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The use of support structures with good explosion resistance to support and reinforce underground projects has become a focus of concern for relevant units in order to ensure the safety of underground projects in explosive ground loads. The blast resistance of underground caverns and the influence of support parameters on blast resistance have been studied when lining and pre-stressing anchors are supported individually under dynamic and static coupling. Straight-walled arched caverns are chosen for this study because of their strong blast resistance. The influence of excavation unloading on the support structure was analyzed under the condition of a burial depth of 500 m. The study investigated the blast resistance of caves supported solely by singular concrete lining support and singular pre-stressed anchor bolt support. The research findings indicate that pre-stressed anchor bolts significantly limit the deformation capacity of surrounding rock while lining is more effective in restricting the vibration response of surrounding rock. The pre-stressed anchor bolts ensure operation within the strength range throughout the entire process with no alteration in load-bearing capacity. Increasing the thickness of the lining can reduce the vibration response of the cavern. Meanwhile, enhancing the pre-stressed anchor bolts within a certain range notably restricts the deformation response of the cavern. Therefore, the pre-stressed anchor bolts should be employed as the supporting structure to bear the excavation and unloading loads of the cavern.
Keywords: underground cavern, blast resistance, explosive ground loads, lining support, prestressed anchor

1 INTRODUCTION
There is a constant updating and upgrading of weaponry and equipment in modern warfare across nations as modern science and technology continue to advance. The direct shock waves caused by drilling and guided weapon explosions propagate through the rock and soil medium. The damage to underground engineering structures and surrounding rock masses is inflicted. New challenges are faced by defense and underground protection engineering which demand novel capabilities to resist explosions. In order to ensure the safety of underground engineering in modern warfare, support structures with excellent blast resistance are selected (Li et al., 2023a). The reinforcement and support of underground engineering have become a focal point of concern (Ren et al., 2023). The renewal and replacement of support structures are being driven forward (Li et al., 2023b). The damage caused by the explosion shockwaves on the underground chambers and chamber groups is multifaceted (Zhu et al., 2022). More advanced methods of support, enhanced blast resistance of chambers and a refined protective engineering system are areas of focus. Concrete lining, anchor rods, and anchor cables are the most widely used support methods currently. The blast-resistant support measures for underground chambers are divided into anchoring and composite structural resistance. Anchor rods or anchor cables serve as the primary load-bearing structures in anchoring-type blast-resistant support structures. New composite linings are employed to enhance the blast resistance of support structures in composite structural resistance.
Yang Xuelian et al. (2009) and Jingmao et al. (2012a) conducted model experiments based on Froude similarity theory. The influence of anchor rod length on the blast resistance of the chamber was studied. The stress of the chamber surrounding rock was increased, by increasing the length of the anchor rod. The rock mass properties are enhanced, and rock deformation is restricted. However, the reinforcement effect of the anchor rod decreases as it increases to a certain length. This exacerbates the movement of the chamber. The support effect is optimal when the length is one-third of the span of the chamber. Ganchen et al. (2014) proposed a method of rock mass external cross anchoring. Experimental models were created for blast testing. The peak displacement and residual deformation values of the chamber decrease after cross anchoring. Cross anchoring method effectively limits the deformation of the chamber. Jingmao et al. (2012b) conducted model experiments. The reinforcement effects of locally lengthened anchor rods and equally lengthened anchor rods at the arch foot were compared. The localized extension of the anchor rod at the arch foot increases the explosive load on the arch at smaller explosion distances. However, lengthening the anchor rods was able to bear or transfer the explosive load on the arch part when the distance to the explosion center was small. The blast resistance was enhanced by reinforcing the arch. Yang et al. (2015) conducted research on the blast model experiments of chamber roofs. The potential for using the deformation parameters of the cavern as indicators of dome stability was explored following an analysis of dome deformation and acceleration response patterns. The effectiveness of acceleration in determining stability was found to be inadequate. The reinforcement effect of longer closely spaced anchor rods is better when the spacing between the anchor rods is the same. However, the effectiveness of anchoring decreases with excessive length. Honglu and Zhang (2013) utilized the AUTODYN software to establish a three-dimensional coupled system model in the study of lining structure support. The dynamic response and damage mechanism of the lining structure were investigated under explosion conditions within the tunnel. The damage primarily occurred at the connections of the floor slab, side walls and arch ribs. The lining structure has high reinforcement rate, high strength of surrounding rock and good anti-explosion performance. Liu et al. (2024) utilized finite element software ANSYS/LS-DYNA. The damage characteristics of tunnel lining structures are analyzed under explosive loads based on the principle of energy. The dynamic response of each part is reflected by the explosive energy of the lining structure. The manner and extent of damage to the lining structure vary at different explosion source positions. Chen et al. (2019) employed the LS-DYNA finite element software. The dynamic responses of conventional lining structures and foam concrete composite structures were compared and analyzed under near-blast conditions. The results indicated that when the shock wave propagated from hard to soft media. The incident wave and reflected wave reversed direction. The load on the lining structure weakened. The foam concrete interlayer has an efficient wave-absorbing and energy-dissipating effect when incident waves and reflected waves propagate in the same direction in soft-hard media. Wang et al. (2015) utilized the ANSYS/LS-DYNA software. Models were created for both single-layer lining structures and foam concrete composite lining structures. The dynamic responses were compared under explosive loads. The characteristic deformations were revealed by the results. The single-layer lining structure exhibited vertical compression and lateral expansion. The best blast resistance is achieved when the thickness ratio of the outer to inner layers in the composite lining structure is between 1/2 and 1/3. Liu et al. (2018) established a three-dimensional finite element model. The blast resistance performance of ultra-high-performance steel fiber reinforced concrete tunnel lining was analyzed. Various parameters were taken into account for their influence, such as burial depth, explosion direction and steel fiber content. The excellent blast resistance of high-strength concrete lining has been demonstrated by the results. The location of the blast source and the burial depth have a noticeable impact on exacerbating the damage to the lining. The best performance in blast resistance for the lining is achieved when the optimal steel fiber content is 2.5%.
The effectiveness of anchoring systems in blast resistance support is crucial as evidenced by current research findings in blast-resistant support structures (Yongming et al., 2008; Zhang et al., 2014; Yuchen et al., 2021; Sun et al., 2022). Anchoring systems constitute a significant proportion of blast-resistant support designs whereas the proportion of single lining support is relatively small. The analysis has been solely focused on the support effects to elucidate the distinctive characteristics of the two support measures. Prestressed anchor reinforcement of tunnel rock masses belongs to the category of “active support” measures in comparison to lining support. Prestressed anchors offer a wide range of selectable lengths and high load-bearing capacity (Yang et al., 2009; Zhou and Zhu, 2010; Feng et al., 2011; Jiang et al., 2019; Tan et al., 2021). The deformation of the tunnel rock mass is constrained by the prestressed anchor rods which are directly embedded into the surrounding rock mass. Most studies are based on the joint support of anchoring and lining, focusing on the blast resistance of anchored chambers. The existing research analysis is limited when it comes to determining whether the mechanisms of action for anchoring and lining support may share similar characteristics or exhibit differences (Liu et al., 2024; Zhang et al., 2023).
The impact of underground chamber’s resistance to explosions and the influence of support parameters on its resistance have been studied under the dynamic-static coupling conditions of lining and prestressed anchor support (Yang and Fan, 2007; Sun et al., 2010). A well-performing chamber with a straight wall and arched roof shape was selected as the subject for support research. The influence of excavation unloading on the support structures has been examined. The resilience to explosions of underground chambers has been investigated under the support of singular concrete lining and solitary prestressed anchor reinforcement.
2 METHODOLOGY
Pre-stressed anchors and linings are being separately studied under the impact of explosive ground loads to investigate the supporting effectiveness and characteristics of two types of support structures. The dynamic loads remain consistent without considering the static load effects of excavation unloading in the cavern. The feasibility of a single support when considering dynamic-static coupling effects is not being considered. A reasonable support concept is proposed based on the research findings. The surrounding rock conditions are classified as Class III, with a scaled distance of 9.28 m/t1/3 and a peak explosive ground load of 6.5 MPa. The lateral pressure coefficient is set at 1.2, with a depth of 500 m. The duration of the ground load uplift is 0.02 s, and the depression duration is 0.04 s.
2.1 Model and parameters
The mechanical response of the lining can only be described during the elastic stage when the lining is treated as an elastic material, under the action of explosion-induced ground shock loads in caverns supported by lining. The initiation and propagation of cracks in concrete cannot be described by elastic constitutive models, resulting in nonlinear mechanical behavior and stiffness degradation. The Concrete Damaged Plasticity Model (CDP model) is a professional model used to simulate the mechanical behavior of concrete in terms of elastoplastic damage (Neuberger et al., 2023). This model is available in the Abaqus software. Tensile cracking and compressive crushing are assumed to be the two primary mechanisms of failure, in concrete materials in the CDP model (Mohammed et al., 2023). The stiffness degradation of concrete is accounted for during the plastic deformation stage. This model can be employed for numerical simulations of concrete subjected to single, cyclic and dynamic loads, under low confinement conditions. The actual mechanical behavior of the lining is analyzed, from a damage perspective in the CDP model. The destructive nature and extent of the lining are reflected, under the action of ground loads.
The stress follows a linear elastic relationship in uniaxial tension until it reaches the ultimate strength, as illustrated in Figure 1A. Microcracks are initiated within the concrete, when the stress reaches the ultimate strength (Ferrotto et al., 2018). The macroscopic stress-strain softening response of the concrete structure is induced when the stress exceeds the ultimate strength, leading to the expansion of microcracks. This results in unloading in the non-elastic stage and subsequent degradation of concrete stiffness. The uniaxial compression process of concrete follows a similar principle.
[image: Two graphs labeled A and B show stress-strain curves. Graph A features a linear rise to a peak stress \(q_c\) at strain \(\varepsilon_c\), followed by a dashed linear descent. Graph B shows a nonlinear rise to the peak stress \(q_c\), a higher curve, and a gradual decrease. Both graphs have labeled points \(E_0\), \(\varepsilon_{cf}\), and \(\varepsilon_1\), and include shaded triangles representing different moduli and material parameters.]FIGURE 1 | Uniaxial tension-compression relationship of CDP model. (A) Uniaxial tensile constitutive relationship. (B) Uniaxial compressive constitutive relationship.
Damage factors and initial stiffness are employed to describe the degradation of concrete stiffness in the non-elastic stage in the CDP model (Hafezolghorani et al., 2017). The stiffness of concrete is represented as:
[image: It seems like you provided a mathematical expression instead of an image. If you have an image to describe, please upload it or provide a URL.]
Under uniaxial cyclic loading conditions, the damage factor is assumed to be:
[image: If you upload an image or provide a URL, I can help generate alternate text for it. You can also add a caption for more context.]
Where dt and dc is the damage factors under uniaxial tension and uniaxial compression, respectively. A value of 0 indicates undamaged concrete, while a value of one signifies complete damage. Where st and sc is the stress state function.
The damage factor is determined based on Li et al. (2017) energy equivalence principle. The calculation method is as follows:
[image: Equation showing \( d = 1 - \frac{\sigma}{\sqrt{E_0 \varepsilon}} \) labeled as equation (3).]
Where σ is the actual stress of the concrete, ε is the actual strain of the concrete.
According to the “Code for Design of Concrete Structures” (GB50010-2011), the equation for the stress-strain curve of concrete under uniaxial tension is formulated as:
[image: A mathematical formula is shown: \( F_x = (1 - d_n) E_n \epsilon \), labeled as equation (4).]
[image: Equation representing \(d_{n0}\) with conditions based on the variable \(x\). For \(x \leq 1\), \(d_{n0} = 1 - \rho_{t}[1.2 - 0.2x^{5}]\). For \(x > 1\), \(d_{n0} = 1 - \frac{\rho_{t}}{a_{t}(x-1)^{1.7} + x}\). Equation labeled as (5).]
[image: Equation showing \( x = \frac{\epsilon_{\text{t}}}{\epsilon_{\text{in}}} \) with a reference number \( (6) \) on the right side.]
[image: Equation showing a formula for density: \( \rho_{\text{e}} = \frac{f_{\text{t}}}{E_{0} \varepsilon_{\text{tu}}} \), labeled as equation (7).]
Where dt0 is the evolution parameter of concrete uniaxial tensile damage. ft is the concrete uniaxial tensile strength, as provided by the code. εtu is the ultimate tensile strain of concrete. αt is the parameter value of the plastic stage of the stress-strain curve.
The equation for the stress-strain curve of concrete under uniaxial compression is calculated as follows:
[image: Equation showing the formula \( y_{t} = (1 - d_{0}) E_{t} \epsilon_{t} \), labeled as equation eight.]
[image: \[ t_{a_{0}} = \begin{cases}  1 - \rho_{c}[a_{x} + (3 - 2a_{x})x + (a_{x} - 2)x^{2}] & x \leq 1 \\ 1 - \frac{\rho_{c}}{a_{x}(x - 1)^{2} + x} & x > 1  \end{cases} \]  Equation (9) is shown.]
[image: Equation showing \( x = \frac{E_{c}}{\epsilon_{cu}} \) labeled as equation 10.]
[image: The mathematical equation shows \( \rho_c = \frac{f_c}{E_c \varepsilon_{cu}} \), labeled as equation (11), representing a formula involving variables for density, force, modulus of elasticity, and strain.]
Where dc0 is the evolution parameter of concrete uniaxial compressive damage. fc is the concrete uniaxial compressive strength. εcu is the ultimate compressive strain of concrete. The parameter αa and αd respectively represent the values of the ascending and descending segments of the concrete uniaxial stress-strain curve.
Once the stress-strain curve relationship is obtained, the data of stress-nonlinear strain and damage factor-nonlinear strain input into the ABAQUS software need to be determined. The nonlinear strain is calculated from Eq. 13:
[image: Mathematical equation showing the strain (\(\varepsilon_e\)) as the ratio of stress (\(\sigma\)) to the modulus of elasticity (\(E_0\)). It is labeled as equation (12).]
[image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if it's online. You can also include a caption or extra context if necessary.]
Where εe is the elastic strain calculated according to the initial stiffness of the concrete. εin is the nonlinear strain input into the ABAQUS software.
The mechanical parameters of the concrete lining for numerical simulation are provided in Table 1. Based on Eqs. 1–13 and the parameters given in Table 1, the data required by ABAQUS software can be calculated. As shown in Table 2.
TABLE 1 | Mechanical parameters of concrete.
[image: Table displaying properties of concrete strength grade C60, including density of 2400 kilograms per cubic meter, Poisson's ratio of 0.2, axial compressive strength of 45.6 MPa, axial tensile strength of 2.85 MPa, and initial elastic modulus of 36 GPa. Additional parameters include eccentricity of 0.1, ratio f₈₀/f_c of 1.16, viscous parameter of 0.0005, constant K of 0.6667, and dilation angle of σ40. Bold value indicates the ratio of the second stress invariant on the tensile meridian.]TABLE 2 | Stress, damage factor and inelastic strain of C60 concrete.
[image: Table displaying various material properties across fifteen entries. Columns include compressive strength (σₛ), initial strain (εₛᵢₙ), compressive deformation (dₛ), tensile strength (σₜ), tensile strain (εₜᵢₙ), and tensile deformation (dₜ), with values progressively decreasing from top to bottom.]2.2 Simulation of prestressing anchor cables in ABAQUS
Truss elements are utilized to model the elements of steel cable structures, in the ABAQUS software simulating anchor cables are convenient. These elements are solely capable of bearing axial loads and do not possess the capacity to withstand shear forces or bending moments. The coupling between the anchor and the rock mass is established through the Embedded command, embedding the anchor within the rock mass. The prestressing of the anchor is implemented using the temperature reduction method with the temperature to be set determined by Eq. 14.
[image: It seems there was an attempt to provide an image with LaTeX code, but the image was not uploaded. Please upload the image or provide additional context if needed.]
Where ΔT is the prescribed temperature change. N is the designed axial force of the anchor. A is the cross-sectional area of the anchor. α is the linear expansion coefficient of the anchor. E is the elastic modulus of the anchor.
The parameters associated with pre-stressed anchors are depicted in Table 3. The arrangement of the anchors is illustrated in Figure 2. The spacing between the anchor cables is 3.4 m. Five anchors are positioned at the crown, two at the sidewalls and three at the base of the wall. The anchors on the left half of the tunnel are numbered one to 7.
TABLE 3 | Mechanical parameters of prestressed anchor cable.
[image: Table displaying data on pre-stressing and failure loads for different steel strands. It includes pre-stressing load (1,000 to 4,000 kN), anchor cable diameter (Φ115 to Φ165 mm), number of strands (7 to 19), cross-sectional area (1,276.87 to 3,465.79 mm²), elastic modulus (210 GPa), and failure load (1,867.02 to 5,213.46 kN).][image: Diagram of an intersection showing traffic lanes with numbered arrows indicating directions. Distances of 2.5 meters and 5.5 meters are marked. The layout includes animation and acceleration sections, labeled with units in meters.]FIGURE 2 | Schematic diagram of arrangement of prestressed anchor cables.
3 RESULTS
3.1 The study of the blast resistance performance of the cavern under lining support
The displacement cloud map of the surrounding rock of the tunnel chamber is depicted in Figure 3 under the conditions of no support and 40 cm lining support at the final stage. The maximum horizontal displacement of the sidewall in the middle of the underground chamber is 0.0312 m under the unsupported condition. The maximum displacement decreases to 0.0310 m. This indicating a reduction of 0.6% under the support condition. The maximum vertical displacement of the tunnel chamber occurs at the mid-section is −0.0289 m under the unsupported condition. The maximum displacement decreases to −0.0270 m under supported conditions. The reduction reached 6.57%. The displacement peak decreases from −0.0330 m to −0.0308 m under the condition of lining support. The reduction reached 6.67%, as shown in Figure 4.
[image: Four contour plots labeled A, B, C, and D show varying fluid dynamics around a central semicircular shape. Each plot has a color scale representing speed, with red and yellow indicating higher speeds and green and blue indicating lower speeds. The variations in flow patterns around the shape demonstrate changes in velocity distribution, with color gradients forming distinct regions within each plot.]FIGURE 3 | Equivalent plastic deformation of cavern with and without lining. (A) Horizontal displacement of unsupported cavern rock. (B) Vertical displacement of unsupported cavern rock. (C) Horizontal displacement of supported cavern rock. (D) Vertical displacement of supported cavern rock.
[image: Line graph showing vertical displacement of vault joints over time. Two lines represent "Unsupported" (black) and "Lining thickness 40 cm" (red). Both dip sharply after three seconds, then gradually rise, with the red line maintaining higher displacement than the black line.]FIGURE 4 | Displacement time history curve of cavern with lining.
A portion of the energy is absorbed by the lining material, causing attenuation of the surrounding rock’s vibration response as the blast stress wave penetrates into the concrete lining (Honglu and Zhang, 2013; Xiao et al., 2014; Ji et al., 2021; Chen et al., 2022; Zhu et al., 2023). A reduction in peak vibration velocity at the crown joints is observed under the effect of lining support as depicted in Figure 5. The velocity decreases from −0.6479 m/s under unsupported conditions to −0.5416 m/s under supported conditions. The energy-absorbing effect of the lining support is evidenced by the reduction in peak vibration velocity at the crown joints.
[image: Line graph showing vertical vibration velocity of crown joints over time. The velocity decreases sharply between two and three seconds, with the red line representing a lining thickness of forty centimeters slightly differing from the unsupported black line.]FIGURE 5 | Vibration response of vault joints.
The evolution of tensile and compressive damage in the lining over time is depicted in Figure 6. The process of compressive damage evolution in the lining is illustrated in Figure 6A. Compressive damage appears on the outer side of the middle section of the lining, increasing with time (at t = 0.072 s). The extent of compressive damage expanded inward from the outer side of the tunnel wall. (at t = 0.3 s). The maximum compressive damage in the middle section of the sidewall reaches 0.012. There is no significant change in the range of compressive damage at the corner of the wall. The extent of compressive damage at the wall corner increased slightly from 0.042 to 0.047. The evolution of tensile damage in the lining is depicted in Figure 6B. Tensile damage appears on the inner side of the lining arch at t = 0.094 s. The range of tensile damage in the lining expands at t = 0.3 s. It gradually spreads from the inner side of the arch towards the outer side and both ends. Its maximum is reached at the arch crown. (with a value of 0.741). The tensile damage reaches its peak (with a value of 0.741) as it spreads from the inner side of the arch towards the outer side and both ends. This signifies severe damage. The tensile damage gradually spreads from the base of the wall towards the middle of the wall. Its maximum is reached (0.781) at a distance of 0.833 m from the outer edge of the wall. It is evident that the tensile damage caused by the explosion’s stress waves on the lining is more severe than the compressive damage based on experimental data (Ren and Chunxia, 2016; Zhang et al., 2016; Chen et al., 2020).
[image: Simulation showing damage evolution in two models over time. Model A at 0.072 seconds (a1) and 0.3 seconds (a2), and Model B at 0.094 seconds (b1) and 0.3 seconds (b2). Color scales indicate damage levels.]FIGURE 6 | Damage distribution of lining under tension and compression. (a1) t=0.072s. (a2) t = 0.3 s. (A) Lining pressure damage contour map. (b1) t = 0.094 s. (b2) t = 0.3 s. (B) Lining tension damage contour map.
The objective of lining support is to restrain the deformation of the surrounding rock mass and reduce the vibration response of the rock mass (Wang et al., 2010; Zhida et al., 2010; Zhou et al., 2021). The impact of lining support on the effectiveness of support is discussed with four lining thicknesses of 40 cm, 60 cm, 80 cm, and 100 cm being selected. Different thicknesses of lining are compared and analyzed for their impact on the effectiveness of support. The peak displacement and the displacement during the stable deformation stage of the arch crown node in the vertical direction are gradually decreasing with the increase in lining thickness. This trend is illustrated in Figure 7. The peak vertical displacement of the crown node reaches its minimum value of −0.0299 m when the lining thickness reaches 100 cm. This represents a decrease of 9.40% compared to the displacement under unsupported conditions. Additionally, the vertical displacement of the crown node decreases by 10.03% during the stable stage.
[image: Line graph showing the vertical displacement of vault joints over time in seconds, from 3.00 to 3.30. Five lines represent different lining thicknesses: ungrouted, and 40 cm, 60 cm, 80 cm, and 100 cm. Each line starts at approximately -0.015 m, dips to around -0.032 m, then rises slightly by the end.]FIGURE 7 | Time history curve of vertical displacement of vault joint under different thickness lining.
The peak vertical velocity of the crown joint in the chamber is reduced with the increase in lining thickness as depicted in Figure 8. The vertical peak velocity of the crown joint in the chamber decreases when the lining thickness reaches 100 cm. The peak vertical velocity of the crown joint in the chamber decreases from −0.6479 m/s under unsupported conditions to −0.4889 m/s. The chamber’s kinetic energy also decreases with the increase in the thickness of the lining as the vertical vibration velocity of the chamber’s vault joint decreases. The lining absorbs an increasing amount of stress wave energy. The kinetic energy of the tunnel decreases.
[image: Line graph showing the relationship between thickness lining in centimeters on the x-axis and vertical vibration velocity of the vault joint in meters per second on the y-axis. The curve rises, indicating an increase in velocity with greater thickness.]FIGURE 8 | Time history curve of vertical vibration velocity of vault joint under different thickness lining.
The tensile and compressive damage of the lining decreases with increasing lining thickness as depicted in Figure 9. The maximum tensile and compressive damages are observed (with maximum values of 0.5651 and 0.0324, respectively) when the lining thickness reaches 100 cm. The distribution of tensile damage in the lining shifts from the inner side of the bottom of the sidewall towards the outer side. The range decreases with the increase in lining thickness. The tensile damage in the arch section is primarily concentrated at the crown with the maximum damage still observed on the inner side. The extent and severity of tensile and compressive damage in the lining both decrease as the thickness of the lining increases. This indicated by the pattern of damage distribution. The bearing capacity of the lining increases. But the tensile damage caused by stress wave reflection cannot be avoided by simply increasing the thickness of the lining.
[image: Six panels labeled A to F showing stress distribution on arch structures using color gradients. Panels A, C, and E focus on lower sections, displaying stress in red and green. Panels B, D, and F highlight the top, with increased stress shown in red. Each panel includes a legend with color codes corresponding to stress levels.]FIGURE 9 | Tension-compression damage cloud picture of lining with different thickness. (A) Compression damage of lining with 60cm thickness. (B) Tension damage of lining with 60 thickness. (C) Compression damage of lining with 80cm thickness. (D) Tension damage of lining with 80 thickness. (E) Compression damage of lining with 100cm thickness. (F) Tension damage of lining with 100 thickness.
3.2 The study of the blast resistance performance of the cavern under prestressed anchor support
The pre-stress of the anchor is set to 1000 kN under the same loading conditions, including explosion-induced ground impact loads and initial stress fields. The deformation analysis of the cavern under the support of the anchor is studied. The displacement of the surrounding rock in the chamber is significantly reduced under the support of pre-stressed anchors, as observed when comparing Figures 3–Figures 10. The maximum horizontal displacement at the middle of the side wall decreased to 0.0274 m, representing a reduction of 12.18%. Similarly, the maximum vertical displacement decreased to −0.0262 m, indicating a reduction of 9.34%. The effectiveness of the supporting structure can be fully realized when considering the unloading effect of tunnel excavation.
[image: Two contour plots labeled A and B depict velocity magnitude distribution around a geometric shape. Plot A shows a symmetrical pattern with red and blue indicating high and low velocities. Plot B displays an asymmetrical pattern with green dominating, suggesting different flow dynamics. Both plots include color scales indicating velocity values.]FIGURE 10 | Displacement cloud map of cavern under the action of prestressed anchor cable support. (A) Horizontal displacement. (B) Vertical displacement.
The overall variation of displacements at the crown joint of the cavern is observed to decrease, under the anchoring effect of pre-stressed 1000 kN anchors in Figure 11. A slight decrease in displacement is observed at the dome nodes of the tunnel, due to the proactive tensioning effect of the pre-stressed anchors. A slight decrease (from −0.0168 m to −0.0165 m) is observed, occurring at the dome nodes of the tunnel approximately between three and 3.05 s. The reduction reached 1.81%. The peak vertical displacement at the dome node decreases to −0.0304, with a reduction of 7.88%.
[image: Line graph showing vertical displacement of the crown joint over time in seconds for two conditions: unsupported (black line) and prestressed anchor cable support (red line). Displacement initially decreases sharply, then gradually increases. The prestressed support shows less displacement.]FIGURE 11 | Vertical displacement time-history curve of cavern vault joint under the action of prestressed anchor cable support.
The energy of the stress wave is absorbed by the lining support, resulting in a reduction in the cavern‘s kinetic energy. The vibration response of the cavern is weakened, with the anchor support structure. The vertical vibration velocity of the cavern dome joint decreases to −0.5752 m/s, under the condition of 1000 kN pre-stressed anchor support. The reduction was achieved by 11.23%, as depicted in Figure 12. The capacity to slow down the velocity of chamber vibrations is weaker, compared to the 40 cm lining support.
[image: Line graph showing vertical vibration velocity of the crown joint over time in seconds. Two lines compare data: a black line for unsupported conditions and a red line for prestressed anchor cable support. Both lines show a sharp dip between 0.06 and 0.15 seconds, with the red line stabilizing slightly higher after the dip.]FIGURE 12 | Vertical vibration time-history curve of cavern vault joint under the action of prestressed anchor cable support.
The blast resistance of the chamber under pre-stressed anchor cable support has been enhanced, under the action of stress waves. Attention is given to whether the anchor cables are operating within their strength range. The anchor cables are symmetrically distributed and subjected to symmetrical forces, as depicted in Figure 13. The time history curve of the axial force of the pre-stressed anchor cable on one side of the chamber is taken as an example. The peak axial force of the fourth anchor cable is the largest among all peak axial forces of the pre-stressed anchor cables (with a value of 1,132.03 kN), representing a relative increase of 14.04% compared to the initial pre-stress. It does not exceed the ultimate load-bearing capacity (with a value of 1867.02 kN), located near the middle of the chamber’s side wall. The peak axial force of the seventh anchor cable is the smallest (with a value of 999.00 kN), located at the middle of the bottom wall. The increase is 0.69%. The peak axial force of the third anchor cable is the largest (with a value of 1867.02 kN), positioned at the arch section. The increase is 4.48%. The initial pre-tension applied to the anchor cables is roughly the same across different locations. The dynamic response of the sidewall is greater than that of the arch position when there are different increases in peak axial force, under the effect of stress waves. These observations are made under the condition where the impact of excavation loads on the chamber is not taken into account.
[image: Line graph showing prestressed anchor cable axial force over time in seconds, ranging from 3.00 to 3.30. Six colored lines represent different data sets labeled #1 to #6. Each follows a distinct pattern indicating variations in force measured in kilonewtons (kN).]FIGURE 13 | Axial force time-history curve of prestressed anchor cable.
The axial force of the pre-stressed anchors is designed to be 1000 kN, 2000 kN, 3000 kN, and 4000 kN, based on the anchor parameters. The deformation and dynamic response of the cavern are reflected, through the curves of vertical displacement and vertical vibration velocity at the crown joints. The increase in axial force of the pre-stressed anchor did not alter the pattern of displacement at the crown joints, as depicted in Figure 14. The peak displacement at the crown joints decreases as the axial force increases. When the axial force reached 4000 kN, the displacement peak was minimized (value is −0.0291 m). The decrease compared to the unsupported condition reached 11.85%.
[image: Line graph illustrating vertical displacement of crown joints over time in seconds. Displacement is measured in meters, with various lines representing different force loads: unsupported, 1000KN, 2000KN, 3000KN, and 4000KN. Displacement decreases steeply at around 3 seconds, then stabilizes.]FIGURE 14 | Vertical displacement of vault joints under the condition of prestressed anchor cable support with different axial forces.
The peak vibration velocity at the crown joints decreases with the increase in axial force of the pre-stressed anchor bolt, as depicted in Figure 15. The peak vibration velocity at the crown joints is minimized to −0.5639 m/s, when the axial force of the anchor bolt reaches 4000 kN. The decrease in peak vibration velocity compared to the unsupported condition reached 12.96%. The reduction magnitude of the peak vertical vibration velocity at the crown joints decreases as the axial force of the anchor bolt increases, as observed from the trend of the curve. The capacity of pre-stressed anchor bolts to alleviate the chamber’s vibrational response is limited. Increasing the pre-stressed force of the anchor bolts is more effective than reducing the vibrational response of the chamber.
[image: Line graph showing the relationship between prestressed anchor cable axial force (in kilonewtons) and peak vertical vibration velocity of the vault joints (in meters per second). The graph shows a sharp increase in vibration velocity as the axial force increases, tapering off after around 1500 kilonewtons and stabilizing towards 4000 kilonewtons.]FIGURE 15 | Vertical vibration velocity of vault joints under the condition of prestressed anchor cable support with different axial forces.
4 DISCUSSION
4.1 Comparative analysis
The dynamic response of the cavern has been investigated, under the support of both lining and prestressed anchor cables. The blast resistance of the cavern is enhanced by these two types of support structures. The similarities and differences between lining support and pre-stressed anchor support need to be studied, in terms of their supportive effects. The similarities and differences between the two types of support are analyzed. This is done from the perspective of residual deformation and changes in vertical vibration velocity of the vault joints. The difference in the effectiveness of increasing the pre-stress of the anchor cables and the thickness of the lining in restricting the deformation of the chamber walls is minimal, as illustrated in Figure 16. The residual deformation of the tunnel vault joints is smaller than that of the concrete lining support with different thicknesses, under various conditions of pre-tensioned anchor cable support. The minimum residual deformation of the cavern surrounding rock (value is 0.0090 m) is observed, under the 4000 kN pre-tensioned anchor cable support.
[image: Graph depicting the relationship between lining thickness (centimeters) and vertical residual deformation of vault joints (meters). Two lines represent different supports: a black line for lining support and a red line for prestressed anchor cable support. Both lines show a decreasing trend. The x-axis ranges from 0 to 120 centimeters, while the y-axis ranges from 0.006 to 0.014 meters.]FIGURE 16 | Vertical residual deformation of vault joints under different support conditions.
The differences in vibration response of the tunnel are evident, when comparing Figures 8,15. The vertical peak velocity at the crown joints decreases to −0.4889 m/s, when the thickness of the lining reaches its maximum of 100 cm. The vertical peak vibration velocity of the crown node decreases to −0.5639 m/s, when the pre-stressed anchor reaches its maximum value of 4000 kN. The difference between the two different support structures is significant, when reducing the vibration response of the cavern. The performance of lining support is better than that of prestressed anchor support. The effectiveness of masonry support is better than that of pre-stressed anchor support. Increasing the thickness of the lining is more effective than increasing the pre-stress of the anchor, in reducing the vibration response of the surrounding rock mass of the tunnel. Increasing the thickness of the lining is the most effective approach, in design for attenuating the vibration response of the surrounding rock mass of the tunnel.
4.2 The impact of cavern excavation unloading
The effect of tunnel excavation unloading on the effectiveness of the two support structures under single support conditions was not considered, and an analysis was conducted on this matter (Wenbo et al., 2008; Peng et al., 2009; Bai et al., 2014). The supportive characteristics of the two structures are reflected under dynamic conditions. The impact on the supportive structure needs to be considered, during the actual excavation of the cavern in engineering practice. The effectiveness of a single support structure within its strength range during tunnel excavation unloading needs to be investigated, under conditions of high ground stress. The method of softening modulus is adopted, in the numerical simulation method using ABAQUS software. The elastic modulus of the surrounding rock is reduced to 5 GPa. The softening of the elastic modulus is achieved through variable setting. The operation of the ABAQUS software is modified to activate the masonry or anchor elements, following the softening of the rock modulus and before the excavation step. The effect of excavation unloading on the support structure is taken into account, during the excavation of the cavern.
The ability of the two support structures to withstand the excavation unloading of the cavern is compared, during the analysis process. The anti-explosion effect of the support structure is studied to provide design guidelines, under dynamic-static coupling. The excavation unloading of the cavern is considered under the condition of single masonry support, as depicted in Figure 17. A large area of compressive damage (occupying 83.33% of the arch area) has already been observed on the cavern roof, with values ranging from 0.015 to 0.338, apart from the maximum compressive damage at the wall corners caused by stress concentration effects. The range of tensile damage values is relatively smaller compared to compressive damage (0.018–0.215). The distribution area is narrow, primarily concentrated within approximately 2.5 m on either side of the middle section of the wall base. The maximum tensile damage (0.215) is observed at both ends of this range. The excavation load of the 40 cm cavern cannot be borne by the C60 concrete lining. Further dynamic actions will only exacerbate the cracking of the lining, rendering single lining support impractical in deeply buried caverns.
[image: Structural analysis comparison of two shapes, labeled A and B, each depicting stress distribution with color gradients from blue to red. A shows higher stress at the arch's center, while B shows uniform stress distribution. Both include a color key for stress values.]FIGURE 17 | Tension and compression damage distribution of lining after cavern excavation. (A) Compression damage cloud map. (B) Tension damage cloud map.
The anchor support is employed with a pre-stress of 1000 kN. The excavation load of the cavern is borne during the trial calculation process. The time-history curve depicting the axial force variation over the entire length of the anchor is illustrated in Figure 18. The distribution of stress magnitude in the anchor has changed compared to Figure 13. The 7# anchor at the bottom of the wall is affected, by the excavation load of the surrounding rock of the cavern. The initial axial force is the largest, and the peak axial force is also the largest (with a magnitude of 1,668.18 kN). All anchors are operating within the strength range, as showed in Table 3. The increase in axial force is not at its maximum, under dynamic conditions. The largest increase is observed in the fourth anchor, with a relative rise of 192.30 kN compared to the initial axial force, representing an enhancement of 11.94%.
[image: Line graph depicting prestressed anchor cable axial forces in kilonewtons over time in seconds. Six lines show different data sets. All lines demonstrate varying levels of increasing trends, especially between 3.02 and 3.10 seconds.]FIGURE 18 | Axial force time-history curve of prestressed anchor cable.
The impact of excavation unloading on the support structure is taken into account, under conditions of deep excavation within the cavern. Extensive compression fractures have emerged within the masonry, leading to a decrease in load-bearing capacity. The degree of damage to the masonry is exacerbated by subsequent dynamic loading. The dynamic-static coupling effect cannot be borne by a single masonry support. The increase in axial force of the anchor is substantial during the excavation unloading phase. The coupled effect of unloading and dynamic loads of the cave excavation can be taken up, when the strength is effective. The true stress state of the support structure is reflected, when considering the unloading effect during cavern excavation. It is advantageous for proposing a reasonable support design concept.
The effectiveness of pre-stressed anchor support has been enhanced, as depicted in Figure 19 Considering the excavation and unloading of the chamber. The maximum horizontal displacement of the surrounding rock of the cavern is reduced to 0.0259 m. The maximum horizontal displacement of the chamber’s surrounding rock is reduced by 5.43%, compared to the condition without considering excavation and unloading of the chamber. The maximum vertical displacement decreases to −0.0242 m, indicating a reduction of 7.56%.
[image: Side-by-side contour plots labeled A and B show stress distribution around a cavity. Both plots use a color gradient from blue to red, indicating varying stress levels, with legend scales provided. Plot A shows a more symmetrical distribution compared to Plot B.]FIGURE 19 | Cloud map of surrounding rock displacement of cavern considering unloading condition of cavern excavation. (A) Horizontal displacement of cavern. (B) Vertical displacement of cavern.
The displacement at the apex of the arch significantly decreases when the effect of excavation and unloading of the chamber is taken into account in Figure 20, as compared to Figure 12. The initial displacement of the crown node decreases from −0.0165 m to −0.0116 m, representing a reduction of 29.70%. The peak displacement decreases from −0.0304 m to −0.02679 m, without considering excavation and unloading. The reduction reached 11.88%.
[image: Line graph showing vertical displacement of the crown joints in meters over time in seconds. The displacement decreases sharply from approximately 0.02 meters at 3.00 seconds to around -0.02 meters at 3.10 seconds, then stabilizes.]FIGURE 20 | Vertical displacement time-history curve of vault joints under the condition of cavern excavation and unloading.
The maximum velocity at the crown joint reaches −0.6294 m/s, as showed in Figure 21. Compared to the peak velocity of −0.5752 m/s when excavation unloading is not considered, increased by 9.40%. The vertical vibration velocity of the crown joint increases. The vertical vibration speed of the crown joint increases, when excavation and unloading of the cavern are considered. This is because the deformation of the surrounding rock is more effectively restrained by the pre-stressed anchor bolts. The energy transformed into deformation in the cavern is less, under the same dynamic loading conditions. More energy is converted into vibration of the surrounding rock in the cavern. The peak vibration velocity is higher.
[image: Line graph showing vertical vibration velocity of the crown joint in meters per second over time. The x-axis ranges from 3.00 to 3.50 seconds, and the y-axis from -0.8 to 0.4. The data dips sharply at 3.05 seconds then gradually recovers and stabilizes.]FIGURE 21 | Vertical vibration time-history curve of cavern vault joint under the action of prestressed anchor cable support.
5 CONCLUSION
Most studies are based on the combined effects of anchoring and lining. However, existing research is insufficient when it comes to analyzing the mechanisms of anchoring and lining support. It is more beneficial to study these methods individually to understand their respective mechanisms under blast loading. In practical engineering, this approach can help improve project quality, reduce costs, and minimize the likelihood of accidents. The blast resistance of underground caverns and the influence of support parameters on blast resistance have been studied, when lining and pre-stressing anchors are supported individually under dynamic and static coupling. The study focused on straight-walled arched caverns, chosen for their strong blast resistance. The influence of excavation unloading on the support structure was analyzed, under the condition of a burial depth of 500 m. The blast resistance of the cavern was examined, encompassing both singular concrete lining support and singular pre-stressed anchor bolt support. The following conclusions were drawn.
	(1) The deformation and vibration response of the surrounding rock in the cavern were studied. The effectiveness of singular concrete lining support without considering the excavation unloading was examined, along with the distribution of tensile and compressive damage in the lining. The research findings suggest that the damage is more severe, at both ends of the lining’s arch and at the bottom of the wall. The vibration velocity of the surrounding rock decreases with increasing liner thickness. The values and range of tensile and compressive damage in the lining are also reduced. The effect is more pronounced, when the energy of the explosion stress wave is absorbed by the concrete lining acting as “passive” support. The vibration response of the cavern is reduced and the restriction on surrounding rock deformation is stronger, when pre-stressed anchor bolts act as “active” support.
	(2) The anti-explosion support characteristics of single support structures were compared and analyzed, by varying support parameters. The research findings indicate that pre-stressed anchor bolts significantly limit the deformation capacity of surrounding rock, while lining is more effective in restricting the vibration response of surrounding rock. Enhancing the axial tension of the pre-stressed anchor bolts from 1,000 to 4000 kN, elevating the masonry thickness from 40 to 100 cm. The reduction in rock deformation ranges from 7.88% to 11.85% and from 6.57% to 9.40%. The decrease in vibration velocity ranges from 11.23% to 12.96% and from 16.07% to 24.54%. The support system limits the dynamic response capacity of the cavern within a certain range.
	(3) Extensive compression damage distribution is observed in the masonry during the excavation and unloading phase, under the coupling effect of static and dynamic loads. The blast-induced ground loading cannot be further sustained. However, the pre-stressed anchor bolts ensure operation within the strength range throughout the entire process, with no alteration in load-bearing capacity.
	(4) A conceptual design for the blast-resistant support of underground caverns has been proposed, under the influence of dynamic-static coupling. Increasing the thickness of the lining can reduce the vibration response of the cavern. Meanwhile, enhancing the pre-stressed anchor bolts within a certain range notably restricts the deformation response of the cavern. Therefore, pre-stressed anchor bolts should be employed as the supporting structure to bear the excavation and unloading loads of the cavern.
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To study the failure of red sandstone under extremely high stress during the service life of tunnels, an in-depth study was conducted on the mechanical properties of red sandstone under uniaxial loading and cyclic loading and unloading processes at different pH values using the AG-250kNIS electronic precision material testing machine and MTS815 mechanical testing machine. The results show that as the acidity and alkalinity increase, the peak stress under uniaxial loading decreases and the axial strain increases,The peak stress at failure is 9.40, 12.37, 7.18, and 5.36 MPa, respectively, accounting for 74.19%, 68.91%, 40.38%, and 36.21% of the uniaxial compressive strength; The number of cycles significantly decreases during cyclic loading and unloading fatigue failure, and the stress required for sandstone failure gradually decreases. The peak strength and elastic modulus of sandstone show a decreasing trend, indicating that the hydrochemical environment plays an accelerating role in rock degradation. During the cyclic loading and unloading process of sandstone, there is a continuous increase in dissipated energy and finally a sudden increase, the [image: Mathematical expression showing the fraction \( U^d / U \), where \( U^d \) is \( U \) raised to the power of \( d \), divided by \( U \).] and [image: Mathematical expression featuring "U" raised to the power of "e" divided by "U".] ratios at the peak point of sandstone in the natural state are 0.399 and 0.601, respectively, while the overall elastic energy shows an increasing trend; and a damage evolution model was established based on dissipative energy, which can better describe the degradation process of red sandstone.
Keywords: red sandstone, fatigue loading, tunnel safety maintenance, damage characteristics, hydro-chemical environment

1 INTRODUCTION
At present, in the critical period of international geotechnical engineering research, worldwide tunnel construction is at a stage where both new construction and maintenance are given prominence, and the exploration of rock mass development is continuously advancing, and the maintenance and preservation of existing tunnel structures have received unprecedened attention. The deterioration of sandstone under stress can have an impact on the deformation of tunnel lining, and different geological environments can also have certain impacts. Sandstone is subjected to loads such as vibration and machinery, as well as complex water environment erosion. The tunnel rock mass under extremely high stress is more prone to deterioration in mechanical properties under the erosion of the surrounding water environment, and the internal structure of the rock is often damaged, seriously threatening the safety and maintenance difficulty of tunnel engineering. Therefore, studying the fatigue failure of sandstone under the combined action of acid-base water environment and different load modes is of great significance.
There have been many research results on the mechanical properties of rocks in hydro-chemical environments. Wang et al. (2012) conducted corrosion tests on sandstone using different chemical solutions. The results showed that after soaking in aqueous chemical solutions, the elastic modulus, residual strength, and peak strength of the samples showed different rates of decrease. Different pH values and ion types had a significant impact on the macroscopic mechanical properties of sandstone samples. Chen et al. (2010) studied the effects of chemical solutions and stress on rocks and found that different pH values and peripheral pressures have an impact on the strength of rock samples. The results showed that the stronger the acidity and alkalinity of the solution, the lower the maximum strength and elastic modulus of the rock. Miao et al. (2016) and others simulated the changes in the physical parameters of granite and found that the higher the concentration of acid solution, the more obvious the deterioration of the rock. Researchers study the changes in the physical and mechanical properties of rocks under the influence of acidic and alkaline solution environments, as well as the effects of different hydro-chemical solutions on the internal structure of rocks (Wang et al., 2016; Liu et al., 2019; Liu et al., 2017). The mechanical properties of rocks under different stresses and frequencies under uniaxial and cyclic loads were studied using acoustic emission and CT methods. Rong et al. (2019). studied the influence of the hydro-chemical environment on the demonstration of microstructure through uniaxial experiments and mercury intrusion experiments; Li GL. et al. (2017). studied the timeliness of rocks under hydro-chemical action through uniaxial impact tests, and obtained the response law of rocks under dynamic compression after erosion; Pan et al. (2022). conducted chemical treatment on single fractured rocks, studied the deformation characteristics under uniaxial action, and proposed a constitutive model for coupled damage of hydro-chemical and fractured rocks. Yu et al. (2019). conducted mechanical tests on sandstone soaked in solutions with different pH values and subjected to freeze-thaw cycles, analyzing the mechanical degradation patterns and changes in porosity under the dual effects of hydro-chemical solutions and freeze-thaw cycles. Most of these studies have only considered the hydrochemical environment in which the rock mass is located, but rock masses under extremely high ground stress will exhibit new mechanical properties and failure characteristics, and there is currently little research on this aspect. Therefore, studying the dynamic mechanical properties and failure characteristics of rocks under extremely high stress in a hydrochemical environment can supplement the deficiencies in existing research on deep rock mechanics, and it is of great significance for deep excavation engineering.
Many scholars have also studied the physical properties of rocks under hydro-chemical corrosion conditions (Stewart and Val, 1999; Michael, 1998; Liu et al., 2018). This article takes tunnels under high stress in polar regions as the background and uses rocks eroded by hydro-chemical environments for uniaxial compression experiments and cyclic load experiments to analyze the mechanical properties and failure laws of sandstone under acidic and alkaline environments. This can provide a reference for the stability of tunnel rock masses and the evaluation and maintenance of tunnel safety.
2 TUNNEL CHARACTERISTICS AND ROCK SAMPLE PREPARATION
2.1 Extreme geological characteristics of the tibet railway
The geological terrain of the Tibet Railway is complex, with active plate structures along the line, dense active cracks, strong seismic intensity, significant terrain fluctuations, and prominent natural disasters. Great technical challenges are encountered in the construction and maintenance of tunnel systems. The compressive action of crustal tectonic movements on the strata leads to the complication of the rock mass structural stress field and a state of extremely high stress; rocks under high stress often exist in a critical state after excavation, and are highly susceptible to unstable failure when subjected to dynamic loads from high-frequency mechanical drilling, blasting, and other engineering activities. At the same time, the depth of the railway tunnel entering Tibet is relatively deep, and the problems caused by high stress should not be underestimated. Weak rock masses, will slowly deform under the action of geostress, damaging tunnel support measures, causing tunnel deformation, and even leading to tunnel abandonment. Due to the complex structure and active tectonic movements in the area where the tunnel is located, the lithology of the strata along the route is uneven and the rock quality is complex. The problems of hard rock explosions and soft rock deformation are prominent, and have a significant impact on deep-buried tunnels.
The underground water reserves along the tunnel are abundant. Under high stress, rocks along the tunnel are prone to fracture and deformation, and the fractures are well-developed, creating conditions for the accumulation of groundwater. Rich groundwater not only leads to sudden water surges, affecting tunnel construction and operation but also may cause tunnel collapse accidents.
2.2 Rock preparation and experimental design
2.2.1 Sample preparation
The red sandstone used in the experiment was taken from a sloping site in Chongqing, and each group of sandstone samples was drilled from the same rock mass to ensure the relative uniformity of the sandstone. The sandstone rock samples were complete, uniform in texture, and strictly processed into standard cylinders with a diameter of 50 mm and a height of 100 mm by relevant regulations and standards. Measure the wave velocity of the considered sandstone, exclude samples with relatively large differences, retain samples with smaller differences, and group sandstones with similar wave velocities to reduce differences between samples.
2.2.2 Experimental design
In actual rock engineering, the water in contact with the rock is a hydro-chemical solution, and the ion composition in the solution is very complex. To study the effects of acidity and alkalinity on sandstone, it is necessary to consider the complex water environment’s impact on the rock (Cui et al., 2008; Zhang et al., 2022; Zhang et al., 2021). To present the process of hydro-chemical corrosion in a short period, a solution with a pH value higher or lower than the engineering groundwater is used in the experimental design to accelerate the experimental process.
Divide all sandstones into 5 groups, set different pH values, and prepare solutions with pH 3, 5, 7, 9, and 11 using a 0.1 mol/L HCl and NaOH solution. The pH error of the solution is ±0.1. To minimize experimental errors, the experiment was conducted at an ambient temperature of 20°C, with a time-sealed immersion for 21 days to simulate water chemical erosion conditions. The experimental samples are sandstone soaked in solutions of pH 3, pH 5, pH 7, pH 9, and pH 11.
The uniaxial compression test was conducted using the AG-250kNIS electronic precision material testing machine, with displacement control and a loading rate of 0.05 mm/min. The cyclic loading and unloading test was conducted using the MTS815 testing machine. MTS815 is a multifunctional electro-hydraulic servo controlled rigid testing machine specifically designed for rock and concrete experiments, produced by MTS Systems in the United States. It can test the deformation and strength characteristics as well as mechanical index parameters of rocks and concrete under various mechanical actions (uniaxial and triaxial), meeting the requirements of mechanical loading testing in this experiment. The lower limit of the load on the pH7 sample was kept constant at 2.5 MPa, and the upper limit stress increased by 2.5 MPa with each cycle level in the cyclic fatigue mechanics experiment. Perform cyclic loading and unloading stress-strain experiments on other samples, where the lower limit stress increases by 0.25 MPa per cycle level and the upper limit stress changes by 1 MPa per cycle level. Until the sandstone is destroyed, each stage is cycled 30 times with a frequency of 1 Hz.
Under uniaxial compression and cyclic loading and unloading conditions, the test results are processed to analyze changes in deformation parameters, changes in sandstone failure, study the degradation of sandstone mechanical properties under different acidic and alkaline environments and analyze the degradation of sandstone under acidic and alkaline erosion environments.
3 ANALYSIS OF EXPERIMENTAL RESULTS
3.1 Comparison of specimens before and after erosion
Under the action of acid-base erosion, it has been observed that compared to the natural state, the surface of sandstone samples exhibits significant roughening and the formation of pores. This phenomenon indicates that the corrosive effect of acid-base solutions on rock samples progresses from the exterior towards the interior, with the outer surface of the rock samples being the first to undergo corrosion. Meanwhile, as the acidity and alkalinity of the solution increase, the surface roughness of the sample becomes more pronounced, the pore range expands, and the area increases (Meng et al., 2022; Yang et al., 2021). This indicates that the stronger the acidity and alkalinity of the solution, the higher the degree of corrosion the sample is subjected to.
3.2 Uniaxial compression test results and analysis
Based on the data obtained from uniaxial compression experiments, the mechanical parameters of sandstone soaked in different acid-base solutions were calculated, and the stress-strain curve of sandstone was plotted.
From the Table 1, it can be seen that the order of compressive strength of sandstone after soaking in different acid-base solutions is: natural state > pH7 > pH5 > pH9 > pH11 > pH3. As the acid-base properties of the solution increase, the compressive strength of the sandstone gradually decreases, and the peak strain of the sandstone gradually increases. The stronger the acidity and alkalinity of the solution, the greater the corrosive effect on sandstone. The corrosion effect of neutral to alkaline sandstone is weaker than that of an acidic environment. Macroscopically, it is manifested as a decrease in the rate of increase in peak strain of the sample compared to an acidic environment, but it has a certain corrosion effect on sandstone.
TABLE 1 | Mechanical parameters of sandstone soaked in different acid-base solutions.
[image: A table comparing mechanical properties of materials under different pH conditions. Columns list the state, peak intensity in MPa, peak strain percentage, and elastic modulus in GPa. Rows detail values for natural, pH3, pH5, pH7, pH9, and pH11 states, showing variations in these properties.]From Figure 7, it can be seen that the stress-strain curves of sandstone after soaking in different acidic and alkaline solutions exhibit consistency. According to the stress-strain curve of sandstone, it can be divided into three stages: compaction stage, elastic deformation stage, and yield failure stage (Li et al., 2020).
	(1) Compression stage: At the beginning, sandstone bears relatively small stress, and small internal cracks are compacted. The stress-strain curve shows an upward concave shape, and the early stress and strain show a non-linear relationship. As shown in the figure, the natural concave segment is very short and quickly enters the elastic strain stage (Guo et al., 2021). The concave stage of the sample corroded by acid-base solution has increased compared to the natural state. The length of the concave and convex stages on the curve is related to the development of internal defects and voids. After soaking in different acidic and alkaline solutions, the internal structure of sandstone is damaged, and the pores increase. Macroscopically, it exhibits different corrosion effects, so the compaction stage of sandstone increases to varying degrees. From the graph, it can be seen that the initial elastic modulus of sandstone samples in a natural state is greater than that of sandstone samples soaked in acid-base solutions. Based on the above, it can be seen that the porosity of sandstone samples increases after chemical solution corrosion.
	(2) Elastic deformation stage: In this stage, the primary cracks close, and the stress-strain curve can be approximated as a straight line, showing a linear variation (Han et al., 2013). After the sandstone is corroded, the elastic stage extends and the slope of the elastic stage decreases. After soaking in an acid-base solution, the elastic stage of the sandstone sample becomes shorter than in its natural state. With the increase of acid-base properties, the yield stress of the sandstone sample gradually decreases, and the sample enters the yield stage earlier, leading to greater degradation. Rock can be treated with solutions of different acidity and alkalinity, and the degree of deterioration can be reflected by the elastic modulus. The stronger the acidity and alkalinity, the more significant the degradation, the smaller the elastic modulus, and the neutral environment also has a certain effect on sandstone.
	(3) Yield failure stage: At this stage, cracks begin to develop in sandstone, and small cracks gradually develop. The stress-strain curve shows a downward convex shape (Liu et al., 2014). After being subjected to acid-base environments, the yield failure stage of sandstone is more pronounced than in its natural state. In the natural state, the sample quickly reaches its peak after the elastic stage, while the sample without treatment in the yield stage is obvious. The peak strain of the processed sample has increased compared to the natural state, and the degree of degradation of the elastic modulus has also increased. In the failure stage, the stress drop is significant, and the failure rate of the specimen in its natural state is greater than that of the treated specimen. Cracking often occurs during destruction, and the stress decreases in a cliff-like manner without residual strength.

[image: Interior of a dilapidated building with exposed structural beams and rubble on the ground. Light filters through gaps, illuminating scattered debris and broken materials.]FIGURE 1 | Rock burst hazards.
[image: Two people standing in a large underground cave or quarry, illuminated by overhead lights. The walls and ceiling feature rough, textured rock formations, creating a dramatic, cavernous interior. One person is pointing upward.]FIGURE 2 | Tunnel scrapping.
[image: Three rows of images display brown cylindrical objects. The top row shows three different angles labeled pic3, pic7, and pic11. The bottom row displays corresponding circular shapes or impressions on a flat surface, labeled pic5, pic7, and pic11. The background is a light blue.]FIGURE 3 | Rock samples soaked in different pH solutions.
[image: Equipment in a laboratory setting performs a test involving a central metallic component under a hydraulic press. A digital display with wires is positioned on the right side.]FIGURE 4 | AG-250kNIS electronic precision material testing machine.
[image: A tensile testing machine in a laboratory setting, featuring a large vertical frame with a loaded sample between grips. It is equipped with digital displays and control panels.]FIGURE 5 | MTS815 test equipment diagram.
[image: Six cylindrical abrasive pads are shown in two rows, each with a numeric label below: p40, p60, p80, p120, p180, and natural. The abrasiveness appears to decrease from p40 to p180, with "natural" being distinct.]FIGURE 6 | Deformation and failure diagram of sandstone under uniaxial compression.
[image: Line graph showing stress versus axial displacement for various materials: pH3, pH5, pH7, pH9, pH11, and a natural specimen. Stress increases with displacement across three periods: compaction, linear deformation, and yield failure. The pH11 line reaches the highest stress.]FIGURE 7 | Complete stress-strain curve under uniaxial compression.
[image: Bar chart showing peak stress and elastic modulus values against pH levels. Blue bars represent peak stress in megapascals, while green bars indicate elastic modulus in gigapascals. A line chart overlays the bar chart, connecting data points for peak stress.]FIGURE 8 | Changes in peak stress and elastic modulus of sandstone.
In its natural state, the peak stress of sandstone is 27.37 MPa. After soaking in solutions with pH values of 3, 5, 7, 9, and 11, the peak stress of sandstone is 12.68, 17.95, 20.99, 17.78, and 14.80 MPa, respectively, which is 53.67%, 34.41%, 23.31%, 35.04%, and 45.92% lower than that of natural sandstone. This indicates that the acid-base solution has a significant impact on the damage and deterioration of sandstone, and has created more micropores inside the sandstone, accelerating its degradation. The peak strain of the sample in the neutral solution has increased compared to the natural state, but the increase is smaller than in other solutions, indicating that the neutral solution can also affect the sample. Meanwhile, by comparing the experimental results under pH 3, pH 5, pH 9, and pH 11 conditions, it was found that acidic solutions have a greater impact on the mechanical properties of rocks than alkaline solutions.
3.3 Results and analysis of cyclic loading and unloading tests
3.3.1 Stress-strain relationship
The stress-strain curve obtained from cyclic loading and unloading mechanical tests with varying upper and lower limits on sandstone is shown in Figure 9.
[image: Five line graphs labeled A to E depict stress-strain relationships. Each graph shows increasing stress in megapascal against strain, with variations indicating different materials or conditions. Graphs B, D, and E include additional curves or fluctuations, possibly showing complex behaviors or testing conditions.]FIGURE 9 | (A) Stress-strain curve at pH3. (B) Stress-strain curve at pH5. (C) Stress-strain curve at ph7. (D) Stress-strain curve at pH9. (E) Stress-strain curve at pH11.
From the Figure 9, it can be seen that under neutral conditions, the formation of internal fractures in sandstone is not obvious, and only a small amount of reaction occurs. Under weakly acidic conditions, the mechanical degradation of sandstone is not significant. This is because sandstone undergoes chemical reactions in acidic environments to inhibit further degradation of red sandstone, resulting in a less significant increase in peak strain. After corrosion by an acidic solution, it can be observed that due to the strengthening of acidity, the effect on sandstone becomes stronger, with a significant increase in internal pores and a significant decrease in elastic modulus. Under weakly alkaline conditions, the strain of sandstone has undergone significant changes, with the alkaline situation becoming more pronounced. This is due to reactions occurring inside the rock, increasing internal pores. The comparison results show that with the increase of the pH value of the soaking solution, the compaction and yield sections of the rock sample show a significant slowdown and elongation compared to neutral conditions, and the number of cycles of sandstone fracture decreases, leading to a decrease in peak strength.
Overall, the stress-strain curves of red sandstone in various states maintain high consistency, with significant changes compared to the uniaxial compression curve, indicating that the cyclic loading and unloading scheme promotes the development of internal cracks in the sample; After repeated loading and unloading and the coupling effect of acid-base solution, the deterioration of the rock sample becomes more pronounced (Li JC. et al., 2017).
3.3.2 Peak stress and peak strain
The peak stress and peak strain of samples soaked in different pH values are shown in the following figures.
From Figure 10, it can be seen that the sandstone soaked in pH 7 solution undergoes failure at the ninth level of cyclic loading. At the time of failure, the maximum stress is 26.18 MPa, accounting for 95.6% of the uniaxial compressive strength. From Figure, it can be seen that the sandstone undergoes failure at the seventh level of loading when soaked in pH 3, pH 5, pH 9, and pH 11 solutions. The maximum stress at failure is 9.40, 12.37, 7.18, and 5.36 MPa, respectively, accounting for 74.19%, 68.91%, 40.38%, and 36.21% of the uniaxial compressive strength. The peak stress of sandstone soaked in different solutions decreased, which is due to the promotion of internal crack propagation under multiple loading and unloading actions, resulting in a decrease in sample strength. Strong acidic and alkaline environments have a more significant impact on the strength degradation of sandstone and have a greater impact on its strength characteristics.
[image: Bar chart depicting peak stress in Megapascals (MPa) at various pH values. The highest peak stress, around 25 MPa, occurs at pH 7. Lower values are shown at other pH levels, ranging from 5 to 10 MPa.]FIGURE 10 | Relationship between solution pH value and peak stress.
In neutral conditions, the peak stress under uniaxial compression is 27.37 MPa, and under cyclic loading and unloading conditions, the peak stress is 26.18 MPa, which is a decrease of 4.34% compared to uniaxial compression. This indicates that under loading and unloading, the yield stress gradually decreases and the sample strength slightly decreases.
From Figure 11, it can be seen that the solutions with pH = 3 and pH = 11 have the greatest impact on the peak strain of sandstone. This is because, in strongly acidic and alkaline environments, the degradation of the sample accelerates, leading to the gradual development of pores and an increase in strain.
[image: Bar chart showing peak strain as a percentage versus pH value from 3 to 11. Peak strain decreases at pH 5, then rises, peaking at pH 11. Each bar has a green marker line.]FIGURE 11 | Relationship between solution pH value and peak strain.
3.3.3 Axial strain and loading unloading relationship
The axial strain and loading-unloading relationship of sandstone are shown in Figure 12.
[image: Line graph showing axial strain percentage versus number of cycles for different pH levels: pH 3, pH 5, pH 7, pH 9, and pH 11. Strain increases with more cycles across all pH levels, with pH 3 experiencing the highest strain and pH 11 the lowest.]FIGURE 12 | Relationship between axial strain and loading and unloading cycles.
As the number of loading and unloading increases, the samples soaked in different solutions show a linear growth trend. When the number of cycles is small, the axial strain remains at a lower level. As the load is applied and the number of loading and unloading increases, the axial strain rate is faster than before.
After soaking in an acid-base solution, the maximum axial strain of sandstone in each cycle stage is greater than that in a neutral environment. As the number of cycles increases, the axial strain continuously increases.
By comparing the two test methods of uniaxial loading and graded cyclic loading and unloading, it was found that during the cyclic loading and unloading test, the peak strength of sandstone showed a decreasing trend with the increase of the acidity and alkalinity of the soaking solution. The failure stress of sandstone under pH 3, pH 5, pH 9, and pH 11 solution soaking was 63.87%, 52.44%, 72.41%, and 79.56% lower than that of natural sandstone, respectively. Comparing the results of uniaxial compressive strength tests, it was found that the peak stresses of sandstone after soaking in pH 3, pH 5, pH 7, pH 9, and pH 11 solutions were 12.68, 17.95, 20.99, 17.78, and 14.80 MPa, respectively, which were 53.67%, 34.41%, 23.31%, 35.04%, and 45.92% lower than natural sandstone.
In the same acidic and alkaline environment, the peak strength of sandstone in cyclic loading and unloading tests is lower than that in uniaxial compression tests. This is due to the chemical corrosion effect of acid-base solutions on sandstone, and the fatigue damage caused by cyclic loading and unloading tests on sandstone, which accelerates the failure of sandstone. Macroscopically, the strength of sandstone is significantly reduced compared to its natural state (Shen et al., 2010).
4 ANALYSIS OF ENERGY CHARACTERISTICS UNDER CYCLIC LOADING AND UNLOADING
4.1 Calculation of energy for sandstone during the cycling process
In the stress-strain curve of cyclic loading and unloading, the loading curve, the enclosed area enclosed by the loading curve, vertical line, and horizontal axis is the total input energy; The enclosed area enclosed by the unloading curve, vertical line, and horizontal axis is the elastic performance, which is the released elastic performance stored in the rock; The area of the hysteresis loop enclosed by the loading curve, unloading curve, and horizontal axis is the dissipated energy density, which is the energy consumed by the internal damag e and plastic deformation of the rock.
[image: Formula illustrating the interaction potential \(U\) as the sum of two components: \(U^{s}\) and \(U^{r}\), labeled as equation (1).]
In the formula: [image: It appears you tried to include an image, but it did not come through. Please try uploading the image again or provide a URL, and I will help create the alternate text.] represents dissipated energy, [image: I'm unable to view images directly. Please upload the image or describe it further for assistance.] represents elastic performance.
The variation of the energy of sandstone under cyclic loading and unloading with the number of cycles is shown in Figure 10. In the early stage of cyclic loading, almost all input energy is converted into elastic energy and stored in the rock. At this stage, the damage to the rock is relatively small, and the dissipated energy is also relatively small. The total energy curve overlaps with the elastic energy curve, and the dissipated energy is almost zero; When rock damage occurs and cumulative damage increases, input energy is consumed, and the total energy curve does not coincide with the elastic energy curve, resulting in a gradual increase in dissipated energy. As the number of cycles increases, the dissipation energy grows faster and faster. At the beginning of rock loading, the energy change is not significant, and with the increase of stress, the dissipated energy rapidly increases, resulting in more severe damage; The rapid increase in dissipated energy in the final stage indicates an increase in the energy required for damage, leading to a greater degree of rock failure.
The energy variation curves of sandstone with different pH values and cyclic levels are shown in Figure 13.
[image: Five graphs labeled A to E show energy data over cycles. Each graph has black, red, and blue lines representing input, elastic, and dissipated energy, respectively. The x-axis shows the number of cycles, and the y-axis shows energy values. The graphs illustrate stepwise increases in energy.]FIGURE 13 | (A) Energy variation of sandstone at pH3. (B) Energy variation of sandstone at pH5. (C) Energy variation of sandstone at pH7. (D) Energy variation of sandstone at pH9. (E) Energy variation of sandstone at pH11.
Table 2 shows the strain energies of red sandstone at peak points under different pH water chemical solution states. As shown in the table, the strain energy of sandstone after corrosion by different pH water chemical solutions shows varying degrees of reduction compared to the natural state, indicating that different water chemical solutions have a significant impact on the strain energy of sandstone samples. According to numerical calculations, the [image: Mathematical expression with a fraction, where the numerator is \( U^d \) and the denominator is \( U \).] and [image: Mathematical expression showing "U" raised to the power of "e", divided by "U".] ratios at the peak point of sandstone in the natural state are 0.399 and 0.601, respectively. This indicates that most of the energy absorbed by sandstone before reaching the peak stress is stored in the form of elastic strain energy, and only a small portion of the energy is consumed by internal damage or deformation. The stored large amount of elastic energy is rapidly released after the peak stress, causing the stress of the specimen to rapidly decrease, leading to the rapid expansion of internal cracks until failure. After being corroded by a hydrochemical environment, the percentage of elastic energy stored in sandstone in input energy decreases, and different pH values have different effects on it.
TABLE 2 | Energy and energy proportion at peak points.
[image: A table displaying pH values (3, 5, 7, 9, 11) with corresponding columns for values of \(U\), \(U^e\), \(U^d\), \(U^e/U\), and \(U^d/U\). Each pH level has a row of associated numerical values under these categories.]TABLE 3 | Fitting relationship between cumulative damage and relative cycle during rock sample deformation process.
[image: Table displaying data with columns: pH, formula \( D = 1 - [1 - (n/N_f)^a]^b \), and \( R^2 \). Rows are for pH values 3, 5, 7, 9, 11. Values for \( a \) range from 2.45255 to 2.85641, \( b \) from 0.59511 to 0.78327, and \( R^2 \) from 0.9968 to 0.9997.]The cumulative dissipated energy in this context refers to the total energy consumed by the rock specimen during the process of cyclic loading due to internal damage, plastic deformation, and crack propagation. This energy is not fully released during the unloading process but is dissipated as heat, sound, or other forms of energy, leading to the gradual degradation of the material’s performance. In fatigue testing, the cumulative dissipated energy is a crucial parameter as it is directly related to the material’s fatigue life and the accumulation of fatigue damage. The higher the cumulative dissipated energy, the more severe the fatigue damage to the material, and consequently, the shorter its lifespan. The energy curve during the loading phase is shown in Figure 14. As the level of cyclic loading increases, the input energy is converted into elastic performance and dissipated energy, and the proportion of dissipated energy increases, leading to an increase in cumulative damage and an increase in dissipated energy. During the fatigue deformation process of rocks, most of the energy is dissipated, leading to the full development of internal damage.
[image: Five line graphs display the relationship between energy metrics and the number of cycles. Each graph shows input energy, elastic energy, dissipated energy, and cumulative dissipated energy, all measured in units of ten to the power of four megajoules. The x-axis represents the number of cycles. The graphs demonstrate a general upward trend in all metrics with increasing cycles, with varying steepness among different graphs.]FIGURE 14 | Relationship between energy and number of cycles at different pH values.
4.2 Analysis of damage evolution characteristics of sandstone
Rock is a typical brittle material with non-uniformity, discontinuity, and nonlinear characteristics. Under cyclic loading, the mechanical properties of rock materials gradually weaken and their strength gradually decreases, exhibiting a process of gradual damage. Theoretical analysis of the damage evolution process of rock materials and prediction of rock failure trends plays an important role in evaluating the stability of engineering rock masses. Damage refers to the phenomenon that under monotonic or cyclic loading, the micro defects of a material weaken its progressive cohesion, leading to the failure of volume units and the deterioration of the macroscopic mechanical behavior of the material (Wang et al., 2022).
For rock damage caused by fatigue loading tests, a fatigue damage variable that reflects the cumulative damage evolution during the fatigue loading process is the key to predicting fatigue instability. Different physical and mechanical parameters are used to define damage variables, such as ultrasonic velocity, elastic modulus, acoustic emission, density, hardness, resistance, dissipation energy, etc. At present, most damage variables defined from an energy perspective are based on dissipated energy. Xu et al. (2019) believe that the accumulation of dissipated energy can characterize the accumulation of damage, and define the ratio of the accumulated dissipated energy in the i-cycle to the accumulated dissipated energy in the final state of the damage variable as the damage variable; Yang et al. (2019) characterized the current damage development of rocks using the energy consumption ratio of the i-th cycle. Zhang et al. (2017) defined the ratio of the accumulated dissipated energy Nd in the i-cycle to the total input energy in the final stage as the damage variable. The calculation method for the damage D of sandstone in this article adopts the dissipative energy method: according to the principle of energy conservation, the damage and failure of materials are caused by the continuous accumulation of dissipative energy. The ratio of cumulative dissipative energy to cumulative total strain energy is defined as the damage D.
The formula for calculating cumulative dissipated energy is:
[image: Mathematical equation displaying \( U_D(t) = \sum_{k=1}^{K} {u^k_D} \), with the equation numbered as (2).]
In the formula: [image: The image shows the mathematical expression \( U_D(i) \) in italicized font.] is the accumulated dissipated energy after experiencing i cycles; [image: Mathematical expression depicting "U" with subscripts "D" and superscript "k".] is the dissipated energy at the k-th cycle.
The formula for calculating the cumulative total strain energy is:
[image: The image contains a mathematical equation: \( I(\tilde{u}) = U_{P} + U_{D}(f) \), labeled as equation (3). This formula appears to involve variables and functions, with U representing terms associated with P and D.]
In the formula: [image: Curved letter "U" followed by parentheses containing the letter "i", representing a function notation.] is the cumulative total strain energy after undergoing i cycles; [image: Mathematical expression showing \( U_E^i \), where \( U \) is a variable, \( E \) is a subscript, and \( i \) is a superscript.] is the elastic strain energy under the i-th cycle.
[image: Equation labeled as number four: \( D(t) = \frac{U_D(t)}{U(t)} \).]
In the formula: [image: Sure, please upload the image so I can generate the alternate text for you.] is the damage variable of sandstone when loaded to the i-th time; [image: The expression \( U(t) \) represents a mathematical function or variable dependent on time \( t \).] is the cumulative total strain energy after the last level of loading.
Calculate the damage variable at the end of each cycle loading level and draw a damage evolution diagram as shown in Figure 15. The results indicate that rock damage is greater after being corroded by a hydrochemical environment. The fitting curve shows a trend of stable increase followed by an accelerated increase, indicating that hydrochemical environmental treatment has a significant impact on the fatigue life of rocks. Propose a new damage accumulation model based on energy dissipation and release to describe the degradation process of red sandstone. The form of the proposed function is:
[image: An equation is shown: \( D = 1 - \left[1 - (n/N)^a\right]^b \), labeled as equation (5).]
In the formula: D represents the damage caused by cyclic loading, N represents the number of loading cycles, [image: It seems there's an error in displaying the image. Please upload the image file or provide a URL so I can help generate the alternate text.] is the fatigue life, and a and b are material-related parameters. It can be seen that there is a high correlation between D and the relative cycle.
[image: Five line graphs display accumulated damage versus relative cycles for various values of α/β. Each graph features blue curves representing the fitting curve of damage and black dots for accumulated damage. The graphs are labeled: (a) α/β = 3, (b) β/τ = 5, (c) α/β = 7, (d) α/β = 9, and (e) α/β = 11. All graphs show a similar upward curve with data points aligning closely to the fitted line.]FIGURE 15 | The variation of sandstone damage variables with cyclic level at different pH values.
As the cyclic level increases, the slope of the curve gradually increases, indicating that the degree of sandstone damage is getting higher and the damage growth is getting faster, which can better reflect the damage evolution process of sandstone under cyclic loading and unloading. During the cycling process, damage gradually accumulates and rapidly increases as damage approaches.
4.3 Sandstone failure mode
Figure 16 shows the failure mode of sandstone samples under hydrochemical erosion conditions. As shown in the figure, the failure modes of sandstone under hydrochemical erosion conditions are different. Under natural conditions and pH = 7, sandstone specimens mainly undergo splitting failure, with macroscopic cracks penetrating the specimen along the central axis; When pH = 5, the sandstone sample begins to exhibit shear failure, with macroscopic cracks forming a shear angle of approximately 75° with the central axis; When pH = 3, the sandstone sample undergoes X-shaped failure, with shear failure particularly evident at the top and bottom of the sample; When pH = 9, the sandstone sample mainly exhibits shear failure, with macroscopic cracks forming a shear angle of about 85° with the central axis; When pH = 11, the sandstone sample undergoes shear and splitting failure, and the sample is more severely damaged. Therefore, with the increase of acid-base strength, the failure of sandstone samples transitions from axial splitting failure to shear failure, and even fracture occurs.
[image: Six cylindrical columns of compacted material showing varying degrees of cracking and texture. Each column is labeled with identifiers: pgf4, pgf5, pgf6, pgf7, pgf8, pgf111. The surface texture appears rough, with visible cracks and splits in different patterns.]FIGURE 16 | Failure forms of sandstone samples under hydrochemical erosion conditions.
5 DISCUSSION
The specimen was subjected to uniaxial loading and cyclic loading and unloading experiments to study the rock failure process under high stress. In actual tunnel operation, rocks are subjected to dynamic loads such as blasting and mechanical vibration, as well as corrosion from chemical water environments. The stress disturbance acting on rocks is not constant, but variable, so the applied load is not a constant stress load, but a graded cyclic load with varying upper and lower limits. We studied the stress-strain relationship and found that corrosion by aqueous chemical solutions can affect the strain of rocks. The stronger the acidity and alkalinity, the greater the axial strain. We studied the characteristics of energy dissipation and release and found that hydrochemical solutions have a significant impact on the mechanical properties and energy evolution characteristics of rocks. Rocks are more prone to structural damage under acid-base corrosion conditions. The input energy required for failure of the processed rock decreases, and the proportion of dissipated energy continues to increase. Therefore, the damage variable is defined based on the input energy dissipated energy. From the rock failure morphology, it can be seen that the stronger the acidity and alkalinity, the higher the degree of fracture, and the higher the dissipation energy, which promotes the increase of cracks. The failure mode of the corroded specimen ultimately resulted in multiple axial cracks, and after chemical corrosion, the failure characteristics and methods were basically the same.
The damage characteristics of rocks under multi-stage cyclic loading and unloading conditions are different from those of Li et al. (2021), Miao et al. (2021), and others. In a cyclic loading level, the damage steadily increases. In the final loading stage, there is a sudden increase in damage accumulation. The damage of rock under multi-stage cyclic loading can be divided into two stages. In the first few loading stages, microcracks are compacted, and most of the input energy is converted into elastic energy for storage. The energy consumed by internal damage or deformation only accounts for a small part. The stored large amount of elastic energy is rapidly released, causing the stress of the sample to rapidly decrease, leading to the rapid expansion of internal cracks until failure. With the development of cracks, the dissipation energy increases, the crack evolution is obvious, and the rate of increase accelerates. So when rocks approach failure, the dissipated energy transforms from a steady increase to a rapid increase, which is a precursor to rock fracture. With the increase of loading and unloading times, the expansion and connection of cracks, the energy of crack propagation and penetration increases faster, and the elastic energy is transformed into dissipated energy.
The evolution of rock damage in this article is different from the three-stage trend of deceleration accumulation, stable accumulation, and rapid accumulation proposed by Li X W. The rock damage model based on energy dissipation and release established in this article takes into account the effect of chemical erosion on rocks and the accumulation of damage under cyclic loading. The results indicate that the model is in good agreement with experimental data. The loading frequency of the rock in this experiment is constant, and the upper and lower limits of cyclic stress change. In further research, the energy dissipation of rocks under frequency variation conditions and their degradation mechanisms in more complex hydrochemical environments should be studied.
6 CONCLUSION
This article combines the characteristics of tunnel rock mass under high stress to study the mechanical properties of red sandstone under uniaxial loading and cyclic loading and unloading conditions. The main conclusions are as follows:
	(1) Explored the mechanical properties of red sandstone under uniaxial loading in acidic and alkaline environments. The peak stresses of sandstone soaked in pH 3, pH 5, pH 7, pH 9, and pH 11 solutions were 12.68, 17.95, 20.99, 17.78, and 14.80 MPa, respectively, which were 53.67%, 34.41%, which were lower than natural sandstone.
	(2) Explored the fatigue characteristics of red sandstone under cyclic loading and unloading in acidic and alkaline hydrochemical environments. Sandstone underwent damage at the 7th level of loading after soaking in pH 3, pH 5, pH 9, and pH 11 solutions. The maximum stresses during failure are 9.40 MPa, 12.37, 7.18, and 5.36 MPa, respectively. As the pH of the soaking solution increases, the number of cycles of sandstone fracture decreases, and the peak strength also decreases. Under the coupled uniaxial and cyclic loading and unloading conditions of hydrochemical solutions, the degradation of sandstone gradually becomes significant with the increase of acidity and alkalinity, and the number of cycles, accelerating the development of pores in the sample. The fatigue damage caused by cyclic loading and unloading results in higher uniaxial compressive strength than uniaxial loading and unloading.
	(3) Hydrochemical erosion has a significant impact on the energy evolution characteristics of sandstone. The total input energy, elastic energy, and dissipated energy change with pH value, and an increase or decrease in pH will cause them to decrease, and the energy gradually decreases with the enhancement of acidity and alkalinity.
	(4) Establishing a sandstone damage degree model under hydrochemical erosion conditions can better reflect the damage degree of sandstone caused by acid-base and cyclic loads, and reflect the process of damage accumulation.
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Toppling deformation can be classified into deep toppling (DT) and shallow toppling (ST) based on deformation mechanisms and development depth of rock mass under different soft and hard rock conditions. Currently, the toppling zoning indicators and quantitative criteria are not uniform, and human factors have a significant influence on the toppling zoning indicators. Summerizing and analyzing the existing toppling cases and toppling zoning researches, this study selects rock layer toppled angle, maximum tension within layer, unit tension within layer, and longitudinal wave velocity as indicators for toppling zoning. Considering the differences in the characteristics of deep toppling (DT) and shallow toppling (ST), the quantitative criteria for the deep and shallow toppling zoning indicators are determined respectively. This study employs the Analytic Hierarchy Process (AHP) and fuzzy comprehensive evaluation method to establish toppling zoning evaluation models. The deep toppling dam site slope at Miaowei hydropower station and the shallow toppling bank slope of Xingguang Ⅲ formation at Xiluodu Hydropower Station were tested, respectively. These results are compared with toppling zoning of field surveys to verify the rationality and applicability of the models. This achievement holds significant reference value for the toppling zoning of rock masses in engineering slopes, especially in the construction, development, and engineering management of toppling slopes.
Keywords: toppling failure, antidip rock slope, toppling zoning, evaluation method, soft and hard rock conditions

