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Knockout of C1q/tumor necrosis
factor-related protein-9
aggravates cardiac fibrosis in
diabetic mice by regulating
YAP-mediated autophagy

Shiyan Ruan, Jun Li, Shengyun Lei, Shaomeng Zhang, Dan Xu,
Anju Zuo, Linxi Li and Yuan Guo*

Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China

Introduction: Diabetic cardiomyopathy (DCM) is predominantly distinguished by
impairment in ventricular function and myocardial fibrosis. Previous studies
revealed the cardioprotective properties of C1q/tumor necrosis factor-related
protein 9 (CTRP9). However, whether CTRP9 affects diabetic myocardial fibrosis
and its underlying mechanisms remains unclear.

Methods: We developed a type 1 diabetes (T1DM) model in CTRP9-KO mice via
streptozotocin (STZ) induction to examine cardiac function, histopathology,
fibrosis extent, Yes-associated protein (YAP) expression, and the expression of
markers for autophagy such LC3-II and p62. Additionally, we analyzed the direct
impact of CTRP9 on high glucose (HG)-induced transdifferentiation, autophagic
activity, and YAP protein levels in cardiac fibroblasts.

Results: In diabetic mice, CTRP9 expression was decreased in the heart. The
absence of CTRP9 aggravated cardiac dysfunction and fibrosis in mice with
diabetes, alongside increased YAP expression and impaired autophagy. In vitro,
HG induced the activation of myocardial fibroblasts, which demonstrated
elevated cell proliferation, collagen production, and α-smooth muscle actin
(α-SMA) expression. CTRP9 countered these adverse effects by restoring
autophagy and reducing YAP protein levels in cardiac fibroblasts. Notably, the
protective effects of CTRP9 were negated by the inhibition of autophagy with
chloroquine (CQ) or by YAP overexpression through plasmid intervention.
Notably, the protective effect of CTRP9 was negated by inhibition of
autophagy caused by chloroquine (CQ) or plasmid intervention with YAP
overexpression.

Discussion: Our findings suggest that CTRP9 can enhance cardiac function and
mitigate cardiac remodeling in DCM through the regulation of YAP-mediated
autophagy. CTRP9 holds promise as a potential candidate for pharmacotherapy
in managing diabetic cardiac fibrosis.
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diabetic cardiomyopathy, CTRP9, fibrosis, autophagy, YAP, fibroblasts
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1 Introduction

DCM is a prevalent diabetic macrovascular complication,
marked primarily by diffuse myocardial fibrosis and impairment
in cardiac function (Luo et al., 2022). Fibroblasts, the most populous
nonmyocyte cell type within the heart, are central to the
pathophysiology of DCM (Pesce et al., 2023). When subjected to
stress, these fibroblasts become activated and transdifferentiate into
myofibroblasts, as evidenced by increased alpha-smooth muscle
actin (α-SMA) level and heightened secretion of collagen-rich
extracellular matrix (ECM), as well as enhanced cell proliferation
capacity (Tallquist, 2020; Ko et al., 2022). This process results in
increased cardiac wall stiffness and consequent deterioration of
cardiac function. Therefore, conducting a detailed investigation
into the mechanisms driving the activation and
transdifferentiation of cardiac fibroblasts is critical to deepening
our understanding of DCM pathogenesis and unveiling new
therapeutic targets.

Recent evidence has revealed that impaired autophagy and
activated Yes-associated protein (YAP) are significant
contributors to cardiac fibrosis (Miyamoto, 2019; Zhang Q. et al.,
2022). Autophagy, a vital cellular process for degrading and
recycling damaged organelles and macromolecules via lysosomes,
is indispensable for maintaining cardiac homeostasis (Klionsky
et al., 2021). In diabetic models, impaired autophagy has been
observed, marked by the excessive buildup of the autophagic
substrate p62 and increasing levels of LC3II (Qiao et al., 2022).
Autophagy-promoting drugs exhibit therapeutic efficacy against
fibrosis and ventricular dysfunction in DCM (Shen et al., 2021;
Zhang L. et al., 2023). These observations imply a likely involvement
of autophagy in the pathogenesis of DCM. In addition, transforming
growth factor-β (TGF-β), a primary fibrosis driver, has been shown
to exert its effects through YAP, a downstream effector within the
Hippo pathway, reinforcing YAP’s importance in fibrosis (Zhang T.
et al., 2022; Weng et al., 2023). YAP is also implicated in fibrosis in
other organs; its upregulation in hepatic stellate cells is linked to
sustained myofibroblasts activation and increased extracellular
matrix deposition in liver fibrosis (Xiang et al., 2020; Mia and
Singh, 2022). Similarly, YAP overexpression in renal mesangial
cells is correlated with excessive collagen production, which
contributes to renal fibrosis (Choi et al., 2023). Additionally, the
results showed that YAP was closely related to autophagy. Increased
YAP expression in mouse proximal tubular epithelial cells inhibited
autophagy, exacerbating diabetic nephropathy (Claude-Taupin
et al., 2024). Recent findings also underscore the implications of
YAP activation in ventricular remodeling and cardiac dysfunction in
diabetic mice, suggesting that targeting YAP-mediated autophagy
could be a strategic focus for DCM treatment (Ikeda et al., 2019).

C1q/tumor necrosis factor-related protein 9 (CTRP9) is a
recently discovered adipokine within the CTRP superfamily,
playing a pivotal role in regulating glycolipid metabolism and
providing cardioprotection (Zhao et al., 2018; Guan et al., 2022).
Clinical investigations have unveiled a correlation between lower
CTRP9 levels and metabolic syndrome, and insulin resistance in
diabetic individuals (Hwang et al., 2014; Jia et al., 2017; Moradi et al.,
2018). Additionally, research has indicated that CTRP9 alleviates
myocardial fibrosis postinfarction and improves fibrotic conditions
in diabetic nephropathy (Hu et al., 2020; Lee et al., 2022).

Nevertheless, its potential for attenuating diabetic myocardial
fibrosis is not fully understood, highlighting the need for in-
depth mechanistic research to clarify its therapeutic role.

This study aimed to investigate how CTRP9 ma y suppress the
transdifferentiation of cardiac fibroblasts and mitigate diabetic
myocardial fibrosis. We focused on determining whether
CTRP9 achieves this effect by regulating the YAP-mediated
autophagy pathway, which could offer a novel approach to
preventing and treating DCM. To this end, a comprehensive
array of in vivo and in vitro experiments was conducted.

2 Methods and materials

2.1 Animals and protocols

CTRP9 knockout (on a C57BL/6J background) mice, were
generated by Shanghai Biomodel Organism Science &
Technology Development Co., Ltd. STZ (MCE, USA, 55 mg/KG)
in citrate buffer was injected intraperitoneally for five consecutive
days to induce type 1 diabetes mellitus (T1DM) (Meng et al., 2023).
Fasting glucose values above 16.7 mM were considered to be
diabetes. After the mice were anesthetized with Pentobarbital
Sodium (70 mg/kg, IP), animal tissues were retained for
subsequent experiments. The Ethics Committee of Qiluhospital
of Shandong University reviewed (KYLL-2022(ZM)-1300) and
authorized all animal procedures performed with the Guide for
the Care and Use of Laboratory Animals.

2.2 Echocardiography

Mice were anesthetized with the inhalational anesthetic
isoflurane and underwent echocardiography. The induction
anesthetic dose was 2%, 0.2 mg/10 g, 400 mg/kg, and the
maintenance anesthetic dose was 1.2%, 0.2 mg/10 g, 240 mg/kg.
The operator is unaware of the animal grouping. The left ventricle
function was evaluated using a Vevo2100 imaging system
(VisualSonics, Toronto, Canada). The echocardiography
parameters included left ventricular end-diastolic internal
diameter (LVEDD), left ventricular end-systolic diameter
(LVESD), left ventricular ejection fraction (LVEF), fraction
shortening (FS), early-to-late diastolic mitral flow velocities (E/
A), and the ratio of early diastolic mitral inflow to mitral annular
velocity (E/e’).

2.3 Immunohistochemistry

Hearts were prepared as 4 μm paraffin sections for subsequent
staining procedures, including hematoxylin and eosin (H&E)
staining as well as Masson’s trichrome staining. Anti-Collagen I
(Abcam, ab34710, 1:200), Anti-Collagen III (Abcam, ab7778, 1:200),
Anti-α-SMA (HUABIO, ET1607-53, 1:5000), and Anti-YAP
(ABclonal, A19134, 1:200), Anti-CTRP9 (NOVUSBIO, NBP2-
46834, 1:200) were applied to the paraffin sections at 4°C.
Subsequent treatment included exposure to secondary antibodies
(Gene Tech, GK600505) and hematoxylin staining. Three fields of
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view were selected for each sample, and the mean optical density was
measured and then averaged. The resulting data represents one
biological replicate. The results were analyzed using Image-Pro Plus
6.0 software (Media Cybernetics Inc., USA).

2.4 Cell culture

Primary cardiac fibroblasts were isolated from the hearts of 3- to
5-day-old C57BL/6J mice. The neonatal mouse hearts were removed
and sliced into tissue fragments in pre-cooled D-Hank’s solution.
The fragments were then transferred into conical flasks containing
type II collagenase (Solarbio) and incubated overnight at 4°C on a
shaker. The next day, the fragmented heart tissue was digested in a
37°C water bath using an EDTA-free trypsin (Solarbio) digestion
solution. The collected supernatant was inoculated into flasks for cell
culture. After an incubation period of 2 h at 37°C with 5% CO2, the
fibroblasts attached to the flasks and the complete medium was
subsequently substituted.

During the experiment, only cardiac fibroblasts of one to three
generations were used. Primary cardiac fibroblasts were grown in
complete DMEM (Gibco). The cells were preincubated with
recombinant gCTRP9 (1 μg/mL) (Lei et al., 2021) for 2 h before
they were exposed to a high-glucose environment (33.3 mM).
Following a 48-h incubation period, the cells were harvested for
analysis. CQ (1 mM) was administered 12 h before the end of the
experiment to inhibit autophagy.

2.5 Cell transfection

Transfection of cells with the YAP overexpression plasmid
(Shandong Gene & Bio Co., Ltd.) (1,000 ng/mL) and the control
plasmid was conducted using Lipofectamine™ 3000 reagent
(Invitrogen) in Opti-MEM™ reduced serum medium (Gibco).
Complete medium was added to replace the medium 8 hours
after transfection.

To knock down CTRP9, small interfering RNA (siRNA)
(shandong Gene&Bio) was transfected into CFS using
Lipofectamine™3000 reagent (Invitrogen) in Opti-MEM™
reduced serum medium (Gibco). The medium was replaced with
complete medium 6–8 h later, and small interference was screened
by detecting the mRNA expression of CTRP9 24 h later.

2.6 Western blotting

Extracted protein samples were underwent separation through
SDS-PAGE, followed by transfer onto PVDFmembrane (Millipore).
Then, the membranes underwent overnight with antibodies against
Collagen I (Proteintech, 66761-Ig, 1:1000), Collagen III (Abcam,
ab184993, 1:1000), α-SMA (HUABIO, ET1607-53, 1:5000), GAPDH
(Proteintech, 60004-1-Ig, 1:10,000), p62 (Abcam, ab109012, 1:1000),
LC3B (CST, 3868S, 1:1000), and YAP (ABclonal, A19134, 1:1000),
CTRP9 (NOVUSBIO, NBP2-46834, 1:500). Subsequently,
secondary antibodies (HUABIO, HA1006 and HA1001) were
applied to the membranes, followed by visualization using an
Amersham Imager 680.

2.7 Immunofluorescence staining

Cardiac fibroblasts were sequentially treated with methanol
on ice and 5% BSA. Subsequently, the cells were exposed to
anti-α-SMA (HUABIO, ET1607-53,1:500) or anti-LC3B (CST,
3868S, 1:200) primary antibodies and left to incubate
overnight. The coverslips were subjected to secondary
antibody incubation, followed by staining with DAPI.
Images were captured using a fluorescence microscope
(Nikon Eclipse TE2000-S) or a Zeiss confocal laser scanning
microscope (LSM 710, Carl Zeiss, Germany). Three fields of
view were selected for each sample, and the fluorescence
intensity was measured and averaged. The results obtained
represented a biological replication. The ImageJ software was
used for analysis.

2.8 qRT-PCR

FastPure Cell/Tissue Total RNA Isolation Kit V2 (Vazyme
Biotech Co., Ltd.) extracted total RNA from fibroblasts and
determined its concentration, followed by HiScript II Q RT
SuperMix (Vazyme Biotech Co., Ltd.) and ChamQ universal
SYBR qPCR Master Mix (Vazyme Biotech Co., Ltd.) for reverse
transcription and PCR quantification. The primer sequences used
are as follows: Collagen I-F, CCCTGGTCCCTCTGGAAATG,
Collagen I-R, GGACCtttgccccCTTCTTCTTT; Collagen III-F,
TGACTGTCCCACGTAAGCAC, Collagen III-R, GAGGGCCAT
AGCTGAACTGA; α-SMA-F, TTCGTGACTACTGCCGAGC, α-
SMA-R, GTCAGGCAGTTCGTAGCTCT; p62-F, CCTCAGCCC
TCTAGGCATTG, p62-R, TTCTGGGGTAGTGGGTGTCA;
LC3B-F, AGAGCGATACAAGGGGGAGA, LC3B-R, TGCAAG
CGCCGTCTGATTA; ATG-7-F, CCTTCTGGAGCAGTCAGC
AA, ATG-7-R, AGGAGCATGGGGTTTTCGAG; YAP1-F, TCC
AACCAGCAGCAGCAAAT, YAP1-R, CCTGTTGTTTCAACC
GCAGTC; CTRP9-F, GTGCCCAAGAGTGCTTTCAC, CTRP9-
R, AACTTCCCCGTCGCTACATT; GAPDH-F, TGTCTCCTG
CGACTTCAACA, GAPDH-R, GGTGGTCCAGGGTTTCTTACT.

2.9 Cell proliferation assay

The proliferation of cardiac fibroblasts was detected using Cell-
Light EdU DNA Cell Proliferation Apollo567 Kit (RiBoBio). The
treated cardiac fibroblasts were incubated with 10 nm EdU (5-
ethynyl-2’-deoxyuridine) for 16 h, followed by subsequent
experimental steps according to the instructions. Images were
captured using a Zeiss fluorescence microscope, and the
percentage of EdU-positive cells was analyzed using the
ImageJ software.

2.10 Statistical analysis

The data are presented as mean ± SEM. Shapiro-Wilk test was
used to evaluate the normality of the data distribution before data
analysis. Statistical analyses involved Student’s t-test for comparing
two groups and one-way ANOVA for assessing differences among
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three or more groups. Statistical analysis was performed using
GraphPad Prism version 8, with significance defined as p < 0.05.

3 Results

3.1 CTRP9 expression was diminished within
the cardiac tissue of diabetic mice

To demonstrate the involvement of CTRP9 in cardiac fibrosis,
immunohistochemistry and Western blot analysis were conducted.
The findings demonstrated a marked decrease in CTRP9 expression
within the hearts of diabetic mice (Figures 1A–D). In vitro,
CTRP9 expression was identified by Western blot following the
stimulation of primary cardiac fibroblasts with high glucose (HG).
Fibroblast CTRP9 expression was significantly lower in the HG
group compared with the group without added high
glucose (Figure 1E, F).

3.2 CTRP9 knockout worsened cardiac
dysfunction in diabetic mice

To elucidate the influence of CTRP9 deficiency on cardiac
function, we performed echocardiograms prior to anesthesia
(Figure 2A). In contrast to the NC group, the DM group
demonstrated marked impairment in cardiac function, with a
notable reduction in LVEF, LVFS, and E/A. These impairments

were further accompanied by elevated E/e’, increased LVEDD and
LVESD (Figure 2B–G). Notably, CTRP9 knockout diabetic mice
exhibited greater deterioration in LVEF, LVFS, and E/A.
Additionally, they exhibited increased E/e’, LVEDD, and LVESD
values (Figure 2B–G). Furthermore, diabetic mice in the
CTRP9 deficiency group displayed significantly higher blood
glucose levels and decreased body weights than those in the
DM group (Figure 2H, I). In addition, in the absence of
diabetes, there were no notable disparities observed in cardiac
function, body weight, or blood glucose levels between the
CTRP9 knockout mice and the control mice. These findings
validated the successful establishment of the T1DM mouse
model and demonstrated that CTRP9 deletion aggravated
cardiac dysfunction in diabetic mice.

3.3 CTRP9 knockout exacerbated cardiac
fibrosis in diabetic mice

To elucidate the impact of CTRP9 knockout on fibrosis within
the myocardium of diabetic mice, we performed pathological
staining and immunohistochemistry. Hematoxylin and eosin
(H&E) staining showed significant myocardial disarray within the
DM group relative to the NC group. The disruption was more severe
in CTRP9 knockout mice (Figure 3A). Moreover, Masson’s
trichrome staining further displayed augmented collagen
accumulation within the DM group, which intensified with
CTRP9 gene deletion (Figure 3A, B). Immunohistochemical

FIGURE 1
CTRP9 expression was diminished within the cardiac tissue of diabetic mice. (A) Illustrative immunohistochemistry images of CTRP9 in two groups.
(B) Assessment of CTRP9 in two groups. (C) Illustrative Western blot of CTRP9 in animals. (D) Assessment of CTRP9 in two groups. (E) Illustrative Western
blot of CTRP9 in cardiac fibroblasts. (F)Measurement of CTRP9 in two groups. Scale bar = 50 μm. The data are depicted as themean ± SEM (n= 5–6). *p <
0.05, ****p < 0.0001.
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FIGURE 2
CTRP9 knockout worsened cardiac dysfunction in themice of diabetes. (A) Representative B-mode (scale bar inmm), M-mode (scale bar inmm and
time stamp in seconds), PW (scale bar in mm/s and time stamp in seconds) and Tissue images (scale bar in mm/s and time stamp in seconds) in four
groups. (B) Assessment of LVEF in four groups. (C) Assessment of LVFS in four groups. (D) Assessment of E/A in four groups. (E) Assessment of E/e’ in four
groups. (F) Assessment of LVEDD in four groups. (G) Assessment of LVESD in four groups. (H) Blood glucose in four groups. (I) Body weights in four
groups. The data are depicted as the mean ± SEM (n = 6). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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analysis revealed that collagen I, collagen III, and α-SMA was
significantly elevated within the DM group. This increase was
even more pronounced in the absence of CTRP9, indicating a
heightened fibrotic response (Figure 3C–F). Western blot analysis

provided additional support for these findings, showing similar
trends in protein expression (Figure 3G–J). Collectively, these
results suggested that CTRP9 deletion exacerbates myocardial
fibrosis in diabetic mice.

FIGURE 3
CTRP9 deletion worsened cardiac fibrosis. (A) Representative images of hematoxylin and eosin (H&E) and Masson’s trichrome staining in four
groups. Scale bar, 50 μm. (B) Evaluation of the fibrotic area within four groups. (C) Illustrative immunohistochemistry images of Collagen I, Collagen III,
and α-SMA in four groups. (D) Evaluation of Collagen I in four group. (E) Measurement of Collagen III in four group. (F) Relative α-SMA level in four
group. (G) Representative blot images of α-SMA, Collagen I and Collagen III within animals. (H) Assessment of α-SMA in four groups. (I) Assessment
of Collagen I within four groups. (J) Assessment of Collagen III in four groups. The data are depicted as the mean ± SEM (n = 6). *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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3.4 CTRP9 knockout aggravated autophagy
inhibition and upregulated YAP expression in
diabetic mice

Previous studies have shown a strong link between suppressed
autophagy, activated YAP and the advancement of myocardial
fibrosis in DCM (Ikeda et al., 2019; Wang et al., 2022). Building
upon this foundation, our study examined the expression levels of
p62 and LC3-II, alongside YAP, recognized for its critical
involvement in organ fibrosis. Western blot analysis of cardiac
tissues demonstrated a dramatic increase of p62 and LC3-II with
the DM group relative to the NC group, with CTRP9 deletion
exacerbating this trend further (Figure 4A–C). In parallel, YAP
protein expression exhibited a significant upregulation in the DM
group in comparison to the NC group, a disparity that was further
amplified by CTRP9 deletion (Figure 4A, D). Immunohistochemical
analysis confirmed the upregulation of YAP in the DM group,
especially in the absence of CTRP9 (Figure 4E, F). These findings
demonstrated that CTRP9 knockout exacerbated autophagy
inhibition and upregulated YAP protein expression in diabetic mice.

3.5 CTRP9 treatment inhibited HG-induced
myofibroblast activation

Examining the influence of CTRP9 on fibroblasts activation
triggered by HG, we pretreated primary cardiac fibroblasts isolated
from mice with exogenous CTRP9, followed by stimulation with a
33.3 mMHG solution. Western blot analysis revealed that after 48 h
of HG stimulation, myofibroblast marker α-SMA, as well as collagen
level, significantly elevated within the HG group in contrast to both
the NC and HO (high osmotic control) groups, whereas treatment
with CTRP9 notably reduced the expression levels of these fibrosis
markers (Figure 5A–D). Similar results were obtained in the RT-
PCR experiment (Supplementary Figures S1A–C).
Immunofluorescence staining for α-SMA further confirmed the
inhibitory effect of CTRP9 on fibroblast activation (Figure 5E, F).
Meanwhile, the results of the cell proliferation assay also showed
that CTRP9 treatment caused a significant reduction in the level of
HG-induced fibroblast proliferation (Figure 5G, H). These results
suggested that CTRP9 treatment significantly inhibited
myofibroblasts activation and the extracellular matrix
accumulation induced by HG.

3.6 CTRP9 treatment inhibited HG-induced
cardiac fibroblast activation by improving
autophagy inhibition

This research sought to investigate the influence of autophagy
on myofibroblast activation. Western blot analysis revealed
significant upregulation of p62 and LC3-II in the HG group,
suggesting possible impairment of autophagy. Notably, exogenous
CTRP9 administration reduced the expression of these markers,
indicating the restoration of autophagic activity (Figure 6A–C). The
results of RT-PCR were consistent with the above results
(Supplementary Figures S1F–G). Confocal microscopy further
revealed a decrease in the number of LC3B puncta upon

CTRP9 treatment, indicating a partial reversal of autophagy
inhibition under HG conditions (Figure 6D, E). To investigate
whether the CTRP9-mediated inhibition of cardiac fibroblast
activation was autophagy dependent, cardiac fibroblasts were
exposed to CQ, an autophagy inhibitor. Western blot analysis
demonstrated a notable elevation of α-SMA, collagen I, and
collagen III in the HG + CTRP9+CQ group compared to the HG
+ CTRP9 group (Figure 6F–I). The same results were obtained in the
RT-PCR experiment (Supplementary Figures S2A–C).
Immunofluorescence staining also revealed similar results
(Figure 6J, K). In addition, the cell proliferation level in HG +
CTRP9+CQ group was significantly higher than that in HG +
CTRP9 group (Figure 6L, M). These combined results suggest
that CTRP9 can suppress fibroblast activation and extracellular
matrix secretion through restoring autophagy disrupted by high-
glucose conditions.

3.7 CTRP9 treatment inhibited HG-induced
myofibroblast activation through the YAP-
mediated autophagy pathway

Given that YAP is closely associated with fibrosis (Francisco
et al., 2020), we elucidated its role in cardiac fibroblast activation.
Western blot revealed notable YAP increase within the high glucose
(HG) group relative to both the NC and HO groups, and the
addition of exogenous CTRP9 led to a significant suppression of
YAP expression (Figure 7A, B). The mRNA change level of YAP was
consistent with the protein level (Supplementary Figure S1D). To
determine the impact of YAP on autophagy and its potential role in
mediating the regulatory effect of CTRP9 on cardiac fibroblast
activation, we overexpressed YAP in primary mouse cardiac
fibroblasts via plasmid-mediated transfection (Figure 7C–E). We
observed that overexpression of YAP eliminated CTRP9-mediated
autophagy recovery (Figure 7F–J). The experimental results of RT-
PCR also support the above results (Supplementary Figures S3E, F).
Additionally, overexpressing YAP abolished the inhibitory effect
exerted by CTRP9 toward myofibroblast activation. In the group
overexpressing YAP, the levels of fibrosis markers and collagen were
significantly elevated compared to the group treated with HG +
CTRP9+NT/pcDNA3.1(Figure 7K–N). The results of RT-PCR were
consistent with the above results (Supplementary Figures S3A–C).
Immunofluorescence staining for α-SMA provided additional
confirmation of these effects (Figure 7O–P). Overexpression of
YAP significantly increased the proliferation of cardiac fibroblasts
treated with high glucose and CTRP9 (Figure 7Q–R). Based on the
observations, CTRP9 suppresses high glucose-induced cardiac
fibroblast activation and extracellular matrix deposition through
YAP-mediated autophagy.

4 Discussion

In this study, we observed that CTRP9 knockout aggravated
cardiac fibrosis and dysfunction in diabetic mice, indicating its
potential protective role against cardiac complications associated
with diabetes. This exacerbation was accompanied by a marked
reduction in cardiac autophagy and an increase in YAP protein
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levels, suggesting a regulatory imbalance in diabetic conditions due
to CTRP9 deficiency (Figure 8). Our in vitro experiments further
demonstrated that supplementation with CTRP9 attenuated cardiac
fibroblast activation and improved their fibrotic profile, primarily by
restoring autophagy, which was impaired by HG exposure.
Moreover, we observed that CTRP9 supplementation effectively
suppressed the expression of YAP, a protein closely linked to the
fibrotic process, whereas YAP overexpression counteracted the
autophagy-restoring and antifibrotic effects of CTRP9. Together,
these findings indicated that CTRP9 mitigated diabetic cardiac
fibrosis through the regulation of YAP-mediated autophagy.

Autophagy, a key homeostatic pathway highly conserved in cells
for degrading and recycling macromolecules and damaged
organelles, serves as an important guardian of quality control in
cardiac cells (Dewanjee et al., 2021). In the context of diabetes,
however, autophagy often becomes dysfunctional in the heart. (Zang
et al., 2020). Previous studies have demonstrated that sustained
hyperglycemia impairs cardiomyocyte autophagy, resulting in
elevated cardiac collagen deposition and cardiac dysfunction in
diabetic mice (Xue et al., 2022). Conversely, Metrnl, by activating
the AMPK pathway, has been found to restore suppressed
autophagy in the heart, providing a safeguard against DCM (Lu
et al., 2023). However, the exact contribution of autophagy to
cardiac health in DCM is subject to debate, as contrasting
evidence exists. Some findings suggest that certain diabetic hearts

exhibit autophagic hyperactivation, which has been shown to have a
detrimental effect on the heart (Guo et al., 2020; Jiang et al., 2022).
Such disparate conclusions could arise from differences in diabetes
types, stages, severity, and concurrent medical conditions across
studies. In our current work, we developed a T1DM mouse model
using successive low-dose intraperitoneal injections of STZ. Our
observations revealed markedly reduced autophagic activity in the
hearts of mice with diabetes, which was further exacerbated by
CTRP9 knockout. This finding was supported by in vitro evidence
indicating that CTRP9 pretreatment can mitigate HG-induced
autophagy inhibition in cardiac fibroblasts and improve their
fibrotic state. In contrast, autophagy suppression by CQ
counteracted the beneficial effects of CTRP9. These findings
elucidated the critical role of inhibited autophagy in diabetic
myocardial fibrosis and suggested that autophagy restoration by
CTRP9 represents a promising therapeutic avenue for DCM.

YAP, a pivotal constituent within the Hippo pathway, subjects to
negative regulation within this pathway (Ibar and Irvine, 2020).
Stimulating the Hippo pathway prompts kinases such as
mammalian sterile 20-like protein kinase 1/2 (Mst1/2) and large
tumor suppressor (Lats1/2) to phosphorylate YAP, causing its
sequestration in the cytoplasm and subsequent degradation (Choi
et al., 2024). During Hippo pathway inactivation, YAP undergoes
dephosphorylation and translocates to the nucleus, where it activates
genes that drive its biological roles (Kiang et al., 2024). Elevated YAP

FIGURE 4
CTRP9 knockout aggravated autophagy inhibition and upregulated YAP expression in diabetic heart. (A) Illustrative blot images of p62, LC3-II and
YAPwithin four groups. (B) Assessment of p62 in four groups. (C) Assessment of LC3-II in four groups. (D) Assessment of YAP in four groups. (E) Illustrative
immunohistochemistry images of YAP in four groups. (F) Assessment of YAP in four groups. Scale bar, 50 μm. The data are depicted as the mean ± SEM
(n = 6). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 5
CTRP9 treatment inhibited HG-induced cardiac fibroblast activation. (A) Illustrative blot images of α-SMA, Collagen I and Collagen III within four
groups. (B) Assessment of α-SMA in four groups. (C) Assessment of Collagen I within four groups. (D) Assessment of Collagen III in four groups. (E)
Illustrative immunofluorescence images of α-SMA in three groups. (F). Assessment fluorescence intensity of α-SMA in three groups. (G) Representative
images of EdU detecting cell proliferation in three groups. (H)Quantification of the proportion of EdU positive cells. Scale bar, 100 μm. The data are
depicted as the mean ± SEM (n = 3–5). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 6
CTRP9 treatment inhibited myofibroblast activation induced by HG through improving autophagy inhibition. (A) Illustrative Western blot of p62 and
LC3-II within four groups of cells. (B) Assessment of p62 in four groups. (C) Assessment of LC3-II in four groups. (D) Representative confocal microscopy
images of LC3B in three groups of cells. Scale bar, 50 μm. (E) Quantification of LC3B puncta in three groups. (F) Illustrative Western blot of α-SMA,
Collagen I and Collagen III within four groups of cells. (G) Assessment of α-SMA in four groups. (H) Assessment of Collagen I within four groups. (I)
Assessment of Collagen III in four groups. (J) Representative immunofluorescence images of α-SMA in four groups of cells. Scale bar, 100 μm. (K)
Quantification of fluorescence intensity of α-SMA in four groups. (L) Representative images of EdU detecting cell proliferation in four groups. (M)
Quantification of the proportion of EdU positive cells. The data are depicted as the mean ± SEM (n = 3–5). *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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FIGURE 7
CTRP9 treatment inhibitedHG-inducedactivation through theYAP-mediatedautophagypathway. (A) IllustrativeWesternblotof YAP in fourgroupsof cells. (B)
Assessment of YAP in four groups. (C, D) IllustrativeWestern blot images of YAP overexpression and their quantification in two groups. (E)Quantification YAPmRNA
expression level in twogroups. (F) IllustrativeWestern blot of p62 and LC3-IIwith four groups. (G)Assessment of p62 in four groups. (H)Assessment of LC3-II in four
groups. (I) Representative confocal microscopy images of LC3B in four groups of cells. Scale bar, 50 μm. (J)Quantification of LC3B puncta in four groups. (K)
IllustrativeWestern blot of α-SMA,Collagen I andCollagen III within four groupsof cells. (L)Assessment of α-SMA in four groups. (M)Assessment ofCollagen Iwithin
four groups. (N) Assessment of Collagen III in four groups. (O) Representative immunofluorescence images of α-SMA in four groups of cells. Scale bar, 100 μm. (P)
Quantification of fluorescence intensity of α-SMA in four groups. (Q)Representative images of EdU detecting cell proliferation in four groups. Scale bar, 100 μm. (R)
Quantification of the proportion of EdU positive cells. The data are presented as the mean ± SEM (n = 3–5). *p < 0.05, **p < 0.01, ***p < 0.001, ****P < 0.0001.
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expression is a common feature of fibrosis in various organs,
including pulmonary, hepatic, and renal fibrosis, and has been
increasingly associated with cardiac pathologies (Stancil et al.,
2021; Zhang J. et al., 2023; Chitturi et al., 2023). YAP activation
results in myocardial hypertrophy and fibrosis (Garoffolo et al.,
2022; Kashihara et al., 2022). Moreover, YAP is activated in resident

cardiac fibroblasts postmyocardial infarction, leading to adverse
remodeling and even heart failure (Mia et al., 2022). Our study
showed that absence of the CTRP9 gene resulted in increased YAP
expression within the diabetic heart. In vitro, the addition of
CTRP9 to cardiac fibroblasts inhibited the HG-induced
upregulation of YAP. To further elucidate the impact of YAP

FIGURE 8
Diagram of CTRP9 attenuating cardiac fibrosis in diabetic mice though affecting YAP-mediated autophagy pathway. Created with BioRender.com.
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and CTRP9 on ameliorating HG-induced cardiac fibroblast
activation, we overexpressed YAP with plasmids to counteract
the inhibitory effect of CTRP9 on HG-triggered cardiac fibroblast
transdifferentiation and collagen secretion. Furthermore, growing
evidence suggests that YAP may regulate autophagy levels as an
upstream mechanism. Activation of YAP can lead to autophagy
inhibition (Claude-Taupin et al., 2023; Wu et al., 2024). However,
there is also evidence that autophagy controls YAP expression.
When autophagy is active, YAP interacts with the receptor
protein p62 of the autophagy pathway and is degraded by
autophagic lysosomes (Hao et al., 2024). Our in vitro
experiments showed that overexpression of YAP counteracted the
autophagy restoring effect of CTRP9.

However, our study is not without its limitations. First, we
established an STZ-induced T1DM mouse model, as T1DM mice
develop both diastolic and systolic dysfunction, which closely
resemble the cardiac impairments observed in clinical diabetic
patients. Type 2 diabetes mellitus primarily presents with diastolic
dysfunction, and creating type 2 diabetic animal models
necessitates more intricate environmental interventions, such
as high-fat diets and a lack of physical activity, potentially
leading to highly variable experimental outcomes. Second,
while the current literature acknowledges the multifaceted
interaction between YAP and autophagy, our research did not
explore this relationship in depth. Delving into the nuanced
interplay between YAP and autophagy is a primary aim of
subsequent investigations.

In conclusion, we demonstrated that CTRP9 knockout
exacerbated diabetic myocardial fibrosis by inhibiting autophagy
and upregulating YAP expression. Our investigation provides
valuable mechanistic understanding regarding the therapeutic
implications of CTRP9 in diabetic myocardial fibrosis, laying a
foundation for the advancement of novel CTRP9-based
pharmaceutical interventions.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

The animal study was approved by The Ethics Committee of
Qilu hospital of Shandong University. The study was conducted in
accordance with the local legislation and institutional requirements.

Author contributions

SR: Conceptualization, Methodology, Writing–original draft. JL:
Conceptualization, Writing–original draft. SL: Writing–review and
editing. SZ: Formal Analysis, Validation, Writing–original draft.
DX: Data curation, Writing–review and editing. AZ: Supervision,
Writing–review and editing. LL: Software, Writing–original draft.
YG: Funding acquisition, Project administration, Writing–review
and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research
was funded by (Natural Science Foundation of Shandong province)
grant number (ZR2023MH017) and (National Natural Science
Foundation of China) grant number (82200945).

Acknowledgments

We extend our appreciation to BioRender, a web-based drawing
tool, for providing certain elements used in Figure 8.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2024.1407883/
full#supplementary-material

References

Chitturi, P., Xu, S., Ahmed Abdi, B., Nguyen, J., Carter, D. E., Sinha, S., et al.
(2023). Tripterygium wilfordii derivative celastrol, a YAP inhibitor, has
antifibrotic effects in systemic sclerosis. Ann. Rheum. Dis. 82 (9), 1191–1204.
doi:10.1136/ard-2023-223859

Choi, S., Hong, S. P., Bae, J. H., Suh, S. H., Bae, H., Kang, K. P., et al. (2023).
Hyperactivation of YAP/TAZ drives alterations in mesangial cells through stabilization
of N-myc in diabetic nephropathy. J. Am. Soc. Nephrol. 34 (5), 809–828. doi:10.1681/
asn.0000000000000075

Choi, S., Kang, J. G., Tran, Y. T. H., Jeong, S. H., Park, K. Y., Shin, H., et al. (2024).
Hippo-YAP/TAZ signalling coordinates adipose plasticity and energy balance by
uncoupling leptin expression from fat mass. Nat. Metab. 6 (5), 847–860. doi:10.
1038/s42255-024-01045-4

Claude-Taupin, A., Isnard, P., Bagattin, A., Kuperwasser, N., Roccio, F., Ruscica, B.,
et al. (2023). The AMPK-Sirtuin 1-YAP axis is regulated by fluid flow intensity and
controls autophagy flux in kidney epithelial cells. Nat. Commun. 14 (1), 8056. doi:10.
1038/s41467-023-43775-1

Frontiers in Pharmacology frontiersin.org13

Ruan et al. 10.3389/fphar.2024.1407883

16

https://www.frontiersin.org/articles/10.3389/fphar.2024.1407883/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2024.1407883/full#supplementary-material
https://doi.org/10.1136/ard-2023-223859
https://doi.org/10.1681/asn.0000000000000075
https://doi.org/10.1681/asn.0000000000000075
https://doi.org/10.1038/s42255-024-01045-4
https://doi.org/10.1038/s42255-024-01045-4
https://doi.org/10.1038/s41467-023-43775-1
https://doi.org/10.1038/s41467-023-43775-1
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1407883


Claude-Taupin, A., Terzi, F., Codogno, P., and Dupont, N. (2024). Yapping at the
autophagy door? The answer is flowing in the kidney proximal tubule. Autophagy, 1–2.
doi:10.1080/15548627.2024.2319023

Dewanjee, S., Vallamkondu, J., Kalra, R. S., John, A., Reddy, P. H., and Kandimalla, R.
(2021). Autophagy in the diabetic heart: a potential pharmacotherapeutic target in
diabetic cardiomyopathy. Ageing Res. Rev. 68, 101338. doi:10.1016/j.arr.2021.101338

Francisco, J., Zhang, Y., Jeong, J. I., Mizushima, W., Ikeda, S., Ivessa, A., et al. (2020).
Blockade of fibroblast YAP attenuates cardiac fibrosis and dysfunction through MRTF-
A inhibition. JACC Basic Transl. Sci. 5 (9), 931–945. doi:10.1016/j.jacbts.2020.07.009

Garoffolo, G., Casaburo, M., Amadeo, F., Salvi, M., Bernava, G., Piacentini, L., et al.
(2022). Reduction of cardiac fibrosis by interference with YAP-dependent
transactivation. Circ. Res. 131 (3), 239–257. doi:10.1161/circresaha.121.319373

Guan, H., Wang, Y., Li, X., Xiang, A., Guo, F., Fan, J., et al. (2022). C1q/Tumor
necrosis factor-related protein 9: basics and therapeutic potentials. Front. Physiol. 13,
816218. doi:10.3389/fphys.2022.816218

Guo, X., Lin, H., Liu, J., Wang, D., Li, D., Jiang, C., et al. (2020). 1,25-
Dihydroxyvitamin D attenuates diabetic cardiac autophagy and damage by vitamin
D receptor-mediated suppression of FoxO1 translocation. J. Nutr. Biochem. 80, 108380.
doi:10.1016/j.jnutbio.2020.108380

Hao, Y., Feng, D., Ye, H., and Liao, W. (2024). Nobiletin alleviated epithelial-
mesenchymal transition of hepatocytes in liver fibrosis based on autophagy-hippo/
YAP pathway. Mol. Nutr. Food Res. 68 (3), e2300529. doi:10.1002/mnfr.202300529

Hu, H., Li, W., Liu, M., Xiong, J., Li, Y., Wei, Y., et al. (2020). C1q/Tumor necrosis
factor-related protein-9 attenuates diabetic nephropathy and kidney fibrosis in db/db
mice. DNA Cell Biol. 39 (6), 938–948. doi:10.1089/dna.2019.5302

Hwang, Y. C., Woo Oh, S., Park, S. W., and Park, C. Y. (2014). Association of serum
C1q/TNF-Related Protein-9 (CTRP9) concentration with visceral adiposity and
metabolic syndrome in humans. Int. J. Obes. (Lond) 38 (9), 1207–1212. doi:10.1038/
ijo.2013.242

Ibar, C., and Irvine, K. D. (2020). Integration of hippo-YAP signaling with
metabolism. Dev. Cell 54 (2), 256–267. doi:10.1016/j.devcel.2020.06.025

Ikeda, S., Mukai, R., Mizushima, W., Zhai, P., Oka, S. I., Nakamura, M., et al. (2019).
Yes-associated protein (YAP) facilitates pressure overload-induced dysfunction in the
diabetic heart. JACC Basic Transl. Sci. 4 (5), 611–622. doi:10.1016/j.jacbts.2019.05.006

Jia, Y., Luo, X., Ji, Y., Xie, J., Jiang, H., Fu, M., et al. (2017). Circulating CTRP9 levels
are increased in patients with newly diagnosed type 2 diabetes and correlated with
insulin resistance. Diabetes Res. Clin. Pract. 131, 116–123. doi:10.1016/j.diabres.2017.
07.003

Jiang, K., Xu, Y., Wang, D., Chen, F., Tu, Z., Qian, J., et al. (2022). Cardioprotective
mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of
autosis. Protein Cell 13 (5), 336–359. doi:10.1007/s13238-020-00809-4

Kashihara, T., Mukai, R., Oka, S. I., Zhai, P., Nakada, Y., Yang, Z., et al. (2022). YAP
mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to
pressure overload. J. Clin. Investig. 132 (6), e150595. doi:10.1172/jci150595

Kiang, K. M., Ahad, L., Zhong, X., and Lu, Q. R. (2024). Biomolecular condensates:
hubs of Hippo-YAP/TAZ signaling in cancer. Trends Cell Biol. doi:10.1016/j.tcb.2024.
04.009

Klionsky, D. J., Petroni, G., Amaravadi, R. K., Baehrecke, E. H., Ballabio, A., Boya, P.,
et al. (2021). Autophagy in major human diseases. Embo J. 40 (19), e108863. doi:10.
15252/embj.2021108863

Ko, T., Nomura, S., Yamada, S., Fujita, K., Fujita, T., Satoh, M., et al. (2022). Cardiac
fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis.Nat.
Commun. 13 (1), 3275. doi:10.1038/s41467-022-30630-y

Lee, S. M., Lee, J. W., Kim, I., Woo, D. C., Pack, C. G., Sung, Y. H., et al. (2022).
Angiogenic adipokine C1q-TNF-related protein 9 ameliorates myocardial infarction via
histone deacetylase 7-mediated MEF2 activation. Sci. Adv. 8 (48), eabq0898. doi:10.
1126/sciadv.abq0898

Lei, S., Chen, J., Song, C., Li, J., Zuo, A., Xu, D., et al. (2021). CTRP9 alleviates foam
cells apoptosis by enhancing cholesterol efflux. Mol. Cell Endocrinol. 522, 111138.
doi:10.1016/j.mce.2020.111138

Lu, Q. B., Ding, Y., Liu, Y., Wang, Z. C., Wu, Y. J., Niu, K. M., et al. (2023). Metrnl
ameliorates diabetic cardiomyopathy via inactivation of cGAS/STING signaling
dependent on LKB1/AMPK/ULK1-mediated autophagy. J. Adv. Res. 51, 161–179.
doi:10.1016/j.jare.2022.10.014

Luo, W., Lin, K., Hua, J., Han, J., Zhang, Q., Chen, L., et al. (2022). Schisandrin B
attenuates diabetic cardiomyopathy by targeting MyD88 and inhibiting MyD88-
dependent inflammation. Adv. Sci. (Weinh) 9 (31), e2202590. doi:10.1002/advs.
202202590

Meng, L., Lu, Y., Wang, X., Cheng, C., Xue, F., Xie, L., et al. (2023). NPRC deletion
attenuates cardiac fibrosis in diabetic mice by activating PKA/PKG and inhibiting TGF-
β1/Smad pathways. Sci. Adv. 9 (31), eadd4222. doi:10.1126/sciadv.add4222

Mia, M. M., Cibi, D. M., Ghani, S., Singh, A., Tee, N., Sivakumar, V., et al. (2022). Loss
of Yap/Taz in cardiac fibroblasts attenuates adverse remodelling and improves cardiac
function. Cardiovasc Res. 118 (7), 1785–1804. doi:10.1093/cvr/cvab205

Mia, M. M., and Singh, M. K. (2022). New insights into Hippo/YAP signaling in
fibrotic diseases. Cells 11 (13), 2065. doi:10.3390/cells11132065

Miyamoto, S. (2019). Autophagy and cardiac aging. Cell Death Differ. 26 (4), 653–664.
doi:10.1038/s41418-019-0286-9

Moradi, N., Fadaei, R., Emamgholipour, S., Kazemian, E., Panahi, G., Vahedi, S., et al.
(2018). Association of circulating CTRP9 with soluble adhesion molecules and
inflammatory markers in patients with type 2 diabetes mellitus and coronary artery
disease. PLoS One 13 (1), e0192159. doi:10.1371/journal.pone.0192159

Pesce, M., Duda, G. N., Forte, G., Girao, H., Raya, A., Roca-Cusachs, P., et al. (2023).
Cardiac fibroblasts and mechanosensation in heart development, health and disease.
Nat. Rev. Cardiol. 20 (5), 309–324. doi:10.1038/s41569-022-00799-2

Qiao, S., Hong, L., Zhu, Y., Zha, J., Wang, A., Qiu, J., et al. (2022). RIPK1-RIPK3
mediates myocardial fibrosis in type 2 diabetes mellitus by impairing autophagic flux of
cardiac fibroblasts. Cell Death Dis. 13 (2), 147. doi:10.1038/s41419-022-04587-1

Shen, G. Y., Shin, J. H., Song, Y. S., Joo, H. W., Park, I. H., Seong, J. H., et al. (2021).
Role of autophagy in granulocyte-colony stimulating factor induced anti-apoptotic
effects in diabetic cardiomyopathy.Diabetes Metab. J. 45 (4), 594–605. doi:10.4093/dmj.
2020.0049

Stancil, I. T., Michalski, J. E., Davis-Hall, D., Chu, H. W., Park, J. A., Magin, C. M.,
et al. (2021). Pulmonary fibrosis distal airway epithelia are dynamically and structurally
dysfunctional. Nat. Commun. 12 (1), 4566. doi:10.1038/s41467-021-24853-8

Tallquist, M. D. (2020). Cardiac fibroblast diversity. Annu. Rev. Physiol. 82, 63–78.
doi:10.1146/annurev-physiol-021119-034527

Wang, H., Wang, L., Hu, F., Wang, P., Xie, Y., Li, F., et al. (2022). Neuregulin-4
attenuates diabetic cardiomyopathy by regulating autophagy via the AMPK/mTOR
signalling pathway. Cardiovasc Diabetol. 21 (1), 205. doi:10.1186/s12933-022-01643-0

Weng, L., Ye, J., Yang, F., Jia, S., Leng, M., Jia, B., et al. (2023). TGF-β1/
SMAD3 regulates programmed cell death 5 that suppresses cardiac fibrosis post-
myocardial infarction by inhibiting HDAC3. Circ. Res. 133 (3), 237–251. doi:10.
1161/circresaha.123.322596

Wu, Z., Liu, C., Yin, S., Ma, J., Sun, R., Cao, G., et al. (2024). P75NTR regulates
autophagy through the YAP-mTOR pathway to increase the proliferation of
interfollicular epidermal cells and promote wound healing in diabetic mice.
Biochim. Biophys. Acta Mol. Basis Dis. 1870 (3), 167012. doi:10.1016/j.bbadis.2023.
167012

Xiang, D., Zou, J., Zhu, X., Chen, X., Luo, J., Kong, L., et al. (2020). Physalin D
attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and
YAP signaling. Phytomedicine 78, 153294. doi:10.1016/j.phymed.2020.153294

Xue, F., Cheng, J., Liu, Y., Cheng, C., Zhang, M., Sui, W., et al. (2022). Cardiomyocyte-
specific knockout of ADAM17 ameliorates left ventricular remodeling and function in
diabetic cardiomyopathy of mice. Signal Transduct. Target Ther. 7 (1), 259. doi:10.1038/
s41392-022-01054-3

Zang, H., Wu, W., Qi, L., Tan, W., Nagarkatti, P., Nagarkatti, M., et al. (2020).
Autophagy inhibition enables Nrf2 to exaggerate the progression of diabetic
cardiomyopathy in mice. Diabetes 69 (12), 2720–2734. doi:10.2337/db19-1176

Zhang, J., Lyu, Z., Li, B., You, Z., Cui, N., Li, Y., et al. (2023a). P4HA2 induces hepatic
ductular reaction and biliary fibrosis in chronic cholestatic liver diseases. Hepatology 78
(1), 10–25. doi:10.1097/hep.0000000000000317

Zhang, L., Zhang, H., Xie, X., Tie, R., Shang, X., Zhao, Q., et al. (2023b). Empagliflozin
ameliorates diabetic cardiomyopathy via regulated branched-chain amino acid
metabolism and mTOR/p-ULK1 signaling pathway-mediated autophagy. Diabetol.
Metab. Syndr. 15 (1), 93. doi:10.1186/s13098-023-01061-6

Zhang, Q., Wang, L., Wang, S., Cheng, H., Xu, L., Pei, G., et al. (2022a). Signaling
pathways and targeted therapy for myocardial infarction. Signal Transduct. Target Ther.
7 (1), 78. doi:10.1038/s41392-022-00925-z

Zhang, T., He, X., Caldwell, L., Goru, S. K., Ulloa Severino, L., Tolosa, M. F., et al.
(2022b). NUAK1 promotes organ fibrosis via YAP and TGF-β/SMAD signaling. Sci.
Transl. Med. 14 (637), eaaz4028. doi:10.1126/scitranslmed.aaz4028

Zhao, D., Feng, P., Sun, Y., Qin, Z., Zhang, Z., Tan, Y., et al. (2018). Cardiac-derived
CTRP9 protects against myocardial ischemia/reperfusion injury via calreticulin-
dependent inhibition of apoptosis. Cell Death Dis. 9 (7), 723. doi:10.1038/s41419-
018-0726-3

Frontiers in Pharmacology frontiersin.org14

Ruan et al. 10.3389/fphar.2024.1407883

17

https://doi.org/10.1080/15548627.2024.2319023
https://doi.org/10.1016/j.arr.2021.101338
https://doi.org/10.1016/j.jacbts.2020.07.009
https://doi.org/10.1161/circresaha.121.319373
https://doi.org/10.3389/fphys.2022.816218
https://doi.org/10.1016/j.jnutbio.2020.108380
https://doi.org/10.1002/mnfr.202300529
https://doi.org/10.1089/dna.2019.5302
https://doi.org/10.1038/ijo.2013.242
https://doi.org/10.1038/ijo.2013.242
https://doi.org/10.1016/j.devcel.2020.06.025
https://doi.org/10.1016/j.jacbts.2019.05.006
https://doi.org/10.1016/j.diabres.2017.07.003
https://doi.org/10.1016/j.diabres.2017.07.003
https://doi.org/10.1007/s13238-020-00809-4
https://doi.org/10.1172/jci150595
https://doi.org/10.1016/j.tcb.2024.04.009
https://doi.org/10.1016/j.tcb.2024.04.009
https://doi.org/10.15252/embj.2021108863
https://doi.org/10.15252/embj.2021108863
https://doi.org/10.1038/s41467-022-30630-y
https://doi.org/10.1126/sciadv.abq0898
https://doi.org/10.1126/sciadv.abq0898
https://doi.org/10.1016/j.mce.2020.111138
https://doi.org/10.1016/j.jare.2022.10.014
https://doi.org/10.1002/advs.202202590
https://doi.org/10.1002/advs.202202590
https://doi.org/10.1126/sciadv.add4222
https://doi.org/10.1093/cvr/cvab205
https://doi.org/10.3390/cells11132065
https://doi.org/10.1038/s41418-019-0286-9
https://doi.org/10.1371/journal.pone.0192159
https://doi.org/10.1038/s41569-022-00799-2
https://doi.org/10.1038/s41419-022-04587-1
https://doi.org/10.4093/dmj.2020.0049
https://doi.org/10.4093/dmj.2020.0049
https://doi.org/10.1038/s41467-021-24853-8
https://doi.org/10.1146/annurev-physiol-021119-034527
https://doi.org/10.1186/s12933-022-01643-0
https://doi.org/10.1161/circresaha.123.322596
https://doi.org/10.1161/circresaha.123.322596
https://doi.org/10.1016/j.bbadis.2023.167012
https://doi.org/10.1016/j.bbadis.2023.167012
https://doi.org/10.1016/j.phymed.2020.153294
https://doi.org/10.1038/s41392-022-01054-3
https://doi.org/10.1038/s41392-022-01054-3
https://doi.org/10.2337/db19-1176
https://doi.org/10.1097/hep.0000000000000317
https://doi.org/10.1186/s13098-023-01061-6
https://doi.org/10.1038/s41392-022-00925-z
https://doi.org/10.1126/scitranslmed.aaz4028
https://doi.org/10.1038/s41419-018-0726-3
https://doi.org/10.1038/s41419-018-0726-3
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1407883


Emerging roles of non-coding
RNAs in fibroblast to
myofibroblast transition and
fibrotic diseases
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The transition of fibroblasts to myofibroblasts (FMT) represents a pivotal process
in wound healing, tissue repair, and fibrotic diseases. This intricate transformation
involves dynamic changes in cellular morphology, gene expression, and
extracellular matrix remodeling. While extensively studied at the molecular
level, recent research has illuminated the regulatory roles of non-coding RNAs
(ncRNAs) in orchestrating FMT. This review explores the emerging roles of
ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs),
and circular RNAs (circRNAs), in regulating this intricate process. NcRNAs
interface with key signaling pathways, transcription factors, and epigenetic
mechanisms to fine-tune gene expression during FMT. Their functions are
critical in maintaining tissue homeostasis, and disruptions in these regulatory
networks have been linked to pathological fibrosis across various tissues.
Understanding the dynamic roles of ncRNAs in FMT bears therapeutic
promise. Targeting specific ncRNAs holds potential to mitigate exaggerated
myofibroblast activation and tissue fibrosis. However, challenges in delivery
and specificity of ncRNA-based therapies remain. In summary, ncRNAs
emerge as integral regulators in the symphony of FMT, orchestrating the
balance between quiescent fibroblasts and activated myofibroblasts. As
research advances, these ncRNAs appear to be prospects for innovative
therapeutic strategies, offering hope in taming the complexities of fibrosis and
restoring tissue equilibrium.

KEYWORDS

non-coding RNAs, fibroblast, myofibroblast, fibrosis, therapies

1 Introduction

Fibroblast to myofibroblast transition (FMT) is a fundamental process that holds
immense significance in various physiological contexts such as wound healing, tissue repair,
and the pathogenesis of fibrotic diseases (Zhang et al., 2016; Usher et al., 2019; Blessing et al.,
2021; Wang et al., 2023). This intricate transition is characterized by profound changes in
cellular phenotype, encompassing alterations in cellular morphology, gene expression
profiles, and the synthesis of extracellular matrix components (Michalik et al., 2018).
These modifications collectively culminate in substantial tissue remodeling, which is
essential for restoring tissue integrity and function following injury or damage (D’Urso
and Kurniawan, 2020).
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The process of FMT can be broadly divided into four stages
(Wynn and Ramalingam, 2012). Initially, quiescent fibroblasts are
activated in response to injury or stress signals, leading them to start
proliferating. Following this, activated fibroblasts differentiate into
myofibroblasts, characterized by the expression of alpha-smooth
muscle actin (α-SMA) and increased production of extracellular
matrix (ECM) components. Myofibroblasts then play a crucial role
in extracellular matrix remodeling, depositing collagen and other
ECM proteins to repair tissue. Normally, myofibroblasts undergo
apoptosis once the tissue is repaired. However, in pathological
conditions, myofibroblasts persist, leading to fibrosis. Several key
signaling pathways regulate FMT (Zhang et al., 2023), including the

Transforming Growth Factor-beta (TGF-β) pathway, which is a
major driver of FMT, promoting myofibroblast differentiation and
ECM production. The MAPK pathway is involved in fibroblast
activation and differentiation, while the PI3K/Akt pathway plays a
role in cell survival and proliferation during FMT.

The exploration of the molecular intricacies governing FMT has
been a subject of extensive research, driven by the imperative to
comprehend the underlying mechanisms that drive tissue repair and
fibrosis (Li et al., 2015). In this context, recent scientific exploration
has evaluated the pivotal role of non-coding RNAs (ncRNAs) as
indispensable orchestrators of the FMT process (Zhang et al., 2023).
Traditionally overlooked due to their lack of protein-coding capacity

FIGURE 1
Mechanistic Roles of ncRNAs in Fibroblast-Myofibroblast Transition and Fibrosis.
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(Ilieva and Uchida, 2022), ncRNAs are now recognized as key
players in shaping the delicate equilibrium between quiescent
fibroblasts and their activated myofibroblast counterparts during
FMT (Creemers and van Rooij, 2016).

The ensemble of ncRNAs, including microRNAs (miRNAs) (Lu
and Rothenberg, 2018), long non-coding RNAs (lncRNAs)
(Fernandes et al., 2019), and circular RNAs (circRNAs) (Li et al.,
2018a), showcases a multifaceted array of regulatory molecules that
converge to finely tune the transition from fibroblasts to
myofibroblasts (Wang et al., 2014; Fan et al., 2021; Su et al.,
2021). This cascade of molecular events encompasses miRNAs
that function as fine-tuners (Miao et al., 2018), lncRNAs that
orchestrate complex gene expression networks (Dong et al.,
2022), and circRNAs that act as dynamic sponges and
orchestrators of intricate interactions (Yang et al., 2022). These
ncRNAs are far from being bystanders; rather, they intricately
interweave with signaling pathways, transcription factors, and
epigenetic modulators to steer the gene expression programs that
govern FMT (Zhou et al., 2018; Niu et al., 2022; Hertig et al., 2023).

The pivotal roles of these ncRNAs do not exist in isolation
(Figure 1). Rather, they synergistically contribute to a complex
regulatory network that dictates the fine balance between
fibroblast quiescence and myofibroblast activation (Wang et al.,
2020). Dysregulation of these ncRNAs has been found to be a
common thread linking to the development of pathological
fibrosis across diverse tissues (Tao et al., 2016; Tarbit et al., 2019;
Senavirathna et al., 2020). Their dysregulated expression levels or
altered interactions can have profound implications, leading to
exaggerated myofibroblast activation (Wasson et al., 2020a),
excessive extracellular matrix deposition (Zhang et al., 2018), and
ultimately tissue fibrosis (Lino Cardenas et al., 2013).

In this review, our primary emphasis will be on elucidating the
involvement of ncRNAs in both FMT process and fibrotic diseases,
highlighting their significant therapeutic promise. Insights into their
roles not only deepen our comprehension of fibrotic processes but
also offer potential avenues for therapeutic interventions aimed at
mitigating the excessive activation of myofibroblasts and inhibiting
the progression of fibrosis.

2 MicroRNAs (miRNAs) in FMT

MicroRNAs (miRNAs) are a class of small non-coding RNA
molecules, typically about 22 nucleotides in length, that play crucial
roles in post-transcriptional gene regulation. MiRNAs exert their
regulatory effects by binding to the 3’untranslated region (UTR) of
target messenger RNAs (mRNAs), leading to mRNA degradation or
translational repression. In the context of fibrotic diseases, miRNAs
are significantly altered (Selman et al., 2016). Emerging evidence
highlights the substantial impact of miRNAs in modulating FMT
dynamics. MiRNAs play intricate roles in both promoting and
inhibiting FMT, making them key regulators of this transition.

