (Liu and Zhang, 2023).

Recently, the ECLU has garnered considerable research attention worldwide, with efficiency measurements, spatial–temporal analyses, causal mechanisms, and research scales attracting particular interest. Numerous methods have been used for calculating the ECLU regionally, such as the stochastic frontier approach (Ma et al., 2023), data envelopment analysis (DEA) (Tone, 2002, 2004, 2010; Fukuyama and Weber, 2010; Xiang et al., 2020; Ma et al., 2023), slacks-based measure (SBM) (Chen and Xie, 2019; Chen et al., 2020; Luo et al., 2020; Yang et al., 2021; Yin et al., 2022), super-efficiency SBM (Super-SBM) (Zhou et al., 2018; Liu et al., 2020; Lu et al., 2020; Cao et al., 2022; Ke et al., 2023; Wang et al., 2023), super epsilon-based measure (Super-EBM) (Li M. et al., 2023) and SBM–DEA (Cecchini et al., 2018; Kuang et al., 2020) models, the Malmquist–Luenberger (ML) (Chung et al., 1997; Han and Zhang, 2020a) and global Malmquist–Luenberger (GML) (Oh, 2010; Li and Wenbo, 2017) indices, and the non-radial directional distance function (NDDF) (Xie et al., 2018). In turn, methods such as spatial auto-correlation, kernel density, Markov chain, Thiel index, and Dagum Gini coefficient have been used to analyze the spatial pattern and evolution of the CLU efficiency (Fan et al., 2021; Tan et al., 2021; Zhou et al., 2022; Ke et al., 2023). To elucidate causal mechanisms, indicators affecting the ECLU selected on the basis of measuring the CLU efficiency have been employed to highlight potential influencing factors through the use of tobit models, panels, and geographically and temporally weighted regressions (GTWRs) along with geographical detectors (Zhou et al., 2018; Chen and Xie, 2019; Xiao et al., 2022; Zhou et al., 2022; Feng et al., 2023; Ma et al., 2024). Scholars have also explored the impacts of single factors, such as agricultural productive services, rural labor transfer, landscape pattern change, and environmental regulation, on the ECLU (Huang et al., 2024; Zou et al., 2022; Liu C. et al., 2023; Li M. et al., 2023). Furthermore, ECLU research has ranged from macro-scale, e.g., national (Oh, 2010; Han and Zhang, 2020b; Liu et al., 2020; Yang et al., 2023), provincial (Zhou et al., 2018; Chen and Xie, 2019; Kuang et al., 2020; Xiao et al., 2022), and municipal (Lu et al., 2020; Ke et al., 2023), to micro-scale, e.g., villages (Xiang et al., 2020), farms (Gómez-Limón et al., 2012; Bonfiglio et al., 2017; Lin and Hülsbergen, 2017; Cecchini et al., 2018), farm households (Qu et al., 2021), landscapes (Hou et al., 2021), and specific geographical areas (Kühling et al., 2016; Chen et al., 2020; Fan et al., 2021; Yang et al., 2021; Zhou et al., 2022; Feng et al., 2023). However, most studies have used single modeling methods, such as Super-SBM, to measure the ECLU. Such methods are limited with regard to incorporating undesired outputs and making dynamic inter-period comparisons (Ma et al., 2023). Although the GML index addresses these shortcomings (Xie et al., 2018; Luo et al., 2020), few studies have combined the two methods to measure the ECLU (Oh, 2010; Han and Zhang, 2020a; Ma et al., 2023). Moreover, existing research has predominantly focused on certain macro-scales or individual micro-scales, and relatively few studies have adopted meso-scales, e.g., county, as evaluation units. Notably, the county is a basic unit of national governance in China. Therefore, considering county as the evaluation unit can more accurately reflect the spatial–temporal evolution patterns of ECLU and reveal influencing factors, thereby laying a foundation for the precise formulation and effective implementation of regulatory policies in China.

The Beijing–Tianjin–Hebei region is an important agricultural production area in China. However, rapid economic development and urbanization have led to encroachment on high-quality cultivated land and a decline in land quality, posing challenges to regional food production security and sustainable CLU. Additionally, water and air pollution, declining groundwater levels, desertification, and other ecological and environmental issues are prominent in this region. Coupled with pronounced fertilizer use and over-exploitation of cultivated land, these phenomena have resulted in increased carbon emissions and agricultural non-point-source pollution. A more comprehensive understanding of the spatial–temporal patterns of the ECLU and influencing factors in this region can clarify the evolution of the ECLU and facilitate optimization of the management modes of cultivated land resources. Furthermore, this information is critical regarding effectively promoting coordinated and sustainable development of land use, cultivated land, and ecological environment, ultimately ensuring food security in China as well as other countries worldwide.

To address these issues, we posed the following questions, taking the Beijing–Tianjin–Hebei region as the study area and county as the evaluation unit:

	1. What are the spatial–temporal differentiation characteristics of the ECLU?
	2. What are the dynamic evolution patterns of the ECLU?
	3. What are the influencing factors of the ECLU evolution?

To this end, we incorporated undesired outputs, such as non-point-source pollution and carbon emission produced during the CLU process, into the evaluation index system, combined Super-SBM with the GML index to calculate the ECLU in the study region at the county scale, analyzed its spatial–temporal differentiation and dynamic changes, and conducted efficiency decomposition. By directly incorporating undesirable outputs, considering slack variables, allowing super-efficiency scores, and having non-radial and non-angular characteristics, the Super-SBM model constitutes a more powerful and flexible tool for conducting efficiency evaluation of decision making units. We also utilized the GTWR method to reveal the factors influencing the evolution of the ECLU in specific counties in the study region. Overall, our findings serve as a reference for conducting generalized studies of regional ECLU as well as generating relevant data in the underinvestigated Beijing–Tianjin–Hebei region, providing a scientific basis for the precise formulation and implementation of policies on regional ECLU.



2 Data and methods


2.1 Study area

The Beijing–Tianjin–Hebei region is among the most socioeconomically developed regions in China. Considered as a world-class city cluster with the capital as its core, the coordinated development of Beijing, Tianjin, and Hebei has been incorporated into China’s national strategy. The region includes the two municipalities of Beijing and Tianjin, and eleven prefecture-level cities in Hebei Province, namely Shijiazhuang, Baoding, Tangshan, Langfang, Qinhuangdao, Zhangjiakou, Chengde, Cangzhou, Hengshui, Xingtai, and Handan. As of 2020, the regional population has exceeded 107 million people, accounting for approximately 7.6% of the total population in China. The region comprises 120,000 km2, representing 2.35% of the national land area, containing a vast plain area with a terrain that slopes from high in the northwest to low in the southeast. The region is located in a warm, temperate, semi-humid monsoon climate zone. Due to its favorable physical geography, the region has become a major agricultural production area in China. An overview of the study area is shown in Figure 1.

[image: Flowchart illustrating the process for evaluating eco-efficiency in land use (ECLU). It starts with basic data collection, including inputs like cultivated land-use data and carbon emissions. This leads to index system construction for measuring ECLU. Eco-efficiency is characterized through spatial-temporal evolution, dynamic analysis, and classification using indices like Super-SBM and GML. Influencing factors and geographically weighted regression are analyzed, resulting in policy recommendations to improve ECLU.]

FIGURE 1
 Overview of the study area.




2.2 Research methodology

The main methodological framework of this study is shown in Figure 2. Our objectives were to (1) adjust the county-level administrative divisions in the Beijing–Tianjin–Hebei region over 2000–2020 for consistency, and collect data related to the inputs, outputs, and carbon emissions of CLU and the social and economic development level and agricultural production conditions; (2) construct an evaluation system for the ECLU and an index system for its influencing factors based on published literature; (3) apply the Super-SBM model and GML index to measure the ECLU in various counties in the Beijing–Tianjin–Hebei region; (4) use the GTWR model to measure the differences among the impacts of the indicators on the ECLU; and (5) recommend policy aspects for improving the ECLU based on the research findings.

[image: Map of China highlighting a region in red. On the right, a detailed map of this region shows municipal and county boundaries, with altitude variations from low (ninety-seven meters) to high (two thousand eight hundred thirty-five meters). Key cities include Beijing, Tianjin, and Chengde.]

FIGURE 2
 Research framework. SBM, slacks-based measure; ECLU, eco-efficiency of cultivated land use; GML, global Malmquist–Luenberger.



2.2.1 Super-SBM model

When the inputs or outputs contain non-zero slack variables, the radial DEA overestimates the value efficiency of decision-making units. Conversely, Super-SBM—a non-radial and non-angular DEA model based on slack variables—addresses the inability to compare among effective decision-making units in traditional DEA models. Accordingly, the Super-SBM model was applied in this study to handle the variables of undesired outputs (Han and Zhang, 2020a; Fan et al., 2021). As shown in Formulas (1,2):

[image: Mathematical formula showing the efficiency measure ρ as the minimum of a fraction. The numerator is 1 plus the sum from i equals 1 to m of S sub i superscript x divided by x sub 0, all divided by m. The denominator is 1 minus 1 divided by the sum of S1 and S2, multiplied by the sum from k equals 1 to s1 of S sub k superscript y divided by y sub k0, plus the sum from l equals 1 to s2 of S sub l superscript z divided by z sub l0.]

[image: Mathematical constraints set contains four main expressions. The first three are inequalities involving summations: \( x_{i0} \), \( y_{k0} \), \( z_{l0} \) with respective variables and slack terms \( s^x_i \), \( s^y_k \), \( s^z_l \). The fourth is a complex inequality involving summations within a fraction. All slack terms and lambdas are greater than or equal to zero, with variables indexed by \( i, j, k, l \). Constraints apply for all indices.]

where xi, yk, and zl denote the input, desired output, and undesired output indicators, respectively, and sx, sy, and sz are their corresponding slack variables. 𝜌 (>1) is the value of ecological efficiency; the greater the 𝜌, the higher the ECLU representation. Because the Super-SBM–DEA model can only evaluate and rank effective decision-making units, the undesired SBM model was first used to determine whether the decision-making unit reached the effective production frontier. For example, 𝜌 < 1 indicates that the decision-making unit does not reach the effective production frontier, whereas ρ = 1 indicates that it is effective.



2.2.2 Global Malmquist–Luenberger index

The Super-SBM model can only measure the relative efficiency of decision-making units and cannot describe the trend of efficiency changes. Therefore, we employed a GML index analysis model that can measure the total factor productivity, including undesired outputs, and also overcome the linear insolubility and non-transferability limitations of the ML index (Xie et al., 2018; Chen et al., 2020). As shown in Formula (3):

[image: Equation showing a complex mathematical expression involving variables \( x, y, z, t \) with superscripts and subscripts. The equation includes functions such as \( GMLC, EG_C, E^{t+1}_C, TG^{t+1}_C \), brackets, fractions, and operations like multiplication. Final expression is \( GML \times E_C \times GML \times T_C \). This notation suggests transformations or computations in a possibly theoretical or applied mathematics context.]

The GML index can be decomposed into the global technical efficiency change index ECC and the global technical progress index TCC. GML index = 1 indicates no change in the ECLU of the region over time; GML index >1 indicates an improvement in the ECLU of the region compared to that in the previous year; GML index <1 indicates a decline of the ECLU of the region.



2.2.3 GTWR

GTWR is commonly used for studying the spatial heterogeneity of land use; it explores the spatial variations and related driving factors of the study object at a certain scale by establishing local regression equations at each point within a spatial range. In this study, GTWR was used to introduce the time dimension and reveal the spatial heterogeneity differences in that dimension by constructing a spatially and temporally dependent local model for the spatial–temporal non-stationary relationship (Feng et al., 2023). As shown in Formulas (4–6):

[image: Mathematical equation: \( y_i = R_0(x_i, y_i, t_i) + \sum_k P_k(x_i, y_i, t_i) X_{it} + e_i \), labeled as equation number 4.]

where xi and yi are the spatial coordinates of sample point i (i.e., longitude and latitude), and ti is its temporal coordinate. P0 is the regression constant for point (xi, yi, ti). Xit represents the value of the kth independent variable at point i. ei is the residual value. Pk(xi, yi, ti) is the 𝑘th regression parameter for sample point i, estimated as follows:

[image: Equation for the estimation of \(\hat{p}(x_i, y_i, t_i)\) is given as \([\mathbf{X}^T \mathbf{W}(x_i, y_i, t_i) \mathbf{X}]^{-1} \mathbf{X}^T \mathbf{W}(x_i, y_i, t_i) \mathbf{Y}\), labeled as equation (5).]

where [image: It seems there might have been a misunderstanding. It appears you're referencing mathematical notation rather than an image. The notation "P-hat" (denoted as 𝑃̂) represents a sample proportion in statistics. If you have an image you'd like to get alt text for, please upload the image or provide a URL.] (xi, yi, ti) denotes the estimated value of sample point Pk(xi, yi, ti). X is the matrix of independent variables, and XT is the transpose of X. Y is the sample matrix and W(xi, yi, ti) is the spatial–temporal weight matrix. In this study, Gaussian distance and the bi-square spatial weight function were used to obtain W(xi, yi, ti), with the spatial–temporal distance dij between sample point i and sample point j being defined as follows:

[image: Equation for \( d_{ij} \) calculates the distance as the square root of delta times the sum of squared differences in \( x \), \( y \), and \( t \) coordinates, weighted by delta and mu. Equation number six.]

The bandwidth of the GTWR model in this study was selected using the most widely used second order Akaike information criterion (AICc).




2.3 Data sources and index system construction


2.3.1 Data sources and processing

Natural condition data were sourced from the Hebei Rural Statistical Yearbook, Hebei Statistical Yearbook, Beijing Statistical Yearbook, and Tianjin Statistical Yearbook. Social and economic development metrics were sourced from the China Statistical Yearbook (county level) and Statistical Communiqué of National Economic and Social Development of Hebei Province. Agricultural production data were sourced from the Beijing Regional Statistical Yearbook, Tianjin Survey Yearbook, and Statistical Bulletin of National Economic and Social Development of Hebei Province. Resource and environmental data for China were accessed through the cloud platform at http://www.resdc.cn/, which includes land use remote sensing monitoring data, as well as information and data provided by the Hebei Provincial Department of Natural Resources. Some missing data were processed using interpolation or the average values of two adjacent years; all data were standardized. Considering the small amount of cultivated land and its relatively discrete distribution, we excluded the municipal districts in the main urban areas of the cities within each district. Owing to administrative adjustments or county-to-district changes in the Beijing–Tianjin–Hebei region since 2000, we took the 2000 administrative divisions as the benchmark and reorganized spatially the districts and counties for 2005, 2010, 2015, and 2020, resulting in 147 districts and counties.



2.3.2 ECLU evaluation index system

The production input variables of the ECLU comprised the cultivated land, labor, and capital inputs in each district and county. Specifically, the total sown area of crops represented the cultivated land input, the number of employees engaged in agriculture, forestry, animal husbandry, and fishery represented the labor input, and the amount of pesticide use, pure amount of fertilizer application, and mulch use represented the capital input (Xiao et al., 2022; Zhou et al., 2022). In addition, energy is both an essential consumable for agriculture and a major source of carbon emissions, and energy consumption is inextricably linked to the ECLU. Therefore, we chose the total power of agricultural machinery and effective irrigated area to represent energy inputs for agricultural development. Regarding output indicators, we divided outputs into desired and undesired outputs, in line with a previous theoretical analysis (Wang et al., 2023). Specifically, desired outputs were divided into social benefit outputs, including the total grain output, and economic benefit outputs, including the total agriculture, forestry, animal husbandry, and fishery outputs. Undesirable output comprises mainly carbon emissions and non-point source pollution. Carbon emissions comprise mainly carbon dioxide emissions, and non-point source pollution of cultivated land stems mainly from the loss of nitrogen and phosphorus in chemical fertilizers, pesticide losses, and agricultural film residues. Therefore, carbon dioxide emissions and non-point source pollution were used as undesirable output indicators (Zhou et al., 2018; Chen and Xie, 2019; Xiao et al., 2022). The ECLU evaluation index system is presented in Table 1.



TABLE 1 ECLU evaluation index system.
[image: Table showing agricultural indices divided into input, desired output, and undesired output. Inputs include land, labor, capital, and energy, with related secondary indices like crop area and pesticide usage. Desired outputs are economic and social, with indices like total output value. Undesired outputs cover carbon emissions and pollution.]



2.3.3 ECLU influencing factor indices

Based on existing studies (Zhou et al., 2018; Chen and Xie, 2019; Xiao et al., 2022; Zhou et al., 2022), we selected several factors influencing the ECLU from the perspectives of natural conditions, social and economic development, and agricultural production conditions, as presented in Table 2. Natural conditions involve topography, climate, and other factors, with the cropping structure differing across regions. Therefore, the multiple cropping index and per capita cultivated land were used to represent the differences in natural conditions among districts and counties. Specifically, the multiple cropping index was calculated as the ratio of grain sowing area to cultivated land area, and per capita cultivated land was calculated as the ratio of cultivated land area to the total county population.



TABLE 2 Factors influencing the ECLU.
[image: Table listing variables related to agriculture and economics. Explained variables include natural conditions, economic and social development, and agricultural production. Each factor has an index with an explanation and a variable code. Examples include "Multiple cropping index" and "Per capita electricity usage." The explanatory variable is "ECLU" with the code Y, referring to the eco-efficiency of cultivated land use.]

The social and economic development level was represented by the per capita net income of rural residents. The ratio of the value added of the primary industry to the value added of the secondary industry represented the agricultural and industrial development levels. In turn, as improvements in agricultural production conditions are directly manifested as increased mechanization and automation, the total power of agricultural machinery per unit area of cultivated land and per capita electricity usage in rural areas were used to represent the intensity of mechanized cultivation input, and the irrigation index was used to represent the proportions of land with different water conditions.





3 Results


3.1 Spatial–temporal differentiation of the ECLU at the county scale


3.1.1 Spatial–temporal evolution of the ECLU

Based on the Super-SBM model, the Matlab software was used to calculate the ECLU in the Beijing–Tianjin–Hebei region at the district and county scales. We then used natural breaks classification to classify the ECLU into low, relatively low, medium, relatively high, and high. The distribution of counties in each ECLU interval is shown in Figure 3. In 2000, there were 28 low-ECLU counties, 30 relatively low-ECLU counties, 30 medium-ECLU counties, 14 relatively high-ECLU counties, and 44 high-ECLU counties. In 2005, the numbers of relatively high- and relatively low-ECLU counties increased, the number of high-ECLU counties decreased, and the numbers of medium- and low-ECLU counties remained stable. In 2010, the number of relatively high-ECLU counties decreased to the same level as that in 2000, whereas the numbers of counties in all other ECLU intervals increased slightly. In 2015, the number of high-ECLU districts and counties increased significantly, whereas the numbers of districts and counties in all other ECLU intervals decreased slightly. In 2020, the numbers of medium- and high-ECLU districts and counties increased significantly, the number of high-ECLU districts and counties decreased significantly, and the number of districts and counties in all other ECLU intervals remained stable.

[image: Line chart showing quantity trends from 2000 to 2020 for five categories: low, relatively low, medium, relatively high, and high. The high category shows a sharp increase around 2020, while other categories fluctuate with varying trends.]

FIGURE 3
 Distribution of counties in each ECLU interval.


The ECLU interval distribution is shown in Table 3. In 2000, the low-ECLU value range increased from <0.25 in 2000 to <0.46 in 2020. The relatively low-ECLU value range increased from 0.25–0.37 in 2000 to 0.46–0.75 in 2020. The medium-ECLU value range increased from 0.37–0.50 in 2000 to 0.75–1.13 in 2020. The relatively high-ECLU value range increased from 0.50–0.67 in 2000 to 1.13–1.37 in 2020. The high-ECLU value range increased from >0.67 to >1.37. Due to the change of the ECLU value range in each interval, the transformation of high efficiency into low efficiency does not necessarily lead to an ecological efficiency decrease. On the one hand, the numbers of districts and counties in the low- and relatively low-ECLU ranges remained overall constant, whereas the number of districts and counties in the medium-ECLU range increased significantly; on the other hand, the ECLU value range in each interval overall increased.



TABLE 3 Distribution of ECLU intervals.
[image: Table showing data from 2000 to 2020, divided into categories: Low, Relatively low, Medium, Relatively high, and High. Values for 2000 are Low: <0.25, Relatively low: 0.25-0.37, Medium: 0.37-0.50, Relatively high: 0.50-0.67, High: >0.67. Similar increments are shown for 2005, 2010, 2015, and 2020, with increasing values in each category.]

The spatial–temporal evolution of the ECLU in the districts and counties of Hebei Province is shown in Figure 4. From the perspective of spatial–temporal distribution, in 2000, the medium- and high-ECLU counties were mainly distributed in Beijing, Tianjin, the central and southern plains of Hebei Province, Zhangjiakou, Chengde and a few mountainous counties in the west of Baoding. Low-ECLU counties were many and mainly distributed in the coastal areas of Cangzhou and the Taihang Mountains in the southwest. In 2005, the middle- and high-ECLU counties were mainly distributed in Zhangjiakou and Chengde in the north, Beijing and Tianjin, as well as the western mountainous areas of Baoding, whereas the other counties comprised mostly low-ECLU counties. In 2010, the middle- and high-ECLU counties were mainly distributed in Beijing, Tianjin, Zhangjiakou, Chengde, Shijiazhuang, Handan, and Xingtai, and the low-ECLU counties were mainly distributed in Cangzhou, Hengshui, and Qinhuangdao. In 2015, the middle- and high-ECLU values were distributed in some districts and counties of Beijing, Tianjin, Zhangjiakou, Chengde, Tangshan, Cangzhou, Baoding, Shijiazhuang, Xingtai, and Handan, whereas the low-ECLU values were mainly distributed in some districts and counties of Hengshui and Langfang. In 2020, except for some districts and counties in Zhangjiakou, Baoding, Shijiazhuang, Xingtai, Handan, and other places, most districts and counties had middle- and high-ECLU values, and their numbers were significantly increased. Overall, the ecological efficiency of the northern and western districts and counties in the Beijing–Tianjin–Hebei region is higher than that of the central, southern, and eastern districts and counties. The ECLU values in Beijing and Tianjin counties fall mostly within the middle and high intervals in each year. The ECLU values in Zhangjiakou and Chengde are generally high. Overall, the ECLU in the Beijing–Tianjin–Hebei region has improved.

[image: Six maps of a region from 2000 to 2020 show changes in eco-efficiency of cultivated land use, with color coding: green for low, light green for relatively low, yellow for medium, orange for relatively high, and red for high efficiency. The maps reveal spatial distribution shifts over time, indicating varying levels of ecological efficiency across different areas.]

FIGURE 4
 Spatial–temporal evolution of the ECLU in the counties in Hebei Province.




3.1.2 Dynamic analysis of the ECLU

To further investigate the dynamic changes of the ECLU in the Beijing–Tianjin–Hebei region in each year and explore the differences and potential causes of the ECLU changes in each region, we applied the GML index to measure the differences of the ECLU in the region and visualized them using ArcGIS. Taking GML = 1 as a threshold, the GML index was classified into several intervals through natural breaks classification. GML index values in the range of 0.00–0.67 signified rapid decline of the ECLU, those in the range of 0.67–1.00 signified a slow decline, those in the range of 1.00–1.69 signified a slow increase, and those >1.69 signified a rapid increase. The dynamic changes of the ECLU in Hebei Province are shown in Figure 5. During 2000–2005, the GML index was low in most regions, with only a few counties in the coastal and northern mountainous areas being characterized by high GML index values, indicating a high rate of decline of the ECLU. During 2005–2010, the areas around Beijing and Tianjin, the eastern coastal areas, and the southern plains were mostly characterized by GML index values >1.00, with the ECLU following an increasing trend. The number of GML1 in the western mountainous areas decreased significantly, and the increase of ECLU decelerated. During 2015–2020, most of the Beijing–Tianjin–Hebei region was characterized by middle and high GML index values, with the number of counties experiencing decline of the ECLU being significantly reduced, and the ECLU across the entire region rising rapidly. Overall, the ECLU in the Beijing–Tianjin–Hebei region showed a trend of rapid decline first and then slow and continuous rise. In the later period, there were fewer districts and counties in the rapid ECLU decline interval. The ECLU upward trend in districts and counties in Beijing and Tianjin was significantly weaker than that in most districts and counties in Hebei Province.

[image: Maps of a region over four periods: 2000-2005, 2005-2010, 2010-2015, and 2015-2020. Areas are color-coded to show changes: rapid descent (dark blue), slow descent (light blue), slow rise (orange), and rapid rise (red). A scale in kilometers is included.]

FIGURE 5
 Dynamic changes of the ECLU in Hebei Province.




3.1.3 ECLU classification

As mentioned earlier, the GML index can be decomposed into the ECC and TCC indices, which together construct a four-quadrant scatter plot based on the origin “0.” The classification maps of the ECLU in Hebei Province over four periods are shown in Figure 6. Evidently, during 2000–2005, the distributions of the ECC and TCC indices of the districts and counties were more uniform in the four quadrants compared to the cases in the other three periods. Furthermore, they were slightly concentrated in the first and second quadrants, indicating that the number of districts and counties with increased TCC index was higher than that with decreased TCC index, reflecting that districts and counties during 2000–2005 had begun to introduce new technologies for green production of cultivated land. During 2005–2010, the ECC and TCC indices began to rise; however, there were still some districts and counties whose ECC and TCC indices were following downward trends, indicating that the scale of agricultural production in some districts and counties was expanded, with the internal organization being optimized. During 2010–2015, most districts and counties were concentrated in the first and second quadrants, indicating that the TCC index had been greatly improved, and the ECC index tended to decline. During 2015–2020, most districts and counties were concentrated in the first and second quadrants, with the TCC index having been improved at a high level. The number of districts and counties with decreased ECC index was higher than that of districts and counties with increased ECC index.

[image: Four scatter plots show data distributions over different time periods: 2000-2005, 2005-2010, 2010-2015, and 2015-2020. Each plot has axes labeled ECc and TCc, with data points concentrated around the center, slightly varying in spread and distribution across periods.]

FIGURE 6
 Classification map of the ECLU in Hebei Province during the four periods. TC, technical progress index; EC, technical efficiency index.





3.2 Analysis of factors influencing the ECLU

Before analyzing the factors influencing the ECLU using the GTWR model, we conducted a collinearity test on the independent variables. A variance inflation factor (VIF) <10 indicates no multicollinearity. In this study, all VIF values for the independent variables were < 5, indicating the absence of multicollinearity. We then compared the performance of the GTWR model with that of other commonly used regression models, such as temporally weighted, geographically weighted, and ordinary least squares. The comparative fitting results of the different models are presented in Table 4. The GTWR model had a higher R2 value and lower AICc value compared to those of the other three models, proving that its accuracy was superior and that incorporating spatial–temporal non-stationarity was necessary.



TABLE 4 Comparative fitting results of the different models.
[image: Table comparing model parameters for GTWR, GWR, TWR, and OLS. R² values: GTWR 0.404, GWR 0.352, TWR 0.238, OLS 0.209. Adjusted R²: GTWR 0.398, GWR 0.345, TWR 0.231, OLS 0.201. AICc: GTWR 259.844, GWR 314.397, TWR 405.829, OLS 414.366. Definitions provided for each model type.]

The results obtained using the GTWR model regarding the factors influencing the ECLU in the Beijing–Tianjin–Hebei region at the county scale are presented in Table 5. The impacts of per capita cultivated land, rural economic conditions, and rural per capita electricity consumption on the ECLU are low. The remaining four indicators with greater impacts, namely multiple cropping index, industrial structure, irrigation index, and mechanized farming level, were visualized using ArcGIS. The calculation results of the indicators with greater impacts on the ECLU are shown in Figure 7.



TABLE 5 Calculation results of the GTWR of influencing factors.
[image: Table displaying indices for various agricultural and rural metrics from 2000 to 2020. Metrics include multiple cropping, economic conditions, industrial structure, per capita electricity usage, irrigation, and mechanized farming. Each year shows maximum and minimum values for each index.]

[image: Maps depicting changes in multiple indices across five time intervals: 2000, 2005, 2010, 2015, and 2020. Each row represents a different index: multiple cropping, industrial structure, irrigation, mechanized farming level, and farmland areas per person. Each index is color-coded, showing variations in intensity or level across regions. The color scales are provided for each index, indicating specific ranges.]

FIGURE 7
 Calculation results of the indicators with the greatest impact on the ECLU.


Evidently, five indicators exhibit obvious spatial–temporal characteristics:

	1. The GTWR results of the multiple cropping index gradually decreased from south to north. In most periods, the ECLU in the south was positively correlated with the multiple cropping index, with the GTWR values gradually increasing with time. The north was negatively correlated, rising first and then decreasing with time. The multiple cropping index is obviously affected by both climatic and land conditions, and the natural conditions in the northern mountainous areas are poor. Therefore, the GTWR results of the multiple cropping index in the Beijing–Tianjin–Hebei region show certain latitude zone differentiation characteristics in multiple periods.
	2. The GTWR results of the industrial structure gradually decreased from southwest to northeast, exhibiting a positive correlation in their entirety. The correlation of plain counties was significantly higher than that of mountain counties, with the high-value areas being mainly located in the provincial capital areas. The industrial structure in this study mainly considers the primary and secondary industries. The processes of agriculture and industry in the county economy show that when the proportion of agricultural output value is high, the positive impact on the ECLU increases.
	3. The GTWR results of the irrigation index gradually increased from south to north except for a few areas. The ECLU in the central plain area showed a significant negative correlation with the irrigation index over the entire study period, and the negative correlation in the northern Zhangjiakou and Chengde mountainous areas was low for many years. The increase of the irrigation index also shows the improvement of cultivated land consolidation level and water conservancy facilities in a region. Generally speaking, with the increase of the irrigation index, the production efficiency of cultivated land should be improved accordingly, with the negative correlation in the southern plain area having unique characteristics. On the one hand, the rapid social and economic development in the southern districts and counties has led to serious groundwater exploitation in the region, forming multiple world-class groundwater ‘funnels’. The water infiltration of cultivated land irrigation is replenished to groundwater and cannot be fully absorbed by crops. On the other hand, the irrigation index itself has been high, and the other cultivated land is not suitable for irrigation. Therefore, the improvement of the irrigation index cannot result in the improvement of the ECLU. The irrigation index of the northern districts and counties was not high, and water was an important condition limiting agricultural production. With the increase of the irrigation index, the ECLU increased significantly.
	4. The GTWR results of mechanized farming level gradually changed from positive to negative with time, especially in the southern plain area, which was negatively correlated for a long time. The level of mechanized farming reflects the degree of agricultural mechanization coverage in a certain area. However, from the perspective of CLU efficiency, excessive investment in agricultural machinery may not necessarily result in improvements. On the one hand, the input of agricultural machinery mainly improves the efficiency of farming by reducing labor input and reducing time cost, with the potential of the ECLU constrained by climatic conditions likely not being fully realized; on the other hand, although the level of green technology in the Beijing–Tianjin–Hebei region continues to progress, there may be deficiencies in green machinery, resulting in higher mechanical carbon emissions and reduced ecological efficiency. The pollution of agricultural and forestry machinery cannot be ignored.
	5. The GTWR results of per capita cultivated land are mainly positive except for a few areas, showing a significant positive correlation, with the high value areas being mainly concentrated in the southern plains. This positive correlation in the southern region may be related to the better climatic conditions, higher agricultural technology level, and more concentrated agricultural production activities. Cultivated land in the northern mountainous area is relatively scattered, and the scattered use of resources leads to a low positive correlation or even a negative correlation.

In particular, the GTWR results of the multiple cropping index indicate polarization. In the south, the ECLU correlated positively with the multiple cropping index, whereas in the north, it correlated negatively. No substantial topographic differences were observed. Overall, latitudinal zone differentiation characteristics are evident across the entire study region. The distribution pattern of GTWR results regarding industrial structure remained basically stable over the entire study period, generally showing a gradually increasing positive correlation, with lower correlation in plain counties compared to that in mountainous counties. In comparison, the GTWR results of the irrigation index gradually increased from south to north, except in a few areas. The ECLU was negatively correlated with the irrigation index in the central plains, whereas it was mainly positively correlated with that in the eastern coastal strip and areas surrounding Beijing and Tianjin. Conversely, the GTWR results of the mechanized farming level were primarily negative, with the ECLU being negatively correlated with the mechanized farming level and gradually decreasing from 2000 to 2020.




4 Discussion

Scholars have conducted extensive research on the ECLU across various regions, including the Yangtze River Economic Belt, Yellow River Basin, the black soil region in Northeast China, and Southern Germany (Feng et al., 2023; Ke et al., 2023; Zhou et al., 2022; Yin et al., 2022; Yang et al., 2021; Luo et al., 2020; Hou et al., 2019; Lin and Hülsbergen, 2017). In this study, we calculated the ECLU in the Beijing–Tianjin–Hebei region and revealed its spatial–temporal evolution characteristics in the context of food security. The region, with its extensive plains and favorable climate conditions, is an important contributor to the total grain production of China. Under the background of current “dual carbon” goals, conducting research on the ECLU in this region is crucial for ensuring national food security and promoting regional social and economic development. In this study, both the Super-SBM model and the GML index were used to measure the ECLU, with the undesired outputs of cultivated land use being included in the index system, enabling the dynamic comparison of the ECLU and offering a more detailed depiction of the spatial–temporal evolution of the ECLU compared to those in previous studies (Li et al., 2017; Chen et al., 2020; Luo et al., 2020; Yang et al., 2021; Ke et al., 2022; Zhou et al., 2022). Additionally, we considered county as the evaluation unit, which reflected the spatial–temporal evolution and differentiation of the ECLU in a more magnified and detailed manner, laying a foundation for the formulation and implementation of related policies (Tone, 2004; Fukuyama and Weber, 2010; Xiao et al., 2022; Zhou et al., 2022; Liu and Zhang, 2023). Most of the existing studies use a single model method, such as Super-SBM, to measure the ECLU. These methods have limitations, such as not including undesired output and dynamic inter-temporal comparisons. The GML index compensates for this defect, and the combination of the two methods is more beneficial regarding measuring the ECLU.


4.1 Spatial–temporal evolution characteristics of the ECLU

During 2000–2020, the ECLU in the Beijing–Tianjin–Hebei region showed an overall fluctuating upward trend, comparable to that reported by Li M. et al. (2023). 2000–2010 was characterized by rapid economic growth and modification of the planting structure. With insufficient technological support for agriculture, especially through the first half of this period as suggested by evaluation of the decomposed GML index, the abandonment of cultivated land and its occupation by construction land became more common. These factors, combined with the lack of attention to carbon emissions from cultivated land, resulted in obvious fluctuation in the ECLU during this time period. From 2010 onward, the ECLU increased substantially, indicating that considerable progress had been made regarding the protection of cultivated land and that carbon emissions had been effectively controlled. The ECLU in Beijing and Tianjin was markedly higher than that in most parts of Hebei Province. The counties in Hebei Province, located in the west and south of Beijing and Tianjin, had overall lower ECLU values than those of other counties, likely because these municipalities attract human resources, capital, and other factors from surrounding counties at the expense of sufficient input of agricultural factors. In addition, the counties in northern Hebei Province had higher ECLU values, likely deriving in part from their location upwind from Beijing, with higher requirements for ecological protection and policy support. The local agriculture also probably still occupies a large proportion of the area, with secondary and tertiary industries lagging.

The ECLU in the Beijing–Tianjin–Hebei region generally presented a dynamic trend of rapid decline–slow rising–continuous rising, which is also in general agreement with the results of Wang et al. (2022). According to the GML index, the ECLU in this region transitioned from disorderly evolution to a large-scale production-driven efficiency increase; then, it further transitioned to technological progress-driven efficiency gains. Technological progress can provide long-term positive support for an ECLU increase, whereas large-scale production can markedly improve the ECLU in the short term. Owing to the law of diminishing returns to scale, continued improvements to the ECLU are difficult once the peak of production scale is reached. As the Beijing–Tianjin–Hebei region exhibits a high level of large-scale production, increasing the technological inputs represents currently the preferred way of improving the ECLU. Notably, Li X. et al. (2023) did not include a GML index analysis in their study; however, Gu et al. (2022) reported that the government in the region invests scientific and technological inputs to drive industrial transformation to curb carbon emissions, which further supports the conclusions of this study.



4.2 Driving mechanisms of the ECLU

The ECLU was mainly affected by the multiple cropping index, industrial structure, irrigation index,per capita cultivated land and mechanized farming level, in accordance with previous literature (Ke et al., 2022; Xiao et al., 2022). The relationship between per capita cultivated land area and ecological efficiency shows obvious regional differences. On the whole, there is a significant positive correlation between per capita arable land area and ecological efficiency, especially in the southern plains. The high-value areas in the southern plains are mainly due to the relatively superior natural conditions in the region, including climate and topography. These factors help to improve the productivity and ecological efficiency of cultivated land. In contrast, the distribution of cultivated land in the northern mountainous area is relatively scattered and the terrain is complex. The intensive utilization of cultivated land is low, and the expansion of cultivated land scale has not caused a significant improvement in the ecological efficiency of cultivated land. In contrast, the main influencing factors of the ECLU in Hebei Province include the multiple cropping index, proportion of agricultural output value, elevation, slope, proportion of agricultural population, and proportion of non-grain crops, with the proportion of agricultural output value and proportion of non-grain crops having more significant impacts (Wang et al., 2022). The reasons for these differences may be attributed to variations in regional scope, selection of indicators, and methodological approaches. The multiple cropping index, which is an important indicator reflecting the degree of CLU, is substantially constrained by the climate, land, technology, and labor, resulting in the GTWR results showing obvious climatic zoning. Specifically, the ECLU was positively and negatively correlated with the multiple cropping index in the southern and northern regions, respectively. In comparison, the distribution pattern of the GTWR results of industrial structure remained basically stable over the entire study period, exhibiting a gradually increasing positive correlation. This suggested that as the agricultural production capacity increases, the production capacity of green science and agricultural technology improves synchronously. The level of mechanized farming is negatively correlated with the ECLU, with the absolute value having gradually decreased during 2000–2020. This may be due to the large-scale use of agricultural machinery leading to an increase in carbon emissions, which in turn reduces the ECLU. The reduction in this impact may be attributed to the continuous improvement in the efficiency of agricultural machinery.

The ECLU was negatively correlated with the irrigation index in the central plains; however, it was positively correlated with the irrigation index in the eastern coastal strip and areas around Beijing and Tianjin. Notably, the rise in the irrigation index reflects not only the water application but also the enhancement of land improvement levels and water conservancy facilities in a region. Generally speaking, the production efficiency of cultivated land will improve with the increase of the irrigation index. The negative correlation in the southern plains has several unique characteristics. In the southern counties, the rapid social and economic development has led to serious groundwater extraction, creating several world-class groundwater “funnels” through which irrigation water seeps into the groundwater instead of being fully absorbed by crops. However, because the irrigation index itself was already high and most of the other land is unsuitable for irrigation, an increase of the irrigation index does not lead to a coordinate increase of the ECLU in this region. Conversely, in the northern counties with a lower irrigation index, water is an important limiting factor for agricultural production. Therefore, in these counties, the ECLU increases substantially with the increase of the irrigation index.

The mechanized farming level, which reflects the coverage of agricultural mechanization in a certain region, was mainly negatively correlated with the ECLU. However, from the perspective of the ECLU, excessive investment in agricultural machinery may not necessarily improve the efficiency. In particular, agricultural machinery inputs are mainly used to reduce labor inputs and time costs to improve the cultivation efficiency; thus, the potential for the ECLU constrained by climatic conditions may not be fully realized. Moreover, although green technology in the Beijing–Tianjin–Hebei region continues to progress, lingering green machinery deficiencies may lead to high carbon emissions and reduction of the ecological efficiency. Additionally, the pollution from agricultural and forestry machinery constitutes a persistent concern.



4.3 Policy recommendations for enhancing the ECLU to promote food security

	1. Promoting structural adjustment and optimization of the agricultural industry. Green and technology-driven agriculture should be encouraged. Through policy support and technological innovation, the production methods of agriculture can be transformed from traditional means into a modern and highly efficient process with low-consumption, thereby promoting the sustainable development of agricultural production and enhancing the ECLU.
	2. Strengthening the protection of cultivated land and its quality improvement. Strict policies regarding the protection of cultivated land should be formulated and implemented to limit the development of land for non-agricultural purposes and ensure the sustainable use of cultivated land resources. Additionally, the investment in improving the quality of cultivated land should be increased to enhance the productivity and ecological service functions of the land, such as improving irrigation systems, promoting the use of organic fertilizers, and implementing soil restoration projects.
	3. Promoting the development of agricultural mechanization and knowledge. Advanced agricultural machinery and technologies should be adopted, and subsidies, technical support, and maintenance services should be acquired to promote the popularization and upgrading of agricultural mechanization. This not only reduces the labor input and increases the production efficiency but also helps to reduce carbon emissions during agricultural production.
	4. Enhancing water resource management and improve irrigation efficiency. Considering the impact of the irrigation index on the ECLU, the management and rational use of water resources should be strengthened and water-saving irrigation techniques, such as drip irrigation and sprinkler irrigation, should be promoted. Moreover, a water recycling system should be established to reduce water wastage and improve irrigation efficiency. In addition, for areas where groundwater levels are critically low, the protection and rational development of groundwater resources should be enhanced to prevent excessive groundwater extraction.



4.4 Study limitations

This study has several limitations. First, the selection of input and output indicators was not comprehensive. The input indicators did not include new factors, such as the internet and big data, leading to insufficient consideration of the contributions of emerging technologies to agricultural production. Moreover, due to the varying roles of different crops in ensuring food security, the output indicators adopted the total grain production, and the production of different food crops was neglected, likely leading to a deviation of the ECLU, especially in the context of cropping structure adjustments. In addition, agricultural production generates carbon emissions as well as carbon sinks, which should be included among the desired outputs. Second, the selection of influencing factor indicators was also limited. Insufficient consideration was given to technological development and the geographical location of transportation, considering that provinces in the Beijing–Tianjin–Hebei region and areas among cities within Hebei Province markedly differ with regard to these aspects. Beijing, Tianjin, and surrounding areas exhibit better technological and transport conditions than those of other regions, which may affect the results of the influencing factor analysis. The current indicators substantially interfere with the input indicators, and the calculation of the multiple cropping index and industrial structure overlaps somewhat with that of several input indicators; therefore, adjusting the input–output model in future studies will be necessary. Furthermore, less consideration was given to indicators characterizing agricultural production in the Beijing–Tianjin–Hebei region, such as groundwater conditions and the South-to-North Water Diversion Project. Finally, although this study concluded that the ECLU in the Beijing–Tianjin–Hebei region was alternately affected by the technical progress and technical efficiency, as revealed using the GML index, and also analyzed the distribution of the two efficiency values, it did not conduct an in-depth investigation regarding the causes of these changes. Therefore, additional research is required to update the methods for calculating scale- or technological efficiency, clarify their quantitative differences, and select corresponding influencing factor indicators to analyze the substantive factors affecting their changes. In subsequent research, the selection of input–output indicators can be optimized and improved based on the above analysis. In addition to the GTWR model, other methods, such as geographical detectors, can also be used to analyze the influencing factors. Although the situation in other regions is not completely the same as that in the Beijing–Tianjin–Hebei region, the selection of indicators and the use of methods can still be referenced.




5 Conclusion

In this study, we selected county-level data from the Beijing–Tianjin–Hebei region, covering 2000–2020, and employed the Super-SBM model and GML index to calculate the ECLU in the region. Furthermore, the GTWR model was applied to assess the differences of factors influencing the ECLU and, ultimately, food security. The primary findings are as follows:

1. From the perspective of temporal changes, during 2000–2020, the number of medium-ECLU districts and counties in the Beijing–Tianjin–Hebei region gradually increased, the number of high-ECLU districts and counties decreased in its entirety, and the number of districts and counties in all other ECLU intervals did not change significantly. However, the ECLU value range in each interval migrated toward higher values, with the ECLU in the Beijing–Tianjin–Hebei region improving in its entirety. From the perspective of spatial distribution, the ECLU values of the northern districts and counties in the Beijing–Tianjin–Hebei region are higher than those in other regions. Counties in Beijing and Tianjin have mostly middle- and relatively high-ECLU values in each year, whereas counties in Zhangjiakou and Chengde have generally high-ECLU values. Overall, the ECLU in the Beijing–Tianjin–Hebei region has demonstrated a discernible upward trend, with notable superiority observed in the northern districts relative to the cases in their central, southern, and eastern counterparts.

2. Regarding the dynamic changes of the ECLU, the ECLU in the Beijing–Tianjin–Hebei region showed a trend of rapid decline first and then slow and continuous rise. In the middle and late stages, there were fewer districts and counties in the rapid ECLU decline interval. The upward trend of districts and counties in Beijing and Tianjin was significantly weaker than that in most districts and counties in Hebei Province. The ECLU in the region is dynamically improved, with areas with low ECLU values exhibiting more rapid changes than those of areas with high ECLU values and the difference in ECLU in the region tending to narrow.

	3. The improvement of the ECLU in the early stage mainly depends on technical efficiency, i.e., organizational optimization or scale expansion; subsequently, it starts depending more on technological progress. Owing to the law of diminishing returns to scale, the future improvement of the ECLU mainly depends on technological progress and investment. Increasing the investment in science and technology, promoting technological innovation in the agricultural field, improving resource utilization efficiency, and reducing environmental pollution are necessary steps toward further improving the ECLU.
	4. The ECLU is mainly affected by the multiple cropping index, industrial structure, irrigation index, mechanized farming level, and per capita cultivated land. The ECLU was positively and negatively correlated with the multiple cropping index in the southern and northern regions, respectively. The industrial structure mainly shows a gradually increasing positive correlation through time. A higher proportion of the primary industry implies higher ECLU. The ECLU in was significantly negatively correlated with the irrigation index the central plain area, and the negative correlation in Zhangjiakou and Chengde mountainous areas was low for many years. The level of mechanized farming in the southern plain area was negatively correlated with the ECLU for a long time. The per capita cultivated land and the ECLU were significantly positively correlated, with the positive correlation in the plain area being higher. In the future, differentiated policy measures should be formulated according to the spatial–temporal differences of different factors to further improve the ECLU.
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Research has found that the transfer of agricultural land in China has to some extent led to agricultural carbon emissions. Therefore, it is urgent to systematically analyze the reasons for carbon emissions caused by agricultural land transfer, find ways to mitigate the increase in agricultural carbon emissions, and achieve low-carbon and sustainable development of agriculture. This article analyzes the relationship between agricultural land transfer, rural human capital, and agricultural carbon emissions in 30 sample provinces in China based on property rights incentives and scale operation theory, using the system GMM model, adjustment model, and threshold model. The results indicate that the transfer of agricultural land has, to some extent, intensified agricultural carbon emissions, with an increase of 0.003 units per unit of agricultural land transfer intensity. Rural human capital has mitigated the carbon emissions resulting from agricultural land transfer and played a corrective role. Under varying levels of rural human capital, there exists a dual threshold effect on the impact of agricultural land transfer on carbon emission intensity, exhibiting a pattern of ‘ineffectiveness-promotion-inhibition’. The analysis of regional heterogeneity reveals significant differences in the relationship between agricultural land transfer and carbon emissions between major grain-producing areas and non-grain-producing areas. It is worth noting that in the northern region, the transfer of agricultural land exacerbates carbon emissions, whereas in the southern region, higher levels of rural human capital effectively curb the growth of carbon emissions. Furthermore, the impact of agricultural land transfer on carbon emissions is not confined to specific regions, indicating that its environmental consequences transcend administrative boundaries and spread geographically, displaying distinct time-dependent characteristics.
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1 Introduction

At present, the problems of fragmented farmland management, outdated agricultural technology, and production factors are difficult to meet the needs of China’s agricultural modernization, green and sustainable development. To achieve the scale, intensification, and modernization of agricultural management, the transfer of rural land management rights (hereinafter referred to as agricultural land transfer) is regarded as an important stage in the reform of China’s rural land system. It provides the necessary foundational conditions for accelerating the modernization of agriculture and rural areas and comprehensively promoting the revitalization of rural industries.

Agricultural land transfer is based on the reasonable transfer of land management rights to expand the scale of agricultural management and ultimately achieve resource intensification. By the end of 2022, the total area of family-contracted arable land transferred by farm households nationwide had grown from 0.13 billion mu in 1996 to 576 million mu, and the proportion of the total area of family-contracted arable land increased from 0.98 to 36.72% (see Figure 1). Studies have shown that farmers’ farmland transfer behavior is influenced by property rights stability (Zhou and Luo, 2023; Li and Zhu, 2023) the form of rent (Wu et al., 2023), government intervention (Wu and Liu, 2020), family and social characteristics (Liu et al., 2023; Huang et al., 2023) and factors such as the appropriateness of engaging in non-farm industries. Meanwhile, most scholars believe that the transfer of agricultural land, as an important way of allocating land resources, facilitates the reorganization of agricultural factors with land as the core, helps ensure the stability of land rights, improve farming efficiency (Fei et al., 2021), and promotes the transfer of rural laborers (Wang J. Y. et al., 2020), thus resulting in increased agricultural production and farmers’ income (Peng et al., 2020; Ding et al., 2024). Agricultural land transfer plays an important role in promoting medium-scale agricultural operations, increasing agricultural mechanization, improving the efficiency of agricultural land utilization, and promoting agricultural productivity (Yan et al., 2019; Yu et al., 2022). Conversely, it is believed that the transfer of agricultural land has fallen into the predicament of agricultural “involution,” leading to an increase in the phenomenon of “small farmer replication,” a decrease in the efficiency of agricultural production, and it is not conducive to the improvement of non-agricultural employment and farmers’ income (Liu et al., 2019; Yuan and Wang, 2022; Fei et al., 2021).
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FIGURE 1
 China’s agricultural land transfer rate between 2005 and 2022.


In recent years, existing studies have also discussed the impact of agricultural land transfer on environmental effects, primarily focusing on its influence on agricultural surface pollution and fertilizer use (Lu and Xie, 2018; Mugizi, 2022). However, the impact of agricultural land transfer on agricultural carbon emissions has not yet been adequately discussed, and no consistent conclusions have been reached. Scholars, such as Liao et al., have found that land transfer could improve the level of agricultural mechanization, promote the transformation of traditional agriculture to modern agricultural production and management modes of specialization and scale, and have economic and ecological effects that reduce agricultural carbon emissions (Liao et al., 2023). On the other hand, some scholars believe that the transfer of agricultural land has increased agricultural carbon emissions by expanding the sown area of crops, adjusting the planting structure, and increasing agricultural material inputs. For example, Long Yun found that smallholder land transfer may increase the intensity of inputs such as fertilizers and lead to higher agricultural carbon emissions. When the development of the agricultural land transfer market is imperfect, the intensive land use and large-scale mechanized production brought about by agricultural land transfer can result in increased agricultural production carbon emissions (Long and Ren, 2016). Additionally, regarding the research methodology of agricultural land transfer, scholars tend to use static panels as well as traditional econometric methods such as OLS, two-way fixed effects, and quantile regression. There are relatively few studies that explore threshold effects and spatial analyses.

In the context of the continuous promotion of market-oriented agricultural land transfer, clarifying the relationship between agricultural land transfer and agricultural carbon emissions is closely related to sustainable development goals and spatial sustainability principles. This clarification is of great significance for promoting China’s rural land system and developing ecological low-carbon agriculture. Regarding sustainable development goals, the environmental effects of agricultural land transfer directly affect the achievement of these goals, providing Chinese cases and references for achieving global climate targets and promoting emission reduction actions in the agricultural sector. In terms of spatial sustainability, paying attention to the spatial spillover effects of agricultural land transfer on agricultural carbon emissions can help formulate more precise regional policies and promote the spatial balance and sustainable development of agricultural production.

Empirical studies have already demonstrated that large-scale collective farming and agricultural land transfer are major trends, and that land transfer for the purpose of large-scale management is a necessary foundation for accelerating agricultural and rural modernization, as well as promoting the revitalization of rural industries (Liu et al., 2024). Therefore, it is important not to simply dismiss the value of agricultural land transfer in light of potential environmental challenges. Instead, there should be active exploration of new approaches and mechanisms to mitigate or improve the carbon emission effects associated with agricultural land transfer. This will help ensure the sustainability and environmental friendliness of agricultural land transfer policies.

Indeed, the role of rural human capital is crucial in the context of agricultural land transfer and the pursuit of green agricultural development. Rural human capital, as a core production factor in agricultural development, plays a significant role in promoting the transfer of agricultural land and achieving sustainable agricultural practices (Wang W. W. et al., 2022; Ren et al., 2023; Zhong et al., 2008). However, the current research on rural human capital in relation to the relationship between agricultural land transfer and agricultural carbon emissions is still limited. This presents an opportunity for new research perspectives and critical analysis. It is necessary to strengthen research efforts focused on rural human capital, delving into the mechanisms through which it influences the process of agricultural land transfer. Additionally, exploring how improving the level of rural human capital can mitigate or improve the carbon emission effects of agricultural land transfer is crucial. This will help us gain a more comprehensive understanding of the relationship between farmland transfer and agricultural carbon emissions, provide strong support for formulating more scientific and reasonable farmland transfer policies, and offer new pathways for better achieving sustainable development goals and spatial sustainability.

Accordingly, this paper aims to expand the existing literature from the following aspects: (1) Few studies have utilized static panel analysis to examine the impact of agricultural land transfer on agricultural carbon emission intensity; however, the channels of its influence and the spatial mechanisms need further exploration. Therefore, this paper examines the role and spatial spillover effects of agricultural land transfer on agricultural carbon emission intensity based on the theory of property rights incentives and economies of scale, using dynamic panel data from 30 sample provinces in China from 2005 to 2022. (2) Although scholars found that the transfer of agricultural land led to an increase in the intensity of agricultural carbon emissions, they did not further explore ways to improve the increase in carbon emissions due to the transfer of agricultural land. Therefore, in this paper, rural human capital is included in the analytical framework between agricultural land transfer and agricultural carbon emissions, and its corrective effect on carbon emissions from agricultural land transfer is analysed using the moderating effect and threshold effect. (3) In addition, based on the positioning of agricultural development and geographic heterogeneity, this paper compares the differences in the impacts of carbon emissions from the transfer of agricultural land between the main food-producing areas and non-food-producing areas, and different regions.



2 Theoretical logic of the impact of agricultural land transfer on agricultural carbon emissions


2.1 The impact of agricultural land transfer on agricultural carbon emissions

The theory of property rights incentives suggests that the stability of land management rights is a key factor influencing farmers’ long-term investments, the cropping structure of farm households and agricultural production methods (Mugizi, 2022; Séogo and Zahonogo, 2023). On the one hand, the main body of agricultural land transfer, due to differences in property rights attributes and unclear definitions of environmental responsibilities between the contracting parties, may lead to an increase in carbon emissions released in the form of agricultural means of production due to the transferee’s extensive use of fertilisers, pesticides, and machinery and equipment in pursuit of profit maximisation. Lu et al. found that the stability of land property rights will affect the amount of farmers’ use of organic fertilisers and chemical fertilisers (Lu et al., 2019). Subramanian et al. used experimental data on farmers’ access to formal land ownership in India and found that land property rights are important in terms of agricultural productivity, and agricultural investment (Subramanian and Kumar, 2024). On the other hand, recipients of agricultural land transfers may adjust the structure of agricultural cultivation, such as increasing the area under cash crops or shifting to high-yield crops (Tan et al., 2023). Certain high-yield cash crop cultivation may require more chemical fertilisers and pesticides, leading to an increase in agricultural carbon emissions. In addition, agricultural production methods are also constrained by the duration of transfers and land rents, and farmers may favour economic efficiency over environmental efficiency (Li X. H. et al., 2023; Li B. et al., 2022).

More importantly, the implementation of the agricultural land transfer policy in China has led to a reduction in land abandonment (Qiu et al., 2024) and an expansion of cultivated and irrigated areas for farmers. This increase in agricultural land use is the main and direct cause of the rise in agricultural carbon emissions (Ji et al., 2023). Specifically, farmland transfer allows farmers to transfer land they are unwilling or unable to cultivate to others for management, thereby avoiding idle and wasteful use of land resources. As a result, the cultivated land area expands, indicating that more soil is being used for agricultural production. This, in turn, leads to an increase in carbon emissions from crop, soil, and microbial production processes (Ji et al., 2023). CH4 and N2O emissions from crop cultivation on agricultural land are the main sources of agricultural carbon emissions.

In the long term, with the realisation of appropriate farmland scale operation, it will help to introduce more efficient agricultural technologies and management methods, and reduce agricultural carbon emissions (Ren et al., 2023; Li J. K. et al., 2022). However, at present, China’s current scale of farmland operation is very small, with small-scale subcontracting and transfer between farmers dominating the mainstream, and fewer leading enterprises and large professional households focusing on transferring land on a large scale and engaging in comprehensive agricultural development; more than 70 per cent of arable land belongs to small-scale operation, and there are still 210 million farmers whose farmland area is less than 0.6 hectares (Xu et al., 2020). From the perspective of economies of scale, the current situation of agricultural land transfer is not conducive to fertiliser reduction and low-carbon agricultural development. In addition, the transfer of agricultural land expands the land area, but does not necessarily bring the effect of parcel consolidation, and it is also common for one farmer to operate multiple independent land parcels (Zhang and Chen, 2021).

It can be seen that the transfer of agricultural land itself is not the fundamental reason for the increase in agricultural carbon emissions. At present, the increase in agricultural carbon emissions is mainly due to the reduction of fallow land, the expansion of farmers’ planting and irrigation areas, the increase in chemical inputs, the small scale of agricultural land, and the imperfect policies of agricultural land transfer. Therefore, based on the above analysis, this article proposes hypothesis 1: Currently, due to the expansion of cultivated land planting area, increased chemical input, and small scale of agricultural land, the transfer of agricultural land has to some extent exacerbated the intensity of agricultural carbon emissions.



2.2 The regulating role of rural human capital

Rural human capital plays a crucial role in driving agricultural modernization and rural revitalization. Does the improvement of rural human capital level help to suppress the carbon emission effect of current agricultural land transfer? The answer is yes. Firstly, agricultural producers with higher levels of human capital can more effectively access information, acquire new skills (Chen et al., 2024; Satriawana and Swinton, 2007), comprehend green agricultural production technologies and methods, manage and operate transferred farmland more efficiently, recognize the economic benefits of green agricultural products, and adopt environmentally friendly and efficient agricultural production methods (Zang et al., 2022), thereby reducing agricultural carbon emissions. Secondly, farmers with a higher stock of human capital often receive a more extensive general or professional education. This education equips them with strategic decision-making abilities during agricultural land transfer and enables them to consider environmental factors when selecting appropriate agricultural management methods, partners, and land utilization techniques. As a result, they can contribute to the improvement of agricultural land transfer policies. Furthermore, the enhancement of agricultural labor quality can promote the scaling of agriculture, the upgrading of the agricultural industrial structure (Wang H. et al., 2020), the adoption of modern agricultural technology and equipment, the promotion of ecological practices, branding, and diversification of agriculture. It also helps reduce the excessive use of agricultural land resources and the associated carbon emissions (Shi et al., 2023).

In conclusion, the increase in rural human capital level brings about improvements in farmland scale and the low-carbon development of agriculture. This, in turn, may lead to a significant reduction in agricultural carbon emissions through transformative changes in farmland transfer. Based on the above analysis, this article proposes hypothesis 2: Rural human capital plays a negative regulatory role in the relationship between increasing agricultural carbon emissions through land transfer.



2.3 Spatial effects of agricultural land transfer on agricultural carbon emissions

Theoretically, the impact of any behavior or decision in a certain region will spread to other regions and produce spillover effects, and the transfer of agricultural land is no exception. Local agricultural land transfer can help promote non-farm employment of farm households, expand agricultural scale, reduce land abandonment, etc., which in turn brings certain economic benefits (Yan et al., 2019; Peng et al., 2020), while the government’s supportive measures for the agricultural land transfer policy may have a demonstration and diffusion effect in the local area, which may attract agricultural producers in the neighbouring areas to also carry out the transfer, and thus have a significant impact on the agricultural land transfer in the neighbouring areas. Transfer, which in turn has an impact on agricultural carbon emissions in neighbouring regions (Zhou and Zhang, 2023). In addition, if local agricultural land transfer affects the structure and scale of agricultural production, leading to the redistribution of agricultural production among different regions, it may have an impact on the entire agricultural industry chain, thus changing the spatial distribution of carbon emissions. And the agricultural products it produces will also bring corresponding carbon emissions during circulation and processing, thus affecting the agricultural carbon emissions in the neighbouring regions.

Based on the above analysis, this paper proposes hypothesis 3: the transfer of agricultural land has a spatial effect on agricultural carbon emissions, meaning that local agricultural land transfer may influence agricultural carbon emissions in neighboring areas.




3 Study design and data sources


3.1 Experimental process

In order to better demonstrate the empirical testing process of the article, we have constructed an empirical flowchart as shown in Figure 2:

[image: Flowchart detailing a modeling process. It begins with "Data Collecting" and "Evolutionary Situation Analysis," leading to a "Multiple Regression Model." This splits into "Baseline Regression" and "Spatial Spillover Effects" through "System GMM Model" and "Two-way Fixed Effect Model." A "Moderating Effect" and "Threshold Effect" are assessed under "Mechanism Analysis," with a focus on "Heterogeneity." The analysis distinguishes "Major" and "Non-major Grain Producing Areas" as well as "Northern" and "Southern Regions." Concludes with "Conclusion and Discussion." Paths marked with “Fail” redirect back to earlier stages.]

FIGURE 2
 Empirical flowchart.




3.2 Model setting


3.2.1 Basic model

This article establishes a multiple regression model (1) to identify the impact of agricultural land transfer on agricultural carbon emissions, and estimates it using bidirectional fixed effects. However, previous studies have shown that agricultural carbon emissions exhibit significant temporal correlations and dependency characteristics. Therefore, it is necessary to consider the dynamic impact of past agricultural carbon emissions on the current period. To address this, the lag period of agricultural carbon emissions is included in the model, and a dynamic panel model is used to better capture this dynamic effect (Li Y. et al., 2023). Therefore, this study establishes model (2) to identify the temporal correlation and dependence characteristics of agricultural land transfer on agricultural carbon emissions. Meanwhile, a system GMM model that can effectively alleviate endogeneity issues is adopted to estimate Equation 2.

[image: Mathematical equation showing the logarithm of CO2 emissions, denoted as lnCO2_it, as a function of constants and variables: alpha_0 plus delta_1 multiplied by lnlandtsf_it, plus delta_2 multiplied by X_it, plus mu_i, plus gamma_t, plus epsilon_it.]

[image: Equation for carbon dioxide emissions: ln(CO2_it) = α₀ + δ₀ ln(CO2_it-1) + δ₁ Inlandsfs_it + δ₂ X_it + μᵢ + γₜ + ε_it, labeled (2).]

In addition, to verify hypothesis 1, this study constructed model (3) using dynamic panel data and mediation effect models to analyze the mechanism of agricultural land transfer on agricultural carbon emission intensity.

[image: Mathematical equation for model M sub it equals alpha sub zero plus delta sub one times the natural log of CO2 sub it minus one plus delta sub one times the natural log of lands f sub it plus delta sub two times X sub it plus mu sub i plus gamma sub t plus epsilon sub it, labeled as equation three.]

Where [image: Greek letter alpha followed by a subscript zero.] is the intercept term; [image: Italicized text showing the word "InCo2it", where the 'Co' is subscripted with '2'.] denotes the regional annual agricultural carbon intensity, [image: The word "Inlandtsfit" is displayed in italic font.] denotes agricultural land transfer, [image: Mathematical notation showing the symbol X with two subscripts i and t.] is the ensemble of control variables, and [image: The expression "ln Co2it−1" is shown, where "ln" represents the natural logarithm, "Co2it" is a variable, and "−1" is a subscript indicating a previous time period.] denotes the lagged term of [image: Italicized text reading "InCo2it".]; [image: Italic lowercase letter "i" with a subscript lowercase "i".] denotes the time fixed effect; [image: The Greek letter gamma with a subscript "t".] is the regional fixed effect; and [image: Mathematical notation depicting the symbol "a subscript i t" with a dot above the "a," indicating the derivative or rate of change of the variable \( a_{it} \).] is the random perturbation term. [image: Italicized letter "M" with subscript "it".] is the mediator variable.

Moderating effect model of rural human capital.

In order to test hypothesis 2, whether rural human capital has a moderating effect on the relationship between the transfer of agricultural land affecting agricultural carbon emissions, the following regression model is constructed:

[image: Equation illustrating the model: \( \ln CO_{2it} = \alpha_0 + \delta_0 \ln CO_{2it-1} + \delta_1 \text{Inlandts}_{fit} + \delta_2 \text{Edu}_{it} + \delta_3 \text{Edu}_{it} * \text{Inlandts}_{fit} + \delta_4 X_{it} + \mu_i + \gamma_t + \epsilon_{it} \).]

[image: The text "Edu_{it}" is styled in italics, with a subscript "it" next to "Edu".] represents the level of agricultural human capital.



3.2.2 Building spatial lag model

To test hypothesis 3, we constructed a spatial model to verify the spatial impact of land transfer on agricultural carbon emissions. However, the specific spatial model to be used for verification requires model identification and validation (see Table 1 for detailed results). The Hausman test suggests that it should be set as a fixed effect. The LM test and Robust LM only have spatial errors. Robust LM_Spatial error cannot reject the null hypothesis, so the spatial lag model and LR test can significantly reject the null hypothesis. Therefore, this paper sets the econometric model as a double fixed effects spatial lag model.



TABLE 1 Model identification test.
[image: Table comparing statistical test parameters and results. Four models are listed: LM spatial lag, LM_spatial_error, Robust LM spatial lag, and Robust LM_spatial error, with coefficients and p-values. Additional tests include the Hausman test, LR test with individual fixed effects, and LR test with time fixed effects, each with results and p-values.]

Meanwhile, considering the dynamic impact of previous agricultural carbon emissions on the current period, this paper constructs Equation 5 to verify the spatial impact of agricultural land transfer on agricultural carbon emissions (Wang Y. et al., 2022):

[image: The image shows a mathematical equation labeled as equation (5), which is: ln(CO2_it) = α₀ + ρω ln(CO2_it−1) + δ₀ ln(CO2_it−1) + δ₁ lnlandtsfit + δ₂ X_it + μ_i + γ_t + ε_it.]

Equation 5 where [image: Italic lowercase letter "u".] is the spatial weight matrix, this paper uses the commonly used binary spatial adjacency matrix, and also uses Equation 6 economic-geographical nested matrix to replace the spatial adjacency matrix for robustness testing.

[image: Weight function \( W_{\text{disec}} \) with two cases: \( 0.5 / | gdf_{ij} | + 0.5 / d_{ij} \) when \( i \neq j \); \( 0 \) when \( i = j \). Equation (6).]

where [image: Mathematical expression displaying the absolute value of gdp subscript i j, enclosed by vertical bars.] is the difference in GDP per capita between regions and [image: Lowercase letter "d" followed by the subscript "ij", commonly used in mathematical notation to represent a matrix element or distance between points i and j.] is the regional distance between provincial capitals. In addition, a global spatial autocorrelation test is performed for the agricultural carbon emission profile using Moran’s I in Equation 7.

[image: Mathematical formula representing spatial autocorrelation, denoted as I. It is calculated as n divided by the sum of all Wij, multiplied by the sum of i and j of Wij times (xi minus x̄) times (xj minus x̄), over the sum of i of (xi minus x̄) squared.]

[image: Lowercase letter "n" in a serif font, appearing slightly blurred.] is the total number of spatial units; [image: Lowercase letter "x" with a subscript lowercase "i".] and [image: Lowercase letter "x" with a subscript "j", representing a variable in mathematical notation.] represent the attribute values for region [image: Lowercase letter "i" in a serif font.] and region [image: Stylized lowercase letter "j" written in a serif font, featuring a dot above and a curved tail extending below the baseline.], respectively, and [image: The image shows the variable \( \overline{x} \), which represents the mean or average of a set of data in statistics.]is the mean of the attribute values for all spatial units. [image: Moran's I ranges from negative one to one, Moran's I.]>0 indicates that the examined data have positive spatial correlation and that the regional observations tend to be clustered, while [image: Italicized text reading "Moran's I".]<0 is the opposite.

The practice of determining the presence of spatial spillovers in model (5) through the point estimate coefficients may lead to erroneous conclusions, therefore, in this paper, the generalised spatial Equation 8 is written in the biased form (9) as a way of determining the presence of spatial spillovers:

[image: Mathematical equation labeled as equation eight: \(Y = (1 - \rho W)^{-1}(X \beta + WX \theta) + R\).]

[image: Matrix equation showing derivatives and coefficients. The left matrix contains partial derivatives of the expected value of Y with respect to x sub i k. The right matrices express a similar structure, expanding to a larger matrix with components like beta sub k, theta sub k, and w terms, emphasizing spatial econometrics.]




3.3 Variable selection

The explanatory variable is agricultural carbon emission (lnCO2), which is accounted for by fertiliser, pesticide, agricultural film, diesel fuel, sowing and irrigation area and their carbon emission coefficients in the agricultural production process and subsequently taking logarithms. Referring to the research of relevant scholars, the formula for calculating agricultural carbon emissions is shown in Equation 10 (Zhu et al., 2022).

[image: The equation shows: \( E = \sum E_i = Q_i + K_i \).]

[image: Stylized letter "E" in a serif font, resembling a mathematical or typographic symbol.] is the total carbon emissions from agriculture; [image: Italic letter E with a subscript lowercase i, often used to represent a variable or element in mathematics or physics.] is the carbon emissions from each type of agricultural material; [image: The text shows the mathematical expression "Q subscript i" in a stylized font.] is the amount of carbon sources in category [image: Lowercase letter "i" in a simple font, with a small dot above a vertical line.]; and [image: Italicized capital letter E with a subscript lowercase letter i.] is the emission factor for carbon sources in category [image: A lowercase letter "i" in a bold serif font. The dot is circular and clearly defined, and the letter's stem is straight with slight curvature at the edges. The image is black on a white background.].

Core explanatory variable: Using the logarithm of the total area of household contracted farmland transfer in each province as a specific indicator of farmland transfer (Ding et al., 2024).


3.3.1 Moderating variable

The level of rural human capital (Edu) is represented by the years of education received by rural residents (Yang and Wang, 2023). the level of rural human capital (Edu) is expressed using the number of years of education of rural residents, which is an important indicator of an individual’s knowledge level, cognitive ability, and learning ability. The average number of years of education of rural residents = (number of people not attending school × 0 + number of people of preschool age × 3 + number of people in primary school × 6 + number of people in secondary school × 9 + number of people in high school × 12 + number of people in junior college and above × 16)/total rural population.



3.3.2 Mediating variables

Referring to relevant literature (Zhang et al., 2023; Ji et al., 2023), the sowing area (CLA) is measured using the per capita sowing area; Chemical input intensity (CI) is measured by the amount of chemical fertilizers, pesticides, films, and other chemicals used per unit sowing area. The scale of agricultural operations (SC) is expressed as the ratio of crop sowing area to agricultural labor force.



3.3.3 Control variables

Referring to relevant literature (Ji et al., 2023; Ding et al., 2024), this study uses agricultural industry structure, agricultural industry agglomeration, degree of openness to the outside world, innovation and development capabilities, and transportation development as control variables. Agricultural industry structure (Ais): using the ratio of the value added of the primary industry to the gross regional product; agricultural disaster rate (Disaster): expressed as the ratio of the affected area at the end of the year to the total sown area of crops in that year; agricultural industry agglomeration (Agg): using the entropy of the region to express the degree of aggregation of the agricultural industry, i.e., using the ratio of the total output value of agriculture, forestry, animal husbandry and fisheries of each province to that of the national agriculture, forestry, animal husbandry and fishery industry as a percentage of the gross regional product to the national gross product. The ratio of the total output value of agriculture, forestry, animal husbandry and fishery of each province to the national total output value of agriculture, forestry, animal husbandry and fishery accounts for the proportion of the regional GDP and national GDP. Openness to the outside world (Open): the ratio of the total amount of import and export to the GDP of the region; innovation and development capacity (RD): expressed by the internal expenditure of R&D funds of each province (RMB 10,000 yuan); developed degree of transport (Road): expressed by the ratio of the sum of the mileage of railway operation, inland waterways and highways to the area of the region.




3.4 Data sources and descriptive statistics

This paper takes 30 sample provinces from 2005 to 2022 as the research object, and the required data come from the official website of the Ministry of Agriculture and Rural Development, China Agricultural Yearbook, China Statistical Yearbook, China Rural Statistical Yearbook, China Rural Management Statistical Yearbook, and China Rural Policy and Reform Statistical Yearbook; for individual vacancies, interpolation is used to fill in the blanks. Specific descriptive statistics are shown in Table 2.



TABLE 2 Descriptive statistics.
[image: Table displaying statistical data for various variants. Each variant has 540 observations. The columns show Mean, Standard Deviation, Minimum, and Maximum values. For example, "Lnlandtsf" has a mean of 16.740, a standard deviation of 2.3220, a minimum of 5.6237, and a maximum of 18.6829. Other variants include LnCO2, Ais, Disaster, Agg, Open, RD, Road, Cla, Ci, Sc, and Edu, each with respective statistical values.]




4 Temporal evolution of agricultural land transfer and agricultural carbon emissions

Figure 3a uses the Kernel density estimation model to analyze the dynamic evolution trend of urban and rural land transfer in China. From the perspective of distribution, the center of the density curve of agricultural land transfer in China has shifted to the right, and the kernel density curve has always had a clear peak, gradually approaching 0.6 from the initial 0.4, indicating that the level of agricultural land transfer in China has gradually improved during the sample period. Secondly, from the perspective of distribution shape, the peak value has been increasing year by year, and the density curve shows a high and steep shape, indicating a clear trend of narrowing the absolute difference in agricultural land transfer in China. Once again, there is a gradual weakening trend in the multimodal distribution pattern, indicating that the phenomenon of multipolar differentiation in China is slowly weakening. Finally, from the perspective of distribution extensibility, the left tail feature weakens, indicating that the differences in the scale of agricultural land transfer among provinces are gradually narrowing.

[image: (a) A 3D surface plot showing data trends over time from 2006 to 2022, with axes labeled as Years, Inland, and an unspecified vertical measure. (b) A map of China using a color gradient from blue to red to indicate varying data values across different regions, with an inset highlighting surrounding areas.]

FIGURE 3
 Trends in the dynamic evolution of agricultural land transfer.


In addition, according to Figure 3b, it can be seen that the overall transfer rate in China is relatively low, showing an uneven trend of high in the east and low in the west. This may be because relatively speaking, the water and heat conditions for agricultural land cultivation in the eastern region are superior, the level of economic and social development is high, and the modernization and scale level of agricultural production is high. Therefore, the level of agricultural land transfer rate is much higher than that of other provinces.

Figure 4 depicts the temporal trend of agricultural carbon emissions across different regions. Overall, the intensity of agricultural carbon emissions decreased to varying degrees during the sample period, with a notable decline in the eastern region. This suggests that China has implemented a series of measures to reduce greenhouse gas emissions in the process of agricultural production and operation, and these measures have yielded significant results. In terms of fluctuation, the amplitude is similar across various regions; however, the agricultural carbon emission intensity in the central and northern regions exceeds the national average. This may be attributed to the relatively traditional agricultural structure in these regions, which primarily focuses on grain crop cultivation and incorporates a substantial amount of animal husbandry. Additionally, the agricultural industry structure in some regions is not sufficiently optimized, leading to higher agricultural carbon emissions. Conversely, the relatively high level of agricultural technology and management in the eastern and southern regions may contribute to reducing agricultural carbon emission intensity. The agricultural structure in the western region may be more uniform, primarily centered on planting, resulting in a relatively low carbon emission intensity in agriculture.

[image: Line graph showing regional trends in data from 2005 to 2022. The Nationwide line starts around 5.3 in 2005, peaks at 5.7 in 2014, and ends near 5.5 in 2022. Eastern and Southern regions show a general decline, while Central and Western regions peak around 2014 before decreasing. Northern region maintains the highest values, remaining above 5.9 throughout.]

FIGURE 4
 Temporal trends in agricultural carbon emissions.




5 Model estimation results and analysis


5.1 Base regression

Firstly, this section mainly reports the regression analysis based on Equations 1, 2, aiming to explore the impact of farmland transfer on agricultural carbon emissions. By gradually introducing control variables, lag periods, and using a system GMM model for estimation, we conducted a thorough analysis of the relationship between agricultural land transfer and agricultural carbon emissions. Column (1) of Table 3 shows the basic regression results without adding control variables. Column (2) adds control variables to the basic model and further considers the influence of other potential factors. Column (3) further introduces the regression results including lag periods and control variables. Column (4) uses the system GMM model to estimate Equation 2. If the AR(1) test result is less than 0.1, it passes the significance test, while if the AR(2) test result is greater than 0.1, it indicates that the model cannot reject the null hypothesis of no second-order serial correlation. Hansen’s test results indicate that there is no issue of over-identification. Column (4) shows that for every 1 unit increase in agricultural land transfer, agricultural carbon emissions can increase by 0.003 units, and this is significant at the 1% level, indicating a significant positive correlation between agricultural land transfer and agricultural carbon emissions. In addition, the impact coefficient of the lagged term of agricultural carbon emissions is significantly positive, indicating that agricultural carbon emissions have temporal persistence and dependence characteristics. By estimating Equation 3 from columns (5) to (7), it can be seen that the current increase in agricultural carbon emissions is mainly due to the expansion of farmers’ sowing area, the increase in chemical input intensity, and the small scale of agricultural land. Hypothesis 1 has been validated.



TABLE 3 Basic regression results.
[image: Table displaying statistical results for various models, including "Two-way fixed effect," "System GMM," and others, with variables like "Lnlandtsf," "L.lnCO2," and "Edu." Significance levels are indicated by asterisks. Control variables include "Province" and "Year." Robust standard errors are in parentheses. Additional metrics provided are R2, AR(1), AR(2), Hansen, and N values.]

In addition, the basic regression shows that the level of rural human capital has reduced the level of carbon emissions, which provides evidence for research hypothesis 2. From the estimation results of other control variables, upgrading industrial structure and increasing innovation and development capabilities are also beneficial for reducing agricultural carbon emissions.



5.2 Regulating role of rural human capital

The enhancement of rural human capital can mitigate the carbon emissions resulting from agricultural land transfer and address the environmental challenges associated with it. To test Hypothesis 2 and explore its effect, Equation 4 is employed. In Table 4, Column (1) presents regression results without the inclusion of control variables, while Column (2) includes control variables to examine the moderating effect. The interaction term between rural human capital and agricultural land transfer is significantly negative at the 1% level, indicating that rural human capital weakens the impact of agricultural land transfer on agricultural carbon emissions. Columns (3) and (4) display the regression results of the spatial lag model without and with control variables, respectively. These results also demonstrate that rural human capital plays a negative regulatory role in the relationship between agricultural land transfer and agricultural carbon emissions, providing further support for Hypothesis 2.