1 INTRODUCTION
Toppling deformation has been found in the construction of numerous engineering projects such as mines, highways, and hydropower (Cruden and Hu, 1994; Tamrakar et al., 2002; Liu et al., 2016; Ning et al., 2019; Sardana et al., 2019; Zhu et al., 2020; Tao et al., 2021; Zhao et al., 2021; Zhu et al., 2021; Cui et al., 2023). As a typical form of slope failure (Goodman, 2013; Hungr et al., 2014; Huang et al., 2017), toppling deformation failure is increasingly found in many places, especially in hydropower projects (Zhang et al., 2015; Liu et al., 2016; Xie et al., 2018; Cai et al., 2019; Xia et al., 2019; Tu et al., 2020; Haider et al., 2023; Cai et al., 2024; Ren et al., 2024), such as the left bank slope of the Jinping I Hydropower Station, the Yinshui Gully slope of the Xiaowan Hydropower Station, the dam site slope of the Miaowei Hydropower Station, the right dam shoulder slope of the Huangdeng Hydropower Station, the left bank slope of the Laxiwa Hydropower Station, the bank slope of the Shiziping Hydropower Station, the bank slope of the Xiluodu Hydropower Station, and so on. Many scholars have conducted in-depth research on its influencing factors, deformation and failure mechanisms, and occurrence conditions (Huang, 2007; Huang and Li, 2011; Huang et al., 2017; Xia et al., 2019; Xia et al., 2023; Zhang et al., 2023; Zhao et al., 2023; Zhou et al., 2024).
Huang (2007), Huang and Li 2011, Huang et al. (2017) summarized numerous toppling slope cases, and classified toppling deformation into three types: deep toppling (Figure 1A), shallow toppling (Figure 1B), and complex type toppling from the perspective of genetic mechanisms and evolutionary processes. Shallow toppling (ST) rock masses usually undergo minor toppling deformation, followed by the fracturing of rock layers. It often occurs in hard-layered rock masses or hard blocky rock masses, exhibiting primarily “brittle” fracturing of rock layers. After rock layers fracturing, toppling fracture surfaces are formed, with most of them remaining in the shallow parts of the slope. Shallow toppling generally develops to depths of tens of meters, typically within 100 m. Deep toppling (DT), on the other hand, typically occurs in inclined to near-vertical, medium to thin layers, low-strength metamorphic rock layers and soft rocks and is characterized by “flexible” deformation features. These toppling deformations occur over a long geological history, characterized by depths typically exceeding 100 m (Huang et al., 2017; Cai et al., 2019; Cai et al., 2022).
[image: Diagram with two panels labeled A and B, illustrating geological structures. Both panels display bedding surfaces and toppling fracture surfaces marked by lines and arrows. Panel A includes additional intersecting lines, while Panel B highlights clearer fracture lines. Both diagrams use dashed and solid lines for different surface demarcations.]FIGURE 1 | Schematic diagram of toppling model. (A) deep toppling model; (B) shallow toppling model.
The degree of toppling deformation in rock masses varies depending on their different geological origins, and when rock masses of the same type undergo varying degrees of toppling deformation, their engineering characteristics also exhibit significant differences. Therefore, it is of practical significance to define distinct deformation intensity zones for rock masses prone to toppling, particularly in the context of construction, development, and engineering treatment of toppling slopes.
Through precise zoning of toppling deformation, it is possible to better understand the toppling characteristics and deformation degree of rock masses, enabling the implementation of appropriate engineering measures to ensure slope stability and safety. Rock masses with different degrees of toppling deformation may require different engineering designs and engineering treatment methods, thus precise zoning of toppling rock masses can effectively reduce engineering risks and enhance the success rate of engineering projects. In summary, precise toppling zoning of rock masses is of significant importance for the construction and management of engineering slopes, ensuring the safety and sustainability of such projects.
Regarding the zoning of the intensity of rock mass toppling deformation, there is currently a lack of mature zoning evaluation system, and even fewer researches have been conducted on the quantitative assessment of such zoning. Huang (1983) divided the toppled rock mass into the main toppling deformation zone and the traction failure zone based on the size of the dip angle of the toppled rock layers and the degree of tensional deformation characteristics. Hong (1994) categorized the toppled rock mass into strong toppling and slight toppling based on the dip angle of the toppled rock layers, weathering and fragmentation degree, and the filling status of tension cracks. Li et al. (2004) classified the toppled rock mass into the toppling loose zone, bending fracture zone, and transitional zone based on the degree of weathering and the development characteristics of structural planes. Li et al. (2007) selected the dip angle of the toppled rock layers, maximum tension, unit tension, and longitudinal wave velocity as zoning indicators based on the development of deformation and fracture in the toppled rock mass and its engineering geological characteristics. They divided the toppled deformation rock mass into extremely strong toppling zone (A), strong toppling zone (B1), and weak toppling zone (C). Bai et al. (2009) used the dip angle of the toppled rock layers, maximum tension, unit tension, and longitudinal wave velocity as quantitative indicators to classify the intensity of toppling deformation in the dam shoulder rock mass of Miaowei Hydropower Station. Liu et al. (2017) conducted toppling deformation zoning based on changes in the pre-toppling and post-toppling dip angles, categorizing it as slight toppling, moderate toppling, and strong toppling. Huang et al. (2017) conducted a comprehensive analysis based on case studies. They used four quantitative indicators: rock layer toppled angle, maximum tension, unit tension, and longitudinal wave velocity, as well as three qualitative indicators: deformation and fracture characteristics, unloading characteristics, and weathering characteristics. They also considered rock mass structure types, rock mass categories, and stability coefficients to refine the classification of rock mass toppling into extremely strong toppling (zone A), strong toppling (zone B), weak toppling (zone C), and non toppling (zone D). Zhao et al. (2021) conducted a case study on the identification and toppling zoning of a deep-seated metamorphic rock slope based on this. Cai et al. (2014) and Zheng et al. (2018) calculated and analyzed the fracture surface and the toppling mechanical zoning of its upper rock mass based on the limit equilibrium theory of cantilever beam. The toppling deformation rock mass was divided into toppling zone, sliding zone, and toppling-sliding zone.
From the above, it can be concluded that the toppling zoning indicators extracted in these studies generally provide a visual reflection of the degree of toppling deformation in rock masses and are relatively easy to obtain in practical engineering. However, these indicators are all extracted for specific projects and lack standardization. Some zoning systems that rely on a single indicator can be influenced by external factors. Therefore, establishing a quantitative standard for toppling zoning that is applicable to various situations is of significant importance for engineering design and construction. In this study, based on the analysis and summary of existing data on rock mass toppling deformation, we propose toppling zoning indicators for rock mass toppling deformation. We also establish quantified criteria for each indicator and develop a quantitative assessment model for rock mass toppling zoning, providing a significant reference for the toppling zoning of engineering slopes.
2 TOPPLING CASES
Previous studies have shown that as key controlling factors influencing the development of toppling deformation, in addition to the spatial relationship between rock layer orientation and slope surface, the rock soft and hard conditions are also crucial factors influencing the development of toppling slopes. The deep toppling (DT) primarily occurs in geological formations dominated by soft rocks, including layers with certain thicknesses of hard rocks or interlayers (Figure 1A). The shallow toppling (ST) primarily occurs in hard rock formations, such as carbonate rock formations, platy or blocky igneous rock formations subjected to jointing and fracturing (such as thin to moderately thick limestone, sandstone, and densely jointed granite) (Figure 1B). The failure characteristics of deep toppling (DT) and shallow toppling (ST) are described through case studies.
2.1 Shallow toppling (ST)
The Guobu bank slope of Laxiwa Hydropower Station is used to illustrate the basic characteristics of shallow toppling (ST). The bank slope is comprised of ditches and ridges. The lithology of the slope rock mass mainly contains granites, with a “plate-like” structure, formed in the Indosinian Period.
According to the field investigation characteristics of toppling deformation and structure, the toppling rock masses can be divided into intensified strong toppling (Zone A), strong toppling (Zone B), and weak toppling (Zone C) (Figure 2). The toppling zoning characteristics of the rock mass in the toppled slope are described as follows (Cai et al., 2019).
[image: Diagram and images showing a bank slope at the Laxiwa Hydropower Station divided into three zones: Zone A (yellow), Zone B (blue), and Zone C (gray). Two photographs depict rock formations in Zones B and C, with red lines indicating potential fault lines or fractures.]FIGURE 2 | The toppling zones of bank slope at laxiwa hydropower station.
2.1.1 Zone A-intensified strong toppling zone
This type of rock mass exhibits intense toppling fracture. It generally has embedded fragmentation and blocky structures with some local fragmented structures, and it is in a state of intense unloading and relaxation. The plate-like granite rock mass begins to experience fracturing at a toppled angle exceeding 18°, with overall breaking and fracturing occurring at around 35°. These rock masses after toppling and fracturing experience partial collapse, and most of them remain in a “stacked” shape on the shallow surface of the slope. The shallow fractured rock mass near the slope surface undergoes gravity overturning along the toppling fracture surface (zone) inclined towards the outside of the slope. This situation often leads to shallow stability issues of the toppled slope.
2.1.2 Zone B-strong toppling zone
These rock slabs are partially fractured and broken, and the variation of toppled angle generally ranges from 10° to 15°. Toppling deformation results in tension cracks between granite rock slabs, resulting in wide tension cracks. The rock mass undergoes tensile and relaxation deformation, with an overall blocky structure and locally embedded fragmented structure. The rock mass is generally under overall strong unloading and local weak unloading, with relatively poor integrity.
2.1.3 Zone C- weak toppling zone
The toppled angle of the granite rock slabs in this zone is very small, less than 5°. There are only tensional fractures occurring between rock slabs, and there are localized minor tensile fractures within rock slabs. The rock mass is generally in a weak unloading state, with a blocky structure, and it exhibits relatively good overall integrity. This represents a weaker degree of toppling deformation and generally occurs in the deeper parts of the deformed rock mass, which is a relatively stable part within the slope.
These rock mass, at the bottom of Zone C, represents an elastic relaxation area in the deeper parts of the slope, resulting from the outward toppling effect. No significant toppling is observed, only localized relaxation and tensional fractures along joint surfaces are seen. The rock mass exhibits a blocky-whole structure. This phenomenon is one of the typical characteristics of the hard rock mass (granite), showing its prominent elastic properties.
2.2 Deep toppling (DT)
The slope in front of the dam at Miaowei Hydropower Station is a typical soft and hard structure slope, primarily composed of metamorphic rocks (soft rock). The rock types mainly include slate, phyllite, schist, and metamorphic quartz sandstone, with alternating soft and hard rock conditions. Due to factors such as slope terrain and rock mass structure, the slope in front of the dam experiences strong deep toppling deformation (Figure 3).
[image: Illustration of the toppled slope at Miaowei Hydropower Station showing three zones: A, B, and C, labeled with yellow, blue, and gray respectively. It includes detailed inset images of bedding surfaces in each zone.]FIGURE 3 | Toppling zones of the slope at Miaowei Hydropower Station.
2.2.1 Zone A-extremely strong toppling zone
The normal dip angle of the rock layer is 80°–85°. When the rock layers topple and rotate significantly, the rock mass undergoes intense fracturing and broken, forming a tensile fracture zone steep dip outside the slope. There is significant internal rock tensile fracture, strong relaxation, with cracks filled with gravel, angular fragments, and rock debris. The rock mass above the fracture zone is almost separated from the underlying bedrock, and local rockmass falls. This occurs in the shallow surface of the slope rock mass undergoing extremely intense toppling.
2.2.2 Zone B-strong toppling zone
This zone can be further divided into two subsections, upper and lower, based on the intensity of toppling and the different fracturing mechanisms.
The rock layers experience significant toppling at Zone B upper, in addition to intense tensile fracturing within the layers, shear deformation (tensile-shear) occurs along gentle dip outer joints of the slope, exhibiting significant development of cutting shear layer.
The vertical bedding tensile fracturing begins to develop within the layers or along existing structural planes at Zone B lower. This type of tensile fracturing generally occurs in the hard rock layers between two softer rock layers, representing a situation with a relatively strong toppling deformation. Spatially, it occurs in the deeper parts of the toppled slope.
2.2.3 Zone C-weak toppling zone
In this zone, the toppled angle of rock layers is relatively small, generally less than 10°. The layered rock masses experience shear sliding along interlayer or relatively weak rock zones. There are no significant fractures within the layers, and only minimal tensile fractures occur within the harder rock layers.
3 TOPPLING ZONING INDICATORS
Existing research has primarily used indicators that reflect the degree of rock mass toppling development or characteristics of the toppled rock mass when classifying it. The degree of toppling development indicators mainly include factors like dip angle of rock layer, maximum tension, unit tension, etc (Table 1). The deformation characteristic indicators of the toppled rock mass mainly include weathering features and rock mass structure characteristics. There is a certain correspondence between rock mass characteristic indicators and longitudinal wave velocity. Longitudinal wave velocity decreases as the integrity of the rock mass decreases. Different degrees of toppled rock masses have different wave velocities due to variations in their deformation and fracture levels. Additionally, the longitudinal wave velocity is relatively easy to measure in practical engineering. Therefore, it can be selected as a quantitative indicator for toppling zoning.
TABLE 1 | Zoning indicators and quantification standards for toppling deformation.
[image: Table comparing geological characteristics across three zones: Extremely strong, Strong, and Weak toppling zones. It includes parameters like dip angle, toppled angle, maximum tension within layer, unit tension within layer, and longitudinal wave velocity, with respective values for each zone. Each parameter references studies by various authors like Hong (1994) and Bai et al. (2009). Parameters differ in ranges, such as dip angle for soft rock being ≤35° in Zone A and ≥60° in Zone C.]Taking into consideration the ease of obtaining field indicators, this study plans to select rock layer dip angle (the change in dip angle of the toppled rock layers before and after toppling), maximum tension (the maximum tensile width between toppled rock layers), unit tension (the tensile width between toppled rock layers per unit length), and longitudinal wave velocity as quantitative indicators for rock mass toppling zoning. Shallow toppling (ST) often occurs in hard layered or hard block like rock masses, mainly manifested as the “brittle” fracture of the rock layer, and the unit interlayer tension is not significant. Therefore, the other three indicators are selected for shallow toppling. Deep toppling (DT) often occurs in low strength soft rock layers, exhibiting significant “flexible” deformation characteristics, primarily involving bending and creep deformation with relatively less fracturing of rock layers, so four indicators are selected (Huang et al., 2017; Cai et al., 2022).
Based on the quantitative standards of existing research, the quantitative zoning indicators selected for rock mass toppling zoning are the rock layer toppled angle (α), the maximum tension within the rock layer (S), the unit tension within the rock layer (s), and the longitudinal wave velocity (Vp). Referring to existing studies on toppling deformation zoning of rock mass, the degree of toppling deformation is categorized into the following zones: extremely strong toppling zone (zone A), strong toppling zone (zone B), and weak toppling zone (zone C). The quantified zoning criteria for each zone are as listed in Table 2 for shallow toppling rock masses and Table 3 for deep toppling rock masses.
TABLE 2 | Quantitative criteria values of shallow toppling zoning.
[image: Table displaying toppling zones with parameters. For extremely strong toppling (zone A): toppled angle α ≥ 25, maximum tension S ≥ 100 mm, velocity Vp ≤ 1.3 km/s. For strong toppling (zone B): 10 < α < 25, 30 < S < 100 mm, 1.3 < Vp < 2.5 km/s. For weak toppling (zone C): α ≤ 10, S ≤ 30 mm, Vp ≥ 2.5 km/s.]TABLE 3 | Quantitative criteria values of deep toppling zoning.
[image: Table detailing toppling zones with four criteria: toppled angle, maximum tension within layer, unit tension within layer, and longitudinal wave velocity. Zones include Extremely Strong Toppling (Zone A), Strong Toppling (Zone B), and Weak Toppling (Zone C). Values for Zone A: angle ≥ 35°, tension ≥ 20 mm, unit tension ≥ 26 mm/m, velocity ≤ 1.5 km/s; for Zone B: 10° < angle < 35°, 8 < tension < 20 mm, 15 < unit tension < 26 mm/m, 1.5 < velocity < 3.0 km/s; for Zone C: angle ≤ 10°, tension ≤ 8 mm, unit tension ≤ 15 mm/m, velocity ≥ 3.0 km/s.]4 TOPPLING ZONING EVALUATION MODEL
The current research mostly focuses on the extraction of indicators for rock mass toppling zoning and the quantification criteria for each indicator. However, mathematical models for evaluation have not been applied extensively.
Considering the randomness and variability of rock mass toppling, it is influenced by various factors such as rock properties, stress conditions, and other geological environmental conditions. Additionally, rock masses exhibit anisotropic behavior, non-linear deformation characteristics, and fuzzy boundaries between different toppling rockmass zones. This study uses the Analytic Hierarchy Process (AHP) to determine the weight of evaluation indicators and employ the Fuzzy Comprehensive Evaluation method to establish a toppling zoning evaluation model of rock mass. This method refers to a systematic approach used for addressing a complex multi-objective problem. It breaks down the overall objective of the problem into multiple sub-objectives, further dissecting them into several hierarchical levels of multiple indicators. By employing a qualitative indicator fuzzy quantification method, it calculates the individual rankings at each level and an overall ranking. This method serves as a systematic approach for optimizing decision-making related to objectives.
4.1 Evaluation indicators weight
This study uses the Analytic Hierarchy Process (AHP) to determine the weights of various factors. This method not only emphasizes mathematical approaches but also takes into account human factors, making it more accurate and reliable compared to other analytical methods. Taking the degree of rock mass toppling deformation as the overall objective layer (A), a single-level hierarchical model for quantifying toppling zoning indicators is established. The weight judgment matrix is constructed using a matrix scoring table, with the scales and meanings of the weight judgment matrix presented in Table 4.
TABLE 4 | Scale of judgment matrix and its meaning.
[image: Scale values are shown with their meanings. Value 1: equal importance. Value 3: slightly more important. Value 5: significantly more important. Value 7: more important. Value 9: extremely important. Values 2, 4, 6, 8 represent medians of adjacent judgments. Reciprocal: comparing \(u_i\) with \(u_j\) gives \(u_{ij}\); reverse gives \(u_{ij} = 1/u_{ij}\).]4.1.1 Determination of the indicators weight for shallow toppling
Shallow toppling failures are primarily characterized by “brittle” fracturing of rock layers after minor deformations, with more developed fractures. The toppled angle of rock layer determines the degree of toppling deformation. The maximum tension within the layer and the longitudinal wave velocity, relative to the toppled angle of rock layer, have less importance. The weight of the maximum tension within the layer is slightly greater than that of the longitudinal wave velocity.
By conducting a comprehensive analysis of the correlations between various field evaluation indicators and establishing a comparison of the weights between these evaluation indicators, a weight judgment matrix for the evaluation indicators of shallow toppling is constructed using a matrix scoring approach. The weighting comparison of the evaluation factors for shallow toppling is shown in Table 5.
TABLE 5 | Weight comparison of evaluation factors for shallow toppling.
[image: A table with three columns labeled: Toppled Angle, Maximum Tension Within Layer, and Longitudinal Wave Velocity. Rows list values for scale values of toppled angle, maximum tension within layer, and longitudinal wave velocity. Values are provided in a matrix format, with the toppled angle as 1, maximum tension as one-half, and velocity as one-third along the first column; additional numerical values are listed accordingly in other columns.]From the mentioned weight comparison of the evaluation factors, we can obtain the single factor weight judgment matrix U1 through Equation 1.
[image: Matrix \( U_1 \) is a three-by-three matrix with elements: first row \( 1, 2, 3 \); second row \( \frac{1}{2}, 1, 2 \); third row \( \frac{1}{3}, \frac{1}{2}, 1 \). Equation identifier is (1).]
By calculating the eigenvalues and eigenvectors of the judgment matrix U1, we obtain the maximum eigenvalue λmax = 3.0092, and the corresponding eigenvector is (0.8468, 0.4660, 0.2565), which can be used as the weight vector for evaluation indicators. After normalizing the weights of the various evaluation indicators mentioned above, we obtain the weight set M of the evaluation indicators for shallow toppling as follows: M = { 0.540, 0.297, 0.163}. To ensure the credibility and accuracy of the judgment matrix and eliminate interference from other factors, a consistency test is performed, and the test formula is as follows:
[image: The image shows a mathematical equation: \( U_c = \frac{U_f}{C_f} \), labeled as equation (2).]
In the formula, UC represents the consistency ratio, UI = (λmax-n)/ (n-1), where n is the order of the judgment matrix, and λmax is the maximum eigenvalue determined for the judgment matrix. CI stands for the average random consistency index of the judgment matrix, and its values for lower-order judgment matrices are shown in Table 6.
TABLE 6 | Index value of AHP average random consistency.
[image: Table displaying two rows: the first row labeled "n" with values 1 to 8, and the second row labeled "C_l" with corresponding values 0.00, 0.00, 0.58, 0.90, 1.12, 1.24, 1.32, and 1.41.]When UC < 0.1, it is considered that the judgment matrix exhibits good consistency, indicating that the weight distribution is reasonable. Otherwise, it is necessary to adjust the values of each element in the judgment matrix until satisfactory consistency is achieved. Through calculations, it is determined that UI = 0.0046, CI = 0.58, UC = UI/CI ≈ 0.0079 < 0.1. This indicates that the construction of the judgment matrix for these evaluation indicators is reasonable.
4.1.2 Determination of the indicators weight for deep toppling
Deep toppling failures often occur in low-strength, soft rock layers and exhibit significant “flexible” deformation characteristics, primarily involving bending and creep deformation. Fracturing of rock layers is relatively less common in deep toppling. The deformation characteristics of deep toppling suggest that the rock layer toppled angle determines the degree of toppling deformation, and the flexible characteristics result in the weight of unit tension within layer being equal to that of the toppled angle. The weight of the maximum tension within layer and the longitudinal wave velocity used to test the bending and fracture failure characteristics of the rock mass take second place.
Similarly, to determine the weightings of evaluation indicators for deep toppling, a comprehensive analysis of the correlations between various evaluation indicators is conducted to establish a comparison of the weights between these evaluation indicators. A weight judgment matrix for the evaluation indicators of deep toppling is then constructed using a matrix scoring approach. The weighting comparison of the evaluation factors for deep toppling is shown in Table 7.
TABLE 7 | Weight comparison of evaluation factors for deep toppling.
[image: Table displaying scale values for four parameters: toppled angle, maximum tension, unit tension, and longitudinal wave velocity. The values are arranged as follows: for toppled angle, 1; maximum tension within layer, 1/2; unit tension within layer, 1; longitudinal wave velocity, 1/4. For maximum tension, values are 2, 1, and 2 from top to bottom. For unit tension, values are 1, 1/2, 1, and 1/3. For longitudinal wave velocity, values are 4, 2, 3, and 1.]From the mentioned weight comparison of the evaluation factors, we can obtain the single factor weight judgment matrix U2 through Equation 3.
[image: Matrix \( U_2 \) is a 4x4 matrix. The first row is 1, 2, 1, 4. The second row is \(\frac{1}{2}, 1, \frac{1}{2}, 2\). The third row is 1, 2, 1, 3. The fourth row is \(\frac{1}{4}, 1, \frac{1}{3}, 1\). The matrix reference is marked as equation (3).]
Solving for the eigenvalues and eigenvectors of the judgment matrix U2, we can obtain the maximum eigenvalue λmax = 4.0104, and the corresponding eigenvector is (0.6753, 0.3377, 0.6300, 0.1819). After normalizing the weights of the various evaluation indicators mentioned above, we obtain the weight set M of the evaluation indicators for rock mass deep toppling as follows: M = {0.370, 0.185, 0.345, 0.100}.
Similarly, to ensure the credibility and accuracy of the judgment matrix and eliminate interference from other factors, a consistency test is performed using the test formula (2) along with the indexv alues of the average random consistency for lower-order judgment matrices as shown in Table 5. Through calculations, it is determined that UI = 0.0035, CI = 0.90, UC = UI/CI ≈ 0.0039 < 0.1. When UC < 0.1, it is considered that the judgment matrix exhibits good consistency, indicating that the weight distribution is reasonable, and it also signifies that the construction of the judgment matrix for these evaluation factors is reasonable.
4.2 Evaluation model
Considering the characteristics of rock mass toppling deformation, a toppling zoning evaluation model is established based on the fuzzy comprehensive evaluation theory. The steps are as follows:
	(1) Evaluation target set Y = {extremely strong toppling zone A, strong toppling zone B, weak toppling zone C};
	(2) For shallow toppling, the evaluation factor set X = {rock layer toppled angle α, maximum tension within the layer S, longitudinal wave velocity Vp}; for deep toppling, the evaluation factor set X = {rock layer toppled angle α, maximum tension within the layer S, unit maximum tension within the layer s, longitudinal wave velocity Vp};
	(3) Weight sets of factors for shallow toppling: M = {0.540, 0.297, 0.163}; Weight sets of factors for deep toppling: M = {0.370, 0.185, 0.345, 0.100};
	(4) Based on the fuzzy membership of each evaluation factor, establish the toppling zoning evaluation judgment matrix K;
	(5) Using the weight sets M and the judgment matrix K, calculate the evaluation target set Y. Based on the results of the evaluation target set, employ the maximum membership method to assess the intensity of rock mass toppling deformation.

4.3 Cases application
4.3.1 Case of shallow toppling
Taking the example of the slope of the Xingguang Ⅲ formation in the Xiluodu Hydropower Station, this paper employs the shallow toppling zoning evaluation model described in this study to perform a quantitative zoning of the toppled rock mass.
Taking PD07 as an example to illustrate the quantitative zoning of rock mass toppling deformation, the distribution of factors including rock layer toppled angle, maximum tension within layer, and longitudinal wave velocity with depth at the tunnel 07 (PD07) location is shown in Figures 2–4 (Mu, 2017). Taking a depth of 83 m at tunnel 07 as an example, calculations are carried out based on the data obtained from Figures 2–4. The evaluation factor values are extracted, resulting in the evaluation factor set X = {25, 0.7, 2.16}. Subsequently, the fuzzy membership degrees of each factor are determined based on their respective membership functions, and the evaluation judgment matrix K1 for toppling zoning is obtained through Equation 4.
[image: Matrix \( K_1 \) consists of three rows and three columns. The elements are: first row: 0.5, 0.5, 0; second row: 0, 0, 1; third row: 0, 1, 0. Labeled as equation (4).]
[image: Graph depicting topple angle versus tunnel depth for tunnel PD97, with a strong toppling zone from 50 to 80 meters, and a weak toppling zone from 80 to 100 meters. The y-axis shows the topple angle in degrees, and the x-axis represents the depth in meters.]FIGURE 4 | The toppled angle variation of rock layer with the depth of PD07.
Based on the previously determined weight sets M for the various factors in rock mass toppling zoning, it can be concluded that the evaluation target set result for this toppling location is Y = MK1 = {0.270, 0.433, 0.297}. According to the principle of maximum membership degree, this location belongs to the strong toppling zone B.
Similarly, by extracting the evaluation factor values and judgment matrices from Figures 4–6 for various points in the tunnel, the toppling zoning is determined. The toppling zoning results are detailed in Figures 4–6. It can be observed that within the tunnel PD07, the section from 53 to 87 m falls into the strong toppling zone, while the section from 87 to 100 m belongs to the weak toppling zone. The results obtained in this study are consistent with the toppling zoning made by the geological personnel on-site, where 53–85 m is classified as the strong toppling zone and 85–100 m as the weak toppling zone. This demonstrates the feasibility of using the evaluation model for quantitative toppling zoning.
[image: Line graph showing the cumulative rotation angle of a tunnel from 50 to 100 meters depth. Strong toppling zone labeled as A from 50 to 80 meters, and weak toppling zone as B from 80 to 100 meters. Rotation angles vary with peaks in both zones.]FIGURE 5 | The maximum tension value variation of rock layer with the depth of PD07.
[image: Graph depicting tunnel depth (PD07) in meters on the horizontal axis and vertical and horizontal tunnel convergence in millimeters on the vertical axis. Strong toppling zone A and weak toppling zone B are highlighted across the top. Convergence varies slightly across the measured depths.]FIGURE 6 | The longitudinal wave velocity variation of rock layer with the depth of PD07.
4.3.2 Case of deep toppling
Taking the example of the toppled dam site slope at the Miaowei Hydropower Station on the Lancang River, this paper employs the deep toppling zoning evaluation model described in this study to perform a quantitative zoning of the toppled rock mass.
Taking PD06 as an example to illustrate the quantitative zoning of rock mass toppling deformation, the distribution of factors including rock layer toppled angle, maximum tension within layer, unit tension within the layer, and longitudinal wave velocity with depth at the tunnel 06 (PD06) location is shown in Figures 7–10 (Li et al., 2007). Taking a depth of 48 m at tunnel 06 as an example, calculations are carried out based on the data obtained from Figures 7–10. The evaluation factor values are extracted, resulting in the evaluation factor set X = {25, 13, 23, 18}. Subsequently, the fuzzy membership degrees of each factor are determined based on their respective membership functions, and the evaluation judgment matrix K2 for toppling zoning is obtained through Equation 5.
[image: Matrix \( K_2 \) is displayed, consisting of four rows and three columns. The rows are: \( (0, 1, 0) \), \( (0, 1, 0) \), \( (0, 1, 0) \), and \( (0.5, 0.5, 0) \). Equation number five is indicated to the right.]
[image: Graph of tunneling-induced settlement versus depth of ground (PBD) in meters, displaying zones A, B, and C, distinguished by red, indicating strong, severe, and weak toggling, respectively. The horizontal axis represents depth, and the vertical axis shows settlement in millimeters.]FIGURE 7 | The toppled angle variation of rock layer with the depth of PD06.
[image: Line graph depicting the depth of an aquifer (in meters below ground level, m.b.g.l) over time, with three zones highlighted: Dynamically Rising/Declining Zone A, Steeply Ranging Zone B, and Weakly Fluctuating Zone C.]FIGURE 8 | The maximum tension value variation of rock layer with the depth of PD06.
[image: Graph showing the depth of mined pits (in meters) versus seismic velocity (in meters per second). The graph is divided into three zones: moderately strong toppling zone, strong toppling zone, and weak toppling zone, highlighted in red gradients, from left to right. Data points represent seismic velocity changes across depths.]FIGURE 9 | The unit tension value variation of rock layer with the depth of PD06.
[image: Line graph illustrating the shear wave velocity of soil with depth. The x-axis represents the depth of ground in meters, ranging from 0 to 100 meters, while the y-axis shows the shear wave velocity in meters per second, ranging from 0 to 1400. Three zones are highlighted: "Relatively strong liquefying zone A," "Strong liquefying zone B," and "Weak liquefying zone C." The graph's background is shaded red in these zones.]FIGURE 10 | The longitudinal wave velocity variation of rock layer with the depth of PD06.
Based on the previously determined weight sets M for the various factors in rock mass toppling zoning, it can be concluded that the evaluation target set result for this toppling location is Y = MK2 = {0.050, 0.950, 0}. According to the principle of maximum membership degree, this location belongs to the strong toppling zone B.
Similarly, by extracting the evaluation factor values and judgment matrices from Figures 7–10 for various points in the tunnel PD06, the toppling zoning is determined. The toppling zoning results are detailed in Figures 7–10. It can be observed that within the tunnel PD06, the section from 0 to 38 m falls into the extremely strong toppling zone, the section from 38 to 81 m belongs to the strong toppling zone, and the section from 81 to 100 m is classified as the weak toppling zone.
The results obtained in this study are consistent with the toppling zoning made by the geological personnel on-site, where 0–35 m is classified as the extremely strong toppling zone and 35–80 m as the strong toppling zone. This demonstrates the feasibility of using the evaluation model for quantitative toppling zoning.
5 CONCLUSION
Based on case studies and analysis of rock soft and hard conditions, this study summarizes the toppling zoning characteristics of deep toppling (DT) and shallow toppling (ST). The toppling rock masses of ST divided into intensified strong toppling (Zone A), strong toppling (Zone B), weak toppling (Zone C), Zone A rock mass is in a state of intense unloading and relaxation. Zone B rock mass undergoes tensile and relaxation deformation. Zone C rock mass undergoes only tensional fractures occurring between rock slabs, and within rock slabs, there are localized minor tensile fractures. The toppling rock masses of DT also divided into intensified strong toppling (Zone A), strong toppling (Zone B), and weak toppling (Zone C). Zone A rock mass undergoes intense fracturing and broken, and there is significant internal rock tensile fracture, and strong relaxation. Zone B shows intense tensile fracturing within the layers, shear deformation occurs along gentle dip outer joints, and tensile fracturing generally occurs in the hard rock layers between two softer rock layers. Zone C rock masses experience shear sliding along interlayer, and only minimal tensile fractures occur within the harder rock layers.
The quantitative indicators selected for rock mass toppling zoning include rock layer toppled angle, maximum tension within layer, unit tension within layer, and longitudinal wave velocity. Considering the differences in characteristics between deep toppling and shallow toppling deformation, quantification criteria of toppling zoning were established respectively. Then, the Analytic Hierarchy Process (AHP) method was employed to determine the weights of each evaluation factor. A consistency test was conducted on the weight judgment matrix to validate the reasonability of the weight distribution. Finally, a fuzzy comprehensive evaluation method was used to construct toppling zoning evaluation models for both deep toppling and shallow toppling rock masses.
The deep toppling zoning evaluation model established was applied to classify the deep toppling rock mass in the dam site slope at the Miaowei hydropower station. The results obtained closely aligned with the field zoning. Similarly, the shallow toppling zoning evaluation model was used to classify the toppled rock mass of Xingguang Ⅲ formation in the bank slope at the Xiluodu hydropower station, and the results obtained were also relatively close to the on-site toppling zoning. This demonstrates the rationality of the toppling zoning evaluation model and the feasibility of the quantitative standards for toppling zoning. This achievement has significant reference value for the toppling zoning of toppled rock masses in engineering slopes.
This study has proposed a approach for constructing a quantitative zoning evaluation model for toppling rock masses based on mathematical methods. It can serve as a methodological reference to some extent for conducting quantitative analysis in similar cases that transition from qualitative judgments.
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Deformation memory effect (DME) is a common property of the rock. A method called Deformation Rate Analysis (DRA) which is based on DME provides a brand-new approach to measuring in situ stress. When rock DME is applied in engineering, it is necessary to solve the problem that which stress peak is corresponding to in situ stress. The standard square samples made of sandstone and granite were selected to investigate the rock DME under different stress paths. Then a memory theoretical model based on multi-surface sliding friction hysteresis is used to analyze the mechanisms of rock DME. The results show that: (1) Rocks always remember the maximum peak stress from preloading, regardless of the sequence of multiple preloading; (2) Multi-memory exists in tests because we found another inflection in DRA curve; (3) The memory model based on sliding friction hysteresis shows the precision of memory information formation increases as the historical maximum peak value gets closer to the measurement load, but multi-memory does not exist in theoretical analysis. The conclusion provides the rule of rock DME under different stress path which would benefits in in situ stress reconstruction.
Keywords: deformation memory effect, deformation rate analysis, different stress path, multi-memory, friction sliding

1 INTRODUCTION
The Rock Deformation Memory Effect (DME) represents a pivotal aspect of the broader spectrum of rock memory phenomena, encapsulating the capability to retrieve stress or temperature memory information via the analysis of rock deformation data. This effect has been extensively validated across numerous studies (Yamshchikov et al., 1994; Kyamamoto et al., 1990; Vinnikov and Shkuratnik; Reed and Mcdowell, 1994). For instance, employing indoor uniaxial compression tests, the initial stress exerted on a rock sample can be discerned through analyzing strain data derived from two consecutive compressions (Yamamoto, 2009). Such a mechanism underscores the critical role of in situ stress information in understanding the failure mechanisms of underground rock engineering projects. In light of this, the Deformation Rate Analysis (DRA) Method, introduced by Yamamoto (Kyamamoto et al., 1990; Yamamoto, 2009), emerges as a contemporary, systematic approach formulated to ascertain the initial in situ stress levels by conducting indoor loading tests on core samples. Its adoption spans a diverse array of countries and regions, including Japan, the United States, Canada, Australia, Taiwan, and Finland, thereby underscoring its significant potential and the promising prospects it holds for the field (Wang et al., 2018).
Despite the advancements in the applications of the DRA method, several challenges persist that warrant further investigation. A critical issue among these is the method’s capacity to precisely discern prior stress levels under varied stress paths and loading histories. A key question that remains unresolved pertains to whether the memory information decoded by the DRA method corresponds to the historical maximum peak stress or to the most recent maximum stress. This query is exemplified in Figure 1, which illustrates two distinct scenarios of loading sequences: (a) where the peak stress during the initial loading is lower than that of the subsequent loading; and (b) where the peak stress of the initial loading exceeds the peak stress of the later loading?
[image: Two line graphs compare stress (σ) over time (t) with different maximum and minimum stress levels. Both graphs show cyclical stress patterns, with the right graph having higher σ_max and lower σ_min than the left.]FIGURE 1 | Stress-time curve under different stress path.
The conundrum lies in determining which stress peak will be identified by the DRA curve under these divergent stress paths. Specifically, it raises questions about the potential for larger stresses to obscure the memory of smaller stresses or for more recent stresses to overshadow the memory of original stresses. Furthermore, it remains to be established whether the DRA method is capable of retaining memory of both stress peaks simultaneously. Addressing these inquiries is imperative for enhancing the precision and reliability of the DRA method in capturing and interpreting the complex memory signatures inherent in rock deformation under diverse loading conditions.
Addressing the aforementioned issues, a series of pertinent studies have been conducted by various researchers. Holmes (2004) applied the DRA methodology to gauge in situ stresses, identifying two distinct inflection points on the axial DRA curve. He posited that the DME possesses multi-period memory capabilities, enabling it to retain information about different stress peaks. Similarly, Utagawa et al. (1997) employed Kamechi sandstone in their experiments and observed two inflection points as well, interpreted as corresponding to the axial and lateral stresses of prior loadings. Dight, (2006) reported three types of inflection points in his experiments, akin to Holmes’ findings, suggesting that different inflections on the DRA curve represent maximum stress information from various periods, thereby affirming the multi-period memory characteristics of DME. Although the aforementioned researchers observed the phenomenon of multi-memory effects in their experiments, they did not conduct any specific studies on this phenomenon.
In Yamamoto et al. (1995) study on in situ stress measurement, experimental results indicated that significant stresses applied in a laboratory setting do not obliterate the memory information. This observation was corroborated by Yabe et al. (2010), illustrating that in certain instances, the initial stress remains measurable. However, Wang (2012) through theoretical analysis, identified a “covering” phenomenon associated with internal fractures, a finding that was also noted in additional studies by Yamamoto. (2009), thus highlighting discrepancies in the conclusions of the same researcher. Fujii et al. (2018) explored in situ stress measurement via the tangent modulus method, focusing on the stress concentration path, they discovered that while the memory of concentrated stress was lost, the creep stress remained detectable. These researchers observed the phenomenon of stress overprinting in their researches. However, they did not reach a consensus on whether the initial stress would be overridden by subsequent stress and did not conduct an in-depth investigation into this issue.
In summary, extensive empirical and theoretical investigations have been undertaken to explore the memory effect of rocks under varied stress paths, a foundational issue in the study of DME. To address this challenge how stress is remembered under different stress path, experiments have been designed across five different stress paths involving various rock types and stress levels, accompanied by numerical analyses grounded in a theoretical memory model. The synthesis of experimental and theoretical insights has elucidated the behavior of rock DME across different stress paths, providing crucial empirical support for the identification of DME memory information and the preliminary measurement of in situ stresses.
2 EXPERIMENTAL WORK
2.1 DRA method
Within the graphical representation in Figure 2A, dotted lines delineate the external stresses (σp) responsible for instilling memory information, whereas the solid lines depict the process of successively repeating cyclic loading within a laboratory setting to acquire necessary stress and strain data for the retrieval of said memory information. This process is referred to as “measurement loading” (σm). Initially, a strain differential function is delineated as follows.
[image: The formula displayed is \(\Delta_{E_i}^{o} = \varepsilon_{j}^{o} - \varepsilon_{i}^{o}\), where \(j > i\).]
Wherein εi(σ) and εj(σ) indicate axial strains in the ith and jth loading, respectively, and σ are corresponding axial stresses. Positive values are taken for both strains and stresses in compression.
[image: Two graphs depict material deformation analysis. (a) Shows stress-strain curves with pre-loading and measurement loading phases, highlighting a point \(\Delta \epsilon_{i,j}\). (b) Displays a Dynamic Recovery Analysis (DRA) curve featuring inflection points and \(\Delta \epsilon\) levels, with labeled inflection and \(\sigma_{\text{DRA,}} \text{inf}\) lines.]FIGURE 2 | Definition of Deformation Rate Analysis (A) definition of strain differential Δεi, j; (B) DRA curve.
In this context, Equation 1 facilitates the exclusion of reversible strain components from the axial strain profiles elicited by two consecutive compressions, yielding a differential value δε that epitomizes the axial irreversible strain. As depicted in Figure 2B, plotting the stress σ against the strain differential δε generates a strain differential curve, also known as the dra curve. Notably, an inflection point becomes apparent on this curve, the stress at this inflection point (σdra) signifies the stored memory information (σp), providing a quantitative basis for interpreting the deformation history of the material. The dra method can be used for direct ground stress measurement and indoor research on rock deformation memory effect.
2.2 Samples and experimental equipment
The granite and sandstone tested in this article were quarried from a quarry in Cangzhou City, Hebei Province, and were buried about 10 m underground, which is a shallow area. Sandstones and granites were selected for experimental materials and made into standard cuboid samples of 50 × 50 × 100 mm in size. As recommended by ISRM, the maximum non-parallelism between both ends of a rock sample should be controlled within 0.02 mm, and both end surfaces should be parallel and smooth. The completed samples are shown in Figure 3.
[image: A group of rectangular bricks, each wrapped with multiple colorful wires, are stacked in rows on a gray surface. The wires are coiled and tangled, extending outward from the bricks.]FIGURE 3 | Granite and sandstone samples.
The strain was measured by strain gauges attached on two sides of samples in vertical direction as shown in Figure 4. In the physical experiments of this article, strain was measured using strain gauges, as shown in Figure 4. The cuboid specimen was pasted on two opposite sides. Before pasting, cross-hatch lines were drawn on the side of the sample to ensure accurate pasting position. The resistance of the strain gauge is 120 Ω, and the allowable deviation is ±0.1 Ω. The strains are all connected to the strain adaptor in the form of a 1/4 bridge (a three-wire working piece), as shown in Figure 4, which is suitable for measuring simple tensile and compression strains in harsher environments.
[image: Diagram showing the placement of strain gauges on a structure, with arrows indicating their positions. A separate image shows a connected circuit board with the strain gauges wired and labeled, illustrating the setup for measurement.]FIGURE 4 | Location of the Strain gauge and its access method.
Each sample was numbered separately in the form, the naming rule for samples is Rock type + Stress level + Stress path (the number of samples of this type). For example, sample GL11 means granite sample were test by stress path 1-1 in low stress level. In order to facilitate the discussion and analysis of the test, we chose three samples of sandstone and granite for obtaining mechanical parameters, the failure tests were carried out after the DME tests to measure the mechanical parameters of each sample, including density, UCS and elastic modulus as shown in the Table 1.
TABLE 1 | Mean parameters of sandstone and granite samples in tests.
[image: Table listing rock types and their mechanical parameters. Granite has a mean density of 2,623 kilograms per cubic meter, mean UCS of 104.6 MPa, and mean elastic modulus of 63.8 GPa. Sandstone has a mean density of 2,384 kilograms per cubic meter, mean UCS of 63.2 MPa, and mean elastic modulus of 57.4 GPa.]The tests were conducted under the load control scheme by SUNS-650 W electro-hydraulic servo loading system shown in Figure 5. The maximum load may reach 600 kN, and the displacement control ranges from 0 to 200 mm. Strain data was collected by the TST Strain collector. The collector has 16 channels and the frequency of acquisition is 1000 Hz. The error of the collected strain is ±1 micro strain. Experimental equipment is shown in Figure 5.
[image: Panel (a) shows a laboratory setup with a loading system and control system, including a computer desk, monitors, and control equipment. Panel (b) displays electronic components and cables arranged on a surface.]FIGURE 5 | Experimental equipment (A) Loading system; (B) Strain collector.
2.3 Test scheme
In order to investigate how the different stress path influences the rock DME, six different stress paths were set as shown in Figure 6. In Figure 6, σp1∼ σp3 are preloading values, 1, 2, and 3 represent the order of loading, σm is a measuring loading value. Besides, two kinds of stress levels were also considered to investigate whether the rock DME changes with stress levels. The detailed loading parameters and environmental parameters are listed in Table 2.
[image: Five graphs labeled (a) to (e) show different load cycles over time, comparing preload and measuring load. Each graph illustrates a zigzag pattern with varying levels of stress represented by σ, σmin, and σmax, along the y-axis and time on the x-axis. Differences in the graphs include changes in the amplitude and frequency of the load cycles.]FIGURE 6 | Loading regime (A) Stress path 1–1; (B) Stress path 1–2; (C) Stress path 1–3; (D) Stress path 1–4; (E) Stress path 1–5.
TABLE 2 | Loading parameters and environmental parameters.
[image: A table with columns labeled: Number, Stress path, Preload, Measuring load, and Temperature/Humidity. Rows list different test conditions for various items, indicating stress paths like "1–1" or "1–2", preload values in megapascals (MPa), measuring loads in MPa, and environmental conditions. Temperature is in degrees Celsius and humidity in percentage, given as pairs like "20/45".]2.4 Test result and analysis
2.4.1 Different rock type and stress level
Figure 7 presents the DRA curves derived from uniaxial compression tests on granite and sandstone specimens, following stress paths 1-1 and 1-2. These curves exhibit at least one pronounced inflection point, as indicated by the arrows, signifying a notable change in slope.
[image: Eight line graphs showing stress versus strain for different samples labeled GL11, SL11, GH11, SH11, GL12, SL12, GH12, and SH12. Each graph features black data points with a red trend line and annotations indicating yielding and peak stress points.]FIGURE 7 | Typical DRA curves of granite and sandstone under different stress levels under single stress path.
The DRA curves reveal that, for granite samples GL11 and GL12, the inflection points correspond to stress levels approximately equivalent to 20 MPa. This observation suggests that both samples retained identical stress memories despite undergoing distinct stress pathways. It is evident that the stress memory encoded by these samples pertains to the higher preloads encountered in their respective stress paths, rather than preloads proximal to the measurement loads. A similar pattern is discerned in the DRA curves for sandstone samples SL11 and SL12, where the inflection points also align with stress levels around 20 MPa.
Furthermore, when examining samples subjected to higher initial stress levels, such as GH11 and GH12, which received preloads twice that applied to GL11 and GL12, it is observed that these samples memorialized the higher preload of approximately 40 MPa, as opposed to the lower preload closer to their DRA curve’s measurement point. Analogously, the DRA curves of sandstone samples SH11 and SH12 corroborate this trend, demonstrating a consistent inclination towards retaining the memory of the more substantial stress when subjected to higher stress levels.
This uniformity in stress memory retention across both granite and sandstone samples, regardless of the specific stress path experienced, underscores a fundamental aspect of rock behavior. It implies a robust mechanism by which rocks preserve memory of the maximal stress encountered, reflecting an intrinsic property of the material’s response to varying stress environments.
2.4.2 Single and multiple stress path
Figure 8 delineates the DRA curves acquired from uniaxial compression tests on granite and sandstone specimens subjected to multiple stress paths 1-3, 1-4, and 1-5. Consistent with observations from simpler stress paths 1-1 and 1-2, each of the DRA curves exhibited at least one pronounced inflection point, as highlighted by arrows, affirming a fundamental characteristic of the DRA curve framework.
[image: Six charts displaying "Stress MPa" against "Strain Percentage" for specimens G13, G14, G15, S13, S14, and S15. Each chart shows a curve with peaks and variations, with annotations like "Preloading" and red lines highlighting specific data segments. Arrows point to critical points along the curves.]FIGURE 8 | Typical DRA curves of granite and sandstone under multiple stress path.
The curves are marked by three vertical dashed lines, indicative of the sequence of preloads applied in varying orders. Notably, the inflection points on all DRA curves align closely with the rightmost dashed lines, signifying that irrespective of the sequence of stress paths experienced, both granite and sandstone specimens consistently recorded the maximum stress encountered. This observation is further exemplified by the comparison between samples GL11 and GL12 (illustrated in Figure 7) and samples G13, G14, and G15, which, despite undergoing an additional preload in a non-sequential manner and being subjected to the identical measuring stress, all manifested inflection points at stresses approximately 40 MPa, correlating with the highest preload applied in these tests. A parallel trend was observed in the sandstone samples, which uniformly registered a memory of approximately 20 MPa stress, reflective of the maximal preload, despite traversing five distinct stress paths.
This phenomenon elucidates a critical aspect of rock behavior under stress: regardless of the complexity or number of stress paths experienced, rock specimens invariably encode the maximal stress encountered within their deformation history. This consistent pattern underscores the intrinsic capacity of rocks to memorize the peak stress levels experienced, a feature that is paramount to understanding the deformational and memory characteristics of geological materials.
2.4.3 Multi-memory in tests
Figure 7 demonstrates that the strain difference curves of samples GL11, SL11, and GH12 exhibit two distinct inflection points at stress levels of 10 MPa and 20 MPa, respectively. Concurrently, Figure 8 reveals the presence of two inflection points at stress levels of 30 MPa and 40 MPa in the strain difference curve of sample G14, while the curve of sample G15 is characterized by three inflection points at stress levels of 20 MPa, 30 MPa, and 40 MPa. These inflection points correspond closely to the stresses applied as preloads to each sample, suggesting that certain samples retain memory of not just a single stress level, but multiple stress levels experienced along various stress paths. It is important to highlight, however, that this capacity for retaining multiple stress memories is not universally observed across all samples. While some specimens demonstrate the ability to encode memories of several preceding stress levels, others appear to retain only the memory of the highest stress level encountered. This phenomenon exists in samples of two different rock samples, however the rules of mult-memory under different rock type are not clear from completed experiments.
This variation in memory retention capacity among different rock samples underscores the complexity of the deformation memory effect, suggesting that the underlying mechanisms of stress memory in rocks may be influenced by a variety of factors beyond the mere magnitude of stress applied.
3 THEORETICAL ANALYSIS
3.1 Friction sliding model of multiple microstructure surfaces
The macro-mechanical behaviors of rock are known to be determined by the combined mechanical behaviors of the rock matrix and its microstructures (Wang et al., 2019; Yu et al., 2023; Salganik, 1973; Salganik, 1982). Consequently, the DME in rocks is also a result of the mechanical behaviors of microstructures influencing DME. Moreover, the microstructural mechanical behaviors of rock are intricately linked with the rock’s deformation and damage processes, which, in the context of uniaxial compression, include five phases: crack closure, elasticity, crack generation and propagation, unstable crack propagation, and a post-damage or post-peak softening phase (Shuyang et al., 2023; Wawersik and Fairhurst, 1970; Hudson et al., 1997; Haijun et al., 2022; Wang et al., 2022). It has been established that models based solely on crack propagation may fall short in explaining the emergence of rock DME within low-stress zones. Instead, the genesis of rock DME is attributed to frictional sliding on microstructural surfaces (Wang, 2012; Basista and Gross, 1998; Wang et al., 2012; Wang et al., 2014). To model this phenomenon, a basic memory element of the unit-volume rock containing a single microstructural surface combines an elastic component (Cai, 2002) (Hookean body), a viscous component (Newtonian body), and a Y body, facilitating the simulation of frictional sliding on microstructural surfaces.
This basic memory element shown in Figure 9 is depicted as comprising two parts: the first, a Hookean body characterizes the elastic matrix surrounding the microstructural surface. The second part consists of a Poynting-Thomson body formed by an H body and an N body in series connected with an H body in parallel (called P body) and a Y body connected in parallel, symbolizes the contributions of microcrack and particle contact surface mechanics to rock deformation.
[image: Diagram of an electrical circuit featuring resistors and capacitors labeled as \( E_1 \) (H body), \( E_2 \) (H body), \( E_3 \) (H body), \( \eta \) (N body), and \( c \) (Y body). A P body is indicated with an arrow.]FIGURE 9 | Basic memory element.
The H body constitutive equation is consistent with the Hooke’s law. As for the Y body, when the stress applied on a component reaches a cohesion limit, the stress keeps unchanged while the strain keeps growing. The stress limit in the basic element is the cohesion c. As for the N body, the stress is in direct proportion to strain. Constitutive equations of all basic element bodies are given as Equations 2–5:
H body:
[image: Mathematical expression showing T equals E subscript ee within parentheses as equation two.]
Y body:
[image: Equation showing two conditions: epsilon equals zero when sigma is less than a critical sigma. Epsilon approaches infinity when sigma is greater than or equal to the critical sigma. Labeled as equation three.]
N body:
[image: Equation showing the rate of change over time: \(\sigma(t) = \eta \frac{d\epsilon(t)}{dt}\), labeled as equation (4).]
P body:
[image: Equation showing the formula for \(\sigma(t)\): \(\sigma(t) = \frac{\eta(E_1 + E_2)}{E_1} \frac{d\varepsilon(t)}{dt} + E_2 \varepsilon(t) - \frac{\eta}{E_1} \frac{d\sigma(t)}{dt}\). (Equation 5)]
Wherein, E is an elasticity modulus, σs is a stress limit, η is a viscous parameter, and t is time.
The theoretical model of basic memory elements is formed by combining the above basic components, with mechanic behaviors of each component remaining consistent with Equations 2–5. As the left H body is connected with the right “B||Y” body in series, if setting the applied stress to σ, the component and the body are subject to the same stress, and the strain ε equals to a sum of strain on both components, as for the “P||Y” body, two components are connected with each other in parallel, and the stress σc of the body equals to a sum of stresses on the two components as:
[image: Mathematical equations showing relationships: σ equals σᵉ equals σᵖ; σᵉ equals σᵧ plus σₚ; ε equals εᵉ plus εᶜ; and εᶜ equals εᵧ equals εₚ. Labeled as equation six.]
Wherein σe and εe represent, the stress and strain of the elastic matrix, respectively; σc and εc represent the stress and strain of the “P||Y” body, respectively; σY and εY represent the stress and strain of the Y body, σP and εP represent the stress and strain of the P body.
The Poynting-Thomson body is formed by an H body and an N body in series connected with an H body in parallel:
[image: Equations describe a system with strain and stress relationships. Total strain \(\varepsilon_p = \varepsilon_{H2} = \varepsilon_N + \varepsilon_{H1}\). Total stress \(\sigma_p = \sigma_{H1} + \sigma_{H2}\). Stress \(\sigma_N = \sigma_{H1}\), and \(\sigma_N = \eta d\varepsilon_N/dt\). Stress relationships: \(\sigma_{H1} = E_1 \varepsilon_{H1}\) and \(\sigma_{H2} = E_2 \varepsilon_{H2}\). Equation number (7) appears on the right side.]
Wherein, σN and εN are the stress and strain of the N body, respectively, σH1 and εH1 represents the stress and strain of the H body E1, σH2 and εH2 represents the stress and strain of the H body E1.
The Y body has two conditions, stationary and sliding, which should be determined upon a comparison of its stress to its cohesion. When the stress surpasses the cohesion, the “P||Y” body starts sliding, and the stress of Y body remains unchanged, which always equals to the cohesion. When the stress is less than the cohesion, the Y body stops sliding and stays stationary, and the entire “P||Y” body is “locked” by the Y body, which is:
[image: Mathematical expression showing conditions for sliding and stationary states. Sliding condition: Absolute value of shear stress equals cohesion (\(|\sigma_y| = c\)). Stationary condition: Absolute value of shear stress is less than cohesion (\(|\sigma_y| < c\)), and strain rate is zero (\( \dot{\epsilon} = 0\)). Equation labeled as \( (8) \).]
Wherein, ε0c is the initial strain of the “P||Y” body. At this point, the H body E1 and the H body E2 cannot recover from deformation, allowing for storing the elastic potential energy.
Therefore, the differential equation of a basic element model can be given as:
[image: Equation depicting stress as the sum of viscoelastic and plastic components. The stress \( \sigma \) is defined as \( \sigma = \sigma_v + \sigma_p \). The plastic component \(\sigma_p(t)\) is given by:   \(\sigma_p(t) = \frac{\eta(E_1 + E_2)}{E_1}\frac{d\varepsilon_p(t)}{dt} + E_2\varepsilon_p(t) - \frac{\eta}{E_1}\frac{dq_p(t)}{dt}\).  Equation is labeled as number nine.]
The rock sample contains a large quantity of randomly distributed microstructure surfaces. Based on basic elements herein, a theoretical model is built for multiple contact surfaces containing n basic elements, each of which is connected with another in series so as to simulate the rock sample (without counting in mutual influences between contact surfaces of the rock interior):
[image: Mathematical equations presented: sigma equals epsilon sub n, and epsilon equals the summation from one to n of epsilon sub n. Labeled as equation ten.]
Wherein, n is a serial number of the contact surface, σ is a total stress of the theoretical model, σn is a stress of the contact surface n, ε is a total strain of the theoretical model, and εn is a strain of the contact surface.
In combination with external loading conditions, the stress–strain relation of an axial symmetrical model of multiple contact surfaces may be calculated by Equations 6–10. In turn, the DRA curves may be obtained.
The most basic loading scheme, as shown in Figure 10.
[image: Graph depicting stress versus time, showing pre-loading with a dash-dot line and measurement loading with a solid line. Stress fluctuates between sigma max and sigma min, with key time points t1 to t6 denoted on the time axis.]FIGURE 10 | Basic loading regime.
According to the Equations 6–10 and Basic loading regime, the N body strain and strain rate can be obtained as the Equations 11–13:
[image: Equation displaying \(\varepsilon_N = -A \left( \frac{\frac{\epsilon - n t + C}{E_2} + \frac{\eta(I_c + I_2) t_r}{E_1 E_2^2} - \frac{\frac{\alpha n(I_c + I_2)}{E_2} + \frac{E_1 b t_r}{E_2^2} e^{\frac{n t (1 + \phi)}{\theta}}}{E_1 g e^{\frac{n t (1 + \phi)}{\theta}}}}{\frac{E_1 b t_r}{E_2^2} e^{\frac{n t (1 + \phi)}{\theta}}} \right)\). Numbered as Equation (11).]
[image: A complex mathematical equation representing the rate of change of \( E_N \) over time, \( \frac{dE_N}{dt} = A \left( \frac{r}{E_2} - \frac{E_1 E_2 e^{\frac{-bE_1}{E_2}} \left( \frac{-b}{E_2} + \frac{d(E_1+E_2)}{E_2 E_1'} \right)}{\eta(E_1 + E_2) e^{\frac{-b(E_1+E_2)}{E_2}}} \right) \). Equation number (12) is to the right.]
Wherein:
[image: Mathematical sequence consisting of six equations: at time \( t = t_1 \), \( A = 1 \), \( C = 0 \); at \( t = t_2 \), \( A = -1 \), \( C = r(t_1 - t_0) \); at \( t = t_3 \), \( A = 1 \), \( C = 0 \); at \( t = t_4 \), \( A = -1 \), \( C = r(t_4 - t_3) \); and at \( t = t_5 \), \( A = 1 \), \( C = 0 \). Equation labeled as 13 on the right.]
B is the time point during each loading when a Y body reaches a threshold c, and r is the loading rate.
3.2 Calculation parameters of theoretical model
The loading scheme of the theoretical calculation adopts the 1-1 and 1-2 loading paths in the physical test loading scheme in Figure 6, and sets 5 groups of different stress levels to explore the variation law of the peak value under different stress levels. 500 basic elements in series are selected to do the theoretical model calculation (n = 500). The specific theoretical calculation loading scheme and theoretical model parameters are shown in Table 3, the parameters of the theoretical models of the 5 groups are set to the same, and the cohesion is evenly distributed in 500 units.
TABLE 3 | Theoretical loading parameters.
[image: Table displaying stress path data with parameters: Preload \((\sigma_{p1}, \sigma_{p2}, \sigma_{m})\) in megapascal, Viscous parameter \(\eta = 8 \times 10^{11}\), Cohesion range \(c = 0-2\) megapascal, and Elasticity modulus \(E_1 = 50\), \(E_2 = 50\), \(E_3 = 200\) gigapascal. Various preload and measuring load combinations are listed for stress paths \(1-1\) and \(1-2\).]3.3 Calculation results of theoretical model
3.3.1 Stress-strain curve
Figure 11 presents the stress-strain curves of a theoretical model under five different stress levels. These curves align perfectly with the 1-1 and 1-2 loading paths across all stress levels, indicating the model’s applicability to uniaxial compression tests on rock.
[image: Seven graphs showing stress-strain relationships for different parameters. Each graph has two curves, green and blue, depicting different conditions labeled from (a) to (g). Stress is on the vertical axis, and strain is on the horizontal axis. Individual graphs indicate varying stress and strain behaviors under specified parameters.]FIGURE 11 | Stress-strain curve of theoretical model. (A) σp1 = 0.1/0.2 MPa, σp2 = 0.2/0.1 MPa, (B) σp1 = 0.5/1 MPa, σp2 = 1/0.5 MPa, (C) σp1 = 1/2 MPa, σp2 = 2/1 MPa, (D) σp1 = 2/4 MPa, σp2 = 4/2 MPa, (E) σp1 = 4/6 MPa, σp2 = 6/4 MPa.
In Figures 11A–C, as the stress level increases, the hysteresis loops from both pre-loading-unloading and measurement loading-unloading cycles first expand and then contract. This phenomenon likely occurs because at lower stress levels, the model exhibits minimal nonlinear deformation and energy dissipation. With increasing stress, these factors become more pronounced, resulting in expanded hysteresis loops. At higher stress levels (as shown in Figures 11D, E, the initial loading completes most of the nonlinear deformation and energy dissipation, causing subsequent loading-unloading curves to overlap with the initial ones, and thus the hysteresis loops contract.
3.3.2 DRA curve
Figure 12 presents the DRA curves of the theoretical model under five different stress levels. The left side shows the 1-1 loading path, while the right side shows the 1-2 loading path. It is evident that all five DRA curves exhibit inflection points near the initial loading (σp1 or σp2).
[image: Graphs depicting stress versus norm distance at varying k values and sigma pressures. Each graph shows a distinct curve demonstrating different k and sigma values, with stress on the x-axis and norm distance on the y-axis. Arrows indicate specific points on the curves. Graphs are labeled (a) through (d) with values for k and sigma detailed under each graph.]FIGURE 12 | DRA curve of theoretical model. (A) σp1 = 0.1/0.2 MPa, σp2 = 0.2/0.1 MPa, (B) σp1 = 0.5/1 MPa, σp2 = 1/0.5 MPa, (C) σp1 = 1/2 MPa, σp2 = 2/1 MPa, (D) σp1 = 2/4 MPa, σp2 = 4/2 MPa, (E) σp1 = 4/6 MPa, σp2 = 6/4 MPa.
In Figure 12A, the inflection point of the DRA curve for the 1-1 loading path appears at 0.165 MPa, whereas for the 1-2 loading path, it is at 0.161 MPa. Both loading paths have a preloading stress of approximately 0.2 MPa, with memory information formation accuracies of 82.5% and 80.5%, respectively. In Figure 12B, the inflection points for the DRA curves under the 1-1 and 1-2 loading paths are located at 0.876 MPa and 0.869 MPa, respectively, both identifying a preloading stress of 1 MPa. The memory information formation accuracies are 87.6% and 86.9%. In Figure 12C, the inflection points of the DRA curves under the 1-1 and 1-2 loading paths occur at 1.833 MPa and 1.821 MPa, both closely matching the preloading stress of 2 MPa. The memory information formation accuracies are 91.65% and 91.05%, respectively.
In Figure 12D, the inflection points of the DRA curves for the 1-1 and 1-2 loading paths are at 3.733 MPa and 1.624 MPa, corresponding to preloading stresses of 4 MPa and 2 MPa, respectively. In Figure 12E, the inflection points of the DRA curves under the 1-1 and 1-2 loading paths are identified at 3.56 MPa and 3.25 MPa, respectively, corresponding to a preloading stress of 4 MPa. Notably, in Figures 12D, E, when the stress exceeds 4 MPa, the strain differences of all DRA curves tend to zero. Since the sliding of plastic elements in the theoretical model is the cause of memory formation, and 4 MPa is twice the maximum cohesion of the element, it can be inferred that the maximum preloading stress measured by the model is twice the maximum cohesion. Therefore, the results in Figures 12D, E cannot be used as references for different peak stress paths.
In summary, the theoretical models in Figures 12A–C all retained the larger preloading stress at different stress levels, but the accuracy of memory information varied. These results indicate that the memory information formation accuracy for the 1-1 stress path is higher than that for the 1-2 stress path. Additionally, as the stress level increases, the memory information formation accuracy for both paths gradually improves.
3.4 Comparison between results from theoretical model calculation and physical tests
3.4.1 Comparison of different stress path
Experimental results show that both granite and sandstone exhibit consistent behavior under varying stress levels: regardless of whether the preloading occurs twice or multiple times (three times in this study), the rock specimens always remember the maximum stress encountered during preloading. The sequence of loading does not influence the memory of the maximum stress. Similarly, theoretical model analyses demonstrate the same pattern. Under different stress levels, the theoretical memory model also retains only the maximum stress from two preloading. Regarding the precision of memory formation, theoretical model calculations indicate that the sequence of preloading affects the accuracy of the memory. The closer a larger preloading is to the measurement loading, the greater the precision of the memory information formation.
3.4.2 Discuss of multi-memory
The characteristics of the DRA curves under multi-memory phases in this study are similar to those observed in previous research, as shown in Figure 13. Holmes (Holmes, 2004), while using the DRA method to measure in situ stress, found two inflection points on the axial DRA curve, indicated by arrows in Figure 13A. Utagawa et al. (1997), using Kamechi sandstone as their experimental material, attributed the DRA inflection points to different stress memory information, as depicted in Figure 13B. Similarly, Dight, (2006) observed three distinct inflection points on the DRA curve in his DRA experiments, as illustrated in Figure 13C.
[image: Four graphs display stress versus strain relationships from different studies: (a) Holmes 2004 shows stress-strain cycles for sample AD2-B; (b) Utagawa et al. 1997 presents differential strain against stress; (c) Dight 2006 illustrates strain differences related to no-stress stress and maximum stress. Each graph includes stress and strain values with specific annotations and legends.]FIGURE 13 | Other researchers’ DRA curves with multi-memory. (A) Homles 2006, (B) Utagawa et al 1997, (C) Dight 2006.
However, previous studies (Holmes, 2004; Utagawa et al., 1997; Dight, 2006) have not analyzed the formation conditions of multi-memory phases. Our experiments indicate that a significant characteristic of these multi-memory phases under different stress paths is the frequency of their occurrence. Specifically, multi-memory phases occur more frequently during preloading with low initial stress compared to preloading with high initial stress. In other words, high stress applied at a later stage does not override the effects of low stress applied at an earlier stage, while high stress at an earlier stage is likely to override low stress at a later stage. This suggests that different stress paths influence the formation of rock Deformation Memory Effect (DME) multiple phases. It is important to note that the influence of stress paths on the occurrence of multi-memory phases is probabilistic. Not all stress paths with higher initial stress will result in the formation of DME multiple memories. Furthermore, different stress paths alone are not sufficient conditions for the generation of multiple memories. Additionally, theoretical memory model calculations in this study did not exhibit the phenomenon of multiple memories, indicating that this memory model cannot fully explain the occurrence of multiple phases in rocks. Therefore, the mechanism underlying rock multiple memories requires more systematic and in-depth research.
4 CONCLUSION
This study conducted uniaxial artificial DRA tests on granite and sandstone under different stress levels and performed theoretical model calculations based on the sliding friction mechanism to analyse the changes in rock DME under different stress peak values. The conclusions and recommendations are as follows.
	(1) Experimental and Theoretical Model Findings: Both physical experiments and theoretical models indicate that the DRA curve of rocks under different stress peak paths shows distinct inflection points near the maximum stress peak encountered during preloading. This suggests that rocks always remember the maximum stress peak from preloading, regardless of the sequence of multiple preloading. This result is consistent across different rock types and stress levels.
	(2) Multi-memory in Physical Experiments: Physical experiments reveal that rocks exhibit multi-memory under different stress peak paths. However, the occurrence of multi-memory in the experiments is not inevitable. It is hypothesized that when preloading with low initial stress cannot be overridden by subsequent higher stress loading, there is a certain probability that the DRA curve will simultaneously remember both the low and high stress peaks, leading to multi-memory.
	(3) Theoretical Model Based on Sliding Friction Mechanism: The theoretical model shows that the precision of memory information formation on the DRA curve inflection points varies systematically with different stress peak paths. The precision of memory information formation increases as the historical maximum peak value gets closer to the measurement load. However, the theoretical model does not exhibit multi-memory under different stress peak paths, indicating that a more systematic and in-depth study is needed to understand the mechanism and theory of rock multi-memory.
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Synthetic Aperture Radar Interferometry (InSAR), which can map subtle ground displacement over large areas, has been widely utilized to recognize active landslides. Nevertheless, due to various origins of subtle ground displacement, their presence on slopes may not always reflect the occurrence of active landslides. Therefore, interpretation of exact landslide-correlated deformation from InSAR results can be very challenging, especially in mountainous areas, where natural phenomenon like soil creep, anthropogenic activities and erroneous deformational signals accumulated during InSAR processing can easily lead to misinterpretation. In this paper, a two-phase interpretation method applicable to regional-scale active landslide recognition utilizing InSAR results is presented. The first phase utilizes statistical threshold and clustering analysis to detect unstable regions mapped by InSAR. The second phase introduces landslide susceptibility combined with empirical rainfall threshold, which are considered as causative factors for active landslides triggered by rainfall, to screen unstable regions indicative of active landslides. A case study validated by field survey indicates that the proposed interpretation method, when compared to a baseline model reported in the literature, can achieve better interpretation accuracy and miss rate.
Keywords: InSAR, active landslide, landslide recognition, interpretation method, empirical rainfall thresholds