Several miRNAs have been identified as promoters of FMT by
targeting key regulators of the transition. Notably, miR-21 has
emerged as a potent inducer of FMT (Liu et al., 2010; Yao et al.,
2011; Liang et al., 2012; Wang et al., 2012; Bullock et al., 2013;
Glowacki et al., 2013; Gong et al., 2014; Hedbäck et al., 2014;
Lorenzen et al., 2015; Cui et al., 2018; Xu et al., 2018; Li et al.,

2019; Kilari et al., 2019; Schipper et al., 2020; Wang et al., 2021;
Nonaka et al., 2021; Ramanujam et al., 2021; Yang et al., 2021; Liao
et al., 2022) (Figure 2). Its impact on FMT is primarily mediated
through its ability to regulate the transforming growth factor-beta
(TGF-β) signaling pathway (Liu et al., 2010; Yao et al., 2011; Liang
et al., 2012; Cui et al., 2018; Nonaka et al., 2021; Yang et al., 2021).
TGF-β is a pivotal cytokine that plays a central role in fibrotic
processes (Fernandez and Eickelberg, 2012; Yousefi et al., 2020).
MiR-21 achieves this regulatory effect by targeting TGF-β receptor
inhibitors, leading to their downregulation. This downregulation
results in an increased responsiveness of fibroblasts to TGF-β
signaling, effectively priming them for myofibroblast
differentiation. MiR-21 also promotes the expression of various
extracellular matrix (ECM) components, such as collagens (Liang
et al., 2012; Cui et al., 2018; Nonaka et al., 2021) and fibronectin (Cui
et al., 2018), thereby contributing to the phenotypic shift of
fibroblasts into myofibroblasts. This induction of ECM
components strengthens the fibrotic matrix, leading to tissue
remodeling and fibrosis development. Additionally, miR-146b
have been shown to facilitate FMT by targeting interleukin
1 receptor-associated kinase 1 (IRAK1) and carcinoembryonic
antigen-related cell adhesion molecule 1 (CEACAM1) that inhibit
myofibroblast activation (Liao et al., 2021). The research revealed
that miR-146b led to increased proliferation and migration of
fibroblasts, the conversion of fibroblasts into myofibroblasts, and
disrupted signaling among macrophages. Likewise, miR-125b
contributes to FMT by downregulating apelin that would
otherwise repress the activation of fibroblasts into myofibroblasts
(Nagpal et al., 2016). This downregulation effectively removes
barriers that restrain the transition process, resulting in enhanced
myofibroblast formation. Collectively, these miRNAs exemplify the
intricate regulatory landscape of FMT. Their effects extend beyond
singular pathways, intertwining with the TGF-β, WNT, and PI3K/
AKT signaling pathways (Zhang et al., 2023), ultimately driving the
progression of fibrosis.

Conversely, certain miRNAs act as suppressors of FMT. These
miRNAs play a crucial role in counteracting the signals and factors
that drive fibroblasts towards myofibroblast differentiation,
ultimately contributing to the maintenance of tissue homeostasis
and preventing excessive fibrosis. The miR-29 family stands out as a
group of miRNAs that counteract FMT by targeting collagen
synthesis and deposition, essential processes in fibrosis
(Kwiecinski et al., 2011; Wang et al., 2021; Yu et al., 2021; Yang
et al., 2022; Xi et al., 2023). miR-29 directly targets and
downregulates the expression of various collagens, including
collagen type I (Yu et al., 2021), III (Wang et al., 2019), and IV
(Kwiecinski et al., 2011), as well as other extracellular matrix
components (Zhang et al., 2023). This regulatory mechanism
orchestrated by miR-29 efficiently dampens the excessive
accumulation of collagen fibers, which is a hallmark of fibrotic
tissue remodeling. By inhibiting collagen production, miR-29 acts as
a protection against the pathological transformation of fibroblasts
into myofibroblasts, thus preventing the progression of fibrosis.
Moreover, the miR-200 family members counteract FMT by
targeting transcription factors ZEB1 (Bhome et al., 2022) and
ZEB2 (Liao et al., 2018), which are integral to the epithelial-
mesenchymal transition. By inhibiting ZEB1 and
ZEB2 expression, miR-200 miRNAs effectively impede the
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transition of fibroblasts into myofibroblasts, contributing to the
maintenance of the fibroblast phenotype and preventing fibrotic
tissue remodeling. Similarly, miR-214 plays a role in inhibiting FMT
by targeting factors that repress the activation of myofibroblasts
(Izawa et al., 2015; Zhu et al., 2016; Yang et al., 2019). By suppressing
these inhibitory elements, miR-214 helps tilt the balance in favor of
myofibroblast differentiation. In brief, the balanced interplay
between miRNAs that promote and those that suppress fibroblast
to myofibroblast transition is crucial for maintaining tissue integrity
and preventing pathological fibrosis. The opposing actions of these
miRNAs create a finely tuned regulatory network that governs the
dynamic equilibrium between fibroblasts and myofibroblasts.

In fibrotic conditions, miRNAs undergo various modifications
that affect their expression and function. These modifications include
changes in miRNA transcription, processing, and stability. Fibrotic
signals such as TGF-β can induce or repress the transcription of
specific miRNAs (Selman et al., 2016). Additionally, alterations in
miRNA processing enzymes, such as Drosha and Dicer, can impact
miRNAmaturation and stability (Mishra et al., 2009; Cho et al., 2020).
Epigenetic modifications, including DNA methylation and histone
modifications, also play a role in regulating miRNA expression in
fibrotic tissues (Yang et al., 2015). These mechanisms collectively
contribute to the dysregulation of miRNAs in fibrosis, influencing
their ability to modulate gene expression during FMT.

FIGURE 2
miR-21 in Fibroblast to Myofibroblast Transition (FMT) and Fibrosis.
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The regulatory roles of miRNAs in FMT are far from linear, as
manymiRNAs participate in intricate regulatory networks. MiRNAs
often target multiple genes and pathways simultaneously,
influencing the balance between pro-fibrotic and anti-fibrotic
processes. This phenomenon allows miRNAs to fine-tune the
overall outcome of FMT by modulating the expression of various
genes that are involved in different stages of the transition. One key
feature of miRNA-mediated regulation in FMT is the concurrent
targeting of multiple genes within the same or related signaling
pathways (Kwiecinski et al., 2011; Gong et al., 2014; Lorenzen et al.,
2015; Nagpal et al., 2016; Wang et al., 2021; Medzikovic et al., 2023).
This results in a synergistic impact on the cellular processes
associated with FMT. This multi-targeting capacity enables
miRNAs to exert a more potent and coordinated influence on
FMT compared to a linear one-to-one relationship between
miRNA and target gene. Cross-talk between miRNAs and other
non-coding RNAs, such as lncRNAs(Li et al., 2018b; Wang et al.,
2019) and circRNAs(Zhang et al., 2020; Ma et al., 2023), further
complicates the regulatory landscape. The interplay between
miRNAs, target genes, and other ncRNAs collectively constitutes
a systems-level regulatory network that governs FMT. This network-
based perspective highlights the interconnectedness and
interdependence of various components in shaping the
outcome of FMT.

MiRNAs play pivotal roles in orchestrating fibroblast to
myofibroblast transition. Their dual nature as promoters and
inhibitors of FMT underscores their complex regulatory
functions in fibrosis. As our understanding of the roles of
miRNAs in FMT continues to evolve, the prospects for
innovative therapeutic strategies in fibrotic diseases become
increasingly promising. The ability to manipulate miRNAs to
finely tune the fibrotic response offers a level of precision that
was previously unimaginable.

3 Long non-coding RNAs (lncRNAs)
in FMT

Long Non-Coding RNAs (lncRNAs) constitute a diverse group of
RNAmolecules exceeding 200 nucleotides in length that lack protein-
coding capacity but exert critical regulatory roles across various
cellular processes. Within the intricate processes of FMT, a recent
focus has emerged on lncRNAs as key regulatory elements. These
lncRNAs establish their presence within the framework of FMT by
orchestrating complex molecular interactions. They serve as
regulators, directing the delicate interplay among chromatin
modifiers, transcription factors, and a competing endogenous RNA
(ceRNA) that govern gene expression patterns critical to FMT. These
orchestrated activities assume a crucial role in the transformation of
fibroblasts into myofibroblasts, a pivotal event in the development of
tissue fibrosis. A diverse group of lncRNAs, including notable
examples such as MALAT1 (Wu et al., 2015), H19X (Pachera
et al., 2020), ZFAS1 (Yang et al., 2020), and SAFE (Hao et al.,
2019), have garnered attention for their role as promoters of
myofibroblast differentiation. Their contributions add a novel layer
of regulatory intricacy to the evolving narrative surrounding FMT.

lncRNAs have emerged as key regulators of chromatin
remodeling in the process of myofibroblast differentiation. These

lncRNAs act as guides, directing chromatin modifiers to specific
genomic loci that are strategically poised to undergo transformation.
Through their interaction with chromatin-modifying complexes,
these lncRNAs initiate a cascade of epigenetic changes that play a
central role in the activation of genes critical for FMT. For example,
HOTAIR and H19X have important effects on chromatin. Their
strategic interaction with chromatin modifiers, including histone
methyltransferases (Wasson et al., 2020b; Wang et al., 2023) and
chromatin accessibility (Pachera et al., 2020), initiates the
unwinding of the tightly packed chromatin structure. This allows
for increased accessibility of transcription factors, such as GLI2, and
other regulatory molecules to the gene promoters that drive
myofibroblast differentiation. As chromatin remodeling takes
place under the guidance of these lncRNAs, a series of events
unfold that culminate in the activation of genes pivotal to FMT.
These activated genes include those encoding extracellular matrix
components, cytoskeletal proteins, and signaling molecules that are
characteristic of the myofibroblast phenotype. The orchestrated
chromatin changes initiated by lncRNAs lead to the
establishment of a permissive transcriptional environment that
favors the expression of genes essential for myofibroblast
differentiation.

Through their intricate interplay with transcription factors
smad, lncRNAs wield significant influence over the gene
expression landscape that guides fibroblasts through the intricate
process of myofibroblast differentiation. In zheng’s study (Zheng
et al., 2019), Smad3 activated the expression of Crnde, revealing
insights into the molecular process. Intriguingly, Crnde also
suppressed Smad3’s transcriptional activation of target genes,
thus blocking the expression of myofibroblast-specific marker
genes in cardiac fibroblasts. Lin’s research demonstrated that
GAS5-AS1 levels were significantly reduced in oral submucous
fibrosis tissues and fibrotic buccal mucosal fibroblasts (Lin et al.,
2018). Furthermore, increasing GAS5-AS1 expression led to
inhibition of both p-Smad expression and myofibroblast markers.
Their presence ensures the coordination, precision, and fidelity of
gene expression programs essential for driving FMT. By functioning
as transcriptional regulators, lncRNAs contribute to orchestrating a
complex series of molecular events culminating in the acquisition of
the myofibroblast phenotype.

In the realm of gene expression regulation, transcription factors
assume the role of master regulators, directing the intricate sequence
of molecular events that govern cellular differentiation. However,
this role is not undertaken in isolation. lncRNAs serve as adept
collaborators, guiding the transformative process of FMT. LncRNAs
emerge as crucial co-regulators in this complex transcriptional
symphony, intricately woven into the regulatory landscape to
ensure the precise execution of gene expression programs that
steer fibroblasts along the path of myofibroblast differentiation.
Through specific interactions with transcription factors, they play
a role beyond conventional transcriptional regulation.
LINC00941 act as co-regulators, interacting transcription factors
ATF3 and histone 3 lysine 27 acetylation to play its pro-fibrotic role
(Zhang et al., 2022). This coordinated collaboration guarantees the
timely and accurate activation of the genes necessary for driving the
transformation of fibroblasts into myofibroblasts.

Furthermore, the co-regulator role of lncRNAs extends beyond
mere guidance; LncRNA Airn actively participate in modulating the
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development of cardiac fibrosis via IMP2-p53 axis in an m6A
dependent manner (Peng et al., 2022). Serving as molecular
scaffolds, lncRNA H19X create a conducive environment for the
assembly of complexes, thereby influencing the accessibility of target
gene enhancer (Pachera et al., 2020). This interaction fine-tunes
transcriptional activity, either amplifying or attenuating the
expression of genes involved in FMT.

The incorporation of lncRNAs into the narrative of FMT
introduces a fresh and intricate layer to the multifaceted story of
fibrosis. These elusive molecules, previously overshadowed by
protein-coding genes, now emerge as critical protagonists,
orchestrating the delicate balance between fibroblast quiescence
and the transformative process into myofibroblasts. By seamlessly
integrating themselves into the complex molecular choreography of
FMT, lncRNAs exert their influence in previously unforeseen ways.
Their roles as guides, regulators, and network architects has
provided new insights into our understanding of fibrosis,
suggesting their potential as therapeutic targets for the benefit of
patients afflicted with fibrotic conditions.

4 Circular RNAs (circRNAs) in FMT

Circular RNAs (circRNAs) are a class of non-coding RNAs
(ncRNAs) characterized by their covalently closed loop structure.
Unlike linear RNAs, circRNAs lack 5′caps and 3′polyadenylated
tails, making them resistant to exonucleases. This unique structure
imparts remarkable stability, allowing circRNAs to persist longer in
cells compared to their linear counterparts (Kristensen et al., 2019).
These stable molecules are involved in various cellular processes by
acting as miRNA sponges, interacting with RNA-binding proteins,
and influencing gene expression. In the intricate landscape of FMT,
circRNAs have emerged as pivotal players, wielding their regulatory
influence through multifaceted mechanisms that are now elucidated
by recent studies.

One of the prominent roles that circRNAs play in FMT is that of
miRNA sponges, implying that circRNAs have sequences that can
bind to and interact with miRNAs, preventing them from carrying
out their usual regulatory functions on other messenger RNAs.
CircRNAs possess a remarkable ability to sequester miRNAs, small
regulatory RNAs that modulate gene expression by binding to
mRNA targets and suppressing their translation or promoting
their degradation (Patop et al., 2019). By acting as miRNA
sponges, circRNAs effectively titrate miRNAs away from their
mRNA targets, thus preventing their inhibitory effects. This
intricate regulation allows circRNAs to regulate gene expression
programs that are crucial for FMT (Zhu et al., 2019; Hu et al., 2022;
Zou et al., 2023). Notably, circRNAs like circHIPK3 have been
identified as potent regulators of FMT-associated genes (Zhang
et al., 2019). By binding to miR-338-3p, circHIPK3 prevents the
miR-338-3p from interacting with their intended mRNA targets. As
a result, the expression of target gene SOX4 and COL1A1, is spared
from miRNA-mediated suppression, leading to the enhancement of
fibroblast activation. This mechanism underscores the pivotal role
circRNAs play in modulating gene expression patterns that drive the
transition of fibroblasts into myofibroblasts.

Beyond their role as miRNA sponges, circRNAs also interact
with RNA-binding proteins, adding another layer of complexity to

their regulatory functions. For example, Circ-sh3rf3 (circular RNA
SH3 domain containing Ring Finger 3) interacts with RNA-binding
protein GATA-4 to promote the expression of miR-29a, thereby
inhibiting FMT and myocardial fibrosis (Ma et al., 2023). These
interactions can impact RNA stability, localization, and translation,
further expanding the repertoire of mechanisms through which
circRNAs influence FMT. Through their interactions with both
miRNAs and RNA-binding proteins, circRNAs wield a dynamic
and multifaceted influence on the regulatory networks
that govern FMT.

Recent studies have also shed light on circRNAs’ role in
modulating signaling pathways critical for FMT. CircTTN, for
instance, has been implicated in the PI3K/AKT pathway, a key
signaling cascade in myofibroblast differentiation. By spongingmiR-
432, circTTN regulates the expression of genes like IGF2, thereby
influencing the activation of the PI3K/AKT signaling pathway
(Wang et al., 2019). This regulation demonstrates how circRNAs
can modulate specific signaling pathways, affecting the cellular
transitions in fibrosis.

Furthermore, circRNAs like circ004463 have been found to
interact with AKT/ERK pathways. Circ004463 sponges miR-23b,
which targets the mRNA of AKT and ERK. By regulating
CADM3 and MAP4K4 expression, circ004463 plays a significant
role in promoting fibroblast proliferation and collagen type I
synthesis (Zou et al., 2023). Another notable circRNA is hsa_
circ_0020792, which acts as a sponge for miR-193a-5p, thereby
regulating the expression of pro-fibrotic genes such as TGF-β1 (Hu
et al., 2022). This interaction is crucial in the context of fibrosis, as
TGF-β1 is a key cytokine driving fibrogenesis, and collagen type I is a
major component of the extracellular matrix.

The intricate regulatory function of circRNAswithin the context of
FMT suggests their significance in shaping cell fate. Their capacity to
sponge miRNAs and interact with RNA-binding proteins underscores
their ability to modulate gene expression programs, thus determining
whether fibroblasts remain in their quiescent state or transition into
myofibroblasts. As ongoing research unravels the intricacies of these
regulatory mechanisms, circRNAs hold the promise of becoming not
only diagnostic markers but also potential therapeutic targets for
mitigating the progression of fibrotic diseases.

5 Role of non-coding RNAs (ncRNAs) in
fibrotic diseases

Recent research reveals a substantial exploration into the
contribution of dysregulated ncRNAs to the intricate landscape
of pathological fibrosis. These ncRNAs have emerged as critical
players in driving the development and progression of fibrotic
diseases across diverse tissues. MiRNAs exhibit a multifaceted
role in pathological fibrosis. Pro-fibrotic miRNAs, exemplified by
miR-21, facilitate fibrosis by augmenting fibroblast responsiveness
to profibrotic stimuli and promoting extracellular matrix deposition.
Conversely, anti-fibrotic miRNAs like miR-133a (Wei et al., 2019),
counteract fibrosis by targeting multiple components of TGF-β1
profibrogenic pathways. LncRNAs exert significant influence on
pathological fibrosis. Pro-fibrotic lncRNAs such as HOTAIR and
H19X contribute to myofibroblast differentiation by engaging with
chromatin modifiers, transcription factors, and regulatory
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molecules. This interaction modulates gene expression profiles and
drives fibroblasts towards the myofibroblast phenotype. In contrast,
certain lncRNAs such as PFI (Sun et al., 2021) and LOC344887 (Liu
et al., 2021) act as suppressors of fibrosis, impeding myofibroblast
activation and promoting tissue equilibrium. CircRNAs, with their
circular structure, introduce an additional layer of complexity to the
fibrotic scenario. Operating as miRNA sponges and interacting with
RNA-binding proteins, circRNAs regulate gene expression patterns
with precision. CircRNAs like circHIPK3 exemplify this role by
sequestering miRNAs targeting key genes involved in fibrotic
processes, thereby modulating gene expression profiles that
underpin fibrosis. In summary, prior studies underscore the
integral roles of dysregulated ncRNAs in driving pathological
fibrosis. These ncRNAs impact the equilibrium between fibroblast
activation and tissue health.

The formation and expression of ncRNAs are tightly regulated
processes that are often altered during disease conditions. ncRNAs
are transcribed by RNA polymerase II and III, and their maturation

involves complex processing steps, including splicing, editing, and
modifications. For example, primary miRNAs (pri-miRNAs) are
processed by Drosha and Dicer enzymes to generate mature
miRNAs that can bind to target mRNAs (Herrera et al., 2018;
Cho et al., 2020). Similarly, lncRNAs undergo splicing and
modifications that influence their stability and function (Hao
et al., 2019). The expression of ncRNAs is tightly regulated under
normal conditions but can become dysregulated during fibrosis.
This dysregulation plays a crucial role in the pathological
progression of fibrosis by affecting the balance between fibroblast
quiescence and myofibroblast activation. In kidney fibrosis, the
upregulation of miR-21 correlates with increased kidney stiffness
and fibrosis severity, indicating its role in disease progression
(Glowacki et al., 2013). Similarly, reduced levels of miR-449a are
observed in fibrotic lung tissues and correlate with the severity of
lung lesions induced by silica, suggesting its involvement in the
Silicosis (Han et al., 2016). Understanding the correlation between
ncRNA expression and fibrosis progression provides valuable

TABLE 1 ncRNAs spectrum of diverse fibrotic diseases.

miRNAs lncRNAs circRNAs

cardiac fibrosis miR-9 (Wang et al., 2016c), miR-21 (Liang et al., 2012; Lorenzen et al., 2015;
Nonaka et al., 2021; Ramanujam et al., 2021), miR-22 (Zhang et al., 2018b), miR-
23a-3p (Su et al., 2022), miR-29 b (Horii et al., 2023), MiR-32–5p (Shen et al.,
2019), miR-34a/miR-93 (Zhang et al., 2018a), miR-101a (Zhou et al., 2018), miR-
125 b (Nagpal et al., 2016; Dufeys et al., 2021), miR-130a (Li et al., 2017a; Feng
et al., 2022), miR-133a (Matkovich et al., 2010), miR-135a (Wei et al., 2020),
miR-142–3p (Wang et al., 2016d; Cai et al., 2020a), miR-150 (Deng et al., 2016),
miR-152–3p (Xu et al., 2021b), miR-155 (Zhang et al., 2016b; Wei et al., 2017),
miR-195–3p (Carvalho et al., 2023), miR-214–3p (Zhu et al., 2016; Yang et al.,
2019), miR-216a (Qu et al., 2019), miR-327 (Ji et al., 2018), miR-331 (Yousefi
et al., 2021), miR-338–3p (Huang et al., 2022), miR-369–5p (Tao et al., 2018),
miR-409–3p (Wang et al., 2022), miR-433 (Tao et al., 2016b), miR-451a (Deng
et al., 2022), miR-486 (Chen et al., 2022), miR-574–5p (Cui et al., 2020)

Airn (Peng et al., 2022)
Crnde (Zheng et al., 2019)
Gm41724 (Kong et al., 2023)
PFL (Liang et al., 2018)
RMST (Ma et al., 2023b)
Safe (Hao et al., 2019)
SRA1(Zhang et al., 2019c)
SNHG7(Wang et al., 2020b)
TUG1 (Zhu et al., 2018)

circNFIB(Zhu et al., 2019)
circHRCR (Wang et al., 2016b)
circ-sh3rf3 (Ma et al., 2023a)
circSMAD4 (Jeong et al., 2023)

pulmonary fibrosis let-7 (Elliot et al., 2019; Thakur et al., 2022; Xu et al., 2022), miR-7 (Zhang et al.,
2020b), miR-9-5p (Fierro-Fernández et al., 2015), miR-19a (Fujita et al., 2023),
miR-21 (Yamada et al., 2013; Cui et al., 2018; Wang et al., 2021a), miR-22 (Kuse
et al., 2020), miR-24 (Ebrahimpour et al., 2019), miR-26a (Liang et al., 2014),
miR-27a-3p (Cui et al., 2016), miR-29 (Herrera et al., 2018), miR-30c (Kanno
et al., 2021), miR-30d (Zhao et al., 2018), miR-34a (Cui et al., 2017; Bulvik et al.,
2020), miR-34b-5p (Hu et al., 2019), miR-96 (Nho et al., 2014), miR-124 (Lu
et al., 2019), miR-133a (Wei et al., 2019), miR-144–3p (Bahudhanapati et al.,
2019), miR-145 (Yang et al., 2013), miR-155 (Artlett et al., 2017), miR-199a-5p
(Lino Cardenas et al., 2013; Yi et al., 2018), miR-200 (Chilosi et al., 2017), miR-
338–3p (Rackow et al., 2022), miR-424 (Xiao et al., 2015; Huang et al., 2020),
miR-375 (Zhang et al., 2020c), miR-449a (Han et al., 2016), miR-497–5p (Chen
et al., 2017), miR-541–5p (Ren et al., 2017), miR-627 (Li et al., 2019a), miR-
877–3p (Wang et al., 2016a), miR-7219–3p (Niu et al., 2022)

CTD-2528L19.6 (Chen et al.,
2021a)
DNM3OS(Savary et al., 2019)
GAS5 (Wang et al., 2023b)
H19 (Xiao et al., 2021)
ITPF(Song et al., 2019)
LINC00941(Zhang et al.,
2022)
LOC344887(Liu et al., 2021)
LOC103691771(Cai et al.,
2020b)
PFI(Sun et al., 2021)
PFAL(Li et al., 2018b)
SNHG1(Wu et al., 2021)
SNHG20(Cheng et al., 2021)
ZFAS1(Yang et al., 2020)

circ0044226 (Zhang et al., 2020a)
circHIPK3(Zhang et al., 2019b; Xu
et al., 2021a)

renal fibrosis miR-34a (Saito et al., 2023), miR-132 (Bijkerk et al., 2016), miR-335–5p (Qiu
et al., 2022), miR-378a-5p (Zhang et al., 2023b)

Rian and Miat (Bijkerk et al.,
2019)

—

hepatic fibrosis miR-16 (Pan et al., 2020), miR-19 b (Brandon-Warner et al., 2018), miR-29
(Kwiecinski et al., 2011; Kwiecinski et al., 2012), miR-132 (Mann et al., 2010),
miR-214 (Izawa et al., 2015)

MALAT1 (Wu et al., 2015) —

dermal fibrosis miR-130a (Zhang et al., 2019a), miR-192 (Li et al., 2017b; Li et al., 2021), miR-
196b-5p (Baral et al., 2021)

HOTAIR (Wasson et al.,
2020b)

circAMD1 (Su et al., 2021)

oral submucous
fibrosis

miR-10 b (Fang et al., 2020), miR-21 (Yang et al., 2021; Liao et al., 2022), miR-
29c (Yang et al., 2022a), miR-200 b (Liao et al., 2018)

GAS5-AS1 (Lin et al., 2018)
HOTTIP(Lee et al., 2021)
H19 (Yu et al., 2021)

—

musculoskeletal
tissues

miR-29a (Millar et al., 2015),miR-214–3p (Arrighi et al., 2021) — circTTN (Wang et al., 2019b)
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insights into the molecular mechanisms underlying fibrotic diseases.
These insights highlight the potential of ncRNAs as biomarkers for
disease diagnosis and prognosis and as therapeutic targets for
modulating fibrotic processes and restoring tissue homeostasis.

Notably, ncRNAs exhibit their multifaceted roles across a
diverse spectrum of fibrotic conditions, ranging from cardiac
fibrosis, hepatic fibrosis, pulmonary fibrosis, renal fibrosis, dermal
fibrosis, and musculoskeletal tissues (Table 1). This broad influence
underscores the significance of ncRNAs as central regulators of
fibrotic processes across diverse tissues and organs. In particular,
arthrofibrosis is a common and debilitating complication that can
occur following knee surgery (Lee et al., 2022). Abdel et al. have
identified differentially expressed genes associated with
arthrofibrosis by comparing tissue samples from fibrotic and
non-fibrotic human knee joints using RNA sequencing (Bayram
et al., 2020). Further, Chen et al. carried out further bioinformatics
analysis and reported new biomarkers for diagnosing arthrofibrosis,
shedding light on the role of transforming growth factor-beta
receptor 1 (TGFBR1) (Chen et al., 2021). These data provide
further insight into the role of ncRNAs in the regulation of
joint fibrosis.

ncRNAs exhibit both ubiquitous and tissue-specific functions,
which together shape the initiation and progression of fibrosis.
Ubiquitous ncRNAs, such as miR-21, are widely expressed across
different tissues and play a central role in fibrosis by modulating
common fibrogenic pathways. miR-21 enhances fibroblast
activation and extracellular matrix deposition by targeting
multiple genes involved in the TGF-β signaling pathway,
including SMAD7 and PTEN, thus promoting fibrosis in various
organs (Glowacki et al., 2013; Li et al., 2019; Wang et al., 2021;
Nonaka et al., 2021; Liao et al., 2022). In contrast, tissue-specific
ncRNAs are expressed in particular organs and contribute to
localized fibrotic processes. For instance, lncRNA MALAT1 is
prominently expressed in the liver and contributes to hepatic
fibrosis by interacting with the silent information regulator
1(SIRT1) and promoting the expression of pro-fibrotic genes
such as COL1A1 and α-SMA (Wu et al., 2015). Similarly,
circNFIB is predominantly expressed in the heart and, where it
activates the TGF-β–Smad3 signaling pathway and is crucial in
cardiac fibrosis (Zhu et al., 2019).

ncRNAs can exert paracrine effects, influencing cells beyond
their origin and contributing to multi-organ fibrosis. These
ncRNAs can be secreted into the extracellular environment and
transported to distant cells and tissues through extracellular
vesicles (EVs), such as exosomes and microvesicles. This capability
allows ncRNAs to participate in intercellular communication and
influence various physiological and pathological processes across
different organs.

In the context of fibrosis, ncRNAs can be secreted by fibroblasts
or other cell types and taken up by neighboring cells, thereby
modulating their behavior. For example, miR-21, a well-known
pro-fibrotic miRNA, can be packaged into EVs and transferred
from myofibroblasts to adjacent endothelial cells. This transfer can
induce a pro-angiogenic process of endothelial cells, a process
contributing to the fibrotic response (Li et al., 2019). Similarly,
miR-200, another miRNA implicated in fibrosis, can be secreted by
endothelial cells and taken up by fibroblasts, influencing fibroblast
heterogeneity in colorectal cancer (Bhome et al., 2022).

NcRNAs can enter the systemic circulation, allowing them to
travel to distant organs and exert their effects. Circulating miRNAs,
for instance, have been detected in blood, urine, and other body
fluids, serving as biomarkers for various diseases (De Guire et al.,
2013). These circulating ncRNAs extend their impact beyond the
local tissue environment, affecting distant organs and contributing
to the pathology of multi-organ diseases. For instance, miR-29,
which regulates extracellular matrix production, is involved in
cutaneous, prostate, cardiac and oral submucous fibrosis. Its
dysregulation in one organ can have implications for fibrotic
processes in others.

LncRNAs also exhibit multi-organ effects. LncRNAH19, known
for its role in pulmonary fibrosis, can influence fibrotic buccal
mucosal myofibroblast activities, such as collagen gel contractility
and migration ability when dysregulated, highlighting its potential
impact on both pulmonary and oral submucous tissues. Similarly,
the lncRNA GAS5, which modulates fibrotic pathways in the skin,
can have systemic effects, potentially affecting other fibrotic
conditions in organs like the lung.

Understanding the paracrine andmulti-organ effects of ncRNAs
is crucial for developing therapeutic strategies targeting fibrotic
diseases. Therapies designed to modulate ncRNA levels in one
organ might have beneficial effects on fibrosis in other organs,
offering a systemic approach to treating multi-organ fibrotic
conditions. For example, therapeutic inhibition of miR-21 has
shown promise in reducing fibrosis in both the heart and lung,
demonstrating the potential of ncRNA-targeted therapies to address
multi-organ fibrosis.

ncRNAs may have distinct impacts on acute versus chronic
diseases, reflecting their roles in immediate injury responses versus
long-termmaladaptive processes. During acute injury, the rapid and
transient changes in ncRNA expression are crucial for the
immediate response to cellular damage and stress. For instance,
miR-101a is rapidly upregulated following myocardial infarction
(MI) and plays a critical role in promoting cardiac fibroblast
activation and fibrosis to stabilize the injured tissue (Zhou et al.,
2018). In contrast, chronic conditions and aging involve sustained
ncRNA dysregulation, contributing to persistent fibrosis and organ
dysfunction. For example, miR-34A is consistently dysregulated in
chronic liver and renal fibrosis, leading to sustained extracellular
matrix production and fibrogenesis (Cui et al., 2017; Saito et al.,
2023). Understanding the distinct roles of ncRNAs in acute and
chronic conditions can inform the development of targeted
therapies. In acute injury, therapeutic strategies may aim to
modulate ncRNAs to enhance tissue repair and limit damage. In
chronic diseases and aging, ncRNA-based therapies could focus on
reversing maladaptive gene expression patterns and reducing
fibrosis and inflammation.

In short, the regulatory influence of various ncRNAs extends
across diverse fibrotic diseases. The pervasive presence of these
ncRNAs within the fibrotic milieu underscores the need for a
comprehensive understanding of their intricate functions.
Unraveling the precise molecular mechanisms through which
ncRNAs exert their regulatory effects could pave the way for the
development of targeted therapeutic strategies. By targeting these
ncRNAs or modulating their interactions with key regulatory
molecules, it might be possible to attenuate fibrosis progression
and restore tissue homeostasis in a range of fibrotic diseases.
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6 Therapeutic implications

The intricate involvement of ncRNAs in FMT has opened new
avenues for therapeutic interventions in fibrotic diseases. These
regulatory molecules have been identified as critical players in
fine-tuning gene expression programs that govern the delicate
balance between fibroblast quiescence and myofibroblast
activation. By deciphering the precise roles of ncRNAs in
regulating this transition, researchers have uncovered potential
targets that could be manipulated to mitigate the excessive
activation of myofibroblasts and slow the progression of fibrosis.

Therapeutic strategies involving miRNAs typically include
miRNA mimics to restore the function of downregulated
miRNAs or miRNA antagonists (antagomirs) to inhibit the
function of upregulated miRNAs. For instance, MiR-29 family
mimics exhibit antifibrotic effects across various tissues by
targeting collagen synthesis and extracellular matrix remodeling.
A completed open-label phase 2 RCT clinical trial (Clinical Trial
Number: NCT03601052) has defined the efficacy, safety, and
tolerability of Remlarsen (MRG-201), which is designed to mimic
the activity of miR-29 that may be an effective therapeutic to prevent
cutaneous fibrosis. This study demonstrated that administering high
doses of this miR-29 mimic could effectively decrease fibrosis
(Gallant-Behm et al., 2019). It is worth noting that the dosage
utilized in this research was excessively high for practical use in
human patients. Nevertheless, these findings provided encouraging
evidence for investigators working towards the development of
microRNA mimics as potential therapeutics for fibrosis. Anti-
miR oligonucleotides, designed to inhibit the function of pro-
fibrotic miRNAs, also show potential; for example, targeting
miR-21, a pro-fibrotic miRNA, has shown promise in reducing
fibrosis in preclinical models. Anti-miR-21 therapies aim to decrease
fibroblast responsiveness to pro-fibrotic stimuli and reduce
extracellular matrix deposition.

LncRNA-based therapeutics involve targeting pro-fibrotic
lncRNAs, such as ASLNCS5088 (Chen et al., 2019) and
Gm41724 (Kong et al., 2023), to mitigate fibrosis by disrupting
their interactions with RNA-binding proteins, and M2 macrophage
modulation. By preventing these interactions, it is possible to
modulate gene expression profiles that drive fibroblast activation
and myofibroblast differentiation. Additionally, boosting the
expression of anti-fibrotic lncRNAs like GAS5 can help inhibit
myofibroblast activation and fibrogenesis through suppressing
TGF-β/Smad3 signaling (Tang et al., 2020). Therapeutic strategies
may involve gene therapy approaches to deliver these lncRNAs or
small molecules that enhance their endogenous expression.

CircRNA-based therapeutics focus on the unique abilities of
circRNAs to act as miRNA sponges or interact with RNA-binding
proteins. CircHIPK3 serves as a prime example, as it influences
myofibroblast differentiation by sponging miR-338-3p that target
SOX4 and COL1A1 (Zhang et al., 2019). Designing synthetic
circRNA sponges can regulate miRNA activity and modulate
gene expression patterns involved in fibrosis. Additionally,
modulating circRNA-protein interactions can impact the
regulatory networks driving fibrosis. For example, Circ-sh3rf3
can bind to GATA-4 proteins and decrease their expression,
which prevents GATA-4 from suppressing miR-29a expression.
As a result, miR-29a expression is increased, leading to the

inhibition of fibroblast-to-myofibroblast differentiation and
myocardial fibrosis. Targeting these ncRNAs might offer a means
to disrupt the regulatory networks that drive fibroblast activation.
Such precision-based approaches could revolutionize the treatment
landscape for fibrotic diseases, allowing for tailored interventions
that target the underlying molecular mechanisms.

While the potential of ncRNA-based therapies for fibrosis is
exciting, several challenges must be navigated for successful
translation into clinical applications. One significant hurdle is the
delivery of ncRNA-based therapeutics to target tissues. Ensuring
efficient and specific delivery remains a key obstacle. Strategies such
as viral vectors (Tang et al., 2020), nanoparticle-mediated delivery
(Zahir-Jouzdani et al., 2018), or organ-targeted liposomes (Yan
et al., 2023) are being explored to address this challenge.
Additionally, the specificity of ncRNA-targeting therapies is
crucial to avoid off-target effects and unintended consequences
(Yan et al., 2023). Ensuring that therapies selectively target the
dysregulated ncRNAs while preserving the physiological functions
of others is essential for clinical success. The stability and
bioavailability of ncRNA-based therapeutics are critical factors
for their effectiveness. Chemical modifications, such as locked
nucleic acids (LNAs) and phosphorothioate backbones, can
enhance the stability and resistance of ncRNA-based therapeutics
to degradation. These modifications improve the pharmacokinetic
properties and therapeutic efficacy of ncRNA-based treatments (Ali
Zaidi et al., 2023). ncRNA-based therapeutics, particularly those
involving viral vectors, may elicit immune responses. Strategies to
minimize immunogenicity include optimizing vector design, using
tissue-specific promoters, and developing non-viral delivery systems
(Awan et al., 2017). Furthermore, the complex regulatory networks
involving ncRNAs add another layer of complexity. Many ncRNAs
participate in intricate crosstalk with other regulatory molecules,
such as transcription factors and signaling pathways, leading to a
network of interdependencies. Designing therapies that effectively
modulate these networks requires a deep understanding of the
molecular interactions and their consequences.

Future directions and prospects in ncRNA-based therapies for
fibrotic diseases include combination therapies, personalized
medicine, advancements in delivery systems, and robust
translational research efforts. Combining ncRNA-based therapies
with existing antifibrotic drugs or other therapeutic modalities may
enhance efficacy and overcome resistancemechanisms. Personalized
approaches tailored to individual patients’ specific ncRNA
expression profiles can improve treatment outcomes and
minimize adverse effects. Ongoing advancements in delivery
systems, such as exosome-based delivery and tissue-specific
nanoparticles, hold promise for improving the targeted delivery
of ncRNA-based therapeutics. Collaborative efforts between
academia, industry, and regulatory agencies can accelerate the
development and approval of ncRNA-based therapies.

The emerging roles of ncRNAs in FMT offer novel avenues for
therapeutic intervention in fibrotic diseases. By targeting specific
ncRNAs, it is possible to intervene in the processes that drive
myofibroblast activation and tissue fibrosis. However, the journey
from bench to bedside requires the successful resolution of delivery
challenges, the mitigation of off-target effects, and in depth
understanding of the complex regulatory networks involved. As
research in this field advances, the development of effective and
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precise therapies holds the promise of transforming the landscape of
fibrotic disease treatment.

7 Conclusion

In summary, recent research highlights the crucial involvement of
ncRNAs in the complex process of FMT. These ncRNAs, including
miRNAs, lncRNAs, and circRNAs, collectively constitute a regulatory
ensemble that finely modulates the equilibrium between quiescent
fibroblasts and their activated myofibroblast counterparts. Recent
studies have meticulously unraveled the multifaceted mechanisms
by which these ncRNAs exert their influence.

The narrative begins with miRNAs, which play a central role by
targeting key regulators of FMT. MiR-21 assumes a prominent
position as a potent inducer of FMT, primarily by inhibiting
TGF-β receptor inhibitors. This action sensitizes fibroblasts to
TGF-β signaling, thereby promoting myofibroblast differentiation
and subsequent fibrosis. MiR-146b and miR-125b also contribute to
FMT by targeting factors that otherwise restrain myofibroblast
activation. Conversely, miRNAs such as miR-29 and the miR-200
family act as suppressors of FMT, counteracting excessive collagen
synthesis and inhibiting myofibroblast differentiation through their
targeting of related genes.

LncRNAs act as pivotal regulators of FMT. Notable lncRNAs
like H19X and GAS5 emerge as regulators in the FMT process. They
engage with chromatin modifiers, transcription factors, and
regulatory molecules, facilitating chromatin remodeling,
reprogramming of gene expression, and the orchestration of
transcriptional forces that guide fibroblasts toward the
myofibroblast lineage. LncRNAs further their influence by
fostering crosstalk among regulatory molecules, perpetuating
essential signaling cascades crucial for FMT progression.

Simultaneously, circRNAs embrace their role as miRNA
sponges, intricately fine-tuning gene expression during FMT.
Notable circRNAs like circHIPK3 demonstrate their ability to
sequester miRNAs targeting genes associated with FMT. In doing
so, these circRNAs release these genes from miRNA-mediated
suppression, ultimately enhancing the differentiation of
fibroblasts into myofibroblasts. Moreover, the intricate
interactions of circRNAs with RNA-binding proteins add an
additional layer of complexity to their regulatory repertoire.

In a broader context, these ncRNAs collaboratively interweave
their actions, constructing a complex network of regulatory
interactions that modulate the transformation of fibroblasts into
myofibroblasts. Their contributions extend beyond individual roles,
creating a dynamic interplay that profoundly influences the delicate
equilibrium between fibroblast quiescence and myofibroblast
activation. Dysregulation of these ncRNAs has been closely linked
to the development of pathological fibrosis in various tissues,
underscoring their significance as potential therapeutic targets.

As we stand on the cusp of a new era in the treatment of fibrotic
diseases, the emerging roles of ncRNAs in FMT offer substantial
therapeutic promise. By deciphering the intricacies of ncRNA-
mediated regulatory networks, researchers could uncover
innovative therapeutic avenues that could effectively counteract
the progression of fibrotic diseases. However, translating these
insights into clinical applications presents challenges such as

efficient delivery methods, specificity, and the potential for off-
target effects. As the journey continues, the potential to harness the
power of ncRNAs may illuminate a path toward restoring tissue
health and function, offering renewed hope to those affected by these
debilitating conditions.

In conclusion, the process of FMT occupies a central role in
tissue repair and the pathogenesis of fibrotic diseases. The intricate
interplay of cellular morphological changes, altered gene expression
profiles, and extracellular matrix remodeling underscores its
significance. With recent discoveries revealing the pivotal roles of
ncRNAs, including miRNAs, lncRNAs, and circRNAs, in
orchestrating FMT, a new chapter has opened in our
understanding of tissue remodeling. These ncRNAs act as master
regulators, shaping the symphony of FMT by influencing a diverse
array of molecular players. Their regulatory capabilities extend
across signaling cascades, transcriptional programs, and intricate
interactions, and their dysregulation can lead to pathological
fibrosis. As research continues to elucidate the precise
mechanisms by which ncRNAs guide FMT, their therapeutic
potential emerges as a promising frontier, offering novel
strategies to combat fibrotic diseases and restore tissue health.
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Human adipose mesenchymal
stem cell-derived exosomes
alleviate fibrosis by restraining
ferroptosis in keloids

Yuan Tian, Meijia Li, Rong Cheng, Xinyue Chen, Zhishan Xu,
Jian Yuan, Zhiyong Diao and Lijun Hao  *

Plastic Surgery, Harbin Medical University, Harbin, China

Background: Keloid is a fibroproliferative disease with unsatisfactory therapeutic
effects and a high recurrence rate. exosomes produced by adipose-derived
mesenchymal stem cells (ADSC-Exos) have attracted significant interest due
to their ability to treat fibrosis. However, the molecular mechanisms of ADSC-
Exos in keloids remain inconclusive.

Objective:Our study revealed the relationship between ferroptosis and fibrosis in
keloids. Subsequently, this study aimed to explore further the anti-fibrotic effect
of ADSC-Exos on keloids through ferroptosis and the potential underlying
mechanisms.

Methods: To investigate the impact of ferroptosis on keloid fibrosis, Erastin and
ferrostatin-1 (fer-1) were utilized to treat keloid fibroblast. Keloid keloids treated
with Erastin and fer-1 were cocultured with ADSC-Exos to validate the impact of
ferroptosis on the effect of ADSC-Exos on keloid anti-ferrotic protein, peroxidase
4 (GPX4) and anti-fibrotic effects in vivo and in vitro by Western blot, as well as
variations in iron metabolite expression, malondialdehyde (MDA), liposomal
peroxidation (LPO) and glutathione (GSH) were analyzed. The effect of solute
carrier family 7-member 11 (SLC7A11) silencing on ADSC-Exo-treated keloid
fibroblast was investigated.

Results: Iron metabolite dysregulation was validated in keloids. Fibrosis
progression is enhanced by Erastin-induced ferroptosis. The anti-fibrotic
effects of ADSC-Exos and fer-1 are related to their ability to prevent iron
metabolism. ADSC-Exos effectively suppressed keloid fibrosis progression and
increased GSH and GPX4 gene expression. Additionally, the use of Erastin limits
the effect of ADSC-Exos in keloids. Furthermore, the effect of ADSC-Exos on
keloids was associated with SLC7A11-GPX4 signaling pathway.

Conclusion: We demonstrated a new potential mechanism by which anti-
ferroptosis inhibits the progression of keloid fibrosis and identified an ADSC-
Exo-based keloid therapeutic strategy. Resisting the occurrence of ferroptosis
and the existence of the SLC7A11-GPX4 signaling pathwaymight serve as a target
for ADSC-Exos.
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1 Introduction

Keloids can lead to physical discomfort, functional
difficulties, and aesthetically pleasing problems, all of which
can trigger psychological discontent (Jeschke et al., 2023). The
traditional treatment methods for keloids mainly include
ionizing beams, hormone injection, and cryosurgery.
However, effective treatment methods are needed to
guarantee the recurrence rate after treatment (Kadunc and
Brunner, 2024). Therefore, identifying a treatment method
that can target the pathogenesis of keloids is the key to
solving this problem.

Ferroptosis is a recently discovered process that regulates
cell necrosis (Jiang et al., 2021). It has been scientifically linked
to several diseases. Changes in iron homeostasis, for example,
have been associated with an increased probability of end-stage
renal disease (ESKD) (Yu et al., 2020; Cai et al., 2023),
atherosclerotic cardiovascular disease (Fang et al., 2023), and
diabetes (Hoy et al., 2021). Preventing ferroptosis can
substantially reduce the number of myofibroblast-like cells,
which leads to less fibrosis. Ferroptosis controls fibroblast
apoptosis and fibrosis in a complex and tissue-specific
manner (Du et al., 2023). The role of ferroptosis in keloids is
currently unclear. In our previous study, we compared the
expression of ferroptosis genes in keloid fibroblast (KF) and
normal fibroblast. The results showed that keloid fibrosis was
associated with ferroptosis.

MSC-derived extracellular vesicles are innovative cell-free
therapeutics for immunomodulation and regenerative purposes
(Xiao et al., 2021). Human adipose-derived stem cells (ADSCs)
are a vital source of stem cells because of their simplicity of
utilization, self-renewal ability, minimum immunogenicity, high
proliferation rate, and capacity to undergo differentiation into
different lineages (Hoang et al., 2022). Exosomes, one of the most
common types of extracellular vesicles, function in intercellular
communication (Baumann, 2021). Some investigators believe
that exosomes from human adipose-derived mesenchymal
stem cells (ADSC-Exos) potentially restrict excessive collagen
formation in fibroblasts. By activating the PI3K/AKT/mTOR
signaling pathway, ADSC-Exos inhibited the expression of
profibrogenic proteins and epithelial-to-mesenchymal
transition (EMT). (Zhang et al., 2023). Furthermore, certain
investigators have achieved unique medicinal properties.
Excessive scar formation can be remediated by employing
ADSC-Exos as transport carriers for pharmaceuticals and
noncoding RNAs (Zhu et al., 2020; Li et al., 2021; Yuan et al.,
2021). Consequently, it is crucial to elucidate the potential
mechanism underlying the inhibitory effect of ADSC-Exos on
the progression of keloid fibrosis.

ADSC-Exos inhibits ferroptosis induced by excessive
inflammation and upregulates the expression of glutathione
peroxidase 4 (GPX4) in human brain microvascular
endothelial cells (Wu et al., 2024). ADSC-Exos can effectively
improve the neurobehavior of mice and improve ferroptosis-
related outcomes (Wang Y. et al., 2023). In this study, we
identified an innovative approach in which ADSC-Exos
inhibited the myofibroblast differentiation of KF by decreasing
ferroptosis in keloids.

2 Materials and methods

2.1 Tissue and cell sources

The First Affiliated Hospital of Harbin Medical University’s
Ethics Committee approved the collection of human tissue samples,
and the study was conducted in accordance with the
2013 Declaration of Helsinki (No. 2023IIT115). For every tissue
biopsy, informed consent was obtained. Samples from mature
keloids and adipocytes were collected from plastic surgery
patients. Professional dermatologists and plastic surgeons test the
clinical nature of keloids.

ADSCs were isolated from subcutaneous adipose tissue of
patients who underwent lipoplastic surgery and were freely
available. Human keloid and standard skin fibroblast samples
were obtained from patients who underwent surgery to eliminate
a keloid and its surrounding normal skin or from the same
patient’s normal skin from the donor location of skin graft
surgery; 16 different patients were included in this study.
Under low glucose conditions, Dulbecco’s modified Eagle’s
medium (DMEM, Gibco, United States), keloid fibroblast
(KF), normal skin fibroblasts, and ADSCs were cultivated. The
medium also included 100 IU/mL penicillin, 10 mg/mL
streptomycin, and 10% fetal bovine serum (FBS, BI,
United States). The medium was replaced every 3 days. The
cells were passaged once they reached confluence. These cells
progress through three to four growth stages. Fourth-generation
ADSCs, which were obtained from different individuals,
contained the cells required for exosome extraction.

2.2 Adipogenic and osteogenic
differentiation of ADSCs

Following prior methods, ADSCs at passage three were divided
into osteogenic and adipogenic lineages. Briefly, ADSCs were grown
for 2 weeks in a complete osteogenic medium supplemented with
10 mM b-glycerophosphate (Sigma), 0.1 mM dexamethasone
(Sigma), and 0.05 mM ascorbic acid (Sigma). Differentiated cells
were then stained with alizarin red. ADSCs were grown for 3 weeks
and exhibited an adipogenic phenotype when stained with Oil Red O
after adipogenic induction.

2.3 Characterization of ADSCs

In passage three, ADSCs were identified following earlier
protocols. Flow cytometric examination of the cell
immunophenotype verified the presence of ADSCs. The ADSC
surface markers examined included CD29, CD34, CD44, CD45,
CD14, and CD105, which were all PE-labeled.

2.4 Concentration and characterization of
ADSC-Exos

Exosomes were purified as previously described. Adipose-
derived stem cells from the fourth passage were fused, and the
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cells were then moved to a medium supplemented with serum-
free DMEM for 48 h at 37°C in a 5% CO2 atmosphere. The media
underwent a series of centrifugation procedures after the
incubation time. The entire centrifugation process was
performed at 4°C, and the initial centrifugation was
performed at 300 × g for 10 min. Afterward, the supernatant
was centrifuged for 10 min at 1,000 × g and 30 min at 10,000 × g.
The supernatant was centrifuged at an ultrahigh pressure for
70 min at 100,000 × g. The precipitate was then placed in PBS to
resuspend the pellet made up of ADSC-Exos and stored at −80°C
refrigerated for later use after the final ultracentrifugation
(100,000 × g for 70 min).

For the identification of ADSC-Exos, 1.0 × 109 vesicles were
used. Using a transmission electron microscope, the
ultrastructure of ADSC-Exos was examined. The particle
dispersion size was analyzed by nanoparticle tracking analysis
(NTA) and Nanosight LM10 (Malvern et al., United Kingdom).
The expression of the common marker proteins for exosomes
CD63 (Abmart, M051014, CHINA), TSG101 (Abmart, T55985,
CHINA), and CD81 (Abmart, T557425, CHINA) were examined
by Western blot.

2.5 Exosome uptake assay

To verify that ADSC-Exos could be internalized by KF, they
were tagged with a PKH67 fluorescent cell linker kit (Sigma‒
Aldrich, MIDI67-1KT) according to the manufacturer’s
instructions. After the nuclei were stained with DAPI (Solarbio,
C0065), the labeled ADSC-Exos were cocultured with P3 KF for
24 h, and images were obtained at 0 and 24 h with an Olympus
IX81 fluorescence microscope.

2.6 Analysis of ferroptosis and fibrosis
in keloids

After treatment with Erastin and fer-1, P3 KF were cultured in
three groups: the first with a predetermined volume of PBS (control
group), the second with Erastin (Erastin group), and the third with
fer-1 (fer-1 group). After 24 h, each plate was subjected to Western
blot analysis.

2.7 Analysis of ferroptosis and fibrosis in
keloids cocultured with ADSC-Exos

After coculture with ADSC-Exos, P3 KF were cultured in three
groups: the first with a predetermined volume of PBS (control
group), the second with ADSC-Exos (ADSC-Exo group), and the
third with ADSC-Exos + Erastin (ADSC-Exo + Erastin group). After
24 h, each plate was subjected to Western blot analyses.

2.8 Iron metabolism level determination in
tissue and cells

Ferroptosis is characterized by free ferrous iron overload and
lipid peroxide accumulation. The lipid peroxide (LPO, E-BC-K176-
M, Elabscience), reduced glutathione (GSH, A006-1-1, Nanjing,
China), and malondialdehyde (MDA E-BC-K027-M, E-BC-K025-
M, Elabscience) values of each sample were calculated according to
the formula. ROS levels were measured in a medium supplemented
with the fluorescent probe DCFH-DA (Solarbio, Shanghai, China)
for 20 min at 37°C. A Nikon confocal microscope was used to
capture the images.

FIGURE 1
Effects of Erastin and fer-1 on fibrosis and ferroptosis in KF. (A) Western blot images of keloid fibrosis affected by Erastin (2.5 μm/mL) and fer-1
(1.7 μm/mL). (B)Quantification of the expression of col1A1, (C) col3A1, and (D) the ratio of col1A1 to col3A1, (E) α-SMA relative to keloid fibroblast (KF) (n =
5). (F)Western blot images of GPX4 in KF treated with Erastin and fer-1. (G)Quantification of GPX4 and (H)MDA levels. (I) LPO and (J) GSH relative to KF.
GPX4, glutathione peroxidase 4; MDA, malondialdehyde; LPO, liposomal peroxidation; GSH, glutathione. Four repetitions were carried out for each
experiment. The error bars represent the standard deviation. One-way ANOVA followed by Tukey’s multiple comparison test was carried out for
comparisons. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001, ns represents no significance.
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2.9 Western blot analysis

Total protein was extracted in RIPA (Bryotime, P0013B)
lysis buffer with a loading buffer (Solarbio, Beijing, China)
containing a 1% protease inhibitor cocktail (Solarbio, Beijing,
China) and a 1% protein phosphatase inhibitor combination
(Solarbio, Beijing, China). The protein concentration was
measured with an Instant BCA assay kit (Beyotime, Beijing,
China). Twenty micrograms of protein samples were separated
by 12.5% and 7.5% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and transferred to polyvinylidene fluoride
membranes. At 25°C, the membranes were blocked in 5%
nonfat milk in TBST solution for 60–80 min. COLIA1
(A1352, 1:500, ABclonal, United States), COLIIIA1
(ab184993, 1:1,000, Abcam, MA, United States), α-SMA (53-
9760-82, 1:1,000, Thermo Fisher, MA, United States), GPX4
(ab125066, 1:1,000, Abcam, MA, United States ), and SLC7A11
(ab175186, 1:1,000, Abcam, MA, United States) were added to
the membranes. The protein bands were visualized using a
BeyoECL Plus kit (Beyotime, 0018 M, China). Relative gene
expression was determined using ImageJ software (http://rsb.
info.nih.gov/ij/), with GAPDH (AF7021, 1:3,000, Affinity,
United States), β-actin (AF70181:1,000, Affinity,
United States), tubulin (M20005, 1:1,000, Abmart, China) or
vinculin (T40106, 1:500, Abmart, China) used as the internal
loading proteins for normalization.

2.10 qRT-PCR assay

TRIzol reagent (TaKaRa) was used to extract total RNA. cDNA
was measured using a NanoDrop spectrophotometer (Thermo
Fisher, MA, United States). Using a Roche Transcriptor cDNA
Synth. Using a kit (Roche, GERMAN), 200 ng of RNA was
reverse-transcribed into first-strand cDNA. The FastStart
Universal SYBR Green Master Mix (Rox) (Roche GERMAN.)
was then used on a Step One Plus Real-time PCR System
(Applied Biosystems, Carlsbad, CA, United States). The internal
loading of mRNAwas performed with β-actin and GAPDH; the fold
change in gene expression was computed using the 2−ΔΔCT method.
A PCR array (wc-Mrna0271-H) was used to determine which
mRNAs related to ferroptosis in KF were affected by ADSC-Exos.

2.11 A nude mouse model was established

Twenty-four 4-week-old nude mice (20 ± 5 g) purchased
from Harbin Medical University were individually maintained
in conventional animal rooms with free access to chow and
water. After 3 days of adaptation, sliced fresh keloid tissue
(1 cm3) was embedded in nude mouse dorsalis, as previously
reported. The mice were first injected intraperitoneally (IP)
with 50 mg/kg pentobarbital and 10 mg/kg xylazine. The
incision was sutured with suture-free glue. In subsequent

FIGURE 2
Characteristics of adipose-derived stem cells (ADSCs). (A) Results of flow cytometry analysis of ADSCs showing the expression of mesenchymal
stem cell surface markers. CD29, CD44, and CD105 were positive; CD14, CD34 and CD45 were negative. (B) Adipogenic and (C) osteogenic
differentiation measured by Oil Red O staining and Alizarin Red S staining; scale bars = 100 μm. (D) Themorphology of ADSC-Exos was analyzed by TEM;
scale bar = 200 nm. (E) The particle size of ADSC-Exos was measured by NTA. (F) Western blot images of the exosome markers CD9, CD81, and
TSC101. (G–I) Confocal microscopy was used to observe the internalization of ADSC-Exos labeled with PKH-67 into (G) KF, (H) DAPI, and (I)
merged images.
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procedures, the mice were separated into three groups, with
8 mice in each group until 28 d, when the tissue was stable.
Then, 200 μg of ADSC-Exos and ADSC-Exos + Erastin
(1.25 mg) dissolved in PBS, as well as an equal volume of
PBS solution, was injected into the interior of the keloids and
injected radially into the backs of the nude mice; this process
was repeated every 3 days.

Histological analysis of the mice was terminated 21 days
after keloid implantation with an overdose of sodium
pentobarbital (150 mg/kg, i.H.). Keloid tissue was fixed in
10% formalin at 4°C, and gradient dehydration was performed
using ethanol. The tissue was embedded in paraffin wax and
sectioned. HE and Masson’s trichrome staining kits (Solarbio,
Beijing, China) were used to assess tissue fibrosis. After staining,
the sections were photographed with an attached digital camera
and examined microscopically (Olympus, Japan). ImageJ
software was used for quantitative analysis. LPO and MDA
were used to calculate the levels of lipid peroxides and
metabolites in keloid tissues from each group. The GSH
content was a significant component for assessing the
antioxidant capacity of each group.