TABLE 4 Moderating effects.
[image: Table displaying statistical analysis results for four variants with coefficients, standard errors in parentheses, and significance levels for variables like L.lnCO2, Lnlandtsf, Edu*lnlandtsf, Edu, and W.lnCO2. Controls include city and year, with AR(1), AR(2), Hansen statistics, and a sample size of 510. Significance is indicated at 1%, 5%, and 10% levels.]



5.3 Heterogeneity test

On the basis of basic regression and moderation effect regression, we further explored the impact of regional heterogeneity on the relationship between agricultural circulation, rural human capital, and agricultural carbon emissions (Table 5). Due to the large differences in resource endowment, etc. among China’s provinces, the regional differences in the impact of agricultural land transfer on agricultural carbon emissions are further examined by grouping regressions of the main grain-producing areas and non-grain-producing areas as well as the northern and southern regions.



TABLE 5 Heterogeneity test.
[image: A table presents regression analysis results for four regions: Major Agricultural Region, Non-food Producing Areas, Northern Areas, and Southern Region. Each region has coefficients for variables including L.lnCO2, Lnlandtsf, Edu*lnlandtsf, and Edu, with significance indicated by asterisks. Control variables include Control, City, and Year. AR(1) and AR(2) values, Hansen test results, and sample sizes (N) are provided for each region. Robust standard errors appear in parentheses. Statistical significance is denoted at 10%, 5%, and 1% levels.]

The main grain producing areas usually have superior natural conditions, providing a unique advantage for the cultivation of grain crops. In contrast, non grain producing areas have relatively poor resource endowments or agricultural production conditions. Therefore, dividing the sample into production areas and non grain production areas is helpful for in-depth analysis of the specific impact of agricultural circulation and rural human capital on agricultural carbon emissions under different resource endowments and production conditions, providing scientific basis for optimizing resource allocation and improving utilization efficiency. Columns (1)–(2) of Table 5 show the effects of agricultural land transfer on agricultural carbon emissions in the main grain-producing areas and non-grain-producing areas. It can be seen that the estimated coefficients of agricultural land transfer on agricultural carbon emissions are significantly positive in the main food-producing areas, but not in the main non-food-producing areas. This may be due to the fact that agricultural land in major food-producing areas is less abandoned, has more cultivation area and is often used for growing food crops, which usually requires more resources such as pesticides, fertilisers and irrigation water, thus leading to an increase in carbon emissions. While the level of rural human capital significantly suppresses agricultural carbon emissions in major food-producing regions, it does not do so in non-major food-producing regions, and rural human capital plays a significant moderating role only in major food-producing regions. This may be due to the fact that the level of rural human capital is likely to be relatively higher in the main food-producing regions, including the level of education, skills training and agricultural knowledge. This may have made farmers more efficient and sustainable in their agricultural production processes, thus reducing carbon emissions. In contrast, the level of rural human capital may be lower in non-food producing regions, resulting in farmers lacking the relevant skills and knowledge in agricultural production to effectively reduce agricultural carbon emissions. In addition, food production usually requires more labour and technical support, so the enhancement of rural human capital may play a more significant role in reducing agricultural carbon emissions in major food-producing regions.

Similarly, there are significant differences in geographical location, resource endowment, economic development level, and industrial structure among the eastern, central, and western regions of China. Through sample partitioning, we can delve into the impact mechanisms of agricultural circulation and rural human capital on agricultural carbon emissions in different geographical locations, providing a basis for developing differentiated emission reduction strategies. From columns (3)–(4) of Table 5, it can be seen that the transfer of agricultural land increases agricultural carbon emissions in the northern region, while the coefficient in the southern region is negative but not significant. This may be due to the fact that the northern region may be more inclined to traditional agricultural production methods, such as large-scale ploughing and the use of chemical fertilisers; and that the dry climate in the northern region requires more irrigation measures and higher energy-consuming production methods, all of which may lead to an increase in agricultural carbon emissions after the transfer of agricultural land.

In contrast, the South is likely to be more committed to the transformation and upgrading of agricultural production methods. Low-carbon agricultural production methods, such as refined management and organic farming, reduce the negative impact on the environment. Meanwhile, the level of rural human capital in the southern region suppresses agricultural carbon emissions, and the moderating effect shows a significant corrective effect. This may be due to the higher level of rural human capital in the southern region, which possesses more technology and knowledge in agricultural production, attaches importance to ecological environmental protection and sustainable agricultural development, and is more inclined to use environmentally friendly products such as organic fertilisers and bio-pesticides, reducing the amount of pesticides and chemical fertilisers used, thus lowering the agricultural carbon emissions. Moreover, the agricultural structure in the southern region may be more diversified and integrated, and farmers may be more engaged in the cultivation or breeding of high value-added agricultural products, which in turn contributes to the reduction of agricultural carbon emissions.



5.4 Further discussion—the threshold effect of rural human capital

In addition, this paper further considers that there may be a threshold effect between the transfer of agricultural land and agricultural carbon emissions under the developmental changes in the level of rural human capital, and we refer to Hansen’s theory of panel threshold regression models and construct the following single-threshold model to verify whether there is a non-linear correlation between the transfer of agricultural land and carbon emissions under different levels of rural human capital (See Equation 11):

[image: Equation showing a regression model: ln(Co2_it) = α_0 + δ_0 ln(Co2_{it-1}) + δ_1 Inlandts_{fit} × I(Edu < η_n) + δ_2 Inlandts_{fit} × I(Edu ≥ η_n) + δ_3 X_{it} + μ_i + γ_t + ε_it.]

Considering the possibility of multiple thresholds, the single-threshold panel regression model was extended to a multi-threshold panel model as follows (See Equation 12):

[image: A mathematical equation representing a function for \( \ln CO_{2it} \), showing its relation to variables such as previous carbon dioxide levels, land usage, education brackets, and external factors, with several coefficients and parameters.]

[image: Mathematical notation showing the letter "I" followed by an asterisk inside parentheses, representing a function or operation applied to an unspecified variable.] is an indicator function for taking the value of 1 or 0, and [image: Stylized text displaying "Edu" in italicized font, followed by "it" in italicized subscript.] is the threshold variable rural human capital.

From the empirical results above, it can be seen that agricultural land transfer contributes to agricultural carbon emissions, while rural human capital weakens the impact of agricultural land transfer on agricultural carbon emissions. To further explore the important role of rural human capital, this paper takes rural human capital as the threshold variable. It constructs triple-threshold, double-threshold, and single-threshold models in turn for testing, and applies bootstrap to estimate the statistical significance of the threshold value through repeated sampling 500 times. This approach aims to address potential hidden problems caused by the model and variable settings. The corresponding F-values, p-values, and thresholds are shown in Table 6 and Figure 5. It can be observed that rural human capital does not contribute to agricultural carbon emissions according to the triple-threshold model. However, agricultural land transfer weakens the impact of agricultural land transfer on agricultural carbon emissions. It can be seen that rural human capital does not pass the triple threshold, but it does pass the double threshold test with thresholds of 7.5373 and 8.9067, respectively.



TABLE 6 Threshold effect significance test results.
[image: Table displaying statistical results for three types of tests: Single Threshold, Double Threshold, and Triple Threshold. Columns include F-value, P-value, critical values at 10%, 5%, and 1%, test results, estimated threshold, and 95% confidence interval. Notably, Single and Double Threshold tests have significant F-values and P-values, with Double Threshold as the test result.]

[image: Three line graphs show LR Statistics versus threshold parameters. The first graph represents the first threshold, the second graph the second threshold, and the third graph the third threshold parameter. Each graph shows fluctuations of the LR Statistics with a red dashed line indicating a constant level for comparison.]

FIGURE 5
 Threshold model regression results.


Table 7 illustrates the thresholds and coefficients when rural human capital is considered as the threshold variable. The determined thresholds are 7.5373 and 8.9067. When the level of rural human capital falls below 7.5373, the coefficients are insignificant. However, when the level of rural human capital ranges between 7.5373 and 8.9067, the regression coefficient of agricultural land transfer is 0.0047, which is significant at the 1% level. Furthermore, when the level of rural human capital surpasses 8.9067, the coefficient becomes −0.0087, which remains significant at the 1% level. These findings indicate that the impact of agricultural land transfer on agricultural carbon emissions varies across different ranges of rural human capital, exhibiting a pattern of “no effect—promotion and inhibition.” This indirectly supports Hypothesis 2. In other words, as rural human capital improves, the positive effect of agricultural land transfer on reducing agricultural carbon emissions gradually becomes evident.



TABLE 7 Threshold model regression results.
[image: Table showing estimated results for core variables. Row headings are categories 0, 1, and 2. Column headings are Estimated Results, Standard Error, and P-value. Category 0: 0.0001, 0.0017, 0.962; Category 1: 0.0047, 0.0014, 0.003; Category 2: -0.0087, 0.0047, 0.073.]



5.5 Spatial effect regression

To verify hypothesis 3, we conducted spatial effects regression. Firstly, Moran’s I was used to test the spatial correlation of agricultural carbon emissions. Table 8 displays the values of Moran’s I for agricultural carbon emissions. The results indicate a significant positive Moran’s I, suggesting the presence of spatial dependence in agricultural land transfer during the sample period. Furthermore, upon plotting the Moran’s I scatter plots for 2005, 2010, 2015, and 2022 (Figure 6), it is evident that the majority of provinces fall within the first and third quadrants. This indicates a high degree of positive correlation in agricultural land transfer.



TABLE 8 Moran’s index.
[image: Table displaying Moran’s I, Z-scores, and p-values for the years 2005 to 2022. In 2005, Moran’s I is 0.3477, Z is 3.3356, and p is 0.0009. Values fluctuate over the years, with 2022 showing the highest values: Moran’s I is 0.3945, Z is 3.6773, and p is 0.0002.]

[image: Four Moran scatterplots show relationships between variables with calculated Moran's I and p-values. Each plot displays data points with a trend line, indicating varying degrees of spatial autocorrelation. The top-left plot (LnCO22005) has Moran's I of 0.3477, top-right (LnCO22010) has 0.2062, bottom-left (LnCO22015) has 0.2143, and bottom-right (LnCO22022) has 0.3945. The x-axis is labeled "z" and the y-axis "Wz".]

FIGURE 6
 Moran’s I scatterplot for 2005, 2010, 2015, and 2020.


Secondly, we use the system GMM to regress Equation 5. In Table 9, Column (1) presents the regression of equation (5DSft) using system GMM. Columns (2) and (4) display the decomposition of spatial spillover effects using Equation 9 for the reported point-estimated coefficients. In Column (1), agricultural land transfer, as well as the direct effect, shows a significant positive relationship, indicating that agricultural land transfer contributes to agricultural carbon emissions. Furthermore, the indirect effect of agricultural land transfer is also significantly positive, indicating that the transfer of agricultural land from neighboring areas has a significant impact on local agricultural carbon emissions. Additionally, the total effect is significantly positive, suggesting that local agricultural land transfer positively influences overall agricultural carbon emissions within the region. These results demonstrate that the transfer of agricultural land has a spatial spillover effect on agricultural carbon emissions, leading to changes in emissions in neighboring areas through demonstration and diffusion effects, thereby confirming Hypothesis 3. This study replaces the spatial matrix with the economic-geographical nested matrix, and the regression results in Column (5) further validate the robustness of the findings.



TABLE 9 Space spillover regression results.
[image: A table displaying statistical analysis results with five columns labeled: Variant, Direct effect, Indirect effect, Total effect, and Substitution space matrix. Variants include L.lnCO2, W.CO2, Lnlandtsf, Edu, Ais, Disaster, Agg, Open, RD, Road, Province, and Year. Each variant shows coefficients with significance indicators and standard errors in parentheses. Additional rows display control variables and statistics AR(1), AR(2), Hansen, and N, totaling five hundred ten observations. Significance levels are denoted by asterisks indicating ten, five, and one percent.]




6 Discussion

This article analyzes the effects of agricultural land transfer and rural human capital on agricultural carbon emissions in 30 sample provinces in China, and explores heterogeneity based on a two-way fixed effects model. Then, the spatial role of these factors was further analyzed, focusing on the regulatory and threshold effects of rural human capital. Research has shown that the transfer of agricultural land contributes to carbon emissions. This finding is consistent with the research results of Ji et al. (2023), primarily due to the current reduction of abandoned land caused by farmland transfer, the expansion of farmers’ planting and irrigation areas, the increase in chemical inputs, and the imperfect agricultural transfer policies, all of which have led to an increase in agricultural carbon emissions. However, there are differences between our research results and those of scholars such as Li et al. (2024). This may be because the sample data in this study was updated to 2022, and the model was constructed taking into account lag and spatial effects, which may be more in line with the actual situation of agricultural production. The differences in these studies provide a deeper perspective and approach for governments and farmers to understand the relationship between farmland transfer, rural human capital, and agricultural carbon emissions.

Based on the spatial lag model and its decomposition effects, it can be concluded that the transfer of neighboring farmland significantly affects local agricultural carbon emissions. This indicates that the transfer of farmland has spatial spillover effects on agricultural carbon emissions, and through demonstration and diffusion effects, it leads to changes in neighboring agricultural carbon emissions. The research results are consistent with the findings of Liao et al. (2023). Therefore, when promoting low-carbon development in agriculture, the collaborative cooperation between different regions cannot be ignored.

Finally, the most important finding of this study is that an increase in rural human capital helps to reduce agricultural carbon emissions. And in the process of the impact of agricultural land transfer on agricultural carbon emissions, rural human capital plays a negative regulatory role, indicating that rural human capital weakens the impact of agricultural land transfer on agricultural carbon emissions. Yang et al. also emphasized the important role of human capital in agricultural green development in their research. The reason behind this is that the improvement of rural human capital level helps to build awareness of environmental protection in agricultural production, promote agricultural production progress and the implementation of land transfer policies, thereby reducing agricultural carbon emissions. In addition, the threshold role of rural human capital once again proves that the improvement of rural human capital level can bring about improvements in the scale of agricultural land and low-carbon development of agriculture, leading to a transitional change in agricultural carbon emissions caused by the transfer of agricultural land. Therefore, by strengthening the level of rural human capital, low-carbon development in agriculture can be promoted.



7 Research conclusions and policy implications


7.1 Conclusion

This article analyzes the impact, heterogeneity, and threshold effect of agricultural land transfer and rural human capital on China’s agricultural carbon emission intensity based on panel data from 30 provinces, regions, and municipalities in China from 2005 to 2022. The main conclusions are as follows: Firstly, at present, agricultural land transfer has exacerbated agricultural carbon emission intensity to a certain extent, due to the expansion of cultivated land and sowing area, the increase in chemical input, and the small scale of agricultural land. Secondly, this article found that rural human capital helps to mitigate the carbon emission effects of agricultural land transfer. At the same time, empirical evidence also reveals that under different levels of rural human capital, the effect of agricultural land transfer on agricultural carbon emission intensity exhibits a changing characteristic of ‘ineffectiveness-promotion-inhibition’. Furthermore, in terms of heterogeneity, the transfer of agricultural land and the level of rural human capital in major grain-producing areas have a significant impact on agricultural carbon emissions, but not in non-major grain-producing areas. The transfer of farmland in northern regions has increased agricultural carbon emissions, while the level of rural human capital in southern regions has suppressed agricultural carbon emissions. In addition, the transfer of agricultural land has a spatial effect on agricultural carbon emissions. The transfer of local farmland may influence the agricultural carbon emissions in surrounding areas.



7.2 Limitations and future research prospects

The limitations of this study mainly include: firstly, although we measured the control variables in this study by referring to relevant literature, we did not cover all the changes in relevant policies and the impact of external environment, such as climate change. Future research can explore and incorporate additional relevant control variables to further improve the accuracy of our causal inference.

Secondly, this paper lacks comprehensive data support, and the research data is mainly based on the public data of Chinese Mainland. Although these data have a certain representativeness, they may not fully reflect the actual situation in all regions of the country, especially for some remote or incompletely recorded areas where there may be some bias. In addition, existing data cannot quantify the impact of various factors such as cultural and psychological factors. Future research can further collect more comprehensive and detailed survey data, and construct more refined measurement indicators. In addition, although this study used GMM system to analyze dynamic panel data and combined spatial models to capture geographic spatial effects, there may still be some subjectivity and assumptions in the model setting. For example, the interaction effects and nonlinear relationships of certain variables in the model may not have been fully captured. Future research can explore more complex model structures. However, this study did not further discuss whether the synergistic effect of rural human capital and agricultural land transfer has spatial spillover effects. It is necessary to further deepen research in this field, explore appropriate economic theories and spatial econometric models, and further explore whether the synergistic effect of rural human capital and agricultural land transfer has spatial spillover effects.

Finally, we believe that in the process of agricultural land transfer, China’s policies, such as the separation of three rights and the confirmation of agricultural land rights, have a significant impact on agricultural land transfer. For example, the separation of three rights policy provides a more flexible and convenient institutional environment for agricultural land transfer by clarifying ownership, stabilizing contracting rights, and relaxing management rights. The policy of land tenure confirmation has strengthened farmers’ long-term expectations and willingness to invest in land by clarifying land ownership. However, these factors have not been fully discussed in current research. In future research, policy evaluation models and survey data can be used to explore the significant impacts of these important policies on circulation and carbon reduction, providing strong support for the development of more scientific and reasonable agricultural policies and emission reduction measures.



7.3 Policy recommendations

Based on the above conclusions, this paper puts forward the following policy recommendations: first, improve the agricultural land transfer policy and promote the combination of agricultural land transfer and carbon emission reduction. On the one hand, establish a sound transfer contract system, clarify the rights and responsibilities of both parties, ensure the rational use of the transferred land and environmental protection, break the negative externality of the transfer of agricultural land on the environment, and enhance the stability and green sustainability of the transfer. On the other hand, encourage the main body of agricultural land transfer to adopt low-carbon agricultural production methods. Secondly, guide farmers to make rational use of land resources, and promote low-carbon agricultural technologies and modes, such as water-saving irrigation, organic agriculture and fine management, in order to reduce the intensity of agricultural carbon emissions.

Second, strengthen the cultivation of rural human capital and give full play to the enabling role of rural human capital in low-carbon agricultural development. The government can increase investment in rural education, skills training and vocational transfer to improve the education level and skill quality of rural workers and enhance their ability to adapt to new agricultural green production methods and technologies; at the same time, when implementing agricultural land transfer policies, it should take into account the spatial distribution pattern of human capital among regions, so as to reduce energy consumption and carbon emissions in the agricultural production process.

Thirdly, inter-regional coordination and cooperation should be strengthened. Considering the spatial effect of agricultural land transfer on agricultural carbon emissions in neighbouring regions, the government can strengthen cooperation and coordination between different regions and promote cross-regional cooperation on agricultural land transfer and carbon emission reduction. Through the optimal allocation of resources and win-win cooperation, the overall reduction effect of agricultural carbon emissions can be achieved.
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Dietary diversity is an important indicator used to measure family dietary quality and food safety status. Against the backdrop of the transformation of China’s agricultural production model from a diversified, small-scale approach to specialization, this paper presents a comprehensive investigation into the complex interrelationship between crop specialization and dietary diversity. It employs a multi-method approach, integrating theoretical insights with empirical evidence. The analysis is based on a micro-survey of 866 rural households, utilizing mediation, moderation, and unconditional quantile regression model. The results indicated that crop specialization had a notable negative impact on dietary diversity, particularly among II part-time and mountainous households. Further analysis of the mechanisms involved reveals that income exerts a mediating effect, while education and market factors exert a moderating effect. Such factors may serve to mask or reduce the negative effects of crop specialization on dietary diversity. In the reality that the trend of production specialization is irreversible, government interventions to ensure dietary diversity and food security for rural households, particularly II part-time households and those in mountainous regions, can be implemented in three key areas: income support, education enhancement, and market access improvement.
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1 Introduction

In the face of the complex international situation and extreme climates on the food safety of the global population, particularly the rural vulnerable people, how to ensure that rural residents achieve the “Zero Hunger” development goal has drawn unprecedented attention and concern (Chen et al., 2023; Langer et al., 2024; FAO, IFAD, UNICEF, WFP, WHO, 2024). China has 477 million farmers, and its rural area are the largest weak points of national economic and social growth, which are facing more severe food insecurity problems (Yu et al., 2017). According to the Agricultural and Rural Development Notes of World Bank, farmers’ crop production strategies are closely connected with their household food security (Hawkes and Ruel, 2008). Internationally, dietary diversity is an important indicator used to measure family dietary quality and food safety status (Jones et al., 2014; Tchuente et al., 2024), while crop production strategies in a broad sense mainly include two types of crop specialization and corresponding diversification. Among them, crop specialization reflects agricultural specialization from a micro perspective. As specialized labor division in China’s agricultural production is enhanced and the extent of marketization of agricultural products is improved, most farmers have gradually shifted from the conventional diversified production pattern to the specialized production of crops (Luo, 2017; Huang et al., 2019); a series of policies promulgated by the Chinese government are also actively encouraging farmers to engage in specialized production of crops. There is no denying that from the perspective of classical economics, emerging classical economics, and traditional agricultural economic theories (Yang and Ng, 1993; Schultz, 1993), crop specialization can strengthen farmers’ production efficiency and income via the effect of “practice makes perfect.” Thus, this paper mainly focuses on the following questions:


i. In the context of China’s agricultural transformation towards specialization, what impact does crop specialization have on farmers’ dietary diversity?
ii. What role does farmers’ income play in this?
iii. Are there any other factors besides farmers’ income that play a role in this?



Currently, China has completely realized the poverty alleviation target with “do not worry about food” as the central requirement, but “eating enough” is insufficient to guarantee that the residents have enough nutrition and health, and a balanced and diverse diet plays a key role in this (Pellegrini and Tasciotti, 2014). According to the classic thesis proposed by Ellis earlier, a diversified production pattern is an optimal approach for small farmers in developing countries to guarantee the survival and security of their families in the face of severe external shocks (Ellis, 1998). In practice, production diversification is regarded as the agricultural development strategy in developing countries like Thailand, Zambia, and Bangladesh (Mofya-Mukuka and Hichaambwa, 2018; Rahman, 2009; Kasem and Thapa, 2011). Consequently, the academic community mainly starts from the view-angle of crop production diversification to analyze how crop production strategies influence the dietary diversity of farmers. Therefore, this paper incorporates both types of crop production strategies into the research scope and systematically reviews the relevant literature on how crop specialization or diversification affect farmers’ dietary diversity. Pellegrini and Tasciotti (2014) and Jones et al. (2014) found that while the vast majority of farmers rely on crop production and management to maintain household livelihood security and dietary diversity, few studies have examined the relationship between the two. Given this, they examined the impact of crop diversification on farmers’ dietary diversity based on cross-sectional data of farmers in eight developing countries, revealing that crop diversification has a significant positive impact on farmers’ dietary diversity. In other words, crop specialization reduces dietary diversity. Subsequently, the same conclusion was reached in empirical research by Ecker (2018) based on the 2006 and 2013 residential living survey data in Ghana, Tobin et al. (2019) based on the cross-sectional data of farmers in 11 sub-Saharan African countries, Sekabira and Nalunga (2020) based on the three rounds of farmer survey data in Uganda from 2009 to 2012, and Isbell et al. (2024) based on the Demographic and Health Survey (DHS) data from 10 sub-Saharan African countries.

Nevertheless, the associations between crop diversity and dietary diversity have also been found to vary significantly by country (Nandi et al., 2021). For example, Sibhatu et al. (2015) based on the farmer household survey data from 4 developing countries, found that while crop diversification positively affected the dietary diversity of farmers in Indonesia and Malawi, it had no impact on the dietary diversity of farmers in Kenya and Ethiopia, This revealed that the positive relationship between crop diversification and farmers’ dietary diversity is not universal. In this regard, Berti (2015) pointed out that the selection of the measurement method of crop diversification in Sibhatu et al.’s paper was the major cause of the uncertainty of the relationship between the two. Sibhatu and Qaim (2018) further used several measurement methods such as a simple counting method and a food group score method to conduct empirical tests. They clarified that different measurement methods indeed induce uncertainty in the impact of crop diversification or specialization on farmers’ dietary diversity. Other scholars have found through research on farmer household survey data in Kenya and Burkina Faso that the correlation between crop specialization and farmers’ dietary diversity is not negative or uncertain, but irrelevantt (Ng’endo et al., 2015; Lourme-Ruiz et al., 2016). In addition, some studies have shown that crop specialization can improve farmers’ dietary diversity. For example, Chinnadurai et al. (2016) using data from a national sample survey in India, noticed that the diversified production of vegetable crops exerts a significant adverse influence on farmers’ dietary diversity, indicating that the specialization of vegetable crop production will make farmers’ diets more diversified. Argyropoulou (2016) focused on a group of children in rural northern Ghana, and the results also showed that crop specialization can significantly enrich the dietary diversity of rural children.

In general, there are rich research results on the relationship between crop specialization (or diversification) and farmers’ dietary diversity, providing an important reference for this paper, but there are still some deficiencies. First, the research conclusions drawn by various literature using micro-data of farmers in different countries or different index measurement methods still vary dramatically. No consensus has been reached on whether crop specialization or diversification is the best strategy to ensure farmers’ dietary diversity and achieve the “Zero Hunger” development goal, so further discussions are needed. Second, effectively ensuring the dietary diversity of Chinese residents, who take up a high proportion of the global population, especially the Chinese rural residents, is crucial to the realization of the “Zero Hunger” development goal at the global level. However, in the context of China’s rapid agricultural transformation towards specialization, little research has explored the impact of crop specialization on farmers’ dietary diversity based on a sample of Chinese farmers. In recent literature, although Huang et al. (2019) analyzed the relationship between farmers’ planting and breeding diversity and farmers’ dietary diversity based on 395 farmer household survey data, unfortunately, they failed to further clarify how the specialization of crop production (or diversification) affects farmers’ dietary diversity. Third, as socialization and commercialization trends of agricultural production become more prominent in China and even in the world, farmers can influence the purchase of family food through the income obtained from the sale of agricultural products (Hawkes and Ruel, 2008). This unveils that income can play a certain indirect role in the process of crop specialization affecting farmers’ dietary diversity, but existing studies often solely pay attention to the direct relationship between the two and ignore the indirect role of income. Furthermore, education (Abokyi et al., 2023; Adugna et al., 2024) and market (Nandi et al., 2021; Kihiu and Kydd, 2021) also have important effects on dietary diversity, but the role of these factors in the relationship between crop specialization and dietary diversity have also been ignored in existing research. Finally, in the empirical strategy, the existing literature mainly applies the linear mean regression model to explore the average impact of crop specialization on farmers’ dietary diversity. There is no mention of the heterogeneity of the effects of crop specialization on farmers at different dietary diversity quantiles or different groups within a group under virtual translational transformations.

This paper intends to enrich the existing research from the three perspectives listed below. To begin with, with the micro-survey data of crop growers from the rural survey team of the Hubei Survey Team of the National Bureau of Statistics of China (HRST) as samples, this paper used Feasible Generalized Least Squares (FGLS) and Unconditional Quantiles Regression (UQR) estimation method to comprehensively examine the average effect of crop specialization on household dietary diversity and the heterogeneity of the impact across quantiles. Second, the farmers were grouped according to the terrain features of the villages and the production types of the farmers, and the grouped estimation and Seemingly Uncorrelated Model Test (SUEST) method was applied to analyze the realistic scenario of the disparity in the influence of crop specialization on dietary diversity of various groups among the farmers. Third, this research introduced farmers’ income, education and market as mediating or regulating variables in the theoretical analysis framework of sustainable livelihoods, and constructed a test model of mediating and moderating effects, thereby deeply exploring the internal impact mechanism and action path of crop specialization on farmers’ dietary diversity. The research in this study can provide decision-making reference for promoting the process of crop specialization in China, ensuring the food security of farmers and taking the lead in realizing the development goal of “Zero Hunger” of the United Nations.

The rest of the paper is organized as follows: Section 2 is the theoretical framework and research hypothesis of the research; Section 3 is the research design; Section 4 is the estimated results of the model; Section 5 is the discussion and presentation of the research shortcomings and future research directions; Section 6 is the conclusion.



2 Research hypotheses

The theoretical framework of sustainable livelihoods proposed by Scoones (1998) and the Department for International Development (DFID, 1999) provides a good analytical tool for understanding and analyzing how crop specialization affects farmers’ livelihoods. As suggested by sustainable livelihood theory, household livelihood outcomes are affected by household livelihood capital and livelihood strategies. This research argues that the agricultural production strategy of crop specialization will exert a direct or indirect impact on the dietary diversity of farmers’ livelihood outcomes, particularly for small farmers whose major livelihood is crop production and management. Moreover, the Agricultural and Rural Development Notes of World Bank claimed that the production of food crops for direct household consumption is the major way in which agricultural production activities influence farmers’ dietary diversity (Hawkes and Ruel, 2008), as farmers mainly eat crops directly produced by themselves (Lourme-Ruiz et al., 2016). Nevertheless, limited by the given resource endowments (labor, land, etc.), farmers can only conduct a limited range of production activities. In this way, when farmers specialize in the production and operation of one or several crops, it will have a “crowding-out effect” on the input of other crops, leading to a decline in the category of food produced by farmers for direct family consumption. This indicates that the absence of a diversified agricultural production system will reduce farmers’ dietary diversity (Sibhatu et al., 2015), and on the contrary, the rise in crop specialization extent will improve this diversity.

Furthermore, the Agricultural and Rural Development Notes of World Bank also suggested another way that agricultural production activities influence farmers’ household diversity, namely, the income drawn from selling agricultural products influences the purchase of family food (Hawkes and Ruel, 2008), but only if crop specialization can bring about more economic benefits for farmers (Sekabira and Nalunga, 2020; Habtemariam et al., 2021). Consequently, it remains a question whether crop specialization can improve farmers’ income. Based on the analytical framework of emerging classical economics (Yang and Ng, 1993; Schultz, 1993; Yang, 2000), the specialized development level of farmers’ crop production is divided into three phases: self-sufficiency, partial specialization, and complete specialization.

As shown in Figure 1 (where n represents the number of crops grown, F denotes an individual farmer), it is assumed that there are only four farmers who are both producers and consumers in the economic system, Each farmer chooses to grow four crops (to simplify the analysis, this paper does not consider agriculture production seasonality and multiple cropping issues) and, has a diversified consumption tendency to consume these four crops. In the self-sufficiency state of Figure 1a, each farmer consumes only the four crops he or she produces. At this time, the level of production specialization of each farmer is very low, there is no market in the whole society, farmers do not trade with each other, the family is in a closed-type small-scale peasant economy of “men farming and women weaving,” falling into the “low-level equilibrium trap.” According to emerging classical economics (Yang and Ng, 1993; Schultz, 1993; Yang, 2000), a low level of specialization corresponds to a low level of productivity and income. Under the partial specialization state manifested in Figures 1b,c, the number of crops grown by each farmer changed from 4 to 3 or 2. At this time, the level of production specialization of farmers has been lifted, the agricultural product trade market has grown from nothing, and the agricultural productivity of farmers and the income level of planting have been improved to a certain extent. In the state of complete specialization in Figure 1d, each farmer only grows one crop with a comparative advantage, and the production specialization of each farmer, the degree of marketization of the society, and the degree of economic integration have been dramatically enhanced. This is the same case for farmers’ agricultural productivity and planting income level, which have also increased. Thus, with the rising of the crop specialization extent, farmers will acquire higher income to purchase diverse food from the agricultural product market. Through this process, a “substitution effect” can be generated for the food given up by farmers due to specialized production, thereby continuing to maintain and improve the intake of diverse nutrients in the family.

[image: Diagram illustrating four stages of specialization in a network of four entities labeled "F." Stage (a) shows self-sufficiency with isolated circles, stage (b) shows partial specialization with pairs connected by dashed lines, stage (c) further connects the network, and stage (d) demonstrates complete specialization with all entities interconnected by dashed and solid lines. The stages are labeled with decreasing values of n from four to one.]

FIGURE 1
 The evolution of the level of crop specialization.


From the above exploration of the “crowding-out effect” and the “substitution effect” of crop specialization on the number of food categories consumed by farmers, this paper makes the hypotheses below:


H1: The influence of crop specialization on farmers’ dietary diversity is not certain.

H2: Crop specialization can exert an indirect impact on farmers’ dietary diversity by improving farmers’ income.
 

In addition, since heterogeneity is common in social science research, even if different individual units in the same population have certain commonalities, there are still significant differences in their specific characteristics (Sun and Chen, 2019). Especially in the context of the continuous widening of development gaps between regions and groups in China, there are bound to be disparities in the livelihood capital or livelihood background of different groups within farmers, leading to the heterogeneous influence of crop specialization on the dietary diversity of different households. As pointed out by Sibhatu and Qaim (2018) and Habtemariam et al. (2021), the relationship between crop production and dietary diversity are mixed and context-specific. So, what factors are causing the difference in results? We believe that education and market are two important factors. Theoretically, increased education is expected to have an enhanced dietary knowledge and shape the food consumption habits of the households (Abokyi et al., 2023). Also, more educated households are more likely to use the internet and other sources such as mobile phones, and other communication methods to access more and relevant nutrition and health knowledge that could guide their food choices and consumptions (Hou et al., 2021). The market is another factor that can play an important role for farm households who act as both sellers and buyers of food and other agricultural commodities (Koppmair et al., 2017). On the one hand, increased market access and involvement in market activities enable smallholder farmers to sell a portion of their harvested crops and use the proceeds to acquire more diverse food (Hawkes and Ruel, 2008). On the other hand, residents who reside near markets have easier access to a wider variety of foods throughout the year (Morrissey et al., 2024), thereby regulating or altering the intensity of the impact of crop specialization on household dietary diversity. Therefore, this paper proposes the following hypothesis:


H3: There is significant heterogeneity in the effect of crop specialization on the dietary diversity of different households.

H4: Education and market accessibility have moderating effect on the relationship between crop specialization and dietary diversity, which can alter the intensity of the impact of crop specialization on dietary diversity.
 

To sum up, the conceptual framework for the relationship between crop specialization and farmers’ dietary diversity can be represented in Figure 2. This conceptual framework strictly complies with the core viewpoints of the theoretical framework of sustainable livelihoods and points out the directness, indirectness, and heterogeneity of the impact of farmers’ adoption of crop-specialized production strategies on household dietary diversity in the context of the transformation of agricultural production methods.

[image: Flowchart illustrating the relationship between livelihood background, capital, strategy, and outcome. It shows how livelihood capital (human, natural, financial, physical, and social) influences specialized crop production, moderated by farmer heterogeneity, education, and market. Specialized production has both crowding-out and substitution effects on farmers' dietary diversity, linked through income.]

FIGURE 2
 The conceptual framework for the association between crop specialization and dietary diversity.




3 Materials and methods


3.1 Data

This paper uses the rural household micro-survey data collected by HRST from 56 counties and cities in Hubei Province in 2016. Previous research has introduced the acquisition, contents, and management of this data (Chen and Ravallion, 1996), and used the data to analyze farmers’ nutritional intake (Sun et al., 2022). In this survey, stratified random sampling method and daily bookkeeping method were utilized to collect data. When selecting farmers, 1–7 villages in each county and 8–12 households in each village were selected. In 2016, a total of 2,564 households were investigated, and a wide range of data indicators were collected. Compared with other database, this survey data could address the “seasonal deviation” issue caused by the cyclical characteristics of agricultural production (Sibhatu and Qaim, 2017), and it could better address the “recall bias” issue that potentially exists when applying the 24-h retrospective approach or the food frequency approach to gather data.

The survey is based on the sampling method of the national population census, which includes all households in the sample box. However, the main purpose of this paper is to explore the impact of farmers’ livelihood strategies on their household livelihood outcomes, that is, the impact of crop specialization on household dietary diversity (Figure 2). For farmers who are no longer engaged in crop production, there is no relationship between their family dietary diversity and crop specialization. Therefore, in order to accurately identify the net effect and mechanism of crop specialization on household dietary diversity, this paper classifies farmers into four categories [Pure agricultural households, I part-time households, II part-time households, and Non-agricultural households refer to households where the proportion of income from the primary industry in their net income is (80%, 100%], (50%, 80%], (20%,50%], and [0,20%], respectively] based on the classification method adopted by the Ministry of Agriculture and Rural Affairs of China, firstly, Non-agricultural households in the database are excluded, followed by the exclusion of households where crop production income accounts for <50% of the household’s primary industry income. After multiple rounds of screening, 866 valid observation samples are finally obtained for this paper. In addition, we also illustrate the selection of the research sample through Figure 3.

[image: Diagram illustrating types of households. The largest circle represents all households totaling two thousand five hundred sixty-four. Inside, part-time households are divided into Type I and Type II. Pure agricultural households include farming, forestry, animal husbandry, and fishery. Non-agricultural households are also shown. Subset for pure agricultural households shows eight hundred sixty-six households.]

FIGURE 3
 Selection of research sample.


According to the survey caliber of HRST, the types of crops planted by farmers included fall into 19 categories: wheat, rice, corn, sorghum, other grains, sweet potatoes, potatoes, other tubers, soybeans, other legumes, cotton, vegetables, melons and fruits, sugar crops, peanut, sesame, rapeseed, sunflower, and other oil crops. Table 1 shows the crop planting types and sown area of the sample farmers. In terms of the crop planting types of the sample farmers, the farmers who choose to grow vegetables are the most, accounting for 83.49% of the total number of sample farmers, followed by rice, rapeseed, corn, wheat, and other crops. Regarding the per capita crop sown area of the sample farmers, the per capita sown area of rice, wheat, corn, and other crops is larger, which are 0.81, 0.58, and 0.40 hectares, respectively, accounting for 53.73, 29.67, and 27.86% of the total sown area of household crops. For the vegetables that farmers generally plant, their per capita planting area and proportion to the total planting area of household crops are 0.04 hectares and 6.19%, respectively, revealing that most farmers currently plant a small number of vegetables mainly for self-sufficiency.



TABLE 1 Crop planting types and sown area of sample farmers.
[image: Table detailing crop data including number of growers, proportion of total sample, planting area per household, proportion of sown area, and total sown area for various crops like wheat, rice, and corn. Rice has the highest proportion of the sample at 75.64% and the greatest total sown area at 529.68 hectares. Additional crops include sorghum, soybeans, and peanuts, each with varying statistics.]

HRST collects food data (including self-produced food for self-use and food purchased from the market) according to food categories and by way of bookkeeping. Among them, the food categories included in this paper mainly include 10 broad categories and 40 specific categories. Table 2 demonstrates the food consumption of the sample farmers throughout the year. It can be seen that grain crops are their main food source, and the average annual consumption of the households reaches 442.51Kg, taking up 39.23% of the total consumption. Concerning the total number of food categories consumed by the sample farmers, the average number of food categories consumed by the households per year is 21.29. Moreover, from the grouping situation, the variance of the categories of food consumed by farmers in various village terrain feature groups and production type groups is significant at the 1 and 5% levels, revealing significant differences in the number of food categories consumed by different groups within farmers. Specifically, the number of food categories consumed by farmers in mountainous area and I part-time households is below that of farmers in plains and hills, as well as pure agricultural households and II part-time households.



TABLE 2 Status of food consumed by sample farmers unit: kg, %.
[image: Table showing mean consumption values of various food categories across different village terrain features and production types. Columns include "All," "Plain," "Hills," "Mountains," "Var(0)," "Pure(0)," "I-PT(0)," "II-PT(0)," with variations denoted by asterisks indicating statistical significance. Categories include grains, oils, vegetables, meat, poultry, aquatic products, eggs, dairy, dried melons, and confectionery. Total number of food categories consumed is also listed.]



3.2 Model


3.2.1 Mediation effect model

According to the previous theoretical analysis and research hypothesis, and referring to the existing research of Argyropoulou (2016) and Habtemariam et al. (2021), this paper sets up the following measurement models to test the direct and mediating effects of crop specialization, farmers’ income and farmers’ dietary diversity:

[image: Equation labeled (1) showing: \( SI_i = \alpha_0 + \alpha_1 SPE_i + \alpha_2 HC_i + \alpha_3 NC_i + \alpha_4 PC_i + \alpha_5 FC_i + \alpha_6 SC_i + \mu_i \).]

[image: Mathematical equation showing a linear model: INC subscript i equals beta subscript 0 plus beta subscript 1 SPE subscript i plus beta subscript 2 HC subscript i plus beta subscript 3 NC subscript i plus beta subscript 4 PC subscript i plus beta subscript 5 FC subscript i plus beta subscript 6 SC subscript i plus epsilon subscript i, labeled as equation 2.]

[image: Equation representing a model: capital S capital I sub i equals gamma sub 0 plus gamma sub 1 capital S capital P capital E sub i plus gamma sub 2 capital I capital N capital C sub i plus gamma sub 3 capital H capital C sub i plus gamma sub 4 capital N capital C sub i plus gamma sub 5 capital P capital C sub i plus gamma sub 6 capital F capital C sub i plus gamma sub 7 capital S capital C sub i plus phi sub i. Equation 3.]

In Equations 1–3, [image: Mathematical expression showing "SPE" with a subscript "i".] is the crop specialization level of the [image: It seems there was no image uploaded. Please try uploading the image again, and I will be happy to help with the alt text.] farmer; [image: The image shows the mathematical notation "SI" with the subscript "i".], represent the dietary diversity and total household disposable income of the [image: Please upload the image or provide a URL so I can help create the appropriate alt text for it.] farmer; [image: Mathematical notation of "HC" with subscript "i".], [image: Mathematical expression with "NC" followed by a subscript "i".], [image: The image shows the expression "PC" with a subscript "i".], [image: Mathematical expression of the subscripted variable "FC" with subscript "i".], [image: Mathematical notation showing "S C" with subscript "i".]are the five major livelihood capitals, namely human capital, natural capital, physical capital, financial capital and social capital, which affect farmers’ livelihood results (referring to farmers’ dietary diversity in this article) in the DFID sustainable livelihood theoretical analysis framework; where, [image: Symbols showing "a subscript zero tilde a subscript six" in a mathematical notation, indicating a range or sequence from \( a_0 \) to \( a_6 \).], [image: Mathematical expression showing β subscript zero is approximately equal to β subscript six.], [image: The mathematical expression shows gamma zero approximately equal to gamma seven.] are the parameters to be estimated, respectively, [image: Lowercase Greek letter mu with a subscript lowercase letter i.], [image: Lowercase epsilon (\(\varepsilon\)) followed by subscript "i".] and [image: The image shows the Greek letter phi with a subscript i, denoted by the symbols \(\phi_i\).] are the random error terms of each model. Regarding the test method and judgment criteria of the mediation effect, this paper adopts the Causal Steps Approach proposed by Baron and Kenny (1986) and is widely used for analysis, and the specific analysis process will not be repeated here.

In the process of investigating the impact of crop specialization on farmers’ dietary diversity and its mechanism, the problem of data heteroscedasticity is the primary measurement problem. In order to overcome the estimation bias caused by using traditional Ordinary Least Squares (OLS) in the presence of heteroscedasticity, according to the suggestion of Reed and Ye (2011), Feasible Generalized Least Squares (FGLS) was used to estimate the above benchmark model. This method can allow the existence of heteroscedasticity and autocorrelation in the data, which is very suitable for the analysis of farmer household micro-survey data.



3.2.2 Moderation effect model

In order to test whether education and market can moderate the impact of crop specialization on farmers’ dietary diversity, this paper constructs the following moderation effect model by adding interaction terms between education and crop specialization, and market and crop specialization based on Equation 1:

[image: Equation showing a statistical model: \(SI_i = \vartheta_0 + \vartheta_1 SPE_i + \vartheta_2 EDU_i \times SPE_i + \vartheta_3 EDU_i + \sum_{k=1}^{j} \vartheta_{4k} Controls_{ki} + \omega_i\). Labeled as equation 4.]

[image: Mathematical formula labeled as equation five, expressing \( SI_i = \delta_0 + \delta_1 SPE_i + \delta_2 MAR_i \times SPE_i + \delta_3 MAR_i + \sum_{k=1}^{j} \delta_{4k} Controls_{ki} + \sigma_i \).]

In Equations 4, 5, [image: Mathematical expression depicting "E D U" with the subscript "i".] and [image: Italicized text displaying "MAR" with the subscript "i".] are the education level and market accessibility of the [image: It seems there was an issue with uploading the image. Please try again by ensuring the file is attached, or provide a URL. You can also add a caption for context if needed.] farmer, respectively. The meaning of [image: Mathematical notation showing "SPE" with subscript "i".] is same as Equation 1, and [image: "Controls" in italicized font with the subscript "ki".] includes the five major livelihood capital in Equation 1. [image: Mathematical expression showing script G subscript zero is similar to script G subscript four k.] and [image: δ subscript 0 is asymptotically equivalent to δ subscript 4k.] are the parameters to be estimated, and [image: Lowercase Greek letter omega with a subscript lowercase letter i, often used in mathematical and scientific contexts.] and [image: The image shows the Greek letter sigma with a subscript "i," commonly used in mathematics to denote a specific element or component of a set or sequence.] are the random error terms of each model. [image: Equation showing \( EDU_i \times SPE_i \).] is the interaction term between education and crop specialization, and [image: The formula displays "M A R sub i times S P E sub i".] is the interaction term between market and crop specialization. If the parameters to be estimated for these interaction terms are statistically significant, it indicates the presence of a moderating effect. The estimation method for the aforementioned model remains FGLS.



3.2.3 Unconditional quantile regression model

Both OLS estimation and FGLS estimation are conditional mean regression, which describe only the average influences among variables, and cannot deeply analyze the heterogeneity influence of crop specialization on farmers with different dietary diversity levels. In order to solve this problem, this paper further uses the Unconditional Quantile Regression (UQR) model proposed by Firpo et al. (2009) to comprehensively investigate the effect of crop specialization on the [image: Greek letter tau in italic font.] quantile of the [image: Italicized letters "SI".] unconditional distribution of household dietary diversity under virtual location Shift. UQR assumes that each influencing factor [image: A mathematical expression featuring the capital letter X in bold, indicating a variable or an unknown quantity, commonly used in algebraic equations or functions.] including crop specialization (that is, all independent variable in Equation 1) is exogenous, and the basic definition is as follows:

[image: The image shows a mathematical expression labeled as equation (6). It represents UQR of tau as the integral of the partial derivative with respect to X of the expected value of the RIF function, given variables Q sub tau, SI, and F sub SI, over X. The expression is then integrated with respect to dF sub X.]

In Equation 6, [image: The image shows the mathematical expression "RIF(Q subscript τ, SI, F subscript SI)".] is the recentralization influence function corresponding to the [image: Greek letter tau in italics.] quantile of [image: The image shows the mathematical expression "F" with the subscript "SI" in italics, likely representing a force or other scientific parameter specific to the SI (International System of Units).] and [image: Mathematical notation showing a capital letter Q with a subscript letter t.] represents the unconditional quantile of the level of dietary diversity of farmers.




3.3 Variable


3.3.1 Dependent variable

Farmers’ dietary diversification is the dependent variable. Referring to the approach of Min et al. (2019), the Shannon Index (SI) was used as a variable to measure dietary diversity at the household level. According to the definition, assuming that the total number of food types (including self-produced and purchased food) evenly consumed by household [image: It looks like the image was not uploaded correctly. Please try uploading the image again, and I will be happy to help with the alternate text.] is [image: The letter "N" is shown in a stylized serif font.], then the Shannon index of household [image: It seems there is no image attached. Please upload the image or provide a URL, and I can help create the appropriate alt text for it.] is:

[image: Mathematical formula for the Shannon Index: \(SI_i = -\sum_{n_i=1}^{N_i} [(share_{n_i}) \ln(share_{n_i})]\). Equation labeled as seven.]

In Equation 7, [image: Mathematical expression with the term "share" followed by a subscript "n" and a comma.]([image: \( n_i \in [1, N_i] \)]) represents the proportion of the consumption of the nth food category to the total food consumption of farmer [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if available. If you want, you can also add a caption for additional context.] in the whole year, and its logarithm is [image: Natural logarithm of underscore i, parenthesis around share underscore n subscript i, close parenthesis.], in which the larger the[image: The image shows the mathematical notation "S sub i" in italic font, often used to represent a sequence or set element in equations.], the richer and more diverse the farmers’ diets, and the higher the level of dietary diversity.



3.3.2 Independent variable

Crop specialization is the independent variable. Currently, the academic community utilizes the Herfindahl Index (HI) to reflect agricultural specialization or diversification (Mofya-Mukuka and Hichaambwa, 2018; Chinnadurai et al., 2016). The HIi uses the square sum of the proportion of the sown area [image: Mathematical notation showing the symbol "S" with a subscript "n".] of each crop in farmer [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will help create the alt text for you.] to the total sown area [image: Summation notation showing the sum from \( n = 1 \) to \( N_i \) of \( S_n \).] to express the level of crop specialization (see Equation 8). The value range of [image: Mathematical expression showing "H" followed by the subscript "i".] is between 0 and 1, and the smaller the value, the lower the level of crop specialization; otherwise, the greater the value. If the value of [image: The image shows the mathematical notation \( HI_i \), with the subscript \( i \) indicating an indexed variable or element of a set.] is 1, it means that the farmer only grows one type of crop.

[image: Mathematical formula for heterogeneity index (HI) is shown. HI subscript i equals the sum from n equals one to N subscript i of the square of S subscript n divided by the sum from n equals one to N subscript i of S subscript n, equation number eight.]



3.3.3 Mediating variable

The farmer’s income is the mediating variable, and it may be collected directly from the farmer’s household survey data. It should be emphasized that the income of farmers includes cash income (before deducting production expenses), total income (before deducting production costs), and disposable income, according to the statistical standards of the HRST’s rural survey team. Among these, disposable income, also known as net income, can better reflect farmers’ living standards and consuming ability. As a result, the statistical quality of disposable income is used as a mediating variable in this work.



3.3.4 Moderating variables

Education and market are the moderating variables in this paper. Among them, education is measured by the education level of the household head. Although the education level of the mother might be a better indicator (Abokyi et al., 2023), research has also demonstrated that the educational level of the household head similarly exerts a significant influence on household livelihood strategies and outcomes (Vo, 2024). Market is proxied by the distance from home to the nearest market, and it is unquestionable that a shorter distance to the market facilitates easier access to a more diverse array of foods, thereby promoting dietary diversity (Nandi et al., 2021; Kihiu and Kydd, 2021).



3.3.5 Control variables

According to the analytical framework of DFID sustainable livelihood theory, this study uses the five major livelihood capitals of farmers as other control variables that affect dietary diversity in farmers’ livelihood outcomes. Referring to the practice of existing research (Gu et al., 2016), this paper selects indicators such as the size of the permanent resident population to represent the human capital status of the farmer, and the quantity of household durable goods and the type of toilets to represent the physical capital. The total area of farmland actually operated represents natural capital, and the status of household deposits and loans, as well as gift expenditures such as family weddings and funerals, represent the financial capital and social capital owned by farmers. The description and descriptive statistics of all variables are shown in Table 3.



TABLE 3 Definitions and descriptive statistics of variables.
[image: Table detailing variable definitions for a study with columns for Variable, Variable Definitions, Mean, Standard Deviation, Minimum, and Maximum. Categories include Dependent, Independent, Mediating, Moderating, and Other Control Variables. Key entries include dietary diversity, crop specialization, farmer's income, and education level. Values are expressed in numerical form, with descriptions of how variables are calculated or categorized.]





4 Results


4.1 Baseline regression

Using Stata17.0 software, the estimation results of the benchmark model are presented in Table 4. During the estimation process, regression 1 in Table 4 only examines the marginal impact of the crop specialization level, the core independent variable on farmers’ dietary diversity and regression 2 involves other control variables. Evidently, the estimated coefficients of the sample farmers all reach a significant negative level. This means that the crop specialization of the sample farmers significantly adversely affects farmers’ dietary diversity. In other words, the greater the extent of farmers’ crop specialization, the smaller the extent of farmers’ dietary diversity, which echoes relevant research (Jones et al., 2014; Tobin et al., 2019). Regression 3–5 reported the estimation results of farmers’ dietary diversity at the low quantile (Q25), the middle quantile (Q50), and the high quantile (Q75) under the unconditional quantile regression, respectively. It is clear that except for the high quantile (Q75), crop specialization has a significant negative effect on farmers’ dietary diversity at both the low quantile (Q25) and the middle quantile (Q50). Moreover, the absolute value of the estimated coefficient is larger at the low quantile (Q25), suggesting the more prominent adverse influence of crop specialization on farmers with low levels of dietary diversity. That is, from the perspective of dietary diversity, crop specialization is a production decision detrimental to farmers with low dietary diversity levels.



TABLE 4 Estimated results of the impact of crop specialization on farmers’ dietary diversity.
[image: Table displaying regression analysis results with variables like crop specialization, population size, and others across five models: FGLS, Q₂₅, Q₅₀, Q₇₅, and VIF. Significance levels are denoted by asterisks, and standard errors are in parentheses. VIF values suggest no multicollinearity issues.]

As for other control variables, farmland size had a significant positive impact on the dietary diversity of farmers at the 1% statistical level in both FGLS mean regression and UQR. Clearly, the larger the farmland management area of farmers, the higher the level of farmers’ dietary diversity, indicating that large-scale land management is indeed a vital way to enhance farmers’ dietary diversity. The livelihood capital variables such as population size and toilet type are only significant in the FGLS mean regression or the low (Q25) and middle quantiles (Q50), and the impact on farmers in the high quantiles (Q75) is not statistically significant. For farmers with a higher level of dietary diversity, their dietary diversity is no longer affected by the above-mentioned changes in livelihood capital.



4.2 Robustness testing and endogeneity treatment

In order to ensure the robustness of the above estimation results, this part adopts the method of replacing the core independent variable, the dependent variable and the estimation model to test. Specifically, referring to existing research, the maximization index (MI) was used to replace the HI to measure the level of crop specialization as the core independent variable; adopt a classification method for the dependent variable, and replace the household dietary diversity with a dichotomous variable with a mean boundary (a value greater than or equal to the mean is set to 1, and a value less than the mean is set to 0), and the Probit model is selected to estimate it according to the processing method of the dependent variable. Table 5 reports the results of the robustness test of the substitution variables and model.



TABLE 5 Robustness test results.
[image: A table displaying statistical results for six different models: FGLS, Probit, Marginal effect, Q25, Q50, and Q75. The variables listed are Crop specialization, Control variables, and Constant. Crop specialization coefficients range from -0.0903 to -0.1617, with varying significance levels. Controlled variables are noted as "controlled". The Constant varies from -0.1350 to 1.2009 with significance levels. Prob values are given for F (0.0000) and chi-squared (0.0000). R-squared values range from 0.0364 to 0.0901. Numbers in parentheses are standard errors. Significance is indicated at 10, 5, and 1 percent levels.]

The estimation results of Table 5 regression 1, which only replaces the HI, show that the coefficient value of the MI is consistent with the benchmark model estimation results in terms of sign and significance, indicating that crop specialization does have a negative impact on farmers’ dietary diversity. Regression 2 simultaneously replaces crop specialization, household food diversity, and regression models, and it should be pointed out that the coefficient values directly estimated by the probit model do not have economic meanings in the usual regression sense, such as OLS or FGLS. Therefore, referring to the practice of previous studies (Greene, 2018), regression 3 gives the marginal effect value transformed by the Probit model [regression result (2)], and the results show that after replacing variables and models, crop specialization also had a negative impact on farmers’ dietary diversity at a significant level of 5%. The estimation results (4–6) of the UQR also showed that, in addition to the high quantile (Q75), crop specialization has a significant negative effect on farmers’ dietary diversity at both the low quantile (Q25) and the middle quantile (Q50), and the absolute value of the estimated coefficient is larger at the low quantile (Q25). To sum up, it can be seen that the estimation results of the benchmark model will not change with the changes of the independent variable, the measurement methods of the dependent variable, and the model, indicating that the main conclusions above are robust to a certain extent.

In addition, it is undeniable that endogeneity is an important measurement issue that cannot be ignored in empirical research. Generally speaking, the sources of endogeneity mainly include three aspects: measurement error, omitted variables and simultaneous causality. This article uses HRST’s micro-survey data of farmer households. The basic data of this survey comes from survey households’ bookkeeping and survey personnel’s household visits. At the end of each quarter, the investigators will code, enter and review the sample information, accounting data and questionnaire data of the surveyed households, which effectively avoids measurement errors during the data collection process, and the data quality is high; moreover, the results of the robustness test show that the measurement method of replacing the core independent variable and the dependent variable will still not affect the main conclusions of the benchmark regression part, so this part can eliminate the measurement error type endogeneity problem.

For the endogeneity problem caused by omitted variables and simultaneous causality, this paper uses the bounding argument method (Oster, 2019) and simultaneous equation method (Wang, 2016) to test, and the results are shown in Table 6. Among them, the test results of omitted variables show that the [image: It seems you're trying to describe a specific image with a mathematical symbol (rho, ρ). However, I need the actual image file or a detailed description to create precise alt text. Please upload the image or provide more details.]-value of the ratio between the selection of non-observable variables and the selection of observable variables is −7.4048, and its absolute value is >1. According to the suggestions put forward by Oster (2019), it can be considered that the model in this paper does not have endogeneity problems caused by missing variables. The results of the simultaneous causality test show that the coefficient of the residual value [image: The image shows the lowercase Greek letter tau with a prime symbol.] is significant at the 1% level. According to the test criteria of the simultaneous equation method, it is shown that crop specialization and diet diversity are causality to each other, that is, the model in this paper has the endogeneity problem caused by the simultaneous causality.



TABLE 6 Endogeneity test results.
[image: Table showing results of two endogeneity tests. The first test is for omitted variables with an estimator \( \rho \), resulting in \(-7.4048\). The second test for simultaneous causality uses estimators \( \hat{\gamma} \) and \( \hat{\tau} \), resulting in \(1.0000^{***}\) and \( (0.0001) \). Significance at 1% level noted; numbers in parentheses are standard errors.]

In order to overcome the estimation bias caused by endogenous, the two-stage least squares method (IV-2SLS) and generalized quantile regression method (IV-GQR) with the introduction of instrumental variables were used to estimate the benchmark model. This paper selected the aggregation data —crop specialization index at village level— as an instrumental variable. It is one of the most common ideas to use instrumental variables from regional agglomeration data to solve endogenous problems (Porter, 2024). Before using instrumental variable analysis, the effectiveness of village-level crop specialization of instrumental variable should be tested, including underidentification test and weak instrumental variable test. The test results are shown in Table 7 (lower part). According to the validity criteria of instrumental variables, there is no problem of unrecognizable and weak instrumental variables in the selected instrumental variables. Table 7 (upper part) reports the estimated results of IV-2SLS and IV-GQR. It can be observed that after overcoming the endogeneity problem, the estimated coefficient values of crop specialization are always statistically significant and negative on mean regression (FGLS or IV-2SLS), low quantile regression (Q25), and middle quantile regression (Q50), which suggests that crop specialization does have a negative impact on dietary diversity.



TABLE 7 Endogenous test results: IV-2SLS and IV-GQR estimates.
[image: Table displaying regression results with variables: crop specialization, control variables, and constants. Columns: IV-2SLS, Q25, Q50, Q75. Key figures: crop specialization coefficients (-0.1377 to -0.0612), constant coefficients (1.7563 to 1.9184), and R-squared value (0.0435). Diagnostic tests indicate under and weak identification with Kleibergen-Paap rk LM and Robust F statistics. Significance is marked at 10%, 5%, and 1% levels.]



4.3 Heterogeneity analyses based on grouping of farmers

The above confirms that crop specialization has a significant negative impact on dietary diversity, especially for low quantile farmers. In the context of the continuous expansion of development imbalance between regions and groups in China, further analysis of the impact of crop specialization on the dietary diversity of different groups within farmers has important reference value for the government to formulate targeted policy measures. Therefore, this part adopts the grouping estimation method to compare and analyze the farmers according to the production type (including pure agricultural households, I part-time households, II part-time households, and non-agricultural households), and village terrain features (including plains, hills, and mountainous areas). It should be noted that, since the differential impact of crop specialization is only judged by simply comparing the estimated value of the coefficient and its significance level between different farmer groups, and lack of statistical test support, on the basis of grouping estimation, the method of Seemingly Uncorrelated Model Testing (SUEST) model was used to test the difference of regression coefficients. The results of group estimation and coefficient difference test are shown in Table 8.



TABLE 8 Estimated results of farmers’ grouping.
[image: Table comparing crop specialization and control variables across different production types and village terrain features. It includes test results for comparison groups in a coefficient difference test (SUEST model), with significance indicated at 10%, 5%, and 1% levels. Standard errors are in parentheses, empirical p-values in square brackets.]

The regressions 1–3 in Table 8 show the estimated results grouped by farmers’ production types. The results show that crop specialization has a significant negative impact on I part-time households and II part-time households at the statistical level of 5 and 1%, respectively, but the effect on pure agricultural households is not significant. As far as the absolute value of the estimated coefficient is concerned, the absolute value of the estimated coefficient of the II part-time households group is larger. From the test results of the coefficient difference between groups, the group difference between II part-time households and pure agricultural households passed the 5% statistical test, which indicates that crop specialization has a stronger negative effect on the dietary diversity of II part-time farmers than the pure agricultural household group.

In this paper, dietary diversity is measured based on the dietary status of the resident population in the household. For II part-time households, also known as non-agricultural part-time households, the resident population of the family is the left-behind population (mainly including left-behind women, children, and the elderly), whose are relatively disadvantaged groups arising from the rapid development of China’s new urbanization and industrialization (Min et al., 2019). One possible reason for the greater negative impact of crop specialization on their dietary diversity is that, compared with pure agricultural households, the education level (including nutritional knowledge) of the resident population such as women, children and the elderly in II part-time households is not high. Education changes the intensity of the impact of crop specialization on dietary diversity, that is, education plays a moderating effect in it. Of course, further testing is needed to verify whether education does indeed have a moderating effect.

Regression 4–6 gives the estimation results grouped by village terrain features. It can be seen that the estimation coefficient in mountainous areas is significant at the level of 1%, and the absolute value is also the largest. At the same time, from the results of inter-group coefficient difference test, mountains and plain, mountain and hills all passed the statistical test, which indicates that crop specialization has different effects on the dietary diversity of farmers with different village terrain features, and the negative impact on mountainous areas is the largest. A possible reason is that markets play a moderating role. The typical feature of mountainous areas is that the transportation is not convenient enough, the marketization level of agricultural products is not high, and the distance from home to market is also far, which makes it difficult for farmers in mountainous areas to conveniently obtain various kinds of food through the market. As a result, mountain farmers cannot buffer or mitigate the negative impact of crop specialization on dietary diversity through the market as effectively as those in plain and hills areas. Similarly, whether the market has a moderating effect still requires further examination.



4.4 Mechanism analyses

After identifying the causal relationship between crop specialization and dietary diversity, as well as the heterogeneity of its impact, in order to further clarify the complex relationship and underlying mechanisms between the two, we will next test the mediating effect of income and the moderating effects of education and market based on the model established in Part Three. Firstly, the Causal steps approach was used to test whether the income of farmers played a mediating role in the impact of crop specialization on their dietary diversity. The results are shown in Table 9 (the upper part), and the regression results (1–2) in Table 4 need to be discussed together in the analysis process.



TABLE 9 The results of the mediation effect test of farmers’ income.
[image: A table presents analysis results using causal steps and bootstrap methods. It includes three models: (1) and (2) with Y = Income, (3) with Y = Dietary Diversity. Crop specialization impacts income positively when controlled. Dietary diversity is affected negatively by crop specialization and positively by income. The bootstrap method reveals direct and indirect effects, with confidence intervals shown. Significance is at 10, 5, and 1 percent levels, with standard errors in parentheses.]

First of all, without considering the mediating variable, it can be seen from the regression results (1–2) in Table 4 that the regression coefficient [image: The Greek letter alpha with a subscript one, displayed in a mathematical format.] of crop specialization is statistically significant whether or not the control variable is added, so it can be transferred to the follow-up test. Then, the Equations 2, 3 are estimated and the coefficients [image: Lowercase Greek letter beta with subscript one.] and [image: A mathematical expression showing the Greek letter gamma with a subscript of two.] are tested in turn, and the regression results (1–2) in Table 9 are the estimation of the Equation 2. The results show that the regression coefficient [image: Greek letter beta subscript one, often used in statistical or mathematical contexts to represent a coefficient or parameter.] of crop specialization is significantly positive at the 1% level whether or not the control variable is added, indicating that crop specialization has a significant positive impact on farmers’ in9667come. The regression result (3) in Table 9 is an estimation of Equation 3, indicating that [image: A mathematical expression featuring the Greek letter gamma (γ) with the subscript two.] is still significantly positive at the 1% level, so the complete mediation effect test can be carried out at this time. According to the judgment criterion of mediating effect, the regression coefficient [image: The Greek letter gamma with a subscript 1 in a mathematical or scientific context.] of crop specialization in regression result (3) is significantly positive at the level of 1%, indicating that farmers’ income has played a partial mediating effect in the impact of crop specialization on farmers’ dietary diversity. The sign of [image: Beta subscript one asterisk gamma subscript two.] is opposite to that of [image: Greek letter gamma subscript one, written in a serif font.], so the mediating effect of farmers’ income here is a masking effect, that is, farmers’ income can alleviate the negative impact of crop specialization on farmers’ dietary diversity through indirect effects.

In addition, although the Causal steps approach is the most popular analytical method to test the mediation effect, in recent years, it has also been criticized and questioned more and more for rationality and validity. Some scholars even called for the application of the nonparametric Bootstrap method with higher test potency instead of the Causal steps approach. Therefore, in order to ensure the reliability of the results of the mediation effect test, the nonparametric Bootstrap method was further used to test the masking effect of farmers’ income. According to the different ways of estimating confidence intervals, the nonparametric Bootstrap method can be divided into the nonparametric percentile Bootstrap method and the bias-corrected nonparametric percentile Bootstrap method. In this section, the number of repeated sampling is set to 5,000 times, the confidence interval is 95%, the estimation results of the nonparametric percentile Bootstrap method and the bias-corrected nonparametric percentile Bootstrap method are shown in Table 9 (lower part). It can be seen that no matter which confidence interval estimation method is adopted, the confidence intervals of the direct effect, indirect effect (i.e., masking effect) and the ratio of indirect effect to direct effect do not contain 0. Therefore, it can be concluded that farmers’ income plays a masking effect on the negative impact of crop specialization on farmers’ dietary diversity, that is, it alleviates the negative impact of crop specialization on farmers’ dietary diversity. From the specific value of the point estimate, it can be seen that the masking effect of farmers’ income accounts for 25.10% of the direct effect.

According to the testing method of moderation effects, this section incorporates the interaction terms between education level and crop specialization, as well as between market accessibility and crop specialization, into the regression model. The test results are shown in Table 10. As can be observed, the estimated coefficients of both interaction terms are significant at the 5% level and positive, indicating that there is a positive moderating effect between education level and market accessibility. In other words, improving education level and market accessibility can reduce the negative impact of crop specialization on dietary diversity, and vice versa. This result also supports the research hypothesis 3 proposed in this paper, as well as the explanation in the heterogeneity analysis section that crop specialization has a greater negative impact on both II part-time households and mountainous households.



TABLE 10 The results of the moderating effect test of education and market.
[image: Table showing regression results with variables: (Education level) × (Crop specialization), and (Market accessibility) × (Crop specialization). Column (1) shows coefficients 0.0484 with standard error 0.0246, and 1.7870 with standard error 0.0437. Column (2) shows coefficients 0.0471 with standard error 0.0196, and 1.7648 with standard error 0.0429. R² values are 0.0419 for (1) and 0.0478 for (2). Significance levels noted at five percent and one percent.]




5 Discussion

Admittedly, the relationship between crop specialization or diversity and dietary diversity is mixed and context-specific (Sibhatu and Qaim, 2018; Habtemariam et al., 2021), and a few studies found that crop specialization is a livelihood strategy that is beneficial for improving farmers’ dietary diversity (Argyropoulou, 2016; Chinnadurai et al., 2016). However, this paper uses data from Chinese farmers demonstrates that crop specialization reduces farmers’ dietary diversity, which is consistent with other studies using survey data from developing countries (Ecker, 2018; Sekabira and Nalunga, 2020; Isbell et al., 2024; Morrissey et al., 2024).

With the development of socialization and marketization of agricultural production in China, agricultural households are inevitably involved in a highly open and specialized division of labor system, and the trend of farmers getting rid of the traditional “small-scale and diversified” production mode and entering the development track of modern agriculture cannot be reversed. It is no longer realistic to maintain or increase the level of crop diversification. Therefore, in order to ensure the food security of farmers and achieve the development goal of “Zero Hunger” of the United Nations, what we should do is to ascertain, as much as possible, which groups will suffer greater negative impacts from crop specialization, and what the potential mechanisms of crop specialization affecting dietary diversity are, so that governments can implement more targeted interventions.

Through the heterogeneity analysis, we found that crop specialization would have a greater negative impact on II part-time households and mountainous households. Among them, most of the permanent residents of II part-time households are left-behind women, children and the elderly, and most of the rural farmers in mountainous areas are in a relatively poor state. They are all vulnerable groups in China, so more and more people begin to pay attention to the food safety and health problems of such groups (Min et al., 2019; Wang et al., 2024). After all, if the health of all people cannot be guaranteed, comprehensive prosperity is impossible. Through further mechanism analysis, it was found that income has a mediating effect on the impact of crop specialization on dietary diversity, which is consistent with the basic viewpoint of classical economics that higher specialization leads to higher production efficiency and income (Yang and Ng, 1993; Schultz, 1993; Yang, 2000), and higher income enables farmers to purchase a wider variety of foods (Hawkes and Ruel, 2008; Abokyi et al., 2023), thus masking the negative effects of crop diversification on household dietary diversity.

Education and the market have a moderating effect on the impact of crop specialization on dietary diversity. Although some studies suggest that there is no correlation between the market and dietary diversity (Jones, 2017; Curtin et al., 2024), more scholars have found that both education and market not only enhance farmers’ subjective willingness to consume diversified foods (Hou et al., 2021; Abokyi et al., 2023; Sato et al., 2024), but also provide them with the objective convenience to do so (Koppmair et al., 2017; Morrissey et al., 2024), thereby reducing the negative impact of crop specialization on dietary diversity.

It should be noted that there are some limitations in this paper. First of all, due to the limitation of data, this paper only uses the survey data of Hubei Province, China, and the scope of investigation should be expanded in the future research. However, it is undeniable that Hubei Province is a typical agricultural province in China (Sun et al., 2022), with a total area of 185,900 square kilometers and a total population of 58.38 million, with plains, hills and mountains accounting for 20, 24 and 56% of the total area, respectively. In 2023, the tertiary industrial structure of Hubei Province was 9.1:36.2:54.7, which was generally in line with the national industrial structure (7.1:38.3:54.6). Additionally, the urbanization rate was 65.47%, which was also basically consistent with the national average level (66.16%). The aforementioned characteristics of Hubei Province render the principal findings of this study of significant reference value for other regions of China.

Furthermore, although this paper analyzes the mechanism of income, education and market between crop specialization and dietary diversity at both theoretical and empirical levels, this is only a preliminary exploration. Consequently, further questions need to be addressed. For instance, what is the effect of income generated through crop specialization on dietary diversity? Are the education levels of household heads and market accessibility the most appropriate indicators for representing education and market? What other potential mechanisms, beyond those already discussed, may influence the relationship between crop specialization and dietary diversity? These are also directions for our future research and discussion.



6 Conclusion

Dietary diversity is an important indicator used to measure family dietary quality and food safety status (Jones et al., 2014; Tchuente et al., 2024). In the context of the transformation of China’s agricultural production model from “small-scale and diversified” to specialization, this paper systematically studies the complex relationship between crop specialization and dietary diversity from both theoretical and empirical aspects based on the micro-survey data of farmers collected by HRST in 56 counties and urban areas. It was found that crop specialization had a significant negative effect on dietary diversity, especially on II part-time households and mountainous households. Further mechanism analysis shows that income has mediating effect, education and market has moderating effect, which could mask or reduce the negative effects of crop specialization in the process of affecting diet diversity.

In the reality that the trend of production specialization is irreversible, government intervention measures can be carried out from three aspects to ensure the dietary diversity and food safety of rural households, especially II part-time households and mountainous households. Firstly, by implementing the rural household income doubling plan, we can broaden their sources of income and enable farmers to have sufficient purchasing power to buy a diverse range of foods. Secondly, improve the education level of rural households. For the left-behind women and the elderly who are responsible for cooking in II part-time households, informal education channels such as television and short videos on mobile phones can also be used to promote dietary nutrition knowledge and guide them to establish diverse dietary habits. Thirdly, improve market access conditions. It is necessary to optimize the spatial layout of rural agricultural markets and supermarket outlets, especially in mountainous regions, and enhance transportation conditions between farmers and these outlets. This will enable all farmers to conveniently purchase various types of food needed for their households, thereby reducing the negative effects of crop specialization.
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The distribution of rural settlements is a complex outcome of human adaptation to natural conditions and socioeconomic development throughout history. Scientifically revealing the spatially varying relationships between the distribution of rural settlements and the related factors is fundamental for effective planning and management. In this study, we focus on the North China Plain to analyze the spatially varying relationships between the distribution of rural settlements and the related factors using both traditional statistical and geographically weighted regression models. Our findings reveal that both the number and the area of rural settlements at the county level are increasing from north to south and from west to east. The results of the traditional regression model suggest that total area, total population, road density, precipitation, road length, slope, longitude, and temperature significantly influence the rural settlement area, while those influencing the number of rural settlements are longitude, latitude, road length, road density, river length, and river density. Moreover, the regression coefficients are constant in the global model, while both the magnitude and the sign of the corresponding parameters in the local model are spatially varying. However, the value of the coefficients in the global model are within the range of the coefficients in the local model and most coefficients in the local model share the same sign with that the global model. Our results also reveal that the local model outperforms the global model with the same explanatory variables, indicating a smaller Akaike’s information criterion (AIC) and a reduced Moran’s I in model residual. Finally, this study also highlights the importance of the cautious and scientific interpretation of the varying relationships, especially when the unexpected results are obtained.
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Introduction

China has experienced unprecedented urbanization (Chen et al., 2019; Seto et al., 2011). However, there are still 4.77 million people living in rural areas, accounting for 33.84% of the national population in 2023. In addition, due to the rapid urbanization, the landscape and function of rural settlements in China have changed dramatically (Chen et al., 2024; Gong et al., 2022; Ma et al., 2019; Qu et al., 2021; Tian et al., 2014; Zhu et al., 2014; Zhu et al., 2020), leading to many problems (Ye and Chuai, 2023), one of which is the loss of high-quality farmland (Dong et al., 2016; Li and Song, 2019; Lin et al., 2023; Ma et al., 2024; Su et al., 2011). Such changes also threaten sustainable development in China. While most of the research is focused on the urban areas, the issues affecting rural settlements have long been neglected comparatively (de la Fuente et al., 2024; Li and Song, 2023; Su et al., 2011; Tian et al., 2007).

A few studies investigating the spatial pattern of the rural settlements are mainly conducted on a small scale (Chen et al., 2024; Jia et al., 2020; Ma et al., 2022). Taking Daxing district of Beijing as an example, Tan and Li (2013) studied the changing pattern of rural settlements. Xi et al. (2015) explored the spatial morphology evolution of rural settlements induced by tourism using three villages in the Yesanpo tourism area. Tian et al. (2014) classified the rural settlement land dynamic modes of Beijing into edge-expansion, dispersion, and urban encroachment. Chen and Ye (2014) compared the differences in pattern and driving forces between urban and rural settlements in the coastal region of Ningbo in China. Furthermore, other researchers have focused on the hollowed villages, optimization of rural settlements, spatial reconstruction of rural settlements, and rural transformation development (Bi and Yang, 2023; Kong et al., 2021; Qu et al., 2021; Rao et al., 2023; Yin et al., 2023; Zhao et al., 2019).

A few other studies analyzed the driving factors of rural settlements, mainly using a qualitative method or from a global perspective (Chen et al., 2022; Li et al., 2023; Li et al., 2020; Ran et al., 2024). Yang et al. (2019) reveal the spatial patterns of rural settlements: road traffic accessibility and geographic factors in Guangdong Province, China. Tan and Li (2013) discussed the underlying influences of the evolution of rural settlements qualitatively. Zhou et al. (2013) provided a theoretical analysis of the factors influencing the evolution of rural settlements. Long et al. (2009) gave an account of the driving forces of change in rural settlements from the peasants’ perspective. Song and Li (2020) studied the spatial pattern evolution of rural settlements from 1961 to 2030 in Tongzhou District, China. Li et al. (2015) analyzed the driving forces of the changing per capita rural housing land using spatial regression models. Tan et al. (2023) analyzed the driving forces of rural settlements in the Northwest Sichuan Plateau using the Geodetector.

Although these studies are helpful and enhance our understanding of rural settlements, they are not sufficient. Especially the study of rural settlements at a larger scale and the study of the related driving forces from a local perspective is urgently needed.

Various methods, such as ordinary least squares, regression models, support vector machines, artificial neural networks, and cellular automata have been developed to investigate the land use change pattern (Gao and Li, 2011; Luo and Wei, 2009; Ma et al., 2024; Shafizadeh-Moghadam and Helbich, 2015; Song and Li, 2020). Among them, the traditional statistical models are the commonly used method to analyze the relationship between land use change and related driving forces. However, this is a kind of global model that only provides a group of parameter estimates representing the “average” level of driving forces by taking the study area as a whole. In contrast, geographically weighted regression (GWR) model, recently developed by Brunsdon et al. (1996) and Fotheringham et al. (2001), allows the spatial varying relationship by generating a group of coefficients for each locations. Moreover, several studies have reported that the GWR model outperforms the traditional statistical models and has the ability to reduce spatial autocorrelation in the model residual (Ivajnšič et al., 2014; Long et al., 2012; Rodrigues et al., 2014). Therefore, this model has been successfully introduced into many fields, such as water environment (Huang et al., 2015), air environment (Song et al., 2014), health (Kauhl et al., 2015), fire (Martínez-Fernández et al., 2013), ecology (Su et al., 2014), urban expansion (Guanglong et al., 2017; Luo and Wei, 2009; Shafizadeh-Moghadam and Helbich, 2015), and traffic (Hadayeghi et al., 2010; Li et al., 2013; Xu and Huang, 2015), and so on. However, to the best of our knowledge, there is no application of GWR model in the field of rural settlements.