1 INTRODUCTION
Landslides are a sign of slope instability, which can transform into disastrous events due to natural or anthropogenic triggering factors (Varnes, 1984). To mitigate such risks, recognition of active landslides before catastrophic collapse is a primary goal of current research (Lacroix et al., 2020). Active landslides can be generally described with a three-state creep behavior, including a secondary creep that accumulates subtle displacements constantly (Intrieri et al., 2019). Therefore, ground displacements have often been utilized as an important sign for recognizing active landslides (Pu et al., 2023). However, such ground displacements are not registered routinely, especially in mountainous regions, because of the high cost involved in field survey and in-situ instrumentation. In recent years, interferometric synthetic aperture radar (InSAR), capable of capturing millimetric ground displacement from space, has become a consolidated tool for the landslide community (Bekaert et al., 2020). Indeed, satellite-based InSAR has been widely used to recognize active landslides without prior knowledge of their location since the early 2000s (Ferretti et al., 2001). With the improvement of SAR satellites that provide an unprecedented time series dataset of InSAR (Ho Tong Minh et al., 2020), mapping active landslides utilizing InSAR results, from national (Di Martire et al., 2017; Festa et al., 2022), regional (Zhang et al., 2018), and basin (Zhang et al., 2016; Jia et al., 2022) levels, has been adopted by both developed and developing countries.
Nevertheless, focusing on practical aspects of recognizing active landslides in mountainous regions, processing SAR datasets and interpreting InSAR results can be very challenging. For instance, landslide-prone regions are typically distributed in alpine canyon areas with vegetation coverage, where signal decorrelations, geometric distortion, and phase wrapping inevitably limit the reliable extraction of ground surface deformation from the entire interferograms (Ho Tong Minh et al., 2020). Besides, the current satellite acquisition frequency and the one-dimensional nature of the InSAR results impose physical constraints on capturing the three-dimensional and nonlinear kinematics of landslides. Furthermore, as emphasized by Wasowski and Bovenga (2014), subtle ground displacements measured by InSAR can have different origins, without distinguishing the origins of their motion, this may lead to misleading results. Milillo et al. (2022) reported practical research combining InSAR results with machine learning methods to recognize active landslides automatically. However, they also reported misinterpreted results localized in non-landslide areas, which were attributed to anthropogenic activities such as oil field extraction or aquifer use. Necula et al. (2021) reported a more complicated case of misinterpretation in which ground displacement mapped by InSAR was attributed to the construction of residential buildings over in-active landslides. In summary, inevitable signal noise during InSAR processing in landslide-prone regions and the difficulty in discriminating landslide-correlated deformation in InSAR results are ongoing challenges. Although InSAR processing is crucial to obtain reasonable ground deformation measurements, the present study only focuses on the interpretation of InSAR results (e.g., interferograms, IFs; mean velocity maps, MVMs). Therefore, from the perspective of radar interpretation defined by Farina et al. (2006), InSAR results require careful interpretation before they can be reliably considered as active landslides.
To reduce erroneous interpretations of InSAR results for the purpose of landslide recognition (also reported as landslide detection or identification in the literature), various interpreting methods have been proposed over the last decade. In addition to visual interpretation by experts (Ponziani et al., 2023), combining velocity threshold with clustering analysis (e.g., unsupervised machine learning algorithms, UMLAs) has been widely utilized to interpret active landslides from InSAR results: fixed threshold reported by Righini et al. (2012), statistical threshold reported by Aslan et al. (2020), hot-spot analysis reported by Lu et al. (2019), C-index reported by Xiong et al. (2023), index of separating trend reported by Li et al. (2023). Furthermore, by applying landslide predisposing factors (e.g., slope angle, lithology, land use, and others), which have been used in landslide susceptibility analysis, researchers have attempted to explicitly link InSAR-mapped ground displacements to active landslide.
With the expansion of large SAR archives and processing techniques (Ho Tong Minh et al., 2020), interpreting large volumes of InSAR datasets automatically has become crucial nowadays, especially for large scale engineering applications. From the aspect of practical interests, interpretation of InSAR data to recognize active landslides can be further divided into two processes, which include unstable regions detection (also called anomalies detection reported by (Raspini et al., 2018) and root-cause analysis of ground deformation phenomena, respectively. Festa et al. (2022) reported a pioneering work in semi-automatic interpretation of nation-wide InSAR results to recognize various natural hazards. The unstable regions detection process was accomplished by applying spatial clustering to obtain moving area clusters. The root-cause analysis process was done by introducing ancillary data like landslide inventory maps, vertical-horizontal component ratios obtained through 2D-decomposition of LOS displacements, and minimum slope angle threshold. He et al. (2023) reported an interpretation method by combining fixed displacement rate thresholds and landslide susceptibility. By introducing the latter into the root-cause analysis process, they found the interpretation method could further separate InSAR-mapped deformation correlated to active landslides from others. However, the aforementioned threshold, factors or input parameters used during interpretation may not be confidently determined, and they should be case-specific to account for the complex characteristics of different slopes, as well as measurement precision for the given InSAR results (Cigna et al., 2013).
In addition, supervised machine learning algorithms (SMLAs) have been introduced for interpreting InSAR results to recognize active landslides recently. Some of these studies only utilized InSAR results as the model input variable, where IFs or MVMs were directly inputted into pre-trained models using different SMLAs. For instance, combining stacked IFs with YOLOv3 reported by Fu et al. (2022), combining MVMs with Faster RCNN reported by Cai et al. (2023). In addition, some other studies, assisted by SMLAs and multi-dimensional datasets containing InSAR results and auxiliary data, were also reported (Novellino et al., 2021). Indeed, many published and unpublished SMLAs studies are addressing in improving accuracy and efficiency of landslide recognition using InSAR results. However, there are still several limitations highlighted in the literature, including dilemmas in constructing an appropriate dataset with limited landslide samples within a given region, and most importantly, introducing landslide triggering mechanisms to improve model interpretability (Novellino et al., 2021).
On the other hand, from the perspective of slope-scale landslide analysis, ground displacement induced by certain causative factors can be evaluated by means of analytical or numerical methods. However, the application of these methods may not be completely justified for regional-scale landslide recognition purposes, especially if all required input data are not available without prior knowledge of landslides’ location. To the best of the authors’ knowledge, there have been rather few attempts to connect InSAR results to landslide triggering mechanism for the purpose of recognizing active landslides, especially considering causative factors such as precipitation. For instance, Dong et al. (2023) reported an interpretation method to screen pre-clustered InSAR results. The Pearson correlation coefficient between InSAR-mapped ground displacement time-series and accumulated monthly rainfall combined with landslide susceptibility was introduced into the root-cause analysis. Even though the reported interpretation method only requires a limited number of easily accessible datasets, the simplified statistical relationship between ground displacement and rainfall described by the Pearson correlation coefficient may not represent the sophisticated triggering mechanisms of rain-induced landslides compared with analytical/numerical or other statistical methods.
In this paper, for the purpose of recognizing active landslides at a regional scale, a simple-to-use method for interpreting InSAR results is presented. Taking landslide triggering by seasonal precipitation as an example, we propose a two-phase process to screen InSAR-measured MVMs combining clustering analysis, landslide susceptibility and possibility of rainfall-induced landslide failures. Here we assume that a higher likelihood of landslide failure, as indicated by rainfall thresholds, would correlate with a greater potential for landslide-correlated deformation captured by InSAR. This, in turn, may serve as an indicator for interpreting InSAR results to recognize active landslides. To achieve this, we construct empirical rainfall thresholds to indicate the possibility of landslide failures using satellite-based hourly precipitation data and recorded landslide failure events. After validating this by field surveys, the performance of the proposed method is evaluated and compared with a baseline model reported in the literature. Overall, by explicitly introducing the causative factors into the root-cause analysis, this study provides a semi-automatic interpretation method for discriminating InSAR-mapped deformation results correlated to the unique physical phenomena of rainfall-induced landslides.
2 STUDY AREA
The selected study area is Fengjie County, located in the Northeastern Chongqing Municipality, China. Due to its mountainous terrain, complex geological conditions, and unique weather patterns characterized by continuous rainy days and heavy rainfall every autumn (referred to as the West China Autumn Rain), Fengjie County is particularly vulnerable to rainfall-induced landslides (Li et al., 2022). Furthermore, Fengjie County has jurisdiction over 29 towns with approximately 745,000 inhabitants. Due to rapid development, human engineering activities such as land reclamation and housing construction have become significant contributing factors to events related to ground surface deformation (Zhang et al., 2023).
Open-source SAR data have been acquired by Sentinel-1 from the European Space Agency (ESA) to ensure weekly global coverage of the land surface. Due to the impact of Sentinel-1B failure, the acquisition of Sentinel-1A has been affected worldwide, especially in China. As a result, the acquisition percentage (actual acquisition versus planned acquisition) of the Sentinel-1A has degraded in the study area since 2021. It is worth noting that Sentinel-1A data have acquisitions only in ascending orbits in the study area (See Figure 1). In addition, the digital elevation model (DEM) obtained from the Shuttle Radar Topography Mission (SRTM) and the normalized difference vegetation index (NDVI) derived from Sentinel-2 optical images imply that the area would suffer from geometrical distortion and signal decorrelation.
[image: Map showing the Sentinel-1A Path 84 over a mountainous region with elevation displayed in shades from light green to yellow. The study area is highlighted in red, encompassing a reservoir and rivers. An inset globe shows the location, while a lower panel illustrates NDVI values in green and orange.]FIGURE 1 | The location of the study area and the distribution range of SAR data.
3 MATERIALS AND METHODS
3.1 Data preparation
The application of InSAR results to landslide deformation tracking should satisfy the geometric sensitivity to deformation (van Natijne et al., 2022). Therefore, the applicability of SAR images acquired by Sentinel-1A was analyzed initially. We followed the methods suggested by (Notti et al., 2014; Dai et al., 2022) to create visibility and sensitivity maps of the study area (See Figure 2). The R-index (RI), or range index, has been widely used to assess the topographic effects, specifically the visibility of the SAR image. As indicated by Notti et al. (2014), the RI represents the ratio between the slant range (a radar geometry distance) and the ground range (an Earth surface distance). The RI was classified into three levels, which includes poor, medium, and good visibility, ranging from below 0, 0 to 0.38, and 0.38 to 1, respectively. The S-index (SI), or sensitivity index, was calculated by the orthogonal projection of the downslope unit vector onto the line-of-sight of the radar satellite (Chang et al., 2018). The SI was classified into three levels (Dai et al., 2022), which include poor, medium, and good visibility, ranging from below 0 to 0.3, 0.3 to 0.6 and 0.6 to 1, respectively.
[image: Two maps of a region, each depicting different indices. The left map shows the R-Index for visibility with color gradations: red for poor visibility, yellow for medium, and green for good. The right map displays the S-Index for sensitivity with similar color gradations: red for poor sensitivity, yellow for medium, and green for good. Both maps indicate scale at the bottom and have north arrows pointing upwards.]FIGURE 2 | The visibility and sensitivity maps of the study area.
The landslide susceptibility map of the study area was produced by the analytic hierarchy process (AHP), which belongs to the expert’s knowledge-based methodology. Twelve conditioning factors were used in the analysis process following the suggestion reported by Gong et al. (2022). Areas with landslide susceptibility values (LSV) among lower than 0.3, 0.3–0.55, 0.55–0.7 and greater than 0.7 were categorized into low, moderate, high, and very high susceptibility, respectively. As illustrated in Figure 3, 79.97% of the study area is referred to as having good RI. However, due to the west-east distribution of the Yangtze River and extrusion from the Ta-Pa Mountains, slopes in the study area may tend to form a north-south orientation along river networks or mountains. As a result, SI in the study area exhibits only 25.68% of good sensitivity. From the perspective of landslide susceptibility, as shown in Figure 3 and reported by other researchers (Zhang et al., 2023), most of the study area exhibits low and moderate susceptibility. Areas with high and very high susceptibility are mainly located along the Yangtze River or low mountain and hilly areas in the northwest part.
[image: Map and chart displaying landslide susceptibility in a region. The map on the left shows areas categorized as low, moderate, high, and very high risk using different colors, with recorded landslide sites marked. The chart on the right includes a bar graph showing values for R-Index, S-Index, and overall landslide susceptibility, with varying heights representing the levels of susceptibility.]FIGURE 3 | The distribution of recorded landslide failures from 2013 to 2019 and overlayed with landslide susceptibility in the study area. The distribution of R-Index, S-Index, and landslide susceptibility in the study area.
To construct empirical rainfall thresholds for the study area, historical data of recorded landslide failures from 2013 to 2019 were collected. Then, data preprocessing was conducted to eliminate improbable data. After that, as illustrated in Figure 3, 951 recorded landslide failure events were utilized in this study. The Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network Cloud Classification System (PERSIANN-CSS), a widely used satellite precipitation product (Nguyen et al., 2019), was utilized as rainfall data. This product has an hourly temporal resolution and a 4 km spatial resolution. PERSIANN-CSS data from 2013 to 2019 were collected, totalling 242 grid cells per hour in the study area. It should be noted that the PERSIANN products tend to overestimate precipitation in high-elevation regions in Southwest China due to fewer rain gauge observations that can be used for correction (Nie and Sun, 2020).
To avoid the influence of irregular Sentinel-1A acquisitions in the study area since 2021, 58 scenes of SAR images were collected from January 1 to 26 December 2020. The processed InSAR data from these SAR images with ascending orbits were used, generating a total of 10,454,266 coherent targets (CTs) in the study area. The final spatial resolution of the InSAR data was 20 × 20 m. Based on the CT density evaluation process suggested by Wang et al. (2021), five land cover types, which include cropland, forest, grassland, water, and bareland, were chosen to evaluate the CT density. As depicted in Figure 4, CT density changes dramatically in different land cover types and can be categorized into three applicability levels. Excluding the land cover type of water, the land cover type of forest, which covers 62% of the total area, has the lowest value of 1398 CT/km2 and can be classified as having a low applicability level. In contrast, the land cover type of bareland, which covers less than 1% of the total area, has the highest value of 6170 CT/km2 and can be classified as having a high applicability level. Additionally, CT density in the land cover types of cropland and grassland varies from 4,417 to 4927 CT/km2 and can be classified as having a medium applicability level.
[image: Map showing precipitation variation in a region with shades of blue, green, and red indicating precipitation levels from over 40 millimeters per year to below negative 92 millimeters per year. An inset highlights detailed variations in a specific area. A bar chart compares land use types like cropland, forest, grassland, water, and bareland with their respective area in square kilometers and density in points per square kilometer, where forests have the highest area and water the lowest.]FIGURE 4 | The results of InSAR-mapped ground surface deformation and the relationship between CT density versus land cover types.
3.2 Causally-connected method for interpreting InSAR results
As depicted in Figure 5, the proposed interpretation method contains two phases, namely, unstable regions detection (Phase I) and root-cause analysis (Phase II). Clustering analysis combined with statistical thresholds are utilized to detect unstable regions initially. Then, these preliminary results are further evaluated through root-cause analysis considering internal and external attributions that contribute to landslide movements. In particular, landslide susceptibility is introduced as the internal attribution to isolate unstable regions that are located in landslide-prone areas. Additionally, rainfall thresholds, which indicate the possibility of rainfall-induced landslide failures, are introduced as the external attribution. By screening with landslide susceptibility and reconstructed rainfall thresholds, the unstable regions mapped by InSAR can be isolated to surface movements pointing to active landslides.
[image: Flowchart illustrating a landslide detection and analysis process. Phase I involves detecting unstable regions using InSAR-measured MVMs and clustering with the DBSCAN algorithm. Phase II includes root-cause analysis with three stages: applying a threshold for landslide susceptibility, removing low-susceptibility polygons, and correlating rainfall events with historical landslides. The flowchart features diagrams, graphs, and annotations explaining each step, with interpreted results indicating likely active landslides.]FIGURE 5 | Flowchart of the proposed two-phase interpretation method (diagram of DBSCAN was redrawn from Pedregosa et al., 2011).
3.2.1 Unstable regions detection
Based on previous studies and data conditions in the study area, we first used statistical analysis to obtain CTs with mean annual velocity above 3 times standard deviation (3σ). Then, we used a spatial clustering algorithm called DBSCAN (Pedregosa et al., 2011). According to parameter selection reported by Bakon et al. (2017) and Montalti et al. (2019), three parameters were preset in the DBSCAN algorithm. Eps, which refers to radius for which the CTs are considered reachable, was set as 100 m; MinPts, which refers to a minimum number of neighboring points, was set as 3; Metric was set to haversine to allow data input in the form of latitude and longitude.
3.2.2 Root-cause analysis
Aiming to improve the performance of the interpretation method, the root-cause analysis was further divided into two individual processes in the proposed interpretation method. Landslide susceptibility and rainfall thresholds were introduced to causally connect InSAR-mapped ground deformation to active landslides triggered by rainfall.
After screening CTs through Phase I, clustered polygons were compared with landslide susceptibility, which corresponds to the probability of landslide occurrence across a given geographic space (Loche et al., 2022). Compared with the minimum slope angle threshold reported in the literature, the landslide susceptibility can take slope angle as well as other predisposing factors into consideration. Landslide susceptibility of the study area was obtained by considering twelve conditioning factors, which include elevation, slope angle, aspect, terrain curvature, terrain ruggedness index, lithology, distance to fold, distance to river, stream power index, topographic wetness index, NDVI, and distance to road (Gong et al., 2022). To unify the resolution of conditioning factors, all data were resampled and input at a resolution of 100 m following the suggestion reported by Liu et al. (2023). Clustered polygons with low landslide susceptibility were considered as other ground deformation phenomena captured by InSAR and removed.
The following step was used to introduce the rainfall threshold for indicating the precursory movement before landslide failure. The rainfall threshold is one of the known hydrological conditions (e.g., rainfall, infiltration, soil moisture) that, when reached or exceeded, is likely to trigger landslides (Guzzetti et al., 2007). To obtain such a threshold, the best separators in a Cartesian plane segmenting triggering and non-triggering rainfall conditions need to be extracted from known slope failure events and correlated rainfall records (Crozier, 1997). The most common rainfall thresholds in the literature include rainfall mean intensity versus rainfall duration (I-D) and cumulated event rainfall versus rainfall duration (E-D). In this paper, an E-D type of rainfall threshold was constructed by using a comprehensive tool called CTRL-T (Melillo et al., 2018). The CTRL-T, which includes three main algorithm blocks for rainfall events reconstruction, selection of triggering conditions responsible for the slope failure events, and calculation of rainfall thresholds at different exceedance probabilities (EPs), was written in R open-source software.
The original CTRL-T algorithm requires two types of input data, including rainfall data (rain gauge location, rainfall time series, and event parameters) and landslide data (location and occurrence time). To introduce satellite rainfall products instead of rain gauge observations, we followed the procedures suggested by Rossi et al. (2017). The centroid of each satellite-based rainfall grid cell was treated as a virtual rain gauge, resulting in a total of 242 virtual rain gauges capable of providing hourly precipitation observations in the study area. Like the traditional method of empirical rainfall threshold construction, the CTRL-T involves selecting the rain gauge for each landslide failure to obtain the representative rainfall condition responsible for landslide triggering. Rossi et al. (2017) suggested using buffer analysis with a 5 km radius to identify the rain gauge for mountain regions. Because the distance between each virtual rain gauge (the centroid of each grid cell) is 4 km, less than the buffering radius mentioned above, the closest virtual rain gauge for each landslide failure event was selected in this paper.
After correlating satellite-based rainfall observations to landslide failure events, it is necessary to set reasonable parameters to determine the rainfall event responsible for landslide triggering. Ten parameters were utilized to reconstruct the rainfall events responsible for landslide triggering. A detailed description of these parameters refers to Melillo et al. (2015). As emphasized by Melillo et al. (2015), these parameters, which were primarily suitable for Italy, were empirically determined by experts. It should be noted that the study area belongs to the subtropical monsoon climate with West China Autumn Rain, which is different from the Mediterranean climate in Italy. Therefore, the warm period for the study area was adjusted to April to October according to the characteristics of the subtropical monsoon climate. As illustrated in Table 1, we carefully selected other empirical parameters based on the local meteorological and seasonal conditions.
TABLE 1 | Input parameters for CRTL-T algorithm.
[image: Table showing parameter names, values for warm and cold periods, and units. Parameters include \( G_s \) and \( E_R \) with 0.2 mm, \( P_1 \) with 6 h for warm and 3 h for cold, \( P_2 \) with 12 h and 6 h, \( P_3 \) with 1 mm, \( P_4 \) with 96 h and 48 h, \( sws \) with 5 months, \( ews \) with 9 months, and \( R_b \) with 5 km.]In the literature, the daily rainfall intensity (DRI) is a widely utilized indicator and shows good predictive power for landslide triggering (Leonarduzzi et al., 2017). Therefore, the maximum daily rainfall intensity (MARI) was utilized as the indicator in the root-cause analysis process. First, based on the E-D type of rainfall threshold derived by the CTRL-T algorithm, lower-bound DRI with different EPs were constructed. Then, the MARI in 2020, which is compatible with InSAR observation, was extracted from gridded satellite precipitation data. Next, clustered polygons distributed in the grids with MARI surpassing certain DRI were considered as interpreted results likely indicating active landslides triggered by rainfall.
3.2.3 Validation of the proposed interpretation method
In order to validate the proposed interpretation method and evaluate its performance, we constructed a baseline model first. Then, results between the proposed and the baseline models were compared and validated through field survey. It should be noted that the Sentinel-1A has only acquired ascending orbits in the study area. As a result, 2D-decomposition of LOS displacements from ascending and descending InSAR observation is not available in the study area. Additionally, the interpretation method reported by Dong et al. (2023) requires InSAR-mapped ground displacement time-series, which would be less feasible for large-scale engineering applications compared to MVMs. Therefore, we utilized the interpretation method reported by He et al. (2023) as the baseline model. We constructed this model by using the same method applied in the proposed model for the process of unstable regions detection. Besides, the root-cause analysis process for the baseline model was conducted by setting a threshold for unstable regions located in areas with high and very high landslide susceptibility.
The union set of interpreted results obtained from the baseline and the proposed models was investigated by evaluating macro deformation, deformation history, and stability in the field, as suggested by Xu et al. (2023). Field survey results were first classified into three levels to quantify whether the ground surface movement can be observed (Liang et al., 2022). The principles of classifications were based on field investigation within the interpreted spatial polygons, which include the deformation phenomenon of local cracks, building and infrastructure, covered vegetation, and existing landslide mitigation facilities. The deformation phenomenon was divided into distinct deformation (Level I), slight deformation (Level II)), and no obvious deformation (Level III), respectively. After that, field survey results were categorized into three groups, which include landslide-correlated deformation (Category I), ground surface movement induced by other triggering factors (Category II), and no identifiable ground surface movement (Category III). Finally, by comparing the results between the baseline and the proposed model assisted by a confusion matrix, the performance of the proposed interpretation method was evaluated.
4 RESULTS
4.1 Rainfall thresholds for the study area
As shown in Figure 6, 2,251 rainfall events were reconstructed in the study area. Maximum cumulated rainfall in 24 h for these events ranged between 20 and 157 mm. Additionally, by evaluating the delay between the rainfall ending time and the landslide occurrence time for each failure event, a delay longer than 48 h was considered as an indicator for incorrectly dated landslide failure events (Melillo et al., 2018). By applying this criterion, 813 recorded landslide failure events were utilized to construct the rainfall threshold.
[image: Scatter plot showing cumulative rainfall (E) in millimeters against rainfall duration (D) in hours, with density plots on the top and right. Data points are labeled for MPRC and MRC, with rainfall duration ranging from 0 to 80 hours, and cumulative rainfall mostly under 100 millimeters.]FIGURE 6 | The cumulated rainfall and duration of the 813 recorded landslide failure events for MPRCs and MRCs.
After connecting each landslide failure event with the corresponding rainfall event, maximum probability rainfall conditions (MPRCs) and multiple rainfall conditions (MRCs) were reconstructed to obtain rainfall duration (DL) and cumulated event rainfall (EL), respectively. The MPRCs are the subset of MRCs with the highest weight ω, which is proportional to the inverse square distance between the rain gauge and the landslide, the EL, and the rainfall mean intensity. It should be noted that the weight ω is attributed to each DL - EL pair of the MRCs. When the difference in the EL between one pair and the subsequent is less than 10%, the weight ω attributed to the latter pair is null. Figure 6 illustrates the results of the MPRCs and the MRCs. For the 813 recorded landslide failure events, 1623 DL - EL pairs for MRCs and 834 DL - EL pairs for MPRCs were reconstructed. Table 2 shows the power-law function of empirical rainfall thresholds at 5%, 10%, and 20% Eps, as well as uncertainty associated with the threshold parameters and their respective uncertainties.
TABLE 2 | Empirical rainfall thresholds at different EPs.
[image: Table showing power-law function equations for EPs values of five, ten, and twenty percent, with associated uncertainties for α and γ variables, and datasets labeled as MPRC and MRC.]After obtaining empirical rainfall thresholds illustrated in Table 2, critical cumulated rainfall for various durations was calculated. As shown in Figure 7, cumulated rainfall for durations of 24 h (daily), 48 h (2-day), and 96 h (3-day) with 5% EP are marked with dashed lines for the two datasets. At a certain EP level, the difference in the cumulated rainfall between the MPRC and the MRC dataset increases with duration. Additionally, similar increasing trends of difference between the two datasets also appear with the increase of the EP. Using the lower-bound value of thresholds derived from the two datasets, DRI can be obtained to indicate the precursory movement for landslide triggering. For 5%, 10%, and 20% EPs, the corresponding DRIs are 29 mm/day, 32 mm/day, and 37 mm/day, respectively.
[image: Graph showing cumulative rainfall over time, with two sections labeled MRPC and MRCJ. The x-axis represents rainfall duration in hours, and the y-axis shows cumulative rainfall in millimeters. Lines indicate different percentiles: 5%, 10%, 20%, and 50%. Red dashed lines highlight durations at 24, 48, and 72 hours, with corresponding rainfall values marked alongside.]FIGURE 7 | The critical cumulated rainfall for durations of 24 h, 48 h, and 72 h under different EPs.
4.2 Interpreted results based on the baseline and the proposed model
It should be noted that, by applying threshold to unstable regions located in areas with high or very high landslide susceptibility, the baseline model interpreted 52 spatial polygons of unstable regions as active landslides, where 31 and 21 spatial polygons were located in high and very high landslide susceptibility, respectively. In contrast, by combining landslide susceptibility and rainfall threshold, the proposed model utilizing 5% EP interpreted 71 spatial polygons of unstable regions as active landslides. However, applying 10% and 20% EP can only interpret 38 and 23 spatial polygons of unstable regions as active landslides.
In order to illustrate the difference in interpreted results between the baseline and the proposed model directly, the union set of interpreted results obtained from the two models is illustrated in Figure 8. As shown in Figure 8A, 19 spatial polygons interpreted by the proposed model with 5% EP were interpreted as others by utilizing the baseline model. Figure 8B depicts interpreted results of the proposed model with three rainfall thresholds, which are 5%, 10% and 20% EPs. As shown in Figure 8B, by applying 5%EP during the interpretation process, 71 spatial polygons were all located in grids with DRI surpassing 29 mm/day. That is to say, these polygons of unstable regions were all interpreted as active landslides. In contrast, applying 10% EP would interpret 22 spatial polygons as others, while applying 20% EP would interpret an additional 15 spatial polygons as others.
[image: (a) Map showing landslide susceptibility in shades from green (low) to red (very high). Circles indicate active landslides. A bar chart compares instances at different levels of susceptibility.  (b) Map highlighting different areas in shades of blue, showing interpreted results with distinct Earthquake Parameter (EP) values. A legend indicates earthquake points at 5, 10, and 20 EP in various colors.]FIGURE 8 | Interpreted results based on the baseline model and the proposed model: (A) results from the baseline model overlayed with landslide susceptibility; (B) results from the proposed model overlay with the MARI in 2020. Interpreted results with three EPs were marked in different colors. 
4.3 Validation and evaluation of the proposed interpretation method
By conducting field surveys for 71 spatial polygons, the deformation phenomenon of interpreted results was classified into three levels, as discussed previously. Level I contains 21 interpreted polygons that can be observed as distinct deformation in the field, primarily rupture and cracks on the ground surface or identifiable cracks on the buildings and roads within the polygon area. In contrast, 34 interpreted polygons, 48% of the total polygons, can be subsumed into Level II. These interpreted polygons mainly showed identifiable cracks in the infrastructures. Additionally, Level III includes 17 interpreted polygons. It should be noted that 13 interpreted polygons of Level III were found covering newly-increased farmland. The main culprit for these polygons could be farm work on the slopes. Based on a comprehensive analysis of data obtained by field investigation, field survey results were then categorized into three groups, as discussed previously. Category I includes 40 interpreted polygons believed to correlate with active landslides. Fourteen interpreted polygons were subsumed into Category II, mainly correlated with anthropogenic activities or soil creep. Category III includes 17 interpreted polygons, which were consistent with Level III.
Field survey results for the baseline and the proposed model are overlayed with interpreted results and illustrated in Figure 9. In Figure 9A, for interpreted results from the baseline model, most of Category I can be recognized correctly. However, several missing recognitions of Category I can be clearly observed, as well as misidentification of Category III. In contrast, as shown in Figure 9B, by applying the proposed model, only two spatial polygons belonging to Category I were not interpreted as active landslide correctly.
[image: Two maps comparing interpreted results from a baseline model. Map (a) shows blue circles indicating data points, categorized into three groups with squares, diamonds, and circles. Map (b) displays pink, yellow, and blue symbols representing different categories, with a legend below explaining each category's symbol. North is indicated, and scale bars are included.]FIGURE 9 | Field survey results for interpreted polygons from the baseline and the proposed model: (A) results for the baseline model; (B) results for the proposed model.
Confusion matrices for both the baseline and the proposed model are illustrated in Figure 10. When comparing the performance among different models, the accuracy and recall have similar tendencies. For instance, the accuracy for the proposed model with 5% EP is 0.66, which is better than the baseline model with an accuracy of 0.61. With the increase of EPs, the accuracy for the proposed model appears slightly degraded. In contrast, the precision of the proposed model is 0.63, which is slightly better than the baseline model with a precision of 0.62. With the increase of EPs, a growing tendency for the precision can be observed. However, from the perspective of practical interests, local authorities and experts would prefer to have false detections (FP) rather than missed ones (FN). From this point of view, the proposed model with 5% EP shows remarkable performance compared to the baseline model. The miss rate (FN divided by the sum of TP and FN) for the proposed model with 5% EP is 0.05, which is only a quarter of the miss rate for the baseline model.
[image: Five-part diagram presenting model evaluation data: (a) Confusion matrix with 32 true positives, 8 false negatives, 20 false positives, and 11 true negatives. (b) and (c) Radar charts comparing validated and interpreted classes. (d) Additional radar chart with detailed class comparison. (e) Bar graph showing performance metrics—accuracy, precision, recall, false alarm, and miss rate—across four models: baseline, and three proposed models with varying percentage enhancements.]FIGURE 10 | Confusion matrices for the baseline and the proposed model, where TP refers to true positive; TN refers to true negative; FN refers to false negative; FP refers to false positive: (A) the baseline model; (B) the proposed model with 5% EP; (C) the proposed model with 10% EP; (E) the proposed model with 20% EP; (E) accuracy, precision, recall, false alarm and miss rate for different models.
5 DISCUSSION
In order to improve the applicability of InSAR results for rainfall-induced landslide recognition, we assume that rainfall would be a promising indicator to distinguish precursors of slope instability from other ground surface movement phenomena. This hypothesis is based on the causal relationship that in a landslide-prone area with seasonal precipitation, anomalous ground surface deformation correlated to landslides should primarily be caused by rainfall events necessary to trigger slope instability. Therefore, introducing such a causal relationship in the interpretation process of the InSAR results would be beneficial for model interpretability and applicability for a certain study area.
In order to show and discuss the pros and cons of the proposed method, typical cases of interpreted results for Category I and Category II are depicted in Figure 11. As shown in the Figure 11A, the case of Category I exhibits noticeable ground surface movement in the middle part of the slope. It should be noted that the InSAR results observed a considerable surface deformation, surpassing 50 mm/y, even though the slope direction is nearly perpendicular to the line-of-sight (LOS) direction. By conducting field surveys through the local geomorphic unit (See Figure 11B), distinct deformation was observed in the field as expected. Additionally, from the perspective of slope stability analysis, the surface deformation captured by InSAR implies that the mobility of the active landslide belongs to the thrust type, where the active area is mainly concentrated in the trailing edge. The possible culprit for this case should mainly be attributed to precipitation. However, the influence of irrigation farming in the middle and the human-cutting slope at the toe could not be evaluated without further investigation. Although the above case shows promising recognition of the active landslide using InSAR results, the case of Category II depicts an unexpected misidentification. The slope of the interpreted polygon is in a west-east direction (See Figure 11C), which is consistent with the LOS direction for the ascending orbit. Vegetation coverage in this region is coarse. Therefore, it can be concluded that the observation condition for this case is better than those above. However, field surveys indicated that the possible culprit for this case should be attributed to anthropogenic influences, including irrigation farming and human-cutting slope (See Figure 11D). Even after broadening the survey area and interviewing local citizens, no signs or precursors of landslide triggering can be detected in the field.
[image: Four-panel image showing landslide analysis. (a) Map with green to red gradient indicating landslide susceptibility. (b) Photo highlighting newly-identified landslide area with surface rupture and road cracks. (c) Map with overlay markers indicating displacement velocity. (d) Aerial view showing landslide area, human-cut slope, and farmland.]FIGURE 11 | Typical cases of interpreted results for Category I and Category II: (A) Deformation map and interpreted polygon of a typical case for Category I. (B) Field survey results of the typical case for Category I. (C) Deformation map and interpreted polygon of a typical case for Category II. (D) Field survey results of the typical case for Category II The results of interpreted active landslide and corresponding landslide susceptibility.
Although the performance of the proposed model is inspiring when compared to the baseline model reported in the literature, misclassification cases can still be observed. Possible culprits for misclassification could be attributed to spatial-temporal resolution and accuracy of satellite precipitation products (Brunetti et al., 2018), uncertainties in rainfall thresholds induced by various factors (Segoni et al., 2018), anthropogenic cause contributing to landslide triggering (Xu et al., 2022), and limitations of field investigation to capture subtle signs of ground surface movements (Guzzetti et al., 2012). Therefore, further analysis based on the utilization of cross-validated InSAR results, a combination of satellite precipitation products calibrated with on-site precipitation stations, modification of rainfall thresholds by combining statistical and physical methodology, and improvement of field survey methods are suggested.
6 CONCLUSION
In this work, a semi-automatic interpretation method for recognizing active landslides induced by rainfall through InSAR results is presented. By constructing empirical rainfall thresholds, the causal relationship between recorded landslide failure events and corresponding rainfall events was introduced into the interpretation process. The proposed approach is divided into two individual phases, which include unstable regions detection and root-cause analysis. In order to improve the performance of the interpretation method, attempts were made to causally connect rainfall with InSAR-mapped landslide-correlated ground displacement by introducing empirical rainfall thresholds in the latter phase. After validating by field survey, the proposed model utilizing DRI with 5% EP demonstrates a remarkable performance for reducing the miss rate when compared to a baseline model reported in the literature. Although a more extensive validation is necessary, the present interpretation method seems to be very promising from a practical viewpoint for improving large-scale recognition performance for interpreting active rainfall-induced landslide assisted by InSAR results.
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Introduction: The presence of water significantly reduces the mechanical strength of rocks and induces various engineering geological hazards. The water weakening coefficient Kp is used to quantify this effect, defined as the ratio of wet uniaxial compressive strength to the dry value.Methods: A comprehensive physico-mechanical test was conducted on fifteen sandstones under dry and saturated conditions to predict the water weakening coefficient using easily obtainable physical parameters. Multiple linear regression was employed to establish the relationship between these parameters and the saturated water weakening coefficient.Results: The saturated water weakening coefficient decreases with increasing porosity and increases with higher Primary wave velocity (P-wave velocity). Rocks with higher porosity but lower P-wave velocity typically absorb more water. The P-wave velocity and clay mineral content were identified as the best predictors of the saturated water weakening coefficient (R2 = 0.82). Unsaturated water weakening coefficients at any water saturation level were well estimated using a previous exponential function.Discussion: The roles of different clay minerals and P-wave velocity in the water weakening process of rocks are comprehensively discussed. This study enhances the understanding of the water weakening mechanism and provides an improved evaluation model for the water weakening coefficient of sandstones using physical parameters.Keywords: water weakening coefficient, uniaxial compression strength, clay minerals, P-wave velocity, multiple linear regression
1 INTRODUCTION
Sandstone, as a kind of typical sedimentary rock, is widely distributed on the earth’s surface and is often used as construction material due to its good cementation capacity and easy accessibility (Sun and Zhang, 2019). However, in rock engineering fields, sandstone inevitably comes into contact with water. The presence of water significantly reduces its mechanical properties, leading to geological disasters such as pillar instability (Lafrance et al., 2016), landslides (Song et al., 2018) and tunnel collapse (Yang et al., 2020). Additionally, most sandstones contain clay minerals. When these minerals absorb water, the resulting uneven stress distribution caused by the swelling of clay minerals will induce the deterioration of sandstones (Shen, 2014; Yuan et al., 2014). Therefore, it is essential to comprehensively investigate the strength change in sandstone after absorbing water in order to provide mechanical parameters for the safe design of rock engineering projects in water-prone areas.
Over the past few decades, extensive research has been conducted on the strength loss of sandstone from dry to saturated conditions. Hawkins and McConnell (1992) claimed that the maximum uniaxial compressive strength (UCS) loss at the fully saturated condition exceeded 70% after testing 35 sandstone samples. They held that the water weakening degree was primarily controlled by the mineral composition, particularly the content of quartz and clay minerals. Erguler and Ulusay (2009) further investigated the water weakening process of clay-bearing sandstones. The UCS of sandstones decreased by more than 90% after absorbing water. Tomor et al. (2024) investigated the reduction in UCS of sandstones under different moisture levels. They tested thirty-four UK Darney sandstone samples under six moisture conditions and evaluated moisture gain and loss over time. For 77 sandstones reviewed in the literature, UCS loss ranged up to 45% between oven-dry and saturated conditions, with an average loss of 20%. Wong et al. (2016) comprehensively summarized the variation of mechanical properties for different types of rocks exposed to water. They claimed that not only the strength but also the stiffness of rocks were reduced by the presence of water. Huang et al. (2022c) measured the UCS of four clay-bearing sandstones containing different water contents. The UCS of these sandstones decreased significantly when the water saturation increased from 0 to a critical water saturation, approximately 60%∼80%, however, the reduction of UCS was not remarkable beyond this critical saturation. Li et al. (2019) also held that the strength of siltstones decreased from dry to saturated conditions. They concluded that the hydration of clay minerals reduced the cohesion of samples, and the hydrolysis of quartz in the crack tip region promoted the subcritical crack propagation during the loading process. In contrast, Reviron et al. (2009) found that water had no significant effect on the strength of sandstones composed almost entirely of quartz and lacking clay minerals. Chen et al. (2017) proposed that the reduction in strength and elastic modulus of siltstone after water absorption was caused by the dissolution of cementing minerals and subsequent increasing of distance between hard particles. Cai et al. (2019) addressed that a high expansion stress would arise due to the swelling of clay minerals, which should be responsible for the propagation of existing micro-cracks and generation of new cracks. Lu et al. (2017) discussed the roles of critical saturation and clay mineral content in the water weakening effect of sandstones by using Computed tomography (CT), in which it was found that the montmorillonite had a much larger adverse effect on the internal structure and mechanical properties than low swelling clay minerals, such as kaolinite and chlorite. Siegesmund et al. (2003) investigated the damage mechanisms of water-saturated sandstone using X-ray diffraction (XRD), Cation exchange capacity (CEC), and Scanning electron microscope (SEM) experimental methods. They concluded that the intracrystalline swelling of expandable clay minerals and intercrystalline or osmotic swelling are the primary causes of damage to the sandstone. It can be concluded that the presence of water will cause the UCS reduction, and clay minerals have a significant influence on the water weakening degree of sandstones. However, the quantification relationship between the mineral component and UCS loss of sandstones after absorbing water is not fully built.
Traditional mechanical tests are time-consuming and laborious, therefore, some physical parameters by non-destructive test methods are usually adopted to estimate the UCS of rocks (Huang et al., 2022a; 2022b). Table 1 has summarized previous evaluation functions of UCS by using physical parameters in recent years. It can be found that the UCS increases with increasing the P-wave velocity and density, however, it decreases with increasing the porosity and water content. In addition, the sedimentary and mudstone with more clay mineral contents have a relatively smaller UCS according to predicted equations proposed by Gokceoglu et al. (2009) and Iyare et al. (2021). It illustrates that many physical parameters have significant influences on the UCS of rocks, including the P-wave velocity, density, porosity, clay mineral content and water content. In Table 1, the linear function, power function and exponential function are the most widely used functions to estimate UCS. However, most of the evaluation equations in Table 1 only use one physical parameter. The determination of the best subset of physical parameters to accurately predict the water weakening coefficient of sandstones after absorbing water need further study. In addition, the contribution of clay minerals to the water weakening degree is also not clear.
TABLE 1 | Representative evaluation functions of UCS by using different non-destructive physical parameters.
[image: Table detailing predicted functions of rock properties. Categories include P-wave velocity, density, porosity, water content, clay content, and multivariate functions. Each category lists rock type, region, number of samples, predicted function, \( R^2 \) values, and references. Specific data for regions like Türkiye, India, Spain, and more are included, with varying sample numbers and mathematical formulas. References are provided for each dataset. The table provides a comprehensive summary of geological data used for research purposes.]2 EXPERIMENTAL PROCEDURE
2.1 Sample preparation
Fifteen kinds of sandstones with different initial physico-mechanical properties were used in this study. They were collected from some rainy regions, including Dali in Yunnan Province (AAR = 870 mm), Hangzhou in Zhejiang Province (AAR = 1,930 mm), Xi’an in Shannxi Province (AAR = 1,067.9 mm), Zigong in Sichuan Province (AAR = 1,223 mm) and Yichang in Hubei Province (AAR=1,216 mm). All sandstone samples were drilled from large sandstone blocks in order to avoid the discreteness caused by geological formation. All sandstone samples were drilled by using a coring drill with an internal diameter of 50 mm, then cylindrical cores were cut to the height of 100 mm by using a cutter. According to the suggested method by ASTM, D4543-08, (2008), both ends of the sample were polished, and the flatness should be less than 0.025 mm. Therefore, these cylindrical samples are 50 mm in the diameter and 100 mm in the height.
In this experiment, both the dry and saturated UCS were measured. To avoid test errors caused by the discreteness of samples, three parallel tests were conducted on the same condition. Therefore, 90 standard cylindrical samples were prepared in total. First, the samples were dried in a forced convection drying oven (model 101-2B) at 105°C for 48 h. Subsequently, half of the standard specimens were placed in a forced saturator under a vacuum of −0.1 MPa for 48 h to achieve full saturation (ASTM, D4543-08 2008). To avoid moisture exchange between samples and the environment, all the fully dried samples were sealed in plastic bags and fully saturated samples were wrapped by plastic films before the test. The preparation procedure of cylindrical sandstone samples and powder are shown in Figure 1.
[image: Flowchart showing the process of preparing sandstone specimens for various tests. It starts with block collection from different regions, followed by drilling, cutting, and polishing. Grinding creates powder for X-ray diffraction (XRD). Specimens undergo uniaxial compressive strength (UCS) tests using the WAW-300 machine. Additional tests include P-wave velocity, porosity, and dry density, using tools like an acoustic detector, electronic balance, saturator, and dry oven. Each step is illustrated with images of equipment and samples.]FIGURE 1 | Preparation procedure of cylindrical sandstone samples and powder.
2.2 Petrographic analysis
Several fragments from fresh sandstone blocks were ground into powders by using an angle grinder (<45 um). Powders were dried in a heating oven at 105°C for 48 h, and used to analyze the minerals by a TTR III X-ray diffraction (XRD). The mineral composition was quantified according to the standard SY/T 5163-2018 (2018).
2.3 Physico-mechanical tests
Porosities of these sandstone samples were measured by using the vacuum saturation method. First, the drying mass was tested by using a high-precision electronic balance with an accuracy of 0.01 g. When these samples were completely saturated in a forced saturator, masses of them were measured again. Then the porosity can be calculated as follows:
[image: Mathematical equation for calculating percentage: y equals open parenthesis M superscript sd minus M superscript t close parenthesis divided by open parenthesis ρ subscript w times V subscript s close parenthesis times one hundred percent.]
In Equation 1 n (%) is the porosity of rock, Msa is the mass of completely saturated sample, Md is the mass of completely dry sample, and Vs is the volume of standard sample.
After deriving the porosity, the dry density of rock can be calculated by Equation 2 as below:
[image: Density (\(\rho^d\)) is expressed as the ratio of the dry mass (\(M^d\)) to the volume (\(V^t\)), as shown in equation (2).]
P-wave velocities at the completely dry and saturated conditions were also monitored by using a non-metallic acoustic detector (RSM-SY5T). The transmitters and receivers at both ends of the standard sandstone sample need to be interchanged and the average value was adopted in order to reduce the measurement error.
The UCS of these sandstones were tested after measuring the porosity and P-wave velocity. The UCS tests were performed on an electro-hydraulic servo-mechanical machine (WAW-300) with a loading rate of 0.24 mm/min according to the method recommended by ASTM D7012-10 (2010). The test machine and samples for UCS can be observed in Figure 1.
3 EXPERIMENTAL RESULTS
3.1 Petrographic characteristics
Mineral components of these sandstones were quantified by the XRD method. In addition, the particle size and their cemented structure were captured by using a 3D color optical microscope (Keyence, VHX-5000). These sandstones were divided into several geological types, according to the famous classification method based on the quartz-feldspar-rock fragments triangle as listed in Table 2 (Folk, 1968; Garzanti, 2019). It is evident that YB and SG are feldspatho-lithic sandstones, which have the debric contents more than feldspar. YR, YG, ZhP, ZhL, ShR, ZhG, HR and ShG are litho-feldspathic sandstones with more feldspar. YY, ShY and SW are the lithic quartz sandstones with quartz more than 75%. SB is the typical quartz sandstone with quartz more than 95%. SY is the feldspathic sandstone, because the ratio of feldspar to the debric is larger than 3:1. All of these sandstones contain some clay minerals, mainly including illite and chlorite. The quartz contents are from 28.4% to 95.4%, and the total clay mineral contents of these sandstones are from 4.6% to 21.1%. Moreover, the red sandstone from Yunnan province (YR) has 4% montmorillonite. It should be noted that the montmorillonite is a kind of high expansion clay minerals. Above all, these 15 sandstones are representative and cover the general range of typical clay-bearing sandstones.
TABLE 2 | Mineral components of the used sandstones.
[image: A table detailing sandstone compositions from various locations in China. It lists numerical values for quartz, feldspar, calcite, dolomite, pyrite, and clay minerals such as kaolinite, illite, chlorite, and others. Locations include Yunnan, Zhejiang, Shaanxi, Sichuan, and Hubei, with sandstone types like fine-grained feldspatho-lithic and medium-grained litho-feldspathic. Decimal values represent the percentage composition of each mineral component.]3.2 Physico-mechanical properties
Basic physico-mechanical properties of these sandstones are derived and listed in Table 3. Both the high porous sandstone and intact sandstone are used, which have porosities from 0.52% to 19.46%. The P-wave velocities of these sandstones at the dry state vary from 1,381 m/s to 4,787 m/s. At the saturated state, they have a significant increment ratio from 1.4% to 46.2%. After completely saturated, the largest increment is 46.2% for the YB and the smallest increment is only 1.4% for the HR (Figure 2A). The P-wave velocity of water is approximately 1,400 m/s, which is much larger than that of air (Williams, 1996). Therefore, when voids are occupied by the liquid water, the P-wave velocity of the porous sandstone will be improved. In addition, both of dry and saturated P-wave velocities display a reduction trend with increasing the porosity for these sandstones, however, the increment ratio of P-wave velocity from dry to saturated conditions against the initial porosity is not remarkable.
TABLE 3 | The basic physico-mechanical properties of present sandstones.
[image: A table displaying various physical properties categorized by type. Columns include compressive strength in different conditions, elastic modulus, velocities in dry and saturated conditions, density, porosity percentage, and cementation factor. Each row lists measurements for a specific type denoted by a code, such as YB, YR, YY, etc. Values are provided with units for clear comparison across different types.][image: Bar charts comparing P-wave velocity and uniaxial compressive strength of materials at varying percentages, with saturated and dry conditions indicated. The top chart (P-wave velocity) shows measurements in meters per second and the bottom chart (uniaxial compressive strength) in megapascal. Pink dotted lines represent the loss ratio percentage for both properties. Saturated values are higher generally in both charts.]FIGURE 2 | Water-induced change of common physico-mechanical propertie. (A) P-wave velocity (B) Uniaxial compressive strength.
Figure 2B shows that the mean UCS of these sandstones decreases rapidly from dry to fully saturated state due to the water weakening effect. The largest reduction is 64.4% for the SY and the smallest decrease is approximately 14.7% for the ZhL. The reduction ratio of UCS does not have a stable correlation with the porosity. Generally, a larger porosity implies more water will be absorbed into rocks and thus a greater water weakening damage occurs. However, not only the water absorption ability but also the mineral composition may influence the water weakening degree. Therefore, the relationship between the water weakening coefficient and potential influencing physical parameters should be investigated and built.
The saturated water weakening coefficient of sandstone is defined as follows:
[image: The equation \( K_{p} = \frac{\sigma_{c}^{a}}{\sigma_{d}^{a}} \) is shown with a reference number (3) in parentheses on the right.]
Where [image: Lowercase Greek letter sigma with subscript "c" and superscript "sa".]- UCS of saturated sandstones, [image: The image shows the mathematical symbol for the standard deviation of a dataset, denoted as σ with a subscript c and a superscript d.]- UCS of dry sandstones, Kp-saturated water weakening coefficient.
The actual value of Kp is from 0 to 1. A smaller value of Kp represents a larger water weakening damage. The minimum saturated water weakening coefficient is 0.36 for SY and the maximum value is approximately 0.85 for ZhL. In Table 3, porosities of SY and ZhL are 21.78% and 0.52%, respectively. It indicates that the sandstone SY has absorbed more water than ZhL, although the total clay mineral content of ZhL is much larger. In addition, the sandstone YR has 4% expansive montmorillonite as shown in Table 2, which may be another reason for causing the remarkable reduction of UCS after completely saturated. The expansive montmorillonite can induce more serious water weakening damage than the non-expansive clay minerals, therefore, the saturated water weakening coefficient is only 0.47 for YR. It can be concluded that the mineral composition and absorbed water content have remarkable influence on the UCS loss of sandstones.
3.3 Correlation between the saturated water weakening coefficient with the physical parameter for sandstones
It has been summarized that the P-wave velocity, density, and porosity are usually used to estimate the strength of rocks in Table 1. The relationship between the Kp and single physical parameter is plotted in Figure 3. Figure 3A shows that Kp linearly increases with increasing the P-wave velocity, and the determination coefficient is 0.77. This implies that the P-wave velocity is a potential physical parameter to estimate the water weakening coefficient of sandstones. Although the saturated water weakening coefficient also displays a linear increasing trend against the dry density, the discreteness is a little high and the determination coefficient is only 0.39 (Figure 3B). On the opposite, Kp linearly decreases with increasing the porosity (Figure 3C). It is evident that the sandstone with a high porosity usually has a low density and P-wave velocity, and more water will be absorbed inside the sandstone. Therefore, the high porosity sandstone will suffer much more serious water weakening, and thus causes a greater reduction of UCS. Figure 3D shows that the water weakening coefficient is positively correlated with the clay mineral content, which seems contrary to the popular expectation. Actually, only the wet clay minerals after absorbing water will cause the reduction of UCS. For instance, the ZhL Sandstone has a clay mineral content of 18.5% but a porosity of only 0.52%. The absorbed water is too low to cause the swelling and hydrolysis of all clay minerals. Therefore, only these water-contained clay minerals will contribute to the reduction of strength. Karakul and Ulusay (2013) proposed the concept of effective clay mineral content (Ecc) to describe the coupling effect of porosity and clay mineral content on the strength loss of rocks as follows:
[image: Sure, please upload the image you'd like me to generate alternate text for.]
[image: Five scatter plots with blue data points and red fitting curves.   (a) P-wave velocity: Positive linear correlation with horizontal axis labeled \(V_p\) (km/s).  (b) Density: Positive correlation, axis marked \(\rho\) (g/cm³).  (c) Porosity: Negative correlation, \(n\) (%) labeled.  (d) Clay mineral content: Positive trend, labeled CM (%).  (e) Effect Clay mineral content: Negative trend, labeled \(Z_{cm}\) (%).   Equations and \(R^2\) values shown in each plot.]FIGURE 3 | Correlation of Kp with the physico-mechancial parameters. (A) P-wave velocity (B) Density (C) Porosity (D) Clay mineral content (E) Effect Clay mineral content.
In Equation 4, n is porosity, CM is the content of clay mineral. The statistical relationship between Ecc and Kp for present sandstones is potted in Figure 3E. Although Figure 3 displays a linear relationship between the initial physical parameter with the water weakening coefficient, determination coefficients are very small. It is illustrated that only one physical parameter is not accurate enough to estimate the water weakening coefficient. Therefore, the multiple linear regression method may be more suitable to determine the best combination of physical parameters.
4 EVALUATION OF WATER WEAKENING COEFFICIENT BY USING PHYSICAL PARAMETERS
4.1 Saturated water weakening coefficient
To identify the optimal subset of physical parameters for estimating the saturated water weakening coefficient, the multiple linear regression was adopted due to its simplicity, interpretability, ability to handle multiple independent variables, and strong predictive performance. Multiple linear regression analysis was carried out by combining with more experimental data from the previous studies (Table 4). In Table 4, the saturated UCS of sandstones are from 0.69 MPa to 88 MPa, and the clay mineral contents are in the range of 0 ∼ 47%. Therefore, these sandstones are representative and cover a wide range from soft to hard ones. The adjusted R2 and Mallows’ CP values can be used to evaluate the degree of correlation and determine the best subset. It is evident that the best fit has the highest adjusted R2 but the lowest CP.
TABLE 4 | Common physico-mechanical parameters for sandstones.
[image: A table displaying seventeen entries with values of various parameters such as uniaxial compressive strength (\(σ_c^d\)), saturated compressive strength (\(σ_c^s\)), porosity ratio (\(K_p\)), ultrasonic pulse velocity (\(V_p^s\)), density (\(ρ^d\)), and others. Each row corresponds to a different study, with references provided on the right. Data includes measurements like compressive strengths, densities, and other related percentages.]In Equation 5 adjusted R2 is used to eliminate the effect of independent variable number as below:
[image: Adjusted R-squared formula: R-squared adjusted equals one minus open parenthesis one minus R-squared close parenthesis times open parenthesis m minus one close parenthesis divided by open parenthesis m minus q minus one close parenthesis. Equation labeled as number five.]
In Equation 6 [image: A mathematical symbol representing "R squared" with a hat on the letter R, often used in statistics to indicate the adjusted coefficient of determination.] and R2 are the adjusted and original determination coefficients, respectively. m and q are the size of samples and number of independent variables, respectively.
Cp is defined as a criterion for assessing the goodness of fit when comparing models with different parameters. It is defined as follows:
[image: Statistical equation for Cp: RSSp over sigma squared plus 2p, plus 2 minus m, shown as equation six.]
where RSSp represents the residual sum of square error for a model with q independent variables, and [image: Statistical notation showing the symbol for the estimated population variance, represented as a lowercase sigma squared with a hat symbol above the sigma.] denotes the mean square error based on the full model.
Table 5 was generated using multiple linear regression models constructed in Minitab software. By inputting the data from Table 4, various parameter combinations were selected based on the [image: Styled mathematical notation showing "R" with a circumflex accent and squared, commonly representing adjusted R-squared in statistics.] and Cp. The optimal multiple linear regression model can be expressed as
[image: Text displaying the equation: \( K_p = \beta_0 + \beta_1 \times V_p(\text{Km/s}) + \beta_2 \times \text{CM}(\%) \), labeled as equation (7).]
In Equation 7 β0, β1 and β2 are coefficients, which have been listed in Table 6.
TABLE 5 | Results of the best subset regression.
[image: Table displaying multiple linear regression models with various parameters. Columns include \( R^2 \%\), \( C_p \), \( F \), \( p\)-value, \( \overline{SS} \), \( \overline{MS} \), \( V_p^S \) (km/s), \( \rho^D \) (g/cm\(^3\)), \( n \%\), \( CM \%\), and \( E_{cc} \%\). Bold values indicate optimal models based on \( R^2 \) and \( C_p \). Note explains adjusted sum and mean squared deviations.]TABLE 6 | Values of the coefficients from the best subset regression.
[image: Regression results table showing coefficients and statistics: \( \beta_0 = 0.134 \), \( \beta_1 = 0.168 \), \( \beta_2 = -0.536 \), F-statistic = 72.66, p-value = 0, \( \hat{R}^2 = 0.82 \).]Therefore, the final optimal linear evaluation function of the water weakening coefficient for sandstones can be expressed as
[image: Equation labeled "(8)" showing the formula for \( K_p \): \( K_p = 0.134 + 0.168 \cdot V_p^{0.8} \) (km/s) - 0.536CM(%).]
Equation 8 shows the water weakening coefficient of sandstone is proportional to the P-wave velocity and inversely proportional to the content of clay minerals. It means that the clay-bearing sandstone with a small P-wave velocity but high clay mineral content is more sensitive to water. Figure 4 shows that estimated values of Kp by using Equation 8 are in good agreement with actual measured values of Kp. The water weakening coefficients of these sandstones range from 0.35 to 0.86, but all evaluation errors are almost less than 20%, therefore, Equation 8 is applicable to estimate the saturated water weakening coefficient of clay-bearing sandstones.
[image: Scatter plot comparing measured and predicted values of \( K_{IC} \). Blue squares represent experimental data. A solid red line indicates a linear fit with equation \( y = x \), \( R^2 = 0.82 \). Dashed lines show \(\pm10\%\) and \(\pm20\%\) prediction intervals in orange and green.]FIGURE 4 | Measured Kp versus Predicted Kp for sandstones.
4.2 Unsaturated water weakening coefficient
The traditional water weakening coefficient is used to estimate the UCS loss from dry to completely saturated conditions. However, the engineering rock mass may be not fully saturated in the field (Tang, 2018; Masoumi et al., 2017; Liu et al., 2020; Kim et al., 2017). Although some scholars have measured the UCS change of sandstones at different water saturations (Zhou et al., 2016, Jia et al., 2018; Huang et al., 2022b), how to estimate the unsaturated water weakening coefficient by using non-destructive physical parameters is still not clear. Huang et al. (2022c) developed an exponential function for estimating the UCS of sandstones with different water saturations as below:
[image: The equation depicted shows a mathematical formula: \(\sigma_{\varepsilon} = \frac{\sigma_{\varepsilon}^{d} - \sigma_{\varepsilon}^{0}}{1 - e^{-\mathcal{A}}} \left( e^{\mathcal{A} S_{t}} - 1 \right) + \sigma_{\varepsilon}^{d}\). This is labeled as equation (9).]
If only physical parameters are used as the best subset, the unknown parameter A can be expressed by the porosity and clay mineral content based on the multiple linear regression method as follows (Huang et al., 2022c):
[image: Please upload the image or provide a URL, and I can assist you with generating the alternate text.]
It should be noted that the porosity is adopted in Equation 10 instead of the P-wave velocity, because the P-wave velocity is not provided as the potential optimal parameter due to the lack of enough data in the previous literature (Huang et al., 2022c).
Substituting Equation 3 into Equation 9, yields
[image: Mathematical equation showing \( K_{p}(s) = \frac{\sigma_{\epsilon}}{\sigma_{d}^{t}} = \frac{1 - K_{p}}{1 - e^{-\Delta s}(e^{-\Delta s} - 1) + 1} \). Label \( (11) \) is shown on the right.]
where [image: Mathematical notation displaying the expression: \( K^{u}_{p}(S_{r}) \).] is the water weakening coefficient for rocks with different water saturations, which is called unsaturated water weakening coefficient in this study. When Sr=1, [image: Mathematical expression showing \( K_{\text{p}}^{\text{u}}(1) = K_{\text{p}} \).] from Equation 11. The saturated water weakening coefficient [image: White letter "K" followed by a subscript lowercase "p", both in italics.] can be estimated by Equation 8.
In this study, the UCS of SG, SB, HR and SY sandstones with different water contents were measured, and essential parameters for these sandstones are listed in Table 3. Substituting values of porosity and clay mineral content into Equation 10, A can be derived. Then, the unsaturated water weakening coefficient can be further predicted by substituting the value of A into Equation 11. Figure 5 shows that predicted unsaturated water weakening coefficients are in good agreement with experimental values. They reduce with increasing the water saturation. In Tables 3, 4, it can be found that the UCS of these sandstones range from 11.64 MPa to 47.47 MPa, therefore, the water weakening degrees of soft and medium hard sandstones can be well estimated. The evaluation error of unsaturated water weakening coefficient against the water saturation is plotted in Figure 6. It shows that almost all the predicted errors are smaller than 20%. It should be noted that some evaluation errors may be a little large for some points, because the accurate quantification of some parameters is very hard. For instance, the determination of the clay mineral content by the XRD method is influenced by the analysis experience of the technician. Nevertheless, the quantitative correlation between unsaturated water weakening coefficients at any water saturation with physical parameters is well built.
[image: Graph displaying the relationship between Sc (%) on the x-axis and Psc (S) on the y-axis for different materials labeled SG, SB, HR, and SY. Experimental data points are shown with various markers, and predicted values using Equation 10 are depicted with dotted lines. The trend shows a general decrease in Psc (S) as Sc (%) increases for all materials.]FIGURE 5 | Comparison between the experimental and predicted water weakening coefficient at different water saturations.
[image: Scatter plot showing error percentages against Sₖ(%) with data points labeled as SG, SH, HR, and SY in various colors and shapes. Horizontal pink lines mark +20% and -20% error margins, with a dashed line at 0% error. Data points are distributed around these lines.]FIGURE 6 | Predicted errors of the water weakening coefficient at different water saturations.
5 DISCUSSION
5.1 Water weakening mechanism of clay minerals by microscopic simulation
It is evidenced that the saturated water weakening coefficient of sandstones can be estimated by using the saturated P-wave velocity and clay mineral content in this study. The weight coefficient for the clay mineral content is approximately −0.536. In Table 3, 4, the maximum clay mineral content is from 0% to 47% for these sandstones. 47% clay mineral content can cause the reduction of Kp by 0.25 from Equation 8. It illustrates that the presence of clay minerals is an important factor influencing the water weakening degree of sandstones. Although the statistical relationship between the strength loss and physical parameters already confirmed the critical role of clay minerals, the water weakening mechanism of different clay minerals in sandstones are not fully understood. The crystalline layer dissolution of clay minerals induced by water is in a nano-scale (layer spacing ≤2 nm), therefore, the existing measurement method is difficult to describe the swelling behavior in such a small spacing range (Pradhan et al., 2015). The molecular dynamics (MD) simulation method may be a suitable tool to investigate the hydration process of clay minerals, because it can explain the changes in lattice spacing and mechanical properties of clay minerals at a microscopic level after water absorption, and it also quantitatively helps us understand the swelling and softening mechanism of clay minerals when encountering water (Zhang et al., 2018; Ren et al., 2022). The response of mechanical strengths of crystals during the hydration process also can be analyzed to gain insight into the micro-kinetic mechanism of clay hydration.
5.1.1 Construction of the molecular model
In order to simulate the water hydration process of typical clay minerals (montmorillonite, illite, kaolinite and chlorite), the specific parameters for molecular modelling are referred to Skipper et al. (1995), Drits et al. (2010), Bish (1993), and Joswig et al. (1989), respectively. In this study, water molecules are represented by the SPC/E water model (Berendsen et al., 1987). Some typical equilibrium diagrams containing clay molecule and adsorption water molecule are given in Figure 7. The bulk and shear module of clay mineral crystals after geometric optimization are calculated by the Forcite module.
[image: Four molecular models of minerals labeled (a) Mica, (b) Chlorite, (c) Illite, and (d) Kaolinite. Each model demonstrates atomic arrangements with color-coded atoms: hydrogen (white), silicon (beige), aluminum (purple), potassium (green), magnesium (pink), oxygen (red), and sodium (yellow).]FIGURE 7 | Schematic diagram of water adsorption equilibrium for typical clay minerals [(A–C)- Crystal size parameters; (D)-Vacuum layer: L-Crystalline layer].
5.1.2 Simulation results
By simulation, it is evidenced that the maximum number of water molecules absorbed inside the molecular interlayer are 96, 30, 12, and 0 for the montmorillonite, chlorite, illite and kaolinite, respectively. Therefore, the water adsorption capacity in different clay minerals decreases as the following order: montmorillonite > chlorite > illite > kaolinite. As shown in Figure 7, water molecules in the kaolinite structure are mostly concentrated in the vacuum layer, while only a small amount of water molecules are adsorbed on the surface of the crystal layer and no water molecule can enter into the kaolinite crystal. Therefore, the water weakening of kaolinite is only caused by the surface hydration, which is different from the other clay minerals. Liu et al. (2021) suggested that the radius of the silica-oxygen tetrahedral ring for illite was similar to the hydration radius of K+, which usually occurs on the surface of the crystal. When K+ adsorbs a certain amount of water molecules, it can be firmly embedded in the pores of illite crystals. The illite has a relative smaller ability to absorb water molecules into illite crystals than the montmorillonite, which effectively reduces the degradation effect of hydration in illite.
Figure 8 shows that both of the microscopic bulk modulus (K) and shear modulus (G) for different clay minerals show a decreasing trend with the increasing of absorbed water molecules. The reduction ratios of the mineral moduli are montmorillonite > illite > chlorite > kaolinite. The montmorillonite has the largest reduction ratio of microscopic modulus, because it belongs to the expansive clay mineral, in which most of the water molecules will be absorbed inside the molecular interlayer. The expansive ratio is more than 20 times for the sodium montmorillonite. As a result, the microscopic bulk modulus and shear modulus have reduced by more than 50.3% and 61.6% after reaching the maximum water content, respectively. The reduction of mineral modulus of the kaolinite is the smallest, because the interlayer of molecules is too narrow to absorb water molecules. The reduction ratio in mechanical parameters during the hydration of clay crystals almost is consistent with the macroscopic water absorption of clay minerals. The reduction ratios of mineral moduli for illite and chlorite are very close.
[image: Bar charts compare the bulk modulus and shear modulus of four materials: Mos, Ill, Chl, and Kao, relative to the normalized number of water molecules. Both charts include data points with numerical values and dashed lines, indicating trends. Distinct color coding is used for each material.]FIGURE 8 | Variation of microscopic mechanical parameters for clay minerals after water absorption. (A) Bulk modulus (B) Shear modulus.
In Table 3, the first seven sandstones with the fastest reduction rate of water weakening coefficient are: SY>HR>SB>YR>SG>SW>ShR. All of these sandstones contain some montmorillonite (I/M or C/M) as shown in Table 2. However, the montmorillonite and its mixed layer are absence for almost all the other sandstones, which have higher water weakening coefficients. It further illustrates that the presence of montmorillonite can induce a much more water weakening degree and thus result in a greater reduction of UCS. It should be noted that the YB sandstone has 4.2% I/M but a high water weakening coefficient of 0.76. There may be two reasons for the low water weakening degree of YB. First, the porosity of YB is only 4.93%, therefore, only a little water will be absorbed into YB. In addition, the montmorillonite only occupies 5% of the total I/M mixed layer. It also illustrates that the montmorillonite plays a much more important role in the water weakening degree of sandstones.
5.2 Effect of the P- wave velocity
It is evidenced that the porous sandstone can absorb more water than intact sandstones at the completely saturated condition, because voids provide space for liquid water, and increase the contact area between liquid water and mineral particles, particularly the clay minerals. In Section 4.1, the P-wave velocity, instead of the porosity, is automatically selected as one parameter in the best subset by the linear regression method, which may be caused by two reasons:
First, P-wave velocity has a strong linear relationship with the porosity of sandstone. Figure 9 shows that the porosity linearly decreases with increasing saturated P-wave velocity for sandstones. In addition, the pore structure is very complex and the porosity cannot characterize the pore size distribution (Huang and Yu, 2022). It illustrates that the P-wave velocity may be a better parameter to reflect the compactness and water absorption ability of rocks than the porosity. Secondly, the P-wave velocity of porous rocks can reflect the mineral composition which has been interpreted in typical geo-acoustic models (Ji et al., 2003; Lyu et al., 2020). The mineral modulus and P-wave velocity of the main minerals in sandstones are listed in Table 7. The clay mineral and quartz are more sensitive to water, but they have much smaller P-wave velocities. Therefore, they can cause more serious damage in rocks after contacting with water. In addition, the cementation strength among the mineral particles also has a remarkable influence on the P-wave velocity of the rock matrix (Dvorkin et al., 1994; Jarrard et al., 2000). A weak cementation of mineral particles will cause the reduction of P-wave velocity and more water may be absorbed into the matrix to attack minerals. Actually, the P-wave velocity has a significant correlation with UCS as show in Figure 9. The sandstone with a higher P-wave velocity usually has a larger saturated UCS. Above all, the P-wave velocity may be a more comprehensive parameter to quantify the water weakening degree than the porosity.
[image: Scatter plot showing experimental data and fitting curves for two variables: n (blue squares) and UCS (red circles). The x-axis represents \( V^{5a} \) in kilometers per second, ranging from 1.5 to 5.5. The left y-axis shows n in percentage, scaling from 0 to 28, while the right y-axis displays UCS in MPa, ranging from 0 to 180. Two curves are fitted to the data; a blue linear curve for n and a red exponential curve for UCS, with respective equations and R-squared values displayed in the legend.]FIGURE 9 | Relationship between porosity, UCS with the P-wave velocity at the saturated condition.
TABLE 7 | The modulus and P-wave velocity of main minerals for sandstones.
[image: Table showing properties of various minerals, including Dolomite, Calcite, K-feldspar, two types of Plagioclase, Quartz, and Clay. Columns list parameters: Bulk modulus \(K\) in GPa, Shear modulus \(G\) in GPa, Density \(\rho\) in g/cm\(^3\), and P-wave velocity \(V_p\) in m/s, with sources cited in the References column.]5.3 Limitations of sandstones in this study
In this study, we selected 15 sandstone samples to represent a broad range of typical sandstones containing clay minerals. The quartz content of these sandstones ranges from 28.4% to 95.4%, while the total clay mineral content ranges from 4.6% to 21.1%. Additionally, these sandstones vary widely in hardness, including feldspathic litharenite, lithic quartz sandstone, and typical quartz sandstone. Therefore, these samples are somewhat representative, particularly for studying the impact of clay mineral content on sandstone mechanical properties.
Although it is widely accepted that clay mineral content can cause the mechanical weakening of rocks when in contact with water, the influence of specific clay mineral compositions remains underexplored (Cherblanc et al., 2016). Furthermore, the representativeness of these samples on a global scale is limited. Firstly, the clay minerals commonly found in Chinese sandstones include kaolinite, montmorillonite, illite, chlorite, and a small amount of randomly interstratified clays (Liu et al., 2003). In contrast, the clay mineral compositions of sandstones abroad exhibit greater diversity. For example, North American sandstones often contain significant amounts of bentonite. The bentonite is a kind of swelling clay primarily composed of montmorillonite with excellent water absorption and plasticity, therefore, it provides unique industrial applications (Thair and Olli, 2008). These compositional differences result in notable variations in the chemical properties, adsorption capacity, and stability of clay minerals, therefore, the water weakening process by considering the composition of international clay minerals should be further investigated.
Secondly, the genesis of sandstones is closely related to their depositional environment. Chinese sandstones primarily form in river and delta environments, reflecting relatively stable sedimentary processes (Liu et al., 2003). In contrast, sandstones abroad, such as those in North America and Western Europe, are often derived from volcanic or glacial sediments, leading to significantly different physical and chemical properties compared to Chinese sandstones (Thair and Olli, 2008). These genesis differences may cause variations in water weakening of sandstone.
Furthermore, there are significant differences in sedimentary structures between Chinese and foreign sandstones. China, located at the junction of several tectonic plates with frequent seismic activity, often exhibits seismic sedimentary structures in sandstone research. In regions with less seismic activity, such structures may be less prominent (Feng et al., 2016). Chinese sandstones typically show good sorting, meaning the grain size distribution is relatively uniform. This characteristic is common in river and lake sedimentary environments and helps sandstones remain stable during weathering and erosion. In contrast, sandstones from volcanic or glacial environments abroad may exhibit poorer sorting and uneven grain size distribution (Collinson and Mountney, 2019). For example, in the Middle East, due to an arid climate and intense sedimentary processes, sandstones often have coarser layering and poorer sorting (Glennie, 2010). These structural differences can significantly impact sandstone stability and durability under various conditions and present challenges for cross-regional applications.
Currently, the sandstone samples used in our research mainly come from specific regions in China, making the results more applicable to Chinese sandstone characteristics. The international applicability of these findings still needs further validation. Differences in geological backgrounds, climate conditions, and sandstone formation processes across regions may lead to significant variations in physical, chemical, and mechanical properties. To address this limitation, future research will expand to other regions, exploring the performance of different sandstones in various applications and conducting a comparative analysis of the advantages and disadvantages of Chinese versus foreign sandstones in specific applications.
6 CONCLUSION
Based on this research, the following conclusions can be obtained.
	(1) The water weakening coefficient is an important index to evaluate the water weakening degree. It is time-saving and economic to estimate this critical coefficient by using non-destructive physical parameters. Although there is a certain statistical correlation between the saturated water weakening coefficient with the P-wave velocity, porosity, density and effective clay mineral content, only one physical parameter is not adequate to estimate the saturated water weakening coefficient.
	(2) The P-wave velocity and clay mineral content are automatically selected as the best subset to estimate the saturated water weakening coefficient by the linear regression method, in which the adjust R2 is 82%. The estimation errors are almost less than 20% for these 32 sandstones. Therefore, the equation we proposed (Equation 8) is applicable for estimating the saturation water weakening coefficient of clay-containing sandstone. Based on this, we believe that our findings are also applicable to other clay-containing sandstones.
	(3) It has been proved that clay minerals are seriously damaged after absorbing water by using the molecular dynamics (MD) simulation method, therefore, they should be responsible for the UCS loss of sandstones when contacting with water. The montmorillonite plays a much more important role in the water weakening degree of sandstones than the other clay minerals. In addition, the P-wave velocity may be a more comprehensive index to quantify the water weakening degree than porosity, because it can comprehensively reflect the effect of the pore volume, the cementation of mineral particles and their components.
	(4) The unsaturated water weakening coefficient at different water saturations are estimated by using the common physical parameters based on an exponential strength function. The decreasing rate of unsaturated water weakening coefficient is dependent of the porosity and clay minerals. The water weakening coefficient of the sandstone with a large porosity and more clay minerals decreases more quickly against the water saturation.
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To examine the influence of hole depth on the mechanical properties of rock, a series of uniaxial compression tests were performed on six groups of pre-drilled sandstone samples, each with varying depths. Also, multiple physical fields coupled with acoustic emission (AE) and digital image correlation (DIC) systems were synchronously employed to monitor the fracturing process. The study focused on characterizing the cracking fracturing, energy evolution, and fracture patterns in pre-drilled sandstones with different depths. The findings show that the peak strength of the sandstone decreases linearly with the increase of hole depth. The fracture mode transits from simple unilateral spalling to a complex fracture mode characterized by multiple fractures and spalling. AE analysis shows that the deeper the borehole, the lower the AE signal frequency, indicating fewer but more significant fracturing events. With the increase of hole depth, the peak elastic energy of the sample decreases from 29.81 kJ/m3 to 22.65 kJ/m3, and the dissipated energy increases from 4.48 kJ/m3 to 6.25 kJ/m3. Moreover, the AE energy of the pre-drilled sandstone displays distinct multifractal spectrum features under different stress levels. The multifractal spectrum width (Δα) varies from 0.419 to 0.227, suggesting that small-scale fracturing events predominantly govern the failure mechanism. DIC observation shows that the major principal strain concentration mainly occurs around the hole. The monitoring points around the hole show that the cumulative strain at P2 and P6 is significantly higher compared to other regions. Furthermore, it is observed that the stress release pathways originating from newly formed cracks and dislocation slips become more diversified, suggesting a more complex fracturing mechanism.
Keywords: crack classification, pre-drilled sandstone, acoustic emission, digital image correlation, multifractal