After being washed with various ethanol concentrations,
Keloid explant specimens have been deparaffinized and
rehydrated with xylene. Antigen retrieval was conducted by
microwaving the sections in an antigen retrieval solution for
10 min. Sections were cleaned and shaded, incubated in 3%
hydrogen peroxide for 10 min at room temperature, followed
by 10% goat serum for 10 min. Subsequently, antibodies against
collagen I, collagen III, α-SMA, and GPX4 that segment were
applied to the slides at a dilution of 1:50 with PBS. The slices were
nuclear staining with DAPI (H-1200, Vector Laboratories,

Burlingame, CA, United States) after being incubated for 1 h
at room temperature with a secondary antibody solution. All
slides were counterstained with hematoxylin (Cat. No.H8070,
Solarbio, China) and imaged with a microscope.

2.12 siRNA transfection

SLC7A11-targeting siRNA and scrambled control siRNA were
purchased from Gene Pharma. Lipofectamine 3000 (Invitrogen)
was used to transfect the cells with siRNA according to the
manufacturer’s instructions. KF were seeded in 6 healthy
plates, followed by transfection with 10 nM SLC7A11-targeting
siRNA (si-SLC7A11) or nc-RNAi control (si-NC) for 24, 48, or
72 h. The transfection efficiency was determined by observing the
position of liposomes under a fluorescence microscope. The
transfection efficacy was assessed by examining the position of
liposomes under a fluorescence microscope. The results are
represented as a percentage of the absorbance ratio between
treated and control cells during qRT-PCR verification of gene
knockout status.

2.13 Statistics

GraphPad Prism 9 (GraphPad Inc., La Jolla, CA,
United States) was used for data analysis. Data from three or
more experiments were collected and are presented as the mean ±
SEM. Student’s t-test was used to determine the significance of
the differences between the two groups. Three or more
independent control and experimental samples were evaluated

FIGURE 3
Twenty-eight DEGs were identified in KF cocultured with ADSC-Exos and in the control group by ferroptosis-related qPCR array. (A)Histogram and
(B) heatmap of gene expression in KF cocultured with ADSC-Exos and control cells.
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using one-way ANOVA. A p-value < 0.05 indicated statistical
significance.

3 Results

3.1 Keloid fibrosis was induced by ferroptosis

Transmission electron microscopy revealed characteristic changes
in ferroptosis in keloid tissues. In this study, we compared the
expression of ferroptosis genes in KF and normal fibroblasts. The
gene and protein expression levels of GPX4 and GSH in keloids are
lower than those in normal skin. Our results showed that lipid peroxide
and malondialdehyde levels in tissues or cells from keloids were greater
than those in tissues or cells from normal skin. The expression of
oxidative stress-related target genes related to ferroptosis, such as
PTGS2 (COX2), NRF2, and nuclear factor E2-related factor 2
(Nrf2), was detected (Supplementary Material S1).

Erastin can activate the fibrogenic ability of KF. Increased the
expression of type I collagen and α-SMA but decreased that of type
III collagen, promoting the ratio of type I collagen to type III
collagen in keloid centers, facilitating the formation of fibrosis in
keloids (Figures 1A–E).

By activating ferroptosis, Erastin can increase the levels of
liposomal peroxidation (LPO) metabolites, increase
malondialdehyde (MDA) levels, decrease GSH levels, and
decrease the expression of the GPX4 protein. However, fer-1 had
the opposite effect on Erastin (Figures 1F–J).

3.2 Characterization of ADSCs and
ADSC-Exos

First, the acquired ADSCs were negative for CD45, CD14, and
CD45 but positive for the MSC surface indicators CD29, CD44, and
CD105. These findings suggested that the ADSCs were suitable for
further application (Figure 2A). The capacity of the ADSCs to
differentiate into osteoblasts and idioblasts was further validated
by alizarin red staining and Oil red O staining, respectively (Figures
2B, C). The particles that were removed from the ADSCs were also
identified. The particles were observed to have a characteristic oval
shape via TEM (Figure 2D). The NTA results revealed that the sizes
of the isolated particles were primarily in the 100–170 nm range
(Figure 2E). TSG101, CD9, and CD63 are recognized exosome
markers that were further analyzed by Western blot analysis
(Figure 2F). ADSC-Exos were tagged with PKH67 and cocultured
with KF. After 24 h, ADSC-Exos were removed and delivered to the
cytoplasm of KF (Figures 2G–I). These results indicate that ADSC-
Exos were effectively separated and transferred to KF.

3.3 ADSC-Exos alleviated KF fibrosis by
inhibiting ferroptosis

The differential gene expression between the ADSC-Exos and
control groups was compared by ferroptosis PCR array. Compared
with that in the untreated group, the expression of GPX4, the core
gene involved in ferroptosis, was greater (Figure 3). Surprisingly, we

FIGURE 4
ADSC-Exos upregulated the GPX4-GSH axis and inhibited collagen synthesis and fibronectin in vitro. (A) Western blot images of fibrosis in KF
cocultured with ADSC-Exos and ADSC-Exos + Erastin. (B) Quantified expression of α-SMA, (C) col1A1, (D) col3A1, (E) the ratio of col1A1 to col3A1; (F)
Western blot images of GPX4 in KF cocultured with ADSC-Exos and ADSC-Exos + Erastin. (G)Quantification of GPX4 and (H)MDA levels. (I) LPO and (J)
GSH relative to KF (n = 4). (K–M) Representative images of the detection of ROS. (K) KF, (J) KF cocultured with ADSC-Exos. (M) KF cocultured with
ADSC-Exos + Erastin.The data are shown as the mean ± SEM. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p <
0.0001, ns represents no significance.

Frontiers in Pharmacology frontiersin.org06

Tian et al. 10.3389/fphar.2024.1431846

38

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1431846


discovered that GPX4 was significantly differentially expressed
between the keloid and normal skin groups, indicating that
ADSC-Exos could be a novel but crucial target for preventing the
occurrence and development of KF fibrosis.

ADSC-Exos, which resembles fer-1, can restrain the
fibrogenic process of KF, decreasing the expression of type I
collagen and α-SMA while decreasing the expression of type III
collagen, reducing the ratio of type I collagen to type III collagen
in keloids (Figures 4A–E). In contrast, GPX4 protein expression
was increased, and KF fibrosis was alleviated by ADSC-Exos.
Erastin prevents this therapeutic effect. The accumulation of
MDA and LPO, on the other hand, was reduced by ADSC-
Exos, increasing the expression of GSH in the KF (Figures
4F–J). The intracellular ROS level was decreased by ADSC-
Exos. Erastin prevents all the therapeutic effects of ADSC-
Exos by activating ferroptosis (Figures 4K–M).

3.4 ADSC-Exos alleviated pathological
keloid injury in vivo

Using a nude mouse keloid model, we investigated the
therapeutic efficacy of ADSC-Exos. The therapeutic impact of
ADSC-Exos on keloid pathology was observed using H&E and
Masson staining. Figures 5A, B depicts the usual histological
alterations of keloids in each model category. After constructing
the keloid model, we examined the expression of collagen I, collagen
III, α-SMA, and GPX4 after 21 days. Immunohistochemical labeling

(Figures 5C–J) confirmed the findings of Western blot analysis
(Figure 6): the expression of collagen I and α-SMA and the ratio
of collagen I to collagen III were significantly lower in the keloid
region treated with ADSC-Exos than in the control group or the
ADSC-Exo + Erastin group. Figures 6F–J shows the increase in the
expression of GPX4 and GSH and the decrease in the accumulation
of LPO and MDA induced by ADSC-Exos in vivo. However, Erastin
impeded the effect of ADSC-Exos.

3.5 ADSC-Exos inhibits fibrosis in keloids by
promoting SLC7A11-GPX4 in vitro

To further explore the role of ADSC-Exos in keloid fibrosis, we
investigated howADSC-Exos protects against keloid iron sagging. Here,
more attention has been given to the regulation of the SLC7A11-GPX4
pathway. ADSC-Exos were cocultured with SLC7A11-silenced KF.
Compared with those of the controls, ADSC-Exos and ADSC-Exos
cocultured with si-NC KF inhibited the expression of fibrosis-related
genes in keloids and increased the protein expression of SLC7A11 and
GPX4. At the same time, SLC7A11 silenced ADSC-Exos and
antagonized this effect (Figure 7).

4 Discussion

Keloids are pathological scars with a high incidence rate. It can
not only cause pain and itching but also affect the patient’s mental

FIGURE 5
ADSC-Exos upregulated theGPX4 axis and inhibited collagen synthesis and fibronectin in vivo. The tissues on the backs of themice treatedwith PBS,
ADSC-Exos, or ADSC-Exos + Erastin were collected on day 21 postintervention. Typical histological images of keloid tissues stained with (A)H&E and (B)
Masson’s trichrome. Immunohistochemical images of (C) col1A1, (D) col3A1, (E) α-SMA, and (F) GPX4. Quantification of the expression of (G) col1A1, (H)
col3A1, (I) α-SMA, and (J)GPX4 (n = 3). The data are shown as themean ± SEM. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001.
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state and quality of life. In severe cases, it can even affect affected
limb function (Fu et al., 2024). Therefore, studying the mechanism
underlying the formation and prevention of pathological scars is a

hot topic in the medical field (Xu et al., 2022). Additionally,
exploring a treatment method that can target the pathogenesis of
keloids is the key to solving this problem.

FIGURE 6
ADSC-Exos upregulated the GPX4 axis and inhibited collagen synthesis and fibronectin in vivo. (A)Western blot images of the control group, ADSC-
Exo group and ADSC-Exos + Erastin group. (B)Quantified expression of α-SMA, (C) col1A1, (D) col3A1, (E) the ratio of col1A1 to col3A1 (n = 4); (F)Western
blot images of GPX4 of the control group, ADSC-Exo group and ADSC-Exos + Erastin group. (G)Quantification of GPX4 (n = 4) and (H)MDA levels. (I) LPO
and (J) GSH relative to KF (n = 3).

FIGURE 7
ADSC-Exos upregulated the SLC7A11-GPX4-GSH axis and inhibited collagen synthesis, fibronectin, and ferroptosis-related genes in vitro. (A)
Western blot images of the control group, ADSC-Exo group, sinc + ADSC-Exo group, and sis + ADSC-Exo group. (B)Quantification of the expression of
(B) α-SMA, (C) col1A1, (D) col3A1, (E) the ratio of col1A1 to col3A1, (F) GPX4, and (G) SLC7A11 relative to the control (n = 3). The data are shown as the
mean ± SEM. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001, ns represents no significance.
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Emerging research suggests that ferroptosis can modulate
fibrosis (Qiu et al., 2024). Several genes influence keloid
development. Although there are differences in gene
expression between keloid and normal skin fibroblasts, the
exact etiology of iron deficiency remains unexplained. In this
study, we compared the expression of ferroptosis genes and
metabolic products of iron in keloid and normal skin. The
results showed that keloid fibrosis was associated with a
reduction in GPX4 and GSH, which could not prevent the
accumulation of lipid metabolite products during ferroptosis
progression in keloids. Our research provides some evidence
confirming the relationship between ferroptosis and the potential
mechanism of keloid formation.

Exosomes from human adipose-derived mesenchymal stem
cells can lower the activation of the fibrosis signaling system by
preventing myofibroblast formation and increasing the level of
transforming growth factor. Furthermore, by activating the
ERK/MAPK pathway, ADSC-Exos increases the expression of
matrix metalloproteinase-3 (MMP3) in dermal fibroblasts,
resulting in a high ratio of MMP3 to tissue inhibitor of
matrix metalloproteinase-1 (TIMP1), which is conducive to
extracellular matrix (ECM) remodeling (Wang et al., 2017).
The number of myofibroblasts increases during keloid repair. α-
SMA is a myofibroblast differentiation marker that promotes
myofibroblast release and wound healing. In our study, the
exosomes of adipose-derived stem cells decreased the levels of
α-SMA and collagen I and the ratio of type I to III collagen.
Keloid is a dermal fibroproliferative tumor that can be
recognized by excessive ECM accumulation. The ratio of
Col1/Col3 is believed to improve in the later stage of ECM
reshaping (Peeters et al., 2014). The ratio of type I to III collagen
in fibroblasts in keloid tissue was greater than that in normal
skin (p < 0.05) (Zhang et al., 2009). Collagen I is a stiff
fibrillar protein that provides tensile strength (You et al.,
2023), whereas collagen III forms an elastic network and
stores elastic rebound kinetic energy (Wang et al., 2022).
Our findings suggest that ADSC-Exos can transform thick
and stiff collagen fibers into slender and elastic fibers in the
dermis, which is likely to promote the development of keloids
into normal skin. However, more research needs to be
conducted on this topic.

Like fer-1, ADSC-Exos decreased fibrosis via ferroptosis in KF,
decreased lipid peroxidation, and increased GPX4 and GSH
expression. Erastin can promote ferroptosis in keloids and
decrease the functionality of ADSC-Exos, accompanied by
excessive fibrosis. These results suggest a new possible
mechanism by which ADSC-Exos inhibits the myofibroblast
differentiation of KF by decreasing ferroptosis in keloids.

The activity of GPX4 is dependent on the activation of the
cystine transporter SLC7A11 (Bayir et al., 2023; Wang H. et al.,
2023). We hypothesized that the increase in GPX4 signaling in
keloids may bemediated by exosomes that increase the expression of
SLC7A11 in keloids. By knocking out SLC7A11 in KF, the anti-
ferroptosis or anti-fibrosis effects of ADSC-Exos were antagonized.
Our results indicate that ADSC-Exos are involved in inhibiting
myofibroblast differentiation and collagen production in KF by
activating the SLC7A11-GPX4 signaling pathway to reduce
ferroptosis.

The limitation of our study is that although an increase in
SLC7A11-GSH-GPX4 was observed in KF treated with ADSC-Exos,
it was not easy to detect the exact type of lipid. In subsequent studies,
we combined ferroptosis-related oxidative lipidomics and keloids
and further explored lipid metabolism after treatment with ADSC-
Exos, accelerating the clinical transformation of ADSC-Exos.

In conclusion, iron metabolism disorder-induced ferroptosis is
involved in the pathogenesis and persistent activation of
myofibroblasts in KF. ADSC-Exos regulates GPX4 in KF and
suppresses keloid fibrosis in vitro via SLC7A11-GPX4. By
suppressing keloids, ADSC-Exos, and ferroptosis can become
viable therapeutic targets.

5 Conclusion

Restraining ferroptosis can enhance the anti-fibrotic effect of
keloid cells. ADSC-Exos can significantly reduce the degree of
fibrosis in keloids by inhibiting ferroptosis. By regulating the
occurrence of the SLC7A11-GPX4 signaling pathway, it can
inhibit ferroptosis in keloid cells, thereby reducing fibrosis.
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Research progress of knee fibrosis
after anterior cruciate ligament
reconstruction

YangYang Liang1, QingQing Zhang2 and YouFei Fan1*
1Department of Sports Trauma and Arthroscopic Surgery, The Affiliated Bozhou Hospital of Anhui
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Anterior cruciate ligament (ACL) injury is a common sports injury, and ACL
reconstruction is an effective surgery for this trauma. Most cases gain good
recovery after surgery, while some patients may experience knee stiffness, which
is characterized by joint fibrosis, leading to reduced joint mobility, pain, and
dysfunction. Currently, various research studies have been conducted to unveil
the mechanisms underlying this condition, identifying pre-, intra-, and post-
operative risk factors, and testify the efficacy of different therapeutic methods
against it. In this review, we summarize the current progress regarding the
advancements in knee fibrosis after ACL reconstruction. The risk factors
associated with knee fibrosis are systematically delineated, accompanied by
an evaluation of the efficacy of various treatment modalities for both the
prevention and mitigation of fibrosis. Furthermore, recommendations for
future research directions are proposed, offering a foundational basis for
subsequent investigations.

KEYWORDS

anterior cruciate ligament injury, anterior cruciate ligament reconstruction, knee
fibrosis, risk factors, treatment

1 Introduction

Anterior cruciate ligament (ACL) injury is a common sports-related knee injury among
athletically active people (Chia et al., 2022). Arthroscopic reconstruction of the ACL is the
prevalent therapy at present, with generally good recovery and a relatively low complication
rate (Hanus and HudÁk, 2020). Still, knee fibrosis, intractable pain, hemarthrosis, fever,
deep vein thrombosis, and infection may occur (Hanus and HudÁk, 2020). Knee fibrosis
after ACL reconstruction poses a serious problem. According to the literature review, the
prevalence of knee fibrosis after ACL reconstruction is 2.0%–35.0% (Eckenrode and
Sennett, 2011). Knee fibrosis is characterized by an inflammatory and fibrotic response,
which is manifested as a limited range of motion (ROM) and pain, affecting functional
recovery (Millett et al., 2001). Knee arthrofibrosis is a joint disorder induced by an
overactive inflammatory response. It is characterized by knee pain and decreased range
of motion, resulting in impaired joint function. This not only causes great pain and a heavy
medical burden for patients but also has a negative impact on the recovery process and long-
term prognosis. To improve postoperative outcomes, it is essential to understand the
mechanisms, risk factors, and treatment approaches associated with knee fibrosis following
ACL reconstruction.
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2 Pathophysiological mechanisms of
knee fibrosis

Knee fibrosis is characterized by the uninhibited deposition of
extracellular matrix proteins around the joint, resulting in
symptomatic joint stiffness. Fibrosis is the final common pathway
of many chronic inflammatory injuries and is a pathological feature of
almost all organ diseases (Lee et al., 2022). This article discusses
several possible pathological mechanisms, such as inflammatory
response, activation and differentiation of fibroblasts, remodeling
of the extracellular matrix, and abnormal proliferation of synovial
cells in joints (Bayram et al., 2020). In addition, some articles have
pointed out that the occurrence of connective tissue fibrosis is
multifactorial, including immune cell infiltration caused by tissue
damage and the involvement of a series of mediators, such as
transforming growth factor-β (TGF-β), bone morphogenetic
protein, connective tissue growth factor, and interleukin (Usher
et al., 2019; Disser et al., 2023). TGF-β is the pivotal driver of
fibrosis, resulting in the activation of fibroblasts and the migration
of exogenous cells invading from outside of the tissue. It is a key factor
in the regulation of fibroblast proliferation and collagen deposition
(Usher et al., 2019). Many of these cells are defined as myofibroblasts,
which can produce high levels of alpha-smooth muscle actin and lead
to upregulation of collagen synthesis. The excessive activation of
immune cells, signaling molecules, and myofibroblasts leads to
unresolved post-injury inflammation, which in turn leads to the
dysregulation of normal regenerative pathways and formation of
fibrous scars (Bayram et al., 2020; Disser et al., 2023). A related
report examines the molecular pathological features of human knee
fibrosis using RNA sequencing (Jovic et al., 2022). In patients with
knee fibrosis,members of the collagen family are commonly expressed
as extracellular matrix-related genes, among which COL1A1,
COL3A1, and COL6A1 are consistent with fibrosis characteristics
(Disser et al., 2023; Morita et al., 2016; Theocharidis et al., 2016; Tao
et al., 2018; Samokhin et al., 2018). In addition, integrins are another
prominent family in the gene family associated with extracellular
matrix organization, and the role of integrins in fibrosis has been
confirmed (Disser et al., 2023; Kuivaniemi and Tromp, 2019).
Moreover, LOX genes also play a potential role in fibrosis
development (Disser et al., 2023; Schnittert et al., 2018). These
findings provide new targets for diagnosis and drug therapy.

3 Risk factors for knee fibrosis

Knee fibrosis is a multifactorial disease, and its risk factors run
through the preoperative, intraoperative, and postoperative periods.
Understanding these risk factors can provide guidance for clinical
intervention and improve recovery. Personalized treatment and
rehabilitation programs are particularly important for patients
with multiple risk factors.

3.1 Patient characteristics and preoperative
risk factors

Studies have identified that factors such as female gender and
older age are associated with an increased risk of revision operation

after ACL reconstruction due to joint fibrosis. Female patients have a
smaller femoral notch than male patients, indicating a structural
difference in the joint that may predispose them to arthrofibrosis;
older patients are also more prone to chronic injury, which, when
combined with degenerative changes, may result in elevated
inflammation (Hopper et al., 2024; Haley et al., 2023).

The timing of surgery after ACL injury is suspected to be
relevant to the risk of joint stiffness and fibrosis (Freshman et al.,
2023) since inflammatory mediators are present in the synovial fluid
during the first week after ACL injury (Aman et al., 2024; Kingery
et al., 2022; Haslauer et al., 2014). This belief is supported by the
evidence that ACL reconstruction performed at least 6 weeks after
injury can significantly reduce the risk of surgical intervention for
subsequent knee fibrosis (Agarwal et al., 2023). However, this
finding was not supported by recent evidence (von Essen et al.,
2020). Given these controversial reports, Vermeijden et al. (2023)
conducted a systematic review and identified that early surgery is not
inferior to delayed surgery regarding knee fibrosis after isolated ACL
reconstruction.

The application of anticoagulants is also related to joint fibrosis.
Qin et al. found that, compared with patients who did not use
thromboprophylaxis, those who took this medication were
significantly associated with arthrofibrosis after subsequent
surgery (Qin et al., 2021). Thromboprophylaxis results in
increased rate of postoperative hematoma and, consequently,
inflammatory cytokines within the joint, which may lead to
fibrosis. Preoperative knee restriction is a well-established risk
factor for arthrofibrosis (Mayr et al., 2004). Therefore,
preoperative medication and the limited range of motion should
be considered when making surgical plans to reduce the risk of joint
fibrosis. In addition, other studies have found that preoperative
depression has a negative impact on postoperative pain and
functional recovery (García et al., 2024). Patients with
preoperative depression have significantly higher pain
interference scores and significantly lower physical function
scores before and after surgery. At present, many scholars have
found that there is a certain relationship between knee joint fibrosis
and genetic factors (Skutek et al., 2004; Dagneaux et al., 2020).
Comorbidities, including but not limited to type 2 diabetes mellitus,
ankylosing spondylitis, and rheumatoid arthritis, are also found to
increase the risk of knee fibrosis (Huang et al., 2013; Owen
et al., 2021).

3.2 Intraoperative risk factors

At present, the autograft options for ACL reconstruction include
bone–patellar tendon–bone (BTB), hamstring tendon, and
quadriceps tendon. An analysis of 378 patients found that the
incidence of knee joint fibrosis with BTB grafts was
approximately 10.0%, compared to 1.9% with hamstring tendons
and 6.3% with quadriceps tendons (Ouweleen et al., 2021). This
phenomenon is suspected to be a consequence of higher collagen
content in BTB grafts (Huleatt et al., 2018). Previous studies have
suggested a link between graft type and knee fibrosis. Nwachukwu
et al. (2011) found that using an autologous patellar tendon was a
risk factor for arthrofibrosis after ACL reconstruction (Nwachukwu
et al., 2011). Furthermore, Sanders et al. (2017) found that using
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allografts lowered the likelihood of arthrofibrosis as compared to
bone-patellar tendon-bone grafts. Other studies noticed that a
femoral tunnel diameter less than 9.25 mm was associated with a
reduced risk of joint fibrosis compared to its counterpart in male
patients (Haley et al., 2023).

In relation to graft tension, some believe that increasing graft
tension creates excessive constraints on the joint and results in loss
of movement (Elias et al., 2009). However, studies have shown that
although high graft pretension may cause graft wear in the femoral
tunnel, it does not lead to complete loss of knee extension (Markolf
et al., 1996). Conversely, inadequate graft tension may lead to
anterior–posterior laxity, resulting in instability, poor graft
healing, and failure (McDermott et al., 2024; Lee et al., 2018;
Magit et al., 2007). Increasing the tension of the graft reduces the
postoperative loss of tension andmobility due to viscoelasticity. This
means that by increasing the tension of the graft, postoperative knee
laxity can be reduced. Therefore, there is a relationship between graft
tension and knee stiffness, yet there is no clear answer as to whether
increasing or decreasing graft tension leads to loss of motion.

In addition, the effect of bone tunnel position and graft
placement on fibrosis during ligament reconstruction is
important. Placing ACL grafts in anatomical positions can reduce
the risk of joint stiffness, while placing ACL grafts in non-anatomical
positions may lead to higher rates of fibrosis (Yaru et al., 1992;
Tanksley et al., 2017; Romano et al., 1993; Śmigielski et al., 2016;
Vignos et al., 2020; Markolf et al., 2002). Multiple studies have found
that ACL reconstruction combined with meniscus repair surgery
increases the risk of knee fibrosis (Hopper et al., 2024; Haley et al.,
2023; Huleatt et al., 2018). Meniscal repair often requires fixation to
the joint capsule, which may limit the range of motion of the knee,
thus increasing the risk of fibrosis. Moreover, the increase in intra-
articular blood loss is also linked to a higher rate of joint fibrosis
(Karaaslan et al., 2015).

3.3 Postoperative risk factors

Non-standard or excessive postoperative rehabilitation training and
postoperative infection may lead to further injury in the joints and
increase the risk of fibrosis. Some studies have found that different
postoperative weight-bearing protocols (delayed weight-bearing,
progressive weight-bearing, and immediate weight-bearing) have
different complication rates, among which the delayed weight-
bearing protocol has the highest risk of developing stiffness (Morris
et al., 2021). Furthermore, reports have pointed out that patients who
undergo progressive rehabilitation training after ACL reconstruction
surgery have knee function, range of motion, and muscle strength
(Grindem et al., 2015; Noyes et al., 2000). The application of a brace can
also contribute to the prevention of knee stiffness following ACL
reconstruction (Skalsky and McDonald, 2012), while a brace in the
hyperextension position for at least 3 weeks was more effective in
preserving extension function (Melegati et al., 2003).

4 Treatments

Treatments are mainly non-surgical and surgical (Figure 1).
Non-surgical treatment includes physical therapy and medication.

In severe cases of fibrosis, arthroscopic surgery is required to restore
joint mobility. Additionally, postoperative rehabilitation after
secondary surgical release is still needed to avoid recurrence.

4.1 Non-surgical treatment

Low-level laser therapy (LLLT) and continuous passive motion
(CPM) are commonly used physical therapies. Studies have shown
that LLLT after ACL reconstruction can reduce the formation of
joint contractures by inhibiting inflammation and fibrosis
(Kaneguchi et al., 2019). LLLT has anti-inflammatory and anti-
fibrotic effects and causes fewer adverse reactions (Kaneguchi et al.,
2019; Zhang et al., 2022;Wickenheisser et al., 2019). Moreover, it is a
low-cost treatment and is widely used for a wide range of
inflammatory and fibrotic diseases (Zhang et al., 2022; Khansa
et al., 2016; Soleimanpour et al., 2014). Similarly, CPM treatment
can reduce the incidence of knee fibrosis after various knee surgeries
(Bram et al., 2019; Haller et al., 2015; Harvey et al., 2010). A recent
study using an animal model of ACL rupture showed that immediate
CPM therapy has a chondroprotective effect against post-traumatic
osteoarthritis (Chang et al., 2017). On the contrary, in two recently
published systematic reviews regarding CPM on knee ROM after
ACL reconstruction, no evidence is noticed to support the
application of this method in the index knee after ACL surgery
(Thrush et al., 2018; D’Amore et al., 2021). Therefore, further
research is required to evaluate the potential utility of CPM in
the long run.

Regarding medications, the main anti-inflammatory drugs used
to treat knee fibrosis can be categorized into glucocorticoids and
non-steroidal anti-inflammatory drugs (Usher et al., 2019; Liu et al.,
2017). The most commonly used non-steroidal drug is aspirin.
Aspirin inhibits the development of fibrosis through a variety of
mechanisms (Xu et al., 2022; Peng et al., 2023). Aspirin inhibits NF-
κB synthesis via IKK receptors and promotes the formation of stable
and powerful specialized pro-resolving lipid mediators (SPMs) (Liu
et al., 2017). It is possible that aspirin lowers the incidence of fibrosis
by decreasing PI3K/AKT/mTOR (phosphorylated
phosphatidylinositol 3 kinase, protein kinase B, and mechanistic
target of rapamycin) and increasing autophagy (Peng et al., 2023).
These mechanisms make aspirin the primary drug currently
prescribed for the treatment of fibrosis. Both oral and intra-
articular glucocorticoids have advantages and disadvantages in
the treatment of joint fibrosis (Barel et al., 2010; Melgert et al.,
2001). Oral glucocorticoids can reduce joint inflammation and pain
through systemic circulation, but multiple doses are required to
maintain the therapeutic effectiveness, which can cause systemic
side effects. On the other hand, intra-articular injection can act
directly on the inflammatory and fibrotic tissue, improving
treatment efficacy and reducing systemic side effects.

By managing the pro-inflammatory and pro-fibrogenic
pathways, bio-agents against fibrotic disorders have attracted
increasing attention in recent years. Montelukast and Pranlukast
are two cytoplasmic leukotriene receptor antagonists mainly used to
treat respiratory diseases such as asthma and allergic rhinitis
(Wenzel, 1998; Huang and Handel, 2010; Menkü Özdemir et al.,
2022; Lynch et al., 1999). In the treatment of arthrofibrosis, these
two drugs show therapeutic potential in reducing the postoperative
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inflammatory response after joint surgery (Chen et al., 2024).
Relaxin-2 (RLX-2) is an endogenous anti-fibrotic peptide that is
capable of alleviating TGF-β-induced myofibroblast differentiation
(Wang et al., 2016; Samuel et al., 2016; Shabanpoor et al., 2012;
Sassoli et al., 2013), and thus is used as an anti-fibrotic agent in knee
contracture after ACL reconstruction. However, a major obstacle to
the clinical translation of RLX is its short half-life (Metra et al., 2019;
Khanna et al., 2009; Weiss et al., 2016), which requires further
investigations regarding effective delivery modalities. Botulinum
toxin type A is currently used as an anti-fibrotic agent for
adhesive capsulitis (Blessing et al., 2021; Khenioui et al., 2016;
Chen et al., 2011) and is observed to reduce scar formation in
animal models of knee fibrosis (Namazi and Torabi, 2007; Gao et al.,
2017). Platelet-rich plasma also has potential against joint fibrosis
(Araya et al., 2020; Lin et al., 2023). Intra-articular delivery of
hyaluronic acid is also a good method for treating knee fibrosis
in animal models, while there are few clinical trials testing the
efficacy of knee stiffness after ACL reconstruction (Kanazawa et al.,
2015; Qu et al., 2023). In addition, vitamin D and angiotensin II
receptor antagonists have also been successfully used under different
fibrosis conditions and are becoming ideal candidates for joint
fibrosis (Jagodzinski and Traut, 2022).

4.2 Surgical treatment

Surgical intervention for fibrosis mainly includes manual release
under anesthesia (MUA) and arthroscopic lysis of adhesions (LOA).
Patients who did not reach a full extension by 3 months
postoperatively, defined as lacking 10°, and had a symptomatic
difference in the range of motion relative to the unaffected knee

were eligible for MUA or LOA. If MUA did not provide a sufficient
range of motion, arthroscopy with LOA was recommended instead
(Crabtree et al., 2023). MUA is also commonly used to treat knee
fibrosis, either alone or in combination with arthroscopy (Crabtree
et al., 2023; Baghdadi et al., 2022). For severe fibrosis, soft tissue
release via LOA is still the recommended option. By removing the
excessive extracellular matrix, LOA can not only relieve the joint
movement restriction but also dilute the concentration of intra-
articular pro-fibrotic mediators, thus blocking the vicious cycle
formed by the ECM (Sanders et al., 2017; Lamba et al., 2023).

Arthroscopic LOA and MUA are safe and effective treatments
for the postoperative fibrosis of the knee (Fackler et al., 2022).
However, both techniques have complications. These surgical
procedures may lead to neurological and vascular disorders,
fractures, ligament relaxation, etc (Pivec et al., 2013; Egol et al.,
2005; Laskin and Beksac, 2004; Fisher and Shelbourne, 1993).
Therefore, careful pre-operative planning is necessary in
facilitating knee function after the operation.

In current clinical practice, the prevention of fibrosis
development is still challenging. If a physician or surgeon
identifies a trend toward knee stiffness, interventions such as
physiotherapy regimens and antifibrotic or anti-inflammatory
medication can be considered. However, given the lack of
evidence-based decision-making, the establishment of a
sequential prevention method is still in progress.

Currently, there are studies on the treatment of arthrofibrosis,
but reports are still in the basic research stage. In the future, one can
consider exploring the mechanism of occurrence and development
from the perspectives of molecular biology and genetics, while also
searching for new biomarkers and therapeutic targets to facilitate
early diagnosis and intervention. In addition, personalized

FIGURE 1
Treatments of knee fibrosis after ACL reconstruction.
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rehabilitation programs and prevention strategies based on specific
patient characteristics can be developed to improve efficacy.

5 Conclusion

Knee fibrosis after anterior cruciate ligament reconstruction is a
complex complication involving multiple risk factors. Early
identification and intervention are essential in preventing or
treating this condition. Conservative treatment may be useful in
the early stages of joint fibrosis, while secondary surgery should be
considered in the advanced stage. Determining the appropriate
treatment plan requires assessment and decision-making by the
physician based on the patient’s specific situation. Future research is
still required to explore the biological mechanisms and establish risk
models to predict the occurrence of this condition, thereby
improving the prognosis of patients after ACL reconstruction.
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Decoding tumor-fibrosis
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Malignant tumors are a category of diseases that possess invasive and metastatic
capabilities, with global incidence and mortality rates remaining high. In recent
years, the pivotal role of fibrosis in tumor progression, drug resistance, and
immune evasion has increasingly been acknowledged. Fibrosis enhances the
proliferation,migration, and invasion of tumor cells bymodifying the composition
and structure of the extracellular matrix, thereby offering protection for immune
evasion by tumor cells. The activation of cancer-associated fibroblasts (CAFs)
plays a significant role in this process, as they further exacerbate the malignant
traits of tumors by secreting a variety of cytokines and growth factors. Anti-
fibrotic tumor treatment strategies, including the use of anti-fibrotic drugs and
inhibition of fibrosis-related signaling pathways such as Transforming Growth
Factor-β (TGF-β), have demonstrated potential in delaying tumor progression and
improving the effectiveness of chemotherapy, targeted therapy, and
immunotherapy. In the future, by developing novel drugs that target the
fibrotic microenvironment, new therapeutic options may be available for
patients with various refractory tumors.

KEYWORDS

fibrosis, tumor, CAFs, TGF-β, EMT

1 Introduction

Malignant tumors are a category of abnormal cellular proliferation diseases
characterized by invasiveness and metastatic potential. In 2022, it was estimated that
there were 20 million new cases and 9.7 million deaths worldwide (Bray et al., 2024).
Although cancer treatment methods, such as surgery, radiotherapy, chemotherapy, targeted
therapy, and immunotherapy, have continuously advanced, the complexity and
heterogeneity of the disease make it challenging to cure, posing a significant global
public health problem (Hirsch et al., 2017). Hanahan stated that the progression of
tumors involves more than just an increase in tumor cell numbers and must be
understood within the framework of the “tumor microenvironment (TME).” (Hanahan
and Weinberg, 2011) TME is a complex system composed of tumor cells, stromal cells,
immune cells, blood vessels, and the extracellular matrix (ECM). A growing body of
research indicates that the TME is vital in the growth, invasion, metastasis, and treatment
resistance of multiple tumors. Additionally, tumor cells can secrete cytokines and growth
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factors, inducing stromal cell reprogramming to regulate the TME,
providing new perspectives for clinical treatment (Ding et al., 2024;
Mao et al., 2024; Nie et al., 2024).

Fibrosis is defined as the excessive accumulation of ECM
components, like collagen, resulting in abnormal alterations in
tissue structure and function. It is a chronic and progressive
process, typically linked to prolonged inflammation and damage
(Rimal et al., 2022). Additionally, fibrosis, as an essential part of the
TME, is mainly manifested by the excessive deposition of ECM and
the abnormal activation of stromal cells, including tumor-associated
fibroblasts (CAFs) and myofibroblasts (Rimal et al., 2022). With
deeper research, the intricate interactions between fibrosis and
tumors are increasingly being clarified. Fibrosis facilitates tumor
cell proliferation, invasion, and immune evasion (Thomas and
Radhakrishnan, 2019; Metcalf et al., 2022). Additionally, tumor
cells further aggravate fibrosis by secreting pro-fibrotic factors
and inducing chronic inflammatory responses (Wu et al., 2020;
Giarratana et al., 2024). Anti-fibrotic treatments, including anti-
TGF-β therapy and targeting CAFs, have demonstrated important
potential in the treatment of malignant tumors (Mohapatra et al.,
2022; Li J. et al., 2023). Thus, comprehending the interaction
mechanisms between fibrosis and different tumors is crucial for
further research, developing novel therapeutic strategies, and
enhancing cancer treatment efficacy.

2 Mechanisms that promote fibrosis in
malignant tumors

2.1 The function of CAFs

2.1.1 Pro-fibrotic factors induce the activation
of CAFs

Pro-fibrotic factors are vital in the activation and transformation
of CAFs. Malignant tumor cells secrete pro-fibrotic factors (like
TGF-β and PDGF), which can directly induce the transformation of
fibroblasts into CAFs. CAFs represent one of the main cell types
within the TME. The high expression of α-smooth muscle actin (α-
SMA) and the biological characteristics of secreting multiple
cytokines by CAFs play a vital role in tumor fibrosis (Geng et al.,
2021). In renal clear cell carcinoma (RCC), cancer cells secrete TGF-
β, which induces the transformation of normal fibroblasts into CAFs
through the TGF-β-Smad2/3 pathway (Wang Y. et al., 2024). circ_
0020256 is highly expressed in cholangiocarcinoma (CCA) and
enhances CCA cells’ secretion of TGF-β1, which subsequently
activates CAFs via Smad2/3 phosphorylation. Mechanistically,
circ_0020256 stabilizes KLF4 mRNA by recruiting
EIF4A3 protein and increasing its expression. KLF4 then binds to
the TGF-β1 promoter, enhancing its transcription in CCA cells (Li
Z. et al., 2023). Hepatocellular carcinoma (HCC) cells secrete
exosomes containing miRNA-21, directly targeting the PTEN
gene and activating the PDK1/AKT signaling pathway, which
promotes the transformation of normal hepatic stellate cells
(HSCs) into CAFs with pro-cancer characteristics (Zhou et al.,
2018). In oral squamous cell carcinoma (OSCC), PDGF secreted
by cancer cells binds to PDGFR-β, activating lncRNA LURAP1L-
AS1, which subsequently regulates the IKK/NF-κB signaling

pathway, facilitating the activation and transformation of
fibroblasts (Ren et al., 2021).

2.1.2 ECM remodeling
CAFs contribute to malignant tumor fibrosis by enhancing the

synthesis of collagen, fibronectin, and other ECM components,
resulting in excessive ECM accumulation in tissues. CAFs
produce and secrete substantial quantities of type I and III
collagen, the primary components of the ECM. The over-
deposition of these collagens results in tissue stiffening and
densification (Xu et al., 2024). Gastric cancer cells induce the
abnormal expression and secretion of collagen by activating the
FAK/AKT pathway in CAFs, driving malignant transformation and
fibrosis (Zhang J. et al., 2024). CAFs secrete small extracellular
vesicles (sEVs) that associate with the ECM; these sEVs are enriched
with active lysyl oxidase (LOX). LOX interacts with collagen I under
the action of sEVs, facilitating collagen cross-linking. Moreover,
integrin α2β1 in sEVs mediates their binding to collagen, further
strengthening the cross-linking process (Liu Y. et al., 2023). In lung
cancer models, increased lipid droplet (LD) content in CAFs
promotes their pro-tumor phenotype, characterized by high
expression of α-SMA and collagen α-2 chain (COL1A2) (Zhang
et al., 2022).

Moreover, CAFs secrete matrix metalloproteinases (MMPs)
and tissue inhibitors of metalloproteinases (TIMPs), which
control the degradation and remodeling of the ECM. In the
process of fibrosis, CAFs aggravate fibrosis by adjusting the
balance between MMPs and TIMPs, inhibiting normal ECM
degradation, and facilitating ECM accumulation and
stabilization (Najafi et al., 2019). For instance, when co-
cultured with gastric cancer cells, CAFs significantly
upregulate IL-17a expression and enhance the expression of
MMP2 and MMP9, while downregulating their inhibitors
TIMP1 and TIMP2 (Zhang J. et al., 2020).

2.2 Inflammation

Tumor cells promote fibrosis by persistently releasing
inflammatory factors like IL-1, TGF-β1, TNF, and IL-6, which
activate the NF-κB and JAK/STAT signaling pathways, inducing
fibroblast differentiation into a pro-inflammatory phenotype or
myofibroblasts. These fibroblasts further drive fibrosis
(Anderson-Crannage et al., 2023). In a lung cancer mouse model,
tumor cells induce an inflammatory response in the kidneys by
secreting nephrotoxic proteins, which increase the expression of IL-
6 and monocyte chemoattractant protein-1 (MCP-1), resulting in
glomerular capillary collapse and tumor antigen deposition.
Concurrently, the TGF-β signaling pathway is activated,
triggering renal fibrosis (Hung et al., 2020). In pancreatic ductal
adenocarcinoma (PDAC), tumor cells induce an inflammatory
response in pancreatic stellate cells (PSCs) by absorbing lipids,
which subsequently promotes PSC activation and triggers fibrosis
(Hata et al., 2017). In pancreatic neuroendocrine tumors, cancer
cells secrete interleukin-1 (IL-1), which induces CAFs to secrete
stromal cell-derived factor 1 (SDF1), aggravating the extent of tumor
fibrosis (Lai et al., 2024).
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2.3 Signaling pathway

2.3.1 TGF-β/Smad signal transduction pathway
The TGF-β/Smad pathway serves as a key regulator in the

fibrosis of malignant tumors. This pathway drives fibrosis
formation and progression by modulating fibroblast proliferation,
differentiation, activation, and the synthesis and deposition of ECM.
TGF-β binds to the type II TGF-β receptor (TGF-βRII) on the cell
surface, which then activates the kinase activity of TGF-βRI and
triggers the phosphorylation of downstream Smad proteins. The
phosphorylated Smad2 and Smad3 associate with the co-
transcription factor Smad4, forming an active complex that
moves into the nucleus to regulate the transcription of fibrosis-
related genes (Lee and Massagué, 2022; Li J. et al., 2024).

Activation of the TGF-β-Smad2/3 pathway induces the
expression of fibrotic factors, which leads to fibroblast activation,
promoting their proliferation and differentiation into
myofibroblasts. Myofibroblasts display increased α-SMA
expression and an enhanced ability to synthesize ECM, thereby
intensifying fibrosis within tumors and promoting tumor growth
and progression (Su et al., 2020). The activation of the upstream
Notch signaling pathway triggers the TGF-β/Smad pathway, which
promotes the migration of mesenchymal stem cells to the stroma
and their differentiation into fibroblasts (Peng et al., 2014). In breast
cancer, a lack of glutamine can trigger the activation of TGF-β
signaling, leading to the activation of associated fibroblasts and
subsequent fibrosis. The activity of histone deacetylase 1 and the
inhibition of mTORC1 are required for TGF-β signaling activation
and the conversion of CAFs into a myofibroblast state (Mezawa
et al., 2023). During cachexia, inflammation within tumors drives
fibrosis. This process might be driven by TGF-β-induced
differentiation of fibroblasts into myofibroblasts, resulting in
imbalanced inflammatory cytokine expression, enhanced
angiogenesis, and increased ECM components (Lima et al., 2019).

The TGF-β/Smad signaling pathway is essential in fibrosis,
tumor progression, and metastasis by enhancing ECM synthesis
and deposition. The epigenetic regulators UBR7 and histone
methyltransferase EZH2 regulate TGF-β/Smad signaling. With
the activation of the TGF-β/Smad pathway, collagen content and
lysyl oxidase activity rise, directly impacting ECM stiffness
(Adhikari et al., 2024). In unilateral breast cancer-associated
lymphedema, TGF-β1 intensifies the fibrosis process by
increasing the stiffness of fibroblasts, lymphatic endothelial cells,
and lymphatic smooth muscle cells, and by enhancing ECM
deposition (Baik et al., 2022).

2.3.2 JAK/STAT signal transduction pathway
The JAK/STAT signaling pathway drives fibrosis formation and

reshapes the tumor microenvironment by mediating cell
proliferation, differentiation, immune regulation, and
inflammatory responses. Cytokines (like IL-6, IFN, and IL-13)
bind to receptors, leading to JAK activation, followed by STAT
protein phosphorylation. Phosphorylated STAT proteins dimerize
and move into the nucleus, where they bind to DNA sequences to
regulate the transcription of fibrosis-related genes (Liu X. et al.,
2023). Bioinformatics analysis has shown that hub genes are
significantly enriched in the JAK/STAT pathway in expression
profiles associated with liver fibrosis and liver cancer (Hamdy

et al., 2023). With the marked activation of pSTAT5 and
pSTAT3, levels of pro-inflammatory and pro-tumor mediators
rise, resulting in higher liver tumor burden and significantly
increased fibrosis in mice (Cabrera-Galván et al., 2023). In RCC,
RCC-derived CXCL5 promotes fibrosis by activating the JAK/
STAT3 pathway, facilitating the transformation of normal
fibroblasts into CAFs (Liu Y. et al., 2023). Research indicates that
reprogrammed mouse liver cells, driven by IL6/Jak/Stat3 signaling
pathways, convert into LGR5-positive cells. When transplanted into
syngeneic mice, these LGR5-positive cells develop into invasive and
metastatic tumors with marked fibrosis, underscoring the
significance of the JAK/STAT pathway in malignant tumor
fibrosis (Chaker et al., 2024). Research by Grohmann et al. shows
that inhibiting STAT-1 signaling prevents T cell recruitment and
fibrosis but does not prevent hepatocellular carcinoma; whereas
correcting STAT-3 signaling can prevent liver cancer without
affecting fibrosis. This research provides a more detailed
explanation of the role of the JAK/STAT signaling pathway in
malignant tumor fibrosis (Grohmann et al., 2018).

2.3.3 Wnt/β-catenin signal transduction pathway
Wnt proteins bind to cell surface receptors, activating β-

catenin, leading to its accumulation and translocation to the
nucleus, where it regulates the expression of fibrosis-related
genes. These genes generally pertain to ECM synthesis and
fibroblast activation (Feng et al., 2018). In lung
adenocarcinoma, smoking induces the downregulation of
filamin A interacting protein 1-like (FILIP1L), which activates
the Wnt/β-catenin signaling pathway, resulting in mucin
secretion, inflammation, and fibrosis (Kwon et al., 2022). In
oral submucous fibrosis and OSCC tissues, hypermethylation
of dickkopf-1 may lead to its downregulation, causing abnormal
activation of the Wnt/β-catenin signaling pathway, potentially
playing a crucial role in the pathogenesis of oral submucous
fibrosis (He et al., 2020). Additionally, proteins associated with
the Wnt/β-catenin pathway are highly expressed in pancreatic
exocrine tissues, with significant alterations in their cellular and
subcellular expression patterns, correlating with increased
fibrosis (Bläuer et al., 2019). Stearoyl-CoA desaturase (SCD)
in liver tumor-initiating stem-like cells (TIC) is regulated by
Wnt/β-catenin signaling. The monounsaturated fatty acids
produced by SCD stabilize LRP5/6 mRNA, forming a positive
feedback loop that amplifies Wnt signaling, which in turn
promotes liver fibrosis and tumor growth (Lai et al., 2017).

2.3.4 Notch signal transduction pathway
The Notch signaling pathway is activated by the interaction

between Notch receptors and ligands. After receptor activation,
proteolytic cleavage releases the Notch intracellular domain
(NICD), which then translocates to the nucleus to regulate
the transcription of specific genes. Suppressing Notch
signaling can inhibit the activation of the classical TGF-β1
pathway and reduce the peritumoral desmoplastic reaction in
cholangiocarcinoma (Mancarella et al., 2022). In liver cancer
cells chronically exposed to low concentrations of cadmium, the
activation of Notch and AKT/mTOR signaling pathways can
induce the expression of the pro-inflammatory cytokine tumor
necrosis factor-α (TNF-α) and its downstream target TNF-α-
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induced protein 8 (TNFAIP8), thus regulating fibrosis and
oncogenic signaling in liver cancer cells (Niture et al., 2023).
Refer to Figure 1 for the mechanisms by which malignant tumors
promote fibrosis.

2.3.5 The cross-talk effects of signaling pathways
It is worth noting that during the fibrosis process in

malignant tumors, multiple signaling pathways do not
function independently but often co-regulate fibrosis and
tumor progression through complex interaction mechanisms.
The interactions between different signaling pathways form a
highly integrated network, which has a profound impact on the
tumor microenvironment, cell proliferation, invasion, and
treatment resistance. For instance, TGF-β1-induced activation
of activating transcription factor 4 (ATF4) is dependent on the
activation of the classical TGF-β1/Smad3 signaling and
mTORC1-4E-BP1. ATF4 then promotes the de novo synthesis
of enzymes from the serine-glycine biosynthesis pathway and
transcription of the GLUT1 gene. This process meets the
biosynthetic demands required for enhanced ECM synthesis
(Selvarajah et al., 2019).

3 The effect of fibrosis on tumor
progression

3.1 Enhances tumor proliferation
and survival

Fibrosis results in the abnormal accumulation of extracellular
matrix (ECM), especially the increase in collagen, fibronectin, and
hyaluronic acid. These ECM components not only offer structural
support for tumor cells but also interact with cell surface receptors,
activating signaling pathways that promote proliferation and
survival. In liver cancer, Sema3C supports tumor fibrosis by
promoting the proliferation of hepatic stellate cells (HSCs).
Moreover, Sema3C interacts with NRP1 and ITGB1 receptors,
activating the AKT/Gli1/c-Myc signaling pathway, promoting the
self-renewal and proliferation of HCC cells (Peng et al., 2024). The
increased tissue stiffness due to fibrosis further promotes tumor cell
proliferation and survival via mechanotransduction pathways, such
as the YAP pathway (Schrader et al., 2011; Deng et al., 2022).

Fibroblasts and CAFs within the fibrotic microenvironment
secrete numerous growth factors, such as TGF-β and EGF. These

FIGURE 1
(By Figdraw, ID: RASTR41933) Mechanism of fibrosis promotion by malignant tumors: Tumor cells secrete pro-fibrotic factor TGF-β and activate
CAFs through the TGF-β/Smad signaling pathway. Furthermore, tumor cells and CAFs secrete inflammatory factors (such as IL-1 and IL-6), which can
further induce the production of additional pro-fibrotic factors, thus further activating CAFs. The activated CAFs promote the synthesis of collagen,
fibronectin, and other ECM components, and affect ECM degradation and remodeling by regulating the secretion of MMPs and TIMPs. Additionally,
the activation of the TGF-β/Smad signaling pathway is linked to the occurrence of EMT in malignant tumors, and the interaction between EMT and ECM
remodeling further accelerates the fibrosis process.

Frontiers in Pharmacology frontiersin.org04

Chen et al. 10.3389/fphar.2024.1491400

53

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1491400


factors facilitate tumor cell proliferation and survival by activating
downstream signaling pathways. In prostate cancer, TGF-β1 is
recognized as a highly secreted growth factor in CAFs,
significantly enhancing tumor cell growth and proliferation in
both in vivo and in vitro settings (Dy et al., 2019). In PDAC,
CAF-derived thrombospondin 1 (TSP1) activates TGF-β
signaling, leading to the loss of Smad4 expression in cancer cells
and accelerating their proliferation andmigration (Matsumura et al.,
2022). In cholangiocarcinoma, CAF-secreted TSP-4 binds to
integrin α2 on cancer cells, activating HSF1 and Akt signaling
pathways. Activated HSF1 further enhances TGF-β1 expression
and secretion, inducing the transformation of fibroblasts into
CAFs and creating a positive feedback loop that promotes cell
proliferation and advances cholangiocarcinoma progression (Shi
et al., 2021).

3.2 Enhances angiogenesis

3.2.1 Secretion of angiogenesis-promoting factors
In malignant tumors, fibrosis promotes angiogenesis through

various mechanisms, supplying the necessary nutrients and oxygen
for tumor growth and expansion. During the fibrosis process in
malignant tumors, fibroblasts and CAFs are activated, leading to the
secretion of significant amounts of pro-angiogenic factors, including
vascular endothelial growth factor (VEGF), platelet-derived growth
factor (PDGF), and basic fibroblast growth factor (bFGF). These
factors interact with receptors on vascular endothelial cells,
activating signaling pathways that promote the formation of new
blood vessels (Sobierajska et al., 2020).

In several malignant tumors, such as head and neck squamous
cell carcinoma, RCC, and cholangiocarcinoma, CAFs can directly
secrete VEGF to promote angiogenesis (Sun et al., 2022; Zhou et al.,
2022; Liu J. et al., 2023). In colorectal cancer patients, exosomes
released by CAFs enhance endothelial cell proliferation, migration,
and angiogenesis by increasing the expression and secretion of
VEGF. Specifically, circ_0084043 is highly expressed in CAF-
derived exosomes and regulates HIF-1α and VEGFA by sponging
miR-140-3p, suggesting that the circ_0084043/miR-140-3p/VEGF
signaling pathway plays a critical role in CAF exosome-induced
angiogenesis (Payervand et al., 2024). miR-210 secreted by lung
cancer cells enhances angiogenesis by increasing VEGF via the
activation of the JAK2/STAT3 signaling pathway in CAFs (Fan
et al., 2020). Similarly, research by Dai et al. (2022) showed that
CAF-derived extracellular vesicles promote angiogenesis in
colorectal adenocarcinoma cells via the miR-135b-5p/
FOXO1 axis, indicating the crucial role of non-coding RNAs in
enhancing the secretion of angiogenic factors by CAFs.

Moreover, several signaling pathways are also crucial in
regulating VEGF secretion. When CAFs are co-cultured with
glioma C6 cells, the expression levels of VEGF-A and EGF
proteins are significantly elevated, thereby enhancing glioma cell
invasiveness, proliferation, and angiogenesis (Zhang S. et al., 2023).
In triple-negative breast cancer (TNBC), particularly in patients
with BRCA1 mutations, iCAFs have been found to be enriched and
promote angiogenesis by interacting with tumor endothelial cells
(TECs) via VEGF signaling. iCAFs activate angiogenesis-related
genes (such as FLT1 and KDR) in TECs through the VEGF

signaling pathway, promoting endothelial cell migration and
sprouting angiogenesis (Lee et al., 2024). In breast cancer, the
upregulation of VEGF-A and IL-8, along with their upstream
effectors mTOR and HIF-1α, can enhance the pro-angiogenic
potential of CAFs (Al-Kharashi et al., 2022). In melanoma,
CD38-positive CAFs promote tumor cell migration and invasion,
as well as endothelial cell tube formation, by secreting factors like
VEGF-A, FGF-2, and CXCL-12 through paracrine signaling in vitro
(Ben Baruch et al., 2020).

PDGF and other angiogenesis-promoting factors likewise play a
crucial role in driving angiogenesis facilitated by CAFs. Chu et al.
(2022) discovered that VEGF, angiopoietin, bFGF, and other factors
secreted by CAFs are crucial in the angiogenesis of precancerous and
malignant lesions in laryngeal cancer. In OSCC, reprogramming of
glucose metabolism results in increased secretion of angiogenesis-
promoting factors (VEGF-A, PDGF-C, andMMP9) by CAFs, which
enhances the angiogenic phenotype (Li X. et al., 2022). In
cholangiocarcinoma, CAFs secrete stem cell factor (SCF), which
recruits mast cells and stimulates them to release hyaluronic acid
(HA) via the MRGPRX2-Gαq signaling pathway. These bile-
induced MCs subsequently release PDGF-B, which further
enhances angiogenesis in cholangiocarcinoma (Shi et al., 2024).

3.2.2 ECM remodeling
Fibrosis caused by malignant tumors results in excessive

extracellular matrix (ECM) deposition, offering a physical
scaffold for new blood vessel formation and supporting vascular
expansion within the dense matrix. In cholangiocarcinoma, the
overexpression of PI3Kδ is closely related to stromal remodeling,
manifesting as a thick ECM at the basement membrane and
significant angiogenesis and lymphangiogenesis. The mechanism
involves PI3Kδ promoting ECM remodeling via the TGFβ/Src/
Notch signaling pathway, which in turn enhances angiogenesis
(Bou Malham et al., 2023). In bladder cancer, the Sigma
1 receptor (Sig1R) can regulate crosstalk between the ECM and
tumor cells, facilitating ECM-mediated cell proliferation and
angiogenesis (Feng et al., 2023).

3.2.3 Hypoxia and the activation of HIF-1α
Fibrosis increases the density of tumor tissue, limiting oxygen

diffusion and creating a hypoxic microenvironment. Hypoxia-
inducible factors (HIFs) become stabilized and activated in
hypoxic conditions, enhancing the expression of pro-angiogenic
genes like VEGF, which drives the formation of new blood vessels
(Yehia et al., 2015; De Marco et al., 2022). Pancreatic cancer features
excessive desmoplastic reaction and a hypoxic microenvironment
within the solid tumor mass. Hypoxia induces the production of
HIF-1, which not only enhances the migration of pancreatic stellate
cells (PSCs) and the expression of type I collagen but also increases
VEGF secretion, promoting angiogenesis (Masamune et al., 2008; N
et al., 2016).

3.3 Enhances immune evasion

The dense ECM structure created by fibrosis obstructs immune
cell infiltration, diminishing their tumor-killing capacity and aiding
tumor cells in evading immune surveillance. In the fibrotic tumor
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microenvironment, tumor-associated macrophages (TAMs) initiate
collagen synthesis via the TGF-β signaling pathway, causing tumor
tissue stiffening and establishing a metabolic environment that
impairs CD8+ T cell function. Macrophages engaged in collagen
synthesis deplete arginine in the environment and produce proline
and secrete ornithine, which further suppresses the antitumor
response of CD8+ T cells. Therefore, fibrosis not only physically
repels CD8+ T cells but also weakens the immune response against
cancer by altering the metabolic environment (Tharp et al., 2024). In
non-small cell lung cancer (NSCLC), significant fibrosis corresponds
with reduced T cell infiltration, resulting in impaired immune
surveillance. Fibrosis not only accelerates tumor progression but
also reduces the number and function of dendritic cells and alters
macrophage phenotypes, further intensifying immune suppression
(Herzog et al., 2023). Liver fibrosis enhances tumor immune evasion
in hepatocellular carcinoma, resulting in decreased CD8+ T cell
infiltration and increased expression of the immune checkpoint
molecule programmed death-ligand 1 (PD-L1). Specifically, Golgi
membrane protein 1 (GOLM1) in fibrosis induces PD-L1 expression
via the activation of the EGFR pathway, thereby suppressing
antitumor immune responses (Ke et al., 2021). In the lung
adenocarcinoma microenvironment, CAFs increase the
expression of PD-L1 in tumor cells by secreting cytokines like
CXCL2. High PD-L1 expression allows tumor cells to suppress
CD8+ T cell activity in the immune system, facilitating immune
evasion (Inoue et al., 2019). Regulatory T cells (Tregs) and CAFs
interact to collaboratively enhance fibrosis and immune
suppression. Specifically, IL-33 enhances Treg cell activity
through the IL1RL1 signaling pathway, and these Tregs interact
with CAFs via the AREG/EGFR axis, inducing CAFs into a pro-
fibrotic and immunosuppressive state (Sun et al., 2023). However, it
is important to note that fibrosis in malignant tumors can facilitate
tumor immune evasion while also constraining tumor size
expansion (Li et al., 2021).