North China Plain is the political, economic, cultural, and transport center, the most important grain-producing region and is highly populated (Tian et al., 2012). Both rural and urban settlements are widely spread and growing rapidly in this region (Tan et al., 2005; Tian et al., 2014). The proportion of the rural settlement areas in North China Plain within the national rural settlement area reaches up to 31.44% (Tian et al., 2007). Thus, the conflict between farmland protection and settlement expansion is severe. The distribution of rural settlements occurs as a result of human intelligence and survival of the fittest in natural selection. It reflects not only the land use and change, but also the livelihoods, lifestyles, and culture of the rural population. Thus, the distribution of rural settlements is fundamental to understanding the relationship between human beings and their environments (Tian et al., 2012). Moreover, it can also provide a reference for planning and management. Accordingly, studying the distribution of rural settlements of the North China Plain using GWR is of great value.

In this study, with the North China Plain as the study area, we attempt to model the relationship between the area, the number of rural settlements, and related driving forces using both traditional statistic and geographically weighted regression models at the county level. The following questions will be addressed: (1) what is the spatial distribution pattern of rural settlements in the North China Plain? (2) What are the main influences of the distribution of rural settlements? (3) Is the role of driving forces a constant for the entire study? (4) Does the local model outperform the global model?



Materials and methods


Study area

The North China Plain is located in the east of China, roughly between 32°and 40°N and 114°and 121E (Figure 1). It spans seven provinces and cities, including Beijing, Tianjin, Hebei, Shandong, Shanxi, Henan, Anhui, and Jiangsu, covering an area of 0.23 million km2. It is a flat terrain, with the highest elevation below 50 m. It lies in the warm temperate zone, with changing four seasons. The southern part is in the subtropical transition zone. The mean annual temperature ranges between 8°C and 15°C, and annual rainfall varies between 500 mm and 900 mm. Both temperature and rainfall increase on going from north to south. Due to its favorable terrain conditions and abundant natural resources, this region has always been the political, economic, and cultural center of China. Beijing, the capital of China, is located at the north of the North China Plain. Despite rapid urbanization since reforms, many rural areas remain widely distributed. The North China Plain has the highest density of rural settlements and the largest percentage of rural settlements in China (Tian et al., 2007). Furthermore, the rural settlement of the North China Plain accounts for 31.44% of the national rural settlements (Tian et al., 2007).

[image: Map of northern China highlighting Hebei Province in gray, surrounded by Shanxi, Shandong, Henan, Anhui, Jiangsu provinces, and the cities of Beijing and Tianjin. The Bohai Sea is to the northeast. Borders and regions are clearly marked with a scale indicating distances.]

FIGURE 1
 Location of the study area.




Data source and pre-processing


Rural settlement data

The data on the rural settlements were interpreted using Landsat 8 images with 30 m resolution, which were collected in 2020 from the United States Geological Survey (USGS),1 considering the cloud cover and vegetation phenology.



Influencing factor data

Given the data accessibility, comparable to previous studies, and the actual situation of the North China Plain, 14 potential factors influencing the spatial distribution of rural settlement at the county level and covering physical, socioeconomic, and accessibility were selected (Table 1).



TABLE 1 The potential influencing factors of rural settlement distribution.
[image: Table categorizing variables into three groups: Physical, Socioeconomic, and Accessibility. Physical variables include digital elevation model, slope, temperature, and precipitation. Socioeconomic variables cover urbanization, rural population density, income, and GDP per area. Accessibility variables list distances to national, provincial, and county roads. Descriptions indicate measurement of mean values across rural settlements. GDP1, GDP2, and GDP3 represent output values for primary, secondary, and tertiary industries, respectively.]

The selected potential physical factors include elevation, slope, temperature, precipitation. The DEM data set with a resolution of 90 m was obtained from the resource and environmental science data platform, Chinese Academy of Sciences.2 The slope image was generated from the DEM data set. The meteorological data were sourced from the China meteorological data network.3 We obtained the related raster surface of the North China Plain by using Inverse distance weighting (IDW) interpolation. To get the mean value of potential influences at county level, we first extracted the values corresponding to each rural settlement site from related raster surfaces, and then the mean value at the county level was calculated using the points that fall inside each county.

The socioeconomic data were collected from China Statistical Yearbook for Regional Economy, China County Statistical Yearbook, China City Statistical Yearbook, Hebei Economic Yearbook, Shandong Statistical Yearbook, Henan Statistical Yearbook, Anhui Statistical Yearbook, and Jiangsu Statistical Yearbook, and it included total population, rural population, rural per capita net income, the output value of primary (GDP1), secondary (GDP2), and tertiary (GDP3) industries for each county in 2020. Furthermore, the urbanization rate, the density of rural population, rural per capita net income, GDP per area, GDP1 per area, GDP2 per area, and GDP3 per area for each county were calculated. Finally, they were converted into spatial data by linking them to the corresponding county administrative divisions in ArcGIS 10.5.

The accessibility data represent the mean value of the distance to the national road, provincial road, and county road of all rural settlements within each county. The road map was obtained from the China electric map. Additionally, the administrative zoning map of China at the county level was provided by the Data Sharing Infrastructure of Earth System Science.4





Methods


The interpretation of rural settlement

The process of the interpretation of rural settlements mainly include three steps: remote sensing image cropping, the interpretation of image, and the revision of the preliminary interpretation results. First, the study area was divided into different parts with appropriate sizes according to the available part of the corresponding image. The availability was determined based on cloud-free conditions and the obvious differences between rural settlements and other classes. Then, the available part of the corresponding image was extracted using ENVI 5.1 for later use.

During the second step, the process of interpretation based on eCognition developer 8.9 mainly includes two parts: segmentation and classification. After several repeated attempts, the scale parameter of multiresolution segmentation is set to 125–130. The nearest neighbor algorithm is used to take the mean value of each sample as the feature space of the corresponding class. Finally, when the function of classification is run, we obtain the preliminary results of interpretation.

The third step is the artificial visual modification, which is the most time-consuming stage. The fundamental principle in this modification is revising the preliminary results of interpretation according to the corresponding image. It mainly consists of three aspects. First is the adding the rural settlement that was not identified in the preliminary results of interpretation but that which exists on the image. The second step involves deleting the rural settlements that were provided in the preliminary results of interpretation but that which do not exist on the image. Third, the scope of some settlements may be not be accurate, which need to be further reshaped according to the image.



Spatial regression

In this study, we investigated the spatial relationship between the amount and area of rural settlements and related factors at the county level. Considering the types of variables, both multiple liner regression and Poisson regression analyses were employed. Furthermore, they were carried out from both the global and local perspectives.

Before performing the regression analysis, all the independent variables were standardized (Dong et al., 2016). Pearson’s correlation coefficient was employed to confirm that the potential linear relationships existed between the dependent variable and corresponding independent variables. Stepwise regression was utilized to select the most important predictors at a significance level of [image: Greek letter alpha equals zero point zero five.] and specify a useful regression model (Kauhl et al., 2015; Zhen et al., 2013).



Global model


Multiple linear regression

The total area of rural settlements is a continuous variable. Then, the multiple linear regression technique is applied, which can be described as follows Equation 1:

[image: Mathematical equation displaying a multiple linear regression formula: y equals beta subscript zero plus the summation from i equals zero to n of beta subscript n times x subscript n, plus epsilon.]

Where y is the estimated value of the dependent variable. [image: The Greek letter beta (β) with a subscript zero (₀).] represents the intercept, and [image: Lowercase Greek letter beta with a subscript n.] is the regression coefficient of the independent variable [image: Mathematical expression showing the variable \( x \) with subscript \( n \).]. [image: Lowercase Greek letter epsilon, a mathematical symbol, rendered in italics.] denotes the random error term.



Poisson regression

The number of rural settlements is a countable variable and Poisson regression Equation 2 may be the appropriate model for determining it (Wei et al., 2024):

[image: Natural logarithm of y equals beta sub zero plus the summation from i equals zero to k of beta sub k times x sub k. Equation two.]

Where ln(y) is the natural log of the number of rural settlements for each county. [image: Greek letter beta subscript zero, often used in mathematics and statistics to represent a constant or intercept term in regression models.] is a constant, and [image: Greek letter beta with subscript k.] is the regression coefficient of the independent variable [image: Mathematical expression showing a lowercase variable "x" with a subscript "k".].

However, the regression coefficient of independent variables is assumed to be constant across space in these two global models. Furthermore, the spatial effects (spatial autocorrelation and heterogeneity) of the dependent variables may make the results of regression models less reliable (Shafizadeh-Moghadam and Helbich, 2015; Zhen et al., 2013). Therefore, the corresponding local model, geographically weighted regression and geographically weighted Poisson regression, can serve as a supplement to the regression and may be more efficient.




Local model


Geographically weighted regression

Geographically weighted regression is used to model continuous responses such as the area of rural settlements for each county in this study. GWR can be expressed as follows Equation 3 (Zhou and Lu, 2023):

[image: Equation representing a statistical model: \( y_i = \beta_0(u_i, v_i) + \sum_{j=1}^{k} \beta_j(u_i, v_i)x_{ij} + \varepsilon_i \). This expresses \( y_i \) as a function of parameters \(\beta_0\) and \(\beta_j\), variables \(x_{ij}\), and error \(\varepsilon_i\).]

Where [image: Mathematical expression showing a pair of variables, \( (u_i, v_i) \).] denotes the coordinate location of the ith point; [image: The mathematical expression \( \beta_0(u_i, v_i) \).] is the intercept at location i; [image: Mathematical expression: beta sub j of u sub i and v sub i, indicated as \(\beta_j(u_i, v_i)\).] is the local estimated coefficient for [image: Mathematical expression displaying the variable \( x \) with subscripts \( i \) and \( j \).]; and [image: A lowercase Greek letter epsilon with a subscript lowercase letter i, commonly used in mathematical or statistical formulas to represent a small value or error term associated with the i-th observation.] is the random error term.



Geographically weighted Poisson regression

Geographically weighted Poisson regression is used to locally predict the count variables such as the number of rural settlements for each county in this study. GWPR can be written as Equation 4 (Zhen et al., 2013):

[image: The image shows a mathematical equation: ln(yi) = β0(ui, vi) + Σ (from j=1 to k) βj(ui, vi) xij + εi.]

Where [image: Beta sub j of the function in terms of u sub i and v sub i.] is the regression coefficient for predictor [image: Mathematical notation displaying \(x_{ij}\) with subscript ij.] at location [image: Mathematical expression of a coordinate pair in parentheses, labeled with "u sub i" and "v sub i".].

The local model extends the corresponding global model by generating a local regression equation with a group of coefficients for each observation. The local coefficient is calculated based on the continuous function for the location [image: The image shows the mathematical notation for a pair of variables in parentheses, labeled as \( u_i, v_i \).]. The closer the specific location, the higher the weight will be and vice versa.

The fixed Gaussian and adaptive bi-square kernel functions are commonly used to determine how many nearest-neighbor observations are taken into consideration per local regression. The fixed kernel function applies an optimal spatial kernel (bandwidth) over the space, while the adaptive kernel function ensures a certain number of nearest neighbors as local samples (Fotheringham et al., 2003; Luo and Wei, 2009). The adaptive bandwidth is appealing especially when the distribution of the data point is heterogeneous (Fotheringham et al., 2003; Shafizadeh-Moghadam and Helbich, 2015). Thus, the adaptive bi-square kernel function Equation 5 is applied in this study as follows:

[image: The image shows an equation for a weight function \(w_{ij}\). It has two cases: \(w_{ij} = \left(1 - \frac{d_{ij}^2}{\theta_i(k)}\right)^2\) for \(d_{ij} < \theta_i(k)\), and \(w_{ij} = 0\) for \(d_{ij} > \theta_i(k)\). Equation number (5) is noted on the right.]

Where i is the regression point index; j is the locational index; [image: The image shows the mathematical notation "w" with subscripts "i" and "j", typically representing a weight in a matrix or network context.] is the weight value of observation at location j for estimating the coefficient at location i. [image: Italic lowercase "d" followed by subscript "ij".] is the Euclidean distance between i and j; [image: It seems there was an error in displaying the image. Please try uploading the image again or provide a URL.] is a fixed bandwidth size defined by a distance metric measure; [image: The image shows a mathematical expression: theta sub i, of k, enclosed in parentheses.] is an adaptive bandwidth size defined as the k th nearest neighbor distance.

The selection of optimal bandwidth is based on the Akaike’s information criterion (AIC). Moreover, it can also be used to select the optimal model. A smaller AIC value is preferred.





Results


Spatial distribution of rural settlements

The total number and density of rural settlements in the study area is 144,941 and 0.51/km2, respectively, covering an area of 26,214.23 km2, accounting for 10.30% of the North China Plain. The spatial distribution of rural settlements shows a clear spatial agglomeration feature, especially the density (Figure 2). The density of rural settlements within each county ranges from 0/km2 to 1.11/km2, decreasing from the south to the north. Specifically, it is shaped like a ring with Henan–Anhui border as the high-value center in the south of the North China Plain; it increases from west to east with its value ranging from 0.29/km2 to 0.81/km2 in the middle part; its low-value center looks like a horizontal “Y” around the Circum–Bohai Sea region. Similarly, the maximum percentage of rural settlements within a county is 17.81% found in the south of the North China Plain, and the minimum is located in the north of the study area. In addition, the rural settlements with <8.92% of the country are concentrated in the northeast of the North China Plain.

[image: Two side-by-side maps depict rural settlement density and percentage. The left map shows density in shades from blue (low) to red (high). The right map displays percent coverage with the same color scheme. A north arrow and scale bar are included.]

FIGURE 2
 Spatial distribution of the density and percentage of rural settlement at the county level.




Results of Pearson’s correlation analysis

The Pearson’s correlation coefficients between the density of rural settlements and 15 standardized independent variables show that all variables except DEM and GDP1 have a significant correlation (Table 2). Only slope and the distance to provincial road show a significant correlation at the 0.05 level, while others are significant at the 0.01 level. The distance to county road, GDP, GDP2, GDP3, urbanization, and income have a negative correlation with the dependent variable, while others show a positive correlation.



TABLE 2 Pearson’s correlation coefficients between the density of rural settlement and explanatory variables.
[image: Table showing Pearson's correlation coefficients (R) between various explanatory variables and an outcome. Significant correlations at the 0.01 and 0.05 levels are marked. Variables such as Temperature (0.625**) and Precipitation (0.682**) show strong positive correlations, while Urbanization (-0.172*) and Income (-0.366**) have negative correlations.]

Pearson’s correlation coefficients between the number of rural settlements within each county and 15 potential independent variables are shown in Table 3. Similar results were found, and all independent variables except the distance to national road and distance to provincial road have a significant correlation with the dependent variable. In addition to the distance to county road and slope at the level of significance of 0.05, other factors were significant at the level of 0.01. In addition, the distance to county road, slope, GDP, GDP2, GDP3, urbanization, and income show a negative effect.



TABLE 3 Pearson’s correlation coefficients between the percentage of rural settlement and explanatory variables.
[image: Table showing Pearson's correlation coefficients (R) between various explanatory variables and a dependent variable. Significant correlations at the 0.01 level are marked with two asterisks, and at the 0.05 level with one asterisk. Key variables include D_rpop (0.525**), Slope (-0.142*), Temperature (0.310**), Precipitation (0.302**), and GDP (-0.356**).]

Based on the results of Pearson’s correlation, factors that pass the significance test are the potential factors for the area and number of rural settlements and will be used in the stepwise regression for exploratory analysis.



Results of the global models

Multiple linear regression analysis was performed using a stepwise method, and the results are shown in Tables 4, 5. Only precipitation, GDP2 per area, income, and distance to county road enter the regression model for the density of rural settlements. In the regression equation, only precipitation has a positive coefficient, while others show a negative sign. In the final regression model for the number of rural settlements, the density of rural population, GDP2 per area, precipitation, and distance to county road act as the independent variables. Negative signs are observed for GDP2 per area and distance to county road. Furthermore, the Variance inflation factor of the two models all below 10 indicates that multicollinearity does not pose a problem. The R2 value of multiple linear regression for the density and number of rural settlements is 0.56 and 0.40, respectively, indicating that the models perform well.



TABLE 4 Results of global multiple linear regression for the density of rural settlements.
[image: Table displaying regression analysis results with explanatory variables, their coefficients, and VIF values. Variables: Intercept (0.00, VIF not applicable), Precipitation (0.583, VIF 1.20), D_GDP2 (−0.191, VIF 1.27), Income (−0.190, VIF 1.38), D_croad (−0.134, VIF 1.21). R-squared is 0.56.]



TABLE 5 Results of global multiple linear regression for the percentage of rural settlements.
[image: Table showing regression analysis results. Explanatory variables include Intercept, D_rpop, D_GDP2, Precipitation, and D_croad. Coefficients are 6.03, 0.472, -0.286, 0.145, and -0.112, respectively. VIF values are 1.04, 1.05, 1.17, and 1.14 for D_rpop, D_GDP2, Precipitation, and D_croad. R² is 0.40.]



Results of local models

The local models were performed using the same data set with the corresponding final global models. The optimal bandwidth is 22 and 18 for GWR and GWPR, respectively. The GWPR model calculates an additional global Poisson regression model, which can be compared to the results of the global multiple linear regression model and the local Poisson regression model (Kauhl et al., 2015). The results of the Poisson regression model are similar to those of the corresponding multiple linear regression model (Tables 5, 6).



TABLE 6 Results of global Poisson regression for the number of rural settlements.
[image: Table showing explanatory variables and their coefficients. Intercept: 6.12, Road density: -0.49, Latitude: -0.34, Road length: 0.33, River length: 0.10, Longitude: 0.04, River density: -0.11. AIC value: 16049.66. AIC is the Akaike's information criterion.]



Descriptive statistics of coefficients

In contrast to the constant coefficients in global model, both the magnitude and sign of the coefficients in the local model show a spatial variation (Table 7). In the GWR model, only the minimum coefficient of total population and total area is negative, but other statistics for coefficients of these predictors are positive. Most coefficients of precipitation and road length are positive, as evident from the positive median, upper quartile, and maximum of coefficients. The upper quartile and maximum of longitude, temperature, slope, and road density are positive; however, most coefficients of these predictors are negative according to the negative median, lower quartile, and minimum.



TABLE 7 Descriptive statistics of coefficients in the local models.
[image: Table comparing GWR and GWPR models with predictors like total area, longitude, precipitation, and more. Columns include minimum, lower quartile, median, upper quartile, and maximum values. The data shows variation in statistical measures for each predictor.]

In the GWPR model, only the minimum coefficient of road length is negative, while other statistics are positive. On the contrary, the maximum coefficient of road density is the only positive variable, while other statistics are negative. The minimum and lower quartile coefficients of longitude and river length are <0, but the median, upper quartile, and maximum coefficients are positive. The minimum, lower quartile, and median of the latitude and river density are negative, while the upper quartile and maximum is positive.

Comparing the coefficients of the local and global models (Tables 4–7), it can be found that the coefficients of the global model fall into the range of coefficients of the local model. Furthermore, it is worth noting that the sign of the median of the coefficients in local models is the same as the sign of corresponding coefficients in the global models. In other words, despite the coefficients of the local model showing both negative and positive effects simultaneously, they did follow a similar tendency of signs in the corresponding global models.



Spatial distribution of coefficients

The spatial distribution of coefficients of the GWR model is shown in Figure 3. It is detected that all coefficients have an obvious pattern of spatial heterogeneity. The coefficients of the total area ranges from −1.82 to 1.94. However, in large parts of the North China Plain, the total area shows an expected positive impact. In addition, the coefficients are relatively larger in the southern part than in the northern part, which matches with the spatial distribution of the total area (total area in Figures 3, 4). Both positive and negative effects are found in longitude. In the west, especially the southwest, it was dominated by the positive coefficients while the negative values are mainly concentrated in the east part, especially the southeast, which is similar to the distribution of longitude (Longitude of Figures 3, 4). Similarly, precipitation also indicates both positive and negative coefficients and their number is almost the same. In addition, the positive coefficients are mainly located in the south where the precipitation is relatively higher (Precipitation in Figures 3, 4). For temperature and slope, the negative and positive coefficients are crossed and distributed in the study area (Figure 3, temperature and slope). The coefficients of slope are relatively small compared to those of other influences, indicating it has a weaker impact on the distribution of the rural settlements. For total population, the expected positive value is widely spread in the study area with relatively large coefficients located in the north and middle part of the North China Plain, while the negative effect was only found in the north and some areas around the municipal district (Figure 3, Total population). It should be noted that the coefficients of total population range from −0.48 to 1.31, which is relatively small. The positive coefficients of road length also take a large proportion of the study area with the value decreasing from east to west, while the negative coefficients are mainly concentrated in the northwest part, where the road length is relatively small (road length in Figures 3, 4). On the contrary, the road density indicates a negative effect in most parts, while the positive values only occurred in the west and northeast (Figure 3, road density).

[image: Maps depicting various geographic and demographic attributes of a region: total area, longitude, precipitation, temperature, slope, total population, road length, and road density. Each map uses a gradient color scale to represent data ranges for the specific attribute. An arrow points north, and a scale bar shows distances in kilometers.]

FIGURE 3
 Coefficients of explanatory variables in GWR.


[image: Multiple thematic maps of a region display variations in geographical and demographic attributes using different shades. The maps depict total area, longitude, precipitation, temperature, slope, total population, road length, road density, river length, river density, and latitude. Each map uses shades from light to dark to indicate ranges in data values as specified in the legends. An arrow indicates north, and a scale represents distances in kilometers.]

FIGURE 4
 Distribution of the predictors.


Figure 5 presents the coefficient surfaces of the six factors used in the GWPR model. Similar to the results of GWR, the coefficients also vary across the study area. All the six factors show both negative and positive effects on the number of rural settlements. The coefficients of longitude show a difference between the west and east, which matches the distribution of longitude. The negative coefficients of longitude are located in the east of the North China Plain, while the west mainly has a positive value (Longitude in Figures 4, 5). In most parts, the coefficients of latitude is <0, while the positive value only occurs in three belts in the direction of west–east in the north, middle, and south of the study area (Figure 5, Latitude). The negative coefficients of the river length is mainly located in the southeast and northwest, while most parts show a positive value (Figure 5, River length). In the most parts of the North China Plain (201 counties), road length has a positive coefficient. In contrast, the coefficients of road density are negative in large parts of the study area. It worth noting that the area with a negative coefficient of road length and the area showing a positive value of road density have some spatial intersection (Figure 5, Road length and Road density). The minority of coefficients of river density is positive and mainly distributed in the south of the study area (Figure 5, River density).

[image: Six maps show spatial distributions of geographical and infrastructure metrics for a specific region. Metrics include longitude, latitude, river length, road length, river density, and road density. Each map uses a grayscale color gradient to represent varying values corresponding to the range provided in the legends. A north arrow indicates orientation, and a scale bar shows distance in kilometers.]

FIGURE 5
 Coefficients of explanatory variables in GWPR.




Comparisons between global and local models


Model performance

AIC is the frequently used criterion to evaluate the performance of models, and a lower AIC value is preferred (Fotheringham et al., 2001). The AIC values of global and local models for the number of rural settlements are 16049.66 and 1392.00, respectively. The corresponding results for the area of rural settlement are 235.04 and 3.81, respectively. Compared to the global models, the values of AIC from local models are much lower. All these results suggest that local models are superior in explaining the relationships between the area/number of rural settlements and related factors.



Spatial autocorrelations in model residuals

The global Moran’s I of model residual is calculated to explore the spatial autocorrelation of the residual. The Moran’s I of global Poisson and multiple linear regression models is 0.12 and 0.08, respectively, with the corresponding p-value of 0.09 and 0.24. It indicates that there is no significant spatial autocorrelation in the residual of the global model. By contrast, the results of the local model, geographically weighted Poisson regression and geographically weighted regression, show a smaller Moran’s I (−0.01 and 0.00) and a larger p-value (0.94 and 0.96), suggesting there is no problem of spatial autocorrelation in the residuals of the local model.





Discussion


Spatial pattern of rural settlements

The distribution of rural settlements in the North China Plain show obvious spatial characteristics, with both the number and area of the county decreasing from north to south and from east to west. However, this finding is inconsistent with the result of Tan and Li (2013) who reported that rural settlements were evenly distributed in rural areas in both 1970s and 2007. This can be because our study area is much larger. Our study area, the North China Plain, includes 201 counties, while Daxing district, which is only equal to one county in area, was the study area in Tian et al. (2012) study. Moreover, the results of Tian et al. (2012) support this viewpoint.

Accordingly, it can be concluded that rural settlements are evenly distributed in the local distribution due to the landform (mainly flat plains), historical tradition, and the agricultural land system (Ma et al., 2022; Tan and Li, 2013), while it shows an obvious spatial difference on a large scale owing to the natural conditions, customs, and house styles (Song and Li, 2020).



Influence of the spatial distribution of rural settlements

The results of Pearson’s correlation show that only elevation, GDP, and rural population have no significant relationship with the area and number of rural settlements. Besides, the rural per capita net income shows a negative correlation. The irrelevant correlation between elevation and the area of rural settlement is understandable given that the North China Plain is a flat terrain with no great difference in elevation. GDP also having no significant relationship is also comprehensible, because GDP may have a main impact only on urban expansion (Chen et al., 2019; Seto et al., 2011).

However, it is very interesting that rural population has no significant relationship with the distribution of rural settlements and that rural per capita net income has a negative correlation with the distribution of rural settlements, which is in disagreement with previous studies (Long et al., 2009; Yang et al., 2019; Yin et al., 2023). One reason may be that the rural settlement area was decoupled from the rural population (Dong et al., 2021; Zhu et al., 2020). Tian et al. (2014) also found that Beijing experienced a 33.6% increase in the rural settlement land and a 34.8% decline in its rural population. Another possible explanation is that the farmer’s income is no longer the limitation for building rural houses. The farmer’s income of China is very low and has been a limitation for building new houses for a long time in the past. And at that stage, they used to build a more comfortable or spacious house when they can afford it (Qu et al., 2021). However, China has undergone rapid development and entered a new growth stage, which has improved the farmer’s income significantly and no longer limits the development of the rural house. On the other hand, the majority of the next generation of farmers received good education in university or work in urban areas. And some of them would not return to rural areas. Thus, instead of building a new house in the rural area, they would save money for buying a house in the urban area. Last, but not the least, instead of rural residence land, other construction lands such as the industrial land has been the dominant component of rural settlement expansion (Kuang et al., 2016).



Interpretation of the spatially varying relationships

From the perspective of the magnitude of coefficients, the coefficients of the global model are constant within the range of the coefficients of the local model. It indicates that the global model only reflects the overall condition of the study area, while the local model provides more details for each location. It is in accordance with previous studies (Gao and Li, 2011; Guanglong et al., 2017; Li et al., 2013).

From the perspective of the sign of coefficients, different from the invariable sign of coefficient in the global model, both negative and positive signs are included in the local model simultaneously in this study. In addition, some signs of coefficients are counterintuitive or unexpected. However, it is not uncommon in GWR or GWPR models and are consistent with previous studies (Chow et al., 2006; Hadayeghi et al., 2010; Luo and Wei, 2009; Wheeler and Calder, 2007; Xu and Huang, 2015; Zhen et al., 2013). Despite the unexpected results, they may make sense when considering the physical truth of the study area in some case (Zhen et al., 2013), which is also the case for this study. For example, although it is expected that the total population has a positive impact on the distribution of rural settlements, total population with negative signs are also identified in the north of the study area and some areas around the municipal district. It was a bit of surprise, but it was because most of these counties with negative signs are close to the municipal district or of relatively high level of development, where the level of urbanization is relatively high and the development of rural settlements is under good control and management.

However, still several other possible explanations for this problem should be considered. First, the multicollinearity among some independent variables or the multicollinearity in local coefficients may be one possible reason. Although there is no problem with multicollinearity among the independent variables in the global model as indicated by their value of VIF < 10 in this study, there still may be multicollinearity among some independent variables in the local model (Hadayeghi et al., 2010; Xu and Huang, 2015). Besides, correlated local coefficients also could be a problem (Shariat-Mohaymany et al., 2015; Wheeler and Tiefelsdorf, 2005; Xu and Huang, 2015). The second possible reason is the significance of variables. Some variables may be less significant or even insignificant at all at some locations (Hadayeghi et al., 2010; Shariat-Mohaymany et al., 2015; Xu and Huang, 2015). Moreover, the missing or mis-specified explanatory variables in the model may also make some contribution to the unexpected signs (Hadayeghi et al., 2010; Shariat-Mohaymany et al., 2015). Finally, the bandwidth and the type of kernel function also have some influence on the range of the coefficients (Foody, 2003; Guanglong et al., 2017; Guo et al., 2008).

Consequently, the interpretation of the results of the local model should be done with caution and it is reasonable according to the reality of the study area, especially when counterintuitive signs are detected.



Advantages of the local model over the global model

In accordance with previous studies, our results also show that the local model, GWR, and GWPR, outperform the global model as evident by the lower AIC value (Guanglong et al., 2017; Luo and Wei, 2009; Zhen et al., 2013). Moreover, it does reduce the spatial autocorrelation in the model residual. However, we found that the local model helped reduce the spatial autocorrelation in residual even though there is no significant spatial autocorrelation problem in the global model. This result is a little different from previous studies (Gao and Li, 2011; Guo et al., 2008; Zhang et al., 2005; Zhen et al., 2013), which reported that the GWR model can reduce the spatial autocorrelations in residuals, especially while the significant spatial autocorrelation is found in the global model. Furthermore, our finding is inversed with Tu and Xia (2008) who found that the application of GWR may increase spatial autocorrelation if an ordinary least square (OLS) model does not have this problem.

Based on the shortcomings of the global model and the advantages of the local model, this article first reveals the driving factors of the spatial distribution of rural settlements from the global perspective, and then uncovers the spatial heterogeneity of the magnitude and direction of the driving factors from the local perspective. This is helpful to formulate different control measures for rural settlements according to the local conditions.

In addition, according to the basic principle of promoting rural revitalization by classification, the spatial heterogeneity of factors affecting the spatial distribution and evolution of rural settlements combined with the actual needs of China’s rural revitalization can be taken into account, and differentiated rural revitalization promotion strategies can be formulated by classification.




Conclusion

Scientifically revealing the spatially varying relationships between the distribution of rural settlements and related factors is fundamental for planning and management. The North China Plain is the main grain-producing region and a densely populated area in China. The contradiction between cultivated land protection and settlement expansion is prominent and severe. Thus, in this study, we investigated the spatial relationship between the distribution of rural settlement in the North China Plain and the related influences using geographically weighted regression.

The results show that the distribution of rural settlement in the North China Plain show an obvious spatial pattern, with both the number and the area of rural settlements at the county level increasing from north to south and from west to east. The results of the traditional regression model suggest that total area, total population, road density, precipitation, road length, slope, longitude and temperature are the significant factors influencing the total area, while those influencing the total number of rural settlements is longitude, latitude, road length, road density, river length, and river density. In addition, the coefficients of these influences are constant in the global model. However, both the magnitude and the sign of the corresponding parameters in the local model show a spatial variation. More interesting is that the value of the coefficients in global model fall into the range of the coefficients in the local model, and most coefficients in the local model share the same sign with those in the global model. This indicates that there is a significant spatial heterogeneity in the size and direction of the influencing factors. Therefore, the control measures of rural settlements with regional differences should be formulated according to local conditions.

Our results also reveal that the local model outperforms the global model with the same explanatory variables, as indicated by the smaller AIC value. Furthermore, the local model does help to reduce the spatial autocorrelation in model residual even when it is insignificant in the global model.

Although the local model has many advantages over the global model and can more efficiently reveal the spatially varying relationship, our results also highlight the importance of the cautious and scientific interpretation of the variations, especially when the unexpected results are obtained.



Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.



Author contributions

CY: Writing – original draft, Writing – review & editing. GD: Conceptualization, Funding acquisition, Supervision, Writing – review & editing. ZL: Conceptualization, Formal analysis, Supervision, Writing – review & editing.



Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This study was supported by Humanities and Social Science Foundation of the Ministry of Education (Grant no. 23YJCZH038), Shandong Province social science planning research project (Grant no. 24CGLJ32), Natural Science Foundation of Shandong Province (Grant no. ZR2023MD061), and National Natural Science Foundation of China (Grant no. 41801173).



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.



Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Footnotes

1   http://glovis.usgs.gov/

2   https://www.resdc.cn

3   http://data.cma.cn/

4   http://www.geodata.cn/main/



References
	 Bi, G. H., and Yang, Q. Y. (2023). The spatial production of rural settlements as rural homestays in the context of rural revitalization: evidence from a rural tourism experiment in a Chinese village. Land Use Policy 128:106600. doi: 10.1016/j.landusepol.2023.106600
	 Brunsdon, C., Fotheringham, A. S., and Charlton, M. (1996). Geographically weighted regression: a method for exploring spatial non-stationarity. Geogr. Anal. 28, 281–298. doi: 10.1111/j.1538-4632.1996.tb00936.x
	 Chen, M., Gong, Y., Lu, D., and Ye, C. (2019). Build a people-oriented urbanization: China’s new-type urbanization dream and Anhui model. Land Use Pol. 80, 1–9. doi: 10.1016/j.landusepol.2018.09.031
	 Chen, S., Mehmood, M. S., Liu, S. C., and Gao, Y. M. (2022). Spatial pattern and influencing factors of rural settlements in Qinba Mountains, Shaanxi Province, China. Sustainability 14:95. doi: 10.3390/su141610095
	 Chen, S., Wang, X. Y., Qiang, Y., and Lin, Q. (2024). Spatial-temporal evolution and land use transition of rural settlements in mountainous counties. Environ. Sci. Eur. 36:868. doi: 10.1186/s12302-024-00868-y
	 Chen, M., and Ye, C. (2014). Differences in pattern and driving forces between urban and rural settlements in the coastal region of Ningbo, China. Sustainability 6, 1848–1867. doi: 10.3390/su6041848
	 Chow, L.-F., Zhao, F., Liu, X., Li, M.-T., and Ubaka, I. (2006). Transit ridership model based on geographically weighted regression. Transp. Res. Rec. J. Board 1972, 105–114. doi: 10.1177/0361198106197200113
	 de la Fuente, J. L. M., Infante-Amate, J., and Travieso, E. (2024). Historical changes in Mediterranean rural settlements (southern Spain, 1787-2019). J. Rural. Stud. 106:103217. doi: 10.1016/j.jrurstud.2024.103217
	 Dong, G., Xu, E., and Zhang, H. (2016). Spatiotemporal variation of driving forces for settlement expansion in different types of counties. Sustain. For. 8:39. doi: 10.3390/su8010039
	 Dong, G., Zhang, W., Xu, X., and Jia, K. (2021). Multi-dimensional feature recognition and policy implications of rural human–land relationships in China. Land 10:1086. doi: 10.3390/land10101086
	 Foody, G. (2003). Geographical weighting as a further refinement to regression modelling: an example focused on the NDVI–rainfall relationship. Remote Sens. Environ. 88, 283–293. doi: 10.1016/j.rse.2003.08.004
	 Fotheringham, A. S., Brunsdon, C., and Charlton, M. (2003). Geographically weighted regression: The analysis of spatially varying relationships. New York, NY: John Wiley & Sons.
	 Fotheringham, A. S., Charlton, M. E., and Brunsdon, C. (2001). Spatial variations in school performance: a local analysis using geographically weighted regression. Geogr. Environ. Model. 5, 43–66. doi: 10.1080/13615930120032617
	 Gao, J., and Li, S. (2011). Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using geographically weighted regression. Appl. Geogr. 31, 292–302. doi: 10.1016/j.apgeog.2010.06.003
	 Gong, J. Z., Jian, Y. Q., Chen, W. L., Liu, Y. S., and Hu, Y. M. (2022). Transitions in rural settlements and implications for rural revitalization in Guangdong Province. J. Rural. Stud. 93, 359–366. doi: 10.1016/j.jrurstud.2019.10.037
	 Guanglong, D., Erqi, X., and Hongqi, Z. (2017). The analysis of spatiotemporal varying relationships between urban expansion and related factors using geographically weighted regression. Appl. Geograph. 8, 277–286.
	 Guo, L., Ma, Z., and Zhang, L. (2008). Comparison of bandwidth selection in application of geographically weighted regression: a case study. Can. J. For. Res. 38, 2526–2534. doi: 10.1139/X08-091
	 Hadayeghi, A., Shalaby, A. S., and Persaud, B. N. (2010). Development of planning level transportation safety tools using geographically weighted Poisson regression. Accid. Anal. Prev. 42, 676–688. doi: 10.1016/j.aap.2009.10.016 
	 Huang, J., Huang, Y., Pontius, R. G., and Zhang, Z. (2015). Geographically weighted regression to measure spatial variations in correlations between water pollution versus land use in a coastal watershed. Ocean Coastal Manage. 103, 14–24. doi: 10.1016/j.ocecoaman.2014.10.007
	 Ivajnšič, D., Kaligarič, M., and Žiberna, I. (2014). Geographically weighted regression of the urban heat island of a small city. Appl. Geogr. 53, 341–353. doi: 10.1016/j.apgeog.2014.07.001
	 Jia, K. Y., Qiao, W. F., Chai, Y. B., Feng, T., Wang, Y. H., and Ge, D. Z. (2020). Spatial distribution characteristics of rural settlements under diversified rural production functions: a case of Taizhou, China. Habitat Int. 102:102201. doi: 10.1016/j.habitatint.2020.102201
	 Kauhl, B., Heil, J., Hoebe, C. J., Schweikart, J., Krafft, T., and Dukers-Muijrers, N. H. (2015). The spatial distribution of hepatitis C virus infections and associated determinants—an application of a geographically weighted Poisson regression for evidence-based screening interventions in hotspots. PLoS One 10, 1–19. doi: 10.1371/journal.pone.0135656
	 Kong, X. S., Liu, D. F., Tian, Y. S., and Liu, Y. L. (2021). Multi-objective spatial reconstruction of rural settlements considering intervillage social connections. J. Rural. Stud. 84, 254–264. doi: 10.1016/j.jrurstud.2019.02.028
	 Kuang, W., Liu, J., Dong, J., Chi, W., and Zhang, C. (2016). The rapid and massive urban and industrial land expansions in China between 1990 and 2010: a CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 145, 21–33. doi: 10.1016/j.landurbplan.2015.10.001
	 Li, L., Li, X. J., Hai, B. B., Wang, X. F., and Xu, J. W. (2020). Evolution of rural settlement in an inland non-metropolitan region of China at a time of rapid urbanisation: the case of Gongyi. J. Rural. Stud. 79, 45–56. doi: 10.1016/j.jrurstud.2020.08.003
	 Li, T., Long, H., Liu, Y., and Tu, S. (2015). Multi-scale analysis of rural housing land transition under China’s rapid urbanization: the case of Bohai rim. Habitat Int. 48, 227–238. doi: 10.1016/j.habitatint.2015.04.002
	 Li, H. H., and Song, W. (2019). Expansion of rural settlements on high-quality arable land in Tongzhou District in Beijing, China. Sustainability 11:19. doi: 10.3390/su11195153
	 Li, J. F., and Song, W. (2023). Review of rural settlement research based on bibliometric analysis. Front. Environ. Sci. 10:1089438. doi: 10.3389/fenvs.2022.1089438
	 Li, K. M., Wang, M., Hou, W. B., Gao, F. Y., Xu, B. C., Zeng, J. J., et al. (2023). Spatial distribution and driving mechanisms of rural settlements in the Shiyang River basin, Western China. Sustainability 15:126. doi: 10.3390/su151612126
	 Li, Z., Wang, W., Liu, P., Bigham, J. M., and Ragland, D. R. (2013). Using geographically weighted Poisson regression for county-level crash modeling in California. Saf. Sci. 58, 89–97. doi: 10.1016/j.ssci.2013.04.005
	 Lin, F. F., Cheng, P., and Kong, X. S. (2023). Spatiotemporal interaction between rural settlements and cultivated land in karst mountainous area, China. Chin. Geographic. Sci. 33, 946–965. doi: 10.1007/s11769-023-1373-x
	 Long, H., Li, Y., Liu, Y., Woods, M., and Zou, J. (2012). Accelerated restructuring in rural China fueled by ‘increasing vs. decreasing balance’ land-use policy for dealing with hollowed villages. Land Use Pol. 29, 11–22. doi: 10.1016/j.landusepol.2011.04.003
	 Long, H., Liu, Y., Wu, X., and Dong, G. (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su–Xi–Chang region: implications for building a new countryside in coastal China. Land Use Policy 26, 322–333. doi: 10.1016/j.landusepol.2008.04.001
	 Luo, J., and Wei, Y. D. (2009). Modeling spatial variations of urban growth patterns in Chinese cities: the case of Nanjing. Landsc. Urban Plan. 91, 51–64. doi: 10.1016/j.landurbplan.2008.11.010
	 Ma, W. Q., Jiang, G. H., Li, W. Q., Zhou, T., and Zhang, R. J. (2019). Multifunctionality assessment of the land use system in rural residential areas: confronting land use supply with rural sustainability demand. J. Environ. Manag. 231, 73–85. doi: 10.1016/j.jenvman.2018.09.053 
	 Ma, L. B., Li, J. Y., Wang, X., Zhang, W. B., Tao, T. M., and Zhong, Y. (2024). Evolution and simulation optimization of rural settlements in urban-rural integration areas from a multi-gradient perspective: a case study of the Lan-Bai urban agglomeration in China. Habitat Int. 153:103203. doi: 10.1016/j.habitatint.2024.103203
	 Ma, L. B., Liu, S. C., Tao, T. M., Gong, M., and Bai, J. (2022). Spatial reconstruction of rural settlements based on livability and population flow. Habitat Int. 126:102614. doi: 10.1016/j.habitatint.2022.102614
	 Martínez-Fernández, J., Chuvieco, E., and Koutsias, N. (2013). Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Nat. Hazards Earth Syst. Sci. 13, 311–327. doi: 10.5194/nhess-13-311-2013
	 Qu, Y. B., Jiang, G. H., Ma, W. Q., and Li, Z. T. (2021). How does the rural settlement transition contribute to shaping sustainable rural development? Evidence from Shandong, China. J. Rural. Stud. 82, 279–293. doi: 10.1016/j.jrurstud.2021.01.027
	 Ran, D., Hu, Q. Y., and Zhang, Z. L. (2024). Spatial-temporal evolution, impact mechanisms, and reclamation potential of rural human settlements in China. Land 13:430. doi: 10.3390/land13040430
	 Rao, Y. F., Zou, Y. F., Yi, C. F., Luo, F., Song, Y., and Wu, P. Q. (2023). Optimization of rural settlements based on rural revitalization elements and rural residents’ social mobility: a case study of a township in western China. Habitat Int. 137:102851. doi: 10.1016/j.habitatint.2023.102851
	 Rodrigues, M., de la Riva, J., and Fotheringham, S. (2014). Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Appl. Geogr. 48, 52–63. doi: 10.1016/j.apgeog.2014.01.011
	 Seto, K. C., Fragkias, M., Güneralp, B., and Reilly, M. K. (2011). A meta-analysis of global urban land expansion. PLoS One 6, 1–9. doi: 10.1371/journal.pone.0023777
	 Shafizadeh-Moghadam, H., and Helbich, M. (2015). Spatiotemporal variability of urban growth factors: a global and local perspective on the megacity of Mumbai. Int. J. Appl. Earth Obs. Geoinf. 35, 187–198. doi: 10.1016/j.jag.2014.08.013
	 Shariat-Mohaymany, A., Shahri, M., Mirbagheri, B., and Matkan, A. A. (2015). Exploring spatial non-stationarity and varying relationships between crash data and related factors using geographically weighted Poisson regression. Trans. GIS 19, 321–337. doi: 10.1111/tgis.12107
	 Song, W., Jia, H., Huang, J., and Zhang, Y. (2014). A satellite-based geographically weighted regression model for regional PM 2.5 estimation over the Pearl River Delta region in China. Remote Sens. Environ. 154, 1–7. doi: 10.1016/j.rse.2014.08.008
	 Song, W., and Li, H. H. (2020). Spatial pattern evolution of rural settlements from 1961 to 2030 in Tongzhou District, China. Land Use Pol 99:105044. doi: 10.1016/j.landusepol.2020.105044
	 Su, S., Li, D., Xiao, R., and Zhang, Y. (2014). Spatially non-stationary response of ecosystem service value changes to urbanization in Shanghai, China. Ecol. Indic. 45, 332–339. doi: 10.1016/j.ecolind.2014.04.031
	 Su, S., Zhang, Q., Zhang, Z., Zhi, J., and Wu, J. (2011). Rural settlement expansion and paddy soil loss across an ex-urbanizing watershed in eastern coastal China during market transition. Reg. Environ. Chang. 11, 651–662. doi: 10.1007/s10113-010-0197-2
	 Tan, M., and Li, X. (2013). The changing settlements in rural areas under urban pressure in China: patterns, driving forces and policy implications. Landsc. Urban Plan. 120, 170–177. doi: 10.1016/j.landurbplan.2013.08.016
	 Tan, M., Li, X., Xie, H., and Lu, C. (2005). Urban land expansion and arable land loss in China—a case study of Beijing–Tianjin–Hebei region. Land Use Policy 22, 187–196. doi: 10.1016/j.landusepol.2004.03.003
	 Tan, Y. X., Xiang, M. S., Lu, H. X., Duan, L. S., Yang, J., Meng, J. K., et al. (2023). Spatial difference studies and driving force analysis of rural settlements in the Northwest Sichuan plateau. Sustain. For. 15:7074. doi: 10.3390/su15097074
	 Tian, G., Qiao, Z., and Gao, X. (2014). Rural settlement land dynamic modes and policy implications in Beijing metropolitan region, China. Habitat Int. 44, 237–246. doi: 10.1016/j.habitatint.2014.06.010
	 Tian, G., Qiao, Z., and Zhang, Y. (2012). The investigation of relationship between rural settlement density, size, spatial distribution and its geophysical parameters of China using Landsat TM images. Ecol. Model. 231, 25–36. doi: 10.1016/j.ecolmodel.2012.01.023
	 Tian, G., Yang, Z., and Zhang, Y. (2007). The spatio-temporal dynamic pattern of rural residential land in China in the 1990s using Landsat TM images and GIS. Environ. Manag. 40, 803–813. doi: 10.1007/s00267-006-0048-6 
	 Tu, J., and Xia, Z.-G. (2008). Examining spatially varying relationships between land use and water quality using geographically weighted regression I: model design and evaluation. Sci. Total Environ. 407, 358–378. doi: 10.1016/j.scitotenv.2008.09.031 
	 Wei, J. M., Kan, Z. H., Kwan, M. P., Liu, D., Su, L. X., and Chen, Y. Y. (2024). Uncovering travel communities among older and younger adults using smart card data. Appl. Geogr. 173:103453. doi: 10.1016/j.apgeog.2024.103453
	 Wheeler, D. C., and Calder, C. A. (2007). An assessment of coefficient accuracy in linear regression models with spatially varying coefficients. J. Geogr. Syst. 9, 145–166. doi: 10.1007/s10109-006-0040-y
	 Wheeler, D., and Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 7, 161–187. doi: 10.1007/s10109-005-0155-6
	 Xi, J., Wang, X., Kong, Q., and Zhang, N. (2015). Spatial morphology evolution of rural settlements induced by tourism. J. Geogr. Sci. 25, 497–511. doi: 10.1007/s11442-015-1182-y
	 Xu, P., and Huang, H. (2015). Modeling crash spatial heterogeneity: random parameter versus geographically weighting. Accid. Anal. Prev. 75, 16–25. doi: 10.1016/j.aap.2014.10.020 
	 Yang, R., Xu, Q., Xu, X. F., and Chen, Y. C. (2019). Rural settlement spatial patterns and effects: road traffic accessibility and geographic factors in Guangdong Province, China. J. Geographical Sci. 29, 213–230. doi: 10.1007/s11442-019-1593-2
	 Ye, X., and Chuai, X. W. (2023). Have rural settlement changes harmed ecosystem carbon in China? Appl. Geogr. 153:102917. doi: 10.1016/j.apgeog.2023.102917
	 Yin, J. B., Wang, D. Y., and Li, H. (2023). Spatial optimization of rural settlements in ecologically fragile regions: insights from a social-ecological system. Habitat Int. 138:102854. doi: 10.1016/j.habitatint.2023.102854
	 Zhang, L., Gove, J. H., and Heath, L. S. (2005). Spatial residual analysis of six modeling techniques. Ecol. Model. 186, 154–177. doi: 10.1016/j.ecolmodel.2005.01.007
	 Zhao, X., Sun, H. B., Chen, B., Xia, X. H., and Li, P. F. (2019). China’s rural human settlements: qualitative evaluation, quantitative analysis and policy implications. Ecol. Indic. 105, 398–405. doi: 10.1016/j.ecolind.2018.01.006
	 Zhen, Z., Li, F., Liu, Z., Liu, C., Zhao, Y., Ma, Z., et al. (2013). Geographically local modeling of occurrence, count, and volume of downwood in Northeast China. Appl. Geogr. 37, 114–126. doi: 10.1016/j.apgeog.2012.11.003
	 Zhou, G., He, Y., Tang, C., Yu, T., Xiao, G., and Zhong, T. (2013). Dynamic mechanism and present situation of rural settlement evolution in China. J. Geogr. Sci. 23, 513–524. doi: 10.1007/s11442-013-1025-7
	 Zhou, Y. X., and Lu, Y. (2023). Spatiotemporal evolution and determinants of urban land use efficiency under green development orientation: insights from 284 cities and eight economic zones in China, 2005-2019. Appl. Geogr. 161:103117. doi: 10.1016/j.apgeog.2023.103117
	 Zhu, S. Y., Kong, X. S., and Jiang, P. (2020). Identification of the human-land relationship involved in the urbanization of rural settlements in Wuhan city circle, China. J. Rural. Stud. 77, 75–83. doi: 10.1016/j.jrurstud.2020.05.004
	 Zhu, F., Zhang, F., Li, C., and Zhu, T. (2014). Functional transition of the rural settlement: analysis of land-use differentiation in a transect of Beijing, China. Habitat Int. 41, 262–271. doi: 10.1016/j.habitatint.2013.07.011


Copyright
 © 2025 Yuan, Dong and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.







 


	
	
ORIGINAL RESEARCH
published: 13 March 2025
doi: 10.3389/fsufs.2025.1542710








[image: image2]

Effects of applying different organic and inorganic soil amendments to improve the late stage of reclaimed soil from abandoned homesteads on soil nutrients and maize yield

Ruiqing Zhang1,2,3†, Tingting Meng1,3,4†, Zenghui Sun1,3,4* and Zhe Liu1,3,4


1Shaanxi Agricultural Development Group Co., Ltd., Xi’an, China

2Shaanxi Agriculture Development Oils & Fats Group Co., Ltd., Xi’an, China

3Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi’an, China

4Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an, China

Edited by
 Xueru Zhang, Hebei University of Economics and Business, China

Reviewed by
 Umesh Kumar, Sardar Vallabhbhai Patel University of Agriculture and Technology, India
 Muchamad Yusron, National Research and Innovation Agency (BRIN), Indonesia

*Correspondence
 Zenghui Sun, 249475181@qq.com 

†These authors share first authorship

Received 10 December 2024
Accepted 25 February 2025
Published 13 March 2025

Citation
 Zhang R, Meng T, Sun Z and Liu Z (2025) Effects of applying different organic and inorganic soil amendments to improve the late stage of reclaimed soil from abandoned homesteads on soil nutrients and maize yield. Front. Sustain. Food Syst. 9:1542710. doi: 10.3389/fsufs.2025.1542710
 

Abandoned homesteads in hollow villages are important reclamation resources, and how to improve the fertility of reclaimed soil is an important issue. In this paper, the effect of maturing agent (ferrous sulfate), organic fertilizer (well-composted chicken manure) and fly ash on the post-amelioration of soil maturation of the abandoned homesteads was investigated in different ratios using a field plot experiment by stripping topsoil, backfilling homesteads soil and adding clinker materials. The results of the study showed that the maturing agent + organic fertilizer (T1), fly ash + organic fertilizer (T2) and organic fertilizer (T3) treatments had a better effect on the improvement of organic matter, total nitrogen, total phosphorus, available phosphorus and available potassium of the reclaimed soil and were significantly higher than that of the inorganic treatments; and that the increase in soil nutrients showed a trend of increasing and then decreasing as the year lengthened in the period of 2019–2021. After 5 years of improvement, soil nutrient content increased from low level 5 to intermediate level 3. Maize yield under each treatment was also higher at T1, T2 and T3; comparing the time span, maize yield was highest in 2010 with an average of 7,724 kg/hm2; significantly higher than in 2019 and 2021. Correlation heat map analysis showed that maize yield had negative highly significant correlation with soil bulk density and positive highly significant correlation with soil organic matter. Based on the results of this study, it is recommended that at the later stage of raw soil maturation and soil improvement, it can be considered to reduce the addition of inorganic amendments and focus on increasing the organic and inorganic matter rationing, which can provide technical support for the rapid improvement of nutrients in reclaimed arable land.
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1 Introduction

Food security is an important ballast for national prosperity and people’s security, and an important guarantee for safeguarding national security, among which arable land resources are the most important key factor for safeguarding food security. With the rapid development of urbanization and industrialization, a lot of arable land resources are inevitably occupied. At the same time, as the rural population moves to cities, idle or abandoned rural residential land is relatively common. On the one hand, it occupies valuable land resources, and on the other hand, it has become a place or hiding place for some illegal activities in society (Liu, 2018; Liu et al., 2016; Tian et al., 2024). In order to increase the area of cultivated land and regulate idle land, local governments, in accordance with relevant laws and regulations, take the abandoned homesteads in hollow villages as the object of regulation and reclamation, which can not only revitalize the land stock, but also alleviate the contradiction of shortage of cultivated land resources (Liu et al., 2024; Liu and Zhou, 2017; Liu et al., 2018b). However, in the process of large-scale artificial land reclamation, it is inevitable that the topography and soil cultivation layer should be turned over and disturbed, which will bring about the mother layer of raw soil surface, raw and ripe and churning, how to see the effect of the mother soil in that year, how to make the interaction between the raw soil and the crop under the regulation of artificial fertilizer to make the inorganic mother soil into an inorganic cultivated soil, which inevitably involves the “root-soil-fertilizer” relationship problem. This inevitably involves the ‘root-soil-fertilizer’ relationship.

However, the key scientific problem in the reclamation and renovation of rural abandoned homesteads is to break through the soil conversion obstacles such as “raw, hard, solid and barren” of newly added cultivated land, improve the soil quality characteristics, and enhance the basic ability of soil to coordinate water, fertilizer, gas and heat, so as to meet the basic needs of plant growth (Liu et al., 2022a,b; Lei et al., 2019; Meng et al., 2024). In order to ensure the principle of “balance of occupation and compensation” and to meet the needs of agricultural production on cultivated land, it is necessary to improve the reclaimed homestead and screen out the economical and environmentally friendly reclamation soil amendment, which has important practical significance for the land regulation of homesteads.

Organic and inorganic amendments are often used to improve the quality of soil on reclaimed homesteads. With organic amendments generally including plant residues, animal manure and biochar; Inorganic amendments generally include lime-based, gypsum-based and mineral-based. Animal manure is an easily available organic fertilizer material, such as well-composted chicken manure, which is rich in a large number of beneficial substances, including a variety of organic acids, peptides, and nitrogen, phosphorus and potassium, among other nutrients. Not only can it provide nutrients for crops, but it also has a long fertilizer effect, increases soil organic matter content, promotes microbial reproduction, improves soil biological activity and physicochemical properties (Huang et al., 2020; Cai et al., 2019; Zhou et al., 2019), and is widely available and distributed, and has the potential to be widely used because of its simple and low-cost production technology. Inorganic amendment fly ash is mainly the fine ash material captured in the flue gas after coal combustion, mainly from the solid waste discharged from coal-fired power plants. When used to improve the soil, it can improve the stability of aggregates, reduce soil weight, and improve soil aeration and water permeability (Ou et al., 2021; Pham et al., 2022). In the northern region of China, there are many coal-fired power plants, fly ash resources are very rich, with cheap and stable sources. Ferrous sulfate is an inorganic compound, anhydrous ferrous sulfate is a white powder, soluble in water, the aqueous solution is light green, common its seven hydrate (green alum). Ferrous sulfate on the one hand has a certain neutralizing effect on alkaline soil, can reduce the pH of the soil, alkaline soil in the north of China has a certain role in the improvement (Majumder et al., 2021). The above three organic and inorganic amendments are commonly used economic and convenient materials for soil improvement.

Maize (Zea mays L.), an annual herbaceous plant in the family Gramineae, is a highly adaptable, high-yielding and high-quality food and feed crop. As a comprehensive crop that takes into account food, economic and feed needs, maize plays a pivotal role in guaranteeing national food security and effective supply of agricultural products. According to the China Statistical Yearbook (China Statistical Yearbook, 2023), the area under maize accounts for 25.3% of the total area under cereals and 40.4% of total cereal production. Maize is not very strict on soil requirements, loose soil, deep soil can be, to organic matter-rich black soil, black calcium soil, light black calcium soil, alluvial soil and thick layer of meadow soil is the best, but its seed yield on nitrogen demand is high (Wang et al., 2020).

Organic fertilizer (well-composted chicken manure), inorganic (fly ash) and maturing agent (ferrous sulfate) amendments are commonly used to improve soil structure, increase soil organic matter, improve soil quality and increase crop yields. However, the time required for organic and inorganic amendments to improve soils varies with soil conditions, amendment practices and management levels, with significant improvements in soil quality usually taking 3–5 years. Most researchers have studied the effects of soil amendments over a 3–5 year period (Jaufmann et al., 2024; Kang et al., 2022), with fewer studies continuing to track soil nutrients and crop yields at later stages.

Therefore, based on the lack of late research on soil improvement effects, this study screened various organic and inorganic substances to improve reclaimed soil by simulating house site reclamation, and investigated and analyzed the effects of various amendments on soil nutrient contents and crop yields in the late stage (years 5, 6, and 7). The aim was to find ways to restore the basic functions of the soil in the process of house site reclamation and to rapidly improve the productivity of the land, and to effectively save costs and provide technical support for the rapid improvement of nutrients in reclaimed farmland.



2 Materials and methods


2.1 Overview of the study area

The long-term positioning test plot for soil reclamation and soil improvement of abandoned residential bases was established on 15 June 2015 at the pilot base in Fuping County, Weinan City, Shaanxi Province (34°42′N, 109°12′E). It is mainly used for experimental research and technical demonstration of key technologies for comprehensive rehabilitation of hollow villages. The study area is located on the north side of the Loess Plateau, north of Wei’an, with a warm temperate semi-humid continental monsoon climate zone, an average annual evaporation of 1154.2 mm, an average annual air temperature of 13.3°C, and an average annual rainfall of 513.5 mm.

The backfill soil of the test plot was obtained from the old wall soil (raw soil) that was backfilled to a depth of 30 cm from the abandoned homestead. After removal of gravel and other impurities, the reclaimed soil was consolidated and structurally improved by the addition of various amendments to meet the new requirements for the growth of food crops. Before the experiment, the pH of the topsoil was 8.5, the organic matter content was 4.5 g kg−1, the total nitrogen content was 0.16 g kg−1, the available phosphorus content was 3.1 mg kg−1, the available potassium content was 61.4 mg kg−1 and the soil bulk density was 1.40 g cm−3. The soil quality was relatively poor.



2.2 Experimental plot setting

In this study, fly ash, organic fertilizer (well-composted chicken manure) and maturing agent (ferrous sulfate) were selected as amendment materials for reclaimed soil. The experiment was designed as a randomized block field trial with seven treatments, namely, maturing agent (T5), fly ash (T6), organic fertilizer (T3), maturing agent + organic fertilizer (T1), fly ash + organic fertilizer (T2), maturing agent + fly ash (T4) and no amendment added (CK) treatment. Each treatment had three replications with a total of 21 experimental plots with an 80 cm separation zone between each treatment group. The cropping system was a two-year, three-crop system in a winter wheat-summer maize rotation. The experimental summer maize was sown in the first 20 days of June at a density of 6.5 × 104 plants/ha and harvested in the first 10 days of October. The variety used was ‘Xianyu 958’. Before sowing, all maize treatments were fertilized with 1,500 kg ha−1 of compound fertilizer containing 15, 10, and 20% of N, P and K, respectively. Soil amendments from the different treatments were then evenly mixed into the reclaimed raw soil and soil amendments were applied to each treatment at the same time. Daily management indices such as irrigation rate and fertilizer treatment were the same for the six treatments. The specific experimental treatments and application rates of soil amendments are shown in Table 1.



TABLE 1 Test treatment.
[image: Table listing different treatments with their application amounts. Treatment 1 is a maturing agent with organic fertilizer, amounting to thirty plus zero point six tons per hectare. Treatment 2 is fly ash with organic fertilizer, twenty-two point five plus fifteen tons per hectare. Treatment 3 is organic fertilizer at thirty tons per hectare. Treatment 4 is a maturing agent with fly ash, forty-five plus zero point six tons per hectare. Treatment 5 is a maturing agent at zero point six tons per hectare. Treatment 6 is fly ash at forty-five tons per hectare. Treatment 7 has no soil amendments, with zero application.]



2.3 Experimental treatment

Soil samples were collected from the 0–30 cm tillage layer in each plot after the harvest of summer maize in 2019, 2020 and 2021, and three soil samples were collected diagonally from each plot. The collected soil samples were partially packed in aluminum boxes for determination of soil moisture content (Gao et al., 2011) and partially packed in self-sealing bags to be taken back to the laboratory for backup. The samples were air-dried for 7 days and passed through sieves of 2, 1, and 0.25 mm.

The laser particle analyzer (Mastersizer 2000, Malvern Company, UK) was used to measure the percent volume of soil particles in the range 0.02–2000 μm. According to the US classification standards, soil particles are divided into three classes: clay particles<0.002 mm, silt particles 0.002–0.05 mm and sand 0.05–2.000 mm. Soil bulk density (BD) were measured using a gravimetric method (Gao et al., 2011). The soil organic matter (SOM) content was determined by potassium dichromate oxidation - oil bath heating method (Nelson and Sommers, 1982); the soil total nitrogen (STN) content was determined by Kjeldahl nitrogen fixation (Bremner and Mulvaney, 1982); the soil total phosphorus (STP) content was determined by H2SO4-HCLO4 digestion-molybdenum antimony blue colorimetric method (Murphy and Riley, 1962); the soil available phosphorus (SAP) content was measured using the molybdate ascorbic acid method following a 0.5 mol/L NaHCO3, extraction (Zhang et al., 2022); the soil available potassium (SQP) content was determined by 1 mol/L ammonium acetate leaching-flame photometry method (Chen et al., 2021).



2.4 Data analysis

Microsoft Excel 2010 software was used for basic data statistics and processing; the software IBM Statistics SPSS 22 software was used for one-way analysis of variance and LSD method was for significance test. The software Origin 2018 software was used to draw correlation heatmaps, bar charts and line graphs.




3 Results


3.1 Soil bulk density and particle composition under different treatments

From Table 2, it can be concluded that the soil bulk density under the different applications of organic inorganic amendments ranged from 1.16 g cm−3 to 1.38 g cm−3, with the lowest BD being 1.16 g cm−3 for the T1 treatment and the highest being 1.38 g cm−3 for the CK treatment. From 2019 to 2021, there was little change in the BD under the different treatments as the number of years increased. Over a three-year period, the basic trend of BD under the different treatments was CK > T6 > T5 > T4 > T3 > T2 > T1.



TABLE 2 Soil bulk density and particle composition under different amendments.
[image: A table displays data on soil properties from 2019 to 2021. Columns include year, test treatment (T1-T6, CK), bulk density in grams per cubic centimeter, and percentages of silt, clay, and sand. Bulk density ranges from 1.16 to 1.38 g/cm³, silt from 81.26% to 84.19%, clay from 10.78% to 13.35%, and sand from 2.71% to 6.74%. Each year includes data for varying test treatments.]

From Table 2, it can be seen that the content of soil clay and silt particles was higher and sand particles was lower under T1 and T2 treatments. This indicates that organic and inorganic application can increase the content of soil clay particles and decrease the content of sand particles. The content of clay particles was lower and the content of sand particles was higher under the T3 treatment. The rest of the inorganic treatments were basically no difference in soil clay, silt and sand content (Table 2).



3.2 Soil total nutrient content under different treatments

From Figure 1a it can be concluded that the soil organic matter content under different organic–inorganic treatments and the blank treatment (conventional fertilizer) was higher than the baseline value of 4.5 g/kg of reclaimed soil. In 2019–2021, there was no significant difference in soil organic matter content under the same treatment among different years (p < 0.05). In 2019, the magnitude of soil organic matter content under different treatments was T1 > T2 > T3 > T4 > T5 > T6 > CK, and there was no significant difference among treatments except for CK treatment (p < 0.05). In 2020, soil organic matter content under T1 treatment was significantly higher (p < 0.05) than other treatments. In 2021, soil organic matter content under T1 treatment was significantly higher (p < 0.05) than other treatments except T2 treatment. The increase in soil organic matter under T1, T2, T3, T4, T5 and T6 treatments was 107.68, 84.69, 49.70, 33.05, 27.02 and 8.54% in 2019 compared to CK treatments; the increase was 146.19, 83.07, 65.28, 46.64, 21.20 and 16.76% in 2020; in 20,201 the increase was 102.99, 79.54, 38.28, 30.19, 7.96 and 6.53%, respectively. The increase in soil organic matter under the treatments showed an increasing and then decreasing trend with increasing years.

[image: Bar charts illustrating soil content analysis over three years (2019, 2020, 2021) across seven test treatments (T1-T6, CK). Chart (a) shows soil organic matter, chart (b) depicts soil total nitrogen, and chart (c) presents soil total phosphorus content. Each treatment displays variations in content levels over the years, with annotations indicating statistical significance.]

FIGURE 1
 Soil total nutrient content under different amendments. (a) Soil organic matter content (g/kg), (b) Soil total nitrogen content (g/kg), (c) Soil total phosphorus content (g/kg). Upper case letters in the graphs indicate differences between different years of the same treatment and lower case letters indicate differences between different treatments in the same year (p < 0.05), as in the lower graph.


From Figure 1b it can be concluded that the total soil nitrogen content under the different organic–inorganic treatments and the blank treatment (conventional fertilizer) was higher than the baseline value of the reclaimed soil by 0.16 g/kg. From 2019 to 2021, there was no significant difference in soil total nitrogen content under T1, T2, T3, T4 treatments among different years (p < 0.05); soil total nitrogen under T5, T6 and CK treatments in 2021 showed significantly higher (p < 0.05) than in 2020 and 2019. soil total nitrogen content under T1, T2, T3 treatments was significantly higher (p < 0.05). In 2020, soil total nitrogen content under T1, T2, T3 treatments was significantly higher (p < 0.05) than inorganic treatments T4, T5, T6 and CK; in 2021, there was no significant difference (p < 0.05) in soil total nitrogen content under each treatment. Compared to CK treatment, T1, T2, T3, T4, T5 and T6 treatments increased soil total nitrogen content by 9.65, 4.68, 2.81, 2.53, 1.59% and − 0.06%, respectively, in 2019; and in 2020, soil total nitrogen content increased by 66.21, 66.42, 65.68, 29.35, 28.41 and 20.80%, respectively, in 2019; and in 2021, total soil nitrogen content increased by 52.72, 51.10, 51.10, 21.85, 22.38 and 13.07%, respectively. Similar to soil organic matter, the increase in soil total nitrogen content under each treatment showed a tendency to increase and then decrease with increasing years.

From Figure 1c it can be concluded that the soil total phosphorus content of the different organic–inorganic treatments and the blank treatment (conventional fertilizer) was higher than the baseline value (0.06 g/kg) of the reclaimed soil. Among different years of the same treatment, the soil total phosphorus content was significantly higher in 2021 than in 2020 and 2019 (p < 0.05), and there was no significant difference between 2019 and 2020. In 2019, soil total phosphorus content T1 > T2 > T3was significantly different (p < 0.05), in 2020, soil total phosphorus content T1 was significantly higher than CK treatment (p < 0.05) and there was no significant difference between the other treatments; in 2021, there was no significant difference in soil total phosphorus among the different treatments. Compared with CK treatment, T1, T2, T3, T4, T5 and T6 treatments increased soil total phosphorus content by 420.66, 263.56, 101.59, −79.34%, 24.49% and − 61.94%, respectively, in 2019; and in 2020, the increase in soil total phosphorus content was 764.07, 652.37, 636.93, 468.09, 329.91 and 255.85%, respectively; and in 2021 the increase in soil total phosphorus content was 36.25, 25.35, 19.69, 20.95, 15.20% and − 0.21%, respectively. Similar to soil organic matter and total nitrogen, the increase in soil total phosphorus content under each treatment showed an increasing and then decreasing trend with increasing years.



3.3 Soil nutrient availability under different treatments

From Figure 2a it can be concluded that the soil available phosphorus content of the different organic–inorganic treatments and the blank treatment (conventional fertilizer) were all higher than the basal value of the reclaimed soil of 3.1 mg/kg. Among different years of the same treatment, there was no significant difference in soil available phosphorus content of the other treatments except T4 treatment (p < 0.05). There was no significant difference in soil available phosphorus content among treatments in 2019 and 2020; in 2021, soil available phosphorus content of T1 treatment was significantly higher (p < 0.05) than T5, T6 and CK treatments. Compared with CK treatment, T1, T2, T3, T4, T5 and T6 treatments increased soil available phosphorus content by 182.50, 68.75, 63.74, 60.63, 37.12 and 15.64% in 2019; and in 2020, soil available phosphorus content increased by 45.40, 38.69, 28.91, 26.82, 12.39, 28.91, 26.82 and 12.39%, respectively. 26.82, 12.39 and 4.33%, and in 2021 the available soil phosphorus content will increase by 222.11, 113.10, 107.09, 81.02, 41.72 and 19.29%, respectively. With increasing years, the increase in soil available phosphorus content under each treatment also showed the trend of decreasing and then increasing.

[image: Two bar graphs compare soil nutrient content across test treatments from 2019 to 2021. Graph (a) shows soil phosphorus levels with higher values in 2021, particularly for T1. Graph (b) displays soil potassium levels, peaking in 2021 for T1. Both graphs include color-coded bars for each year and error bars indicating variability.]

FIGURE 2
 Soil nutrient availability content under different amendments. (a) Soil available phosphorus content (mg/kg), (b) Soil available potassium content (mg/kg).


From Figure 2b it can be concluded that the soil available potassium content of the different organic–inorganic treatments and the blank treatment (conventional fertilizer) were all higher than the basal value of the reclaimed soil, 61.4 mg/kg. There was no significant difference in soil available potassium content between the same treatments in different years under T1, T4, T5 and CK treatments; soil available potassium content of T2, T3 and T6 treatments showed that it was significantly higher in 2021 than in 2019 (p < 0.05). In 2019 and 2020, there was no significant difference in soil available potassium content between treatments; in 2021, soil quick potassium content of T1 treatment was significantly higher than the other treatments except T2 treatment (p < 0.05). Compared to CK treatments, T1, T2, T3, T4, T5 and T6 treatments increased soil available potassium content by 53.73, 30.87, 19.18, 18.16, 16.13 and 6.73% in 2019; and in 2020, soil available potassium content increased by 28.91, 26.76, 13.61%, 10.86%, 10.71 and 9.02% in 2020; and 50.20, 27.78, 17.91, 12.42, 11.45 and 2.19% in 2021.



3.4 Maize production and its components

As shown in Table 3, the number of ears and yield of maize in each treatment were significantly higher in 2020 than in 2019 and 2021 (p < 0.05), while there was no significant difference between 2019 and 2021. The mean values of maize yield, number of ears, number of grains in ears and 100 kernel weight in 2019, 2020 and 201 were 6,487 kg hm−2, 54,056, 487 and 28 g, 7,288 kg hm−2, 56,094, 511, 29 g and 6,624 kg hm−2, 53,974, 500, 28 g, respectively. In 2019, the magnitude of maize yield among treatments was T1 > T2 > T3 > T4 > T5 > CK > T6, and T1, T2, and T3 treatments were significantly higher than T4, T5, CK, and T6 treatments (p < 0.05). In 2020, maize yield, number of ears, and 100 kernel weight were significantly higher under T1, T2, and T3 treatments than under T4, T5, T6, and CK treatments (p < 0.05); In 2021, maize yield and number of ears were significantly higher in T1, T2 and T3 treatments than in T4, T5, T6 and CK treatments (p < 0.05); there was no significant difference in number of ears between treatments.



TABLE 3 Maize production and composition production composition.
[image: Table showing experimental treatments and various maize yield components for the years 2019, 2020, and 2021. Columns include spike number per hectare, spike grain number, hundred-kernel weight in grams, and yield in kilograms per hectare. Uppercase letters indicate differences in yield between years under the same treatment, while lowercase letters denote differences among treatments within the same year at p < 0.05.]



3.5 Correlation heat map analysis

From the correlation heat map analysis in Figure 3 shows that maize yield showed a negative and highly significant correlation with soil capacity and a positive and highly significant correlation with organic matter content, number of ear, number of grains in ear and 100 grain weight; soil organic matter, total nitrogen, available phosphorus and available potassium showed a negative and highly significant correlation with soil capacity; Available phosphorus and available potassium showed a positive and highly significant correlation with total soil nutrients, and a positive and highly significant correlation was found between them; total soil nutrients also showed a positive and significant correlation with each other. Phosphorus and available potassium showed a positive and highly significant correlation with total soil nutrients, and a positive and significant correlation between the two; total soil nutrients also showed a positive and significant correlation.

[image: Correlation matrix with color-coded circles showing variable relationships. Positive correlations are red, negative are blue. Strong correlations include SAP-SQP (0.95) and Clay-Silt (-0.97). Significance levels: \*p ≤ 0.05, \*\*p ≤ 0.01.]

FIGURE 3
 Heat map of correlation between maize yield and soil nutrients, etc.





4 Discussion


4.1 Effect of amendments on the bulk weight and particle composition of homestead reclaimed soils

Soil bulk density was lower in all six treatments compared to CK, but the application of fly ash, ferrous sulfate alone or a mixture of the two (T3, T4 and T5) was not as effective as the T1, T2 and T3 treatments, which had lower soil bulk density and better soil structure improvement. This is related to the application of organic fertilizer (well-composted chicken manure), although the porous structure and large specific surface area of fly ash can increase soil porosity and facilitate air and water circulation (Li et al., 2024; Le et al., 2021), and iron in ferrous sulfate can react chemically with certain components of the soil, which can help to disperse and loosen soil particles, thus reducing soil weight (Manzano et al., 2014), but both contain less organic matter and do not provide more nutrients needed by the soil. Organic fertilizers are rich in organic matter, which decomposes in the soil to form humus, which improves soil structure, increases soil porosity, loosens the soil and helps to reduce the compact accumulation of soil particles, thus reducing soil weight. In addition, organic fertilizer provides a rich food source and a good living environment for soil microorganisms, and microbial activity can further improve soil structure, promote the release and use of soil nutrients, and indirectly reduce soil weight capacity (Bebber and Richards, 2022; Zhao et al., 2016). This is consistent with the findings of Zhai et al. (2022) that organic manure application can better reduce the soil capacity of planted maize soils.

The clay particle content of the soil in this study increased relatively high under T1, T2 and T3 treatments compared to CK. This is due to the fact that humus in organic fertilizer is an important cementing agent for the formation of soil aggregates, humus contains a large number of functional groups such as carboxyl groups, phenolic hydroxyl groups, etc., which are able to form chemical bonds with metal ions on the surface of soil particles, thus binding soil particles together to form stable soil aggregates, thus increasing soil sticky particles (Hafez et al., 2021). In addition, the soil particle composition did not differ much under the inorganic treatments, which may be related to the late stage of soil amendment.



4.2 Effect of amendments on the nutrient composition of soil reclaimed from homesteads

In the later stages of soil improvement (years 5, 6, and 7), the application of different amendments was effective in improving and increasing the nutrient content of the reclaimed soil on the homestead compared to the baseline nutrient levels in the reclaimed soil. Except for total phosphorus and available potassium, there were no significant differences in soil organic matter, total nitrogen and available phosphorus contents between years, mainly because the time of amendment was more than 5 years, the soil had matured and some of the nutrient indices had reached the soil limit values. The results of all the experiments showed that the significant differences in the effect on the nutrient content of the soil were between the T1, T2 and T3 treatments with the addition of organic fertilizers, while the differences between fly ash and soil maturing agent (ferrous sulfate) were not significant, mainly because the soil was mature after more than 5 years of improvement and the effect of fly ash and maturing agent on the total nutrients of the soil was not significant at the later stage of the experiment. With the increase of years, the increase of soil organic matter, total nitrogen and total phosphorus content showed the trend of increasing and then decreasing, which also reflected the gradual maturation of the soil, and the exogenous organic matter and other amendments had less and less effect on soil nutrient accumulation. This is consistent with the findings of Ma et al. (2023) and Morra et al. (2021) that the rate of improvement in soil quality decreased with increasing duration of application of organic and inorganic amendments. According to Table 4 of the Cultivated Land Quality Classification Index of Shaanxi Province, the soil nutrient content in the study area increased from a low level of Class 5 at the base value to an intermediate level of Class 3 after 5 years of improvement.



TABLE 4 Grading criteria for biochemical indicators of arable land quality in Shaanxi Province.
[image: Table displaying classification criteria for different marks (SOM, STN, STP, SAP, SQP) across five levels, labeled from high (Level 1) to low (Level 5). Units are in grams per kilogram and milligrams per kilogram.]

In this study it was found that soil nutrients were higher in T1, T2 and T3 treatments, mainly because organic manure (poultry manure) increases the soil organic matter content. The increase in organic matter content will promote the growth and development of plant roots, and the metabolites secreted by the metabolism of plant rhizobacteria can activate the stabilized phosphorus and potassium in the soil, releasing more available phosphorus and potassium to meet the needs of plants and microorganisms (Liu et al., 2021). Due to the different organic and inorganic soil amendments T1-T6 and CK, the metabolic activity of the plant root system will be significantly different, and the ability to activate and stabilize the elements of phosphorus and potassium will be different, and therefore the improvement effect on soil available phosphorus and available potassium will be significantly different. The results of this study showed that the organic–inorganic mixed application treatment can effectively use the fertilizing effect of organic fertilizer on the soil, and can well achieve the comprehensive effect of soil improvement and fertilization. Mixed application can not only meet the requirements of the investment cost of land preparation, but also quickly and effectively improve soil fertility (Abrahao et al., 2021; Glaser et al., 2015; Wei et al., 2016). It can also turn waste into treasure, protect the ecological environment, and find a suitable reuse site for solid waste.