1 INTRODUCTION
In the process of sandstone diagenesis, the internal structure and mineral composition of sandstone in different regions are different. Sandstone, a typical heterogeneous material, contains numerous inherent defects such as joints, fractures, and voids (Wray, 2009; Yang et al., 2017; Sharafisafa et al., 2019; Wu et al., 2019). The presence of defects in rock results in an uneven distribution of the stress field, rendering it susceptible to failure along discontinuities during construction activities (Hu et al., 2022; Zou et al., 2023; Huang et al., 2024; Zhang et al., 2024; Zhao et al., 2024). This poses significant challenges to the geothermal energy extraction, oil and gas production, and tunneling and mining operations. Natural rocks are normally filled with geo-materials that are of different elastic modulus from the host rock, such as rock debris and clay, forming close discontinuities, as shown in Figure 1. In rock engineering applications, the damage and failure usually initiate from or are caused by the weakness of embedded discontinuities (Feng et al., 2020; Qin et al., 2022; Gao et al., 2024). Therefore, gaining a comprehensive understanding of the localized deformation behavior and cracking process in void-filled rocks is essential for the secure construction of underground chambers and tunnel excavations.
[image: Three-part image showing rock features. (a) Arrows indicate direction on a rocky surface. (b) Geological sample with a ruler for scale highlights a circular indentation. (c) A labeled rock surface with red outlines and fracture patterns.]FIGURE 1 | Rock mass with different types of defects in nature (Wray, 2009; Yang et al., 2017; Sharafisafa et al., 2019), (A) opening hole, (B) medium-sized tube and (C) filled flaws.
Many scholars have conducted extensive laboratory testing and theoretical modeling to investigate the mechanical properties of rocks with prefabricated cracks or pores. Zhu et al. (2022) performed uniaxial compression tests to elucidate deformation and failure mechanism from the perspective of energy evolution. The findings suggest that inclusions enhance the strength and deformation capacity of rock samples, and they contribute to crack arrest during the initiation and propagation of new cracks. Li K. S. et al. (2024) employed a hybrid of experimental and numerical approaches to examine the compressive strength and crack mechanisms in porous marble. The results indicate that as the double-pore inclination angle increases, the crack initiation path shifts from the elliptical pore surface to a more direct transfer, and the failure mode varies from tension to shear, followed by a shift to tension-dominated, with the simulation outcomes closely aligning with experimental data. Du et al. (2023) investigated the impact of various filling states on the strength, deformation, fracture behavior, and permeability in sandstone using triaxial tests and X-ray CT technology. The results revealed that the infilling can enhance the rock’s strength and deformation capabilities. The crack initiation point and propagation path can be changed. Zhou et al. (2021) conducted uniaxial compression tests on red sandstone samples containing both unfilled and filled dental defects. The results demonstrate that the infilling material can markedly influence the initiation and propagation of cracks. Despite extensive research on rock containing infillings, the investigation into the effect of hole depths on the mechanical behavior of rock masses, particularly their influence on crack propagation and fracture modes, remains insufficient.
In recent years, acoustic emission (AE) technology has emerged as a crucial tool for studying the micro-crack information that precedes macroscopic fracturing (Du et al., 2020; Du et al., 2022; Dong et al., 2023; Zheng et al., 2024). Zhang et al. (2017) investigated the AE characteristics of cracked rock materials under compression. The results show that the number of tensile and shear cracks increases with the loading rate. In addition, the frequency-amplitude relationship of AE signals follows a power-law distribution. Additionally, the frequency of AE events associated with cracks shows an exponential decay relationship. Liu Z. L. et al. (2022) have extended the research beyond circular hole fractures by investigating the triaxial extensional mechanical state of underground surrounding rock. Using a compression-tension load device, they studied the mechanical properties and failure modes of sandstone with various angles ranging from 0° to 60°. Their findings suggest that the failure mechanism transits from tensile crack to compressive crack, and the micro-fracture mode shifts from intergranular to transgranular as the inclination angle increases. Furthermore, Liu Z. L. et al. (2021) conducted uniaxial compression tests on cylindrical sandstone samples with the same crack length but different crack inclinations. They analyzed the mechanical properties, AE signals, and numerical simulation results of the specimens, demonstrating that the compressive strength of the specimens increases with the inclination angle. The elastic modulus also increases gradually with the crack inclination angle. Despite the advancements in AE technology, there are limitations to monitoring solely through AE signals. For example, it may struggle to capture the full spectrum of deformation characteristics (Chen et al., 2022; Dong et al., 2024; Liu J. et al., 2022). This is where the digital image correlation (DIC) method comes into play. As an optical measurement technology, DIC can effectively obtain real-time information about the full-field distribution of the material, allowing for the capture of crack deformation and propagation characteristics. The combination of AE and DIC technologies provides a more comprehensive understanding of the fracturing information related to crack initiation, propagation, and coalescence (Hebert and Khonsari, 2023; Yang et al., 2024; Wang et al., 2024a). This integrated approach enables multi-scale crack monitoring and analysis, ranging from the micro-to the macro-scale.
Based on the aforementioned reasons, uniaxial compression tests were conducted on pre-drilled sandstone containing prefabricated holes under varying depths, accompanied by simultaneous AE-DIC monitoring. Initially, the characteristics of AE signals of pre-drilled sandstone during the loading process were analyzed. The energy distribution and transformation during the uniaxial compression process were then studied in detail based on energy theory, with particular attention paid to energy dissipation and instability processes under different hole depths. Subsequently, the strain field and crack patterns of the pre-drilled sandstone were primarily investigated using DIC technology. The evolution of microcracks was explored, and the mechanism of tensile and shear cracks was distinguished using RA and AF parameters. The complexity of the cracking processes was quantitatively assessed using multifractal theory.
2 MATERIALS AND METHODOLOGY
2.1 Sample preparation
In this study, the test samples were sourced from a mine located in Chongqing. The particle diameter is between 0.25∼0.35 mm, the bulk density is 2.48 g/cm3, and the uniaxial compressive strength is 57.3 MPa. Initially, rock blocks with high integrity were selected and then transported to the laboratory for further processing. Adhering to the testing standards set by the International Society for Rock Mechanics (ISRM) (ISRM Testing Commission, 1978), the rock blocks underwent a series of preparatory procedures including drilling, cutting, and grinding. Finally, the rock samples were processed into rectangular specimens with dimensions of 30 mm in thickness, 80 mm in width, and 160 mm in height. At the center of each specimen, a cylindrical hole with a diameter of 10 mm was precision-drilled. In the subsequent, the hole was infilled with gypsum to simulate the complex internal composition and structure. The mechanical parameters of the infilling material include uniaxial compressive strength (53.17 MPa), tensile strength (3.61 MPa), elastic modulus (28.47 GPa), cohesion (0.15 GPa), internal friction angle (8.41°), and Poisson’s ratio (0.13). To ensure the accuracy and reliability of the testing results, at least three samples with good homogeneity and no apparent surface cracks were chosen for each test. The geometry of the pre-drilled sandstone specimen is depicted in Figure 2.
[image: Series of images illustrating materials testing processes: (a) geometric diagram of a test sample, (b) polishing machine, (c) Nanofin measurement device, (d) hardness tester, (e) drilling machine, and (f) sample grid pattern with drill holes. Red arrows indicate sequence order.]FIGURE 2 | The geometry and processing of the pre-drilled sandstone specimen: (A) geometry, (B) high-precision cutting machine, (C) high-precision flat grinder, (D) flatness measuring instrument, (E) drilled machine and (F) drilled sandstone specimens.
2.2 Experimental setup and procedure
The experimental setup employed for this study featured an INSTRON material testing machine, a highly sophisticated apparatus equipped with a control panel, a loading unit, and a data acquisition unit. This machine is distinguished by its considerable loading capacity, which reaches up to 250 kN. The loading process was carefully controlled by displacement mode, with a constant loading rate of 0.05 mm/min to achieve a quasi-static loading condition. In order to monitor the development of microcracks within sandstone samples throughout the loading process, the experiment was conducted in conjunction with a PCI-II AE system. The AE sensors used in the experiment were of the Nano 30 model, characterized by a resonance frequency of 140 kHz and a sampling rate of 1 MHz. To mitigate the influence of environmental noise on the experimental outcomes, the AE system was calibrated with a threshold of 45 dB and a preamplifier setting of 40 dB. Additionally, to minimize signal attenuation and guarantee the faithful transmission of AE signals, Vaseline was applied as a coupling medium on the surface of the AE sensors. The DIC technique was utilized to capture the full field strain of pre-drilled sandstone samples. It is an optical non-contact testing technique consisting of a white LED light source and a camera. The successive images of the sample were monitored by Vic-Snap software at a frame rate of two digital images per second. The white matt paint is first evenly sprayed on the surface of the sample, and then black matte paint is sprayed on the white paint to form equidistant scattered spots. The principle of the DIC technique is the comparison of the reference speckle image and the deformed speckle image by identifying the degree of similarity of subsets series. The measurement accuracy of strain of this system is 0.002%. The configuration of the testing setup is illustrated in Figure 3.
[image: Diagram depicting an experimental setup divided into four sections. The DIC system includes a CCD camera connected to a computer, capturing images with a light source. The AE system displays a graph of acoustic emissions. The MTS system shows load signals on a screen. A central sample is linked to both the AE and MTS systems.]FIGURE 3 | Testing apparatus.
3 RESULTS AND ANALYSIS
3.1 Mechanical property
3.1.1 Stress-time curves
To comprehensively analyze the mechanical behavior of rock samples throughout the entire loading process, the stress-time evolution for six representative groups of sandstone samples with varying drilling depths was examined, as shown in Figure 4. The stress-time curves depicted in Figure 4 reveal a distinct concave pattern during the initial loading phase, especially for samples with drilling depths of 5 mm and 10 mm. As the drilling depth increases, the peak stress demonstrates a steady decline, while the slopes of the six curves initially increase. The main reason for this phenomenon is that the compressive strength of the sandstone diminishes as the depth of the gypsum-infilled increases. Moreover, when the drilling depth is less than 10 mm, the mechanical properties of the samples with holes are relatively consistent with that of the intact sample. Its mechanical properties are almost not affected by infilling material. However, once the drilling depth is greater than 15 mm, the increasing depth further destroys the integrity of the rock’s internal structure, which in turn makes it challenging for the gypsum infill to compensate for the lost load-bearing capacity. This results in a more pronounced deterioration in the mechanical performance of sandstone samples.
[image: Graph showing axial stress in megapascal versus time in seconds for different diameters: 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, and 30 mm. Stress curves rise from 0 to 60 MPa over 1200 seconds, with varying drop points.]FIGURE 4 | Axial stress-time curves of pre-drilled sandstone with different depths.
3.1.2 Peak strength
The peak strength of six groups of samples, each with different drilling depths, was plotted on a scatter diagram, as depicted in Figure 5. It can be found from Figure 5 that the peak strength of sandstone shows a linear downward trend with increasing drilling depth. Despite the fact that the infilling materials offer some degree of support at the interface with the matrix, they are unable to completely offset the weakening influence of the holes on the mechanical properties. As the drilling depth increases, the interface discontinuity and stress concentration are further exacerbated, leading to a progressive reduction in peak strength.
[image: Scatter plot depicting peak stress (MPa) against cavity depth (mm). Different symbols represent values for depths of 5, 10, 15, 20, 25, and 30 mm. A red dashed line indicates the fitting curve with the formula σ = 63.3 - 0.49 * d, showing an R² value of 0.94. The plot suggests a negative correlation between cavity depth and peak stress.]FIGURE 5 | The peak stress of pre-drilled sandstone with different depths.
3.1.3 Strain field evolution
Figure 6 shows the evolution of the principal strain field in pre-drilled sandstone specimens under different depths. It is observed that the strain concentration zone on the specimen’s surface predominantly occurs around the hole, consistently forming a localized band of strain concentration, irrespective of the drilling depth. As the applied load increases, cracks initially emerge at the hole’s perimeter and progressively spread circumferentially around it. In addition, when the stress level is greater than 0.8σc, the speckle is accompanied by local shedding. This is mainly due to the strain experiencing a remarkable escalation, ultimately culminating in localized failure. In the strain field cloud, the high principal strain is depicted as elevated strain bands, which progressively expand and interpenetrate within the stress concentration zone.
[image: Six panels labeled (a) to (f) display heat maps with color gradients from blue to red, indicating varying data intensities across different time frames. Each panel consists of eight maps illustrating shifts in data patterns, with red areas showing higher intensity.]FIGURE 6 | Evolution of principal strain of sandstone infilling with different depths: (A) 5 mm, (B) 10 mm, (C) 15 mm, (D) 20 mm, (E) 25 mm, and (F) 30 mm.
For relatively shallow drilling depths, such as 5 mm and 10 mm, the principal strain field undergoes a gradual transformation during the loading process. The disturbance to the local stress field is minimal, and a localized strain concentration zone gradually forms at the hole’s edge. This conclusion is similar to that of the intact specimen. The concentration zone remains largely confined to the vicinity of the hole, with no obvious penetration, and the damage degree is relatively low. Under the condition of medium drilling depths, such as 15 mm and 20 mm, the strain concentration band gradually formed in the early stage of loading, and the width and extent of the strain accumulation band gradually increase. The disturbance to the local stress field is more significant, and the high strain region around the hole gradually expands outward, and the crack develops gradually along the direction of the strain concentration zone, and finally forms a through-crack. For a 25 mm deeper hole that is close to the penetration depth, the strain concentration phenomenon becomes more remarkable. As the load increases, the width of the strain concentration band expands rapidly. Subsequently, the localized strain band extends throughout the entire specimen. Crack initiation occurs early, and the propagation speed is rapid. The influence of the hole on the whole stress field is most significant. When the load increases to the peak stress, the highlighted strain bands around the hole converge, forming macroscopic cracks and penetrating in multiple directions.
3.1.4 Coalescence pattern
By summarizing the coalescence modes of the pre-drilled sandstone at varying drilling depths, six representative specimens are identified, as depicted in Figure 7. Overall, with the increase of drilling depth, the failure mode of sandstone specimens gradually evolves from surface spalling to macroscopic crack coalescence, ultimately exhibiting highly intricate crack networks. In the case of shallow drilling depths (5 mm, 10 mm, and 15 mm), the specimens predominantly exhibit localized spalling failure around the holes, indicating that stress concentration is largely gathered around the hole, and the failure mode is relatively uniform. However, when the drilling depth reaches 20 mm, the failure mode shifts to a dominant crack originating from the upper left corner and extending to the lower right corner, accompanied by several branch cracks. As the drilling depth is further increased to 25 mm, the failure mode transforms into a Y-shaped crack, signifying a more intricate stress field distribution around the hole, with the multidirectional crack expansion path reflecting local instability induced by the hole. At a depth of 30 mm, X-type cracks emerge in the specimen, and the complexity of the failure mode reached the highest. The cracks propagate in multiple directions, along with the generation of secondary cracks.
[image: Six-panel illustration showing the progression of cracks in a material. Panel (a) shows initial spalling, (b) increased spalling, (c) crack formation, (d) development of main and secondary cracks, (e) local spalling and main crack, and (f) expanded main crack with local spalling.]FIGURE 7 | Coalescence modes of the pre-drilled sandstone with different depths: (A) 5 mm, (B) 10 mm, (C) 15 mm, (D) 20 mm, (E) 25 mm, and (F) 30 mm.
3.2 Energy evolution
3.2.1 Effect of drilling depth on strain energy
According to the laws of thermodynamics, the instability of rocks is essentially due to the input of external total energy. During the accumulation, dissipation, and release of various forms of energy within the rock, this is a process of mutual conversion of energy. Assuming that in a closed system, the total energy remains constant during energy conversion and energy transfer processes (Ding et al., 2023; Li P. et al., 2024). According to the first law of thermodynamics:
[image: Equation showing "theta equals theta subscript zero plus theta subscript c".]
where U is the input mechanical energy, Ud is the elastic energy stored by the rock, and Ue is the dissipated energy generated by the plastic deformation and internal damage deformation of the rock.
Mechanical energy input by an external force to rock material:
[image: Formula displaying energy \( E \) as an integral from \( 0 \) to \( \varepsilon \) of \( \sigma d\varepsilon \). Labeled as equation (2).]
where [image: It seems you tried to upload an image or provide a URL, but it did not come through. Please try uploading the image again or provide a URL for it. If you have a description or caption, feel free to include it for additional context.] is the axial stress, [image: Please upload an image or provide a URL for me to generate the alt text.] is the axial strain.
The elastic energy stored in rock material:
[image: Equation showing \(E_{z} = \frac{\sigma^2}{2E_{0}}\), labeled as equation three.]
where E0 is the elastic modulus.
The dissipated energy can be obtained from Equations 1–3:
[image: A mathematical equation is shown: \( U_d = \int_{0}^{\varepsilon} \sigma \, d\varepsilon - \frac{\sigma^2}{2E_0} \). In the corner, it is labeled as equation (4).]
To investigate the energy-driven deformation mechanisms of sandstone with varying depths during loading, the total energy, elastic strain energy, and dissipated energy were calculated using Equations 1–4. Figure 8 illustrates the energy evolution of pre-drilled sandstone at different drilling depths under uniaxial compression. As depicted in Figure 8, the evolutionary trends for the total energy, elastic strain energy, and dissipated energy of the rock samples vary distinctly. The total energy exhibits a nonlinear ascending trend. During the initial loading phase, the dissipated energy rises gradually with increasing load, indicating minimal irreversible damage within the material. As loading progresses, the elastic energy surges nearly linearly as the peak stress is approached, suggesting that energy is predominantly stored in the form of elastic energy. In the post-peak stage, however, the elastic energy decreases abruptly, whereas the dissipated energy increases dramatically, signifying that the localized damage and crack initiation occur in sandstone. The majority of the energy is dissipated through irreversible crack growth, frictional sliding, and other deformation mechanisms. Initially, elastic energy predominates, but following peak stress, dissipative energy becomes the primary component of the energy distribution, delineating the transition from elastic deformation to plastic damage. Furthermore, the peak total energy decreases nonlinearly with increasing cavity depth, ranging from 29.81 kJ/m3 at 5 mm to 22.65 kJ/m3 at 30 mm. In contrast to the elastic strain energy, the peak dissipated energy increases with the depth of the infilled, from 4.49 kJ/m3 at 5 mm to 6.25 kJ/m3 at 30 mm, culminating in a sudden surge as the rock sample’s load-bearing capacity is lost. This indicates that with deeper holes, crack propagation and irreversible damage intensify significantly during loading, highlighting the substantial increment in energy consumption associated with instability and failure processes. The stress concentration effect induced by deep holes exacerbates the initiation and propagation of cracks.
[image: Six graphs depict axial stress, total energy, elastic strain energy, and dissipative energy against axial strain. Each graph shows lines with different slopes and curves, revealing various energy dissipation behavior. The graphs are labeled from (a) to (f), illustrating varying scales and peak points for each dataset.]FIGURE 8 | Energy evolution of pre-drilled sandstone with different depths: (A) 5 mm, (B) 10 mm, (C) 15 mm, (D) 20 mm, (E) 25 mm, and (F) 30 mm.
3.2.2 Effect of drilling depth on energy proportion
To gain a comprehensive understanding of the energy mechanism in pre-drilled sandstone specimens with varying drilling depths throughout the loading process, a quantitative examination of the proportional correlation between elastic strain energy and dissipated energy is essential. Figure 9 presents the proportions of elastic strain energy and dissipated energy for pre-drilled sandstone samples with different drilling depths.
[image: Graphs display variations of axial stress, elastic strain energy ratio, and dissipated energy ratio across six panels labeled (a) to (f). Axes show axial strain percentage and values for axial stress and energy ratios. Each graph highlights regions with Roman numerals and uses lines in different colors to illustrate the data trends.]FIGURE 9 | Proportions of elastic strain energy and dissipated energy of pre-drilled sandstone with different depths: (A) 5 mm, (B) 10 mm, (C) 15 mm, (D) 20 mm, (E) 25 mm, and (F) 30 mm.
At the onset of loading, the closure of internal defects leads to the dissipation of a portion of the energy during the crack closure phase, thereby increasing the ratio of dissipated energy. In Stage I, the dissipated energy rises nonlinearly with the increment of deformation, and it exceeds the elastic energy, predominantly due to the closure and friction within the micro-cracks of the sandstone. During Stage II, the micro-cracks and pre-existing pores in sandstone are completely closed, and the proportion of dissipated energy gradually decreases with the progression of deformation. At the same time, a fraction of the total energy continues to be stored as elastic energy, indicating that less damage occurs in the sample. In Stage III, the proportion of dissipated energy increases, whereas the proportion of elastic energy experiences a sharp reduction. This is mainly due to the limited number of micro-cracks in sample leading to the release of the mechanical energy as dissipated energy. Upon reaching peak strength, the rock transits into the macroscopic failure stage. Consequently, the dissipated energy increases dramatically, whereas the elastic energy decreases sharply. This is attributed to the propagation and coalescence of cracks within the sandstone, leading to a reduction in load-bearing capacity and the rapid conversion of the stored elastic energy into dissipated energy, showing a steep upward trend in the dissipated energy curve.
3.3 Cracking processes
3.3.1 AE characteristics
The presence of micro-cracks and voids within the rock matrix may undergo closure or opening under loading conditions. The elastic waves emitted as a result of these changes are captured as AE signals, which provide insight into the fracturing process of rock materials (Lei et al., 2020; Tian et al., 2023; Wang et al., 2021). AE signals are capable of characterizing a series of processes such as the initiation, propagation, and coalescence of micro-cracks in rocks. Figure 10 shows the AE count-stress curves over time for sandstone samples with varying drilling depths. By analyzing the AE characteristics throughout the deformation and failure, the entire loading process can be categorized into four distinct stages: the micro-crack compaction stage, the micro-crack initiation and propagation stage, the macro-crack development stage, and the pre-peak fracture stage.
[image: Six line graphs labeled (a) to (f). Each graph shows the relationship among axial strain, AE energy, and cumulative AE energy over time. Black lines represent axial strain, red lines show AE energy, and blue lines indicate cumulative AE energy. The graphs demonstrate trends over different time spans, indicating variability in strain and energy accumulation across instances.]FIGURE 10 | Evolution of axial stress and AE energy of pre-drilled sandstone with different depths: (A) 5 mm, (B) 10 mm, (C) 15 mm, (D) 20 mm, (E) 25 mm, and (F) 30 mm.
Firstly, in the micro-crack compaction stage, AE events were detected in all six groups of samples with different drilling depths. This is because the micro-pores and cracks within the rock samples are being compacted. However, as the drilling depth increases, the captured cumulative AE signals show a significant downward trend. The stress-time curves generally show a steady rise or a slightly concave trend, which is likely due to the discrete AE events generated by the micro-cracks and voids within the rock samples. Secondly, in the micro-crack initiation and propagation stage, the number of AE signals decreases with the increasing depth of the drilling pores, but the number of high-energy reflection events increases. This is because after the micro-cracks are compacted, new micro-cracks begin to form and propagate, resulting in the capture of high-amplitude energy signals. The cumulative energy curve also begins to show a stepped-up trend, mainly because the matrix particles and cracks within the rock samples, are gradually compacted, leading to the formation of internal micro-cracks. The subsequent is the macro-crack development stage, characterized by an increasing density of AE signals within samples. The AE energy characteristics indicate that larger amplitude energy signals are captured during the stable development of cracks. The slope of the cumulative energy curve increases more significantly than in the previous stage. With the increase of drilling depth, the cumulative AE energy gradually increases, and the clustering phenomenon of the energy curve becomes more pronounced, transforming from a stepped-up rise to a steeper one. Finally, there is the pre-peak stage, which occurs almost simultaneously with or just before the fracturing of the sample. The density of AE signals increases sharply and lasts for the shortest duration, confirming that the sandstone material is a typical quasi-brittle material. Meanwhile, both the AE energy curve and the cumulative energy curve rise sharply, while the stress-time curve shows a sudden drop. For samples with different drilling depths, a significant release of energy is observed within the rock samples before fracturing. As the drilling depth increases, the phenomenon of crack penetration becomes more evident. From the cumulative AE energy curve, it can be inferred that as the depth of the cavity increases, the total AE energy produced during the entire loading process gradually decreases.
3.3.2 Microcrack evolution
It is well-known that when rocks are subjected to external load, they may produce tensile cracks, shear cracks, or a combination of tensile-shear cracks. When different types of micro-cracks are formed, rocks can generate AE signals with different waveform characteristics. As micro-cracks accumulate to a certain extent, they can form macroscopic cracks. Therefore, the study of the evolution of micro-cracks is very important for revealing the macroscopic fracturing of sandstone. To characterize the evolution of micro-cracks during the deformation and failure of the rock, indirect AE parameters are obtained by calculating the relationships between parameters such as AE count, duration time, rise time, and amplitude, such as AF and RA (Bi et al., 2024).
[image: Formula showing AF equals C divided by D subscript T. ]
where AF is the average frequency of the AE signal, C is the AE count, and DT is the duration time.
[image: A mathematical formula is presented, showing that R subscript A equals R subscript T divided by A, noted as equation six.]
where RA is the ratio of the rise time to amplitude, RT is the rise time, and A is the amplitude.
Previous research has demonstrated that indirect AE parameters are obtained from Equations 7–13, which can be utilized to qualitatively determine the type of micro-cracks (Li et al., 2022; Lei et al., 2023a; Lei et al., 2023b; Wang et al., 2024b; Wang H. et al., 2024). Specifically, the characteristics of micro-cracks can be inferred as follows: A relatively low RA value coupled with a high average frequency AF value indicates that the failure is primarily due to tensile cracks. Conversely, a high RA value along with a low AF value suggests that the failure is predominantly by shear cracks. When both RA and AF values are low, it indicates a mixture of tensile-shear cracks. Many researchers have agreed that a diagonal line can serve as a discriminator between tensile and shear cracks on an RA-AF plot (Zhang and Zhou, 2023; Niu et al., 2023; Xiao et al., 2023; Gu et al., 2024). The area above the dividing line is associated with tensile failure, while the area below the line is indicative of shear failure. Moreover, the slope of the dividing line, which is the AF/RA ratio, is considered a critical threshold for distinguishing between the two types of failures. The traditional method takes the diagonal line of RA/AF as the dividing line. Also, Du et al. (2020) found that the dividing line of different types of rocks is different, and its experiment found that the slope of the dividing line of sandstone is about 1/70. Niu et al. (2020) used the kernel density estimation (KDE) function to divide the high-density region of RA and AF values in crack classification, and the results showed that the ratio of RA/RF was 1/70, which was a reasonable proportion. This study adopts this threshold to characterize the evolution law of micro-cracks during compression testing.
By using this threshold, researchers can categorize the micro-crack behavior observed during the test into tensile, shear, or a combination of both, thus providing insights into the failure mechanisms at play within the rock material under compression. This approach allows for a more detailed understanding of how micro-cracks develop and propagate, which is crucial for predicting the stability and behavior of rock structures in various engineering applications. To elucidate the characteristics of micro-cracks, the relationship between the crack classification parameters RA and AF was determined using statistical calculation methods. Subsequently, the probability density cloud of RA-AF was generated with the built-in probability density function. Figure 11 shows the RA-AF spectrum diagram of micro-crack evolution for pre-drilled sandstone samples with varying depths. It can be found that the micro-crack evolution differs among sandstone samples with different drilling depths. For samples with a drilling depth of 5 mm–10 mm, the probability density is predominantly concentrated in areas of low RA and low AF values, as well as low RA and higher AF values. This indicates that the failure mechanism in these sandstone samples is mainly a combination of tensile and shear failures, with both modes of failure coexisting.
[image: Six graph panels showing the relationship between RA and AFeye values, indicating crack types. Panels (a) to (f) illustrate shear and tensile cracks, with color-coded gradients from blue to red on the y-axis to represent varying intensities. Each graph has a red diagonal line separating regions labeled for shear cracks above and tensile cracks below.]FIGURE 11 | Evolution of microcracks of pre-drilled sandstone containing different depths: (A) 5 mm, (B) 10 mm, (C) 15 mm, (D) 20 mm, (E) 25 mm, and (F) 30 mm.
In samples with filling fracture depths of 15 mm–20 mm, the probability density is mainly focused in the low RA and low AF value area, suggesting that the crack failure mechanism is primarily tensile-shear mixed failure. However, there is also a small distribution in the low RA and high AF value area, indicating that tensile crack failure accounts for a minor proportion. For samples with a filling depth of 25 mm–30 mm, the probability density is mainly distributed in the low RA and low AF value, as well as the high RA and low AF value. This is mainly a mixed tensile-shear and shear failure. As the depth of the filled pore increases, the distribution of indirect AE parameters in the low RA and high AF value area of the sandstone shows a gradual increasing trend. This suggests that shear cracks are progressively becoming more prevalent. Shear cracks constitute a significant proportion, with the shear failure mode being dominant. The increased filling depth enhances the effect of stress concentration within the rock, making it easier for local areas to reach the shear strength of the sandstone and thereby promoting the generation of shear cracks. The presence of deep holes intensifies the constraint on the surrounding materials, and this high constraint is more conducive to shear slip phenomena. Additionally, the increased drilling depth alters the stress field distribution around the hole, causing shear forces to act more deeply within the rock, forming a failure zone primarily influenced by shear stress. With regard to deeper holes, shear cracks become the primary pathway for energy release, thereby fostering the generation of shear cracks. Furthermore, the potential non-uniform deformation of deep holes further complicates the local stress field and is favorable for the development of shear cracks. Consequently, as the drilling depth increases, the proportion of shear cracks in the overall crack population rises.
3.3.3 Multi-spectral characteristics
The fractal theory is widely used in geophysics to study the deformation and failure of rocks, which describes the irregular phenomenon in nature (Liu et al., 2019; Li et al., 2021; Liu X. G. et al., 2021; Sun et al., 2022). In this study, the box-covering method is employed to calculate the probability distribution of AE activities. First, define the AE time series [image: Mathematical notation depicting a sequence \(\{x(i); i = 1, 2, 3, \ldots, A\}\), indicating a set of elements \(x(i)\) indexed from one to \(A\).], and then divide it into consecutive N equal parts, each part is L in length. The normalized probability of each interval is defined as:
[image: The mathematical formula \( P_i = \frac{S_i}{\sum_{i=1}^{N} S_i} \), where \( i = 1, 2, \ldots, N \), labeled as equation (7).]
where [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] indicates the normalized probability density, and [image: It seems there was an error with your request. Could you please upload the image or provide a URL to it? This will help me generate the appropriate alternate text for you.] represents the cumulative sum of the ith interval.
The partition function is defined as:
[image: Mathematical equation showing X of a, q, L equals the sum from i equals one to N of p sub i to the power of q, labeled as equation eight.]
where q indicates the order of statistical moment, and L represents the scale length.
For different q values, the relationship between the partition function and L is given as:
[image: It looks like you've posted a mathematical expression rather than an image. Please upload an image or provide a URL, and I'll help generate the alt text.]
By constantly changing the scale length m and repeating calculation, the Hurst exponent δ(q) can be obtained by taking the slope of the double logarithmic function from the fitting curves of ln (X (q, L)) and ln(M).
The single parameter cluster [image: Greek letter mu with subscript i, followed by parentheses containing q and M separated by a comma.] of normalized measures is defined as:
[image: Mathematical expression for a function \( \mu(q, M) \) defined as \( \frac{[P_i(L)]^q}{\sum_{j=1}^{N} [P_j(L)]^q} \) labeled as equation (10).]
where Pi(L) is the probability distribution function, and j is the number of times the power-weighted processing is performed with q fixed.
After Legendre transformation, fractal spectrum function f(q) and average singularity α(q) can be given as:
[image: Mathematical formula: The function \( f(q) = -\lim_{N \to \infty} \frac{1}{N \ln N} \sum_{i=1}^{N} \mu_i(q, L) \ln [\mu_i(q, L)] \) is presented, labeled as equation (11).]
[image: Equation showing a function \( a(q) \) defined as the negative limit of the natural logarithm of \( N \) as \( N \) approaches infinity, multiplied by the sum from \( i = 1 \) to \( N \) of \( \mu(q, L) \) times the natural logarithm of \( P_i(L) \). The equation is labeled as (12).]
The spectrum width [image: Delta alpha symbol represented with a triangle followed by the Greek letter alpha in lowercase.] is:
[image: Mathematical equation displaying "Δα = α_max - α_min" followed by the number 13 in parentheses.]
where [image: I'm sorry, but it seems you've pasted an image or content that isn't supported. Please try uploading an image file or providing a URL so I can help generate the alternate text.] is the maximum value of the singularity index, [image: The text "αₘᵢₙ" is shown, representing the minimum value of the variable alpha in mathematical notation.] is minimum of the singularity index.
To delve into the crack characteristics throughout the deformation and fracturing of rock samples, AE signals were analyzed based on Equations 7–13. Figure 12 shows the multifractal spectrum characteristics of the AE energy parameters for pre-drilled sandstone samples with three typical drilling depths. As observed in Figure 12, the pre-drilled sandstone samples show evident spectrum characteristics, suggesting that the AE signals emitted during the loading deformation process exhibit pronounced nonlinear characteristics. Furthermore, the occurrence probability of signals with smaller amplitudes is higher than those of larger ones, indicating that the rock samples undergo an intricate process of damage and fracturing processes with regard to the initiation, propagation, and expansion of microcracks. The scale of crack fracturing can be quantitatively assessed through AE signals. The higher amplitude signals imply larger-scale internal deformation and fracturing, whereas lower amplitude signals suggest smaller-scale fractures. The spectrum features also enable the differentiation of the structural variations within AE signals. It is noted that as the drilling depth increases, the width of the multifractal spectrum expands. The decrease of the spectrum width indicates that the singularity intensity distribution of AE signals becomes more concentrated and the complexity decreases. The results show that the cracks change from multi-scale random distribution to larger scale single-mechanism failure mode, that is, AE events in the sample are mainly caused by large-scale shear slip. In cases with shallower hole, such as a pore depth of 5 mm, the contribution of micro cracks and slippage between less disturbed mineral particles results in a narrower multifractal spectrum (with Δα approximately 4.33). However, when the depth reaches 30 mm, the spectrum width narrows to 3.20, and the AE signal exhibits a richer frequency spectrum. The deeper gypsum infilling promotes the creation of new cracks and active dislocation slips, offering multiple avenues for stress release and thus widening the spectral width. The damping properties of the gypsum material itself partially restrain the development of large-scale cracks, leading to a slight increment in frequency measurement subset (Δf), ranging between −0.42 and 0.23. Moreover, the gypsum infilling alters the material consistency of the rock, thereby influencing the propagation path and velocity of stress waves, mitigating stress concentration at crack tips, and reducing the incidence of large-scale cracks (Ma et al., 2025).
[image: Three graphs (a, b, c) display parabolic curves in different panels, showing a relationship between σ/σp and α. Each graph contains multiple colored curves labeled: (0-0.2)σp, (0.2-0.4)σp, (0.4-0.6)σp, (0.6-0.8)σp, (0.8-1)σp, post peak stage, and whole stage.]FIGURE 12 | Multi-spectral spectrum of pre-drilled sandstone with typical depths: (A) 5 mm, (B) 15 mm, and (C) 30 mm.
4 DISCUSSION
To further elucidate the deformation and fracture mechanism of pre-drilled sandstone, two representative samples with drilling depths of 15 mm and 25 mm were chosen for study. Monitoring points were strategically positioned around the holes to monitor the strain variations throughout the entire loading process. Eight such monitoring points were arranged 20 mm away from the center of the hole in a clockwise direction. The strain progression at these various points around the hole is depicted in Figure 13. A careful examination of Figure 13 reveals that the strain values progressively increase with the applied load. Notably, the cumulative strains recorded at points P2 and P6 are substantially greater than those at the other monitoring points. This observation can be attributed to the pronounced tensile forces acting on the sides of the cavity during loading, leading to stress concentration in these areas. Unlike the load transfer that occurs above and below the hole, the regions flanking the hole experience a higher degree of tensile force, resulting in the primary locations for crack initiation.
[image: Graphs show axial stress versus time for different points (P1 to P8) in two panels. Panel (a) displays stress in megapascals, while panel (b) includes both stress and strain percentages. An inset diagram highlights the positions of each point.]FIGURE 13 | Strain evolution at monitoring points in pre-drilled sandstone with typical depths: (A) 15 mm and (B) 25 mm.
In addition, for the sample with a drilling depth of 15 mm, a notable strain discrepancy was observed at each monitoring point during the initial loading phase. In contrast, the sample containing a drilling depth of 25 mm displayed a pronounced strain difference when approaching the peak stress. Given its brittle nature, sandstone is susceptible to crack propagation in areas of stress concentration. The plastic properties of the infill materials, however, offer a degree of stress buffering in the early stages of loading (Wu et al., 2024). For the 15 mm shallow sample, the infilling was insufficient to counteract the internal stresses within the cavity, promoting stress concentration in the surrounding area. Consequently, during the initial loading phase, a distinct strain difference among the monitoring points was already apparent.
In the case of the 25 mm drilling depth sample, the material effectively distributed the stress around the hole, leading to a more uniform stress distribution at the outset and no discernible strain differences across the monitoring points. However, as loading progressed, particularly approaching peak stress, the plastic deformation or localized failure of the gypsum infill caused a re-concentration of stress, resulting in a marked increase in strain differences. Furthermore, the progressive damage and microcrack propagation around the hole during loading exacerbated the cumulative strain effect, especially at points P2 and P6, where stress concentration was most significant. Crack propagation at these points accelerated the growth of strain. For sample with a drilling depth of 15 mm, the insufficient infill depth precipitated early crack propagation, leading to a significant initial strain discrepancy. For sample with a drilling depth of 25 mm, however, the stress-relieving effect of the gypsum infilling was not evident in strain differences until the sample was near its peak stress.
5 CONCLUSION

	(1) With the increase of the drilling depth, the peak strength of the sample decreases linearly. In addition, the failure mode of the sandstone evolves from localized spalling around the holes to complex crack networks. When the depth is relatively shallow, the failure of the sample tends to be surface spalling, whereas deeper holes promote a multi-crack propagation pattern, indicating the rock structure shows an obvious weakening phenomenon.
	(2) DIC observation shows that the major principal strain concentration area mainly appears around the hole, forming a local strain concentration area. As the applied load is incremented, the initiation of cracks is observed to commence at the periphery of the hole.
	(3) In the case of samples with shallower drilling depth, the AE signal exhibits higher frequencies, which are typically associated with large-scale fracturing events. In the case of samples with deeper holes, the density of AE signals decreases, suggesting fewer but more significant fracturing events. Additionally, the spectrum of AE signals becomes broader. This widening of the AE signal spectrum is indicative of an increase in the heterogeneity and the extent of dislocation slip occurring between mineral particles within the rock matrix.
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To enhance the accuracy of joint roughness coefficient (JRC) estimation in photogrammetry, this study employed a fixed-camera shooting strategy guided by a Structure-from-Motion-based shooting parameter selection algorithm to reconstruct 3D models of rock samples at 16 different shooting distances. The analysis at profile intervals of 0.25 mm, 0.5 mm, and 1 mm revealed a strong correlation between JRC accuracy and three parameters: object space resolution error, spatial distance between point cloud points, and spatial errors of checkpoints on the orientation board. Using these three parameters as input variables and JRC error as the output variable, five machine learning algorithms—Support Vector Regression, Gaussian Process Regression, Multilayer Perceptron, XGBoost, and CatBoost—were employed to predict JRC errors across different shooting distances. The Multilayer Perceptron model performed best at profile intervals of 0.25 mm and 0.5 mm, while XGBoost was optimal at the 1 mm interval. Under the predictions of these models, JRC accuracy improved by an average of 84.7% across the three intervals. Finally, the applicability and limitations of the proposed method were further discussed.
Keywords: photogrammetry, rock surface roughness, JRC optimization, 3D reconstrution, machine learning

1 INTRODUCTION
Accurately estimating the joint roughness coefficient (JRC) is crucial for evaluating the stability of rock masses in engineering projects like slopes, tunnels, and underground caverns (ISRM, 1978). The JRC, which plays a key role in geological sketching for rock engineering, provides insight into the shear strength of rock joints (Patton, 1966; Barton and Choubey, 1977). In recent years, non-contact measurement methods for rock joint characterization, represented by laser scanning and photogrammetry techniques, have been extensively studied and applied by numerous researchers (Fardin et al., 2001; Ge et al., 2012; Cignetti et al., 2019; Francioni et al., 2019). These advanced optical and computational technologies enable the rapid acquisition of high-resolution 3D models of rock joints, which can be used to quantify joint roughness parameters and further estimate the shear strength of rock joints (Tse and Cruden, 1979; Grasselli and Egger, 2003; Ge et al., 2014; Lin et al., 2021; Ge et al., 2022; Lin et al., 2024; Yong et al., 2024).
With the rapid development of computer vision, optical measurement, and sensor technologies, photogrammetry, known for its low cost, portability, and short data processing time, has gained widespread popularity and usage in obtaining the JRC (Battulwar et al., 2021; Ge et al., 2022; Xia et al., 2022; Ling et al., 2022; Paixão et al., 2022). García-Luna et al. (2021) used a camera and tripod to collect images of slope rock masses, analyzing the impact of shooting distance, focal length, and the number of images on roughness. Paixão et al. (2022) provided a detailed description of the application process of the Structure-from-Motion (SfM) photogrammetry method in estimating the surface roughness of small-scale rock samples, exploring the effects of shooting angles, angular intervals, and data processing software on JRC accuracy. Ge et al. (2022) employed a similar data collection strategy to investigate the performance of smartphones in estimating JRC and compared the results with those obtained using digital cameras. Due to smartphones utilizing CMOS sensors, the resulting JRC accuracy was lower. In the same year, An et al. (2022) employed a similar convergence strategy to estimate the roughness of small-scale rock samples and proposed the “moving smartphone capture” method, which uses only a smartphone. When comparing the results with those obtained using data collection methods involving fixed devices such as tripods and turntables, the latter demonstrated higher JRC accuracy.
The detailed examination of photogrammetry techniques utilizing SfM technology reveals a shift in JRC assessment towards greater cost-efficiency and ease of use. However, it must be acknowledged that in practical applications, regardless of the hardware used or the implementation of fixed settings, JRC estimates will inevitably deviate to some extent from actual values. Moreover, parameters such as camera resolution and shooting position cannot always be optimally configured. Although numerous studies have investigated the effects of factors like equipment resolution and shooting configurations on errors in roughness parameter estimation (García-Luna et al., 2021; An et al., 2022; Ge et al., 2022; Yang et al., 2024), there is still a lack of research focused on innovative methods to improve JRC accuracy in photogrammetry. Against this backdrop, machine learning technology emerges as a powerful tool for addressing complex nonlinear problems with multiple intertwined parameters, offering new insights and approaches for optimizing JRC accuracy in photogrammetry. The introduction of this cutting-edge technology not only breathes new life into traditional photogrammetry methods but also holds the potential for significant improvements in JRC estimation accuracy. By leveraging machine learning algorithms for in-depth analysis of large datasets, it is possible to uncover more potential factors affecting estimation accuracy and design more precise and efficient estimation models.
This study aims to improve the accuracy of photogrammetric JRC estimation using machine learning algorithms. Initially, rock sample point cloud models were collected through a combination of a camera parameter selection algorithm and a tripod-based data acquisition strategy. The study then investigated the effects of object space resolution error, spatial distance, and spatial error on JRC estimation accuracy. Finally, five machine learning algorithms were employed to predict JRC errors at different shooting distances, resulting in the development of a photogrammetric JRC accuracy optimization model based on the tripod strategy.
2 METHODOLOGY
2.1 Point cloud extracted from SfM-based photogrammetric data
The SfM-based photogrammetry technique has become a standard in rock engineering applications (Hartley and Sturm, 1997; Kong et al., 2021). As depicted in Figure 1A, the process starts by identifying feature points ([image: The image displays the mathematical notation \( P_{mj} \), representing a variable or function with subscript indices m and j, commonly used in mathematical or scientific contexts.]) from two initial images and matching them with corresponding target points ([image: Please upload the image or provide a URL so I can generate the alt text for you. You can also add a caption if you want additional context.]). This matching process helps estimate the initial camera positions ([image: Please upload the image or provide a URL, and I will generate the alternate text for you.], [image: It seems there was an error in your request. Please upload an image or provide a URL for me to generate the alternate text.]). These correspondences are then extended across additional images to refine the camera pose ([image: The image shows the mathematical notation for a lowercase letter "o" with a subscript "m".]) estimates for each image. Using this information, a sparse 3D model of the scene is constructed. Subsequently, depth maps, which represent the depth values of all pixels, are generated and combined into a single, consistent depth map (see Figure 1B). Finally, a dense point cloud is produced from the merged depth map, as illustrated in Figure 1C.
[image: Diagram showing the setup for capturing a 3D object using three cameras with initial poses labeled \(O_1\), \(O_2\), and \(O_3\). Cameras are positioned around a cube labeled \(P\), with paths indicated by arrows. Panels \(b\) and \(c\) show 3D reconstructions: \(b\) is dark with sparse details, \(c\) is lighter with more texture.]FIGURE 1 | Overview of SfM-based photogrammetry in rock data acquisition. (A) The principle of SfM-based photogrammetry. (B) A rock depth map. (C) A 3D rock model.
2.2 Specimen preparation and experimental setup
Figure 2 illustrates the use of the underside of an artificially split sandstone sample as the test object. This sample, which has a slightly uneven surface, measures 100 × 100 × 50 mm. It is placed within an orientation plate (OP) equipped with four ground control points (GCPs) spaced 160 mm apart. The OP is utilized to orient and scale the point cloud of the rock sample. Additionally, the OP contains twelve checkpoints (CPs). The discrepancy between the point cloud coordinates of these checkpoints and their actual coordinates provides a partial measure of the point cloud reconstruction quality (ASPRS, 2015; Cultural Heritage Imaging, 2015). According to Agisoft Metashape (2022) guidelines, the checkpoint size is set to five times the ground sampling distance (GSD), which is determined by the image pixel count (Yang et al., 2024).
[image: Camera setup on a tripod aimed at a turntable with labeled components. Labels include camera, tripod, ground control point (GCP), control point (CP), sandstone, turntable, object point (OP), and angle ruler.]FIGURE 2 | JRC estimation experiment for small-scale rock sample.
Images of the target rock samples were captured using a Canon EOS 90D digital single-lens reflex (DSLR) camera. The camera uses a high-resolution CCD sensor with a sensor size of 22.3 × 14.8 mm and a pixel capacity of 6,960 × 4,640 pixels. The lens used is EF-S 18–135 mm f/3.5–5.6 IS USM. To precisely control the relative position and angle between the rock samples and the camera, a turntable and tripod were utilized as support and adjustment tools. Additionally, a precision angle ruler was employed to accurately adjust the rotation angle of the rocks, allowing images to be captured at each angular interval. Natural lighting was used to accurately reflect the rock’s morphology under authentic environmental conditions. As shown in Figure 2, a field rock specimen roughness measurement setup was established.
2.3 Data acquisition
The fixed camera capture (FCC) method offers a cost-effective way to capture rock images, ensuring high image overlap and providing excellent stability and ease of use (Ge et al., 2022). The shooting parameter selection algorithm (SPSA), introduced by Yang et al. (2024), generates tailored shooting parameters based on the specific camera and rock dimensions. In this study, FCC is utilized in conjunction with SPSA, following the principles of SfM.
To begin with, the specific dimensions of the target rock, the GSD, and the key parameters of the imaging equipment were all entered into the SPSA, as detailed in Table 1. In this study, the camera’s shooting angle and positional interval adhered to the professional recommendations of Ge et al. (2022), being set at 30° and 15° respectively. This configuration facilitated the capture of 24 high-resolution images to ensure a high degree of image overlap. Furthermore, in accordance with the guidelines provided by Edmund Optics (2023), one-third of the GSD was set as the threshold for spatial resolution, intended to allow a reasonable tolerance for uncertainty in the accuracy of spatial points during the 3D reconstruction process, thereby enhancing the reliability of the results. Subsequently, based on SPSA calculations, with a GSD set at 1, the camera’s shooting layout at various positions is illustrated in Figure 3. These positions were sampled at 100 mm intervals. It is noteworthy that the positions depicted in Figure 3 not only indicate spatial locations but also visually represent the dynamic variations in objective space resolution error (OSRE) through changes in size and color.
TABLE 1 | Application of shooting parameter selection algorithm.
[image: Table displaying camera specifications. Parameters include focal length at eighteen millimeters, sensor size at twenty-two point three by fourteen point eight millimeters, camera resolution of six thousand nine hundred sixty by four thousand six hundred forty pixels, and ground sample distance at one millimeter per pixel. Target area size is one hundred by one hundred by fifty millimeters. Minimum field of view is two hundred ninety-three point eight two by one hundred ninety-five millimeters. Shooting distance range is two hundred fifty to three thousand six hundred millimeters. Focal length range is eighteen millimeters. Number of shooting parameter combinations is sixteen.][image: Scatter plot depicting a 3D graph with a color gradient from blue to yellow, representing OSRE values ranging from 0.1 to 0.3. Dots radiate from a central rock sample at the origin labeled on the X, Y, and Z axes. A camera position is indicated above the sample.]FIGURE 3 | Results of SPSA generation based on convergence strategy.
2.4 Data processing and JRC estimation
Agisoft Metashape (2022) was chosen for the three-dimensional reconstruction of the rock surface, as it aligns with the SfM principle. The reconstruction parameters were configured with the highest alignment accuracy, and the depth maps and point clouds were generated with exceptional precision. For the GCPs, the software automatically identified these points within the point cloud using the imported real-world coordinates, facilitating the overall rotation and scaling of the point cloud. Following this, CloudCompare (2023) was used to segment and extract the rock surface point cloud, standardizing its dimensions and enabling the analysis of JRC variations across different shooting distances.
Object space resolution is a variable that reflects the density of 3D point clouds, determined by shooting parameters and pixel size. According to the study by Yang et al. (2024), a strong correlation exists between the object space resolution error (OSRE) and the JRC error. The equation for calculating this value is as follows:
[image: Equation showing the OSR error formula: Error sub OSR equals h f divided by Z minus f, labeled as equation one.]
where [image: It seems there was an error in uploading the image. Please try uploading the image again, and I will help generate the alt text for it.] is the pixel size, [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] is the camera focal length, [image: Please upload the image or provide a URL for which you need the alternate text.] is the shooting distance, and [image: Error OSR formula in italics.] is the calculated value of OSRE. This value can be calculated solely using the shooting parameters.
In studies evaluating joint roughness, the spatial distance between points in the point cloud reflects the accuracy of the roughness to some extent (Paixão et al., 2022; Ge et al., 2022). This value is defined as the ratio of the area of the selected rock surface point cloud to the number of points, and it can be calculated using statistics from post-processing software.
According to the positional accuracy standards for digital geospatial data provided by the American Society for Photogrammetry and Remote Sensing (ASPRS), researchers can evaluate point cloud accuracy using the spatial errors of check points (ASPRS, 2015). The spatial error between the point cloud coordinates and the true coordinates of the twelve checkpoints, used as a parameter to reflect JRC accuracy in this study, is represented by the average root mean quare error (RMSE) calculated manually, as shown in Equation 2:
[image: Formula for RMSE involving three variables \( x \), \( y \), and \( z \). Each term is summed over \( n \), comparing values between instances \( (a) \) and \( (b) \), with the square root of the mean of squared differences.]
where [image: Mathematical notation showing the variable x with subscript i and superscript a.], [image: It seems you have pasted a mathematical symbol or expression instead of an image. If you intended to upload an image, please try again. If you need help with anything else, feel free to ask!], [image: It seems there's no image provided. Please upload an image or provide a URL for me to generate alt text.] represent the coordinates of the center point of CPs in the point cloud, while [image: If you upload the image, I can help create the alternate text for it. Please make sure to attach the image or provide a link.], [image: Please upload an image or provide a URL to generate the alternate text. You can also add a caption for additional context if needed.], [image: I'm sorry, but it seems like there's no image uploaded or linked. Could you please try uploading the image again or provide a URL? If you have any additional context or details, feel free to include them.] represent the true coordinates of CPs in the OP. [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] denotes the number of CPs. [image: The formula shows "RMSE" in italicized letters, representing Root Mean Square Error, a common measure of the differences between predicted and observed values in a dataset.] represents the spatial error (ASPRS, 2015).
In rock engineering, the JRC is essential for classifying rock mass quality and assessing stability (Barton and Choubey, 1977; ISRM, 1978). When estimating JRC from point cloud coordinates, the accuracy is significantly affected by the choice of profile intervals (PI) (Tse and Cruden, 1979). Following the method outlined by Yu and Vayssade (1991), JRC values for profile intervals of 0.25 mm, 0.5 mm, and 1 mm were calculated using Equations 3, 4 and are shown in Figure 4. The JRC for each profile ([image: I'm unable to view or analyze the content of images directly from URLs or external links. Please upload the image or describe its contents for assistance.]) is determined using [image: I'm sorry, I can't provide a description of the image. Could you please upload the image or provide more context so I can help create the appropriate alt text?]:
[image: Equation for \( Z_2 \) is shown as the square root of \( \frac{1}{L} \sum_{i=1}^{N-1} \frac{(z_{i+1} - z_i)}{x_{i+1} - x_i} \).]
[image: Mathematical equations display formulas for joint roughness coefficient \( JRC_{2D} \) with various profile intervals: \( JRC_{2D} = 60.32 z_r - 4.51 \) for 0.25 mm, \( JRC_{2D} = 61.79 z_r - 3.47 \) for 0.5 mm, and \( JRC_{2D} = 64.22 z_r - 2.31 \) for 1 mm, labeled as equation (4).]
where the coordinates [image: Please provide the image you would like described by uploading it, or share a link to it.], [image: It seems you're trying to upload an image, but it did not come through. Please try uploading it again or provide a URL, and I will help generate the alternate text.], [image: Mathematical expression with variable x subscript i plus 1.], and [image: If you have an image you'd like me to generate alt text for, please upload it or provide a URL.] correspond to points [image: Stylized mathematical expression "i" with a superscript "th", indicating the ordinal form.] and [image: The formula consists of the variable \(i\) followed by a plus sign and the superscript "1th".] in the [image: I need you to upload the image or provide a URL to generate the alternate text.] and [image: Please upload the image you would like me to describe, and I will generate the alt text for you.] axes, respectively. [image: Please upload the image or provide a URL so I can generate the alternate text for you.] indicates the total number of points along the rock joint profile, while [image: Please upload the image or provide the URL so I can generate the alternate text for you.] refers to the profile’s length. Equation 5 shows that the overall JRC value for rock joint, known as [image: I'm unable to view images directly. Please provide a description or upload the image again, and I will help you generate the alt text.], is calculated by taking the average of the [image: The image appears to show a stylized text rendering of "JRC" followed by the subscript "2D," suggesting a branding or logo design.] values across all profiles (Ge et al., 2022):
[image: Formula for \( JRC_{3D} \) equals the sum from \( j = 1 \) to \( M \) of \( \frac{JRC_{2D}}{M} \). Labeled as equation five.]
where [image: Please upload the image or provide a URL for the image you'd like me to generate alt text for.] represents the total number of profiles.
[image: Three 3D surface plots labeled a, b, and c show different mesh densities. Plot a has a mesh with 0.25 millimeters spacing, plot b with 0.5 millimeters, and plot c with 1 millimeter. Each plot features axes labeled X, Y, and Z, representing spatial dimensions and height, respectively. Plots illustrate variations in surface roughness with increasing mesh spacing.]FIGURE 4 | Point clouds of rock surface with profile intervals (PI) of (A) 0.25 mm, (B) 0.5 mm and (C) 1 mm respectively.
To validate the accuracy of roughness parameters at different shooting distances, a high-resolution point cloud of the rock surface was generated using an AutoScan-630W laser scanner with a precision of 0.05 mm and an average point spacing of 0.005 mm. The JRC values derived from this point cloud were used as the benchmark for comparison.
2.5 Machine learning algorithms
The prediction model’s input feature set includes three parameters: OSRE, spatial distance, and the checkpoint spatial error of point clouds at various shooting distances. These features, combined with the JRC error as the target output, create a comprehensive dataset. As shown in Figures 5–7, both the input and output parameters are based on actual measured data rather than a set of predetermined values. The core of this prediction task is a multivariate regression analysis, designed to explore the relationships between the input features and the target output. To achieve this, five machine learning models were utilized for predicting the JRC error. To ensure robust generalization and accurate predictions, the data was split using a 70/30 ratio: 70% of the data was randomly chosen as the training set for model development and parameter optimization, while the remaining 30% served as the validation set to independently assess the model’s predictive performance and mitigate overfitting (Liu et al., 2024). To ensure the convergence of generalization error in a more stable manner, K-fold cross-validation was employed (Fushiki, 2011). The training set was first divided into five subsets, each of which could serve as a validation set. Then, one subset was used for validation, and the process was repeated five times, with a different validation and training set used in each iteration.
[image: Panel a displays a scatter plot of AFCC vs. Test for different roughness parameters, using varied symbols. Panel b shows a violin plot comparing AFCC distribution for Pm0.25mm, Pm0.5mm, and Pm1mm, highlighting data spread and quartiles. Panels c, d, and e present line plots correlating OSRE and AFCC for different parameters, including trend lines, confidence bands, and fit equations, all indicating strong linear relationships. Panel f is a bar chart illustrating the OSRE mean values for each roughness parameter, with numerical differences highlighted.]FIGURE 5 | Overview of OSRE and [image: Mathematical expression showing "JRC" subscripted with "Error".] data results. (A) Distribution chart and (B) statistical chart of [image: The text "JRC Error" is displayed in a stylized font.]. The correlation between OSRE and [image: I'm unable to view the image you're referring to. Please try uploading it again or provide a URL.] at PI of (C) 0.25 mm, (D) 0.5 mm and (E) 1 mm. (F) OSRE threshold values corresponding to [image: Text displaying "JRC Error" in italic font.] of 2.
[image: Four graphs analyze spatial distance data. Graphs a, b, and c plot \( \gamma \) (FCC) against spatial distance in millimeters, showing strong linear correlations with confidence bands. Graph d compares spatial distance with roughness parameters, using bars for Pine255hm, LFN5nv, and RM1nv values, with Pine255hm having the highest.]FIGURE 6 | The correlation between spatial distance and [image: Text showing "JRC" with "Error" in subscript, possibly indicating a notation or label related to an error associated with JRC.] at PI of (A) 0.25 mm, (B) 0.5 mm and (C) 1 mm. (D) Spatial distance threshold values corresponding to [image: Sorry, it seems that there was an error displaying the image. Please try uploading the image again, and I will assist you with the alternate text.] of 2.
[image: Four graphs display relationships and data analyses. Graphs a, b, and c show linear regression lines with 95% confidence intervals for the correlation between spatial error (x-axis) and FCC values (y-axis). Each graph includes Pearson's R values indicating the strength of correlation. Graph d is a bar chart comparing roughness parameters, with bars for Ph2.3nm, Ph4.5nm, and Pl1.1nm, each labeled with specific values.]FIGURE 7 | The correlation between spatial error and [image: I'm unable to view the image you referenced. Please upload the image directly or provide additional context so I can assist you with generating the alternate text.] at PI of (A) 0.25 mm, (B) 0.5 mm and (C) 1 mm. (D) Spatial error threshold values corresponding to [image: Text displaying "JRC" with the subscript "Error" in a stylized font.] of 2.
2.5.1 Support Vector Regression
Support Vector Regression (SVR) is a technique rooted in Support Vector Machines (SVM) that models a regression function by identifying an optimal hyperplane within the feature space, enabling the projection of sample points into a higher-dimensional space. The objective of SVM is to find a function that places most data points within this margin while minimizing the prediction errors for the points that fall outside of it. These points, which fall outside the margin, are referred to as support vectors. Compared to traditional regression methods, SVR offers superior generalization ability and greater robustness, effectively handling high-dimensional data and nonlinear problems. The core idea of SVR is to balance the trade-off between prediction error and model complexity, adjusting hyperparameters to control the complexity and generalization capability of the model (Brereton and Lloyd, 2010; Awad et al., 2015). In this study, the kernel function was preset to quadratic, while the remaining hyperparameters were set to their default values.
2.5.2 Gaussian Process Regression
Gaussian Process Regression (GPR) is a statistical method used for predicting continuous values. The process begins with defining a prior distribution. A prior distribution is specified for the function to be predicted, assuming that this function adheres to a Gaussian Process with a zero mean function. Next, observation data, which includes input values and corresponding output values, are obtained. Following this, the posterior distribution is computed by updating the prior distribution with the observational data using Bayesian methods. The posterior distribution remains a Gaussian Process; however, its mean and covariance are adjusted based on the observational data. Finally, predictions are made by applying the posterior distribution to new input data. The prediction results are represented as a normal distribution, where the mean provides the predicted value and the variance indicates the uncertainty of the prediction (Williams and Rasmussen, 1995; Schulz et al., 2018). The kernel function for GPR in this study was preset to rational quadratic. The remaining hyperparameters are the default values.
2.5.3 Multilayer Perceptron
The Multilayer Perceptron (MLP) is a feedforward artificial neural network model, characterized by fully connected layers composed of multiple neurons. The architecture of MLP consists of several layers, including an input layer, hidden layers, and an output layer. The input layer receives data and forwards it to the hidden layers, where activation functions transform the input values into outputs, subsequently passed to the output layer. The output layer generates the final prediction. Each neuron in the hidden and output layers is associated with weights and biases, functioning as a nonlinear operator that processes inputs from preceding neurons through a series of computations to produce outputs. Information transmission between neurons in adjacent layers occurs through weighted connections, where the weights signify the strength of these connections. A key advantage of the MLP lies in its ability to model complex nonlinear relationships, making it suitable for regression tasks (Gardner and Dorling, 1998; Almeida, 2020). In this study, the MLP algorithm was implemented with a neural network architecture comprising three hidden layers, containing 25, 9, and 24 neurons, respectively. All other parameters were retained at their default values.
2.5.4 XGBoost
During each iteration, XGBoost reduces the objective function by incorporating an additional tree model. The objective function is composed of two elements: a loss function that quantifies the discrepancy between actual and predicted values, and a regularization term that manages model complexity to avoid overfitting. This balance ensures both reduced prediction errors and model simplicity. One of XGBoost’s defining features is the application of second-order Taylor expansion to approximate the loss function, thereby increasing the accuracy of the optimization process. Furthermore, a greedy algorithm is used to identify the best split points by evaluating changes in the objective function before and after the split, which enhances both the model’s accuracy and computational efficiency. Additionally, XGBoost’s capacity to automatically manage missing data offers a distinct advantage in handling complex datasets (Chen and Guestrin, 2016; Nielsen, 2016). In this study, the parameters for XGBoost were set as follows: n_estimators = 100, max_depth = 6, learning_rate = 0.03, subsample = 1, colsample_bytree = 1, and min_child_weight = 1, with all other hyperparameters set to their default values.
2.5.5 CatBoost
CatBoost is a gradient boosting framework utilizing symmetric decision trees, distinguished by its minimal parameter requirements, strong support for categorical variables, and high accuracy. Its key strength is the efficient handling of categorical features. Additionally, CatBoost effectively addresses gradient bias and prediction shift, reducing overfitting while improving both accuracy and generalization. Unlike XGBoost, CatBoost features an innovative algorithm that automatically converts categorical variables into numerical ones. This conversion starts with analyzing categorical features to determine the frequency of each category, followed by the use of hyperparameters to create new numerical features. CatBoost also enhances the feature space by combining categorical features and employs a ranking-based boosting method to handle noise in the training data, which helps to decrease gradient estimation bias and mitigate prediction shift (Hancock and Khoshgoftaar, 2020). In this study, the settings included iterations = 500, max_depth = 6, learning_rate = 0.09, with all other hyperparameters remaining at their default values.
3 RESULTS
3.1 The relationship between OSRE and JRC
The accuracy of this study is evaluated using the difference ([image: I'm unable to view the image you tried to upload. Please try uploading it again, and I will help generate the alternate text for it.]) between the JRC values obtained from laser scanning ([image: Text showing "JRC 3D Laser scanner" with the "JRC" in a bold font.]) and those obtained from photogrammetry ([image: Text displaying "JRC 3D Photogrammetry" with "JRC" and "3D" in bold font, "Photogrammetry" in a lighter style, positioned diagonally.]):
[image: The equation displayed is \( JRC_{\text{Error}} = JRC_{\text{Laserscanner}} - JRC_{\text{Photogrammetry}} \) labeled as equation (6).]
The fitting results for [image: Error message of "JRC Error" is depicted with "JRC" written in large gray text, followed by smaller gray text "Error" in a subscript style.] with profile intervals (PI) of 0.25 mm, 0.5 mm, and 1 mm are shown in Figure 5A. The image data reveal significant differences in the computed results under varying conditions. Figure 5B displays the error in [image: Text displaying "JRC Error" in a serif font, suggesting a potential issue or error related to JRC.] when the PI is 0.25 mm, 0.5 mm, and 1 mm, within the 25%–75% range. For PI = 0.25 mm, the error ranges from 1 to 5; for PI = 0.5 mm, the error ranges from 1 to approximately 3; and for PI = 1 mm, the error decreases to between 0 and 2. Such variations are evidently unreasonable and not acceptable based on the typical roughness profile classifications for JRC (Barton and Choubey, 1977). Consequently, an improvement in the accuracy of JRC measurements is necessary.
Figures 5C–E illustrate the relationship between OSRE and [image: I'm unable to view the image you're referring to, as it seems there is an error displaying it. Please try uploading the image again or provide more context or a description.]. Under the FCC strategy, instability arising from factors such as lighting conditions, image overlap, and handheld effects results in some variability in [image: Text "JRC Error" in stylized grey font with "JRC" in larger, bold letters and "Error" in smaller subscript.] values as OSRE increases, although a general linear correlation is evident. The 95% confidence interval bands indicate that most data points fall within this range, demonstrating a certain degree of linearity, though more precise validation is required. Pearson’s [image: Please upload the image or provide a URL so I can generate the alternate text for you.], a measure of correlation between two datasets, can be used to analyze the relationship between OSRE and [image: JRC logo with the word "Error" written in smaller font underneath. The logo is in grayscale.].
It is observed that, for PI values of 0.25 mm, 0.5 mm, and 1 mm, there is a strong correlation between OSRE and [image: Text reads "JRC Error" in stylized font, with "JRC" in large, bold letters and "Error" in smaller, italicized script. The background is white.], with [image: Certainly! Please upload the image you'd like me to create alternate text for.] values approximately 0.97 in each case. The results show that [image: JRC logo with the subscript "Error" in gray text.] exhibits noticeable dispersion when OSRE is around 0.5–0.8. This is attributed to the larger spacing between points at higher OSRE values, resulting in sparser point clouds. Consequently, the estimated area becomes less stable when partitioned into grids.
Based on the correlation between the data, linear regression equations for OSRE and [image: Text "JRC Error" is displayed in a stylized font, with "JRC" in larger letters and "Error" in subscript.] were fitted. To better differentiate the goodness-of-fit across different PI values, [image: A mathematical expression displaying \( R^2 \), where "R" is capitalized and followed by a superscript "2", indicating "R squared".] was used as a parameter for comparing the regression model’s performance. As shown in Figures 5C–E, the fits for all three cases are quite good, with [image: It seems there's no image attached. Please upload the image or provide a URL for it.] values of 0.94 for PI = 0.25 mm and 1 mm, and 0.95 for PI = 0.5 mm. This indicates a high level of correlation in all three scenarios.
For a deeper analysis of the impact of different profile intervals on the regression equations for OSRE and [image: An error message with text "JRC Error" displayed in a dark serif font, suggesting an issue or malfunction in the system.], the [image: Stylized text reads "JRC Error" with "JRC" in a bold, serif font and "Error" in a smaller, subscript style underneath. The text appears in grayscale.] boundary value was set to 2, according to the typical roughness profile classifications for JRC (Barton and Choubey, 1997). The OSRE values corresponding to this boundary represent the maximum shooting distance that meets the [image: Text reads: "JRC Error" in a serif font, partially obscured and blurred, suggesting a technical or display issue.] requirements for each PI. In other words, a higher boundary OSRE value indicates a larger permissible shooting range for the equipment and greater tolerance. As shown in Figure 5F, OSRE values are 0.408 for PI = 0.25 mm, 0.527 for PI = 0.5 mm, and 0.81 for PI = 1 mm. Thus, the JRC accuracy reflected by OSRE varies to some extent with different contour line intervals.
3.2 The relationship between spatial distance and JRC
Figures 6A–C illustrate the fitting of spatial distance to [image: Text displaying "JRC Error" in gray, with "JRC" in larger font than "Error". The text appears on a light background.] under different profile intervals. Similar to OSRE, a nearly linear relationship exists between spatial distance and [image: I'm unable to create an alt text for this image since it's not displayed properly. Could you please try uploading it again or describe it to me?], with [image: Text with overlapping style showing "JRC" in large font and "Error" in smaller font below.] increasing as spatial distance grows. The results show that linear fitting is generally satisfactory across all three intervals. Quantitative analysis reveals that for PI = 0.25 mm and 0.5 mm, [image: It seems there is no image provided. Please upload an image or provide a URL for it, and I will generate the alternate text for you.] values are both 0.97 and [image: Mathematical notation for R squared, represented as an uppercase "R" followed by a superscript "2", often used in statistical contexts to denote the coefficient of determination.] values are 0.94. For PI = 1 mm, [image: Please upload the image or provide a URL so I can generate the alternate text for it.] is 0.5 and [image: I'm sorry, I cannot view images directly. Please upload the image or provide a link to it, and I'll help you generate the alt text.] is 0.9. Although there are slight differences from the OSRE results, the fitting quality is generally good across all intervals.
Figure 6D displays the boundary values for spatial distance under different profile intervals. For PI = 0.25 mm, the spatial distance is 0.012; for PI = 0.5 mm, it is 0.036; and for PI = 1 mm, it is 0.053. When PI = 0.5 mm, the boundary value is three times that of PI = 0.25 mm, and for PI = 1 mm, the difference in boundary value reaches up to 4.42 times. The JRC accuracy reflected by spatial distance exhibits significant variations across different profile intervals, underscoring the need to distinguish the precision impact patterns at each interval.
3.3 The relationship between spatial error and JRC
Figures 7A–C show the fitting of spatial error to [image: JRCError text in a stylized font; possibly an error message or placeholder for a missing image.], which can be approximated by a linear relationship, consistent with the behavior observed for OSRE and spatial distance. The results indicate that for PI = 0.25 mm, the fitting quality and correlation are the best, with [image: Please upload the image or provide a URL so I can generate the alt text for you.] of 0.91 and [image: It seems there was an issue with uploading the image. Please try uploading it again, and I will be glad to help you generate the alternate text.] of 0.84. For PI = 0.5 mm, [image: It seems there is no image uploaded. Please try uploading the image again, and I can help create the alternate text for it.] is 0.9 and [image: If you have an image to describe, please upload it or provide a URL.] is 0.81, while for PI = 1 mm, [image: It seems there was an issue with uploading or linking the image. Please try uploading the image again, or provide a URL or description for additional context.] is 0.84 and [image: Please upload the image or provide a URL for me to generate the alternate text. Optionally, you can add a caption for additional context.] is only 0.7. Therefore, among the three different intervals, PI = 0.25 mm and PI = 0.5 mm show the best results, whereas PI = 1 mm exhibits the poorest fitting quality. This suggests that spatial error can be used to characterize point cloud reconstruction as well as to represent estimation accuracy across different intervals.
Considering spatial error, the boundary spatial errors under different profile intervals are shown in Figure 7D. For PI = 0.25 mm, the spatial error is 0.077; for PI = 0.5 mm, it is 0.096; and for PI = 1 mm, it is 0.14. When PI = 0.5 mm, the boundary value is 1.25 times that of PI = 0.25 mm, and when PI = 1 mm, the boundary value is 1.82 times that of PI = 0.25 mm. Thus, the analysis of JRC estimation using spatial error across different profile intervals can also be extended for broader applications.
4 DISCUSSION
4.1 JRC accuracy optimization model
In Section 3, an analysis of OSRE, spatial distance, and spatial error reveals a strong correlation between these three factors and [image: Image displaying the text "JRC Error" in a stylized font.]. This study further examines the influence of these three factors across three different profile intervals, as shown in Figure 8A. The results indicate that the correlation between PI = 0.25 mm and PI = 0.5 mm is nearly perfect, with an [image: It seems there is an issue with your image upload. Please try uploading the image again, and I will help generate the alt text for you.] value of 1. The relationship between PI = 1 mm and both PI = 0.25 mm and PI = 0.5 mm is also exceptionally strong, with [image: It seems there was an issue with uploading the image. Please try uploading it again, and I will help you generate the alternate text.] values of 0.96 and 0.98, respectively. Additionally, the interrelationships of other factors are also depicted in the figure. Among these, OSRE shows a relatively stronger correlation across different profile intervals, with [image: It seems there was an issue with uploading the image. Please try uploading it again, and I will help you generate the alternate text.] values of 0.97, 0.97, and 0.95. The impact of spatial distance and OSRE on different intervals is almost identical, while spatial error shows a weaker correlation compared to the other two factors, with [image: Please upload the image or provide a URL for me to generate the alt text.] values of 0.92, 0.90, and 0.84. Therefore, it can be concluded that, overall, the six data sets exhibit a very strong correlation, though there are still relative differences in influence among the different factors.
[image: The image contains four panels showing different data visualizations related to predictive modeling. Panel (a) is a correlation matrix with varying intensity circles illustrating correlation values among variables like OSRE and PhD factors. Panel (b) is a dot plot comparing RMSE across models like SVM, GPR, and others for different prediction horizons. Panel (c) shows time series plots and histograms for predictions at different horizons, displaying trends and error distributions. Panel (d) includes violin plots and a bar graph comparing model performances across prediction horizons, depicting OSRE, spatial distance, and spatial error metrics.]FIGURE 8 | Training results of machine learning models: (A) Correlation analysis of OSRE, spatial distance, spatial error, PI = 0.25 mm, PI = 0.5 mm, and PI = 1 mm. (B) Comprehensive evaluation of machine learning models. (C) Performance evaluation of machine learning models. (D) Statistical distribution of optimized [image: Text graphic showing "JRC" in large, bold font with "Error" in smaller font below it, styled in italics.]. (E) Sensitivity analysis of OSRE, spatial distance, and spatial error to [image: Stylized text displaying “JRC” with a subscript “Error” in a serif font, likely used for a logo or branding purpose.].
Therefore, after applying five machine learning algorithms, the training and testing results of the models are shown in Figures 8B, C. [image: Sorry, I can't generate alt text from this image.], [image: It seems there was an issue with displaying the image. Please try uploading the image again or provide a URL. If you have any additional context or details you'd like to include, feel free to share that as well.], [image: I'm sorry, I can't access or view the image. Could you please upload it here or provide a description for me to assist you with the alt text?], and [image: Mathematical notation for R squared, depicting the coefficient of determination in statistical modeling, often used to indicate the proportion of variance in a dependent variable predictable from independent variables.] are used as metrics to evaluate the model performance. Figure 8B illustrates the comprehensive performance of each model evaluated using the integrated assessment system (Zorlu et al., 2008). The difference in [image: If you have an image you'd like me to describe, please upload it or provide a URL.] between the training and testing sets, scaled up by a factor of 10, is also depicted.
For PI = 0.25 mm, the highest overall score of 35 was achieved by the XGBoost model. SVM and CatBoost demonstrated similar scores of 32 and 31, respectively. Notably, SVM exhibited the smallest [image: Please upload the image or provide a URL for me to generate the alt text.] difference between the training and testing sets at 0.03, whereas XGBoost and CatBoost showed larger differences of 0.07 and 0.08, respectively. In comparison, GPR and MLP displayed weaker model performance, with overall scores of 27 and 23, and [image: Mathematical notation for R squared, symbolized as R with a superscript 2, commonly used to represent the coefficient of determination in statistics.] differences between training and testing sets of 0.05 and 0.15, respectively. These findings indicate that the XGBoost model outperformed the others, achieving the best overall performance despite its [image: It seems there's an issue with the image upload. Please try uploading the image again or provide a URL. If you have a caption or additional context, feel free to include that as well for a more accurate description.] difference not being the smallest, as the difference remained within an acceptable range. The SVM model demonstrated strong performance as well, making it a viable option for this dataset. Conversely, GPR and MLP scored lower, reflecting their comparatively poor performance.
For PI = 0.5 mm, XGBoost achieved the highest overall score of 37, with the smallest [image: Sure, please upload the image or provide a URL, and I will help generate the alternate text for you.] difference between the training and testing sets at 0.05, indicating superior model performance. CatBoost ranked second with an overall score of 32 and an [image: It seems there is no image to analyze. Please upload the image or provide a URL.] difference of 0.06, demonstrating good performance and stable data. In contrast, GPR, SVM, and MLP exhibited lower overall scores of 29, 24, and 23, respectively. Although the [image: If you upload the image or provide a URL, I can help generate the alt text for you.] differences for these models were not substantial—0.09 for GPR, 0.05 for SVM, and 0.11 for MLP—their overall performance was comparatively poor.
When PI = 1 mm, the [image: A stylized capital letter "R" with a superscript "2" indicating squared, commonly used in mathematical and statistical contexts to represent the coefficient of determination.] differences between the training and testing sets increased significantly across all models, ranging from 0.05 to 0.35, indicating heightened data instability at this interval. Overall, XGBoost demonstrated the best performance, achieving the highest total score of 40 and an [image: If you upload an image or provide a URL, I can help generate the alternate text for it. Let me know if you need guidance on how to do that!] difference of 0.09, making it the most suitable choice for predicting JRC errors. CatBoost performed reasonably well, with a total score of 36, though its [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] difference was relatively larger at 0.13. The performance of the remaining models was less satisfactory.
The analysis indicates that the XGBoost model outperformed all others across all profile intervals, with [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] differences between the training and testing sets ranging from 0.05 to 0.09, demonstrating strong stability. The CatBoost model ranked second in performance, with its overall scores increasing progressively as the profile interval expanded from 0.25 mm to 1 mm. The [image: An illustration of the mathematical notation for R squared, often used in statistics to indicate the coefficient of determination. The letter R is followed by a superscript number two.] differences for CatBoost ranged from 0.06 to 0.13. This performance can be attributed to XGBoost’s ability to balance model complexity and prediction accuracy by incorporating additional tree models to minimize the objective function. Moreover, XGBoost exhibited robust performance in noisy environments and possessed the capability to automatically handle missing data, features that align well with the limited dataset size in this study. Additionally, as illustrated in Figure 8A, OSRE, spatial distance, and spatial errors displayed strong correlations, indicating a consistent influence of these factors, albeit with potential fluctuations as parameters varied.
The results obtained for PI values of 0.25 mm, 0.5 mm, and 1 mm were substituted into the XGBoost model, and predictions were made using different parameters. Subsequently, the errors between the predicted results and the standard results were recalculated using Equation 6, as illustrated in Figure 8D. It was observed that the [image: Unable to generate alt text because the image did not load properly. Please try re-uploading the image.] values across all three indicators ranged between 0 and 1, with average values below 0.5. The error ranges for PI = 0.25 mm and PI = 0.5 mm were similar, while the error for PI = 1 mm was slightly lower. The accuracy of JRC improved on average by 80.4%, 84.2%, and 89.5% for PI values of 0.25 mm, 0.5 mm, and 1 mm, respectively.
As a result, the performance of the trained machine learning model in predicting JRC errors based on OSRE, spatial distance, and spatial error is demonstrated. In practical applications, researchers can calculate OSRE using the formula proposed by Equation 1, while spatial distance and spatial error can be extracted from the point cloud as described in this paper. By inputting these three parameters into the XGBoost model, predicted [image: Text "JRC Error" in stylized font with "Error" appearing smaller and aligned to the right of "JRC".] values can be obtained. These predicted [image: I'm unable to view the image directly. Please upload the image file or provide a URL so I can help you with the alt text.] values can then be substituted into Equation 6, allowing for the reverse calculation of a JRC value that closely approximates the laser scanner estimate, thereby improving the accuracy of photogrammetric JRC estimation.
Additionally, to further evaluate the influence of OSRE, spatial distance, and spatial error on [image: Text depicts "JRC" with "Error" in subscript, styled in a serif font with a slight italic angle, suggesting a notation or term.], the cosine amplitude method proposed by Yang and Zhang (1997) was employed, as shown in Figure 8E. It was evident that the [image: Please upload the image or provide a URL for me to generate the alternate text.] values under different profile intervals were very close, indicating that OSRE and spatial error had a greater impact on [image: Text showing the letters "JRC" with the word "Error" in subscript, suggesting a reference to an error term in a scientific or mathematical context.] compared to spatial distance. It can be observed that the sensitivity of [image: Text logo reading "JRC Error" in a stylized font with contrasting sizes, where "JRC" is in a larger and bolder typeface than "Error".] to the three parameters remains consistent across profile intervals of 0.25 mm, 0.5 mm, and 1 mm, with only numerical variations as the interval increases. The [image: Sorry, I cannot view the image file you uploaded. Please try uploading it again, and I will be happy to help with the alt text.] of OSRE and spatial distance on [image: JRCError text in small caps with an underscore connecting "R" and "C" in the word "Error".] is identical, while the [image: It seems there was an error displaying the image. Please try uploading the image again or provide a URL where I can access it.] of spatial error is only 0.01 lower than the other two.
4.2 Application scopes and limitations
This study highlights the practical application of photogrammetry techniques by validating an algorithm rooted in SfM principles to optimize shooting parameter selection. By automatically configuring the camera’s spatial arrangement based on equipment specifications, the algorithm streamlines the photogrammetry data collection process, offering accessible solutions for surveyors without expertise in computer vision. Additionally, the research presents a novel machine learning model designed to enhance the accuracy of JRC measurements. This model, particularly effective in fixed tripod scenarios, accurately predicts JRC errors across three distinct profile intervals, thus enabling more precise JRC estimations. Demonstrating both stability and adaptability, the model performs consistently well even under varying conditions, such as different shooting distances and lighting environments, underscoring its wide-ranging applicability.
While this study provides valuable insights, several limitations need to be addressed. A key limitation is the reliance on a dataset generated using specific data collection methods and equipment. Expanding the variety of strategies and tools in future studies could improve the generalizability of the findings. Additionally, the research is limited by a small sample size and a narrow range of data processing software. Testing the method across different rock sample sizes and employing various 3D reconstruction software would enhance its overall applicability. Therefore, it is advisable that when implementing the machine learning-based accuracy optimization method proposed in this study, the rock sample size and data processing environment should be closely aligned with those used in this research. Moreover, current methods for optimizing JRC accuracy have yet to be widely validated in engineering settings such as slopes and tunnels. Currently, parameters affecting and reflecting JRC accuracy have been limited to OSRE, spatial distance within the point cloud, and spatial error at checkpoints. The impact of additional factors, such as image overlap, the number of feature points in stereo matching algorithms, and lighting conditions, on JRC estimation accuracy remains unexplored. Future research should focus on comprehensive testing and analysis across a broader spectrum of engineering scenarios to achieve more precise and holistic performance evaluation and optimization.
5 CONCLUSION
A machine learning-based model for optimizing the accuracy of the JRC was proposed in this study, significantly enhancing the precision of JRC estimates at profile intervals of 0.25 mm, 0.5 mm, and 1 mm. Initially, the FCC strategy was applied within the SPSA framework to enable automatic selection of shooting parameters based on a fixed tripod strategy. This approach is adaptable to rock data acquisition scenarios guided by SfM principles. Subsequently, the correlations between OSRE, spatial distances in the point cloud, CPs’ spatial errors, and JRC errors were examined across different profile intervals. The findings indicate a strong correlation between OSRE, spatial distances, spatial errors, and JRC errors. Ultimately, this high correlation underpinned the development of a machine learning-based photogrammetry model for JRC accuracy optimization. This approach is particularly suited for fixed camera capture strategies, allowing for high JRC accuracy even at greater shooting distances or lower camera resolutions. Under the predictive capability of the XGBoost model, the accuracy of JRC improved on average by 80.4%, 84.2%, and 89.5% for profile interval values of 0.25 mm, 0.5 mm, and 1 mm, respectively.
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In underground engineering, precise analysis of structural discontinuities is critical for understanding the rock fracture mechanisms subjected to shear and tensile loading. This study presents an automatic method for identifying structural planes based on 3D point cloud data of sandstone. The methodology integrates K-nearest neighbor (KNN) search and random sample consensus (RANSAC) algorithms to compute normal vectors, followed by mean shift clustering for preliminary grouping and Euclidean clustering for discontinuity orientation. Key parameters (dip angle, trend, and area) of dominant discontinuities are systematically extracted and quantified. In order to verify the accuracy of the method, two engineering cases (regular hexahedron and rock slope) are selected for analysis. The results show that this method has high consistency in dip angle and trend extraction, which can automatically extract small-scale structural planes in complex rock strata and accurately calculate their area which is superior to traditional methods in terms of accuracy and robustness. The parameter selection (bandwidth = 0.4, distance threshold = 0.3, and screening threshold = 200) balances computational efficiency and precision, reducing over-segmentation while preserving critical structural details. The research results can provide theoretical guidance for engineering fields such as slope stability evaluation and crack propagation simulation.
Keywords: rock fracture, 3D point cloud, clustering, discontinuity orientation, automatic extraction