4 Fibrosis enhances treatment
resistance

4.1 Chemotherapy resistance

Chemotherapy is a treatment approach that employs chemical
agents to kill cancer cells or inhibit their growth and division,
commonly used in the treatment of various malignant tumors.
However, chemoresistance is a significant challenge in the
treatment of malignant tumors, and it is often accompanied by
fibrosis in affected patients. In a pancreatic ductal adenocarcinoma
model, ectopic tumors showed more pronounced fibrosis, which led
to increased resistance to FOLFIRINOX chemotherapy. Despite
similar drug absorption in tumor tissues, fibrosis and
microenvironmental differences significantly impacted the
treatment response (Erstad et al., 2018). In breast cancer,
fibrosis-related signaling pathways are significantly upregulated in
patients who do not achieve a complete response to neoadjuvant
chemotherapy; patients with high fibrosis have lower complete
response rates and shorter survival durations (Wang X. et al., 2024).

Fibrosis is frequently accompanied by epithelial-mesenchymal
transition (EMT), which converts tumor cells from an epithelial

phenotype to a mesenchymal phenotype. EMT provides tumor cells
with enhanced migratory ability and resistance to apoptosis, thereby
increasing their resistance to chemotherapy. In 5-Fu-resistant (5-
FU) breast cancer cell lines, tumor cells induce normal dermal
fibroblasts to convert into a CAF phenotype via TGF-β1 paracrine
signaling, promoting fibrosis, reducing E-cadherin expression, and
facilitating EMT (Chandra Jena et al., 2021). CAFs can transfer
exosomes to colorectal cancer cells, promoting stemness and EMT in
CRC cells, which in turn enhances resistance to 5-FU/oxaliplatin
(L-OHP) chemotherapy. Mechanistically, exosomes induce miR-
92a-3p production, activating the Wnt/β-catenin pathway,
inhibiting FBXW7 and MOAP1 expression, and suppressing
mitochondrial apoptosis, thereby enhancing stemness and
chemoresistance (Hu et al., 2019). In ovarian cancer, CAFs may
activate the Wnt/β-catenin pathway via the CXCL12/CXCR4 axis,
promoting cisplatin resistance by inducing EMT (Zhang F. et al.,
2020). IL-6 derived from CAFs plays a crucial role in maintaining
the paracrine loop between CAFs and NSCLC cells by enhancing
EMT in NSCLC cells. This paracrine loop enhances intercellular
communication, which subsequently leads to the development of
chemoresistance (Shintani et al., 2016).

In addition to EMT, fibrosis can promote chemoresistance by
activating tumor stem cell properties and anti-apoptotic signaling
pathways. In PDAC, proliferating resident macrophages
(proliferating rMφs) significantly increase tumor resistance to
chemotherapy by promoting fibrosis and immune suppression.
Multi-omics analysis found that these macrophages promote
cancer cell survival during chemotherapy by producing more
deoxycytidine (dC) and less dC kinase (dCK), reducing the
absorption of gemcitabine (Zhang J. et al., 2023). Additionally,
CAFs promote tumor fibrosis via the IL1β-IRAK4 signaling
pathway, which enhances tumor cell survival and proliferation,
resulting in gemcitabine resistance (Zhang et al., 2018). In lung
adenocarcinoma, cancer stem cells (CSCs) secrete the acute-phase
protein serum amyloid A (SAA), remodeling the tumor
microenvironment, promoting fibrosis, and enhancing cisplatin
(DDP) chemoresistance (Wang et al., 2023). In ovarian cancer,
high expression of CHI3L1 (a secretory glycoprotein) is closely
linked to fibrosis. CHI3L1 activates the Akt and Erk signaling
pathways, enhancing the expression of β-catenin and SOX2,
promoting stem-like characteristics in ovarian cancer cells, such
as resistance to apoptosis, thereby increasing paclitaxel
chemoresistance (Lin et al., 2019). In CAF-derived exosomes, the
significantly upregulated circBIRC6 promotes the SUMOylation of
XRCC4, enhancing its interaction with SUMO1 at lysine 115,
facilitating XRCC4 chromatin localization, and increasing
pancreatic cancer cell resistance to oxaliplatin (Zheng et al.,
2023). In conclusion, fibrosis can enhance chemotherapy
resistance through multiple mechanisms, including EMT, CSC,
and anti-apoptotic pathways.

4.2 Resistance to immunotherapy

Presently, immunotherapy is an emerging cancer treatment
method that fights cancer by enhancing or regulating the
immune system. Immune checkpoint inhibitors are widely used
immunotherapy strategies, among which PD-1/PD-L1 inhibitors
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(like pembrolizumab and nivolumab) and CTLA-4 inhibitors (such
as ipilimumab) have shown significant therapeutic potential in
tumor immunotherapy (Li W. et al., 2022). In tumors that
respond to immunotherapy, the TME shows enrichment of
immune cells and CAFs, along with pro-inflammatory signaling
and ECM remodeling, which aligns with proliferative fibrosis and
immune-mediated tumor regression. However, tumor heterogeneity
may result in immune-deficient regions, promoting immune evasion
and early recurrence via HCC-CAF interactions and the expression
of cancer stem cell markers. This indicates that fibrosis may
contribute to immunotherapy resistance in certain cases,
heightening treatment challenges (Zhang M. et al., 2023). In
breast cancer, fibrosis facilitates immunotherapy resistance by
increasing TAMs, EMT, fibroblast proliferation, ECM
enhancement, and Wnt pathway activation. These alterations
together create an immune-tolerant microenvironment,
diminishing the effectiveness of PD-1 inhibitors (Yuan et al.,
2022). Further research by Song et al. (2024) revealed a link
between anti-PD-L1 therapy and fibrosis: During liver fibrosis,
pathogenic Th17 cells (pTh17) significantly increase, and anti-
PD-L1 therapy promotes pTh17 cell infiltration and activation in
the liver. These pTh17 cells secrete IL-17A, which increases PD-L1
expression on the surface of hepatocellular carcinoma cells, further
worsening liver cirrhosis and leading to resistance to anti-PD-
L1 therapy (Song et al., 2024).

4.3 CAFs enhance resistance to
targeted therapy

Targeted therapy is a form of cancer treatment that specifically
targets certain molecules or signaling pathways in cancer cells.
Unlike traditional chemotherapy, targeted therapy precisely
identifies and inhibits abnormal proteins or genetic mutations in
cancer cells, preventing tumor growth and spread while minimizing
harm to normal cells.

4.3.1 Resistance to tyrosine kinase inhibitors
In the fibrotic microenvironment, CAFs play a key role in

promoting resistance to tyrosine kinase inhibitors (TKIs). For
example, in RCC, CAFs facilitate resistance to VEGFR-TKIs
(Ambrosetti et al., 2022). In HCC, bioinformatics analysis
identified SPP1 secreted by CAFs as a candidate molecule for
resistance to sorafenib and lenvatinib. CAF-secreted
SPP1 activates the RAF/MAPK and PI3K/AKT/mTOR pathways
via the integrin-PKCα signaling pathway and promotes EMT,
resulting in TKI resistance (Eun et al., 2023). CAFs enhance the
secretion of HGF and IGF-1, activating the c-met and IGF-1R
receptors, leading to increased ANXA2 expression and
phosphorylation, inducing EMT and resulting in resistance to
EGFR-TKIs (e.g., gefitinib) in NSCLC (Yi et al., 2018). Similarly,
in NSCLC, CAFs derived from osimertinib-resistant cells secrete
higher levels of IL-6, IL-8, and hepatocyte growth factor (HGF),
express stronger CAF markers such as α-SMA, FAP, and PDGFR,
and increase stemness and osimertinib resistance in NSCLC cells
(Huang W. et al., 2021). In EGFR-TKI-resistant tumors, part of the
CAF-derived tumor stroma is composed of EMT-derived tumor
cells that express resistance markers, such as epithelial membrane

protein-1. CAFs secrete paracrine factors that reduce the inhibitory
effects of TKIs on pEGFR and pMAPK, thereby promoting tumor
cell survival and drug resistance (Sr et al., 2010). In gastric cancer,
cancer cells secrete lactate, inducing CAFs to produce BDNF,
activating the TrkB-Nrf2 signaling pathway, inhibiting anlotinib-
induced apoptosis and reactive oxygen species (ROS) generation,
thus reducing drug efficacy (Jin et al., 2021). In RCC, CAFs increase
sunitinib resistance by secreting CXCL3, which activates the
CXCR2-ERK1/2 signaling pathway in tumor cells, promoting
EMT and stemness (Wang Y. et al., 2024).

4.3.2 Resistance to monoclonal antibodies
Monoclonal antibodies (mAbs) are a crucial class of drugs in

targeted therapy, specifically targeting certain antigens or receptors
on cancer cell surfaces. They kill specific cancer cells by directly
blocking signal transduction, activating ADCC, or inducing
complement-dependent cytotoxicity (CDC). Common
monoclonal antibodies include trastuzumab, bevacizumab,
and cetuximab.

Trastuzumab can target the HER2 receptor and is used for
treating HER2-positive breast cancer and gastric cancer. CAFs are
enriched in trastuzumab-resistant HER2-positive breast cancer
cases. These CAFs secrete immunosuppressive factors IDO1 and
TDO2, inhibiting NK cell-mediated antibody-dependent cellular
cytotoxicity (ADCC), thereby causing resistance to trastuzumab
(Du et al., 2023). CAF-derived Neuregulin 1 (NRG1) also
mediates trastuzumab resistance in breast cancer by activating
the HER3/AKT signaling pathway. However, pertuzumab may
reverse resistance by targeting this pathway (Guardia et al.,
2021). Mao et al. (2015)’s research shows that CAFs can induce
trastuzumab resistance by expanding cancer stem cells and
activating multiple pathways including NF-κB, JAK/STAT3, and
PI3K/AKT.

Bevacizumab targets VEGF to inhibit angiogenesis and is used in
the treatment of colorectal cancer, non-small cell lung cancer, renal
cell carcinoma, and more. In OSCC, CAFs play a key role in
angiogenesis by secreting sEVs. CAF-derived sEVs bind to VEGF
and activate the VEGFR2 signaling pathway in human umbilical
vein endothelial cells (HUVECs). Even after Bevacizumab
treatment, VEGF bound to sEVs can continue to activate
VEGFR2. This indicates that sEVs secreted by CAFs can bind
VEGF via heparan sulfate proteoglycans on their surface, making
them resistant to Bevacizumab (Li et al., 2020).

Cetuximab targets EGFR and is used for targeted therapy in
colorectal cancer and head and neck squamous cell carcinoma
(HNSCC). In CRC, CAFs significantly increase CRC cell
resistance to Cetuximab by regulating the expression of the
EMT key factor SNAI1 and remodeling the ECM (Galindo-
Pumariño et al., 2022). In HNSCC, TGF-β-activated CAFs
limit Cetuximab efficacy by upregulating the TGF-β signaling
pathway, thereby enhancing drug resistance in the tumor
microenvironment (Yegodayev et al., 2020). Further studies
indicate that CAF-derived MMP-1 expression increases in
both tumor cells and CAFs, promoting resistance to
Cetuximab (Johansson et al., 2012). Refer to Figure 2 for
fibrosis-promoted malignant tumor progression and treatment
resistance. Refer to Table 1 for details on how fibrosis promotes
treatment resistance.
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5 Tumor therapeutic strategies
targeting fibrosis

5.1 Nintedanib

5.1.1 Clinical trials
Nintedanib is a small-molecule TKI with antifibrotic and anti-

inflammatory properties, mainly used in the treatment of idiopathic
pulmonary fibrosis. The clinical use of antifibrotic drugs such as
Nintedanib can significantly improve the survival time of patients
with certain malignant tumors. In refractory metastatic CRC,
Nintedanib combined with capecitabine is well tolerated and
clinically more effective than regorafenib or trifluridine/tipiracil
monotherapy. In a study of 36 patients, the median progression-
free survival (PFS) was 3.4 months, and the median overall survival
(OS) was 8.9 months after 18 weeks (Boland et al., 2024). Nintedanib
combined with chemotherapy significantly improved PFS in NSCLC
patients, though it had no significant impact on OS. A meta-analysis

of three randomized controlled trials involving 2,270 patients
showed that PFS in the Nintedanib group was significantly better
than in the placebo group (HR = 0.79; 95% CI 0.71–0.88, p < 0.0001)
(Alhadeethi et al., 2024). Additionally, a multicenter retrospective
study indicated that Nintedanib combined with docetaxel had some
efficacy in advanced NSCLC patients following the failure of
immune checkpoint inhibitors (ICI) and/or chemotherapy. In
96 patients, the objective response rate (ORR) was 18.8%, the
disease control rate (DCR) was 57.3%, the median PFS was
3.0 months, and the median OS was 8.0 months. Particularly in
patients treated with Nintedanib and docetaxel after first-line ChT-
ICI therapy, the ORR was 29.2%, the DCR was 66.7%, and the
median PFS was 4.0 months (Ljubicic et al., 2023). These studies
indicate that Nintedanib can effectively improve survival time in
patients with certain malignant tumors.

However, there are ongoing debates regarding the response rate
and safety of Nintedanib. In a double-blind, randomized, phase
2 trial adding Nintedanib to neoadjuvant chemotherapy for muscle-

FIGURE 2
(By Figdraw, ID: RYWAR2b2b6) Fibrosis facilitatesmalignant tumor progression: (A) enhances tumor proliferation, (B) promotes immune evasion, (C)
drives angiogenesis, (D) increases treatment resistance (A) Malignant tumors enhance tumor cell proliferation by secreting TGF-β, which activates
pathways such as PI3K-AKT and MAPK/ERK. Furthermore, the increased tissue stiffness from fibrosis promotes tumor cell proliferation via
mechanotransduction pathways (like the YAP pathway). (B) The interaction between Treg cells and CAFs not only promotes fibrosis but also
intensifies immunosuppression. Moreover, the dense ECM structure resulting from fibrosis obstructs immune cell infiltration and aids tumor cells in
evading immune surveillance by upregulating PD-L1 expression. (C) CAFs enhance the secretion of pro-angiogenic factors like VEGF and PDGF via the
regulation of non-coding RNAs and signaling pathways such as JAK, thereby promoting tumor angiogenesis. The excessive deposition of ECM provides a
physical scaffold for new blood vessel formation, supporting vascular expansion within the dense matrix. Additionally, excessive ECM accumulation
restricts oxygen, activating HIF-1 and further promoting angiogenesis. (D) Fibrosis facilitates treatment resistance in malignant tumors through multiple
mechanisms, including CSC activation, EMT induction, apoptosis inhibition, enhanced DNA damage repair, and reduced drug uptake, thereby weakening
the efficacy of chemotherapy, targeted therapy, and immunotherapy.
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invasive bladder cancer, the pathological complete response rate
(pCR) was similar between the Nintedanib and placebo groups (37%
vs. 32%). However, the Nintedanib group showed a higher incidence
of grade 3 or higher toxic events (93% vs. 79%), with the most
common serious adverse events being thromboembolic events (30%
vs. 21%) and neutropenia (39% vs. 11%) (Hussain et al., 2022). In
ovarian cancer, the Nintedanib treatment group showed worse PFS
and OS compared to the placebo group, along with higher toxicity
(92% vs. 69% for grade 3/4 adverse events), primarily consisting of
hematologic and gastrointestinal side effects (Ferron et al., 2023).
Refer to Table 2 for the clinical trial results of Nintedanib.

5.1.2 Sensitization to chemotherapy and
immunotherapy

Combining Nintedanib with immunotherapy or
chemotherapy drugs can significantly improve treatment
outcomes and promote tumor cell death. Nintedanib

significantly inhibits tumor growth in mouse models. When
combined with anti-PD-1 antibodies, Nintedanib enhances
antitumor efficacy primarily by reducing the number of TAMs
and polarizing them into the antitumor M1 phenotype. The
combination therapy also restores macrophage phagocytic
function, enhancing treatment effectiveness (Tada et al., 2023).
In malignant tumors, combining Nintedanib with PD-L1
enhances immune cell infiltration and activation within the
tumor, boosts interferon-γ response, and activates MHC class
I-mediated antigen presentation. It also promotes PD-L1
expression and STAT3 phosphorylation, thereby improving
the effectiveness of immunotherapy (Tu et al., 2022). In
PDACs, Nintedanib inhibits CAF secretion of IL-6 by blocking
the PDGFRβ signaling pathway. Moreover, MSLN-targeted
chimeric antigen receptor-NK cells combined with Nintedanib
significantly enhanced tumor-killing ability in xenograft models,
triggering robust NK cell infiltration (Lee et al., 2023).

TABLE 1 Summarize the mechanisms and associated signaling pathways through which fibrosis promotes resistance to chemotherapy, immunotherapy,
and targeted therapy.

Type of drug Drug Disease Mechanism of resistance Signaling pathway Reference

Chemotherapy 5-Fu/L-OHP CRC EMT, CSC miR-92a-3p/Wnt/β-catenin Hu et al. (2019)

5-Fu Breast cancer EMT -- Chandra Jena et al. (2021)

Gemcitabine PDAC Drug uptake Increased -- Zhang J. et al. (2023)

Gemcitabine PDAC Resistance to apoptosis IL1β-IRAK4 Zhang et al. (2018)

DDP Ovarian cancer EMT CXCL12/CXCR4-Wnt/β-
catenin

Zhang F. et al. (2020)

DDP Lung adenocarcinoma CSC -- Wang et al. (2023)

Paclitaxel Ovarian cancer CSC CHI3L1/Akt/Erk-β- catenin Lin et al. (2019)

L-OHP PDAC DNA damage repair circBIRC6-XRCC4 Zheng et al. (2023)

ICI PD-1 mAb Breast cancer EMT, TAM increase Wnt signaling pathway Yuan et al. (2022)

TKI Sorafenib/
lenvatinib

HCC EMT\ RAF/MAPK、PI3K/AKT/
mTOR

Eun et al. (2023)

Gefitinib NSCLC EMT HGF/IGF-1/c-met、
IGF-1R-ANXA2

Yi et al. (2018)

Axitinib NSCLC CSC -- Huang W. et al. (2021)

Sunitinib RCC CSC, EMT CXCR2-ERK1/2 Wang Y. et al. (2024)

Anlotinib Gastric cancer Resistance to apoptosis and ROS BDNF-TrkB-Nrf2 Jin et al. (2021)

mAbs Trastuzumab Gastric cancer, Breast
cancer

Resistance to ADCC -- Du et al. (2023)

Trastuzumab Breast cancer Resistance to apoptosis NRG1/HER3/AKT Guardia et al. (2021)

Trastuzumab Breast cancer CSC NF-κB, PI3K/AKT and JAK/
STAT3

Mao et al. (2015)

Bevacizumab OSCC Continuous activation of VEGF -- Li et al. (2020)

Cetuximab HNSCC, CRC EMT, ECM Remodeling -- Galindo-Pumariño et al.
(2022)

Cetuximab HNSCC Upregulation of the TGF-β signaling
pathway

TGF-β signaling pathway Johansson et al. (2012)

5-Fu, 5-Fluorouracil; L-OHP, Oxaliplatin; CRC, Colorectal cancer; EMT, Epithelial–mesenchymal transition; CSC, Cancer stem cell; PDAC, Pancreatic Ductal Adenocarcinoma; DDP,

Cisplatin; TAM, Tumor-associated macrophages; HCC, Hepatocellular carcinoma; NSCLC, Non-small cell lung cancer; RCC, Renal cell carcinoma; ADCC, Antibody dependent cell-mediated

cytotoxicity; OSCC, Oral squamous cell carcinoma; HNSCC, Head and neck squamous cell carcinoma.
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In a xenograft model derived from gastric adenocarcinoma cells,
Nintedanib inhibited tumor cell proliferation, reduced tumor
angiogenesis, and increased tumor cell death. Notably, when
combined with docetaxel and irinotecan, it significantly extended
the animals’ survival (Awasthi et al., 2023).

5.2 Pirfenidone (PFD)

5.2.1 PFD suppresses tumor invasion capability
Clinically, PFD is an approved drug used to treat idiopathic

pulmonary fibrosis. It alleviates fibrotic responses by inhibiting
TGF-β and other profibrotic factors and can significantly reduce
tumor invasiveness by inhibiting EMT, regulating immune
responses in the tumor microenvironment, and remodeling the
ECM. For instance, PFD can inhibit the growth of breast tumors
in mice and alcohol-promoted metastasis (Li H. et al., 2024). In
TNBC, PFD reduces the expression of EMT-related transcription
factors and mesenchymal genes by inhibiting the TGF-β/Smad
signaling pathway, thereby inhibiting the proliferation, migration,
and invasion of breast cancer cells while promoting apoptosis (Luo
et al., 2023). PFD promotes the downregulation of ZEB1 via miR-
200 in NSCLC exosomes, slowing down migration, invasion, and
EMT processes (Liu et al., 2022). In RCC, PFD significantly inhibits
the progression of renal cancer by targeting the TGF-β signaling
pathway. PFD decreases TGF-β expression and secretion, blocking
TGF-β-induced EMT and thus reducing the proliferation,
migration, and invasion of renal cancer cells. Additionally, PFD
enhances the immunosuppressive tumor microenvironment by
limiting the recruitment of tumor-infiltrating myeloid-derived

suppressor cells (MDSCs) (Wang et al., 2022). PFD targets CAFs,
inhibiting EMT and stemness features in breast cancer cells. In
breast cancer samples with a high stromal index, CAFs promote
cancer cell spheroid formation and induce the expression of YAP1,
VIM, and CD44. PFD treatment significantly reduces cancer cell
migration and the protein expression levels of these genes (Es et al.,
2021). PFD inhibits the expression of CAFs, hyaluronic acid, and
collagen I, reducing tumor stromal pressure, eliminating the
immunosuppressive microenvironment, and increasing cytotoxic
T lymphocyte infiltration, thereby remodeling the desmoplastic
tumor microenvironment. Moreover, PFD, in combination with
therapies targeting the mitochondrial ROS-PYK2 pathway,
significantly inhibits the growth and metastasis of malignant
breast cancer (Zuo et al., 2021). PFD effectively eliminates the
ethanol-mediated promotion of the TGF-β/RUNX3/Snail axis in
CRC metastasis by specifically blocking the TGF-β signaling
pathway (Zheng et al., 2019).

5.2.2 Sensitization to chemotherapy and
immunotherapy

In chemotherapy, PFD can significantly enhance tumor cell
death. PFD can reprogram several biological pathways, inhibiting
tumor cell secretion of PDGF by downregulating the TGM2/NF-kB/
PDGFB pathway, thus exerting antifibrotic effects. This leads to a
reduction in collagen X and fibronectin secretion by CAFs, and in a
mouse pancreatic tumor orthotopic model, PFD showed the
potential to enhance gemcitabine sensitivity (Lei et al., 2024).
PFD’s use in NSCLC primarily focuses on its antitumor and
chemosensitizing effects. PFD exerts anticancer effects by
inhibiting the TGF-β1 signaling pathway, reducing lactate and

TABLE 2 Efficacy and adverse reactions of Nintedanib in different malignant tumors.

Disease Trial-
registration

Phase Case OS
(month)

PFS
(month)

PFS HR
(95% CI)

Serious treatment-
related adverse events

(Grade 3–4)

Reference

RAIR DTC NCT01788982 II 56 -- 3.7 0.65
(0.42–0.99)

50% Leboulleux et al.
(2024)

MTC NCT01788982 II 20 -- 7.0 0.49
(0.16–1.53)

59.1% Leboulleux et al.
(2024)

NSCLC NCT02299141 -- 20 11.3 4.3 -- 35% Auberle et al.
(2024)

CRC NCT02393755 I/II 42 8.9 3.4 -- 44% Boland et al.
(2024)

SCLC jRCTs031190119 II 33 13.4 4.2 -- 81.8% Ikeda et al. (2024)

NSCLC -- -- 27 15.8 5.4 -- 44.4% Makiguchi et al.
(2023)

Ovarian
Cancer

NCT01583322 II 188 37.7 14.4 1.50 96% Ferron et al.
(2023)

NSCLC jRCTs071180049 III 243 15.3 6.2 0.68
(0.50–0.92)

72.5% Otsubo et al.
(2022)

NSCLC -- II 59 6.9 2.7 -- 53.7% Auliac et al.
(2021)

CRC NCT01362361 II 53 17.1 8.1 0.65
(0.32–1.30)

73.1% Ettrich et al.
(2021)

PFS, Progression-Free-Survival; OS, Overall survival; HR, Hazard Ratio; RAIR DTC, Radioiodine-refractory differentiated thyroid cancer; MTC, Medullary thyroid cancer.
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ATP production, and thus inhibiting glycolysis. When combined
with cisplatin, PFD enhances the targeted inhibition of TGF-β1,
improving chemotherapy sensitivity in A549 and H1299 cells
(Zhang S. et al., 2024). In TNBC, PFD inhibits the TGF-β/Smad
signaling pathway, reducing the expression of EMT-related
transcription factors and mesenchymal genes, inhibiting breast
cancer cell proliferation, migration, and invasion, and promoting
apoptosis. Additionally, although PFD has a relatively mild
standalone antitumor effect in vivo, its combination with nab-
paclitaxel (nab-PTX) significantly enhances the anticancer effect
in TNBC (Luo et al., 2023).

PFD demonstrates significant potential when combined with
immunotherapy. When combined with PD-L1 inhibitors, PFD
significantly delays tumor growth, improves survival rates,
enhances both innate and adaptive immune responses, increases
immune cell infiltration, and optimizes T cell localization. This
combination therapy also effectively alleviates lung fibrosis and
reduces tumor growth (Qin et al., 2020). In bladder cancer, the
combination of PD-L1 inhibitors and PFD can significantly inhibit
bladder cancer progression, potentially by modulating the tumor
immune microenvironment and inhibiting tumor cell epithelial-
mesenchymal transition (Chen et al., 2024).

5.2.3 Targeted drug delivery increases
therapeutic efficacy

In pancreatic cancer, PFD combined withmiR-138-5p, delivered
through targeted engineered exosomes, successfully reprogrammed
CAFs, inhibiting their pro-tumor effects. The combination inhibited
the TGF-β signaling pathway and collagen synthesis, significantly
improving the TME, reducing tumor pressure, enhancing the
penetration of the chemotherapeutic drug gemcitabine, and
increasing the sensitivity of cancer cells to chemotherapy (Zhou
et al., 2024). In Jia et al. (2024)’s study, cell membrane-fused
liposomes were used for targeted delivery of PFD and
doxorubicin to inhibit CAF activity and remodel the TME,
thereby significantly enhancing chemotherapy efficacy in TNBC.
Furthermore, the optimized delivery strategy amplified the effects of
anti-PD-L1 immunotherapy (Jia et al., 2024). Targeted drug delivery
provides new insights for precision medicine in clinical practice.

5.3 Galunisertib

5.3.1 Clinical trials
Galunisertib is a selective inhibitor of TGF-β receptor type I

(ALK5), capable of blocking TGF-β signaling, inhibiting tumor
growth and metastasis, and demonstrating potential in the
treatment of malignant tumors. In a trial evaluating Galunisertib
combined with nivolumab for NSCLC treatment, patients received
Galunisertib (150 mg, 14 days on/14 days off) along with nivolumab
(3 mg/kg IV every 2 weeks). 24% of patients showed confirmed
partial responses, and 16% of patients exhibited stable disease. The
median progression-free survival was 5.26 months, and the median
overall survival was 11.99 months. The response rate for locally
advanced NSCLC is generally low, about 10%–20%, suggesting that
this drug may partially increase patient survival rates (Nadal et al.,
2023). In another study, patients with locally advanced rectal cancer
received Galunisertib-containing neoadjuvant chemoradiotherapy,

resulting in an increase in the complete response rate to 32% with
good tolerability, markedly increases the complete response rate
compared to the previous treatment regimen (Yamazaki et al., 2022).
Galunisertib has demonstrated potential in increasing complete
response rates clinically, and its efficacy deserves further
evaluation in randomized trials.

5.3.2 Sensitization to chemotherapy and
immunotherapy

Fibrosis forms a physical barrier and also creates an
immunosuppressive microenvironment by secreting multiple
cytokines. Anti-TGF-β drugs reduce fibrosis and can partially
relieve this immunosuppression, promoting the infiltration of
T cells and other immune effector cells into the tumor area. In
OSCC, Galunisertib downregulates TGF-β signaling, enhances
CD8+ T cell activity, and improves the efficacy of anti-PD-
1 immunotherapy (Tao et al., 2024). In aggressive B-cell non-
Hodgkin lymphoma (B-NHL), Galunisertib promotes immune
system activation, reduces detrimental Treg cells, and prevents
CD8+ T cell exhaustion (Rej et al., 2023). In PDAC, Galunisertib
combined with dual immune checkpoint inhibitors (anti-PD-L1 and
CTLA-4) significantly inhibits tumor growth and induces the
infiltration of antitumor M1 macrophages. Additionally, it can
enhance the immune system’s tumor-attacking ability by
reducing the number of tumor-associated immunosuppressive
cells (Rana et al., 2022). Galunisertib combined with IL-15-
activated dendritic cells significantly enhances immunotherapy
efficacy in highly invasive and metastatic mouse lymphoma. This
combination therapy improves prognosis by inhibiting Treg cells in
tumor-draining lymph nodes and spleen and through the
inactivation of p-SMAD2 and Neuropilin-1 (Hira et al., 2020).

Galunisertib, when combined with chemotherapy drugs,
enhances therapeutic efficacy. In B-NHL, Galunisertib enhances
the antiproliferative and pro-apoptotic effects of doxorubicin and
further inhibits tumor growth by upregulating p-P38 MAPK and
inhibiting the TGF-β/Smad2/3 and PI3K/AKT signaling pathways
(Rej et al., 2023).

5.4 Tranilast

Tranilast is an anti-allergic medication originally used to treat
allergic conditions such as bronchial asthma, allergic rhinitis, and
eczema. However, as research has advanced, Tranilast has
demonstrated potential in the treatment of fibrosis-related
diseases and certain cancers by inhibiting fibroblast activation,
reducing malignant tumor resistance, and decreasing tumor
proliferation. For instance, in CRC, Tranilast inhibits tumor
growth by reducing tumor size, fibrosis, and angiogenesis. When
combined with 5-FU, Tranilast further enhances the antitumor
effect, leading to increased ROS production, decreased collagen
deposition, and enhanced tumor necrosis (Hashemzehi et al., 2021).

5.4.1 Tranilast impacts CAF function
Tranilast inhibits the migration of M2 macrophages by

suppressing CXCL12 secretion by CAFs, while also inhibiting
tumor growth, fibrosis, and the infiltration of M2 macrophages
and mast cells. Additionally, it significantly promotes CD8+
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lymphocyte infiltration into the tumor, thereby inducing cancer cell
apoptosis via immune response (Nakamura et al., 2022). In NSCLC,
Tranilast inhibits IL-6 secretion by CAFs, blocks CAF-induced
upregulation of the STAT3 signaling pathway, reduces EMT, and
reverses CAF-mediated resistance of NSCLC to osimertinib/
selumetinib (Ochi et al., 2022). Furthermore, Tranilast, by
inhibiting CAF activity, prevents them from promoting the
survival and radioresistance of nasopharyngeal carcinoma cells
via the IL-8/NF-κB pathway following radiotherapy (Huang W.-
C. et al., 2021).

5.4.2 Tranilast suppresses the TGF-β
signaling pathway

In lung cancer, Tranilast inhibits TGF-β1-induced EMT and cell
invasion by suppressing Smad4 expression, leading to reduced
pleural dissemination of cancer cells (Takahashi et al., 2020). In
breast cancer, Tranilast modulates the TGF-β signaling pathway by
increasing AKT1 phosphorylation and reducing ERK1/
2 phosphorylation, causing cell cycle arrest after the G1/S phase.
Additionally, Tranilast upregulates p53, induces PARP cleavage,
promotes tumor cell apoptosis, and modulates cell migration and
invasion by inhibiting TGF-β (Subramaniam et al., 2010).

5.4.3 Tranilast enhances the TME
Tranilast combined with Doxil treatment normalizes the TNBC

TME by significantly reducing ECM components, increasing tumor
blood vessel diameter and pericyte coverage, and improving tumor
perfusion and oxygenation. These changes enhanced the antitumor
immune response and improved therapeutic efficacy. Additionally,
Tranilast restored T cell infiltration and reduced the migration of
T cells away from immunosuppressive CAFs. The combination of
Tranilast and Doxil also significantly increased the levels of
immunostimulatory M1 macrophages in tumor tissue, enhancing
the efficacy of immune checkpoint inhibitors (such as anti-PD-1/
anti-CTLA-4) (Panagi et al., 2020).

6 Conclusion and outlook

In conclusion, as research deepens, the interaction between
fibrosis and malignant tumors has received increasing attention.
Fibrosis is not merely a consequence of tumor development but
plays a crucial role in tumor progression, resistance to therapy, and
immune evasion. Fibrosis facilitates tumor cell proliferation,
migration, and invasion by altering the composition and
structure of the extracellular matrix, while also offering a
protective niche for tumor cells to evade immune surveillance.
Additionally, fibrosis is closely linked to the activation of tumor-
associated fibroblasts, which secrete various cytokines and growth
factors, further exacerbating the malignancy of tumors.

Strategies targeting fibrosis in tumor treatment exhibit broad
prospects, as fibrosis plays a key role in tumor progression and drug
resistance. Inhibiting fibrosis-related signaling pathways, such as
TGF-β, can not only suppress tumor cell proliferation and
metastasis but also enhance the effects of chemotherapy, targeted
therapy, and immunotherapy. For instance, TGF-β inhibitors can

decrease fibrosis, improve drug permeability, and increase treatment
effectiveness. Moreover, drugs targeting CAFs in the tumor
microenvironment have demonstrated potential in preclinical
research (Conte, 2022).

In the future, anti-fibrosis therapies are likely to become a crucial
part of cancer treatment, especially when combined with current
therapies, providing new options for patients with difficult-to-treat
tumors. Through ongoing research, anti-fibrosis strategies will offer
crucial support in enhancing treatment outcomes and improving
patients’ quality of life.
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tendon pathology: a review
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Diabetes is one of the most common metabolic diseases worldwide, leading to
complications, mortality, and significant healthcare expenditures, which impose a
substantial social and financial burden globally. A diabetic environment can
induce metabolic changes, negatively affecting tendon homeostasis, leading
to alterations in biomechanical properties and histopathology. Numerous
studies have investigated the mechanisms through which diabetes exerts
pathological effects on tendons, including increased free radical production,
oxidative stress, inflammatory responses, deposition of advanced glycation end
products (AGEs), and microvascular changes. These metabolic changes damages
tendon structure, biomechanics, and tendon repair processes. The proliferation
of tendon stem cells decreases, apoptosis increases, and abnormal
differentiation, along with abnormal expression of myofibroblasts, ultimately
lead to insufficient tendon repair, fibrosis, and remodeling. Although
researches unveiling the effects of diabetes on tendinopathy, fibrosis or
contracture, and tendon injury healing are growing, systematic understanding
is still lacking. Therefore, this review summarizes the current research status and
provides a comprehensive overview, offering theoretical guidance for future in-
depth exploration of the impact of diabetes on tendons and the development of
treatments for diabetes-related tendon diseases.

KEYWORDS

diabetes, tendon, tendinopathy, pathology, fibrosis

1 Introduction

Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia,
primarily caused by insufficient insulin secretion (type 1 diabetes, T1DM) or insulin
resistance (type 2 diabetes, T2DM) (DiMeglio et al., 2018; Chatterjee et al., 2017). The latter
accounts for approximately 90% of all diabetes cases and is one of the most prevalent
metabolic diseases worldwide (Chatterjee et al., 2017; Giha et al., 2022). By 2045, the
prevalence is projected to rise to 12.2% of the population worldwide (Sun et al., 2022). The
high prevalence of DM has significant social, economic, and developmental implications
(Chatterjee et al., 2017; Vasiljević et al., 2022). Complications, mortality, and healthcare
costs associated with DM impose a considerable social and financial burden (Cho et al.,
2018; Nichols et al., 2019).

DM induces metabolic changes in microenvironment, such as increased free radical
production, oxidative stress, abnormal expression of inflammatory factors (Vasiljević et al.,
2022), copper metabolism abnormalities (Jia et al., 2024a), and the deposition of advanced
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glycation end products (AGEs) (Lee and Veres, 2019; Haus et al.,
2007) These diabetes-related microenvironmental changes lead to
numerous clinical complications, such microvascular diseases (Puri
et al., 2022) and macrovascular diseases (Puri et al., 2022; Kato et al.,
2024). In addition, musculoskeletal abnormalities, including tendon
dysfunction, are also common complications of diabetes (Giha et al.,
2022; Shalit et al., 2024).

Tendons connect muscles and bones, effectively transmitting
muscle forces during musculoskeletal movements (Lu et al., 2020;
Sharma and Maffulli, 2005; Singh et al., 2022). While there are
extensive research on the impact of DM on musculoskeletal
disorders, including arthritis (Wang et al., 2024a; Banu and
Köseoğlu, 2023), osteoporosis (Li et al., 2024a), skeletal muscle
atrophy (Atala et al., 2021; Cruz-Jentoft et al., 2019), and fibrosis
(Singh et al., 2022; Wu et al., 2024), recent years witnesses an
increasing number of investigations on the effects of DM on tendon
homeostasis, providing knowledgeable foundation for
further studies.

2 Impact of DM on normal tendons

The primary components of tendons are dense fibrous
connective tissue and collagen, connecting muscles to bones and
efficiently transmits forces during movements (Lu et al., 2020;
Sharma and Maffulli, 2005). T2DM leads to impaired cellular
glucose uptake and chronic hyperglycemia, exposing tissues to
abnormally high glucose concentrations (Chatterjee et al., 2017).
In both basic and clinical studies, the impact of T2DM on tendon
homeostasis is generally overlooked, possibly due to a lack of
recognition of the chronic pathological changes in tendon
structure caused by T2DM (Nichols et al., 2019; Kim et al., 2022;
Filgueiras et al., 2022).

DM alters muscle microcirculation and metabolic responses. In
diabetic patients with a high risk of peripheral arterial or
neurological disease, microcirculation deterioration is present in
muscles and tendons, and tendon homeostasis may be affected by
hyperglycemia (Kim et al., 2022; Kim et al., 2021; Panji Sananta et al.,
2019), leading to structural changes and inflammation (Nopparat
et al., 2023). Furthermore, T2DM is associated with increased
oxidative stress (OS), which negatively affects tendon conditions
(Vasiljević et al., 2022; Atala et al., 2021; Alabadi et al., 2023).
Advanced glycation end products (AGEs) are compounds formed by
aging and DM, which activate NADPH oxidase (NOX), increase
reactive oxygen species (ROS) production and leads to OS (Kato
et al., 2023; Shinohara et al., 2022a). AGEs also induces OS and
triggers inflammatory responses (Shinohara et al., 2022a). The
accumulation of AGEs, combined with other systemic and
behavioral factors, further complicates tendon dysfunction (Singh
et al., 2022; Zellers et al., 2021). AGEs, formed by non-enzymatic
reactions, bind to membrane receptors to exacerbate inflammation
and accelerate protein degradation (Puri et al., 2022; Cruz-Jentoft
et al., 2019).

Structural changes in tendons of DM patients include collagen
fiber disorder and micro-tears (Lo et al., 2013; Zaib et al., 2024;
Chang et al., 2022). The metabolic changes in the microenvironment
affect tendon stiffness, collagen composition, and physiology (Lee
and Veres, 2019; Shi et al., 2021), which may be associated with

AGEs (Fessel et al., 2014; Li et al., 2013). Research has shown that the
crosslinking of AGEs in DM tendon inhibits the biomechanical
plasticity and significantly disrupts tissue morphology (Lee and
Veres, 2019; Indyk et al., 2021). The accumulated AGEs not only
crosslinks adjacent collagen molecules to weaken biomechanics (Lee
and Veres, 2019), but also induces inflammatory responses (Indyk
et al., 2021). Moreover, pro-inflammatory chemokines, such as
CCL-1, 2, 4, and 5, are highly expressed in the circulation of
T2DM, further mediating inflammation (Mir et al., 2024).

Degenerative changes in tendons are common in DM patients
(Abate et al., 2010). For example, histological studies confirm that
hyperglycemia caused by DM is associated with degeneration of the
rotator cuff or Achilles tendons (Kim et al., 2022; Kent and Bailey,
1985). Even asymptomatic DM patients may exhibit morphological
abnormalities in the Achilles tendon (Afolabi et al., 2020), such as
thickening, collagen disorder, or calcific changes at the tendon-bone
junction (Harish et al., 2020; Vaidya et al., 2022; Xu et al., 2022).
Specifically, Sneha et al. (Harish et al., 2020) evaluated the Achilles
tendons of 61 healthy volunteers and 81 T2DM patients using
ultrasound. Compared with healthy volunteers, the Achilles in
T2DM patients was thickened and softened. DM can also lead to
increased risk of Achilles tendon and plantar fascia contracture,
impairing foot biomechanics and contributing to foot ulcers (Zellers
et al., 2021; Harish et al., 2020; Ra and Hn, 2022). These changes
reduce the extensibility of normal tendons and the strain energy of
rupture (Lopez-Pedrosa et al., 2024; Su et al., 2024).

3 Impact of DM on tendinopathy

Tendinopathy is a common connective tissue disease, widely
described as involving cellular proliferation, changes in extracellular
matrix (ECM) turnover/synthesis, and inflammation associated
with chronic tendon pathology (Sikes et al., 2021). The etiology
is multifactorial and not yet fully understood (Giha et al., 2022; Xu
et al., 2022). Tendinopathy is usually caused by overuse, metabolic
disorders, and other metabolic factors related to micro-injuries in
tendons. Tendinopathy is a challenging complication in diabetic
patients (Shi et al., 2021; Cannata et al., 2020), often leading to
chronic pain, restricted joint mobility, and even tendon rupture.
DM, especially hyperglycemia, leads to elevated levels of acetylated
p53, promoting cell apoptosis and OS, shifting the response of
tenocytes from anabolic to pathogenic (Chang et al., 2022;
Shinohara et al., 2022b), increasing the risk of developing
tendinopathy (Panji Sananta et al., 2019; Harish et al., 2020). The
potential pathogenic mechanisms by which DM leads to
tendinopathy can generally be categorized into several
aspects (Figure 1).

Chronic Inflammation: It is well known that diabetic patients are
in a pro-inflammatory state, and the hyperglycemic environment in
diabetes may lead to chronic inflammation in tendons, eventually
progressing to tendinopathy (Kwan et al., 2020). Diabetic patients
typically exhibit elevated levels of pro-inflammatory cytokines, such
as prostaglandins, tumor necrosis factor-α (TNF-α), interleukin-6
(IL-6), and leukotriene B4, which are significantly elevated in the
serum of diabetic patients (Vasiljević et al., 2022; Zaib et al., 2024).
These elevated levels of pro-inflammatory cytokines and
chemokines may contribute to the chronic development of
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tendinopathy (Indyk et al., 2021; Xu et al., 2022; Kwan et al., 2020).
Evidence indicates that the chronic inflammation observed in
tendinopathy may be due to the reduced proteolytic response of
tendon-derived stem cells (TDSCs) in tendinopathy, where the
hyperglycemic environment may stimulate chronic inflammation
and reduced proteolytic response, leading to tendinopathy (Kwan
et al., 2020). Studies on the role of T2DM in rotator cuff
tendinopathy suggest that persistent hyperglycemia may impair
the proliferation and autophagy of tenocytes, further leading to
increased expression of pro-inflammatory and pro-fibrotic
mediators (Song et al., 2022).

Excessive Production of AGEs: AGEs can alter collagen within
tendons, increase collagen crosslinking, reduce tendon fiber sliding
and viscoelasticity, inhibit the biomechanical plasticity of natural
tendons, and disrupt tendon morphology (Lee and Veres, 2019;
Indyk et al., 2021). TDSCs are involved in tendinopathy, and AGEs
can alter the pathophysiology of tendons in diabetic patients by
regulating the proliferation and differentiation of TSPCs (Lu et al.,
2020). However, other studies suggest that the relationship between
AGE content and tendon tensile mechanics may be obscured by
collagen disorder (Zellers et al., 2021).

OS: Diabetic patients may experience impaired angiogenesis,
promoting tissue hypoxia and the production of ROS, leading to OS
and pathological damage (Abu Khadra et al., 2024). In addition, DM
patients have lower levels of catalase (CAT) activity, with an
imbalance between oxidants and antioxidants, which increases
OS to induce cell death and trigger tendinopathy (Lu et al., 2020;
Abu Khadra et al., 2024; Yoon et al., 2024).

Vascular Changes: Vascular disease is one of the most common
long-term complications of poorly DM, leading to functional and

structural changes in the macrovascular and microvascular systems
of tendons (Panji Sananta et al., 2019). These biochemical and
structural abnormalities are also observed in various organs and
tissues, including nephropathy, retinopathy, peripheral neuropathy,
atherosclerosis, etc. (Kato et al., 2024; Tavares et al., 2021; Zheng
et al., 2021). Diabetes-induced endothelial cell damage reduces the
synthesis and secretion of protective factors, resulting in
vasoconstriction and inflammation (Sharma and Maffulli, 2005).

Circulating AGEs are associated with vascular complications
(Kato et al., 2024). Impaired vascular supply may also reduce the
nutrients and oxygen supply to connective tissues, leading to
degenerative changes and hindering tendon healing, thus
promoting tendinopathy (Kato et al., 2024; Indyk et al., 2021;
Abu Khadra et al., 2024). Some studies suggest that dysregulated
glucose and lipid metabolism exacerbate the aging of TDSCs and
promote osteogenic differentiation (Chen et al., 2024).

Calcific tendinopathy of the Achilles tendon is common, but
most patients are asymptomatic. The incidence of Achilles tendon
insertional calcific tendinopathy increases with age and is
significantly higher in diabetic patients (Giai Via et al., 2022).
Research shows that the risk of developing calcific tendinopathy
of the shoulder increases by 27% at 8 years following DM diagnosis
(Su et al., 2021). On the other hand, the etiology and pathogenesis of
calcific tendinopathy remain unclear. Riley et al. (1994). proposed a
theory suggesting that ischemic injury and rotator cuff degeneration
associated with metabolic diseases lead to further calcification,
indicating that metabolic diseases may be related to calcific
tendinopathy. Chen et al. (2024) demonstrated that dysregulated
glucose and lipid metabolism can activate the CXCL13-CXCR5 axis
in aged TDSCs, thereby promoting ectopic ossification.

FIGURE 1
Schematic illustration of the potential mechanisms by whcich diabetes mellitus triggers tendinopathy.
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Hyperglycemia, inflammatory responses, AGEs, OS, and
diabetic vascular changes can all influence tendon cell behavior.
However, the extent to which these specific changes lead to diabetic
tendinopathy and impaired healing remains unclear (Vaidya et al.,
2022). Antidiabetic drugs may have beneficial effects on diabetic
tendinopathy. Pioglitazone improves TDSC dysfunction caused by
AGEs through autophagy promotion, and pioglitazone has been
identified as a potential pharmacological option for tendinopathy
(Xu et al., 2020). Research on metformin suggests that it may affect
gene expression of myogenesis and adipogenesis, while whether
metformin benefits tendinopathy remain unclear (Chang et al.,
2022). Further efforts are required to develop effective therapeutics.

4 Impact of DM on tendon fibrosis

DM is associated with several fibrotic conditions, such as frozen
shoulder, Dupuytren’s contracture, trigger finger, Achilles tendon
contracture, and plantar fasciitis, which limit the range of motion of
the affected joints, impairing function and the ability to perform
daily activities (Abate et al., 2013; Al-Matubsi et al., 2011). Fibrosis is
characterized by the accumulation of ECM, usually involving
changes in ECM quality. The morphological and biochemical
disruption of the ECM is directly related to the loss of target
organ function (Primadhi and Herman, 2021; Ramirez et al.,
2024). The excessive production of AGEs under hyperglycemic
conditions can alter collagen within tendons, increase collagen
crosslinking, reduce tendon fiber sliding and viscoelasticity,
inhibit the biomechanical plasticity of natural tendons, and
disrupt tendon morphology (Lee and Veres, 2019; Indyk et al.,
2021; Gautieri and Silván, 2016). By stimulating transforming
growth factor-beta (TGF-β) pathway, AGEs and ROS regulate the
expression of various matrix proteins, forming fibrotic tissue
(Primadhi and Herman, 2021; Li et al., 2024b; Noonin and
Thongboonkerd, 2024). Myofibroblasts, the main producers and
organizers of collagen/ECM during tissue healing, are also sensitive
to DM related pathological changes, initiating hypertrophic scar
formation and tissue fibrosis (Schuster et al., 2023). Given the
aberrant fibrogenesis process, T2DM significantly impairs tendon
healing by inducing scar formation (Zhao et al., 2017).

Tendon injuries can occur at the muscle-tendon junction (e.g.,
gastrocnemius, quadriceps), within the tendon itself (e.g., Achilles
tendon), and at the tendon-bone interface (e.g., rotator cuff)
(Sharma and Maffulli, 2005; Tavares et al., 2021; Takahashi et al.,
2021; Yuan et al., 2024). Tendon healing occurs in three overlapping
phases: the initial inflammatory phase, where erythrocytes and
inflammatory cells, particularly neutrophils, infiltrate the injury
site, with monocytes and macrophages predominating within the
first 24 h, leading to the phagocytosis of necrotic material; a few days
later, the proliferative phase begins and lasts for several weeks,
during which the synthesis of type III collagen peaks; approximately
6 weeks later, the remodeling phase begins, characterized by a
reduction in cell numbers, and decreased collagen and
glycosaminoglycan synthesis. The remodeling phase can be
divided into a consolidation phase, beginning around 6 weeks
and lasting up to 10 weeks, and a maturation phase, starting
10 weeks after injury and continuing for up to a year, during
which fibrous tissue gradually transforms into scar-like tendon

tissue (Sharma and Maffulli, 2005; Farkas et al., 1973;
Adawhhflf et al., 1983).

The increased risk of rotator cuff tears (RCTs) in diabetic
patients may be related to impaired microcirculation (Yuan et al.,
2024). Studies have shown that sodium-glucose cotransporter
2 inhibitors (SGLT2is) promote systemic anti-inflammatory
effects by increasing fat utilization and regulating macrophage-
mediated inflammatory pathways. SGLT2 inhibitors may prevent
rotator cuff tears and subsequent repairs by reducing inflammation
(Su et al., 2024). Diabetes leads to severe damage to the
inflammatory, angiogenic, and proliferative processes, which may
adversely affect tendon healing or remodeling after injury (Chbinou
and Frenette, 2004).

Diabetic patients are at a higher risk of requiring tendon repair
surgery (Cho et al., 2015), and diabetes can affect tendon healing
post-operatively (Tavares et al., 2021; Takahashi et al., 2021; Griffith
et al., 2022). Elevated hemoglobin A1c levels 3–6 months after
rotator cuff repair surgery in diabetic patients are associated with an
increased rate of re-tears (Kim et al., 2023). Nevertheless, for diabetic
patients with perioperative glycemic control, the re-tear rate
following rotator cuff repair is observed to be comparable to that
of non-diabetic patients (Smith et al., 2021), underlying the
importance of blood glucose control.

Tendon-bone healing is a challenging process in orthopedics
and sports medicine (Wang et al., 2024b), while DM is a significant
risk factor for poor tendon-to-bone healing. The hyperglycemic
microenvironment inhibits TDSCs proliferation and inducing
osteochondral differentiation, a potential mechanism by which
diabetes impairs tendon-to-bone healing (Cao et al., 2022).
Additionally, diabetes-induced hyperglycemia increases the
expression of AGE and RAGE, resulting in significantly elevated
mRNA expression levels of NOX1, NOX4, IL-6, RAGE, type III
collagen, MMP2, TIMP1, and TIMP2 in the rotator cuff tendon,
along with an increase in ROS-positive cells and apoptotic cells (Lee
and Veres, 2019; Shinohara et al., 2022b; Yoshikawa et al., 2022).
These inflammatory factors also induce a crosstalk between immune
cells and tenocytes/TDSCs, while breaking this vicious cycle has
therapeutic potential against this condition (Peng et al., 2024).
Fibroblasts is closely correlated with collagen levels, and a
hyperglycemic environment negatively impacts fibroblast
quantity, adversely affecting tendon healing (Panji Sananta et al.,
2019). AGEs-related increased expression of inflammatory factors
can result in insufficient type I collagen synthesis of fibroblasts,
delaying recovery process (Yoshikawa et al., 2022; Jia et al., 2024b).

5 Potential therapies under
development

The ability to manage targets related to tendinopathy/tendon
healing and strictly control diabetes may be effective in treating
tendon pathology in diabetic patients (Yoon et al., 2024). However,
the cellular and molecular components involved in various aspects
of tendons disrupted by diabetes remain to be elucidated (Yoon
et al., 2024). AGE inhibitors that prevent AGE formation could be a
novel approach to treating diabetic tendon-to-bone healing (Jud and
Sourij, 2019) (Menè and Pugliese, 2003). These therapeutic options
include AGE crosslink breakers, AGE inhibitors, RAGE antagonists,
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clinically approved drugs for various indications (e.g., antidiabetic
and antihypertensive drugs, or statins), and dietary and herbal
treatments (Jud and Sourij, 2019). Direct AGE inhibitors include
pyridoxamine and aminoguanidine, which reduce AGE/RAGE by
increasing activation of the detoxifying enzyme Glo-1 and inhibiting
ROS derived from NOX, as well as by inhibiting the formation of
reactive dicarbonyl compounds (such as methylglyoxal) (Sourris
et al., 2020). Hyperglycemic conditions increase intracellular ROS
levels, a major cause of OS, which may interfere with the repair
capacity of damaged or degenerated tendons under hyperglycemic
conditions (Yoon et al., 2024; Osonoi et al., 2020). Inhibiting OS and
improving mitochondrial function is another manner to facilitate
tissue repair (Li et al., 2024c; Quetglas-Llabrés et al., 2024). Dietary
polyphenols is noticed to mitigate OS and mitochondrial
dysfunction in the crosstalk between type 2 diabetes and
tendinopathy (Wang et al., 2024c). Polyphenols, such as
pomegranate peel extract, have also shown beneficial effects on
inflammatory states and OS biomarkers in T2DM (Vasiljević
et al., 2022).

The decline in regenerative function of adipose-derived stem
cells is partly mediated by the OS and inflammatory environment
induced by diabetes. The induction of antioxidant stress factors in
adipose-derived stem cells may represent an adaptive mechanism to
cope with the increased OS in the diabetic microenvironment
(Ahmed et al., 2024). After applying adipose tissue-derived
stromal vascular fraction (SVF) in diabetic rats, the number of
tenocytes, capillaries, and collagen increased, improving Achilles
tendon rupture healing (Panji Sananta et al., 2019). 3D-printed
biological scaffolds have the potential to improve rotator cuff healing
by enhancing osteogenesis, reducing inflammation, and promoting
macrophage polarization (Wang et al., 2024b). Some studies also
suggest that antidiabetic drugs may have beneficial effects on tendon
healing. For example, pioglitazone can prevent the harmful effects of
AGEs on Achilles tendon healing, improving the biomechanical
properties of the Achilles tendon (Jia et al., 2024b). Pioglitazone is a
peroxisome proliferator-activated receptor-gamma (PPAR-γ)
agonist widely used in clinical practice to treat T2DM. It can also
reduce RAGE expression and block its downstream signaling
pathways, thereby alleviating OS and inflammation in tissues (Xu
et al., 2020; Yuan et al., 2011). Diabetes has adverse effects on the
neurotrophic pathways in tendon regeneration. Therefore, new
therapeutic strategies for regenerating tendons after injury in
diabetic patients may include the modulation of neurotrophic
pathway molecules, such as NGF and its receptors (Quaini
et al., 2017).

6 Conclusion

In summary, DM alters the microcirculation and metabolic
responses in tendons, leading to negative changes that affect the
biomechanical properties and histopathology. Specifically, increased

free radical production, OS, inflammatory responses, and the
deposition of AGEs collectively damage tendon structure,
biomechanics, and tendon fibrosis and repair. The decreased
proliferation of tendon stem cells, increased apoptosis, and
incorrect differentiation ultimately result in insufficient tendon
repair, maintenance, and remodeling. Although current research
has explored the impact of diabetes on tendons, tendinopathy, and
tendon injury healing, detailed evidence on the underlying
mechanisms remains to be revealed. Future researches are needed
to delve deeper into the mechanisms DM-associated tendon
pathology to provide references for developing treatment
methods against this disorder.
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Fibrosis is significantly associated with a wide variety of diseases and is involved in
their progression. Fibrosis activated under the influence of different combinations
of factors is considered a double-edged sword. Although there has been much
research on organ fibrosis in recent years, a variety of organ fibrosis diseases and
cancers are not well controlled in terms of prevention, treatment, and prognosis.
Clinical studies still lack exploration and discovery of effective targets for the
pathogenesis of organ fibrosis. Prolyl 4-hydroxylase subunit alpha 1 (P4HA1) is a
protein kinase and the synthesis and secretion of collagen are related to the
sustained activation of P4HA1. As further studies are being conducted, the
potential role of P4HA1 in the development of fibrosis-associated diseases
and cancer is becoming clear. Consequently, we conducted a systematic
review and discussion on the role of P4HA1 in the pathogenesis of various
fibrosis-related diseases and cancers. We reviewed the possible strategies of
P4HA1 in the diagnosis and treatment of fibrosis-related diseases and cancers,
and analyzed its potential relevance as a biomarker in the diagnosis and treatment
of fibrosis-related diseases and cancer.

KEYWORDS

prolyl 4-hydroxylase subunit alpha 1, fibrosis, cancer, cardiovascular
diseases, mechanism

1 Introduction

Fibrosis is the result of tissue repair responses following multiple organ injury. Several
cell types, including epithelial cells, vascular endothelial cells, and cells of the innate or
acquired immune system, participate in fibrosis by secreting factors that recruit and activate
fibroblasts to produce extracellular matrix proteins. After tissue damage, local tissue
fibroblasts are activated, and the proliferative capacity and extracellular matrix (ECM)
synthesis of fibroblasts increase, providing structural support for tissue repair and resulting
in repair effects (Henderson et al., 2020; Antar et al., 2023; Yasuma and Gabazza, 2024).
Under chronic injury and persistent inflammatory stimuli, the fibrosis process is often
uncontrollable, and uncontrolled fibrosis leads to the continued accumulation of ECM
components, which may cause tissue structural damage, organ dysfunction, and ultimately
organ failure (Henderson et al., 2020; Antar et al., 2023; Yasuma and Gabazza, 2024;
Weiskirchen et al., 2019). At present, treatment for organ fibrosis is still in the stage of
actively controlling the primary disease (Ngu et al., 2023; Naehrig et al., 2017). Therefore,
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there is an urgent need to explore the pathogenesis and regulatory
network of fibrosis-related diseases, identify effective intervention
targets, and develop drugs with targeted precision.