4.3 Effects of amendments on maize yield

As with soil bulk density, maize yield was higher in the T1, T2 and T3 treatments in all years. This indicates that the application of appropriate amounts of organic fertilizer and inorganic amendments facilitates plant growth and development and further increases grain yield. This is mainly due to the fact that the energy generated from the hydrolysis of fly ash accelerates and enhances the mineralization of organic matter, crop and soil respiration processes, which ultimately leads to a significant increase in the content of nitrogen, phosphorus, potassium and other nutrients in the soil, thereby promoting crop growth (An et al., 2024). The humification process of organic manure in the soil promotes crop growth and yield by increasing soil enzyme activity and nutrients, and regulating soil fertility, resulting in a more pronounced fertilizer effect and ultimately achieving the goal of increased crop yield (Hu et al., 2023; Liu and Zhou, 2017; Wei et al., 2016). Maize yield in this study was highest in 2020 and significantly different from 2019 and 2021, which is an issue that deserves our attention. Maize yield over time is not only influenced by soil nutrients, but also by multiple factors such as annual temperature, rainfall and disasters. Maize yield in this paper is informative on different treatments, but multiple references are recommended on the time series.



4.4 Correlation between maize yield and soil physico-chemical properties

From the correlation heat map analysis in Figure 3, it was found that maize yield, yield components and soil organic matter, total nitrogen, available phosphorus and available potassium were all negatively correlated with soil bulk density. That is to say, maize prefers loose soil, and loose soil has good air and water permeability, which helps the growth and development of maize root system. Both maize yield and yield components had highly significant relationship with soil organic matter, which is in line with Previous studies (Yu et al., 2019; Hafez et al., 2021; Jaufmann et al., 2024) that maize yield is closely related to soil organic matter yield. However, in this study, maize yield was only significantly related to soil total nitrogen, available phosphorus and available potassium, and the relationship was not significant, which differed from the study of Wang et al. (2020), in which maize kernel yield was strongly influenced by nitrogen in the previous study, whereas there was no significant correlation between maize yield and soil total nitrogen in the present study, which may be related to the fact that the present study was in the late maturity stage of the soil, and that there was not much difference in the yield of different maize under different treatments, the yield was also affected by other external factors (natural disasters, rainfall, etc.).




5 Conclusion

In the later stages of soil amendment on reclaimed abandoned homesteads (years 5, 6 and 7), we found that application of the inorganic amendments fly ash and maturing agent (ferrous sulfate) alone had little effect on increasing soil nutrients and improving soil bulk density. Mixed applications of organic and inorganic amendments still increased soil nutrient content and improved soil bulk density, but the nutrient increases became smaller over time. Maize yields were significantly higher with the organic–inorganic amendment pair than with the inorganic treatment, but based on the 2019–2021 maize yield analysis, factors affecting maize yields were not only related to soil amendments, but also to natural factors such as climate, including precipitation and temperature. Although the organic–inorganic amendment dosed treatment achieved better results in this study, there are some limitations as it is a plot study, so it needs to be further verified by continuing field trials.
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The acceleration of urban expansion and rapid economic growth have significantly intensified agricultural land scarcity, jeopardizing global food security. Although this issue has become a key topic in global food security, a comprehensive and systematic literature review is still lacking. To systematically analyze the evolutionary patterns, research frontiers, and knowledge structure in this field, this study employs an integrated bibliometric approach using CiteSpace, VOSviewer, and Bibliometrix R-tool for comprehensive knowledge mapping. The results indicate that research on the impact of urban expansion on food production can be divided into an initial period (1983–1999), a period of rapid development (2000–2014), and a period of high growth (2015–present). One hundred thirty-nine countries have conducted research in this area. Research on greenhouse gases, simulation forecasting, carbon footprints, and smart agriculture has emerged as hotspots in this field in recent years. Crop yield, land use change, and food security have consistently been central research themes. This study also highlights future research directions, emphasizing the importance of interdisciplinary collaboration, scenario-based analysis, and methodological advancements in bibliometric studies. Balancing economic development with food production amid urbanization remains a critical challenge that warrants further exploration. Additionally, key limitations, such as database constraints and potential analytical biases, are discussed. These findings may serve as a valuable reference for future research in this domain.
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1 Introduction

The world has experienced rapid urbanization. It is projected that the urban land area will expand to 3.6 million square kilometers by the year 2100 (Gao and O’Neill, 2020), and that by 2050, 68 percent of the global population will reside in urban areas (United Nations, 2018). Rapid urban development has exacerbated serious social and environmental problems, such as carbon emissions (Li et al., 2021), food security issues (Bren d’Amour et al., 2017), and biodiversity loss (Li G. et al., 2022). It has also intensified competition between urban land and other land uses (van Vliet et al., 2017). Urban expansion in many regions occurs at the expense of farmland (Munton, 2009; Wang Y. et al., 2019). Over 60% of the world’s irrigated farmland is adjacent to urban areas, highlighting intensified competition between agricultural and urban land uses (Thebo et al., 2014). Traditional agricultural patterns and food security face serious threats as an increasing amount of farmland is appropriated (Yang and Song, 2023; Zhang et al., 2017). Empirical studies indicate that approximately 50–63% of newly expanded urban areas are expected to emerge from existing croplands, resulting in a 1–4% decline in global food production, equivalent to the annual food needs of 122–1,389 million people (Chen et al., 2020). This trend is particularly evident in Asia, Africa, and South America, where rapid urbanization and escalating competition between agricultural land and urban expansion are most pronounced (van Vliet et al., 2017).

The impact of urban expansion on food production is mainly achieved through various internal mechanisms and pathways. From the perspective of land resources, urban expansion directly encroaches on a large amount of high-quality cultivated land, reducing the area for food cultivation (Li et al., 2018). Meanwhile, infrastructure construction and industrial pollution during the urban construction process can alter the physical and chemical properties of the surrounding farmland soil. Additionally, they consume the priority soil types that feature high land capacity and high potential farmland productivity (Salvati, 2013). This significantly reduces the soil quality as well as the yield and quality of crops. From the water-resource perspective, urbanization brings about a sharp increase in water demand, which in turn impacts water quality and causes a decline in water security (da Encarnação Paiva et al., 2020). Moreover, global climate change amplifies the negative impacts of urban expansion on food production. For example, rising temperatures could lead to an 8–14% decrease in global maize yields, while urban expansion alone may contribute to a 1–3% reduction in maize production (Bassu et al., 2014; Chen et al., 2020). Additionally, urban expansion has a tendency to encroach upon high-yielding farmland and farmland with low blue water intensity (BWI). This situation exacerbates the competition for agricultural irrigation water, ultimately influencing food production (Wang, 2020).

An increasing number of studies have examined the impact of urban sprawl on food production in recent years, with assessments conducted by scholars at varying scales. Bren d’Amour et al. (2017) predict that urban expansion will result in a global loss of 1.8–2.4% of agricultural land by the year 2030, with the majority (80%) of this loss anticipated in the Asian and African regions. And, the loss of crop yields due to urban land expansion affects the annual demand for food of about 122–1,389 million people (Chen et al., 2020). A study conducted by He et al. (2017) revealed that the rapid urban sprawl exerted pressure on food security in China between 1992 and 2015, resulting in a 2% decline in the average annual food self-sufficiency. Additionally, uncontrolled low-density urban sprawl in the arid region of central Iran has been associated with the fragmentation of farmland and diminished crop yields (Nadoushan, 2022). Although urban sprawl presents challenges to food production, the adverse effects on food production may be mitigated through the implementation of effective land management strategies (Li et al., 2023; Wang S. et al., 2021). Relevant researchers are capable of formulating appropriate land use policies to safeguard prime agricultural land dedicated to the cultivation of key food crops (Andrade et al., 2022).

Despite the growing interest in the impact of urban sprawl on food production, the existing body of research is limited in its provision of thorough analyses. While numerous scholars have contributed to this field (Gren and Andersson, 2018; van Vliet et al., 2017), yet only a limited number of studies have undertaken systematic reviews and surveys, which poses challenges in effectively assessing key advances and insights. In the face of the exponential growth in the number of publications globally, researchers have found it increasingly challenging to maintain awareness of the relevant literature within their field. The acquisition of comprehensive and accurate information, as well as its efficient and rapid extraction, has become imperative (Liu et al., 2023; Silvente et al., 2018). Bibliometric analysis regards the literature system and bibliometric characteristics as the objects of study, employing mathematical, statistical, and other quantitative methods to analyze the distributional structure and quantitative relationships within the literature of a research domain. This approach aims to elucidate trends in scientific development and to identify potential research hotspots in the future (Garfield, 1964; Saini et al., 2023).

Numerous bibliometric software packages and tools have been developed, including CiteSpace (Chen et al., 2023), VOSviewer (Xiao et al., 2024), HistCite (Bornmann and Marx, 2012), and the Bibliometrix R-tool (Rodríguez-Soler et al., 2020). These instruments are extensively utilized across a range of disciplines including environmental science (Li B. et al., 2022), management (Ding et al., 2022), ecology (Picone et al., 2021), medicine (Zhang et al., 2024), computer science (Pan et al., 2018), among others, and are employed to uncover research hotspots and trends within particular subject domains. Bibliometric tools are capable of constructing knowledge graphs that visualize bibliometric data, thereby compensating for the limitations of conventional metrics analysis (Chen et al., 2008). For instance, functionalities like keyword co-occurrence, publication statistics, and cluster mapping can pinpoint key researchers and institutions across various disciplines, evaluate the research productivity of a field or topic, and are crucial in long-term bibliometric analyses. However, reliance on a single bibliometric tool may lead to biased data processing, monolithic analysis outcomes, and limited visualization effectiveness. Cheng et al. (2023) employed a combination of CiteSpace and VOSviewer bibliometric software for a systematic examination of food safety and carbon emissions. Similarly, San-Juan-Heras et al. (2024) utilized VOSviewer and Bibliometrix R-tool for a scientometric analysis of cover crop management. The integration of these two analytical tools has gained widespread acceptance among researchers across various disciplines (Li et al., 2024; Long et al., 2024; Yang et al., 2023). This study leverages the strengths of CiteSpace, VOSviewer software and the Bibliometrix R-tool, which serve as effective tools for investigating the field of the impact of urban expansion on food production (IUF). The integration of these tools facilitates the analysis of research priorities and trends within this specific domain.

This study aims to: (1) conduct a comprehensive assessment of the IUF dataset’s fundamental attributes using the Web of Science Core Collection database, encompassing publication frequency, citation count, and the number of articles in prominent journals; (2) pinpoint the key research strengths in the domain, involving prominent countries, institutions, influential scholars, and their collaborative networks; (3) reveal and contrast the evolution of research hotspots, elucidating the shifts in research focus over different periods; (4) examine the current landscape and hotspots of research, and forecast future trends. These in-depth analyses intend to chart a course for investigating the effects of urban sprawl on food production and to furnish decision-makers with insights for ensuring food security and the sustainable governance of urban spaces.



2 Materials and methods


2.1 Data collection

To guarantee publication quality, the Web of Science Core Collection (WOSCC) was utilized as the primary data source. This database encompasses over 20,000 journals of significant academic prestige and global impact, spanning diverse scholarly disciplines including natural sciences, engineering, technology, social sciences, and humanities (Wei et al., 2024). The database further captures essential bibliometric data, including titles, authors, keywords, affiliations, references, and more (Huang et al., 2020). This study focuses on the impact of urban expansion on food production (IUF). Record filtering in WOSCC is performed using specific terms and Boolean operators: TS (Topic search) = (“Urbanization” OR “Urban expansion” OR “City expansion” OR “Urban sprawl” OR “Urban growth”) AND (“Food production” OR “Grain production” OR “Crop yield”). To date, 4,234 records have been extracted from the WOSCC database, with the data exported as plain text files following the selection of the “complete records and cited references” option.

To ensure high-quality data, a more rigorous screening process was implemented. First, only peer-reviewed journal articles were included, while conference abstracts, book chapters, editorial materials, and other informal publications were excluded to minimize the influence of low-quality literature. Second, a dual screening mechanism was implemented. The first round involved automatic de-duplication and filtering using data cleaning tools provided by CiteSpace, Bibliometrix R-tool, and VOSviewer to remove duplicates and irrelevant records (e.g., editorial materials and book chapters). The second round consisted of a manual review conducted by the research team to ensure the scholarly value and relevance of the selected data, thereby enhancing their authority and representativeness. As a result of this screening process, 2,803 high-quality documents covering data from 1980 to early December 2024 were obtained. The research team then analyzed the dataset. These refinements have strengthened the reliability of the analytical results and mitigated uncertainties arising from biases in the data sources.



2.2 Methods


2.2.1 Application of tools

CiteSpace software (Chen, 2018), the Bibliometrix R-tool (Aria and Cuccurullo, 2017) and VOSviewer (Li B. et al., 2022) were utilized for the analysis of the database in this research (Table 1). CiteSpace, a Java-based software, is used for metro-logical analysis and knowledge mapping. It aids researchers in understanding the knowledge structure, research frontiers, and intertopic research relationships within a field (Wang X. et al., 2021). Bibliometrix R-tool, an R tool available at http://www.bibliometrix.org, facilitates the quantitative analysis of scientific literature. This reveals the maturity of scientific fields, prominent authors, conceptual and knowledge maps, as well as research trends (Rodríguez-Soler et al., 2020). VOSviewer (Xiao et al., 2024) is renowned for its intuitive node networks and dynamic interactive features, enabling users to efficiently identify research hotspots and knowledge structures.



TABLE 1 Literature econometric analysis tools.
[image: Comparison table of bibliometric analysis tools: CiteSpace, Bibliometrix R-tool, and VOSviewer. Dimensions covered include ease of use, visualization, data sources, and extensibility. CiteSpace features an intuitive interface, outstanding time-series analysis, supports Web of Science and CNKI, but is less flexible. Bibliometrix requires R base or BiblioShiny, offers versatile charts, supports multi-database compatibility, and has deep customization. VOSviewer is noted for simplest operation, clear node network visualization, imports mainstream formats directly, and provides fixed functions for basic analysis.]

CiteSpace facilitates time-series analysis, unveiling the evolution of research hotspots. The Bibliometrix R-tool offers robust bibliometric statistics, enabling an efficient analysis of research output at the author, institutional, and national levels. Meanwhile, VOSviewer serves as a powerful visualization tool for mapping academic collaborations and co-citation networks. The conceptual model presented in this article is illustrated in Figure 1. The utilization of both Bibliometrix R-tool, CiteSpace software and VOSviewer enables the full exploitation of their resources for bibliometric analysis, yielding more comprehensive and in-depth outcomes. These tools have furnished valuable insights and a reliable reference for the ongoing investigation of the knowledge base within this field.

[image: Flowchart illustrating the process from data selection to recommendations. It begins with data selection from the Web of Science Core Collection, focusing on topics like urbanization and food production. Data cleaning involves filtering procedures and manual verification. The metrological analysis phase includes clustering, country situation analysis, and journal analysis using tools like CiteSpace, Bibliometrix, and VOSviewer. The final phase involves analyzing results for development evolution, research topics, and issues, leading to solutions, future prospects, and policy recommendations.]

FIGURE 1
 Conceptual model.




2.2.2 Methods of analysis

	1. Mediator centrality. This centrality measure quantifies the significance of a node within a network by indicating the degree to which the node serves as a bridge on the shortest paths between other nodes. Nodes in collaborative networks are deemed significant when their mediator centrality surpasses 0.1, indicative of their pivotal role in bridging other nodes. The calculation is represented by Equation 1 (de Castilhos Ghisi et al., 2020):

[image: Centrality of node i is given by the formula: the sum of P sub j k of i divided by P sub j k, where i is not equal to j and j is not equal to k.]

where [image: Mathematical notation showing the letter "P" with subscript "jk".] denotes the number of shortest paths from node j to node k, and [image: The image shows the mathematical notation "P subscript j k, with i in parentheses" in bold font.] is the number of paths that pass through node i.

	1. Lotka’s law: This law elucidates the correlation between the frequency of scientific publications by authors and the quantity of those publications, commonly referred to as the “inverse square law.” The calculation is represented by Equation 2 (Lotka, 1926):

[image: Equation depicting a function A of n, where A of n equals A of one divided by n squared. The equation is marked as equation two.]

In the aforementioned equation, A(n) represents the number of authors who have published n papers, whereas A(1) denotes the number of authors who have published only one paper.

	1. Co-authorship analysis was conducted using indicators including Most Cited Papers with Coauthors from Other Countries (MCP) and Most Cited Papers with Coauthors from the Same Country (SCP) to examine the collaborative relationships between nations and the influence of such collaborations on academic achievements. These indicators are utilized to evaluate the position and influence of various countries within international and national academic cooperation networks, thereby further investigating the trends in academic collaboration. Additionally, the bibliometric study on the impact of urban sprawl on food production employed analytical methods such as coupling analysis (Kessler, 1963), cluster analysis (De Bem Machado et al., 2022), and co-citation analysis (Peters and Van Raan, 1991).





3 Results


3.1 Basic characteristics


3.1.1 Publication and citation analysis

Annual fluctuations in the number of publications and citations serve as crucial indicators for tracking the progression of research within a given field (Wei et al., 2024). As depicted in Figure 2, the publication volume within the field of urban sprawl’s impact on food production exhibits fluctuating growth patterns when examining inter-annual variations in relevant indicators. This study categorizes the research period in this domain based on its developmental trajectory into the initial phase (1983–1999), the phase of rapid expansion (2000–2014), and the current phase of high growth (2015–present). From 1983 to 1999, the number of publications in the field of IUF was relatively low, with a slow growth rate. In 1983, only one paper was published, and in 1984, no paper was released. From 1985 to 1989, the annual number of publications fluctuated between 2 and 4. The total number of documents published during this period was 64. From 2000 to 2014, the number of published papers increased rapidly. The number of papers published in 2000 was 11, which was higher than that in 1999. The total number of published papers during this period was 448, with an average annual number of approximately 32.07. The growth rate (compared with the previous period) reached 695.1%. This suggests that research efforts within the field of IUF have intensified, potentially influenced by advancements in technology, policy endorsements, or enhanced international collaborations, which have fueled the swift progression of research. From 2015 to the present, the cumulative number of publications and the annual number of publications have continued to grow rapidly. The number of publications in 2022 and 2023 was 371 and 341, respectively. The cumulative number of publications has reached 2,291, with an average annual number of approximately 255.22. The growth rate and scale of publications in this stage have increased significantly compared to the previous two stages, suggesting a rising interest in this field. This trend may indicate its increasing recognition as a research hotspot.

[image: Bar chart showing the cumulative and annual number of publications from 1980 to 2025. There are three phases: initial phase, phase of rapid expansion, and phase of high growth. Cumulative publications increase sharply after 2000, peaking near 2500 by 2025, with annual publications reaching around 400 in the same year.]

FIGURE 2
 Publication trends in urban expansion’s impact on food production literature. The graph depicts the number of publications in the field up to early December 2024.


The average number of citations per article for the initial half of the 1983–2024 period is reported as 52.25 (Table 2). The peak MTCA (Mean Number of Citations per Article per Year) value was observed in the year 2000, amounting to 141.18, whereas the minimum value was recorded in 1985 (MTCA of 1). As anticipated, the mean MTC (Mean Number of Citations per Year) value was merely 0.71 during the initial phase, with a gradual increase observed during the period of rapid growth, resulting in a mean MTC value of 5.04. In the high growth phase, the mean MTC value had risen to 6.27, with the highest value being recorded in 2016 (9.88). These data demonstrate that research on urban expansion’s impact on arable land production is increasingly recognized as authoritative and influential.



TABLE 2 Annual average citations per article.
[image: Table showing data from 1983 to 2024 with columns for Year, MTCA, and MTC. Values for MTCA and MTC range from 1.00 to 272.52 and 0.03 to 13.63, respectively. Data is split into two sections: 1983-2005 and 2006-2024.]



3.1.2 Analysis of journals

The 2,810 relevant articles analyzed in this study were published in 863 journals. The top five journals most pertinent to the field of IUF include the Journal of Cleaner Production, Sustainability, Science of the Total Environment, Land, and Land Use Policy, which published 122, 109, 88, 58, and 54 articles, respectively (Figure 3). These journals encompass the disciplines of environmental science, sustainable development, ecology, and associated social sciences, thereby illustrating the multidisciplinary intersection and the diversity of research within the field.

[image: Circular bar chart titled "Journal Publications." Displays the number of publications per journal. Dark to light hues represent different journals. Highest is "Journal of Environmental Management" with 122, lowest is "Environmental Pollution" with 17. Each journal is color-coded and numbered for clarity.]

FIGURE 3
 Number of publications on the IUF in top 20 journals.


The total number of citations (TC) for a journal serves as an indicator of its influence within the scientific community (Table 3). “Science of the Total Environment” is the most frequently cited journal in the IUF field, with a total of 984 citations. Among the top 20 journals by citation count, “Science” was the first to appear (in 1983) and has accumulated 892 citations. In contrast, “Nature” has a relatively low number of publications in the field (only 6), yet it ranks fourth in terms of citation count.



TABLE 3 Citation counts for the top 20 journals in the field of the IUF.
[image: A table listing journals with columns for total citations (TC), five-year impact factor (IF), Journal Citation Indicator (JCI), and initial year (IY) of appearance. Journals include "Science of the Total Environment" with a TC of 984, IF of 8.6, JCI of 1.62, and IY 2006, among others. The highest IF listed is 54.4 for "Nature." The data emphasizes journal prominence in the field of urban sprawl on food production, detailed by citations and impact factors.]




3.2 Research capacity


3.2.1 Country situation analysis

A total of 139 countries have engaged in research related to the IUF domain. Figure 4 illustrates the trend in academic collaboration among countries researching the impact of urban expansion on food production. Overall, the connections between countries intensify and become more complex throughout the study period, indicating an increase in the frequency of collaborative research efforts among countries. In the initial period, the United States and the United Kingdom emerged as the top countries in the country distribution network, with mediation centralities of 0.22 and 0.14, respectively. This suggests that the United States and the United Kingdom exerted significant influence in the early research within the IUF field. During the period of rapid development, the number of countries with high influence expanded, including China, Germany, and Canada. China became the second most influential country following the United States. The countries with the highest intermediary centrality during this period were the United States (0.44), the United Kingdom (0.29), and Belgium (0.22), indicating a considerable level of engagement in international collaboration. During the high-growth phase, China ranks first in the country distribution network, reflecting its increasing research output and influence in this field. Observations of the network nodes reveal that researchers from Albania, Somalia, Tajikistan, and other nations have recently engaged in the study of the IUF field. These trends highlight the growing academic attention to urbanization-induced food security issues, particularly in rapidly developing regions.

[image: Network graph showing trends in country cooperation from 1983 to present, divided into three periods: initial (1983-1999), rapid development (2000-2014), and high growth (2015-present). The USA and People's Republic of China are prominent throughout, with increasing connections and collaboration over time, indicated by growing network density and node sizes.]

FIGURE 4
 Trends in international collaboration during the initial, rapid development, and high-growth phases.


Although collaboration among developing countries remains relatively infrequent, its potential to foster meaningful partnerships should not be underestimated (Figure 5). Nations such as India, Brazil, and South Africa have progressively strengthened their research influence in this domain through strategic collaborations with developed countries. For instance, India’s frequent collaboration with the United States (20 instances) and the United Kingdom (14 instances) underscores its growing prominence within the global academic network. Regional collaboration also plays a pivotal role, as evidenced by the strong partnerships between Argentina and Chile (11 instances) in South America and Austria and Germany (26 instances) in Europe, highlighting the interconnected nature of regional research ecosystems. Moving forward, developing countries should prioritize strengthening intra-regional cooperation while simultaneously deepening academic exchanges with developed nations to collectively address the complex challenges posed by urban expansion’s impact on food production. Global academic collaboration is shaped by the dominant roles of developed countries and the rising influence of emerging economies and developing nations. Future research efforts should emphasize international cooperation, particularly by fostering collaborative innovation among developing countries, to facilitate the integration and exchange of global academic resources and drive sustainable advancements in the IUF field.

[image: World map displaying numerous interconnected lines between various countries, primarily focusing on the United States, Europe, and China. Regions are shaded in varying blue tones, signifying connections or interactions. A scale indicates distances up to ten thousand kilometers.]

FIGURE 5
 Countries’ collaboration world map.


MCP (Number of papers co-authored by authors from different countries), SCP (Number of papers co-authored by authors from the same country), and MCP% (Percentage of MCP out of all papers) metrics indicate the number of co-authored publications between scholars from a specific country and those from other countries (Figure 6). The data show that China, the United States, and Germany exhibit the highest MCP values, with 332, 136, and 64 co-authored papers, respectively. Similarly, China, the United States, and Italy rank highest in SCP, with 623, 272, and 71 co-authored papers, respectively. China and the United States exert significant influence on both domestic and international academic collaboration networks within this domain. The United Kingdom, Australia, and Germany exhibit higher MCP percentages (57.9, 54.8, and 54.7%), whereas China and the United States, despite their top positions in SCP and MCP, have lower percentages (34.8 and 33.3%, respectively). Strengthening cross-border research collaboration between China and the United States has the potential to advance scientific understanding and contribute to research progress on the impact of urban expansion on food production.

[image: Horizontal bar chart displaying MCP and SCP values for various countries, with a line graph showing MCP percentages. The USA and China have the highest MCP values, while India has the lowest. MCP percentages range from 29.9% for India to 57.9% for the United Kingdom.]

FIGURE 6
 Co-authorship of research papers by country collaboration (top 10 countries). The units for MCP and SCP are papers, while MCP% is expressed as a percentage.




3.2.2 Institutional situation analysis

From 1983 to early December 2024, a strong collaborative network emerged among institutions engaged in IUF research (Figure 7). The Centre National de la Recherche Scientifique (CNRS), the Chinese Academy of Sciences (CAS), and the United States Department of Agriculture (USDA) exhibit higher centrality scores of 0.08, 0.07, and 0.07, respectively, indicating their frequent establishment of collaborative ties with other institutions and their significant influence within the research community. CNRS collaborates closely with institutions like the University of Freiburg, the Swiss Federal Institute for Forestry, and the Potsdam Institute for Climate Impact Research. Recently, CAS has strengthened its connections with Purdue University, the Institute of Remote Sensing & Digital Earth, Université Paris-Saclay, Peking University, and others.

[image: Network diagram illustrating collaborations among various global scientific and agricultural institutions. Nodes represent institutions, with size indicating prominence. The Chinese Academy of Sciences is notably highlighted as a central hub with larger nodes. Other institutions, such as the University of Chinese Academy of Sciences, Peking University, and the Ministry of Agriculture and Rural Affairs, are also prominent. Lines indicate collaborative connections, with a dense clustering around central nodes, showcasing international research networks.]

FIGURE 7
 Co-occurrence analysis of institutional collaboration in the IUF domain.




3.2.3 Author situation analysis

From the measurement results, it is evident that 16,120 authors have contributed to studies on the impact of urban expansion on food production. Applying the Lotka curve illustrates the distribution of authors by productivity more distinctly. As depicted in Figure 8, the majority of authors have published a small number of papers, with only a minority publishing more extensively in this field. Specifically, 13,500 authors, representing 83.7% of the total, have authored a single paper, while fewer than 100 authors have published six or more papers; for instance, only 89 authors, or 0.6%, have written six papers.

[image: Graph showing the percentage of authors on the y-axis against the documents written on the x-axis, ranging from zero to over thirty articles. The curve sharply decreases, indicating most authors contribute few documents.]

FIGURE 8
 Lotka’s law curve in the field of the IUF. The horizontal axis represents the number of papers written by authors, measured in units of articles. The vertical axis indicates the percentage of authors who have published the corresponding number of papers.


In the realm of urban expansion’s impact on food production, Zhang Y, Zhu YG, and Ciais P emerge as pivotal researchers wielding considerable academic influence (refer to Table 4). In the context of the h-index (assessing the volume and impact of researchers’ scholarly output), Zhang Y, Zhu YG, and Ciais P are distinguished by their high citation counts, with respective indices of 17, 16, and 15. The g-indexes for Zhang Y, Li Y, and Wang J are 33, 28, and 26, respectively, indicating a substantial body of highly cited works by these scholars. As detailed in Table 4, Li Y and Zhang Y initiated their research in this domain earlier than their peers, commencing in 2005. Furthermore, the publication count for these two individuals is somewhat greater than that of their counterparts, having authored 33 and 28 papers, respectively.



TABLE 4 Author impact in the IUF field (top 10).
[image: Table listing researchers with metrics like h-index, g-index, and m-index to measure academic achievement. It includes total citations (TC), number of publications (NP), and the year they started publishing (PY_start). Authors listed are Zhang Y, Zhu YG, Ciais P, Feng ZZ, Wang J, Li Y, Wang XH, Li L, Piao SL, and Wang L. Each author's h-index, g-index, m-index, TC, NP, and PY_start values are provided, ranging from 2005 to 2013.]




3.3 Research hotspots


3.3.1 Keyword analysis

Co-occurrence analysis of keywords is a method used to identify dynamic themes and hotspots within a research field. The co-occurrence network depicted in Figure 9 consists of 870 nodes, 4,786 edges, and exhibits a network density of 0.0127. The terms “growth,” “climate change,” “management,” “crops,” “land use change,” and “food security” emerge as key terms in the realm of urban sprawl’s impact on food production. Specifically, “growth” appeared 484 times between 1983 and early November 2024, while “climate change,” “food security,” “yield,” and “management” were mentioned 249, 209, 201, and 193 times, respectively. The higher the mediational centrality of a keyword, the more significant its role in bridging different topics. Keywords with a mediational centrality exceeding 0.05 include “growth” (0.31), “food security” (0.06), and “carbon” (0.06), suggesting that scholars are increasingly focusing on aspects such as carbon and food security in their research. Keywords associated with “carbon” include “field,” “cation exchange capacity,” “accumulation,” and “plants,” among others. In the context of urban expansion, LUCC can influence the physico-chemical properties of agricultural soils, thereby impacting food production. This is intricately linked to the dynamics of soil carbon.

[image: Network visualization showing interconnected nodes labeled with terms like "growth," "climate change," and "agriculture." Heavily connected areas are colored red, while lighter connections are green. Central nodes are larger, indicating higher significance or connectivity.]

FIGURE 9
 Keyword co-occurrence analysis in the IUF field.


To further explore the research hotspots and thematic structure of the field, this study conducted a co-occurrence analysis of author keywords using VOSviewer (Figure 10). The results indicate that research in this field primarily revolves around the core themes of food security, climate change, sustainability, land use, and urban agriculture. Consistent with the findings from CiteSpace’s keyword co-occurrence analysis, food security and climate change remain central within the network, while growth and land use change also exhibit strong influence.

[image: Colorful word cloud network visualization displaying interconnected topics in agriculture and environmental studies. Central themes include food security, climate change, sustainability, urban agriculture, and land use, surrounded by related terms like water scarcity, remote sensing, photosynthesis, and machine learning.]

FIGURE 10
 Author keyword analysis.


Keyword clustering analysis is instrumental in delineating prevalent themes within a research domain (Geng et al., 2024) with the IUF field yielding eight primary clusters (Figure 11). Clusters #0 (photosynthesis) #4 (soil) and #2 (urban agriculture) emerged as the initial clusters on the timeline ranging from 1983 to early December 2024 indicative of these topics being among the first research areas explored.

[image: Network diagram illustrating the relationships between various keywords over time, from 1980 to 2024, categorized into eight themes: photosynthesis, ecosystem services, urban agriculture, food waste, soil, winter wheat, private sector, and chlorophyll fluorescence. Each theme is color-coded and connected by lines indicating topic interrelations through years.]

FIGURE 11
 Clustering analysis of keywords in the IUF field.


Since 2005, the areas of #1 (ecosystem services) and #3 (food waste) have emerged as rapidly expanding research topics; #11 (ecosystem services) encompasses keywords including ecosystem services, scenario analysis, afforestation program, urban sustainability, food security, and weather. The #3 (food waste) features terms including food waste management, circular economy, dairy waste valorization, organic amendments, and sustainable agriculture.



3.3.2 Burst analysis

Keyword burst analysis identifies fluctuations in the frequency of specific keywords over a given time frame and serves as an indicator for forecasting research trends and frontiers (Zhou et al., 2018). Figure 12 and Table 5 displays the keywords that CiteSpace software identified as experiencing burst occurrences from 1980 to early December 2024 along with their intensity and duration of these bursts. In terms of burst intensity the keyword with the highest score (6.89) is “growth” persisting from 2007 to 2013 signifying a significant focus on “growth” during this timeframe. Regarding the duration the keyword with the longest timeline is “air pollution” exhibiting a burst intensity of 6.84 from 1992 to 2014 spanning 22 years. Moreover, the terms “soil” “yield” “food” and “vegetation” are pivotal in this field of research. Figure 11 indicates that “soil” is the earliest cluster identified on the timeline; however, the term has experienced a significant surge in interest since 2008 potentially associated with advancements in agricultural and environmental sciences. “scenarios” “economic growth” and “availability” are emerging as current hot topics within the field.

[image: Bar chart showing the frequency of keywords from 1980 to 2024. "Air pollution," "growth," "yield," "greenhouse gas emissions," and "availability" have increased significantly over time. Other keywords have varied red and blue bar lengths indicating their usage trends.]

FIGURE 12
 Burst analysis of keywords in the IUF field. The bar chart illustrates the emergence and burst periods of keywords. The entire period is represented in blue, while the burst periods for each keyword are highlighted in red, indicating the start and end of each burst interval.




TABLE 5 Keyword burst strength.
[image: Table listing keywords with columns for year, strength, begin, and end. Entries include: air pollution (1992, 6.84, 1992-2014), growth (1991, 6.89, 2007-2013), soil (2008, 8.13, 2008-2017), yield (1994, 4.57, 2009-2010), food (1993, 4.91, 2011-2017), vegetation (2011, 4.65, 2011-2015), greenhouse gas emissions (2014, 5.97, 2017-2019), driving forces (2018, 4.46, 2018-2020), framework (2014, 5.92, 2019-2021), life cycle assessment (2019, 4.68, 2019-2021), footprint (2019, 4.8, 2019-2021), green (2020, 5.26, 2020-2021), scenarios (2022, 5.50, 2022-2024), economic growth (2022, 4.51, 2022-2024), availability (1998, 4.4, 2022-2024).]



3.3.3 Highly cited analysis

Highly cited literature serves as a crucial indicator of research hotspots, as illustrated in Table 6. By conducting a thorough analysis of the research directions, methodologies, and conclusions presented within these pieces of literature, one can uncover emerging research trends. These insights offer valuable clues for further exploration and expansion of the existing research hotspots, facilitating a more in-depth and comprehensive understanding of the field. Overall, the GC (Global Citations) of each piece of literature is higher than its LC (Local Citations). This indicates that these literatures have received considerable attention and citations beyond the field of IUF, demonstrating a broader academic influence.



TABLE 6 Highly cited literature in the IUF field (top 25).
[image: A table lists 25 articles with their corresponding DOIs, publication years, local citations (LC), and global citations (GC). LC refers to citations within the IUF field, while GC represents overall global citations. Data ranges from 2007 to 2021, with the highest GC being 786 for an article published in 2017, and the highest LC being 69 for the same article.]

The GC of the paper “China and India lead in greening of the world through land-use management” (Table 6, Article 21) is the highest among the top 25 highly cited documents in the IUF field, reaching 1,819 times. Following it are “Future urban land expansion and implications for global croplands” (Table 6, Article 1) and “Rapid urbanization in China: A real challenge to soil protection and food security” (Table 6, Article 4), with their GC counts reaching 786 times and 695 times, respectively. The paper with the highest LC is “Future urban land expansion and implications for global croplands,” which reaches 69 times. Next are “Estimation of human induced disturbance of the environment associated with 2002, 2008 and 2013 land use/cover patterns in Mexico” published in 2014 (with 35 local citations) and “A global analysis of land take in cropland areas and production displacement from urbanization” published in 2017 (with 34 local citations).





4 Discussion


4.1 Evolution of the IUF in different periods of development

Exploring the evolution of urban sprawl’s impact on food production across various developmental stages is crucial for delineating the field’s progression and establishing a benchmark for future research. The analysis of this study draws on the most cited works from each period, integrating them with identified research hotspots (Section 3.3), to illuminate the focal points of researchers’ interests during those times (refer to Table 6). In the early stages of the IUF field’s development, the volume of publications was minimal, and no articles were extensively cited. Our findings indicate that during this time, the research community primarily concentrated on the impact of air pollution on crop yields (Chameides et al., 1999; Schenone and Lorenzini, 1992). Air pollution is intricately connected to urban sprawl; for instance, regional haze is more prevalent in regions experiencing economic growth (Russell et al., 1999). This pollution can impact plant growth and physiology, subsequently diminishing food production.

The challenge that rapid urbanization presents to soil conservation and food security during periods of swift development is a key research focus, aligning with the findings depicted in Figure 12. The urbanization process has intensified the scarcity of agricultural land, while urban air pollution waste has heightened the risk of soil contamination, evident in the decline of soil availability for food production and the deterioration of soil quality (Chen, 2007). This raises the question of how to achieve a balance between economic development and food production about land resources, while maintaining ecological integrity, which has emerged as a central research issue of this era. To address these issues, numerous countries have developed relevant policies. The effectiveness of these farmland protection policies in mitigating the decline in food production due to the loss of arable land to urban expansion has also been investigated by scholars. Lichtenberg and Ding (2008) evaluated the effectiveness of cropland protection policies in China, discovering that farmland conversion is inefficient in rapidly urbanizing regions, primarily in coastal and select central provinces with more fertile soils. Song and Pijanowski (2014) similarly examined the influence of cultivated land balance (CLB) on the agricultural productivity of croplands. The system’s failures impact the supply and demand dynamics of agricultural land conversion, influencing the returns on such conversions. Ensuring food security is not solely dependent on preserving the quantity of arable land but also on enhancing its quality, a factor that assumes greater importance during urbanization. Additionally, issues such as agricultural pollution, the evaluation of agricultural productivity, the growth of urban agriculture, and the efficient use of resources emerged as key research areas during this time.

Numerous previous studies indicate that urban expansion significantly diminishes arable land, posing a threat to food security. During the period of rapid growth in the field of the IUF, the exploration of new agricultural production models has emerged as a key research focus. As reported by Van Delden et al. (2021), vertical farming facilitates the production of food in a manner that is resilient to climate change, with the potential to eliminate pesticide and fertilizer emissions and decrease land and water usage relative to traditional agricultural practices. This results in a higher yield from less land, thereby enhancing land use efficiency (Al-Kodmany, 2018; Muller et al., 2017). Security challenges resulting from urban sprawl through policy adjustments and enforcement persists. There is a growing emphasis on enhancing the quality and efficiency of arable land, which indicates a consistent research trajectory within the region (Liu and Zhou, 2021). For instance, China has developed a range of policies aimed at reinforcing the control over arable land use, optimizing land resource allocation, and ensuring robust support for food security and sustainable agricultural progress. Additionally, the interplay between ecosystem services and urban growth has been intensively investigated, with modeling, carbon sequestration, and greenhouse gas emissions emerging as prominent research themes (Lee et al., 2015; Wang J. et al., 2019). Furthermore, extensive simulation studies, including scenario simulation, which has recently surged in keyword analysis, have been conducted to forecast the future implications of urban sprawl on food production. This research aims to identify a balance between economic advancement and food security (Zhang et al., 2017).



4.2 Problems, hot spots and prospects in the IUF field

Investigation into the effects of urban sprawl on food production has increasingly become a critical subset of land use change and agricultural science studies, garnering widespread interest among scientists. Presently, the detrimental effects of urban expansion on food production are well-documented, prompting researchers to seek more innovative methods and agricultural systems to alleviate the food supply strain imposed by urbanization (Asirifi et al., 2023; Buckley et al., 2022; Zacharaki et al., 2024). However, several challenges persist in the realm of the IUF research: (1) While researchers employ methods like machine learning and crop simulation models to quantify the impact of urbanization on regional cropland productivity and food production, the significant variability in cropland conditions across regions presents a considerable challenge in enhancing the portability of these models. For example, in some mountainous areas, due to the large topographic relief, traditional crop simulation models constructed based on data from plain areas are difficult to accurately estimate the productivity of cultivated land; (2) Urban development can be guided by identifying high-yield areas through crop cultivation suitability assessments. However, the selection and integration of model indicators are frequently subject to researcher bias, leading to varied outcomes; (3) There exists a gap between the “high-level policy design” and the “on-the-ground implementation” of agricultural policies. For instance, in China, policymakers enforce a policy of offsetting arable land occupation with replenishment to maintain food security. Yet, during execution, urban expansion often seizes prime agricultural land near cities, whereas the newly added arable land tends to be of inferior quality and located in environmentally fragile areas (Deng et al., 2024). This not only affects the food production capacity but also poses a potential threat to the ecological environment, highlighting the problems of lacking effective supervision and refined management in the process of policy implementation; (4) Urban sprawl is indeed a significant factor influencing food production, yet many of its indirect impacts remain unconsidered.

From the land use change and carbon cycle perspective, urban expansion sees a large quantity of cultivated land being occupied by urban construction, causing land use type changes. This significantly impacts the soil’s physical and chemical properties and the carbon cycle. Future research should concentrate on quantifying soil carbon’s source sink effects under different urban expansion models and the long-term influence of soil carbon dynamics on food production. At the ecosystem level, the synergistic link between ensuring food production and maintaining ecosystem services during urban expansion has drawn much attention. Future research can explore the application of ecological compensation in the coordinated development of urban and agricultural ecosystems. Building green infrastructure and improving farmland ecological environment can help achieve urban sustainable development and food security. Regarding food consumption, the “food waste” cluster shows the potential of food waste management and circular economy models in food production. Urban expansion leads to population concentration, which may cause serious food waste during consumption. In the future, exploring the conversion of food waste into useful resources (like promoting composting and returning it to farmland in rural areas near cities) and creating a circular economy model for food production and consumption are likely to be research hotspots in this field. Furthermore, terms like “scenarios” and “economic growth” suggest that analyzing the collaborative development strategies of urban expansion and food production based on multi-scenario analysis is highly significant. Under different economic development models, population growth trends, and policy directions, urban expansion affects food production differently. In the future, by combining factors such as urban planning and industrial layout, various urban expansion scenarios should be developed to analyze food production’s changing trends and challenges under different scenarios.

Future research endeavors might address the following aspects as the relevant field advances. (1) Enhancing model portability can be achieved by reinforcing interdisciplinary collaboration and merging insights from geography, agronomy, computer science, and additional disciplines. The introduction of standardization and modularization principles is proposed to collaboratively create more flexible and versatile models; (2) Assessing the interplay between economic growth and food production amidst urbanization. Intensify studies on the sustainability of food systems and investigate strategies for harmonizing economic, social, and environmental progress, concurrently ensuring food security; (3) An adaptable optimization target strategy can be developed. The appropriate direction and magnitude of urban growth, as well as the preservation of agricultural land, are dictated by considering variables like terrain, climate, and water resource availability across various regions; (4) Investigations into smart farming techniques can be intensified. The deployment of smart agricultural practices can tackle the issues posed by confined urban areas and scarce resources, enhancing both the productivity and sustainability of urban food systems. Intelligent agriculture, vertical farming, and rooftop farming present clear benefits regarding land utilization, water management, and agricultural production methods (Drottberger et al., 2023; Van Delden et al., 2021); the mechanisms by which these benefits enhance food production merit in-depth investigation by researchers. Figures 4, 5 illustrates the significant roles played by the United States and China in the realm of the IUF, yet there is a need to enhance their connections with international counterparts. Consequently, fostering interdisciplinary partnerships, encouraging international academic exchanges, and incorporating novel ideas from diverse disciplines are essential for promoting resource sharing and speeding up the progression of the field.

Additionally, incorporating text mining and machine learning algorithms could enable a deeper analysis of literature content, improving both the accuracy and comprehensiveness of the findings. For topic analysis, text mining techniques such as Natural Language Processing (NLP) and Latent Dirichlet Allocation (LDA) topic modeling can be employed to automatically extract research hotspots, track research trends at different stages of development, and uncover convergence patterns in interdisciplinary research. In terms of trend prediction, deep learning models (e.g., Long Short-Term Memory (LSTM) and Transformer) can be utilized to train time-series forecasting models based on historical literature data, enabling the identification of potential future research directions. By leveraging these methods, researchers can systematically explore the evolutionary trajectories of disciplines, optimize research resource allocation, and provide policymakers with more forward-looking, evidence-based decision support.



4.3 Implications for urban planning and food security policy

The findings of this study have significant implications for urban planners, policymakers, and food security stakeholders. As urban expansion increasingly encroaches upon agricultural land, strategic urban planning and evidence-based policy interventions are essential to mitigating its adverse effects on food production. The identification of research hotspots underscores the urgency of policy-driven solutions, particularly in addressing land-use conflicts and promoting sustainable agricultural practices.

City planners can leverage insights from this study to implement compact urban growth models, integrate green infrastructure planning, and develop land-use zoning policies that prioritize agricultural preservation. Additionally, incorporating peri-urban agriculture into urban development plans can help sustain food production capacity while accommodating population growth. Governments can utilize these findings to design targeted interventions, such as subsidies for sustainable farming practices, farmland protection laws, and adaptive agricultural policies aimed at enhancing productivity in urbanizing regions. Moreover, promoting technological innovations—including precision agriculture and vertical farming—could help offset production losses caused by urbanization.

To bridge the gap between research and policy, future efforts should focus on embedding geospatial analysis into urban and agricultural policy frameworks. Encouraging cross-sector collaboration among urban planners, environmental scientists, and agricultural policymakers can foster more holistic solutions for balancing urban growth with food security needs.



4.4 Limitations of this research

During the research, data sources were only from the Web of Science Core Database. Data from authoritative databases in various countries (such as CNKI) were not included. This caused an incomplete data sample, leading to biases in regions and research focuses. To minimize bias arising from data limitations, we adopt a cautious approach in our analysis and avoid overgeneralization. For instance, when identifying research hotspots and forecasting trends, we derive conclusions solely from stable and highly cited literature, refraining from making definitive inferences about underrepresented data segments. Based on our understanding and analysis of the current state of research, as well as our reflection on the limitations of this study, we propose several directions for future research: (1) Broadening data sources: Future studies should integrate literature from multiple databases to comprehensively cover research from different regions and languages, thereby enhancing the richness and representativeness of the data. (2) Deepening research perspectives: Further exploration is needed to understand the complex mechanisms by which urban expansion affects food production.




5 Conclusion

In this literature review, we searched for scholarly articles examining the influence of urban sprawl on food production within the domain of ecological risks associated with land use changes, spanning from 1980 until the beginning of December 2024. We utilized the Web of Science core database and employed data mining techniques using the bibliometric tools CiteSpace, VOSviewer and Bibliometrix R-tool. Our objective was to conduct a quantitative analysis of the research landscape in this area. The citation analysis findings reveal the evolution of the IUF field, which can be segmented into three stages: the initial phase (1983–1999), the phase of rapid growth (2000–2014), and the current high-growth phase (2015–present). Furthermore, there has been a notable rise in researchers’ focus on the IUF domain in recent times. During the high-growth phase, the mean MTC value is 6.27, suggesting that the research outcomes are gaining credibility and have a broader impact. A collective effort from 139 nations has contributed to research in the IUF domain, with publications such as the Journal of Cleaner Production, Sustainability, and Science of the Total Environment serving as key academic outlets. Studies encompassing environmental science, sustainable development, ecology, and associated social sciences underscore the interdisciplinary nature and the varied scope of research in this field.

The influence of urban sprawl on food production has garnered increased focus in line with the deepening inquiry into global land-use transformation and sustainable farming practices. Beyond ongoing investigations into central themes such as crop productivity, land-use shifts, and food security, recent years have seen a surge in interest in greenhouse gas emissions, predictive modeling, carbon footprint analysis, and the development of smart agricultural technologies as key research focal points. Determining the balance between economic growth and food production amidst urbanization is a key priority for future scholarly inquiry. By delving into the realm of the IUF, we can significantly address the challenge of global food security. Furthermore, strategies for the efficient use of land resources and the advancement of sustainable agricultural practices must also be central to upcoming research efforts.
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Background: This study explores the spatiotemporal characteristics and key driving factors of intensive cropland green innovation transitions in the Yangtze River Delta region (YRD) from 2000 to 2020. The aim is to understand how urbanization, agricultural restructuring, and green productivity improvements have influenced cropland sustainability.
Methods: A comprehensive analytical framework was constructed from three dimensions: landscape attributes, structural attributes, and production attributes. Using landscape pattern indices, Shannon diversity index, and green total factor productivity (GTFP) calculated via data envelopment analysis (DEA), this study quantified changes in cropland use and agricultural practices over two decades.
Results: The findings revealed significant cropland reduction, particularly in highly urbanized areas such as Shanghai and Jiangsu, driven by rapid urban expansion and industrialization. Agricultural diversity improved in cities like Ningbo and Nantong, while Shanghai experienced a decline in planting diversity. GTFP significantly increased across most cities due to technological advancements, especially in Nanjing and Hangzhou. However, regions such as Hefei showed limited progress in green technological adoption. Intensive Cropland is undergoing rapid transformation, and there are obvious signs of internal differentiation in economically developed regions, with more pronounced changes in regions.
Conclusion: This study concludes that region-specific strategies are necessary to balance urban growth with cropland preservation, optimize agricultural structures, and promote green agricultural technologies to ensure sustainable agricultural development in the YRD.
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1 Introduction

Sustainable agricultural development is essential to address the food security challenges posed by climate change, ecosystem degradation, and population growth (Abbasi and Zhang, 2024). Many countries, particularly developed countries, have focused on agricultural transformation and land use efficiency (Amanullah and Khalid, 2020). These efforts include the adoption of green agricultural technologies and optimization of land resources (Hristov et al., 2020).

As one of the most populous nations, China faces immense pressure on its arable land and food security, exacerbated by rapid urbanization and economic growth. In recent decades, changes in land use have led to a significant decline in arable land (He et al., 2017). The national “green development” strategy promotes sustainable agriculture through green technologies, land protection policies, and land use optimization (Shen et al., 2020). The Yangtze River Delta (YRD) is of particular importance due to its high level of urbanization and industrialization. YRD is not only critical to China’s food security, but also serves as a model for other developing regions. While policies in YRD have improved agricultural diversity and cropping patterns (Li and Cui, 2024). Disparities remain, with some cities facing significant land loss and limited crop diversity (Fan et al., 2024). Therefore, a detailed analysis of YRD cropland, its spatial and temporal changes, and the drivers of green innovation is needed to guide agricultural transitions in similar urbanizing regions.

Green innovation is the key to sustainable agriculture (Zhang W. et al., 2024). However, balancing economic growth with sustainable land use and reducing environmental impacts while maintaining production efficiency remains a challenge. While many studies focus on improving production efficiency through technological progress, limited attention has been paid to the spatial and temporal patterns of green land transformation and regional differences (Preusse et al., 2024). Landscape fragmentation, reduced crop diversity, and regional differences in production efficiency pose significant barriers to the greening of agricultural land. Qiu et al. showed how landscape fragmentation promotes crop diversification (Qiu et al., 2020), while Yin et al. identified regional differences in intensification. Intensive land use can also improve energy efficiency (Yin et al., 2019). Promoting technological innovation, optimizing cropping patterns, and improving resource efficiency can significantly improve agricultural sustainability (Xu et al., 2020; Monteleone et al., 2018).

Therefore, it is imperative to integrate the analysis of landscape change, the structure of agricultural cropping, and production efficiency to investigate their impact on the green transformation of cropland and the underlying driving mechanisms. The establishment of a comprehensive research framework is essential to attain a profound comprehension of the dynamic shifts in the utilization of cropland and the driving factors that precipitate them. The main objective of this paper is to develop an analytical framework based on ‘landscape attributes’, ‘structural attributes’ and ‘production attributes’ to study the spatial and temporal characteristics of green innovation in intensive farmland in the YRD region from 2000 to 2020. This research integrates the landscape pattern index, the Shannon diversity index, and the Malmquist index of productivity (MI) from the DEA model to assess the green transformation of agriculture. By combining statistical and spatial analysis, these methods provide a comprehensive view of the evolution of green innovation in intensive agriculture and identify the driving forces behind this transformation.

This study addresses key questions: (1) What are the spatial and temporal characteristics of intensive agricultural land in the YRD region? (2) How does the cropping structure evolve across regions? (3) What are the pathways and regional differences in green total factor productivity? (4) What factors drive the green innovation transformation of cropland? These questions are effectively explored through the application of the selected models. The landscape pattern index helps to assess the spatial dynamics of farmland, including fragmentation and connectivity, which are essential for sustainable land use. The Shannon diversity index shows how cropping structures change over time and space, reflecting the biodiversity and complexity of farming practices. The Malmquist index of productivity (MI) tracks changes in productivity, allowing assessment of technological advances and efficiency improvements in agricultural practices. These models are key to answering the research questions because they allow for a robust, multifaceted analysis of the spatial and temporal dynamics of farmland transformation and the factors influencing green innovation.

This research not only provides empirical support for green agricultural transformation in the YRD, but also offers valuable insights for land use management and policy making in other similar regions, contributing new perspectives and policy recommendations for enhancing agricultural sustainability and improving resource efficiency.



2 Materials and methods


2.1 Study area

The YRD region is located in the eastern part of China (30°20′ to 32°30′ north latitude and 119°24′ to 122°30′ east longitude). It is an important intersection of the “Belt and Road” and the “Yangtze River Economic Belt,” and the region is one of the most economically active, open and innovative regions in China. The region is characterized by a distinctive natural geography, with a humid subtropical monsoon climate, four distinct seasons, and simultaneous rain and heat, which is suitable for the development of a variety of agricultural production methods. The region’s abundant water resources, derived from numerous rivers and lakes, have contributed to its status as a prominent agricultural production base in China. This distinction is particularly noteworthy in the context of China’s ongoing modernization and development, underscoring the area’s significance in supporting agricultural activities over an extended period (Wang et al., 2022; Liu et al., 2015).

In this study, we divide the research area by the administrative boundaries of cities. According to the definition of the Outline of the Plan for the Integrated Development of the YRD, the YRD region has a total area of about 358,000 square kilometers, which covers all of Shanghai Municipality and the three provinces (Jiangsu, Zhejiang, and Anhui), with a total of 41 cities. LULC indicators and other agricultural production panel data are integrated according to urban attributes (Figures 1–5 and Tables 1–9).

[image: Map showing two views: a broader map of China on the left highlighting Jiangxi Province, and a detailed view of Jiangxi on the right. The detailed map distinguishes city areas and provincial divisions with color coding, and includes a legend for shared cities, Jiangxi Province, and Jiangxi-Fujian area. Scale bars and north indicators are present.]

FIGURE 1
 Scope of the study.


[image: Maps showing land use distribution from 2000 to 2020. Each map uses colors to represent different land types such as cropland, forest, water, and urban areas. Changes over time are visible, with noticeable increases in urban areas and shifts in forest and cropland. A legend indicates land use categories, and a scale bar marks distances.]

FIGURE 2
 Spatial and temporal pattern of land use in the YRD region: 2000–2020.


[image: Four choropleth maps display land use change rates (LUCR) in shades of blue for a region from 2000 to 2020, segmented into five-year intervals. Darker shades represent higher change rates. Each map corresponds to a specific period: 2000-2005, 2005-2010, 2010-2015, and 2015-2020. A scale indicates distances up to 600 kilometers.]

FIGURE 3
 Rate of change of cropland utilization in the YRD region: 2000–2020.


[image: Five maps display regional data from 2000 to 2020, with variations in color indicating different data ranges. Each map features a legend ranging from light yellow to dark brown, showing shifts over time. A scale and compass are included for reference.]

FIGURE 4
 Evolution of spatial and temporal patterns of the Shannon diversity index for major crops sown in the YRD region: 2000–2020.


[image: Six maps display land cover changes in a region from 2012 to 2020. The maps are organized in two rows, with three in each row labeled MI, EC, and TC for both years. Each map uses shades of green to indicate different data ranges, as explained in the legends at the bottom left of each map. A scale and north arrow are included for reference.]

FIGURE 5
 Spatial and temporal pattern of green total factor productivity in agriculture in the YRD 2011–2020.




TABLE 1 Data source.
[image: Table listing data types and sources. Row one details land use data sourced from CLCD data by the Chinese Academy of Sciences with a spatial resolution of thirty meters. Row two describes agricultural production panel data sourced from national and regional statistics bureaus including Shanghai, Jiangsu, Zhejiang, Anhui, and other city statistics bureaus.]



TABLE 2 Landscape pattern indices.
[image: Table listing landscape metrics with columns for the first order index, secondary index, abbreviation, and unit. First order indices include Area-Edge, Density and Difference, Edge, Shape, and Aggregation. Each has corresponding secondary indices, abbreviations like CA, PLAND, AREA_AM, and units such as hectares squared and percent.]



TABLE 3 Indicators for the calculation of GTFP.
[image: Table illustrating agricultural indicators categorized into input, desirable output, and undesirable output. Inputs include pesticides, irrigation, fertilizers, crop area, machinery power, and labor. Outputs detail grain, vegetable, oil crop yields, and economic value, with carbon emissions as undesirable output. Units vary by category, such as tons, hectares, and yuan. Descriptions emphasize resource efficiency, environmental impact, and productivity.]



TABLE 4 Cropland utilization transfer moments in YRD: 2000–2005.
[image: Table comparing land use areas in square hectometers for the years 2000 and 2005 across different categories: cropland, forest, shrub, grassland, water, barren, impervious, wetland, and totals. Each category lists corresponding figures for both years. Notable increases are seen in impervious and water areas by 2005. Total land area increased from 46,810,317.51 in 2000 to 48,613,017.51 in 2005.]



TABLE 5 Cropland utilization transfer moments in YRD: 2005–2010.
[image: Comparison table of land use types between 2005 and 2010. Columns include cropland, forest, shrub, grassland, water, barren, impervious surfaces, and total area in hectares. Significant increases in water and impervious land are noted from 2005 to 2010. Total hectares grew from 48,613,017.51 in 2010 compared to 2005's 44,814,402.3.]



TABLE 6 Cropland utilization transfer moments in YRD: 2010–2015.
[image: Table comparing land use data in square hectometers for 2010 and 2015 across categories: cropland, forest, shrub, grassland, water, barren, impervious, and total. Notable changes include increases in water and impervious land in 2015.]



TABLE 7 Cropland utilization transfer moments in YRD: 2015–2020.
[image: A table comparing land use changes from 2015 to 2020 across different categories: cropland, forest, shrub, grassland, water, barren, and impervious areas. Each category lists the area in hectares squared (hm²) for both years, showing significant changes, particularly in forest and water areas. Total area for each year is also provided.]



TABLE 8 Cropland landscape pattern index (Zhejiang and Jiangsu provinces: 2000–2020).
[image: A comparative table presenting various indices for Zhejiang and Jiangsu from 2000 to 2020. Indices include CA, PLAND, NP, PD, LPI, ED, LSI, AREA_AM, SHAPE_AM, and AI. Each index shows values for different years, illustrating trends and changes over time for both regions. Zhejiang data spans from 3,499,073.5 in 2000 to 3,206,103.7 in 2020 for CA, while Jiangsu data ranges from 11,079,574 in 2000 to 10,024,018 in 2020. Similar trends are observable in other indices.]



TABLE 9 Cropland landscape pattern index (Shanghai and Anhui Province: 2000–2020).
[image: A table compares various indexes for Shanghai and Anhui from 2000 to 2020. Indexes include CA, PLAND, NP, PD, LPI, ED, LSI, AREA_AM, SHAPE_AM, and AI. Values fluctuate over the years, showing changes in each region's metrics, such as CA declining in Shanghai from 687,905.46 in 2000 to 561,966.21 in 2020, and in Anhui from 12,388,905 in 2000 to 11,660,758 in 2020. Other indexes like PLAND, NP, PD, etc., display similar trends.]


2.1.1 Data sources

The data used in this paper cover sub-regional land use data and agricultural production panel data in the YRD region from 2000 to 2020, and combined with panel statistics, mapping and spatial analysis methods, it provides a solid data foundation for the study of green innovation and transformation of municipal intensive farmland ecosystems in the YRD.

	1. Land-use data: The land-use data used in this paper come from the CLCD data of the Cloud Platform for Resource and Environmental Data of the Chinese Academy of Sciences,1 with a spatial resolution of 30 meters, and the recognition accuracy of various land-use types is higher than 90%. The data includes nine major land use types such as cropland, forest land, construction land, etc., which can effectively reflect the trend of land use changes in the YRD region between 2000 and 2020 (Luo et al., 2017).
	2. Agricultural production panel data: Sourced from the National Bureau of Statistics of China2 Shanghai Statistics Bureau,3 Jiangsu Provincial Bureau of Statistics,4 Zhejiang Provincial Bureau of Statistics5 and Anhui Provincial Bureau of Statistics,6 as well as the statistical bureaus of prefecture level cities. This data provides important support for assessing the utilization intensity of farmland ecosystems and changes in agricultural production patterns (Liu et al., 2020).

In order to ensure the accuracy and reliability of the data, this paper validates the subregional grain sown area and production data through the data provided by provincial and municipal statistical bureaus. The amalgamation of these multi-source data sets provides a robust foundation for spatial analysis, exploration of spatiotemporal characteristics, and study of influencing factors in this paper.




2.2 Research methodology


2.2.1 Land use change rate (LUCR)

The objective of this study is to assess the magnitude and speed of the dynamic changes of various land use types in the YRD region during the period of 2000–2020. To this end, the Land Use Change Rate (LUCR) method is employed. The LUCR has been demonstrated to quantitatively describe the trend and intensity of land use change between different points in time by calculating the magnitude of change of various land use types in adjacent time periods (Ning et al., 2018). Land Use Change Rate (LUCR).

The rate of land use change is calculated by the Equation 1:

[image: Formula for LUCR is shown as: \( LUCR = \frac{A_{t_2} - A_{t_1}}{A_{t_1}} \times 100\% \).]

Among them:

	• [image: Mathematical notation of the letter "A" with a subscript "t1".] is the area of a land use type at time t1;
	• [image: The image shows the mathematical notation "A" with a subscript "t" and a subscript "2".] is the area of the type at time t2;
	• LUCR is the rate of change (%) of the type over the t1 and t2 time periods.

This formula is employed to evaluate the intensity and rate of change of each land-use type between two specified points in time. A positive value of LUCR signifies an increase in the area of a specific land use type, while a negative value denotes a decrease in that area. The calculation of LUCR enables this study to make a comprehensive quantitative assessment of the different types of land use change.



2.2.2 Land-use transfer matrix

This study employs the land use transfer matrix method to quantitatively analyze the interconversion relationship between cropland and other land use types over different time periods. The land use transfer matrix is a quantitative tool that can reveal the dynamic change process between land use types by showing the interconversion of a certain type of land use at different points in time (Zhang and Lu, 2021; Niu et al., 2022).

The construction of land use transfer matrices for the following time periods was undertaken: 2000–2005, 2005–2010, 2010–2015, and 2015–2020. The objective of this undertaking was to comprehensively reveal the dynamics of cropland in the YRD region at different stages. By analyzing the inter-transformation of different land types, the long-term impacts of urban expansion, agricultural transformation, and ecological restoration on cropland patterns in the region can be assessed.



2.2.3 Landscape pattern index analysis

This study quantitatively analyzes the spatial distribution and quantitative scale of cropland by means of the Landscape Pattern Index (Lamine et al., 2018). Combined with the actual situation of intensive cropland in the YRD region, the following types of landscape pattern indices were selected for analysis in this study:

The remote sensing image data were first processed to obtain the spatial distribution of cropland at five time points (2000, 2005, 2010, 2015, and 2020). Image classification technology was used to categorize land use types at each time point, extracting the spatial information of cropland patches. Landscape pattern indices for these cropland patches were then calculated using FRAGSTATS4.2, which allowed the assessment of spatial patterns and fragmentation over time. Finally, the results of the pattern index were analyzed in combination with spatial and temporal trends in cropland use patterns in the YRD region over the past 20 years, revealing the evolutionary characteristics of cropland quantity, area, shape, and distribution during the urbanization process.



2.2.4 Shannon diversity index

In order to study the changes in the diversity of major crop planting structures during the green innovation transformation of agriculture in the YRD, this study introduced the Shannon Diversity Index (SDI) as a core indicator to measure the diversity of crop planting structures (Konopiński, 2020).

The Shannon diversity index (H′) was calculated as Equation 2:

[image: Mathematical equation for entropy: \( H' = -\sum_{i=1}^{S} p_i \ln(p_i) \).]

Among them:

	• H′: Shannon Diversity Index, larger values indicate higher diversity.
	• S: Total number of crop species in the region.
	• [image: Lowercase letter "p" followed by a lowercase "i" in subscript.]: The relative proportion of area occupied by crop i in the region, i.e., the proportion of area planted with crop i to the total area planted with the crop.
	• [image: Natural logarithm of \( p_i \).]: Take the natural logarithm of the relative area of the crop.

The index takes into account not only the number of crop species, but also the proportion of area planted with different crops, thus reflecting the abundance and evenness of distribution of crop species. In this study, five time points, 2000, 2005, 2010, 2015, and 2020, were selected to collect data on the area planted to major crops. Major crops include cereals (e.g., rice, wheat, corn, beans, sweet potatoes), oilseeds (e.g., peanuts, rapeseed), cotton, hemp, sugar, and vegetables.



2.2.5 Green Total Factor Productivity (GTFP) calculation

Green Total Factor Productivity (GTFP) is an important indicator of technological progress and management efficiency change in the production system. The present study employs the Malmquist productivity index in conjunction with technical efficiency change (EC) and technological change (TC) to facilitate an exhaustive examination of agricultural production efficiency in disparate years and metropolitan areas (Liu et al., 2021).

The GTFP calculation method is predicated on the Data Envelopment Analysis (DEA) model and the Malmquist Productivity Index. It has the capacity to assess the increase or decrease in agricultural productivity in different regions at different times, especially after the introduction of environmental costs (undesired outputs) on the application of green technologies and the development of environmentally friendly agriculture (Yang et al., 2022). In this study, the following input, desired output and non-desired output indicators were selected in the GTFP calculation:

Based on multi-city and multi-year agricultural production data, this study used the Malmquist Index (MI) to measure the green total factor productivity of agricultural production in 41 cities in the YRD region during the period 2011–2020. The Malmquist Index (MI) was calculated as Equation 3:

[image: Equation labeled as formula three. Monetary Impact, MI, of time t minus one to t equals EC of time t minus one to t over EC of time t, multiplied by TC of time t minus one to t over TC of time t.]

Among them:

MI denotes changes in total factor productivity. EC denotes changes in technical efficiency, reflecting changes in resource allocation and management levels across cities. TC denotes technological progress, reflecting advances and innovations in production technology.





3 Results


3.1 Characteristics of spatial and temporal transformation of arable land use


3.1.1 Spatial and temporal characteristics of arable land utilization

Between 2000 and 2020, the arable land area of the four provinces and cities in the YRD region (Anhui, Jiangsu, Zhejiang, and Shanghai) generally decreased, especially in Jiangsu and Shanghai. Overall, economic development, urban expansion and industrialization in the YRD region have brought about significant impacts on arable land resources.

Despite the relatively slow rate of urbanization in Anhui Province, the area of arable land has been encroached upon as a result of the accelerated process of industrialization. Moreover, the pursuit of economic growth and the development of infrastructure have exerted persistent pressure on arable land resources. Jiangsu Province has witnessed the most substantial contraction in cropland area, with a decline of 7,571.76 hm2 over the span of two decades. Jiangsu Province, a prominent economic powerhouse within the YRD region, has undergone rapid urbanization and industrialization, placing substantial pressure on its arable land resources. Specifically, between 2000 and 2010, Jiangsu experienced a substantial decrease of approximately 4,647 hm2 in arable land area, primarily attributable to demands for urban expansion and industrial zone construction. In comparison, Zhejiang Province witnessed a decline in cropland from 26,619.47 hm2 in the year 2000 to 24,583.35 hm2 in 2020, marking an approximate reduction of 2,036 hm2. In comparison with Jiangsu Province, the decline in arable land in Zhejiang Province is comparatively modest. Zhejiang Province has adopted a diversified economic development model, one that emphasizes high-value-added industries while implementing stringent measures to protect its arable land. Conversely, Shanghai, a leading economic hub in China, has witnessed a substantial decline in its arable land, amounting to approximately 17% over the past two decades. The city’s arable land decreased from 5,102.58 hm2 in the year 2000 to 4,229.34 hm2 in 2020. This decline is attributable to the rapid urbanization of Shanghai, which has led to significant encroachment of urban expansion onto arable land. A particularly notable period occurred from 2000 to 2010, when arable land in Shanghai decreased at an accelerated rate of approximately 690 hm2 per decade.



3.1.2 Rate of change in cropland utilization

Overall from 2000 to 2020, most cities in the YRD region show a significant trend of decreasing arable land. In particular, the occupation of arable land by the rapid expansion of urbanization was more significant during the periods 2000–2005 and 2005–2010. The main reasons for the reduction of arable land include urban expansion, industrialization, infrastructure construction and changes in land use patterns.

2000–2005 and 2005–2010: The decrease in arable land is particularly significant, with the rate of change of arable land in some cities, such as Suzhou, Hangzhou and Wuxi, exceeding −10 per cent, demonstrating the strong demand for land resources as a result of urbanization. Especially in these economically developed areas, arable land resources are under greater pressure, and land resources are gradually being transformed to non-agricultural uses.

2010–2015 and 2015–2020: The decline in arable land has slowed down, and there is even a trend toward the recovery of arable land in some areas. With the implementation of ecological restoration policies and the promotion of green agricultural development, the area of Cropland in some cities has recovered, especially in some areas of Zhejiang Province.

From the time dimension, the trend of arable land reduction in the YRD shows obvious phase changes. In the early period (2000–2010), the rate of arable land reduction is relatively fast, reflecting the strong impetus of urbanization and industrialization. In the later period (2010–2020), on the other hand, the rate of cropland reduction tends to slow down, and cropland recovery occurs in some areas, indicating a gradual adjustment of land use policies. In the entire YRD region, the economically developed cities in Jiangsu and Zhejiang provinces (e.g., Suzhou, Hangzhou, Wuxi, and Wenzhou) experienced the most significant reduction in arable land. The rate of change of arable land in these cities is generally low, especially during the period 2000–2010, and the large reduction of arable land area is directly related to their rapid urbanization and expansion. As the core cities of the YRD, these cities have a greater demand for land due to population growth, industrial development and urban infrastructure construction, resulting in the gradual replacement of arable land resources by urban construction land and industrial land.

The trend of arable land reduction in cities such as Suzhou, Hangzhou, and Wuxi was most obvious during the period 2000–2010, with the rate of change of arable land once reaching more than −10%. Although the rate of arable land reduction slowed down in the later period (2015–2020), and some cities, such as Suzhou, even experienced arable land recovery, overall, the arable land resources in these areas are still under continuous pressure.

In contrast, some inland cities in Zhejiang Province (e.g., Quzhou, Shaoxing, Jinhua, and Lishui) had positive rates of change in cropland during 2010–2020, showing a significant trend of cropland restoration. This may be related to local ecological restoration projects, returning farmland to forests, and government policies to protect agricultural land.

Lishui (+36.83%) and Wenzhou (+12.67%): these cities have seen significant recovery of their arable land during 2010–2020, possibly due to policy support as well as the implementation of ecological restoration. Although the relative economic development of these regions is slow, their land use policies are tilted toward green transformation and ecological restoration, which promotes the recovery of arable land resources.

There are significant differences in the changes in cropland utilization between Jiangsu and Anhui provinces. Most cities in Jiangsu Province experienced a relatively large reduction in arable land during 2000–2010, which is closely related to the rapid urbanization and industrialization of the province as the core region of economic development in the YRD. Even in the later period (2015–2020), the trend of arable land reduction still exists, especially in Xuzhou and Jiaxing, where the reduction of arable land is still large. In contrast, some cities in Anhui Province (e.g., Hefei and Anqing) have relatively smoother changes in cropland utilization during 2015–2020, and some cities even show a trend of cropland recovery. This may be related to the relatively slow rate of urbanization in Anhui Province and the high degree of dependence on arable land resources for agricultural development in the province.

Shanghai, as a municipality directly under the central government, is relatively unique in terms of changes in arable land use: between 2000 and 2010, arable land in Shanghai declined significantly, and the rapid expansion of urban construction resulted in a large amount of arable land being converted to urban land. However, between 2015 and 2020, the rate of arable land reduction in Shanghai has slowed down, indicating that with the tightening of land resources, Shanghai may have adopted more stringent land management measures and optimized land use.



3.1.3 Cropland utilization transfer matrix

Cropland in the YRD region shows a clear decreasing trend between 2000 and 2020, which is categorized into the following stages.

2000–2005: initial phase of arable land reduction.

Cropland decreased 1,276,038.72 hm2 in 2005, a decrease of approximately 880,957.71 hm2. Of this, 353,736.36 hm2 of arable land was converted to forest, 343,821.69 hm2 of arable land was converted to water, and 574,686.9 hm2 was converted to Impervious land.

2005–2010: Continued reduction of arable land and increased pressure of urbanization.

Cropland decreased by 1,248,657.12 hm2 in these 5 years, of which 699,964.74 hm2 was converted into Impervious land, 296,914.05 hm2 into forests and 244,849.5 hm2 into water.

2010–2015: Decline in arable land slowing down.

Cropland area decreased by 1,179,531.36 hm2, of which 809,394.03 hm2 was converted into Impervious land, 216,312.48 hm2 was converted into water, and 151,283.16 hm2 was converted into forest.

2015–2020: arable land decline continues to slow, but urbanization persists.

Cropland area decreased by 776,839.05 hm2, of which 437,170.5 hm2 was converted into Impervious land, 222,061.95 hm2 into forests, 116,897.76 hm2 into water.



3.1.4 Landscape pattern of arable land

Cultivated landscapes in all four provinces have experienced significant fragmentation and decentralization over the past 20 years, especially in Jiangsu Province and Shanghai Municipality, where urban expansion has had a strong impact on cultivated landscapes, leading to a decrease in cultivated area, an increase in the number of patches, a rise in shape complexity, and a gradual fragmentation of the landscape. However, the cultivated landscapes in Anhui Province are relatively stable, and although the trend of fragmentation and decentralization exists, the magnitude of its change is relatively small, and the Cropland still maintains a high degree of aggregation. This suggests that the agricultural landscape in Anhui Province is less affected by urbanization, and still maintains a high degree of Cropland connectivity and a low degree of landscape fragmentation.

Cultivated landscapes in Jiangsu Province and Shanghai have suffered the most significant reduction in area, especially in Shanghai, which has been squeezed by high urbanization. As urban expansion intensifies, the area of cultivated landscapes is gradually replaced by other land use types. Zhejiang Province, too, has seen a decline in its cropland area, though the rate of change is less pronounced than in Jiangsu and Shanghai. Conversely, the cultivated landscapes in Anhui Province have undergone a decline, yet they have maintained a relatively high degree of stability. The most pronounced fragmentation of cropland landscapes was observed in Jiangsu and Shanghai, as evidenced by a significant increase in the number of patches (NP) and patch density (PD). This indicates that cropland landscapes in these regions have become fragmented into smaller, more dispersed patches. This fragmentation may have negative ramifications for landscape connectivity, ecosystem services, and the sustainability of agricultural production. The trend of landscape fragmentation was also more pronounced in Zhejiang Province, but the degree of fragmentation was slightly lower than in Jiangsu and Shanghai. Conversely, the landscape fragmentation process of cropland in Anhui Province exhibited a more moderate trend, with the landscape maintaining a high degree of continuity and aggregation. Specifically, the following indicators reflect in detail the characteristics of the spatial and temporal transformation of cropland utilization.

	Area-edge indicator:

CA (Class Area): Jiangsu and Anhui provinces have the largest areas of cultivated land, 10,042,018.38 ha and 11,660,757.57 ha, respectively, indicating that they are still predominantly agricultural provinces. However, the area of Cropland in all four provinces has declined over the 20-year period, especially in Shanghai, from 687,905.46 ha in 2000 to 561,966.21 ha in 2020, indicating that urbanization has squeezed the area of Cropland most significantly.

PLAND (Percent of Landscape): The proportion of arable land in the landscape area shows a decreasing trend in all provinces. The PLAND values of Jiangsu and Anhui provinces are 68.79 and 60.08%, respectively, in 2020, while those of Zhejiang and Shanghai decrease to 23.49 and 57.16% respectively, indicating that the proportion of arable land in the overall land use in these regions is gradually decreasing, especially in Shanghai, which is strongly affected by urban expansion.

AREA_MN (Mean Patch Area): Anhui Province has the highest AREA_MN value of 139,242.33 square meters in 2020, indicating that its cropland landscapes are relatively intact and less fragmented. In contrast, Shanghai has the lowest AREA_MN value of 77,635.27 square meters, indicating that the arable land is divided into smaller units with the most serious fragmentation.

LPI (Largest Patch Index): The LPI values of the four provinces show a decreasing trend, especially in Jiangsu Province, from 52.13 in 2000 to 24.12 in 2020, indicating that the dominant position of the largest patches of Cropland in the landscape is gradually weakening, and the landscape is becoming more fragmented. The LPI value of Shanghai also declined from 18.21 to 16.12, reflecting that urbanization has a greater impact on the importance of the dominant patches of cropland landscapes.

	Density and difference indicator (Density and difference):

NP (Number of Patches): The NP values for Jiangsu Province and Shanghai Municipality increase significantly, from 113,042 and 12,045 to 203,097 and 27,096, respectively, indicating increasing fragmentation of cultivated landscapes. The NP value also increased in Zhejiang Province, which was 260,827 in 2020, showing further fragmentation of cropland. In contrast, the NP value in Anhui Province is relatively stable at 209,366 in 2020, indicating a more moderate trend of cropland fragmentation in the province.

PD (Patch Density): Shanghai’s PD value increases from 1.23 in 2000 to 2.76 in 2020, reflecting the most significant landscape fragmentation. The PD value of Jiangsu Province increases from 0.78 to 1.39, showing that the degree of fragmentation is also increasing. Zhejiang Province has a relatively high PD value, indicating that the number of its cropland patches is increasing. The PD value of Anhui Province, on the other hand, changed less, indicating that the cropland landscape was relatively stable.

	Edge indicator (Edge):

ED (Edge Density): The ED value of Jiangsu Province increased from 36.31 in 2000 to 45.98 in 2020, indicating that the complexity of the landscape boundaries of arable land increased significantly and landscape fragmentation intensified. The ED value of Shanghai increased from 40.72 to 50.52, indicating that urbanization led to the increasing complexity of the boundaries of cropland patches. The ED value of Zhejiang Province increased from 26.44 to 32.01, with a smaller change, while the ED value of Anhui Province increased from 35.73 to 39.05, showing that the boundary complexity of its cropland landscapes increased more gently.