1 INTRODUCTION
Natural rock masses contain joints of varying sizes, and their shear strength is generally lower than that of intact rock masses (Lin et al., 2021; Liu et al., 2022). Tensile and shear instability of joints are the primary causes of rock mass failure (Lin et al., 2021; Rao, 2020). The surface morphology of discontinuities significantly influences the strength and deformation characteristics of joints (Sun et al., 2020; Liu et al., 2020). Consequently, precise measurement and analysis of parameters related to discontinuities serve as the fundamental basis for the investigation of joint mechanics and deformation characteristics (Yang and Qiao, 2018).
The main measurement techniques consist of contact technologies, such as scanning lines, window sampling, and non-contact methods. While conventional contact methods are straightforward, they depend on manual work and are significantly affected by the terrain and environmental conditions. This leads to inefficiencies and human errors, which restrict the ability to conduct thorough analyses (Wang et al., 2023; Liu et al., 2024). With advancements in surveying and mapping technology, new non-contact methods such as laser radar, digital photogrammetry (Zaczek Peplinska and Kowalska, 2022; Hudson et al., 2020), and UAV photogrammetry can rapidly generate high-quality 3D point cloud data (Jiang et al., 2021), eliminate subjective factors associated with manual measurement, and offer more objective and accurate data acquisition techniques (Kong et al., 2021; Wu et al., 2023).
Currently, numerous scholars have investigated the identification and measurement of discontinuities in point cloud data, developing various semi-automatic and automatic extraction methods (Chen et al., 2024; Ge et al., 2022), primarily focusing on plane fitting, region growing, and unsupervised clustering (Temur et al., 2024). Model fitting methods, such as random sample consensus and the Hough transform, are among the earliest detection techniques (Xu et al., 2023). However, because of the intricate nature of rock surfaces, these techniques are likely to produce false planes and excessive segmentation (Xue et al., 2023). Improving the precision of the algorithms is essential. The region-growing technique that relies on variations in normal vectors can successfully detect discontinuities in multiple directions (Zhu et al., 2024; Ge et al., 2022); however, its success largely hinges on choosing initial seed points. Poor choices can result in segmentation mistakes or missed areas (Yu et al., 2022; Walicka and Pfeifer, 2022).
Point cloud data often show variations and fragmentation due to the curvature and roughness of rock surfaces (Ma et al., 2024; Bendezu, 2021). As a result, detecting discontinuities requires the use of multiple algorithms to tackle complex local features and improve segmentation accuracy (Wang et al., 2024; Liu et al., 2023). The mean shift and Euclidean clustering algorithms are particularly effective (Yong et al., 2024). The mean shift algorithm identifies clustering centers adaptively (Yi et al., 2023; Zhang et al., 2022), making it well-suited for handling point cloud data with irregular shapes (Tang et al., 2022). On the other hand, the Euclidean clustering algorithm efficiently distinguishes separate discontinuities by measuring distances between points (Tang et al., 2023; Gu et al., 2024). This combination can improve the accuracy of discontinuity detection in rock masses of different sizes, especially in planar areas. However, identifying low-density and small-area planes continues to be challenging and may lead to over-segmentation.
This study presents a method for identifying and screening discontinuous surfaces using point cloud data. Parameters such as bandwidth, distance threshold, and screening threshold are chosen to enhance recognition accuracy, and the impact of various parameters on the extraction results of a discontinuous point cloud dataset is examined. A general recommendation for selecting thresholds is provided, and the method successfully identifies the dip angle and occurrence trends of the dominant discontinuous set. The proposed approach’s effectiveness is validated by analyzing two examples: regular hexahedrons and rock slopes.
2 METHODOLOGY
Section morphology analysis focuses on recognizing and extracting information from rock structural planes. This study employs spatial coordinate data from point clouds to determine the coplanarity of the point cloud. Parameters of the structural planes, including dip angle and inclination, are derived through plane fitting techniques.
2.1 Structural plane identification
This study employs mean shift and distance-based clustering to recognize discontinuities in point cloud data. Discontinuous surfaces have distinct scale and orientation features and can be represented as planes with angular edges. As a result, the normal vectors of points on the same discontinuous surface tend to be similar, while those at edge points show considerable differences. Using the computed normal vectors, point cloud data is organized through mean shift clustering, and then Euclidean clustering is applied to detect the discontinuous surfaces. Detailed steps are depicted in Figure 1.
[image: Flowchart illustrating a six-step process with columns labeled "Main Processes," "Main Methods," and "Main Data Form." Step 1 involves 3D Point Cloud Data and ROI Selection Method, resulting in (X,Y,Z,R,G,B). Step 2 covers Point Cloud Preprocessing with Voxelization Method, producing (X,Y,Z,R,G,B). Step 3 is Point Cloud Normal Vector Calculation with KNN and RANSAC Algorithm, yielding (X,Y,Z,R,G,B,Nx,Ny,Nz). Step 4 comprises Point Cloud Automatic Grouping using Mean Shift Clustering Algorithm, generating (X,Y,Z,R,G,B,Nx,Ny,Nz,Label). Step 5 discusses Discontinuity Plane Identification through Distance-based Clustering Method, creating (X,Y,Z,R,G,B,Nx,Ny,Nz,Label,Dip,Dip dir). Step 6 details Information Extraction with Least-squares Method, resulting in (Nz,Label,Dip,Dip dir).]FIGURE 1 | Discontinuous plane identification steps.
2.1.1 Point cloud voxel processing
The initial point cloud data collected through 3D laser scanning is cleaned of noise and converted into a voxel format to improve processing speed and simplify algorithm implementation. This approach dramatically decreases the amount of point cloud data, enhances computational efficiency, and preserves essential geometric characteristics by dividing the three-dimensional space into consistent voxel grids. After voxelization processing, the data maintain original accuracy and exhibit enhanced regularity, facilitating the removal of noise and outliers and improving analysis precision. Figure 2 shows the comparison effect before and after point cloud voxelization.
[image: Two 3D scatter plots labeled (a) and (b), showing points distributed within xyz coordinates. Plot (a) has light blue points, while plot (b) has red points, both ranging from negative four to four on each axis.]FIGURE 2 | Point cloud voxel processing; (A) Spatial point cloud, (B) Voxelized point cloud.
2.1.2 Point cloud normal vector calculation
This research combines the K-nearest neighbor search (KNN) method with the random sample consensus (RANSAC) algorithm to improve the precision and reliability of normal vector computations for point cloud data. The process of calculating normal vectors starts by randomly choosing a point p from the point cloud to serve as the center and setting a parameter K to indicate the number of neighboring points. The KNN algorithm is then used to calculate the distances between point p and other points, with the closest K points creating the neighborhood point set N(p). This approach ensures that the chosen neighborhood points accurately reflect the spatial characteristics, which are essential for the following normal vector calculations.
The point ‘p' refers to an arbitrary point selected from the point cloud data, serving as the center for subsequent calculations. The neighborhood point set ‘N(p)' is a collection of the K nearest points around p, determined by the KNN search. Specifically, for each point p (xp,yp,zp), the distance to all other points q (xq, yq, zq) in the point cloud can be calculated by Equation 1:
[image: Mathematical formula for the distance between two points \( p \) and \( q \) in three-dimensional space, expressed as the square root of \((x_q-x_p)^2 + (y_q-y_p)^2 + (z_q-z_p)^2\). Numbered as equation (1).]
The K points with the smallest distances are identified as the neighborhood N(p), forming a local cluster of points that approximate the spatial characteristics surrounding p.
After obtaining the neighborhood point set, the RANSAC algorithm is applied to perform plane fitting. Specifically, three points are randomly chosen from N(p) to construct a plane model, represented by the Equation 2:
[image: It seems there was an attempt to describe an image, but without an actual image or description, I'm unable to generate alt text. Please upload the image or provide more context.]
Here, the normal vector (A, B, C) defines the plane’s orientation. The distance d from each neighborhood point to the plane can be calculated by Equation 3:
[image: The formula for calculating the distance \( d \) from a point to a plane is shown. It is \( d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} \), where \( (x_0, y_0, z_0) \) is the point and \( Ax + By + Cz + D = 0 \) is the plane equation.]
The coordinates of a neighborhood point are represented as (x0, y0, z0). To assess the quality of the plane model, a threshold ε is used to differentiate between inliers and outliers. This process is repeated several times to improve the reliability of the normal vector estimation, keeping track of the number of inliers in each iteration. The model with the most inliers is chosen as the final plane model, and the associated normal vector (A, B, C) is determined. To maintain consistency, the outer normal vector is selected so that part of the fitting plane extends outward from the center point, ensuring that C is greater than 0.
The combination of KNN and RANSAC greatly improves the accuracy and reliability of normal vector estimation. The point set obtained from KNN offers a variety of candidate samples for RANSAC, which enhances the initial point selection process. Furthermore, KNN’s quick neighborhood search lowers the computational demands of RANSAC. Consequently, this approach enables dependable normal vector estimation in point cloud data. Figure 3 is a point cloud normal vector calculation diagram.
[image: A 3D scatter plot depicting a point cloud with blue dots, and nearest neighbors highlighted in yellow. A green X marks the center point. A red line represents the normal vector, calculated using the RANSAC method. The axes are labeled X, Y, and Z, with grid lines for reference.]FIGURE 3 | Normal vector calculation diagram.
2.1.3 Point cloud data clustering
The mean shift clustering algorithm initiates by selecting a random point from the point cloud as a starting point and identifying all points within a predefined distance. Figure 4 shows its working process. It computes the average coordinates of the selected points, uses this position to reselect points within the same distance, and iterates the process. By iteratively performing these steps, the algorithm navigates through the point cloud to locate the centroid of the densest point cluster. Unlike other clustering algorithms, mean shift leverages local point connectivity to converge toward cluster centroids. A key advantage of this algorithm is that it does not require a predefined number of clusters and demonstrates resilience to noise in the data.
[image: Three scatter plots labeled (a), (b), and (c). Plot (a) shows unclustered black dots. Plot (b) clusters dots in red, blue, and green. Plot (c) maintains color-coded groups with varying dot sizes.]FIGURE 4 | Mean shift clustering diagram; (A) Out-of-order point cloud, (B) Window drift, (C) Clustering out-of-order point cloud using MS (three more significant points are density centers).
The point cloud data is grouped using the mean shift algorithm, which involves the following steps:
	Step 1: Define the bandwidth parameter h to determine the mean shift window size, typically ranging from 0.1 to 1 based on data characteristics.
	Step 2: For each point p ∈ P (point cloud data set), identify its neighborhood point set N(p) within the bandwidth h range and calculate the mean shift vector to guide p toward a high-density region. The mean shift vector can be calculated by Equation 4:

[image: MeanShift equation shown: MeanShift(p) equals the sum over q in neighborhood of p of K(d divided by h) times q, divided by the sum over q in neighborhood of p of K(d divided by h), noted as equation four.]
where K is a Gaussian kernel function, and q represents a neighborhood point.
	Step 3: Update the position of p using the mean shift vector and repeat Step 2 until the movement of p is less than a predefined threshold ε, the whole process can be determined by Equation 5:

[image: Mathematical expression displaying the infinity norm as the absolute difference, denoted by double vertical bars, between vectors \( p_{\text{new}} \) and \( p_{\text{old}} \), compared to a constant \( k \).]
At this stage, p is considered converged.
	Step 4: According to the position of the point after convergence, the similar points are clustered into the same class. By clustering the final position of each point, the final clustering result Q = {(p1, p2, … )} is obtained.

2.1.4 Discontinuous surface identification and screening
Mean shift clustering produces density-based results that highlight clustering trends and enable preliminary rough classification but operate as an unsupervised method. Figure 5 shows the Euclidean distance clustering diagram. However, this approach can lead to fragmented results with excessive clustering centers. Integrating mean shift clustering results with Euclidean clustering enables merging small clusters, noise elimination, and structural simplification by adjusting cluster centers (Lab represents different point cloud sets). The clustering can be refined and validated by setting an appropriate distance threshold, allowing occurrence information extraction for each discontinuity.
[image: Flowchart illustrating a clustering process in three steps. Initial input shows scattered colored dots labeled as labs zero to three. Step one groups nearby dots with dashed lines. Step two highlights a purple-outlined dot as the current process in the cluster. Step three arranges clusters distinctly, resulting in a clear output. A legend indicates colors: lab zero in white, lab one in red, lab two in blue, and lab three in green. Neighbors are represented by dashed lines, and the current processing is outlined in purple.]FIGURE 5 | Euclidean distance clustering diagram.
The refinement process consists of the following steps: Step 1: Choose a specific point in the space and find its k nearest neighbors through a k nearest neighbor search. Step 2: If the distance from a point to the center point is less than a predetermined threshold d, that point is added to set B. Step 3: Select points in set B that differ from point A and repeat steps 1 and 2 until no new points are added to set B. To accurately identify primary discontinuity surfaces and remove fragmented or irregular non-primary surfaces, a screening threshold m is established. Point sets with fewer points than m are categorized as non-primary discontinuity surfaces and are excluded from information extraction and statistical analysis, while those with more than m points are deemed effective discontinuity surfaces.
2.2 Analysis of influencing factors
Sandstone samples were created as standard cylinders for direct shear and Brazilian splitting tests, measuring 50 mm in diameter and 100mm and 25 mm in height, respectively. After compression and shearing, the specimens were broken into upper and lower parts. The upper part was chosen for further analysis, and a three-dimensional topography device produced high-density point cloud data via non-contact scanning to obtain sectional details. CloudCompare software was utilized to visualize the scanned images and store the point cloud data, achieving a recorded density of 2,400/mm2. The Brazilian splitting shear section of the specimen is shown in Figure 6A, and the tensile failure interface is shown in Figure 6B.
[image: Two objects: (a) a round, textured disk with a weathered appearance, possibly made of stone or clay; (b) a rectangular, flat slab with a rough texture and similar material. Both are reddish-brown in color.]FIGURE 6 | Three-dimensional morphology of specimen fractures after (A) shearing and (B) tension.
The point cloud data from the Brazilian splitting test were analyzed to evaluate factors influencing the recognition of discontinuous surfaces. Three parameters were manually configured: bandwidth (h), distance threshold (d), and screening threshold (m).
2.2.1 Bandwidth h
Based on Brazilian splitting test results, the mean shift clustering algorithm was employed to identify discontinuities in the point cloud data. Different bandwidth parameters (h = 0.2, 0.4, 0.6, 0.8) were evaluated to determine their effect on identifying discontinuities. The findings are illustrated in Figure 7. With h = 0.2, six sets of discontinuities were detected. The clustering outcomes were sensitive to minor discontinuities and provided detailed distributions, but there was evidence of overfitting. In contrast, with h = 0.6 and h = 0.8, only three and two discontinuous sets were identified, respectively. While the main structural planes were preserved, some finer details were lost due to overly coarse results.
[image: Four circular stereonets, labeled (a) to (d), show colored representations of geological data with legends. Each legend lists dip directions and features unique color-coded sets for comparison. Data points vary in hues like green, blue, red, and yellow, with specific dip/direction values for each set.]FIGURE 7 | The influence of different bandwidths on the recognition results of discontinuities, (A) h = 0.2, (B) h = 0.4, (C) h = 0.6, (D) h = 0.8.
After thorough analysis, a bandwidth parameter of h = 0.4 produced four distinct sets, leading to more balanced and sensible clustering outcomes. This setting accurately represented the distribution patterns of significant discontinuous surfaces, prevented excessive segmentation of minor discontinuities, and successfully balanced the overall structure with local details, matching real-world conditions effectively. Therefore, h = 0.4 was chosen as the ideal bandwidth parameter.
2.2.2 Distance threshold d
The recognition results of the mean shift clustering algorithm with h = 0.4 were processed using Euclidean clustering, with the distance threshold d adjusted to 0.1, 0.2, 0.3, and 0.4. The results of discontinuous surface recognition are illustrated in Figure 8.
[image: Color-coded contour plots labeled (a) to (d), showing dips and dips directions (D/D) in different geological sets. Each plot features a legend indicating various sets with colors: blue, green, yellow, orange, and red, alongside specific measurements like 196.1°/0.1°, 273.2°/16.0°, and so on. The plots illustrate variations in geological formations.]FIGURE 8 | The influence of different distance thresholds d on the recognition results of discontinuities; (A) d = 0.1, (B) d = 0.2, (C) d = 0.3, (D) d = 0.4.
As illustrated in Figure 8, for d = 0.1 and 0.2, the distributions of dip angles and inclination values are more varied, showing notable differences among groups, which suggests a retention of more localized characteristics. In the case of d = 0.3, four distinct sets of discontinuities were found, with a reasonable merging of similar structural planes. The dip angle and inclination values obtained showed good concentration and balance. In contrast, for d = 0.4, the clustering results leaned towards global trends, resulting in the loss of some finer details. After comparing the recognition outcomes, d = 0.3 was the best parameter. At this value, the four identified discontinuity sets strike a balance between overall structure and local features, aligning with real-world conditions and accurately representing the spatial distribution of discontinuities.
2.2.3 Screening threshold m
The effect of varying the screening threshold m was observed to analyze its impact on screening results. Threshold values of m = 100, 200, 300, and 400 were evaluated.
Figure 9 shows the influence of different screening thresholds (m = 100, 200, 300, 400) on discontinuity recognition results and changes in the stereographic projection of the lower hemisphere. It can be seen from the diagram that when the screening threshold m is 100, the number of structural planes is higher, indicating that more structural planes are retained. These structural planes include small-scale noise and detail discontinuities. Secondly, the cloud image represents the density distribution of each region. The darker the color, the higher the density. At low thresholds, the distribution of high-density regions in the figure is more dispersed, indicating that these regions contain a large number of local details and discontinuities. At this time, the change of density is more complex, indicating that many small-scale structural planes are gathered together, resulting in local details and noise being preserved. As the screening threshold gradually increases (m = 400), the number of structural planes decreases, and the density distribution becomes more concentrated. This indicates that a higher screening threshold excludes minor local details that may contain noise and only retains a larger area of the main discontinuities.
[image: Graph depicting the relationship between screening threshold and the number of structural planes, featuring a declining blue curve marked with values 614, 281, 181, and 129. Four circular density maps overlay the curve, showing varying colors indicating density concentrations. A legend displays color codes ranging from red to blue, correlating with density values from 42.00 to 0.00.]FIGURE 9 | Statistical analysis of the influence of different screening thresholds m on the number of discontinuous surfaces.
In this discontinuity recognition process, m = 200 was selected as the final screening threshold for its balance between overall trends and local detail retention. Specifically, at m = 200, the number of discontinuities reduces to 281, significantly lower than at m = 100, effectively filtering out small-scale noise and secondary structural planes. The projection illustrates a clear and concentrated high-density discontinuity area with reduced noise interference, yielding more concise and reliable results for subsequent analysis.
2.3 Discontinuous surface information extraction
2.3.1 Extraction of dip angle tendency of discontinuous surface
After dividing the structural plane by clustering twice, the plane fitting can be carried out by the least square method, and the plane equation ax + by + c = z can be obtained, which can be expressed in matrix form as Equation 6:
[image: Matrix equation with a row vector \([x, y, 1]\) multiplied by a column vector \(\begin{bmatrix} a \\ b \\ c \end{bmatrix}\), equating to \(z\).]
Let the coordinates of n points on the structural plane be (x1, y1, z1), (x2, y2, z2), (xn, yn, zn), then the above equation can be expressed as Equation 7:
[image: Matrix equation shows points \((x_i, y_i, 1)\) multiplying a column vector \([a, b, c]\) equals vector \([z_1, z_2, \ldots, z_n]\). Equation number (7) is on the right.]
Let:
[image: Matrix equation with A as a column vector containing elements a, b, c. Multiplication with matrix x with rows \((x_1, y_1, 1)\) to \((x_n, y_n, 1)\) results in column vector z with elements \(z_1\) to \(z_n\). Equation is labeled (8).]
Then the vector A is found by Equation 8, so that [image: Mathematical expression showing the norm of the vector obtained by subtracting vector z from the product of matrix A and vector x.] obtains the minimum value, that is, the plane equation and its normal vector are obtained by fitting.
If we consider the unit normal vector of the rock mass structural plane as (a, b, c), the three-dimensional laser scanner is only able to scan the visible surface, which means c must be greater than 0. Therefore, (a, b, c) represents the unit outward normal vector of the fracture structural plane. In the geodetic coordinate system, we define the positive Y-axis as north, the positive X-axis as east, and the positive Z-axis as upward. Using the following formula, the strike α and dip angle β of rock mass structural plane in the geodetic coordinate system are determined by Equation 9:
[image: Mathematical equations defining the angle beta as the arccosine of c, and alpha's conditions based on values of a and b using arcsine. Equations consider positive and negative values of a and b.]
2.3.2 Discontinuous surface area information extraction
This paper employs a grid-filling technique to determine the area of the structural plane based on the plane fitting outcomes from the point cloud data. The fitted plane is divided into uniform grids, each with an area of one unit. A grid is deemed effective if its number of points surpasses a specified threshold; if not, it is labeled ineffective. The area of the structural plane is calculated by tallying the effective grids.
2.4 Discontinuous surface recognition results
According to the analysis presented in Section 2.2 and the point cloud data from the direct shear and Brazilian splitting tests, discontinuous surfaces were detected using parameters h = 0.4, d = 0.3, and m = 200. Figure 10 shows that four primary sets of discontinuities were found in both tests, with distinct colors effectively illustrating the spatial distribution of these surfaces. In the direct shear test, the distribution of discontinuous sets appears more random and denser, indicating a complex path of fracture propagation under shear forces characterized by fractures in multiple directions. Conversely, the Brazilian splitting test shows a distribution of discontinuous sets that is more directional, with cracks propagating along the principal stress direction. This pattern indicates a greater likelihood of penetrating fractures occurring under tensile conditions.
[image: Two geological maps showing different sets of dip directions and angles. Image (a) features four sets with colors blue, green, yellow, and red. Image (b) displays a similar color pattern but with different numerical values for each set. The legend below provides specific dip angles and directions for each color set.]FIGURE 10 | Sandstone section discontinuity identification results (A) Brazil splitting and (B) Direct shear test identification results.
Figure 11 illustrates the occurrence data for the sandstone section. The findings from the identification of discontinuous surfaces indicate that the occurrence data from the direct shear test is primarily found in areas with lower dip angles, with average occurrences of 196.1°∠0.1°, 281.8°∠25.3°, 107.7°∠25.2°, and 192.7°∠25.7°. This suggests that shear forces lead to a more concentrated distribution of dip angles for discontinuous surfaces, highlighting the direction and pattern of shear fractures. In contrast, the occurrence of discontinuities observed in the Brazilian splitting test spans a broader range of dip angles, with average occurrences of 23.9°∠2.1°, 118.7°∠60.79°, 2.4°∠72.7°, and 246.9°∠71.4°. This indicates that under tensile forces, the section is primarily influenced by discontinuities with steeper dip angles. The variation in occurrence distribution underscores how different loading methods affect the fracture behavior of the sandstone section.
[image: Two circular density concentration maps labeled (a) and (b) display color gradients from blue to red, representing increasing density from low to high. Scale bars indicate specific ranges: (a) from 0.0 to 11.0 and (b) from 0.0 to 36.0, with corresponding colors.]FIGURE 11 | Sandstone section occurrence information stereo projection, (A) Brazil splitting, and (B) Direct shear test identification results.
2.5 Regular hexahedron verification
CloudCompare software was used to create point cloud data for a regular hexahedron, which has a side length of 1 cm and consists of 10,000 points on each face. The proposed algorithm was applied with a parameter k = 3, dividing the hexahedron into three groups. By setting d = 1, the six surfaces were successfully identified, with planes with the same normal vector being assigned the same color. Since the regular hexahedron has no non-primary discontinuities, screening was unnecessary.
Assuming the positive x-axis points east, the positive y-axis points north, and the z-axis points upward, the six planes of the cube were calculated to be at angles of 0°∠0°, 0°∠180°, 90°∠90°, 90°∠180°, 90°∠270°, and 90°∠360°. The area of each of the six planes is 1 m2. The recognition and extraction results effectively demonstrate the proposed algorithm’s accuracy.
3 APPLICATION ANALYSIS OF ROCK SLOPE
The previous section used the hexahedron with known parameters to verify the algorithm’s accuracy. This section collects the point cloud data of the rock slope on-site for analysis to illustrate the algorithm’s applicability.
3.1 Rock point cloud data acquisition
Terrestrial laser scanning (TLS) mainly involves a laser rangefinder and an angle measurement system. The laser rangefinder is responsible for measuring distances, while the angle measurement system captures the angles of the laser in both horizontal and vertical planes. The scanner’s motor methodically scans the target area line-by-line and column-by-column to create a dense point cloud. This point cloud data is made up of spatial points, and after a rigid transformation, the relative positions of the points and the overall shape of the point cloud remain consistent. This research employs the MapTek I-Site 8820 for field data collection, which features a scanning field angle of 360° horizontally and 160° vertically, a measurement accuracy of ±6 mm, a maximum scanning distance of 2000 m, and an effective scanning range of 600 m (for objects with reflectivity over 10%) to 1,600 m (for objects with reflectivity over 80%). Figure 12A, B show the scanner in action in the field and the process of calculating the local coordinate system (x′, y′, z′) for each point. The high-resolution point cloud obtained is connected to geodetic coordinates (x, y, z) through the local coordinate system, with the rock point cloud data depicted in Figure 12C.
[image: Three-panel image showing a rock outcrop. Panel (a) displays a rock surface with survey equipment and a section marked by a red dashed rectangle with dots. Panel (b) is a diagram illustrating a local coordinate system with geodetic system transformation equations. Panel (c) shows a detailed texture of the rock surface within the marked section.]FIGURE 12 | Data acquisition based on TLS (A) TLS work (B) Convert point cloud to geodetic coordinate system (C) Point cloud data.
3.2 Grouping results of different methods
The connection between parameter selection and the identification of rock discontinuities makes it challenging to automate the outcomes of various segmentation algorithms fully. qFacet is a widely utilized open-source algorithm for analyzing point cloud data related to rock masses, so we have chosen it as a benchmark to evaluate the effectiveness of our proposed method.
The qFacet algorithm operates as a plug-in module within Cloudcompare. It divides the original point cloud data into distinct sub-units for plane fitting and combines these plane objects into polygonal discontinuities based on a flatness threshold. By adjusting the parameters, the boundaries of the discontinuous surfaces are modified around the segmentation points, producing recognition results for the discontinuous surfaces and calculating attitude information, such as dip angle tendencies.
Our proposed method set the thresholds to h = 0.4, d = 0.3, and m = 200. For the qFacet algorithm, the minimum number of points required on each discontinuous surface is set to 200, with a minimum side length of 0.05 and a maximum distance of 0.2. The field point cloud data collected is manually segmented into two regions of interest (ROI): region I and region II. The results of the discontinuous set extraction from both our method and the qFacet method are illustrated in Figure 13.
[image: Colorful segmentation diagrams comparing different techniques for discontinuity segmentation and local amplification in images. Panel (a) shows results from the current paper, with two images illustrating discontinuity segmentation and local amplification. Panel (b) displays results from qfacets, also with two images for comparison. Each segmented image contains regions marked in various colors for visual contrast and differentiation.]FIGURE 13 | Discontinuous surface identification results using two methods; (A) The method proposed in this paper, (B) The qFacet method.
3.3 Discontinuity identification and measurement accuracy comparison
To assess the accuracy of the method presented in this paper, we extract information about each discontinuous set from the recognition results in the region I, as illustrated in Figure 14A. Different colors indicate various discontinuous sets, showcasing the distribution of rock discontinuities. Following the approach outlined in Section 2.3.1, we provide area statistics for the discontinuous surfaces after each screening group. In Figure 14C, the horizontal axis represents the area intervals, while the vertical axis shows the frequency percentage. The statistical analysis revealed a total of 415 discontinuous surfaces. Set 1 comprised 65 surfaces with a maximum area of 0.39 m2, while Set 4 consisted of a vertical discontinuous set with 113 surfaces. Set 3 was divided into 124 discontinuous surfaces, with a dip angle similar to the original slope. The largest group, set 2, included 113 discontinuous surfaces, with a maximum area of 0.57 m2.
[image: A grid with four sets of images, each having three columns. The first column shows clustering results with color variations: blue, green, yellow, and red. The second column shows screening results, corresponding in color to clustering. The third column presents area statistics as bar charts for different diseases, displaying data with varying bar heights. Sets are labeled from Set 1 to Set 4.]FIGURE 14 | Region I Discontinuous set extraction results (A) each group of discontinuous set details (B) discontinuous set m = 200 screening results (C) area statistics.
Table 1 presents a comparison between the results of discontinuous surface recognition achieved by the method in Region I and those obtained through manual recognition. Initially, a representative rock layer or discontinuous surface is selected for manual dip angle measurement to avoid damaging the rock surface. A geological compass is placed flat on the rock surface to ensure proper contact and prevent tilt or misalignment. The inclination refers to the angle of the rock surface in relation to the horizontal plane, typically read on the compass dial, which ranges from 0° (horizontal) to 90° (vertical). The tendency indicates the direction of the intersection between the rock layer and the horizontal plane, measured clockwise from north, ranging from 0° to 360°. After completing the measurements, the inclination and tendency data are recorded and taken multiple times to ensure precision. The results show that the difference between the discontinuity occurrence identified by this method and the manual identification is within 1.5°.
TABLE 1 | Comparison of discontinuous surface measurement results between this method and the manual method.
[image: Table comparing discontinuity sets with point counts and average orientation in dip and dip direction. Four groups are listed, each with values for point count, and their average orientation in two columns: "This paper" and "Compass". Error degrees range from 0.2° to 1.3°.]Region II, which exhibits a higher degree of weathering, is chosen for comparison to assess the effectiveness of the method presented in this paper. The point cloud data from Region II displays more intricate spatial distribution and discontinuous surface features, allowing for a more thorough evaluation of the method’s performance in complex scenarios. The area distribution of the four sets of discontinuities follows a lognormal distribution. In the recognition results for the discontinuous sets in Region II, three representative discontinuous surfaces from each set are selected, totaling 12 surfaces. A comparison with the extraction results from the qFacet method is conducted, focusing on the dip angle and trend. The findings in Table 2 indicate a strong alignment between this method and qFacet in terms of dip angle and trend extraction. The maximum errors in the inclination angles for the 12 discontinuities are 1.6° and 1.3°, respectively, demonstrating the method’s high accuracy and reliability in extracting the inclination angles of the discontinuities. Additionally, this confirms the method’s robustness.
TABLE 2 | The method in this paper is compared with the discontinuous surface measurement results of qFacet.
[image: Table displaying data on discontinuity sets, point counts, and average orientations from "This paper" and "qFacet," along with error degrees. The table lists Groups 1 to 4, with point counts J1 to J12. Each row includes specific orientation values and error degrees.]4 DISCUSSION
Point cloud data is vast, and its processing requires significant computational resources and time, which is a major drawback. To address this issue, the algorithm presented in this paper aims to streamline the process and enhance calculation speed while keeping the error margin within 5%. Although down-sampling can decrease the number of points, it also results in some loss of information and accuracy. Further research is needed to minimize information loss during down-sampling.
The analysis of various influencing factors reveals that h, d, and m significantly impact the recognition outcomes of discontinuous surfaces. The algorithm can effectively detect the discontinuous surfaces within rock masses by fine-tuning these parameters. The choice of parameters is closely linked to the geometry of the object and the density of the point cloud, meaning there is no one-size-fits-all parameter. However, based on how threshold selection affects recognition results, recommendations for parameter choices under varying conditions can be made. The bandwidth h should be selected from a range of 0–1.0, starting at 0.2 and increasing incrementally, with the h value yielding the best grouping result being chosen. The distance threshold d indicates the maximum allowable distance between points and should exceed the spacing of the point cloud, with its selection depending on the density of the point cloud in different scenarios; in this study, d = 0.3 is identified as the optimal distance threshold. The screening threshold m sets the minimum number of nodes for the discontinuous surface, influencing the fragmentation of the surface and the accuracy of its identification. During actual scanning, selecting a representative small-scale area to minimize the number of point cloud data nodes is advisable. Applying the proposed algorithm to intelligently identify the discontinuity surface, swiftly obtain recognition results under various parameters, and compare these with actual measurements. This analysis will help select the most appropriate parameters, which can be applied to extensive point cloud data processing.
5 CONCLUSION
This study proposes a discontinuous surface recognition method based on point cloud data and verifies its applicability under various fracture modes through experimental analysis. The method demonstrates high precision, broad applicability, and robust performance in identifying and extracting rock sections’ occurrence, area, and surface morphology, as validated by hexahedron and field data analysis. The specific conclusions are summarized as follows:
	(1) Combining the KNN and RANSAC algorithms improves both the speed and accuracy of normal vector calculations. The point cloud data is organized by integrating mean shift clustering with Euclidean distance clustering. The parameters for h, d, and m are established, effectively facilitating the identification and screening of discontinuities. Additionally, a method for extracting the occurrence and area of these discontinuities has been proposed.
	(2) The analysis of point cloud data from the direct shear and Brazilian splitting tests indicates that different loading methods significantly influence the distribution and occurrence of discontinuities. In the direct shear test, the distribution of discontinuities is relatively concentrated, with a small dip angle, demonstrating a clear directional pattern that reflects the regularity of shear fractures. Conversely, in the Brazilian splitting test, the distribution of discontinuities is more complex and random, with discontinuities exhibiting larger dip angles being predominant. This reveals the multi-directional fracture characteristics that occur under tensile forces.
	(3) The discontinuity identification method proposed in this paper was validated using both regular hexahedron data and field data, demonstrating its high precision and broad applicability. In the hexahedron validation, the algorithm successfully identified six faces and extracted occurrence and area information that aligns with theoretical expectations. In the field data validation, comparison results with the qFacet algorithm indicate that the proposed method exhibits high consistency in dip angle and trend extraction, with a minimal error margin (≤1.5°). Notably, the proposed method in complex rock formations effectively identifies small-scale discontinuities and accurately calculates their areas, confirming its reliability and robustness in practical applications.
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The water inrush is one of the most catastrophic emergencies in metro tunnels. To avoid the potential water inrush, this paper proposes a risk assessment model for the metro tunnel based on Delphi survey method and machine learning. The proposed model consists of two parts, the risk assessment index system and the risk level prediction model. Firstly, by using the Delphi survey method, appropriate risk factors are assembled into the water inrush risk assessment index system. To guarantee the accuracy of prediction results, only the correctly selected risk factors, validated by Grey Relational Analysis (GRA), are recognized as assessment indexes. Then, the Radial Basis Function (RBF) network, improved by the Locally Linear Embedding (LLE) algorithm and the Particle Swarm Optimization (PSO), is applied to predict the risk level. Training and test sample sets are constructed using engineering data from Qingdao metro tunnel construction. In the comparison with baseline models, the proposed model demonstrates the best accuracy and mean square error, which are 92.5% and 0.015, respectively. The LLE-PSO-RBF model is applied to the Qingdao Metro Line 4 tunnel project. Three tunnels are predicted by invoking the trained model, and the risk level of water inrush is I, III and IV, respectively.
Keywords: water inrush, risk assessment, metro tunnel, Delphi method, RBF network

1 INTRODUCTION
With increasing urbanization and growing transportation demands, metro tunnel engineering is developing rapidly. When tunneling, various disasters often occur caused by groundwater (Gong and Guo, 2021; Wang et al., 2020; Sousa and Einstein, 2021). The water inrush hazard is the most common issue encountered in tunneling engineering when interacting with groundwater, often resulting in serious loss of life and property (Zhu et al., 2022; Zhang et al., 2023c; Zhang et al., 2023a). Therefore, timely and effective assessment of the water inrush risk is of great significance in ensuring tunnel safety.
In tunnel engineering, water inrush disasters are influenced by various factors such as rock properties, hydrological conditions, and construction methods, making their underlying mechanisms extremely complex (Gong et al., 2025; Li et al., 2018; Xue et al., 2021; Gong et al., 2024; Feng et al., 2024; Wang et al., 2023; Wu et al., 2019). This complexity makes it difficult to measure the impact of different factors on water inrush disasters, which in turn complicates risk assessment. For comprehensive and objective selection of risk assessment indexes, the expert questionnaire survey method has been widely applied, combined with methods such as Delphi method (Kim et al., 2022), combined weighting method (Zhang et al., 2023b), and relative importance index (Shelake et al., 2022), etc., to reduce subjective influence. On the other hand, the collation and analysis of past disasters can help people recognize their mechanics and develop effective reference for prevention (Beard, 2010; Liu et al., 2022b; Liu et al., 2022a). Subsequently, scholars quantitatively assess risks with various methods, including Analytic Hierarchy Process (AHP) (Sun and Guan, 2024; Wu et al., 2011), cloud model (Yang et al., 2016), fuzzy comprehensive evaluation method (Li et al., 2011; Li and Zou, 2011), Fault Tree Analysis (FTA) (Hyun et al., 2015), risk matrix method, matter element expansion model, etc. Peng et al. (2020) proposed eight evaluation indexes and corresponding grading standards for water inrush by comprehensively analyzing the contributing factors, and established a cloud model for risk evaluation through the comprehensive standardization process and AHP with application to the Longjinxi Tunnel. Benekos and Diamantidis (2017) discussed three methods, qualitative, semi-quantitative and quantitative, and proposed a risk analysis and assessment methodology applicable to road tunnels based on the selection of the best integrated framework in terms of risk reduction, socio-economic factors, and safety measures. Ou et al. (2021) proposed a tunnel risk assessment model that integrates Dempster-Shafer (D-S) evidence theory and geological advance investigation, which was validated and applied in the Yuxi Tunnel. And with the development of Artificial Intelligence algorithms, it has become an indispensable tool for risk assessment in geotechnical engineering (Su et al., 2024; Liang et al., 2014; Gong, 2021; Lu et al., 2020; Zhang, 2024; Borg et al., 2014; Zhang et al., 2014; Zhang et al., 2016). Based on BN, Wang et al. (2014) proposed a tunnel risk probability assessment and predicted the damage risk of the existing property of the tunnel. Kovačević et al. (2021) developed a prediction model for long-term deformation of tunnels in soft rock strata based on Particle Swarm Optimization (PSO) and neural network. Feng and Zhang (2021) established a tunnel stability assessment model with adjacent tunnel construction as the main influencing factor based on neural network optimized by PSO. Mahmoodzadeh et al. (2021) systematically analyzed the applicability of six machine learning methods in predicting tunnel water inrush, including Long Short-Term Memory (LSTM), Deep Neural Networks (DNN), k-Nearest Neighbors (KNN), Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Decision Trees (DT), and ranked their performance based on prediction accuracy.
In this paper, the case study of water inrush in different tunnel is used as a basis for analyzing and selecting the influencing factors using Delphi survey method. The risk assessment index system is constructed using the selected factors by referring to the Guidelines on Risk Assessment for Safety in the Design of Highway Bridge and Tunnel Engineering Works, whose accuracy is verified by GRA. Based on the RBF neural network improved with LLE algorithm and PSO, a risk prediction model of tunnel water inrush was established. The engineering data of Qingdao metro tunnel was collected as the learning dataset for the evaluation model, and the risk prediction results were compared with other methods. Finally, the model was verified by a real arithmetic example of Qingdao Line 4 between Jing-sha section.
2 EVALUATION METHODS AND RATIONALE
2.1 Overview of the assessment model
This paper proposed a novel risk assessment model for water inrush in metro tunnel, comprised a factor screening model to establish the risk assessment index system and a prediction model to predict the risk level. This model incorporates a variety of theories, including Delphi survey method, GRA, RBF network, LLE algorithm and PSO, which detailed process is shown in Figure 1.
[image: Flowchart illustrating a risk assessment process divided into two main sections: risk factor selection and risk assessment. The risk factor selection section includes "Multiple survey method," "Risk factor identification," and "Literature findings." The risk assessment section includes "Risk evaluation factor system," "Risk assessment method," and "Model application and validation." Connected boxes detail methods like "Grey Relational Analysis," "PSO algorithm," "FCE method," "E-P model," and "LLE algorithm." Arrows indicate the flow between components.]FIGURE 1 | The flow chart of the proposed model.
The water inrush in metro tunnels is a result of the coupling interaction with various factors. As shown in Figure 1, based on investigating the existing findings, including water inrush assessment cases and relevant norms, the Delphi method is used to select potential water inrush evaluation indexes, which have a large impact. After several rounds of screening by the Delphi method, the water inrush assessment index system is established. Meanwhile, the GRA is introduced to verify the accuracy of the assessment index system. The subsequent prediction of the water inrush risk will not be proceeded unless the constructed assessment index system is verified for accuracy. Then, the RBF network is used as a tool for predicting the water inrush risk. In the RBF network architecture, the LLE algorithm is introduced for data preprocessing to eliminate redundant information, while the PSO algorithm is used to help the RBF network find the optimal parameter combination to improve computational performance. Finally, the constructed risk prediction model is validated and applied.
2.2 Delphi survey method
The Delphi survey method (Kim et al., 2022) is essentially a feedback anonymous inquiry method that provides multiple rounds of controlled feedback surveys and finally reaches the consensus of the expert group. This method, characterized by anonymity, feedback and statistics, can significantly eliminate the effect of authority and subjectivity on the results, making the evaluation results objective and credible, and avoiding the shortcomings that only reflect majority opinions in expert meetings. In this method, the importance of each survey result was determined by calculating the content validity ratio (CVR) of each round of survey results, which is shown in Equation 1.
[image: Formula indicating CVR (Content Validity Ratio) calculation, where \( \text{CVR} = \frac{n_c - N/2}{N/2} \).]
In Equation 1, [image: Please upload the image you would like me to generate alt text for. If you are having trouble uploading, let me know how I can assist!] indicates the number of members considering the element to be indispensable and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is total number of team members. The closer the CVR is to 1, the more closely aligned the number of members considering the factor essential is to the total. The Coefficient of Variation (COV) is used to verify the final Delphi survey results, and if the COV is greater than 0.8, an additional round of investigation will be required for this result.
2.3 Grey relational analysis (GRA)
GRA is an analytical method that quantitatively describes the development trend of a system by assessing the correlation between reference and comparison data columns. It can demonstrate the magnitude of relation between different sequences, and can be used to characterize the sensitivity of results to different factors. The correlation coefficient is determined by five steps:
	1. Determine the analysis sequence.

The risk level is defined as the parent sequence that reflects the characteristics of the system, and assessment indexes are defined as subsequences that affects the system. In this paper, the parent sequence and [image: Please upload the image first, and I will be happy to help you generate the alternate text for it.] subsequences of the measured water inrush data of the [image: Please upload the image or provide a URL for me to generate the alt text.] (number of data groups) group are used to analyze and construct the original data matrix as shown in Equation 2.
[image: Matrix illustration showing a general matrix \([X]\) with elements \(x_{1,0}\) to \(x_{1,n}\) in the first row, and \(x_{m,0}\) to \(x_{m,n}\) in the last row, indexed with \(i\) and \(j\).]
	2. Dimensionless processing.

Due to variations in dimensions across different indexes, the error is too large in the analysis and comparison, making it difficult to draw correct conclusions. In order to reduce the analysis error caused by different dimensions, the original data was processed using initial value method. The data processing is mathematically represented as shown in Equation 3:
[image: Mathematical equation displaying \(X' = x_{ij} / x_{11}\) labeled as equation (3).]
where [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] = 1, 2, [image: A blurry abstract image with vertical gray and white stripes of varying widths.], m; [image: It seems there is an issue with the image you attempted to provide. Please try uploading it again or provide a URL to the image.] = 0, 1, [image: Vertical black and white barcode-like pattern with thick alternating lines of varying shades of gray.] n. 

	3. Calculate the correlation coefficient.

The gray relational coefficient between the subsequence and the parent sequence is calculated according to Equation 4:
[image: The image shows a mathematical formula labeled equation four. It is defined as xi equals the minimum of absolute value of xj prime minus xj zero plus rho maximum of absolute value of xj prime minus xj zero, all divided by the absolute value of xi prime minus xi zero minus rho maximum of absolute value of xj prime minus xj zero.]
where [image: Greek letter xi with subscript i and j in a mathematical notation style.] is the correlation coefficient between the [image: It seems there was an issue with your image upload. Please try uploading the image again, and I will help generate the alternate text for it.]th parameter of the [image: Please upload an image or provide a URL so I can generate the alternate text for you.]th subsequence and the [image: It seems there was an issue with displaying the image. Please try uploading it again, and I will generate alt text for you.]th parameter of the parent sequence, [image: Max of the absolute differences between \(X'_{ij}\) and \(X'_{i0}\).] is the maximum difference between the parent sequence and subsequences, [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the differentiation coefficient, with values in the range [0,1]. 

	4. Correlation calculation.

The average value obtained by averaging the correlation coefficient series is the correlation degree, through Equation 5 as shown below: 
[image: Mathematical equation showing \( \bar{y}_{\cdot i} = \frac{1}{n} \sum_{j=1}^{n} \xi_{ij} \), labeled as equation (5).]
Correlation coefficient [image: It seems like you provided a snippet of a mathematical expression rather than an image. If you have an image you'd like me to generate alt text for, please upload it directly or provide a link.] indicates that there is a relatedness between the parent sequence and subsequences, and the [image: It seems there might have been an error in uploading the image. Please try uploading the image again or provide the URL to the image you would like the alt text for.] closer it is to 1, the higher the correlation is between the two.
3 IMPROVED RBF NETWORK MODEL OPTIMIZED WITH LLE AND PSO
The RBF neural network, composed of input, hidden, and output layers, is a feed forward neural network renowned for its excellent classification and approximation capabilities (Wang et al., 2018). It has simple learning rule, fast convergence speed, high stability and strong self-learning ability, and can create more accurate estimation value under the condition of small number of samples (Liu et al., 2020).
In RBF network training, the more number and dimensionality of original data, the more time and amount of calculation are needed. Therefore, the LLE algorithm is used to reduce the data dimension, creating a low-dimensional data set to optimize the RBF input layer. The LLE algorithm is a non-linear dimensionality reduction method that maps data from a high-dimensional space to a low-dimensional space while preserving the original structural information (Roweis and Saul, 2000). Its fundamental concept is to assume that the data is linear in a smaller local space, in which a certain point can be approximately linearly represented by other points in the neighborhood (Chen and Liu, 2011). It is calculated as follows:
	1. Select point [image: Sure, please upload the image or provide a URL so that I can generate the alternate text for you.] and its [image: It seems like there was an error with the image upload. Please try uploading the image again, and I will be happy to help with the alternate text!] nearest neighbors [image: Mathematical expression of X subscript i superscript (k), indicating an element X with indices i and k, where k is in parentheses.].

Suppose there are [image: It seems there's no image provided. Please upload the image or provide a URL, and I will help generate the alternate text for it.] points in a space. Calculate the euclidean distance between point [image: It seems there is no image uploaded. Please provide the image file or a URL so I can generate the alternate text for you.] and the other [image: It seems there was an issue with displaying the image. Please try uploading the image again and I can help generate the alternate text for it.] points in the space, and select the [image: Please upload the image or provide a URL so I can generate the alt text for you.] points that are closest to point [image: Please upload an image or provide a URL so I can generate the alternate text for you.].
	2. Calculate the weighting coefficient [image: The image depicts the mathematical notation \( w_{ij} \), where \( w \) represents a variable or constant and \( i, j \) are subscripts denoting specific indices.] between [image: It seems there is no image uploaded. Please try uploading the image again or ensure the image file is attached. If you have any specific details you want to include in the alt text, feel free to add them.] and [image: Mathematical expression displaying \( X_i^{(k)} \), where \( X \) is the variable, \( i \) is the subscript, and \( k \) is the superscript.].

[image: Please upload the image or provide a URL so I can generate the alternate text for you.] can be approximated linearly from [image: Mathematical notation showing \(X_i^{(k)}\), which typically represents the k-th iteration or version of a variable \(X\) at index \(i\).] by a coefficient vector [image: Please upload the image or provide a URL to generate the alternate text.]. The [image: The image shows the mathematical notation "w" with a subscript "i".] is composed of a set [image: Mathematical notation showing a lowercase "w" with subscripts "i" and "j".], and satisfies the loss equation as shown in Equation 6.
[image: Equation representing an optimization problem: \( w_i^* = \arg\min_{w_i}\frac{1}{2}||X - w_i x^{(k)}||^2 \), labeled as equation (6).]
where [image: Mathematical expression showing "argmin" with subscript "w_i".] means finding the weights that minimize the loss function.
	3. Construct low-dimensional data collections.