Several studies have shown that P4HA1, a key protein
involved in collagen synthesis, is a promising therapeutic
target for fibrosis-related diseases (Chen et al., 2018; Lou
et al., 2017). P4HA1 is composed of two identical alpha
subunits and two beta subunits (Zhu et al., 2021; Zou et al.,
2017) and plays a central role in the formation and stability of
collagen triple helix domains (Kivirikko and Pihlajaniemi, 1998).
It plays important roles in various cancers (Table 1), liver
diseases, and cardiovascular diseases. P4HA1 is widely
distributed in various tissues. For example, P4HA1 mRNA is
highly expressed in body parts such as the muscle tissue, kidney,
liver, and female tissues, and P4HA1 protein is highly expressed
in body parts such as the cerebral cortex, nasopharynx, and bronx
(Figure 1). This phenomenon may be attributed to post-
transcriptional modifications of RNA (Delaunay et al., 2024),
including N6-methyladenosine (m6A) and N5-methylcytosine
(m5C), as well as post-translational modifications of proteins
(Lee et al., 2023), such as phosphorylation and ubiquitination.
Splicing, capping, and tailing processes after transcription of
RNA may affect the stability of mRNA, potentially leading to
elevated transcription levels of mRNA and diminished protein
expression (Hao et al., 2024; Gilbert and Nachtergaele, 2023).
Post-translational modifications of proteins affect a number of
key biological processes, including expression, localization, and
enzyme activity (Wang et al., 2023). Consequently, an increase in
protein stability and a reduction in the degradation rate may
result in a reduction in mRNA transcription levels, while protein
expression levels remain elevated. A deeper study on the role of
P4HA1 in fibrosis will broaden the perspective of potential
targets for treatment. In this article, we discuss the regulatory
factors of P4HA1 expression and the signaling pathways involved
in diseases caused by P4HA1.

2 P4HA1 and cancer

Cancer is driven by genetic changes that disrupt the survival,
proliferation, and spread of cancer cells (Kiri and Ryba, 2024). In
2020, there were a total of 4,546,400 new cases of cancer and
2,992,600 deaths in China, accounting for 25.1% and 30.2% of
global cases, respectively (He et al., 2024). The noncancerous
components of tumor tissues (including fibroblasts, inflammatory
cells, and ECM) play a crucial role in tumorigenesis and cancer
progression. This provides a mutagenic environment that allows
cancer cells to develop, facilitating their survival, expansion, and
invasiveness (Landolt et al., 2022; Mallikarjuna et al., 2022; Nicolini
et al., 2023). This presents serious difficulties in the treatment of
cancers, such as the emergence of immunotherapy and medication
resistance (Naik and Leask, 2023; Xiao and Yu, 2021). Collagen
promotes the infiltration, invasion, migration, and angiogenesis of
malignant tumors by reshaping the ECM and influencing the tumor
microenvironment (Xu et al., 2019; Su and Karin, 2023; Necula et al.,
2022). P4HA1 is responsible for producing 4-hydroxyproline at the
Yaa position of the Gly Xaa Yaa repeat sequence in collagen, which is
necessary for the formation of the collagen triple helix structure
(Taga et al., 2014). Previous studies have shown that increased
P4HA1 expression is associated with poor prognosis in some solid
cancers, such as pancreatic cancer, colon cancer, high-grade glioma,
breast cancer, prostate cancer, and lung cancer (Zhou et al., 2023;
Zhao and Liu, 2021; Li et al., 2020; Chen et al., 2021).

2.1 Colon cancer

Colorectal cancer (CRC) is the third most common malignant
tumor of new cancer cases worldwide (Ionescu et al., 2023; Aljama
et al., 2023). The metastasis of CRC is significantly correlated with
matrix deposition and remodeling (Shin et al., 2023), indicating that
P4HA1 may also have carcinogenic effects in CRC. Tanaka et al.

TABLE 1 Studies reporting P4HA1 in cancer.

Disease model P4HA1 expression Main function References

Colorectal Cancer ↑ P4HA1 knockdown inhibits colon cancer cell proliferation and
reduces stemness

Xu et al. (2019); Li et al. (2020); Chen et al. (2021)

Gliomas ↑ P4HA1 promotes GBM cell migration and invasion Shin et al. (2023); Tanaka et al. (2020): Gawel et al.
(2019)

Lung Cancer ↑ P4HA1 promotes lung adenocarcinoma cell invasion and
metastasis

Yang et al. (2024)

Prostate Cancer ↑ P4HA1 promotes prostate cancer cell growth, tumor progression,
and cancer cell stemness

Zhou et al. (2020); Yang et al. (2023)

Pancreatic Cancer ↑ P4HA1 promotes PDAC cell proliferation, drug resistance, and
stemness

Zhang et al. (2023); Chakravarthi et al. (2014);
Walenta et al. (2004)

Breast Cancer ↑ P4HA1 promotes breast cancer cell metastasis, invasiveness and
stemness

Hu et al. (2020); Cao et al. (2019); Li et al. (2023)

Esophageal Cancer ↑ P4HA1 promotes esophageal cancer progression Hollern et al. (2014)

Hepatocellular
Carcinoma

↑ P4HA1 promotes the proliferation of liver cancer cells Polley et al. (2021)

Ovarian Cancer ↑ P4HA1 promotes ovarian cancer cell migration and invasion Li et al. (2022); Gou et al. (2023a)

↑: GDF11 expression increased.
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(2020) found through tissue analysis of clinical cases of 599 patients
with stage I or II CRC that P4HA1 is mainly expressed in the
malignant epithelial components of CRC. In addition, Gawel
et al. (2019) found that the combination of
P4HA1 with tripartite motif-containing 28 (TRIM28),
procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) and
carcinoembryonic antigen-related cell adhesion molecule 5
(CEACAM5) proteins in the plasma of 80 newly diagnosed CRC
patients and 80 healthy controls can serve as potential biomarkers
for early diagnosis of colorectal cancer. This indicates that
P4HA1 plays an important role in the occurrence, development,
and diagnosis of CRC. However, the mechanism of action of
P4HA1 in CRC is still unclear.

Zhang et al. (2021) found that P4HA1 expression can stabilize
hypoxia inducible factor-1 alpha (HIF1α) and activate the Wnt
signaling pathway, promoting the proliferation of CRC cells. Chen
et al. found through gene expression profiling analysis using the Cancer
Genome Atlas (TCGA) that the risk signal of P4HA1 related genes in
CRC consists of 11 genes, including MIR210HG, solute carrier family
4 member 7 (SLC4A7), cell division cycle associated 2 (CDCA2), death

associated protein kinase 1 (DAPK1), homeobox C6 (HOXC6),
Troponin T 1 (TNNT1), UL16 binding protein 2 (ULBP2), serine
protease inhibitor clade E member 1 (SERPINE1), WFDC21P, and
forkhead box D1 (FOXD1) (Chen et al., 2021). In addition, Agarwal
et al. found that P4HA1 is highly expressed in CRC tissues and
promotes tumor cell proliferation, invasion, migration, and tumor
growth. And diethyl pyhidc can inhibit the progression of invasive
CRC by acting on P4HA1 (Agarwal et al., 2020) (Figure 2). The above
research progress suggests that P4HA1may serve as an early diagnostic
biomarker and therapeutic target for CRC, but its pathogenic
mechanism in CRC is still unknown.

2.2 Gliomas

Glioma is the most common malignant tumor of the central
nervous system in adults and is divided into different subtypes.
Among them, glioblastoma multiforme (GBM) has the highest
number and the strongest lethality (Uddin et al., 2022). The
ECM is significantly correlated with the stemness and invasion of

FIGURE 1
P4HA1 is widely distributed in different tissues. P4HA1 protein is highly expressed in cerebral cortex, nasopharynrynx, and broncius. The expression
levels of P4HA1 mRNA are relatively high in muscle tissues, kidney tissues, liver tissues, and female tissues. (https://www.proteinatlas.org/
ENSG00000122884-P4HA1/tissue).
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glioma cells. Cescon et al. (2023) found that collagen VI is involved
in maintaining the stem cell-like properties of GBM cells and
promoting invasive transcriptional programs for cancer cell
proliferation and survival. P4HA1 is a key rate limiting protein
in the process of collagen synthesis. Hu et al. found that
P4HA1 expression is upregulated in gliomas. The high expression
of P4HA1 is associated with the malignancy of glioma and can serve
as a prognostic indicator for high-grade glioma patients (Hu et al.,
2017). The hypoxic microenvironment affects the invasiveness of
cancer cells., Hypoxia promotes cancer cell migration and invasion
through the L-Arg/P4HA1 axis in GBM (Zhu et al., 2021). In
addition, Yang et al. (2024) found that in GBM cells,
P4HA1 enhances PK1 succinylation by affecting succinate
concentration, and succinylation inhibits proteasomal
degradation of phosphoglycerate kinase 1 (PGK1), significantly
increasing aerobic glycolysis to produce lactate. Overexpression
of activating transcription factor 3 (ATF3) inhibits the binding of

HIF1α to the P4HA1 promoter region under hypoxic conditions,
suppressing immune response and tumor growth (Figure 2).
Chitosan gelatin microspheres loaded with P4HA1 siRNA can
significantly inhibit the proliferation, metastasis, glial layer
formation, and protein levels of stromal markers (N-cadherin,
vimentin) and epithelial mesenchymal transition (EMT)
transcription factors (Snail, Slug, Twist1) in glioma cells (Zhou
et al., 2024). The above research suggests that P4HA1 correlates
significantly with the expression of transcription factor HIF1α in
GBM. Developing therapeutics targeting P4HA1 and HIF1αmay be
the way to go for treating GBM in the future.

2.3 Lung cancer

Lung cancer is the leading cause of cancer-related death worldwide.
Histologically, lung cancer can be divided into small-cell lung cancer

FIGURE 2
The mechanism of action of P4HA1 in various cancers. P4HA1 is involved in regulating the proliferation, migration, and invasion of various cancer
cells. The figure summarizes the mechanism by which P4HA1 contributes to the occurrence and progression of cancers in the manuscript.
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(SCLC) and non-small cell lung cancer (NSCLC) (Jha et al., 2024). At
present, themain treatment strategies for lung cancer includemolecular
targeted therapy, photothermal therapy, and immunotherapy (Feng
and Zhang, 2023; Alduais et al., 2023; Lahiri et al., 2023). Research has
shown that P4HA1 is essential for the growth and invasion of lung
cancer cells, indicating that P4HA1 may be an effective therapeutic
target for lung adenocarcinoma (Zhao and Liu, 2021). Zhou et al. (2020)
found that the expression of P4HA1 was upregulated by 40% in tumor
tissues compared to normal tissues of lung adenocarcinoma. In
addition, both P4HA1 mRNA and protein are upregulated in
NSCLC. Further research has found that P4HA1 promotes the
invasion and metastasis of lung adenocarcinoma tumor cells by
affecting EMT and matrix metalloproteinases (MMPs) expression
(Ning et al., 2021). MicroRNAs (miRNAs) are a class of non-coding
RNAs with a length of approximately 21 nucleotides, and studies have
shown that the expression of some miRNAs is dysregulated in NSCLC
(Yang et al., 2023; Lobera et al., 2023; Rajakumar et al., 2023). Robinson
et al. found that overexpression of miR-124 can significantly inhibit the
expression of P4HA1 protein in lung cancer cells, resulting in tumor-
suppressive effects (Robinson et al., 2021).

The above studies indicate that P4HA1 plays an important role
in the disease progression of lung cancer (Figure 2). Li et al. (2020)
found through survival analysis that lung cancer patients with high
P4HA1 have a poorer clinical prognosis. Targeting P4HA1 is a
promising strategy for treating lung cancer. Therefore, there is an
urgent need to develop small molecule inhibitors targeting lung
cancer cell P4HA1. Robinson et al. discovered that the small
molecule inhibitor PythiDC of P4HA1 can significantly inhibit
the cell viability and invasion ability of lung cancer cells
(Robinson et al., 2021). The above research indicates that
P4HA1 plays a key role in the pathogenesis and prognosis of
lung cancer. Furthermore, P4HA1 inhibitors have the potential to
become a treatment for lung cancer. However, P4HA1 has not been
reported in lung fibrosis, such as idiopathic pulmonary fibrosis. This
suggests that research on P4HA1 in pulmonary fibrosis-related
diseases is still lacking and that in-depth studies are highly valuable.

2.4 Prostate cancer

Prostate cancer (PCa) is a widespread cancer, which mainly
affects men, with a high incidence rate and mortality. It is the second
most common cancer in men, after lung cancer (Zhang et al., 2023).
In general, there are no typical symptoms in the early stages of PCa,
and most newly diagnosed PCa patients are often in the advanced
stage. In addition, prostate biopsy is considered the gold standard for
the diagnosis of PCa. Currently, there is a lack of relevant
biomarkers for the diagnosis and prognosis of PCa. ECM is a
major component of the tumor environment, promoting the
establishment of pre-invasive behavior. A number of studies have
shown that P4HA1 expression is associated with the progression of
PCa. Chakravarthi et al. (2014) found that P4HA1 expression was
significantly increased in metastatic prostate cancer tissues. Further
mechanistic studies have shown that miR-124 regulates prostate
cancer cell growth and tumor progression by acting on the
expression of P4HA1 and MMP1. Lactic acid is one of the most
abundant environmental metabolites in tumors, and its levels are
significantly correlated with cancer metastasis in cancer patients

(Walenta et al., 2004). Ippolito et al. (2024) found that lactate
secreted by cancer-associated fibroblasts promotes an increase in
alpha-ketoglutarate (α-KG) in prostate cancer cells, activating α-KG
dependent P4HA1 to increase collagen hydroxylation, thereby
inducing stemness and invasive features of prostate cancer cells.
The above research progress indicates a significant correlation
between P4HA1 and cancer metastasis in PCa.

2.5 Pancreatic cancer

Pancreatic cancer is the leading cause of cancer-related death
worldwide. At present, clinical treatment for pancreatic cancer is
mainly divided into surgery and chemotherapy (Kolbeinsson et al.,
2023; Wood et al., 2022; Milella et al., 2022). However, there is still a
lack of specific therapeutic targets and biomarkers for pancreatic
cancer. Hu et al. (2020) analyzed tumor and normal samples in
different datasets and showed that P4HA1 was significantly
overexpressed in multiple pancreatic cancer datasets. Ductal
adenocarcinoma of the pancreas (PDAC) is the main type of
pancreatic cancer. After overexpression of P4HA1, KEGG
pathway enrichment analysis showed a significant correlation
with the HIF-1 signaling pathway. Research has found that
P4HA1 enhances the stability of HIF1α, promotes glycolytic
activity in PDAC cells, induces cancer cell proliferation, drug
resistance, and stemness (Cao et al., 2019). Cao X. et al. (2023)
found that ectopic expression of P4HA1 increased the levels of
cancer stem cell-associated proteins [sex-determining region
(SOX2), octamer-binding transcription factor 4 (OCT4), and
nanog homeobox (NANOG)] in pancreatic ductal
adenocarcinoma cells. However, the specific mechanism and key
proteins of P4HA1 in the occurrence and malignant progression of
pancreatic cancer are still unclear, which deserve further discussion.
Hu et al. found that LINC01503/miR-335-5p is the most promising
upstream regulation axis that affects P4HA1 in pancreatic cancer
through correlation analysis (Hu et al., 2020). Previous studies have
demonstrated that P4HA1 plays a significant role in the
pathogenesis of pancreatic cancer. However, further investigation
is required to elucidate the disease mechanisms and to develop
targeted therapeutic agents.

2.6 Breast cancer

Breast cancer (BC) is a common malignant tumor in women
globally. Collagen deposition is significantly related to the progress
and metastasis of BC (Herrera-Quintana et al., 2024; Papanicolaou
et al., 2022; Li et al., 2023). However, at present, the specific
mechanism of BC is still unclear. Further clarification of new and
more specific biomarkers for the diagnosis, prognosis, and risk
prediction of BC is of great significance to achieve personalized
treatment, improve treatment, and prevent overtreatment,
undertreatment, and incorrect treatment. The regulation of
P4HA1 has a significant impact on the prognosis of BC patients
(Li et al., 2020; Murugesan and Premkumar, 2021). Hollern et al.
(2014) found that E2F transcription factors promote the metastasis
of breast cancer, while E2F downstream target genes include Vegfa,
Bmp4, Cyr61, and P4HA1, suggesting that P4HA1 may regulate
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collagen deposition and participates in the regulation of cancer
metastasis and invasion. In addition, ubiquitin-specific peptidase 5
(USP5) is highly expressed in breast cancer. USP5 deubiquitination
modifies HIF2α, and protects HIF2α from ubiquitin-proteasome
degradation, thus promoting the transcription of HIF2α target
genes, such as P4HA1, solute carrier family 2 member 1
(SLC2A1), PLOD2 and vascular endothelial growth factor A
(VEGFA), providing a potential therapeutic target for BC (Huang
et al., 2022) (Figure 2). Triple-negative breast cancer (TNBC) is the
most aggressive and heterogeneous of all BC subtypes (Polley et al.,
2021; Vagia et al., 2020; Rigiracciolo et al., 2020). The activation of
the HIF-1 pathway in TNBC is at least partially regulated by P4HA1,
promoting the stemness of cancer cells. In addition, elevated
expression of P4HA1 is associated with poor prognosis and
chemotherapy resistance in TNBC patients. The combination of
P4Hi and chemotherapy drug doxorubicin can overcome TNBC
chemotherapy resistance (Xiong et al., 2018).

2.7 Other cancers

Previous studies have elucidated the function and operational
process of P4HA1 in colon cancer, gliomas, lung cancer, prostate
cancer, and pancreatic cancer. What is the function of P4HA1 in
other types of cancers? The ECM is the main component of the
tumor microenvironment. Collagen can promote the invasion
and migration of malignant tumors, and P4HA1 is a key enzyme
of collagen. Li et al. (2022) inferred that P4HA1 may play an
important role in the tumorigenesis of clear cell renal cell
carcinoma (RCC) and may be a prognostic biomarker and
therapeutic target for various malignancies, including RCC.
Gou et al. (2023a) found that the expression of P4HA1 is
related to the differentiation degree, location, lymph node
metastasis, and tumor lymph node metastasis staging of
esophageal squamous cell carcinoma. And it was discovered
that P4HA1 is activated by STAT1 transcription, thereby
promoting the progression of esophageal cancer (EC) (Gou
et al., 2023b). Hepatocellular carcinoma (HCC) is the leading
cause of cancer-related deaths around the world, particularly in
populations in Asia and Africa. The expression level of miR-30e
is reduced in liver cancer tissues. Further research has found that
miR-30e can reduce the expression of P4HA1 at both mRNA and
protein levels, inhibiting the proliferation of liver cancer cells
(Feng et al., 2016).

Ovarian cancer is an invasive disease, and the deposition of
collagen is significantly correlated with the invasion, prognosis, and
metastasis of ovarian cancer (Akinjiyan et al., 2024; Lyu and Feng,
2021; Ho et al., 2021). Platinum-based chemotherapy is the
cornerstone of ovarian cancer treatment, but the resistance of
ovarian cancer cells to platinum-based chemotherapy seriously
affects the prognosis and survival of ovarian cancer patients.
Song et al. observed that hypoxia can significantly upregulate the
mRNA and protein expression of P4HA1/2, while knocking down
P4HA1/2 can significantly inhibit collagen secretion, migration, and
metastasis of ovarian cancer cells (Song et al., 2023). In addition,
miR-122 has tumor-suppressive effects on various cancers. Duan
et al. (2018) found that miR-122 inhibited the migration, invasion,
and EMT of ovarian cancer cells by downregulating P4HA1. MiR-

122 and P4HA1 may be potential diagnostic markers and
therapeutic targets in ovarian cancer.

Levofloxacin has broad-spectrum anticancer activity, and its
combination with cisplatin further enhances the cytotoxicity of
cancer cells by promoting apoptosis (He et al., 2022a). Levofloxacin
prevents DNA replication in bacteria by inhibiting the activity of DNA
helicase. He et al. (2022b) found that levofloxacin significantly inhibited
cancer cell proliferation, colony formation, and xenograft tumor growth
by blocking the G2/M cell cycle and promoting cell apoptosis.
Additionally, P4HA1 is enriched in differentially downregulated
genes. P4HA1 mediated high collagen deposition plays a crucial role
in the tumor microenvironment and progression, and new therapeutic
strategies or small-molecule inhibitors targeting collagen synthesis are
being developed, which will be an important direction for future
cancer research.

3 P4HA1 and cardiovascular diseases

Cardiovascular disease is the leading cause of morbidity and
mortality worldwide. Fibrosis is a common feature of cardiovascular
diseases. Cardiovascular fibrosis represents the activation of repair
mechanisms for damaged organs. However, prolonged and
uncontrolled activation of these repair mechanisms can result in
excessive remodeling and hardening of the ECM, leading to
impaired cardiac function and ultimately heart failure (Poe A
et al., 2023; Ravassa Set al., 2023). The following section will
further discuss the role and specific mechanisms of P4HA1 in
the context of cardiovascular disease fibrosis.

3.1 Atherosclerosis

Atherosclerosis is the main cause of cardiovascular disease,
which is characterized by the accumulation of lipids and fiber
elements in the great arteries. Collagen synthesis by vascular
smooth muscle cells (VSMCs) is very important in
atherosclerosis because it affects plaque stability (Grootaert and
Bennett, 2021; Miano et al., 2021; Zhai et al., 2022). miRNAs play an
important role in cardiovascular diseases (Han et al., 2021; Bian
et al., 2021; Gao et al., 2022). Chen et al. (2018) found a negative
correlation between collagen and VSMC content in plaques and
miR-124-3p levels. MiR-124-3p inhibits VSMC collagen synthesis
by directly targeting P4HA1, which may reduce the stability of
atherosclerotic plaques. Low shear stress and oscillatory shear stress
can affect the size and phenotype of coronary atherosclerotic lesions.
P4HA1 overexpression increases the fiber cap thickness and collagen
content of carotid plaques induced by low shear stress and
oscillatory shear stress, leading to a significant increase in the
size of atherosclerotic plaques (Cao et al., 2016). Plaque rupture
is the most common cause of coronary artery occlusion, which can
lead to acute coronary syndrome. IL-6 significantly increased the
phosphorylation of RAF, mitogen-activated protein kinase (MEK)1/
2 and extracellular signal-regulated kinase (ERK) 1/2, and the
transcription factor c-Jun mediated the reduction of
P4HA1 transcription, downregulated the expression of P4HA1,
thereby destroying the stability of mouse atherosclerotic plaques
(Zhang et al., 2012). Melatonin is an endogenous neurohormone
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primarily secreted by the pineal gland, with multiple physiological
functions. Li et al. (2019) found that melatonin increased Akt
phosphorylation and transcription activation of specific protein 1
(Sp1), which binds to P4HA1 promoter, induces P4HA1 expression,
and enhances the stability of atherosclerotic plaques in
ApoE −/− mice.

3.2 Myocardial infarction

Myocardial infarction (MI) is the main cause of global incidence
rate and mortality, and also the main cause of heart failure (HF)
(Groenewegen et al., 2020; Frantz et al., 2022). The significant loss of
myocardial cells and excessive deposition and arrangement of ECM
after myocardial infarction leads to serious consequences such as
cardiac fibrosis (Yin et al., 2023). Fischer et al. (2024) found that
cellular communication network factor (CCN)1 plays a crucial role
in scar formation after myocardial infarction, guiding the
appropriate arrangement of extracellular matrix collagen
components in mature scars - shaping the mechanical properties
that support their structural stability. Further research has found
that the absence of CCN1 reduces the expression of collagen

processing and stabilizing enzymes (i.e., P4HA1, Procollagen-
lysine 2-oxyglutarate 5-dioxygenase (PLOD)1, and PLOD2).
CCN1 gene knockout mice showed higher ECM structural
complexity in the scar area after myocardial infarction, including
reduced local arrangement and increased curvature of collagen
fibers, as well as a 90% decrease in tissue consistency, packaging,
and size of collagen fibrils. The above studies indicate that
P4HA1 plays an important role in the synthesis and arrangement
of collagen during the fibrosis process after myocardial infarction.

3.3 Diabetic cardiomyopathy

Diabetic cardiomyopathy (DCM) is a serious complication of
diabetes (Shao et al., 2022), leading to cardiac fibrosis, even heart
failure and other serious consequences (Nakamura et al., 2022).
Zhao et al. found that liraglutide can upregulate the expression levels
of CD36 and p-JNK, enhance the DNA-binding activity of activator
protein (AP)-1 to P4HA1, thereby downregulating
P4HA1 expression and reducing myocardial fibrosis (Zhao et al.,
2019). This provides a new therapeutic target for heart fibrosis
caused by diabetic cardiomyopathy.

FIGURE 3
The mechanism of action of P4HA1 in various cardiovascular diseases. P4HA1 is involved in regulating the proliferation of fibroblasts and the
synthesis of collagen in various cardiovascular diseases. The molecular processes of P4HA1 involvement in cardiovascular disease discussed in the text
are summarized in this figure.
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The above results indicate that P4HA1 mediates the synthesis
and secretion of collagen, which influences the stability of
atherosclerotic arterial plaques and the process of cardiac fibrosis
in myocardial infarction and diabetic cardiomyopathy (Figure 3).

4 P4HA1 and other diseases

Non-alcoholic fatty liver disease (NAFLD) is currently the most
common liver disease and a global disease that threatens human
health. The progression of NAFLD may ultimately result in fibrosis
and cirrhosis (Pouwels et al., 2022). In multiple studies, it has been
found that P4HA1 is a hub gene in NAFLD, and its expression is
downregulated by 95% in NAFLD (Jiang H. et al., 2023a). Cao J. et al.
(2023) found a significant correlation between P4HA1 and
neutrophils. The above research suggests that P4HA1 may
participate in the disease progression of NAFLD by participating
in cellular metabolism and inflammatory responses. In addition,
P4HA1 is also involved in the process of liver fibrosis. Li et al. found
that overexpression of miR-122 in hepatic stellate cells significantly
reduced the expression of P4HA1 by targeting the binding site of
P4HA1 mRNA 30-UTR, leading to decreased collagen maturation
and ECM generation, and inhibited liver fibrosis (Li et al., 2013; Lou
et al., 2017).

Periodontal disease is a multifactorial chronic disease. It is
usually accompanied by a hypoxic environment, which affects
metabolic activation and exacerbates pathological and
physiological conditions (Gou et al., 2022). The extracellular
matrix of periodontal connective tissue comprises a substantial
proportion of type I collagen. Morimoto et al. found that
hypoxia culture stimulates upregulation of P4HA1 expression in

periodontal ligament cells, increasing collagen levels (Morimoto
et al., 2021).

The airway remodeling in asthma airway inflammation is caused
by the deposition of collagen on the airway wall. Chelidoniummajus
may alleviate airway remodeling induced by ovalbumin in asthmatic
rats by affecting the expression of P4HA1 (Wang et al., 2024). The
above research results indicate that P4HA1 could be used as one of
the targets for developing therapeutic drugs for airway
inflammation.

Osteoarthritis (OA) is the most common type of arthritis. In OA,
the composition and viscoelasticity of the ECM produced by
chondrocytes undergo alterations (Hodgkinson et al., 2022).
According to reports, P4HA1 disrupts the structure of the
vascular basement membrane by inhibiting collagen synthesis
(Zhou et al., 2017). Jiang P. et al. (2023) found that miRNA-1
treatment led to a decrease in the expression levels of P4HA1 and
aggrecan (ACAN), delaying articular cartilage degeneration
(Figure 4).

5 Summary

According to existing research, the role of P4HA1 in pancreatic
cancer, colon cancer, high-grade glioma, breast cancer, prostate
cancer, lung cancer and other cancers has been preliminarily
verified. However, the role of P4HA1 in cardiovascular diseases
such as myocardial infarction, ischemia-reperfusion, and heart
failure with preserved ejection fraction remains to be explored.
Therefore, it is necessary to further expand the research scope
and explore the specific roles and mechanisms of P4HA1 in
different types of cardiovascular diseases. P4HA1 is expressed in

FIGURE 4
P4HA1 is significantly correlated with osteoporosis, asthma, periodontal disease, and NAFLD.
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various organs. This explains its relationship with cancer and
cardiovascular disease. Overall, research on the role of screening
small-molecule drugs targeting P4HA1 in organ fibrosis diseases
and cancer is limited. Therefore, based on current research results,
more evidence is needed to apply strategies for treating organ
fibrosis by inhibiting the expression of P4HA1 gene and protein.
In addition, due to the limitations of research on the mechanism of
P4HA1 fibrosis in cardiovascular diseases. Therefore, future
research should explore the mechanism of action of
P4HA1 through various methods such as cell experiments,
animal models, clinical cases, and comprehensively analyze other
related genes and signals to understand the role of P4HA1 in fibrosis
in cardiovascular diseases. We hope that with the continuous
advancement of technology and the continuous development of
research, the potential of P4HA1 in treating cardiovascular and
cerebrovascular diseases will gradually be discovered and realized.
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and NEDDylation in fibrosis
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Fibrosis is the outcome of any abnormal tissue repair process that results in
normal tissue replacement with scar tissue, leading to persistent tissue damage
and cellular injury. During the process of fibrosis, many cytokines and
chemokines are involved, and their activities are controlled by post-
translational modifications, especially SUMOylation and NEDDylation. Both
these modifications entail a three-step process of activation, conjugation, and
ligation that involves three kinds of enzymes, namely, E1 activating,
E2 conjugating, and E3 ligase enzymes. SUMOylation participates in organ
fibrosis by modulating FXR, PML, TGF-β receptor I, Sirt3, HIF-1α, and Sirt1,
while NEDDylation influences organ fibrosis by regulating cullin3, NIK, SRSF3,
and UBE2M. Further investigations exhibit the therapeutic potentials of
SUMOylation/NEDDylation activators and inhibitors against organ fibrosis,
especially ginkgolic acid in SUMOylation and MLN4924 in NEDDylation. These
results demonstrate the therapeutic effects of SUMOylation and NEDDylation
against organ fibrosis and highlight their activators as well as inhibitors as
potential candidates. In the future, deeper investigations of SUMOylation and
NEDDylation are needed to identify novel substrates against organ fibrosis;
moreover, clinical investigations are needed to determine the therapeutic
effects of their activators and inhibitors that can benefit patients. This review
highlights that SUMOylation and NEDDylation function as potential therapeutic
targets for organ fibrosis.

KEYWORDS

SUMOylation, NEDDylation, fibrosis, ginkgolic acid, MLN4924

1 Introduction

Fibrosis is the outcome of abnormal tissue repair processes rather than diseases and has
been known to cause persistent tissue damage and cellular injury (Antar et al., 2023; Chen
et al., 2018; Taru et al., 2024). Fibrotic tissues are characterized by excessive extracellular
matrix deposition and activated fibroblasts accompanied by chronic inflammation (Zhang
et al., 2021). Wound healing is effective for repairing injured tissues when the damage is
minor or non-repetitive, and only a transient increase in the extracellular matrix and a small
amount of activated fibroblasts are observed. However, inflammatory and chronic wound-
healing responses are aggravated when the damage is severe, and there is poor elimination
of the induced profibrotic factors; in such instances, normal tissue is replaced by scar tissue
and often results in organ failure (Henderson et al., 2020; Zhang et al., 2024b). The process
of fibrosis begins from injury to the epithelial and/or endothelial cells that release
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proinflammatory chemokines and profibrotic growth factors; then,
macrophages and monocytes are recruited in the injured region and
release massive amounts of cytokines and chemokines to induce
fibroblast activation. The activated fibroblasts migrate to the injured
region and transform into myofibroblasts. Excessive extracellular
matrix is also accumulated in such instances, and some parenchymal
cells are transformed into fibroblasts or myofibroblasts under
stimulation by cytokines and chemokines.

During fibrosis formation, many cytokines and chemokines
are involved, and their activities are mostly controlled by post-
translational modifications (PTMs), including those involving
transforming growth factor-β (TGF-β), promyelocytic leukemia
(PML), and hypoxia-inducible factor (HIF)-1α (Dai et al., 2020;
Lin et al., 2020; Peng et al., 2022). Ubiquitination,
phosphorylation, acetylation, and methylation are some of the
common PTMs, and numerous studies have confirmed the vital
roles of PTMs in fibrosis (Chen et al., 2022; Liessi et al., 2020; Liu

et al., 2023c). Notably, some novel PTMs like SUMOylation and
NEDDylation are also known to affect fibrosis and have potential
as new therapeutic targets against organ fibrosis. Both these
modifications entail a three-step process of activation,
conjugation, and ligation involving three kinds of enzymes
(Figure 1), as will be described in detail in the next section.

In this review, we describe some important cellular and
molecular mechanisms of SUMOylation and NEDDylation in
organ fibrosis reported over the past 5 years, from their main
regulatory enzymes to the processes themselves as well as
introduce the roles of SUMOylation, NEDDylation, and their
substrates in organ fibrosis. Then, we present the effects of
SUMOylation/NEDDylation activators and inhibitors in organ
fibrosis. We also discuss the benefits and limitations of
SUMOylation/NEDDylation in the treatment of organ fibrosis
with the goal of highlighting their therapeutic potentials and
clinical treatment.

FIGURE 1
Main processes of SUMOylation and NEDDylation, including activation, conjugation, and ligation. (A)Main process of SUMOylation. (B)Main process
of NEDDylation. Both SUMOylation and NEDDylation share these three processes that are mediated by different E1 activating, E2 conjugating, and
E3 ligase enzymes. SENPs facilitate deSUMOylation, while NEDP1 controls deNEDDylation. NAE, NEDD8-activating enzyme; NEDP1, Nedd8 protease 1;
SAE1, SUMO-activating enzyme subunit 1; SENPS, sentrin-specific proteases; UBA1, ubiquitin-likemodifier activating enzyme 1; UBA2, ubiquitin-like
modifier activating enzyme 2; UBA3, ubiquitin-like modifier activating enzyme 3; UBA6, ubiquitin-like modifier activating enzyme 6; UBE2M/2F,
ubiquitin-conjugating enzyme E2 M/2F; Ubc9, ubiquitin-conjugating enzyme 9.
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2 PTMs by ubiquitin-like (Ubl) proteins

2.1 Ubiquitination

Ubiquitination is a complex enzymatic cascade in which ubiquitin
(Ub) units attach to specific residues of a protein, leading to protein
degradation, transcriptional regulation, cell survival, protein–protein
interactions, and intracellular trafficking. The process of
ubiquitination is mediated by three types of enzymes, namely,
E1 ubiquitin-activating, E2 ubiquitin-conjugating, and E3 ubiquitin
ligase enzymes. First, the free Ub is activated by the E1 ubiquitin-
activating enzyme through the participation of ATPs. Ubiquitin
conjugates to substrates as a monomer (monoubiquitination) or at
multiple sites (multi-monoubiquitination). Then, the activated Ub is
transferred from E1 to cysteine at the active site of E2. Finally, the
ubiquitinated protein is degraded by the proteasome into amino acids
and small peptides or participates in biological processes (Gomarasca
et al., 2022; Pellegrino et al., 2022). In this process, depending on E3,
ubiquitin is transferred to the substrate via two mechanisms. The
really interesting new gene (RING) E3 directly transfers ubiquitin to
the substrate, while the homologous to E6AP carboxyl terminus
(HECT) E3 or RING-between RING-RING (RBR) E3 transfers
ubiquitin to itself and then to the substrate (French et al., 2021).
The glycine residue of Ub covalently links to the lysine of the
substrate, and Ub also forms Ub chains in this manner. Ub has
seven lysine residues, namely, Lys6, Lys11, Lys27, Lys29, Lys33, Lys48,
and Lys63. Among these, Lys48-linked polyubiquitin chains are
responsible for protein degradation, while Lys29-linked
polyubiquitin chains control lysosomal degradation (French et al.,
2021). Notably, ubiquitination is a reversible process that is mediated
by deubiquitinating enzymes (DUBs) (Liu et al., 2023b). DUBs
remove ubiquitin from substrates or ubiquitin chains by reversing
the function of the E3 ligase enzyme.

2.2 SUMOylation

SUMOylation is an important and reversible PTM similar to
ubiquitination; it participates in nuclear–cytoplasmic transfer,
genomic integrity, translational regulation, and cell-cycle regulation
(Qi et al., 2024; Sun et al., 2024). Small ubiquitin-like modifier (SUMO)
proteins are the most well-known Ubls that share a similar three-
dimensional structure with Ub. Five SUMO proteins (SUMO1–5) are
expressed in mammals, where SUMO2 and SUMO3 are highly similar
so as to be called SUMO2/3 (Wang and Matunis, 2023b).
SUMO1–3 are widely expressed in tissues, while SUMO4 is mainly
expressed in the spleen and kidneys and SUMO5 is mainly expressed in
the blood and testes (Gomarasca et al., 2022). Similar to ubiquitination,
SUMOylation relies on three classes of enzymes.

Before SUMOylation, the SUMO proteins are matured by
removing several amino acids using the sentrin-specific protease
(SENP) family of proteases. First, the E1 activating enzyme is a
heterodimer comprising two SUMO-activating enzyme subunits
(SAE1 and SAE2) that activates the SUMO protein at the
C-terminal glycine residue to form a thioester bond with SAE2 at
the cysteine residue. Then, SUMO is transferred to the only
E2 enzyme, ubiquitin-conjugating enzyme 9 (Ubc9), through the
formation of a thioester bond during SUMOylation (Zhu et al.,

2024). Finally, SUMO is transferred to the substrate at the lysine
residue to form a thioester bridge with the glycine residue at the
C-terminus of SUMO (Wu and Huang, 2023) (Figure 2). Notably, a
specific SUMO consensus motif ΨKXE is identified, where Ψ is a
hydrophobic residue while K and E are the respective lysine acceptor
and glutamic acid residues, and X is an amino acid. SUMOylation
also includes a reversible process called deSUMOylation, in which a
SUMO modification is cleaved from a substrate by the SENP family
(Pei et al., 2024). The SENP family also mediates SUMOmaturation
(Brand et al., 2022; Chen et al., 2024a; Wen et al., 2024).

2.3 NEDDylation

NEDDylation is a type of PTM characterized by the covalent
conjugation of neural-precursor-cell-expressed developmentally
downregulated 8 (NEDD8) to a lysine residue in the substrate.
NEDDylation plays important roles in metabolism, cell
proliferation, signal transduction, DNA repair, and stress
responses (Gonzalez-Rellan et al., 2023; He et al., 2023; Lu et al.,
2023). NEDD8 is one of the Ubls sharing 80% homology with Ub.
NEDDylation involves three enzymatic cascades with NEDD8-
activating enzyme (NAE) E1, NEDD8-conjugating enzyme E2 (or
ubiquitin-conjugating enzyme E2 M, UBE2M), and substrate-
specific NEDD8-E3 ligase.

Before NEDDylation, the maturation of NEDD8 includes
exposure to Gly76 through removal of the C-terminal amino
acids from the NEDD8 precursor with a hydrolase such as
UCHL3 or DEN1. First, a thioester bond is formed between
NEDD8 and the UBA3 subunit of the E1 activating enzyme NAE
along with participation of ATPs. Then, NEDD8 is transferred to an
E2 conjugating enzyme by a trans-thiolation reaction. Lastly, a
substrate-specific E3 ligase contributes to the bond between
NEDD8 and the substrate through promotion of the bond
between the E2 enzyme and substrate (Figure 3). The most
identified NEDDylation substrates are cullins, which are subunits
of the cullin-RING E3 ubiquitin ligases (CRLs) (Olaizola et al., 2022;
Yu et al., 2022a). Notably, CRLs are common E3 ubiquitin ligases
whose activities are facilitated by NEDDylation (Boh et al., 2011; He
et al., 2023). In addition, PTEN, p53, and phosphoenolpyruvate
carboxykinase 1 (PCK1) are substrates of NEDD8 (Gonzalez-Rellan
et al., 2023; Liu et al., 2023a; Xie et al., 2021).

DeNEDDylation involves removal of NEDD8 from a substrate
by a NEDD8 isopeptidase (Xiong et al., 2020). Nedd8 protease 1
(NEDP1) is a common NEDD8 isopeptidase that has two kinds of
activities; NEDP1 belongs to a small ubiquitin-like-modifier-specific
protease family that matures NEDD8 by exposure to the
Gly76 residue and removal of the covalent binding between
NEDD8 and the substrate (Bailly et al., 2019; Pellegrino et al., 2022).

3 Roles of SUMOylation and
NEDDylation in fibrosis

3.1 Role of SUMOylation in fibrosis

Emerging evidence has revealed the important roles of
SUMOylation and deSUMOylation in fibrosis; herein, we
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describe only a few of the important findings concerning different
types of organ fibrosis for the sake of brevity. In the liver, the human
PML protein is a key organizer of nuclear bodies that participates in
fibrosis. Silencing Ubc9, the only known E2-conjugating enzyme in
SUMOylation, alleviates hepatic stellate cell activation, while
silencing RNF4, an E3 ubiquitin ligase family member, facilitates
the TGF-β/Smad pathway and causes liver fibrosis by enhancing
SUMOylated PML accumulation (Dai et al., 2020; Li et al., 2024a).
The TGF-β pathway is essential in fibrogenesis, and SUMOylation
has been proven as an important target of the TGF-β pathway to
treat fibrosis (Ungefroren, 2019). SUMOylation of the TGF-β
receptor I occurs at the Lys385 and Lys389 residues, while
SUMOylation of Smad4 occurs at Lys113 in the MH1 domain
and Lys159 in the linker segment (Wang et al., 2021). Moreover,

SAE1 is a promising therapeutic target for suppressing ferroptosis
against liver fibrosis by reducing SUMOylation (Zhang et al., 2024a).
SUMOylation of the farnesoid X receptor (FXR) occurs at the
Lys122, Lys275, and Glu277 residues, and inhibited
SUMOylation of FXR promotes its transactivity and suppresses
hepatic stellate cell activation against liver fibrosis (Zhou et al.,
2020b). The orphan nuclear receptor small heterodimer partner
(SHP) alleviates chronic hepatitis C virus (HCV)-induced hepatic
fibrosis; SHP regulates gluconeogenesis through Forkhead box
O1 acetylation via histone deacetylase 9 (HDAC9) and controls
lipogenesis by upregulating the sterol regulatory element binding
protein 1c via SUMOylation of the liver X receptor α (Chen et al.,
2019). These findings confirm the regulatory effects of SUMOylation
in liver fibrosis.

FIGURE 2
SUMOylation pathway in fibrosis. Increased levels of SUMO1, SUMO2, and Ubc9 as well as decreased level of SAE1 are observed in fibrosis.
SUMOylation of PML, TGFβRI, Smad4, Twist2, FXR, Sirt3, STAT1, HIF-1α, and CFTR contribute to fibrosis, whereas SUMOylation of LXRα, NR5A2, SNIP1,
Beclin1, and Vps34 can inhibit fibrosis. Notably, SUMOylated PML has been reported to participate in several organ fibrosis and functions as a promising
therapeutic target for fibrosis treatment. CFTR, cystic fibrosis transmembrane conductance regulator; FXR, farnesoid X receptor; HIF-1α, hypoxia-
inducible factor-1α; LXRα, liver X receptor α; NR5A2, nuclear receptor subfamily 5 group A member 2; PML, promyelocytic leukemia; SAE1, SUMO-
activating enzyme subunit 1; SNIP1, Smad nuclear-interacting protein 1; TGFβRI, transforming growth factor-β receptor I; Ubc9, ubiquitin-conjugating
enzyme 9.
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SUMOylation also has notable roles in pulmonary diseases,
including hypoxic pulmonary hypertension, idiopathic pulmonary
fibrosis, and chronic obstructive pulmonary disease (Zheng et al.,
2023) (Table 1). Upregulation of SUMO1 and Ubc9 has been
observed in human bronchial epithelial cells after exposure to
cigarette smoke extract in chronic obstructive pulmonary disease
(Zhou et al., 2020a), and upregulation of SUMO1, SUMO2, and
Ubc9 has been noted in the lung tissues of patients with idiopathic
pulmonary fibrosis (Yu et al., 2022b). Inhibition of SUMO1 blocks
idiopathic pulmonary fibrosis (Yu et al., 2022b), highlighting that
SUMOylation has an important role in pulmonary fibrosis.

In renal fibrosis, the nuclear receptor subfamily 5 group A
member 2 (NR5A2) and Ubc9 are highly expressed in the
kidney, while the K224R mutation of SUMOylated NR5A2 fails
to upregulate calreticulin to drive fibrosis (Arvaniti et al., 2016;
Politis and Charonis, 2022). DeSUMOylation of Sirt3 by SENP1 was
found to control macrophage polarization and metabolic stress
(Wang et al., 2019; Zhou et al., 2022b). The covalent binding of
SUMO1 and Sirt3 increases during acute kidney injury (AKI), and
the mutation of lysine to arginine significantly attenuates AKI while
minimizing fibroblast-induced repair in a genetically modified
mouse model (Zhu et al., 2023). Additionally, renal fibrosis is
mainly involved in HIF-1α SUMOylation and SUMO-mediated
regulation of the TGF-β/Smad and NF-κB pathways (Li et al.,
2019; Yang et al., 2019). STAT1 activation delays
epithelial–mesenchymal transitions (EMTs) after high glucose
stimulation in the renal tubular epithelial cells, while high

glucose levels promote STAT1 SUMOylation to suppress
STAT1 activity and accelerate EMT (Gu et al., 2023a). These
findings prove that SUMOylation may be a potential therapeutic
target against renal fibrosis.

In cardiac fibrosis, obvious TGF-β1, prolyl isomerase NIMA-
interacting 1 (Pin1) upregulation, and increased PML SUMOylation
have been observed. TGF-β1 stimulation facilitates PML
SUMOylation, nuclear body formation, and transformation of
Pin1 into the nuclear body to interact with PML (Wu et al.,
2019). Another study showed that SUMOylated PML has the
ability to control p53 expression as p53 is vital for PML nuclear
body formation in cardiac fibroblasts (Huang et al., 2023). The
knockout of a poly-SUMO-specific E3 ubiquitin ligase RNF4 has
been shown to aggravate interstitial fibrosis and cardiac dysfunction
in the animal model of myocardial infarction. RNF4 knockout and
PML overexpression facilitate PML SUMOylation as well as
p53 recruitment and activation to exacerbate cardiomyocyte
apoptosis. The interactions among RNF4, PML, and p53 could
be potential therapeutic targets against cardiac fibrosis and
apoptosis in myocardial infarction (Qiu et al., 2020). PML
overexpression and RNF4 knockdown by small interfering RNA
(siRNA) enhance PML SUMOylation, promote p53 recruitment and
activation, and exacerbate H2O2/ATO-induced cardiomyocyte
apoptosis, which could be partially reversed by knockdown of
p53. Ubc9 has been proven to be a novel therapeutic target for
protecting cardiomyocytes from ischemic stress while obviously
alleviating cardiomyocyte apoptosis, fibrosis, and improving

FIGURE 3
NEDDylation pathway in fibrosis. Increased levels of NEDD8 and UBE2M as well as decreased UBE2M are observed in fibrosis. NEDDylation of
cullin3 contributes to fibrosis, while NEDDylation of NIK and SRSF3 can block fibrosis. Notably, NEDDylated PML has been reported to participate in organ
fibrosis and functions as a promising therapeutic target for fibrosis treatment. NAE, NEDD8-activating enzyme; NIK, NF-κB-inducing kinase; SRSF3,
serine-rich splicing factor 3; UBE2M, ubiquitin-conjugating enzyme E2 M.
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TABLE 1 Profibrotic and antifibrotic effects of SUMOylation and NEDDylation substrates as well as their target organs, related diseases, and biochemical
functions.

Target
organ

Related disease Substrates/related
proteins

Biological functions References

SUMOylation

Liver Arsenic-trioxide-induced liver fibrosis PML Facilitating TGF-β/Smad pathway and
accumulating liver fibrosis

Dai et al. (2020), Li et al.
(2024a)

— TGF-β receptor I at
Lys385 and Lys389

Regulating the generation of myofibroblasts
and EMTs

Wang et al. (2021)

Smad4 at Lys 113 and Lys159 Regulating the generation of myofibroblasts
and EMTs

Wang et al. (2021)

Non-alcoholic steatohepatitis (NASH) FXR at Lys122, Lys275 and
Glu277

Suppressing FXR transactivity and hepatic
stellate cell activation

Zhou et al. (2020b)

Thioacetamide-induced liver fibrosis SAE1 downregulation Antifibrotic effect Zhang et al. (2024a)

Chronic hepatitis C virus-induced liver
fibrosis

Liver X receptor α Regulating lipogenesis and alleviating liver
fibrosis

Chen et al. (2019)

Chronic obstructive pulmonary disease SUMO1 and
Ubc9 upregulation

Profibrotic effect Zhou et al. (2020a)

Lung Idiopathic pulmonary fibrosis SUMO1, SUMO2, and
Ubc9 upregulation

Profibrotic effect Yu et al. (2022b)

Unilateral ureteric obstruction NR5A2 at Lys224 Upregulating calreticulin to drive fibrosis Arvaniti et al. (2016), Politis
and Charonis (2022)

Kidney Folic acid and ischemia–reperfusion-
induced acute kidney injury

Sirt3 Suppressing fibroblast-induced repair and
promoting fibrosis

Zhu et al. (2023)

Unilateral ureteric obstruction HIF-1α Regulating TGF-β/Smad and NF-κB
pathways

Li et al. (2019), Yang et al.
(2019)

Diabetic kidney disease STAT1 Suppressing STAT1 activity and accelerating
EMTs

Gu et al. (2023a)

Transverse-aortic-constriction-induced
cardiac fibrosis

PML Facilitating PML nuclear body formation and
further transforming Pin1 into nuclear to
interact with PML, thus promoting fibrosis

Wu et al. (2019)

Heart Myocardial infarction PML Controlling p53 expression to facilitate PML-
nuclear-body formation and regulating
fibrosis

Huang et al. (2023)

Promoting p53 recruitment and activation to
exacerbate cardiac fibrosis

Qiu et al. (2020)

Myocardial ischemic injury Ubc9 Inhibiting apoptosis under oxygen and
glucose deprivation against fibrosis

Xiao et al. (2020)

Vps34 and Beclin1 Facilitating the protein assembly of PI3K-III
complexes I and II to inhibit fibrosis

Transaortic constriction Sirt1 Blocking the transformation of cardiac
fibroblasts into myofibroblasts to delay
fibrosis

Luo et al. (2022)

Transverse aortic constriction SUMO2 Dual regulation of SUMO2 and STAT1 to
affect fibrosis, hypertrophy, and
inflammation

Rangrez et al. (2020)

CFBE41o-
airway cells

Cystic fibrosis CFTR Modulating biogenesis and degradation Gong et al. (2019)

Intestine Crohn’s disease SNIP1 Inhibiting EMTs and intestinal fibrosis Chen et al. (2024c)

MCF10A cell — Twist2 at Lys129 Accelerating EMTs and promoting
mesenchymal phenotypes

Zeng et al. (2021)

(Continued on following page)
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cardiac function. Ubc9 overexpression attenuates cardiomyocyte
apoptosis, while Ubc9 knockout aggravates apoptosis under
oxygen and glucose deprivation. A mechanical study showed that
Ubc9 promotes SUMOylation of Vps34 and Beclin1, which are two
core proteins in the class III phosphatidylinositol 3-kinase (PI3K-
III) complex, and facilitates the protein assembly of the PI3K-III
complexes I and II (Xiao et al., 2020). Sirt1 SUMOylation blocks the
transformation of cardiac fibroblasts into myofibroblasts by
suppressing fibrogenesis via the AKT/GSK3β pathway (Luo et al.,
2022). The HECT domain containing E3 ubiquitin protein ligase 3
(HectD3) ameliorates pathological hypertrophy, macrophage
infiltration, and cardiac fibrosis induced by pressure overload;
HectD3 exhibits dual regulation of SUMO2 and STAT1 against
hypertrophic and inflammatory effects in cardiomyocytes (Rangrez
et al., 2020). These results indicate that SUMOylation is an
important tool for treating cardiac fibrosis.

SUMOylation of the cystic fibrosis transmembrane conductance
regulator (CFTR) involves its degradation and is a potential
therapeutic target in the treatment of cystic fibrosis.
Mechanically, the E3 ligase enzyme, which is the protein
inhibitor of activated STAT 4 (PIAS4), mediates covalent binding
of CFTR to SUMO1 but suppresses such binding to SUMO2/3
(Gong et al., 2019). Other studies have shown that inhibition of
SUMOylation can attenuate cystic fibrosis via CFTR (Borgo et al.,
2024; Peters et al., 2021), confirming that CFTR is a vital therapeutic
target against cystic fibrosis. The long non-coding RNAMSC-AS1 is
highly expressed in EMT and intestinal fibrosis through modulation
of the Smad nuclear-interacting protein 1 (SNIP1); MSC-AS1 also
directly interacts with SENP1 to deSUMOylate and inactivate SNIP1
(Chen et al., 2024c).

Emerging evidence also shows the vital role of SUMOylation in
fibrogenesis in vitro. Twist2 is a key transcription factor in EMT that
contributes to fibrosis. The SUMO2/3-specific E3 ligase zinc finger
protein 451 (ZNF451) has been identified as a regulator of Twist2 to
maintain its stability. Mechanistic studies show that a direct bond
between ZNF451 and Twist2 results in Twist2 SUMOylation at the
Lys129 residue and hinders the Ub-dependent degradation of
Twist2. Ectopic expression of ZNF451 promotes
Twist2 expression and EMT, whereas knockout of
ZNF451 inhibits the mesenchymal phenotypes. ZNF functions as
a novel mediator in fibrosis by facilitating Twist2 SUMOylation
(Zeng et al., 2021). The RAN GTPase-activating protein 1
(RanGAP1) has been identified as a functional partner of
SUMOs in fibrogenesis. Mechanically, the RanGAP1-SUMO1
complex mediates nuclear Smad4 accumulation by dissociating
Smad4 and CRM1 (Lin et al., 2023). SUMOylation triggers
modulation of aldosterone-activated mineralocorticoid receptor
transactivation to regulate fibrosis (Gadasheva et al., 2021). The
SUMO1-RanGAP1 complex has been proven to be a key molecule
for amplification of the TGF-β/Smad and HIF-1 pathways. During
fibrogenesis, SUMOylation is activated so that HIF-1α is
SUMOylated by SUMO1 at Lys391 and Lys477 (Lin et al., 2020).

3.2 Role of NEDDylation in fibrosis

NEDDylation has been proven to be an important regulator of
liver fibrosis (Table 1). Hepatic NEDDylation dysfunction causes
oxidative stress, inflammation, fibrosis, hepatocyte reprogramming,
and liver injury in acute and chronic liver diseases. NEDDylation

TABLE 1 (Continued) Profibrotic and antifibrotic effects of SUMOylation and NEDDylation substrates as well as their target organs, related diseases, and
biochemical functions.

Target
organ

Related disease Substrates/related
proteins

Biological functions References

NEDDylation

Liver CCl4-induced liver fibrosis Global NEDDylation Promoting the kinase activity of Eph receptor
tyrosine kinase EphB1 to trigger fibrosis

Li et al. (2023)

Bile-duct ligation and CCl4-induced
liver fibrosis

Global NEDDylation Promoting chemokine (C-X-C motif) ligand
1 and CCL2 expressions to promote
apoptosis and fibrosis

Zubiete-Franco et al. (2017)

NAFLD NEDD8 Ameliorating liver fibrosis, lipid
peroxidation, lipid accumulation, and
inflammation

Serrano-Maciá et al. (2021)

NASH Cullin 3 Driving Nrf2 dysfunction and
AGER1 downregulation to promote fibrosis

Dehnad et al. (2020)

Acute liver failure NIK Suppressing abnormal NIK activation,
aggressive hepatocyte damage, fibrosis, and
inflammation

Xu et al. (2022)

NAFLD and NASH SRSF3 at Lys11 Promoting SRSF3 degradation and
alterations in RNA splicing to alleviate
hepatic steatosis, fibrosis, and inflammation

Kumar et al. (2019)

Pancreas Chronic pancreatitis UBE2M Suppressing CCL5 and CD163 expression to
drive fibrosis

Lin et al. (2021)

Lung Cystic fibrosis NEDD8 Promoting ΔF508-CFTR-induced cystic
fibrosis

Ramachandran et al. (2016)
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can be considered a novel therapeutic target against liver fibrosis,
and MLN4924 as an inhibitor of NAE shows promising potential in
the treatment of liver fibrosis (Xu et al., 2022; Yao et al., 2020). The
upregulation of EphB1 is accompanied by increased NEDDylation
in activated hepatic stellate cells. This enhanced NEDDylation
promotes the kinase activity of the Eph receptor tyrosine kinase
EphB1 by preventing its degradation to facilitate proliferation and
migration of the hepatic stellate cells. These results indicate that
EphB1 could be a promising therapeutic target of liver fibrosis (Li
et al., 2023). In liver fibrosis, enhanced NEDDylation is positively
related to increased caspase 3 activity to induce hepatic stellate cell
apoptosis, whereas inhibited NEDDylation reduces chemokine
(C-X-C motif) ligand 1 and C-C motif chemokine ligand 2
(CCL2) expressions to ameliorate apoptosis. Chemokine receptors
and cytokines are increased in activated macrophages but decreased
in the mouse Kupffer cells after NEDDylation inhibition. These
findings indicate that enhanced NEDDylation contributes to liver
fibrosis and that NEDDylation may be a promising therapeutic
target for treating liver fibrosis (Zubiete-Franco et al., 2017). In the
progression of non-alcoholic fatty liver disease (NAFLD) and liver
fibrosis, the serum NEDD8 levels are closely related to hepatic
NEDDylation. Inhibition of NEDDylation through
NEDD8 suppression was shown to ameliorate liver fibrosis, lipid
peroxidation, lipid accumulation, and inflammation in the NAFLD
mouse model. Deptor is upregulated in NAFLD and liver fibrosis
accompanied by suppressed mTOR signaling, increased fatty acid
oxidation, and decreased lipid content while its silencing counteracts
the antisteatotic effects of NEDDylation inhibition. These results
indicate the important roles of Deptor in NEDDylation-inhibition-
treated NAFLD and liver fibrosis (Serrano-Maciá et al., 2021).
NEDDylation of cullin3 is involved in Nrf2 dysfunction and
advanced glycation end product receptor 1 (AGER1)
downregulation in liver fibrosis. Overexpression of Nrf2 in the
hepatocytes blocks AGER1 decrease and reduces the advanced
glycation end-product levels, in addition to suppressing
inflammation and fibrosis in the mouse model of non-alcoholic
steatohepatitis (NASH) (Dehnad et al., 2020). Dysregulation of
NAE1, a regulatory subunit of NAE E1, has been observed in
human acute liver failure; loss of NAE in the hepatocytes results
in hepatocyte death, inflammation, fibrosis, and eventually liver
dysfunction in the mouse model. Notably, NF-κB-inducing kinase
(NIK) NEDDylation facilitates its ubiquitination and degradation,
whereas inhibition of NIK NEDDylation leads to abnormal NIK
activation, aggressive hepatocyte damage, and inflammation in adult
male mice with acute liver failure (Xu et al., 2022). Serine-rich
splicing factor 3 (SRSF3) modulates liver function, and the loss of
SRSF3 deteriorates liver fibrosis and injury. SRSF3 is reduced in
human liver samples with NAFLD and NASH along with alterations
in the RNA splicing of known SRSF3 target genes. The conjugation
of NEDD8 protein with SRSF3 and subsequent proteasome-
mediated degradation are induced by palmitic acid. The
NEDDylation of SRSF3 occurs at Lys11, and the mutation of
SRSF3 (SRSF3-K11R) prevents its degradation and alteration in
RNA splicing, which alleviates hepatic steatosis, fibrosis, and
inflammation (Kumar et al., 2019).