	Shape indicator (Shape):

LSI (Landscape Shape Index): The LSI values of the four provinces have increased, especially the LSI values of Jiangsu and Zhejiang provinces have increased significantly, from 399.09 and 482.96 in 2000 to 530.81 and 610.69 in 2020, respectively, indicating that the shapes of cropland patches are becoming more complex and irregular. The LSI value of Shanghai is relatively small, but it also increases from 151.04 to 167.08, showing the change in the shape of cropland due to urbanization. The LSI value of Anhui Province increased from 494.25 to 556.33, showing that the complexity of its patch shape is gradually increasing, but the change is relatively mild.

SHAPE_AM (Mean Shape Index): The mean shape index (SHAPE_AM) reflects the uniformity of patch shape. Zhejiang Province’s SHAPE_AM decreases from 61.67 in 2000 to 44.46 in 2020, indicating that the shape of its cropland tends to be simpler. SHAPE_AM also decreased in Jiangsu and Shanghai, indicating that the complexity of the shape of the patches was simplified in some aspects. SHAPE_AM in Anhui Province, on the other hand, remained relatively stable.

	Aggregation indicator (Aggregation):

AI (Aggregation Index): The AI values of Jiangsu Province and Shanghai Municipality decreased from 96.41 and 95.62 in 2000 to 94.98 and 93.35 in 2020, indicating the gradual dispersion of cultivated landscapes and increased fragmentation. The AI value of Zhejiang Province decreased from 92.27 in 2000 to 89.78 in 2020, indicating the gradual dispersion of cropland patches and the obvious trend of landscape fragmentation. The AI value of Anhui Province has the smallest change, decreasing from 95.80 to 95.12, indicating that its cultivated landscapes still maintain a high degree of aggregation.




3.2 Characteristics of the transformation of the structure of agricultural production

Based on the Shannon Diversity Index of the agricultural cropping structure of 41 cities in the YRD from 2000 to 2020, this study will analyze these data from three aspects: the overall trend of change, regional differences, and the specific situation of each city.

	Overall trend of Shannon’s diversity index

General trend: The Shannon Diversity Index for most cities shows a fluctuating trend between 2000 and 2020. The index has increased in some cities, indicating a wider variety of crops and a more balanced cropping structure in these areas, while the index has decreased in some cities, indicating a homogenization of the cropping structure.

Changes in 2020 compared to 2000: Overall, the Shannon Diversity Index in 2020 shows a varying degree of increase compared to 2000, especially in some large cities and areas with faster economic development, where the diversity of the planting structure has been enhanced.

	Analysis of regional differences

Cities in Jiangsu Province (e.g., Nanjing, Wuxi, Suzhou, Xuzhou, etc.) have significant differences in the diversity of planting structures: the Shannon Index in Nanjing is 1.44 in 2020, which overall has remained stable since 2000 with small fluctuations, indicating that the agricultural structure in Nanjing is relatively stable. The value of the index in Wuxi changed less in 20 years and was 1.32 in 2020, showing that the agricultural structure in Wuxi did not change significantly, which may be related to the high degree of urbanization and industrialization in Wuxi, with a relatively homogeneous agricultural cultivation structure. The Shannon Diversity Index of Nantong and Yancheng is 1.79 and 1.87 in 2020, showing a more diverse planting structure, especially in Yancheng, where the Shannon Index has increased significantly since 2000, indicating a gradual increase in the diversity of crop species.

The Shannon Diversity Index of cities in Zhejiang Province shows an overall high level: in 2020, the Shannon Diversity Index of Hangzhou reached 1.73, maintaining a high level, showing that Hangzhou’s agricultural cultivation structure is more diverse. The index reaches 1.66 in 2020, steadily increasing since 2000, indicating a gradual diversification of agricultural cropping structures in Ningbo. Although the Shannon Diversity Index was high (1.43) in 2000, it declined after 2015 to 1.39 in 2020, showing that Jiaxing’s cropping structure tends to be more homogenized.

Cities in Anhui Province show significant changes in cropping structure: the Shannon Index in Hefei decreases from 1.95 in 2000 to 1.42 in 2020, indicating a trend of concentration in the agricultural structure, probably due to accelerated urbanization and the transformation of agricultural production methods. The Shannon Index of Bengbu is 1.57 in 2020, decreasing compared to 1.94 in 2000, indicating a gradual centralization of the cropping structure over the past 20 years. Huangshan’s Shannon Index is relatively stable, at 1.59 in 2020, and the diversity of agricultural planting structures remains at a high level.

Shanghai’s Shannon Diversity Index was 1.45 in 2000 and declined to 0.94 in 2020, a large decrease. As a highly urbanized area, Shanghai’s agricultural cropping structure tends to be extremely concentrated, probably due to the expansion of urban land, the shrinkage of agricultural land, and the gradual homogenization of cropping structure.



3.3 Transformative performance of green production in agriculture

From the perspective of the four provincial capital cities, the MI value of Shanghai improves from 0.25381 to 1.4683 from 2012 to 2020, meanwhile, the TC value is higher in the later period. It shows that in the late period Shanghai has significantly improved in technological progress. The MI value of Nanjing increases significantly from 1.1580 to 4.0458, which shows great technological progress and indicates that Nanjing adopts more advanced technologies in the agricultural production process. Hangzhou’s MI value grew from 1.1956 to 1.8895, indicating good performance in technological progress, which drove total factor productivity growth. In 2016, Hefei’s MI value was 0.8202, indicating mediocre technological efficiency performance and slower technological progress in that year. By 2020, the MI value has risen to 1.1229, with a TC value of 1, indicating enhanced technical progress and a steady increase in total factor productivity.

The cities of Nanjing, Wuxi, and Xuzhou in Jiangsu Province showed stable performance in terms of technical efficiency and gradually enhanced technical progress after 2016, with a significant increase in MI. This is related to the promotion of local agricultural technology and the optimization of resource management. Cities such as Nantong and Suzhou have relatively stable total factor productivity growth, and the TC value shows greater technological progress, indicating better continuity in the adoption of agricultural technologies. Cities such as Hangzhou, Ningbo, and Wenzhou in Zhejiang Province show strong technological progress, with MI values improving after 2016, indicating significant results in technological innovation and technology diffusion. Shaoxing and Jiaxing fluctuated slightly in terms of technical efficiency, but the overall trend was positive, indicating that the allocation of resources in regional agricultural production was gradually optimized.

Cities in Anhui Province, such as Hefei and Wuhu, perform better overall in terms of MI values, especially in terms of technological progress (TC), and technological efficiency and total factor productivity have improved with the upgrading of agricultural production technologies and policy support. The MI values of Anqing and Fuyang, among others, have increased significantly in 2020, indicating that technological innovation has made significant progress in the region, especially in the application of modern agricultural machinery and new technologies.




4 Discussion


4.1 Urbanization and industrialization as key drivers of cropland dynamics

The spatiotemporal characteristics of farmland use in the YRD region are mainly driven by urbanization and industrialization. As the regional economy grows rapidly, especially in Jiangsu and Shanghai, large-scale conversion of farmland into urban and industrial land has been a significant consequence. This urban expansion, driven by the need for infrastructure, residential and commercial areas, has directly compressed agricultural land, affecting both the area and distribution of farmland.

In Shanghai, urbanization and industrial growth led to a 17% reduction in arable land between 2000 and 2010. Similarly, Jiangsu experienced significant land loss as infrastructure and industrial zones expanded, often at the expense of farmland. Conversely, Zhejiang has been more effective in reducing farmland loss through rigorous land use planning and ecological restoration, demonstrating that strong policy enforcement and long-term planning can mitigate the impact of urbanization and industrialization on farmland (Gao et al., 2023).



4.2 Impact of economic development and policy on cropland changes

The rapid economic development and government policy trends have further influenced the urbanization and industrialization of the YRD region. A particularly salient period of this phenomenon transpired from 2000 to 2010, a time marked by a substantial surge in urban construction, infrastructural expansion, and an escalating demand for industrial land. This dynamic, in turn, precipitated a considerable occupation of arable land resources. This trend was most evident in the economically developed regions of Jiangsu and Zhejiang. In response to these challenges, the government has implemented policies aimed at managing land resources, including initiatives to restore ecological balance and to return farmland to forests. These measures have contributed to a decrease in the area of arable land in certain regions (e.g., the inland cities of Zhejiang) has been restored during the 2010–2020 period.

Furthermore, advancements in agricultural technology and the optimization of land use have contributed to the recovery of arable land in select cities. The utilization of cropland is directly influenced by disparities in regional economic development (Chen et al., 2021). Economically developed regions exhibit a higher demand for construction land, which results in a reduction of arable land. Conversely, regions experiencing slower economic development prioritize the protection of arable land in their land utilization strategies, given the persistent role of agriculture as a significant economic sector (Miao et al., 2021).

Changes in cropland utilization in the YRD region show obvious spatial and temporal heterogeneity. In the context of intensive agricultural transformation and green innovation, rational optimization of land use, improvement of agricultural production efficiency and implementation of effective ecological restoration measures are the keys to achieving green and sustainable agricultural development in the YRD region in the future (Deng et al., 2015).



4.3 Landscape fragmentation and connectivity: effects of urban expansion on cropland

Analysis of the landscape fragmentation indicators shows that the highly urbanized landscape of Shanghai showed significant changes over 20 years, with CA decreasing by nearly 20% and PLAND decreasing from 69.96 to 57.15%, reflecting the impact of urban expansion on farmland. Increased NP and PD values indicated higher landscape fragmentation, but the AI value remained relatively stable, suggesting that connectivity within the farmland landscape was somewhat preserved. In contrast, Quzhou in Zhejiang Province showed decreased NP and PD values, indicating more integrated and concentrated farmland landscapes due to intensive agricultural management.

In all four provinces, landscape boundary complexity (ED) and patch shape irregularity (LSI) increased, with Jiangsu and Zhejiang showing greater fragmentation and disturbance. In Shanghai and Anhui, these indices also increased, but to a lesser extent, reflecting the impact of urbanization on farmland configuration. The decline in AI in all provinces highlights increased fragmentation, particularly in Jiangsu and Shanghai, where it has led to reduced connectivity between patches and potential ecological degradation. Anhui, however, maintained a higher degree of aggregation with minimal fragmentation.

To address fragmentation and ecosystem degradation, the YRD region needs to strengthen policies to conserve farmland and enhance ecosystem functions. This includes adopting intensive agricultural practices, integrating green technologies such as land consolidation, and establishing ecological compensation mechanisms (Zhang X. et al., 2024). Jiangsu and Shanghai need proactive policies to restore and integrate fragmented landscapes, while Anhui should focus on conserving its arable land while promoting green innovation for sustainable agricultural development (Wu et al., 2018).



4.4 Structural shifts in agricultural practices: modernization and policy influence

The Shannon Diversity Index in certain cities, including Hefei, Bengbu, and Suzhou, has undergone a gradual decline, suggesting that the agricultural cultivation structure in these regions has undergone a process of concentration. This phenomenon is likely associated with the accelerated modernization of agriculture and the expansion of urbanization (Jafari et al., 2022). These regions have undergone a transition from small-scale, diversified planting patterns to large-scale, intensive agricultural production methods. The increasing trend of the Shannon Diversity Index in Yancheng, Ningbo, and Nantong indicates a diversification of the agricultural cropping structure, which may be attributable to policy-driven agricultural restructuring or the gradual adoption of a more diverse array of cash crops by local farmers. In highly urbanized cities such as, such as Shanghai, Wuxi and Suzhou, the Shannon Diversity Index showed a clear downward trend, indicating once again that the urbanization process has had a significant impact on agricultural land and cropping structure, and agricultural activities have gradually concentrated on a few high-efficiency crops.

The Shannon Diversity Index of most cities experienced fluctuations during the 20-year period, with some areas showing diversification of planting structures, while some highly urbanized areas showed a trend of concentration of planting structures. In the future, while continuing to promote the modernization of agriculture in the YRD region, how to balance urbanization and the diversity of agricultural production will be an important issue for the sustainable development of regional agriculture.



4.5 Technological innovation and agricultural sustainability in green production

Over the past 20 years, most cities have been relatively slow to improve their technical efficiency, and technological progress has been the main driver of total factor productivity (Xiao et al., 2022). Cities have made some progress in technological innovation and technology diffusion, especially Nanjing, Wuxi and Hangzhou, which have shown significant technological progress in the later period. Despite the outstanding performance of some cities, technological progress in some cities still lags behind, such as Hefei and Zhoushan, and other regions, which should strengthen technological training and agricultural innovation capacity to promote high-quality agricultural development in the future.

A study of provincial-level units across China shows that technological innovations such as precision agriculture and biotechnology can increase agricultural productivity while maintaining environmental sustainability (Huang and Wang, 2024). The main barriers to the implementation of green agricultural technologies include issues such as economic costs and lack of incentives, social issues such as implementation cycles and risk perceptions, and practical challenges such as infrastructural constraints and regulatory barriers (Mao et al., 2021; Do et al., 2023). Taking Jiangsu and Zhejiang as examples. Jiangsu Province has promoted the development of new agricultural productivity by developing project agriculture, facility agriculture, smart agriculture and green agriculture. Key measures include: introducing key projects, improving facility agriculture mechanization, building smart agricultural parks and digital farms, and taking the lead in establishing an agricultural green development monitoring system in the Taihu Lake area to promote the scientific and technological support of green agriculture and the quality and safety supervision of agricultural products, and have achieved remarkable results. Zhejiang Province has achieved remarkable results by developing efficient ecological agriculture and implementing green agricultural reforms. Measures include: promoting integrated rice-fish farming, implementing real-name purchase and quota application of fertilizers and pesticides, promoting the reform of the “two systems of fertilizers and pesticides,” strengthening the resource utilization of livestock and poultry manure, and promoting standardized agricultural production and green technology support. In addition, digital reforms and the “Zhejiang Agricultural Code” traceability system have promoted the coordination of production and marketing, and improved the quality and safety of agricultural products and their market competitiveness. These ongoing green agricultural transformation measures further demonstrate the importance of green innovation transition of intensive cropland in the new agricultural production system.

In view of the differences in technical efficiency in different regions, local governments should coordinate financial and technical support for technologically backward regions in the future, especially in the promotion of agricultural mechanization and smart agricultural technology, to promote the overall improvement of technical efficiency. At the same time, increase the fixed-point docking policy for developed regions, complement each other’s advantages, and drive development one-to-one.




5 Conclusion

This study analyzes the green innovation transformation of intensive farmland in the YRD region from 2000 to 2020. The key findings are as follows:

	(1) Landscape attributes: fragmentation and aggregation of cropland

Cropland landscapes have become more fragmented over the past 20 years, especially in Jiangsu and Shanghai, due to urbanization and industrial expansion. Although some areas, like Anhui, maintain higher aggregation, policies should focus on reducing fragmentation and improving landscape connectivity.

	(2) Structural attributes: cropping structure diversity and optimization

Regions like Nantong and Yancheng have successfully diversified their cropping structures. In contrast, urbanized areas like Shanghai show concentrated cropping patterns. Future policies should promote crop diversification in developed regions and guide areas with homogenized cropping structures toward more diverse practices.

	(3) Production attributes: green productivity and technological progress

Green total factor productivity (GTFP) has improved in most cities, driven by technological advancements, especially in Nanjing and Hangzhou. However, some regions still lag behind. These areas should invest more in agricultural technology and provide incentives for green tech adoption to enhance sustainability.

The green transformation of cropland in the YRD region has varied significantly. Regional policies should focus on technological innovation, agricultural structure optimization, and landscape protection to promote sustainable agricultural development. In the future, the YRD region can achieve complementary and synergistic development of regional advantages and promote high-quality economic integration by strengthening policy coordination, optimizing the division of labor in the industry, promoting green development, upgrading infrastructure connectivity, enhancing cooperation in science and technology innovation, and facilitating the flow of talents.
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The global food crisis is becoming increasingly severe, highlighting the need to enhance cultivated land system resilience to improve utilization efficiency and strengthen its ability to withstand external shocks, ensuring food security. This study examines 13 major grain-producing areas in China to clarify the coupling coordination mechanism between cultivated land system resilience and new urbanization. An evaluation system is constructed, and development levels are assessed using the entropy method, the coupling coordination degree model, and the obstacle degree model. The main results are as follows: (1) Cultivated land system resilience and new urbanization in China’s major grain-producing areas have exhibited a steady upward trend. (2) The coupling coordination degree has increased from 0.5512 to 0.6788. (3) The primary obstacle factors at the criterion layer are output resilience, scale resilience, and land urbanization. To strengthen the coordination between cultivated land system resilience and new urbanization, policies should be reinforced, the efficiency of cultivated land utilization and agricultural labor productivity should be improved, urbanization planning should be optimized, and regional linkages should be enhanced.

Keywords
 food security; cultivated land system resilience; new urbanization; coupling coordination degree; obstacle factor


1 Introduction

The United Nations has identified “Ending hunger and achieving food security” as one of the 17 Sustainable Development Goals (SDGs) outlined in its 2030 Agenda for Sustainable Development. However, due to a variety of factors, global food security remains a critical challenge, with hunger persisting in many impoverished regions. According to the 2023 Global Food Crisis Report, more than 250 million people worldwide face severe food insecurity as a result of food shortages. Mitigating the global food crisis is an urgent international priority. The 2023 State of Food Security and Nutrition in the World, published by the United Nations, calls for “strengthening resilience and eliminating the root causes of food insecurity.”

Multiple factors influence food security, including climate (Lassa et al., 2018), international trade (Ibrahim et al., 2024), labor availability (Tinusha and Soumya, 2023), land policies (Martinez et al., 2023), biofuel production (Martínez-Jaramillo et al., 2019), access to land and water resources (Williams, 2015) and urban expansion (Bren d’Amour et al., 2017; Wang et al., 2019; Hou et al., 2019). As the foundation of food security, the cultivated land system plays a crucial role. However, global cultivated land is increasingly affected by soil degradation, and the per capita arable land availability continues to decline. The United Nations Convention to Combat Desertification predicts that by 2050, soil degradation could result in the loss of food production, ecosystem services, and income worth approximately $23 trillion globally. In addition, a 2021 report by the Food and Agriculture Organization (FAO) indicates that between 2000 and 2017, global per capita arable land decreased by 20%. This degradation of land resources and declining per capita farmland availability pose significant threats to global food production.

China’s Ministry of Natural Resources has emphasized that agricultural land management is a fundamental strategic priority for ensuring national food security. As a major grain-producing country, China is committed to collaborating globally to strengthen land protection measures. However, external uncertainties, as well as industrialization and urbanization, have introduced increasing risks to the quantity and ecological sustainability of cultivated land (Verhoeve et al., 2015). In response, resilience theory has increasingly been applied to cultivated land system research, emphasizing the need to enhance land resilience (Calo et al., 2021). Urbanization, in particular, is an important factor affecting land utilization (Zhao D. et al., 2024; Zhao S. et al., 2024). Harmonizing cultivated land system resilience with urbanization dynamics is essential for achieving sustainable food security.



2 Literature review

Holling (1973) first introduced the concept of resilience into the study of ecosystems, analyzing the system’s ability to self-recover after external shocks. Over time, this concept has been extended to various fields, including regional economic resilience (Zhao D. et al., 2024; Zhao S. et al., 2024), socio-ecological resilience (Greene et al., 2022; Asghar et al., 2025), agricultural resilience (Neyra et al., 2025; Tittonell, 2020), and land utilization system resilience (Yin et al., 2024). Due to challenges posed by climate change and economic growth, cultivated land is increasingly under threat, necessitating the analysis of land system resilience from both static and dynamic perspectives (Wang D. et al., 2024; Wang Y. et al., 2024). Resilience not only encompasses recovery but also includes adaptability and transformation (Li et al., 2021). Cultivated land system resilience refers to the system’s ability to reorganize its elements and achieve a new state of equilibrium after internal and external disturbances. Enhancing cultivated land system resilience contributes to the sustainable utilization of agricultural land and ensures food security (Lijun et al., 2019; Wang D. et al., 2024; Wang Y. et al., 2024), making it an important component of sustainable agricultural development (Volkov et al., 2022).

With the global push toward urbanization, the “World Cities Report 2022: Looking Forward to the Future of Cities” estimates that the global urban population will rise from 56% in 2021 to 68% by 2050. In China, the urbanization rate increased from 17.92% in 1978 to 60.60% in 2019 (Hou et al., 2019). Urban expansion is positively influenced by factors such as GDP growth, population density, and capital investment. However, given finite resources, urbanization inevitably interacts with cultivated land systems, particularly through competition for labor, land, and public services. Therefore, further research is needed to analyze the relationship between new urbanization and cultivated land systems to facilitate more coordinated development.

The evaluation of cultivated land system resilience mainly employs a multi-index approach, encompassing resource resilience, ecological resilience, production resilience, structural resilience, and economic resilience (Lyu et al., 2021; Xu et al., 2023). However, research on the coupling correlation between cultivated land system resilience and new urbanization remains limited. Some studies suggest that urbanization negatively impacts cultivated land utilization due to a decline in cultivated land area, leading to its marginalization (Liu et al., 2016). By 2030, urban expansion is projected to result in a loss of 1.8 to 2.4% of global arable land, with particularly severe effects in Asia and Africa (Bren d’Amour et al., 2017). In contrast, other studies argue that urbanization has a positive impact on the intensive use, scale efficiency, and quality enhancement of cultivated land (Yang et al., 2023).

The concept of new urbanization, introduced in the report to the 18th National Congress of China, seeks to advance sustainable urban development by creating more livable, efficient, and environmentally friendly cities. Unlike traditional urbanization, new urbanization focuses on the integration and coordinated development of human settlements, land use, society, economy, and ecological systems. Although existing studies have developed index systems, gaps remain in the analysis of coupling mechanisms and the degree of coupling coordination between cultivated land system resilience and new urbanization. Understanding these mechanisms will provide insights into function relationships while coupling coordination analysis will help assess the current operational status of these systems.

In terms of research methods, most studies have focused on single-dimension coupling coordination evaluations, while the integration of the obstacle degree model remains underdeveloped. Combining multiple models can enhance the depth of research on the relationship between these two systems, providing a more robust scientific basis for their coordination and improvement.

The objectives of this study are as follows: (1) Clarifying the coupling mechanism between cultivated land system resilience and new urbanization, (2) Developing an index evaluation system for cultivated land system resilience and new urbanization, and (3) Measuring the coupling coordination degree and propose improvement strategies to mitigate obstacles, thereby promoting positive interactions between cultivated land system resilience and new urbanization. The framework of this study is illustrated in Figure 1.
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FIGURE 1
 Frame diagram.




3 Theoretical analysis


3.1 Coupling coordination mechanism between cultivated land system resilience and new urbanization

In physics, coupling refers to the interaction between two or more systems, with the degree of coupling reflecting their interdependence (Geng et al., 2020). Coupling coordination refers to a state in which multiple systems interact synergistically to achieve a stable and mutually beneficial relationship (Xing et al., 2019; Görg et al., 2019). Due to the intrinsic linkages between new urbanization and cultivated land system resilience, these two systems are strongly correlated through the dynamic flow of interdependent factors (Ning et al., 2024; Chen et al., 2024). This study examines the coupling coordination mechanism between cultivated land system resilience and new urbanization, focusing on the interactions driven by the exchange of key elements.

New urbanization represents a contemporary approach to urban development (Li et al., 2024). The expansion of new urbanization influences cultivated land system resilience by altering resource allocation. Population urbanization, as explained by migration theory, drives rural populations to relocate to cities, leading to a decline in agricultural labor (Xie et al., 2022). The Lewis Model elaborates on this labor migration from rural to urban areas in developing countries (Kimura and Chang, 2017), illustrating how reductions in agricultural labor affect the resource stability of cultivated land systems. Economic urbanization, driven by the growth of secondary and tertiary industries and rising urban incomes, further widens the rural–urban income gap, accelerating the transfer of agricultural labor to urban areas (Yu and Lu, 2021; Gao et al., 2019). Per capita GDP, an important indicator of economic growth, plays a crucial role in agricultural infrastructure development. Urban expansion promotes land urbanization, leading to the conversion of cultivated land and the significant depletion of China’s agricultural resources. The reduction in farmland and agricultural labor decreases land use intensity, resulting in a shift toward more intensive and efficient agricultural practices. These changes impact both the ecological and output resilience of cultivated land systems (Zhou et al., 2024; Sun et al., 2023; Liu et al., 2024; Wu et al., 2023). Social urbanization, driven by improvements in education, enhances public awareness of sustainable agricultural practices. Higher education stimulates technological innovation and develops skilled labor, supporting the efficient use of cultivated land. The widespread adoption of agricultural machinery further improves land utilization efficiency and grain production (Shehzad and Xue, 2024; Wei and Lu, 2024). Environmental urbanization, which includes the expansion of green spaces and regional parks, alters land availability and usage patterns. Changes in the spatial distribution of cultivated land resources influence grain total factor productivity (Qie et al., 2023).

Evaluating cultivated land system resilience is essential for effective land management and improved land resource utilization. Changes in cultivated land system resilience, in turn, influence the trajectory of new urbanization. Cultivated land system resilience in major grain-producing areas consists of four key aspects: resource resilience, ecological resilience, output resilience, and scale resilience. Resource and scale resilience are crucial for ensuring food security, as national policies regulating the conversion of cultivated land help mitigate urban expansion (Alkhaja et al., 2025; Qie et al., 2023). Scale resilience enhances the capacity of farmland to withstand natural disasters and climate change, ensuring stable food production while supporting new urbanization. Efficient land use management optimizes resource allocation, enabling controlled urbanization while safeguarding agricultural viability. Output resilience, measured by agricultural output value, grain yield, and food security, is an important determinant of global food security (Cheng et al., 2025). The economic value of agricultural output directly influences farmer incomes, which in turn affects migration patterns. When agricultural income is insufficient, rural labor migration to cities intensifies, further accelerating urbanization. However, excessive labor outflow can negatively impact grain production, posing risks to food security. Sustainable new urbanization strategies must therefore balance agricultural and non-agricultural labor distribution. Agricultural labor surplus contributes to the transition of labor from the agricultural sector to other industries (Jorgenson, 1961). Strengthening output resilience enables cultivated land to sustain high productivity levels, reducing yield fluctuations caused by external shocks. This stability secures farmers’ incomes, enhances their purchasing power, and stimulates economic urbanization. Ecological resilience is another essential component, as agricultural input factors such as fertilizers increase grain output but may also lead to environmental pollution, potentially hindering urbanization processes. Prioritizing ecological resilience aligns with sustainable development goals. The adoption of organic fertilizers can reduce environmental degradation while accelerating the transition to more resource-efficient and sustainable agricultural systems (Ejigu and Yeshitela, 2024).

The analysis of the coupling mechanism reveals a strong correlation between cultivated land system resilience and the development of new urbanization. Effective coordination of this relationship is crucial for ensuring food security and advancing sustainable economic development. The framework illustrating the coupling mechanism between cultivated land system resilience and new urbanization is presented in Figure 2.

[image: Flowchart illustrating the relationship between new urbanization and cultivated land system resilience. It starts with space expansion and area greening, leading to cultivated land reduction and agricultural population transfer. Socialization and economic promotion enhance workforce skills. Urbanization is divided into population, economic, land, social, and environmental aspects, contributing to resource, ecological, output, and scale resilience. The process loops with constrained land expansion and restrictions, improving utilization efficiency and increasing farmers' income.]

FIGURE 2
 Frame diagram.




3.2 Index system construction


3.2.1 Cultivated land resilience index

Evaluating cultivated land system resilience is essential not only for effective land resource management but also as a key indicator of resource utilization efficiency. The impact of cultivated land use should be assessed from economic, social, and ecological perspectives to ensure environmental protection and food security. Resource endowment and necessary resource inputs are crucial driving forces in the transformation of cultivated land systems (Gong et al., 2019). Therefore, the evaluation of cultivated land system resilience should integrate the concept of resilience and the comprehensive assessment of input and output factors. When these factors reach an optimal state, cultivated land management becomes more resilient to external disturbances (Lyu et al., 2021).

The 2023 No. 1 document of the Central Committee emphasizes food security as a primary objective of China’s agricultural policy. It calls for stabilizing cultivated land areas while addressing the carrying capacity of agricultural resources and ensuring environmental security. This study builds on previous research (Yin et al., 2024; Lyu et al., 2021; Xu et al., 2023) and refines cultivated land system indicators. First, food security is included as a fundamental measure of sustainable food production. Second, disaster mitigation is incorporated as an essential feature of cultivated land resilience, which is assessed using an improved resistance index.

The resilience of cultivated land systems in major grain-producing areas is categorized into four key dimensions: resource resilience, ecological resilience, output resilience, and scale resilience (see Table 1). Resource resilience encompasses the availability and input of essential factors such as labor, agricultural machinery, irrigation, and agricultural materials, all of which are necessary for sustaining agricultural productivity. Ecological resilience reflects the environmental impact of fertilizers, pesticides, agricultural film, and diesel usage. While these inputs contribute to food production, excessive utilization can result in adverse environmental effects, such as soil pollution and ecological degradation (Cheng et al., 2025; Boulanger et al., 2020). This study assesses positive agricultural outputs in terms of output resilience and negative environmental impacts through ecological resilience. Output resilience is measured using indicators such as total agricultural output value, total grain yield, and food security metrics. Scale resilience, on the other hand, represents the quantity and stability of cultivated land, evaluated through per capita cultivated land area and the resistance index.



TABLE 1 Cultivated land system resilience index system.
[image: Table detailing indicators for cultivated land system resilience, divided into resource, ecological, output, and scale resilience. Each criterion includes specific indicators, meanings, attributes (positive or negative), and weights. Attributes indicate impact direction, and weights quantify importance.]



3.2.2 New urbanization

New urbanization is a complex system shaped by the interaction between economic, social, and ecological factors, requiring a comprehensive assessment of their interrelationships. Based on the national planning framework for new urbanization, key indicators are selected to construct an evaluation system that measures the development level of new urbanization from an integrated perspective encompassing population, economy, land, society, and environment (see Table 2).



TABLE 2 Evaluation index system of new urbanization.
[image: A table outlines a framework for measuring new urbanization, featuring system, criteria, indicators, attribute, and weight columns. Categories include population, economic, land, social, and environmental urbanization, each with specific indicators like GDP per capita and public electric vehicles. Attributes are marked with plus signs, and weights range from 0.0171 to 0.1467.]





4 Data and methods


4.1 Research area and data sources

Ensuring food security has become a global priority. China, which supports nearly one-fifth of the world’s population with less than 9% of the world’s arable land, faces significant challenges in maintaining agricultural sustainability. This study focuses on China’s major grain-producing regions, which serve as a representative case for examining cultivated land system resilience in the context of new urbanization.

In 2003, the Ministry of Finance issued the “Opinions on Several Policy Measures for Reforming and Improving the Comprehensive Development of Agriculture,” identifying 13 provinces as China’s major grain-producing areas: Heilongjiang, Jilin, Liaoning, Hebei, Inner Mongolia, Shandong, Jiangsu, Anhui, Henan, Hunan, Hubei, Jiangxi, and Sichuan. These regions are characterized by fertile soil, abundant water resources, and favorable climatic conditions for large-scale food production. They account for a significant proportion of China’s total grain output and cultivated land area, playing a crucial role in national food security and economic stability. Focusing on these major grain-producing provinces ensures strong representativeness and provides valuable insights for broader policy discussions.

The data used in this study were obtained from the China Rural Statistical Yearbook (2012–2020) and the China Statistical Yearbook (2012–2020).



4.2 Entropy method

The entropy method is utilized to determine the weights of each indicator, ensuring the scientific reliability and accuracy of the evaluation results (Chen and Zhang, 2023). The calculation process involves the following steps:

① Dimensionless processing of indicators

To eliminate the impact of varying measurement units, indicator values are normalized to a range of 0–1.
[image: Mathematical expression showing the variable \(X\) with the subscripts \(t\), \(i\), and \(j\).] represents the value of the j-th variable for the i-th province in the t-th year. “max” and “min” denote the maximum and minimum values of the sample values, respectively.

[image: Mathematical formula for positive indicators: \(X'_{tij} = \frac{X_{tij} - X_{jmin}}{X_{jmax} - X_{jmin}}\).]

[image: For negative indexes, the formula is X prime_sub_tij = (X_sub_jmax minus X_sub_tij) over (X_sub_jmax minus X_sub_jmin), labeled as equation two.]

② Standardization of raw indicators

Standardized indicator values are obtained using the formula:

[image: Mathematical equation showing X double prime subscript t i j equals zero point nine nine times X prime subscript t i j plus zero point zero one, annotated as equation three.]

③ Calculation of indicator proportions

[image: The image shows a mathematical formula: \( P_{tij} = \frac{X_{tij}''}{\sum_{t}\sum_{i}X_{tij}''} \), labeled as equation (4).]

④ Computation of j-th variable entropy values, k represents the number of sample years, and n represents the number of sample provinces.

[image: Mathematical formula for entropy: S sub j equals negative natural logarithm of k n to the power of negative one, times double summation over t and i of P sub t i j natural logarithm of P sub t i j, equation number 5.]

⑤ Calculation of the differentiation coefficient

[image: Equation showing \( G_j = 1 - S_j \) with the equation number 6 on the right.]

⑥ Determination of j-th variable indicator weights

[image: Equation labeled (7) showing the weight W sub j equals G sub j divided by the sum of G sub j over j.]

⑦ Comprehensive evaluation for the i-th province in the t-th year

[image: Mathematical equation labeled as equation eight: \( U_{ti} = \sum_{j} (W_j \times X_{tij}'') \). This denotes the sum of products of \( W_j \) and \( X_{tij}'' \) over index \( j \).]



4.3 Coupling coordination degree model

The coupling degree model assesses the interaction between two systems but does not fully account for their respective development levels. In comparison, the coupling coordination degree model evaluates both the internal structure and interaction of the systems, providing a more comprehensive analysis (Yang et al., 2020). The coupling coordination degree (D) is calculated using the following formulas:

	(1) Coupling degree (C)

[image: Equation for C: C = (U raised to the power of 1/2 multiplied by U squared) raised to the power of 1/2, divided by (U raised to the power of 1 plus U squared) divided by 2.]

Where C refers to the degree of coupling between cultivated land system resilience and new urbanization.

	(2) Comprehensive harmonization index (T)

[image: The equation shows \( T = a \times U^1 + b \times U^2 \) with the number \( 10 \) in parentheses on the right side.]

Where T denotes the overall synergy between the two systems; U1 and U2 are the evaluation indexes for cultivated land system resilience and new urbanization. They are calculated according to Equations 1–8, respectively. The parameters a and b are assigned values of 0.5, assuming equal importance for both systems.

	(3) Coupling coordination degree

[image: Equation showing "D equals the square root of the product of C and T," denoted as \( D = (C \times T)^{1/2} \). Numbered as equation 11.]

Where D represents the coupling coordination degree within the range [0,1], reflecting the extent of coordination between the two systems.

The coordination level is classified into ten categories based on D, with each 0.1 interval defining a different level. The classification includes extreme disorder, severe disorder, moderate disorder, mild disorder, near disorder, barely coordination, primary coordination, intermediate coordination, good coordination, and high-quality coordination. A higher D value indicates a greater degree of system coordination.



4.4 Obstacle degree model

The obstacle degree model measures the extent to which certain factors within the index system restrict system development. The model can be used to identify the key factors affecting the coupling coordination between cultivated land system resilience and new urbanization at the criterion and index levels (Yue et al., 2022). The calculation process involves three steps:

	(1) Index Deviation degree (Atij)

[image: Formula showing A subscript t i j equals one minus X double prime subscript t i j, labeled as equation 12.]

	(2) Factor obstacle degree of the indicator layer (Btij)

[image: Mathematical formula labeled equation 13, expressing B_tij as W_j multiplied by A_tij, divided by the sum from j equals one to twenty-six of W_j multiplied by A_tij, all multiplied by one hundred percent.]

	(3) Factor obstacle degree of the criterion layer (Ctij)

[image: Mathematical equation showing \( C_{tij} = \sum B_{tij} \), labeled as equation fourteen.]




5 Results


5.1 The level of cultivated land system resilience

The entropy method was applied to evaluate the weight and development level of cultivated land system resilience in major grain-producing areas, both as a whole and at the provincial level, from 2011 to 2019. The assessment considered the four key aspects: resource resilience, ecological resilience, output resilience, and scale resilience. The results are shown in Figure 3.

[image: Bar graph showing cultivated land system resilience across various Chinese regions from 2011 to 2019. Each region has three bars representing 2011 (blue), 2015 (orange), and 2019 (gray). Hebei to Sichuan and the mean are represented. Values generally increase over time, with Heilongjiang peaking in 2019.]

FIGURE 3
 Level of cultivated land system resilience.


Overall, the mean resilience level in the 13 major grain-producing areas increased from 0.346 in 2011 to 0.410 in 2019. While minor fluctuation occurred from 2011 to 2015, the resilience level increased significantly between 2016 and 2019. This upward trend is closely linked to China’s protection policies on cultivated land. In 2015, the Ministry of Agriculture launched the “weight loss and drug reduction” initiative. In 2018, the No. 1 document of the Central Committee emphasized the “in-depth implementation of the strategy of storing grain in the land and storing grain in technology, strictly observing the red line of cultivated land, and steadily improving the quality of cultivated land.” The No.1 Central document in 2019 further reinforced this commitment, highlighting the importance of “strictly observing the red line of cultivated land.” These policies have been instrumental in safeguarding cultivated land resources and ensuring ecological stability.

At the provincial level, the 13 provinces exhibited varying degrees of improvement, with Heilongjiang achieving the highest resilience level, reaching 0.683 in 2019. As China’s largest grain-producing province, Heilongjiang has an absolute advantage in cultivated land area and grain output. In 2019, the cultivated land area of Heilongjiang Province was 17.20 million hectares, and the per capita grain output was 1,994 kilograms, ranking first in the country. Heilongjiang’s effective utilization of its resource advantages and implementation of intensive land management practices have significantly contributed to enhancing cultivated land system resilience. Similarly, the resilience levels of Jilin Province and Inner Mongolia exceeded the national average. In comparison, Liaoning Province exhibited a lower cultivated land system resilience score, recording 0.3195 in 2019. Excessive use of agricultural plastic films and pesticides has resulted in the region’s low ecological resilience.



5.2 The level of new urbanization

Based on the five dimensions of population, economic, social, land, and environmental urbanization, the index weights and development level of new urbanization in major grain-producing areas from 2011 to 2019 were evaluated using the entropy method. The results are shown in Figure 4.

[image: Bar chart showing new urbanization rates in various regions for the years 2011, 2015, and 2019. Regions include Hebei, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Jiangsu, Anhui, Jiangxi, Shandong, Henan, Hubei, Hunan, Sichuan, and the Mean. Jiangsu in 2019 shows the highest increase.]

FIGURE 4
 Level of new urbanization.


Overall, the mean level of new urbanization in the 13 major grain-producing areas steadily increased. The development index of new urbanization rose from 0.286 in 2011 to 0.538 in 2019. Compared with the improvement in cultivated land system resilience, the rate of new urbanization growth was higher. The National New Urbanization Plan (2014–2020), China’s first national urbanization plan, played a key role in accelerating the development of new urbanization in China.

At the provincial level, Jiangsu and Shandong exhibited higher levels of new urbanization compared to the regional average. In contrast, Jilin Province recorded a relatively low level of new urbanization, reaching 0.397 in 2019, which was below the regional average. Jilin’s economic structure remains heavily reliant on heavy industry, which has hindered the advancement of new urbanization.



5.3 Evolution of coupling coordination degree


5.3.1 Analysis of evolution of coupling coordination degree

From the mean values of the 13 major grain-producing areas, the coupling coordination degree between cultivated land system resilience and new urbanization increased annually from 0.551 to 0.679 between 2011 and 2019 (see Figure 5). Coupling coordination degree are calculated according to Equations 9–11, respectively. Further analysis by time period indicates that the average coupling coordination degree between the two systems was classified as barely coordinated from 2011 to 2013 (0.551–0.592). On the one hand, extensive cultivation methods remained largely unchanged; on the other hand, early urbanization was still primarily driven by land expansion. From 2014 to 2019, the coupling coordination entered the primary coordination stage (0.605–0.679). This suggests that the relationship between new urbanization and cultivated land system resilience has improved, largely due to national and provincial policies. However, compared to a high-quality coordination state (0.9–1), there remains substantial room for further enhancement.

[image: Line graph showing the coupling coordination degree from 2011 to 2019. Values increase steadily from 0.551 in 2011 to 0.679 in 2019, indicating a positive trend.]

FIGURE 5
 Mean coupling coordination degree of major grain-producing areas (2011–2019).


Table 3 shows the specific values. Overall, the coupling coordination degree across provinces has demonstrated a discernible improvement. In 2011, only Heilongjiang, Jiangsu, and Shandong had reached the primary coordination state. By 2019, this number had increased to nine provinces. However, only Inner Mongolia, Heilongjiang, and Shandong had reached the intermediate coordination state. Further improvements are necessary to enhance the coupling coordination in the major grain-producing areas. Identifying and addressing the factors that hinder further progress will be essential for promoting the coordinated development of cultivated land system resilience and new urbanization.



TABLE 3 Coupling coordination degree between cultivated land system resilience and new urbanization from 2011 to 2019.
[image: Table showing annual data from 2011 to 2019 for various regions: Hebei, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Jiangsu, Anhui, Jiangxi, Shandong, Henan, Hubei, Hunan, and Sichuan. Each region has corresponding numerical values for each year.]



5.3.2 Visualization of spatial evolution of coupling coordination degree

ArcGIS software was used to analyze the spatial distribution of the measured results. The coupling coordination degree between cultivated land system resilience and new urbanization was visualized based on classification criteria (see Figure 6). Analysis of changes across the three time periods (2011, 2015, and 2019) indicates a growing number of provinces reaching the primary coordination stage, while regional differences in coupling coordination degree have decreased. In 2011, only Heilongjiang, Jiangsu, and Shandong had entered the primary coordination stage, while the other provinces remained in the barely coordinated stage. By 2019, all provinces had advanced by one level, transitioning from barely coordinated to primary coordination, or from primary coordination to intermediate coordination. Inner Mongolia showed the most significant improvement, progressing from barely coordinated to intermediate coordination. In 2019, Inner Mongolia, Heilongjiang, Jiangsu, and Shandong had reached the intermediate coordination stage.

[image: Three maps of China show regional coordination levels in shades of green. The maps categorize regions into intermediate, primary, barely coordinated, and near disorder. A legend and scale bar are included.]

FIGURE 6
 Spatial evolution of coupling coordination degree (2011, 2015, and 2019).


The growth in coupling coordination has been strongly influenced by local resources and policy support. For example, Heilongjiang Province, which has the largest cultivated land area in China, benefits from favorable conditions for large-scale agricultural development. This advantage allows for better coordination between cultivated land use and new urbanization, providing resource support for land urbanization while ensuring cultivated land resilience. In addition, China has promoted the construction of water conservancy projects and high-standard farmlands to improve agricultural resilience against natural disasters and improve their overall production capacity.




5.4 Obstacle factors that affect coupling coordination degree

Analysis using the entropy method and coupling coordination model reveals significant differences between cultivated land system resilience and new urbanization in major grain-producing areas. Moreover, most provinces have substantial room for enhancing high-quality coordination. Identifying the major obstacle factors affecting the coupling coordination of these two systems is therefore essential. The obstacle degree model was applied to analyze these factors, selecting the top three at the criterion layer and the top five at the index layer. The results are presented in Tables 4, 5. They are calculated according to Equations 12–14, respectively.



TABLE 4 Main obstacle factors of cultivated land system resilience and new urbanization at the criterion level in 2011/2019.
[image: Table comparing obstacle factors and degrees for various provinces in 2011 and 2019. Columns for each year list obstacle factors labeled A1 to B4 with associated degrees for provinces including Hebei, Inner Mongolia, Liao, and others. Each province has top three obstacle factors and degrees for both years.]



TABLE 5 The main obstacle factors of cultivated land system resilience and new urbanization at the index level in 2019.
[image: Table listing obstacle factors and degrees for various provinces, organized by columns: province name, and first through fifth obstacle factors with their degrees. Provinces include Hebei, Inner Mongolia, and more, with varying obstacle degrees for each factor.]


5.4.1 Analysis of criterion layer obstacle factors

Resource resilience, ecological resilience, output resilience, and scale resilience were designated as A1, A2, A3, and A4, respectively. Population urbanization, economic urbanization, land urbanization, social urbanization, and environmental urbanization were labeled as B1, B2, B3, B4, and B5. As shown in Table 4, the primary obstacle factors affecting the coupling coordination degree in 2011 and 2019 were A3 (output resilience), A4 (scale resilience), and B3 (land urbanization), indicating that most provinces faced common challenges.

The theory of land scarcity suggests that land use competition creates trade-offs between different purposes (He et al., 2024). In cultivated land resource resilience and land urbanization, land serves as a critical resource input. Given its limited availability, allocation for one purpose often reduces its availability for another. Addressing these conflicts requires optimal land-use planning and improved efficiency. The prominence of cultivated land area-related factors among the top three obstacles further supports the theory of land scarcity.

In the analysis of barrier factors, B5 (environmental urbanization) was absent from the top three obstacle factors, suggesting that national policies promoting green urban development have yielded considerable results. However, in 2019, A2 (ecological resilience) emerged as an increasing concern in Jiangsu and Shandong, highlighting the need for better management of pesticides, fertilizers, and agricultural films to enhance cultivated land resilience in these provinces.



5.4.2 Analysis of index layer obstacle factors

Identifying obstacle factors in the coupling coordination degree solely at the criterion layer may obscure individual differences among sub-indicators. Therefore, given the similarity of major obstacle degrees at the criterion layer in both years, a more detailed subdivision of the index layer for 2019 was conducted. The top five most important factors were selected for in-depth analysis (see Table 5).

Indicators of cultivated land system resilience were denoted as A11-A23, while indicators of new urbanization were represented as B11-B23. The analysis shows that, in most provinces, the primary obstacle factors at the index level in 2019 were food security (A21), per capita cultivated land area (A22), and built-up area (B17). These three sub-indicators correspond to A3, A4, and B3 in the criterion layer.

In Heilongjiang, the top three obstacle factors were concentrated in the new urbanization system, including per capita GDP(B13), per capita urban road area (B16), and built-up area (B17). This suggests that while Heilongjiang demonstrated strong cultivated land system resilience, further optimization is required for new urbanization development. For Inner Mongolia, the province needs to focus on addressing its higher education problems and strengthening the education of its high-level talents. Expanding the analysis to the top five factors, per capita GDP (B13) was a common obstacle factor in most provinces, while other factors varied. For example, per capita urban road area (B16) and the average number of students in higher education schools per 100,000 population (B19) were considerable obstacle factors in certain provinces.

The analysis of obstacle factors at the criterion layer and index layer suggests that the core factors affecting the coupling coordination degree between cultivated land system resilience and new urbanization primarily involve land and labor resources, as well as grain output. Per capita grain consumption, a key measure of food security, is directly dependent on land and labor inputs. While different factors influence coordination in different years, the advancement of urbanization must not come at the expense of agricultural land loss. The 1.8 billion mu of cultivated land red line, set by the Chinese government, must be strictly upheld. Moreover, per capita GDP, as an indicator of regional economic development, plays a crucial role. Limited economic growth can constrain investments in both cultivated land system resilience and new urbanization development.





6 Discussion

The coordination of urbanization and cultivated land use is essential for the balanced development of urban and rural areas (Wei and Lu, 2024). The interaction between cultivated land system resilience and new urbanization affects food security, as both systems involve the mutual flow of factors (Lee et al., 2024). Given the volatile external environment, research on cultivated land system resilience has become increasingly urgent (Li et al., 2025). Exploring the coupling coordination degree between these two systems, as well as its spatio-temporal evolution, obstacle factors, and development countermeasures, offer theoretical insights and practical guidance for enhancing cultivated land system resilience and promoting new urbanization.

This study constructs a theoretical framework to analyze the coupling coordination between cultivated land system resilience and new urbanization while systematically outlining their coordination mechanisms. Using data from 13 major grain-producing provinces (2011–2019), this study examines the coupling coordination degree and its spatio-temporal evolution by integrating the entropy method and the coupling coordination model. In addition, the obstacle degree model is employed to identify key barriers affecting the coordination of these systems.


6.1 The relationship between cultivated land system resilience and new urbanization

From a coupling and coordination perspective, the factors influencing cultivated land system resilience and new urbanization in major grain-producing areas interact dynamically. Given limited resources, the relationship between these two systems often presents contradictions; however, their mutual influence is also a key drive of coordinated development. Effective coordination among the various elements is essential to maintaining the stability of cultivated land system resilience, ensuring food security, and supporting the sustainable development of new urbanization. Song and Tao (2022) also emphasized the importance of coupling and coordination between cultivated land use and urbanization. Examining the theoretical influence mechanisms behind this interaction provides a deeper understanding of the underlying factors shaping their relationship.



6.2 Progress in cultivated land system resilience, new urbanization, and coupling coordination

In China’s major grain-producing areas, both cultivated land system resilience and new urbanization have exhibited upward trends. The cultivated land system resilience index rose from 0.346 to 0.410, with Heilongjiang reaching the highest level of 0.683 in 2019. The development level of new urbanization increased from 0.286 to 0.538, growing at a faster rate than cultivated land system resilience. The coupling coordination degree between new urbanization and cultivated land system resilience also showed an overall steady growth, increasing from 0.5512 to 0.6788. Across the entire region, the coordination level improved from barely coordinated to primary coordination, with some provinces reaching intermediate coordination. And while the number of provinces with a high coordination degree increased, spatial imbalances in development persist.

The concept of new urbanization emphasizes the “two-way” agglomeration of factors in rural areas and cities, which can alleviate shortages caused by the unidirectional movement of certain factors (Zhou et al., 2024). This aligns with the findings of this paper, which emphasize that strengthening coupling coordination and fostering the convergence of key elements are essential for balancing cultivated land system resilience with urbanization. Such coordination is crucial for safeguarding food security and sustainable economic development. Despite continuous improvements in coupling coordination, the overall level remains relatively low, indicating the presence of underlying factors that impede fully integrated development.



6.3 Commonalities in obstacle factors across major grain-producing areas

The analysis using the obstacle degree model shows that major grain-producing areas share common obstacle factors affecting the coupling coordination degree. At the criterion layer, the top three obstacle factors are mainly concentrated in output resilience, scale resilience, and land urbanization. At the index layer, the most significant barriers include per capita food security rate, per capita cultivated land area, and built-up area.

Beyond these shared challenges, some obstacle factors vary by province. For instance, per capita GDP, higher education student enrollment, and per capita urban road area are significant in particular provinces and should be addressed based on each province’s specific conditions. Previous studies have highlighted similar barriers. For example, the uncoordinated coupling relationship between population, land, and food has been identified as a key factor affecting food security (Liu et al., 2024). Other research has found that soil erosion, per capita cultivated land area, and per capita grain output are major obstacles to the ecological security of cultivated land use (Jing et al., 2024). In addition, transportation infrastructure and economic development have been found to influence agricultural resilience and productivity (Zhang et al., 2023), while GDP growth and population density can influence the expansion of land urbanization (Wu and Li, 2020).



6.4 Policy implications

The gradual improvement in the coupling coordination degree suggests that national policies on cultivated land protection and new urbanization have played a significant role in promoting sustainable development. Food security is fundamental not only for human survival but also for social stability and economic progress. According to the land scarcity theory, the limited availability of land necessitates strategic policies to ensure its optimal use for food production (Calo et al., 2021). Policies such as land property regimes can help safeguard cultivated land’s role in ensuring food output. In addition, land ownership confirmation has been shown to facilitate agricultural land transfers, contributing to economies of scale and improved land utilization (Qiu et al., 2020). It is crucial to strictly implement policies ensuring the balance of land occupation and compensation, eliminating practices such as “occupying the superior and compensating the inferior” or “accounting for more and compensating the less.” These measures will help maintain both the quantity and quality of cultivated land. Research suggests that a well-structured land use system can enhance resilience to external shocks (Chen et al., 2019).

The analysis of obstacle factor analysis highlights land and labor force as core determinants in the coordination between cultivated land resilience and new urbanization. Despite significant progress, developing countries still have substantial potential for improving land resources and agricultural productivity. Given that land is both scarce and non-renewable, efficient and intensive land use is essential. A policy-driven, goal-oriented agricultural land profit-and-loss assessment framework (Qie et al., 2023) can guide rational land utilization by achieving a dynamic balance of cultivated land use. Fertilizer, machinery, and pesticide inputs should be strategically planned alongside cultivated land protection objectives. The adoption of mechanized farming techniques can boost food production and mitigate disaster losses, with more pronounced benefits for individuals with higher education levels and lower incomes (Fang et al., 2024; Song et al., 2025). Monitoring the land system and developing a comprehensive land protection strategy is necessary to strengthen cultivated land system resilience (Wang D. et al., 2024; Wang Y. et al., 2024). Additionally, raising awareness of cultivated land protection is crucial. Land use patterns should be carefully planned to avoid fragmentation caused by uncoordinated expansion of urban land and other land uses. Implementing farmer support policies and agricultural subsidies can encourage active land cultivation. Moreover, improving the skills of the rural labor force is essential. Marshall focused on the long-term benefits of investing in human capital, and improving rural labor skills can significantly boost productivity. In China, the increase in total grain output is primarily due to advancements in agricultural technology. Harnessing technology-driven urbanization, encouraging rural labor workers to adopt modern agricultural techniques, and optimizing agricultural production and management practices will be key to sustaining growth.




7 Conclusion

This study examines the interaction between cultivated land system resilience and new urbanization, driven by the flow of various elements. By organizing these elements at a theoretical level, this study explores the coupling mechanism between the two systems, incorporating relevant economic theories to explain how factor flow influence their interaction. Using the entropy method, coupling coordination degree model, and obstacle degree model, this study quantitatively assesses the development level, coupling coordination degree, and key obstacles affecting the resilience of the cultivated land system and new urbanization.

The results show an increasing trend in both the development level and coupling coordination degree. The resilience level of the cultivated land system increased from 0.346 to 0.410, while the new urbanization development level rose from 0.286 to 0.538. The overall coupling coordination degree increased from 0.5512 to 0.6788, with certain provinces, such as Inner Mongolia, Heilongjiang, Jiangsu, and Shandong, reaching the intermediate coordination level. However, regional disparities remain, with output resilience, scale resilience, and land urbanization identified as the main obstacles to coordinated development.

This study offers several key contributions. First, the concept of resilience is introduced into the study of cultivated land systems, and an evaluation framework is constructed based on resource resilience, production resilience, ecological resilience, and resource resilience. Second, this study adopts a people-oriented perspective in urbanization studies, promoting coordinated development across multiple dimensions. A comprehensive evaluation system for new urbanization is developed, measuring progress in terms of population urbanization, economic urbanization, land urbanization, social urbanization, and environmental urbanization using the entropy method. Third, this study clarifies the coupling mechanism between cultivated land system resilience and new urbanization development, applying the coupling coordination degree model to assess their interrelationship over time. Spatio-temporal patterns and dynamic evolutionary trends are analyzed using ArcGIS spatial visualization. Fourth, the study employs an obstacle model to identify key hindrances to coordinated development, providing insights for improving cultivated land system resilience and guiding sustainable urbanization strategies.

China’s major grain-producing areas serve as the focal point of this study due to their significant share of the country’s cultivated land and grain output. The analysis spans 13 provinces with notable regional variations, offering insights that may apply to developing countries seeking to strengthen cultivated land system resilience and maintain food security while advancing new urbanization.

However, there are also some shortcomings in this study. The data is limited to China’s primary grain-producing areas, and future research should explore spatial spillover effects to better coordinate interactions and regional linkages between new urbanization and cultivated land system resilience across different regions.
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The global food security landscape is increasingly precarious as climate change, geopolitical conflicts, and pandemics compound its complexity. Concurrently, rapid urbanization has precipitated widespread loss of agricultural land in the North China Plain, yet research on the spatiotemporal dynamics of this conversion process—and its specific impacts on agricultural production potential—remains limited. In this study, we employ multi-temporal land use data from the China Land Use/Cover Change (CNLUCC) dataset for the years 1980, 1990, 2000, 2010, and 2020, alongside 1980 agricultural production potential data, to examine land use changes in the North China Plain over the period 1980–2020. Our analysis centers on the pace and intensity of urban expansion within city boundaries, the consequent loss of agricultural land, and the resulting decline in agricultural production potential. Findings reveal that, during this period, agricultural land—the predominant land use type—has been increasingly converted to urban areas, directly accounting for a loss of 1.25 × 104 km2 of farmland, with approximately 78.91% of new urban developments established on former agricultural lands. Cities such as Beijing, Linyi, and Zhengzhou have experienced the most substantial direct losses of farmland. Moreover, the speed and intensity of urban expansion exhibit significant spatial variability, following a distinct “higher in the center, lower at the periphery” pattern in agricultural land consumption, alongside an overall upward trend in expansion intensity. Between 1980 and 2020, the region experienced an aggregate loss of 7.03 × 109 kg in food production, with spatial patterns indicating lower losses in the north and higher losses in the central and southern regions. Cities including Tangshan, Baoding, Beijing, and Zhumadian incurred the highest reductions in agricultural production potential, whereas cities such as Jiyuan and Chengde exhibited relatively lower losses. This study underscores the spatial disparities in agricultural land loss and production potential depletion driven by urban expansion in the North China Plain, offering critical insights for land use planning and the promotion of sustainable regional development.
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1 Introduction

The encroachment of urban expansion on arable land—and the consequent degradation of agricultural production potential—has emerged as a pivotal challenge in the global pursuit of sustainable development (Li et al., 2017). As a cornerstone of both food security and ecological balance, the loss and deterioration of arable land directly jeopardize the achievement of key Sustainable Development Goals, notably “Zero Hunger” (SDG 2) and “Life on Land” (SDG 15) (Li et al., 2021). Concurrently, the acceleration of urbanization has intensified competition for land resources, exacerbating tensions within the human-environment nexus. Projections indicate that by 2030, global urban land cover may nearly triple compared to levels in 2000, while the overall global agricultural land area is expected to shrink by 1.8 to 2.4%. With the global population projected to reach 9 billion by 2050, the imperative to balance food security, socio-economic development, and environmental conservation will become increasingly pronounced (Seto et al., 2012; Sheng et al., 2022; Wang and Salman, 2023). Consequently, a comprehensive examination of the impacts of urban expansion on arable land and the subsequent loss of agricultural production potential is essential not only for safeguarding food security and ecosystem services but also for advancing the achievement of global sustainable development objectives.

The investigation into the role of urban expansion in the occupation of arable land is crucial for unveiling the multifaceted impacts of land use conflicts on food security, ecosystem services, and sustainable development. This research provides a critical foundation for optimizing land resource allocation and fostering synergies between urban growth and farmland preservation (Ke et al., 2018; Zhou et al., 2022). While global studies have predominantly examined the pressures exerted on arable land by unchecked urban growth, with a focus on the spatiotemporal dynamics and underlying drivers of urban encroachment (Bren d’Amour et al., 2016), several scholars have also explored the relationship between urban land expansion and arable land loss at national or regional scales (Liu et al., 2023; Qu et al., 2024). More recent quantitative assessments have addressed the coupling and coordination between urbanization, farmland protection, and intensive land use in Central China from 2004 to 2017, revealing a notably low level of coordination among these factors (Xiao et al., 2021). Nonetheless, most existing research relies on macro-level datasets, such as statistical yearbooks, which limits the exploration of spatial variability in the impacts of urban expansion on arable land occupation. Moreover, although extensive studies have investigated the expansion of urban and rural construction land, changes in arable land resources, and food security issues, a comprehensive, integrative approach that combines these perspectives remains lacking (Cansino-Loeza et al., 2022; Li et al., 2024; Tilahun et al., 2024). This gap is particularly pronounced in the North China Plain—a crucial grain-producing region—where quantitative analyses examining the dynamic relationship between arable land reduction and the loss of agricultural production potential are relatively scarce, thus warranting further investigation.

The North China Plain, as a vital agricultural and economic hub in China, is endowed with extensive arable land and relatively ample water resources, which collectively underpin its agricultural production capacity (Yu et al., 2022). However, rapid socioeconomic development and urbanization have accelerated urban expansion, leading to the widespread occupation of arable land and significant losses in agricultural production potential (Nicolas et al., 2022; Wang and Salman, 2023). Furthermore, the intensification of socioeconomic activities has placed additional pressure on water resources and the broader ecological environment, thereby challenging the long-term sustainability of agricultural systems (Yin et al., 2017). Consequently, while promoting economic and social development, it is imperative to prioritize farmland conservation and the sustainable management of resources to ensure both the region’s economic viability and long-term food security (Ruiqi et al., 2023). Nevertheless, the current literature lacks comprehensive assessments regarding the specific types of arable land occupied during urban expansion, the spatial distribution patterns of such occupations, and the precise magnitude of losses in agricultural production potential. This lacuna introduces uncertainties in regional land use planning and policy development. Therefore, an in-depth investigation into urban expansion and arable land occupation in the North China Plain holds considerable theoretical and practical significance.

This study focuses on the North China Plain to examine the impacts of urban expansion on arable land resources and the subsequent effects on agricultural production potential. Specifically, the research seeks to address three central questions: (1) What are the spatial distribution patterns of arable land occupation resulting from urban expansion in the North China Plain? (2) To what extent does the reduction in arable land contribute to the loss of agricultural production potential? (3) Are there critical high-risk areas where significant losses in agricultural production potential are concentrated? Addressing these questions will provide a robust scientific basis for the rational allocation of regional land resources and offer empirical support for the development of effective land conservation policies.



2 Study area and data sources


2.1 Overview of the study area

The North China Plain (112.5°E–119.5°E, 34.8°N–40.4°N), extending from the Yellow River in the south to the Yan Mountains in the north, bordered by the Bohai Sea to the east and the Taihang Mountains to the west, represents one of China’s three major plains and constitutes a significant portion of the eastern Great Plains (Yu and Deng, 2022). This region, distinguished by its dense population and favorable climatic conditions, serves as a crucial agricultural hub, playing an indispensable role in ensuring the nation’s future food security. The principal staple crops cultivated in the North China Plain are wheat and rice, with cotton and tobacco also contributing as prominent economic crops. The regional economy is primarily driven by the primary sector, yet it demonstrates a strong integration with the secondary and tertiary industries, cementing its status as a central food production and agricultural economic area in China. For the purposes of this study, 21 prefecture-level cities, including Hebei, Shandong, Henan, Beijing, and Tianjin, were selected as the study area based on administrative boundaries (Figure 1).
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FIGURE 1
 Geographic location of the North China Plain.




2.2 Data sources

The dataset employed in this study includes the China Multi-Period Land Use Remote Sensing Monitoring Dataset (CNLUCC) (Xu et al., n.d.) and farmland productivity data from 1980 (Liu et al., 2014; Table 1). The CNLUCC dataset, derived primarily from Landsat remote sensing imagery, was constructed through manual visual interpretation to develop a nationwide, multi-temporal land use/land cover database. It adopts a two-tier classification system, with the primary classification encompassing six major land categories—cropland, forest, grassland, water bodies, built-up land, and unused land—while the secondary classification further differentiates these into 25 specific subcategories. With a spatial resolution of 30 meters, this dataset provides high-precision data support for land use change analysis. The farmland productivity dataset is based on cropland distribution, soil characteristics, and elevation data (DEM) and is estimated using the Global Agro-Ecological Zones (GAEZ) model. This model integrates multiple environmental and agronomic factors, including solar radiation, temperature, water availability, CO₂ concentration, pest and disease constraints, agricultural climate limitations, soil conditions, and topography, to estimate potential cropland productivity. Developed over nearly three decades by the Food and Agriculture Organization (FAO) and the International Institute for Applied Systems Analysis (IIASA), the GAEZ model first calculates the potential productivity of individual crops based on light and temperature conditions for each grid cell. It then refines this estimate by incorporating water availability, soil properties, and topographic influences, resulting in an assessment of productivity under light-temperature-water constraints. Subsequently, it simulates climatic production potential under ideal soil and management conditions before applying a stepwise limitation approach to account for agricultural technology, soil constraints, topography, and cropland distribution, ultimately generating a comprehensive estimate of potential crop yield at the grid level. This dataset primarily considers five staple crops—wheat, maize, rice, soybeans, and sweet potatoes. Specifically, wheat includes four varieties, comprising winter and spring wheat; maize consists of four varieties, including spring and summer maize; and rice includes two varieties. Collectively, these five crops account for approximately 97.7% of China’s total grain production. Additionally, to ensure a realistic representation of agricultural production potential, the dataset incorporates China’s actual cropping systems, considering multi-cropping practices such as one-year two-crop rotations, two-year three-crop rotations, and one-year three-crop rotations. This approach enables the estimation of the maximum potential grain yield from available agricultural land. The dataset is provided in units of kg/ha.



TABLE 1 Spatial distribution and data sources.
[image: Table listing data details: "CNLUCC" from 1980 to 2020 with 30-meter spatial resolution for analyzing land use changes; "Chinese Agricultural Productivity Potential Data" from 1980 with 1-kilometer resolution for evaluating agricultural productivity potential loss. Both sourced from the Chinese Academy of Resources and Environmental Sciences.]




3 Methods


3.1 Land use transition matrix

The land transfer matrix offers a clear depiction of the sources and destinations of land type conversions, capturing both the area transferred out and transferred in Hemmavanh et al. (2010) and Zhao et al. (2022). In this study, the land use transfer matrix is utilized to examine the dynamic land use changes in the North China Plain from 1980 to 2020. The analysis is conducted at 10-year intervals to investigate the evolving characteristics of transfer structure and direction between land types at both the early and late stages of the period under review. The general expression for the matrix is as follows:

[image: Matrix equation depicting a general n by n matrix A. The elements are represented as A sub i j in a bracket form, showing a pattern with ellipses indicating continuation in both rows and columns.]

In the formula, A represents the area of each land use type; n represents the number of land use types; i and j represent the land use types at the beginning and the end of the study period, respectively; [image: The image shows a mathematical expression, \( A_{ij} \), with the subscript "ij" below the letter "A".]indicates the area transferred from land use type i at the initial stage to land use type j at the final stage. Based on the land use data from the two consecutive periods, the ArcGIS 10.8 software is utilized to calculate the land use transition matrix through spatial overlay analysis, thereby analyzing the dynamic evolution process of different land use types.



3.2 Quantification of urban land encroachment on cultivated land

This study assesses the extent of cultivated land encroached upon by urban expansion in the North China Plain through the application of two primary metrics: expansion rate and expansion intensity.


3.2.1 Expansion rate

The expansion rate refers to the rate of change in the area of arable land converted into urban land over a specified time period (Hu et al., 2018), as expressed by the following equation:

[image: Mathematical formula showing V equals Si divided by delta i, representing a ratio or rate calculation.]

In the formula: [image: The image depicts the Greek letter Delta followed by the letter i in italics, often representing a change in the variable i in mathematical contexts.] represents the time difference, and [image: Subscripted letter "S" followed by a subscript "i".] represents the area of farmland (in km2) occupied by new urban expansion during a certain period.



3.2.2 Expansion intensity

Expansion intensity is quantified as the average annual expansion rate of urban land relative to its initial extent over a specified period, serving as an indicator of the pace and magnitude of urban land conversion within a given timeframe (Zhong et al., 2020), expressed as:

[image: Formula representing percentage calculation: \( I = \frac{S_i}{\Delta i \times M_j} \times 100\% \).]

In the formula: I represents the intensity of farmland occupied by urban land expansion (%); [image: A variable representation in mathematical notation with an uppercase "S" followed by a subscript lowercase "i".] represents the area of farmland occupied by new urban expansion during a certain period (km2); Δi represents the time span; [image: The image contains the mathematical notation "M" subscript "j".] and represents the area of urban land in town j at the beginning of period i (km2).




3.3 Assessment of farmland productivity loss induced by urban expansion

Farmland productivity loss due to urban expansion is evaluated using China’s potential crop yield dataset, which integrates information on cultivated land distribution, soil characteristics, and elevation (DEM). This dataset is derived from the Global Agro-Ecological Zones (GAEZ) model, which comprehensively accounts for factors such as solar radiation, temperature, moisture availability, CO₂ concentration, pest and disease prevalence, agro-climatic constraints, soil properties, and topographic features (Liu et al., 2014). The estimation framework encompasses five primary crops—wheat, maize, rice, soybean, and sweet potato. Specifically, wheat includes four varieties, including winter and spring wheat; maize comprises four varieties, including spring and summer maize; and rice consists of two varieties. Collectively, these crops contribute to 97.7% of China’s total grain output. Furthermore, the dataset incorporates China’s actual cropping systems, considering various multiple cropping regimes. The unit of measurement for the dataset is kg/ha.

To mitigate the influence of temporal fluctuations and technological advancements on grain yield growth and to accurately capture the spatiotemporal dynamics of productivity loss attributable to urban expansion, this study employs farmland productivity data from 1980. A GIS-based spatial overlay analysis is conducted to quantify the decline in potential crop yield resulting from the conversion of farmland to urban land. Specifically, for different study periods, urban expansion data and farmland productivity data are standardized to a uniform spatial resolution before performing overlay analysis, followed by regional statistical assessments and loss evaluations.




4 Results


4.1 Land use change from 1980 to 2020

Between 1980 and 2020, the distribution of land use types on the North China Plain reflects the region’s underlying land resource structure (Figure 2). Throughout this period, arable land remained the dominant land use, consistently accounting for an average of approximately 59.22% of the total land area. A detailed examination of land use changes across different time intervals reveals distinct transformation patterns: From 1980 to 1990, water bodies were primarily converted into arable land and other construction areas. Between 1990 and 2000, arable land was predominantly transformed into urban areas and other built-up land. From 2000 to 2010, the conversion of arable land into urban land continued, with some areas also transitioning to rural residential land, while portions of grassland were converted into arable land. During the 2010–2020 period, arable land continued to be largely converted into urban and construction land; notably, some rural residential areas also reverted to arable land. In addition, forest and grassland areas were integral components in the region’s land use transitions. At five key temporal milestones (1980, 1990, 2000, 2010, and 2020), the average proportions of grassland and forest areas were 15.19 and 10.45%, respectively.

[image: Sankey diagram illustrating land use changes from 1980 to 2020. Categories include cultivated land, forest land, grassland, water area, unused land, urban land, rural settlement, and other construction land. Colored flows represent transitions between categories over the decades, highlighting shifts in land usage.]

FIGURE 2
 Land use change in the North China Plain from 1980 to 2020.


Over the past four decades, the area of urban land on the North China Plain has consistently expanded. Specifically, in 1980, the urban land area was 5.07 × 103 km2, accounting for only 0.94% of the total land area of the North China Plain. By 1990, this figure had increased to 5.76 × 103 km2, representing 1.07% of the total area. In 2000, the urban land area further surged to 8.85 × 103 km2, comprising 1.65% of the total area. By 2010, urban land area had dramatically increased to 1.97 × 104 km2, making up 3.68% of the total area. In 2020, the area continued to expand, reaching 2.09 × 104 km2, which accounted for 3.89% of the total land area. In terms of land source, between 1980 and 1990, the primary contributor to the increase in urban land was the conversion of arable land. From 1990 to 2010, both arable land and rural residential areas collectively contributed to the expansion of urban land. Even during the 2010–2020 period, arable land continued to play a pivotal role in this transformation. Similarly, the area of rural residential land also exhibited a growing trend, with its main sources being arable land and grassland. Notably, the increase in water bodies over these four decades was relatively modest, primarily originating from arable land and other construction land.



4.2 Urban land expansion and cultivated land occupation from 1980 to 2020


4.2.1 Temporal and spatial distribution

Between 1980 and 2020, the urban land area of the North China Plain expanded by 1.59 × 104 km2, with a substantial 1.33 × 104 km2, or 83.85%, of this increase occurring at the expense of cultivated land (Figure 3). This dramatic shift highlights the growing pressure on agricultural resources due to urbanization. The temporal distribution of urban land expansion was marked by significant increases in the following periods: 647.80 km2 from 1980 to 1990, 2.37 × 103 km2 from 1990 to 2000, 7.76 × 103 km2 from 2000 to 2010, and 2.54 × 103 km2 from 2010 to 2020. Notably, the data reveal considerable spatial heterogeneity in the consumption of cultivated land across the North China Plain. Urban expansion predominantly concentrated around provincial capitals, forming high-density urban zones that gradually extended outward in a contiguous pattern. Conversely, in more peripheral regions, urbanization manifested in a fragmented and dispersed manner.

[image: Two-panel chart showing urban land expansion. Panel (a) is a bar and line graph displaying urban land (UL) and urban land cover (ULOC) growth from 1980 to 2020, peaking around 2010. Panel (b) is a bar and line graph showing urban land distribution across various cities in different time periods, with noticeable peaks in certain cities like Luoyang. Both panels use shades of green for UL and associated lines for ULOC data.]

FIGURE 3
 Changes in urban land area and cultivated land occupation due to urban expansion in the North China Plain (a) overall and (b) by city, 1980–2020.


In terms of the scale of urban expansion, Beijing (1.03 × 103 km2), Weifang (795.03 km2), and Linyi (778.55 km2) experienced the most substantial growth. These cities were followed by Jinan (742.15 km2), Tianjin (675.61 km2), and Zhengzhou (613.39 km2). By contrast, Jiyuan (34.43 km2) and Sanmenxia (67.12 km2) exhibited the smallest increases in urban land area.

Over time, the spatial dynamics of agricultural land consumption driven by urban expansion have experienced notable transformations (Figure 4). From 1980 to 1990, the cities exhibiting the highest levels of agricultural land consumption due to urban growth included Weifang (55.88 km2), Tangshan (42.71 km2), and Zhengzhou (30.46 km2), the majority of which were provincial capitals or cities in close proximity to them. Between 1990 and 2000, the focus of urban expansion shifted to Beijing (394.84 km2), Baoding (119.49 km2), and Shijiazhuang (110.97 km2), with these cities predominantly concentrated in Hebei Province and the Beijing metropolitan region. From 2000 to 2010, the cities with the most substantial agricultural land consumption were again Beijing (952.85 km2), Linyi (484.02 km2), and Jinan (419.17 km2), with these urban centers remaining predominantly in the Beijing-Shandong corridor. However, from 2010 to 2020, the cities exhibiting the highest rates of agricultural land consumption included Tianjin (170.69 km2), Dezhou (101.09 km2), and Xingtai (99.28 km2), with these areas reflecting a more dispersed and peripheral expansion.

[image: Four-panel map series showing urban land expansion in North China from 1980 to 2020. Each panel displays a different decade: a) 1980-1990, b) 1990-2000, c) 2000-2010, and d) 2010-2020. Urban areas are marked in various colors corresponding to each period: 1980 (yellow), 1990 (red), 2000 (purple), and 2010 (light blue). Insets highlight specific regions with detailed urban growth. Legends in each panel indicate urban land, cultivated land occupation, urban boundaries, and the North China Plain boundary. A scale and north arrow accompany each map.]

FIGURE 4
 Spatial distribution of cultivated land occupation due to urban expansion in the North China Plain, 1980–2020.


A comparative analysis of agricultural land consumption across these four periods reveals a consistent pattern: provincial capitals remain dominant in high-value zones, with their influence gradually extending to surrounding cities. In contrast, more peripheral regions of the North China Plain exhibit markedly lower levels of agricultural land consumption as a result of urban expansion, particularly when compared to the central regions.



4.2.2 Expansion rate

Between 1980 and 2020, urban expansion in the North China Plain displayed notable temporal and spatial variations in agricultural land consumption. Overall, expansion was markedly more rapid in proximity to provincial capitals, whereas peripheral regions experienced comparatively slower growth, resulting in a “high in the center, low at the periphery” trend of urbanization (Figure 5). Specifically, from 1980 to 1990, the city exhibiting the highest rate of agricultural land consumption due to urban growth was Weifang, with an annual rate of 5.59 km2/year. It was followed by Tangshan and Zhengzhou, with annual consumption rates of 4.27 km2/year and 3.04 km2/year, respectively. In contrast, urban expansion in the northern and southwestern sectors of the North China Plain was relatively subdued during this period. From 1990 to 2000, the locus of urban land consumption shifted to Beijing, which saw an annual consumption rate of 39.48 km2/year. Baoding and Shijiazhuang also experienced relatively rapid urban expansion, with annual rates of 11.95 km2/year and 11.10 km2/year, respectively. The central region of the North China Plain exhibited moderate growth, while Chengde registered the slowest expansion, with an annual consumption rate of merely 0.30 km2/year. Between 2000 and 2010, Beijing retained its position as the leader in urban land consumption within the region, with an extraordinary annual rate of 95.28 km2/year. Conversely, the slowest urban expansion occurred in Jiyuan, Henan, with the lowest rate of 0.64 km2/year. From 2010 to 2020, Tianjin emerged as the city with the most rapid urban land consumption, with an annual rate of 17.07 km2/year. The central and southern regions of the North China Plain also experienced relatively swift urban growth during this period, while Jiyuan maintained its position as the city with the slowest expansion, at an annual rate of 0.53 km2/year.

[image: Four maps show urbanization speed in a region from 1980 to 2020, divided into decades. Each map uses shades of pink to represent growth rates, with darker shades indicating higher speeds. Scatter plots next to each map display the urbanization speed for various cities during the corresponding decade. The maps illustrate growth variations over time and geographic areas.]

FIGURE 5
 The rate of urban expansion and cultivated land occupation in the North China Plain from 1980 to 2020.




4.2.3 Expansion intensity

Between 1980 and 2020, the intensity of urban encroachment on agricultural land in the North China Plain demonstrated an overall increasing trajectory, followed by a gradual deceleration. Notable fluctuations in expansion intensity were observed across different temporal periods and urban centers (Figure 6). During the 1980–1990 period, Sanmenxia exhibited the highest expansion intensity, with an intensity index of 0.8. In contrast, cities located in the northern regions of the North China Plain experienced the lowest expansion intensities in terms of agricultural land consumption. Between 1990 and 2000, a dramatic shift in urban land consumption intensity occurred. Sanmenxia maintained its position as the city with the highest expansion intensity, reaching an index of 0.10, while Dongying recorded the lowest intensity at 0.05. From 2000 to 2010, the disparities in expansion intensity became more pronounced. Jiyuan demonstrated the strongest expansion intensity with a value of 0.11, while Tianjin exhibited the weakest expansion intensity, at 0.06. In the final period, from 2010 to 2020, the spatial pattern of agricultural land consumption underwent another transformation. Tianjin emerged as the city with the highest expansion intensity, with an index of 1.97, followed by Handan, which had an intensity index of 1.63. Conversely, Beijing recorded the lowest expansion intensity, with an index of only 0.003.