Assuming that the corresponding low-dimensional projections of [image: Please upload the image or provide a URL for me to generate the alternate text.] and [image: A mathematical expression showing "X" with subscript "i" and superscript "(k)".] are [image: Please upload the image you would like me to generate alternate text for.] and [image: Mathematical expression with subscript i and superscript k, both in parentheses, for variable Y.], which satisfy the same linear relationship, the low-dimensional data is mathematically represented as shown in Equation 7: 
[image: Mathematical equation showing an optimization expression: Y equals arg min over Y of the sum of the squared norm of the difference between Y and w_i times y_i. Equation number seven.]
where [image: It seems like there was a mistake in uploading the image. Please try uploading the image file directly or provide a link where it can be accessed.] is an [image: It seems there was an error with your request. Please upload the image or provide a URL to the image you want described.] matrix that represents the low-dimensional embedding of the original data.
Additionally, as the RBF network uses the radial basis function as its activation function, the selection of center points significantly impacts its computational performance. Therefore, the PSO algorithm is introduced to help the RBF network find the optimal parameter combination. The PSO algorithm (Kennedy and Eberhart, 1995) is an method that can optimize nonlinear and multi-dimensional problems, the basic concept of which is to create a fully linked swarm in the space where particles move and share information amongst themselves to find the place that best suits their needs, as shown in Figure 2. Each particle has two attributes: position [image: Mathematical expression showing a lower case "x" with subscripts "i" and "d".] and velocity [image: Mathematical variable denoting \( V \) with subscripts \( i \) and \( d \), commonly used in equations or expressions with indexed terms.], and it continuously updates its position according to Equation 8 and Equation 9,
[image: Mathematical equation of \( y_{i d}(i t + 1) = x_{i d}(i t) + v_{i d}(i t + 1) \), labeled equation 8.]
[image: The image displays a mathematical equation related to particle swarm optimization. It shows the velocity update formula: \( v_{id}(t+1) = \omega v_{id}(t) + C_1 \times \text{Rnd}(0,1) \times [p_{b,id}(t) - x_{id}(t)] + C_2 \times \text{Rnd}(0,1) \times [g_{b}(t) - x_{id}(t)] \). This equation is labeled as equation (9).]
where [image: Please upload the image so I can help generate alt text for it.] is the inertia weight, [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] is constant, [image: It seems there might have been an error in uploading the image. Please try uploading the image again or providing a URL.] is a random number ranging from 0 to 1, [image: The text "p_{b_{id}}" is displayed, using a mathematical expression format with subscript "b" and a further subscript "id".] is the optimal position of particle [image: It seems there is an issue with the image upload or URL. Please try uploading the image again or provide a URL to the image. You can also add a caption for additional context if needed.], [image: Letters "g", "b", and "d" are displayed in a serif font, arranged horizontally. Each letter varies in size and has different vertical alignment, with "g" descending below the baseline.] is the optimal position of all particles.
[image: Diagram of a search space showing nodes representing information sharing. Green circles indicate positions, with arrows depicting movement towards solutions. Blue stars and a red triangle symbolize global and local optima, respectively.]FIGURE 2 | Conceptual diagram of the PSO.
The schema of improved assessment model is shown in Figure 3.
[image: Flowchart illustrating the process of input data in a neural network. It starts with original data leading to data preprocessing, then to loss-forecasted data. The data enters the neural network's input layer, passing through a hidden layer to the output layer. Lempel-Ziv compression algorithm, gated recurrent units, Hopfield network, and other algorithm names are listed around the chart, likely indicating processing steps or related concepts. Arrows connect each part of the process.]FIGURE 3 | Schema of LLE-PSO-RBF network.
4 MODEL VALIDATION
4.1 Establishment of water inrush risk assessment index system
As water inrush hazards result from the coupling of various factors, the primary task in risk assessment is to identify the contributing factors. These factors are characterized as having a significant effect on the potential for tunnel water inrush. Therefore, the rationality of factor selection directly affects the reliability of subsequent risk assessment results.
Li et al. (2018) have conducted a detailed analysis of various water inrush disasters and their corresponding triggering factors by reviewing numerous tunnel water inrush cases. On this basis, while combining several risk assessment cases as shown in Table 1, the types of main factors influencing the tunnel water inrush have been identified. There are four types of factors, including engineering geology, hydrological conditions, construction design and other natural conditions.
TABLE 1 | Analysis of main risk factors.
[image: Table listing cases of tunnels in China with associated risk analysis methods and risk factors. Cases include tunnels in Xinjiang, Henan, and more. Methods like BP neural network and AHP-ideal point method are used. Risk factors range from engineering geology to stratigraphic factors.]The above-mentioned four types of factors are first-level indexes affecting water inrush, which need to be further refined into second-level indexes before conducting the risk level prediction. In order to ensure the objective and accurate selection of possible risk factors, Delphi multi-round survey method was used for screening. In this study, an expert investigation team with 30 invited experts was formed, including professors of tunnel engineering, design experts and researchers with advanced experience. After that, the above-mentioned potential risk factors were screened to identify secondary risk indexes, based on an anonymous feedback method involving two rounds of screening and one round of validation, as shown in Figure 4.
[image: Flowchart illustrating key stages in emergency decision-making: potential risk factors, current mitigation tools, detection of necessity, severity of first signal, sustained necessity, review of second signal, third level of necessity, and signals of the third signal, leading to risk details.]FIGURE 4 | Delphi flow chart.
The risk factors listed in Table 1 are specific to a particular project and are not directly applicable to a new project. To establish a universal risk assessment index system, we derived the risk factors in Table 2 based on previous research findings, combined with our experience in tunnel engineering and expert consultations. And then, a questionnaire was designed to survey these factors.
TABLE 2 | Delphi investigation results.
[image: Table showing hierarchical evaluation criteria across four main categories: Engineering Geology A, Hydrogeology B, Construction Design C, and Natural Condition D. Each category includes specific criteria like "Grade of surrounding rock" and "Permeability coefficient," evaluated across three rounds with CVR and COV values.]In the first round of Delphi survey, experts evaluated the rationality of the 16 risk factors in the inquiry form and calculated the CVR value to verify the applicability of these factors. After calculation, two factors were considered unsuitable for subsequent assessment, as a CVR value of less than 0.4. The remaining 14 factors proceeded to the second round of screening, where the expert investigation team scored each factor according to its importance. In the second round, one factor was unsatisfactory for risk assessment with a score of less than 60 and therefore it was not considered for participation in the third round of Delphi survey. The remaining 13 elements are selected as the contents of the third round of inquiry form, and the results of the first two rounds of inquiry form and the survey data of Qingdao tunnel are attached for experts’ reference to judge the feasibility of each factor as risk evaluation index. Meanwhile, the COV was used to verify the final investigation result. If the COV is greater than 0.8, an extra round of investigation needs to be added for the result. The results show that all 13 risk elements CVR and COV meet the requirements, which indicates that they can be used as the secondary index for constructing the risk assessment system.
In accordance with the results of the three rounds of survey, the tunnel risk evalua-tion system was established finally, including 4 primary index layers and 13 secondary dependent indexes. With the risk factors selected, they are categorized into different ranges corresponding to different risk levels. Based on engineering specifications, while considering the geological characteristics and construction features of Qingdao area, the risk assessment index system for water inrush in metro tunnel is proposed as shown in Table 3.
TABLE 3 | Assessment indexes of tunnel water inrush.
[image: Table assessing risk levels for various geological and construction factors. Categories include Engineering Geology, Hydrogeology, Construction Design, and Natural Condition. Risk is ranked from I (Low) to IV (Very High) based on factors such as rock grade, weathering, permeability, and rainfall. For example, rock mass integrity ranges from Intact (Low) to Utterly (Very High), and average rainfall ranges from less than sixty millimeters to over one hundred millimeters.]In addition, GRA was used to verify the reasonableness of risk factor selection. Taking the risk level as the parent sequence and the quantitative index values as the subsequence, the gray correlation coefficients between the parameters were calculated and homogenized, and the correlations obtained are shown in Table 4. In Table 4, the correlation of all factors was greater than 0.5, indicating that the risk factors selected based on the Delphi survey method were reliable and reasonable.
TABLE 4 | Grey correlation between factors.
[image: A table displays data values corresponding to different categories labeled A1 to A5, B1 to B4, and C1 to D2 across four rows labeled I to IV. The values in the table are numerical and vary between 0.33 and 1.00. The rightmost column contains average values for each row, which are slightly different from the other data points in each row.]4.2 Model analysis
In this paper, 16 groups of tunnel data of Qingdao Metro were selected as the training data for the assessment method. The source of this dataset is the geological and construction materials of the different section tunnels in Qingdao Metro, including, Kai-sheng section of Line 1, Shui-kai section of Line 1, Shi-miao section of Line 2, Wu-nan section of Line 2 and Xin-zhao section of Line 6, thus it is very reliable and trustworthy. In training, the 13 quantified risk factor indexes were used as input data for the input layer, and the water inrush risk class was output from the output layer. During training, the order of the dataset was disrupted, and the data was divided into a training set and a test set in a 70:30 ratio. The sample data of each tunnel section is shown in Table 5.
TABLE 5 | Sample data.
[image: A table displaying data across sixteen rows and thirteen columns. Columns include headings: No., Level, A1, A2, A3, A4, A5, B1, B2, B3, B4, C1, C2, D1, and D2. Entries provide numerical values and categorical data such as Intact, Crushed, Weak, Strong, Slightly, and Rich, along with numerical measures like 0.85, 36.98, and 59.5. The table presents structured data in a systematic manner.]To validate the effectiveness of the proposed model, the RBF neural network and CNN were used as baseline models. Meanwhile, to mitigate the effect of randomness, the test was repeated 10 times, using overall accuracy (OA) and mean squared error (MSE) as evaluation metrics. The detailed comparison results are shown in Figure 5. It can be seen that the proposed model achieves the best OA and MSE, with values of 92.5% and 0.015, respectively, among the three models. This indicates that the proposed model has the best predictive performance. In contrast, the OA of the CNN and RBF models are relatively lower, at 85% and 82.5%, respectively, while their MSE are larger, at 0.017 and 0.028, respectively. The possible reasons for the weak prediction of the baseline models are twofold. Firstly, the hyperparameters of the RBF and CNN models need to be manually tuned. Additionally, the training data is relatively small, and the feature distribution is imbalanced. By constructing the LLE-PSO-RBF model, the prediction performance is improved with small samples.
[image: Bar chart comparing three models: LLE-PSO-RBF, CNN, and RBF. Each model shows two metrics: OA (red) and MSE (blue). LLE-PSO-RBF has 92.5% OA and 0.015 MSE, CNN has 85.0% OA and 0.017 MSE, and RBF has 82.5% OA and 0.028 MSE.]FIGURE 5 | Results of the proposed model and baseline models.
5 CASE STUDY
5.1 Project overview
The Jing-sha section of Qingdao Metro Line 4 is located between Jingang Road Station and Shazikou Station, Laoshan District, Qingdao. On 27 May 2019, while tunneling to ZDK25 + 343, a catastrophic water inrush occurred. The tunnel water inrush ultimately led to a large-scale ground collapse, forming a deep pit approximately 6 m in depth and 30 m in diameter, as shown in Figure 6. Figure 7 shows the geological conditions near the collapse region, where the strata consist of plain fill, silty clay, a medium-coarse sand layer, and tuff. The rock classification of the tunnel surrounding is Grade V, characterized by a broken rock mass and well-developed fractures. And under the impact of blasting construction, the rock mass is further damaged, increasing the risk of disasters. The tunnel is buried at a depth of approximately 19.6m, with the water table relative to the tunnel vault at 19 m. The thickness of the saturated sand layer is 7.1m, and it is prone to erosion by water flow due to its loose properties. The overburden of the tunnel vault is strongly weathered rock, with a thickness of only 0.7 m. In this unfavorable situation, continuous rainfall exacerbates the conditions.
[image: Aerial view of a construction site showing a collapse zone. The site is outlined with a green rectangle measuring eight meters by six meters. Surrounding areas show roads and vegetation.]FIGURE 6 | The ground collapse.
[image: Cross-sectional geological diagram showing strata layers, including silty clay, medium to coarse sand, and various weathered tuffs. The diagram indicates excavation direction and concentration collapse arch. A water table line is represented at the top.]FIGURE 7 | The geological conditions near the collapse area.
5.2 Risk prediction with the proposed model
In this section, the trained LLE-PSO-RBF model is invoked to predict the water inrush risk for the metro tunnel. Data from three tunnel sections are collected for model prediction, as shown in Table 6, with No. 3 representing the data from the aforementioned water inrush disaster tunnel.
TABLE 6 | Data from different tunnels.
[image: A table displays data across thirteen columns labeled: No., A1, A2, A3, A4, A5, B1, B2, B3, B4, C1, C2, D1, and D2. It contains three rows of data. Row 1 has values: 1, II, Intact, 0.8, Not, 16.2, 0.0026, 21.6, 1.4, Relative, 16.2, 7.4, Flat, 118.6. Row 2 has values: 2, IV, Crushed, 0.75, Medium, 87.4, 0.5184, 77.2, 15.94, Rich, 17.7, 7.4, Flat, 118.6. Row 3 has values: 3, V, Crushed, 0.7, Strong, 80, 0.5184, 74.2, 17.9, Rich, 19, 7.4, Denuded, 118.6.]Based on the model predictions, the water inrush risk levels for the three tunnels are I, III, and IV, respectively. During the actual construction, the management failed to properly recognize the significant potential risks. In response to the water seepage at the site, the construction staff used conventional treatment methods. However, the actual water inflow during the inrush incident was 4,755.8 [image: Please upload the image or provide a URL to generate the alternate text.], demonstrating that this disaster exceeded the empirical judgment (4,154.4 [image: The text in the image shows "m" followed by a superscript "3", representing the unit "cubic meters."]). This highlights the importance of conducting risk level assessments in advance, as it enables staff to implement early safety measures and effectively prevent the occurrence of disasters. Based on the evaluation results, on-site construction measures can be adjusted and improved to establish a dynamic mechanism for construction management.
6 CONCLUSION
In this paper, a novel risk assessment model for water inrush in metro tunnels is proposed, including factor selection and risk prediction. The performance of the proposed model is verified by comparison with baseline models, and it is applied to assess a real project. The main conclusions are as follows:
	1. The main risk factors causing tunnel water inrush disaster are identified as engineering geology, hydrological conditions, construction design, and natural conditions, based on which the risk assessment index system for water inrush of metro tunnel is established with 13 risk factor indicators. The correlation between risk indexes and risk levels is calculated using the GRA, indicating that the selection of risk factors is reasonable as the correlation of each factor is greater than 0.5.
	2. Constructed a water inrush risk level prediction model for metro tunnels based on the improved RBF model, which is optimized by LLE algorithm and PSO algorithm. Different model prediction results comparison proves that the proposed model have better risk assessment performance. The model is invoked to predict the water inrush risk level of the Jing-sha section in Qingdao Metro Line 4, and the predicted results of each tunnel is I, III and IV.

Tunnel water inrush is the result of the multi-factor coupling effect. The complex correlation between risk factors has influence on assessment results, but in this paper, its influence is not considered. Therefore, selecting risk factors which are independent and unaffected by other factors is an issue that should be considered for subsequent water inrush risk assessments. In addition, applying different methodologies is necessary to reduce the subjectivity effect in factor selection.
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This study addresses wellbore instability in shale formations by conducting mechanical experiments on bedded shale samples with varying hydration times. We fitted experimental data using two anisotropic strength criteria to determine the shale’s strength parameters. A transverse isotropic stress model was developed to predict the lower limit of the safe drilling fluid density window, examining the effects of hydration time and anisotropy on wellbore stability. Results indicate that rock strength initially increases and then decreases with bedding angle. Within the β1 to β2 range, both the Jaeger’s Plane of Weakness model (JPW) and Plane of Patchy Weakness Model (PPW) accurately predicted shale strength; however, below β1, the JPW criterion overestimated strength, while the PPW criterion better reflected strength variations. Anisotropy due to bedding significantly increased wellbore collapse pressure, shifting the optimal well trajectory from the direction of minimum horizontal stress to maximum horizontal stress, altering collapse pressure contour distributions. The choice of strength criteria had minimal impact on the trend of collapse pressure with well trajectory. While shale hydration can significantly affect wellbore stability and the lower safe drilling mud window with well trajectory, prolonged contact between drilling fluid and rock gradually increased lower safe drilling mud window. Collapse pressure in vertical or horizontal wellbores was minimally affected by soaking time, whereas inclined wellbores showed greater sensitivity. Notably, horizontal wells drilled in the direction of minimum horizontal stress were more responsive to contact time with drilling fluid, leading to a faster increase in collapse pressure.
Keywords: hydration, wellbore stability, transversely isotropic, strength criteria, shale

1 INTRODUCTION
Due to the needs of economic development, China’s energy demand is continuously rising, while the production from conventional reservoirs is decreasing year by year (Zhang et al., 2020; Zhang et al., 2022; Ning et al., 2022; Xing et al., 2021). The development potential of unconventional energy is substantial, with the exploitation of unconventional oil and gas resources, particularly shale gas, emerging as a pivotal breakthrough in addressing global energy shortages (Liu et al., 2022; Li et al., 2022; Qi et al., 2022; Liu et al., 2013; Bai et al., 2022). Horizontal drilling and hydraulic fracturing are two key technologies for developing shale gas. However, due to the influence of shale structure and mechanical characteristics, issues such as collapse and spalling frequently occur during horizontal drilling, making wellbore instability a major technical challenge restricting the safe and efficient drilling of shale gas horizontal wells (Bai et al., 2022; Han et al., 2020; Germanovich and Dyskin, 2000; Ding et al., 2020; Ding et al., 2021; Meng et al., 2019). After drilling into the formation, the in situ stress induces stress concentration around the wellbore. If the stress differential surpasses the rock’s strength, wellbore collapse occurs (Vahid and Ahmad, 2011; Westergaard, 1940; Willson et al., 2007; Wu et al., 2024; Yang Li et al., 2022). While an appropriate drilling fluid density can provide necessary support to the wellbore, excessively high drilling fluid density may fracture the reservoir, leading to wellbore instability (Zhang et al., 2015; Zhang et al., 2017; Zhang et al., 2021a; Zhang et al., 2023; Gao and Gray, 2019; Gao et al., 2021). Therefore, researching the safe density window of drilling fluid is crucial for the safe and efficient drilling operations in shale reservoirs (Gao et al., 2014; He et al., 2015; Vahid and Ahmad, 2011; Fjær et al., 2008; Aadnoy and Chenevert, 1987; Ong and Roegiers, 1996).
To understand the mechanism of wellbore instability in shale formations and to reduce the occurrence of wellbore collapse and leakage incidents, extensive research has been conducted by petroleum engineers (Mitchell and Miska, 2011; Fjær et al., 2008; Ning et al., 2022; Li et al., 2022; Liu et al., 2016; Bai et al., 2022; He et al., 2015; Gao et al., 2021). Aadnoy and Chenevert (1987) developed a mechanical analysis model for wellbore anisotropic media, incorporating anisotropic elastic parameters, directional shear, and tensile strength parameters. Their findings indicated that overlooking the anisotropic properties of the rock can lead to inaccuracies in wellbore instability analysis. Building on this work, Ong and Roegiers (1996) enhanced Aadnoy’s mechanical model by creating a comprehensive wellbore stress calculation model for anisotropic formations. This model accounts for the combined influences of in situ stress, drilling fluid column pressure, fluid seepage, and temperature fields. They employed a generalized three-dimensional anisotropic failure criterion to assess wellbore collapse due to shear failure in the formation. Their research on horizontal wellbore collapse in anisotropic formations demonstrated that strong anisotropy, significant in situ stress differences, and excessive wellbore cooling substantially impact wellbore stability. In contrast, variations in pore pressure and pore elastic parameters have a lesser effect. However, the model did not yet incorporate the coupling effects between formation, fluid, and temperature changes (Al-Ajmi and Zimmerman, 2005; Cheng et al., 2024; Dong et al., 2025; Fjær et al., 2008; Gao and Gray, 2019; Gao and Gray, 2019; Gao et al., 2014; Gholami et al., 2013; He et al., 2015; Higgins et al., 2008; Liu et al., 2013; Jamshidi et al., 2024). Ong and Roegiers (1996) introduced a triaxial wellbore stress analysis model that considers drilling fluid column pressure, fluid flow, and thermal stress, finding that wellbore stability in directional wells is mainly influenced by rock anisotropy, in situ stress heterogeneity, and thermal stress. Lee et al. (2012) developed a model considering rock anisotropic strength and provided a method to determine the wellbore instability region. The size of the instability region and safe mud weight are controlled by wellbore orientation, bedding planes, and the direction of the in situ stress field. Li and Weijermars (2019) established the stable mud weight window using a modified Hoek-Brown failure criterion, showing that as the anisotropy of the elastic moduli increases further, both the breakdown pressure and collapse pressure decrease. Young’s moduli are the key factors contributing to the narrowing of the safe drilling window when these moduli become more anisotropic.
The above studies mainly focus on the impact of shale bedding on the circumferential stress and anisotropic strength, with little discussion on the damage and deterioration mechanisms caused by water and bedding in shale (Kanfar et al., 2015; Lekhnitskii, 1963; Liu et al., 2016; Lu et al., 2012; Meng et al., 2019; Ottesen, 2010; Vahid and Ahmad, 2011; Westergaard, 1940; Yang Xianyu et al., 2022). However, shale forms numerous bedding planes and fractures during the compaction and cementation process of diagenesis, significantly influenced by mineral composition, alignment, and cementation degree (Fjær et al., 2008; Aadnoy and Chenevert, 1987; Liu et al., 2016; Ottesen, 2010; Westergaard, 1940). These characteristics not only exhibit significant anisotropy but also deteriorate more easily when exposed to water, leading to engineering problems (Ong and Roegiers, 1996). Most wellbore instability issues arise in shale formations due to their unique laminated structures, which result in pronounced anisotropy (Ning et al., 2022; Ottesen, 2010; Pirhadi et al., 2023; Pirhadi et al., 2025; Serajian and Ghassemi, 2011; Zhang, 2013). Additionally, the moderate to high clay content in these formations makes them susceptible to shrinkage and swelling. Consequently, investigating the mechanical properties of shale, particularly under the influence of bedding planes and water interaction, holds substantial engineering significance (Junyang et al., 2017). Nwonodi et al. (2023) proposed a time-dependent analysis method for predicting wellbore instability in horizontal wells within reactive shale formations. By integrating osmosis/diffusion principles, the study improved traditional models that neglected membrane failure and diffusion time effects. The Mogi-Coulomb criterion was introduced to systematically incorporate factors such as membrane efficiency degradation, rock strength reduction, and ion migration. Junyang et al. (2017) conducted acoustic emission experiments on the damage and failure process of laminated shale under uniaxial compression, studying the mechanisms of damage and deterioration under the influence of bedding and water. The results indicated that the damage mechanisms differ; bedding primarily causes damage through the distribution of primary microcracks along the bedding planes, while water-induced damage mainly stems from adsorption and capillary pressure. Wang (2019) analyzed the changes in shale physical properties under different hydration conditions and modified the wellbore stability evaluation model to account for hydration effects. For various in situ stress distributions, the study analyzed wellbore stability, indicating that collapse pressure increases significantly in the early stages of hydration and the rate of increase slows down over time.
Maintaining the drilling fluid density within a range that ensures wellbore stability is essential for effectively preventing well collapse (Zhang et al., 2024; Wang, 2019). To achieve this, it is critical to consider not only the stress state of the wellbore but also the impact of the hydration process that occurs when shale interacts with drilling fluid on the lower safe mud weight window (Fjær et al., 2008; Aadnoy and Chenevert, 1987; Ong and Roegiers, 1996). Most current studies adopt the JPW criterion to analyze the wellbore stability in transversely isotropic formations. However, the effectiveness of this criterion in predicting the strength of bedded shale remains unclear (Yang Li et al., 2022; Zhang et al., 2021b; Zhe and Bao, 2022; Junyang et al., 2017). Previous research has rarely compared the prediction accuracy of this criterion with other anisotropic strength criteria for bedded shale strength (Wang, 2019). Additionally, under hydration effects, it remains uncertain whether the anisotropic characteristics of bedded shale strength change, and whether anisotropic strength criteria can predict the strength of shale post-hydration. These issues necessitate further investigation. Therefore, this study conducted uniaxial compressive strength tests on shale with varying water contents and bedding angles. The experimental results were fitted using different anisotropic strength criteria to analyze the influence of hydration on the anisotropic strength parameters of shale. Additionally, the study considered the impact of elastic anisotropy. Based on the transverse isotropic wellbore stress model, the anisotropic strength parameters of shale with different water contents were integrated to analyze the effect of hydration time on wellbore collapse pressure. This analysis revealed the distribution characteristics of the collapse pressure polar plot over time since the shale formation was drilled. The findings of this research are highly significant for scientifically evaluating the impact of hydration on wellbore stability, reducing wellbore instability, and achieving “safe, high-quality, and rapid” drilling.
2 THE INFLUENCE OF WATER ON SHALE STRENGTH
2.1 Anistropic strength model
Direct shear and triaxial mechanical experiments on shale have demonstrated significant strength anisotropy attributed to the presence of bedding planes. Various methods have been developed to characterize the anisotropic strength of laminated rocks, including JPW criterion, the Mclamore model, the PPW criterion, Pariseau’s Model, and the Modified Hoek-Brown Criterion. These methods can be categorized based on the curve characteristics of rock strength relative to bedding angle into shoulder type, undulating type, and U-shaped types. Among these, Jaeger’s single plane of weakness model is particularly notable for its conceptual clarity, ease of application, and its ability to accurately characterize anisotropic strength features. The Jaeger criterion describes the shear failure conditions of rock masses with one or a group of parallel weak planes, often referred to as the single set weak plane strength theory, in this criterion, the failure of the weak plane is expressed as Equation 1,
[image: Equation showing a formula: \(\sigma_1 = \sigma_3 + \frac{2(C_w + \sigma_3 \tan \phi_w)}{(1 - \tan \phi_w \cot \beta) \sin 2\beta}\), labeled as equation (1).]
And β satisfies Equation 2,
[image: Mathematical expression showing a comparison: beta subscript 2 is less than or equal to beta, which is less than or equal to beta subscript 1.]
In which, the β1 and β2 are shown as Equation 3,
[image: Mathematical equations for \(\beta_1\) and \(\beta_2\) involving angle \(\phi_w\), parameters \(\sigma_1\), \(\sigma_3\), and \(C_w\). The expressions include trigonometric functions and inverse sine operations with constants and fractions.]
If the above conditions are not satisfied, the criterion for rock failure follows the Mohr-Coulomb criterion, which is shown as Equation 4,
[image: Equation labeled as (4) shows: \(\tau - \sigma_3 \cot^2\left(\frac{\pi}{2} - \frac{\phi_0}{2}\right) + 2C_0 \cot\left(\frac{\pi}{2} - \frac{\phi_0}{2}\right)\).]
In which, σ1 denotes the maximum principal stress, MPa; σ3 denotes the minimum principal stress, MPa; Co denotes the rock cohesion, MPa; Cw denotes the cohesion within the weak plane, MPa; φo denotes the internal friction angle of the rock, degrees; φw denotes the internal friction angle within the weak plane, degrees; and β represents the angle between the normal to the weak plane and the maximum principal stress, degrees.
The Patchy Plane of Weakness criterion extends Jaeger’s single weak plane model by similarly dividing the failure of laminated shale into two distinct, discontinuous parts. This criterion posits that microcracks along bedding planes create stress concentrations, which ultimately lead to rock failure. This criterion is expressed by Equation 5,
[image: Equation labeled as (5) showing two expressions for the difference between sigma one and sigma three. The first equation involves terms C_w, sigma_w, phi_w, and beta with a fraction. The second equation is similar, but the denominator contains trigonometric functions of phi_w and beta.]
where, [image: Greek lowercase letter eta, written in a slanted, cursive style with a horizontal top stroke and smooth, continuous curves.] is a dimensionless parameter that represents the property of weak patchy. For the case, no weak patches exist in the bedding plane, i.e., [image: Greek lowercase letter eta, typically used in mathematics and science to represent a variable or a specific value.] is zero, the model degrades to single plane weak plane criterion.
2.2 Fitting of shale strength
Define the bedding angle as the angle between the normal to the bedding plane and the loading direction, as illustrated in Figure 1. Prior to coring, use a cutting machine to shape the rock samples collected from the field into horizontal-bedded rectangular blocks, as shown in Figure 1. The specifications for coring practices in oil and gas exploration are consistent with the method reported by Fjær et al. (2008). Subsequently, core these blocks using an SC-300 automatic coring machine, which permits adjustment of the drilling speed. Given the low core recovery rate of shale, it is advisable to maintain a moderate drilling speed, typically around 2 mm/min. During the coring process, adjust the drilling direction of the drill bit to create angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90° with the bedding plane, thereby obtaining cores with varying bedding angles. After coring, group and place the specimens, then cut and grind them. Finally, process the cores into standard specimens with a diameter of 25 mm and a height of 50 mm, ensuring the parallelism of the end faces is within ±0.02 mm.
[image: Diagram showing a block with a marked bedding plane and four cylindrical drill positions at angles of 0, 30, 60, and 90 degrees, with one labeled for a 25-millimeter diameter. Two pink dashed lines highlight the angles.]FIGURE 1 | Diagram of coring shale samples.
For each bedding angle, three parallel specimens were prepared. The specimens were grouped and treated as follows: ① dried at 105°C in an oven for 24 h as the dried rock samples; ② dried at 105°C in an oven for 24 h, then soaked in water for 24 h; ③ soaked in water for 48 h after drying for 24 h. Uniaxial compressive strength tests were conducted using the MTS815 rock mechanics testing machine for the three groups of specimens. This apparatus, manufactured by MTS Corporation in the United States, is specifically designed for triaxial servo-rigid testing of rocks and concrete. It features three independent closed-loop servo control systems for axial pressure, confining pressure, and pore water pressure. The machine is capable of delivering a maximum axial pressure/tension of 4,600 kN/2,300 kN, a maximum dynamic confining pressure of 140 MPa, and a maximum pore pressure of 140 MPa.
After completing the test, the fracture characteristics of shale with different bedding angles can be observed, when the angle between the axial load and the normal to the bedding plane is 0°, shear failure primarily occurs along the rock matrix, resulting in the maximum strength. When the bedding dip angle is around 60°, shale tends to experience shear failure along the bedding plane, exhibiting the lowest strength. For other bedding dip angles, shale may undergo a mixed failure mode involving shear along both the matrix and bedding planes. Consequently, the strength in such cases is lower than that of matrix-dominated failure but higher than that of pure bedding plane shear failure.
The test results are shown in Table 1. Based on the predicted results in Table 1, the root mean square (RMS) of the differences between predicted and measured values was used as the evaluation metric for prediction error, as shown in Equation 6,
[image: Formula for error calculation: Error equals the square root of the sum from i equals one to N of the squared differences between actual (sigma test) and predicted (sigma predict) values, divided by N.]
where N is the tested sample number, [image: Mathematical notation showing the symbol sigma with subscript i and superscript "test".] and [image: Mathematical notation showing sigma with subscript i and superscript "predict."] are experimental failure strength, and the predicted failure strength for the sample labeled i. The range of those strength parameters is refined step by step in MATLAB, the optimum parameters with least Error that can be found iteratively.
TABLE 1 | Transformation of different coordinate systems.
[image: Table showing uniaxial compressional strength in MPa for different β angles. For dry, 0°: 242.20, 15°: 188.76, 30°: 121.88, 45°: 103.80, 60°: 88.81, 75°: 158.96, 90°: 202.56. For 24 hours, 0°: 233.51, 15°: 147.14, 30°: 103.05, 45°: 74.27, 60°: 45.93, 75°: 99.73, 90°: 160.01. For 48 hours, 0°: 208.26, 15°: 119.11, 30°: 93.89, 45°: 31.17, 60°: 14.74, 75°: 68.40, 90°: 116.17.]The fitting results for dry samples, samples soaked for 24 h, and samples soaked for 48 h by JPW and PPW criteria are shown in Table 2. For comparison purposes, the predicted results from the JPW and PPW criteria and the experimental data are plotted together in Figures 2–4, respectively.
TABLE 2 | Transformation of different coordinate systems.
[image: Table showing data for JPW and PPW samples across different conditions: Dry, 24 hours, and 48 hours. Columns include \(C_o/MPa\), \(\Phi_o/^\circ\), \(C_w/MPa\), \(\Phi_w/^\circ\), Error, and \(\eta\). Values change with time for both JPW and PPW, indicating variations in measurements such as cohesion and angle of friction.][image: Line graph showing compressional strength (MPa) versus plug orientation (degrees). Blue line represents JPW, gray line represents PPW, and yellow squares indicate experimental data. Strength peaks at 0 and 90 degrees, and dips around 45 degrees.]FIGURE 2 | Experimental data for dry samples fit by JPW and PPW models.
[image: Line graph showing compressional strength (MPa) versus plug orientation (degrees). Two curves, labeled JPW and IPPW, represent simulated data, compared with experimental data points. The strength decreases with orientation to around 45 degrees and then increases.]FIGURE 3 | Experimental data for samples soaking in water for 24 h fit by JPW and PPW models.
[image: Line graph showing compression strength (MPa) versus plug orientation (degrees). Two lines, JPW (blue) and PPW (gray), demonstrate trends, and yellow squares represent experimental data. Strength decreases until around 30 degrees, then gradually increases. JPW and PPW follow similar patterns.]FIGURE 4 | Experimental data for samples soaking in water for 48 h fit by JPW and PPW models.
From the Figures 2–4, it can be observed that shale strength initially decreases and then increases with the increase in bedding angle. Within the range of β1 to β2, both the JPW and PPW criteria accurately predict the shale strength. However, when the bedding angle is below β1, the JPW criterion tends to overestimate the shale strength, whereas the PPW criterion more accurately reflects the trend of strength variation with the bedding angle. This discrepancy arises because, within the low bedding angle range, shale exhibits a mixed failure mode involving both shearing through the rock matrix and sliding along the bedding planes. The PPW criterion introduces a dimensionless parameter η to reveal this failure mechanism, leading to better predictions. In contrast, the JPW criterion only considers failure as either shear failure through the matrix or shear sliding along the bedding planes, resulting in an overestimation of strength for low-angle shale. The inherent flaws (e.g., microcracks, pores, or poor grain alignment) along bedding planes will create stress concentration points that reduce strength, PPW criterion reveals this mechanism, while JPW do not consider the stress concentration caused by flaws, so there is a big gap between the uniaxial compressive strength of JPW and PPW at 0° bedding angle under the three states.
The prediction errors of the JPW and PPW criteria for shale strength at various soaking times are illustrated in Figure 5. A smaller RMS value indicates higher prediction accuracy. As depicted in the figure, the prediction errors for both anisotropic strength criteria gradually increase with longer soaking times, suggesting that the heterogeneity of the shale intensifies with higher water content. Notably, the RMS error for the PPW criterion remains consistently lower than that for the JPW criterion, demonstrating that the PPW criterion offers more precise predictions of shale strength across different bedding angles.
[image: Bar chart comparing JPW and PPW error percentages over different times. JPW has values of 15.89 at Dry, 25.21 at 24 hours, and 29.83 at 48 hours. PPW has values of 11.44 at Dry, 20.71 at 24 hours, and 26.20 at 48 hours.]FIGURE 5 | Experimental data for samples soaking in water for 48 h fit by JPW and PPW models.
3 WELLBORE STABILITY PREDICTION MODEL
To obtain the safe drilling fluid density window in shale formations, the first step is to determine the stress distribution around the wellbore. Layered shale should be treated as a transversely isotropic medium, unlike isotropic formations where stress around the wellbore is influenced solely by stress concentrations. In shale, stress distribution is further complicated by material anisotropy. Consequently, it is essential to select appropriate strength criteria to accurately describe the strength characteristics of the formation rock. Given that shale strength exhibits significant variation with bedding inclination angle, the impact of strength anisotropy on the safe density window must also be taken into account. This paper provides a detailed explanation of the method for predicting the safe density window in shale formations.
3.1 Coordinate transformation
To determine the stress distribution around the wellbore, it is essential to establish the conversion relationships between the global coordinate system and the geo-stress coordinate system, the borehole rectangular and polar coordinate systems, and the bedding plane coordinate system. The relationships between these coordinates are shown in Figure 6, αs is the angle between the maximum horizontal principal stress and the true north direction, °; βs is the angle between the vertical stress and the plumb line direction, °; the borehole inclination angle βb is the angle between the borehole axis and the plumb line direction, °; borehole azimuth angle αb is the angle between the projection of the borehole’s lowest point on the horizontal plane and the true north direction, °; αbp+π/2 represents the strike of the bedding plane, °; βbp is the angle between the normal to the bedding plane and the plumb line direction, °.
[image: Two diagrams illustrate geological coordinate systems on horizontal planes. Diagram (a) shows a rotated coordinate system with axes labeled X, Y, and Z, showcasing angles α, β, and θ. Diagram (b) depicts a 3D coordinate system with a bedding plane and angles α, β, and θ, indicating directional vectors and an orange triangular surface. Both diagrams label directions X-North, Y-East, and Z-Down.]FIGURE 6 | Transformation of different coordinate systems. (a) Conversion of global coordinate, geo-stress coordinate and borehole coordinate; (b) conversion of global coordinate and bedding plane coordinate.
Taking the geo-stress coordinates as the reference, a series of coordinate transformations can yield the distribution of geo-stress around the wellbore in a rectangular coordinate system, as shown in Equation 7,
[image: Matrix equation with stress components on the left and right, involving angles alpha and beta. The matrix contains cosine and sine functions of these angles, multiplying stress variables.]
Defining shale as a linear elastíc transversely isotropic material the stress-strain relatíonship also adheres to Hooke's law. As shown in Figure 7, when the wellbore axis is perpendicular to the bedding planesby using the boldface characters to represent matricesthe constítutive equatíon for the shale is shown as Equation 8,
[image: A mathematical equation showing Hooke's Law: \(\varepsilon = \frac{\sigma}{E}\). Here, \(\varepsilon\) represents strain, \(\sigma\) is stress, and \(E\) is the modulus of elasticity or Young's modulus.]
[image: Two diagrams compare the orientation of an orange cylinder relative to a layered box. The left diagram shows the cylinder perpendicular to the layers. The right diagram shows the cylinder inclined with the layers.]FIGURE 7 | Diagram of angle between rock and bedding around wellbore.
In the equation, the compliance matrix A is shown in Equation 9,
[image: Matrix \( A \) is shown with several components related to elastic modulus \( E \), Poisson's ratio \( \nu \), and other parameters. There are \( 5 \times 5 \) entries, with terms such as \( 1/E_x \), \(-\nu/E_x\), and complex fractions involving \( E_l \), \( G_{l x} \), and \( 2(1+\nu_l) \).]
where [image: It seems you're referring to a mathematical expression, \(E_h\). The expression typically denotes energy or another variable with a subscript \(h\), used in scientific and mathematical contexts.], [image: The image shows the algebraic expression "v" with a subscript "h".] represent the elastic parameters along the transversely isotropic plane; [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: It seems there was an error in displaying the image. Please upload the image file again, and I'll assist you with generating the alternate text.] represents the elastic parameters perpendicular to the transversely isotropic plane. When there is an angle between the borehole axis and the bedding plane, the compliance matrix is B, expressed as shown in Equation 10,
[image: Please upload the image or provide a URL so I can generate the alternate text for you.]
In which, according to the operations of spatial vectors, the matrix Q is expressed as shown in Equation 11,
[image: Matrix equation labeled equation eleven. Elements include variables denoted as \(l_1, l_2, l_3, l_4, l_{1+2}\) and \(m_1, m_2\). The matrix is structured with these combinations: products \(m_1m_2\), and sums such as \(l_1 + l_1\), plus scaled terms like \(2l_1m_1\).]
In which, the expression of [image: Variables \( l_i, m_i, n_i \) are presented with \( i = 1, 2, 3 \).] are shown in Equation 12,
[image: Mathematical equations showing cosine relationships. First line: \( l_1 = \cos(x_b, x_{bp}) \), \( l_2 = \cos(x_b, y_{bp}) \), \( l_3 = \cos(x_b, z_{bp}) \). Second line: \( m_1 = \cos(y_b, x_{bp}) \), \( m_2 = \cos(y_b, y_{bp}) \), \( m_3 = \cos(y_b, z_{bp}) \). Third line: \( n_1 = \cos(z_b, x_{bp}) \), \( n_2 = \cos(z_b, y_{bp}) \), \( n_3 = \cos(z_b, z_{bp}) \). Equation number (12).]
3.2 Stress distribution around wellbore
The circumferential stress around the wellbore in laminated shale formations comprises two components: the stress concentration resulting from in situ stresses and the stress concentration due to material anisotropy. Applying the superposition principle, the analytical solution for the wellbore stress in shale, which accounts for the combined effect of these two components, is presented in Equation 13,
[image: Mathematical equations detailing a set of stress components including \(\sigma_x\), \(\sigma_y\), \(\tau_{xy}\), \(\tau_{xz}\), \(\tau_{yz}\), and a composite stress equation. These involve terms like \(\sigma_{0x}\), \(\sigma_{0y}\), \(\tau_{0xy}\), real and imaginary parts, and variables \(\psi\), \(\zeta\), and polynomial coefficients.]
In which, in the Cartesian coordinate system, [image: Mathematical notation displaying a stress tensor in vector form with components: sigma sub x, sigma sub y, sigma sub z, tau sub x y, tau sub x z, and tau sub y z, enclosed in square brackets.] are the stress tensor around the wellbore in laminated shale formations, MPa; [image: Matrix notation displaying stress components: sigma_x_i, sigma_y_i, sigma_z_i, tau_xy_i, tau_yz_i, tau_xz_i.] represent the stress components concentrated around the wellbore due to in situ stresses, MPa; [image: Mathematical expression for a stress tensor in three dimensions showing the components: sigma x sub a, sigma y sub a, sigma z sub a, tau xy sub a, tau yz sub a, tau xz sub a, enclosed in square brackets.] are the stress components concentrated around the wellbore due to rock anisotropy, MPa.
The stress component in the column coordinate system can be conveniently expressed around the borehole by converting the stress to the column coordinate system. When Equation 13 is converted to the column coordinate system, the stress around the borehole of the layered shale reservoir can be simplified as Equation 14,
[image: Equations display transformation formulas for stress in a rotated coordinate system. The formulas include expressions for normal stresses \(\sigma_r\), \(\sigma_{\theta}\), shear stresses \(\tau_{r\theta}\), \(\tau_{\theta z}\), \(\tau_{r z}\), and \(\sigma_z\). Elements include cosine and sine functions of angle \(\theta\), stress components \(\sigma_x\), \(\sigma_y\), \(\tau_{xy}\), \(\tau_{yz}\), and \(\tau_{xz}\).]
In which, [image: Mathematical notation of a stress tensor with components: sigma sub r, sigma sub theta, sigma sub z, tau sub r theta, tau sub theta z, tau sub r z.] are the stress tensor around wellbore wall in the column coordinate system, MPa.
3.3 Model solution
Most strength criteria are typically expressed in terms of principal stresses. For ease of calculation, it is necessary to convert the wellbore stresses into principal stress form, as shown in Equation 15,
[image: Equations showing stress components. Sigma one two equals open parenthesis sigma theta plus sigma alpha close parenthesis divided by two, plus or minus the square root of open parenthesis sigma theta plus sigma alpha close parenthesis squared, plus four times tau theta squared, divided by two, minus P sub p. Sigma three equals sigma r minus P sub p. Equation number fifteen.]
In which, Pp represents the pore pressure in MPa. By substituting the wellbore stress components from Equation 14 into Equation 15, the values of the principal stresses around the wellbore can be obtained.
According to uniaxial compressive strength experiments with different bedding angles, shale strength exhibits significant anisotropic characteristics. The PPW criterion better reveals the strength of shale with varying bedding angles. In this study, the JPW and PPW criteria are used as the discriminative criteria for the lower limit of the wellbore safe density window.
The analysis process is illustrated in Figure 8. By substituting the principal stresses around the wellbore into the selected criterion and employing an iterative method to solve them, the lower limit of the safe drilling fluid density window can be determined. This paper develops a computational program to calculate the lower limit of the safe density window for shale formations and investigates the influence of shale strength anisotropy and hydration time on the safe drilling fluid density window.
[image: Flowchart depicting the process for determining wellbore collapse pressure. It starts with sample preparation, followed by two parallel steps: samples dry or soaked in water for 24 or 48 hours. Next, a triaxial experiment and anisotropic strength criteria are applied. The flow continues with a wellbore stress model and determining strength parameters, culminating in wellbore collapse pressure analysis.]FIGURE 8 | The Flowchart for lower critical mud weight analysis.
3.4 Model validation
To ensure the accuracy of the computational results in this study, it is necessary to validate the reliability of the solution program developed herein. In isotropic formations, the analytical expression for the circumferential stress around a horizontal well drilled along the direction of the maximum horizontal in situ stress is given by Equation 16,
[image: Mathematical equation showing normal stress, sigma n, as sigma y plus sigma h minus two times the difference of sigma y and sigma h times cosine of two theta minus P sub w, labeled as equation sixteen.]
The parameters from Table 3 were substituted into the isotropic formation wellbore stress model (Equation 16) and the transversely isotropic wellbore stress calculation model (Equation 14). For the transversely isotropic formation, assuming Ev = 23.443 GPa and vv = 0.1999, the transversely isotropic material approximates isotropy. If the computational results from both models are consistent, the accuracy of the solution program developed in this study can be verified. The specific computational results are shown in Figure 9. As illustrated in Figure 9, when the rock’s elastic mechanical parameters approximate isotropy, the results from the transversely isotropic model established in this study exhibit excellent agreement with those from the isotropic formation, confirming the rationality of the computational outcomes from the developed program. By integrating parameters such as in situ stress, wellbore orientation, rock elastic properties, and rock anisotropic strength in the study area, the wellbore stability of the region can be analyzed using the Newton-Raphson iterative method.
TABLE 3 | In-situ stresses and mechanical properties for validation.
[image: Table displaying geological stress and material properties with six columns: Maximum horizontal in situ stress at 58.934 MPa, Minimum horizontal in situ stress at 41.076 MPa, Overburden stress at 63.745 MPa, Bottomhole pressure at 37.781 MPa, Elastic modulus of isotropic plane at 23.443 GPa, and Poisson's ratio of isotropic plane at 0.2.][image: Graph showing circumferential stress (MPa) versus circumferential angle (degrees) for isotropic and anisotropic models. Both models display sinusoidal patterns with peaks around 120 MPa and troughs at 40 MPa. The isotropic model is represented by blue lines, and the anisotropic model by red circles.]FIGURE 9 | The Flowchart for lower critical mud weight analysis.
4 RESULTS AND DISCUSSIONS
4.1 Influence of anisotropic strength on collapse pressure
To assess the influence of bedding plane orientation and anisotropic strength characteristics on the minimum required drilling fluid density, this study employed a transversely isotropic wellbore stability model developed through theoretical analysis. Three distinct failure criteria (MC, JPW, and PPW) were implemented to generate comparative polar plots illustrating safe density thresholds for various wellbore trajectories. The numerical simulations incorporated material properties and geological parameters detailed in Table 4, enabling systematic evaluation of anisotropic rock behavior under different directional drilling conditions.
TABLE 4 | Inputting parameters.
[image: Table displaying geological and mechanical parameters with values. Left column: Depth (5751 m), Vertical stress gradient (2.81 MPa/100 m), Largest horizontal stress gradient (2.65 MPa/100 m), Smallest horizontal stress gradient (1.74 MPa/100 m), Pore pressure gradient (1.58 MPa/100 m), Smallest horizontal stress azimuth (0° from N). Right column: Weak plane dip (0° from horizontal), Weak plane dip azimuth (0° from N), Transverse elasticity modulus (35.4 GPa), Vertical elasticity modulus (17.7 GPa), Transverse Poisson Ratio (0.25), Vertical Poisson Ratio (0.13).]By applying the cohesion and internal friction angle parameters derived from the JPW criterion (Table 2) to the Mohr-Coulomb model, the resultant minimum safe density polar plot is generated as illustrated in Figure 10. This visualization employs a chromatic progression from deep blue to purple to denote increasing collapse pressure magnitudes within the polar coordinate system. The azimuthal axis (0°–360°) indicates wellbore orientation relative to principal stress directions, with 0° orientation aligning with the σH direction and 90° corresponding to σh. The radial dimension quantifies wellbore inclination from vertical (0°) at the center to horizontal (90°) at the periphery, establishing a systematic visualization framework for directional drilling optimization.
[image: Polar plot with color gradients ranging from blue (1.3) to red (1.55). Radial lines indicate angles in degrees from 0 to 360, with concentric circles at intervals. A color bar on the right shows gradient values.]FIGURE 10 | Polar plot of lower critical mud weight predicted by MC criterion.
From Figure 10, it can be observed that neglecting the influence of bedding planes on shale strength, using the MC criterion predicts a distribution range of safe drilling fluid density window lower limits from 1.3 to 1.55 g/mL. The cloud map exhibits a symmetrical distribution along the directions of maximum and minimum horizontal stress. The safe drilling fluid density is lower in the direction of minimum horizontal stress, reaching its minimum value around a well deviation angle of 60°, which indicates optimal wellbore wall stability at this angle. Conversely, in the direction of maximum horizontal stress, particularly at high well deviation angles, the safe drilling fluid density is higher, suggesting a greater risk of wellbore instability. Therefore, it is advisable to avoid drilling along this trajectory whenever possible.
Integrating the petro-mechanical parameters from Tables 2, 3, the polar plot of lower critical mud weight can be predicted. Figure 11 demonstrates the JPW criterion-derived polar plot of lower critical mud weight, revealing an operational range of 1.5–2.3 g/cm3 across all wellbore configurations. The observed orthotropic symmetry in contour patterns - aligned with maximum horizontal stress and minimum horizontal stress axes while orthogonal to vertical stress, stems from the horizontally stratified formation’s structural fabric. This bedding-induced anisotropy elevates the critical fluid density threshold by 18%–22% compared to MC criterion predictions, highlighting the destabilizing effect of interlayer slippage along weak planes. Mechanistically, this necessitates enhanced hydrostatic pressure compensation through increased mud weight to counteract potential shear failure along bedding surfaces. Concurrently, the optimization trajectory shifts significantly under anisotropic conditions. Parametric analysis identifies a stability sweet spot near 45° inclination within ±15° of σH direction, where fluid density requirements reach minimal values (1.52–1.58 g/cm3). This optimal trajectory cluster demonstrates the critical balance between borehole orientation and formation weakness plane geometry, providing operational guidance for directional drilling in laminated formations.
[image: Polar plot displaying data with different colors representing values ranging from 1.5 to 2.3. The plot has concentric circles and radial lines labeled with degrees. A color gradient scale on the right shows the value ranges.]FIGURE 11 | Polar plot of lower critical mud weight predicted by JPW criterion.
Employing comparative analysis methodology, Figure 12 contrasts the PPW criterion’s predictive capacity against previously discussed failure models in borehole instability assessment. The computed stability threshold demonstrates a reduced critical density range (1.42–2.2 g/cm3) compared to JPW predictions, revealing divergence in magnitude while maintaining consistent trend alignment across wellbore orientations. This parametric discrepancy originates from the PPW criterion’s distinct treatment of bedding plane failure mechanisms, where reduced interfacial shear resistance lowers required mud weights despite similar trajectory-dependent behavior patterns. Mechanistically, the bedding-induced stress reorientation effect fundamentally redistributes collapse pressure concentrations, shifting optimal drilling alignment from minimum horizontal stress to maximum horizontal stress domains. This geo-mechanical response manifests as distinct failure envelopes in polar plots, characterized by 25%–30% pressure magnitude variations between anisotropic criteria versus isotropic assumptions. Notably, while bedding plane geometry dominates directional sensitivity, inter-criterion differences primarily affect absolute pressure values rather than distribution trends, a critical insight for operational prioritization in laminated reservoirs. Technical implications emerge in three aspects, anisotropy magnitude dictates required mud weight increments, stress trajectory optimization achieves 18%–22% density reduction through σH proximal drilling; criterion selection introduces ±7% uncertainty in collapse pressure estimates, necessitating laboratory-calibrated model validation for field applications.
[image: A polar plot displaying color-coded data gradients from blue at the center to red at the edges, with concentric circles and radial lines. The scale on the right ranges from 1.5 to 2.2.]FIGURE 12 | Polar plot of lower critical mud weight predicted by PPW criterion.
4.2 Influence of water on collapse pressure
Shale formations exhibit significant hydro-chemical sensitivity due to their stratified structure containing abundant clay minerals, including montmorillonite, illite, chlorite, and illite-montmorillonite interstratified minerals. The crystalline characteristics of these phyllosilicates drive spontaneous hydration reactions upon water contact, triggering volumetric expansion and microstructural damage through particle loosening and fracture initiation. This physicochemical process fundamentally alters formation integrity through dual mechanisms: elevated pore pressure generation and progressive degradation of mechanical parameters. Specifically, hydration effects manifest as 18%–22% reduction in elastic modulus, 25%–30% cohesion loss, 3°–5° decrease in internal friction angle, and 15%–20% increase in Poisson’s ratio, with time-dependent strength deterioration following logarithmic decay patterns. As demonstrated in Section 2.2, the PPW criterion outperforms the JPW model in predicting hydrated shale strength across variable moisture contents and bedding orientations. Utilizing the experimental parameters from Tables 2, 3, this study applies the PPW criterion to quantitatively analyze the temporal evolution of safe drilling fluid density thresholds. The hydration-dependent stability limits corresponding to 24-h and 48-h water immersion periods are systematically compared in Figures 13, 14, revealing critical time-sensitive patterns in wellbore integrity maintenance.
[image: Polar plot with concentric and radial grid lines displaying a heat map pattern from blue at the center to red at the edges. Numbers from zero to three hundred sixty mark the circumference. A color bar on the right indicates values ranging from one point six to two point two.]FIGURE 13 | The lower limit of the safe drilling fluid density window after the borehole was drilled 24 h.
[image: Polar plot with color gradients from blue to red, representing values from 1.7 to 2.3. Concentric circles and radial lines show angle measurements in degrees. Blue and red areas indicate lower and higher values, respectively.]FIGURE 14 | The lower limit of the safe drilling fluid density window after the borehole was drilled 48 h.
Figures 13, 14 reveal that shale hydration primarily alters the rock’s mechanical properties (cohesion and internal friction angle) while maintaining consistent horizontal bedding orientation. This preservation of structural alignment results in sustained symmetrical stress distribution patterns along the maximum and minimum horizontal stress axes. The drilling fluid density window shows progressive expansion with prolonged fluid-rock interaction, pre-contact conditions (Figure 12) indicate a stable density range of 1.42–2.2 g/mL; after 24-h exposure (Figure 13), the operational window shifts to 1.6–2.26 g/mL; following 48-h interaction (Figure 14), the required density increases to 1.7–2.3 g/mL. This temporal progression demonstrates a direct correlation between drilling fluid exposure duration and wellbore instability risks, with collapse pressure elevation averaging 0.28 g/mL over 48 h of shale hydration. The data underscores the critical importance of time-dependent rock-fluid interactions in wellbore stability calculations, particularly highlighting how hydration-induced mechanical degradation progressively compromises formation integrity.
Figure 15 quantifies the time-dependent evolution of the lower safe drilling fluid density window along different well trajectories, revealing distinct patterns in wellbore stability. Vertical and horizontal wells exhibit minimal sensitivity to drilling fluid exposure duration, whereas deviated wells demonstrate significant time-dependent instability. At 40° deviation, the critical mud weight increases by 0.154 g/mL after 24 h and 0.276 g/mL after 48 h compared to dry conditions, while at 20° deviation, a 0.279 g/mL elevation occurs between 24- and 48-h exposures. Although contact duration minimally affects the general trend of collapse pressure versus deviation angle, the lower density limit along the maximum horizontal stress direction follows a characteristic U-shaped curve, initially decreasing before rising with increasing deviation. Horizontal wells drilled along the minimum horizontal stress axis (Figure 16) display a sinusoidal azimuthal variation in lower critical mud weight, showing 23% greater sensitivity to fluid exposure time compared to those aligned with the maximum horizontal stress. This directional disparity highlights how stress orientation modulates hydration effects, with maximum horizontal stress alignment reducing azimuthal collapse pressure fluctuations by 18%. The findings collectively emphasize the critical interdependence between well trajectory geometry, stress field orientation, and time-dependent rock-fluid interactions in shale formation stability.
[image: Graph showing critical sand weight versus wellbore inclination in degrees. Three lines represent conditions: "Dry" in gray, "24h" in orange, and "48h" in blue. All lines dip between 30 to 45 degrees, with variations in depth and curvature, then rise towards 90 degrees.]FIGURE 15 | The lower limit of safe drilling fluid density for borehole drilled in maximum horizontal in situ stress direction with different inclinations.
[image: Line chart showing critical mud weight versus wellbore azimuth. Three lines represent different conditions: blue for "Dry," orange for "24h," and gray for "48h." Critical mud weight ranges from 1.85 to 2.35 g/cm³, fluctuating with wellbore azimuth from 0 to 360 degrees.]FIGURE 16 | Lower limit of safe drilling fluid density for horizontal well with different azimuths.
Through the research, the following measures can be implemented to enhance wellbore stability. Adjusting the angle between the wellbore axis and the normal to the bedding plane, i.e., drilling up dip along the bedding plane is more conducive to wellbore stability; enhancing sealing to reduce filtrate invasion into the formation; adding inhibitors to the drilling fluid to lower its activity; employing oil-based drilling fluids to suppress rock hydration.
5 CONCLUSION
Sustaining the stability of wellbore in unconventional shale plays presents significant technical challenges due to the inherent characteristics of well-bedded shale formations and their pervasive anisotropy, which exhibit mechanical properties consistent with transverse isotropy. Shales are also rich in clay minerals that undergo chemical reactions upon contact with water, leading to the expansion of mineral particles. To understand the mechanisms of wellbore instability in laminated shale formations and to clarify the effects of hydration time and bedding on shale strength and wellbore stability, this study conducted laboratory experiments to measure the strength of laminated shale under different hydration durations. The results were fitted using JPW and PPW criteria to determine rock strength parameters. Based on the transversely isotropic wellbore stress model, the study analyzed the effects of strength anisotropy and hydration time on wellbore collapse pressure. The research findings indicate that rock strength initially increases with increasing bedding dip angle β and then decreases. Within the range of β1 to β2, both JPW and PPW criteria predict shale strength effectively. However, when the bedding dip angle is below β1, JPW criteria overestimate shale strength, while PPW criteria still capture the trend of shale strength with bedding dip angle. Anisotropic strength caused by bedding significantly increases wellbore collapse pressure. The optimal well trajectory shifted from the direction of minimum horizontal stress to the direction of maximum horizontal stress, resulting in significant changes in the distribution characteristics of wellbore collapse pressure maps. Additionally, different criteria for strength anisotropy had a minimal impact on the variation trend of wellbore collapse pressure with well trajectory. Shale hydration can significantly affect wellbore stability and the lower safe drilling mud window, as the contact time between drilling fluid and formation rocks increases, the lower safe drilling fluid density window gradually increases. Vertical or horizontal wells are less affected by drilling fluid immersion time in terms of wellbore collapse pressure, whereas deviated wells are more significantly impacted. Compared to horizontal wells drilled in the direction of maximum horizontal stress, those drilled in the direction of minimum horizontal stress exhibit greater sensitivity of wellbore collapse pressure to drilling fluid contact time, resulting in a faster increase in collapse pressure. Future research should prioritize machine learning-driven dynamic risk assessment, nanomaterial-enhanced intelligent drilling fluids, multi-physics coupled wellbore instability prediction models, and real-time wellbore instability monitoring technologies. These advancements will shift wellbore stability management from passive mitigation to proactive prediction and intelligent control, ultimately enhancing safety, efficiency, and sustainability in oil and gas development.
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In this study, by merging mesoscopic damage mechanics, the probabilistic strength principle, and continuum mechanics, the visuals of columnar jointed basalts (CJBs) featuring various joint arrangement patterns are converted into inhomogeneous numerical models utilizing the digital visual analysis based on the digital image correlation (DIC)-enhanced rock failure process analysis (RFPA). The strength–deformation traits, rupture features, and energy progression trends of CJBs subjected to direct tension and indirect tension (Brazilian splitting) are explored and compared. The acoustic emission (AE) energy buildup linked to the specimen’s peak stress is defined as the micro-crack energy index (MCEI), and the impact of multiple factors on the MCEI is analyzed. A factor sensitivity analysis is conducted. The study reveals that compared to the Brazilian splitting condition (BSC), under the direct tensile condition (DTC), the tensile strength (TS) and equivalent deformation modulus (EDM) of specimens in directions I and II (perpendicular to the column axis) are higher. In the direction parallel to the column axis, compared to the DTC, the TS of the specimens under the BSC is lower at the column tilt angle β = 0°–60° and higher at β = 75°–90°. Under the BSC, damage and fracture occur on the joints and columns within a localized area along the longitudinal centerline of the specimen. Considering diverse influencing factors and compared to the DTC, the MCEI for β = 30° specimens appears at a later stage and exhibits a lower magnitude under the BSC. When subjected to the DTC, the sensitivity of the MCEI to diverse factors ranks, in decreasing order, as follows: joint strength, the secondary joint set, joint constitutive behavior, meso-rock strength, and the rock homogeneity index. However, under the BSC, the sensitivity of the MCEI to joint constitutive behavior is higher than that to the secondary joint set. These findings can function as an academic foundation for understanding the sequence of emergence and magnitude differences of MCEIs in CJBs under tensile conditions, thus providing a scientific basis for rock mass engineering monitoring, reinforcement, and operational maintenance.
Keywords: direct tension, Brazilian splitting, columnar jointed basalts, mechanical properties, failure mode, energy evolution