NEDDylation is involved in fibrogenesis in the lungs, the
kidneys, chronic pancreatitis, and cystic fibrosis (Table 1). In
pulmonary fibrosis, the cullin-associated and NEDDylation-

dissociated 1 (CAND1) level is negatively related to
cullin1 NEDDylation in EMT, while the interaction between
CAND1 and cullin1 enables the Skp-cullin-F-box protein (SCF)
ubiquitin ligase system to boost protein ubiquitination (Zhou et al.,
2022c). Familial hyperkalemic hypertension is a monogenic disease
caused by mutations in the genes encoding WNK kinases, ubiquitin
scaffold protein cullin3, or substrate adapter kelch-like 3 (KLHL3).
Compared with wild-type (WT) cullin3, mutant cullin3 Δ403-459
retains the ability to bind and ubiquitylate WNK kinases and
KLHL3 while being more NEDDylated and activated. The
activated cullin3 Δ403-459 exhausts KLHL3 and prevents WNK
degradation, while the loss of cullin3 aggravates FHHt and
accelerates renal fibrosis in the murine model (McCormick et al.,
2014). Chronic pancreatitis is characterized by irreversible fibrotic
and inflammatory disease. Compared with normal healthy controls,
UBE2M is remarkably decreased in human chronic pancreatitis
tissues accompanied by increased CCL5 and CD163 (markers of
M2-type macrophages), indicating the important role of
NEDDylation in the pathogenesis of chronic pancreatitis (Lin
et al., 2021). In addition, knockout of the ubiquitin ligase
SYVN1 or NEDD8 partially restores ΔF508-CFTR-mediated Cl-
transport in human cystic fibrosis airway epithelia, indicating the
important role of NEDD8 in ΔF508-CFTR-induced cystic fibrosis
(Ramachandran et al., 2016). The E3 ubiquitin ligase enzyme Parkin
and NEDD4 also have the potential to regulate fibroblast activation
during fibrogenesis (Shen et al., 2021).

4 Roles of SUMOylation and
NEDDylation activators and inhibitors
in fibrosis

4.1 Roles of SUMOylation activators and
inhibitors in fibrosis

Efforts have been made to determine the underlying effects and
action mechanisms of SUMOylation inhibitors and activators in
organ fibrosis. Recent studies have shown the protective roles of
SUMOylation activators against liver fibrosis through activation of
SUMOylation (Table 2). Sclareol isolated from Salvia sclarea is a
potential SUMOylation activator that downregulates SENP1.
Treatment with sclareol has been shown to substantially suppress
hepatic stellate cell activation, attenuate liver fibrosis, and improve
liver function in two mouse models. Mechanistic studies show that
sclareol decreases SENP1 expression to inhibit vascular endothelial
growth factor receptor 2 (VEGFR2) SUMOylation in LX-2 cells by
affecting VEGFR2 intracellular trafficking (Ge et al., 2023).
Meanwhile, SUMOylation inhibition attenuates hepatic fibrosis
by modulating the profibrotic or antifibrotic factors. Ginkgolic
acid is a SUMOylation inhibitor that reduces the expression of
SAE1. Mechanically, ginkgolic acid downregulates SAE1 to induce
ferroptosis of the hepatic stellate cells, ultimately leading to
antihepatic fibrosis effects (Zhang et al., 2024a). FXR is a
promising therapeutic target against liver fibrosis whose
enhanced SUMOylation weakens the effect of obeticholic acid
(FXR receptor agonist) against hepatic stellate cell activation. The
triple mutation of FXR at Lys122, Lys275, and Glu277 facilitates its
activity. Interestingly, coadministration of obeticholic acid and

Frontiers in Pharmacology frontiersin.org08

Han et al. 10.3389/fphar.2024.1476699

92

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1476699


TABLE 2 Profibrotic and antifibrotic effects of SUMOylation and NEDDylation activators and inhibitors as well as their target organs, related diseases, and
biochemical functions.

Target
organs

Related
diseases

Compounds Activators or
inhibitors

Target
substrates/
related proteins

Biological functions References

SUMOylation

Liver Bile-duct ligation and
CCl4-induced liver
fibrosis

Sclareol Activator VEGFR2 Decreasing SENP1 expression to
inhibit VEGFR2 SUMOylation
against fibrosis

Ge et al. (2023)

CCl4 and
thioacetamide-induced
liver fibrosis

Ginkgolic acid Inhibitor SAE1 Downregulating SAE1 to induce
ferroptosis of hepatic stellate
cells against fibrosis

Zhang et al. (2024a)

NASH Ginkgolic acid
Spectinomycin

Inhibitor Global SUMOylation Modulating
STAT3 phosphorylation against
fibrosis

Zhou et al. (2020b)

Polycystic liver
diseases

SAMe Inhibitor Ubc9 Interrupting SUMO1 to
suppress proteasome
hyperactivity to activate
unfolded protein response and
apoptosis against fibrosis

Lee-Law et al. (2021)

Lung 1-NP instillation in
lung

1-NP Activator ALKBH5 Facilitating
ALKBH5 SUMOylation and
then causing its ubiquitination
and proteasomal degradation to
accelerate fibrosis

Li et al. (2024b)

Idiopathic pulmonary
fibrosis

Ginkgolic acid Inhibitor SUMO1 Decreasing SUMO1/2/3 and
increasing SENP overexpression
to suppress
Smad4 SUMOylation and
regulate EMTs and ROS
production against fibrosis

Ding et al. (2022), Yu
et al. (2022b)

Heart Myocardial ischemic
Injury

Puerarin Activator SUMO2 Facilitating SUMO2 expression
and then activating ER/ERK
pathway against fibrosis

Zhao et al. (2021)

Transaortic
constriction

(−)-Epicatechin Activator Sirt1 Promoting Sirt1 SUMOylation
to suppress fibrogenesis via
AKT/GSK3β pathway

Luo et al. (2022)

Transverse aortic
constriction

QFYXF Activator SERCA2a Boosting β-arrestin2-mediated
SERCA2a SUMOylation and
expression

Wang et al. (2024)

Transverse aortic
constriction

LY364947
Juglone

Inhibitor PML Reducing the mRNA and
protein expression of TGF-β1
and Pin1 to delay cardiac fibrosis
process

Wu et al. (2019)

Myocardial infarction Ginkgolic acid Inhibitor SUMO1 Controlling TGF-β1-induced
PML/p53 interaction to
suppress cardiac fibrosis

Huang et al. (2023)

Myocardial ischemic
Injury

Arsenic trioxide Inhibitor PML Downregulating RNF4 and PML
SUMOylation to suppress
myocardial apoptosis and
fibrosis

Qiu et al. (2020)

NEDDylation

Liver Bile-duct ligation and
CCl4-induced liver
fibrosis

MLN4924 Inhibitor NAE Modulating the accumulation of
c-Jun against fibrosis

Zubiete-Franco et al.
(2017)

Bleomycin-induced
pulmonary fibrosis

suppressing NF-κB responses
and MAPK activity against
fibrosis

Deng et al. (2017)

(Continued on following page)
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SUMOylation inhibitors (ginkgolic acid and spectinomycin) has
been found to significantly alleviate liver fibrosis (Zhou et al.,
2020b). Treatment with S-adenosylmethionine (SAMe), a natural
Ubc9-dependent SUMOylation inhibitor, shows obvious hepatic
protection through inhibition of hepatic cystogenesis and fibrosis
along with decreased liver/body weight ratio and liver volume.
Mechanically, SAMe interrupts SUMO1 to suppress proteasome
hyperactivity while activating unfolded protein response and stress-
related apoptosis (Lee-Law et al., 2021), indicating that it could be a
candidate for treating liver fibrosis.

Exposure to 1-nitropyrene (1-NP) has been found to trigger
pulmonary fibrosis in mice, and 1-NP is also identified as an
activator of AlkB homolog 5 (ALKBH5) SUMOylation.
Mechanically, 1-NP facilitates ALKBH5 SUMOylation followed
by ALKBH5 ubiquitination and proteasomal degradation in
mouse lung epithelial-12 cells (Li et al., 2024b). Interestingly,
inhibition of SUMO1 exhibits protection against pulmonary
fibrosis. Ginkgolic acid functions as a SUMO1 inhibitor to block
idiopathic pulmonary fibrosis. Mechanically, ginkgolic acid
suppresses upregulation of SUMO1/2/3 and promotes SENP
overexpression. SENP1 inhibits Smad4 SUMOylation while
regulating EMT and reactive oxygen species (ROS) production
(Ding et al., 2022; Yu et al., 2022b). These results provide solid
evidence that SUMOylation inhibitors and activators are potential
candidates against pulmonary fibrosis.

Both SUMOylation inhibitors and activators exert antifibrotic
effects in heart tissues (Table 2). Puerarin alleviates cardiac
inflammation and cardiac fibrosis by reducing lactate
dehydrogenase, COX-2, galectin-3, and cleaved PARP-1.

Mechanically, puerarin facilitates SUMO2 expression and
SUMOylation before activating the ER/ERK pathway to exert
cardioprotective effects (Zhao et al., 2021). (-)-Epicatechin blocks
the transformation of cardiac fibroblasts to myofibroblasts against
cardiac fibrosis in a Sirt1-dependent manner. The underlying
mechanism involves Sirt1 activation by the transcription
specificity protein 1 and Sirt1 SUMOylation to suppress
fibrogenesis via the AKT/GSK3β pathway (Luo et al., 2022). The
Qifu Yixin formula (QFYXF) of traditional Chinese medicine
exhibits cardiac protection via restoration of cardiac function as
well as amelioration of myocardial fibrosis and hypertrophy. The
effects of QFYXF are related to enhanced sarcoplasmic reticulum
Ca2+-ATPase 2 (SERCA2a) expression and SUMOylation.
Molecular docking results show that the main active compounds
in QFYXF have high affinities to β-arrestin2, SERCA2a, and
SUMO1, with SERCA2a having high affinity to SUMO1. QFYXF
exerts antifibrotic effects by boosting β-arrestin2-mediated
SERCA2a SUMOylation and expression (Wang et al., 2024).
Furthermore, inhibition of PML SUMOylation by
LY364947 or Juglone significantly reduces the mRNA and
protein expressions of TGF-β1 and Pin1 to delay cardiac fibrosis
(Wu et al., 2019). Pharmacological inhibition of the SUMO
pathway by the SUMO1 inhibitor ginkgolic acid can substantially
control TGF-β1-induced PML/p53 interactions to suppress cardiac
fibrosis (Huang et al., 2023). Treatment with arsenic trioxide, which
is an ROS inhibitor, reduces RNF4 expression and PML
SUMOylation to suppress myocardial apoptosis and fibrosis
against myocardial infarction (Qiu et al., 2020). Various natural
products have also been identified as vital regulators in

TABLE 2 (Continued) Profibrotic and antifibrotic effects of SUMOylation and NEDDylation activators and inhibitors as well as their target organs, related
diseases, and biochemical functions.

Target
organs

Related
diseases

Compounds Activators or
inhibitors

Target
substrates/
related proteins

Biological functions References

Acute liver failure N-acetylcysteine Inhibitor NAE Reducing hepatic
NAE1 expression to prevent
liver inflammation, fibrosis and
injury

Xu et al. (2022)

Lung Human pulmonary
fibroblasts

Celastrol — Cullin1 Facilitating the interactions
between CAND1 and cullin1 to
suppress EMTs against fibrosis

Zhou et al. (2022c)

CCl4-induced liver
fibrosis

HZX-960 Inhibitor Cullin3 Blocking the interaction of
DCN1 (co-E3 ligase) and
Ubc12 and inhibiting
cullin3 NEDDylation against
liver fibrosis

Zhou et al. (2022a)

Heart Doxorubicin-induced
cardiac fibrosis

MLN4924 Inhibitor NAE Maintaining mitochondrial
function, alleviating fibrosis,
cardiomyocyte apoptosis and
oxidative stress damage, and
boosting cardiac contractile
function

Chen et al. (2024b)

Pressure overload-
cardiac fibrosis

DN-2 Inhibitor Cullin3 Inhibiting cullin3 NEDDylation
to reverse cardiac fibroblast
activation

He et al. (2022)

Pancreas Chronic pancreatitis MLN4924 Inhibitor NAE Promoting CCL5-mediated
M2macrophage infiltration, and
the blockage of CCL5 to
aggravate fibrosis

Lin et al. (2021)
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SUMOylation (Liu et al., 2022). These findings provide potential
candidates against cardiac fibrosis through the regulation of
SUMOylation.

4.2 Roles of NEDDylation activators and
inhibitors in fibrosis

NEDDylation activators and inhibitors have also been found to
modulate liver fibrosis (Table 2). MLN4924, also called as
pevonedistat, is a first-in-class NAE inhibitor. The inhibition of
NEDDylation by MLN4924 triggers hepatic stellate cell apoptosis to
prevent liver injury, inflammation, and fibrosis through the
accumulation of c-Jun (Zubiete-Franco et al., 2017).
MLN4924 controls the NEDDylation of CRLs to delay liver
fibrosis progression by suppressing NF-κB responses and MAPK
activity (Deng et al., 2017). Treatment with N-acetylcysteine, a
glutathione surrogate and antioxidant, has been found to
significantly reduce hepatic NAE1 expression to prevent liver
inflammation, fibrosis, and injury in the acute liver failure mouse
model (Xu et al., 2022).

Celastrol is a pentacyclic triterpene compound isolated from
Tripterygium wilfordii as a novel treatment for pulmonary fibrosis; it
exhibits antifibrotic effects through the covalent linkage of
CAND1 at the Cys264 residue. Celastrol treatment influences
cullin1 NEDDylation; celastrol also exerts antifibrotic effects in a
CAND1-dependent manner and facilitates interactions between
CAND1 and cullin1 to activate the Skp1/cullin1/F-box ubiquitin
ligases that control EMTs (Zhou et al., 2022c). Additionally, HZX-
960 has been identified as an inhibitor that blocks the interaction of
DCN1 (co-E3 ligase) with Ubc12 and inhibits cullin3 NEDDylation
against liver fibrosis. HZX-960 attenuates liver fibrotic signaling by
suppressing collagen I and α-SMA while promoting Nrf2, HO-1,
and NQO-1, indicating that it is a promising therapeutic candidate
against liver fibrosis (Zhou et al., 2022a).

In the heart, MLN4924 exerts antifibrotic properties
(Table 2); MLN4924 mitigates doxorubicin-induced
cardiotoxicity by maintaining mitochondrial function,
alleviating cardiomyocyte apoptosis, suppressing oxidative-
stress-induced damage, boosting cardiac contractile function,
inhibiting cardiac fibrosis, and impeding cardiac remodeling.
Mechanistically, MLN4924 delays cardiac NEDDylation and
offers cardiac protection by limiting NAE activity (Chen et al.,
2024b). The antifibrotic effects of DCN1 have also been
demonstrated in cardiac fibrosis, where DCN1 is upregulated
in the cardiac fibroblast and pressure overloaded mouse hearts.
The compound DN-2 has been optimized as a potent DCN1-
Ubc12 inhibitor and shown to have high affinity to DCN1; DN-2
effectively reverses cardiac fibroblast activation by inhibiting
cullin3 NEDDylation (He et al., 2022). These results highlight
the potential of DCN1 as a promising therapeutic target against
organ fibrosis. The inhibition of global NEDDylation by
MLN4924 obviously aggravates chronic pancreatitis by
promoting CCL5-mediated M2 macrophage infiltration, and
the blockage of CCL5 counteracts MLN4924-mediated chronic
pancreatitis. A mechanistic study showed that inactivation of
CRLs stabilizes the level of HIF-1α to facilitate
CCL5 upregulation and transactivation (Lin et al., 2021).

5 Conclusion and perspectives

PTMs enhance the functional diversity of proteins by
modulating the covalent modifications of the functional groups
or proteins to induce slicing or degradation, thereby influencing
the physiological and pathophysiological processes (Schepers et al.,
2023; Wang and Tong, 2023c). Ubiquitination controls protein
degradation, transcriptional regulation, cell survival,
protein–protein interactions, and intracellular trafficking
(González et al., 2023; Gu et al., 2023b). The three-step process
of ubiquitination involves activation, conjugation, and ligation
through the E1 activating, E2 conjugating, and E3 ligase
enzymes. The processes of SUMOylation and NEDDylation are
also similar to ubiquitination, but their enzymes are distinguishable
from ubiquitination. In SUMOylation, the E1 activating enzyme
consists of the SAE1 and SAE2 subunits, and Ubc9 is the only
E2 enzyme. In NEDDylation, the NAE E1 activating enzyme
consists of the NAE1 and Uba3 subunits. SUMOylation
participates in nuclear–cytoplasmic transfer, genomic integrity,
translational regulation, and cell-cycle regulation, while
NEDDylation contributes to DNA replication and repair,
chromatin structure, translational regulation, and caryomitosis
(Ren et al., 2024; Tan et al., 2023; Xu et al., 2023; Zou et al.,
2023). SUMOylation and NEDDylation can be reversed by
SENPs and NEDP1, respectively.

Emerging evidence has shown that SUMOylation and
NEDDylation play pivotal and diverse roles in organ fibrosis by
mediating the PTMs of profibrotic or antifibrotic factors. In the liver,
SUMOylation of FXR at Lys122, Lys275, and Glu277 along with the
liver X receptor α has been found to attenuate fibrosis (Chen et al.,
2019; Zhou et al., 2020b) while SAE1 contributes to fibrosis.
Upregulation of SUMO1, SUMO2, and Ubc9 have been reported
to aggravate pulmonary fibrosis (Yu et al., 2022b; Zhou et al., 2020a).
In the kidneys, SUMOylation of NR5A2 at Lys224 and that of
STAT1 have been found to promote EMT and fibrosis (Arvaniti
et al., 2016; Gu et al., 2023a; Politis and Charonis, 2022), whereas
SUMOylation of Sirt3 has been shown to suppress fibroblast-
induced repair and fibrosis (Zhu et al., 2023). SUMOylation of
HIF-1α is also involved in renal fibrosis through regulation of the
TGF-β/Smad pathway (Li et al., 2019; Yang et al., 2019).
SUMOylation of Vps34, Beclin1, and Sirt1 have been noted to
obviously suppress cardiac fibrosis (Luo et al., 2022; Xiao et al.,
2020), while SUMO2 was observed to affect cardiac fibrosis through
dual regulation along with STAT1 (Rangrez et al., 2020).
Additionally, SUMOylation of CFTR and SNIP1 was found to
facilitate fibrosis (Chen et al., 2024c; Gong et al., 2019), while
SUMOylation of Twist2 at Lys129 was noted to accelerate
fibrosis in vitro (Zeng et al., 2021).

Notably, although the roles of SUMOylation and NEDDylation
are diverse in different organs, their regulation of PML, HIF-1α, and
TGF-β are common in fibrogenesis. SUMOylation of PML promotes
fibrosis in the lung and heart tissues, and the underlying mechanism
is involved in facilitating PML nuclear body activation of the TGF-β/
Smad pathway as well as recruitment and activation of p53 (Dai
et al., 2020; Huang et al., 2023; Li et al., 2024a; Qiu et al., 2020; Wu
et al., 2019). Further investigations have highlighted the vital role of
SUMOylation in the TGF-β/Smad pathway; SUMOylation of the
TGF-β receptor I at Lys385 and Lys389 as well as Smad4 at
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Lys113 and Lys159 can control the generation of myofibroblasts and
EMTs to influence hepatic fibrosis (Wang et al., 2021). Ubc9 was
found to participate in pulmonary and cardiac fibrosis; upregulation
of Ubc9 was observed in fibrotic pulmonary tissues, whereas
overexpression of Ubc9 was noted to suppress cardiomyocyte
apoptosis against fibrosis (Xiao et al., 2020; Zhou et al., 2020a).
These studies have proved the vital role of SUMOylation in
organ fibrosis and its function as a potential target against
organ fibrosis.

Global NEDDylation was found to exacerbate liver fibrosis
through activation of the Eph receptor tyrosine kinase EphB1 as
well as upregulation of the chemokine (C-X-C motif) ligand 1 and
CCL2 expression to accelerate fibrosis (Li et al., 2023; Zubiete-
Franco et al., 2017). NEDDylation of cullin3 induces
Nrf2 dysfunction and AGER1 downregulation to trigger fibrosis
(Dehnad et al., 2020; Kumar et al., 2019), and NEDDylation of NIK
SRSF3 at Lys11 can alleviate liver fibrosis (Xu et al., 2022). UBE2M
has been found to drive fibrogenesis in chronic pancreatitis by
suppressing CCL5 and CD163 expressions (Lin et al., 2021).
Interestingly, NEDD8 ameliorates liver fibrosis but promotes
cystic fibrosis in the lungs (Ramachandran et al., 2016; Serrano-
Maciá et al., 2021), indicating the diverse roles of NEDDylation in
different organ fibrosis. These results provide solid evidence and
highlight NEDDylation as a potential therapeutic target for treating
organ fibrosis.

The activators and inhibitors of SUMOylation are potential
candidates that can influence organ fibrosis. Sclareol activates
VEGFR2 SUMOylation against hepatic fibrosis, and SAMe
inhibits Ubc9 to interrupt SUMO1 and activate unfolded
protein responses against hepatic fibrosis (Ge et al., 2023; Lee-
Law et al., 2021). The SUMOylation activator 1-NP promotes
ALKBH5 SUMOylation and subsequent ubiquitination as well as
proteasomal degradation to trigger lung fibrosis (Li et al., 2024b).
In the heart, puerarin functions as a SUMOylation activator to
facilitate SUMO2 expression and activate the ER/ERK pathway
against fibrosis (Zhao et al., 2021). (-)-Epicatechin promotes
Sirt1 SUMOylation to suppress cardiac fibrogenesis by
modulating the AKT/GSK3β pathway (Luo et al., 2022).
QFYXF promotes SERCA2a SUMOylation and expression in
the treatment of cardiac fibrosis (Wang et al., 2024), while
LY364947 and juglone obviously suppress PML SUMOylation
to reduce the mRNA and protein expressions of TGF-β1 and
Pin1 to delay cardiac fibrosis (Wu et al., 2019). Arsenic trioxide
helps PML SUMOylation to reduce RNF4 against myocardial
apoptosis and fibrosis (Qiu et al., 2020). Notably, ginkgolic acid
alleviates fibrosis in the liver, lungs, and heart by downregulating
SAE1, modulating STAT3 phosphorylation, and influencing
PML/p53 interactions (Ding et al., 2022; Huang et al., 2023;
Yu et al., 2022b; Zhang et al., 2024a; Zhou et al., 2020b).
MLN4924 as a first-line NEDDylation inhibitor exhibits
antifibrotic properties in the liver, heart, and pancreas.
MLN4924 exerts antifibrotic effects by modulating c-Jun
accumulation, NF-κB responses and MAPK activity,
mitochondrial functions, and CCL5-mediated M2 macrophage
infiltration (Deng et al., 2017; Lin et al., 2021; Zubiete-Franco
et al., 2017). N-acetylcysteine reduces hepatic NAE1 expression
to prevent hepatic inflammation and fibrotic injury (Xu et al.,
2022), while celastrol targets cullin1 to facilitate the interactions

between CAND1 and cullin1 to suppress EMTs and pulmonary
fibrosis (Zhou et al., 2022a). Both DN-2 and HZX-960 inhibit
cullin3 NEDDylation against fibrosis; DN-2 inhibits
cullin3 NEDDylation to reverse cardiac fibroblast activation,
while HZX-960 targets cullin3 to block the interaction of
DCN1 (co-E3 ligase) and Ubc12 as well as inhibit
cullin3 NEDDylation against liver fibrosis (Zhou et al., 2022c).
Even though they target different profibrotic/antifibrotic factors,
the activators and inhibitors of SUMOylation/NEDDylation
exhibit therapeutic properties against organ fibrosis,
suggesting them as potential candidates in the treatment of
organ fibrosis.

However, some limitations hinder the recognition and extensive
use of SUMOylation/NEDDylation activators and inhibitors in the
treatment of organ fibrosis. The primary drawback is the limited
number of clinical and preclinical investigations on SUMOylation/
NEDDylation activators and inhibitors, especially the lack of high-
quality evidence identifying their therapeutic effects and
mechanisms. Few clinical studies have shown the therapeutic
effects and mechanisms of the SUMOylation and NEDDylation
activators and inhibitors in the treatment of organ fibrosis. Notably,
some clinical trials have been designed to investigate the effects of
MLN4924 in the treatment of advanced solid tumors, acute myeloid
leukemia, and myelodysplastic syndromes (Adès et al., 2022; Saliba
et al., 2023; Sarantopoulos et al., 2016; Short et al., 2023); the SAE
inhibitor subasumstat (TAK-981) was designed to treat head and
neck carcinomas (Derry et al., 2023). Although these clinical trials
have not targeted organ fibrosis, they can provide references for
their potential use in organ fibrosis. Another limitation is the
identification of potentially efficient SUMOylation and
NEDDylation substrates. For example, the roles of TGF-β and
PML are vital in organ fibrosis, and their SUMOylation/
NEDDylation are considered as important regulators of activity
in organ fibrosis. Hence, efficient substrates need to be identified
and verified, through which we could also obtain references beyond
the research scope of organ fibrosis. We can use bioinformatics
methods like feature extraction and machine learning (Zhao et al.,
2022) to predict SUMOylation sites. The level of NEDD8 can be a
potential marker of organ fibrosis. The Cancer Genome Atlas
(TCGA) database and tissue arrays can be used to evaluate the
clinical relevance of NEDD8 expression in disease, and quantitative
proteomic analyses may be helpful for exploring the knockdown of
disturbed biological pathways (Xian et al., 2021). Biotinylated
NEDD8 (bioNEDD8) transgenic mice can be used in the pull-
down of NEDDylated liver proteins and characterization of
NEDDylomes in liver injury models (Serrano-Maciá et al., 2023)
as promising strategies for fast selection and identification of
NEDDylated proteins. Additionally, the use of new methods in
cancer research allows SUMOylation-related genes as potential
novel prognostic signatures and predictors of organ fibrosis (Sun
et al., 2023;Wang et al., 2023a). Although clinical and related studies
on SUMOylation and NEDDylation as well as their activators and
inhibitors are limited, the potential of SUMOylation/NEDDylation
has been verified in organ fibrosis treatment. Overall, SUMOylation
and NEDDylation are promising therapeutic targets for organ
fibrosis, so deeper investigations and clinical trials are needed to
verify the therapeutic benefits of their activators and inhibitors
to patients.
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VASN knockout induces
myocardial fibrosis in mice by
downregulating non-collagen
fibers and promoting
inflammation
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Xiaoping Guo1, Na Yu1, Bing Hu1, Yiqiang Ouyang1*,
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Cardiology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China,
3School of Public Health, Guangxi Medical University, Nanning, China, 4Ministry of Education, Key
Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Nanning,
China

Myocardial fibrosis (MF) is an important cause of heart failure and cardiac arrest.
Vasorin knockout (VASN−/−) leads to pathological cardiac hypertrophy (PCH);
however, it is not yet clear whether this PCH transitions to MF in mice. VASN-
knockout mice showed typical pathological, imaging, and molecular features of
MF upon hematoxylin and eosin staining, Masson staining, Sirius red staining,
quantitative polymerase chain reaction (qPCR), immunohistochemistry-paraffin
(IHC-P), and immunofluorescence analyses. RNA was extracted from mouse
heart tissue, identified, and sequenced in vitro. Differential analysis of the genes
showed that the extracellular matrix (ECM) genes (COL6A1, COL9A1, and FRAS1)
had strong correlations while their expression levels were significantly reduced by
qPCR, IHC-P, andWestern blotting. The expression levels of the ECM genes were
significantly reduced but those of the inflammatory factors (IL1β and IL6) were
significantly upregulated in the heart tissues of VASN-knockout mice. These
preliminary results reveal that VASN knockout induces MF by regulating the non-
collagen fibers and inflammation.

KEYWORDS

myocardial fibrosis, vasorin, non-collagen fibers, inflammation, mice

1 Introduction

Myocardial fibrosis (MF) is a key stage of heart failure that can exacerbate the associated
symptoms and lead to severe outcomes, such as cardiac arrest or sudden death (López et al.,
2021). MF is typically caused by prolonged pressure on or damage to the myocardial cells and
often causes cardiac hypertrophy. MF is a complex pathological process that is closely related
to the extracellular matrix (ECM), immune responses, signaling pathways, and various cardiac
cells (Li et al., 2022). Damaged myocardial cells can activate local inflammatory reactions and
release pro-inflammatory cytokines, such as interleukin (IL) 1, IL6, IL11, IL17, and tumor
necrosis factor alpha (TNFα). Fibroblasts are activated and transformed intomyofibroblasts in
the heart tissues, which then synthesize and secrete large amounts of collagen and ECM
components (Liu et al., 2021). Collectively, these risk factors contribute to MF.
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Vasorin (VASN), also known as slit-like 2 (slitl2), contains two
exons, of which exon 2 is the main coding region (Pintus et al.,
2018). VASN is a transmembrane glycoprotein composed of
673 amino acids and is located on the cell surface (Bonnet et al.,
2018). VASN is highly expressed in the cardiovascular system,
including the heart, vascular smooth muscles, and umbilical vein
endothelial cells (Bonnet et al., 2018; Pintus et al., 2018).
Upregulation of VASN expression prevents smooth muscle cell
calcification through specific binding to the transforming growth
factor (Luong et al., 2019). Downregulation of VASN expression can
alleviate adverse reactions to vascular wall injury (Li et al., 2015).
However, overexpression or knockout of VASN has been found to
cause developmental abnormalities in the heart and blood vessels of
zebrafish (Chen et al., 2005). VASN-knockout (VASN−/−) mice have
been reported to die suddenly 3 weeks after birth (Ikeda et al., 2004).
Our previous study showed that a VASN-knockout mouse model
exhibited pathological cardiac hypertrophy symptoms (Sun
et al., 2022).

In the present study, VASN-knockout mice showed the
pathological, molecular, and protein features of MF. RNA from
the mouse heart tissue was extracted, identified, and sequenced
in vitro. Bioinformatic analysis then showed significantly decreased
expressions of key ECM genes (COL6A1, COL9A1, and FRAS1);
however, the expressions of inflammatory factors IL1β and IL6 were
significantly upregulated in the heart tissues of VASN-knockout
mice. Our results thus reveal that VASN knockout induces MF by
affecting the ECM and inflammation.

2 Materials and methods

2.1 Preparation and identification of VASN-
knockout mice

All mouse experiments were approved by the Ethics Committee
of Guangxi Medical University (approval no. 202209200). C57BL/6J
mice were obtained from the Laboratory Animal Center of Guangxi
Medical University (SCXKGUI 2020–0003, SYXKGUI 2020–0004).
When the VASN−/− mice were 28 days old and exhibited behavioral
and morphological characteristics, such as arched backs, sparse hair,
reduced body sizes, and immobility, the VASN+/+, VASN+/−,, and
VASN−/− mice from the same batch were divided into three groups
for subsequent experiments. The hydroxyproline (HYP) assay was
then performed according to manufacturer instructions (A030-2-1;
Nanjing Jiancheng) (Sun et al., 2022).

2.2 Hematoxylin and eosin (HE) staining

HE staining was performed on the tissue samples from the mice
according to a previously described protocol (Sun et al., 2022).

2.3 Masson staining

The heart samples were fixed in Bouin’s solution and embedded in
paraffin. The slices were then dewaxed, oxidized with 1% potassium
permanganate for 5 min, bleached with oxalic acid for 1 min, stained

with azure blue for 5 min, dried with Mayer’s hematoxylin for
3–5 min, rinsed under running water for 5–10 min, stained with
Lichun red picric acid saturated solution for 5 min, differentiated
using 1% phosphomolybdic acid for approximately 5 min, dried with
1% light green for 30 s, differentiated using 95% alcohol, dehydrated
with anhydrous ethanol, made transparent with xylene, and lastly
sealed with neutral gum.

2.4 Sirius staining

The wax layers were first removed from the paraffin sections.
Then, iron hematoxylin staining solution was applied to each section
for 5–10 min followed by washing with distilled water for 10–20 s.
The samples were then soaked in tap water for 5–10min and cleaned
with distilled water thrice for 5–10 s each time. Sirius red staining
solution was then applied for 15–30 min, and each section was
rinsed gently with running water to remove the surface dye. The
slices were rapidly dehydrated using 80%, 95%, and anhydrous
ethanol. Finally, the slices were sequentially made transparent in
three cylinders of xylene for 3 min before being sealed with
neutral gum.

2.5 Transcriptome sequencing and
bioinformatics analysis

Transcriptome sequencing of the hearts from the three groups
was performed at the Wuhan Genome Institute (BGI-Shenzhen),
where a total of 12 RNA samples (three mice per group) were
sequenced. Data from the whole transcriptome were collected and
compared with the ribosome database to identify known transcripts
(mRNA), perform quantitative analysis of the known and new
mRNAs, and analyze differences between the samples (at least
two samples) and groups (at least two samples with at least three
biological repeats in each group). The differentially expressed genes
(DEGs) were analyzed using the DAVID database through gene
ontology (GO) and Kyoto encyclopedia of genes and genomes
(KEGG) functional enrichment analyses based on the miRNA
target genes.

2.6 Quantitative polymerase chain reaction
(qPCR) analysis

RNA reverse transcription and qPCR were performed according
to a previous study (Sun et al., 2022) with primers (Table 1) obtained
from Sangon Biotech (Shanghai, China). Each mRNA was subjected
to 40 cycles of PCR, and this process was repeated thrice. The
expression levels of the endogenous GAPDH genes were compared,
and the relative mRNA expressions were compared using the
2–△△CT method.

2.7 Western blotting (WB) analysis

WB was performed according to a previous protocol (Sun et al.,
2022) using the primary antibodies COL6A1 (17023-1-AP, Protein,
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1:300), COL9A1 (12507-1-AP, Protein, 1:300), FRAS1 (29654-1-AP,
Protein, 1:300), COL2A1 (A19308, ABclonal, 1:300), IL1β
(D220820, Sangon Biotech, 1:300), IL6 (26404-1-AP, Protein, 1:
300), IL10 (60269-1-Ig, Protein, 1:300), TNFα (17590-1-AP, Protein,
1:300), endogenous protein tubulin (AC001, ABclonal, 1:500), and
secondary antibodies (AS014, ABclonal, 1:1000). The expressions of
the target proteins were calculated using an automatic analysis
system (Image Lab 6.0).

2.8 Immunohistochemistry (IHC) and
immunofluorescence (IF) analyses

IHC-paraffin (IHC-P) and IF analyses were performed
according to previously described protocols (Sun et al., 2022; Sun
et al., 2021) using the primary antibodies against COL1A1 (A22090,
ABclonal, 1:300), COL3A1 (22734-1-AP, Protein, 1:300), and CTGF
(25474-1-AP, Protein, 1:300) as well as secondary antibodies
(AS014, ABclonal, 1:500). Primary antibodies against α-SMA
(67735-1-Ig, protein, 1:200) and a horseradish peroxidase (HRP)-

conjugated secondary antibody (AS014, ABclonal, 1:500)
were also used.

2.9 Statistical analysis

All experiments were performed in triplicate. The data were
presented as mean ± standard deviation (SD) and analyzed
statistically using one-way analysis of variance (ANOVA) in SPSS
software. The value p < 0.05 was considered to indicate a significant
difference, and p < 0.01 indicated an extremely significant difference.

3 Results

3.1 VASN knockout induces MF

HE staining showed that the thickness of the heart wall in a
VASN−/− mouse was significantly higher than those in VASN+/+ and
VASN+/− mice (Figures 1A, E2). Significantly higher areas were
observed for the cardiac cells of the VASN−/− mice; however, no
abnormalities were observed in the heart tissues of the VASN+/+ and
VASN+/−mice (Figure 1B). These experimental results are consistent
with those of our previous report (Sun et al., 2022). Masson and
Sirius staining showed that cardiac interstitial fibrosis was
significantly enhanced in the VASN−/− mice (Figures 1C, D), but
no obvious abnormalities were observed in the heart tissues of the
VASN+/+ and VASN+/− mice. HYP expressions were significantly
increased in the VASN−/− and VASN+/− mice (Figure 1F). qPCR and
IHC-P showed that the expression levels of COL1A1, COL3A1, and
CTFG were significantly higher in the heart tissues of the VASN+/+

and VASN+/− mice (Figures 1G, H). IF analysis showed that the
expression level and fluorescence intensity of α-SMA were
significantly higher in the VASN-knockout mice (Figure 1I).
These results confirmed that the VASN-knockout mice exhibited
typical symptoms of MF.

3.2 Bioinformatics analysis to explore key
molecules involved in MF

DEGs were identified based on the criteria of a false diagnosis
rate (FDR) of <0.05, and |log2 (fold change)| >1.5 (Figures 2A, B).
Cluster Profiler (R version 3.5.1, University of Auckland, Auckland,
New Zealand) and GO (http://www.geneontology.org; accessed
20 August 2024) were used to enrich and analyze the DEGs. The
volcano plot of the DEGs revealed key genes (Figure 2C), among
which WT-VS-HO had the highest fold difference and was
upregulated. These upregulated genes may be associated with
cardiac hypertrophy and fibrosis. The GO enrichment analysis
revealed the functional roles of 1,217 DEGs in WT-HO
(Figure 2D). Cellular component analysis was used to obtain the
localization of the top-10 DEGs. The ECM is one of the main
structural components of myocardial tissue, and abnormal
expression of the ECM may lead to MF, resulting in cardiac
dysfunction.

KEGG enrichment analysis was used to find the top-10 enriched
entries for all DEGs, including 786 enriched entries for

TABLE 1 List of primer sequences.

Gene Forward/reverse Sequence

COL1A1 Forward CTGACTGGAAGAGCGGAGAG

Reverse ACATTAGGCGCAGGAAGGTC

COL3A1 Forward AGCCTTCTACACCTGCTCCT

Reverse CGGATAGCCACCCATTCCTC

CTGF Forward AGAACTGTGTACGGAGCGTG

Reverse GTGCACCATCTTTGGCAGTG

COL6A1 Forward ATGTGCTCCTGCTGTGAGTG

Reverse TCTTGCATCTGGTTGTGGCT

COL9A1 Forward CGACCGACCAGCACATCAA

Reverse AGGGGGACCCTTAATGCCT

FRAS1 Forward GCTTGTCTGTATCAGGGCTCC

Reverse CTTCTCCCTTCTCAAAGGCAC

COL2A1 Forward AAGGGAGAGACTGGACCTGC

Reverse GAATCCACGGTTGCCAGGAG

IL1β Forward TGCAGCTGGAGAGTGTGGA

Reverse GGCTTGTGCTCTGCTTGTGA

IL6 Forward CTGCAAGAGACTTCCATCCAG

Reverse AGTGGTATAGACAGGTCTGTTGG

TNF Forward GACGTGGAACTGGCAGAAGAG

Reverse TTGGTGGTTTGTGAGTGTGAG

IL10 Forward ACTATGCCGTCAGCGATACAG

Reverse GGCACCAGCTTTGAATAATACGA

GAPDH Forward AGGTCGGTGTGAACGGATTTG

Reverse AGGAGCGAGACCCCACTAACA
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downregulated genes (Figure 2E); these also recruit genes related to
the ECM. According to the interaction diagram of the top-8
downregulated genes in KEGG analysis, COL6A1 (12,839) and
COL9A1 (12,833) were both involved with the ECM and
cytoskeleton in the muscle cell pathways (Figure 2F).
Protein–protein interaction (PPI) network mapping of the
differential genes in the ECM pathway revealed close interactions
between COL6A1, COL9A1, and FRAS1 (Figure 2G); here, COL6A1
and COL9A1 are upstream genes that regulate FRAS1 expression
via ITGA8.

3.3 VASN knockout reduces expression of
non-collagen fibers

Functional verifications were performed to investigate whether
the expression of non-collagen fibers was downregulated in the heart
tissue of VASN-knockout mice. HE staining showed that the gaps
between the myocardial cells significantly increased in the heart
tissue of VASN−/− mice (Figure 3A); qPCR showed that the mRNA
expression levels of CAL6A1, CAL9A1, and FRAS1were significantly
lower in the VASN−/− hearts (Figure 3B). IHC-P and WB showed

FIGURE 1
Typical characteristics of myocardial fibrosis (MF) in VASN-deficient mice: (A) overall morphology of VASN mouse heart under HE staining; (B)
changes in the cardiac hypertrophy of VASNmice under HE staining; (C) changes in the MF of VASNmice under Masson staining; (D) changes in theMF of
VASNmice under Sirius staining; (E1, E2) changes in the cardiac transverse axis length and ventricular wall thickness in VASNmice; (F) changes in the HYP
expression levels in VASNmice; (G1–G3) changes in the MFmarkers of VASNmice in qPCR analysis; (H) changes in the MFmarkers of VASNmice in
IHC-P analysis; (I) changes in the MF markers of VASN mice in IF analysis. p < 0.05 indicates significant difference, p < 0.0001 indicates extremely
significant difference, p > 0.05 indicates no difference, and the subtables are represented by superscripts *, ****, and NS.
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that the protein expression levels of CAL6A1, CAL9A1, and
FRAS1 were significantly lower in the VASN−/− hearts (Figures
3C, D). These preliminary results imply that the downregulated
expression of non-collagen fibers (CAL6A1, CAL9A1, and FRAS1)
plays an important role in MF in the VASN−/− mouse hearts.

3.4 VASN knockout promotes cardiac
inflammation

To investigate whether myocardial cell inflammation is
exacerbated in MF, the inflammatory factors were identified.
Accordingly, HE staining showed hypertrophy or atrophy of the
myocardial cells, nuclear condensation, diffuse vacuolization of the

myocardial cells, myocardial scars, and significantly increased
immune cells in the heart tissues of VASN−/− mice (Figure 4A);
qPCR showed that the mRNA expression levels of IL1β and IL6 were
significantly upregulated in the VASN−/− hearts (Figure 4B). IHC-P
and WB showed that the protein expression levels of IL1β and
IL6 were significantly higher in the VASN−/− hearts (Figures 4C, D).
These results indicate that intensified inflammation could cause MF
in VASN−/− mouse hearts.

4 Discussion

MF is a complex pathological process that plays a crucial role in
the occurrence and development of cardiovascular disease. MF and

FIGURE 2
Transcriptome analysis of MF in VASN-deficientmice. The present study entailed heart tissues from VASN+/+ (n = 3), VASN+/− (n = 3), and VASN−/− (n =
3) mice for transcriptome sequencing. (A)Differentially expressed genes (DEGs) based onmiRNA transcriptome data; (B) volcano plot presenting the key
genes involved in differential expression; (C) KEGG enrichment plot of all DEGs in WT-HO; (D) GO enrichment map of all DEGs in WT-HO; (E) WT-HO
differential gene heatmap and KEGG annotation; (F) interaction diagram of the top-8 entries in KEGG for all DEGs in WT-HO; (G) extracellular matrix
pathway gene protein interaction network diagram.
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cardiac hypertrophy often coexist and interact with each other
(Pagourelias et al., 2021), and cardiac hypertrophy could lead to
MF. Under long-term pressure or increased volume load, the cardiac

cells undergo pathological hypertrophy (Figure 5). However, cardiac
hypertrophy is often accompanied by remodeling of the myocardial
ECM, including collagen deposition and fibrosis (Detterich, 2017).

FIGURE 3
Changes in the non-collagen fibers of MF in VASN-deficient mice. (A) Changes in the MF of VASNmice under HE staining; (B) qPCR validation of the
expression levels of the target genes in heart tissue; (C) IHC-P validation of the expression levels of the target genes in heart tissue; (D)WBvalidation of the
expression levels of the target genes in heart tissue. p < 0.05 indicates significant difference, p > 0.05 indicates no difference, and the subtables are
represented by superscripts * and NS.
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FIGURE 4
Changes in the inflammatory factors of MF in VASN-deficientmice. (A)Changes in theMF of VASNmice under HE staining; (B) qPCR validation of the
expression levels of the target genes in heart tissue; (C) IHC-P validation of the expression levels of the target genes in heart tissue; (D)WBvalidation of the
expression levels of the target genes in heart tissue. p < 0.05 indicates significant difference, p < 0.01 indicates extremely significant difference, p <
0.001 indicates extremely significant difference, p < 0.001 indicates extremely significant difference, p > 0.05 indicates no difference, and the
subtables are represented by superscripts *, **, ***, ****, and NS.
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MF caused by cardiac hypertrophymay be closely related to multiple
mechanisms, such as activation of the neuroendocrine system (Qiu
et al., 2019), inflammatory responses (Bacmeister et al., 2019), and
oxidative stress (Wang et al., 2017). MF exacerbates the progression
of cardiac hypertrophy as the stiffening and reduced compliance of
the fibrotic myocardial tissue impair both diastolic and systolic heart
functions (Lafuse et al., 2020). To maintain the pumping function,
the cardiac cells are further enlarged, thereby exacerbating the
degree of cardiac hypertrophy. MF can also affect the
electrophysiological properties of the myocardial cells, thereby
increasing the risk of arrhythmias (Baggett et al., 2023).

One of the typical features of MF is the adverse repair response
of the cardiac tissue to various damaging factors. HE staining
showed that the gaps between the myocardial cells widened
during MF and that there was proliferation of pale pink fibrous
tissue in the interstitium (Karur et al., 2024). As the degree of fibrosis
worsened, the fibrous tissue increased gradually, and focal or diffuse
fibrous cord-like structures became more pronounced. Masson
staining showed significantly larger blue areas in the MF heart
tissue, indicating greater deposition of collagen fibers. The
myocardial interstitium in the fibrotic area was stained dark blue,
forming a sharp contrast with the red color (muscle fibers) of normal
myocardial tissue (Flori et al., 2024). Sirius staining of MF tissue
showed large numbers of type I collagen fibers that appeared
strongly positive in red or yellow color, whereas type III collagen
fibers were relatively fewer and showed lighter staining (Qi et al.,
2022). HYP was increasingly expressed in the fibrotic cardiac tissues
(Yang et al., 2021). Collagen fiber types I and III are shown to be
significantly increased in MF tissues (Xing et al., 2024). The
expression level of α-SMA is reported to be low in normal
myocardial cells but high in fibrotic cardiac tissues (Hsieh et al.,
2022). Our experimental results are consistent with the findings of
the above literature, indicating that VASN-knockout mice exhibit
typical symptoms of MF.

The VASN gene is important for the occurrence and
development of cardiovascular diseases. In atherosclerosis,
abnormal expression of the VASN gene can cause endothelial

dysfunction, reduce the resistance of the vascular endothelium to
lipid deposition, and promote the formation of atherosclerotic
plaques (Louvet et al., 2022). VASN may regulate the expression
of adhesion molecules on the surfaces of endothelial cells, increase
the adhesion of leukocytes to the vascular walls, and trigger
inflammatory reactions to accelerate atherosclerosis (Huang et al.,
2015). After myocardial infarction, local tissue ischemia and hypoxia
can trigger a series of pathophysiological changes, and VASN is
known to be involved in regulating the balance between apoptosis
and regeneration of the myocardial cells (Pintus et al., 2018).
Abnormal VASN expression leads to increased apoptosis of the
myocardial cells, hindered myocardial repair and regeneration
capabilities, exacerbated myocardial injury, and pump
dysfunction (Shamhart and Meszaros, 2010). Under
hypertension, the pressure on the vascular wall increases, and
VASN affects the tension and compliance of blood vessels by
regulating the contraction and relaxation of the vascular smooth
muscle cells (Qin et al., 2024). Owing to dysregulation of VASN
expression, the vascular smooth muscles contract excessively,
further increasing the blood pressure and exacerbating the
burden on the cardiovascular system (Wang et al., 2024).

MF is closely related to the occurrence and development of non-
collagenous fibers, which play important roles in normal cardiac
tissues. Non-collagen fibers together with collagen fibers form the
ECM of the myocardial cells, providing structural support and
mechanical stability to the cells (Shamhart and Meszaros, 2010).
Non-collagen fibers include various components, such as elastic
fibers, fibronectin, and laminin. In MF, changes to the non-collagen
fibers often occur before significant changes to the collagen fibers. In
the early stages of MF, fibronectin may respond to myocardial injury
(Ning et al., 2017). Non-collagen fibers are shown to promote the
adhesion, migration, and activation of cardiac fibroblasts, laying the
foundation for excessive deposition of collagen fibers (Luther et al.,
2012). Elastic fibers endow the myocardium with a certain degree of
elasticity in a normal heart, which is beneficial for relaxation and
contraction of the heart (Hiesinger et al., 2012). However, these
elastic fibers are damaged or replaced by collagen fibers in MF,

FIGURE 5
Diagram showing the mechanism by which VASN knockout induces MF by regulating the non-collagen fibers and inflammation.
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leading to decreased elasticity and compliance of the heart (Lin et al.,
2022). In addition, non-collagen fibers can participate in the
regulation of the MF process by interacting with cytokines and
growth factors.

Inflammatory factors are another trigger of MF, and there are
numerous inflammatory factors that can directly induce MF. Both
IL1β and IL6 were observed to play important roles in MF; IL1β
activates the nuclear factor kappa B (NF-κB) signaling pathway to
promote the production of more profibrotic factors by the cardiac
fibroblasts, thereby accelerating MF (Sun et al., 2023); IL6 promotes
the activation of cardiac fibroblasts and collagen synthesis through
various pathways, such as the downstream signal transduction and
transcription activating protein 3 (STAT3) (Rao et al., 2024). MF
also triggers inflammatory reactions, resulting in a vicious cycle. As
MF progresses, the structure and functions of the myocardial tissue
induce local tissue hypoxia, metabolic disorders, and other
conditions. Inflammatory cells such as macrophages then
aggregate in the fibrotic myocardial tissues, releasing more
inflammatory factors like IL1β and IL6 to exacerbate the severity
of MF (Fu et al., 2024). The inflammatory factors interact with other
signaling pathways to promote MF; they also affect the survival and
functions of the myocardial cells, thereby promoting the
development of MF (Liu et al., 2020).

VASN deletion leads to MF in mice with cardiac hypertrophy.
VASN-knockout mice exhibit typical pathological, imaging, and
molecular features of MF. Differential analysis of the various genes
involved, especially the ECM genes (COL6A1, COL9A1, and
FRAS1), showed strong correlations even as their expression
levels decreased significantly in the heart tissues of VASN-
knockout mice. The expression levels of inflammatory factors
IL1β and IL6 were significantly upregulated in the heart tissues
of VASN-knockout mice. These preliminary results reveal that
VASN knockout leads to MF by downregulating the non-
collagen fibers and promoting inflammation.
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Diabetic cardiomyopathy, characterized by myocardial fibrosis, is a common
complication of diabetes. Retinoic acid-related orphan receptor α (RORα)
participates in various pathological and physiological cardiovascular processes.
The current research aims to elucidate the roles andmechanisms of RORα in high
glucose induced cardiac fibroblasts proliferation. Primary neonatal cardiac
fibroblasts were isolated from Sprague-Dawley rats, and pre-administrated
with RORα antagonist SR3335 (20 µM) or RORα agonist SR1078 (10 µM)
followed by the stimulation with normal glucose (5.5 mM) or high glucose
(33.3 mM) respectively. Lactate Dehydrogenase (LDH) release into culture
medium, cellular adenosine-triphosphate (ATP), and cell number were
detected. Expressions of Collagen I, Collagen III, proliferating cell nuclear
antigen (PCNA), α-smooth muscle actin (α-SMA), receptor-interacting protein
kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3) were evaluated.
The extent of oxidative stress was also assessed. Our study found that high
glucose elevated LDH release, reduced cellular ATP production, increased cells
numbers, elevated expression of Collagen I, Collagen III, PCNA, α-SMA, RIPK1 and
RIPK3, decreased mitochondrial membrane potential, strengthened intensity of
dihydroethidium (DHE) and MitoSOX fluorescence. Above effects were all further
exacerbated by SR3335 but significantly reversed by SR1078. In conclusion, RORα
antagonist SR3335 promoted cell injury and proliferation, enhanced collagen
synthesis, facilitated oxidative stress and necroptosis in cardiac fibroblasts with
high glucose stimulation, whereas RORα agonist SR1078 showed opposing
effects. Our study proposed RORα as a novel target against high glucose-
induced cardiac fibroblasts proliferation, which is beneficial to clarify ideal
therapeutic implication for diabetic cardiomyopathy.

KEYWORDS

cardiac fibroblasts, retinoic acid-related orphan receptor α, proliferation, necroptosis,
oxidative stress

1 Introduction

Diabetic cardiomyopathy (DC) was originally characterized as the presence of
structural or functional abnormalities of the myocardium associated with diabetes
mellitus (DM) in the absence of hypertension, coronary heart disease, and/or obesity
(Song et al., 2021). However, this characterization lacks robust evidence as only a limited
number of diabetic patients meet these criteria, rendering its clinically impractical. Recently,
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the Heart Failure Association of the European Society of Cardiology
(ESC), in collaboration with the Working Group onMyocardial and
Pericardial Diseases, has published a consensus statement proposing
that DC should be defined as the presence of myocardial diastolic
and/or systolic dysfunction related to diabetes (Seferović et al.,
2024). From the standpoint of heart failure progression, the
asymptomatic functional and structural cardiac anomalies in
patients with DC can be considered as precursors to heart
failure. Nonetheless, therapeutic options for DC remain limited
in clinical practice. Furthermore, the role of glycemic control in the
prevention of heart failure among diabetic patients is not well
understood. Some studies have indicated a U-shaped relation
between blood glucose levels and the incidence of heart failure,
suggesting that glycemic control alone may be insufficient to prevent
the progression of DC to heart failure (Parry et al., 2015).
Consequently, clarifying pathogenesis of DC and exploring
rational and effective treatment strategies will be beneficial in
prevention and management of DC.

Myocardial fibrosis is a prominent pathological feature observed
in DC, manifested primarily as an excessive accumulation of
collagen fibers, a marked increase in collagen content or
abnormal alterations in collagen composition. These changes lead
to an elevated number of cardiac fibroblasts within the extracellular
matrix (ECM) of the myocardium (Frangogiannis, 2022). Cardiac
fibroblasts play a crucial role in maintaining ECM homeostasis.
Upon activation by several stimuli or damaging factors, such as
ischemia, pressure overload, metabolic disorders, and
neurohormonal release, cardiac fibroblasts differentiate into
myofibroblasts, which are instrumental in driving pathological
cardiac remodeling (Liu T. et al., 2024; González et al., 2024; Yu
et al., 2024; Zhang et al., 2023a). Myofibroblasts exhibit proliferative
capabilities and contribute to ECM turnover and collagen
deposition. However, there remains a significant gap in effective
strategies to prevent excessive proliferation of cardiac fibroblasts in
the context of DC.

Necroptosis, a form of programmed cell death identified as an
alternative to apoptosis following the binding death structural
domains to receptor, playing a significant role in myocardial
hypertrophy, myocardial infarction, atherosclerosis, and
neurodegenerative diseases (Cai et al., 2024; Zhang et al., 2023b;
Sheng et al., 2023; Cao andMu, 2021; Khan et al., 2021). Necroptosis
is characterized by rupture of cell membranes, swelling of organelles,
enlargement of cell volume, and breakdown of cytoplasm and
nucleus, while exhibiting minimal alterations in nuclear
chromatin. Increasingly, studies have shown that the necroptotic
pathway is mediated by the canonical death receptor comprising of
receptor-interacting protein kinase 1 (RIPK1) and receptor-
interacting protein kinase 3 (RIPK3) (Zhou et al., 2019; Shao
et al., 2021). Active RIPK1 participates in the formation of
oligomeric complexes that involve caspase-8, caspase-10 and Fas-
associated protein with death domain (FADD). In detail,
RIPK1 phosphorylates RIPK3, which subsequently
phosphorylates mixed lineage kinase domain-like protein
(MLKL), leading to the formation of necrosomes. Following this,
MLKL oligomers translocate to phosphatidylinositol phosphate
(PIP)-rich region of plasma membrane, resulting in the
formation of large pores, causing a substantial influx of ions, lysis
of the cell membrane, permeabilization of lysosomal membrane and

uncontrolled release of intracellular contents, culminating in
necroptosis (Koerner et al., 2024; Liu S. et al., 2024). Moreover,
our previous studies have established a correlation between
necroptosis and mitochondrial dysfunction, oxidative stress, and
inflammation during DC (Song et al., 2021; Gong et al., 2022; Zhang
S. et al., 2023), indicating that necroptosis inhibition may protect
against cardiac fibroblasts proliferation in DC.

Retinoic acid-related orphan receptor (ROR) is classified within
nuclear hormone receptor superfamily, which integrates nutritional,
pathophysiological, hormonal signaling and gene regulation (Zheng
et al., 2024; Sajinovic and Baier, 2023). Three primary isoforms in
mammals are recognized: RORα, RORβ, and RORγ, each of which is
capable of forming multiple variants through selective splicing.
RORα has been associated with various functions, including
neurodevelopment, cellular differentiation, immunoregulation,
metabolism, and the regulation of circadian rhythms. Recent
studies have revealed that RORα exerts a protective impact
against cardiovascular disorders such as myocardial hypertrophy,
myocardial ischemia-reperfusion injury, and atherosclerosis (Chen
et al., 2023). Our previous research demonstrated a significant
reduction in RORα expression in diabetic hearts, and lack of
RORα exacerbated diabetes-induced systolic dysfunction and
cardiac remodeling (Zhang S. et al., 2023). These findings suggest
that RORα may possess an inhibitory role in DC. However, the
specific influence of RORα on cardiac fibroblast proliferation during
DC remains inadequately understood.

Therefore, in our current study, the primary cardiac fibroblasts
were isolated and subsequently subjected to high glucose
stimulation. The study aimed to elucidate the effects and
potential mechanisms of RORα antagonist and RORα agonist on
cardiac proliferation, with a focus on oxidative stress and
necroptosis. It is conducive to provide innovative insights for
clinical prevention and treatment of DC.