[image: Four maps depicting urban intensity growth across different decades from 1980 to 2020 in a region, each accompanied by colored legends and intensity graphs. Darker shades represent higher intensity. Regions are labeled with codes, showing significant variation over time. Each decade's data is visually distinct, highlighting changes in urban development.]

FIGURE 6
 The intensity of urban expansion occupying farmland in the North China Plain from 1980 to 2020.





4.3 Loss of agricultural production potential due to urban land expansion on cultivated land

Between 1980 and 2020, urban expansion on agricultural land in the North China Plain was accompanied by a discernible increase in food production loss, exhibiting a spatial distribution pattern characterized by “lower losses in the north, higher losses in the central and southern regions” (Figure 7). Overall, urban encroachment resulted in a cumulative food production loss of 7.03 × 109 kg. Specifically, from 1980 to 1990, the food production loss totaled 1.50 × 108 kg; from 1990 to 2000, it increased to 5.72 × 108 kg; between 2000 and 2010, the loss surged to 4.08 × 109 kg; and from 2010 to 2020, the loss reached 2.22 × 109 kg.

[image: Four maps showing changes in a region from 1980 to 2020. Each map from 1980-1990, 1990-2000, 2000-2010, and 2010-2020 illustrates varying intensities of a variable, indicated by different shades of red. The maps on the left are paired with scatter plots on the right, displaying data points labeled by city, with values measured in kilograms. Legends and scale bars are included.]

FIGURE 7
 Agricultural production loss induced by urban expansion on cultivated land in the North China Plain (1980–2020).


During the 1980–1990 period, the greatest food production losses occurred in Tangshan, Hebei Province, where the recorded loss amounted to 1.21 × 107 kg (Figure 7). Weifang, in Shandong Province, also experienced considerable losses, though lower than Tangshan’s, with a loss of 1.15 × 107 kg. Other cities in the region reported more modest agricultural production losses. From 1990 to 2000, the loss of agricultural production potential increased significantly, with notable regional variations. The Beijing-Tianjin-Hebei region, along with the southern portion of the North China Plain, particularly Henan Province, became prominent high-loss zones, with Baoding recording the largest loss of 4.87 × 107 kg. Conversely, the northern parts of the North China Plain, particularly the central regions, experienced significantly lower losses.

Between 2000 and 2010, agricultural production losses escalated rapidly (Figure 7). During this period, the central region of the North China Plain emerged as the primary zone of high agricultural production losses. Beijing accounted for the largest loss, totaling 4.58 × 108 kg, followed by Linyi with a loss of 3.86 × 108 kg. In contrast, Jiyuan, situated in the southern part of the North China Plain, reported the smallest loss, amounting to just 4.34 × 106 kg. From 2010 to 2020, the areas of highest food production losses were concentrated in the central and southern regions of the North China Plain. Zhumadian recorded the largest loss at 1.20 × 108 kg, followed closely by Nanyang with a loss of 1.12 × 108 kg. In contrast, Chengde, located in the northern part of the North China Plain, experienced the lowest loss, with a total of only 2.38 × 106 kg.




5 Discussion


5.1 Analysis of the drivers of urban expansion and cultivated land occupation

With the growth of population and the acceleration of urbanization, the demand for residential, commercial, transportation, and other infrastructure has steadily increased, driving the outward expansion of urban areas and resulting in the conversion of large tracts of cultivated land to meet the needs of urban development (Ye et al., 2020; Zhao and Yin, 2023). As one of the most economically developed and densely populated regions in China, the North China Plain has experienced a particularly pronounced urbanization process, making the issue of cultivated land occupation even more pressing and warranting detailed investigation (Liu et al., 2018).

The drivers of urban expansion on cultivated land are multifaceted and complex, encompassing a range of factors, including natural geography, transportation infrastructure, and socioeconomic conditions (Li et al., 2018; Wu et al., 2021). From a natural conditions perspective, the North China Plain, located in the eastern coastal region of China, is characterized by flat terrain, fertile soil, and a favorable climate, making it a vital agricultural zone. However, these advantageous natural factors also facilitate urban expansion, reducing geographic constraints on construction activities and thus exacerbating the occupation of arable land (Tu et al., 2023). Moreover, the high agricultural productivity in this region makes its land more prone to being converted into urban uses, such as residential, commercial, and transportation infrastructure, during the course of urban development. While this urbanization has yielded significant economic benefits, it has also posed challenges to agricultural production and food security.

In addition, certain key cities in the North China Plain, such as Beijing and Tianjin, as political, economic, and transportation hubs of national significance, have contributed further to the intensification of cultivated land occupation in surrounding areas. Economic development remains one of the primary drivers of urban expansion (Feng and Kaiyong, 2021; Li and Hong, 2022). With the rapid growth of industries such as manufacturing, commerce, and services, the demand for land has continued to surge, leading to the conversion of large areas of cultivated land for industrial parks, commercial zones, and logistics hubs.

Moreover, government policies and urban planning initiatives also play a critical role in the conversion of agricultural land (Wu et al., 2024). To promote regional economic growth and enhance urbanization, governments often implement policies and urban plans that steer cities toward specific growth directions. While these policies accelerate the urbanization process, they also contribute to the transformation of vast areas of cultivated land into urban construction zones, which has profound implications for regional land use patterns and ecosystem services.



5.2 Comparison with existing research

In contrast to existing studies that predominantly emphasize the quantitative loss of cropland driven by urban expansion, this study provides a more comprehensive perspective by extending the analytical framework in terms of research lens, methodological approach, and policy implications. Firstly, from the perspective of research focus, prior studies have largely centered on the reduction in cropland area while neglecting the spatial variability of land quality and its potential influence on food production capacity (Seto et al., 2012). By incorporating the indicator of potential crop yield, this study highlights the preferential conversion of high-yield farmland during urban expansion, thereby addressing the limitations of area-based assessments and enriching the understanding of land-use change impacts. Secondly, with respect to methodology, although regional disparities in expansion speed and intensity have been discussed in earlier research, their linkages to the degradation of cropland quality remain insufficiently examined (Hu et al., 2018; Zhong et al., 2020). This study adopts a city-level analytical scale and proposes a composite evaluation framework integrating expansion speed, expansion intensity, and yield potential loss, enabling a nuanced exploration of the spatial heterogeneity in production capacity depletion under different urban expansion patterns. Finally, in terms of policy relevance, existing research often offers qualitative insights into the threats posed by urban growth to food security, but lacks quantitative metrics to inform decision-making (Li et al., 2017). By quantifying potential yield losses across cities and time periods—for instance, a loss of 1.21 × 107 kg in Tangshan from 1980 to 1990—this study offers actionable evidence for cultivated land protection, urban growth boundary delineation, and national spatial planning optimization.



5.3 Limitations and future directions

This study has several limitations that should be acknowledged. First, discrepancies in spatial resolution between the land use data and the farmland productivity dataset may introduce uncertainties in the assessment of crop yield loss due to urban expansion. To address this issue, resampling was performed on both datasets, which may have influenced the precision of the estimated yield loss. Second, to control for confounding variables and more accurately capture the spatiotemporal effects of urban expansion on agricultural productivity, this study relies on a single-period farmland productivity dataset. However, this approach does not fully account for temporal variations and technological advancements that may contribute to yield improvements over time. Lastly, the farmland productivity dataset represents an estimated value, and the modeling framework employed in this study adopts certain simplifications, omitting complex environmental factors such as soil degradation. These limitations underscore the need for future research to enhance data resolution, incorporate long-term temporal dynamics, and refine methodological approaches to improve the robustness and applicability of findings for sustainable land use planning and food system resilience.



5.4 Policy implications

The speed, intensity, and impact of urban expansion on cultivated land in the North China Plain are influenced by a complex interplay of natural geographical conditions, socio-economic development, and transportation infrastructure. Based on a systematic analysis of urban land expansion speed, intensity, and the resulting food production loss in the North China Plain between 1980 and 2020, this study reveals that regions characterized by slower urban expansion and lower intensity of land occupation typically experience less significant agricultural production potential loss. To effectively mitigate the loss of agricultural production potential in the North China Plain, the following policy recommendations are proposed from both economic and regional perspectives, tailored to areas with varying expansion speeds and intensities:

In regions with rapid urban land expansion and high intensity (e.g., Weifang, Beijing, and Baoding), significant agricultural production potential losses are mainly attributed to large-scale land conversion driven by rapid urbanization (Song et al., 2015; Liyan et al., 2019). This conversion directly reduces the area available for food cultivation, thereby threatening regional food security and posing potential risks to the national food supply system (Harris et al., 2022; Wassenius et al., 2023). To address these challenges, urbanization scales and spatial layouts should be scientifically planned according to the region’s resource and environmental carrying capacity. Specific measures include: stringent protection of the “red line” for arable land to prevent excessive concentration and unregulated urban sprawl; strengthening land approval and regulatory systems to promote land-saving and intensive land use; and improving land use efficiency through policy-driven optimization of land resource allocation. Additionally, regional cooperation should be enhanced to promote the synergistic implementation of regional development plans and policies, facilitating complementary resource advantages (Wu et al., 2022). For instance, the establishment of agricultural cooperation mechanisms, the promotion of agricultural technological innovation, and the development of modern agriculture can help increase food production per unit area, partially compensating for the agricultural production potential lost due to the reduction in arable land (Nordin et al., 2022; Huang et al., 2024; Xiong et al., 2024).

In contrast, areas with slower urban land expansion and lower intensity (such as Jiyuan and Chengde) exhibit relatively minor losses in agricultural production potential. These regions have managed to maintain a better balance between economic development and arable land protection, thereby ensuring stability in food production (Dai et al., 2024). However, these regions must remain vigilant and continue to strengthen the enforcement of arable land protection policies to mitigate potential risks associated with accelerated urbanization in the future.

Moreover, under the framework of the “cultivated land occupation and compensation balance” policy, it is essential to consider the complexity of various factors, including the quantity, quality, ecological value, spatial distribution, and temporal aspects of cultivated land. In the next phase, efforts should focus on enhancing the integration of regional economic development land-use planning, adjustments to cultivated land spatial layouts, and agricultural structure reform, while refining policy designs. Key recommendations include: establishing a technical system for evaluating land quality and ecological construction standards, developing a rigorous land quality inspection mechanism for newly converted land, and improving systems and procedures for guiding social participation in land protection. Additionally, in the context of high-standard farmland construction and the unified national land spatial planning (“One Map”), it is vital to clearly demarcate the arable land “red line” and, where appropriate, introduce ecological buffer zones to create pollution barriers for arable land. These integrated measures will ensure the sustainable use of cultivated land resources in the North China Plain, achieving a harmonious balance between urbanization and food security.




6 Conclusion

An in-depth examination of the relationship between urban expansion, farmland loss, and agricultural productivity potential on the North China Plain is pivotal for optimizing land resource management, ensuring sustainable land use, and safeguarding food security, particularly within the context of rapid socio-economic development. Leveraging the Chinese multi-temporal land use remote sensing monitoring dataset (CNLUCC) alongside agricultural productivity potential data, this study presents the following key findings:

	(1) Marked expansion of urban land on the north china plain.

Between 1980 and 2020, urban land on the North China Plain experienced substantial growth, with an expansion of 15,800 km2, of which 12,500 km2 was converted from arable land. Urbanization predominantly generated high-density zones centered around provincial capitals, gradually expanding outward in a patchwork-like pattern. This continuous urban spread has progressively encroached upon surrounding arable land, posing potential risks to regional food production security.

	(2) Significant spatial variability in the rate of urban expansion on farmland.

Between 1980 and 2020, urban expansion in the North China Plain exhibited pronounced spatial variations in the rate of agricultural land consumption, reflecting a pattern of “higher rates at the center, lower rates at the periphery.” Throughout the study period, the city with the highest rate of agricultural land consumption was Beijing, with an annual consumption rate of 95.28 km2/year between 2000 and 2010, followed by a rate of 39.48 km2/year from 1990 to 2000. In contrast, Jiyuan recorded the slowest rate of agricultural land consumption between 1980 and 1990, with a minimal annual consumption rate of just 0.0006 km2/year.

	(3) Phased changes in the intensity of urban expansion on arable land.

Between 1980 and 2020, the intensity of urban encroachment on agricultural land in the North China Plain exhibited a discernible trend of gradual increase followed by a deceleration. Specifically, from 1980 to 1990, Sanmenxia exhibited the highest expansion intensity, with an intensity index of 0.8. From 1990 to 2000, Sanmenxia continued to demonstrate the strongest expansion intensity, reaching 0.10, while Dongying recorded the lowest intensity at 0.05. Between 2000 and 2010, Jiyuan recorded the highest expansion intensity at 0.11, whereas Tianjin exhibited the weakest expansion intensity at 0.06. Finally, from 2010 to 2020, Tianjin emerged as the city with the highest expansion intensity, with an intensity index of 1.97, while Beijing experienced the lowest intensity, with a value of merely 0.003.

	(4) Impact of urban expansion on agricultural productivity potential.

The speed and intensity of urban expansion are positively correlated with the loss of agricultural productivity potential. The findings highlight that urban expansion in cities such as Tangshan, Baoding, Beijing, and Zhumadian has had a particularly profound impact on both arable land and agricultural productivity. For instance, between 1980 and 1990, Tangshan experienced a loss of 1.21 × 107 kg in agricultural productivity, while Baoding saw a loss of 4.87 × 107 kg from 1990 to 2000. In contrast, cities like Jiyuan and Chengde faced relatively smaller direct losses to food production, at 4.34 × 106 kg and 2.38 × 106 kg, respectively. However, should urban expansion continue unchecked, the potential threats to regional food production will intensify. In the long run, ensuring food security on the North China Plain remains a critical and daunting challenge.
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Introduction: Whereas Sustainable Development Goal 2 seeks to achieve zero hunger by 2030, food security remains a global challenge. Therefore, SDG 2 aims to achieve sufficient food access through sustainable agriculture. This is in line with the tenets of SDG1 that endeavor to end poverty in its diverse forms and, among other targets, secure land tenure rights. However, disparities in land tenure security still exist, especially in developing societies, and the prevalence of food insecurity is rising. Consequently, this study sought to establish the influence of land use patterns on food security.
Methods: A sample of 301 households was selected using proportionate sampling techniques. Accordingly, we used a cross-sectional research design, whereas data was collected using semi-structured interview guides. The Malthusian theory was used as an interpretive theoretical framework for this study.
Results and discussion: Furthermore, using the Household Food Insecurity Access Scale (HFIAS), it was established that the study site was food insecure, whereby only 22.6% of the households were food secure. Moreover, 39.5% of households experienced severe food insecurity, 16.3% had moderate food access, and 21.3% had mild food security. Results further revealed that agriculture characterized by subsistence farming was the primary land use pattern. Additionally, findings revealed agricultural expansion and increased demand for settlement spaces, resulting in deforestation, clearing of bushes, and general land degradation. Consequently, soil erosion and loss of soil fertility necessitating the use of pesticides and fertilizers were reported. Using a 5% significance level, a chi-square analysis revealed that these land use changes significantly influenced food security. Based on these findings, we recommend adopting sustainable agriculture to boost land productivity and diversify livelihood sources to reduce overreliance on mono-crop subsistence farming. Moreover, we draw the need to increase awareness of environmental conservation through agriculture extension services.
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1 Introduction

Food security is a global phenomenon that has attracted much attention (Maggio et al., 2015). We face a double threat of food insecurity in feeding undernourished and hungry populations, especially in developing countries (Gupta, 2019). Food security is the ability for people to be guaranteed constant physical, social, and economic access to safe, adequate, and suitable food (Le Mouël et al., 2018). It is premised on food access, stability, nutrition, and affordability (Bozsik et al., 2022). Historically, population growth, climate change, food price inflation, poor socioeconomic status, and, recently, the COVID-19 pandemic has aggravated food insecurity (Yusof et al., 2023). Moreover, Nchanji et al. (2023) link food insecurity in Sub-Saharan Africa to the underdevelopment of the agricultural sector. Based on the preceding, SDG 2 was instituted to end global hunger by 2030.

As a result, many countries still fall short of the targets of SDG 2 (Maggio et al., 2015; Pérez-Escamilla, 2017). Moreover, the global population is expected to rise to approximately 9 billion by 2050, translating to a more than 50% increase in food demand (Mulusew and Mingyong, 2023).

Statistically, by 2017, 800 million people worldwide faced acute food scarcity (Pérez-Escamilla, 2017). The number of people facing food insecurity has risen to over 2 billion (Delgado et al., 2023). While other parts of the world have made significant progress in SDG 2, Africa still lagged in reducing hunger (FAO et al., 2023). The food insecurity situation in Kenya is also rising (IBRD, 2022). For example, approximately 2.1 million Kenyans faced acute food insecurity in 2021 (Republic of Kenya and FAO, 2021). In 2022, Kenya was ranked in food crisis IPC stage 3, with 3.5 million Kenyans affected (Food Security Information Network (FSIN) and Global Network Against Food Crises, 2022). This population grew to 4.4 million in 2023 (Food Security Information Network (FSIN) and Global Network Against Food Crises, 2023).

Food security is directly related to agricultural systems (Schanbacher, 2010). There is a consensus that the way out of this quagmire is through agricultural expansion and intensification (Mockshell and Villarino, 2019). This is because while expansion and intensification of agriculture are necessary to combat food insecurity, they contribute to land use changes (Maggio et al., 2015). It further contributes to poor soil quality, increasing food insecurity (United Nations, 2022a), and emission of Green House Gases (Okeleye et al., 2023). Additionally, FAO (2017) posits that even though technology has positively impacted agriculture and food production, attainment of optimal food security remains significantly low due to land degradation. Consequently, land use changes increase soil erosion and poor soil quality, reducing agricultural food production (Ogechi and Hunja, 2012). Eventually, this land degradation accelerates food insecurity (Okeleye et al., 2023). The panacea to this challenge lies in proper land use and management of the available agricultural land (Nchanji et al., 2023).

Africa accounts for approximately 60% of the world’s arable land (Republic of Kenya and FAO, 2021). This partly explains why farming is Africa’s primary livelihood source (IFAD, 2013).

However, access to land for most households in Africa remains a significant challenge (Mulusew and Mingyong, 2023). Moreover, land dedicated to farming (crops and livestock) has significantly reduced due to population increase, urbanization, and food demand (Mockshell and Villarino, 2019). The continent’s increasing population has decreased household farm sizes remarkably (Mulusew and Mingyong, 2023). This means increased land use intensity due to population growth has negatively impacted food production. The centrality of land in attaining food security calls for attention to understanding the influence of land tenure on food security (Kamau et al., 2022). This calls for an urgent need to seal the disconnect between land and food to increase food production to feed this population (Mulusew and Mingyong, 2023). However, it is notable that land use should be done without causing environmental calamities or exacerbating food insecurity (McConnell and Viña, 2018). This study, therefore, takes an interest in how agricultural land use changes contribute to reduced food production and ultimately result in food insecurity.

The need for sustainable agriculture is inherently embedded in SDG 2 to achieve food security (Mockshell and Villarino, 2019). Food systems account for about 40% of Earth’s surface and directly contribute to 80% of global deforestation (Meza, 2023). Comprehensive research on the influence of agricultural systems on food access is still needed, given that food access is the most significant component of household food security (Nicholson et al., 2021). Sufficient focus has not been laid on the effect of agricultural land use changes due to agricultural expansion and intensification on food security (Mockshell and Villarino, 2019).


1.1 Research gap

Food security and land use are inextricable because unsustainable use of agricultural land negatively affects food security. Increased agrarian activity fuels changes in land use, disrupts biodiversity, and degrades land, resulting in low food productivity (Zabala, 2018). Land use change is a global concern that compromises livelihood security (Parven et al., 2022) and contributes to land degradation, resulting in food insecurity (Republic of Kenya and FAO, 2021). Therefore, food insecurity leads to hunger and malnutrition, tremendously affecting human health against the tenets of SDG2 because access to healthy diets is critical for positive health outcomes (Yusof et al., 2023).

Taita Taveta County has undergone tremendous land degradation due to agricultural and other anthropogenic activities. Moreover, the County is categorized as food stressed in IPC stage 2 of food insecurity. While existing studies draw a nexus between food security and land use, the focus has not been directed to the influence of land use in Taita Taveta. Therefore, this study aimed to establish the impact of land use changes on the prevalence of food insecurity in the study site.



1.2 Theoretical model

The global population will rise to over 9 billion by 2050 (United Nations, 2022b). the effect of this rise is expected to manifest through an increased vulnerability to food insecurity, raising the risk of hunger and malnutrition (FAO, WBG and WTO, 2023). Over the last decade, Africa has experienced rapid population growth (OECD, 2017). On the one hand, the global human population is increasing, and food insecurity is also increasing on the other hand (Food Security Information Network (FSIN) and Global Network Against Food Crises, 2023; Lanz et al., 2017). It therefore suffices to posit that increased population increases land demand for food production. As a result, uncontrolled population growth contributes to intensive land use and land degradation (Egger et al., 2020).

Given this nexus between population, land, and food production, this study embraced the Malthusian theory to explain the impact of land use patterns on food security. This theory acknowledges that while resources are finite, humans must live off them. Consequently, Malthus asserted that uncontrolled population growth is harmful because it pressures available land, outstripping the food supply and contributing to land use changes (Chowdhury and Hossain, 2019). The Malthusian theory, therefore, acknowledges that population growth contributes to land use changes that potentially impact food production (Egger et al., 2020). This is because, over time, and as the human population grows, there is increased encroachment on agricultural land for food production and human settlement (Winkler et al., 2021). This results in land fragmentation and changes in land use (Mhawish and Saba, 2016). According to Gupta (2019), intensive agriculture is primarily associated with soil erosion, a critical factor that limits land productivity. This necessitates a paradigm shift to improve food security (Mora et al., 2020).

Critics of this theory acknowledge that technology has had an enormous impact on increasing food production per person. Nevertheless, despite these technological advancements, food insecurity is still rising (O’Flynn, 2009). Therefore, the theory was still considered relevant in predicting the effect of human population pressure on land degradation and the ultimate impact on food security.




2 Methods


2.1 Study site

This study was conducted in Mwatate Sub-County, Taita Taveta County, Kenya. The sub-county is the second largest in the County, with a population of 81,659 people, and covers an area of approximately 2,722.6 km2 (Kenya National Bureau of Statistics, 2019). It comprises five wards: Chawia, Kishamba, Bura, Mwatate and Ronge. Agriculture is the area’s primary source of Livelihood (Munyao et al., 2020). Currently, the County is ranked as food-stressed (Wakesho et al., 2022). Moreover, Taita Taveta County harbors a critical global biodiversity hotspot (Abera et al., 2022) that has undergone tremendous land degradation over the years (Pellikka et al., 2013). Moreover, whereas 62% of the total land in Taita Taveta County is occupied by the Tsavo West and East National Parks, only 14% is utilized for agriculture and settlement (Funder and Marani, 2013).



2.2 Study design

This study was conceptualized as a survey and, hence, was interested in capturing the responses of household heads at a single time. Therefore, a cross-sectional survey research design was employed, given its ability to interview respondents on the go and further, owing to its versatility across the population (Olsen and St. George, 2004). Additionally, this design was selected because Setia (2016) acknowledges cross-sectional surveys as ideal for studying subjects once only at a given point in time.



2.3 Sample size determination

Selection of the sample for this study was based on Fisher’s formula. This was more so based on the fact that the population in Mwatate Sub County was more than 10,000 people in line with Fisher’s recommendation. Therefore, the study sample was determined to be 384 households, with one individual aged above 18 years being interviewed. Accordingly, given that voluntary participation was encouraged, a 78% response rate was reported, as 301 respondents were accessed. The sample size was calculated using the formula below.

[image: Formula for calculating sample size: n equals Z squared times P times open parenthesis one minus p close parenthesis divided by I squared.]

[image: The formula for sample size calculation is shown: n equals open parenthesis 1.96 squared times 0.5 times open parenthesis 1 minus 0.5 close parenthesis, all divided by 0.05 squared.]
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Where;

n represented the sample size.

Z represented the normal distribution value.

P represented the population proportion with desired characteristics.

I represented the significance level.



2.4 Sampling procedures

This study adopted both proportionate stratified and simple random sampling procedures. As established by Munyao et al. (2020), majority of the households in Taita Taveta County engage in subsistence agriculture. Therefore, the inclusion criteria for a household was pegged on a household engaging in subsistence farming. Accordingly, the study focused on subsistence farmers in these as a target unit of analysis. Stratified sampling technique was administered where the sub-county was stratified alongside the existing wards that constituted the five strata. As stated above, the total sample size for this study was guided by the Fisher’s formula, targeting to reach 384 households. Given that the population of each of the stratum is known, the sample for each ward was determined proportionately to the ward population, as shown in Table 1. This means that the sample size of each of the ward (stratum) was calculated as a proportion of the entire subcounty population with reference to the sample size predetermined using Fisher’s formula. After establishing the sample size for each of the ward, households were randomly selected for as long as they engaged in subsistence farming. Accordingly, only the heads of the households selected were interviewed with only one interview per household. This study was conducted during the COVID-19 pandemic when many people were not open to social interaction. Therefore, the interviews with farmers were conducted using a simple random technique to increase the chances of accessing respondents. Accordingly, a total sample of 301 households was interviewed.



TABLE 1 Distribution of sample size.
[image: Table displaying data on administrative wards, showing population, target sample, and sample size reached. Wards listed: Ronge, Mwatate, Bura, Chawia, Kishamba, totaling 81,659 population and reaching 301 out of 384 target samples.]



2.5 Data collection

Data was collected using semi-structured interview guides. According to Ruslin et al. (2022), semi structured interviews increase the chances of acquiring in-depth data and enables researchers to probe the interviewees. Therefore, open-ended interview questions collected qualitative data from the demographic characteristics of households within the framework of Bourdieu’s forms of social, cultural, economic, and symbolic capital. From these forms of capital, the researcher extracted qualitative data relating to land tenure that included land ownership, use, and control rights. Qualitative and quantitative methods in data collection enhance the quality and integrity of the data while providing insight into the quantitative traits observed from the study’s findings.

Qualitative variables relating to food security included indicators influencing anxiety and uncertainty about household food supply and access and quality, food and social networks, and knowledge. Quantitative data, on the other hand, was collected from quantitative demographic and socioeconomic factors that explain physical access to food security and land use variables. These included income level, education, and total land size owned for each household.



2.6 Data validity

In order to ensure the validity of the data collected, various measures were employed. These included the use of a standardized and validated format of the Household Food Insecurity Access Scale. This is a universally tested and accepted scale that applies across many cultural contexts and was therefore very suitable for collecting data on household food security situations. The interview guides were designed with skip logic to prevent instances where ambiguous responses would be recorded. In order to ascertain the validity of the tool, the Cronbach’s Alpha was conducted revealing a reliability index of 0.844. Moreover, the research assistants who helped in the data collection were trained in the use of the interview guides, and a specific focus was placed on the appropriate use of the HFIAS. The tool was equally translated into local language with the intention behind the questions in the HFIAS being cleared explained. To ensure objectivity in the data collection, the research assistants were trained on research ethics and techniques that foster neutral probing and reporting.



2.7 Data analysis

The data collected was entered and analyzed in SPSS version 23. Univariate analysis of quantitative data was done using descriptive frequencies presented as graphs and charts. On the other hand, qualitative data was thematized and formed the basis of developing narratives that provided more profound insights into food security prevalence and land use changes. Specifically, the study established the food security situation at the study site using data collected from the HFIA Scale. To calculate the food security index, the universal model that categorizes the various responses into food secure, moderate food security, mild food insecurity and food insecurity. On the other hand, land use changes were operationalized through five variables: use of fertilizers and pesticides, clearing forests for agriculture and human settlement, soil erosion and soil fertility loss.

Moreover, a chi-square test was conducted to establish the correlation between food security and land us changes. In preparing data for chi-square analysis, some of the variables had counts exceeding the 20% threshold of cells with a count of less than 5. Therefore, the data was recoded and categorized into fewer categories. The categories of food security were reduced from four to two, to reduce the outliers. Instead of the four categories (food secure, moderate, mild, and food insecure), this variable was recoded as either food secure or food insecure. Respondents who were reported to be food secure were combined with those who had mild food security to constitute the food secure category. On the other hand, respondents with moderate food insecurity were combined with those who had severe food insecurity to constitute food insecurity. This ensured that no cell had a count of less than 5.

According to Rana and Singhal (2015), chi-square tests can be deployed on data drawn from a random sample whose variables are mutually exclusive to test for data independence. In setting the instances of using this non-parametric test, McHugh (2013) observes that this statistical tool can be used on either nominal or ordinal data. Accordingly, the categorical data collected from food security indicators were transformed into food secure and food insecurity. Moreover, land tenure security indicators were operationalized into categories, with “yes” and “no” responses to land of ownership, access, and control of land rights. These two variables, which were categorical and in line with the assumptions of chi-square analysis, were then analyzed using the chi-square association test to establish their correlation.



2.8 Measurement of food security prevalence

The Household Food Access Scale (HFIAS) was used to assess the prevalence of food insecurity. HFIAS measures the occurrence and frequency of anxiety about food access, the quality of food diets, and the quantity of food households access. Therefore, it classifies food security as food secure, mild food security, moderate food security, and severe food insecurity. A household is food secure if it does not experience anxiety in accessing food. Mild food insecurity is observed when households have no option other than to consume monotonous diets. Additionally, moderate food insecurity was experienced when a household had to maintain a monotonous diet and sometimes had to reduce food quantity. Severe food insecurity occurs when a household frequently compromises the number and quantity of meals consumed, ran out of food, go for an entire day without food.



2.9 Ethical considerations

This study was conducted with strict adherence to ethical standards. Specifically, ethical review clearance and research permits were obtained prior to the commencement of the study. Additionally, ethical principles of professionalism, voluntary participation, confidentiality, anonymity of the respondents, respect, and informed consent were adhered to in the research. Interview guides had an introductory section explaining the study’s objectives to the respondents. Accordingly, consent to participate in the study was obtained from the participants who voluntarily participated. The principle of Do No Harm was equally observed.




3 Findings


3.1 Demographic characteristics of the respondents

From the findings of Table 2, it is evident that most of the respondents were aged 50 years and below. Specifically, 15.6% were aged between 18 and 28 years, 27.6% of the respondents were between 29 and 39 years, and 24.1% were aged between 40 and 50 years. Additionally, the results further revealed that most respondents had attained a significantly low level of education. While 7% of the respondents reported not attending school, 55.4% reported receiving only primary education. Whereas 28.5% had attained secondary school education, only 9% had a tertiary educational level. Gender distribution revealed that whereas 61.3% were female, 36.1% were male, and 2.6 preferred not to disclose their gender. Additionally, most households (68.1%) had a monthly income of less than Ksh. 10,000, with 18.6% having between Ksh. 10,001 and 15,000, while only 13.3% had a monthly income of over Ksh. 15,000 cumulatively. Moreover, most households (68.1%) comprised five and below people, while 31.9 had more than five people.



TABLE 2 Respondents demographic characteristics.
[image: Table showing demographics: Age distribution includes 18-28 (15.6%), 29-39 (27.6%), 40-50 (24.1%), above 51 (32.7%). Education levels: Did not attend (7%), Primary (55.4%), Secondary (28.5%), Tertiary (9%). Gender: Male (36.1%), Female (61.3%), Prefer not to say (2.6%). Monthly income: ≤10,000 Ksh (68.1%), 10,001-15,000 (18.6%), 15,001-20,000 (9.1%), >20,000 (4.2%). Household size: 5 members and below (68.1%), above 5 members (31.9%).]



3.2 Source of livelihood and land use patterns in Mwatate Sub County

The study endeavored to establish the source of livelihood for the households. Figure 1 shows the summary of the findings.

[image: Bar chart showing percentages of different livelihood sources and land use patterns. Mono-crop subsistence leads at eighty-one point six percent, followed by employment at forty-two point five percent, and mixed agriculture at thirty-three point three percent. Other sources include charcoal burning (fourteen point six percent), commercial agriculture (thirteen percent), livestock farming (four percent), small-scale businesses (three percent), and mining (two point two percent).]

FIGURE 1
 Source of livelihood and land use patterns.


Findings in Figure 1 reveal that most households (81.6%) engaged in mono-crop subsistence farming compared to 13% who acknowledged practicing commercial agriculture. Further, most (42.5%) households revealed that they engaged in crop agriculture, with 33.3% reporting mixed agriculture entailing crop and livestock farming. Moreover, 14.6% of the respondents acknowledged that they had gainful formal employment as a source of livelihood, and only 4 and 3% reported engaging purely in livestock farming and mining, respectively. A further 2.2% acknowledged engaging in other activities, including charcoal burning and tree logging, for income, whereas 0.3% said they engaged in small-scale businesses.



3.3 Food security index

The food security prevalence index was established using the HFIAS; the findings are presented in Figure 2.

[image: Bar chart displaying food security levels by percentage. Categories: Food secure (22.6%), Mild food secure (21.3%), Moderate food secure (16.3%), Severe food insecurity (39.5%). Severe insecurity has the highest percentage.]

FIGURE 2
 Household food security index.


It was observed that most households were food insecure, whereby 39.5% of the households reported severe food insecurity, 16.3% had moderate food access, and 21.3% reported mild food security.

Interestingly, only 22.6% of the households recorded secure food access.



3.4 Land use changes in Mwatate Sub County

Having stablished the prevailing land use patterns at the study site, the study determined the land use changes due to these patterns. Figure 3 summarizes the results of our survey.

[image: Bar chart depicting public perceptions of land use changes related to environmental impacts. Categories include intensive agriculture, clearing for settlement, clearing for agriculture, soil erosion, soil fertility loss, and pesticide use. Most respondents answered "No" across categories, with percentages ranging from 22.6% to 24.5%. Responses for "Yes" were significantly lower, under 6%, and "Don't Know" varied slightly, peaking at 27.7% for clearing bushes for settlement.]

FIGURE 3
 Land use changes.


Our results revealed that 75.3% of households reported agricultural expansion in the study site. This was mainly observed by most (75.9%) households who noted increased clearing of bushes due to increased demand for agricultural land. Additionally, 69.9% reported increased rates of clearing of bushes in favor of human settlement. It is expected that increased agricultural activities coupled with other anthropogenic activities will result in agricultural land changes. Consequently, most (72.8%) households observed increased soil erosion incidences in the study site and admitted to frequently using fertilizers and pesticides. Moreover, most (75.5%) households reported that the soil quality for their agricultural land had lost its fertility over time. As a result, a majority (72.8%) of the households acknowledge using fertilizers and pesticides to boost their farms’ soil quality and productivity.



3.5 Correlation between land use changes and food security

The following section presents the Chi-Square statistics establishing the correlation between land use changes and food security. The significance of association was established using a significance level of 5%. Land use changes were cross-tabulated against the food security prevalence index, and the respective p-values were determined. A significant relationship was reported only when the value was equal to or less than the significance level. Furthermore, Crammers V was used to establish the strength of the association. The findings are summarized in Table 3.



TABLE 3 Influence of land use changes on food security.
[image: Table showing land use impacts with Pearson chi-square, p value, and Cramer's V. Significant associations (p < 0.05) are use of fertilizers and pesticides (p = 0.013), clearing of forests for human settlement (p = 0.017), soil erosion (p = 0.001), and soil fertility loss (p = 0.029).]

Findings in Table 3 reveal that using fertilizers and pesticides was significantly associated with food security prevalence with chi-square values (χ2 = 20.977, p = 0.013). Crammers V depicts a weak association (15.2%) between the use of pesticides and food security. Additionally, clearing land for agricultural expansion was not significantly associated with food security. Moreover, the increased demand for land for human settlement correlated significantly with food security with a chi-square value of (χ2 = 15.501, p = 0.017). According to Crammers V, this association was weak, with an association strength of 16%. Nevertheless, our findings reveal that soil erosion was significantly associated with food security (χ2 = 32.774, p = 0.001), and the loss in soil fertility equally had a significant association with food security (χ2 = 26.947, p = 0.029). Soil erosion and loss of fertility 300 had an association strength to food security of 19.3 and 17.6%, respectively. In order to provide more insight into the correlation between land use changes and food security, data was disaggregated on the basis of gender, level of income and educational level. These variables were considered because past studies have highlighted their contribution to land use changes and food security.

Table 4 demonstrates that when disaggregated on the basis of gender, only soil erosion and loss of soil fertility were significantly associate with food security with p values of 0.008 and 0.031, respectively. However, it was further noted that the female gender had a significant influence on this association, testing significant for the use of pesticides, soil erosion and loss of soil fertility recording p values of 0.037, 0.021 and 0.002, respectively.



TABLE 4 Chi square disaggregation of findings based on gender distribution.
[image: Table showing p-values for land use changes by gender. Significant associations are bolded with asterisks. Use of fertilizers and pesticides: male 0.387, female 0.037, overall 0.228. Clearing forests for agriculture: male 0.358, female 0.905, overall 0.799. Clearing for human settlement: male 0.985, female 0.578, overall 0.857. Soil erosion: male 0.179, female 0.021, overall 0.008. Soil fertility loss: male 0.445, female 0.002, overall 0.031.]

Table 5 presents the findings of disaggregated data based on the level of income of the households surveyed.



TABLE 5 Chi square disaggregation of findings based on income level distribution.
[image: Table showing p-values for land use changes in low and high-income areas. Significant associations are bolded with an asterisk. Use of fertilizers and pesticides: 0.048* (Low), 0.897 (High), 0.228 (Overall). Clearing forests for agriculture: 0.608 (Low), 0.082 (High), 0.799 (Overall). Clearing for human settlement: 0.865 (Low), 0.192 (High), 0.857 (Overall). Soil erosion: 0.006* (Low), 0.279 (High), 0.007* (Overall). Soil fertility loss: 0.035* (Low), 0.087 (High), 0.031* (Overall). Bold asterisk values indicate significant associations.]

Findings in Table 5 reveal that soil erosion and loss of fertility were significantly associated with food security. However, it was observable that low income level had a more significant impact on this association as compared to high educational level. Among the households with a low level of income, it was established that use of fertilizers, soil erosion and loss of fertility had a significant association to food security with p values of 0.048, 0.006, and 0.035, respectively.

Education level is an important socio economic variable that entails the level of access to knowledge for improved decision making and choices. Table 6 provides a summary of the findings of disaggregated data showing the association of land use changes on the basis of educational attainment of the households.



TABLE 6 Chi square disaggregation of findings based on level of education.
[image: Table showing p-values for land use changes across education levels. Significant associations (bold asterisk) occur in low education for fertilizers (0.001), soil erosion (0.009), and soil fertility loss (0.005). High education shows significance in soil erosion (0.050). Overall, significant values are found for soil erosion (0.007) and soil fertility loss (0.031).]

The results in Table 6 show that when disaggregated on the basis of educational level, only soil erosion and loss of soil fertility significantly influenced food security, scoring p values of 0.007 and 0.031, respectively. Moreover, it was observed that households that had lower levels of education had a more pronounced impact on this association. This is because, other than loss of soil fertility and soil erosion, the use of fertilizers was found to significantly affect food security for this category.




4 Discussion

The results of this study established that, on the one hand, subsistence agriculture was the primary source of livelihood for most households. On the other hand, food security prevalence in Mwatate Sub County was established to be below Kenya’s national food security index, where only 22.6% of households were found to be food secure. The findings further established that land use changes associated with increased demand for more agricultural land and human settlement were noted.

Moreover, soil erosion, intensive agriculture, and loss of soil fertility were reported, which led to increased use of fertilizers and pesticides to maximize agricultural production of food. Consequently, chi-square revealed that land use changes correlated with food security because as the human population grows, available land shrinks, necessitating expansion or expansion of agriculture to boost food production.

According to Waceke and Kimenju (2007), subsistence agriculture entails farming crops and livestock with little chance of surplus production. Mono-crop subsistence farming, characterized by soil erosion and infertility, is prevalent in the tropics, exacerbating food security (Amberger, 2006). Therefore, its benefits can only be experienced in the short term, while in the long run, it prevents soil regeneration over time and frequently results in soil infertility and erosion (Ambagna et al., 2012). This implies that subsistence farming does not create a food surplus, and households are in a constant shortage of food. Ultimately, this situation necessitates intensive agriculture to compensate for reduced food demand. Given this position, it is not a surprise that food security is prevalent at the study site. While, on one hand, most households were subsistence farmers, results revealed an increased clearing of bushes for more land.

Land is a critical input in agriculture whose tenure determines the livelihood security of households (Abdillah et al., 2022; Le Mouël et al., 2018). Agriculture has many employment opportunities globally (Christiaensen et al., 2020), employing more than a billion people in developing countries (Davis et al., 2023). In these developing countries, food production is land-based Zeder (2011) and mainly for subsistence consumption (Hurni et al., 2008). Therefore, apart from being a primary source of Livelihood for many households in Kenya, agriculture is vital to achieving food security (Nyamwamu, 2016). This observation was consistent with the findings of this study, which showed that most households depended on mono-crop subsistence farming.

According to Seifert et al. (2022), Taita Taveta has undergone tremendous ecosystem destruction that contributes to soil erosion, drying of springs and loss of soil fertility. The county is further bedeviled by incessant land tenure insecurity that contributes to increased poor food production, since most households depend on subsistence agriculture (Obeka et al., 2024). The county has a unique land security situation in which over 60% of total available land is public land under a national Park. This limits the land available for households to practice agriculture. Coupled with human-wildlife conflict, food production is expected to be affected due to limited agricultural spaces and destruction of crops by wild animals, thereby contributing to food insecurity (Mukeka et al., 2022).

Consequently, land use changes were observed in increased agricultural expansion, soil erosion, and decreased soil fertility. These findings denoted increased land use intensity due to population increases to cater to living spaces. Ultimately, this encroachment reduces food for wildlife, leading to wild animals attacking farms, especially those near the parks. Our study revealed instances where elephants, monkeys, and baboons invaded farmlands and destroyed crops, increasing food insecurity. Nyamwamu (2016) posits a conflict between humans and wildlife over scarce resources.

The study’s data was further disaggregated on the basis of gender, level of income and education. This categorization proved to be insightful for this study because there is increasing call for the feminization of agriculture owing to the immense contribution of women in agricultural food production. Women, play a critical role in household food security because they not only mainly work on family farms, but are directly responsible for preparing family meals. Therefore, the findings that the female gender significantly influenced the association between land use changes and food security ware consistent with existing literature.

Socio economic status of households influence land use changes (Simon et al., 2024). In a study conducted in Zambia by Handavu et al. (2019), households’ wealth and educational level were significantly found to influence land use dynamics (Briassoulis, 2009). Income influences access to and demand for land and to a larger extent determine land use patterns. Low levels of income accelerates land degradation as households seek to intensify agricultural land use, so as to increase food production (Mootian, 2020). Therefore, it was not a surprise that the results of this study, revealing that majority of the households had a low income level, aligned with this observation.

Additionally, the results of this study established that majority of the households had a somewhat low level of education. Chi square tests revealed that this low level of education correlated with land use changes. In a study by Malaki (2018) in Kenya, it was established that educational attainment significantly influences land use changes. This observation is consistent with the findings of this study.

As the human population grows, land demand soars, disrupting land cover (Winkler et al., 2021). We established this trend in our findings, revealing increased land demand for human settlement and agriculture in the study site. According to the United Nations (2022a), increased demand for agricultural land is associated with ecosystem degradation. Muraoka et al. (2018) also posit that increasing and uncontrolled land use intensity is unsustainable and negatively influences agricultural productivity, affecting food security. Indeed, (Mhawish and Saba, 2016; van Dijk et al., 2013) note that agricultural expansion and intensification contribute to the loss of biodiversity and land use changes, resulting in land degradation. If land use changes are not controlled, this land degradation jeopardizes agricultural land productivity (Paz et al., 2020).

Moreover, as land-use intensity increases, the quality of agricultural land declines, calling for intervention that could boost the soil quality. On this basis, using fertilizers to raise soil quality is necessary. However, using chemical fertilizers and pesticides disrupts the soil fertility of agricultural land. According to Jefwa et al. (2012), fertilizers lower spore abundance in the soil, affecting the soil’s ability to increase food productivity. Long-term use of pesticides and organic fertilizers contributes to declining soil fertility, reducing land’s agricultural potential. Accordingly, our results drew a negative association between food security and the use of pesticides and fertilizers. Additionally, due to the cost of mono-cropping to soil quality, it was not a surprise that most households noted a decline in soil fertility necessitating fertilizers. This paints a grim picture of the food security situation at the study site.

Forests are crucial in controlling climate change and preserving biological diversity (Borges et al., 2020; Olagunju, 2015). Therefore, deforestation poses a global problem and threatens food security because it degrades soil and interferes with rain patterns and water catchment areas (Olagunju, 2015). Unfortunately, most of Sub-Saharan Africa’s forests have been lost in favor of agricultural land (Pellikka et al., 2013). Kenya has lost over 30% of its forest cover to farmlands (Wekesa et al., 2019). The rainforests on Taita Hills that act as water catchment areas for rivers and springs have deteriorated over time due to deforestation (Hohenthal et al., 2015).

This deterioration is fueled by the demand for land for settlement and crop cultivation (Funder and Marani, 2013). Jefwa et al. (2012) note that intensive agricultural activities are prevalent, particularly in high-altitude areas of Taita Taveta County. This is in line with the results of our study. Located at higher altitudes, Chawia, Kishamba, and Bura wards were primarily involved in intensive crop agriculture. This, in turn, impacts the rising demand for agricultural land manifest through clearing forests and bushes. However, Mwatate and Ronge wards at the Taita Hills base reported a higher affinity toward livestock farming.



5 Conclusions and recommendations

Even though SDG 2 aims at reducing hunger through sustainable agriculture, the rising global population pressure has adverse effects on food security. While many factors are attributable to food security, the need to increase food supply through agriculture has exacerbated land use changes that further inequalities in food access. Accordingly, this study aimed at establishing the impact of land use changes on food security. Results revealed that most households were food insecure and that 39.5% experienced severe food security. The study utilized the HFIAS to study the household food security index. However, this method despite being useful, it does not delve into the implication of the food security situation of the households. Given that the study established generally low levels of food security at the study site, we recommend that future studies should be able to employ anthropometrical methods to establish the health impact of food insecurity in households. Moreover, agriculture was the primary source of livelihood for most households, where household practiced mono-crop subsistence and livestock farming, compared to a minority that ventured into other livelihood alternatives of business, formal employment and mining. Accordingly, the study established that changes in agricultural land use are present at the study site. A significant statistical correlation was established between food security and land use changes. Specifically, the findings revealed an increased demand for agricultural land contributed to increased deforestation, clearing of forests and bushes, soil erosion, soil fertility loss, and rivers drying. Therefore, statistical test demonstrated that agricultural land-use changes negatively influenced agricultural productivity, thereby accelerating food security in Mwatate Sub County.

The results revealed an interesting angle to understanding the association between land use changes and food security. The findings demonstrated that the gender, income, and educational level of the respondents had a critical bearing on shaping this association. Consequently, amid the growing human population and its effect on agricultural expansion, the study recommends adopting sustainable agricultural and farming practices that can boost agricultural food yield. Disaggregated analysis revealed that women’s agricultural participation influenced land use changes. This study, therefore, recommends the need for deliberate effort through agricultural policy reforms to ensure increased participation of women in agriculture. This effort can be supplemented through agricultural extension education, where awareness on the contribution of women to agriculture can be emphasized and encourage the community to embrace women in agriculture given their immense contribution to the food system. Additionally, to supplement this, we draw the need to boost food security through food crop diversification beyond the maize farming that most households embraced. The findings of this study paint a picture in which there are accelerated land use changes at the study site. Coupled with the existing land use challenge, this study recommends a future study that can establish whether land tenure security has an impact on these land use changes at the study site. More so, such a recommended study could focus on a gendered dimension and evaluate whether the involvement of women in agriculture and securing their tenure rights can positively impact on land use and agricultural productivity.
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Introduction: Agricultural scale operation serves as a crucial avenue for advancing the construction of agricultural modernization and fostering the development of a formidable agricultural nation. It is important to note that agricultural scale operation underscores not only the expansion of land acreage but also the contiguous and integrated management of land parcels.
Methods: This study utilizes data from the 2020 Chinese Academy of Social Sciences rural revitalization research to assess farmers' digital literacy levels through factor analysis and principal component analysis. After elucidating the underlying logic of how digital literacy influences the scale of agricultural land operations, we employ linear regression models, mediated moderation models, and other statistical tools to delve into the specific impacts of farmers' digital literacy on their farmland scaling behaviors.
Results: The findings reveal that: (1) Digital literacy exerts a positive effect on the scale of farmland management undertaken by farmers. Specifically, for every unit increase in farmers' digital literacy, there is an average corresponding increase of 0.811 units in the overall scale of farmland management, 0.454 units in plot size, and 0.633 units in land concentration, respectively. (2) Mechanism testing reveals that an enhancement in farmers' digital literacy facilitates farmland transfers, thereby promoting large-scale farmland operations. Additionally, farmers' land dependence amplifies the positive effect of digital literacy on such operations. (3) Sub-dimension analysis yields further insights: In the realm of digital access, improved digital media literacy encourages farmers to consolidate their land holdings, expand production scales, harness economies of scale, and ultimately boost agricultural production efficiency. Within the digital application dimension, heightened levels of digital business literacy and digital information literacy among farmers spur the expansion of their land operation scales and increase land concentration. Conversely, elevated digital social literacy and digital problem-solving literacy primarily drive the expansion of land operation scales but exert minimal influence on land concentration. (4) Heterogeneity analysis uncovers variations in the impact of farmers' digital literacy on farmland scale operation behavior across different human capital levels, age groups, and urban-rural contexts.
Discussion: Consequently, to foster farmland scale operations, it is imperative to: Promote the development of rural digital infrastructure to enhance farmers' digital accessibility. Strengthen the factor market system to facilitate efficient circulation of various factors. Increase support for farmer benefits and assistance programs to bolster their risk resilience. Intensify skills training for farmers to activate their intrinsic motivations as primary actors in this process.
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1 Introduction

Moderate-scale agricultural operations predominantly entail the scaling of land management, which encompasses the aggregation of land resources amidst the ongoing rural–to–urban labor migration, capital constraints in agriculture, and suboptimal technological advancements. This approach underscores horizontal specialization and the division of agricultural production labor within a given region, exemplified by the contiguous and concentrated planting of crops in designated areas. The global landscape of large–scale farm development is heterogeneous, owing to the disparate resource endowments, economic circumstances, and socio–cultural contexts of individual countries. As a prominent global agricultural leader, the United States exemplifies large–scale farm development through a high level of specialization and mechanization, facilitated by its extensive arable land resources, cutting–edge agricultural science and technology, and robust policy framework (Sumner, 2014; Key, 2019). In Asia, South Korea and Japan have adopted distinct strategies for agricultural scale management. South Korea facilitates extensive agricultural land management by means of policy legislation, resulting in a scenario where private management and leasehold management coexist (Kim and Kamiya, 1992). Conversely, Japan has maintained small–scale land management while achieving a high degree of modernization, including mechanization, informatization, and branding, through policy guidance and industrial adjustment (Kawagoe, 1999). The Association of Southeast Asian Nations (ASEAN) fosters the growth of comprehensive agricultural enterprises and the development of local production by augmenting investments in agricultural science and technology (ASEAN Secretariat, 2015; Rigg et al., 2016).

In contrast, China's agricultural landscape is characterized by a large number of small farmers. The core of China's land system revolves around the protection of arable land, food security, and farmers' livelihoods (Gao, 2019). Consequently, the Chinese government has actively explored the development of appropriately scaled agriculture, bridging the gap between small farmers and modern agriculture. The annual “Central Document No. 1” has consistently emphasized the importance of moderate–scale agricultural operations, addressing the question of “who will farm the land,” and affirming that agricultural modernization should uphold the foundational role of small farmers, prioritize the cultivation of new agricultural management entities, and strengthen the socialized service system.

However, given China's unique agricultural circumstances, the pursuit of large–scale agricultural land management encounters numerous constraints. Firstly, institutional factors play a pivotal role. While land system reforms at the national level have partially clarified agricultural land property rights, policy shifts or land adjustments often result in agricultural operations being built on an “unstable foundation,” leading to sustainability challenges (Tang et al., 2022). Secondly, resource endowment poses significant hurdles. Achieving high efficiency in agricultural production necessitates the optimal integration of land, labor, capital, and technology. Nonetheless, farmers as individual producers and managers confront escalating land rents (Liu and Kong, 2017), heightened financing costs, depressed food prices, reduced labor productivity (Du and Xiao, 2019), and an inadequate rural credit system. Furthermore, the agricultural labor force is increasingly characterized by aging, feminization, and diminished capacity, which contributes to low literacy levels among farm households, limited knowledge acquisition and skill enhancement, and delayed access to information (Xie, 2002). Thirdly, social factors complicate the decision–making process for farmers considering large–scale agricultural land management. These include a deep–seated “love for the land” complex, significant land dependence, limited awareness of agricultural land transfer options, uncertainties related to natural, and market risks (Wu et al., 2021), constraints in terms of agricultural timing, machinery, and technology (Xu, 2023), as well as livelihood strategy choices and income expectations (Shi et al., 2019).

The majority of research has centered on examining the relationship between farm size and land productivity, with a contingent of scholars subscribing to the theory of “inverse productivity” (Sen, 1962; Vollrath, 2007; Deininger et al., 2018; Julien et al., 2019). They attribute this phenomenon to various factors, including disparities in land quality (Lamb, 2003), measurement inaccuracies (Carletto et al., 2013), market inefficiencies (Barrett et al., 2010), inadequate risk management strategies (Sheng et al., 2015), and the misallocation of factorial resources (Adamopoulos et al., 2022), among others. Conversely, another cohort of researchers posits that the acceleration of urbanization and industrialization, coupled with rapid advancements in agricultural technology, machinery, and equipment, as well as the proliferation of non–farm employment opportunities, has led to the continuous migration of surplus agricultural labor to non–farm sectors. Consequently, the initial productivity advantage of small farms diminishes over time, revealing a “U–shaped relationship” (Rada and Fuglie, 2019; Sheng et al., 2019) or even a “positive relationship” (Wang et al., 2015; Key, 2019) between farm size and land productivity, ultimately culminating in the realization of economies of scale. These scholars primarily justify their stance through the lenses of mechanization and hired labor utilization. Furthermore, the existing literature predominantly employs land scale, specifically the area of land operated, as a metric for assessing agricultural operation scale (Liu and Zeng, 2004; Wang et al., 2012). This approach, however, overlooks the significant issue of land fragmentation prevalent in developing countries. It is crucial to recognize that an increase in operational scale does not necessarily equate to an enlargement of plot size and fails to provide a scientific explanation for the agricultural scale operations characterized by land concentration, contiguity, and specialization (Lv et al., 2024). In the context of China's current pursuit of high–quality agricultural development, disregarding the size of individual farmers' plots while solely focusing on the scale of operations, or conversely, neglecting the operational scale while only examining plot size, can lead to cognitive biases in understanding the scale of agricultural land management (Xu et al., 2024). Therefore, it is imperative to integrate both dimensions within the same research framework. Additionally, numerous scholars, both domestically and internationally, have delved into the practical pathways and implementation effects of agricultural scale operations (Yang et al., 2024), highlighting their potential to enhance food production, increase farmers' incomes, promote green agricultural development, and reduce carbon emissions. These contributions are undeniably pivotal for advancing agricultural and rural modernization, implementing the big food concept, and safeguarding the environment. Nonetheless, there remains a notable dearth of analysis exploring the deeper underlying factors influencing the scale of agricultural operations.

Simultaneously, amidst the swift progression of the information technology revolution, digital components have permeated every facet of societal life. Notably, digital technology is increasingly integrating into agricultural production and rural governance, endowing large–scale agricultural operations with a novel digital dimension, and the trend toward digitization in China's agricultural and rural sectors has become increasingly pronounced (Yang et al., 2024). According to the 52nd Statistical Report on Internet Development in China, by June 2023, administrative villages in rural areas had achieved “village broadband” connectivity, with an Internet penetration rate of 60.5%. The rural Internet user base has swelled to 300 million, and the 4G network infrastructure boasts a coverage rate as high as 98%1 Although the digital access divide is gradually diminishing, the digital literacy of rural households lags significantly behind the pace of digital economic advancement. In this new phase of development, the primary contradiction in the rural digital divide has shifted from the “digital first divide”—the disparity in digital access—to the “digital second divide”—the disparity in digital application (Wang, 2024). Digital elements diverge from traditional ones in that farmers must possess a certain level of digital literacy to effectively utilize digital technology in agricultural production decision–making, thereby harnessing its crucial role in enhancing agricultural productivity and efficiency (He et al., 2024).

Consequently, within the context of digital economic development, an inquiry arises: is there an inherent connection between farmers' digital literacy and the scale of agricultural land operations? Can elevating farmers' digital literacy levels transcend the current constraints impeding large–scale farmland management? What underlying mechanisms are at play? Investigating these questions holds multifaceted practical significance for activating the endogenous drivers of large–scale farmland management, disrupting ingrained agricultural development paradigms, and propelling the modernization of China's agriculture and rural areas. Furthermore, such research may offer valuable insights for other countries and regions grappling with limited arable land and severe land fragmentation. This study centers on examining the influence of farmers' digital literacy on the extent of farmland management and its underlying mechanisms, while accounting for the mediating roles of land transfer and land dependence. Utilizing data from the 2020 China Rural Revitalization Survey (CRRS) conducted by the Institute of Rural Development at the Chinese Academy of Social Sciences, we undertake a micro–level validation.



2 Theoretical framework and research hypotheses


2.1 The internal logic of digital literacy as it affects the farmland scale operations

Martin and Grudziecki (2006) proposed a comprehensive modeling framework to elucidate the evolution of the digital competence hierarchy. This framework is structured into three distinct levels: digital Competence, which encompasses a range of skills, knowledge, attitudes, and awareness pertaining to digital technologies; digital usage, contingent upon an individual's level of digital competence or digital literacy; digital transformation, which involves knowledge creation and technological innovation. Within this framework, digital literacy serves as an indispensable bridge. As an emergent form of human capital, digital literacy possesses unique value that transcends traditional metrics of labor quality. It not only bridges the gaps between basic and advanced digital access and technology application, commonly referred to as the “primary” and “secondary” digital divides, but also possesses the capability to transcend geographic and temporal constraints. Even in the context of a relatively modest educational background, workers can more swiftly, accurately, and efficiently grasp crucial information related to agricultural production and management. This, in turn, enables them to seize opportunities in the digital era and facilitate the modernization and efficiency of agricultural production (Liu and Zhou, 2023; Wang, 2024; Ruan and Luo, 2024).

Firstly, digital literacy serves as a catalyst for farmers' knowledge acquisition and learning. By enhancing their digital competencies, farmers can independently explore new agricultural skills and knowledge through modern technological platforms. This process not only enriches their personal knowledge base but also facilitates the accumulation and appreciation of human capital, thereby amplifying the positive externalities associated with knowledge learning. The acquisition of digital literacy enables small–scale farmers to swiftly adopt and utilize digital devices, mastering digital skills rapidly and gaining a competitive edge in agricultural production. This first–mover advantage manifests as a “skill premium,” where digitally proficient farmers outperform their traditional counterparts (Liu and Wen, 2024). Such farmers, equipped with high levels of knowledge and skills, are better positioned to access agricultural insurance, subsidies, socialized services, and technologies, applying them effectively to mitigate information asymmetry in agricultural production and enhance the market competitiveness of their products (Courtois, 2015).

Secondly, digital literacy significantly enhances farmers' information acquisition capabilities. The Internet transcends spatial and temporal constraints, broadening the avenues for farmers to acquire new knowledge and lowering the barriers to information access. Farmers with adequate digital literacy can adeptly navigate social platforms like Jitterbug, Shutterbug, Weibo, and WeChat to precisely search for information pertinent to agricultural production, non–farm employment, and entrepreneurial ventures, fostering self–service (Hua and Pan, 2024). Improved digital literacy also augments farmers' ability to capture financial capital information, encouraging the widespread use of digital financial tools. It expands their access to diversified financial information channels while reducing the costs associated with searching for agricultural business information, information acquisition, and credit fund transactions, ultimately enhancing resource allocation efficiency. This, in turn, alleviates the credit constraints farmers face when scaling up production, lowers financing difficulties and costs, and stimulates their enthusiasm for agricultural production and management (Wen and Liu, 2023). Consequently, this positive feedback loop inclines farmers toward expanding the scale of their agricultural land management, promoting intensification, and large–scale production practices.

Thirdly, digital literacy expands the social networks of farm households. In traditional rural societies, social networks rooted in blood, kinship, and geography deeply influence farmers' production and management decisions. However, enhanced digital literacy empowers farmers to transcend these inherent network limitations, utilizing digital tools and platforms to reconfigure their social network relationships and broaden the scope of resource sharing. This, in turn, fosters innovation and upgrading in their production and management decisions (Du et al., 2024). Farmers with higher digital literacy levels can strategically leverage social network resources, extending their production and transaction reach, bolstering persuasive social support for their farmland scale management practices, and gaining timely access to policy trends, production services, and sales information throughout the agricultural production cycle. This enhances the overall efficiency of agricultural production (Ruan and Luo, 2024).

Furthermore, enhancing farmers' digital cognition in the refinement of agricultural business practices fosters their capacity for in–depth market information analysis and efficient utilization. This transformation has facilitated a more precise comprehension of the economic and social ramifications of land fragmentation, which not only amplifies cost burdens but also hinders the intensive utilization and optimal configuration of land resources (Liang, 2022). Consequently, farmers have increasingly recognized the significance of land consolidation strategies, such as “small field to large field” consolidation and “one family, one field” policies, as effective means to promote large–scale land management and mitigate the supplementary costs associated with fragmentation. The centralization of land parcels not only enables farmers to implement mechanized operations more seamlessly, thereby enhancing agricultural production efficiency, but also stimulates the widespread adoption of socialized services. This, in turn, reduces production costs per unit area, elevates food yield and quality, and subsequently bolsters farmers' resilience to market risks, ensuring the stability, and sustainability of agricultural production. Hence, by improving farmers' digital literacy, they are more inclined to adopt scientifically sound and rational land adjustment methods, thereby diminishing land fragmentation and fostering increases in grain yield and steady growth in farmers' incomes (Zhang et al., 2023). Building on this foundation, the present study posits the following hypotheses:

	H1: the higher the level of digital literacy, the higher the likelihood that a farmer's farmland will be operated on a large scale.
	H1a: the higher the level of digital literacy, the greater the likelihood that farmers will expand their farmland operations.
	H1b: the higher the level of digital literacy, the greater the likelihood that farmers will expand the size of their farmland plots.
	H1c: higher levels of digital literacy are associated with larger average plot sizes for farm households and contribute to improved land fragmentation.



2.2 Analysis of the intermediary impacts of land transfer

Digital literacy enables farmers to expand the scale of agricultural land management, increase land plot sizes, and ameliorate the issue of contracted land fragmentation, primarily through their land transfer activities. Initially, farmers with high digital literacy can swiftly access agricultural policy information via government websites, precisely identifying optimal times for land transfer. Additionally, they can efficiently utilize the Internet, smartphones, and other digital tools to gather pertinent land transfer details, such as transfer prices, methods, and durations, thereby mitigating information asymmetry and reducing information search and negotiation costs. This results in a more streamlined and effective land transfer process, enhancing its efficiency and success rate (Zhang and Zhang, 2020). Secondly, upon recognizing the benefits of large–scale operations, farmers with strong digital literacy can more accurately assess the risks and rewards associated with land transfer, leading to more rational decision–making. This decision–support role increases farmers' willingness to engage in land transfer, prompting them to seek the consolidation of scattered land or lease their land to contractors with the desire and capacity for large–scale operations, thus facilitating efficient land resource utilization and promoting the development of large–scale agricultural land management (Qin et al., 2022). Lastly, as some farmers seek to transfer their land due to non–agricultural employment opportunities, while others, such as large–scale farmers or new management entities, urgently require land expansion, digital platforms serve as a crucial “connector,” paving the way for the rapid development of specialized and large–scale agricultural operations (Zhang, 2022). Based on these insights, this study proposes the following hypothesis:

H2: land transfer plays a mediating role in the process of digital literacy influencing farmers' farmland scale operations.



2.3 Analysis of the moderating effects of land dependence

Land dependence, rooted in land tenure, land economy, and survival value, encapsulates the profound attachment farmers hold toward the land for both survival security and emotional sustenance. This attachment embodies farmers' intense recognition and emotional resonance with the functional value of the land, highlighting the inseparable bond between “people” and “land” (Williams et al., 1992). Given that smallholder farmers constitute the foundational nationality and agricultural landscape of China, land remains the primary means of subsistence for myriad small–scale farmers. Land dependence, distinct from the “land attachment” observed in Western nations (Pu and Zheng, 2016), signifies that these farmers predominantly rely on land for their livelihoods and existence. Land serves multifaceted roles for farmers, including production, employment opportunities, economic income, and old–age security (Li et al., 2009). Farmers with strong land dependence exhibit heightened attention to agricultural production–related information, land productivity, and long–term utilization value. They are more inclined to enhance agricultural production efficiency through scientific and technological advancements and cherish land resources, making them reluctant to abandon agricultural production easily. This attachment increases the likelihood of land transfer (Zhang and Li, 2022). Furthermore, the enhancement of digital literacy, coupled with land dependence, prompts farmers to actively learn and apply new agricultural technologies, embrace advanced production techniques and management modes, and better navigate the risks and challenges posed by agricultural natural disasters, market fluctuations, and technological advancements. This, in turn, expands the scale of agricultural land operations and improves land utilization and output rates (Wu and Wang, 2023).

Land income dependence refers to the extent to which farmers rely on land to obtain economic income. Farmers with higher levels of land income dependence have greater incentives to invest in new agricultural technologies and equipment and are more inclined to increase their land holdings to augment their economic income (Zhang, 2020). Elevated digital literacy equips them to utilize modern agricultural technology to optimize production and expand land size. Land employment dependence pertains to farmers' reliance on land as an employment avenue. Farmers with higher levels of land employment dependence have greater expectations for agricultural production stability and are more willing to invest time and energy in the agricultural sector (Liu and Zhang, 2022). Improved digital literacy enables effective land resource management, reduces labor wastage, and enhances agricultural production efficiency, thereby stabilizing and elevating the level of land employment. Land security dependence reflects farmers' reliance on land as a fundamental livelihood security. Farmers with higher levels of land security dependence exhibit confidence in their agricultural production and lives, enabling them to mitigate the risks associated with adopting new agricultural technologies. They are more likely to transfer land before the land's security function is adequately replaced and are increasingly inclined to transfer land to new management entities when they perceive alternative social security functions beyond land, thereby promoting agricultural scale operations (Xue et al., 2019; Bao et al., 2021). Based on this foundation, the following hypothesis is proposed in this study:

	H3: land dependence can reinforce the role of digital literacy in facilitating farmers' farmland scale operations.
	H3a: land income dependence can reinforce the role of digital literacy in facilitating the scale of farmland management by farmers.
	H3b: land employment dependence can reinforce the role of digital literacy in facilitating farmers' farmland scale operations.
	H3c: land security dependence can reinforce the role of digital literacy in facilitating farmers' farmland scale operations.

Based on the above analysis, this study tries to explore the influence of digital literacy on farmers' farmland scale operation in the context of new quality productivity, tries to analyze the influence path of farmers' land transfer and land dependence, and constructs the mechanism framework model as shown in Figure 1.
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FIGURE 1
 Theoretical framework of digital literacy affecting farmers' farmland scale operations.





3 Research design


3.1 Data sources

The data utilized in this study were sourced from the 2020 “China Rural Revitalization Survey (CRRS),” conducted by the Institute of Rural Development at the Chinese Academy of Social Sciences. In that year, the CRRS team adhered to the principle of random sampling to complete the initial round of surveys across 10 provinces, encompassing 300 administrative villages and over 3,800 households. The survey encompassed a diverse array of modules, including agricultural production, land management, the digital economy, rural governance, and residents' wellbeing.

The specific data processing methodology is outlined as follows: (1) Horizontal merging of sample data: given that the questionnaire encompassed information pertaining to both farming households and villages, a horizontal merger of the two questionnaires was undertaken to facilitate subsequent variable selection. (2) Addressing sample outliers, missing values, and extreme values: for outliers within the sample, the study employed a method to impute missing values. Missing values were addressed through non–parametric estimation techniques. As for extreme values, a 1% bilateral winsorization treatment was applied to the relevant variables. Ultimately, a final sample size of 3,157 was retained for analysis.



3.2 Construction of a digital literacy indicator system

Building upon the research conducted by Gilster (1997) and Martin and Grudziecki (2006), and considering the distinct features of the first– and second–level “digital divides,” we propose to delineate farmers' digital literacy through the dimensions of digital access and digital application. This framework comprises five second–level indicators and 17 third–level indicators. Digital access primarily captures the disparities among farmers in terms of the “digital divide,” encompassing digital media literacy, with a total of three indicators. Meanwhile, digital application reflects the nuances of the “digital secondary divide” among farmers, which includes digital social literacy, digital business literacy, digital information literacy, and digital problem–solving literacy, totaling 14 indicators. In this study, factor analysis is employed to streamline the dimensions of digital access and digital application. The methodology is as follows: initially, the sample data for the selected indicators undergo the Kaiser–Meyer–Olkin (KMO) test and Bartlett's test. The results indicate a KMO value of 0.805, exceeding the threshold of 0.6, and a P–value of 0.000, which decisively rejects the null hypothesis. These findings suggest a strong correlation among the dimensions and validate the results of the factor analysis. Subsequently, factor analysis is conducted to ascertain the level of farmers' digital literacy. Based on a characteristic root value >1, five common factors are extracted, with a cumulative variance contribution rate of 60%. Additionally, the covariance coefficient for each index is < 0.6, confirming the validity of the selected indicators. This indicates that the level of farmers' digital literacy effectively captures both digital access and digital application. Lastly, the farmers' digital literacy levels are standardized to mitigate the impact of negative factor scores. The detailed indicator system is presented in Table 1 below.


TABLE 1 Construction of digital literacy indicator system for farmers.

[image: A table with three levels of indicators for digital literacy. Level 1 includes "Digital access" and "Digital application". Secondary indicators are: Digital media literacy (A), Digital information literacy (B), Digital social literacy (C), Digital business literacy (D), and Digital problem solving literacy (E). Tertiary indicators under each category include specific questions or capabilities related to internet and mobile phone usage. For example, A1 asks about home internet access, C1 involves social chatting, and D1 concerns online product trading.]



3.3 Selection of variables and descriptive statistics
 
3.3.1 Explained variables

In this study, the explanatory variables pertain to farmland scale management, drawing on the research conducted by Xu et al. (2024) and Zhang and Wan (2023), among other scholars. To quantify the extent of farmland scale management practiced by farmers, we have selected three indicators: “scale of operation,” “plot size,” and “land concentration.” Specifically, “land concentration” is employed to reflect the level of large–scale farmland management by farm households. The “scale of operation” is measured by the “total area of farm household business,” which captures the amount of land held by each farm household. For “plot size,” we use the variable “maximum area of land held by farm households.” To assess “land concentration,” we employ the variable “ratio of total area operated by the farmer to the number of plots held by the farmer,” providing a measure of the farmer's land fragmentation. This approach ensures a comprehensive and nuanced understanding of farmland scale management in our analysis.



3.3.2 Core explanatory variables

The core explanatory variables in this study are rooted in the aforementioned digital literacy index system specifically developed for farmers. We employ factor analysis and principal component analysis as methodological tools to quantify and assess the digital literacy levels of farmers.



3.3.3 Mediating variables

Based on the preceding theoretical analysis, this paper identifies land transfer as the mediating variable. Given the study's emphasis on examining the impact of digital literacy on the scale of agricultural land operations, the focus of the land transfer analysis is specifically on the transfer of agricultural land. To operationalize this concept, we utilize the sample's “farmers' transferred land area.” Specifically, if a farmer's transferred land area is >0, it indicates that the farmer has transferred land, and we assign a value of “1”; otherwise, the value is “0.”



3.3.4 Moderating variable

The regulating variable in this study is land dependence, as informed by the research of Liu and Zhang (2022). To characterize the extent of farm households' land dependence, we have selected three dimensions: land income dependence, land employment dependence, and land security dependence. Land income dependence pertains to the proportion of agricultural business income within the total income of farm households, highlighting the income–generating function of land. Land employment dependence is examined through the lens of occupational differentiation among farm households; specifically, a farm household classified as a full–time farmer exhibits the highest level of land employment dependence, driven by scale efficiency to expand their farmland holdings. Lastly, land security dependence is assessed based on farmers' participation in insurance, where such participation diminishes their reliance on land as a security function.



3.3.5 Control variables

Building upon the established literature (Wang, 2024; He et al., 2024; Hua and Pan, 2024), this paper identifies three categories of control variables: the personal characteristics of the household head (including gender, age, education, and health status), the characteristics of the farm household (such as family farms, cooperatives, and agricultural insurance), and the characteristics of the village (encompassing village location, topography, educational qualifications of the village secretary, village arable land area, arable land transfer rents, property rights system reforms, the presence of e–commerce households, and natural disaster situations). Additionally, with reference to Yang and Zhang (2024) study, we calculate the average digital literacy level within the township of each farmer's residence and exclude this from our analysis. This average digital literacy level is employed as an instrumental variable to investigate potential endogeneity issues in the predefined model presented in this paper. Detailed variable selection, definitions, and descriptive statistics are presented in Table 2.


TABLE 2 Variable descriptions.

[image: A detailed table with columns for variable category, variable name, variable definition, average value, and standard deviation. Categories include explanatory, core explanatory, intermediary, moderator, instrumental, and control variables. Variables address topics such as digital literacy, land transfer, employment, and natural disasters. Each variable is given a specific average value and standard deviation.]




3.4 Econometric modeling
 
3.4.1 Standardized regression model

In order to verify the effect of digital literacy on the scale operation of agricultural land, this paper constructs the benchmark regression model as follows:

[image: Equation showing a linear regression model: Landscape sub i equals beta sub zero plus beta sub one times Digital sub i plus gamma times Control plus epsilon sub i.]

In Equation 1 Landscalei denotes the scale of farmland management, and Digitali denotes the level of digital literacy, and Control denotes a set of control variables, the β0 denotes the intercept term, the β1 denotes the parameters to be estimated for the core explanatory variables, respectively, and γ denotes the parameters to be estimated for the control variables, and εi denotes the random disturbance term.



3.4.2 Mediating effect model

In order to explore the role mechanism of digital literacy on the impact of farmland scale operation, drawing on the research of Wen and Ye (2014) and others, the mediating effect model is applied to test the mechanism of the role between the two. The model is constructed as follows:

[image: Equation for landscape: Landscape sub i equals Z sub one plus a multiplied by Digital sub i plus b sub two multiplied by Control plus theta sub i, labeled as equation two.]

[image: Equation representing a model: Landtrans subscript i equals Z subscript i plus c Digital subscript i plus b subscript 2 Control plus theta subscript 2.]

[image: The formula depicts an equation for "Landscape" as follows: \( Landscape = Z_3 + d \cdot Digital + e \cdot Landtrans + b_5 \cdot Control + \theta_3 \) labeled as equation (4).]

In the above equation, the Landscalei represents the scale of farmland management, and Digitali represents the level of digital literacy of farm household, and Landtransi represents land transfer, the Control represents control variables, Z represents constant term, and θ represents the random interference term. Equation 2 represents the total effect of digital literacy level on the impact of farmland scale operation of farmers, Equation 3 represents the effect of digital literacy level on the impact of land transfer, and the coefficient e in Equation 4 represents the direct effect of land transfer on the scale of farmland operation. Substituting Equation 3 into Equation 4 yields the indirect effect ec of farmland scale operation, i.e., the digital literacy level influences farmland scale operation by promoting land transfer of farmers. This paper intends to use OLS model to analyze and verify the equation.



3.4.3 Moderating effects model

In order to verify the moderating effect of land dependence on the level of digital literacy affecting the scale operation of agricultural land, referring to the study of Haans et al. (2016), on the basis of model (1), adding the land dependence and digital literacy level Digitali interaction term, construct the econometric model as follows:

[image: Equation representing a model: "Landscape_i = β_0 + β_1Digital_i + β_2Landsley_i + β_3Digital_i × Landsley_i + γ_iControl + ε_i"; labeled as equation (5).]

In the above equation, the Landrely represents land dependence, and Digitali×Landrely is the interaction of digital literacy level with land dependence. If β4 is significant, it indicates that land dependence plays a moderating role in digital literacy level affecting farmland scale operation, and β4>0, land dependence plays a positive moderating role, and vice versa plays a negative moderating role.





4 Empirical testing


4.1 Benchmark regression results

The baseline regression results of this study are presented in Table 3. Models (1) and (2) examine the impact of digital literacy on the scale of farmland management among farmers. Specifically, Model (1) excludes control variables, whereas Model (2) includes control variables such as gender. The findings reveal that digital literacy is statistically significant at the 1% level with positive coefficients, irrespective of the inclusion of control variables. This suggests that a higher level of digital literacy positively influences the scale of farmland management by farmers. In other words, as the digital literacy of farm households increases, so does the size of their farmland operations. Thus, the research hypothesis positing that enhancements in digital literacy levels facilitate the expansion of farmland operation scales among farmers has been substantiated. Furthermore, Models (3) and (4) investigate the effect of digital literacy on plot size, while Models (5) and (6) explore its impact on land concentration, focusing on the degree of fragmented land holdings among farmers. Models (3) and (5) do not incorporate control variables, while Models (4) and (6) control for variables, such as gender. The results indicate that digital literacy is significantly positive at the 1% level across all these models. This implies that enhanced digital literacy among farmers positively correlates with both larger plot sizes and increased land concentration. That is, improving farmers' digital literacy leads to a more consolidated holding of agricultural land. Consequently, the research hypothesis, which posits that the enhancement of digital literacy levels among farmers stimulates the expansion of farmland plot sizes and the augmentation of average plot area, has been empirically confirmed.


TABLE 3 Analysis of baseline regression results.

[image: Table displaying coefficients, standard errors, and significance levels across six models. Variables evaluated include digital literacy, age, education attainment, and agricultural insurance. Models assess scale of operations, plot size, and land concentration. Statistical significance is indicated by asterisks: *p < 0.1, **p < 0.05, ***p < 0.01.]