1 INTRODUCTION
Columnar joints comprise primary tensile fracture structures that develop in volcanic rocks, with those occurring in basalt being particularly well-preserved and typical (Xiao et al., 2023). Columnar jointed basalts (CJBs) or columnar jointed rock masses (CJRMs) are located in numerous areas on Earth, including Brazil, Japan, South Korea, the United States, the United Kingdom, China, Israel, and others (Gomes and Rodrigues, 2007; Alves et al., 2025; Yan et al., 2018; Fan et al., 2018; Xu et al., 2020; Lu et al., 2021). The field images related to CJBs are presented in Figure 1 (Vasseur and Wadsworth, 2019; Zhou et al., 2024). Currently, China’s large-scale hydropower projects are mainly concentrated in the mountainous and gorge regions in the southwest of the country, where Emeishan basalt is extensively spread. In particular, the tensile strength (TS) of rock is less than its compressive strength (CS), and the presence of columnar joints tends to weaken the TS of the rock mass, potentially leading to situations such as rock mass fracture and collapse. Under tensile conditions, CJBs typically undergo brittle failure, and their fracture patterns and deformation characteristics differ from those under other conditions. Therefore, conducting in-depth research on the mechanical traits, rupture patterns, and energy features of CJBs under tensile conditions can help better understand the laws governing their mechanical behaviors. This kind of research will enhance the design level, construction quality, and operational monitoring quality of rock mass engineering, which is of substantial importance for the development of the rock mass engineering field.
[image: (a) Rock formation with distinct hexagonal columns on a rugged surface. (b) Close-up of rock showing a cross-section marked with labels and irregular erosion patterns.]FIGURE 1 | On-site images of CJBs: (a) the CJBs at Tsumekizaki Izu, Japan (Vasseur and Wadsworth, 2019); (b) the CJBs at Changle, China (Zhou et al., 2024).
Currently, experimental tests in the laboratory and computational modeling studies regarding the mechanical traits of CJBs predominantly focus on their compressive mechanical features (Lin et al., 2017; Zhu et al., 2020; Que et al., 2020; 2024; Niu et al., 2020), while there is scant research on the tensile mechanical traits of CJBs (Xu et al., 2020; Zhu et al., 2023). Concerning indoor physical experiments, Lin et al. (2018) carried out a series of uniaxial compression tests to examine the strength and deformation modulus of CJBs, taking into account different column inclination angles and specimen heights. Lu et al. (2021) implemented uniaxial compression experiments to ascertain the anisotropic properties and failure mechanisms of CJBs. Que et al. (2021) executed uniaxial compression experiments on samples of CJBs with quadrilateral, pentagonal, and hexagonal column cross-sections to analyze their mechanical behaviors. Subsequently, a comparative study was carried out on the strength and deformation anisotropies among these samples. Regarding numerical simulation, Yan et al. (2018) utilized the FLAC3D numerical software application to mimic the mechanical behaviors of CJBs under various column dip angles and stress conditions. They suggested that as the confining pressure increases, the mechanical anisotropy of the CJBs decreases. Zhou et al. (2024) used MATLAB to generate stochastic models of irregular CJBs and then employed 3DEC software application to perform numerical simulations analyzing the size effects of irregular CJBs under compression. Hu et al. (2017) conducted borehole core sampling at the construction site and obtained basalt rock samples containing primary hidden cracks. They carried out uniaxial compression tests in the laboratory and simultaneously collected acoustic emission (AE) information during the deformation and failure process of the basalt rock samples. Wang et al. (2022b), Wang et al. (2022c), and Wang et al. (2023a) employed the rock failure process analysis (RFPA) numerical technique to scrutinize the influences of multiple variables on the mechanical size effect, anisotropy, and fracture mechanisms of CJBs under compressive conditions. The abovementioned research studies mainly examined the mechanical features of CJBs under compressive scenarios, such as their bearing capacity, stress distribution, and failure modes. However, due to the unique structural characteristics of CJBs, mere compressive mechanics research is inadequate to fully elucidate their mechanical properties. In comparison, the study on tensile mechanical properties can further emphasize the vulnerability of CJBs under tensile conditions.
At the engineering site involving CJBs, as excavation operations progress, the stress state within the rock mass gradually changes, particularly with notable unloading effects occurring in rock masses that were originally at higher stress levels. Unloading results in rapid stress discharge within the rock mass, gradual opening of joints, and the formation of localized tensile stress zones. In these zones, the tensile strength of the rock mass cannot withstand the tensile stresses, leading to relaxation, crack extension, and even localized breakdown of the rock mass. Researchers (Jiang et al., 2013; Fan et al., 2018; Xiang et al., 2021; Zhang J. C. et al., 2021) have conducted field investigations, field monitoring, or real-time monitoring for engineering projects involving CJBs. Jiang et al. (2013) performed field investigations and test research on the anisotropic characteristics of CJBs, revealing the anisotropic behavior in strength and deformation of the CJBs in the directions perpendicular and parallel to the column axis. Through field investigations and in situ testing, Fan et al. (2018) found that the relaxation depth of CJBs is related to geo-stress, rock mass quality, and shear zones and that the time impact of unloading loosening in CJBs is evident. Xiang et al. (2021) utilized the AE method to detect in situ blasting signals in CJB tunnels. They proposed that the rock mass can be categorized into three zones, namely, a strongly relaxed zone characterized by numerous AE occurrences and rapid rock distortion, a weakly relaxed zone with moderate rock deformation response, and an undisturbed zone with virtually no AE events. In the test cave at the dam site of Baihetan Hydropower Station, Shi et al. (2020) successfully obtained six in situ basalt rock samples sized 50 cm × 50 cm × 100 cm and carried out in situ true triaxial tests. Zhang Q. L. et al. (2021) conducted ultrasonic P-wave assessments to examine the excavation damage zone in CJBs on a dam foundation. They believed that the unloading loosening of CJBs is chiefly triggered by the time-dependent tensile cracking of joints subjected to tensile stress during the excavation process. The tensile mechanical properties of CJBs hold significant research value as localized tensile stress concentrations often serve as critical triggers for rock mass structural instability, directly impacting the overall stability and safety of engineering endeavors.
Therefore, based on mesoscopic damage mechanics, probabilistic strength theory, and continuum mechanics, the digital visual treatment is utilized via the digital image correlation (DIC)-enhanced RFPA to convert visual representations of CJBs into inhomogeneous numerical calculation models. Numerical tests on CJBs under the direct tensile condition (DTC) and Brazilian splitting condition (BSC) are then carried out. The strength–deformation traits and fracture features of CJBs are displayed, and the energy progression laws are examined. The cumulative AE energy that matches the sample peak stress is determined as the micro-crack energy index (MCEI), and then the impacts of multiple variables (including the direction perpendicular to the column axis, the column tilt angle, joint constitutive behavior, joint strength, rock homogeneity, meso-rock strength, and the secondary joint sets) on the MCEI are explored. A sensitivity analysis of factors is carried out.
2 METHODOLOGY
2.1 Reasoning behind the upgraded RFPA featuring DIC
Simulating fracture propagation evolution without assuming when and where additional fissures will arise and how they will expand and interconnect with each other is where the RFPA approach truly excels (Liang et al., 2019a; Liang et al., 2019b; Tang and Kou, 1998; Gong et al., 2019; Gong et al., 2022). Several common numerical tests (Tang et al., 2001; Xu et al., 2013) have also been used to evaluate the effectiveness and credibility of the RFPA code. Additionally, jointed rock mass security evaluation (Li et al., 2009; Liu et al., 2017; Gong et al., 2025a) and studies on scale effects (Wang et al., 2023a; 2023b; Wang et al., 2024) and anisotropy (Wang et al., 2022b; 2022d; Yang et al., 2015; Feng et al., 2022; Gong et al., 2024a) have all extensively utilized the RFPA technique. Integrating the RFPA method with DIC augments its capacity for modeling. It is evident that RFPA is improved by incorporating features such as picture input, gray threshold segmentation, and pixel analysis. By turning the information in the visualization into vectorized details requisite for modeling, a digital representation can be rendered as a non-uniform finite element mesh system. Precisely, a digital representation is composed of square pixels. Before being introduced into the DIC-enhanced RFPA, the grayscale value scale for every pixel in the digital image (original image) is from 0 to 255 (where the grayscale value of black is 0, that of white is 255, and that of other colors lies within these two). Afterward, being loaded into the DIC-enhanced RFPA, pixels in the digital representation are grouped as joint material or rock material via threshold division of their grayscale values, thereby assigning corresponding material parameters. Upon the original image being inputted into the DIC-enhanced RFPA, this digital visualization has a specific thickness, allowing every pixel to be regarded as a finite element mesh in three-dimensional space. By converting the vertex positions of each pixel into associated vector space points, each pixel is endowed with its respective side length and thickness.
Lattice element modeling has been widely applied in numerical simulations of cemented geomaterials to capture discontinuous fracture mechanics (Rizvi et al., 2020). According to the aforementioned methodology, the converted heterogeneous finite element mesh models are shown in Figure 2. In these non-uniform numerical models, the elastic moduli (or strengths) among contiguous meso-elements (MEs) are not identical, commonly adhering to a stated statistical spread such as the Weibull spread, consequently taking account of heterogeneity inherent in joints and rocks. The Weibull spread was described by Tang and Kou (1998), Tang et al. (2015), and Tang et al. (2020) in the form of Equation 1.
[image: Mathematical formula representing a function \( f(u) \). It defines \( f(u) \) as \(\frac{m}{u_0} \left(\frac{u}{u_0}\right)^{m-1} \exp\left(-\left(\frac{u}{u_0}\right)^m\right)\), where \( m \) and \( u_0 \) are parameters and \(\exp\) denotes the exponential function.]
[image: Two diagrams illustrate different elastic modulus calculations. Diagram (a) shows a hexagonal grid progressing from a black and white pattern to a color-coded elastic modulus chart, with a focus on a single cell. Diagram (b) displays a circular grid undergoing a similar transformation. Both diagrams include colored scales indicating modulus values from low to high.]FIGURE 2 | Illustrative diagram showing the conversion of digital visuals into an inhomogeneous finite element mesh model: (a) the square specimen of CJBs under the direct tensile condition; (b) the Brazilian disc specimen of CJBs under the indirect tension condition (Brazilian splitting).
where u embodies the varied mechanical attributes of individual elements, comprising Poisson’s ratio, compressive strength, or elastic modulus; u0 is the matching average result of the elements for the sample; and m, recognized as the homogeneity indicator, governs the shape of f(u) and reflects the extent of homogeneity. Usually, an elevated m signifies a larger homogeneity.
The number of AEs and their associated energy in the DIC-enhanced RFPA code are proportional to the amount of damaged elements. Figure 3 illustrates the computation scheme of the DIC-enhanced RFPA technique. For a more detailed explanation of the DIC-enhanced RFPA approach, please refer to Gong et al. (2025b); Gong et al. (2024b); Liu et al. (2022); and Lang et al. (2022).
[image: Flowchart illustrating a process for analyzing columnar jointed basalts. It begins with importing and digitally correlating an image, establishing a model, setting boundary conditions, and applying a load. Incremental displacement loading and formation of stiffness matrices follow. The linear elastic finite element method is used for calculation. It assesses element phase transition and transformation criteria. If damage occurs or maximum loading is reached, the process ends.]FIGURE 3 | Computation scheme plot of the DIC-enhanced RFPA approach.
2.2 Numerical modeling validation
In this section, the computational modeling approach used in this study is validated through the direct tensile physical test conducted by Liu Z. L. et al. (2021) and the indirect tensile (Brazilian splitting) physical test performed by Liu E. et al. (2021).
Liu Z. L. et al. (2021) carried out direct tensile experiments using red–brown sandstone samples with pre-existing fractures. The samples were cylindrical, with a diameter of 50 mm and a height of 100 mm. A small circular hole with a diameter of 2 mm was drilled at the geometric core of each sample, and a crack measuring 1 mm in width and 24 mm in length was cut symmetrically from the edge of the hole. The tilt angles of the crack are 0°, 15°, 30°, 45°, 60°, 75°, and 90°. The specimen and metal cap were embedded into a tensile–compression conversion device, and they were rotated to a specific extent to prevent eccentric tensile forces throughout the experiment. Direct tensile experiments were performed utilizing the MTS815 hydraulic servo testing apparatus. In this setup, the actuator moved upward to exert compressive stress on the tensile–compression conversion device, which then transferred the compressive stress to the upper end of the sample to impose tensile stress. Before the experiment commenced, a contact load of 0.2 kN was first imposed on the sample, and then loading was carried out at a displacement rate of 0.002 mm/s.
Liu E. et al. (2021) conducted Brazilian splitting experiments using red sandstone samples possessing pre-existing fissures. The geometric dimensions of the specimens were a disk diameter of 50 mm and a thickness of 25 mm. The pre-existing fracture at the center of the specimen was created using water jet cutting. The length of the fracture was 15 mm, the width was 1 mm, and the tilt angles were 0°, 30°, 45°, 60°, and 90°, respectively. For comparison, they also conducted a Brazilian splitting test on the specimen without pre-existing fractures. The experimental equipment used was the RMT-150 testing machine.
The specimen dimensions used for direct tensile numerical verification in this section are 50 mm in width and 100 mm in height. The size parameters of the pre-existing fractures within the specimens are consistent with the physical experiments conducted by Liu Z. L. et al. (2021). Using the DIC-enhanced RFPA, the digital visuals are converted into non-uniform numerical models. The material parameters for these models are taken from Table 1, which references relevant literature on rock specimens (Liu Z. L. et al., 2021). The boundary situation of the entities is plane strain (with displacement constraints implemented on both surfaces in the thickness direction of the sample). Displacement-controlled loading is employed in the computational tests, involving a loading augmentation of 0.0025 mm per step, and the displacement load is gradually imposed until failure occurs in the sample.
TABLE 1 | Rock mechanical parameter values for specimens used in the verification of computational modeling under the direct tension condition.
[image: Table displaying properties of rock material: homogeneity index of 7, elastic modulus of 50 gigapascals, average uniaxial tensile strength of 7.6 megapascals, average uniaxial compressive strength of 76 megapascals, Poisson's ratio of 0.22, friction angle of 34 degrees, and a residual strength coefficient of 0.1.]The Brazilian disc specimens used for numerical validation in this section have a diameter of 50 mm. The size parameters of the pre-formed fissures within the specimens are consistent with those used in the physical experiments performed by Liu E. et al. (2021); specifically, the pre-formed fissure length is 15 mm and the width is 1 mm. Employing the DIC-enhanced RFPA, the digital visuals are converted into non-uniform numerical models, with material parameters matching those listed in Table 2, which references relevant literature on rock specimens (Liu E. et al., 2021). The blank area inside the numerical model is composed of meso-scale air elements with extremely low elastic modulus. Under the conditions of small deformation or small displacement, these meso-scale air elements have little impact on the results of the numerical tests (Liang et al., 2019a; 2019b; Tang and Tou, 1998; Liu et al., 2022; Lang et al., 2022). The model’s boundary condition remains as plane strain. Displacement-controlled loading is utilized, with a loading increment of 0.00085 mm per step. The displacement load is implemented step by step till the sample breaks.
TABLE 2 | Rock mechanical parameter values for specimens used in the verification of computational modeling under the Brazilian splitting condition.
[image: Table displaying material properties of rock, including homogeneity index (8), elastic modulus (55 GPa), average uniaxial tensile strength (9.6 MPa), average uniaxial compressive strength (96 MPa), Poisson's ratio (0.21), friction angle (39 degrees), and residual strength coefficient (0.4).]A contrast of the sample strengths and rupture features between computational tests and laboratory-based physical experiments is illustrated in Figure 4. As shown in Figure 4a, with increasing joint dip angle, the strengths of both the physical and numerical specimens generally display a trend of initially decreasing sharply, followed by a more gradual decline. The root-mean-square error (RMSE) is 0.096, indicating that the difference in strength between the physical and numerical specimens is very small. Figure 4b reveals that the strengths of both the physical and numerical specimens show a trend of decreasing sharply, then gradually, and finally increasing. The RMSE is 0.159, which implies that the difference in strength between the physical and numerical specimens is small. The main reason for the strength difference between the physical and numerical specimens is that there are certain discrepancies between the mineral distribution of the physical specimens and the heterogeneous distribution of the meso-rock grid of the numerical specimens. The numerical test outcomes are in fairly satisfactory conformity with the laboratory physical experiment outcomes in Figures 4c, d, proving the rather high validity of the computational simulation method used in this study.
[image: Four panels labeled (a) to (d) depict experimental and numerical analyses. Panel (a) shows graphs with curves illustrating experimental results under different conditions. Panel (b) presents graphs comparing experimental and numerical results with joint dip angle variations. Panel (c) consists of a series of colored contour maps indicating stress distributions. Panel (d) features nine sub-images combining real and simulated fracture patterns, highlighting comparisons between experimental results and simulations, including stress intensity. Color scales accompany maps for reference.]FIGURE 4 | Comparison between the laboratory-based physical experimental outcomes and computational test findings under tension conditions: (a, c) the sample strengths and failure modes from Liu Z. L. et al. (2021) and this study under the direct tension condition; (b, d) the sample strengths and failure manifestations in Liu (E) et al. (2021) and this study under the indirect tension condition (Brazilian splitting).
2.3 Numerical configuration
In actual engineering, the mechanical traits and energy responses of CJBs located in different geological zones or at different engineering stages (for instance, design, construction, and long-term operation) under tensile conditions may be affected by many factors. By conducting research on the tensile strength and deformation features, stress–strain curves, fracture modes, and energy evolution principles of CJBs, the MCEIs and their contributing factors can be additionally investigated. With regard to the emerging order and extent of micro-cracks, a calculation formula for energy trait sensitivity in the tensile state of CJBs can be constructed, and the sensitivity of factors influencing MCEIs can be analyzed using this formula. This body of research provides valuable insights into the energy responses of CJBs, thus offering a scientific foundation for project monitoring related to CJBs. This holds considerable scientific significance and practical importance. Hence, the corresponding model settings and parameters for CJBs are established in this section.
The model setups and parameter specifications for CJBs are presented in Table 3. Tensile conditions are divided into direct tension and indirect tension (Brazilian splitting). Regarding the directions orthogonal to the column axis, two typical cross-sectional cases, namely, I and II, are considered. Concerning the direction parallel to the column axis, the column angles β are considered to be 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Figure 5a presents the illustrative diagram of the mechanical constitutive behaviors of joints with diverse compressive remnant strength coefficients (CRSCs). The CRSCs of the MEs of joints are regarded as 0.1, 0.5, 0.75, and 1, which demonstrate the shift in the MEs’ constitutive traits of the joints from brittle to ductile under compression. Figure 5b displays the illustrative diagram of the mechanical characteristics of joints with different strengths. The average uniaxial tensile strengths (AUTSs) of the MEs for joints are taken as 2 MPa, 3 MPa, 4 MPa, 5 MPa, and 6 MPa. When the ratio of CS to TS is 10, the corresponding average uniaxial compressive strengths (AUCSs) of the MEs for joints are 20 MPa, 30 MPa, 40 MPa, 50 MPa, and 60 MPa, respectively. Cyclic heating effects have been observed to impact subsurface material stability (Ahmad et al., 2021; 2025), which is one of the reasons for the changes in the strength of joints and meso-rocks. Figure 5c depicts the illustrative diagram of the mechanical characteristics of meso-rock elements with various strengths. The AUTSs of the meso-rock elements are taken as 10 MPa, 12 MPa, 16 MPa, 20 MPa, and 24 MPa. When the ratio of CS to TS is 10, the corresponding AUCSs of the meso-rock elements are 100 MPa, 120 MPa, 160 MPa, 200 MPa, and 240 MPa, respectively. The illustrative diagrams of the model boundary conditions, loading settings, and joint settings for the numerical samples of CJBs are shown in Figures 6a–d. The boundary condition of the rock mass (model boundary condition) is set as a plane strain condition, where displacement restrictions are applied to both surfaces in the thickness direction of the sample. The homogeneity index of the MEs for joints is set to 5. According to some studies (Lin et al., 2018; Xu et al., 2020; Wang et al., 2022b; 2022c; 2023a), there are differences in rock heterogeneity among CJBs in various regions. Therefore, four scenarios of rock homogeneity indexes (RHIs) are considered in this study: 5, 10, 20, and 200. The distribution of mechanical traits of meso-rocks within numerical specimens owning diverse rock homogeneity indexes (taking the elastic modulus of meso-rocks as an example) is displayed in Figure 7.
TABLE 3 | Calculation configurations and parameter values for CJBs.
[image: A table comparing numerical tests on CJBs with calculation condition settings and parameter values. It includes tensile conditions, model sizes, column diameters, tilt angles, homogeneity indices, and indices for meso-elements and rock elements. Constraints and secondary joint set statuses are also detailed.][image: Graphical representation of stress-strain behavior in three panels (a, b, c). Panel (a) shows tensile residual strength coefficients. Panel (b) depicts varying tensile and compressive residual strengths for different materials. Panel (c) illustrates compressive strengths related to tensile strengths. Each panel includes specific labels for coefficients and material strengths, visually distinguished by colored lines representing different values and coefficients.]FIGURE 5 | (a) Mechanical constitutive behaviors of meso-elements for joints with different compressive residual strength coefficients (CRSCs); (b) mechanical characteristics of MEs for joints with different strengths; (c) mechanical characteristics of meso-rocks with various strengths.
[image: Diagram illustrating stress conditions with sections (a) and (b) showing tension in column axes through arrows and hexagonal patterns. Sections (c) and (d) depict direct and indirect tension conditions, labeled as "Brazilian splitting," with diagrams highlighting effects of direction and joint sets.]FIGURE 6 | Schematic diagrams of model boundary conditions, loading setups, and joint settings for numerical specimens of CJBs: (a) the direct tensile condition; (b) the Brazilian splitting condition; (c) directions I and II perpendicular to the column axis; (d) specimens without and with the secondary joint set in the direction parallel to the column axis.
[image: Diagram showing a schematic with ground stress and a close-up of a fracture. Below are four colorful charts labeled Rock homogeneity index 5, 10, 20, and 200, depicting different stress distributions with varying homogeneity.]FIGURE 7 | Distribution of mechanical traits of meso-rocks within numerical specimens having diverse rock homogeneity indexes (taking the elastic modulus of meso-rocks as an example).
Using the digital image analysis technology based on the DIC-enhanced RFPA, the digital visuals of the CJBs are converted into heterogeneous numerical models, showing their local characteristics as shown in Figure 2 and Figure 7. If the resolution of the digital visuals contains 780 × 780 pixels, the number of elements in the converted computational model equals 608,400. The material properties for the meso-rocks and joints in the computational model are sourced from appropriate studies (Jiang et al., 2013; Hu et al., 2017; Fan et al., 2018; Zhang J. C. et al., 2021; Wang et al., 2023b; 2024), with the precise specifications described in Table 4. In the direct tensile computational tests, a vertical displacement load is applied to the top of each model. The proportion of the displacement exerted in each step to the original lateral side length of the model equals 0.000017. The displacement load is progressively imparted until failure occurs in the sample. During the Brazilian splitting numerical test, a vertical displacement load is applied to the top of each model, with the ratio of the displacement imparted in each step to the original diameter of the Brazilian disc being 0.000017. The displacement load is applied incrementally until the sample fails.
TABLE 4 | Mechanical property values of the joint and rock of CJBs in computational tests.
[image: Table comparing properties of joint and rock materials. Includes columns for material type, homogeneity index, elastic modulus, AUTS of meso-elements, AUCS ratio, Poisson’s ratio, friction angle, and residual strength coefficient. Joint has values 5, 15 GPa, ratios 0.25, and friction angle 36, whereas rock has 5–200, 60 GPa, 0.2 ratio, and angle 56.15.]3 RESULTS AND ANALYSIS
3.1 Effect of diverse variables on the mechanical traits of CJBs under direct and indirect tensile conditions
For the CJBs along the direction orthogonal to the column axis, Figures 8a, b present the comparisons of the strength and deformation characteristics of the samples under the conditions of direct tension and Brazilian splitting. As illustrated in Figure 8a, under the direct tensile condition, the TSs of the specimens in directions I and II perpendicular to the column axis are both greater than those under the Brazilian splitting condition, with ratios of 1.15 and 1.01, respectively. The abovementioned results are because, under the direct tensile condition, the sample strength is controlled by the TS of multiple joints within the specimen, whereas under the Brazilian splitting condition, the sample strength is primarily influenced by the TS of localized joints within the specimen. Referring to Figure 8b, it can be observed that the equivalent deformation moduli (EDMs) of the specimens in directions I and II perpendicular to the column axis subjected to the direct tensile condition are both greater than those under the Brazilian splitting condition, with ratios of 3.46 and 2.88, respectively. The above circumstances are due to the relatively rapid increase in stress within the specimens during direct tensile testing compared to the slower increase in stress during Brazilian splitting testing (Li et al., 2009; Huang et al., 2021).
[image: A series of bar graphs labeled from (a) to (n) display various experimental results related to tensile strength and rock characteristics. Each graph compares values for different variables such as column dip angle, rock homogeneity index, and absence or presence of secondary joint sets. Blue, pink, and red bars represent direct tension, indirect tension, and Brazilian splitting methods, respectively, with specific numerical values indicated on each bar. The graphs aim to illustrate the impact of these factors on tensile strength and cohesion in geological samples.]FIGURE 8 | Influence of various factors on the TSs and equivalent deformation moduli (EDMs) of CJBs under direct and indirect tensile situations: (a, b) specimens for the direction perpendicular to the column axis; (c, d) samples with varied column tilt angles for the direction parallel to the column axis; (e, f) samples with various mechanical constitutive behaviors of joints; (g, h) specimens possessing diverse joint strengths; (i, j) specimens having varied rock homogeneity indexes; (k, l) specimens with different meso-rock strengths; ((m, n) samples without and with the secondary joint set.
Regarding the CJBs in the direction parallel to the column axis, Figures 8c, d display the comparisons of strength and deformation traits of the specimens in direct tension and Brazilian splitting conditions, respectively. From Figure 8c, the following phenomena can be noticed: ① under the direct tensile condition, the TS of the specimen first decreases and then exhibits a gradual variation as the column tilt angle augments. In contrast, under the Brazilian splitting condition, the TS of the specimen initially decreases and then increases. ② Under the direct tensile condition, the minimum and maximum TSs of the samples occur at β = 60° and β = 0°, respectively, whereas under the Brazilian splitting condition, the minimum and maximum TSs of the specimens occur at β = 30° and β = 90°, respectively. ③ At the positions of β = 0°, β = 15°, β = 30°, β = 45°, β = 60°, β = 75°, and β = 90°, the ratios of TSs under the direct tensile condition to those under the Brazilian splitting condition are 1.40, 1.76, 1.71, 1.33, 1.10, 0.89, and 0.70, respectively. The abovementioned results indicate that there are notable differences in the TS variation pattern as the column dip angle increases and in the locations of the minimum and maximum values between the direct tensile and Brazilian splitting conditions. Furthermore, there is a certain level of discrepancy in the magnitude of sample strength under these two loading conditions, which depends on the column angle (Figure 11 displays the failure modes and stress distributions of the samples with different column dip angles under direct tensile and Brazilian splitting conditions). From Figure 8d, it can be noticed that ① under the direct tensile condition, the EDM of the sample usually shows a trend of initially decreasing and then gradually stabilizing as the column tilt angle increases, whereas under the Brazilian splitting condition, the EDM of the specimen exhibits a pattern of first decreasing and then gradually increasing. ② For both the direct tensile and Brazilian splitting conditions, the minimum and maximum EDMs of the samples occur at β = 60° and β = 0°, respectively. ③ At the positions of β = 0°, β = 15°, β = 30°, β = 45°, β = 60°, β = 75°, and β = 90°, the ratios of tensile EDMs under the direct tensile condition to those under the Brazilian splitting condition are 3.15, 3.29, 3.21, 3.22, 2.97, 3.04, and 2.89, respectively. The abovementioned observations suggest that for both the direct tensile and Brazilian splitting conditions, the trends in specimen EDMs with increasing column dip angle are relatively similar. The minimum and maximum EDM values occur at the same dip angles for both loading conditions, but there is a notable difference in the magnitude of EDMs between the specimens.
Figures 8e, f display the comparisons of the strength and deformation traits of samples with β = 30° and varied joint constitutive models under direct tensile and Brazilian splitting conditions. According to Figure 8e, under the direct tensile condition, the TSs of specimens with different joint constitutive models are all greater than those under the Brazilian splitting condition. The ratios of the TSs under the direct tensile condition to those under the Brazilian splitting condition are 1.55 (for the CRSC 0.1 of the MEs of joints), 1.57 (for the CRSC 0.5), 1.64 (for the CRSC 0.75), and 1.71 (for the CRSC 1), respectively. As presented in Figure 8f, the EDMs of samples with diverse joint constitutive models under the direct tensile condition are all greater than those under the Brazilian splitting condition. The ratios of the EDMs under the direct tensile condition to those under the Brazilian splitting condition are 3.41 (for the CRSC 0.1 of the MEs of joints), 3.41 (for the CRSC 0.5), 3.27 (for the CRSC 0.75), and 3.21 (for the CRSC 1), respectively. The abovementioned results demonstrate that for specimens with different joint constitutive models, both TSs and EDMs under the direct tensile condition are greater than those under the Brazilian splitting condition. Under the direct tensile condition, the specimen with β = 30° is subjected to overall loading. If the compressive constitutive behavior of the MEs for joints tends to be plastic, the cooperative bearing capacity of both the joints and the meso-rocks is higher. Consequently, the TSs of the specimens are higher, and the stress increases significantly more rapidly. Under the Brazilian splitting condition, the specimen with β = 30° is primarily subjected to localized forces (within a partial area around the vertical centerline of the specimen). The influence of the compressive constitutive behavior of the MEs for joints on the mechanical properties of the specimen is relatively limited.
Figures 8g, h illustrate the comparisons of the strength and deformation traits of specimens possessing various ME strengths of joints under the direct tensile and Brazilian splitting conditions. As observed in Figure 8g, under the direct tensile condition, the TSs of specimens with diverse ME strengths of joints are all greater than those under the Brazilian splitting condition. The ratios of the TSs in the direct tensile to Brazilian splitting conditions are 1.83 (AUTS 2 MPa of MEs of joints), 1.71 (AUTS 3 MPa), 1.40 (AUTS 4 MPa), 1.18 (AUTS 5 MPa), and 1.02 (AUTS 6 MPa), respectively. Figure 8h shows that the EDMs of specimens with varied joint strengths under the direct tensile condition are all greater than those under the Brazilian splitting condition. The ratios of the EDMs under the direct tensile to Brazilian splitting conditions are 3.36 (AUTS 2 MPa of MEs of joints), 3.21 (AUTS 3 MPa), 3.11 (AUTS 4 MPa), 3.16 (AUTS 5 MPa), and 3.18 (AUTS 6 MPa), respectively. These findings imply that in the process of joint strength augmentation, the proportion of sample TSs under the direct tensile to Brazilian splitting conditions decreases, while the ratio of specimen EDMs may increase. This is because the increase in joint strength significantly raises the difficulty of specimen failure along the joints under the Brazilian splitting condition but makes it slightly more prone to meso-rock damage near the joints (Hao et al., 2020; Cen et al., 2020).
Figures 8i, j show the comparisons of the strength and deformation traits of samples featuring diverse degrees of rock homogeneity under the direct tensile and Brazilian splitting conditions. Figure 8i shows that the TSs of specimens with different degrees of rock homogeneity under the direct tensile condition are all greater than those under the Brazilian splitting condition. The ratios of the TSs under the direct tensile to Brazilian splitting conditions are 1.71 (RHI 5), 1.80 (RHI 10), 1.82 (RHI 20), and 1.85 (RHI 200), respectively. Figure 8j reveals that the EDMs of specimens with varying degrees of rock homogeneity under the direct tensile condition are all greater than those under the Brazilian splitting condition. The ratios of the EDMs under the direct tensile to Brazilian splitting conditions are 3.21 (RHI 5), 3.37 (RHI 10), 3.41 (RHI 20), and 3.46 (RHI 200), respectively. The abovementioned observations suggest that as the degree of rock homogeneity increases, the differences in mechanical properties of specimens between direct tensile and Brazilian splitting conditions tend to enlarge. Compared to the locally loaded Brazilian splitting test, the overall stress distribution in specimens under direct tensile conditions is more pronounced. An increase in rock homogeneity can improve the TS and deformation resistance of each column within the specimen to a certain extent.
Figures 8k, l present the comparisons of the strength and deformation traits of samples with different meso-rock strengths under the direct tensile and Brazilian splitting conditions. As displayed in Figure 8k, the TSs of specimens with diverse meso-rock strengths under the direct tensile condition are all greater than those under the Brazilian splitting condition. The ratios of TSs under direct tensile to Brazilian splitting conditions are 1.51 (AUTS 10 MPa of MEs of rock), 1.71 (AUTS 12 MPa), 2.09 (AUTS 16 MPa), 1.79 (AUTS 20 MPa), and 1.79 (AUTS 24 MPa), respectively. As depicted in Figure 8l, the EDMs of specimens with various meso-rock strengths under the direct tensile condition are all greater than those under the Brazilian splitting condition. The ratios of EDMs under the direct tensile to Brazilian splitting conditions are 3.45 (AUTS 10 MPa of MEs of rock), 3.21 (AUTS 12 MPa), 3.49 (AUTS 16 MPa), 3.17 (AUTS 20 MPa), and 3.18 (AUTS 24 MPa), respectively. The abovementioned phenomena indicate that as the meso-rock strength increases, the TS and EDM ratios for specimens under direct tensile and Brazilian splitting conditions do not monotonously increase or decrease. This is because the growth in meso-rock strength can enhance the TS of each column within the specimen under the direct tensile condition, thereby increasing the TS of the specimen. However, the coordinated deformation resistance between the columns and joints within the specimen may be weakened. The elevation of meso-rock strength under Brazilian splitting condition may lead to further stress transfer to the joint locations within the localized areas along the vertical centerline of the specimen, promoting joint damage (Zhang et al., 2022; Li et al., 2009). Consequently, the TS and EDM of the specimen may decrease.
Figures 8m, n illustrate the comparisons of strength and deformation traits of samples with the varied statuses of the secondary joint set in the direct tension and Brazilian splitting conditions. According to Figure 8m, under the direct tension condition, the TSs of specimens with diverse statuses of the secondary joint set are greater than those under the Brazilian splitting condition. The ratios of the TSs under direct tension to Brazilian splitting conditions are 1.71 (without the secondary joint set) and 1.48 (with the secondary joint set). Referring to Figure 8n, it can be noticed that the EDMs of specimens with various statuses of the secondary joint set in the direct tension condition are greater than those in the Brazilian splitting condition. The ratios of the EDMs under direct tension to Brazilian splitting conditions are 3.21 (without the secondary joint set) and 3.38 (with the secondary joint set). The abovementioned findings suggest that the presence of the secondary joint set results in a reduction in the TS ratio between direct tension and Brazilian splitting conditions while increasing the EDM ratio between these two conditions. This is because the presence of the secondary joint set can lead to easier damage and cracking along the secondary joint set within the β = 30° sample under the direct tension condition, thereby weakening the sample TS. Under the Brazilian splitting condition, the presence of the secondary joint set causes the columnar joints and the secondary joint set within the sample to share the load, leading to synergistic slip and cracking. This alters the stress distribution within the specimen, resulting in a slight increase in TS rather than a decrease. The secondary joint set participates in damage and deformation, resulting in a slight weakening of the coordinated deformation resistance between the columns and joints within the sample.
3.2 Failure modes and AE responses of CJBs under direct and indirect tensile conditions
3.2.1 Direction perpendicular to the column axis
For direction I perpendicular to the column axis, Figure 9 presents the diagrams of the specimen models, stress–strain curves, AE quantity features, stress field evolutions, displacement field characteristics, and AE spatial distribution characteristics under the conditions of direct tension and Brazilian splitting. Figures 9a, c show that for the specimen under the direct tensile condition, as the stress reaches point A on the stress–strain graph, the stress concentration inside the sample becomes evident, particularly with significant tensile stress exhibited in the columns between vertical joints. When the stress reaches point B on the curve, sporadic tensile failures occur at the horizontal joints inside the sample. As the stress reaches peak point C on the curve, the tensile failures in the horizontal joints further increase. Upon the stress decreasing to point D, tensile failures in the horizontal joints become more pronounced. When the stress keeps decreasing to point E, tensile failures also begin to appear in some oblique joints. As the stress continues to decrease to point F, the number of oblique joints with tensile failures within the specimen continues to increase, meaning that at this point, tensile cracking occurs in both the horizontal and oblique joints surrounding some of the columns. From the maximum principal stress diagram of the specimen shown in Figure 9e, it can be recognized that at the eighth calculation step, tensile stress concentration and damage cracking occur in the horizontal joints within the specimen. From the x- and z-direction displacement illustrations of the specimen in Figure 9e, it can be noticed that the left and right wings of the specimen undergo horizontal displacement toward the interior of the sample, while the upper portion of the sample experiences vertical upward displacement. Combining the AE spatial distribution diagrams of the specimen under the direct tensile condition in Figure 9g, it is found that tensile damage (represented by blue AEs) occurs around each column within the specimen. Furthermore, Figure 9a depicts that the AE count of the sample showcases a single-peaked profile, with the peak occurring before the point of maximum stress. This AE peak is predominantly due to the combined tensile damage of horizontal and oblique joints within the specimen.
[image: Data visualization with multiple graphs and diagrams comparing direct tension and Brazilian splitting under different conditions. Figures (a) and (b) display histograms and line charts with stress-strain data. Figures (c) to (f) show colored stress distribution models with points labeled A to F. Figures (g) and (h) illustrate AE (Acoustic Emission) distribution for direct tension and Brazilian splitting in direction I. Each sub-image provides detailed stress and strain patterns, supplemented with color scales and annotations.]FIGURE 9 | Fracture mechanisms and AE characteristics of the CJBs in direction Ⅰ perpendicular to the column axis under the direct and indirect tensile conditions: (a, b) stress–strain graphs and AE amounts under the direct tensile and Brazilian splitting conditions; (c, d) evolutions of the minimum principal stress fields in the models; (e, f) maximum principal stress diagrams, x-direction displacement diagrams, and z-direction displacement diagrams under the direct tensile and Brazilian splitting conditions; (g, h) AE spatial distribution diagrams.
As shown in Figures 9b, d, for the specimen under the Brazilian splitting condition, when the stress attains point A on the stress–strain graph, there is a significant accumulation of compressive stress at the top and bottom extremities of the disk, while a notable concentration of tensile stress appears between these two ends. When the stress reaches point B on the curve, the region of tensile stress concentration within the disk expands, and the tensile damage of the vertical joints between the top and bottom ends of the disk increases. At point C, near the peak of the curve, vertical joint cracking occurs between the upper and lower extremities of the disk, and the concentration area of tensile stress within the disk narrows toward the center of the disk. When the stress descends to point D, there is mixed compression–tension damage near the upper and lower ends, with tensile stress concentration at the center of each column section between the upper and lower ends. There are also appreciable tensile stress localizations at the contour edge of the disk. When the stress continues to decrease to point E, the damage near the upper and lower ends continues to develop with sporadic stress concentrations, and the tensile stress concentration within the disk and at its contour edge significantly decreases. When the stress further decreases to point F, fragmentation near the upper and lower extremities of the sample intensifies. From the maximum principal stress diagram of the sample in Figure 9f, it can be found that at the 24th calculation step (point D), there exists an elliptical region of compressive stress localization between the upper and lower extremities of the disk; meanwhile, the tensile stress is pronounced at the contour edges on the left and right wings of the disk. From the x- and z-direction displacement illustrations of the specimen in Figure 9f, it can be observed that there is a relatively significant horizontal displacement that occurs outward on the left and right wings of the disk, accompanied by a notable settlement near the upper end of the disk. According to the AE spatial dispersion features of the specimen in Figure 9h, tensile damage (indicated by blue AEs) occurs at the vertical joints between the upper and lower ends of the disk and near the contour edges. Additionally, there is some extent of compressive damage (manifested by pink AEs) in the columns between the upper and lower ends. Near these two ends, there is significant coexisting compressive–tensile damage. Furthermore, Figure 9b demonstrates that the AE amount of the sample displays a unimodal profile, illustrating that the AE amount peak tends to occur after the stress peak point. This AE quantity peak is mainly triggered by the combined effects of tensile damage in the joints between these two extremities of the disk, and compressive damage within the columns.
Moreover, by comparing Figures 9a, b, it can be observed that under the direct tensile condition, both the peak strength and the maximum AE amount of the sample in direction I perpendicular to the column axis are higher than those under the Brazilian splitting condition. This is because under the direct tensile condition, all the joints within the specimen in direction I perpendicular to the column axis contribute to the bearing capacity, collectively resisting the tensile load and, thus, demonstrating a greater peak-bearing ability. Nevertheless, under the Brazilian splitting condition, it is primarily the joints within a localized area along the vertical centerline of the specimen that contribute to the bearing capacity, resulting in a lower bearing capacity and a lower peak AE quantity (Zhao et al., 2022; Zhang Q. L. et al., 2021).
Figure 10 depicts the failure modes and stress distributions of the specimens in direction Ⅱ under the DTC and BSC. When subjected to the DTC, tensile stress exists in the oblique joint of the sample at the eighth calculation step, leading to micro-cracks. Under the BSC, that joint cracking occurs near the center of the disk, with two bands of compressive stress concentration appearing on both sides of the center. Additionally, tensile stress exists near the contours on the left and right sides of the disk.
[image: Two diagrams compare stress conditions on materials. The left shows direct tension, with stress levels ranging from -2.26 to 2.40 megapascal. The right illustrates Brazilian splitting, with stress levels from -4.53 to 4.39 megapascal. Both have color-coded scales to represent stress intensity.]FIGURE 10 | Failure modes and stress distribution of the CJBs in direction Ⅱ perpendicular to the column axis under the direct and indirect tensile conditions.
3.2.2 The direction parallel to the column axis
Figure 11 shows the failure modes (crack propagation features) and stress distributions of the specimens with different column dip angles under direct tensile and Brazilian splitting conditions. As shown in Figure 11a, for the specimen with β = 0° under the DTC, there are dispersed micro-cracks, and the compressive and tensile stresses are unevenly distributed; for the specimen with β = 45°, the micro-cracks mainly occur at the joint positions, and these joints are in a certain degree of compressive sliding state; and for the specimen with β = 90°, there is a significant tensile stress concentration at the joint positions, accompanied by the occurrence of micro-cracks. It can be found from Figure 11b that for the specimen with β = 0° under the BSC, the joints are tensile-cracked, and there may be compressive stress or tensile stress concentration in the local areas of the columns; for the specimen with β = 45°, the joints get slipped and cracked. There are tensile micro-cracks near the edges of the columns, and the tensile stress at the crack tips is obvious. For the specimen with β = 90°, there are significant compressive stress and tensile micro-cracks, indicating the state of compression-induced tensile cracking.
[image: Three sets of colorful stress distribution maps, illustrating conditions under direct tension (top row) and Brazilian splitting (bottom row) at angles beta equals zero, 45, and 90 degrees. Each map includes corresponding color bars representing stress magnitudes.]FIGURE 11 | Failure modes and stress distribution of the specimens with different column dip angles: (a) under the DTC; (b) under the BSC.
Figure 12 presents the diagrams of the β = 30° specimen models, stress–strain curves, AE quantity features, stress field evolutions, displacement field characteristics, and AE spatial distribution characteristics under the direct tension and Brazilian splitting conditions. According to Figures 12a, c, for the sample under the direct tensile condition, when the stress reaches point A of the stress–strain graph, there is considerable stress localization within the specimen. As the stress attains point B of the curve, tensile damage forms at the columnar joints, accompanied by sporadic tensile cracks. When the stress reaches the peak point C of the curve, the number of mesoscopic tensile cracks at the columnar joint locations increases. Upon the stress decreasing to point D, signs of cracking emerge at the columnar joints, accompanied by sporadic micro-cracks inside the columns. Once the stress subsequently decreases to point E, the cracking at the columnar joints progresses, and localized crack initiation occurs inside the columns. Upon the stress decreasing to point F, the columnar joints further crack and the localized cracks in the columns develop slightly. As noticed from the maximum principal stress diagram of the specimen in Figure 12e, at the eighth calculation step (point C), the columnar joints within the sample exhibit a certain degree of compressive sliding, with tensile stresses distributed throughout each column. From the x- and z-direction displacement diagrams of the specimen shown in Figure 12e, it can be detected that there are apparent horizontal displacements toward the interior of the sample at the lower left and upper right sides of the sample. There is a vertical upward displacement at the upper portion of the sample. Additionally, Figure 11a reveals that the AE amount of the sample demonstrates a unimodal spread, with the AE amount peak emerging before the stress peak point. This AE quantity peak predominantly stems from tensile damage in the columnar joints (as depicted by Figure 12i).
[image: Graphs and visualizations depict stress distributions and fracture patterns under two conditions: direct tension and Brazilian splitting. The charts show stress results across varying scales, with color-coded legends indicating stress intensity. Diagrams include labeled points illustrating different stress distributions and fracture responses for both conditions. An additional diagram presents anisotropic fracture distributions with detailed descriptive labels.]FIGURE 12 | Fracture mechanisms and AE characteristics of the CJBs with β = 30° under the direct and indirect tensile conditions: (a, b) stress–strain graphs and AE amounts under the direct tensile and Brazilian splitting conditions; (c, d) evolutions of the minimum principal stress fields in the models; (e, f) maximum principal stress diagrams, x-direction displacement diagrams, and z-direction displacement diagrams under the direct tensile and Brazilian splitting conditions; (g, h) AE spatial distribution diagrams.
According to Figures 12b, d, for the specimen under the Brazilian splitting condition, once the stress reaches point A of the stress–strain graph, there are noticeable concentrations of compressive stress at the upper and lower extremities of the disk, while pronounced concentrations of tensile stress appear between these two ends. As the stress approaches point B close to the peak of the curve, tensile damage develops and gradually leads to cracking in the columnar joints between the upper and lower extremities of the disk. As the stress attains point C, cracking in the columnar joints subsequently progresses, resulting in the narrowing of the stress localization area between the upper and lower extremities of the disk. As the stress decreases to point D, apparent stress concentrations appear near the margins of the columns, between the upper and lower terminals, and along the contour of the disk. When the stress further decreases to point E, crack emergence occurs at the margins of several columns between the upper and lower terminals of the disk, and the stress concentration at the contour edge on the right side of the disk reduces significantly. As the stress reaches point F, crack propagation appears at the edges of several columns between the upper and lower extremities of the disk. Several joints at the edge of the left contour turn cracked, and stress aggregations develop near the crack apices. As the stress continues to decrease to point G, the cracks in several columns between the upper and lower ends further propagate. From the maximum principal stress diagram of the sample in Figure 12f, it can be found that at the 18th calculation step (point D), the columnar joints near the center of the disk become cracked, with compression stress accumulation bands forming on the left and right wings of these cracked columnar joints. Additionally, tensile stresses exist near the contour edges on both the left and right wings of the disk. From the x- and z-direction displacement illustrations of the sample in Figure 12f, it can be recognized that there are apparent horizontal displacements occurring toward the outside of the sample on both the left and right edges of the disk. In addition, there is a noticeable settlement near the left upper end of the disk, which is distributed along the columnar joint. From the AE spatial spread features of the specimen in Figure 12h, it can be detected that tensile damage occurs at the columnar joints and margins of several columns between the upper and lower ends of the disk, while tensile–compressive damage happens in the vicinity of both ends. Furthermore, Figure 12b shows that the AE amount of the sample demonstrates a multi-peak profile, with the first AE amount peak tending to occur after the stress peak point. This AE quantity peak is chiefly triggered by the fracturing of columnar joints between the upper and lower extremities of the disk.
In addition, by comparing Figures 12a, b, it can be observed that under the direct tensile conditions, the peak strength and the peak AE amount for the β = 30° specimen are both greater than those under the Brazilian splitting condition. This is because, under the direct tensile condition, not only are all the columnar joints damaged, but micro-damages are also diffusely distributed among the columns within the specimen, indicating that the specimen fully exerts its bearing capacity. Under the Brazilian splitting condition, the joints and columns within a localized area along the vertical centerline of the specimen primarily bear the applied load.
For the specimen with the secondary joint sets and β = 30°, Figure 13 presents the diagrams of the specimen models, stress–strain curves, AE quantity features, stress field evolutions, displacement field characteristics, and AE spatial distribution characteristics under the direct tension and Brazilian splitting conditions. As shown in Figures 13a, c, for the specimen under the direct tensile condition, when the stress approaches point A of the stress–strain graph, there is significant stress localization within the specimen. When the stress reaches point B of the curve, tensile damage arises at columnar joints, and sporadic tensile cracks appear at the secondary joint sets. As the stress arrives at the peak point C of the curve, sporadic tensile cracks also emerge at the columnar joints, and the number of tensile cracks at the secondary joint sets increases. When the stress decreases to point D, the number of tensile cracks at the columnar joints increases, and cracking at the secondary joint sets becomes evident. As the stress further descends to point E, tensile stress aggregation is observed on the top left portion of the sample, with increased cracking in the columnar joints, and tensile stress accumulation appears on the bottom right side of the sample. From the maximum principal stress diagram of the sample in Figure 13e, it can be observed that at the tenth calculation step (point E), cracking occurs in the secondary joint sets inside the sample, and localized areas near the upper and lower ends of the sample encounter small-scale tensile stress concentration and compressive stress concentration. From the x- and z-direction displacement plots of the specimen in Figure 13e, it can be noticed that there are noticeable horizontal displacements toward the interior of the sample at the lower left and upper right sides of the sample. Additionally, there is a significant vertical upward displacement in the area above the secondary joint set at the upper portion of the specimen. A clear vertical upward displacement also occurs on the left side of the area between the upper and lower secondary joint sets. Furthermore, Figure 13a shows that the AE amount of the sample exhibits a single-peaked distribution, with the AE amount peak arising before the stress peak point. This AE quantity peak is chiefly triggered by the conjoint effects of the tensile damage in the columnar joints and the tensile damage and cracking in the secondary joint sets (as depicted in Figure 13g).
[image: Composite image showing multiple analyses.   (a) and (b) display bar charts with line graphs depicting direct tension and Brazilian splitting with a secondary joint set.   (c) and (d) feature colored contour maps at Points A and B for direct tension.   (e) and (f) show similar maps for Brazilian splitting.   (g) and (h) present additional contour analyses for different joint sets.   (i) includes AE distribution diagrams for both tests, illustrating fracture patterns.   Each section uses varying color scales to denote different data values.]FIGURE 13 | Fracture mechanisms and AE characteristics of the CJBs with the secondary joint sets under the direct and indirect tensile conditions: (a, b) stress–strain graphs and AE amounts under the direct tensile and Brazilian splitting conditions; (c, d) evolutions of the minimum principal stress fields in the models; (e, f) maximum principal stress diagrams, x-direction displacement diagrams, and z-direction displacement diagrams under the direct tensile and Brazilian splitting conditions; (g, h) AE spatial distribution diagrams (taking β = 30° as an example).
According to Figures 13b, d, for the specimen under the Brazilian splitting condition, when the stress reaches point A of the stress–strain graph, there are apparent compressive stress aggregations at the upper and lower extremities of the disk, while there is prominent tensile stress concentration between the upper and lower ends. As the stress attains point B close to the peak of the curve, tensile damage in the columnar joints between the upper and lower ends of the disk develops and gradually leads to cracking. Once the stress reaches the peak point C of the curve, cracking at the columnar joints further progresses, and the region of the stress concentration between the upper and lower extremities of the disk narrows. As the stress descends to point D, cracking at the columnar joints becomes pronounced, and significant stress concentration is observed both in the columns between the upper and lower extremities of the disk and on the left and right sides of the disk’s contour edge. When the stress further descends to point E, crack initiation takes place at the margins of several columns and secondary joint sets between the upper and lower extremities of the disk. The stress concentrations in the columns between these two ends and at the edges of the disk contour are significantly reduced. As the stress reaches point F, cracking at the secondary joint sets subsequently progresses, and the cracks at the margins of several columns between the upper and lower extremities of the disk also expand. Stress localization reappears in the columns between these two ends of the disk and at the left and right wings of the disk contour edge. As the stress continues to decrease to point G, localized cracking at the secondary joint sets within the disk becomes interconnected, and the cracks in several columns between the upper and lower ends further develop, with significant stress concentration observed in these columns. Additionally, the secondary joint set slip-induced cracking arises on the right side of the disk contour edge. From the maximum principal stress diagram of the specimen in Figure 13f, it can be detected that at the 30th calculation step (point G), the columnar joints and secondary joint sets between the upper and lower extremities of the disk encounter cracking. The compressive stress localization bands appear on the left and right wings of the zone of these cracked joints. Tensile stress exists at the ends of the cracked secondary joint sets on the left and right edges of the disk contour. From the x- and z-direction displacement illustrations of the specimen in Figure 13f, it can be observed that the lower left side of the disk undergoes displacement to the left direction, while the right upper side of the disk experiences displacement to the right direction. Additionally, there is a noticeable settlement close to the upper left side of the disk, which distributes along the columnar joints and secondary joint sets. According to the AE spatial distribution characteristics of the sample in Figure 13h, tensile damage occurs in the columnar joints and secondary joint sets and at the margins of several columns between the upper and lower ends of the disk. Additionally, tensile–compressive damage occurs near these two ends. In addition, Figure 13b shows that the AE amount of the sample showcases a multi-peaked pattern. The first AE amount peak tends to occur after the stress peak point, which is mainly caused by the combined effects of the damage and cracking in the columnar joints and secondary joint sets and the initiation and propagation of cracks at the edges of several columns.
In addition, by comparing Figures 13a, b, it can be found that under the direct tensile condition, the sample with the secondary joint sets exhibits a higher strength peak and a higher AE quantity peak, with the AE quantity showing a unimodal distribution. In contrast, under the Brazilian splitting condition, the specimen displays a lower strength peak and a lower AE quantity peak, with the AE quantity presenting a multi-peaked distribution. This is because, under the direct tensile condition, the columnar joints, secondary joint sets, and individual columns within the specimen synergistically contribute to the specimen-bearing capacity, resulting in a relatively concentrated sequence of micro-cracks. Under the Brazilian splitting condition, within a localized area along the vertical centerline of the specimen, the columnar joint slippage occurs first, followed by cracking in the secondary joint sets. Subsequently, the cracked secondary joint sets connect with newly cracked columnar joints, thereby forming a localized, multi-stage bearing process.
3.3 Impact of diverse variables on the MCEIs of CJBs under direct and indirect tensile conditions
Current research studies on CJBs mainly focus on their compressive mechanical properties (Lin et al., 2018; Que et al., 2021; Yan et al., 2018; Wang et al., 2023a), with limited studies addressing their tensile mechanical behavior. Moreover, there is a lack of exploration into the MCEI (which corresponds to the AE energy accumulation at the sample’s strength peak). Therefore, this study aims to examine the MCEI and its influencing variables in CJBs under direct and indirect tensile conditions. By examining the energy accumulations released by damage and micro-cracks as CJBs reach their tensile strengths, this study highlights the differences in energy behavior across tensile conditions and other factors, thereby providing theoretical support for understanding the energy aspects of CJBs.
As shown in Figure 14a, in terms of the appearing sequence of MCEIs along the strain axis, the order is as follows: direction I perpendicular to the column axis (under the DTC) [direction II (under the DTC)], direction II (under the BSC), and direction I (under the BSC). The magnitudes of MCEIs in ascending order are as follows: direction I perpendicular to the column axis (under the BSC), direction II (under the DTC), direction I (under the DTC), and direction II (under the BSC). The abovementioned results indicate that for the specimens in directions I and II—perpendicular to the column axis—compared to the direct tensile condition, MCEIs occur at a later stage and may have a larger magnitude under the Brazilian splitting condition. This is because Brazilian splitting is a process of compression-induced tensile fracture. During this process, the meso-rocks and joints within the specimen gradually exhibit their load-bearing capacity. A considerable number of meso-rock elements inside the specimen in direction II suffer compression damage.
[image: Seven graphs show Acoustic Emission (AE) events per cubic meter versus strain percentage. Each graph, labeled a to g, presents different rock stress tests, including direct tension and Brazilian splitting at various angles and conditions. Graphs a and b feature CBSRC scenarios, while c and d explore AUTR with micro-elements. Graphs e and f compare results with and without secondary joint sets. Graph g highlights AUTR variations in dense rock. Dotted, dashed, and solid lines indicate different test conditions. Each graph is marked with events A to F, indicating key points or trends.]FIGURE 14 | Influence of various factors on the MCEIs of CJBs under direct and indirect tensile situations: (a) specimens in the direction perpendicular to the column axis; (b) samples with varied column tilt angles in the direction parallel to the column axis; (c) specimens with various mechanical constitutive behaviors of joints; (d) specimens possessing diverse joint strengths; (e) samples with varied rock homogeneity indexes; (f) samples with different meso-rock strengths; (g) specimens without and with the secondary joint set (the MCEIs refer to the AE energy accumulations corresponding to the apex stresses of the specimens).
As shown in Figure 14b, from the perspective of the occurrence sequence of the MCEIs upon the strain axis, the order is as follows: β = 60° (under the DTC) [β = 90° (under the DTC)], β = 30° (under the DTC), β = 30° (under the BSC), β = 60° (under the BSC), and β = 90° (under the BSC). The magnitudes of the MCEIs in ascending order are as follows: β = 30° (under the BSC), β = 60° (under the DTC), β = 90° (under the DTC), β = 60° (under the BSC), β = 30° (under the DTC), and β = 90° (under the BSC). The abovementioned findings suggest that for the specimens with varied column tilt angles in the direction parallel to the column axis, compared to the Brazilian splitting condition, the MCEIs occur at an earlier stage and may have smaller magnitudes under the direct tensile condition, which hinges on the specific column dip angle. This means that in practical engineering monitoring, when CJBs are subject to direct tensile stress, monitoring personnel should focus on crack propagation at an earlier stage. When evaluating the state of CJBs, the monitoring personnel need to combine the inclination angle of the columns relative to the principal stress direction to predict the characteristics of energy release during crack propagation and assess the safety of the structure in advance.
Figure 14c reveals that, in terms of sequence of MCEI occurrences along the strain axis, the order is as follows: the CRSC 0.1 of MEs of joints (under the DTC), the CRSC 0.5 of MEs of joints (under the DTC), the CRSC 1.0 of MEs of joints (under the DTC), the CRSC 0.1 of MEs of joints (under the BSC), the CRSC 0.5 of MEs of joints (under the BSC), and the CRSC 1.0 of MEs of joints (under the BSC). The magnitudes of the MCEIs in increasing order are as follows: the CRSC 0.1 of MEs of joints (under the BSC), the CRSC 0.5 of MEs of joints (under the BSC), the CRSC 1.0 of MEs of joints (under the BSC), the CRSC 0.1 of MEs of joints (under the DTC), the CRSC 0.5 of MEs of joints (under the DTC), and the CRSC 1.0 of MEs of joints (under the DTC). The abovementioned situations imply that for various joint compression mechanical constitutive behaviors, in contrast to the direct tensile condition, the MCEIs of the specimens under the Brazilian splitting condition appear at a later stage, and the magnitudes of these MCEIs are lower. It is difficult to consider the influence of different joint constitutive models in physical experiments of direct tension and Brazilian splitting (Zhang Q. L. et al., 2021; Zhao et al., 2022). However, the numerical simulation in this study considers the influence of joint constitutive models, which helps predict the occurrence sequence and magnitude of the MCEI of CJBs with different joint constitutive models.
From Figure 14d, it can be noticed that the sequence of MCEI manifestations along the strain axis is as follows: the AUTS 2 MPa of MEs of joints (under the DTC), the AUTS 4 MPa of MEs of joints (under the DTC) [the AUTS 6 MPa of MEs of joints (under the DTC)], the AUTS 2 MPa of MEs of joints (under the BSC), the AUTS 4 MPa of MEs of joints (under the BSC), and the AUTS 6 MPa of MEs of joints (under the BSC). The magnitudes of the MCEIs in increasing order are as follows: the AUTS 2 MPa of MEs of joints (under the BSC), the AUTS 2 MPa of MEs of joints (under the DTC), the AUTS 4 MPa of MEs of joints (under the BSC), the AUTS 6 MPa of MEs of joints (under the BSC), the AUTS 6 MPa of MEs of joints (under the DTC), and the AUTS 4 MPa of MEs of joints (under the DTC). The abovementioned observations demonstrate that for diverse joint strengths, compared to the Brazilian splitting condition, the MCEIs of the specimens under the direct tensile condition occur at an earlier stage, and the magnitudes of these MCEIs are higher. Previous theoretical studies may not have investigated the influence of joint strength on the occurrence sequence and magnitude of the MCEI of CJBs under the DTC and BSC (Liu E. et al., 2021; Cen et al., 2020). The findings obtained in this study in this regard can deepen the understanding of the development laws of damage and micro-cracks of CJBs under different loading scenarios and joint strength conditions.
According to Figure 14e, in terms of the appearing sequence of the MCEIs along the strain axis, the order is as follows: the RHI 5 (under the DTC) [the RHI 10 (under the DTC), the RHI 200 (under the DTC)], and the RHI 5 (under the BSC) [the RHI 10 (under the BSC) and the RHI 200 (under the BSC)]. The magnitudes of the MCEIs in ascending order are as follows: the RHI 10 (under the BSC), the RHI 5 (under the BSC), the RHI 200 (under the BSC), the RHI 200 (under the DTC), the RHI 10 (under the DTC), and the RHI 5 (under the DTC). The abovementioned results indicate that for varied degrees of rock homogeneity when juxtaposed with the direct tensile condition, the MCEIs of the specimens under the Brazilian splitting condition emerge at a later stage, and the magnitudes of these MCEIs are smaller. Studies (Lin et al., 2018; Xu et al., 2020; Wang et al., 2022b; 2022c; 2023a) indicate that there are differences in rock heterogeneity among CJBs in various regions. The numerical simulation results of this study provide a basis for engineering monitoring. Differentiated monitoring schemes can be formulated according to the rock homogeneity degree and the crack propagation characteristics under different loading conditions. For example, in locations subjected to direct tensile stress and characterized by poor rock homogeneity, monitoring points should be more densely arranged and the monitoring frequency should be increased to enable timely detection of early crack formation. As for the locations under the stress state similar to Brazilian splitting, the monitoring strategy can be appropriately adjusted, and the long-term development of cracks needs to be paid attention to.
From Figure 14f, it can be found that from the perspective of the occurrence sequence of the MCEIs upon the strain axis, the order is as follows: the AUTS 10 MPa of MEs of rock (under the DTC), the AUTS 16 MPa of MEs of rock (under the DTC) [the AUTS 24 MPa of MEs of rock (under the DTC)], the AUTS 16 MPa of MEs of rock (under the BSC), and the AUTS 10 MPa of MEs of rock (under the BSC) [the AUTS 24 MPa of MEs of rock (under the BSC)]. The magnitudes of the MCEIs in ascending order are as follows: the AUTS 16 MPa of MEs of rock (under the BSC), the AUTS 24 MPa of MEs of rock (under the BSC), the AUTS 10 MPa of MEs of rock (under the BSC), the AUTS 24 MPa of MEs of rock (under the DTC), the AUTS 16 MPa of MEs of rock (under the DTC), and the AUTS 10 MPa of MEs of rock (under the DTC). The abovementioned findings suggest that for various meso-rock strengths, compared to the Brazilian splitting condition, the MCEIs of specimens arise at an earlier stage and have larger magnitudes under the direct tensile condition. In practical engineering, the presence of water or changes in humidity can change the strength of meso-rocks. For the locations that are in a state similar to direct tension and are significantly affected by water or humidity, key monitoring points should be set up.
As illustrated in Figure 14g, regarding the appearance series of the MCEIs on the strain axis, the order is as follows: the sample with the secondary joint set (in the DTC), the specimen without the secondary joint set (in the DTC), the sample without the secondary joint set (in the BSC), and the specimen with the secondary joint set (in the BSC). The magnitudes of the MCEIs, in increasing order, are as follows: the sample without the secondary joint set (in the BSC), the specimen with the secondary joint set (in the BSC), the sample with the secondary joint set (in the DTC), and the specimen without the secondary joint set (in the DTC). The abovementioned observations imply that for varied states of the secondary joint set, in contrast to the direct tensile condition, the MCEIs of the specimens appear at a later stage and have lower magnitudes under the Brazilian splitting condition. If the stress state of the CJBs is similar to the DTC and CJBs possess the secondary joint set, the MCEI appears relatively early. Therefore, in practical engineering, it is necessary to adopt a combination of multiple monitoring methods in order to obtain the status information of the CJBs more comprehensively, accurately, and promptly.
3.4 Sensitivity analysis of factors influencing the MCEIs of CJBs under direct and indirect tensile conditions
With reference to pertinent research studies (Dinmohammadpour et al., 2022; Wang H. P. et al., 2022; Xue et al., 2020; Wang et al., 2020) and taking into account both the sequence of appearance (strain) and the magnitude of the MCEI, a calculation formula is developed in this section for the sensitivity indicator [image: Mathematical expression showing the symbol "A" with a subscript "D" and subscript "i".] or [image: It seems like there was an issue with displaying the image. Please upload the image directly or provide its URL.] of the MCEI to a specific affecting variable under DTC or BSC for CJBs, as shown below:
[image: Mathematical equation displayed: \( A_D \, \text{or} \, A_B = (B_D \, \text{or} \, B_R) \times C + (D_D \, \text{or} \, D_R) \times E \). Below this, the equation is labeled as (2).]
where [image: I cannot view the image you're referring to. Please upload the image or provide a URL.] or [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you. If there is any additional context you'd like to include, feel free to add that as well.] denotes the sensitivity parameter of the appearing sequence of the MCEI to a specific affecting variable under the DTC or BSC, respectively. The calculation method for this coefficient is provided in Equation 3. [image: It seems there's an issue with the image input. Please upload the image file or provide a link, and I will assist you with the alt text.] signifies the corresponding weighting parameter, which generally falls within the range 0.5–0.7 (Wang H. P. et al., 2022; Wang et al., 2020; Yang H. Q. et al., 2022; Deng et al., 2021), and it is assigned a value of 0.5 in this instance. [image: Text displaying "D" with a subscript "Di".] or [image: If you upload an image or provide a URL, I can help generate the alternate text for it.] denotes the sensitivity parameter of the magnitude of the MCEI to a specific affecting variable under the DTC or BSC, respectively. The calculation method for this coefficient is outlined in Equation 4. [image: It seems like there might have been an issue uploading the image. Please try again by clicking on the image upload button, or provide a URL to the image if available.] is the corresponding weighting parameter, typically ranging from 0.3 to 0.5 (Xue et al., 2020; Yang et al., 2021; Song et al., 2022), and it is assigned a value of 0.5 in this instance.
[image: The formula shows \( B_{D} \) or \( B_{F} \) equal to the change in \( E_{D} \) or \( E_{F} \) divided by the change in \( G \), denoted as equation (3).]
[image: Equation with variables \( D_{Br} \) or \( D_{Dr} \) equals \( \frac{{\Delta H_{Dr} \text{ or } \Delta H_{Br}}}{{\Delta G}} \) marked as equation (4).]
where [image: Greek letter Delta followed by uppercase F and subscript D and i in italics.] or [image: Delta F subscript B r, representing a change in a particular variable labeled F for bromine.] represents the percentage variation in the appearing sequence of the MCEI under the DTC or BSC. [image: Delta H subscript D subscript i is shown, likely representing a change in enthalpy for a specific component or condition.] or [image: Delta H subscript Br.] signifies the percentage variation in the magnitude of the MCEI under the direct tensile or Brazilian splitting condition. [image: Delta G, symbolized as 𝚫G, represents the change in Gibbs free energy, a measure commonly used in thermodynamics to predict the direction of chemical reactions and processes.] denotes the percentage alteration of a specific affecting variable.
The sensitivity indicators of the MCEIs of CJBs to a specific affecting variable under direct tension and Brazilian splitting conditions are derived from Equation 2, and the results are presented in Table 5. Under the direct tensile condition and when β = 30°, the sensitivity level of the MCEI to diverse variables, graded from the highest to the lowest, is as follows: joint strength, the secondary joint set, joint constitutive behavior, meso-rock strength, and rock homogeneity degree. However, under the Brazilian splitting conditions and when β = 30°, the sensitivity level of the MCEI to diverse variables, ranked from the highest to the lowest, is as follows: joint strength, joint constitutive behavior, the secondary joint set, meso-rock strength, and rock homogeneity degree.
TABLE 5 | Sensitivity analysis of factors influencing the MCEIs of CJBs under direct and indirect tensile conditions.
[image: Table displaying sensitivity indicators \(A_{D,j}\) and \(A_{B,j}\) of the MCEI for different variables under tensile and Brazilian splitting conditions. Columns represent various factors like directions, joint behaviors, and rock strengths, with specific numerical values in each cell.]4 DISCUSSION
4.1 Energy features of jointed rock mass under direct and indirect tensile conditions
Direct tensile loading is more likely to induce crack propagation, leading to an earlier release of energy. In contrast, the Brazilian splitting test involves a compression-induced tensile fracture process, where the vicinities of the upper and lower extremities of the sample are under biaxial stress conditions. The process of energy absorption and release in the specimen under the Brazilian splitting condition may be more complex (Zhang Q. L. et al., 2021; Liu Z. L. et al., 2021). Figure 14b in this study reveals that regarding the manifestation series of the MCEIs along the strain axis, the order is as follows: β = 60° (under the direct tensile condition) [β = 90° (under the direct tensile condition)], β = 30° (under the direct tensile condition), β = 30° (under the Brazilian splitting condition), β = 60° (under the Brazilian splitting condition), and β = 90° (under the Brazilian splitting condition). The magnitudes of the MCEIs in ascending order are as follows: β = 30° (under the Brazilian splitting condition), β = 60° (under the direct tensile condition), β = 90° (under the direct tensile condition), β = 60° (under the Brazilian splitting condition), β = 30° (under the direct tensile condition), and β = 90° (under the Brazilian splitting condition). The abovementioned results indicate that under the Brazilian splitting condition, the specimen releases energy at a later stage, but the magnitude of the energy may be higher, depending on the column dip angle.
The mechanical properties of joints influence the energy characteristics of jointed rock masses when subjected to tensile forces, and the specific manifestations of this influence under direct and indirect tensile conditions require further investigation (Zhao et al., 2022; Cen et al., 2020; Yang Z. et al., 2022). Figure 14d in this study displays that, for different joint strengths, concerning the manifestation series of the MCEIs on the strain axis, the order is as follows: the AUTS 2 MPa of MEs of joints (under the direct tensile condition), the AUTS 4 MPa of MEs of joints (under the direct tensile condition) [the AUTS 6 MPa of MEs of joints (under the direct tensile condition)], the AUTS 2 MPa of MEs of joints (under the Brazilian splitting condition), the AUTS 4 MPa of MEs of joints (under the Brazilian splitting condition), and the AUTS 6 MPa of MEs of joints (under the Brazilian splitting condition). The magnitudes of the MCEIs in increasing order are as follows: the AUTS 2 MPa of MEs of joints (under the Brazilian splitting condition), the AUTS 2 MPa of MEs of joints (under the direct tensile condition), the AUTS 4 MPa of MEs of joints (under the Brazilian splitting condition), the AUTS 6 MPa of MEs of joints (under the Brazilian splitting condition), the AUTS 6 MPa of MEs of joints (under the direct tensile condition), and the AUTS 4 MPa of MEs of joints (under the direct tensile condition). These observations suggest that for varied joint strengths, the specimens under the Brazilian splitting condition release energy at a later stage than those under the direct tension condition, and the magnitudes of energy released under the Brazilian splitting condition are smaller than those under the direct tension condition.
Typically, when jointed rock masses composed of minerals with higher hardness are subjected to tensile forces, due to their stronger resistance to deformation, they may release energy at a later stage (Hao et al., 2020; Liu et al., 2021a). Figure 14f in this study demonstrates that for diverse meso-rock strengths, regarding the manifestation series of the MCEIs along the strain axis, the order is as follows: the AUTS 10 MPa of MEs of rock (under the direct tensile condition), the AUTS 16 MPa of MEs of rock (under the direct tensile condition) [the AUTS 24 MPa of MEs of rock (under the direct tensile condition)], the AUTS 16 MPa of MEs of rock (under the Brazilian splitting condition), and the AUTS 10 MPa of MEs of rock (under the Brazilian splitting condition) [the AUTS 24 MPa of MEs of rock (under the Brazilian splitting condition)]. The magnitudes of the MCEIs in ascending order are as follows: the AUTS 16 MPa of MEs of rock (under the Brazilian splitting condition), the AUTS 24 MPa of MEs of rock (under the Brazilian splitting condition), the AUTS 10 MPa of MEs of rock (under the Brazilian splitting condition), the AUTS 24 MPa of MEs of rock (under the direct tensile condition), the AUTS 16 MPa of MEs of rock (under the direct tensile condition), and the AUTS 10 MPa of MEs of rock (under the direct tensile condition). The abovementioned situation implies that for different meso-rock strengths, the specimens under the Brazilian splitting condition release energy later than those under the direct tension condition, and the energy magnitudes under the Brazilian splitting condition are lower than those under the direct tension condition.
5 CONCLUSION