2 Materials and methods

2.1 Culture and treatment of primary cardiac
fibroblasts

Hearts from Sprague-Dawley rats aging one to 3 days were
excised and rapidly taken off using sterilized surgical scissors. After
rinsing three times in cold phosphate buffered saline (PBS) solution,
the hearts were cut into approximately 1–3 mm3 cubes and
transferred into a 50 mL of conical bottle. About 1.5–2.0 mL of
Dulbecco’s modified eagle medium (DMEM, Wisent Inc., Montreal,
QC, Canada) having trypsin was added into the conical bottle placed
on an incubator with shaking for 5 min at 37°C to start digestion.
The first digestion’s supernatant was discarded. Then, the precipitate
underwent further digestion for 3 min at a time and repeated for
about 10 times. All digested supernatants were collected into a
beaker containing DMEMwith 10% fetal bovine serum (FBS, Gibco,
Thornton, NSW, Australia). The cell suspension after filtering with a
cell sieve was centrifuged in a centrifuge tube for 5 min at 1,200 r/
min. Following removing the supernatant, the cells in the precipitate
were re-suspended and inoculated into a new culture dish with
DMEM having 10% FBS. The cells were placed at 37°C in 5% CO2

incubator, and the differential adhesion method to acquire cardiac
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fibroblasts was performed. In detail, culture medium containing
cardiomyocytes was removed after cells had adhered to the plate for
180 min. The cardiac fibroblasts that remained attached to the plate
were digested and cultured in fresh DMEM having 10% FBS. The
cardiac fibroblasts were sub-cultured basing on their growth
conditions, and the cardiac fibroblasts of 3rd to 4th generation
were seeded into plates in the present study. After starvation for
12 h, the cardiac fibroblasts were pre-administrated with RORα
antagonist SR3335 (5, 10, 20 and 40 μM,MedChemexpress, Rahway,
NJ, United States) or RORα agonist SR1078 (2.5, 5, 10 and 20 μM,
MedChemexpress) followed by 48 h of stimulation with normal
glucose (NG) or high glucose (HG) respectively (Liang et al., 2021;
Chen D. et al., 2024; Wahyuni et al., 2021; Zhang Y. et al., 2022;
Xiong et al., 2020; Shen et al., 2023). Cardiac fibroblasts under the
normal glucose (5.5 mM) group and high glucose (11.1 mM,
22.2 mM and 33.3 mM) group were exposed to 27.8 mM,
22.2 mM, 11.1 mM mannitol and 0 mM mannitol respectively to
balance the osmotic pressure (Gong et al., 2022; Zhang S. et al., 2023;
Tian et al., 2021; Lu et al., 2023).

The study was conducted according to National Institutes of
Health guidelines for the Care and Use of Laboratory Animals, and
approved by Committee of Nantong University (approval no.
S20210227-011 on 27 February 2021). The study was conducted
in accordance with the local legislation and institutional
requirements.

2.2 Lactate dehydrogenase (LDH)
release detection

After treatment, the centrifugation was made for cell culture
medium at 400 g for 5 min. The supernatants of 120 μL were
collected and transferred to 96-well plate followed by
incubation at 25°C for 30 min with 60 μL of LDH test
solution (Beyotime, Shanghai, China) without light. The
absorbance at 490 nm, representing LDH release level, were
recorded by microplate-reader (BioTek, Winooski, VT,
United States) and standardized by the value obtained from
the normal glucose group value.

2.3 Adenosine-triphosphate (ATP) level
measurements

After treatment, 100 μL ATP assay reagent (Beyotime, Shanghai,
China) was utilized to incubate cardiac fibroblasts at 25°C for
10 min. Then, microplate-reader was employed to record the
luminescence intensity. The relative ATP levels were standardized
by the value obtained from the normal glucose group.

2.4 Cell counting kit-8 (CCK-8) assay

After treatment, 10 μL CCK-8 reagent (Beyotime, Shanghai,
China) was added to cardiac fibroblasts in 96-well plates and
incubated at 37°C for 1 h without light. The optical density
(OD), which correlates with the cell number, was recorded for
each sample by a microplate-reader at 450 nm.

2.5 EdU (5-ethynyl-2′-deoxyuridine) staining

After treatment, EdU (50 μM, RiboBio, Guangzhou, China) was
added to cardiac fibroblasts in 24-well plates and incubated for 2 h
without light. Next, the cells were washed twice with PBS. Then, PBS
containing 4% paraformaldehyde was used to fix the cells for 30 min.
Glycine (2 mg/mL) was then added and the mixture was agitated on
a shaker for 5 min. After washing, EdU penetrant (PBS containing
0.5% TrixonX-100) was used to incubate the cells for 10 min, and
washed by PBS once for 5 min. Cells were incubated with EdU
penetrant once again for an additional 10 min after the application
of Apollo fluorescence staining solution for 30 min 4′,6-diamidino-
2-phenylindole (DAPI, blue) was used to stain the nuclei. EdU red
fluorescence was monitored and imaged with a confocal laser
microscope (Leica, Wetzlar, Germany). ImageJ software was
employed to count the EdU positive cells.

2.6 Immunofluorescence staining

After treatment, the cardiac fibroblasts in 24-well plates were fixed
at 25°C for 30 min with immunofluorescence fixative. Following
fixation, the cells were washed with PBS and incubated for 1 h with
blocking solution. The primary antibodies, including RORα (1:200,
Abcam, Cambridge, United Kingdom), α-smooth muscle actin (α-
SMA, 1:1,000, Boster Biological Technology, Dublin, CA,
United States), Collagen I and Collagen III (1:200, Proteintech,
Rosemont, IL, United States) were applied and incubated overnight
at 4°C. PBS was used for washing followed by the incubation of cells
with Alexa Fluor 488 (green) or Cy3 (red) conjugated IgG dilution (1:
500, Beyotime, Shanghai, China) on a shaker for 2 h without light at
25°C. DAPI (blue) was used to stain the nuclei. The fluorescence was
monitored and imaged with a confocal laser microscope.

2.7 Dihydroethidium (DHE) staining

After treatment, DHE (2 μM, Beyotime, Shanghai, China) was
added to incubate the cardiac fibroblasts at 37°C without light for
30 min in 24-well plates placed in oven. DAPI was employed to stain
the nuclei. Red fluorescence reflecting superoxide anion levels were
monitored and imaged with a confocal laser microscope.

2.8 MitoSOX staining

After treatment, MitoSOX Red (5 μM, Yeasen, Shanghai, China)
and MitoTracker Green (200 nM, Beyotime, Shanghai, China) were
added to incubate cardiac fibroblasts at 37°C in 24-well plates for 20min
without light in an oven. DAPI was employed to stain the nuclei. Red
fluorescence reflecting mitochondria reactive oxygen species (ROS)
levels were monitored and imaged with a confocal laser microscope.

2.9 JC-1 staining

After treatment, JC-1 (5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-
imidacarbocyanine iodide) working solution (Beyotime, Shanghai,
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China) was added to incubate cardiac fibroblasts in 24-well plates at
37°C for 20 min in an oven without light. DAPI was employed to
stain the nuclei. JC-1 monomers show green fluorescence reflecting
impaired mitochondria and JC-1 aggregates show red fluorescence
reflecting normal mitochondria with less and higher mitochondrial
membrane potentials, respectively. They were detected and imaged
with a confocal laser microscope.

2.10 Quantitative real-time PCR

TRIzol reagent (Takara, Kyoto, Japan) was used to extract RNA
from cardiac fibroblast and reverse transcription was performed.
Then, SYBR Green qPCR mixture (Takara) was employed to
amplify cDNA in the Real-time PCR systems (ABI 7500,
Carlsbad, CA, United States). The sequences of primers (Sangon
Biotech, Shanghai, China) were as follows: rat α-SMA mRNA (F, 5′-
CATCAGGAACCTCGAGAAGC-3′ and R, 5′-TCGGATACTTCA
GGGTCAGG-3′), rat Collagen I mRNA (F, 5′-AGGGTCATCGTG
GCTTCTCT-3′ and R, 5′-CAGGCTCTTGAGGGTAGTGT-3′), rat
Collagen III mRNA (F, 5′-AGCGGAGAATACTGGGTTGA -3′ and
R, 5′-GATGTAATGTTCTGGGAGGC-3) and 18S mRNA (F, 5′-
AGTCCCTGCCCTTTGTACACA-3′ and R, 5′-CGATCCGAG
GGCCTCACTA-3′). Standardization was made for the
experimental Ct values by those in normal glucose group.

2.11 Western blot

After washing with PBS 2–3 times, lysis solution was added into
the cardiac fibroblasts and incubated for 40 min on ice. Then, cells
were scraped off using a cell spatula, collected into centrifuge tubes
and continued to lysis for an additional 40 min. Next, the cells were
centrifuged with 12,000 rpm at 4°C for 15 min to collect the
supernatant and stored at −80°C for subsequent experiments.
Protein quantification (BCA method) was made to determine the
protein concentration and sample volume for measurement was
calculated.

Next, sodium dodecyl sulfate (SDS)-polyacrylamide gel
electrophoresis (PAGE) was used to separate the proteins
followed by transferring to polyvinylidene fluoride (PVDF)
membrane. Then, 5% non-fat milk was employed to incubate the
membranes for 2 h at 25°C. After washing for 10 min by Tris-
buffered saline Tween-20 (TBST), RORα (1:1,000, Abcam,
Cambridge, United Kingdom), proliferating cell nuclear antigen
(PCNA, 1:1,000, ABclonal, Wuhan, China), α-SMA (1:2000,
Boster Biological Technology, Dublin, CA, United States),
Collagen I and Collagen III (1:200, Proteintech, Rosemont, IL,
United States), RIPK1 and RIPK3 (1:1,000, Cell Signaling
Technology, Danvers, MA, United States), GAPDH (1:5,000,
Sigma-Aldrich, St. Louis, MO, United States), and β-tubulin (1:
3,000, CMCTAG, Milwaukee, WI, United States) antibodies were
incubated at 4°C overnight. Next day, TBST was used to wash the
membrane three times for 10 min each. A secondary antibody was
then added followed by incubation for 2 h at 25°C on a shaker.
Finally, blots were visualized using an enhanced chemiluminescence
(ECL, Thermo Fisher Scientific Inc., Rockford, IL,
United States) solution.

2.12 Statistical analysis

The data were presented as mean ± standard deviation (SD), and
statistically evaluated by one-way ANOVA followed by the Student-
Newman-Keuls test with Stata 15.0. p-value of <0.05 was set as
statistically significant.

3 Results

3.1 High glucose promoted cell proliferation
but inhibted RORα expressions in cardiac
fibroblasts

Initially, a concentration-response curve was established to
assess the relation between glucose concentration and cell
number. The data demonstrated that glucose concentrations of
11.1, 22.2 and 33.3 mM significantly increased cell number, with
the most pronounced effects observed at a concentration of 33.3 mM
(Figure 1A). Then, a time-dependent experiment showed that
stimulation with 33.3 mM glucose for durations of 24 h, 48 h
and 72 h increased cell numbers, with the maximum enhancement
begining at 48 h (Figure 1B). Therefore, a 48 h exposure to 33.3 mM
glucose was selected for subsequent experiments aimed at
promoting cell proliferation, consistent with previous studies
(Gong et al., 2022; Zhang S. et al., 2023; Tian et al., 2021; Lu
et al., 2023).

Our previous research confirmed that high glucose decreased
RORα expression in cardiomyocytes (Zhang S. et al., 2023). In
alignment with these findings, the current study confirmed that high
glucose also reduced RORα expression in cardiac fibroblasts (Figures
1C, D). To elucidate the role of RORα in cardiac fibroblast
proliferation, the effects of RORα antagonist and RORα agonist
on primary cardiac fibroblasts with high glucose stimulation were
further investigated.

3.2 SR3335 promotes cell injury and
proliferation in high glucose stimulated
cardiac fibroblasts

To evaluate the impact of RORα on cell injury induced by high
glucose, LDH release and ATP level were measured. And cardiac
fibroblast number was assessed through OD obtained from the cell
CCK-8 assay. The data demonstrated that compared to high glucose
stimulation alone, RORα antagonist SR3335 at different
concentration (10 μM, 20 μM and 40 µM) further increased
LDH release in the medium, reduced the cellular ATP
production but enhanced OD value in cardiac fibroblasts (Figures
2A–C). These findings suggested that SR3335 promoted cell injury
and increased cell number in high glucose stimulated cardiac
fibroblasts. Notably, the most pronounced effects were observed
at a concentration of 20 μM, which was selected for subsequent
experiments.

EdU is capable of infiltrating the DNA that is newly synthesized.
Thus, EdU staining is a sensitive and effective method for evaluating
cell proliferation (Zhang et al., 2021; Zhang Y. et al., 2024). It was
found that EdU positive cells were enhanced in response to high
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glucose stimulation, with further enhancement by SR3335 (Figures
2D, E). PCNA, a crucial protein associated with DNA polymerase
and cell proliferation (He et al., 2024). Western blot showed
increased PCNA expression after stimulation by high glucose was
further augmented by SR3335 (Figure 2F). Additionally, Western
blot, Real-time PCR, and immunofluorescence demonstrated that α-
SMA, another sensitive indicator of cell proliferation, was enhanced
after stimulation by high glucose, with further promotion by SR3335
(Figures 2G–I). Taken together, SR3335 promoted cell proliferation
in high glucose stimulated cardiac fibroblasts.

3.3 SR3335 enhances synthesis of collagen
in high glucose stimulated cardiac
fibroblasts

Obviously, increased cardiac fibroblasts during cell proliferation
will secret a large amount of collagen. Real-time PCR,Western blot, and
immunofluorescence demonstrated that Collagen I and Collagen III,
two predominant types of fibroblasts in the myocardium, were
enhanced after stimulation by high glucose. This effect was further
augmented by SR3335 (Figure 3), suggesting that SR3335 enhanced
synthesis of collagen in high glucose stimulated cardiac fibroblasts.

3.4 SR3335 facilitates oxidative sstress in
high glucose stimulated cardiac fibroblasts

Reported studies suggested that oxidative stress played a vital
role in cardiac fibroblasts proliferation (Zhang Q. et al., 2022; Li
et al., 2023). The present research found that red fluorescence of
DHE was significantly enhanced after high glucose stimulation,
which was further amplified by SR3335 (Figure 4A). This
suggested that SR3335 boosted cellular superoxide anion in high
glucose stimulated cardiac fibroblasts. ROS in the mitochondria was
further measured using MitoSOX staining. Similarly, MitoSOX
fluorescence was dramatically strengthened by high glucose, with
further enhancement by SR3335 (Figure 4B).

The impairment of mitochondrial membrane potential not only
leads to cell injury but also induces oxidative stress (Drăgoi et al., 2024;
Chen S. et al., 2024). JC-1 staining demonstrated that JC-1 monomers’
green fluorescence was enhanced while JC-1 aggregates’ red fluorescence
was attenuated in cardiac fibroblasts with high glucose stimulation,
indicating that high glucose had impaired the mitochondrial
membrane potential. SR3335 further enhanced green fluorescence but
alleviated red fluorescence of JC-1 staining for high glucose stimulated
cardiac fibroblasts (Figure 4C). Collectively, SR3335 facilitated oxidative
stress in high glucose stimulated cardiac fibroblasts.

FIGURE 1
High glucose promoted cell proliferation but inhibted RORα expressions in cardiac fibroblasts. (A) After stimulation with glucose of different
concentration (5.5, 11.1, 22.2 and 33.3 mM) and mannitol with different concentration (27.8 mM, 22.2 mM, 11.1 mM and 0 mM respectively) for 48 h, OD
value obtained from CCK-8 assay was measured. *p < 0.05, **p < 0.01 verses 5.5 mM glucose, n = 6. (B) After stimulation with normal glucose (NG,
glucose 5.5 mM and mannitol 27.8 mM) or high glucose (HG, 33.3 mM) for different times (0 h, 12 h, 24 h, 48 h and 72 h), OD value obtained from
CCK-8 assay was measured. **p < 0.01 verses 5.5 mM glucose with the same stimulation time, n = 6. (C) After stimulation with NG or HG for 48 h, RORα
was immunofluorescence stained with Alexa Fluor 488 (green) conjugated IgG. The nuclei were stained with DAPI (blue). Bar = 50 μm. (D) The protein
expression of RORα was measured by Western blot. GAPDH was serviced as a control. **p < 0.01 verses NG, n = 6.
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3.5 SR3335 promotes necroptosis in high
glucose stimulated cardiac fibroblasts

A significant release of cellular content following cell injury
can trigger necroptosis, thereby aggravating cell damage and
promoting cell proliferation (Zhou et al., 2024). This current
work demonstrated that RIPK1 and RIPK3 expressions, two
hallmark proteins associated with necroptosis, were enhanced
after stimulation by high glucose. This effect was further
augmented by SR3335 (Figure 5), suggesting that

SR3335 promoted necroptosis in high glucose stimulated
cardiac fibroblasts.

3.6 SR1078 attenuates cell injury and
proliferation in high glucose stimulated
cardiac fibroblasts

The aforementioned data verified that RORα antagonist
SR3335 promoted oxidative stress and necroptosis to

FIGURE 2
SR3335 promoted cell injury and proliferation in high glucose stimulated cardiac fibroblasts. (A–C) After pre-administration with different
concentration of SR3335 (5 μM, 10 μM, 20 μM and 40 µM) for 4 h, the cardiac fibroblasts were stimulated with normal glucose (NG, glucose 5.5 mM and
mannitol 27.8 mM) or high glucose (HG, 33.3 mM) for 48 h. LDH release in the medium (A), cellular ATP in the cardiac fibroblasts (B), and OD value
obtained from the CCK-8 assay (C) were measured. **p < 0.01 verses 5.5 mM glucose; #p < 0.05, ##p < 0.01 verses 33.3 mM glucose, n = 6. (D, E)
After pre-administration with SR3335 (20 µM) for 4 h, the cardiac fibroblasts were stimulated with NG or HG for 48 h. EdU staining with red fluorescent
was performed to evaluate cardiac fibroblasts proliferation. Bar = 100 μm. EdU positive cells were quantitatively analyzed. (F) The protein expression of
PCNA was measured by Western blot. β-tubulin was serviced as a control. (G) α-SMA was immunofluorescence stained with Cy3 (red) conjugated IgG.
The nuclei were stained with DAPI (blue). Bar = 25 μm. (H) ThemRNA expression of α-SMAwasmeasured by Real-time PCR. (I) The protein expression of
α-SMA was measured by Western blot. GAPDH was serviced as a control. **p < 0.01 verses NG; ##p < 0.01 verses HG, n = 6.
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FIGURE 3
SR3335 enhanced collagen synthesis in high glucose stimulated cardiac fibroblasts. After pre-administrationwith SR3335 (20 µM) for 4 h, the cardiac
fibroblasts were stimulated with normal glucose (NG, glucose 5.5 mM and mannitol 27.8 mM) or high glucose (HG, 33.3 mM) for 48 h (A, B) The mRNA
expressions of Collagen I and Collagen III were measured by Real-time PCR. (C, D) The protein expressions of Collagen I and Collagen III were measured
byWestern blot. GAPDHwas serviced as a control. (E)Collagen I and collagen III were immunofluorescence stainedwith Alexa Fluor 488 (green) and
Cy3 (red) conjugated IgG, respectively. The nuclei were stained with DAPI (blue). Bar = 25 μm **p < 0.01 verses NG; ##p < 0.01 verses HG, n = 6.
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accelerate proliferation after high glucose stimulation in cardiac
fibroblasts. Nonetheless, the potential of RORα agonists to resist
proliferation in cardiac fibroblasts under similar conditions
remains to be elucidated. Our study demonstrated that RORα
agonist SR1078 at different concentration (5 μM, 10 μM and
20 µM) significantly reduced LDH release in the medium,
elevated the cellular ATP production and decreased OD value
in cardiac fibroblasts with high glucose stimulation (Figures

6A–C). These findings suggested that SR1018 attenuated cell
injury and decreased cell number in high glucose stimulated
cardiac fibroblasts. Notably, SR1078 exhibited the most reversal
effects at a concentration of 10 μM, which was chosen for
subsequent experiments.

Additionally, the enhanced number of EdU positive cells were
restrained by SR1078 in high glucose stimulated cardiac fibroblasts
(Figures 6D, E). Moreover, elevated expressions PCNA and α-SMA

FIGURE 4
SR3335 facilitated oxidative stress in high glucose stimulated cardiac fibroblasts. After pre-administration with SR3335 (20 µM) for 4 h, the cardiac
fibroblasts were stimulatedwith normal glucose (NG, glucose 5.5mMandmannitol 27.8mM) or high glucose (HG, 33.3mM) for 48 h (A)DHE stainingwith
red fluorescent was performed tomeasure superoxide anion production in cardiac fibroblasts. Bar = 25 μm. (B)MitoSOX stainingwith red fluorescent was
performed tomeasureMitochondrial ROS production. MitoTracker with green fluorescent was stained to co-localizeMitochondria. Bar = 25 μm. (C)
Mitochondrial membrane potential was measured by JC-1 staining. Bar = 25 μm.

FIGURE 5
SR3335 promoted necroptosis in high glucose stimulated cardiac fibroblasts. After pre-administration with SR3335 (20 µM) for 4 h, the cardiac
fibroblasts were stimulated with normal glucose (NG, glucose 5.5 mM and mannitol 27.8 mM) or high glucose (HG, 33.3 mM) for 48 h. Expression of
RIPK1 (A) and RIPK3 (B) protein was measured by Western blot. GAPDH was serviced as a control. **p < 0.01 verses NG; ##p < 0.01 verses HG, n = 6.
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were also suppressed by SR1078 in these cells (Figures 6F–I). Taken
together, SR1078 attenuated cell proliferation in high glucose
stimulated cardiac fibroblasts.

3.7 SR1078 reduces synthesis of collagen
inHigh glucose stimulated cardiac
fibroblasts

Real-time-PCR, Western blot, and immunofluorescence
demonstrated that enhanced Collagen I and III Collagen
syntheses in high glucose stimulated cardiac fibroblasts were

suppressed by SR1078 (Figure 7), suggesting that SR1078 reduced
synthesis of collagen in these cells.

3.8 SR1078 suppresses oxidative stress in
high glucose stimulated cardiac fibroblasts

DHE staining showed that stronger red fluorescence was
weakened by SR1078 in high glucose stimulated cardiac
fibroblasts (Figure 8A), suggesting SR1078 inhibited cellular
superoxide anion production in these cells. MitoSOX staining
demonstrated that stronger MitoSOX fluorescence was attenuated

FIGURE 6
SR1078 attenuated cell injury and proliferation in high glucose stimulated cardiac fibroblasts. (A–C) After pre-administration with different
concentration of SR1078 (2.5 µM, 5 μM, 10 μM and 20 µM) for 4 h, the cardiac fibroblasts were stimulated with normal glucose (NG, glucose 5.5 mM and
mannitol 27.8 mM) or high glucose (HG, 33.3 mM) for 48 h. LDH release in the medium (A), cellular ATP in the cardiac fibroblasts (B), and OD value
obtained from CCK-8 assay (C) were measured. **p < 0.01 verses 5.5 mM glucose; #p < 0.05, ##p < 0.01 verses 33.3 mM glucose, n = 6. (D, E) After
pre-administration with SR1078 (10 µM) for 4 h, the cardiac fibroblasts were stimulated with NG or HG for 48 h. EdU staining with red fluorescent was
performed to evaluate cardiac fibroblasts proliferation. Bar = 100 μm. EdU positive cells were quantitatively analyzed. (F) The protein expression of PCNA
was measured by Western blot. β-tubulin was serviced as a control. (G) α-SMA was immunofluorescence stained with Cy3 (red) conjugated IgG. The
nuclei were stained with DAPI (blue). Bar = 25 μm. (H) The mRNA expression of α-SMA was measured by Real-time PCR. (I) The protein expression of α-
SMA was measured by Western blot. GAPDH was serviced as a control. **p < 0.01 verses NG; ##p < 0.01 verses HG, n = 6.
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FIGURE 7
SR1078 reduced collagen synthesis in high glucose stimulated cardiac fibroblasts. After pre-administration with SR1078 (10 µM) for 4 h, the cardiac
fibroblasts were stimulated with normal glucose (NG, glucose 5.5 mM and mannitol 27.8 mM) or high glucose (HG, 33.3 mM) for 48 h (A, B) The mRNA
expressions of Collagen I and Collagen III were measured by Real-time PCR. (C, D) The protein expressions of Collagen I and Collagen III were measured
byWestern blot. GAPDHwas serviced as a control. (E)Collagen I and collagen III were immunofluorescence stainedwith Alexa Fluor 488 (green) and
Cy3 (red) conjugated IgG, respectively. The nuclei were stained with DAPI (blue). Bar = 25 μm **p < 0.01 verses NG; ##p < 0.01 verses HG, n = 6.
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by SR1078 in high glucose stimulated cardiac fibroblasts (Figure 8B),
suggesting SR1078 suppressed mitochondrial ROS production in
this context. JC-1 staining indicated that stronger green fluorescence
was alleviated, while weaker red fluorescence was strengthened by
SR1078 in high glucose stimulated cardiac fibroblasts (Figure 8C),
suggesting that mitochondrial membrane potential was enhanced by
SR1078. Taken together, SR1078 suppressed oxidative stress in high
glucose stimulated cardiac fibroblasts.

3.9 SR1078 alleviates necroptosis in high
glucose stimulated cardiac fibroblasts

Western blot showed that the increased RIPK3 and
RIPK1 expressions were reduced by SR1078 in high glucose
stimulated cardiac fibroblasts (Figure 9), suggesting SR1078 alleviated
necroptosis.

4 Discussion

Our present study firstly investigated the effects and potential
mechanisms underlying high glucose-stimulated cardiac fibroblast
proliferation in the context of RORα antagonist and agonist. The data
verified that activation of RORα, through the inhibition of necroptosis,
exerts protective effects against cell proliferation, thereby proposing a novel
approach to alleviate DC. Nonetheless, several limitations are present in
the current study. Firstly, the level of RORα mRNA or protein in the
myocardium of diabetic patients was not detected in the present study.
Secondly, neonatal rat cardiac fibroblasts may not serve as an optimal
model for assessing diabetes-induced alterations. Utilizing primary cardiac
fibroblasts derived from diabetic adult mice would provide valuable

insights into the roles of RORα in the pathological process of DC.
Thirdly, in addition to high glucose, elevated fatty acids and insulin
are also prevalent in the context of diabetes. High glucose alone may not
sufficiently replicate the conditions associatedwith type 2 diabetes. Further
studies should consider stimulation with high fatty acid and/or high
insulin to more accurately reflect the diabetic environment.

Diabetes mellitus, a metabolic disorder, arises from insulin
secretion deficiency or insulin dysfunction. In 2021, it was
estimated that approximately 537 million individuals aged
20–79 were living with diabetes globally, with projections
indicating an increase to 784 million by 2045 (Zhang S. et al.,
2023; Huo et al., 2023). Chronic diabetes can cause various
complications including nephropathy, retinal disorders,
cardiovascular damage and peripheral neuropathy. Among these
complications, DC is distinguished by its unique pathophysiological
mechanisms, including early-stage abnormalities in diastolic
function of the heart, ultimately progressing to clinical heart
failure even in absence of coronary artery disease, hypertension
and dyslipidemia (Seferović et al., 2024). The potential
pathophysiological contributors to DC include immune
dysfunction, impaired nutrient-sensing signaling, insulin
resistance, cardiac inflammation, oxidative stress, subcellular
component (primarily mitochondria) abnormalities, inappropriate
activation of the renin-angiotensin system, and obesity (Huo et al.,
2023; Zhang C. et al., 2024; Dhar et al., 2023; Hsuan et al., 2023).
Collectively, these factors facilitate interstitial fibrosis of cardiac
tissue, increase cardiac stiffness, and lead to subsequent systolic
dysfunction, ultimately resulting in heart failure (Pan et al., 2023;
Cheng et al., 2023). Despite the availability of various strategies to
effectively manage blood glucose levels, the incidence of DC remains
high, and progression to heart failure cannot be entirely prevented in
certain patients (Parry et al., 2015; Kim et al., 2022). Consequently,

FIGURE 8
SR1078 suppressed oxidative stress in high glucose stimulated cardiac fibroblasts. After pre-administration with SR1078 (10 µM) for 4 h, the cardiac
fibroblasts were stimulatedwith normal glucose (NG, glucose 5.5mMandmannitol 27.8mM) or high glucose (HG, 33.3mM) for 48 h (A)DHE stainingwith
red fluorescent was performed tomeasure superoxide anion production in cardiac fibroblasts. Bar = 25 μm. (B)MitoSOX stainingwith red fluorescent was
performed tomeasureMitochondrial ROS production. MitoTracker with green fluorescent was stained to co-localizeMitochondria. Bar = 25 μm. (C)
Mitochondrial membrane potential was measured by JC-1 staining. Bar = 25 μm.
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seeking new means to delay or even halt the progression of DC is
crucial for reducing the incidence and mortality associated with
cardiovascular adverse events in individuals with diabetes.

Myocardial fibrosis, mainly resulting from an imbalance between
ECM degradation and production, represents a significant
manifestations of DC (Levick and Widiapradja, 2020). Myocardial
fibrosis further exacerbates cardiac dysfunction and leads to distinct
cardiovascular diseases. Activated myofibroblasts and fibroblasts serve
as the principal sources of matrix proteins and act as the primary
cellular effectors of myocardial fibrosis. Additionally, cardiomyocytes,
vascular cells and immune cells can also attain fibrotic phenotypes in
response to stress, ultimately causing the activation of fibroblast
populations (Aguado-Alvaro et al., 2024). Various cytokines,
including interleukin (IL)-1, IL-4, IL-6, IL-10, and tumor necrosis
factor-α, along with neurohumoral pathways, and fibroblast growth
factors such as platelet-derived growth factor and transforming growth
factor-β can facilitate fibrotic signaling cascades by activating the
downstream signaling pathways and interacting with surface
receptors (Wang et al., 2023). Our present experiments confirmed
that under high glucose (33.3 mM) stimulation, cardiac fibroblasts
number was increased, collagen secretion was elevated, and cell
proliferation was significantly accelerated, indicating a marked
cardiac fibroblasts activation with pronounced fibrotic characteristics.
Therefore, there is an urgent need for timely intervention tomitigate the
progression of DC.

RORα, a member of orphan nuclear receptor family, exhibits higher
tissue specificity and is involved in regulating processes of immunity,
inflammation, circadian rhythms, and metabolic homeostasis. Notably,
substantial evidence indicates that RORα influences both pathological
and physiological within the cardiovascular system, including
myocardial hypertrophy, hypertension, atherosclerosis, myocardial
ischemia/reperfusion injury, and hypoxia or ischemia (Chen et al.,
2023). Prior studies have demonstrated that RORα expression is
downregulated in high glucose stimulated cardiomyocytes, as well as

in the myocardium of diabetic mice. In streptozocin (STZ)-induced
RORα knockout mice, exacerbated myocardial remodeling and cardiac
dysfunction were observed, indicating a protective role for RORα
against DC (Zhang S. et al., 2023; Zhao et al., 2017). However, the
precise function of RORα in fibrosis remains to be elucidated.
Furthermore, molecular mechanism underlying the transcriptional
regulation pattern of RORα under a high glucose environment is
still unclear. We previously found that hydrogen sulfide increased
the expression of E2F transcription factor 1 (E2F1), promoted
E2F1 binding to the promoter of RORα, increased RORα
transcription, and eventually alleviated cell damage in
cardiomyocytes with high glucose stimulation via a RORα-
dependent manner (Zhang S. et al., 2023). Nevertheless, as a
gasotransmitter, the potential of hydrogen sulfide as an effective
regulatory molecule for RORα is still not optimistic. Fortunately,
recent discoveries of endogenous ligands of RORα suggest that
pharmacological modulation of RORα expression or activity through
the use of exogenous agonists or antagonists may allow for the precise
control of RORα within a physiological range, thereby maintaining the
homeostasis of the cardiovascular system (Solt et al., 2011). RORα
antagonist SR3335, which is actually one selective RORα inverse agonist
of RORα, has demonstrated a substantial capacity to inhibit RORα
activity upon its binding (Liang et al., 2021). In contrast,
SR1078 functions as a RORα agonist, directly interacting with the
ligand-binding domain of RORα, which increases the transcriptional
activity of RORα target genes (Moreno-Smith et al., 2021). The present
study found that inhibiting RORα activity further aggravated cell
damage, increased cell number, upregulated collagen I and collagen
III secretion, enhanced EdU-staining positive cells, and elevated PCNA
and α-SMA expressions in high glucose stimulated cardiac fibroblasts.
Conversely, activating RORα activity mitigates the above
manifestations, indicating that adjusting RORα activity through
pharmacological means represents an effective strategy for regulating
cardiac fibroblasts proliferation with high glucose stimulation.

FIGURE 9
SR1078 alleviated necroptosis in high glucose stimulated cardiac fibroblasts. After pre-administration with SR1078 (10 µM) for 4 h, the cardiac
fibroblasts were stimulated with normal glucose (NG, glucose 5.5 mM and mannitol 27.8 mM) or high glucose (HG, 33.3 mM) for 48 h. Expression of
RIPK1 (A) and RIPK3 (B) protein was measured by Western blot. GAPDH was serviced as a control. **p < 0.01 verses NG; ##p < 0.01 verses HG, n = 6.
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The pathogenic mechanism underlying DC remain incompletely
elucidated, with associations identified between DC and cardiac
metabolic disorders, microvascular dysfunction, endoplasmic reticulum
stress, inflammation, mitochondrial dysfunction, oxidative stress,
impaired Ca2+ handling, and apoptosis (Hsuan et al., 2023).
Moreover, as of now, the precise protective mechanism of RORα on
cardiovascular system is yet to be fully clarified (Chen et al., 2023).
Necroptosis is a novel andunique formof regulated and programmed cell
death (Newton et al., 2024). Necroptosis is primarily governed by
receptor-binding protein kinases (notably RIPK1 and RIPK3). This
process involves the sequential activation and phosphorylation of key
proteins of necroptosis, culminating in the disruption of plasma
membrane integrity and the amplification of inflammatory responses,
which contribute to cellular dysfunction (Yuan and Ofengeim, 2024).
Specifically, necroptosis may be triggered by various stimuli,
predominantly tumor necrosis factor (TNF). In the absence of
caspase-8, RIPK1 undergoes auto-phosphorylation at its serine/
threonine residue sites and combines to RIPK3 through RIP
homotypic interaction motif (RHIM), forming a RIPK1-RIPK3
complex named as necrosome. This complex subsequently recruits
and activates the downstream protein MLKL, which is then
phosphorylated. Then, phosphorylated MLKL translocates to the cell
membrane, resulting in membrane rupture and the release of damage-
associated molecular patterns (DAMPs), thereby mediating the
occurrence of necroptosis (Aguado-Alvaro et al., 2024; Chaouhan
et al., 2022). Importantly, as DC progresses, mitochondrial
dysfunction is further exacerbated to enhance oxidative stress, which
in turn promotes the process of necroptosis and the release of cellular
contents to speed up cardiac fibroblasts’ proliferation and synthesis of
collagen. Under high glucose stimulation, mitochondrial membrane
permeability alters to enhance ROS production and the occurrence of
necroptosis, thereby increasing the possibility of oxidative stress burs. In
turn, ROS prone to leading to mitochondrial dysfunction and cardiac
fibroblasts proliferation, accelerating the myocardial fibrosis during the
process of DC (Song et al., 2021; Gong et al., 2022; Zhang S. et al., 2023).
That is to say, themechanismof excessive cardiac fibroblasts proliferation
in DC might be attributed to oxidative stress and necroptosis. Our
research verified that the inhibition of RORα activity resulted in enhanced
oxidative stress levels, reduced mitochondrial membrane potential,
promoted necroptosis, and subsequently accelerated cardiac fibroblasts
proliferation with high glucose stimulation. Conversely, the enhancement
of RORα activity reversed the above manifestations, suggesting that
necroptosis and RORα-mediated inhibition of oxidative stress may
constitute a protective mechanism regulating the proliferation of
cardiac fibroblasts. Interestingly, our study showed that
SR1078 attenuated necroptosis while simultaneously inhibiting cell
proliferation, a seemingly paradoxical outcome. However, it is
plausible that following necroptosis, cardiac fibroblasts release
additional cellular contents due to membrane rupture, thereby
promoting the proliferation of cardiac fibroblast (Zhang et al., 2021).
Thereby the inhibitory effects of SR1078 on cardiac fibroblast
proliferation may be ascribed to its capacity to alleviate necroptosis.

In summary, RORα antagonist SR3335 promoted cell injury and
proliferation, enhanced collagen synthesis, facilitated necroptosis and
oxidative stress in high glucose stimulated cardiac fibroblasts. In contrast,
RORα agonist SR1078 attenuated cell injury and proliferation, reduced
collagen synthesis, alleviated necroptosis, and suppressed oxidative stress
in high glucose stimulated cardiac fibroblasts. Our present study

proposed RORα as a novel therapeutic target for addressing high
glucose-induced cardiac fibroblasts proliferation, which is beneficial to
clarify some other ideal therapeutic implication for DC.
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Deciphering the role of IGFBP5 in
delaying fibrosis and sarcopenia in
aging skeletal muscle: therapeutic
implications and molecular
mechanisms

Luze Shi†, Zheci Ding*† and Jiwu Chen*

Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai Jiao Tong University, Shanghai, China

Introduction: Sarcopenia is a condition characterized by the loss of muscle fibers
and excessive deposition of extracellular matrix proteins. The interplay between
muscle atrophy and fibrosis is a central feature of sarcopenia. While the
mechanisms underlying skeletal muscle aging and fibrosis remain
incompletely understood, cellular senescence has emerged as a key
contributor. This study investigates the role of D-galactose (D-gal) in inducing
fibroblasts senescence and skeletal muscle fibrosis, and aims to find the key
regulator of the process to serve as a therapeutical target.

Methods: To discover the role of D-gal in inducing cellular senescence and
fibrosis, the senescence markers and the expression of fibrosis-related proteins
were assessed after introducing D-gal among fibroblasts, and muscle strength
and mass. The severity of muscle atrophy and fibrosis were also verified by using
H&E staining and Masson trichrome staining after D-gal treatment via
subcutaneous injection among mice. Subsequently, mRNA sequencing (RNA-
seq) was performed and the differential expressed genes were identified between
under D-gal or control treatment, to discover the key regulator of D-GAL-driven
fibroblasts senescence and fibrosis. The role of the key regulator IGFBP5 were
then validated in D-GAL treated IGFBP5-knockdown fibroblasts in vitro by
analyzing the level of senescence and fibrosis-related markers. And the results
were further confirmed in vivo in IGFBP5-knockdown SAMP8 mice with
histological examinations.

Results: D-gal treatment effectively induced cellular senescence and fibrosis in
fibroblasts, as well as skeletalmuscle atrophy, fibrosis and loss inmusclemass and
function in mice. IGFBP5 was identified as a key regulator of D-GAL induced
senescence and fibrosis among fibroblasts using RNA-seq. And further validation
tests showed that IGFBP5-knockdown could alleviate D-GAL-induced fibroblast
cellular senescence and fibrosis, as well as the severity of muscle atrophy and
fibrosis in SAMP8 mice.

Discussion: IGFBP5 emerging as a key regulator of D-GAL-induced fibroblast
cellular senescence and fibrosis. The findings provide new insights into the
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molecular mechanisms underlying age-related skeletal muscle fibrosis and
highlight IGFBP5 as a potential therapeutic target. Further research is needed to
validate these findings and explore related clinical applications.

KEYWORDS

skeletal muscle fibroblasts, skeletal muscle fibrosis, skeletal muscle aging, fibrosis,
sarcopenia

Introduction

Sarcopenia, characterized by the loss of muscle mass and
strength, and fibrosis, is a common health issues among the
elderly, significantly impacting their mobility and overall health
(Di Iorio et al., 2006; Tournadre et al., 2019). With the advent of the
aging society, these concerns have garnered widespread attention.
Skeletal muscle plays a crucial role in movement, metabolic balance,
and heat generation (Argilés et al., 2016). Nevertheless, a range of
abnormal health states, including long-term illnesses, malignancies,
protracted infections, and the aging process, have the potential to
upset the equilibrium between the synthesis and breakdown of
muscle proteins. This disruption can subsequently result in the
occurrence of muscle atrophy and fibrosis (Kirkendall and Garrett,
1998; Argilés et al., 2016). In the context of sarcopenia, fibrosis poses
substantial detrimental effects on patients by escalating muscle
stiffness and curtailing their physical activity levels (Argilés et al.,
2016; Antar et al., 2023). The excessive accumulation of fibrous
tissue can also interfere with the communication between muscle
satellite cells and the surrounding cellular milieu, leading to a decline
in their myogenic capabilities (Murphy et al., 2011; Serrano et al.,
2011; Antar et al., 2023). Therefore, unveiling the mechanisms of
fibrosis in aged muscle is fundamental for skeletal muscle health
(Serrano et al., 2011; Liu et al., 2018).

Skeletal muscle fibroblasts and Fibro-Adipogenic Progenitors
(FAPs) are both important for muscle repair and maintenance but
have distinct roles(Molina et al., 2021; Chen et al., 2022; Chapman
et al., 2016). Skeletal muscle fibroblasts primarily produce and
remodel the extracellular matrix (ECM), supporting tissue
structure and wound healing(Chapman et al., 2016; DeLeon-
Pennell et al., 2020). In contrast, FAPs are specialized cells within
skeletal muscle that aid regeneration by differentiating into
adipocytes and fibroblasts in response to injury or
disease(Molina, Fabre, and Dumont, 2021). FAPs secrete factors
like IL-6 and WNT, which promote muscle repair and create a
supportive environment for muscle stem cells (MuSCs) (Madaro
et al., 2018; Riparini et al., 2022; Parker and Hamrick, 2021). Skeletal
muscle fibroblasts maintain ECM and provide structural
support(Gillies and Lieber, 2011), whereas FAPs have a dual role:
they aid regeneration by supporting MuSCs but can also contribute
to fibrosis or fat buildup in diseases like Duchenne Muscular
Dystrophy (DMD) (Chen et al., 2022; Parker and Hamrick,
2021). Additionally, FAPs have broader differentiation potential,
allowing them to become adipocytes or fibroblasts, influencing the
balance between repair and fibrosis(Judson et al., 2017; Molina et al.,
2021). Both cells contribute to muscle health and repair.

Regarding the various pathways involved in muscle fibrosis,
oxidative stress and inflammation are significant for muscle atrophy
and extracellular matrix (ECM) deposition, capable of activating

numerous signal pathways, including the ubiquitin-proteasome
system, autophagy-lysosome system, and mTOR (Nishikawa
et al., 2021; Gambini and Stromsnes, 2022; Antar et al., 2023).
The IGF (insulin-like growth factor) signaling pathway plays a
crucial role in skeletal muscle fibrosis and sarcopenia
(Clemmons, 2009; Ye et al., 2013; Frost and Lang, 2012; Forbes,
Blyth, and Wit, 2020). Among them, IGF-1 is a key factor in this
pathway (Hayashi et al., 2004). IGF-1 inhibits inflammation through
the Ras/PI3K/IKK/NF-κB pathway, reducing pro-inflammatory
cytokine production and promoting tissue repair 6. Chronic
inflammation often leads to tissue atrophy due to prolonged
cytokine exposure (e.g., TNF-α, IL-6), which disrupts cellular
homeostasis. By suppressing NF-κB activation, IGF-1 mitigates
inflammatory damage, indirectly preventing muscle or atrophy
caused by persistent inflammation (Zhang et al., 2024; Feng
et al., 2022; Stitt et al., 2004). Besides, IGF promotes muscle cell
growth and differentiation by binding to the IGF-1 receptor and
activating the downstream PI3K/Akt/mTOR signaling pathway,
thus combating muscle atrophy (Yoshida and Delafontaine,
2020). There may also be an interaction between IGF-1 and
TGF-β1, which together influence the process of skeletal muscle
fibrosis (Danielpour and Song, 2006; Kjaer et al., 2006).

Insulin-like growth factor binding proteins (IGFBPs) are a
group of proteins that bind to insulin-like growth factors (IGFs),
finely regulating their biological activity, distribution, and mode of
action (Kelley et al., 1996; Baxter, 2023). The IGFBP family includes
at least seven different proteins (IGFBP-1 to IGFBP-7), which share
similarities in structure and function but also possess some unique
characteristics and roles (Kelley et al., 1996; Hwa et al., 1999; Allard
and Duan, 2018). IGF binding protein 5 (IGFBP5), as a regulator of
IGF-1, can influence the biological activity of IGF-1 and,
consequently, the regenerative capacity of muscles (Hwa et al.,
1999; Beattie et al., 2006). The biological functions of
IGFBP5 remain a subject of debate in scientific research (Duan
and Allard, 2020;Waters et al., 2022). Certain investigations propose
that IGFBP5 could trigger senescence via the STAT3 pathway or
pathways associated with P53. In contrast, other studies observe an
increase in IGFBP5 levels in cells that have undergone senescence
due to radiation or kinase inhibitor treatment (Alessio et al., 2024).
Additionally, some reports associate reduced IGFBP5 expression
with senescence (Nojima et al., 2022). The varied and sometimes
conflicting biological functions ascribed to IGFBP5 might be due to
its participation in multiple signaling pathways (Duan and Allard,
2020). However, the role of IGFBP5 in sarcopenia remains to be
elucidated.

In the current study, a series of experiments were conducted
in vitro and in vivo to undermine the mechanisms of skeletal muscle
fibrosis under sarcopenic condition (Park et al., 2017; Lim and
Frontera, 2023; Nojima et al., 2022). Relying on sequencing and
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verifications, IGFBP5 was noticed to be significantly upregulated in
aged fibroblasts. Subsequently, we found that reducing the
expression of IGFBP5 partially alleviated fibrosis in sarcopenic
muscle by moderately potentiating the effects of IGF-1, providing
clue to the development of novel anti-fibrosis therapies in
sarcopenia.

Materials and methods

Cell culture and induction

Mouse skeletal muscle fibroblast cells (NOR-10) were purchased
from the Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Cells
were cultured in Dulbecco’s modified Eagle medium supplemented
with 10% fetal bovine serum and 1% penicillin/streptomycin. Cells
were maintained in a humidified incubator at 37°C and 5%
CO2 atmosphere. FAPs were isolated from skeletal muscle tissues
according to the previous study and cultured inDMEMsupplemented
with 10% FBS, 1% penicillin-streptomycin, and 1% L-glutamine
(Kang et al., 2024). For the induction of senescence from fibroblast
and FAPs, cells were incubated in a D-gal concentration of 20 mg/mL
for 3 days, while the negative control (NC) group was treated with an
equal amount of PBS.

siRNA structure and design and transfection

Small interfering RNA (siRNA) molecules were designed to
specifically target the mRNA of the gene, IGFBP5, to induce
RNA interference (RNAi) and achieve gene silencing.
The sequences of the siRNA were designed based on the
mRNA sequence of IGFBP5 (GenBank Accession No. NM_
010518). Cells were seeded in 24-well plates. When cells
reached 30%–50% confluence, siRNA was transfected using
Lipofectamine 2000. siRNA and Lipofectamine 2000 were
diluted in Opti-MEM I, mixed, and incubated for 20 min at
room temperature. The complex was added to the cells,
incubated at 37°C in 5% CO2, and after 4–6 h, replaced with
complete medium containing 10% FBS. Cells were harvested
48 h later for analysis.

Senescence-associated β-galactosidase(SA-
β-gal) staining

The protocol was consistent with the previous study (Shahini
et al., 2021), that n = 3 biological replicates were used. Digital camera
was used to capture images of the stained cells. ImageJ (Version
1.54 m) was used to count the number of blue-stained senescent cells
and the total number of cells in each image.

Transcriptome sequencing (RNA
sequencing) and bioinformatic analysis

Raw data was obtained with Feature Extraction software
10.7 and normalized (GSE277119). For fibroblasts induced by

D-gal and control group samples (n = 3 in each group),
sequencing libraries were generated using NEBNext®

Multiplex Small RNA Library Prep Set for Illumina® (NEB,
USA). Raw sequencing reads were processed using FastQC
(version 0.11.9) to assess the quality of the sequencing data.
Low-quality reads (Phred score <20) were trimmed using
Trimmomatic (version 0.39). High-quality reads were
retained for further analysis. Genes were considered
differentially expressed if they met the following criteria: an
adjusted p-value (FDR) < 0.05 and a log2 fold change (log2FC) ≥
1 or ≤ −1. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathway enrichment analysis were
performed as the protocol according to the previous study
(Sun et al., 2018).

Animals

Healthy male C57BL/6 mice, 10 in total, 6–8 weeks old, with
body weights ranging from 20 to 24 g, purchased from Cyagen
Biosciences. Mice was randomly divided into experimental and
control groups (n = 5), with the experimental group mice
receiving D-gal via subcutaneous injection at a dose of
200 mg/kg/d for 8 consecutive weeks. The control group is
injected with an equivalent amount of normal saline. The
SAMP8 (senescence-accelerated mouse-prone 8) model was
chosen for its accelerated aging phenotype, which mimics
age-related fibrogenic processes in skeletal muscle. SAMR1
(senescence-accelerated mouse-resistant 1) was used as a
control. Healthy male SAMP8, 10 in total, and SAMR1, 5 in
total, 24 weeks old, with body weights ranging from 42 to 45 g,
purchased from Hangzhou Ziyuan Experimental Anmial
Technology Co. Mice was randomly divided into
experimental and control groups (n = 5), with the
experimental group mice receiving siRNA dissolved in
normal saline via tail vein injection at a dose of 100 umol/ml
twice a week for 4 consecutive weeks. The control group and the
SAMR1 group are injected with an equivalent amount of normal
saline. The mice were housed separately, and had sufficient
space to meet the growth and behavioral needs of the animals,
provided with feed and distilled water. Bedding was kept clean
with good air circulation. 1 day after the last injection, mice were
placed sacrificed with carbon dioxide,and the CO2 flow was 30%
vessel volume per minute to ensure that the animal gradually
became consciousness and eventually died before reaching a
concentration that could cause pain. The lower limbs of the
mouse were carefully amputated, and the muscles
(gastrocnemius, tibialis anterior, quadriceps) were dissected
away from the bone and surrounding tissues. Department of
Shanghai Chedun Experimental Animal Ethics Committee
provided full approval for this research (AD2024092).

Western blot

Western blot (WB) was performed following the procedures in a
previous publication(n = 3) (Zhang et al., 2023), with primary
antibodies identified by the following catalog numbers:
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P16(10883-1-AP), P53(10442-1-AP), IGFBP5(55205-1-AP), COL-
1(14695-1-AP), α-SMA(14395-1-AP).

PCR

The PCR was performed according to the protocols established
in a previous study (Mollica, 2010).

HE, MASSON and immunofluorescence
staining

All staining protocols were adhered to as described in
previous studies(n = 3) (Wang et al., 2017; Van De Vlekkert
et al., 2020; Esper et al., 2023), with primary antibodies identified
by the following catalog numbers: IGFBP5(55205-1-AP), α-
SMA(14395-1-AP), IGF-1(28530-1-AP), TGF-β(26155-1-AP).
Fluorescence intensity was measured using a fluorescence
microscope and normalized to control.

Statistical analysis

All data are presented as mean ± standard deviation (SD).
GraphPad Prism 9.4.1 software (GraphPad, CA, USA) was used
for statistical analysis and image construction. For comparisons
between two groups, Student’s t-test and Paired Samples t-test was
used. For comparisons among multiple groups, one-way ANOVA
was employed, followed by post hoc Tukey’s test for pairwise
comparisons. All statistical tests were two-tailed, and p-values
less than 0.05 were considered statistically significant.

Results

D-gal-induced skeletal muscle fibrosis
characteristics

D-gal is a chemical that commonly induces cellular senescence
(Azman and Zakaria, 2019). It leads to mitochondrial damage and a
decline in energy metabolism, which are associated with aging

FIGURE 1
(A) SA-β-gal staining of NOR-10 (CONTROL vs. D-GAL) and the statistical analysis (B) Western blot of senescence markers (P16, P53) and the
statistical analysis (C) Western blot of fibrosis-related markers (α-SMA, COL-1) and the statistical analysis (compared to control group, *p < 0.05, **p <
0.01, ***p < 0.001).

Frontiers in Pharmacology frontiersin.org04

Shi et al. 10.3389/fphar.2025.1557703

128

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1557703


(Parameshwaran et al., 2010). The first, NOR-10 fibroblasts were
treated with D-gal, resulting in significant increases in the protein
levels of senescence markers p16 and p53, and SA-β-gal staining
confirmed cellular aging (Figures 1A, B). This confirms the
successful establishment of an aging model in mouse skeletal
muscle fibroblasts post D-gal induction. Western blot of fibrosis-
related markers (α-SMA, COL-1) were then detected (Figure 1C).
Not surprisingly, a significant elevation was observed after
D-gal induction.

According to the research methods in previous articles, D-gal is
also widely used to induce skeletal muscle aging (Tian et al., 2022).
After 8 weeks of D-gal injection, comparisons were made in terms of
body weight, muscle strength, and the weight of lower limb muscles
(gastrocnemius, tibialis anterior, quadriceps) and their percentage of
the body weight (Figure 2A). The results demonstrated that the
D-gal induced group had a significant decrease in muscle strength
and slight decline in the weight of individual lower limbmuscles. HE
and Masson showed a significant reduction in fiber cross-sectional

area with, on the other hand, a noticeable increase in ECM in the
D-gal induced group (Figures 2B, C).

Identifying IGFBP5 in D-gal-induced skeletal
muscle sequencing analysis

To explore the mechanisms underlying the fibrosis of skeletal
muscle during its aging process, we performed sequencing on
skeletal muscle fibroblasts that had been induced to aging.
Compared to the sequencing results of the control group, there
were significant differences in mRNA expression (Figures 3A, B).
Enrichment analysis was conducted using Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and
pathways related to skeletal muscle fibrosis were identified as being
of particular interest in cellular processes, regulation of biological
processes, and metabolism, such as transporter activity, translation
regulator activity, ECM-receptor interactions and cell growth and

FIGURE 2
(A) Bodyweight,muscle strength, and theweight of lower limb skeletal muscles (gastrocnemius, tibialis anterior, quadriceps) and their percentage of
the body weight of C57BL/6 mice(CONTROL vs. D-GAL) (B) The HE and Masson staining of limb skeletal muscle(CONTROL vs. D-GAL) (C) the statistical
analysis of, myofiber cross sectional area (CSA) and collagen volume fraction (CVF) (compared to control group, *p < 0.05, **p < 0.01, ***p < 0.001, **** p
< 0.0001).
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death (Figures 3C, D). Differential gene expression was selected by
data processing, including both upregulated and downregulated
genes (Supplementary Figures 1A–D). By further analyzing the
gene enrichment results from KEGG and GO, and conducting a
search and study of relevant literature and currently published
research articles, the IGFBP5 gene has been identified.
IGFBP5 was identified as a key candidate gene of differentially
expressed genes (DEGs) and the expression of it was significantly
upregulated compared to controls (log2 fold change > 2, p < 0.01).

IGFBP5 is highly expressed in the
senescence

The protein level in cells induced by D-gal of insulin-like growth
factor binding protein 5 (IGFBP5) has also exhibited a noticeable
elevation, suggesting its potential role in the fibrotic process
(Supplementary Figure 2). Additionally, we performed PCR
validation using FAPs cells. In FAPs induced by D-gal, the markers
of senescence, fibrosis, and adipogenesis were all increased, along with
an elevation in IGFBP5 (Supplementary Figure 3). This indicates that
within the skeletal muscle aging model, the skeletal muscle not only
shows characteristics of fibrosis but also an upregulation in the

expression of IGFBP5, aligning with the sequencing results.
Immunofluorescence staining in the D-gal-induced aging animal
model has revealed a significant increase in the expression of α-
SMA. Furthermore, IGFBP5 has shown a more pronounced and
widespread distribution in skeletal muscle compared to the control
group, indicating a possible association between IGFBP5 expression
and the aging process in skeletal muscle (Supplementary Figure 4).
These findings suggest that the D-gal-induced agingmodel is associated
with a notable increase in skeletal muscle fibrosis and a high expression
of IGFBP5, which may play a role in the fibrotic response to aging.

Knockout of IGFBP5 alleviates fibrosis in the
aging model

To investigate the specific mechanisms of action of IGFBP5 at the
cellular level, siRNA and plasmids were selected (Figures 4A, B). In
NOR-10 cells induced byD-gal, protein level analysis revealed that the
fibrosis level in fibroblasts decreased after the knockout of IGFBP5
(Figure 4C). Additionally, the senescence of cells with
IGFBP5 knockout was significantly improved (Figure 4D).
Moreover, SAMP8 mice were selected for the study. 24-week-old
mice was chosen for the experiment, administering siRNA via tail vein

FIGURE 3
(A) The heatmap of differential genes of the sequencing results (B) The volcano plot of differential genes of the sequencing results (C) The GO
enrichment of differential genes of the sequencing results (D) The KEGG enrichment of differential genes of the sequencing results.
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injection for 4 weeks to knock down the expression of IGFBP5 in
aging mice. At the end of the modeling, consistent with the previous
text, the mice’s body weight, muscle strength, and the weight of lower
limb muscles (gastrocnemius, tibialis anterior, quadriceps) and their
percentage related to mice weight were assessed (Figure 5A). The
results demonstrated that in the IGFBP5 knockdown group, there was
a moderate decrease in body weight, a significant improvement in
muscle strength, and a noticeable increase in the weight of the lower
limb muscles. The percentage was not as significantly improved, but
there was a general upward trend. Tissue section staining withHE and
Masson also showed that the degree of fibrosis in skeletal muscle was
improved in mice with IGFBP5 knockdown. This was manifested as a
significantly larger cross-sectional area of muscle fibers in the siRNA
group compared to aging mice, improved gaps between muscle
fibers, and relatively less connective tissue compared to aging mice,
although it did not reach the condition of normal adult mice
(Figures 5B, C).

IGFBP5 regulates skeletal muscle fibrosis
through IGF-1

Immunofluorescence staining of muscle tissue from aging mice and
mice with IGFBP5 knockout revealed that the expression of the fibrosis

marker α-SMAwas significantly reduced inmice with IGFBP5 knockout
(Figure 6). Notably, IGFBP5 expression was also substantially
decreased (Figure 6). This indicates that IGFBP5 can indeed alleviate
skeletal muscle fibrosis. IGF-1 can affect TGF-β1 activity, a cytokine
linked to fibrosis. It also regulates ECM buildup, key in muscle fibrosis.
IGF-1 is the main route for IGFBP5’s effects, with IGFBP5 impacting
processes both with andwithout IGF-1. The signaling pathway involves a
complex network of genes. This study focuses specifically on investigating
whether IGFBP5 can regulate skeletal muscle fibrosis in an IGF-1-
dependent manner, without delving into the deeper mechanistic
aspects of its action. To verify this, immunofluorescence staining of
skeletal muscle tissue was performed again, and it was found that in
SAMP8 mice with IGFBP5 knockout, the expression of IGF-1 was
increased compared to aging SAMP8 mice (Supplementary Figure 5).
TGF- β staining was also performed, and TGF- β expression was reduced
in the IGFBP5 knockout mice (Supplementary Figure 5). This suggests
that IGFBP5 may modulate the process of skeletal muscle fibrosis by
mediating interactions with both IGF-1 and TGF-β pathways.

Discussion

The interplay between muscle atrophy and fibrosis is a central
aspect of sarcopenia (Boccardi, 2024). While muscle atrophy

FIGURE 4
(A) The PCR of IGFGP5 (CONTROL vs. D-GAL vs. CONTROL + siRNA vs. D-GAL + siRNA); (B) The PCR of IGFBP5 (CONTROL vs. PLASMID) (C)
Western blot of α-SMA and the statistical analysis (D) SA-β-gal staining of NOR-10 and the statistical analysis (CONTROL vs. D-GAL + siRNA vs. D-GAL)
(compared to control group, *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001).
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involves the loss of muscle fibers, fibrosis refers to the excessive
deposition of extracellular matrix (ECM) proteins, particularly
collagen, which leads to muscle stiffness and a reduction in
physical activity levels (Bonaldo and Sandri, 2013; Sakuma et al.,
2014; Mahdy, 2019). This combination not only impairs mobility
but also disrupts the communication between muscle satellite cells
and their environment, thereby compromising the muscle’s
regenerative capacity (Blau et al., 2015; Hong et al., 2022).