4.2 Mechanism of action testing
 
4.2.1 Analysis of the results of the mediation effect

Referring to the research of Wen and Ye (2014), this paper applies the mediating effect model to further test the role path of land transfer between digital literacy and farmland scale operation. First, this paper adopts the stepwise method to analyze the effect of land transfer between digital literacy and farmland scale operation. Table 4 reports the test results of the stepwise method. Models (1) – (3) test the role paths of land transfer between digital literacy and the scale of farmland management held by farmers. Model (2) shows that digital literacy pushes farmers to carry out land transfer. Model (3) shows a decrease in the coefficient of the effect of digital literacy on the business scale of land held by farmers compared to model (2). This indicates that land transfer plays a partially mediating effect between digital literacy and farmers' holding land operation scale. Models (4) – (6) and (7) – (9) test the role of land transfer in the path between digital literacy and farmers' plot size and land concentration, respectively, and their results are consistent with models (1) – (3). In summary, it is shown that land transfer plays a partial mediating role between digital literacy and farmland size. The research hypothesis, which posits that land transfer acts as a mediator in the process through which digital literacy exerts an influence on farmers' scale of farmland operation, has been empirically confirmed.


TABLE 4 Analysis of stepwise regression results.

[image: Regression table displaying results for three dependent variables: scale of operations, plot size, and land concentration. Key predictors include digital literacy and land transfer. Coefficients are significant at various levels, indicated by stars. Controls and constant terms are included. Sample size is three thousand one hundred fifty-seven. Adjusted R-squared values vary across models. Standard errors are shown in parentheses.]

Secondly, the results are analyzed in this paper using Sobel's test and Bootstrap test to ensure the robustness of the results. Table 5 reports the analysis of the mediating effect of land transfer. The results show that the indirect effect of land transfer in the analysis of digital literacy and land operation scale is 15.8% with a Z–value of 2.71, which passes the 1% significance test, and the indirect effect is 19.59%. This indicates that land transfer plays a partial mediating effect between digital literacy and the scale of land operation held by farmers. In the analysis of digital literacy and land parcel size, the indirect effect of land transfer is 9.7%, with a Z–value of 2.65, which passes the 1% significance test, and the indirect effect accounts for 26.56%. This indicates that land transfer plays a partial mediating effect between digital literacy and the size of land parcels held by farmers. In the analysis of digital literacy and land concentration, the indirect effect of land transfer is 10.1%, with a Z–value of 2.69, which passes the 1% significance test, and the indirect effect accounts for 17.5%. This indicates that land transfer plays a partial mediating effect between digital literacy and farmers' land concentration. In summary, land transfer plays a partial mediating role between digital literacy and farmland scale operation, further verifying the accuracy of the stepwise regression results. Additionally, to assess the sensitivity of the mediation effect results to unobserved confounding variables, this study conducted a sensitivity analysis. The results indicate that the p–values are 0.7, 0.5, and 0.5, respectively, all of which are >0.3. This suggests that the mediation effect is relatively robust to unobserved confounding variables, and the likelihood of the mediation effect results being overturned is low.


TABLE 5 Analysis of sobel test and bootstrap test results.

[image: Table displaying action paths and related statistical metrics. Three paths show the impacts of digital literacy on land transfer. Indirect effect percentages range from 17.50% to 26.56%, with confidence intervals and Z-Values close to 2.7. Sensitivity analysis includes Rho values (0.5 to 0.7) and R-square products (0.25 to 0.49). Standard errors in parentheses, significance level p < 0.01.]



4.2.2 Analysis of moderating effect

Based on the preceding theoretical analysis, land dependence appears to exert a moderating influence on the relationship between digital literacy and the scale of farmland operations. This concept of land dependence encompasses three dimensions: land income dependence, land employment dependence, and land security dependence. Since both digital literacy and land dependency are influenced by individual farmers, there might be a collinearity issue between the two. Therefore, we conducted a Variance Inflation Factor (VIF) test. The test results, as shown in Table 6, indicate that the VIF values for all variables are < 2, significantly below the threshold of 10. This confirms that there is no collinearity issue between digital literacy and land dependency.


TABLE 6 Results of multicollinearity test.

[image: Table showing Variance Inflation Factor (VIF) and 1/VIF for various variables. Digital literacy has a VIF of 1.08. Land employment dependence shows a VIF of 1.01, land revenue dependence is 1, and land security dependence has three VIF values: 1.01, 1.06, and 1.03. Mean VIF is 1.03.]

Table 7-1 to Table 7-3 presents the findings of the moderation analysis pertaining to land dependence. In examining the moderating effect of land income dependence, the interaction term exhibits a positive coefficient and achieves statistical significance at the 5% level solely in relation to the scale of operation. It does not, however, impact the size of farmers' plots or land concentration. This suggests that land income dependence amplifies the positive effect of digital literacy on the scale of farmers' operations, but does not moderate the positive effect of digital literacy on plot size or land concentration. Consequently, the research hypothesis, which states that land income dependence can amplify the promotional effect of digital literacy on farmers' farmland scale operations, has been empirically confirmed. This outcome can be attributed to the fact that larger operations benefit more pronouncedly from scale economies, thereby enhancing farmers' returns. The average number of land parcels owned by farmers and the size of these parcels reflect the level of land concentration; a higher concentration facilitates mechanized operations, thereby boosting agricultural production efficiency and income generation. Conversely, a lower concentration can also enhance efficiency through the acquisition of socialized services. Regarding the moderating effect of land employment dependence, the interaction term positively influences the scale of operation, plot size, and land concentration, with all coefficients being statistically significant at the 1% level. This indicates that land employment dependence reinforces the positive effect of digital literacy on these three aspects of farmland operations. Thus, the research hypothesis, which posits that land employment dependence can enhance the promotional effect of digital literacy on farmers' farmland scale operations, has been empirically validated. In the analysis of land security dependence, the interaction term similarly exhibits positive coefficients for business scale, plot size, and land concentration, all of which are statistically significant at the 1% level. This demonstrates that land security dependence also enhances the positive effect of digital literacy on these dimensions of farmland operations. Consequently, the research hypothesis, which states that land security dependence can amplify the promotional impact of digital literacy on farmers' farmland scale operations, has been empirically confirmed.


Table 7-1. Analysis of the regulatory effect of land income dependence.

[image: Table showing the impact of various variables on land revenue dependence, with columns for scale of operations, plot size, and land concentration. Digital literacy has significant coefficients of 0.884, 0.425, and 0.628, respectively. Interaction of digital literacy and land revenue dependence shows coefficients of 0.582, 0.154, and -0.045. Land revenue dependence alone has coefficients of 0.102, 0.030, and 0.010. Control variables are applied. Constants are 5.791, 2.992, and 1.944. Sample size is 3,157 with adjusted R-squared values of 0.175, 0.127, and 0.115. Significance levels are noted with asterisks.]


Table 7-2. Analysis of the adjustment effect of land employment dependence.

[image: Regression table detailing the impact of digital literacy and land employment dependence on scale of operations, plot size, and land concentration. Coefficients and standard errors are shown with significance at p < 0.01. Each variable's influence is significant across measures, with digital literacy and its interaction term showing strong positive effects. Control variables are controlled. The number of observations is 3,157, and adjusted R-squared values are 0.206 for scale of operations, 0.139 for plot size, and 0.125 for land concentration.]


Table 7-3. Analysis of the regulatory effect of land security dependence.

[image: A table displays data on land security dependence, analyzing pension insurance, health insurance for urban and rural residents, and commercial health insurance across variables like digital literacy, scale of operations, plot size, and land concentration. It includes coefficients, standard errors, control variables, number of observations, and adjusted R-squared values, with significance levels indicated by asterisks for different p-values.]


TABLE 8 Results of group regression test.

[image: Results table comparing O-logit and O-probit models for digital literacy's effect on scale of operations, plot size, and land concentration. Values include coefficients, standard errors, log likelihood, pseudo R2, and N. Significant results at p < 0.01.]


TABLE 9 Results of impact effect measurement.

[image: Table showing results of different matching methods across three parameters: scale of operations, plot size, and land concentration. Each parameter lists ATT values with standard errors and T-values. Methods include Radius match, Nuclear matching, Local linear regression matching, Match, and an Average value row. Significance levels are indicated with asterisks, where * denotes p < 0.1, ** denotes p < 0.05, and *** denotes p < 0.01.]


TABLE 10 Two-stage least squares (2SLS) estimation results.

[image: Table showing variable names with values across different phases. Digital literacy has a value of 2.597 and 1.087 in Phase I under Scale and Plot size, and 2.104 in Phase II under Land concentration. Mean values are 0.472 with a standard error of 0.036. Control variables are managed, with an F-statistics value of 166.207 and N as 3,157. Standard errors are specified in parentheses with significance at p < 0.01.]


TABLE 11 Analysis of the effect of different dimensions of digital literacy and farmland scale management.

[image: Table displaying regression results for digital literacy variables (media, social, business, information, and problem solving) across categories: scale of operations, plot size, and land concentration. Controlled variables and constants included. Significance levels: *p < 0.1, **p < 0.05, ***p < 0.01. Sample size is three thousand one hundred fifty-seven. Adjusted R squared values provided.]


TABLE 12 Analysis of human capital heterogeneity.

[image: Regression table displaying digital literacy's effect on scale of operations, plot size, and land concentration across four human capital levels: lower, primary, intermediate, and senior. Coefficients vary, with standard errors in parentheses. Statistical significance: ** for p < 0.05, *** for p < 0.01. Control variables are indicated as controlled. Each level presents adj. R² values and sample size (N).]


TABLE 13 Analysis of age heterogeneity.

[image: Table showing regression results for digital literacy across different age groups: middle-aged, middle and old age, and autumn of one's years. Variables include scale of operations, plot size, and land concentration. Significant results are indicated by asterisks: *p < 0.1, **p < 0.05, ***p < 0.01. Standard errors are in parentheses. The table also includes control variables and constants. Sample sizes (N) and adjusted R-squared (adj. R²) values are listed for each model.]


TABLE 14 Analysis of urban-rural heterogeneity.

[image: Table showing the effects of digital literacy on scale of operations, plot size, and land concentration in city outskirts and rural areas. Significant coefficients: City outskirts, scale of operations (0.474*), plot size (0.537**), land concentration (0.573**); Rural areas, scale of operations (1.031**), plot size (0.717***), land concentration (0.975***). Standard errors are in parentheses. Sample sizes: 641 for city outskirts and 2,516 for rural areas. Significance levels: *p < 0.1, **p < 0.05, ***p < 0.01.]


TABLE 15 Regional heterogeneity.

[image: Table showing digital literacy's impact on agricultural variables across four regions. Variables include scale of operations, plot size, and land concentration. Digital literacy shows significant positive effects, particularly in the Northeastern region. Standard errors are in parentheses, with significance indicated by asterisks: one asterisk for p less than 0.1, two for p less than 0.05, and three for p less than 0.01.]

In conclusion, land income dependence specifically moderates the relationship between digital literacy and the scale of farmland operations, indicating that land dependence, in general, strengthens the positive effect of digital literacy on the scale of these operations. Overall, the research hypothesis, which posits that land dependence can enhance the promotional effect of digital literacy on farmers' farmland scale operations, has been empirically validated.





5 Discussion

This study utilizes data from the 2020 Chinese Academy of Social Sciences rural revitalization research and employs factor analysis and principal component analysis to assess the digital literacy levels of farmers. Building upon a theoretical framework that elucidates the impact of digital literacy on the scale of farmers' agricultural land operations, the study further applies linear regression models, mediation effect models, and other analytical techniques to explore the effects and mechanisms of farmers' digital literacy on the scale of their land operations. The key findings of the study are as follows:

Firstly, our findings indicate that farmers with higher levels of digital literacy are more likely to operate larger farmland scales, manage larger organized land plots, and exhibit higher degrees of land concentration. Thus, our hypothesis holds true: an enhancement in digital literacy levels can spur the expansion of farmland operation scales among farmers. In contexts where the efficacy of national policies is constrained, the ongoing improvement of farmers' digital literacy levels and the stimulation of their intrinsic motivation to enlarge farmland scales may serve as a means to surpass the present bottlenecks hindering the development of agricultural land scale operations in China. Secondly, we have uncovered that an elevation in digital literacy levels stimulates farmland transfer behavior among farmers and prompts them to lease additional farmland, thereby exerting an influence on their farmland operation scales. From the vantage point of land dependence, we have examined the impact of farmers' digital literacy levels on their farmland operation scales and found that farmers with a stronger reliance on land experience a more pronounced impact on their farmland operation scales when their digital literacy levels improve. Consequently, to foster the development of agricultural scale operations, it is imperative to consider refining the farmland transfer market, augmenting the economic returns of agricultural operations for farmers, and bolstering social security. Lastly, our research also reveals disparities in the extent of agricultural operation scales among farmers with varying dimensions of digital literacy and different resource endowments. Therefore, when advancing agricultural scale operations, it is crucial to make informed decisions and tailor measures to specific local conditions.

Moreover, we have undertaken a comparative analysis of our study compared with other research endeavors. Firstly, our research findings exhibit similarities with those of Riyazuddin et al. (2021). Their team, in exploring the correlation between the Indian caste system and agricultural productivity, observed that disadvantaged groups face impediments in accessing agricultural resources, such as land. This aligns with our conclusion that farmers with lower levels of digital literacy tend to possess smaller landholdings. However, a notable distinction lies in Riyazuddin's assertion that disadvantaged groups achieve higher output per unit of land. This phenomenon can be attributed to the tendency of India's socially marginalized groups to cultivate high–value, labor–intensive crops, which yield greater returns. In contrast, the Chinese government places emphasis on food security and has implemented pertinent policies to bolster grain production. Secondly, our research indicates that a higher degree of land concentration and larger scale farming can facilitate the advancement of agricultural modernization. This finding contradicts the research conducted by Lin (2008). Lin discovered that despite the high concentration of land in Pakistan, the anticipated economies of scale in agriculture have not been realized; instead, this has exacerbated farmer poverty and hindered agricultural development. The underlying reason for this discrepancy is that Pakistan's land system is characterized by private ownership, with land concentrated in the hands of a few landlords. Consequently, farmers can only lease land for agricultural production and are unable to engage in effective large–scale agricultural management. Thirdly, our study reveals that digital literacy enhances the likelihood of farmers engaging in land transfer activities, thereby influencing agricultural scale management. This finding is consistent with Osman's research (Osman et al., 2025). Osman, in analyzing the factors driving land use in the Sudan region, found that farmers adjust their land use practices based on market demand and other factors. In our theoretical framework, digital literacy can mitigate market information asymmetry, heighten farmers' expectations for farming, and subsequently encourage them to participate in large–scale agricultural management. This hypothesis has been substantiated through empirical research.

Against the backdrop of the steady advancement of digital rural construction and digital economic development in China, there is a promising prospect for a significant enhancement in farmers' digital literacy levels. When farmers' digital literacy reaches a certain threshold, the agricultural development model will undergo a transformation, gradually shifting from traditional low–value agriculture to modern high–value agriculture. Novel agricultural models such as digital agriculture, precision agriculture, and smart agriculture will emerge as a result. A close, mutually reinforcing, and bidirectionally empowering relationship exists between farmers' digital literacy and modern high–value agriculture, which is manifested in the following four aspects: (1) The improvement of farmers' digital literacy enables them to proficiently utilize digital technologies to comprehensively search for and systematically organize data information related to various stages of agricultural cultivation. Through in–depth calculation and analysis of this data, farmers can formulate scientific production plans that are highly aligned with actual production conditions, thereby achieving precision in agricultural production and enhancing its efficiency and quality. (2) Digital literacy encourages farmers to actively utilize agricultural and rural big data platforms to conduct intelligent perception, early warning, and decision–making analysis on multiple key aspects such as agricultural safety production, agricultural product processing and quality traceability, and rural industrial development. Leveraging the powerful capabilities of big data platforms, farmers can obtain real–time dynamic information on agricultural production, achieve visual management of agricultural production, and promptly identify and resolve issues that arise during the production process. (3) With the data information editing and production capabilities bestowed by digital literacy, farmers can innovatively transform traditional agricultural production models. By tapping into the multifunctionality of agriculture and combining market demands and consumer preferences, they can create innovative new forms of agricultural production, such as agricultural tourism, agricultural experience activities, and customized agricultural products, thereby expanding the value and industrial chains of agriculture. (4) The development of modern high–value agriculture places higher demands on the quality of agricultural labor. To adapt to the development needs of modern high–value agriculture, farmers need to continuously update their knowledge and engage in digital practices, learning new agricultural technologies, management concepts, and digital skills. In this process, farmers' digital literacy levels will be rapidly enhanced, forming a virtuous cycle that further promotes the sustainable development of modern high–value agriculture.

In comparison to existing research, this paper offers several marginal contributions: firstly, regarding the measurement of digital literacy, our study builds upon the Global Digital Literacy Framework issued by UNESCO and integrates the present context of China's agricultural and rural development. We construct a comprehensive digital literacy indicator system encompassing two dimensions: digital access and digital application. This system aims to highlight the digital divide at various levels, consisting of 5 second–level indicators and 17 third–level indicators. This approach not only expands the current understanding of digital literacy and its implications for rural China but also diversifies the existing research methodologies on digital literacy assessment frameworks. Secondly, we introduce an innovative analysis of farmland management scale, considering three dimensions: farmers' operational scale, plot size, and plot mean (average plot size). By separately examining the relationships between “digital literacy – operational scale,” “digital literacy – plot size,” and “digital literacy – plot mean,” we enrich the theoretical literature on agricultural scale management and offer a novel perspective. Thirdly, our study leverages field research data collected from farmers across 10 provinces in China, addressing the inherent limitation of past data sources. This comprehensive dataset allows us to more thoroughly demonstrate how farmers' digital literacy levels impact the scale of agricultural land operations. Furthermore, it scientifically unravels the internal transmission mechanisms of land transfer and land dependence, thereby enhancing the reliability, precision, and external validity of our conclusions.



6 Recommendation

Based on these conclusions, this paper offers the following policy recommendations:

	(1) It is imperative to advance the development of rural digital infrastructure in order to improve farmers' access to digital resources. This objective can be accomplished through several strategic initiatives: initially, promoting the deployment of integrated “5G + satellite” internet coverage is essential. As an illustration, Suichang County in Zhejiang Province has successfully implemented precise management of tea plantations utilizing the “5G + Beidou” system, enabling farmers to access real–time data via their mobile devices. Secondly, optimizing the digital service ecosystem is crucial, which may involve strategies such as popularizing intelligent terminals through a combination of government subsidies and corporate concessions, as well as establishing digital service stations within village committees to offer equipment usage guidance and training programs. Thirdly, the establishment of a data property rights trading platform for agricultural products is recommended, allowing farmers to generate income by sharing agricultural operational data, thereby incentivizing the adoption of digital tools. Lastly, the creation of a rural digital infrastructure index is proposed to systematically assess indicators such as network coverage and equipment utilization rates across different regions, addressing existing network deficiencies.
	(2) Efforts should be made to improve the factor market system and facilitate the efficient circulation of various factors. Accelerating the construction of the factor market system, refining its rules and regulations, and eliminating barriers to factor mobility can effectively promote land transfer and integration. This, in turn, fosters the scale and mechanization of agricultural operations, maximizes the scale effect of agricultural production, and enhances overall efficiency. Moreover, encouraging the flow of urban capital, technology, and human resources to rural areas can facilitate the effective allocation of high–quality resources in the agricultural sector, further amplifying the impact of digital elements on farmers' agricultural production and operation.
	(3) There is a need to enhance support mechanisms for farmers, aiming to bolster their risk resilience. This can be achieved through the following measures: firstly, increasing financial subsidies for the agricultural sector is vital to ensure a stable and reliable supply of agricultural production materials, thereby reducing farmers' production and operational costs. Secondly, innovating agricultural insurance cooperation models and fostering a collaborative ecosystem involving government, enterprises, and farmers is essential. For instance, the “Vegetable e–Loan” project in Shouguang, Shandong Province, allows farmers who have completed e–commerce training to secure loans of up to 500,000 yuan at an interest rate 1.5% points below the market rate by presenting their insurance policies. Concurrently, establishing a “platform + farmer” data–sharing model, where farmers authorize platforms to access pertinent agricultural information, and in return, platforms provide farmers with risk alerts and insurance policy insights through data analysis, can be beneficial. Furthermore, the government should offer corresponding insurance premium subsidies to enhance farmers' capacity to withstand natural and market risks, bolster their confidence in farming, stabilize their farming income, and further amplify the impact of digital literacy on their production and operational activities.
	(4) It is crucial to innovate the digital training framework for farmers to stimulate their intrinsic motivation. This can be accomplished through the following strategies: firstly, establishing and refining a tiered training system for farmers' digital literacy, and promoting the development of categorized programs such as the “Silver Hair Classroom” and the “New Farmer Incubation Camp” is necessary. For example, the “Silver Hair Classroom” focuses on equipping elderly farmers with fundamental skills like mobile payments and video calls, while the “New Farmer Incubation Camp” offers returning youth farmers content on e–commerce live streaming and digital operational management. Secondly, leveraging short video platforms like Douyin to create a library of agricultural knowledge videos in local dialects can effectively engage local farmers in learning.



Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



Author contributions

LY: Formal analysis, Methodology, Visualization, Writing – original draft, Writing – review & editing, Conceptualization, Data curation, Funding acquisition, Investigation, Project administration, Resources, Software, Supervision, Validation. SY: Data curation, Formal analysis, Investigation, Software, Validation, Writing – review & editing, Writing – original draft, Visualization, Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision. BL: Conceptualization, Funding acquisition, Project administration, Resources, Writing – original draft, Writing – review & editing, Formal analysis, Supervision, Validation, Data curation, Investigation, Methodology, Software, Visualization.



Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This research was funded by Jiangxi Province Industrial Economic System Industry Integration Post Project (Grant No. JXARS-16) and Jiangxi Provincial Key Research Base Project for Philosophy and Social Sciences (Grant No. 23ZXSKJD14).



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Generative AI statement

The author(s) declare that no Gen AI was used in the creation of this manuscript.



Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Supplementary material
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fsufs.2025.1546024/full#supplementary-material



Footnotes

	1 People's Daily. ‘Over 98% of administrative villages nationwide have access to fiber optics'. [2019-08-02]. https://www.gov.cn/xinwen/2019-08/02/content_5418058.htm.



References
	 Adamopoulos, T., Brandt, L., Leight, J., and Restuccia, D. (2022). Misallocation, selection, and productivity: a quantitative analysis with panel data from China. Econometrica 90, 1261–1282. doi: 10.3982/ECTA16598
	 ASEAN Secretariat (2015). ASEAN Investment Report. Jakarta: ASEAN Secretariat.
	 Bao, G. X., Liu, Q. C., and Guan, B. (2021). Why property rights strength cannot accelerate the transfer of agricultural land—the mediating role of endowment effect and the moderating role of land attachment. J. Lanzhou Univ. 49, 66–79 (In Chinese). doi: 10.13885/j.issn.1000-2804.2021.03.007
	 Barrett, C. B., Bellemare, M. F., and Hou, J. Y. (2010). Reconsidering conventional explanations of the inverse productivity—size relationship. World Dev. 38, 88–97. doi: 10.1016/j.worlddev.2009.06.002
	 Carletto, C., Savastano, S., and Zezza, A. (2013). Fact or artifact: the impact of measurement errors on the farm size—productivity relationship. J. Dev. Econ. 103, 254–261. doi: 10.1016/j.jdeveco.2013.03.004
	 Courtois, P. (2015). Farmer bargaining power and market information services. Am. J. Agric. Econ. 97, 953–977. doi: 10.1093/ajae/aau051
	 Deininger, K., Jin, S., Liu, Y., and Singh, S. K. (2018). Can labor-market imperfections explain changes in the inverse farm size—productivity relationship? Longitudinal evidence from rural India. Land Econ. 94, 239–258. doi: 10.3368/le.94.2.239
	 Du, F. J., Zheng, J., and Zhao, X. Y. (2024). From ‘spectatorship' to ‘implementation': the impact of digital literacy on low-carbon production of farm households—the mediating effect based on endowment capacity. Rural Econ. 77–87. (In Chinese)
	 Du, Z. C., and Xiao, W. D. (2019). Large-scale agricultural management: current situation, problems and policy choices. Jianghuai Tribune 11–19+28. doi: 10.16064/j.cnki.cn34-1003/g0.2019.04.002 (In Chinese)
	 Gao, Y. (2019). Pathfinder China. Shanghai: People's Publishing House. (In Chinese)
	 Gilster, P. (1997). Digital Literacy. New York: Wiley.
	 Haans, R. F. J., Pieters, C., and He, Z. L. (2016). Thinking about U: theorizing and testing U-and inverted U-shaped relationships in strategy research. Strat. Manag. J. 37, 1177–1195. doi: 10.1002/smj.2399
	 He, Y. Q., Liu, Y. D., Guo, J. Y., and Chen, J. H. (2024). Digital literacy, social network and adoption intensity of organic fertiliser substitution technology among food growers-empirical evidence based on CRRS data. J. Agric. Forestry Econ. Manag. 23, 643–651 (In Chinese). doi: 10.16195/j.cnki.cn36-1328/f.2024.05.67
	 Hua, J., and Pan, S. T. (2024). Digital literacy divide and income inequality of farming households. J. South China Agric. Univ. 23, 35–47. (In Chinese)
	 Julien, J. C., Bravo-Ureta, B. E., and Rada, N. E. (2019). Assessing farm performance by size in Malawi, Tanzania, and Uganda. Food Policy 84, 153–164. doi: 10.1016/j.foodpol.2018.03.016
	 Kawagoe, T. (1999). Agricultural Land Reform in Postwar Japan: Experiences and Issues, Policy Working Paper 2111. Washington, DC: World Bank.
	 Key, N. (2019). Farm size and productivity growth in the United States Corn Belt. Food Policy. 84, 186–195. doi: 10.1016/j.foodpol.2018.03.017
	 Kim, S. H., and Kamiya, M. (1992). Farm Size and Structural Reform of Agriculture. I. Korea. II. Japan.
	 Lamb, R. L. (2003). Inverse productivity: land quality, labor markets, and measurement error. J. Dev. Econ. 71, 71–95. doi: 10.1016/S0304-3878(02)00134-7
	 Li, C. J., Zhang, B., and Yuan, R. J. (2009). The social security function of rural land and the improvement of rural land system: and the protection of farmers' rights and interests. Rural Econ. 27–29. (In Chinese)
	 Liang, W. (2022). County governance of land fragmentation: system construction and practical mechanism. J. Northwest Agric. Forestry Univ. 22, 36–45 (In Chinese). doi: 10.13968/j.cnki.1009-9107.2022.02.05
	 Lin, Y. J. (2008). The impact of land ownership conditions in pakistan on agricultural scale operation. Agric. Outlook. 4, 34–37. (In Chinese)
	 Liu, B., and Zhou, J. (2023). Digital literacy, farmers' income increase and rural internal income gap. Sustainability 15:11422. doi: 10.3390/su151411422
	 Liu, G. B., and Zeng, J. X. (2004). Agricultural scale efficiency and implementation problems under rural business system. Seeking 43–45+145 (In Chinese). doi: 10.16059/j.cnki.cn43-1008/c.2004.09.015
	 Liu, L. H., and Zhang, Y. X. (2022). Influence mechanism of farmers' social class on their land transfer behaviour—based on the mediating effect of farmers' land dependence. Resour. Sci. 44, 2525–2539. (In Chinese). doi: 10.18402/resci.2022.12.11
	 Liu, T. S., and Kong, X. Z. (2017). Support measures, realisation methods and reform thoughts on agricultural large-scale business - a survey and research based on rural reform pilot zones. Rural Econ. 97–102. (In Chinese)
	 Liu, Y. B., and Wen, T. (2024). Digital literacy and farm household income gap: exacerbation or alleviation? —Based on micro evidence from the central and western regions. Journal of Northwest Agric. Forestry Univ. 24, 91–101. doi: 10.13968/j.cnki.1009-9107.2024.04.10. (In Chinese)
	 Lv, J., Xu, X., and Yin, G. Q. (2024). How can farmers' dual-scale operation improve grain income? Arid Zone Resour. Environ. 38, 96–103. doi: 10.13448/j.cnki.jalre.2024.033. (In Chinese)
	 Martin, A., and Grudziecki, J. (2006). DigEuLit: concepts and tools for digital literacy development. Innov. Teach. Learn. Inf. Comput. Sci. 5, 249–267. doi: 10.11120/ital.2006.05040249
	 Osman, A. A. M., Rahman, A. M. E., Onono, O. J., Elhag, M. M., Olaka, L. A., and Tonnang, H. E. Z. (2025). Integrating satellite remote sensing data and small-scale farmers' perceptions to determine land use/ land cover changes and their driving factors in Gedaref state, Sudan. Environ. Dev. Sustain. 1–27. doi: 10.1007/s10668-024-05689-w
	 Pu, L. Z., and Zheng, F. T. (2016). Analysis of initial endowment, land dependence and farmers' land transfer behaviour: an empirical analysis based on a sample of 5165 farmers in 23 provinces. J. Huazhong Univ. Sci. Technol. 30, 42–50. (In Chinese)
	 Qin, F., Wang, J. C., and Xu, Q. (2022). How does digital economy promote farmers' income? Evidence from rural e-commerce development. Econ. 22, 591–612. (In Chinese)
	 Rada, N. E., and Fuglie, K. O. (2019). New perspectives on farm size and productivity. Food Policy 84, 147–152. doi: 10.1016/j.foodpol.2018.03.015
	 Rigg, J., Salamanca, A., and Thompson, E. C. (2016). The puzzle of East and Southeast Asia's persistent smallholder. J. Rural Stud. 43, 118–133. doi: 10.1016/j.jrurstud.2015.11.003
	 Riyazuddin, M. K., Imdadul, M. H., Zeeshan Noorsaba, K., Isha, K., and Karuna, S. (2021). Caste, land ownership and agricultural productivity in India: evidence from a large-scale survey of farm households. Dev. Pract. 31, 421–431. doi: 10.1080/09614524.2020.1853679
	 Ruan, R. H., and Luo, M. Z. (2024). Digital literacy, employability and non-farm employment of rural labour. J. Hunan Agric. Univ. 25, 31–39. (In Chinese)
	 Sen, A. K. (1962). An aspect of Indian agriculture. Econ. Weekly. 14, 243–246.
	 Sheng, Y., Ding, J., and Huang, J. (2019). The relationship between farm size and productivity in agriculture: evidence from maize production in Northern China. Am. J. Agric. Econ. 101, 790–806. doi: 10.1093/ajae/aay104
	 Sheng, Y., Zhao, S., Nossal, K., and Zhang, D. (2015). Productivity and farm size in Australian agriculture: reinvestigating the returns to scale. Aus. J. Agric. Resour. Econ. 59, 16–38. doi: 10.1111/1467-8489.12063
	 Shi, H. B., Lu, K. Y., and Luan, J. D. (2019). Land endowment, support policy and the expansion of farm household business scale-Analysis based on the survey data of 1040 farm households in four provinces. J. Northwest Agric. For. Univ. 142–151. (In Chinese)
	 Sumner, D. A. (2014). American farms keep growing: size, productivity, and policy. J. Econ. Perspect. 28, 147–166. doi: 10.1257/jep.28.1.147
	 Tang, Y. Q., Jiang, X. H., and Huang, L. Z. (2022). Limited autonomy and rational expansion: an explanatory framework for the ‘difficulty of promoting' concentrated scale farming on agricultural land—a case study based on village a in province S. Chongqing Soc. Sci. 6–22. (In Chinese)
	 Vollrath, D. (2007). Land distribution and international agricultural productivity. Am. J. Agric. Econ. 89, 202–216. doi: 10.1111/j.1467-8276.2007.00973.x
	 Wang, H. J. (2024). Digital literacy and farm household income: with a discussion on the formation of digital inequality. China Rural Econ. 86–106. (In Chinese)
	 Wang, J., Chen, K. Z., Das Gupta, S., and Huang, Z. (2015). Is small still beautiful? A comparative study of rice farm size and productivity in China and India. China Agric. Econ. Rev. 7, 484–509. doi: 10.1108/CAER-01-2015-0005
	 Wang, J. J., Chen, P. Y., and Chen, F. B. (2012). A comparative study of the business behaviour of farmers with different land sizes and their economic benefits—A case study of the survey data of rice farmers in the Yangtze River Basin. Res. World 34–37. (In Chinese).
	 Wen, T., and Liu, Y. B. (2023). Digital literacy, financial knowledge and farmers' digital financial behaviour response. Res. Finan. Issues 50–64. (In Chinese)
	 Wen, Z. L., and Ye, B. J. (2014). Mediation effect analysis: methodology and model development. Adv. Psychol. Sci. 22, 731–745. (In Chinese). doi: 10.3724/SP.J.1042.2014.00731
	 Williams, D. R., Patterson, M. E., Roggenbuck, J. W., and Watson, A. E. (1992). Beyond the commodity metaphor: examining emotional and symbolic attachment to place. Leis. Sci. 14, 29–46. doi: 10.1080/01490409209513155
	 Wu, S. C., Qian, Y. H., and Yu, H. L. (2021). Farmers' participation patterns and stability of agricultural scale operations-based on the comparison of land scale operations and service scale operations. Econ. Manag. 30–35. (In Chinese)
	 Wu, X. L., and Wang, H. (2023). Farmers' digital literacy: framework system, driving effect and cultivation path—an analytical perspective of competence quality theory. E-Government 105–119. (In Chinese)
	 Xie, A. (2002). Discussion on the problems of land transfer and adequate scale operation in less developed areas of developed provinces. Agric. Econ. Issues 23, 38–41. (In Chinese)
	 Xu, Z. G. (2023). Development of agricultural scale operation. Agric. Econ. Manag. 13–16. (In Chinese)
	 Xu, Z. G., Zhang, D., and Cheng, B. D. (2024). The logic of farmland scale operation for food security guarantee in China—An analytical perspective based on dual scale economies of farmers and plots. Manag. World. 40, 106–122. (In Chinese)
	 Xue, D. Q., Chen, Q., and Lv, Y. Q. (2019). Land dependence and place attachment of rural residents in the Weibei dry loess plateau in the context of land transfer— a comparative study based on landless and non-landless farmers in Huangling County. J. Shaanxi Norm. Univ. 47, 31–39. (In Chinese)
	 Yang, L. L., Yu, S., Song, C. X., and Ma, H. Y. (2024). Analysis of hotspot evolution and emerging trend of domestic and international agricultural scale operation research based on bibliometric analysis. J. China Agric. Univ. 29, 285–299. (In Chinese)
	 Yang, Y. Z., and Zhang, X. K. (2024). Study on the impact of digital literacy on smallholder farmers' connection to modern agriculture—Based on a survey of 1,592 smallholder farmers in nine provinces and districts in the Yellow River Basin. Econ. Surv. 41, 42–53. (In Chinese)
	 Zhang, B., and Li, N. (2022). Research on the impact of digital inclusive finance on the non-farm transfer of rural labour—an empirical analysis based on Mlogit and threshold model. World Agric. 65–75. (In Chinese)
	 Zhang, B. B., Liu, F. P., Hou, X. B., Zhu, H. D., Niu, W. H., Jin, Y. Y., et al. (2023). Mechanisms of the impact of ‘one household, one field' cultivated land fragmentation management on farmers' income—Empirical evidence based on farmers' data in Yuyang District, Shaanxi Province. China Land Sci. 37, 73–83. (In Chinese)
	 Zhang, J. N., and Zhang, X. K. (2020). A study on the impact and mechanism of digital literacy on the decision to transfer out of agricultural land: micro evidence from CFPS. China Rural Econ. 57–77. (In Chinese)
	 Zhang, L. Y., and Wan, J. H. (2023). How the transfer of agricultural land improves the fine-grained operation—an analysis based on the plot size threshold. Rural Econ. 37–47. (In Chinese)
	 Zhang, Y. Q. (2022). The impact and mechanism of digital financial inclusion on rural land transfer—Empirical evidence from CFPS and PKU-DFIIC. Econ. Manag. 36, 30–40. (In Chinese)
	 Zhang, Z. H. (2020). Impact of non-agricultural employment on farmers' willingness to maintain the results of returning ploughland to forests—a survey based on 1132 retired farm households. China Land Sci. 34, 67–75. (In Chinese)
	Copyright
 © 2025 Yang, Yu and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.









 


	
	
SYSTEMATIC REVIEW
published: 06 June 2025
doi: 10.3389/fsufs.2025.1548565








[image: image2]

Review of simulations on land use change: a methodology based on bibliometric analysis

Qingquan Sun1,2, Lexuan Huang1, Han Meng1, Liang Chi1, Jianzhai Wu1 and Xiangyang Zhou1*


1Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China

2School of Geography and Information Engineering, China University of Geosciences, Wuhan, China

Edited by
 Xueru Zhang, Hebei University of Economics and Business, China

Reviewed by
 Xiaowei Chuai, Nanjing University, China
 Xiaoqing Song, China University of Geosciences Wuhan, China

*Correspondence
 Xiangyang Zhou, zhouxiangyang01@caas.cn 

Received 19 December 2024
 Accepted 15 May 2025
 Published 06 June 2025

Citation
 Sun Q, Huang L, Meng H, Chi L, Wu J and Zhou X (2025) Review of simulations on land use change: a methodology based on bibliometric analysis. Front. Sustain. Food Syst. 9:1548565. doi: 10.3389/fsufs.2025.1548565
 




Introduction: Land use change simulation is crucial for understanding global environmental changes and guiding sustainable land management. This study conducts a bibliometric analysis of 2,147 Web of Science articles from 1988 to 2023 to summarize research trends, thematic evolutions, and future directions in land use change modeling.
Methods: Using Biblioshiny tools, the study applies quantitative analytics, co-citation network mapping, and keyword clustering.
Results: The research reveals three developmental phases. From 1988 to 2000 (62 articles), foundational models like CLUE and CA were developed. During 2001–2016 (1,039 articles), there were advancements in coupled models and multi-scenario simulations. From 2017 to 2023 (1,046 articles), the focus shifted to integrative frameworks linking land dynamics, ecosystem services, and climate feedbacks. Annual publication outputs increased from 5 to 149, showing exponential growth. Key research themes involve computational modeling, spatiotemporal dynamics analysis, and environmental impact assessment. Recent trends highlight “river-basin,” “multi-source data fusion,” and “geographically weighted models,” indicating a move toward basin-scale simulations, machine learning integration, and policy-oriented scenarios. China, the U.S., and Germany lead in research output, with top institutions including Beijing Normal University and the Chinese Academy of Sciences. China and the U.S. have strong domestic collaborations, while European countries have higher international collaboration ratios.
Discussion: The analysis points out research gaps, such as limited integration of socio-economic drivers and insufficient cross-scale modeling. Future research should focus on developing hybrid frameworks combining process-based and data-driven models, leveraging multi-source data for accuracy, and designing scenario-based models for sustainable development goals, especially in river basins and urbanizing regions.
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1 Introduction

Land resources are undoubtedly the cornerstone for the establishment and evolution of human societies (Long, 2022). The global land area is around 14.9 billion hectares. Nevertheless, currently, a significant quarter of this vast expanse is mired in the process of degradation. The report “The State of the World’s Land and Water Resources for Food and Agriculture: Systems at breaking point” by the Food and Agriculture Organization of the United Nations emphasizes that the degradation of terrestrial soil and land has reached a critical stage. This degradation is endangering the future food supply for nearly 10 billion people by 2050 (Elizabeth, 2022). Confronted with this formidable challenge, the United Nations has strongly urged all countries to actively carry out their solemn obligations to restore 1 billion hectares of land. Meanwhile, to ensure the smooth realization of the United Nations Sustainable Development Goal SDG15 by 2030, the International Resource Panel has identified land restoration as a crucial remedial measure. Against this crucial backdrop, simulating and predicting future land-use scenarios is of great significance for addressing the problems faced by global land resources and achieving sustainable development goals.

Land use is a globally significant issue that has attracted extensive attention and committed efforts from the academic community. A large number of scholarly articles have been published on this topic. Just the papers with “land use” in their titles amount to a remarkable 36,000, and around 28% of them focus on simulating and predicting land use change. After a thorough review of existing studies, we find that the dominant methods for simulating or forecasting land use change mainly rely on Geographic Information Systems (GIS), Remote Sensing (RS) technologies, or statistical models (Jafari et al., 2016; Aburas et al., 2019). To improve the effectiveness of simulation predictions, researchers often explore advanced techniques. These include, but are not limited to, model optimization and integration, deep learning algorithms, multiscale analytical frameworks, multiscenario simulation methods, and multi-source data fusion strategies. These technological approaches complement each other and work together to enhance the accuracy and reliability of research findings.

Currently, models developed for simulating or predicting land use change are mostly extensions and optimizations based on the Cellular Automaton (CA), Conversion of Land Use and its Effects (CLUE) models, Agent-Based Model (ABM), and deep-learning-based methods such as the Long Short-Term Memory (LSTM) network (Zheng and Hu, 2018). The CA model is a rule-based discrete model. It defines the rules and transition probabilities of interactions among cells (terrestrial units) to simulate the non-linear and self-organizing behavior of land use change. This characteristic makes it suitable for complex system modeling. By adjusting various initial conditions and parametric settings, which involve different policy, economic, social, and environmental variables (Xu et al., 2021), the CA model can analyze specific scenarios and predict the future evolution of land use patterns. The CA-Markov model, derived from the combination of the CA and Markov models, breaks down the land use change process into a cell-level decision-making process. It also incorporates spatial correlations and time-series features. As a result, this model can effectively address the limitations of the single CA model in aspects such as temporal dynamics, spatial correlations, multi-source data fusion, utilization of historical information, and prediction accuracy (Guan et al., 2019).

The CLUE model is based on a spatially explicit approach. It is used to simulate the spatial configurations and dynamic evolutions of land use change along different developmental paths. This model has wide applications in simulations across large spatial scales (Niu and Pan, 2021). Unlike the CA model, which mainly emphasizes local rules, the CLUE model focuses on the driving forces and conversion mechanisms of land use change. Widely adopted in various academic fields such as geography, ecology, and agronomy, the CLUE model serves as a fundamental framework for interdisciplinary integration and development. Its improved version, the CLUE-S model, is often used to predict the spatiotemporal dynamics of land use changes, landscape pattern alterations, and three-dimensional spatial changes. Moreover, the CLUE-S model can be coupled with models like InVEST and Markov. This coupling enables the validation and precise assessment of the accuracy and reliability of simulation results.

Agent-Based Modeling (ABM) is a computational model used to simulate the behaviors and interactions of autonomous agents (Lamperti et al., 2018; Bao and Fritchman, 2018). In the early days, ABMs were mostly applied at the local scale. However, they are now being extended toward the regional scale (Matthews et al., 2007; Crooks and Castle, 2011). For instance, a case study in the Netherlands proposed a conceptual framework of ABM. By integrating agent types, farm trajectories, and probabilistic decision-making processes, this framework analyzed regional land use and cover changes. Moreover, it was parameterized using empirical data, enhancing the model’s practicality in regional research (Valbuena et al., 2010). Additionally, ABMs are constantly being integrated with other technologies. Some studies have introduced deep learning into ABMs to improve model accuracy (Shiono, 2021).

Deep-learning-based models, such as LSTM (Hochreiter and Schmidhuber, 1997), have significant advantages in processing time-series data and capturing complex change patterns (Xu and Yang, 2025). They can learn hidden land use change patterns from large amounts of data. However, they require a large volume of data and have relatively poor interpretability. They are suitable for predicting long-term land use change trends and conducting high-precision simulations and predictions of land use change when sufficient data is available (Zhao et al., 2023).

In the simulation research of land-use change models, multi-scenario simulation serves as a crucial means to gain insights into future land-use dynamics (Sankarrao et al., 2021). From the perspective of policy orientation, policy-driven scenario simulation focuses on the implementation effects of different land policies. For example, during the urbanization process, changes in urban planning policies, such as new district development or old-city renovation plans, can alter the urban land-use pattern. Multi-scenario simulation can demonstrate the growth models of urban land and the changes in functional zoning under different planning policies (Li et al., 2024; Zhou et al., 2020; Domingo et al., 2021). Economic factors are also a core force shaping land-use changes. In a scenario of rapid economic growth and continuous industrial structure upgrading, industrial land may transform toward a more agglomerated and highly efficient utilization pattern due to the development of high-tech industries. Conversely, in a scenario of economic slowdown or difficult industrial transformation, traditional industrial land may face problems such as idleness or inefficient utilization. Simulation can clearly illustrate these change processes, providing a basis for the coordinated development of the economy and land use (Xu et al., 2025). Environment-driven scenario simulation, on the other hand, concentrates on the impacts of environmental factors such as ecological protection and climate change on land use. Against the backdrop of addressing climate change, factors like sea-level rise and an increase in extreme climate events can change the suitability of land. By simulating different climate change scenarios, it is possible to predict the risk of land inundation in coastal areas and the layout adjustments of agricultural land due to changes in climate conditions (Wu and Wang, 2025).

The relevant literature in the field of land use change simulation is extensive and complex. Relying solely on reading to comprehensively understand and analyze the research landscape in this area is a difficult task. In this context, bibliometrics becomes crucial and essential. Bibliometrics is of great importance for clarifying academic collaboration networks, evaluating the impact of articles, identifying research trends, selecting research methods and technological means, and exploring interdisciplinary research directions. It involves quantitatively analyzing and visualizing indexed literature through the use of mathematical, statistical, and bibliographic techniques. There are several notable tools for bibliometric analysis, such as Histcite, VOSviewer, SATI, Bibexcel, CiteSpace, and Bibliometrix. Each tool has its own unique principles and focuses. Histcite analyzes citation connections to mainly reveal the historical development and trends in a scientific field. However, it is limited by its restricted database support and relatively narrow functionality. VOSviewer uses clustering algorithms based on similarity matrices calculated from documents to classify similar literature and display the clustering results through visualization. Nevertheless, it currently only supports English-language literature, and some of its visualization results may not be very satisfactory (Li et al., 2021). SATI conducts quantitative and visual examinations of literature by extracting bibliographic details and applying methods like co-word analysis, multidimensional scaling, and clustering. However, it may face challenges in uncovering micro-concepts in the literature and differentiating between disciplinary sub-fields. Occasional inaccuracies in counting the frequencies of macro-keywords could potentially affect theoretical inferences (Bornmann and Marx, 2012). Bibexcel processes and analyzes literature data using text mining and data analytics methods. Unfortunately, it has a complex user interface and limited functionality (Bornmann and Marx, 2012). CiteSpace, based on the principle of co-occurrence clustering, extracts and reconstructs informational entities (such as keywords, authors, and institutions) from the literature corpus, creating diverse and meaningful network structures. It measures and visualizes these structures to reveal the knowledge framework and evolutionary patterns within a discipline. However, its performance may decrease when dealing with large-scale datasets (Bukar et al., 2023). Bibliometrix is an open-source tool developed in the R programming language. It not only enables comprehensive bibliometric analysis and various visualization techniques but also allows for customized development according to specific needs. It has been widely used in the academic community (Chen and Kong, 2023). Biblioshiny, developed by further using the Shiny package, integrates the core code of Bibliometrix into a web-based data analysis framework. This tool combines a graphical interface, bibliometric analysis, and visualization methods, smoothly incorporating the functions of Bibliometrix and offering researchers a relatively complete and intuitive analysis tool (Li et al., 2023).

The Web of Science (WOS) is committed to curating high-quality academic journals and conference papers. Currently, in the field of bibliometrics, the Web of Science Core Collection has accumulated a collection of 260,000 articles. However, the number of articles related to land use is relatively small, with just over 100. Among these land-use-related articles, 53% of the research is associated with climate change, its impacts, and management. Significantly, research specifically focused on land use change simulation and prediction is extremely scarce (Li and Song, 2023). To address this gap, this study utilizes the Biblioshiny tool to systematically analyze and statistically examine the literature on land use change simulation and prediction in the Web of Science Core Collection from 1988 to 2023. The main objectives of this research are as follows: (1) The kinetic evolution and trends permeating research within this field. (2) The identification, assessment, and analysis of the academic sway exerted by core authors, preeminent institutions, pivotal journals, and leading nations in this arena. (3) The exploration of extant research hotspots and the challenges therein. (4) The prognostication of prospective research trajectories in land use change simulation and prediction.



2 Data collection

The Web of Science (WOS), originally developed by Eugene Garfield, is now managed and advanced by Clarivate Analytics. It indexes high-quality and highly impactful journals distributed globally, starting from 1900. In this study, to obtain literature relevant to land use change simulation and prediction, a search formula based on article titles and abstracts was applied: TI = (Simulation of “Land Use Change*”) OR AB = (Simulation of “Land Use Change*”). The search was carried out on December 23, 2023. After filtering out articles that did not match the research focus through manual screening of titles and abstracts to extract relevant records, a total of 2,147 records were collected. These records were then archived as comprehensive records and cited references in the “BibTeX” format for further analysis.

In the bibliometric analysis of this study, to ensure the selection of literature highly relevant to land use change simulation, a manual screening method of carefully perusing titles and abstracts was adopted. Based on the Web of Science Core Collection, after retrieving 2,196 pieces of literature using a specific search formula, meticulous manual screening commenced. In the initial title-screening phase, non-English literature, conference abstracts, and studies clearly unrelated to the research were excluded. Subsequently, in the in-depth abstract-reading stage, relying on domain knowledge, literature involving simulation models (such as Cellular Automata, Conversion of Land Use and its Effects, etc.), methodologies (such as Markov chains, etc.), scenario predictions, or model validations were strictly selected. A total of 49 records were removed during this process. To guarantee the screening quality, 10% of the literature was randomly selected for double-blind cross-verification by two reviewers. The inter-rater agreement reached 92%. The final dataset was then processed by removing duplicates, standardizing keywords, and normalizing institutional names before being archived. Although manual screening is time-consuming, it can accurately identify emerging themes, providing reliable data for subsequent research. Moreover, the screening process and criteria will be presented in the form of a flowchart in the future, ensuring the traceability and reproducibility of the research.



3 Research methods

This study utilized the Biblioshiny tool to implement a three-part analytical framework for the literature on “land use change simulation.” The framework includes quantitative analysis, citation analysis, and content visualization analysis. The quantitative analysis focused on parameters such as the number of publications, types of publishing journals, keyword frequencies, research institutions, and countries. This analysis is essential for understanding the research activities in the field, evaluating the academic impact and dissemination range of research results, identifying current research hotspots and frontiers, and assessing the research capabilities of different institutions. The citation analysis comprehensively examined both locally and globally highly-cited papers. These pioneering research findings can serve as a valuable source of knowledge for future researchers in the area of land use change simulation and prediction. To visually depict the research evolution in this field, Sankey diagrams were strategically employed at three different time points. These diagrams are useful for identifying research hotspots and frontiers in different development stages of the field.

Biblioshiny is developed based on the bibliometrix package in the R programming language. It constructs an intuitive graphical operating environment for bibliometric analysis, and its technical principles cover multiple aspects such as data processing, analytical model construction, and visual presentation. In the data-processing stage, the software can parse literature data from multiple databases like Web of Science and Scopus, and it supports the import of formats such as BibTeX and RIS. Through text-mining techniques, it extracts key information from fields such as literature titles, abstracts, and keywords, and then conducts data cleaning and standardization. For example, it can remove duplicate words and correct formatting errors, laying a solid data foundation for subsequent analyses.

Entering the analysis stage, Biblioshiny employs a variety of mature algorithms to perform diverse bibliometric analyses. Taking co-occurrence analysis as an example, when constructing a co-occurrence matrix, the software traverses all the literature and counts the co-occurrence frequencies of word pairs (such as keyword pairs). Suppose the set of words is {A, B, C}. If A and B appear simultaneously in a literature, the values at the corresponding positions of (A, B) and (B, A) in the matrix are incremented by 1 (co-occurrence matrices are usually symmetric). For the analysis of author collaboration networks, based on the co-author relationships in the literature, graph-theoretic algorithms are used to construct a network model. Nodes represent authors, edges denote co-author relationships, and the weight of an edge can be set as the number of co-authoring times, thereby intuitively presenting the collaboration patterns among researchers. When calculating literature impact indicators (such as the h-index), the established formula is followed: the maximum value of h such that a given author or journal has published at least h papers, and each of these papers has been cited at least h times. Through statistical operations on data such as the citation frequencies of literature, the academic influence of the literature or the author is evaluated.

In terms of visualization, Biblioshiny utilizes layout algorithms (such as the Force-Atlas 2 algorithm) to transform analysis results into intuitive graphs. Taking the visualization of keyword co-occurrence networks as an example, this algorithm mimics the action of physical forces to arrange nodes (keywords) and edges (co-occurrence relationships) reasonably on a two-dimensional plane. The size of a node can reflect the frequency of a keyword’s appearance or its centrality, and the thickness of an edge represents the strength of the co-occurrence, enabling researchers to gain insights into the knowledge associations underlying the literature data.



4 Results


4.1 Analysis of the number of publications and issuing journals


4.1.1 Annual trend of publications

The articles pertinent to land use change simulation and prediction traverse the temporal span from 1988 to 2023. The aggregate trend manifested in the publication count evinces a growth trajectory. Based on the publication volume, the research chronicle can be demarcated into three sequential epochs: the nascent stage spanning from 1988 to 2000 (encompassing 62 articles), the phase of rapid expansion from 2001 to 2016 (comprising 1,039 articles), and the active phase from 2017 to 2023 (incorporating 1,046 articles) (Figure 1).
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FIGURE 1
 Number of publications and annual mean total citations in the field of land use change simulation and prediction from 1988 to 2023.


During the nascent stage, the publication tally constituted less than 3% of the aggregate. Research endeavors were preponderantly concentrated within three principal domains: (1) The establishment and application of land use change models, with several articles mentioning the use of spatially explicit allocation programs for land use and the CLUE model to simulate and predict land use changes (Xu et al., 2022). (2) The emulation of the climatic impact engendered by historical land use change (Verburg et al., 1999). (3) The comprehensive contemplation of land use changes and land management strategies, with the objective of attaining comprehensive and efficacious governance (Rol, 2000). Although the number of publications in this stage is limited, it laid the foundation for improving land use change simulation and prediction models and optimizing related parameters.

In the phase of rapid expansion, the publications encompassed 48% of the total volume, signifying a precipitous augmentation in the quantity of articles associated with land use change simulation and prediction throughout the 2001–2016 timeframe. Annually, an approximate mean of 65 papers were disseminated. During this interval, research focusing on land use simulation and prediction models burgeoned, with primacy accorded to the enhancement and optimization of sundry models, namely CA models, CLUS models, and SWAT models (Lambin et al., 2000; Tsang and Leung, 2011; Zhang et al., 2007; Li et al., 2012; Dong and Zhang, 2015). For illustrative purposes, Zhang et al. harnessed stochastic cellular automaton models and land use trajectory analysis to proffer novel spatial nuances regarding the asymmetrical development of land use within the Pearl River Delta (Zhang et al., 2007). Dong et al. expounded upon the developmental trajectory of the CLUE-S model, prevalently employed in landscape ecology and efficacious in emulating small-scale land use change (Dong and Zhang, 2015).

In the active phase, publications constituted the zenith percentage, amounting to 49%. From 2016 to 2023, the corpus of articles germane to land use change simulation and prediction witnessed a meteoric escalation, with an average annual output of approximately 149 papers. During this epoch, the vanguard of research gravitated toward the nexus among land dynamics, land use change prediction models, and environmental determinants. A plethora of articles zeroed in on the spatio-temporal simulation and prediction of land use changes, employing both conventional and machine learning models (Aburas et al., 2019). Certain studies dynamically replicated land use changes through the coupling of the CLUE-S model with geographically weighted modalities (Niu and Pan, 2021). Moreover, copious research endeavored to fathom the influence of spatial resolution on the spatial simulation efficacy of cellular automaton-based land use changes (Susilo, 2019). Another research trajectory entailed the conjugation of Markov chains with cellular automata to mimic the interrelationship between land use changes and vegetation (Mujiono et al., 2017).

Furthermore, the mean value of the annual average total citations per year (denoted as MeanTCperYear) for the papers is ascertained to be 3.3. Prior to 2007, MeanTCperYear manifested substantial oscillations and lingered at a relatively diminutive magnitude. Nevertheless, subsequent to 2007, MeanTCperYear has perpetually stabilized at or above the 3.3 threshold, thereby signifying that the research endeavors within this domain have garnered extensive recognition since the year 2007.



4.1.2 Analysis of issuing journals

Currently, a total of 622 journals have published 2,147 articles pertaining to the simulation and prediction of land use change. The publication counts across various journals range within 60 articles (Table 1). The top 10 journals collectively contributed 403 articles, representing less than one-fifth of the total, and do not exhibit strong journal preferences. However, in general, the five journals with the most published articles are Journal of Hydrology (60 articles), Water (58 articles), Sustainability (55 articles), Ecological Modelling (40 articles), and Science of The Total Environment (39 articles). Particularly noteworthy is that Journal of Hydrology, Water, and Sustainability have garnered citations in the tens of thousands, with Water amassing over 36,000 citations. Correspondingly, the h-index values, indicating the academic output and influence of articles in these three journals, are the highest among all journals. This implies that articles in these journals have garnered widespread attention and recognition.



TABLE 1 Provenance of the premier 10 journals ranked by publication volume within the period spanning 1988 to 2023.
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Among the top 10 journals in terms of publication volume, journals such as Ecological Modelling (in ecological model development, the SEMLUC model), Geoscientific Model Development (in model methodology innovation, such as the improvement of the CA model), and Sustainability (in multi-scenario simulation models, such as CLUE-S and FLUS) place greater emphasis on model research. Journals that focus more on environmental impact research include Journal of Hydrology (impacts on the hydrological environment, such as flood frequency), Water (comprehensive impacts of hydrology and climate), Science of The Total Environment (comprehensive environmental effects, such as the value of ecosystem services), Land (impacts on ecosystem services, such as ESV assessment), and Ecological Indicators (quantification of ecological indicators, such as biodiversity and carbon storage). In contrast, Journal of Environmental Management, and Land Use Policy involve models that serve policy or management objectives. They emphasize application-oriented impact analysis, and attach equal importance to models and environmental impacts.

An investigation into the growth rates of the top five journals gauged by publication volume divulges that the Journal of Hydrology and Ecological Modelling evince relatively elevated overall growth rates, occupying the first and second positions, respectively. Conversely, Water, Sustainability, and the Science of The Total Environment have witnessed an expedited growth tempo subsequent to 2010, eclipsing Ecological Modelling by 2021. Furthermore, the growth rate of the Journal of Hydrology is currently manifesting a tendency of being superseded by Water and Sustainability (Figure 2).

At present, a cumulative total of 622 journals have disseminated 2,147 articles associated with the simulation and prediction of land use change. The publication frequencies across diverse journals are circumscribed within a range of 60 articles. The top 10 journals, in aggregate, have furnished 403 articles, which accounts for less than one-fifth of the entire corpus. Notably, no pronounced predilection for specific journals is discernible. However, in the general panorama, the five journals with the most prolific publication records are the Journal of Hydrology (60 articles), Water (58 articles), Sustainability (55 articles), Ecological Modelling (40 articles), and the Science of The Total Environment (39 articles). Of particular salience is the fact that the Journal of Hydrology, Water, and Sustainability have amassed citations numbering in the tens of thousands, with Water alone aggregating over 36,000 citations. Correspondingly, the h-index values, emblematic of the academic productivity and influence of articles within these three journals, stand as the highest among all journals. This circumstance intimates that articles published in these journals have elicited extensive attention and acclaim (Table 1).
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FIGURE 2
 Growth curve of journal sources for land use change simulation predictions.





4.2 Pivotal research countries and institutional analysis

In this paper, the Walktrap clustering algorithm was utilized to scrutinize the collaborative networks of the top 50 countries and institutions. The Walktrap algorithm, which is founded on the principle of random walks, is efficacious in discerning community structures within networks (Xie et al., 2020). With the aim of identifying the pivotal countries and research institutions that have exerted a substantial influence on the field of land use change simulation and prediction, an in-depth exploration of the collaborative networks among countries and institutions was conducted (Figures 3, 4). Since the inception of research in this domain, 2,530 institutions from 78 countries or regions have partaken in studies related to the simulation and prediction of land use change. In terms of the volume of publications, China takes the lead with 573 papers, trailed closely by the United States and Germany, which have contributed 382 and 162 papers, respectively (Table 2). Moreover, the publication outputs of seven countries, namely the United Kingdom, Australia, Canada, Japan, Brazil, France, and the Netherlands, are also deserving of attention, as each has published more than 50 papers. To gain a more comprehensive understanding of the extent of academic collaboration among countries, this paper analyzed the quantity of co-authored papers by authors of the same nationality (SCP) and the quantity of co-authored papers with authors from other countries (MCP). On the basis of this analysis, the ratio of international collaboration (MCP_Ratio) was computed. France exhibits the highest international collaboration ratio, with the United Kingdom following closely in second place. Japan, New Zealand, and Brazil complete the top five. Intriguingly, despite their high publication volumes, China and the United States display relatively lower ratios of international collaboration, ranking at the lower end. This could potentially be attributed to the sample size of the literature, leading to a dilution of the international collaboration ratio for these two countries. However, considering the results per se, both countries ought to enhance international collaboration within the academic sphere to foster knowledge exchange and mutual advancement.
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FIGURE 3
 National cooperation network within the field of land use change simulation and prediction (LUCD) during the period from 1988 to 2023.


[image: Network diagram illustrating connections between various universities and research institutes. Nodes vary in size and color, with larger nodes like "Univ Chinese Acad Sci," "Inst Geog Sci and Nat Resources," and "Univ Maryland" connected by lines representing collaborations. Colors indicate different categories or affiliations.]

FIGURE 4
 Institutional cooperation network within the realm of land use change simulation and prediction during the interval from 1988 to 2023.


The national collaborative network graph (Figure 3), computed via the Walktrap clustering algorithm, proffers a more perspicuous manifestation of the degree of proximity in collaboration among countries. The connections between the United States and China, both of which boast high publication volumes, are conspicuously close. Moreover, Germany also sustains relatively extensive academic exchanges with these two countries. Additionally, the academic collaboration between the United States and the United Kingdom is relatively tight. Notwithstanding China’s remarkable accomplishments in terms of publication quantity, it is of paramount importance to acknowledge that, within the domain of international collaborative networks, the United States retains a certain edge. This can likely be ascribed to the global eminence and influence of the scientific research and academic exchange system in the United States, which attracts a substantial number of international scientists and institutions for collaborative undertakings. China should persist in fortifying its collaborations with countries across the globe, inspiring research institutions to partake in extensive exchanges with their international counterparts, thereby making contributions to the progression of global technological innovation.



TABLE 2 Enumeration of national publications within the realm of land use change simulation and prediction during the period from 1988 to 2023.
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In the examination of contributing institutions, conspicuous contributions were discerned from Beijing Normal University, China University of Geosciences, and the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences. These three institutions yielded 110, 93, and 82 papers, respectively, thereby exemplifying their preeminent capabilities within this field and effectuating positive contributions to the progression of the discipline (Table 3). Furthermore, remarkable accomplishments were witnessed from Sun Yat-sen University, Wuhan University, University of Chinese Academy of Sciences, Purdue University, University of Maryland, and Nanjing University, all of which have disseminated 50 or more papers in this field. This manifestation reflects the elevated academic research benchmarks of these universities within this particular domain.



TABLE 3 Enumeration of publications issued by institutions within the field of land use change simulation and prediction during the period from 1988 to 2023.
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Regarding inter-institutional collaboration, the Chinese Academy of Sciences demonstrates the utmost centrality within the collaborative network. It has fostered close affiliations with a multitude of institutions, including Beijing Normal University, China University of Geosciences, Sun Yat-sen University, and the University of Chinese Academy of Sciences. Of particular note, its collaboration with the Institute of Geographic Sciences and Natural Resources Research of the Chinese Academy of Sciences is especially salient, signifying the institute’s pivotal role within the research cooperation network and its possession of significant influence and allure. In terms of the intensity of collaboration between institutions, Beijing Normal University assumes the leading position, having established notably close relationships with the Institute of Geographic Sciences and Natural Resources Research, China University of Geosciences, and the University of Chinese Academy of Sciences. This underscores Beijing Normal University’s proficiency in aggregating high-quality resources from diverse esteemed academic institutions, facilitating academic exchanges and the generation of research achievements, thus making contributions to the progression of related disciplinary arenas. Concurrently, this also reflects the extensive recognition accorded to the university’s research directions, research standards, and innovative capabilities (Figure 4).



4.3 Keyword analysis


4.3.1 High frequency keyword analysis

An analysis was conducted on 2,147 research papers regarding land use change simulation and prediction that were published within the period from 1988 to 2023. A total of 5,269 author keywords were thereby identified. Figure 5 delineates the temporal trends of these author keywords. Specifically, the X-axis serves to denote the years, while the Y-axis represents the keywords. The blue bands signify the time interval during which the keywords garnered attention. Moreover, the magnitude of the dots reflects the frequency of keyword occurrences, with larger dots indicating a higher frequency of appearance.
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FIGURE 5
 Temporal variation trend of author-defined keywords in the domain of land use change simulation and prediction (LUCD) during the period from 1988 to 2023.


The top 10 keywords, ranked in accordance with their frequencies, are as follows: “land use change,” “climate change,” “land use,” “land-use change,” “cellular automata,” “SWAT,” “simulation,” “model,” “urbanization,” and “modeling.” It is worth highlighting that “climate change” and “urbanization” have emerged as pivotal influencing factors within the context of land-use change simulation and prediction. Meanwhile, “cellular automata,” “SWAT,” “simulation,” “model,” and “modeling” epitomize the critical methodologies harnessed in the research. Additionally, “land use change,” “land use,” and “land-use change” encapsulate the principal thematic foci of these studies.

The proximity of the blue bands to the right-hand side in Figure 5 denotes the more recent publication timings of the corresponding author keywords, thereby mirroring the prevailing research trends. Over the past biennium, the key focal areas have encompassed “plus model,” “carbon storage,” “multi-scenario simulation,” “scenario simulation,” “land use simulation,” “flus model,” “ecosystem services,” “CA-Markov model,” and “flus,” all of which signify nascent research interests.

“Land Use Simulation” persists as a central tenet of research. The “Plus Model,” “FLUS,” “FLUS Model,” and “CA-Markov Model” exemplify specific categories of land-use change simulation models. These models amalgamate the influences of human activities and natural factors, integrating diverse data and scenario analyses to emulate and prognosticate the spatial configurations and dynamic processes of land-use change. “Multi-Scenario Simulation” and “Scenario Simulation” pertain to methodological approaches for forecasting the spatial patterns and dynamic transformations of future land use by postulating distinct hypothetical conditions. Such methods assist researchers in gleaning profound insights into the ramifications of various driving forces on land-use change. “Carbon Storage” is instrumental in deciphering the impact of disparate land-use types on carbon cycling and the potential contributions of land-use change to global climate change. “Ecosystem Services” denotes the manifold benefits and functions furnished by ecosystems to humanity, such as water conservation, climate modulation, and soil preservation. The study of ecosystem services facilitates the evaluation of the impact of land-use change on ecosystem functions and human wellbeing.



4.3.2 Keywords multiple correspondence analysis

The crux of the Multiple Correspondence Analysis concerning high-frequency keywords resides in the clustering and visualization of these keywords. In the visual representation, the closeness of the highlighted points mirrors the similarity among the keywords. Concurrently, keywords situated nearer to the central point signify elevated levels of attention, proffering an intuitive portrayal of the research directions and themes within a particular research domain. The outcomes suggest that the research directions and themes in the simulation and prediction of land-use change can be classified into four distinct categories (Figure 6).
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FIGURE 6
 Multiple correspondence analysis of keywords within the domain of land use change simulation and prediction during the period from 1988 to 2023.


Category 1: Principally associated with urban expansion, the pertinent keywords encompass “urban growth,” “Cellular Automata,” “expansion,” “city,” “area,” and “GIS.” The confluence of “urban growth,” “Cellular Automata,” and “GIS” constitutes a comprehensive paradigm for apprehending and emulating urban development. Urban growth represents a complex and multifaceted phenomenon within the ambit of urbanization, encapsulating elements such as population dynamics, economic aspects, social fabric, and spatial configurations. It is customarily actuated by a plethora of factors, including economic incentives, population migrations, policy predispositions, and infrastructure advancements. Cellular Automata are especially apt for simulating the spatial dynamics of intricate systems. In the realm of urban studies, Cellular Automata disclose macroscopic patterns of urban growth by emulating the spatial interactions of discrete land-use decisions. The state transition of each cell is predicated on a set of rules that factor in the states of adjacent cells and sundry other determinants, thereby simulating the dynamic evolution of urban spatial structures. GIS, serving as a platform for amalgamating, dissecting, and visualizing geographic spatial data, can assimilate diverse data sources such as population census data, land-use data, and infrastructure particulars, furnishing requisite inputs for Cellular Automata models. Moreover, GIS can exhibit model outputs in the guise of maps and charts, empowering decision-makers to more efficaciously comprehend and interpret simulation outcomes within a spatial context. The interplay among urban growth as the research object, Cellular Automata as the modeling instrument for discerning and prognosticating this phenomenon, and GIS proffering technical underpinning for data integration, model execution, and result visualization engenders a cyclical relationship. This modus operandi not only augments our comprehension of the urban growth process but also furnishes a scientific foundation for formulating sustainable urban planning policies.

Category 2: Pertinent to land use change and its management, ecosystem services, as well as model simulation. The keywords comprise “China,” “dynamics,” “cover change,” “ecosystem services,” “systems,” “urbanization,” “model,” “management,” “land use change,” “scale,” “impacts,” and “simulation.” Land use change constitutes a pivotal determinant in instigating alterations in ecosystem services. Prudent land use planning and management initiatives possess the potential to attenuate the adverse consequences of land use change on ecosystem services and, in certain instances, even augment the capacity to furnish specific services. As an illustration, management strategies such as safeguarding critical ecological zones, effectuating reforestation endeavors, and instituting ecological corridors can uphold or augment the integrity and connectivity of ecosystems, thereby guaranteeing the continuous provision of ecosystem services. The formulation of land use change models to mimic future trajectories under diverse scenarios can efficaciously engender more scientifically-grounded management stratagems.

Category 3: Predominantly associated with the influencing factors of land use change, such as climate, biodiversity, and land degradation. The relevant keywords encompass “land use,” “conservation,” “models,” “climate,” “forest,” “biodiversity,” “carbon,” and “deforestation.” In recent years, there has been a burgeoning body of research focusing on the relationship between climate change and land use. This relationship is inherently bidirectional. On the one hand, land use change, particularly large-scale deforestation and urbanization, has the propensity to trigger an augmentation in atmospheric greenhouse gases, consequently hastening the pace of climate change. Conversely, climate change can also exert an impact on the patterns and efficiency of land use. For instance, extreme climatic events, such as floods and droughts, may disrupt agricultural land and infrastructure, thereby impinging on the sustainability of land use.

Category 4: Chiefly relevant to the accuracy, validation, and prediction aspects of hydrological models within the context of land use. The keywords consist of “precipitation,” “validation,” “basin,” “calibration,” “uncertainty,” “catchment,” and “runoff.” To guarantee the precision and dependability of the model, a comprehensive assessment of the model’s performance has emerged as a focal point in forthcoming research endeavors.

The emergence of emerging keywords signals that land-use change simulation is shifting from single-factor analysis to multi-dimensional coupling research. In the future, it is necessary to focus on exploring the following aspects: ① The cross-scale linkage mechanism between carbon storage and ecosystem services (ranging from plot-scale to watershed-scale); ② The dynamic coupling methods of socio-economic and natural elements in multi-scenario simulations; ③ The techniques for quantifying model uncertainty and data assimilation (such as calibrating model parameters with remotely sensed inversion data). These studies will deepen the understanding of the complexity of the land-use system and provide more precise decision-making support for sustainable development goals (such as SDG15 for terrestrial ecological protection).




4.4 Analysis of highly cited papers

The local citation rankings of the top 10 papers epitomize the most exemplary and influential research within the domain of land-use change simulation and prediction (Table 4). All of the 10 publications primarily concentrate on model simulations, with a preponderant utilization of the CLUE and CA models. The publication that has garnered the highest number of citations is titled “Neural-network-based cellular automata for simulating multiple land use changes using GIS” (Li and Yeh, 2002). This article presents a novel methodology for simulating multiple land-use changes by integrating neural networks with cellular automata and leveraging GIS. The crux of this approach lies in the employment of a three-layer neural network equipped with multiple output neurons to compute the transition probabilities for diverse land-use competitions. The model exploits the iterative cycle of the neural network to mimic the gradual process of land-use conversion. Given the dynamic updates occurring at the conclusion of each cycle, which give rise to indeterminate spatial variables, the article harnesses GIS to obtain site attributes and training data, thereby providing spatial functions for the construction of the neural network. Subsequently, the parameter values for the modeling are generated automatically through the training process of the neural network. This model has been successfully applied to simulate land-use changes in rapidly developing regions. By addressing the challenges associated with defining simulation parameter values, conversion rules, and model structure, which are inherent in traditional CA models due to the plethora of spatial variables and parameters required, this paper has been widely cited and referred to within the academic community.



TABLE 4 The top ten locally cited articles in the field of land use change simulation and prediction from 1988 to 2023.
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The second paper that has received a relatively high number of local citations is titled “Modeling urban land use change by the integration of cellular automaton and Markov model” (Guan et al., 2011). This article possesses the potential to facilitate local authorities in attaining a more profound understanding of and effectively addressing the complex issues prevalent within land-use systems. Furthermore, it contributes to the formulation of enhanced land-use management strategies, thereby enabling a more favorable equilibrium to be achieved between urban expansion and ecological conservation. The principal emphasis of the study is placed upon the spatial land-use model that integrates the cellular automaton and the Markov model. This model undertakes an analysis of the spatio-temporal patterns of land use in Saga, Japan, with respect to natural and socio-economic factors. Initially, GIS technology is employed to compute the alterations in land-use area as well as its spatial distribution. Subsequently, the study delves into the transitions among different land-use types, resulting in the generation of a transition matrix for the period spanning from 1976 to 2006. Concurrently, a comprehensive evaluation program, which incorporates natural and socio-economic data, is utilized to produce a transition potential map. Secondly, by leveraging both the transition potential map and the transition matrix, the study establishes a Markov cellular automaton model to simulate the spatial distribution of land use in 2006 and to predict the land-use changes that are anticipated to occur from 2015 to 2042. Consequently, researchers have widely referred to and further expanded upon the model presented in this article with the aim of achieving its continued optimization.

The third paper with a significant citation count, namely “Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany” (Niehoff et al., 2002), has received extensive referencing on account of its in-depth exploration into the influence exerted by land-use change on storm-runoff generation. The article deploys the Land Use Change Modeling Toolkit (LUCK) as a methodological instrument. LUCK offers an approach to spatially translate the overall trend of land-use change into scenarios of the spatial distribution of land-use patterns, taking into consideration its topological structure within a true location model. By evaluating site characteristics and neighborhood relationships, the spatial determination of the allocation of land-use categories for each grid cell is achieved. Utilizing these land-use scenarios, the study employs a modified version of the physically based hydrological model WaSiM-ETH to simulate the impact of altered land-use characteristics on floods. To augment the model’s capabilities and aptly represent the runoff generation mechanisms related to land use, supplementary mechanisms are incorporated. These include a large-pore module that accounts for rapid infiltration processes, a sedimentation module that reduces soil surface water conductivity as a function of precipitation intensity and vegetation cover, and the consideration of sub-grid variability in the impermeable and sealed portions of grid cells. With these enhancements, the model is successfully applied to a meso-scale watershed in southwest Germany. Consequently, the article proffers a reliable and robust model approach for investigating the relationship between land-use change and the hydrological cycle, thereby attracting widespread citations from the research community. In the top 10 most frequently cited research papers, the majority propose methods for model prediction. This underscores the significance of employing predictive models to anticipate future trends and outcomes. Model prediction methods allow for in-depth analysis and exploration of historical data, revealing latent relationships and patterns among data, thereby demonstrating a high level of scientific rigor and reliability. Re-searchers can flexibly adjust and optimize these methods based on different data types and research objectives, ensuring a high degree of applicability and flexibility. As a result, model prediction approaches have been widely embraced in various applications.



TABLE 5 The top 10 cited articles in the world in the field of land use change simulation and pre-diction from 1988 to 2023.
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In the domain of land use change simulation and prediction, two papers have each accrued over 1,000 citations (Table 5). The first paper, titled “The Scenario Model Inter-comparison Project (ScenarioMIP) for CMIP6,” has been cited 1,686 times. This article furnishes multi-model climate predictions that are predicated on alternative scenarios of future emissions and land use changes, which have been comprehensively evaluated. These predictions were provided to the climate modeling groups prior to the end of 2016 (O'Neill et al., 2016).

The second paper, namely “Parameterization Improvements and Functional and Structural Advances in Version 4 of the Community Land Model” (Lawrence et al., 2011), has also been cited 1,686 times. This paper primarily focuses on the CLM4 model, which is founded upon a carbon-nitrogen biogeochemical model. The CLM4 model has been fortified with several notable features, including the urban canyon model, transient land cover, and enhancements in land use change. These augmentations facilitate the exploration of more intricate interactions between land and climate.

From the perspective of research content, locally highly cited papers focus on simulating the land-use dynamics in specific regions, emphasizing the resolution of region-scale specific issues. For instance, they investigate the impact of land-use changes in a certain German river basin on hydrology. These papers also highlight the influence of local policies and ecological constraints on land use, aiming to optimize regional land management. Moreover, they pay attention to integrating specific driving factors into models to improve simulation accuracy. Common keywords include cellular automata, GIS, etc., and the simulations are often based on models such as cellular automata combined with regional data.

In contrast, globally highly cited papers tend to concentrate on researching the impacts and mechanisms of land-use change at the global or trans-regional levels. For example, they explore the effects on the global carbon budget and the climate system, and establish trans-regional comparison frameworks. Additionally, these papers are dedicated to multi-model integration and methodological innovation, aiming to address the uncertainties of global models and the issues of interdisciplinary integration. This involves activities such as global climate model comparison and the development of Earth system models, and makes more use of macroscopic research methods like multi-model integration and meta-analysis.

These differences primarily stem from variations in research objectives. Local studies aim to solve practical regional problems, while global research focuses on global macroscopic laws and universal methods. There are also distinctions in data acquisition and research scales. It is relatively easy for local research to obtain high-resolution regional data for micro-scale studies, whereas global research depends on multi-source global data for macroscopic analysis. Additionally, the requirements for disciplinary development vary. Local research centers on the application of regional models and technological improvements, while global research emphasizes interdisciplinary integration and the construction of macroscopic frameworks.



4.5 Analysis of the evolution of research hotspots

Considering the ascending trend in the quantity of publications within the field of land use change simulation and prediction, the years 2000 and 2016 have been chosen as temporal demarcations, thereby partitioning the research period into three separate stages. The analysis regarding the evolution of research development over time is illustrated in Figure 7. There is a progressive reduction in the number of keywords, which suggests a tendency toward more consolidated research directions. The keyword “dynamics” remains prevalent throughout the entire period, thereby underlining the centrality of “change” within the context of simulating and predicting land use changes. Moreover, the keyword “model” emerges in the latter two periods, accentuating the importance of modeling predictions within the domain of land use change forecasting.

[image: Sankey diagram illustrating the evolution of research topics from 1988 to 2023. From 1988-2000, topics include management, precipitation, CO2, deforestation, land-use change, carbon, and dynamics. From 2001-2016, topics shift to model, dynamics, runoff, and atmospheric CO2. From 2017-2023, the focus further narrows to model, river-basin, and dynamics. Lines demonstrate the connection and transition of topics over the years.]

FIGURE 7
 Thematic evolution in the field of land-use change modeling and fore-casting, 1988–2023.


The keywords characteristic of the period 1998–2000 comprise “management,” “precipitation,” “CO2,” “carbon,” “land-use change,” “deforestation,” and “dynamics.” During this interval, notwithstanding the relatively meager number of published papers, the keyword diversity stands as the highest among the three stages under consideration. This phenomenon implies that research pertaining to land use change simulation or prediction was in its nascent and exploratory phase. The investigations conducted during this period encompassed a gamut of topics, such as land use management and the correlation between natural environmental conditions and land use (Hall et al., 1995). Scholars at this stage predominantly centered their attention on modeling the influencing factors and predictive capabilities. For example, Lambin et al. (Lambin et al., 2000) undertook a comparison of diverse modeling methodologies employed in land use/land cover change research from the vantage point of studying and prognosticating the efficacy of intensified land use changes. The findings suggested that dynamic, process-based simulation models are more conducive to predicting alterations in land use intensity in contrast to empirical, stochastic, or static optimization models. Nevertheless, certain stochastic and optimization techniques can prove valuable in delineating the decision-making processes that underpin land management. The article further accentuated the necessity to factor in the specific geographical and socio-economic milieu of the study, the spatial scale, and their ramifications on the modeling approaches, as well as temporal aspects, including the distinction between dynamic and equilibrium models, thresholds and outliers associated with rapid changes, and system feedback. Given the capricious nature of specific driving forces, the majority of modeling endeavors were recommended to concentrate on scenario analysis, taking into account the uncertainties inherent in the driving forces.

The period before 2000 witnessed the germination of the sustainable development concept and the foundation-laying of model methodologies. In 1992, the United Nations Conference on Environment and Development (the Rio de Janeiro Summit) put forward Agenda 21, emphasizing the importance of sustainable management of land resources. This directly propelled “management” and “land use change” to become early core keywords. During the same period, the global land degradation intensified (for example, reports from the Food and Agriculture Organization of the United Nations indicated that one-quarter of the global land was degraded), giving rise to keywords such as “deforestation,” “carbon,” and “CO₂,” which reflect ecological and environmental issues. This demonstrated the initial attention to the linkages between land-use change, the carbon cycle, and the climate system. Moreover, Geographic Information System (GIS) and Remote Sensing (RS) technologies gradually matured in the 1990s, enabling spatially explicit simulation of land-use change.

During the period from 2000 to 2016, the quantity of keywords diminished from 7 to 4, specifically “Model,” “dynamics,” “runoff,” and “atmospheric CO2.” Apart from “dynamics” and “CO2,” the remaining keywords metamorphosed into “Model” and “runoff,” with “Model” assuming the preponderant focus. This transformation signals a redirection of the research emphasis toward models within this timeframe. For instance, Tsang and Leung (2011) devised a cellular automaton (CA) predicated on the theoretical framework of urban land use change and other local circumstances. This methodology incorporates the theory explicating urban land rent differentials and the external conditions reflective of urban development into CA for the simulation of land use changes. Li et al. (Li et al., 2012) proffered a technique for simulating land use change founded on a Graphics Processing Unit (GPU)-accelerated CA. This approach is especially efficacious for large-scale regional (i.e., provincial or national) land use change simulations. The proposed method amalgamates the latest GPU high-performance computing technology with CA technology and employs model mapping procedures, culminating in a computational speed 30-fold swifter than that of traditional methods.

The period from 2000 to 2016 represented a crucial stage of accelerated urbanization and breakthroughs in model technology. At the beginning of the 21st century, the global urbanization rate exceeded 50%. Rapid urbanization in regions such as China and Southeast Asia led to arable land loss and increased ecological pressure (for example, the expansion of construction land in the Pearl River Delta), giving rise to keywords like “urbanization,” “urban growth,” and “model.” To meet the demand for simulating urban expansion, coupled models such as CA-Markov were widely applied (as demonstrated by the case of Saga City, Japan), making “model” a core methodological keyword. In 2007, the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) clearly defined the impact of human activities on the climate system, prompting research to shift toward the hydrological and climate effects of land-use change. For instance, studies in the southwestern river basins of Germany focused on the impact of land-use change on storm runoff. Keywords such as “runoff” and “atmospheric CO₂” reflected the attention given to climate feedback mechanisms. Meanwhile, the emission reduction targets of the Kyoto Protocol spurred an increase in research related to “carbon storage,” although it had not yet become a high-frequency keyword. During this time, the improvement in computer computing power supported the development of complex models. For example, the GPU-accelerated CA model increased the simulation efficiency by 30 times, keeping technical keywords such as “cellular automata” and “Markov model” continuously active (Li et al., 2012).

In the period spanning from 2017 to 2023, while “Model” and “dynamics” were retained, the other keywords transitioned to “river-basin.” During this interval, a substantial focus was still placed on modeling investigations. For example, Mujiono et al. (2017) employed a CA-Markov model to prognosticate land use changes in 2035 and their implications for deforestation. This modeling paradigm is of paramount importance for deciphering the dynamic causal relationships and effects of land use changes. Wu et al. (2020) implemented a Logistic-CA-Markov model to simulate the high temporal and spatial resolution land use change patterns in the Jiaodong Peninsula for the years 2010, 2015, and 2020. Beyond modeling, there has been a gradual emergence of research on related topics such as “ecosystem services.” For instance, Lou et al. (2022) posited that comprehending the patterns and processes of land use change is conducive to enhancing the global ecological environment and fostering the coordinated development of human-land relationships. Lou et al. simulated the impact of land use changes in the Yangtze River Delta on ecosystem service values (ESV) under multiple scenarios. They conducted a comparative analysis of ESV under diverse scenarios, furnishing guidance and a scientific foundation for promoting global basin ecological civilization construction and high-quality development.

The years from 2017 to 2023 witnessed an era of multi-dimensional integration driven by ecological security imperatives and global governance objectives. In 2015, the Paris Agreement set the target of carbon neutrality, and in 2021, China introduced its “dual-carbon” policy. These developments propelled “carbon storage” and “ecosystem services” to the forefront as emerging research foci. Research predominantly centered on the valuation of ecosystem services (for instance, multi-scenario simulations in the Yangtze River Delta) and the optimization of land use for carbon sequestration. Keywords such as “multi-scenario simulation” and “FLUS model” exemplified model innovations spurred by policies. The ecological degradation of global river basins (exemplified by water scarcity in the Mekong River Basin) and policies in China like the “Yangtze River Protection Initiative” and the “Ecological Conservation of the Yellow River Basin” rendered “river-basin” a frequently-used keyword. During this period, the application of big data (such as multi-temporal remote-sensing data) and machine-learning technologies (such as geographically weighted regression) fostered methodological innovations like “geographically weighted” and “multi-source data fusion.” These advancements enhanced the adaptability of models to non-linear driving factors, including policy interventions and market fluctuations.

The shift of research hotspots is essentially the result of the combined effects of social needs, technological advancements, and environmental crises. In the future, it is necessary to further strengthen the collaborative modeling of “policy-technology-ecology” to provide more precise scientific support for global sustainable development goals.




5 Discussion


5.1 Land use change simulation and prediction future research directions

Over the period from 1988 to 2023, the domain of land use change simulation and prediction has witnessed a remarkable acceleration in its development. Nevertheless, upon a retrospective examination of the research history within this field, this paper identifies that it remains confronted with numerous challenges.

Firstly strengthen the coupling and integration of multiple models. Utilize model linking methodologies such as model nesting or coupling with climate change models, economic policy models, physical process models, machine learning models, and deep learning models. Realize synergistic effects among disparate models while guaranteeing standardized model interfaces to facilitate seamless data exchange. Implement dynamic interactions between models through parameter transfer and data sharing mechanisms. Moreover, employ data assimilation techniques to combine observational data from diverse sources and with varying levels of accuracy with model simulation results. Utilize optimization algorithms, such as Kalman filtering or its derivatives, to augment the accuracy and reliability of simulation outputs. Harness the advantages of various models to construct more comprehensive and practically applicable land use change simulation models.

Secondly augment the Spatiotemporal Resolution and Simulation Precision of Data. For the enhancement of resolution, an efficacious strategy entails the integration of multiple data sources. For example, the amalgamation of high spatial resolution panchromatic imagery with low spatial resolution multispectral imagery can yield images possessing both high spatial resolution and abundant spectral information. An alternative approach is to extract stable characteristics from multi-source and multi-temporal remote sensing big data. By employing these stable characteristics as a reference, diverse types of errors or model parameters can be estimated or jointly estimated, thereby enhancing the accuracy and stability of remote sensing data products.

Furthermore, matrix decomposition and optimization data processing algorithms should be employed. Matrix decomposition involves optimizing resolution through the decomposition and reconstruction of matrices from the original image, utilizing techniques such as Singular Value Decomposition (SVD) and Principal Component Analysis (PCA). Optimization data processing, on the other hand, concentrates on accelerating data processing and augmenting accuracy. This can be achieved, for instance, through parallel computing, distributed computing, and cloud computing technologies.

This is also worthy of attention that integrate a Broader Range of Land Use Change Driving Factors into Models. In the context of land use change simulation and prediction, a comprehensive consideration of diverse driving factors plays a pivotal role in enhancing simulation accuracy and prediction precision. Employ methodologies and technologies, including but not limited to multidimensional data analysis, GIS techniques, remote sensing and Earth observation data, socio-economic and policy analysis, model integration, uncertainty analysis, case studies and comparisons, as well as interdisciplinary collaboration, to effectively disclose and comprehend the driving mechanisms underlying land use change.



5.2 Research and practical implications

This study systematically reviewed the research context in the field of global land-use change simulation through bibliometric analysis. The findings of this research hold multiple practical implications for scientific research practices and work in related fields.

At the level of scientific research methodology, the trend of “multi-model coupling and technological integration” revealed by this study provides a clear pathway for subsequent research. Currently, mainstream models such as CA (Cellular Automata) and CLUE (Conversion of Land Use and its Effects at Small regional extent) have limitations in terms of simulation accuracy and the integration of driving factors. However, this study points out that composite modeling methods combining Markov chains, machine learning algorithms, and geographically weighted models (such as the CA-Markov and FLUS models) can more accurately capture the spatio-temporal heterogeneity of land-use changes. This inspires researchers to break through the technical boundaries of single models. By means of model nesting (for example, coupling climate models with land-use models) and multi-source data fusion (integrating remote sensing images, socio-economic data, and policy parameters), they can construct simulation frameworks that are closer to reality. Such frameworks have particular application potential in complex scenarios, including ecological protection of river basins and the regulation of urban expansion.

At the practical application level, the identified direction of “aligning multi-scenario simulation with sustainable development goals” in this study has direct guiding significance for land resource management. For example, when it comes to the assessment of land carbon storage under the “carbon neutrality” goal, one can draw on the research paradigms associated with emerging keywords such as “carbon storage” and “ecosystem services” in this study. By setting different land use policy scenarios (such as converting farmland to forest and compact urban development), the impacts of these scenarios on the carbon cycle and biodiversity can be simulated, providing a quantitative basis for regional territorial spatial planning. Moreover, the study has found differences in international cooperation among major countries such as China and the United States (for instance, China has a high output of papers but a relatively low international collaboration rate). This indicates that countries need to strengthen the construction of cross-regional research networks, especially in areas sensitive to land use changes such as those along the Belt and Road Initiative. Through sharing remote sensing data and policy model parameters, the universality of simulation results and their value as a reference for decision-making can be enhanced.

In terms of interdisciplinary integration and technological transformation, the technical pathways outlined in this study, such as the “deep integration of remote sensing technology and Geographic Information System (GIS)” and “optimizing simulation parameters through machine learning,” offer entry points for collaboration for interdisciplinary teams. For example, collaboration between environmental science and computer science can focus on developing automated model calibration tools, utilizing deep learning algorithms to optimize the conversion rules of the Cellular Automata (CA) model. The intersection of economics and geography, on the other hand, can explore models for assessing the impact of land-use changes on regional economic efficiency, thereby facilitating the efficient allocation of land resources under the “dual-carbon” goals.

In conclusion, this study not only provides researchers with directions for technological innovation (such as enhancing the spatio-temporal resolution of data and integrating socio-economic driving factors). Moreover, by revealing research hotspots and international cooperation models, it offers cross-scale solutions for policymakers and resource managers. This promotes the in-depth transformation of land-use change simulation from theoretical models to practical applications, thereby contributing to the achievement of global sustainable development goals.



5.3 Strengths and weaknesses

This study employed bibliometrix to conduct a comprehensive review and analysis of the literature within the domain of land use change simulation and prediction, thereby enabling a rapid understanding of the research status, hotspots, and trends therein. Citation analysis and co-word analysis, among other techniques, unveiled the research dynamics and the developmental context within the field of land use change simulation and prediction. Keyword analysis and cluster analysis, inter alia, indicated the potential research directions within this domain. Citation frequencies and impact factors, etc., were conducive to discerning the significant research achievements and the influential scholars or research teams in the field of land use change simulation and prediction, thus facilitating academic exchanges and collaborations.

This study is not without its limitations. Firstly, it exhibits a high degree of dependence on a real-time updated database. Consequently, the bibliometric analysis within this field is subject to variation over the passage of several years. Secondly, the present study solely utilized the Web of Science Core Collection database. While this database compiles high-quality and high-impact journals from across the globe, the incorporation of information such as patents and research funds from other databases might prove more advantageous for the research.

Subsequent research can involve the integration of multi-source data and cross-database analysis. By incorporating multiple databases such as Scopus and CNKI, and by paying attention to non-English literature, it is possible to reveal the characteristics of regional research and fill the gaps caused by language and database biases. Furthermore, a strategy of “term expansion + co-occurrence analysis” can be adopted. By combining natural language processing techniques and topic models, it is feasible to refine keyword design and conduct interdisciplinary mining, so as to identify emerging research areas. It is also necessary to explore the pathways for combining machine learning with traditional simulation models. By integrating remote sensing and socio-economic data, and developing a multi-dimensional driving factor analysis framework, the simulation accuracy can be improved, and the problem of insufficient coupling between natural and humanistic factors can be solved.

Taking “strengthening multi-model coupling and integration” as an example, this technical roadmap can be implemented in four stages. In the first stage (from the 1st to the 6th month, denoted as T1–T6), the construction of a standardized multi-source data sharing platform will be carried out. This involves integrating data such as remote sensing images, socio-economic data, climate data, and policy data, and conducting preprocessing. A unified data interface will be developed, and a distributed database will be constructed to enable real-time data retrieval across different models. Meanwhile, shared parameters and their transfer mechanisms will be defined. In the second stage (from the 7th to the 12th month, T7–T12), the coupling interfaces of core models will be developed. Specifically, two-way coupling between CA-Markov and InVEST, as well as between CLUE-S and CMIP6, will be achieved. Connectors will be developed using Python API interfaces and the Modelica language. In the third stage (from the 13th to the 18th month, T13–T18), multi-model integration and scenario simulations will be conducted. Taking the Yellow River Basin as a case study area, scenarios such as natural development, ecological priority, and climate adaptation will be designed. Through CLUE-S calibration rules, CA-Markov will be used to simulate the distribution of land use, InVEST will be employed to evaluate the value of ecosystem services, and the policy module will adjust parameters according to the evaluation results. In the fourth stage (from the 19th to the 24th month, T19–T24), the effectiveness evaluation and iterative optimization will be carried out. Quantifiable evaluation indicators will be set from aspects such as simulation accuracy, quantification errors of ecological effects, computational efficiency, and policy response capabilities. An error feedback mechanism and a dynamic adjustment algorithm for model weights will be established to continuously optimize the models.




6 Conclusion

This study undertook a comprehensive examination of 2,149 papers relevant to the domain of land use change simulation and prediction within the Web of Science Core Collection spanning from 1988 to 2023, by integrating bibliometric analysis and machine learning techniques. It delineated the trends in publications and prominent journals within this field, determined the collaboration networks among major research institutions and countries, analyzed influential articles and high-frequency keywords, and deliberated on future research directions and trends predicated on the evolution of research hotspots and themes in the field.

Over the past 37 years, the number of publications in the field of land use change simulation and prediction has experienced rapid growth, categorized into three phases: the budding phase from 1988 to 2000, the rapid development phase from 2001 to 2016, and the active phase from 2016 to 2023. The most influential journals include the Journal of Hydrology, Water, and Sustainability. China, the United States, and Germany emerge as major research countries, with Beijing Normal University, China University of Geosciences, and the Institute of Geographic Sciences and Natural Resources Re-search of the Chinese Academy of Sciences being primary research institutions. The study suggests that the field still faces numerous challenges, and future efforts may need to enhance multi-model coupling and integration technologies, exploiting the advantages of different models to develop more comprehensive and applicable land use change simulation models. Models should also incorporate more driving factors for land use change, such as social factors like policies, economics, and population, as well as natural environmental factors like climate and precipitation. Regarding existing imagery, improving data accuracy and stability can be achieved through the fusion of multi-source data or by mining stable characteristics from multi-source and multitemporal remote sensing big data, using these stable characteristics as a basis for estimating or jointly estimating model parameters for various types of errors.
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Emission source Emission factor ~ References

Fertilizers 0.89569(C)/kg  Oak Ridge National Laboratory (ORNL)

Pesticides 49341 kg(C)/kg Oak Ridge National Laboratory (ORNL)

Agricultural films 5.18kg(Cllkg Institute of Agricultural Resources and Ecological Environment, Nanjing Agricultural University (IREEA)
Agricultural diesel 0.5927kg(C/kg

Effective irrigation area 20.48kg(C)/hm?
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Suitability evaluation of Total land area Current cultivated land
agricultural production

Grading area Area (hm?) Proportion (%) Area (hm?) Proportion (%)
Unsuitable area 21468015 15.07 12349413 1126
Less suitable area 34748361 2140 266057.10 227
Generally suitable area 385129.89 27.04 308653.29 216
Relatively suitable area 320509.80 2250 28364634 2587
Suitable area 156787.95 1099 11451195 1044

Total 142459140 100 109636281 100
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Digital 0.763*** 0.743%* 0.464** 0.459 0.470* 0.154 0.719** 07258 0.649™* 14417 1.357%* 1.264%*
literacy
(0.205) 0.179) (0.189) (0.293) (0.247) (0.244) (0.166) (0.147) (0.138) (0.322) (0.340) (0.325)
Control Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled
variable
_cons 0.518 —0.498 —0.390 1.941% 2.034% 1.660* 0.038 —0.606 0.362 —0.923 —2.025 —2.655
(0.732) (0.639) (0.675) (1.084) 0.911) (0.903) (0.546) (0.484) (0.454) (2.247) (2.374) (2.267)
N 960 960 960 600 600 600 1,274 1,274 1,274 339 339 339
adj. R? 0.169 0.176 0.150 0.318 0.245 0.260 0.336 0.291 0.337 0.249 0.343 0.285

Standard errors in parentheses *p < 0.1, **p < 0.05,***p < 0.01.
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Variable Scale of operations Plot size

Land concentration

HEHIS City outskirts Rural areas City outskirts Rural areas City outskirts Rural areas

Digital literacy 0.474* 1.031%* 0.537** 0717 0573 0.975***
(0.282) (0.130) (0.260) (0.114) (0.254) (0.117)

Wald P =0.050 P=0134 P=0.506

Control variable Controlled Controlled Controlled Controlled Controlled Controlled
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(0.768) (0.431) (0.708) (0.378) (0.692) (0.385)
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Standard errors in parentheses *p < 0.1, **p < 0.05, **p < 0.01.
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Variable name Middle-aged Middle and old age Autumn of one’s years
Scale of Plot size Land Scale of Plot size Land Scale of Plot size Land
operatlons concentration operatlons concentration operatlons concentration
Digital literacy 0.538 0.718 0.855% 0.953%** 0.762%** 0.945%** 0.788%** 0.331** 0.508***
(0.528) (0.491) (0.499) (0.249) (0.220) (0.223) (0.163) (0.140) (0.140)
Control variable Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled
_cons —2.033* —1.495 —1.097 —0.243 0.256 —0.251 —1.092* 0.114 —0.087
(1.135) (1.056) (1.073) (0.616) (0.543) (0.550) (0.568) (0.488) (0.488)
N 437 437 437 1,359 1,359 1,359 1,361 1,361 1,361
adj. R 0.506 0.376 0304 0.421 0359 0324 0.336 0237 0.186

Standard errors in parentheses *p < 0.1,**p < 0.05, **p < 0.01.
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Zhang Y 17 3 085 3515 33 2005
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Wang ] 13 2 0813 737 26 2009
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Wang L 10 14 0833 a5 4 2013

The h-index, g-index, and m-index are metrics used to measure the academic achievement
and influence of researchers. TC: Total Citation count, representing the total number of
citations received by the author’s publications. NC: Number of publications, indicating the
total number of papers published by the researcher. PY_start; The year when the researcher
began publishing academic works in the field.
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Science of the Total Environment 984 86 162 2006
Proceedings of the National Academy of Sciences of

the United States of America o 108 = 0
Science 892 503 99 1983
Nature 800 544 13 1991
Public Library of Science ONE 687 33 088 2013
Journal of Cleaner Production 675 102 152 2011
Sustainability 648 36 0.68 2016
Journal of Environmental Management 578 79 149 2005
Agriculture, Ecosystems & Environment 576 64 172 1991
Land Use Policy 562 65 15 2007
Scientific Reports 512 43 105 2017
Ecological Indicators 479 66 165 2015
Environmental Research Letters 441 72 121 2009
Global Environmental Change--Human and Policy

R 419 105 238 2005
Landscape and Urban Planning a3 87 237 2007
Environmental Science & Technology 398 17 156 2000
Global Change Biology 395 13 25 2008
Agricultural Water Management 380 63 189 1999
Nature Communications 358 161 328 2017
Environmental Science and Pollution Research 356 - 099 2014

TC, Total number of citations o the journal. IF and JCl are from the Web of Science Journal Citation Reports. JCI i fo the year 2023, and IF i the five-year impact factor. 1Y s the year of the
journal’s first appearance in the field of the impact of urban sprawl on food production.
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1983 7.00 017 2006 63.04 332
1985 100 003 2007 89.68 498
1987 1200 032 2008 91.69 539
1990 2500 071 2009 4346 272
1991 2375 070 2010 11364 758
1992 4750 144 2011 6926 495
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1994 13.29 043 2013 7128 594
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1996 19.20 066 2015 4575 458
1997 3238 116 2016 8396 988
1998 222 119 2017 63.00 7.88
1999 2630 101 2018 14691 670
2000 14118 565 2019 5094 849
2001 40.00 167 2020 3993 7.9
2002 7038 306 2021 2538 634
2003 6638 302 2022 1542 514
2004 5429 259 2023 734 367

2005 27252 1363 2024 199 199
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environmental development
Combination of process-oriented and pattern-oriented models of land-use

change in a mountain area of Vietnam
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volume

Beijing Normal University 1o
China University of Geosciences 9
Institute of Geographic Sciences and Natural 8

Resources Research

Sun Yat-sen Unive 7
Wuhan University 64
University of Chinese Academy of Sciences 6
Purdue University 6
University of Maryland 52

Nanjing University 50
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Country

China

UsA

Germany
United Kingdom
France

Japan

Brazil
Netherlands
Australia

Belgium

Publication
volume
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382
162

56
61
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80
33

SCP
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%
6
23
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Sources Publication h_index

volume
Journal of Hydrology 60 11,380 9
Water 58 36064 98
Sustainability 55 13.400 50
Ecological Modelling F 7961 a7
Science of The Total 39 2019 2

Environment

Land 35 2310 28
Ecological Indicators 2 5593 38
Geoscientific Model 29 1,438 L
Development

Journal of Environmental 29 591 12
Management

Land Use Policy 2 2962 2%

TC = Total Citations; h_index is a metri that quantifies the quantity and level of scholarly
output,with higher values indicating greater impact in the feld
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SHAPE_
AM

Al

687.905.46

69.9671
12045
12251

182118

40.7267

1219376

13924236

45.959

95.6235

633,897.54

64.474
19,539
19873
15.0493
48.4947

1510343

95,734.398

42.5297

94.3444

586,863.09

59.6901
25,044
25472
15,3397
507779

1642146

86,306.337

411005

93.6048

2015

57196242

58.1745
6,537
26946
158797
51.8887

1700288

85,023.159

417126

93.2922

2020

561,966.21

57.1578
27,09
27559
16,1299
505177

167.0852

77,635.27

368674

93.3503

12,388,905
63.8341
206,907

1.0661
27.0638
357331

494.2509

3,338,695

198.184

95.7954

12,097,492
623325
206,465

10638
27.8759
35.8451

501.7029

3426,772.1

2055364

95.6809

Anhui
2010

11,845,830

610358
215,384

1.1098
25,0189
36.9559

522.6373

3,019,805.1

199.7707

95.4526

11,700,021
60.2846
6,537
11513
241138
39.1313

556.7416

2,862397.7
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95.1253
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10788
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SHAPE_
AM

Al

34990735

25.6396
240,793
17644
7.0662
264376

482956

328,359.45

616716

92.269

2005
3,276,352.1
240076
251,873
18456
53698
284217

5364167

210,890.03

56,2659

911239

Zhejiang

2010
3,101,410.1
227257
260,387
1.908
38167
290994

5644535

137,144.01

49.0718

90.3996

3,194619.6

23.4087
268,194
19652
35437
327119

6251115

109,178.49

45.7421

89.5225

2020

3,206,103.7

234928

260,827
19112
3.6298

320118

610.6901

109,657.27

444619

89.7824

2000
11,079,574
76.0302
113,042
07757
521336
363077

399.0866

5,508,002.8

222.0463

96.4117

10,740,288
737019
144,181
0.9894
25819
39.6018

441,905

2,795,156.6

1727107

95.9634

Jiangsu
2010
10,427,401
715548
179,845
1.2341
2287
19344

474.7906

1652730.3

1339534

95.5978

10,074,006

69.1298
6,537
14559

21.8886

45.9833

5205102

1,772,8419

16227

95.004

10,024,018
68.7867
203,097

13937
241225
45.9821

530.8054

1,779,140.4

1605469

94.9792
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2020

Cropland/ Forest/ Shrub/  Grassland/ Water/ Barren/  Impervious/  Total/hm?

hm? hm? hm? hm? hm? hm? hm?

Cropland/hm® | 24,764,287.68 22206195 504 70137 116,897.76 243 437,1705 25,541,126.73
Forest/hm? 362,503.17 13,644,564.12 11187 10179 156.15 7,82838 14,015.265.48
Shrub/hm? 2259 21267 55377 3438 82341
f:z“h"d/ 6404.22 134559 252 6,309.63 3663 90.45 1,002.33 1521405
Water/hm? 31945176 260.28 891 282021102 198.63 49,993.02 3,190,123.62
Barren/hm* 8856 0.09 1476 3555 29088 2196 649.44
L':'“'Z"vm“!/ 61362 099 0.18 20818.17 063 553943457 5,560,868.16

Total/hm* 25,453,3716 13,868,445.69 695.88 717102 2,958,155.28 583.02 6,035,648.4 48,613,017.51
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2015

Cropland/ Forest/ Shrub/  Grassland/ Water/ Barren/  Impervious/  Total/hm?

hm? hm? hm? hm? hm? hm? hm?

Cropland/hm® | 24,782,49455 151,283.16 603 2,534.04 21631248 162 809,394.03 25962,025.86
Forest/hm? 538,018.65 13,862,719.98 11934 9981 144.09 17,30043 14,418,402.3
Shrub/hm? 1278 14697 69219 11457 009 966.6
f:z“h"d/ 3,580.56 737.64 585 12,384.81 109.62 773 6,385.86 23,276.07
Water/hm? 216757.53 37602 2817 2,945,468.07 158.76 68,012.19 3,230,800.74
Barren/hm* 7074 5265 846 73 3528 978.12
L':'“'Z"vm“!/ 19197 171 2800476 4639,422.76 4687,621.2

Total/hm? 25,541,126.73 14,015,265.48 82341 15,214.05 3,190,123.62 649.44 5,560,868.16 48,613,017.51
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Cropland/hm?
Forest/hm?
Shrub/hm?

Grassland/

hm?
Water/hm?
Barren/hm?

Impervious/

hm?
Wetland/hm?

Total/hm*

Cropland/
hm?

25,499,900.34
25572681

88.83

346446

20177253

%0

982.89

25,962,025.86

Forest/
hm?

29691405
14,117,966.91

308.16
823.32

238437

549

14,418,4023

2010

Shrub/ Grassland/ Water/
hm? hm? hm?
396 68949 2048195
149.85 13644 20381
80631 90.09
648 159318 112,05

183.69 2,943,102.69
3843 189.54
072 42,303.06
009
9666 23,276.07 3,230,800.74

Barren/

hm?

2997

24984

2169

48105

036

978.12

Impervious/

hm?
699,964.74

15,8814

172161

66,772.08

542.25

3,902,739.12

4,687,621.2

Total/hm?

26,748,557.46
14,390,105.22

1,293.39

22,309.56

321443226

134127

3,946,031.64

009

48,613,017.51
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Cropland/  Forest/  Shrub/ Grassland/ Barren/ Impervious/ Wetland/  Total/

hm? hm? hm? hm? hm? hm? hm? hm?

Cropland/
- 2637995805 | 35373636 279 3785.13 34382169 585 574,686.9 27,655996.77

m
Forest/hm? 207,489.24 140319018 19395 5166 20097 1272897 14,252,566.59
Shrub/hm* 513 469.53 1,078.83 387 163836
Grassland/
. 564039 900.72 17.82 18,14391 20529 5067 1,461.06 26,419.86

m
Water/hm* 153,225 309573 102,69 281117025 13788 3743055 3,005,162.1
Sonw/lce/

027 027

hm?
Barren/hm® 23436 18738 50148 114534 64188 271044
Impervious/
it 1959.12 108 5853258 126 3,319,082.28 3379.576.32

it
Wetland/

009 009 018

hm?

Total/hm? 2674855746 | 14390,10522 129339 22,309.56 321443226 134127 3,946,031.64 0.09 48,613,017.51
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Category

Input

Desirable output

Undesirable

output

Indicator

Pest

ides

Effective Irrigation Area
Fertilizers

Crop Sown Area

Total Agricultural
Machinery Power

Employment in

Primary Industry
Grain Yield
Vegetable Yield
Oil Crop Yield

Total Output Value of
Agriculture, Forestry;
Animal Husbandry,

and Fishery

Agricultural Carbon

Emissions

Unit
Tons

1,000 hectares.

10,000 tons

1,000 hectares

10,000 kW

10,000 persons.

Tons
Tons

Tons

10,000 yuan

Tons

Descriptiol

Amount of chemical pesticides used in agriculture.

‘Water resources input in agriculture, reflecting efficient rrigation use.

Amount of chemical fertilizers used in agriculture,

excess use may cause environmental pollution.
Utilization of arable land, rflecting the scale of agricultural production.

Level of agricultural mechanization, representing capital input

in agricultural machinery.

Labor input in agriculture, reflecting the availability of human resources

in agricultural production.
Output of grain crops, measuring the efficiency of grain production.
Output of vegetables, reflecting the efficiency of vegetable production.

Output of il crops, reflecting the effciency of oil crop production.

“Total output value of agriculture, forestry, animal husbandry, and fishery,

representing overall agricultural economic benefit.

Greenhouse gas emissions generated

from agricultural activities, mainly CO; emissions.
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First order index Secondary index Abbreviation Unit
Class area CcA hm?
Percent of landscape PLAND %
Area-Edge
Area-Weighted Mean Patch Area AREA_AM hm?
Largest patch index LP1 %
Patch density PD /100 hm®
Density and difference
Number of patches NP
Edge Edge density ED m/hm?
Landscape shape index 1St /
Shape
Area-weighted mean shape index SHAPE_AM /

Aggregation Aggregation index Al %
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Number

Data types

Land use data

Agricultural production panel data

Data source

CLCD data from the Chinese Academy of Sciences
Resource and En

nmental Data Cloud Platform
(htp://www Resde.cn/Defaultasps)

‘The spatial resolution is 30 meters

National Bureau of Statistics (http://wwwstats gov.cn)
‘Shanghai Statistics Bureau (https://tj sh.gov.cn/)

Jiangsu Statistics Bureau (http://t jiangsu.gov.cn/)

Zhejiang Statistics Bureau (http://tj.) gov.cn/)
Anhui Statistics Bureau (http://tjab gov.cn/)

City Statistics Bureaus in the study area
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Variable

Population size

Durable goods quantity

Toilet type

Farmland scale

Household deposit and

loan

Favor spending

Constant
Prob>F
R

Pseudo R

~0.0726% ~0.0867+
(0.0413) (0.0397)
~00146%
(0.0084)
0014955
(0.0047)
00075
(0.0068)
0.0145%5%
(0.0039)
00353
(0.0215)
0.0003
(0.0038)
18542+ 17707+
©0211) (0.0426)
0.0000 0,000

0.0036 0.0396

~0.1387++
(0.0602)
~0.0249%
(0.0131)
0.0139*
(0.0077)
0.0223*
(0.0119)
0.0259%%*
(0.0053)
0.0581
(0.0360)
0.0017
(0.0063)
15655%%*

(0.0741)

0.0361

~0.1370%*
(0.0574)
~0.0198+*
(0.0091)
00136+
(0.0065)
00158
(0.0114)
00196+
(0.0073)
00353
(0.0362)
00024
(0.0063)
1.7585%%%

(0.0559)

00324

~00943
(0.0585)
~00162
(0.0102)
00178+
(0.0061)
00004
(0.0067)
001214
(0.0052)
00383
(0.0375)
0.0007
(0.0068)
1.9402%%%

(0.0394)

00208

102
(0.9843]
107
(09319)
123
(0.8120)
110
(0.9074]
101
(0.9910]
102
[0.9845]
109

(0.9144)

*, **, ***Indicate significant at the 10, 5, and 1% levels, respectively; the numbers in parentheses are standard errors. The value below the multicollinearity test is the Variance Inflation Factor
(VIF), and the square brackets are the tolerance (T). According to the judgment rule of multicollinearity tst,the benchmark model does not have the problem of distortion oftest results

caused by multicollinearity.
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Variable
Dependent variable
Dietary diversity

Independent variable
Crop specialization
Mediating variable
Farmer’s income
Moderating variables

Education level

Market accessibility

Other control variables

Population size

Durable goods quantity

Toilet type

Farmland scale

Household deposit and

loan

Favor spending

Variable definitions

Calculated from the Shannon diversity index (see Equat;

“The sum of the squares of the proportion of the sown area of each crop to the

total sown area (see Equation §)

“The sum of farmers’ operating, wage, property and transfer income (yuan,

logarithm)

‘The education level of household head: no schooling =

; primary school = 2;

junior high school = 3; high school = 4; college degree =

‘The distance from home to the nearest market: More than 20 ki = 1; 10—

20km 25k

5-10km 4; within 2 km

“Total resident population of farm households (person)
Number of ownership of 10 durable consumer goods such as indoor cars,
‘motorcycles/mopeds, washing machines, refrigerators, color TVs (connected to
cable TV), air conditioners, water heaters, mobile phones (connected to the

Internet), computers, and cameras

Farmer’s toilet type: no toilet = I ordinary dry toilet = 2; sanitary dry toilet

flushing non-sanitary toilet =

; lushing sanitary toilet = 5

“Total area of farmland, forest land, garden land, breeding water surface and

other agricultural land operated by farmers (hectares)

Does the household have savings deposits or loans: no = 0, yes = 1

Expenditure on gifts such as weddings, funerals, etc. (yuan, logarithm)

Meai

1794

0493

10396

2749

2954

2858

5109

3218

1322

0145

7.526

Sd

0256

022

0.687

0.69

0778

1059

1984

1285

0353

2324

Min

1011

0154

7.965

Max

2444

13186

30015

11704
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Food Group by village terrain features Group by production type

categories i
(brogd Hills Mountains Var Pure I-PT" 11-PT®
categories)
Grain 14251 13292 146770 10828 55045 42509 45190 14418 095
oils 5038 5255 50.65 4462 3080 4475 5055 5249 340
Vegetables and

378.96 38378 383.89 35714 150 36110 39751 37597 240
vegetable products
Meat 6698 59.04 67.11 85.43 14.66%+% 7256 67.03 6475 144
Poultry 1534 1562 1657 191 6,007+ 17.19 1655 1395 163
Aquatic products 4004 5188 3728 18.27 696475+ 5370 39.09 912 140
Eggsand e

e 182 002

products 2493 2360 2630 2499 2165 298 2502
Milk and dairy

1040 939 1240 825 3500 835 9.03 1195 3210
products
Dried fresh melons 7443 6655 8535 6836 630+ 7475 69.89 7650 093
Confectionery 131 974 1369 9.63 1083+ 977 1055 1233 325%%
Total number of food
categories consumed 2129 2185 2151 19.46 1546+ 2085 2079 273 425%%

by houscholds

“The value in the ANOVA i the F-statistic value of the multi-group difference test, , *#, *** indicate significant at the 10,5, and 1% level, respectively; “Pure refer to Pure Agicultural
Households; “I-PT refer to I part-time households; “II-PT refer to II part-time households.
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mber of growers  Proportion of the  Planting area per Proportion of Total sown

(households) total sample (%) household (ha) sown area (%) area (ha)
Wheat 329 37.99 058 2967 19038
Rice 655 7564 081 5373 529,68
Corn 384 4434 040 27.86 15437
Sorghum 1 012 001 168 001
Other grains 17 196 035 1296 602
Sweet potato 2 2437 0.04 743 830
Potato 8 1028 0.04 1205 398
Other tubers 3 035 038 207 114
Soybean 325 3753 013 1205 4290
Other legumes 4 508 015 644 654
Cotion 28 2517 016 1462 3473
Vegetable 72 8349 0.04 619 2988
Melons 73 843 024 4462 1756
Sugar 7 081 007 445 048
Peanut 253 2922 017 1401 4352
Sesame 164 1894 010 699 1563
Rape 476 5497 020 1711 9361
Sunflower 2 023 005 570 010
Other oil 5 058 003 379 013

In order to more intuitively reflectthe crop planting situation of farmersat the micro level, the denominator of the indicator “planting area per household” s the farmers who plant certain
types of crops, and the farmers who do not plant such crops are not included in the calculation, that is, the denominator is “Growing households” in the table rather than a sample of all 866
households.
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Testing method Variable (1) (2) (€)]

Y = Income Y = Income Y = Dietary diversity
0401455 03005+ ~0.1173%5%
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(0.0991) (0.0793) (0.0394)
0.1061%5*
Income
(0.0148)
Causal steps approach Control variables Do not control controlled controlled
1026974+ 896467+ 08165+
Constant
(0.0564) (0.1018) (0.1399)
Prob>F 0.0000 0.0000 0.0000
I3 00186 02986 00889
Percentile 90% CI Bis-corrected 90% CI
Effect Point estimate
Lower limit Upper limit Lower limit Upper limit
Direct effect ~0.1358 ~02216 ~00703 ~02248 ~00732
Indirect effect 00268 00127 0.0438 00122 0.0434
Bootstrap method | the proportion of
indirect effects to direct ~0.1069 ~0.1980 ~0.0309 01990 -00436

effects

¥, **, ***Indicate significant at the 10, 5, and 1% levels, respectively; the numbers in parentheses are standard errors.
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Prob>F
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Coefficient difference
test (SUEST model)

#, %%, ***Indicate significant at the 10, 5, and 1% levels, respectively; the numbers in parentheses are the standard errors, and the numbers in square brackets are the empirical p-values of the

coefficient difference test.
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Test result
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01025
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Province First obstacle Second obstacle  Third obstacle Fourth obstacle Fifth obstacle

factor (obstacle  factor (obstacle  factor (obstacle  factor (obstacle  factor (obstacle

degree) degree) degree) degree) degree)
Hebei A21018.84) A2217.24) B17(9.04) BI3(7.41) B19(4.56)
Inner Mongolia B17(15.18) B19(10.14) A20.11) A19(8.04) B12(7.35)
Liaoning A21(18.18) A22(15.55) B17(7.59) B16(7.27) BI3(6.42)
Jilin B17(11.46) A22(8.68) B16(8.32) BI3(8.15) A21(7.41)
Heilongjiang B17(13.65) BI3(11.23) B16(9.52) ALL(7.53) A19(7.41)
Jiangsu A21(2839) A22(2732) AL1(5.02) B22(4.68) BI7(3.15)
Anhui A2107.93) A22017.79) B17(9.35) B13(6.58) B19(5.72)
Jiangxi A21(19.68) A22(18.62) B17(10.90) BI3(691) B16(4.04)
Shandong A21(2458) A22(2402) B12(7.84) B13(6.80) B19(4.07)
Henan A220899) A21017.89) B16(7.82) BI7(7.58) BI3(7.07)
Hubei A21(20.29) A22(18.10) BI7(8.11) BI6(591) B22(5.46)
Hunan A21(21.08) A22(19.82) B17(10.69) B13(6.80) BI6(5.85)

Sichuan A21(20.06) A22(18.26) B17(6.69) B13(6.59) B16(6.42)
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Year

Province

Hebei

Inner Mongolia
Lizo

Jilin
Heilongjiang
Jiangsu
Anhui
Jiangxi
Shandong
Henan
Hubei
Hunan

Sichuan

2011

Obstacle factor (obstacle degree)

1)
A3(22.56)
A3(20.59)
A3(22.84)
B3(18.42)
B3(20.24)
A3(23.83)
A3(20.83)
A3(21.35)
A3(23.96)
A3(18.36)
A3(21.72)
A3(18.76)
A3(20.48)

(2)
A4(15.36)
B4(17.44)
B3(15.49)
A3(16.99)
A1(17.53)
A4(19.06)
B4(14.27)
B3(16.63)
A4(17.03)
B3(15.57)
B3(14.41)
B3(15.58)
B3(14.78)

(3)
B3(13.72)
B3(167)
A4(13.88)
Al(1461)
A3(16.35)
B2(10.62)
A4(13.32)
A4(15.61)
BA4(12.86)
B4(15.52)
A4(14.26)
A4(15.29)

B4(14.44)

2019

Obstacle factor (obstacle degree)

(1)
A3(23.76)
A1(23.03)
A3(25.16)
B3(19.77)
B3(23.17)
A3(28.39)
A3(23.21)
A3(23.08)
A3(27.02)
A4(20.09)
A3(24.59)
A3(23.09)

A3(22.24)

(2)
A4(18.50)
A3(2163)
A4(15.92)
A1(17.87)
A1(23.13)
A4(27.97)
A4(19.51)
A4(2031)
A4(25.99)
A3(19.84)
A4(18.88)
A4(2095)

A4(19.32)

(3)
B3(12.98)
B3(17.37)
B3(14.86)
A3(16.37)
B2(18.06)
A2(11.47)
B3(11.41)
B3(14.94)
A2(11.20)
B3(15.40)
B3(14.02)
B3(1654)

B3(13.11)
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Test type Estimator Estimated result
Endogeneity test for omitted variables » ~7.4048

10000+

Endogeneity test for simultaneous causality
(0.0001)

***Indicate significant at the 1% levels; the number in parentheses are standard errors.
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2011 012 2013 2014 2015 2016 2017 2018 2019

0566 0.569 0584 0.585 0595 0601 0612 0624 0.634
Inner Mongolia 0564 0610 0650 0.671 0.682 0692 0706 0721 0.740
Liaoning 0539 0540 0561 0.561 0577 0588 0602 0606 0.635
Jilin 0558 0.585 0630 0632 0639 0635 0643 0655 0.664
Heilongjiang 0618 0.644 0664 0677 0.686 0686 0719 0731 0738
Jiangsu 0631 0639 0657 0674 0688 0703 0708 0722 0.744
Anhui 0520 0.540 0568 0.586 059 0610 0629 0638 0.658
Jiangxi 0540 0.555 0546 0559 0573 0589 0.608 0621 0.643
Shandong 0624 0.636 0654 0670 0683 0685 0702 0.708 0729
Henan 0504 0523 0543 0.564 0583 0593 0625 0646 0.676
Hubei 0531 0.558 0575 0.588 0595 0593 0.608 0627 0.654
Hunan 0505 0.508 0544 0.567 0586 0606 0610 0635 0.667

Sichuan 0468 0497 0520 0530 0542 0.560 0582 0.608 0.644
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Variable (] (€)]

Probit Marginal effect

~00903+ ~0.4226% ~0.1617+ 01762+ ~0.1485% ~0.1011%
Crop specialization

0.0415) (0.2114) (0.0803) (0.0522) (0.0663) (0.0480)
Control variables controlled controlled controlled controlled controlled controlled

1.7784%%% ~0.1350 0.1036 07893%+* 1.2009%4%
Constant

(0.0452) (0.2332) (0.1811) (0.1956) (0.1971)
Prob>F 0.0000
Prob > chi* 0.0000
R 00385
Preudo R 00364 00901 00620 00443

¥, **, ***Indicate significant at the 10, 5, and 1% levels, respectively; the numbers in parentheses are standard errors.
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Population urbanization total population
Urban population density + 00862
Per capita GDP + 01121
‘The proportion of output value of the
secondary and tertiary industries in + 00171
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GDP
Per capita disposable income of
+ 00770
urban residents
Per capita urban road area + 0.1199
Land urbanization
New urbanization Built-up area + 0.1467
Number of health tech
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1,000 people
Average enrollment in higher
education institutions per 100,000 + 0.1031
Social urbanization i
population
Public electric vehicles per 10,000
+ 00511
people
Urban water access rate + 00519
Per capita green park area + 00868

Environmental urbanization
Green coverage rate of built-up area + 0.0328
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Ecological resilience
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Pesticide input per unit cultivated land

area

Input of agricultural film per unit
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area
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Statistical test Test results

parameters and models
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Explanatory variable R

D_nroad 0.178%%
D_proad 0.166%

D_croad ~0.246%
Dem 0118

Slope 0.130%

Temperature 0.625%*
Precipitation 0.682%%
GpP ~0.260%
GDP1 0013

GDP2 ~0.321%
GDP3 —0.218%
D_rpop 0.187%%
Urbanization —0.172%
Income ~0.366%*

#*Correation is significant a the 0.01 level (two-tailed). *Correlation issignificant at the
0.05 level (two-tailed). R is Pearson's correlation coefficient.
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Category Variables
Physical Digital elevation model (DEM)
slope
Temperature
Precipitation
Socioeconomic Urbanization
D_rpop.
Income
D_GDP
D_GDP1
D_GDP2
D_GDP3
Accessibility D_nroad
D_proad
D_croad

GDP1,GDP2, GDP3 is the output value of primary, secondary and tertiary industries, respectively.

“The mean value of all rural settlements within each county

Urbanization rate

‘The density of rural population
Rural per capita net income
GDP per area

GDPI per area

GDP2 per area

GDP3 per area

‘The mean of the distance to national road, provincial road,

county road of all rural settlements within each county
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Variant Scale of operations Plot size Land concentration

Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)

Digital literacy 1.0317* 0.811%* 0.740%** 0.454** 0.962*** 0.633***
(0.144) (0.133) (0.119) (0.117) (0.116) (0.118)
Distinguishing between the sexes —0.227** —0.060 —0.027
Age (0.082) (0.072) (0.072)
0.264 —0.273 —0.009
Age squared (0.192) (0.169) (0.170)
—0.084* 0.027 —0.037
Education attainment (0.045) (0.039) (0.040)
—0.066* —0.005 —0.012
Health status (0.040) (0.035) (0.035)
0.010 —0.016 —0.018
Family farm (0.028) (0.025) (0.025)
1.169** 0.859*** 0.817***
Cooperative (0.116) (0.102) (0.103)
0.010 0.090** 0.075*
Agricultural insurance (0.049) (0.043) (0.043)
0.521** 0.267*** 0.367**
Village location (0.049) (0.043) (0.043)
0.3417* 0.273** 0.233**
Village topography (0.053) (0.046) (0.047)
—0.089** —0.220** —0.213**
Education of village clerks (0.018) (0.016) (0.016)
—0.017 —0.052** —0.019
Cultivated land area of the village (0.027) (0.024) (0.024)
0.526"* 0.293** 0217
Village farmland transfer rent (0.021) (0.018) (0.018)
—0.257** —0.223* —0.210"**
Reform of the property rights system (0.031) (0.027) (0.028)
—0.057* 0.073** 0.085*
E-commerce households in the (0.033) (0.029) (0.029)
village
—0.245** —0.257** —0.244**
Natural disasters (0.042) (0.037) (0.037)
0.045 0.050 0.056
(0.042) (0.037) (0.037)
_cons 1.474%* —1.086** 0.697*** 0.395 0.022 —0.064
(0.072) (0.438) (0.059) (0.385) (0.058) (0.388)
N 3,157 3,157 3,157 3,157 3,157 3,157
adj. R? 0.016 0.412 0.012 0.328 0.021 0.290

Standard errors in parentheses. *p < 0.1, **p < 0.05,***p < 0.01.
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Variable Variable Variable definition Average (statistics)

category name value Standard Deviation
Explanatory variable | Scale of operations | Total farm household business area (acres) 1.954 1489
Plot size Maximum parcel size (acres), logarithmic to the result, continuous 1.042 1.224
variable
Land concentration Total operating area/number of parcels, logarithmic to the result, 0.470 1.199

continuous variable

Core explanatory Level of digital Calculated by factor analysis method as a continuous variable 0.466 0.182
variables literacy
Digital media Calculated by factor analysis method as a continuous variable 0.879 029
literacy
Digital information Calculated by factor analysis method as a continuous variable 0.647 0.233
literacy
Digital social Calculated by factor analysis method as a continuous variable 0388 0.296
literacy
Digital business Calculated by factor analysis method as a continuous variable 0.130 0.259
literacy
Digital problem Calculated by factor analysis method as a continuous variable 0557 0323
solving literacy
Intermediary variable Land transfer Farmers’ land transfers: 0 = not transferred; 1 = transferred 0.242 0.429
Moderator variable Land revenue Share of farm business income of farm households: farm business 0.765 4.376
dependence income/total annual income, logarithmic to the outcome, continuous
variable
Land employment | Employment status of head of household: 1 = non—farm 2252 0.844
dependence employment, i.e., weakest land dependence; 2 = part-time (farm and

non-farm), i.e, stronger land dependence; 3 = full-time farming, i.e.,
strongest land dependence

Land security Whether the farmer has pension insurance: 0 = no; 1 = yes 0.832 0.374
dependence

Number of rural households enrolled in urban and rural health 3.840 1.817
insurance, a continuous variable

Whether the farmer has commercial health insurance: 0 = no; 1 = yes 0.156 0363
Instrumental variable Mean value of The average value of digital literacy water in the farmer’s own 0.466 0.078
digital literacy at commune is excluded as a continuous variable
township level
Control variable Distinguishing Sex of farmer: 1 = male; 2 = female 1.068 0.251
between the sexes
(a person’s) Age Age of farmers: 1 = 18-45 years; 2 = 45-60 years; 3 = 60 years and 2293 0.696
above
Education Educational attainment of farm households: 1 = no schooling; 2 = 2.085 0.549
attainment elementary or junior high school; 3 = high school, vocational high
school, technical school, or junior college; 4 = junior college and
above
Health status Farmers’ physical health status: 1 = poor; 2 = fair; 3 = good 2.409 0.733
Family farm Whether the farmer operates a family farm: 0 = nos 1 = yes 0.032 0177
Cooperative Whether the farmer participates in a cooperative: 0 = no; 1 = yes 0.235 0.424
Agricultural Whether the farmer has agricultural insurance: 0 = no; 1 = yes 0.264 0.441
insurance
Village Location Distance of the farmer’s village from the district government, 1.797 0.402
logarithmic to the result, a continuous variable
Village topography Topography of the village where the farmer is located: 1 = plain; 2 = 2.196 1301
hilly; 3 = mountainous
Education of village | Education level of the village clerk of the village where the farm 2173 0.776
clerks household is located: 1 = elementary or junior high school; 2 = senior
high school, vocational high school, technical school, or junior
college; 3 = junior college and above
Cultivated land area | Area of cultivated land in the village where the farmer is located, 8.014 1211
of the village taking logarithms of the results, a continuous variable
Village farmland Farmers’ village transfer rentals, taking logarithms of the results, are 6292 0.775
transfer rent continuous variables
Reform of the Reform of the land titling system in the farmer’s village: 1= not yet 2.570 0.652
property rights started; 2 = ongoing; 3 = completed
system
E-commerce Number of e-commerce households in the farmer’s village, 0.577 0.494
households in the logarithmic to the result, a continuous variable
village
Natural disasters Whether the farmer’s village has suffered from natural disasters in the 0.534 0.499

Tast 3 years: 0 = no; 1= yes
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Level 1 indicators

Digital access

Digital media literacy (A)

Tertiary indicat

Do you have internet access in your home (A1)

Do you have a 4G/5G cell phone in your home (part) (A2)

Do you use a 4G/5G cell phone (A3)

Digital application

Digital information literacy (B)

How timely is access to the information you focus on (B1)

Do you think that the information you get through the Internet can satisfy your daily needs such as
production and living (B2)

If there is a daily need, can you yourself readily access the relevant information via cell phone or
internet (B3)

Would you prefer that the Village Board communicate important information through online means
(B4)

Digital social literacy (C)

Do you use a cell phone or the internet for social chatting (C1)

Have you ever communicated with the village on important public affairs through WeChat (C2)

Do you use your cell phone or the internet for recreational socializing (C3)

Would you like to follow recreational games via cell phone or internet (C4)

Digital business literacy (D)

Does your household carry products traded over the internet (D1)

Are you willing to sell your products online (D2)

Do you want to realize employment and entrepreneurship through cell phone or internet (D3)

Digital problem solving literacy (E)

Do you have difficulty using the features of 4G/5G cell phones (E1)

Whether you do your news browsing via cell phone or internet (E2)

Do you wish to study online via cell phone or internet (E3)
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Land use changes Low education Moderate education High education Overall

p Value
Use of fertlizers and pesticides 0.001¢ 0848 0113 050
Clearing forests for agriculture: 0744 099 0.108 0799
Clearing of forests for human setlement 0117 0766 0.142 057
Soil erosion 0.009% 0.632 0.050 0.007*
Soil fertility loss 0.005* 0.648 0.460 0.031*

The Bold asterisked values mean that the variables had a significant association with the dependent variable.
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Land use Low High Overall

changes Income Income

p Value
Use of fertilizers and 0.048* 0,897 0228
pesticides
Clearing forests for 0.608 0.082 0799
agriculture
Clearing of forests for 0865 0192 0857

human settlement
Soil erosion 0.006* 0279 0.007*
Soil fertility loss 0.035* 0,087 0,031

The Bold asterisked values mean that the variables had a significant association with the
dependent variable.
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Land use Female Overall

changes

p Value
Use of fertilizers and 0387 0.037% 0.228
pesticides
Clearing forests for 0358 0.905 0799
agriculture
Clearing of forests 0.985 0578 0857

for human settlement
Soil erosion 0179 0.021% 0.008*

0445 0.002% 0.031%

The Bold asterisked values mean that the variables had a significant association with the
dependent variable.
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Land use Pearson p value Crammers V.

chi-square
Use of fertlizers 20977 0.013¢ 0152
and pesticides
Clearing forests 7517 0276 o1z
for agriculture
Clearing of 15501 0017+ 016
forests for
human
settlement
Soil erosion 32774 0.001% 0193
Soil fertility loss 26,947 0.029¢ 0176

*p < 0.05. The Bold asterisked values mean that the variables had a significant association
with the dependent variable.
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Age distribution Level of education Gender Monthly income (Ksh) Household size

Years Percent  Level Percent Percent Income Percent  Number Percent

Attend 7.0 Prefer not 26 <10,000 68.1 5 Members and 681

18-28 156
School tosay Below

29-39 276 Primary 554 Male 36.1 10,001-15,000 186 Above 5 319
School Members

10-50 2.1 Secondary 285 Female 613 15,001-20,000 9.1
School

Above 51 327 Tertiary 9.0 >20,000 42

Education
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Administrative  Population ~ Target  Sample

ward sample size
reached
Ronge 12311 59 60
Muatate 19,089 89 61
Bura 2315 109 6
Chawia 10,582 49 46
Kishamba 16,462 78 65

Total 81,659 384 301
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A unit Criteria for classification

Level 2 Level 3 Level 4
(relatively high) (middle) (relatively high)
SOM gke 225 25-18 18-10 10-5 <
SIN gke 216 16-12 1208 08-05 <05
STP gke 215 15-10 10-05 05-02 <02
SAP mg/kg 235 3525 25-15 15-8 <8

sQp mg/kg 2300 300-220 220-150 150-80 <80
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Experimental Spike number/ Spike grain Hundred-kernel Yield/kg hm=2

treatment hm-2 number weight/g
2019 n 55,501 + 331Ba. 520+ 1Aa 28.82 + 0.47Ba 7,319 £ 79Ba
T2 55,598 + 507Ba 518 +3Aa 28.03 +0.41Bb 7,109 + 138Bb.
T3 54,500 + 118Bb. 515+ 4Aa 28.25 % 0.56Bab 6,973 + 184Bb.
T4 54,103 + 164Bbc 496 + 4Bb 27.84 £ 0.19ABb 6,580 + 72Bc
5 54,148 + 75Bbc. 492 + 2Bbc 27.97 +0.28Ab 6,552 + 68Bc
T6 53,883 + 132Bc 489 + 2Bbc 2772+ 0.34Ab 6,432 + 75Bc
CK 54,056 + 170Bbc 487 + 9Bc 28 £ 0.28Ab 6,487 £ 131Bc
2020 Tl 56,733 + 280Aa 515+ 6Aa 30.28 + 0.39Aa 7,786 + 151Aa
T2 56,794 + 98Aa. 515+ 3ABa 2959 +0.17Ab 7,617 + 15Aab
g 56,814 + 72Aa 508 + 9Aa 29.58 + 0.53Ab 7,516 £ 156Ab
T4 55,675 + 388Ab. 513+ 8Aa 28.46 + 0.38Ac 7,155 + 220Ac
T5 55,731 + 220Ab 508 + 12Aa 28.28 + 0.29A¢ 7,040 + 143Ac
T6 55,661  555Ab 510 £ 8Aa 2791 + 0.36Ac 6,971 £ 80Ac
CK 55,253 + 132Ab 511 £4Aa 27.9 £0.39Ac 6,928 + 102Ac
2021 T1 54,734 £ 176Ca. 518 + 6Aa 28.59 + 0.57Ba 7,128 + 77Ba
T2 54,500 £ 256Ca. 512+ 2Ba 28.28 + 0.39Bab 6,940 + 75Ba
T3 54,280 + 247Ba 516 £ 3Aa 27.83 £ 0.79Bab 6,864 + 203Ba
T4 53,435 + 255Ca. 492 + 10Bb 27.73 + 0.44Bab 6,418 + 247Bb.
T5 53,386 + 310Ca 488 + 3Bb 27.75+0.23Aab 6,361 + 56Bb
T6 53,362 + 85Ba 486+ 1Bb 27.49 £ 0.61Aab 6,269 + 141Bb
CK 54,120 + 763Ba. 485 + 12Bb 27.67 + 0.68Ab 6,391 + 232Bb

Inthe table, upper case letters indicate differences in maize yield and yield components between years under the same treatment, while lower case leters indicate differences in maize yield and
yield components between treatments in the same year (p < 0.05).
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Test BD(g/ Silt

treatment cm’) (%
2019 T 118 8418 1267 316
T2 119 83.19 1225 456
T 121 81.26 1199 674
T4 124 84 1153 446
T5 126 83.98 1104 498
Té 129 83.63 1148 489
CK 138 82.56 1078 666
2020 TI 116 8413 13.06 281
T2 119 85 1244 406
T3 12 8181 1221 598
T4 124 8421 1156 423
T5 126 8433 1123 444
T6 128 8402 1166 432
CK 136 8412 1122 466
2021 Tl 116 83.97 1332 271
T2 118 8249 1325 426
T3 12 8 11.89 511
T4 122 8419 1177 404
T5 127 833 1203 467
T6 126 83.68 1154 478

K 136 83.68 1156 476
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Number  Treaf

nts Application
amount

1 Maturing agent + Organic fertilizer (T1) (30 +0.6)t- hm
2 Fly ash + Organic fertilizer (T2) (225 +15)t-hm™
3 Organic fertilizer (T3) 30t-h

4 Maturing agent + fly ash (T4) (45+06)t-hm
5 Maturing agent (T5) 06t-hm™

6 Fly ash (T6) 45t-hm™

7 No soil amendments (CK) 0
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Variant (2) Direct effect  (3) Indirect effect  (4) Total effect  (5) Substitution space

matrix
LInCO2 0.949%* (0.010) 0,948 (0.005)
w.co2 0.062* (0.033) 0.001%** (0.000)
Lolandssf 0.003%%* (0.000) 0.058* (0.033) 0.084* (0.048) 0.135* (0.079) 0,003 (0.000)
Edu ~0.044%%% (0.007) ~0046%* (0.023) ~0.062% (0.033) ~0.108% (0.055) ~0034%** (0.005)
Als ~0.070 (0.149) 0653 (0398) -0.882(0572) 1536 (0960) 0,076 (0.006)
Disaster ~0.039%%* (0.015) ~0078** (0.038) ~0.105% (0.055) ~0.183%* (0.092) 0,065 (0.013)
Agg 00417+ (0.015) 0.111%% (0.031) 0.150%* (0.048) 0261%%* (0.077) ~0050%** (0.009)
Open 0010 (0.029) 0.192%%% (0.044) 0257%%% (0.070) 044877 (0.109) 0020 (0014)
RD ~6.870%% (2.033) ~4761% (2461) ~6.326% (3.424) ~11.087* (5.812) ~5.689%** (1.046)
Road ~0.016 (0.058) 0.012(0.038) 0.016 (0.051) 0,029 (0.089) 0000 (0.030)
Province Control Control
Year Control Control
AR(1) 0.038 0038
ARQ) 0.662 0662
Hansen 0952 0952
N 510 510

*,*%, and *** indicate significance at the statistical levels of 10, 5, and 1%, respectively; the robust standard error is in parentheses; the same applies below.
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BD
Clay
Silt
Sand
SOM
STN
STP
SAP
SQP
SN
SGN
HKW
Yield

BD 047 | -087 | 073 | 040 | -0.59 | -061 066 0:56 | 061
Clay -0.97
o -
® Sand | -0:60 057 | 065
) @ som 073|050 | 067 070 0.64 | 0.62 | 063
® @ s 077 061 09
{ ] ® 00 . STP | 0.80 | 0.83
[ ) o006 e . SAP 095
© 00000~
(&) © SN | 0.70 | 0.83 | 0.94
® ® C 3K ) . SGN | 056 | 0.84
® ) HKW 0,90
o £ . . @ v
PSS LSS SIS G

* n<=0.05 ** p<=0.01
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Variable name Digital media literacy Digital social literacy

Scale of operations Plot size Land concentration Scale of operations Plot size Land concentration
Digital media literacy 0353 0.196*** 0.243***
(0.078) (0.068) (0.069)
Digital social literacy 0.264** 0.115 0.203*
(0.095) (0.083) (0.084)
Control variable Controlled Controlled Controlled Controlled Controlled Controlled
_cons —0.945" 0474 0.062 —0.944** 0495 0.049
(0.438) (0.384) (0.388) (0.441) (0.387) (0.390)
N 3,157 3,157 3,157 3,157 3,157 3,157
adj. R 0.409 0327 0.286 0407 0326 0285
Variable name Digital business literacy Digital information literacy Digital problem solving literacy
Scale of Plot size Land Scale of Plot Size Land Scale of Plot size Land
operations concentration operations Concentration operations concentration
Digital business literacy 0.312%* 0.160** 0.247*
(0.075) (0.066) (0.067)
Digital information 0.669*** 0.393*** 0.478**
literacy
(0.081) (0.071) (0.072)
Digital problem solving 0.166** 0.060 0.141**
literacy
(0.070) (0.062) (0.062)
Control variable Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled
_cons —0.856* 0527 0.115 —0.967"* 0456 0.043 —0.856* 0.539 0.111
(0.437) (0.383) (0.386) (0.434) (0.382) (0.385) (0.439) (0.384) (0.388)
N 3,157 3,157 3,157 3,157 3,157 3,157 3,157 3,157 3,157
adj. R 0.408 0.326 0.287 0418 0332 0.293 0.406 0.325 0285

Standard errors in parentheses *p < 0.1, **p < 0.05, ***p < 0.01.
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Year
2005
2006
2007
2008
2009
2010
2011
2012

2013

Moran’s |

03477

02214

02245

02028

02327

02062

02023

02155

0.1699

33356
21653
21777
20103
22633
20218
20148
21248

17347

0.0009

0.0304

00294

0.0444

00236

0.0432

0.0439

0.0336

0.0828

Year

2014

2015

2016

2017

2018

2019

2020

2021

2022

Moran’s |

01779
02143
02331
02185
0216
023
02433
03367

0.3945

Z
1.8091
21164
22487
21181
21035
22293
23472
31075

36773

P
00704
00343
00245
00342
00354
00258
00189
00019

0.0002
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Variable name Scale of operations Plot size Land concentration

Phase | Phase Il Phase | Phase || Phase | Phase Il
Digital literacy 2.597** 1.087** 2.104%*

(0.576) (0.490) (0.484)
Mean value of digital literacy at township level 0.472%** (0.036) 0.472%** 0.472%**
(0.036) (0.036)

Control variable Controlled Controlled Controlled Controlled Controlled Controlled
F-statistics value 166.207
N 3,157

Standard errors in parentheses **p < 0.01.
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Matching Scale of operations Plot size d concentration
method

ATT Standard T-value Standard  T-value ATT Standard T-value
error error error

Radius match 0.173* 245 225 0.108* 2.02 1.69 0.241%* 3.51 3.83
Nuclear matching 0.205" 3.10 2.83 0.146* 229 242 0.248"* 3.70 4.18
Local linear 0.207** 2.68 223 0.153% 2.77 175 0257+ 3.89 3.27
regression matching

Match 0.223** 332 - 0.152% 2.58 - 0.258** 415 -
Average value 0.202 0.140 0.251

Standard errors in parentheses *p < 0.1,p < 0.05, **p < 0.01.
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Type of test

Single Threshold
Double Threshold
triple threshold

F-value

4224
3136

2338

P-value Critical value Test
results
5%
00167 268048 337855 45,6055
Double

0.0567 251311 315907 553326

threshold
03133 37.4586 45.0698 55.1662

Estimated
threshold

7.5373
89067

8.4571

95 per cent
confidence
[EEN

(7.4701,7.5609)
(8.5715,9.1394)

(8.3625,8.542)
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Variable name O-logit O-probit

Scale of Plot size Land Scale of Plot size Land
operations concentration operations concentration

Digital literacy 1.124% 0.775%* 1.098*** 0.681++* 0.515%* 0.670%*

(0.230) (0.228) (0.226) (0.136) (0.135) (0.134)
Control variable Controlled Controlled Controlled Controlled Controlled Controlled
Log likelihood —2850.880 —2887.103 —3048.340 —2856.545 —2896.411 —3052.256
Pseudo R2 0.170 0.157 0.114 0.168 0.154 0.112
N 3,157 3,157 3,157 3,157 3,157 3,157

Standard errors in parentheses **p < 0.01.
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(2) Non-food
producing areas

Variant (1) Northern areas

(2) Southern region

LInCO2 0.465 (0.366) 0.958%** (0.091) 0.735%%% (0.173)
Lnlandtsf 8.609* (4.462) 0.160 (0.387) 0.067* (0.032)
Edu*Inlandtsf —1.092% (0.566) —=0.020 (0.049) 0.193(0.168)
Edu —19.350% (10.015) 0.350 (0.823) ~3.364 (3.016)
Control Control Control Control
City Control Control Control
Year Control Control Control
AR(1) 0.051 0.090 0.023
ARQ) 0354 0381 072
Hansen 0616 0.602 0.999

N 221 289 255

*, %, and *** indicate significance at the statistical levels of 10, 5, and 1%, respectively; the robust standard error s in parentheses; the same applies below.

1.088%%* (0.056)
—1.536 (1.339)
—0.524% (0.255)
—1.129% (0.552)
Control
Control
Control
0013
0820
0992

255
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Predictor Minimum Lower Median Upper Maximum

quartile quartile
“Total area -182 o1 040 069 194
Longitude -3.60 056 ~0.04 036 143
Precipitation -328 066 005 063 466
Temperature -388 ~069 ~011 021 420
GWR
Slope -073 015 ~0.04 o1 108
“Total population ~048 0.09 036 061 131
Road length -104 -009 017 044 238
Road density -363 ~0.40 ~0.16 on 104
Longitude ~098 -023 0.10 038 122
Latitude -431 -091 ~039 015 415
Riverlength -148 -0.18 011 034 220
GWPR
Road length -174 025 049 075 174
River density -370 ~034 ~0.15 016 395

Road density -223 -0.82 -052 -029 215
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Variable name Land security dependence Land security dependence Land security dependence

(Pension insurance) (Health insurance for urban and rural (Commercial health insurance)
residents)
Scale of Plot size Land Scale of Plot size Land Scale of Plot size Land
operations concentration operations concentration operations concentration
Digital literacy 0.890*+* 0.437** 0.635"* 0.896*** 0.512%* 0.697"* 0.869"** 0.410%* 0.601%**
(0.156) (0.132) (0.130) (0.159) (0.134) (0.133) (0.156) (0.132) (0.130)
Digital literacy x land 0.684** 0.625* 0.350%**
security dependency 3
(0.150) (0.126) (0.125)
Land security dependency 3 —0.027 —0.037 0.004
(0.065) (0.055) (0.055)
Digital literacy x land 0.685*** 0.624*** 0.347***
security dependency 2
(0.150) (0.126) (0.125)
Land security dependency 2 —0.002 —0.032* —0.027*
(0.014) (0.012) (0.011)
Digital literacy x land 0.686** 0.628** 0.350%*
security dependency 1
(0.150) (0.126) (0.125)
Land security dependencel 0.162** 0.213** 0.246"*
(0.068) (0.057) (0.056)
Control variable Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled
_cons 5957+ 30347 1,934 5.942%* 3.118%* 2.032"* 59357 3.005%** 1,938+
(0.302) (0.255) (0.252) (0.301) (0.254) (0.251) (0.297) (0.251) (0.248)
N 3,157 3,157 3,157 3,157 3,157 3,157 3,157 3,157 3,157
adj. R? 0.178 0.134 0.117 0.178 0.136 0.119 0.180 0.138 0.122

Standard errors in parentheses **p < 0.05, **p < 0.01.
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Varian (

LInCO2 LO13**# (0.002)
Lalandtsf 0.009%*% (0.001)
Edu*Inlandtsf =0.002%** (0.000)
Edu —0.018%** (0.001)
WinCO2

Control NO

City Control
Year Control
AR() 0038
ARQ) 0.825
Hansen 0.955

N 510

(2)
1.008%* (0.002)
0,011+ (0.001)

~0.001* (0.000)

~0.014%%% (0.002)

Control
Control
Control
0.038
0772
0937
510

(&)
1013%5% (0.002)
0.007%4% (0.002)

—~0.025%*% (0.004)
—~0.017%*% (0.001)
0.007 (0.005)
NO
Control
Control
0.049
0841
0955
510

*,**, and *** indicate significance at the statistical levels of 10, 5, and 1%, respectively; the robust standard error is in parentheses; the same applies below:

(4)
1,005+ (0.003)
0.009%%% (0.002)

—0.021%¥* (0.004)
~0.001%* (0.000)
0.010% (0.005)
Control
Control
Control
0.049
0778
0.940
510
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Explanatory variable

Intercept 6.12
Road density —0.49
Latitude -034
Road length 033
River length 0.10
Longitude 0.04
River density —o011
AlC 16049.66

AIC is the Akaikes information criterion.
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Variable

Land employment dependence

name .
Scale of Plot size Land
operations concentration
Digital Literacy 0.943*+% 0.458** 0.657***
(0.154) (0.132) (0.130)
Digital literacy x 0.824** 0.680%* 0.411%*
land employment
dependency (0.148) (0.126) (0.125)
Land 0.300%** 0.113%* 0.133***
employment
dependence (0.029) (0.025) (0.024)
Control variable Controlled Controlled Controlled
_cons 4.830*** 2.589%* 1.448**
(0.311) (0.266) (0.263)
N 3,157 3,157 3,157
adj. R? 0.206 0.139 0.125

Standard errors in parentheses ***p < 0.01.
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Variant Two-way Two-way Two-way System Cla (5) Ci (6) Sc (7)

fixed effect  fixed effect fixed effect (3) GMM (4)

1) @)

Lalandtsf 0203%%* (0.038)  0.080** (0.037) 0.123%%%(0.029)  0.003*** (0.000) | 0594***(0.001) | 0.002%* (0.000)  0.272*** (0.001)

LInCO2 0.464%%* (0.032)  0.946*** (0.009)  00I5***(0.001)  0.001*** (0.000)  0.284*** (0.001)

Edu —O.114%5% (0029) | —0059%*(0.027) | —0.068*** (0.022) | —0.009%** (0003)  —0.885%** (0.004) = —0.013***(0.000)  —0.006%** (0.000)

s el 0916 (0.362) | —0.053*** (0.012) | 57.297%**(1920) | 0.178***(0.010) Tl

(1.980)

Disaster ~0.114%* (0.045) —0031(0033) | —0422%°* (0.138)  —1991¥*%(0009)  —0.033°* (0.000)  3.827°* (0.009)

Agg 0.148%%% (0038)  0.105%** (0.028) 0062(0.145)  —5318*% (0.455) | —0022%%* (0.001) | 7.178%** (0.178)

Open 0.239%%% (0051)  0.284%** (0.037) 0035(0.021)  —4965*** (0.008)  —~0.000(0.000)  0.198*** (0.006)

w TRERIN e om) | <7300 (1499) e a0y
(0.463) (0.258)

Road 0026 (0.048) ~0.192%** (0.044) 0012(0041)  —9.019°**(0.013) | 0.006*** (0.000)  2273%** (0.026)

Cons 2898%4% (0.653) | 4481%**(0632) | 2.134%%* (0.471)

Province Control Control Control Control Control Control Control

Year Control Control Control Control Control Control Control

R 0989 0991 0.9

AR() 0031 0.066 0,000 0.000

ARQ) 0.666 0450 0277 0986

Hansen 0974 0975 0984 0534

N 540 510 510 510 510 510 510

*, %, and *** indicate significance at the statisti

levels of 10, 5, and 1%, respectively; the robust standard error is in parentheses; the same applies below.
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Explanatory Coefficients

variable

Intercept 603 -
D_rpop 0472 104
D_GDP2 ~0.286 105
Precipitation 0.145 117
D_croad ~o0112 114

R 040





OPS/images/fsufs-09-1546024/fsufs-09-1546024-t007.jpg
Variable Land revenue dependence
name

Scale of Plot size Land
operations concentration

Digital literacy 0.884*** 0.425*** 0.628***

(0.157) (0.133) (0.131)
Digital literacy x 0.582"* 0.154 —0.045
land revenue
dependence (0.294) (0.249) (0.245)
Land revenue 0.102* 0.030 0.010
dependence

(0.053) (0.045) (0.044)
Control variable Controlled Controlled Controlled
_cons 5.791%** 2.992%** 1.944%*

(0.315) (0.266) (0.262)
N 3,157 3,157 3,157
adj. R 0.175 0.127 0.115

Standard errors in parentheses *p < 0.1, *p < 0.05, ***p < 0.01.
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Explanatory Coefficients

variable

Intercept 0.00 -
Precipitation 0.583 120
D_GDP2 ~0.191 127
Income ~0.190 138
D_croad ~0.134 121
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Variable VIF 1/VIF
Digital literacy 1.08 0.923105
Land employment dependence 1.01 0.986537
Land revenue dependence 1 0.996238
Land security dependence 1.01 0.994026

1.06 0.945457

1.03 0.968561
Mean VIF 1.03
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Explanatory variable R

D_nroad 0.067

D_proad 0.105

D_croad ~0.157*
Dem 0.239%%
Slope ~0.142*
Temperature 0310%%
Precipitation 0.302%%
GDP ~0.356%
GDP1 0.236%%
GDP2 ~0.300%
GDP3 ~0.340%
D_rpop 0.525%%
Urbanization ~0.275%
Income ~0.300%

**Correlation issignificant at the 0.01 level (2-tailed). *Correlation s significant at the 0.05
level (two-tailed). R is the Pearsonis correlation coefficient.
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Action path Percentage of  Indirect 95% confidence interval Sensitivity analysis

indirect effects effect

Limit Lower limit Rho value Product of R-square

Digital literacy 19.59% 0.158"* 0.048 0.276 271 07 049
— Land transfer (0.059)
— Scale of
operation
Digital literacy 26.56% 0.097%* 0.028 0.172 2.65 05 025
— Land transfer (0.038)
— Plot Size
Digital literacy 17.50% 0.101%+* 0.025 0.178 2.69 05 025
— Land transfer (0.039)
— Land
concentration

Standard errors in parentheses ***p < 0.01.






OPS/images/fsufs-09-1546024/fsufs-09-1546024-t004.jpg
Variable  Scale of Land Scale of Land Plot Land Land

name operations transfer = operations transfer  size concentration transfer concentration
(1) (3) (5) (6) (7) 9)
Digital 0.811%* - 0.700%+* 0.454%+* - 0391%* 0.633%* - 0.564**
literacy
(0.133) - (0.124) (0.117) - (0.114) (0.118) - (0.114)
Land - - 1.0824** - - 0.611%+* - - 0.673**
transfer
- - (0.047) - - (0.044) - - (0.044)
Control Controlled Controlled Controlled Controlled Controlled | Controlled Controlled Controlled Controlled
Variable
_cons —1.086* - —1.045" 0395 - 0418 —0.064 - —0.038
(0.438) - (0.406) (0.385) - (0.374) (0.388) - (0.374)
N 3,157 - 3,157 3,157 - 3,157 3,157 - 3,157
adj. R? 0412 - 0.496 0328 - 0368 0290 - 0.340

Standard errors in parentheses ** p < 0.05, *** p < 0.01.
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