Skeletal muscle fibroblasts are essential cells within skeletal
muscle that play a multifaceted role in maintaining muscle
structure, function, and homeostasis (Chapman et al., 2016).
These cells are primarily responsible for the synthesis and
secretion of extracellular matrix (ECM) components, such as
collagen, elastin, and glycosaminoglycans, which provide
mechanical support and structural integrity to muscle fibers
(Plikus et al., 2021; Chapman et al., 2016). In addition to their

FIGURE 5
(A) Bodyweight,muscle strength, and theweight of lower limb skeletal muscles (gastrocnemius, tibialis anterior, quadriceps) and their percentage of
the body weight of mice(SAMR1 vs. SAMP8 vs. SAMP8+siRNA) (B) The HE and Masson staining of limb skeletal muscle(SAMR1 vs. SAMP8 vs.
SAMP8+siRNA) (C) the statistical analysis of myofiber CSA and CVF (compared to control group, *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001).
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structural role, skeletal muscle fibroblasts are crucial for tissue repair
and regeneration following injury (Tidball, 2011; Younesi et al.,
2024). Upon activation, these fibroblasts can differentiate into
myofibroblasts, which express contractile proteins like α-smooth
muscle actin (α-SMA) and contribute to the formation of scar tissue
(Younesi et al., 2024; Hall et al., 2023; Gibb et al., 2020). However,
excessive or prolonged activation of myofibroblasts can lead to
pathological fibrosis (Schuster et al., 2023; Younesi et al., 2024).
Moreover, fibroblasts play a significant role in regulating
inflammation and immune responses (Davidson et al., 2021;
Chapman et al., 2016). Additionally, skeletal muscle fibroblasts
interact closely with muscle cells, influencing their growth,
differentiation, and contractile function through the secretion of
growth factors like IGF-1 and by providing mechanical signals
(Chapman et al., 2016; Murphy et al., 2011; Abdel-Raouf et al.,
2021). Their functions extend beyond structural support to include
critical roles in immune regulation and cellular communication,
highlighting their importance in both physiological and pathological
contexts (Chapman et al., 2016).

Fibro-adipogenic progenitors (FAPs) are mesenchymal stromal
cells residing in skeletal muscle interstitium, playing dual roles in
muscle homeostasis, regeneration, and pathology (Joe et al., 2010;
Uezumi et al., 2010). Following muscle injury, FAPs rapidly activate,

proliferate, and transiently expand to orchestrate regeneration,
which promote muscle satellite cell (MuSCs) proliferation and
differentiation into myofibers (Heredia et al., 2013). This post-
injury pro-regenerative response was tightly regulated by
inflammatory signals such as TNF-α, while anti-inflammatory
cytokines such as IL-4 and IL-13 later induce FAPs apoptosis,
preventing excessive extracellular matrix (ECM) deposition
(Lemos et al., 2015). Dysregulation of this balance leads to
pathological outcomes, where FAPs underwent fibro-adipogenic
differentiation, replacing functional muscle tissue and impairing
contractility (Natarajan et al., 2010).

Notably, FAPs exhibit microenvironment-dependent plasticity.
While their crosstalk with MuSCs is essential for repair, aberrant
signaling such as TGF-β overactivation shifts FAPs toward a
profibrotic state (Contreras et al., 2019). Recent studies highlight
their dual nature—indispensable for regeneration yet potential
drivers of degenerative diseases. Therefore, FAPs are pivotal
regulators of skeletal muscle dynamics, balancing regenerative
support with risks of pathological tissue remodeling, making
them critical targets for muscle disease therapies. However, their
complex mechanisms of action and interactions with numerous
other cellular pathways make it challenging to elucidate a singular
mechanism. In this study, we focus on skeletal muscle fibroblasts as

FIGURE 6
(A)The immunofluorescence staining of skeletal muscle (α − SMA, IGFBP5) (SAMR1 vs. SAMP8 vs. SAMP8+siRNA) (B) Statistical analysis of the positive
expression (compared to control group, *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001).
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the primary cell type for investigation, although FAPs are also
employed for some key validations.

D-gal is a widely used chemical to induce cellular senescence
(Azman and Zakaria, 2019). Cells undergoing senescence induced
by D-gal exhibit mitochondrial structural damage and a decline in
energy metabolism, which are highly related to cellular aging studies
have confirmed that D-gal can induce senescence, fibrosis, and
redox imbalance in skeletal muscle fibroblasts (Wu et al., 2022;
Ma et al., 2024). Our results confirm that D-gal effectively induces
cellular senescence and skeletal muscle fibrosis in both cellular and
animal models. The increase in senescence markers and fibrosis-
related proteins, along with the observed decline in muscle strength
and mass, are consistent with previous studies that highlight the role
of D-gal in modeling aging-associated pathologies. The observed
lethargy and reduction in muscle fiber cross-sectional area further
validate the model’s relevance to sarcopenia research.

The sequencing analysis conducted in our study has unveiled
substantial alterations in mRNA expression, pinpointing IGFBP5 as
a potential regulator of skeletalmuscle fibrosis. This discovery associates
with existing literature, which posits that IGFBP5 plays a complex and
multifaceted role in cellular processes, particularly in the realms of cell
growth and metabolism regulation. The overexpression of IGFBP5 in
senescent skeletal muscle fibroblasts, coupled with its association with
elevated markers of fibrosis, highlights its potential as a therapeutic
target for interventions aimed at combating fibrosis. IGFBP5 is highly
conserved in evolution compared to other IGFBP proteins and
possesses a variety of biological activities (Duan and Allard, 2020).
Existing research has demonstrated that IGFBP5 can play a role in the
regulation of cell growth and metabolism by mediating the
IGF1 signaling pathway (Ding et al., 2016). However, in addition to
its function through the IGF signaling pathway, IGFBP5 also has IGF-
independent activity, which adds to the complexity of its regulation of
cellular behavior (Duan and Allard, 2020; Dittmer, 2022). We further
investigate whether IGFBP5 can affect the fibrotic phenotype of skeletal
muscle in an IGF-1-dependent manner.

The intricate role of IGFBP5 extends beyond its interaction with
insulin-like growth factors (IGFs) (Beattie et al., 2006). It is known to
modulate IGF bioavailability by binding to IGFs, thereby influencing
the activity of the IGF signaling pathway (Clemmons, 2016). This
pathway is crucial for various physiological processes, including
muscle growth and repair. Based on the provided search results,
there is no direct evidence discussing the regulation of
IGFBP5 expression in fibroblasts and FAPs. However,
IGFBP5 were found to be associated with fibrotic pathways in
other tissue, suggesting the possibility that the expression of
IGFBP5 could also be regulated under muscle pathologies
(Contreras et al., 2021; Sorokina et al., 2024; Babaeijandaghi
et al., 2023; Li et al., 2025). This study aims to investigate the
role of IGFBP5 in the fibrosis of aging skeletal muscle. In the in vivo
experiments conducted in this paper, it was found that in
SAMP8 mice with knockdown of IGFBP5, there was a noticeable
improvement in muscle strength, and both the weight and cross-
sectional area of the skeletal muscles were improved to some extent.
This indicates that the knockdown of IGFBP5 can partially
ameliorate the quality of aging skeletal muscle. Staining of the
skeletal muscles also showed a reduction in the degree of fibrosis,
and the expression of IGF-1 increased to some extent after the
knockdown of IGFBP5. This suggests that IGFBP5 can act through

the regulation of IGF-1 in the fibrosis of aging skeletal muscle. In
previous research related to skeletal muscle, there is literature
supporting that IGFBP5 can function as a growth factor
regulating skeletal muscle growth and also plays a role in disuse
atrophy of skeletal muscle.

Mice and humans share a high degree of similarity in genetic
mechanisms and physiological characteristics, which is why mouse
models are widely used in medical research on human aging (Breschi
et al., 2017). One of the most commonly used strains is the C57BL/6J
mouse; almost all biological markers can detect aging changes in mice
aged 18–24 months, making it a frequently used model for natural
aging (Wu et al., 2024). The D-gal-induced aging model involves the
continuous injection ofD-gal into animals over a certain period, leading
to an increase in galactose concentration within cells (Wang et al.,
2023). Under the catalysis of aldose reductase, galactose is reduced to
galactitol, which cannot be further metabolized by cells and
accumulates, affecting osmotic pressure, causing cell swelling and
dysfunction, ultimately leading to aging (Azman and Zakaria, 2019;
Azman et al., 2021). Initially used to establish cataract models, this
model has been developed through continuous research, and its various
biochemical and physiological indicators are similar to natural aging,
making it widely used today (Azman and Zakaria, 2019). The
senescence-accelerated mouse (SAM) is a kind of premature aging
model mouse, including two strains: SAMP (senescence accelerated-
prone mouse) and SAMR (senescence accelerated resistant mouse)
(Chiba et al., 2009; Takeda, 2009). SAMP exhibits rapid aging
characteristics after a normal growth period (Takeda, 2009).
SAMP8, a sub-strain of SAMP, is currently recognized as an ideal
model for natural aging and dementia (Butterfield and Poon, 2005; Liu
et al., 2020). In this article, the D-gal aging model and the
SAMP8 premature aging mouse model were selected for their short
modeling time and simple operation. Many pathways and targets
related to skeletal muscle have been identified in these two models,
such as the Wnt/β-catenin signaling pathway and its downstream
cascade (Rudolf et al., 2016), the AMPK/TGF-β/SMAD axis (Zhong
et al., 2024), and important skeletal muscle-related pathways, as well as
targets related to skeletal muscle fibrosis and atrophy, such as
CILP2 and TRIM16 (Deng et al., 2024; Guo et al., 2024). This study
found that the IGFBP5 target may regulate the progression of fibrosis
and sarcopenia in aging skeletal muscle through the IGF-1 pathway.

In this study, we also observed a seesaw effect between IGF-1
and TGF-β. The role of TGF-β in skeletal muscle fibrosis is
undoubted. In skeletal muscle fibrotic pathologies, TGF-β1 is
highly expressed and plays a key role in the development of
skeletal muscle fibrosis (Ismaeel et al., 2019; Budi et al., 2021). It
can promote the expression of extracellular matrix (ECM)
components such as collagen and fibronectin and inhibit ECM
degradation, playing a significant role in cell morphogenesis,
proliferation, and differentiation processes (Roberts et al., 1992;
Akhurst, 2004; Massagué and Sheppard, 2023). The activation of the
TGF-β signaling pathway leads to pathological fibrosis (Meng et al.,
2016). IGF-1 also plays a very important positive role in the growth
and development of skeletal muscle, can delay various pathological
muscle atrophies, and maintain and promote the growth and
survival of the nervous system (Yoshida and Delafontaine, 2020;
Ahmad et al., 2020). The decline in skeletal muscle mass and
strength (sarcopenia) is also related to the reduced activity of the
IGF-1/Akt/mTOR signaling pathway (Feng, 2010; López-Caamal
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et al., 2012). Both TGF-β and IGF-1 are important factors in skeletal
muscle, and our research suggests that IGFBP5 may affect skeletal
muscle aging and fibrosis by regulating the dynamic balance
between TGF-β and IGF-1 through the expression of
regulatory factors.

While our study focuses on the role of IGFBP5 in skeletal muscle
fibrosis and sarcopenia, its involvement in fibrosis extends to multiple
tissues and disease states, highlighting its potential as a therapeutic target.
IGFBP5 is upregulated in idiopathic pulmonary fibrosis (IPF) and
contributes to fibroblast activation and ECM remodeling. Elevated
IGFBP5 levels in bronchoalveolar lavage fluid correlate with disease
severity, suggesting its potential as a biomarker (Sureshbabu et al., 2011).
In heart failure and myocardial infarction, IGFBP5 plays a dual role in
fibrosis and repair, and also supports angiogenesis and cardiomyocyte
survival under stress, highlighting its context-dependent roles (Zhu et al.,
2024). IGFBP5 promotes fibroblast-to-myofibroblast transition and
collagen synthesis, and interacts with ECM components (e.g., collagen
I, III) to stabilize fibrotic lesions (Sureshbabu et al., 2009). Moreover,
IGFBP5 has been shown to act independently of IGF-1 in other cell and
disease models, indicating a complexity that warrants additional research
(Duan and Allard, 2020; Dittmer, 2022). The interplay between TGF-β
and IGF1 is not confined to a single pathway and requires further
exploration. By elucidating the broader role of IGFBP5 in fibrotic
disorders, our study not only advances understanding of its
mechanisms in sarcopenia but also highlights its relevance across
multiple diseases. This positions IGFBP5 as a promising target for
anti-fibrotic therapies, with potential applications in pulmonary,
cardiac, renal, hepatic, and dermal fibrosis.

In the present study, several limitations should be acknowledged.
Firstly, naturally aged mice were not utilized, which may limit the
direct relevance of the findings to natural aging processes. The
relationships among SAMP8, SMAR1, and SAMP8 with siRNA
require further investigation to elucidate their interactions and
potential synergistic effects. Furthermore, in in vivo models, the
injection of siRNA may potentially impact other cells within the
skeletal muscle, not just limited to NOR-10. This necessitates further
validation in subsequent studies. Additionally, conditional knockout
mice were not employed, which could have provided more precise
insights into gene-specific functions and their roles in the studied
processes. Future research should address these limitations to enhance
the robustness and applicability of the findings, and explore tissue-
specific IGFBP5 regulation and its interplay with other fibrogenic
factors to develop precision therapies.

These findings offer new insights into understanding age-
related skeletal muscle fibrosis and provide potential molecular
targets for the development of therapeutic strategies aimed at
skeletal muscle fibrosis. By modulating the expression or activity
of IGFBP5, it may be possible to slow down or reverse skeletal
muscle fibrosis, thereby improving muscle function and quality of
life in the elderly.
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SUPPLEMENTARY FIGURE S1
Images of related-IGFBP5.

SUPPLEMENTARY FIGURE S2
Western blot of IGFBP5 and the statistical analysis (compared to control
group, *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001).

SUPPLEMENTARY FIGURE S3
The PCR of P16,P21,PPARG,COL-1 and IGFBP5 (compared to control group,
*p < 0.05, **p < 0.01, ***p < 0.001).
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SUPPLEMENTARY FIGURE S4
The immunofluorescence staining of skeletal muscle (α-SMA, IGFBP5)
(CONTROL vs. D-GAL).

SUPPLEMENTARY FIGURE S5
The immunofluorescence staining of skeletal muscle (IGF-1, TGF-β)
(SAMP8 vs. SAMP8+siRNA).

References

Abdel-Raouf, K. M. A., Rezgui, R., Stefanini, C., Teo, J. C. M., and Christoforou, N.
(2021). Transdifferentiation of human fibroblasts into skeletal muscle cells:
optimization and assembly into engineered tissue constructs through biological
ligands. Biol. (Basel) 10, 539. doi:10.3390/biology10060539

Ahmad, S. S., Ahmad, K., Lee, E. J., Lee, Y. H., and Choi, I. (2020). ’Implications of
insulin-like growth factor-1 in skeletal muscle and various diseases. Cells 9, 1773. doi:10.
3390/cells9081773

Akhurst, R. J. (2004). TGF beta signaling in health and disease. Nat. Genet. 36,
790–792. doi:10.1038/ng0804-790

Alessio, N., Aprile, D., Peluso, G., Mazzone, V., Patrone, D., Di Bernardo, G., et al.
(2024). IGFBP5 is released by senescent cells and is internalized by healthy cells,
promoting their senescence through interaction with retinoic receptors. Cell Commun.
Signal 22, 122. doi:10.1186/s12964-024-01469-1

Allard, J. B., and Duan, C. (2018). IGF-binding proteins: why do they exist and why
are there so many? Front. Endocrinol. (Lausanne) 9, 117. doi:10.3389/fendo.2018.00117

Antar, S. A., Ashour, N. A., Marawan, M. E., and Al-Karmalawy, A. A. (2023).
’Fibrosis: types, effects, markers, mechanisms for disease progression, and its relation
with oxidative stress, immunity, and inflammation. Int. J. Mol. Sci. 24, 4004. doi:10.
3390/ijms24044004

Argilés, J. M., Campos, N., Lopez-Pedrosa, J. M., Rueda, R., and Rodriguez-Mañas, L.
(2016). Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health
and disease. J. Am. Med. Dir. Assoc. 17, 789–796. doi:10.1016/j.jamda.2016.04.019

Azman, K. F., Safdar, A., and Zakaria, R. (2021). D-galactose-induced liver aging
model: its underlying mechanisms and potential therapeutic interventions.
Exp. Gerontol. 150, 111372. doi:10.1016/j.exger.2021.111372

Azman, K. F., and Zakaria, R. (2019). D-Galactose-induced accelerated aging model:
an overview. Biogerontology 20, 763–782. doi:10.1007/s10522-019-09837-y

Babaeijandaghi, F., Kajabadi, N., Long, R., Tung, L.W., Cheung, C.W., Ritso, M., et al.
(2023). DPPIV(+) fibro-adipogenic progenitors form the niche of adult skeletal muscle
self-renewing resident macrophages. Nat. Commun. 14, 8273. doi:10.1038/s41467-023-
43579-3

Baxter, R. C. (2023). ’Signaling pathways of the insulin-like growth factor binding
proteins. Endocr. Rev. 44, 753–778. doi:10.1210/endrev/bnad008

Beattie, J., Allan, G. J., Lochrie, J. D., and Flint, D. J. (2006). ’Insulin-like growth
factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem. J. 395,
1–19. doi:10.1042/BJ20060086

Blau, H. M., Cosgrove, B. D., and Ho, A. T. V. (2015). The central role of muscle
stem cells in regenerative failure with aging. Nat. Med. 21, 854–862. doi:10.1038/nm.
3918

Boccardi, V. (2024). Sarcopenia: a dive into metabolism to promote a multimodal,
preventive, and regenerative approach. Mech. Ageing Dev. 219, 111941. doi:10.1016/j.
mad.2024.111941

Bonaldo, P., and Sandri, M. (2013). Cellular and molecular mechanisms of muscle
atrophy. Dis. Model Mech. 6, 25–39. doi:10.1242/dmm.010389

Breschi, A., Gingeras, T. R., and Guigó, R. (2017). ’Comparative transcriptomics in
human and mouse. Nat. Rev. Genet. 18, 425–440. doi:10.1038/nrg.2017.19

Budi, E. H., Schaub, J. R., Decaris, M., Turner, S., and Derynck, R. (2021). TGF-β as a
driver of fibrosis: physiological roles and therapeutic opportunities. J. Pathol. 254,
358–373. doi:10.1002/path.5680

Butterfield, D. A., and Poon, H. F. (2005). The senescence-accelerated prone mouse
(SAMP8): a model of age-related cognitive decline with relevance to alterations of the
gene expression and protein abnormalities in Alzheimer’s disease. Exp. Gerontol. 40,
774–783. doi:10.1016/j.exger.2005.05.007

Chapman, M. A., Meza, R., and Lieber, R. L. (2016). ’Skeletal muscle fibroblasts in
health and disease. Differentiation 92, 108–115. doi:10.1016/j.diff.2016.05.007

Chen,W., You,W., Valencak, T. G., and Shan, T. (2022). Bidirectional roles of skeletal
muscle fibro-adipogenic progenitors in homeostasis and disease. Ageing Res. Rev. 80,
101682. doi:10.1016/j.arr.2022.101682

Chiba, Y., Shimada, A., Kumagai, N., Yoshikawa, K., Ishii, S., Furukawa, A., et al.
(2009). The senescence-accelerated mouse (SAM): a higher oxidative stress and age-
dependent degenerative diseases model. Neurochem. Res. 34, 679–687. doi:10.1007/
s11064-008-9812-8

Clemmons, D. R. (2009). ’Role of IGF-I in skeletal muscle mass maintenance. Trends
Endocrinol. Metab. 20, 349–356. doi:10.1016/j.tem.2009.04.002

Clemmons, D. R. (2016). ’Role of IGF binding proteins in regulating metabolism.
Trends Endocrinol. and Metabolism 27, 375–391. doi:10.1016/j.tem.2016.03.019

Contreras, O., Cruz-Soca, M., Theret, M., Soliman, H., Tung, L. W., Groppa, E., et al.
(2019). Cross-talk between TGF-β and PDGFRα signaling pathways regulates the fate of
stromal fibro-adipogenic progenitors. J. Cell Sci. 132, jcs232157. doi:10.1242/jcs.232157

Contreras, O., Rossi, F. M. V., and Theret, M. (2021). Origins, potency, and
heterogeneity of skeletal muscle fibro-adipogenic progenitors-time for new
definitions. Skelet. Muscle 11, 16. doi:10.1186/s13395-021-00265-6

Danielpour, D., and Song, K. (2006). Cross-talk between IGF-I and TGF-beta
signaling pathways. Cytokine Growth Factor Rev. 17, 59–74. doi:10.1016/j.cytogfr.
2005.09.007

Davidson, S., Coles, M., Thomas, T., Kollias, G., Ludewig, B., Turley, S., et al. (2021).
Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev.
Immunol. 21, 704–717. doi:10.1038/s41577-021-00540-z

DeLeon-Pennell, K. Y., Barker, T. H., and Lindsey, M. L. (2020). Fibroblasts: the
arbiters of extracellular matrix remodeling. Matrix Biol. 91-92, 1–7. doi:10.1016/j.
matbio.2020.05.006

Deng, Z., Song, C., Chen, L., Zhang, R., Yang, L., Zhang, P., et al. (2024). ’Inhibition of
CILP2 improves glucose metabolism and mitochondrial dysfunction in sarcopenia via
the Wnt signalling pathway. J. Cachexia Sarcopenia Muscle 15, 2544–2558. doi:10.1002/
jcsm.13597

Di Iorio, A., Abate, M., Di Renzo, D., Russolillo, A., Battaglini, C., Ripari, P., et al.
(2006). ’Sarcopenia: age-related skeletal muscle changes from determinants to physical
disability. Int. J. Immunopathol. Pharmacol. 19, 703–719. doi:10.1177/
039463200601900401

Ding, M., Bruick, R. K., and Yu, Y. (2016). Secreted IGFBP5 mediates mTORC1-
dependent feedback inhibition of IGF-1 signalling. Nat. Cell Biol. 18, 319–327. doi:10.
1038/ncb3311

Dittmer, J. (2022). Biological effects and regulation of IGFBP5 in breast cancer. Front.
Endocrinol. (Lausanne) 13, 983793. doi:10.3389/fendo.2022.983793

Duan, C., and Allard, J. B. (2020). Insulin-Like growth factor binding protein-5 in
physiology and disease. Front. Endocrinol. (Lausanne) 11, 100. doi:10.3389/fendo.2020.
00100

Esper, M. E., Kodippili, K., and Rudnicki, M. A. (2023). Immunofluorescence labeling
of skeletal muscle in development, regeneration, and disease. Methods Mol. Biol. 2566,
113–132. doi:10.1007/978-1-0716-2675-7_9

Feng, L., Li, B., Xi, Y., Cai, M., and Tian, Z. (2022). Aerobic exercise and resistance
exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in
mice with myocardial infarction. Am. J. Physiol. Cell Physiol. 322, C164–C176. doi:10.
1152/ajpcell.00344.2021

Feng, Z. (2010). p53 regulation of the IGF-1/AKT/mTOR pathways and the
endosomal compartment. Cold Spring Harb. Perspect. Biol. 2, a001057. doi:10.1101/
cshperspect.a001057

Forbes, B. E., Blyth, A. J., and Wit, J. M. (2020). Disorders of IGFs and IGF-1R
signaling pathways. Mol. Cell Endocrinol. 518, 111035. doi:10.1016/j.mce.2020.111035

Frost, R. A., and Lang, C. H. (2012). Multifaceted role of insulin-like growth factors
and mammalian target of rapamycin in skeletal muscle. Endocrinol. Metab. Clin. North
Am. 41, 297–322. doi:10.1016/j.ecl.2012.04.012

Gambini, J., and Stromsnes, K. (2022). Oxidative stress and inflammation: from
mechanisms to therapeutic approaches. Biomedicines 10, 753. doi:10.3390/
biomedicines10040753

Gibb, A. A., Lazaropoulos, M. P., and Elrod, J. W. (2020). Myofibroblasts and fibrosis:
mitochondrial and metabolic control of cellular differentiation. Circulation Res. 127,
427–447. doi:10.1161/CIRCRESAHA.120.316958

Gillies, A. R., and Lieber, R. L. (2011). Structure and function of the skeletal muscle
extracellular matrix. Muscle and Nerve 44, 318–331. doi:10.1002/mus.22094

Guo, A., Huang, K., Lu, Q., Tao, B., Li, K., and Jiang, D. (2024). TRIM16 facilitates
SIRT-1-dependent regulation of antioxidant response to alleviate age-related
sarcopenia. J. Cachexia Sarcopenia Muscle 15, 2056–2070. doi:10.1002/jcsm.13553

Hall, C., Law, J. P., Reyat, J. S., Cumberland, M. J., Hang, S., Vo, N. T. N., et al. (2023).
Chronic activation of human cardiac fibroblasts in vitro attenuates the reversibility of
the myofibroblast phenotype. Sci. Rep. 13, 12137. doi:10.1038/s41598-023-39369-y

Hayashi, S., Aso, H., Watanabe, K., Nara, H., Rose, M. T., Ohwada, S., et al. (2004).
Sequence of IGF-I, IGF-II, and HGF expression in regenerating skeletal muscle.
Histochem Cell Biol. 122, 427–434. doi:10.1007/s00418-004-0704-y

Heredia, J. E., Mukundan, L., Chen, F. M., Mueller, A. A., Deo, R. C., Locksley, R. M.,
et al. (2013). Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate
muscle regeneration. Cell 153, 376–388. doi:10.1016/j.cell.2013.02.053

Frontiers in Pharmacology frontiersin.org12

Shi et al. 10.3389/fphar.2025.1557703

136

https://doi.org/10.3390/biology10060539
https://doi.org/10.3390/cells9081773
https://doi.org/10.3390/cells9081773
https://doi.org/10.1038/ng0804-790
https://doi.org/10.1186/s12964-024-01469-1
https://doi.org/10.3389/fendo.2018.00117
https://doi.org/10.3390/ijms24044004
https://doi.org/10.3390/ijms24044004
https://doi.org/10.1016/j.jamda.2016.04.019
https://doi.org/10.1016/j.exger.2021.111372
https://doi.org/10.1007/s10522-019-09837-y
https://doi.org/10.1038/s41467-023-43579-3
https://doi.org/10.1038/s41467-023-43579-3
https://doi.org/10.1210/endrev/bnad008
https://doi.org/10.1042/BJ20060086
https://doi.org/10.1038/nm.3918
https://doi.org/10.1038/nm.3918
https://doi.org/10.1016/j.mad.2024.111941
https://doi.org/10.1016/j.mad.2024.111941
https://doi.org/10.1242/dmm.010389
https://doi.org/10.1038/nrg.2017.19
https://doi.org/10.1002/path.5680
https://doi.org/10.1016/j.exger.2005.05.007
https://doi.org/10.1016/j.diff.2016.05.007
https://doi.org/10.1016/j.arr.2022.101682
https://doi.org/10.1007/s11064-008-9812-8
https://doi.org/10.1007/s11064-008-9812-8
https://doi.org/10.1016/j.tem.2009.04.002
https://doi.org/10.1016/j.tem.2016.03.019
https://doi.org/10.1242/jcs.232157
https://doi.org/10.1186/s13395-021-00265-6
https://doi.org/10.1016/j.cytogfr.2005.09.007
https://doi.org/10.1016/j.cytogfr.2005.09.007
https://doi.org/10.1038/s41577-021-00540-z
https://doi.org/10.1016/j.matbio.2020.05.006
https://doi.org/10.1016/j.matbio.2020.05.006
https://doi.org/10.1002/jcsm.13597
https://doi.org/10.1002/jcsm.13597
https://doi.org/10.1177/039463200601900401
https://doi.org/10.1177/039463200601900401
https://doi.org/10.1038/ncb3311
https://doi.org/10.1038/ncb3311
https://doi.org/10.3389/fendo.2022.983793
https://doi.org/10.3389/fendo.2020.00100
https://doi.org/10.3389/fendo.2020.00100
https://doi.org/10.1007/978-1-0716-2675-7_9
https://doi.org/10.1152/ajpcell.00344.2021
https://doi.org/10.1152/ajpcell.00344.2021
https://doi.org/10.1101/cshperspect.a001057
https://doi.org/10.1101/cshperspect.a001057
https://doi.org/10.1016/j.mce.2020.111035
https://doi.org/10.1016/j.ecl.2012.04.012
https://doi.org/10.3390/biomedicines10040753
https://doi.org/10.3390/biomedicines10040753
https://doi.org/10.1161/CIRCRESAHA.120.316958
https://doi.org/10.1002/mus.22094
https://doi.org/10.1002/jcsm.13553
https://doi.org/10.1038/s41598-023-39369-y
https://doi.org/10.1007/s00418-004-0704-y
https://doi.org/10.1016/j.cell.2013.02.053
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1557703


Hong, X., Campanario, S., Ramírez-Pardo, I., Grima-Terrén, M., Isern, J., andMuñoz-
Cánoves, P. (2022). Stem cell aging in the skeletal muscle: the importance of
communication. Ageing Res. Rev. 73, 101528. doi:10.1016/j.arr.2021.101528

Hwa, V., Oh, Y., and Rosenfeld, R. G. (1999). ’The insulin-like growth factor-binding
protein (IGFBP) superfamily. Endocr. Rev. 20, 761–787. doi:10.1210/edrv.20.6.0382

Ismaeel, A., Kim, J. S., Kirk, J. S., Smith, R. S., Bohannon, W. T., and Koutakis, P.
(2019). Role of transforming growth factor-β in skeletal muscle fibrosis: a review. Int.
J. Mol. Sci. 20, 2446. doi:10.3390/ijms20102446

Joe, A. W., Yi, L., Natarajan, A., Le Grand, F., So, L., Wang, J., et al. (2010). Muscle
injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat.
cell Biol. 12, 153–163. doi:10.1038/ncb2015

Judson, R. N., Low, M., Eisner, C., and Rossi, F. M. (2017). Isolation, culture, and
differentiation of fibro/adipogenic progenitors (FAPs) from skeletal muscle. Methods
Mol. Biol. 1668, 93–103. doi:10.1007/978-1-4939-7283-8_7

Kang, X., Qian, J., Shi, Y. X., Bian, X. T., Zhang, L. D., Li, G. M., et al. (2024). Exercise-
induced Musclin determines the fate of fibro-adipogenic progenitors to control muscle
homeostasis. Cell Stem Cell 31, 212–226.e7. doi:10.1016/j.stem.2023.12.011

Kelley, K. M., Oh, Y., Gargosky, S. E., Gucev, Z., Matsumoto, T., Hwa, V., et al. (1996).
Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics.
Int. J. Biochem. Cell Biol. 28, 619–637. doi:10.1016/1357-2725(96)00005-2

Kirkendall, D. T., and Garrett, W. E., Jr. (1998). The effects of aging and training on
skeletal muscle. Am. J. Sports Med. 26, 598–602. doi:10.1177/03635465980260042401

Kjaer, M., Magnusson, P., Krogsgaard, M., Boysen Møller, J., Olesen, J., Heinemeier,
K., et al. (2006). Extracellular matrix adaptation of tendon and skeletal muscle to
exercise. J. Anat. 208, 445–450. doi:10.1111/j.1469-7580.2006.00549.x

Lemos, D. R., Babaeijandaghi, F., Low, M., Chang, C. K., Rossi, F. M. V., Fiore, D.,
et al. (2015). Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting
TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat. Med. 21, 786–794.
doi:10.1038/nm.3869

Li, Y., Li, C., Sun, Q., Liu, X., Chen, F., Cheung, Y., et al. (2025). Skeletal muscle stem
cells modulate niche function in Duchenne muscular dystrophy mouse through YY1-
CCL5 axis. Nat. Commun. 16, 1324. doi:10.1038/s41467-025-56474-w

Lim, J.-Y., and Frontera, W. R. (2023). Skeletal muscle aging and sarcopenia:
perspectives from mechanical studies of single permeabilized muscle fibers.
J. Biomechanics 152, 111559. doi:10.1016/j.jbiomech.2023.111559

Liu, B., Liu, J., and Shi, J. S. (2020). SAMP8 mice as a model of age-related cognition
decline with underlying mechanisms in alzheimer’s disease. J. Alzheimers Dis. 75,
385–395. doi:10.3233/JAD-200063

Liu, J., Saul, D., Böker, K. O., Ernst, J., Lehman, W., and Schilling, A. F. (2018).
Current methods for skeletal muscle tissue repair and regeneration. Biomed. Res. Int.
2018, 1984879. doi:10.1155/2018/1984879

López-Caamal, F., García, M. R., Middleton, R. H., and Huber, H. J. (2012). Positive
feedback in the Akt/mTOR pathway and its implications for growth signal progression
in skeletal muscle cells: an analytical study. J. Theor. Biol. 301, 15–27. doi:10.1016/j.jtbi.
2012.01.026

Ma, L., Meng, Y., An, Y., Han, P., Zhang, C., Yue, Y., et al. (2024). Single-cell RNA-seq
reveals novel interaction between muscle satellite cells and fibro-adipogenic progenitors
mediated with FGF7 signalling. J. Cachexia Sarcopenia Muscle 15, 1388–1403. doi:10.
1002/jcsm.13484

Madaro, L., Passafaro, M., Sala, D., Etxaniz, U., Lugarini, F., Proietti, D., et al. (2018).
Denervation-activated STAT3–IL-6 signalling in fibro-adipogenic progenitors
promotes myofibres atrophy and fibrosis. Nat. Cell Biol. 20, 917–927. doi:10.1038/
s41556-018-0151-y

Mahdy, M. A. A. (2019). Skeletal muscle fibrosis: an overview. Cell Tissue Res. 375,
575–588. doi:10.1007/s00441-018-2955-2

Massagué, J., and Sheppard, D. (2023). TGF-β signaling in health and disease. Cell
186, 4007–4037. doi:10.1016/j.cell.2023.07.036

Meng, X. M., Nikolic-Paterson, D. J., and Lan, H. Y. (2016). TGF-β: the master
regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338. doi:10.1038/nrneph.2016.48

Molina, T., Fabre, P., and Dumont, N. A. (2021). Fibro-adipogenic progenitors in
skeletal muscle homeostasis, regeneration and diseases. Open Biol. 11, 210110. doi:10.
1098/rsob.210110

Mollica, J. P. (2010). Skeletal muscle RNA extraction in preparation for RT-PCR.
Methods Mol. Biol. 630, 251–260. doi:10.1007/978-1-60761-629-0_16

Murphy, M. M., Lawson, J. A., Mathew, S. J., Hutcheson, D. A., and Kardon, G.
(2011). Satellite cells, connective tissue fibroblasts and their interactions are crucial for
muscle regeneration. Development 138, 3625–3637. doi:10.1242/dev.064162

Natarajan, A., Lemos, D. R., and Rossi, F. M. (2010). Fibro/adipogenic progenitors: a
double-edged sword in skeletal muscle regeneration. Cell Cycle 9, 2045–2046. doi:10.
4161/cc.9.11.11854

Nishikawa, H., Asai, A., Fukunishi, S., Nishiguchi, S., and Higuchi, K. (2021).
Metabolic syndrome and sarcopenia. Nutrients 13, 3519. doi:10.3390/nu13103519

Nojima, I., Hosoda, R., Toda, Y., Saito, Y., Ueda, N., Horimoto, K., et al. (2022).
Downregulation of IGFBP5 contributes to replicative senescence via ERK2 activation in

mouse embryonic fibroblasts. Aging (Albany NY) 14, 2966–2988. doi:10.18632/aging.
203999

Parameshwaran, K., Irwin, M. H., Steliou, K., and Pinkert, C. A. (2010). D-galactose
effectiveness in modeling aging and therapeutic antioxidant treatment in mice.
Rejuvenation Res. 13, 729–735. doi:10.1089/rej.2010.1020

Park, S. S., Kwon, E.-S., and Kwon, K.-S. (2017). Molecular mechanisms and
therapeutic interventions in sarcopenia. Osteoporos. Sarcopenia 3, 117–122. doi:10.
1016/j.afos.2017.08.098

Parker, E., and Hamrick, M. W. (2021). Role of fibro-adipogenic progenitor cells in
muscle atrophy and musculoskeletal diseases. Curr. Opin. Pharmacol. 58, 1–7. doi:10.
1016/j.coph.2021.03.003

Plikus, M. V., Wang, X., Sinha, S., Forte, E., Thompson, S. M., Herzog, E. L., et al.
(2021). Fibroblasts: origins, definitions, and functions in health and disease. Cell 184,
3852–3872. doi:10.1016/j.cell.2021.06.024

Riparini, G., Simone, J. M., and Sartorelli, V. (2022). FACS-Isolation and culture of
fibro-adipogenic progenitors and muscle stem cells from unperturbed and injured
mouse skeletal muscle. J. Vis. Exp. doi:10.3791/63983

Roberts, A. B., McCune, B. K., and Sporn, M. B. (1992). TGF-beta: regulation of
extracellular matrix. Kidney Int. 41, 557–559. doi:10.1038/ki.1992.81

Rudolf, A., Schirwis, E., Giordani, L., Parisi, A., Lepper, C., Taketo, M. M., et al.
(2016). β-Catenin activation in muscle progenitor cells regulates tissue repair. Cell Rep.
15, 1277–1290. doi:10.1016/j.celrep.2016.04.022

Sakuma, K., Aoi, W., and Yamaguchi, A. (2014). The intriguing regulators of muscle
mass in sarcopenia and muscular dystrophy. Front. Aging Neurosci. 6, 230. doi:10.3389/
fnagi.2014.00230

Schuster, R., Younesi, F., Ezzo, M., and Hinz, B. (2023). The role of myofibroblasts in
physiological and pathological tissue repair. Cold Spring Harb. Perspect. Biol. 15,
a041231. doi:10.1101/cshperspect.a041231

Serrano, A. L., Mann, C. J., Vidal, B., Ardite, E., Perdiguero, E., and Muñoz-Cánoves, P.
(2011). Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair
and disease. Curr. Top. Dev. Biol. 96, 167–201. doi:10.1016/B978-0-12-385940-2.00007-3

Shahini, A., Rajabian, N., Choudhury, D., Shahini, S., Vydiam, K., Nguyen, T., et al.
(2021). Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic
progenitors in vitro and in vivo. Sci. Adv. 7, eabe5671. doi:10.1126/sciadv.abe5671

Sorokina, M., Bobkov, D., Khromova, N., Vilchinskaya, N., Shenkman, B., Kostareva,
A., et al. (2024). Fibro-adipogenic progenitor cells in skeletal muscle unloading:
metabolic and functional impairments. Skelet. Muscle 14, 31. doi:10.1186/s13395-
024-00362-2

Stitt, T. N., Drujan, D., Clarke, B. A., Panaro, F., Timofeyva, Y., Kline, W. O., et al.
(2004). The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced
ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell 14, 395–403.
doi:10.1016/s1097-2765(04)00211-4

Sun, Y., Sun, X., Liu, S., Liu, L., and Chen, J. (2018). The overlap between regeneration
and fibrosis in injured skeletal muscle is regulated by phosphatidylinositol 3-kinase/Akt
signaling pathway - a bioinformatic analysis based on lncRNA microarray. Gene 672,
79–87. doi:10.1016/j.gene.2018.06.001

Sureshbabu, A., Okajima, H., Yamanaka, D., Shastri, S., Tonner, E., Rae, C., et al.
(2009). IGFBP-5 induces epithelial and fibroblast responses consistent with the fibrotic
response. Biochem. Soc. Trans. 37, 882–885. doi:10.1042/BST0370882

Sureshbabu, A., Tonner, E., Allan, G. J., and Flint, D. J. (2011). Relative roles of TGF-β
and IGFBP-5 in idiopathic pulmonary fibrosis. Pulm. Med. 2011, 517687. doi:10.1155/
2011/517687

Takeda, T. (2009). Senescence-accelerated mouse (SAM) with special references to
neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem. Res. 34 (4),
639–659. doi:10.1007/s11064-009-9922-y

Tian, S., Zhao, H., Liu, J., Ma, X., Zheng, L., Guo, H., et al. (2022). Metabolomics
reveals that alcohol extract of propolis alleviates D-gal-induced skeletal muscle
senescence in mice. Food Biosci. 49, 101885. doi:10.1016/j.fbio.2022.101885

Tidball, J. G. (2011). Mechanisms of muscle injury, repair, and regeneration. Compr.
Physiol. 1, 2029–2062. doi:10.1002/cphy.c100092

Tournadre, A., Vial, G., Capel, F., Soubrier, M., and Boirie, Y. (2019). Sarcopenia. Jt.
Bone Spine 86, 309–314. doi:10.1016/j.jbspin.2018.08.001

Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S., and Tsuchida, K. (2010).
Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell
formation in skeletal muscle. Nat. cell Biol. 12, 143–152. doi:10.1038/ncb2014

Van De Vlekkert, D., Machado, E., and d’Azzo, A. (2020). Analysis of generalized
fibrosis in mouse tissue sections with masson’s trichrome staining. Bio Protoc. 10, e3629.
doi:10.21769/BioProtoc.3629

Wang, C., Yue, F., and Kuang, S. (2017). Muscle histology characterization using H&E
staining and muscle fiber type classification using immunofluorescence staining. Bio
Protoc. 7, e2279. doi:10.21769/BioProtoc.2279

Wang, H. H., Zhang, Y., Qu, T. Q., Sang, X. Q., Li, Y. X., Ren, F. Z., et al. (2023).
Nobiletin improves D-galactose-induced aging mice skeletal muscle atrophy by
regulating protein homeostasis. Nutrients 15, 1801. doi:10.3390/nu15081801

Frontiers in Pharmacology frontiersin.org13

Shi et al. 10.3389/fphar.2025.1557703

137

https://doi.org/10.1016/j.arr.2021.101528
https://doi.org/10.1210/edrv.20.6.0382
https://doi.org/10.3390/ijms20102446
https://doi.org/10.1038/ncb2015
https://doi.org/10.1007/978-1-4939-7283-8_7
https://doi.org/10.1016/j.stem.2023.12.011
https://doi.org/10.1016/1357-2725(96)00005-2
https://doi.org/10.1177/03635465980260042401
https://doi.org/10.1111/j.1469-7580.2006.00549.x
https://doi.org/10.1038/nm.3869
https://doi.org/10.1038/s41467-025-56474-w
https://doi.org/10.1016/j.jbiomech.2023.111559
https://doi.org/10.3233/JAD-200063
https://doi.org/10.1155/2018/1984879
https://doi.org/10.1016/j.jtbi.2012.01.026
https://doi.org/10.1016/j.jtbi.2012.01.026
https://doi.org/10.1002/jcsm.13484
https://doi.org/10.1002/jcsm.13484
https://doi.org/10.1038/s41556-018-0151-y
https://doi.org/10.1038/s41556-018-0151-y
https://doi.org/10.1007/s00441-018-2955-2
https://doi.org/10.1016/j.cell.2023.07.036
https://doi.org/10.1038/nrneph.2016.48
https://doi.org/10.1098/rsob.210110
https://doi.org/10.1098/rsob.210110
https://doi.org/10.1007/978-1-60761-629-0_16
https://doi.org/10.1242/dev.064162
https://doi.org/10.4161/cc.9.11.11854
https://doi.org/10.4161/cc.9.11.11854
https://doi.org/10.3390/nu13103519
https://doi.org/10.18632/aging.203999
https://doi.org/10.18632/aging.203999
https://doi.org/10.1089/rej.2010.1020
https://doi.org/10.1016/j.afos.2017.08.098
https://doi.org/10.1016/j.afos.2017.08.098
https://doi.org/10.1016/j.coph.2021.03.003
https://doi.org/10.1016/j.coph.2021.03.003
https://doi.org/10.1016/j.cell.2021.06.024
https://doi.org/10.3791/63983
https://doi.org/10.1038/ki.1992.81
https://doi.org/10.1016/j.celrep.2016.04.022
https://doi.org/10.3389/fnagi.2014.00230
https://doi.org/10.3389/fnagi.2014.00230
https://doi.org/10.1101/cshperspect.a041231
https://doi.org/10.1016/B978-0-12-385940-2.00007-3
https://doi.org/10.1126/sciadv.abe5671
https://doi.org/10.1186/s13395-024-00362-2
https://doi.org/10.1186/s13395-024-00362-2
https://doi.org/10.1016/s1097-2765(04)00211-4
https://doi.org/10.1016/j.gene.2018.06.001
https://doi.org/10.1042/BST0370882
https://doi.org/10.1155/2011/517687
https://doi.org/10.1155/2011/517687
https://doi.org/10.1007/s11064-009-9922-y
https://doi.org/10.1016/j.fbio.2022.101885
https://doi.org/10.1002/cphy.c100092
https://doi.org/10.1016/j.jbspin.2018.08.001
https://doi.org/10.1038/ncb2014
https://doi.org/10.21769/BioProtoc.3629
https://doi.org/10.21769/BioProtoc.2279
https://doi.org/10.3390/nu15081801
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1557703


Waters, J. A., Urbano, I., Robinson, M., and House, C. D. (2022). Insulin-like growth
factor binding protein 5: diverse roles in cancer. Front. Oncol. 12, 1052457. doi:10.3389/
fonc.2022.1052457

Wu, L., Lin, H., Li, S., Huang, Y., Sun, Y., Shu, S., et al. (2024). Macrophage iron
dyshomeostasis promotes aging-related renal fibrosis. Aging Cell 23, e14275. doi:10.
1111/acel.14275

Wu, Y., Wu, Y., Yang, Y., Yu, J., Wu, J., Liao, Z., et al. (2022). Lysyl oxidase-like
2 inhibitor rescues D-galactose-induced skeletal muscle fibrosis. Aging Cell 21, e13659.
doi:10.1111/acel.13659

Ye, F., Mathur, S., Liu, M., Borst, S. E., Walter, G. A., Sweeney, H. L., et al. (2013).
Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and
accelerates muscle regeneration and functional recovery after disuse. Exp. Physiol. 98,
1038–1052. doi:10.1113/expphysiol.2012.070722

Yoshida, T., and Delafontaine, P. (2020). Mechanisms of IGF-1-mediated
regulation of skeletal muscle hypertrophy and atrophy. Cells 9, 1970. doi:10.3390/
cells9091970

Younesi, F. S., Miller, A. E., Barker, T. H., Rossi, F. M. V., and Hinz, B. (2024).
Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev.
Mol. Cell Biol. 25, 617–638. doi:10.1038/s41580-024-00716-0

Zhang, W., Peng, Q., Zhang, X., Guo, J., Tong, H., and Li, S. (2023). Vitamin A
promotes the repair of mice skeletal muscle injury through RARα. Nutrients 15, 3674.
doi:10.3390/nu15173674

Zhang, X., Hu, F., Li, J., Chen, L., Mao, Y. F., Li, Q. B., et al. (2024). IGF-1 inhibits
inflammation and accelerates angiogenesis via Ras/PI3K/IKK/NF-κB signaling
pathways to promote wound healing. Eur. J. Pharm. Sci. 200, 106847. doi:10.1016/j.
ejps.2024.106847

Zhong, W., Jia, H., Zhu, H., Tian, Y., Huang, W., and Yang, Q. (2024). Sarcopenia is
attenuated by mairin in SAMP8 mice via the inhibition of FAPs fibrosis through the
AMPK-TGF-β-SMAD axis. Gene 931, 148873. doi:10.1016/j.gene.2024.148873

Zhu, Q., Lu, X., Chen, M., Zhang, T., Shi, M., Yao, W., et al. (2024). IGFBP5 affects
cardiomyocyte survival and functional recovery in mice following myocardial ischemia.
Commun. Biol. 7, 1594. doi:10.1038/s42003-024-07304-0

Frontiers in Pharmacology frontiersin.org14

Shi et al. 10.3389/fphar.2025.1557703

138

https://doi.org/10.3389/fonc.2022.1052457
https://doi.org/10.3389/fonc.2022.1052457
https://doi.org/10.1111/acel.14275
https://doi.org/10.1111/acel.14275
https://doi.org/10.1111/acel.13659
https://doi.org/10.1113/expphysiol.2012.070722
https://doi.org/10.3390/cells9091970
https://doi.org/10.3390/cells9091970
https://doi.org/10.1038/s41580-024-00716-0
https://doi.org/10.3390/nu15173674
https://doi.org/10.1016/j.ejps.2024.106847
https://doi.org/10.1016/j.ejps.2024.106847
https://doi.org/10.1016/j.gene.2024.148873
https://doi.org/10.1038/s42003-024-07304-0
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1557703


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores the interactions between chemicals and 

living beings

The most cited journal in its field, which advances 

access to pharmacological discoveries to prevent 

and treat human disease.

Discover the latest 
Research Topics

See more 

Frontiers in
Pharmacology

https://www.frontiersin.org/journals/Pharmacology/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	The mechanisms of fibrotic disorders and pharmacological therapies
	Table of contents
	Knockout of C1q/tumor necrosis factor-related protein-9 aggravates cardiac fibrosis in diabetic mice by regulating YAP-medi ...
	1 Introduction
	2 Methods and materials
	2.1 Animals and protocols
	2.2 Echocardiography
	2.3 Immunohistochemistry
	2.4 Cell culture
	2.5 Cell transfection
	2.6 Western blotting
	2.7 Immunofluorescence staining
	2.8 qRT-PCR
	2.9 Cell proliferation assay
	2.10 Statistical analysis

	3 Results
	3.1 CTRP9 expression was diminished within the cardiac tissue of diabetic mice
	3.2 CTRP9 knockout worsened cardiac dysfunction in diabetic mice
	3.3 CTRP9 knockout exacerbated cardiac fibrosis in diabetic mice
	3.4 CTRP9 knockout aggravated autophagy inhibition and upregulated YAP expression in diabetic mice
	3.5 CTRP9 treatment inhibited HG-induced myofibroblast activation
	3.6 CTRP9 treatment inhibited HG-induced cardiac fibroblast activation by improving autophagy inhibition
	3.7 CTRP9 treatment inhibited HG-induced myofibroblast activation through the YAP-mediated autophagy pathway

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Emerging roles of non-coding RNAs in fibroblast to myofibroblast transition and fibrotic diseases
	1 Introduction
	2 MicroRNAs (miRNAs) in FMT
	3 Long non-coding RNAs (lncRNAs) in FMT
	4 Circular RNAs (circRNAs) in FMT
	5 Role of non-coding RNAs (ncRNAs) in fibrotic diseases
	6 Therapeutic implications
	7 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Human adipose mesenchymal stem cell-derived exosomes alleviate fibrosis by restraining ferroptosis in keloids
	1 Introduction
	2 Materials and methods
	2.1 Tissue and cell sources
	2.2 Adipogenic and osteogenic differentiation of ADSCs
	2.3 Characterization of ADSCs
	2.4 Concentration and characterization of ADSC-Exos
	2.5 Exosome uptake assay
	2.6 Analysis of ferroptosis and fibrosis in keloids
	2.7 Analysis of ferroptosis and fibrosis in keloids cocultured with ADSC-Exos
	2.8 Iron metabolism level determination in tissue and cells
	2.9 Western blot analysis
	2.10 qRT-PCR assay
	2.11 A nude mouse model was established
	2.12 siRNA transfection
	2.13 Statistics

	3 Results
	3.1 Keloid fibrosis was induced by ferroptosis
	3.2 Characterization of ADSCs and ADSC-Exos
	3.3 ADSC-Exos alleviated KF fibrosis by inhibiting ferroptosis
	3.4 ADSC-Exos alleviated pathological keloid injury in vivo
	3.5 ADSC-Exos inhibits fibrosis in keloids by promoting SLC7A11-GPX4 in vitro

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Research progress of knee fibrosis after anterior cruciate ligament reconstruction
	1 Introduction
	2 Pathophysiological mechanisms of knee fibrosis
	3 Risk factors for knee fibrosis
	3.1 Patient characteristics and preoperative risk factors
	3.2 Intraoperative risk factors
	3.3 Postoperative risk factors

	4 Treatments
	4.1 Non-surgical treatment
	4.2 Surgical treatment

	5 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Decoding tumor-fibrosis interplay: mechanisms, impact on progression, and innovative therapeutic strategies
	1 Introduction
	2 Mechanisms that promote fibrosis in malignant tumors
	2.1 The function of CAFs
	2.1.1 Pro-fibrotic factors induce the activation of CAFs
	2.1.2 ECM remodeling

	2.2 Inflammation
	2.3 Signaling pathway
	2.3.1 TGF-β/Smad signal transduction pathway
	2.3.2 JAK/STAT signal transduction pathway
	2.3.3 Wnt/β-catenin signal transduction pathway
	2.3.4 Notch signal transduction pathway
	2.3.5 The cross-talk effects of signaling pathways


	3 The effect of fibrosis on tumor progression
	3.1 Enhances tumor proliferation and survival
	3.2 Enhances angiogenesis
	3.2.1 Secretion of angiogenesis-promoting factors
	3.2.2 ECM remodeling
	3.2.3 Hypoxia and the activation of HIF-1α

	3.3 Enhances immune evasion

	4 Fibrosis enhances treatment resistance
	4.1 Chemotherapy resistance
	4.2 Resistance to immunotherapy
	4.3 CAFs enhance resistance to targeted therapy
	4.3.1 Resistance to tyrosine kinase inhibitors
	4.3.2 Resistance to monoclonal antibodies


	5 Tumor therapeutic strategies targeting fibrosis
	5.1 Nintedanib
	5.1.1 Clinical trials
	5.1.2 Sensitization to chemotherapy and immunotherapy

	5.2 Pirfenidone (PFD)
	5.2.1 PFD suppresses tumor invasion capability
	5.2.2 Sensitization to chemotherapy and immunotherapy
	5.2.3 Targeted drug delivery increases therapeutic efficacy

	5.3 Galunisertib
	5.3.1 Clinical trials
	5.3.2 Sensitization to chemotherapy and immunotherapy

	5.4 Tranilast
	5.4.1 Tranilast impacts CAF function
	5.4.2 Tranilast suppresses the TGF-β signaling pathway
	5.4.3 Tranilast enhances the TME


	6 Conclusion and outlook
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	The impact of diabetes mellitus on tendon pathology: a review
	1 Introduction
	2 Impact of DM on normal tendons
	3 Impact of DM on tendinopathy
	4 Impact of DM on tendon fibrosis
	5 Potential therapies under development
	6 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	P4HA1: an important target for treating fibrosis related diseases and cancer
	1 Introduction
	2 P4HA1 and cancer
	2.1 Colon cancer
	2.2 Gliomas
	2.3 Lung cancer
	2.4 Prostate cancer
	2.5 Pancreatic cancer
	2.6 Breast cancer
	2.7 Other cancers

	3 P4HA1 and cardiovascular diseases
	3.1 Atherosclerosis
	3.2 Myocardial infarction
	3.3 Diabetic cardiomyopathy

	4 P4HA1 and other diseases
	5 Summary
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	New insights into SUMOylation and NEDDylation in fibrosis
	1 Introduction
	2 PTMs by ubiquitin-like (Ubl) proteins
	2.1 Ubiquitination
	2.2 SUMOylation
	2.3 NEDDylation

	3 Roles of SUMOylation and NEDDylation in fibrosis
	3.1 Role of SUMOylation in fibrosis
	3.2 Role of NEDDylation in fibrosis

	4 Roles of SUMOylation and NEDDylation activators and inhibitors in fibrosis
	4.1 Roles of SUMOylation activators and inhibitors in fibrosis
	4.2 Roles of NEDDylation activators and inhibitors in fibrosis

	5 Conclusion and perspectives
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	VASN knockout induces myocardial fibrosis in mice by downregulating non-collagen fibers and promoting inflammation
	1 Introduction
	2 Materials and methods
	2.1 Preparation and identification of VASN-knockout mice
	2.2 Hematoxylin and eosin (HE) staining
	2.3 Masson staining
	2.4 Sirius staining
	2.5 Transcriptome sequencing and bioinformatics analysis
	2.6 Quantitative polymerase chain reaction (qPCR) analysis
	2.7 Western blotting (WB) analysis
	2.8 Immunohistochemistry (IHC) and immunofluorescence (IF) analyses
	2.9 Statistical analysis

	3 Results
	3.1 VASN knockout induces MF
	3.2 Bioinformatics analysis to explore key molecules involved in MF
	3.3 VASN knockout reduces expression of non-collagen fibers
	3.4 VASN knockout promotes cardiac inflammation

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Roles of retinoic acid-related orphan receptor α in high glucose-induced cardiac fibroblasts proliferation
	1 Introduction
	2 Materials and methods
	2.1 Culture and treatment of primary cardiac fibroblasts
	2.2 Lactate dehydrogenase (LDH) release detection
	2.3 Adenosine-triphosphate (ATP) level measurements
	2.4 Cell counting kit-8 (CCK-8) assay
	2.5 EdU (5-ethynyl-2′-deoxyuridine) staining
	2.6 Immunofluorescence staining
	2.7 Dihydroethidium (DHE) staining
	2.8 MitoSOX staining
	2.9 JC-1 staining
	2.10 Quantitative real-time PCR
	2.11 Western blot
	2.12 Statistical analysis

	3 Results
	3.1 High glucose promoted cell proliferation but inhibted RORα expressions in cardiac fibroblasts
	3.2 SR3335 promotes cell injury and proliferation in high glucose stimulated cardiac fibroblasts
	3.3 SR3335 enhances synthesis of collagen in high glucose stimulated cardiac fibroblasts
	3.4 SR3335 facilitates oxidative sstress in high glucose stimulated cardiac fibroblasts
	3.5 SR3335 promotes necroptosis in high glucose stimulated cardiac fibroblasts
	3.6 SR1078 attenuates cell injury and proliferation in high glucose stimulated cardiac fibroblasts
	3.7 SR1078 reduces synthesis of collagen inHigh glucose stimulated cardiac fibroblasts
	3.8 SR1078 suppresses oxidative stress in high glucose stimulated cardiac fibroblasts
	3.9 SR1078 alleviates necroptosis in high glucose stimulated cardiac fibroblasts

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

	Deciphering the role of IGFBP5 in delaying fibrosis and sarcopenia in aging skeletal muscle: therapeutic implications and m ...
	Introduction
	Materials and methods
	Cell culture and induction
	siRNA structure and design and transfection
	Senescence-associated β-galactosidase(SA-β-gal) staining
	Transcriptome sequencing (RNA sequencing) and bioinformatic analysis
	Animals
	Western blot
	PCR
	HE, MASSON and immunofluorescence staining
	Statistical analysis

	Results
	D-gal-induced skeletal muscle fibrosis characteristics
	Identifying IGFBP5 in D-gal-induced skeletal muscle sequencing analysis
	IGFBP5 is highly expressed in the senescence
	Knockout of IGFBP5 alleviates fibrosis in the aging model
	IGFBP5 regulates skeletal muscle fibrosis through IGF-1

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

	Back Cover