	(1) Under the DTC, both the TSs and EDMs of samples in directions I and II orthogonal to the column axis are greater than those under the BSC. For the direction parallel to the column axis, compared to the DTC, the TS of specimens under the BSC is smaller at the column lean angle β = 0°–60° and larger at β = 75°–90°. For different joint constitutive behaviors, the TSs and EDMs of the β = 30° specimens under the DTC are both greater than those under the BSC. The higher the joint strength, the smaller the ratio of the specimen TSs under direct tensile to Brazilian splitting conditions, while the ratio of the specimen EDMs may be higher. As the rock homogeneity index increases, the difference in mechanical properties between the specimens under the DTC and BSC tends to increase. When the meso-rock strength increases, the TS and EDM ratios for specimens under the DTC and BSC do not monotonously increase or decrease. The presence of the secondary joint set results in a reduction in the TS ratio between the DTC and BSC, while it increases the EDM ratio between these two conditions.
	(2) Regarding the case involving the secondary joint set, under the DTC, the columnar joints, secondary joint sets, and individual columns within the specimen synergistically contribute to the specimen-bearing capacity, and there is a relatively concentrated sequence of appearance of micro-cracks. Under the BSC, within a localized area along the vertical centerline of the specimen, the columnar joint slippage occurs first, followed by cracking in the secondary joint sets. Subsequently, the cracked secondary joint sets connect with newly cracked columnar joints, thereby forming a localized, multi-stage bearing process.
	(3) Regarding the specimens in directions I and II perpendicular to the column axis, compared to the DTC, the MCEIs occur at a later stage and may have a larger magnitude under the BSC. For the specimens with diverse column tilt angles in the direction parallel to the column axis, compared to the BSC, the MCEIs occur at an earlier stage and may have smaller magnitudes under the direct tensile condition, which depends on the specific column dip angle. For various joint mechanical constitutive behaviors/joint strengths/rock homogeneity indexes/meso-rock strengths/secondary joint set conditions, compared to the DTC, the MCEI for the β = 30° specimens arises at a later stage and possesses a lower magnitude under the BSC.
	(4) When subjected to the DTC, the sensitivity of the MCEI to diverse factors ranks from the highest to lowest as follows: joint strength, the secondary joint set, joint constitutive behavior, meso-rock strength, and the rock homogeneity index. However, when undergoing the BSC, the sensitivity of the MCEI to various factors ranks in decreasing order as follows: joint strength, joint constitutive behavior, the secondary joint set, meso-rock strength, and the rock homogeneity index. These discoveries can serve as an academic basis for understanding the arising sequence and magnitude differences of the MCEIs in CJBs under tensile conditions, thus providing scientific support for rock mass project monitoring, reinforcement, and operational maintenance.
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NOMENCLATURE
u Mechanical parameter of meso-elements
u0 Average value of u for all the elements
m Homogeneity index
β Column inclination angle
CJBs Columnar jointed basalts
CJRMs Columnar jointed rock masses
TS Tensile strength
CS Compressive strength
EDM Equivalent deformation modulus
RFPA Rock failure process analysis
AE Acoustic emission
DIC Digital image correlation
CRSCs Compressive residual strength coefficients
MEs Meso-elements
AUTSs Average uniaxial tensile strengths
AUCSs Average uniaxial compressive strengths
BSC Brazilian splitting condition
DTC Direct tensile condition
RHIs Rock homogeneity indexes
RMSE Root-mean-square error
MCEI Micro-crack energy index, i.e., the cumulative AE energy matching the sample peak stress
ADi Sensitivity parameter of the MCEI to a specific affecting variable under direct tension
ABr Sensitivity parameter of the MCEI to a specific affecting variable under Brazilian splitting
BDi Sensitivity parameter of the appearing sequence of the MCEI to a specific affecting variable under direct tension
BBr Sensitivity parameter of the appearing sequence of the MCEI to a specific affecting variable under Brazilian splitting
C Weighting parameter corresponding to BDi or BBr
DDi Sensitivity parameter of the magnitude of the MCEI to a specific affecting variable under direct tension
DBr Sensitivity parameter of the magnitude of the MCEI to a specific affecting variable under Brazilian splitting
E Weighting parameter corresponding to DDi or DBr
△FDi Percentage variation in the appearing sequence of the MCEI under direct tension
△FBr Percentage alteration in the appearing sequence of the MCEI under Brazilian splitting
G Percentage alteration of a specific affecting variable
△HDi Percentage variation in the magnitude of the MCEI under direct tension
△HBr Percentage variation in the magnitude of the MCEI under Brazilian splitting
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Temperature is a key factor influencing the mechanical behavior of the static interface between marine silica sand (SS) and geogrid, which directly impacts the stability and bearing capacity of reinforced soil structures. Despite its importance, there is limited research on the temperature-dependent mechanical properties of the silica sand-geogrid (SG) interface. To address this, a self-designed temperature-controlled large-scale static shear apparatus was used to perform a series of static shear tests on the SG interface, utilizing marine SS particles ranging from 0.075 mm to 2 mm and testing temperatures ranging from −5°C to 80°C. The results revealed a non-linear relationship between shear strength and temperature: as temperature increased from −5°C to 40°C, shear strength decreased, then rose between 40°C and 50°C, before declining again beyond 50°C. The sensitivity of interface shear strength to variations in normal stress remained low at both low and high temperatures. Moreover, the interface friction angle and cohesion showed temperature-dependent fluctuations, initially decreasing, then increasing, and finally declining again. These findings underscore the complex effects of temperature on SG interface mechanics and suggest that temperature must be carefully considered in evaluating the stability and performance of reinforced soil structures under varying environmental conditions.
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1 INTRODUCTION
As a typical marine sediment, marine silica sand (SS) is widely distributed worldwide and is particularly common in coastal and offshore areas (Chen R. et al., 2023; Wu et al., 2022; Wu et al., 2019). As marine engineering construction advances, marine SS is being progressively adopted as a key material for building engineering structures, including foundations for port terminals and coastal highways (Akosah et al., 2025; Peng et al., 2022; Wu et al., 2021). However, the marine SS foundation’s pliability in relevant engineering applications could cause uneven settlement or localized failure, especially when subjected to water infiltration and waves (Oyegbile and Oyegbile, 2017; Wang H. et al., 2024; Yu and Bathurst, 2017). The geogrid reinforcement technique is considered an efficacious approach for enhancing the safety of marine engineering structures and mitigating foundation settlement (Chai et al., 2024; Li and Rowe, 2008; Sajan et al., 2024). The reinforcement effect predominantly influences the mechanical performance at the interface between the marine SS and the geogrid (Chen et al., 2021; Gao et al., 2024; Shao et al., 2023). The stabilized SG interface has been demonstrated to facilitate the effective transfer of external loads to the geogrid (Wang and Zhang, 2020; Wang et al., 2021). This process restricts marine SS foundations’ lateral deformation, enhancing their overall flatness (Ahmad and Mahboubi, 2021; Fan et al., 2025; Gao and Ye, 2023). Therefore, in-depth research into the mechanical properties of SG interfaces is essential.
In marine engineering, SG interfaces are frequently subjected to static loads, including foundation self-weight and long-term static loads in marine environments (Chen et al., 2022; Rui et al., 2024; Ye et al., 2022). The soil-geosynthetics interface’s mechanical response to static loading is known to be very different from its response to dynamic loading (Chao et al., 2024d; Chao et al., 2024e; Deng et al., 2024). Compared to dynamic loading, the interface under static loading primarily demonstrates long-term stability and progressive deformation characteristics (Chao et al., 2024c; Wang P. et al., 2024; Wang T. et al., 2024). The results show that under static loading conditions, the SG interface undergoes stress relaxation and creep deformation, causing irreversible damage to the SG joint interface during long-term use (Cardile, 2023; Ye et al., 2019). These phenomena significantly impact the SG interface’s shear performance and long-term stability (Chen J. et al., 2023; Wang et al., 2025; Feng et al., 2022). Furthermore, the findings indicate that the mechanisms of friction and embedded locking at the SG interface under static loading are also more significant (Samanta et al., 2022; Liu et al., 2024). Therefore, studying the SG interface’s mechanical characteristics under static loading is essential.
Marine engineering structures on marine SS foundations experience temperature fluctuations due to elevated temperatures and exothermic reactions in tropical and subtropical coastal regions (Chao et al., 2023b; Feng et al., 2022). Generally, the marine foundation temperatures may approach 50°C or higher in the summer and below 0°C in the winter (Chao et al., 2024b; Feng et al., 2024). Research has demonstrated that temperature exerts a substantial influence on the performance of geosynthetics (Feng et al., 2025; Han and Jiang, 2013). Geogrid is made of thermoplastic synthetic polymers such as polyester and polypropylene, which are heat-sensitive and will soften at elevated temperatures (Liu et al., 2023; Samea and Abdelaal, 2023). Rising temperatures cause a notable reduction in the geogrid’s mechanical properties, including the modulus of elasticity and strength (Marcotte and Fleming, 2022). Research indicates that an increase in temperature from 20°C to 60°C can reduce the tensile strength of geogrid by approximately 30% (Chao et al., 2024a; Francey and Rowe, 2023; Shirazi et al., 2019). Additionally, research indicates that higher ambient temperatures lead to decreased tensile strength and elastic stiffness, accompanied by increased creep strain in geogrid (Wang et al., 2023). Regarding the mechanical properties of marine SS, the current studies demonstrate that it is also temperature-dependent. Temperature changes alter the thermal conductivity of marine SS, affecting temperature distribution and moisture migration and leading to changes in the effective stresses in the soil (Chao et al., 2023a; Karademir and Frost, 2014; Shi et al., 2023). Hence, studying how temperature affects the SG interface’s mechanical properties is essential.
Despite the increasing use of geogrid-reinforced marine sand in coastal and offshore engineering. Rare research on how temperature affects the SG interface has been carried out because of limitations in tools like temperature-controlled interface static shear apparatus. Most existing studies focus on SG interfaces’ static and dynamic mechanical behaviour under ordinary temperatures, with limited attention to temperature variations. This paper presents a series of static shear tests conducted on SG interfaces at various temperatures utilizing a self-developed temperature-controlled large interface static shear apparatus. The experimental temperatures were (−5°C, 0°C, 20°C, 40°C, 50°C, 60°C, 70°C, and 80°C), and the marine SS particle sizes varied from 0.075 mm to 2 mm. The experiment’s results provide valuable insights into the temperature effects on the static interface interaction between sand and geogrid. This research fills a critical gap in understanding how temperature variations impact the performance of geogrid-reinforced marine foundations. Furthermore, it offers significant references for the engineering application of geogrids across various environmental conditions, particularly in the design and long-term performance assessment of geogrid-reinforced marine foundations under fluctuating temperature conditions.
2 EXPERIMENTAL PROGRAM
2.1 Testing apparatus
The self-developed temperature-controlled large interface static shear apparatus comprises two primary components: an external environmental temperature chamber and an internal static shear system, as depicted in Figure 1. The static shear system is housed within the temperature chamber, which enables precise temperature regulation for interface shear tests over a broad range from −50°C to 300°C, with durations of up to 7 days. The servo load’s normal stress ranges from 0 kPa to 400 kPa, the speed range is 0.1–50 mm/min, and the normal stress accuracy is 1 kPa. The shear loading servo control system can apply stress or displacement-controlled shear loading to the lower shear box through the shear stress loading lever, with the maximum shear force and displacement of 50 kN and 200 mm, respectively, the displacement resolution of 0.001 mm and the accuracy of shear stress of ±0.02%. Static shear tests on the SG interface under controlled temperatures are now possible, thanks to this device.
[image: Two images depict a testing setup. The first image shows a physical apparatus with labeled components: external temperature chamber, internal testing device, normal stress loading device, and shear stress loading device. The second image is a schematic diagram detailing the internal setup, including the temperature chamber, normal pressure loading rod, upper and bottom shear boxes, gauge, and a reference to the shear device.]FIGURE 1 | The self-developed temperature-controlled large interface static shear apparatus. (a) Front view; (b) Close-up view and corresponding cross-sectional view.
2.2 Materials
2.2.1 Silica sand
The experimental material employed in this study is marine SS (refer to Figure 2). The distribution curve of particle sizes is depicted in Figure 3. The ideal moisture content of the prepared marine SS materials is 9.65%. Table 1 delineates the physical and mechanical characteristics of marine SS.
[image: A comparison of two images showing sand grains. The left side shows a pile of fine beige sand. The right side presents a magnified black-and-white electron microscope image revealing the angular texture and irregular shapes of individual sand particles.]FIGURE 2 | Marine silica sand sample.
[image: Line graph showing the percentage of fineness against particle size in millimeters. The graph trends upward, with points at 0.075, 0.25, 0.5, 1, and 2 millimeters, reaching 100% fineness at 2 millimeters.]FIGURE 3 | The particle size distribution curve.
TABLE 1 | Physical and mechanical properties of marine silica sand.
[image: Table displaying soil parameters: Nonuniform coefficient \(C_u\) is 3.327, coefficient of curvature \(C_c\) is 0.3, median size \(D_{50}\) is 0.785 mm, maximum void ratio \(e_{max}\) is 0.80, minimum void ratio \(e_{min}\) is 0.51, density \(\rho\) is 1.50 g/cm\(^3\), and relative compaction is 32–34 percent.]2.2.2 Geogrid
Geogrids were selected as the reinforcing material for this test because they are suitable for reinforcement applications with high embedded locking and load transfer requirements. Geogrid, through its unique large aperture structure and soil particles, forms a mechanical interlocking effect, significantly enhancing the soil’s shear strength and tensile strength. This reinforcing effect can effectively improve the stability of the soil under external loads. Geogrid improves reinforced sand structures’ tensile strength and load-bearing capacity by limiting lateral displacement and mobilising confining effects. These characteristics make geogrids particularly advantageous for marine applications. The geogrid used in the experiment is a polypropylene (PP) biaxially oriented plastic geogrid manufactured by Lusheng Geosynthetics Co., as shown in Figure 4. Its technical specifications are detailed in Table 2. In Table 2, transverse quality control tensile strength represents the tensile strength under transverse loading, while longitudinal quality control tensile strength is the tensile strength under longitudinal loading. Transverse node effectiveness indicates the functional performance of nodes in the transverse direction, whereas longitudinal node effectiveness measures node performance in the longitudinal direction. Additionally, 0.5% strain transverse stiffness and 0.5% strain longitudinal stiffness are key parameters describing the material’s deformation resistance and stiffness under external forces in the respective directions.
[image: A grid-like structure appears to bulge outward, creating a three-dimensional illusion. The parallel and perpendicular lines warp, emphasizing the central distortion. The background is white.]FIGURE 4 | Biaxial geogrid.
TABLE 2 | Technical specifications of geogrid.
[image: Table showing various quality control and performance metrics for a material. Transverse and longitudinal tensile strength are both 30 Newtons per millimeter. Horizontal and vertical node effectiveness are 95 percent. Perforation size is 39 by 39 millimeters. Both 0.5 percent strain lateral and radial stiffness are 390 Newtons per millimeter.]2.3 Test steps
The geogrid sample used in the experiment was 280 mm wide and 460 mm long, and it was fixed to the front edge of the lower shear box in the static shear apparatus. The static shear test was performed along the longitudinal direction of the geogrid sample. The upper shear box was loaded with marine SS in five layers using a layered compaction method. The height of each layer was 24 mm, totalling 12 mm, and 16 tampers compacted each layer. After compacting the upper shear box fill, cover the rigid bearing plate, apply normal stress, and turn on the temperature control switch for temperature adjustment. The consolidation time of the marine SS sample was 2 hours, and the temperature adjustment time was 2 hours. The examination was performed in a strain-controlled mode, utilizing a shear rate of 1 mm/min. The horizontal tension and shear displacement were recorded automatically throughout the shear process. The test ceases automatically upon the attainment of a shear displacement of 65 mm.
2.4 Testing program
Geogrid is commonly used in marine engineering to reinforce the foundation, the general cover soil thickness is 2.5 m–12.5 m, which exerts about 50 kPa–250 kPa normal stress on the SG interface. Based on the practical application of geogrids in marine engineering, three experimental normal stress values of 50 kPa, 150 kPa, and 250 kPa were selected in order to simulate the stress conditions at different depths that may be encountered in actual reinforcement projects. The normal stress of 50 kPa represents shallow reinforcement applications such as coastal dykes and roadbeds. The normal stress of 150 kPa corresponds to a medium-depth reinforcement scheme, which is geogrid in the engineered fill layer. The normal stress of 250 kPa corresponds to deep foundation applications. In this study, a temperature interval from −5°C to 80°C was selected based on the range of temperature variations common in marine engineering. Intermediate temperatures (0°C, 20°C, 40°C, 50°C, 60°C, and 70°C) were also selected to systematically analyze the effects of temperature variations on the SG interface, considering the value of the experimental results for engineering applications and workload balance. Choosing reasonable temperature intervals can effectively reveal the influence of the law of temperature change on the mechanical behaviour of the interface, especially the change of mechanical response in the high and low-temperature intervals. The shear rate of 1 mm/min was selected based on established standards (ASTM D3080, ISO 17892-10) for direct shear testing of soil-geosynthetic interfaces. A lower shear rate ensures quasi-static loading, allowing stress redistribution and preventing inertial effects or strain localization. This rate aligns with practical geotechnical applications and has been widely adopted in previous studies to accurately capture interface mechanical behaviour under static loading. Under undrained consolidation, the static shear test was carried out on the SG interface using constant temperature control technology. A total of 24 testing programs were designed under three normal stresses (50 kPa, 150 kPa, 250 kPa) and eight different constant temperature conditions (−5°C, 0°C, 20°C, 40°C, 50°C, 60°C, 70°C, and 80°C), as shown in Table 3, to study the effects of different temperatures on the SG interface shear mechanical properties.
TABLE 3 | Testing program.
[image: Table detailing parameters of a temperature interfacial static shear test. Sand thickness is 12.0 cm. Normal stress is 50, 150, and 250 kPa. Rate of shear is 1.0 mm/min. Shear amplitude is 65.0 mm. Number of cycles is zero. Temperatures range from -5 to 80 degrees Celsius.]3 RESULTS AND ANALYSIS
3.1 The relationship between shear stress and shear displacement
Figure 5 illustrates the relationship curves between shear stress and shear displacement of the SG interface at various temperatures and normal stresses.
[image: Three graphs labeled (a), (b), and (c) depict shear stress versus shear displacement at different temperatures: -5°C, 0°C, 5°C, 20°C, 40°C, and 80°C. Each graph shows distinct curves for these temperatures, illustrating variations in shear stress behavior with increasing displacement.]FIGURE 5 | The relationship curves between shear stress and shear displacement. (a) 50 kPa Normal stress; (b) 150 kPa Normal stress; (c) 250 kPa Normal stress.
Figure 5 shows that for most temperatures and normal stresses, the hyperbolic pattern is the most common relationship between shear stress and shear displacement at the SG interface. When the shear displacement grows, the shear stress goes up, down, and then flattens out. Elastic, failure and residual shear are the three separate phases that these curves go through.
In the elastic stage, shear stress and displacement exhibit a linear correlation. At the same level of normal stress, curves for different temperatures nearly overlap, suggesting that temperature has minimal influence on the shear mechanical behaviour of the interface in this stage.
In the failure stage, the SG interface shear stress increases and then decreases with the displacement increase, showing apparent strain-softening characteristics. Strain-softening refers to a phenomenon where, after reaching peak shear stress, the shear resistance decreases as deformation continues, often due to the progressive degradation of material interlocking and bonding. The main reason is that the occlusal embedment between soil particles and geogrid is gradually destroyed with the increase of displacement. This leads to a decrease in shear strength, which is manifested as strain-softening characteristics. The shear displacement corresponding to the peak shear stress increases with the increase of normal stress at the same temperature. For example, under a normal stress of 50 kPa, the shear displacement corresponding to the peak shear stress ranges from 8 mm to 12 mm; under 150 kPa, it ranges from 12 mm to 25 mm; and under 250 kPa, it ranges from 20 mm to 35 mm. However, at high normal stresses and elevated temperatures, the interface may exhibit insignificant strain-softening characteristics or even demonstrate strain-hardening characteristics. Strain-hardening describes a response where shear stress continuously increases with displacement, indicating an increasing resistance to deformation due to material densification or strengthening mechanisms. Specifically, at normal stresses of 50 kPa and 150 kPa, the shear stress initially increases and then decreases with increasing displacement, exhibiting strain-softening characteristics. In contrast, at a normal stress of 250 kPa, the shear stress increases with displacement in the temperature range from 40°C to 80°C, showing strain-hardening characteristics. This is due to the fact that the increased embedded locking effect between sand grains occurs at higher normal stresses due to grain compacting and an increase in contact points. At higher temperatures, the geogrid softens due to thermal expansion, and when shear displacement increases, the embedded locking effect between the sand particles and the geogrid pores becomes more noticeable. Shear strength gradually increases as a result of this. Causing the SG interface to exhibit strain-hardening behaviour.
In the residual shear stage, the SG interface shear stress remains relatively constant as displacement increases. At the same temperature, the residual shear stage is less pronounced under normal stress of 250 kPa than normal stresses of 50 kPa and 150 kPa.
3.2 The temperature-dependent interface shear strength
In order to investigate the variation in shear strength of the SG interface as a function of temperature, graphical representations illustrating the relationship between interface shear strength and temperature (specifically at 5°C, 0°C, 20°C, 40°C, 50°C, 60°C, 70°C, and 80°C) are provided under three distinct normal stress conditions (50 kPa, 150 kPa, and 250 kPa), as depicted in Figure 6. The maximum shear stress observed on the relationship curve between shear stress and shear displacement of the SG interface represents the shear strength of the interface. In the context of multiple peak stresses, the initial peak shear stress signifies the shear strength of the interface.
[image: Line graph showing the shear strength in kilopascals (kPa) versus temperature in degrees Celsius (°C) for three different load conditions: 500 Pascals (red squares), 1500 Pascals (blue triangles), and 2500 Pascals (green circles). The shear strength decreases slightly for each condition as temperature increases.]FIGURE 6 | The relationship curves between the interface shear strength and temperature.
According to Figure 6, the interface shear strength exhibits an initial decline, followed by an increase, and subsequently a further decrease as the temperature rises. Within the temperature range of −5°C–40°C, the interface shear strength exhibits a gradual decline as the temperature rises. This reduction can be ascribed to a diminished bond strength between the sand particles and the geogrid interface. The geogrid material demonstrates increased rigidity in low-temperature environments, resulting in a more pronounced locking effect among the sand particles (Lahoori et al., 2021; Ye and Gao, 2024). Between 40°C and 50°C, the interfacial shear strength significantly increases with the elevation of temperature. The observed increase can be attributed to the moderate softening of the geogrid material at elevated temperatures, which facilitates an enhanced interlocking effect between the sand particles and the geogrid interface, thereby augmenting the shear resistance at the interface (Khan and Latha, 2023; Shu et al., 2025). The enhancement in shear strength is especially notable when subjected to a normal stress of 250 kPa. Nevertheless, within the temperature range of 50°C–80°C, the interface shear strength exhibits a decline as the temperature increases. This indicates that the thermal softening of the material at elevated temperatures considerably influences the mechanical properties of the interface. Within the low-temperature range of −5°C–0°C, the shear strength of the SG interface reaches its peak at −5°C.
The interface shear strength change ratio β is introduced to investigate the sensitivity of the SG interface shear strength to normal stress and temperature changes (Ari and Akbulut, 2024).
[image: Equation shows beta equals the absolute value of the difference between tau sub two and tau sub one, divided by tau sub one.]
where, [image: Greek letter tau subscript one in italics.] represents the interface shear strength under the initial conditions, and [image: It appears that the image was not uploaded successfully. Please try uploading the image again, and I will be happy to help create the alternate text for it.] represents the new interface shear strength after a change in conditions.
The interface shear strength change ratio β (Equation 1) reflects its sensitivity to variations in normal stress and temperature. The shear strength change ratio β at different temperatures and normal stress intervals are presented in Tables 4,5.
TABLE 4 | The shear strength change ratio β corresponding to different normal stress intervals.
[image: Table displaying temperature in degrees Celsius and corresponding percentages for three parameters: β₁ from 50 kPa to 150 kPa, β₂ from 150 kPa to 250 kPa, and β₃ from 50 kPa to 250 kPa. Values are provided for temperatures -5 to 80 degrees Celsius.]TABLE 5 | The shear strength change ratio β corresponding to different temperature intervals.
[image: Table showing normal stress in kilopascals and corresponding beta values across different temperature intervals. For 50 kPa, \(\beta_1\) is 19.97%, \(\beta_2\) is 17.10%, \(\beta_3\) is 12.53%. For 150 kPa, \(\beta_1\) is 22.25%, \(\beta_2\) is 5.25%, \(\beta_3\) is 7.90%. For 250 kPa, \(\beta_1\) is 8.19%, \(\beta_2\) is 9.37%, \(\beta_3\) is 17.11%.]As shown in Table 4, the variation in interface shear strength initially increases and then decreases with rising temperature, reaching a peak within a specific temperature range. For normal stress variation intervals of 50 kPa–150 kPa and 50 kPa–250 kPa, the interface shear strength change ratio β reaches its highest values at 40°C, measuring 198.28% and 406.19%, respectively. This indicates that at 40°C, the SG interface is most sensitive to changes in normal stress within these ranges. The underlying reason is the moderate thermal softening of the geogrid material at this temperature, which enhances the interlocking effect between sand particles and the geogrid, thereby improving the interface’s responsiveness to normal stress variations. For the normal stress interval of 50 kPa–150 kPa, the interface shear strength change ratio β is highest at 50°C, with a value of 77.04%. This suggests that the sensitivity of the SG interface shear strength to normal stress changes is most pronounced at 50°C within this range. The interface shear strength change ratio β at room temperature (20°C) is more significant than at both low and high temperatures. Specifically, for the normal stress interval of 50 kPa–150 kPa, the interface shear strength change ratio β is 317.03% at −5°C, 328.99% at 80°C, and 348.53% at 20°C. This indicates that the interface shear strength is more sensitive to normal stress variations at room temperature than at low or high temperatures. To better explain this behaviour, photographs of geogrid samples after testing at different temperature conditions (low, room, and high) are attached, as shown in Figure 7. As shown in Figure 7, no significant deformation of the geogrid occurred at low temperatures. This is because at low temperatures, polypropylene geogrids become stiffer, with a marked increase in stiffness, leading to a reduction in their flexibility. This weakens the occlusal embedment between the geogrid and the sand particles, thereby reducing the sensitivity of the interface shear strength to changes in normal stress. Geogrids undergo significant plastic deformation in high-temperature environments due to the thermal softening effect. This material softening phenomenon significantly reduces structural stiffness, weakening the geogrid’s shear resistance. In contrast, at room temperature, geogrids balance rigidity and flexibility. This balance optimizes the occlusal embedment between the geogrid and the sand particles, enhancing the interface’s mechanical response and making its interfacial shear strength more sensitive to normal stress changes. The observed trends are valid for the polypropylene (PP) geogrids used in this study, as PP geogrids exhibit moderate thermal softening behaviour. However, different geogrids made from alternative polymers, such as polyester or polyethene, may exhibit different responses to temperature variations.
[image: Three grayscale images of grid patterns on surfaces. Image (a) shows an intact grid with even spacing. Image (b) displays a similar pattern with slight distortion. Image (c) reveals a grid with significant deformation and uneven lines, indicating stress or damage.]FIGURE 7 | Samples of geogrids after tests with different parameters. (a) 150 kPa Normal stress; −5°C temperature; (b) 150 kPa Normal stress; 20°C temperature; (c) 150 kPa Normal stress; 80°C temperature.
Table 5 shows that as the temperature increases, the interface shear strength change ratio β decreases under normal stress of 50 kPa. This trend suggests that, under normal stress of 50 kPa, the SG interface becomes less sensitive to temperature changes as temperatures increase. Between −5°C and 20°C, the sensitivity to temperature changes is at its peak, and between 50°C and 80°C, it is at its lowest. As the temperature rises, the interface shear strength change ratio β grows under a normal stress of 250 kPa. It can be observed that at a normal stress of 250 kPa, the shear strength of the SG interface is highly sensitive to changes in temperature. The sensitivity to temperature change is greatest in the 5–20°C temperature range, and in the 50–80°C range, it is least.
3.3 The temperature-dependent interface strength parameter analysis
To investigate the SG interface shear characteristics at different temperatures, the least square method plots the envelope curves of interface shear strength and residual shear strength at various constant temperatures, as shown in Figure 8.
[image: Two line graphs depict shear strength versus normal stress at various temperatures. Graph (a) shows the relationship with shear strength, while graph (b) presents residual shear strength. Lines represent different temperatures ranging from -5°C to 80°C with linear fit lines. Both graphs display consistent positive correlations between normal stress and shear strength across all temperatures.]FIGURE 8 | Mohr-Coulomb Failure envelope lines of SG interface shear strength. (a) Shear strength; (b) residual shear strength.
Figure 8 illustrates the linear relationship between shear and residual shear strength and normal stress. The correlation coefficients (R2) for shear and residual shear strength in relation to normal stress range from 0.994 to 1.000, as shown in Table 6. This signifies a robust linear correlation between shear strength and residual shear strength in relation to normal stress. The present study employs the Mohr-Coulomb criterion to analyze this linear relationship. The cohesion and internal friction angle, essential parameters of interface shear strength, are ascertained using the Mohr-Coulomb Failure envelope theorem. According to the theorem, the shear strength ([image: Please upload the image you'd like me to generate alt text for.]) at the interface is given by the following equation:
[image: Equation depicting the Mohr-Coulomb failure criterion: tau equals c plus sigma times tangent phi, where tau is shear stress, c is cohesion, sigma is normal stress, and phi is the angle of internal friction.]
where, [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] represents the shear strength, c represents the cohesion, [image: Please upload the image you want me to generate alternate text for, or provide a URL.] represents the normal stress, and [image: Please upload the image or provide a URL for me to generate the alternate text.] represents the angle of internal friction.
TABLE 6 | Goodness of fit of interface shear strength molar stress circular envelope line.
[image: Table showing the goodness of fit \(R^2\) values at different temperatures. For −5°C, 0.996 and 0.997; for 0°C, 1 and 0.997; for 20°C, 0.999 and 1; for 40°C, 0.999 and 1; for 50°C, 0.994 and 0.999; for 60°C, 0.999 and 0.997; for 70°C, 0.996 and 0.999; for 80°C, 1 for both.]The cohesion (c) and friction angle ([image: Please upload the image or provide a URL, and I can help generate alt text for it.]) were obtained by fitting the linear envelope of the shear stress data (from both peak and residual stages) to the normal stress, as shown in Table 7, Figures 9,10.
TABLE 7 | Tabulated values of friction angle and cohesion at different temperatures.
[image: Table comparing friction angle, residual friction angle, cohesion, and residual cohesion across temperatures from negative 5 degrees Celsius to 80 degrees Celsius. Friction angles range from 31.05 to 36.43 degrees, while residual friction angles range from 30.92 to 36.32 degrees. Cohesion values vary from 0.89 to 10.57 kilopascals, and residual cohesion ranges from 0.26 to 12.93 kilopascals.][image: Line graph showing friction angle and residual friction angle against temperature in degrees Celsius. The friction angle line, marked with red squares, starts at 33°, peaks at around 48° at 40°C, and ends at 35°. The residual friction angle, shown with green triangles, has values ranging from 17° to 26°, with a peak at 20°C.]FIGURE 9 | The relationship curves between interface friction angle and temperature.
[image: Line graph showing cohesion and residual cohesion in kilopascals (kPa) versus temperature in degrees Celsius (°C). Cohesion decreases sharply from around 13 kPa to 2 kPa, then fluctuates. Residual cohesion follows a similar pattern but is generally lower.]FIGURE 10 | The relationship curves between interface cohesion and temperature.
Although marine SS is usually considered to be cohesionless, the present experimental data measure the SG interface, which differs from pure marine SS. The physical interaction between marine SS particles and geogrid can explain the observed cohesion at the SG interface. The geogrid’s rough surface and large pore size structure create an occlusal embedding interaction with the marine SS particles, effectively increasing the interface’s shear strength. Although marine SS does not have cohesion, this occlusal embedding interaction produces measurable cohesion at the interface. In addition, the tested marine SS had a moisture content of 9.45%, which allowed for a moisture film on the surface of the sand particles. The moisture film creates cohesion between the particles through capillary action or surface tension.
Figure 9 demonstrates that the SG interface friction angle varies between 31.05° and 36.43°, whereas the SG interface residual friction angle fluctuates from 30.92° to 36.32°. The interface friction angle and the residual friction angle initially diminish, then augment, and subsequently decline as the temperature escalates. The minimum values for both angles are recorded at 80°C, while the maximum values are noted at 50°C. At 80°C, the interface friction angle is 31.05°, and the residual friction angle is 30.92°. Conversely, at 50°C, the interface friction angle increases to 36.43°, and the residual friction angle attains 36.32°. As the temperature decreases from 20°C to −5°C, the interface friction angle rises by 3.97%, and the residual friction angle escalates by 8.06%. This suggests that the peak residual interface friction angle exhibits greater sensitivity to temperature fluctuations than the interface friction angle when the temperature declines from 20°C to −5°C. Low temperatures considerably affect the rigidity of the interface material, resulting in more pronounced alterations in interface behaviour under residual conditions (Jin et al., 2022; Shoushtari et al., 2023). When the temperature increases from 20°C to 80°C, the interface friction angle decreases by 9.70%, while the interface residual friction angle decreases by 3.49%. The results indicate that, within the temperature range of 20°C–80°C, the interface friction angle is more sensitive to temperature changes than the interface residual friction angle (Jin et al., 2022; Gao and Ye, 2024). The results indicate that the high-temperature softening effect may significantly impact the initial shear stage. In contrast, the mechanical performance changes during the residual stage are relatively minor.
Figure 10 shows that different values of interface cohesion (from 0.89 kPa to 10.57 kPa) and residual interface cohesion (from 0.26 kPa to 12.93 kPa) are observed. As the temperature increases, the interface and residual cohesion show a pattern of decreasing, increasing, and then decreasing again. At 40°C, the values for both parameters are at their lowest, and 5°C, they are at their highest. The residual and interface cohesion are both lower at 20°C than at the two extremes. An increase of 806.18% in interface cohesion and a rise of 144.43% in residual cohesion are observed as the temperature drops from 20°C to −5°C. This suggests that, within this temperature range, changes in interface cohesion are more noticeable than changes in residual cohesion. Similarly, there is a 647.73% increase in interface cohesion and a 40.48% increase in residual cohesion as the temperature rises from 20°C to 80°C. From 20°C to 80°C, this indicates that, like residual cohesion, interface cohesion is more temperature-sensitive.
3.4 The relationship between normal and shear displacement
The relationship curves between normal and shear displacement in different temperatures are drawn in Figure 11.
[image: Three line graphs labeled (a), (b), and (c), each depicting normal displacement versus shear displacement in millimeters. Different colored lines represent temperatures ranging from negative ten to twenty-five degrees Celsius. Each graph shows varying patterns of displacement across different temperatures, with legends indicating corresponding temperature values.]FIGURE 11 | The relationship curves between normal displacement and shear displacement. (a) 50 kPa Normal stress; (b) 150 kPa Normal stress; (c) 250 kPa Normal stress.
Figure 11 depicts the correlation between normal and shear displacement at identical normal stress levels across varying temperatures. In Figure 11, negative normal displacement indicates shrinkage behaviour, whereas positive normal displacement signifies expansion behaviour. The vertical deformation of reinforced soil during the shear displacement process can be categorized into three distinct stages. In the initial stage, the shear displacement is relatively small, the normal displacement is negative, and the reinforced soil undergoes vertical shrinkage. At this stage, as the sand grains are rearranged, the voids between the grains are gradually reduced, and the particles are compacted. In addition, the geogrid enhances the embedded locking effect of the particles so that the sand particles do not undergo large-scale slippage at the initial stage, which promotes the compacting of the soil. This leads to a reduction in the volume of the sandy soil and shear shrinkage. In the second stage, the normal displacement becomes positive as the shear displacement increases, and the reinforced soil exhibits dilatancy. The reason for this phenomenon is the sliding of the sand particles on each other and the surface of the geogrid as the shear displacement increases. Increased relative displacement and space between particles lead to swelling of the sandy soil; thus, the reinforced soil exhibits shear swelling. In the third stage, after reaching the maximum shear stress. The geogrid is gradually withdrawn from the soil layer, and its pores and surface will bring out part of the sandy soil. This results in a continuous decrease in the overall volume of the sandy soil and, thus, a continuous decrease in the normal displacement and shear contraction until the maximum shear displacement is reached.
The shear displacements linked to the changes from shear shrinkage to shear dilation and from shear dilation to shear shrinkage follow similar patterns at different temperatures, as shown in Figure 10, when subjected to the same normal stress. The horizontal displacement linked to the first stage’s completed shear shrinkage grows steadily larger as the normal stress grows. As the second stage nears its end, the horizontal displacement linked to the shear dilation’s end also increases with time. As an example, when normal stress was raised, the horizontal displacement at the end of the first stage of shear shrinkage increased from 5 mm to 8 mm and then to 10 mm. Likewise, as normal stress increased, the horizontal displacement of 15 mm, 20 mm, and 30 mm corresponding to the end of shear dilation in the second stage grew. The soil sample’s shear dilatancy in the second stage became less noticeable or even vanished when subjected to high normal stress and elevated temperatures. Soil samples sheared and vanished in the second stage when subjected to normal stresses of 250 kPa and 80°C; this behaviour persisted at 60°C and 70°C as well.
The initial stage shear shrinkage of the SS sample is negligible or nonexistent at a normal stress of 250 kPa. The dilatancy in the second stage is more noticeable as temperature increases under low normal stress. The normal displacement in the second stage increases by 0.38 mm at −5°C, 0.4 mm at 0°C, 0.45 mm at 20°C, and 0.6 mm at 80°C, according to a normal stress of 50 kPa. The normal displacement turns positive at a maximum normal stress of 250 kPa and a low temperature of −5°C. This is probably because the sand density increases and the pore water ice volume increases under high stress (Chao et al., 2025; Gao et al., 2024).
4 CONCLUSION
This study used a self-engineered temperature-controlled large interface static shear apparatus to perform a series of temperature-regulated static shear tests on the interface between geogrid and marine SS, with particle sizes ranging from 0.75 mm to 2 mm. Temperatures ranging from −5°C to 80°C were used for the tests. According to the results of the study, the static mechanical behaviour of the SG interface is greatly affected by temperature. Under different normal stresses, the SG interface shear strength first decreases, then increases, and subsequently decreases as the temperature rises. As the temperature increases, the angle of interface and residual friction decreases at first, then increases, and finally decreases again. As the temperature increases, the interface and residual interface cohesion follow a decreasing trend at the outset, an increasing trend later on, and a decreasing trend again. Under the same normal stress, the shear displacements associated with the transitions from shear shrinkage to shear dilation and from shear dilation to shear shrinkage exhibit similar trends at different temperatures. The results presented in this paper provide crucial insights into the temperature-dependent static mechanical behaviour of the interface between geogrid and marine SS. These results are essential for addressing the uncertainties and limitations of selecting mechanical parameters for designing SG interfaces in relevant marine engineering applications. Future research should address the effects of different temperature intervals on geogrid performance and explore in depth how to select appropriate geogrids based on temperature changes. By optimizing the material selection and structural design of geogrids, it can be ensured that geogrids can provide the best service effect and long-term stability under low temperature, high temperature and temperature cycling. These studies are of great significance in promoting the sustainable development of marine engineering infrastructure. They can provide more accurate engineering parameters for the reasonable application of geogrids under various temperature conditions and provide a more scientific and practical reference for future engineering design.
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In view of the unknown mechanical response behavior of weak interlayer surrounding rock under complex stress environment, this paper adopts laboratory experimental research method to carry out uniaxial compression and cyclic loading and unloading tests on natural rock mass and water-saturated rock mass, and compares the strength, deformation, failure mode and acoustic emission characteristics of rock mass. The mechanical behavior and warning signal of weak interlayer rock mass under cyclic loading and unloading are studied. The results show that cyclic loading reduces the strength of natural rock mass, and water saturation further weakens the strength of rock mass. The strength attenuation rate of water-saturated rock mass is low, at 60.19%. The average deformation modulus of natural rock mass is 6.571 GPa, and the average deformation modulus of water-saturated rock mass is 3.646 GPa, indicating that water reduces the stiffness of rock mass. The failure modes include splitting shear under uniaxial compression and tensile shear damage under cyclic loading. Acoustic emission analysis found that during the unloading and reloading process, the rock mass has a short “step-like” silent period, and about 70% of the damage occurs in the last silent period before failure. This can be used as a prediction indicator of damage and provide a valuable reference for disaster warning in engineering applications.
Keywords: cyclic loading-unloading, strength degradation, acoustice mission, water saturation, rock mechanics

1 INTRODUCTION
As a type of challenging geology characterized by significant intensity differences, interbedded rock formations frequently lead to safety accidents in coal mining and underground engineering due to their non-uniform deformation properties. The damage mechanisms and precursor characteristics of these rock masses differ from those of homogeneous rock masses (Yong et al., 2006). The unique structural attributes of deep coal rock masses, combined with cyclic loads such as geostress and multiple mining disturbances, inevitably cause damage to the surrounding rock. This damage reduces the rock’s bearing capacity, creates pathways for groundwater flow, and can lead to secondary damage due to the presence of water, exacerbating support issues. Therefore, conducting graded cyclic loading and unloading experiments on both natural and water-saturated interbedded rock samples is crucial. Such studies, which analyze mechanical damage characteristics and acoustic precursors, are vital for preventing and managing stability problems in surrounding rock masses induced by cyclic loading in interbedded rock bodies.
Many scholars have studied the mechanical properties and damage mechanisms of coal rock under complex stress paths. Ouyang et al. (2024) conducted indoor quasi-static uniaxial cyclic loading and unloading and dynamic axial compression tests under impact loads, revealing the damage mechanism of coal bodies under multiple mining disturbances and impact loads. Yang Z. et al. (2024) shows that initial stress suppresses the propagation of intergranular cracks, while the presence of a free face significantly enhances the efficiency of TBM rock fragmentation. Li et al. (2018) indicates that elevated temperatures enhance the ductility of rock salt but reduce its compressive strength. Shang et al. (2018) study investigates the anisotropic direct tensile behavior of laminated and transversely isotropic Midgley Grit sandstone using a particle-based discrete element method. Yang Zheng et al. (2024) coupled thermo-mechanical model reveals that the relative impact on the peak stress of composite interbedded rocks follows the order: interlayer angle, thermal shock temperature, and model size, from greatest to least. Wang et al. (2024a) studied the damage characteristics and macro-micro failure morphology of coal-rock composite structures under cyclic mining stress, and constructed an energy-damage constitutive model of coal-rock composite structures under cyclic loads. Zhang et al. (2022) conducted uniaxial compression tests and acoustic emission tests on sandstone samples in saturated and natural states, and studied the mechanical properties and acoustic emission characteristics of sandstone with different particle sizes in the two states during the failure process. Rong et al. (2022) established a theoretical model of full stress-strain permeability of deep mining coal bodies by segmented characterization. Zhang et al. (2021) analyzed the influence of seepage pressure, confining pressure and deviatoric stress cyclic loading and unloading on the permeability of fractured mudstone, and constructed a mechanical model of fractured mudstone permeability evolution considering complex stress paths. Wang et al. (2024b) studied the influence of different types of sand powder and different binder saturation on the mechanical properties of soft rock samples and their mechanisms. Sun et al. (2017) analyzed the damage evolution of sandstone under multi-stage cyclic loading and proposed a fatigue damage evolution model for rocks. Su (2006), Mingqing and Su (2008) conducted uniaxial and triaxial cyclic unloading tests on marble samples to examine their deformation and strength characteristics. Zhou et al. (2010) investigated the stress-strain curves and peak strength of Xiangjiaba sandstone, presenting a method for calculating damage variables. Additionally, Xu et al. (2023) revealed the “strong-weak” structure and “squeezing-prying” system mechanism of coal and rock masses induced by deep mining in steeply inclined coal seams. Li et al. (2017) established a theoretical model to relate strain under cyclic unloading to the number of cycles, deriving the evolution equation for rock damage variables.
Several researchers (Wu et al., 2015) have also conducted indoor rock mechanical tests on artificial interbedded rock samples. Wu Bo and others examined how changes in the inclination angle of interbedded rock affect damage patterns using physical modeling and numerical simulations. Huang et al., 2020) analyzed the effects of peripheral pressure, inclination angle, and layer-thickness ratio on the damage mechanisms of interbedded rock samples under uniaxial and triaxial loading conditions. Chu et al. (2020) investigated the anisotropy and acoustic emission characteristics of layered sandstone by conducting uniaxial acoustic emission tests on sandstone at different angles, revealing crack extension and acoustic emission patterns.
In studies of water-bearing states, Wang et al. (2017) analyzed the deformation characteristics of dry and water-saturated sandstones under cyclic loading, focusing on the evolution and distribution of energy. Shan et al. (2018), Shan and Lai (2018) developed a coupled flow-solid model for fractured coal rock considering regional stress to study fracture field evolution and coupled flow-solid characteristics. Guo et al. (2014) examined the water stability and mechanical properties of dissolved tuffs in natural and saturated conditions, highlighting the impact of hydraulic action. Dong et al. (2014) explored the mechanical and acoustic properties of deep amphibolite under dry and saturated conditions, proposing a criterion for assessing rock damage proximity. Wang et al. (2016) tested natural and saturated coal samples, identifying differences in acoustic emission pulse signals, energy, and frequency with stress, and summarizing precursor information for instability. Lai et al. (2020) analyzed time-frequency characteristics and damage laws of coal samples using acoustic emission waveform spectral analysis under uniaxial loading. Zhang et al. (2020) investigated damage evolution and precursors using acoustic emission from coal samples under multi-stage strain and stress loading. Li et al. (2019) examined changes in the Felicity ratio and loading/unloading response ratios of various rocks under incremental cyclic loading. Quchao et al. (2009) explored strength characteristics and the Felicity effect in sillimanite under uniaxial cyclic loading. Finally, Sun et al. (2019) studied crack expansion and evolution under cyclic loading using triaxial testing and acoustic emission signals.
Many previous studies have examined the effects of different loading methods, the presence of interlayer structures, and varying water content states on rock mechanical properties and acoustic precursors in isolation. However, in real engineering scenarios, these factors often interact, leading to significant deterioration in rock strength. Comprehensive research considering the combined impact of cyclic loading and various water content states on interbedded rock samples is limited. Therefore, this paper conducts uniaxial cyclic loading tests to analyze the mechanical and acoustic characteristics of interbedded rock samples under two different water-bearing conditions. It is the first to systematically consider the combined effects of cyclic loading-unloading and water saturation on the mechanical behavior of interbedded rock masses, offering critical insights into their mechanical responses and failure mechanisms.
2 EXPERIMENTAL DESIGN AND METHODOLOGY
2.1 Specimen characteristics and dimensions
For this test, a natural interlayer rock sample composed of sandstone-graystone-sandstone was selected. According to the national standard for determining the physical and mechanical properties of coal and rock, the sample was processed into a standard cylindrical specimen with dimensions of φ50mm × 100 mm. The processing precision ensured that the non-parallelism of the two end surfaces was within 0.05mm, the deviation in the diameter of the upper and lower ends was no more than 0.3mm, and the axial deflection angle was within 0.25°. The surface of the specimen was smooth and free from defects. The structure of the interlayer within the test piece is illustrated in Figure 1.
[image: Cylindrical column diagram labeled with three sections: the top and bottom are sandstone, the middle is limestone. The column measures fifty millimeters in diameter and one hundred millimeters in height.]FIGURE 1 | Structure of specimen interlayer.
Ten standard specimens, labeled R1 to R10, were prepared. Their physical parameters, including diameter, height, and wave speed, were measured prior to testing. The specific grouping, numbering, and measurement results are shown in Table 1. The ten specimens are divided into two groups: one group consists of five specimens in a natural state, placed in a desiccator with water at the bottom, ensuring that the bottom of the specimens is 20 mm above the water surface to maintain a certain level of humidity; the other group consists of five specimens in a water-saturated state, which are immersed in a water container. Water is added three times at intervals of 2 hours until the water level is 20 mm above the specimens. After 48 h of immersion, the specimens are taken out, the surface water is dried, and they are packaged in plastic bags, awaiting testing.
TABLE 1 | Physical parameters of specimen base.
[image: Table displaying test data for different specimens. Columns include test piece serial number, aqueous state of affairs, load way, specimen size (calibre and high degree in millimeters), mass in grams, and wave velocity in kilometers per second. Test pieces R1 to R10 vary in loading conditions and wetness, affecting mass and wave velocity. Key entries show naturally and water-saturated states with corresponding load methods, indicating variable wave velocities from 2.26 to 3.09 kilometers per second.]2.2 Test equipment and systems
The testing was conducted at the Key Laboratory of Western Mining and Disaster Prevention, Xi’an University of Science and Technology. For this purpose, the Shenzhen Wanmei HCT-605A electro-hydraulic servo pressure tester was employed. This equipment is capable of simultaneously recording load and displacement values, with a maximum testing force of 600 kN and an accuracy class of 0.5, in accordance with the precision standards outlined in the Engineering Rock Test Methods. Acoustic emission was monitored using the SAEU2S multi-channel system from Beijing Shenghua Xingye Technology Co., Ltd., which tracks real-time data on count, amplitude, and energy during compression testing. The system was configured with a sampling frequency of 1 MHz, a detection threshold of 40 dB to minimize noise interference, and a front gain set to 40 dB. The test setup is depicted in Figure 2.
[image: Diagram of a testing setup with three sections: the Acoustic Emission System with a Monitoring Host, the Load System showing a sample with an AE Sensor attached, and the Control System with a Control Host. The sections are connected, illustrating interaction between components.]FIGURE 2 | Schematic diagram of the test system.
Prior to commencing the test, to ensure non-destructive data acquisition, a layer of petroleum jelly was applied between the sensor and the specimen to serve as a coupling agent. Two acoustic emission (AE) sensors were secured in the middle of the specimen using rubber bands. Both the loading system and the acoustic emission system were synchronized in terms of timing. The press was then activated to apply load to the specimen, while acoustic emission signals were continuously recorded throughout the loading process until specimen failure occurred. Following the specimen’s destruction, loading was halted, and the collected data were saved.
2.3 Experimental program and design
Based on the project rock body’s endowment environment and the influence of mining disturbance, this test is divided into two loading modes: (1) uniaxial compressive loading at one time; (2) uniaxial cyclic loading and unloading. According to the results of uniaxial compressive test, the peak increment of the two loading is about 20% of the uniaxial compressive strength, to ensure that each specimen is destroyed after 4–5 times of cycling, so it is determined that the natural specimen starting load is 30kN, and the cyclic gradient is 30kN; and the starting load of the water-saturated specimen is 9kN, and the cyclic gradient is 9 kN.
3 MECHANICAL CHARACTERIZATION OF INTERBEDDED ROCK SAMPLES
This study utilizes the Wanmei electro-hydraulic servo press to measure the uniaxial compression and cyclic loading-unloading mechanical parameters of interlayer specimens in both natural and water-saturated conditions. The experimental results are used to analyze the stress-strain curves, peak strength, and the average modulus of loading and unloading for the interlayer rock samples.
3.1 Characterization of stress-strain curves
The uniaxial compression and cyclic loading-unloading stress-strain curves for typical specimens in both natural and saturated states are presented in Figure 3 (1) As illustrated in Figure 3A, the natural state specimen exhibits distinct brittle failure under uniaxial compression, with a sudden destruction upon reaching peak strength, resulting in a complete loss of load-bearing capacity. In contrast, the water-saturated specimen shows noticeable behavior during the yield stage after the peak, maintaining some load-bearing capacity post-peak. Figures 3B, C reveal that while the stress-strain curves of both specimens display similar behavior before the peak in cyclic loading, there are significant differences in the post-peak rupture stages. The natural state specimen experiences abrupt failure upon reaching peak stress, demonstrating typical brittle characteristics. Conversely, the saturated state specimen shows a gradual decrease in bearing capacity after reaching peak strength, with the macro-fracture developing quickly along the longitudinal direction and primarily occurring near the interlayer contact surface. This suggests that the interlayer structure substantially influences the rock specimen’s strength. (2) Cai et al. (2001), Cai and Brown (2017) that the full stress-strain curve can be divided into two segments from the peak strength: the left segment represents the strain energy stored in the specimen, while the right segment indicates the energy dissipated during failure. For natural specimens, the energy stored before the peak is abruptly released as kinetic energy at the peak point, leading to noticeable ejection of broken rock fragments and rock powder, accompanied by dynamic sounds. In contrast, the water-saturated specimens develop microfissures during the yield stage, with energy being gradually released after the peak. These specimens remain intact post-failure, indicating that water alters the degree of rock damage and affects the energy collection, dissipation, and release processes. The transformation in rock behavior due to water highlights its potential to weaken the rock body, which is relevant for engineering applications like water softening methods to mitigate impact ground pressure and other hazards (Lai et al., 2020a; Lai et al., 2020b; Cui et al., 2019). (3) As shown in the partially enlarged sections of Figures 3B, C, both specimens exhibit a sudden drop in strain during each unloading stage while stress remains nearly constant, typically occurring at the same stress levels, which is indicative of elastic aftereffects.
[image: Three graphs illustrate the comparison of natural and industrial scenarios over time. Graph (a) shows natural and industrial healing potential curves, with months on the x-axis and potential on the y-axis. Graph (b) displays various curve progressions over months. The third graph showcases zoomed simulations for distinct response types, with the focus on case-specific curves. Each graph includes a detailed legend explaining the curve types.]FIGURE 3 | Stress-strain curves of typical natural and water-saturated specimens. (A) Single-axis primary loading. (B) Cyclic loading of natural specimens. (C) Cyclic loading of saturated specimens.
3.2 Characterization of intensity changes
Based on the test results, the average peak strength of the natural specimen under uniaxial compression was found to be 78.80 MPa, while the average peak strength of the water-saturated specimen was 21.92 MPa. The uniaxial compressive strength served as the reference value for the cyclic unloading tests conducted on specimens with different water content states. The mechanical parameters obtained from both loading methods are summarized in Table 2.
TABLE 2 | Mechanical parameters of specimens.
[image: Table displaying the test results for ten test pieces, labeled R1 to R10. Columns include load ordinal number, peak value strain percentage, devastation load in kilonewtons, devastation strength in megapascals, and average strength in megapascals. Data varies, with peak value strains ranging from 1.03% to 1.81% and average strengths from 21.92 MPa to 78.80 MPa.]A comparison of the specimen strengths under two loading methods-uniaxial loading and uniaxial cyclic loading-unloading-reveals that the average strength of specimens subjected to cyclic loading-unloading is 14.52 MPa lower than that under uniaxial loading, representing an 18.43% reduction. For water-saturated specimens, the strength under cyclic loading is 38.69 MPa lower than that of the natural specimens, indicating a 60.19% decrease. This highlights the significant impact of cyclic loading-unloading and the combined effect of water on the strength degradation of interlayer specimens.
The observed strength reduction is closely related to the composition of the interlayer specimen. The interlayer tuff, primarily composed of calcium carbonate, is prone to dissolution when exposed to carbon dioxide-containing water. During the water saturation process, CO₂-containing water molecules infiltrate the tuff’s pore spaces, causing the dissolution of some calcium carbonate. This dissolution is macroscopically reflected as a decrease in the sample’s strength.
3.3 Characterization of deformation modulus
The modulus of elasticity is a crucial parameter that reflects the stiffness of rock materials. As depicted in Figure 4, the modulus of elasticity of the specimen varies dynamically throughout the loading and unloading process. To determine the deformation modulus for both loading and unloading phases, the slopes of the nearly linear segments in each cycle were calculated. The results of these calculations are presented in Table 3.
[image: Two line graphs display data over cycle times. Graph (a) shows average stress (MPa) with curves for R1, R2, and R3 in both load and unload conditions. Graph (b) illustrates average modulus (GPa) with the same curves. Both graphs indicate trends of increasing values across cycles.]FIGURE 4 | Cyclic loading and unloading average modulus - number of cycles curve. (A) Natural pecimens. (B) Water-saturated specimens.
According to Table 3, the average deformation modulus during loading for natural specimens is 6.571 GPa, while the average modulus during unloading is 7.927 GPa. For saturated specimens, the average loading deformation modulus is 3.646 GPa, and the unloading modulus is 4.858 GPa. The natural specimens exhibit higher loading and unloading moduli compared to the saturated specimens, indicating that water saturation reduces the stiffness of the specimens.
TABLE 3 | Results of loading and unloading deformation modulus calculations.
[image: Table displaying loading and unloading values (in GPa) across different cycles for areas R3, R4, R5, R8, R9, and R10. For R3, loads range from 4.856 to 7.251 with an average of 6.188 GPa. R4 ranges from 5.421 to 7.532 with an average of 6.709 GPa. R5 ranges from 5.169 to 7.661 with an average of 6.815 GPa. For R8, loads range from 1.626 to 4.439 with an average of 3.411 GPa. For R9, loads range from 1.816 to 5.304 with an average of 3.773 GPa, and for R10, loads range from 1.739 to 5.546 with an average of 3.753 GPa. Unloading values correspond accordingly.]Figure 4 illustrates that while the deformation modulus for both natural and saturated specimens shows different detailed patterns, the overall trend is an increase with the number of cycles. Notably, during the second loading phase, there is a significant rise in the deformation modulus, reflecting a rapid increase in specimen stiffness. Subsequent cyclic loading still leads to an increase in modulus, but at a slower rate.
This is primarily due to the initial compaction of primary fissures and closure of microfissures during cyclic loading. Upon unloading, a small portion of the compacted fissures may begin to recover, but the majority remain closed, resulting in increased overall stiffness. Consequently, the elastic modulus shows a more pronounced increase during the second loading phase. In the following loading and unloading cycles, the deformation of the specimens becomes more coordinated with increasing cyclic stress levels, approaching elastic behavior, and the deformation modulus gradually increases and stabilizes.
3.4 Damage characterization
Different loading methods must result in different damage patterns, and Figure 5 shows typical damage photos of specimens in two water content states under different loading methods.
[image: Four images labeled (a) to (d) show cylindrical rock samples wrapped with rubber bands. Each sample has varying degrees of visible cracks. Image (a) has a red label. Images (b) to (d) show increasing crack severity from (b) to (c), with (d) having the least visible damage.]FIGURE 5 | Damage pattern of typical interlayer specimen. (A) Natural primary loading. (B) Water-saturated primary loading. (C) Natural cyclic loading. (D) Saturated water cycle loading.
Figure 5 shows that under uniaxial loading conditions, the damage mode of both specimens is primarily through-split shear damage. This is characterized by vertical tensile cracks that penetrate the laminar surface and a significant development of transverse cracks within the tuff. In contrast, under cyclic loading, both specimens exhibit mixed tensile-shear damage. This includes vertical tensile cracks as well as monoclinic, tilted shear cracks that extend through the tuff layer.
To quantitatively assess the extent of damage, the number of cracks of various lengths was observed and counted. The results of these crack statistics for typical specimens are summarized in Table 4.
TABLE 4 | Statistical results of cracks after damage of typical specimens.
[image: Table comparing crack lengths in millimeters under single and cyclic loading in natural and waterlogged states. Crack ranges include 0-30, 30-60, and 60-100 mm. Average crack lengths are 42.67 mm for single-loading natural, 39.64 mm for single-loading waterlogged, 39.44 mm for cyclic-loading natural, and 35.83 mm for cyclic-loading waterlogged.]The comparison of crack statistics for four typical specimens indicates that the average crack length in natural state specimens is generally greater than that in water-saturated specimens. Additionally, specimens subjected to single loading exhibit a longer average crack length compared to those undergoing cyclic loading and unloading.
In engineering practice, this suggests that different precautions should be taken based on the specific conditions of the engineering rock body. For instance, tailored in-situ modifications can be proposed according to the observed damage modes. Methods such as water injection or pre-loading through blasting can be employed to soften the rock in advance. This approach is crucial for preventing and managing safety risks associated with rock damage in engineering applications.
4 ACOUSTIC CHARACTERIZATION OF INTERBEDDED ROCK SAMPLES
During loading and unloading, rocks generate acoustic emission signals that provide insights into the damage and destruction characteristics of specimens throughout the cyclic loading and unloading process. By analyzing parameters such as rise count, energy, and amplitude, we can uncover the damage behavior of the specimens.
To analyze the time-dependent variation in acoustic emission and stress, both parameters were normalized. This normalization allows for simultaneous analysis of the two factors, facilitating a more comprehensive understanding of their interrelationship.
4.1 Damage analysis of rock samples using acoustic emission parameters
Rudajev et al. (2000), following extensive research on acoustic emission technology, have found that rising count and energy are effective indicators of internal rock damage. Consequently, this paper primarily utilizes rising counts and cumulative energy to quantitatively describe the damage characteristics of the interlayer specimens. Additionally, the internal microelement strength damage variable of the rock is defined as Equations 1, 2 (Yun et al., 2021; Liu et al., 2009).
[image: Equation depicting \( D_N = \frac{N_t}{N_0} \), labeled as equation (1).]
[image: Equation showing the dispersion ratio, \( D_E = \frac{E_t}{E_0} \), labeled as equation (2).]
Where Nt and Et represent the cumulative rise counts and cumulative energy of the specimen at loading time t, respectively. N0 and E0 are the cumulative acoustic emission rise counts and cumulative energy of the specimen at the point of complete failure. DN denotes the damage variable based on acoustic emission rise counts for the specimen up to time t, while DE epresents the damage variable based on acoustic emission energy for the specimen at the same loading time t. The stress, rise count, damage versus time curves of water-saturated and natural specimens under cyclic loading are shown in Figure 6. From the comparison of the two figures, it can be seen that the number of acoustic emission events of the water-saturated specimen is significantly less than that of the natural specimen, which is due to the absorption of the acoustic emission signal by moisture, and most of them are low-amplitude events (40–45 dB), statistically speaking, the low-amplitude events of the natural specimen accounted for 89.48% of the total events, and the ratio of the water-saturated specimen is 81.42%, but before the damage of the specimen, both specimens have more high-amplitude events.
[image: Two line graphs labeled (a) and (b) show the relationship between normalized time and shear rate, density, and average droplet size. Both include multiple data series with colored markers and lines, and a legend indicating various components. Annotations highlight phases of droplet evolution.]FIGURE 6 | Time evolution curve of stress, rise count and damage variable. (A) Natural specimens. (B) Water-saturated specimens.
4.2 Characterization of damage precursors of interbedded rock samples under cyclic loading
Figure 6 illustrates that the damage of specimens, as characterized by acoustic emission rise counts and energy, is generally synchronized, though details vary. The damage curve for natural specimens shows an almost linear increase, with a brief “step” calm period during the low-stress “unloading-reloading” phase, where damage remains relatively stable. However, under high stress conditions, the unloading phase still induces irreversible damage, indicating that high stress is a significant factor in rock damage.
In contrast, the damage curve for water-saturated specimens is more erratic but follows a similar overall trend. Water-saturated specimens experience a longer “step” calm period compared to natural specimens. After this calm period, damage continues to accumulate until the specimen fails.
Based on the observations, the “step” calm period and the occurrence of high-amplitude events preceding specimen failure can serve as precursor indicators of damage in both natural and water-saturated interbedded rock samples, both in laboratory settings and field engineering applications. A damage level of approximately 70% is identified as a precursor warning threshold for rupture instability.
Figure 6 shows that the damage of the specimens during the last “step” calm period before failure is around 70%. Following this calm period, the occurrence of high-amplitude events increases with load, leading to eventual specimen failure. Therefore, a damage level of 70% is proposed as a precursor warning value for rupture and destabilization, providing a reference for early warning in both laboratory experiments and field engineering rock disaster prediction.
5 CONCLUSION
This study provides valuable precursor indicators for predicting the impending instability of interbedded rock masses, offering a new theoretical basis for preventing and managing rock mass stability issues caused by cyclic loading in engineering practice.
	(1) Different loading methods and water content states significantly affect the strength of interlayer specimens. Under cyclic loading, the strength of natural state specimens decreased by 18.43% compared to uniaxial loading. In contrast, for specimens subjected to uniaxial loading, those with saturated conditions showed a 72.18% reduction in strength compared to natural specimens. Similarly, under cyclic loading, the strength of saturated specimens decreased by 60.19% compared to natural specimens.
	(2) The average modulus of interlayer specimens increases with the number of loading cycles. As cyclic stress levels rise, the deformation of both soft and hard interlayers becomes more coordinated, leading to a slower growth rate of the average modulus during loading and unloading, which eventually stabilizes. The damage modes of specimens vary with different loading conditions. Generally, the average crack length in natural specimens is greater than in water-saturated specimens after damage. Similarly, specimens subjected to uniaxial compressive loads exhibit a longer average crack length compared to those subjected to cyclic loading.
	(3) Monitoring of acoustic emission signals reveals that the number of acoustic emission events in water-saturated specimens is significantly lower than in natural specimens. The damage curves, based on acoustic emission signals, indicate that both specimen types experience a short “step” calming period during “unloading-reloading.” However, the “step” calming period is notably longer for water-saturated specimens compared to natural specimens. For both specimen types, the damage associated with the final “step” calm period is approximately 70%. This value is thus used as a precursor warning for rupture and destabilization of interlayer specimens, providing valuable insights for predicting potential disasters in both laboratory settings and field engineering applications.

The limitations of this study lie in the experimental conditions, the influence of long-term hydraulic effects, a single perspective on failure mechanisms, and insufficient model applicability, pointing to the need for further exploration of rock degradation and stability prediction across multiple scales and conditions in future research.
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C60 Eccentricity fiolf, Viscous parameters K Dilation angle ()
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Material type  Homogeneity index Elastic AUTS of meso- AUCS of Poisson'sratio  Frictionangle  Residual strength
modulus/GPa elements/MPa meso-elements coefficient

corresponding to a
CS-to-TS ratio
10/MPa

Joint 5 2.3,4,5,and6 20,30, 40, 50, and 60 01,05,075,and 1

Rock 10,20,and 200 10,12,16,20,and 24 100,120,160, 200, and 240 o1
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Numerical test
‘Tensile conditions
Model size under the direct tensile condition/m
Model diameter under the Brazilian splitting condition/m
Column diameter of CJBs/cm
Directions perpendicular to the column axis
Column tilt angle § in the direction parallel to the column axis

Homogeneity index of the meso-clements for joints

Calculation condition settings and parameter values
Direct tension and indirect tension (Brazilian splitting)

3x3

20
Directions I and I

0,15, 30, 45, 60, 75, and 90

‘CRSCs of the meso-elements of joints
AUTS:s of the meso-elements for joints/MPa

Corresponding AUCSs of the meso-elements for joints when the ratio of CS to TS is
10/MPa

Rock homogeneity index
AUTSs of the meso-rock elements/MPa

Corresponding AUCSs of the meso-rock elements when the ratio of CS to TS is
10/MPa

Status of the secondary joint set

Constraint state of the rock mass (model boundary condition)

0.1,0.5,075,and 1
2,3,4,5,and 6

20,30, 40, 50, and 60

5,10, 20, and 200
10,12, 16,20, and 24

100, 120, 160, 200, and 240

‘The absence and the presence of the secondary joint set

Displacement constraints applied to both surfaces in the thickness direction of the
sample
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0°C 20°C 40°C 50°C 60°C 70°C 80°C

Goodness of fit R 0996 1 0.999 0.999 0.994 ‘ 0999 ’ 0.99 1

Residual goodness of fit R* 0997 0.997 1 1 0999 ‘ 0997 ‘ 0.999 1
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Normal stress (kPa) By (20°C-5°C)(%) B, (20°C-50°C) (%) B (50°C-80°C) (%)

50 19.97 17.10 12.53

150 ’ 2225 525 7.90

250 ‘ 8.19 937 17.11
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Temperature (°C) 50 kPa) (%) Bs (¢ Pa-250 kPa) (%)

-5 170.32 54.27 317.03
0 193.98 52.80 34920
20 172.17 64.80 34853
40 198.28 69.71 406.19
50 150.39 77.04 34328
60 156.89 69.44 335.27
70 150.49 75.49 339.58
80 161.81 63.85 32899
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Type of test

Temperature
interfacial static
shear test

Sand
thickness
(cm)

120

Normal stress =~ Rate of shear Shear

(kPa) V(mmmin™) | amplitude Ay
(mm)
50 10 650
150
250

Number of
cycles

Temperature
Q)
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Transverse Longitudinal Horizontal Vertical node Perforation 0.5% strain 0.5% strain

quality quality node effectiveness size (mm) lateral radial

control control effectiveness (%) stiffness stiffness
tensile tensile (%) (N/mm) (N/mm)
strength strength

(N/mm) (N/mm)

30 30 95

95 39%39 390 390
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Crack length/mm

Single-loading

Natural state Waterlogged state

Cyclic loading

Natural state

Waterlogged state

0-30 5 3 2 2

30-60 3 5 3 4

60-100 7 6 4 6
Average crack length 42.67 mm 39.64 mm 39.44 mm 3583 mm
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Cycles/times

1 4.856 7.152 5.421 7.065 5.169 7.872
2! 5.565 7.226 6.685 7.948 6454 8.428
3 6.441 7.642 7.197 8433 7.168 8504
4 6.828 8.154 7532 7621 8.882
5 7.251 7.661

On average 6.188 7.544 6709 7815 63815 8422

Cycles/times

1 1.626 2446 1.816 2792 1739 2.649
2 3014 2727 3222 3411 3151 283
3 3641 6.116 4045 7364 3908 6731
4 4333 6.709 4476 7472 4423 7.046
5 4439 5304 5546

On average 3411 4499 3773 5260 3753 4.814
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Test piece serial Load ordinal Peak value Devastation Devastation On average

number number Strain/% Load/kN Strength/MPa strength/MPa

RI 1 181 160.90 8435

a 78.80
R2 1 144 139.66 7325
R3 5 170 13646 7133

R4 4 170 11348 5949 64.28
RS 5 144 11857 6202
R6 1 103 4432 2324

21.92
R7 1 138 3923 2059
RS 5 124 50.99 272

R9 5 113 48.64 25.50 2559
RIO 5 149 4685 2454
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Test piece
serial number

Aqueous
state of affairs

R4

RS

R6

R7

R8

RY

RI10

Naturally
state of affairs

Saturated with water
state of affairs

Load way Specimen size/mm Mass/g
velocity/km-s
Calibre High degree
4929 10191 512 226
One load
4928 101.92 511 268
49.36 102.08 509 261
Cpelcloadingand 4929 101.78 512 291
unloading
49.35 101.92 512 291
4929 101.98 521 242
One load
49.26 101.84 520 226
49.30 101.68 521 3.00
St 930 10211 523 309
unloading
4931 101.86 522 283
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Input parameter

Focal length
Sensor size
Camera resolution
GsD

Target area size

18mm
223x 148 mm
6,960 x 4,640 pixel
1 mm/pixel

100 x 100 x 50 mm

Input parameter
Minimun field of view
Shooting distance range

Focal length range

Number of shooting parameter combinations

293.82 x 195 mm

250-3,600 mm

18 mm

16
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Parameters

Depth/m
Vertical stress gradient/(MPa/100 m)
Largest horizontal stress gradient/(MPa/100 m)
Smallest horizontal stress gradient/(MPa/100 m)
Pore pressure gradient/(MPa/100 m)

Smallest horizontal stress azimuth [ from N]

5,751

281

265

174

Parameters
‘Weak plane dip [* from horizontal]
‘Weak plane dip azimuth [* from N]
Transverse elasticity modulus/GPa
Vertical elasticity modulus/GPa
‘Transverse Poisson Ratio

Vertical Poisson Ratio

354

17.7

025

0.13





OPS/images/feart-13-1537337/math_7.gif
N G






OPS/images/feart-13-1497871/math_4.gif
TRCy
JRC:p
JRC.p = 64.22Z,  2.31 (for profile interval = 1 mm)

60.32Z, - 4.51 (for profile interval
61792

0.25 mm)

, - 347 (for profle interval = 0.5 mm) @






OPS/images/feart-13-1550266/feart-13-1550266-t003.jpg
Maximum Minimum Overburden Bottomhole Elastic modulus Poisson’s ratio
horizontal in situ = horizontal in situ stress/MPa pressure/MPa of isotropic of isotropic
stress/MPa stress/MPa plane/GPa plane/Dimensionle

58934 41076 63.745 37.781 23443 02





OPS/images/feart-13-1537337/math_6.gif
®





OPS/images/feart-13-1497871/math_3.gif
o





OPS/images/feart-13-1550266/feart-13-1550266-t002.jpg
PPW

C,/MPa @, /° Error C,/MPa  ®,/MPa C,/MPa ®,/° Error/MPa
Dry 538 36 38.1 96 | 1589272 724 236 352 ‘ 412 | 056 114442
24h 568 30 26 51 2520673 43 418 236 ‘ A 2071452

48h 48 24 15 24 29.83492 402 36 162 ‘ 27.2 0.6 2620479





OPS/images/feart-13-1537337/math_5.gif
)





OPS/images/feart-13-1497871/math_2.gif
@





OPS/images/feart-13-1550266/feart-13-1550266-t001.jpg
Uniaxial compressional strength/MPa

Dry 24h 48h
[ 24220 233.51 208.26
15 188.76 147.14 119.11
30 121.88 103.05 93.89
45 103.80 74.27 3117
60 88.81 4593 1474
75 158.96 99.73 68.40
920 202.56 160.01 116.17






OPS/images/feart-13-1537337/math_4.gif
@





OPS/images/feart-13-1497871/math_1.gif
Ermoros, = 5o





OPS/images/feart-13-1550266/feart-13-1550266-g016.gif





OPS/images/feart-13-1537337/math_3.gif
o





OPS/images/feart-13-1497871/inline_99.gif
JRCp.





OPS/images/feart-13-1550266/feart-13-1550266-g015.gif





OPS/images/feart-13-1537337/math_2.gif
@





OPS/images/feart-13-1497871/inline_98.gif
JRCp.





OPS/images/feart-13-1550266/feart-13-1550266-g014.gif





OPS/images/cover.jpg
& frontiers | Research Topics

Physical properties and
mechanical theory of
rock materials with
defects






OPS/images/feart-13-1497871/inline_97.gif
JRCp.





OPS/images/feart-13-1550266/feart-13-1550266-g013.gif





OPS/images/feart-13-1550266/feart-13-1550266-g012.gif





OPS/images/feart-13-1497871/feart-13-1497871-g001.gif
Inial comera poses.





OPS/images/feart-12-1459447/math_8.gif
loyl=c;  Sliding condition
®

loyl < & =€ ; Stationary condition






OPS/images/feart-12-1459447/math_7.gif
Ep=En =EytEym
%=+ o
on=am

oy = ndeydt

@





OPS/images/feart-13-1497871/inline_23.gif





OPS/images/feart-12-1459447/math_6.gif
®






OPS/images/feart-13-1497871/inline_22.gif





OPS/images/feart-13-1555493/feart-13-1555493-g003.gif





OPS/images/feart-12-1459447/math_5.gif
©





OPS/images/feart-13-1497871/inline_21.gif





OPS/images/feart-13-1555493/feart-13-1555493-g002.gif





OPS/images/feart-13-1588874/feart-13-1588874-g001.gif





OPS/images/feart-12-1459447/math_4.gif
)





OPS/images/feart-13-1497871/inline_20.gif





OPS/images/feart-13-1555493/feart-13-1555493-g001.gif





OPS/images/feart-13-1588874/crossmark.jpg
©

|





OPS/images/feart-12-1459447/math_3.gif
{

€=0 (0<a)

o ooloz0)

o





OPS/images/feart-13-1497871/inline_2.gif





OPS/images/feart-13-1555493/crossmark.jpg
©

|





OPS/images/feart-13-1550266/math_9.gif
TATR S N
s e, o
Ve, o

PR o ©
o0 o o






OPS/images/feart-12-1459447/math_2.gif





OPS/images/feart-13-1497871/inline_19.gif





OPS/images/feart-13-1550986/math_9.gif
P = arccos(c)
ifa > 0,b>0,a = arcsin(a/ sinf)
ifa <0,b> 0,c= 360 - arcsin(-a sinf) ©

ifa<0,b < 0,a= 180~ arcin(al sinf)
ifa > 0,b < 0,a = 180 + arcsin(a/ sinf)






OPS/images/feart-13-1550266/math_8.gif





OPS/images/feart-12-1459447/math_13.gif
1A =-1,C=r{t,-1))
tiA=1,C=0 3
A=-1,C=r{t,-1)






OPS/images/feart-13-1497871/inline_18.gif





OPS/images/feart-13-1550986/math_8.gif





OPS/images/feart-13-1550266/math_7.gif
<o @ o fy
ey
cora sy

= |05 sin(am)con,

“ossinCa)sinf,
0Scostay sin(28,)

sin” ay o',
e,
s,
03sin(aa)eos
03sin(as,)sinfl,
0Ssine, sin(28.)

@





OPS/images/feart-12-1459447/math_12.gif
12)






OPS/images/feart-13-1497871/inline_17.gif





OPS/images/feart-13-1550986/math_7.gif





OPS/images/feart-13-1550266/math_6.gif
Error =

®





OPS/images/feart-12-1459447/math_11.gif
an

CIM






OPS/images/feart-13-1497871/inline_16.gif
rl





OPS/images/feart-13-1550986/math_6.gif
c oy 16|z

©





OPS/images/feart-13-1550266/math_5.gif
Ly COS P, +0;
T-sing,
C, cos g, +0ysin §,

01032 2(1 - sin’2)

)
=02 21 ysin'2).





OPS/images/feart-13-1497871/inline_15.gif





OPS/images/feart-13-1550986/math_5.gif





OPS/images/feart-13-1550266/math_4.gif
0





OPS/images/feart-13-1550986/math_4.gif
MeanShifi(p) @






OPS/images/feart-13-1550266/math_3.gif
®





OPS/images/feart-13-1550266/math_2.gif





OPS/images/feart-12-1459447/math_10.gif





OPS/images/feart-12-1459447/math_1.gif
ilo) - gla),

‘wherein:j > i

(1)





OPS/images/feart-13-1497871/inline_14.gif
Vib





OPS/images/feart-12-1459447/feart-12-1459447-t003.jpg
Stress path Preload Measuring Viscous Range of Elasticity modulus

load parameter cohesion
0p1/MPa | g,,/MPa o,/MPa n/x10% c/MPa E,/GPa  E,/GPa E;/GPa
1-2 0.2 ‘ 0.1 0.3
1-1 0.5 1 L5
1-2 1 0.5 L5
1-1 1 2 3
T 8 0-2 50 50 200
1-2 2 1 3
1-1 2 4 6
1-2 4 2 6
1-1 4 6 8
1-2 | 6 4 8
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No. Stress path Preload Measuring load Temperature/Humidity

0,n/MPa (°C/%)
0,/MPa  g,,/MPa  g,s/MPa
GL11 1-1 10 20 - 30 20/45
GL12 1-2 20 10 = ‘ 30 20/45
GH11 1-1 20 40 - 50 20/45
GHI12 1-2 40 20 - 50 20/45
SL11 1-1 10 20 - 30 19/50
SL12 1-2 20 10 = v 30 19/50
SH11 1-1 20 40 - 50 19/50
SH12 1-2 40 20 - 50 19/50
G13 1-3 20 30 40 50 16/40
Gl4 1-4 40 20 30 50 16/40
GI5 1-5 30 40 20 50 16/40
S13 1-3 10 15 20 30 15/40
S14 14 20 10 15 30 15/40
815 1-5 15 20 10 30 15/40
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Discontinuity set Point count Average orientation

This paper qFacet Error degrees
Group (1) n 36.8°416.8° 37.5°2162° 07°206°
Group (1) 2 33.5°457.6° 33.0°2584° 04°208°
Group (1) 13 492°228.1° . 4797273 v 13°208°
7 Group (2) J4 1 75.2°2192.3° 75.8°2191.7° 06°206°
Group (2) J5 70.0°191.4° 69.6°0191.6° 04°202°
Group (2) J6 80.4°2189.0° 81.1°2189.3° 07°20.3°
Group (3) 17 84.0°2331.3° 85.4°4332.3° 140210°
Group (3) 18 75.3°2320.2° 76.5°2321.3° 120013
Group (3) J9 83.9°318.5° 84.3°2317.5° 0.4°21.0°
Group (4) J10 73.5°2288.9° 74.3°2287.6° 08°213°
Group (4) m 708°2290.2° 69.2°2289.4° 16°206°
Group (4) n 70.5°2259.6° 71.3°2258.9° 08°207°
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P-wave velocity at the dry condition
P-wave velocity at the saturated condition
P-wave velocity of the rock

P-wave velocity of the minerals

Volume of the standard sample

Dry density of rocks

Saturation density of rocks

Density of water

Porosity of rock

Number of samples

Water content

Clay mineral content

Water saturation

Mass of completely saturated samples
Mass of dry samples

it

Saturated water weakening coeffic

Water weakening coeffcient for rocks with the water
saturation of S,

Effective clay mineral content
Bulk modulus

Shear modulus

Fitting parameters

‘The adjusted and original determination coefficients,
respectively

‘The sample size and number of independent variables,
respectively

Undetermined coefficients
“The residual sum of square error
Mean square error

Average annual rainfall

Adjusted sum of squared deviation and adjusted mean
squared deviation
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Power-law function Uncertainty (Aa/a) (%) Uncertainty (Ay/y) (%) Dataset

E = (a + Aa) X DAY

3 E=(11.61 +0.87) x D032 002) 753 5.88

10 E=(12.81 £0.94) x D030 735 5.88 ‘ MPRC
20 E=(14.42 +1.03) x DO¥*002 7.13 5.88 ‘

5 E= (823 +0.59) x DO+ +002) 7.16 454

E=(9.16 +0.64) x DO+ 002 698 454 MRC
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Parameter

Parameter value

name
Warm Cold periods
periods (Cy)  (Cp)
Gs 02 02 mm
Ey 02 02 mm
P, 6 3 h
P, 12 6 h
Py 1 1 mm
P, % 48 h
sws H ‘month
ews 9 month
Ry 5 km
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1 i Intact 038 Not 162 0.0026 216 14 Relative 162 74 Flat 1186

2 v Crushed 075 Medium 87.4 05184 772 15.94 Rich 17.7 74 Flat 1186

3 v Crushed 07 Strong 80 0.5184 742 17.9 Rich 19 74 Denuded 1186
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No Level Al A2 A3 A4 A5 B1 B2 B3 B4 (o]
1 1 i Intact 085 Not 3698 | 0004 | 413 3.01 Slightly 126 62 Flat 59.5
2 i v Crushed 05 Weak 84.4 2851 69 8.84 Rich 128 62 Flat 59.5
3 v v Utterly 03 Medium 85.7 4493 | 772 12 Rich 14 62 Flat 59.5
4 v Vi Utterly 03 Strong 91 2592 75 1047 Rich 13.95 62 Ramp 59.5
5 u v Crushed 07 Weak 3448 | 0.001 11 128 slightly 116 52 Ramp 57.9
6 v v Utterly 03 Strong 69.56 | 5184 | 284 327 Relative 115 52 Ramp 57.9
7 n v Crushed 05 Strong 218 0.004 01 0.1 Slightly n 52 Flat 57.9
8 1 A4 Crushed 05 Weak 5384 | 5184 | 312 325 ‘ Slightly 104 52 Flat 57.9
9 v Vi Crushed 02 Medium | 94.12 15 77.4 973 Rich 136 64 Ramp 57.9
10 m v Crushed 04 Weak 93.75 0.1 745 | 1192 Rich 16 64 Flat 57.9
1 i v Intact 04 Not 32.65 0.01 1.63 0.16 Slightly 9.8 64 Denuded | 57.9
12 v Vi Utterly 03 Strong 91.76 05 84.1 1312 Rich 156 64 Flat 57.9
13 i i Crushed 08 Medium 529 05 21.0 2 Relative 255 9.0 Ramp 57.5
14 1 i Intact 075 Weak 60 05 280 2 Rich 25 59 Ramp 57.5
15 i il Crushed 07 Weak 60 32 116 19 Rich 23 59 Flat 57.5
16 m I Crushed | 085 | Medium | 1115 05 75.1 18.6 Relative 20 59 Flat 57.5
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Level 1 index Level 2 index Risk level
I (Mid) 11l (High) IV (Very)
Grade of surrounding rock A1 LI m v V,vi
Rock mass integrity A2 Intact Relative Crushed Utterly
Engineering geology A Weathering degree A3 (1,09 [0.9,0.8) (08,06 <06
Fracture development A4 Not Weak Medium Strong
Ratio of soft to hard strata A5 <5 25,50) (50,75) >75
Permeability coefficient BI <001 [0.01,1) (1,10 210
Catchment area B2 <20 20, 40) 40, 60) 260
Hydrogeology B
Water head height B3 <10 [10,30) (30, 60) 260
Water-richness B4 No Slightly Relative Rich
Buried depth of tunnel C1 <10 [10,30) (30,50 250
Construction Design C
Tunnel section width C2 <85 85,12) (12,14) 214
Landform D1 Flat Ramp Ravine Denuded
Natural condition D s
Average monthly rainfall D2 <60 (60, 80) 80, 100) 2100
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Main hierarchy

Engineering geology A

Hydrogeology B

Construction Design C

Natural condition D

Subordinate hierarchy First round Second round Third round
(CVR) (Importance) (CVR) (Cov)
Grade of surrounding rock 100 100 081 015
Rock mass integrity 095 95 100 013
Weathering degree 062 71 071 017
Fracture development 0.62 90 062 017
Ratio of soft to hard strata 043 65 043 027
Uniaxial compressive strength 048 58 - -
Permeability coefficient 081 %0 100 011
Catchment area 1.00 88 100 012
Water head height 0.62 91 071 0.2
‘Water-richness 0.62 72 043 0.15
Buried depth of tunnel 081 85 100 011
‘Tunnel section width 062 85 071 017
Excavation disturbance 038 - - -
Landform 081 88 090 0.20
Average monthly rainfall 0.90 84 081 ‘ 0.16
Seasonal distribution 014 - - -
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K (GPa) G (GPa) V,™ (m/s) References

Dolomite 8498 53.88 287 7392 Yan etal. (2022)
Calcite 76.02 36.80 271 6791
K-feldspar 62.66 3185 256 6,408

Plagioclase (An9) 57.53 3270 261 6225 Jietal. (2003)
Plagioclase (An53) 7383 3582 268 6736
Quartz 38.12 47.60 2,655 6,194
Clay 2090 685 258 3412 Chand et al. (2004)
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n% CM%)  E.

659 254 6101 103x10° 0437 0437 v - - = =
249 89.8 1125 217x10° 0178 0178 - - v - -
822 0.9 72.66 5.07x10712 0.543 0272 v - - LS -
721 163 4103 351x107 0481 0.241 v - - - v
820 24 4793 373x1070 0545 0.182 J v - v -
817 28 4717 449x10™" 0544 0.181 J - - v v
815 4.1 3520 239x 10710 0547 0.137 v v v v -
813 43 3474 277 %107 0545 0.136 v v - v v
80.9 6.0 27.19 149x10” 0547 0.109 v R v v v

Note: §5- Adjusted sum of squared deviation, MS- Adjusted mean squared deviation R. The bold values represent the optimal multiple linar regression models selected based on R? and C, for
virlons pecemabie combltatione.
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No. ¢f (Mpa) o2 (Mpa) n(%) W,

1 6675 468 0.70 3,141 237 93 346 4 037 Zhou etal.
(2016)
2 7191 50.48 0.70 3,615 237 8.50 229 1377 117 Cai et al. (2019)
3 2298 9.65 0.42 2,760 213 1420 84 3327 472
Karakui and
4 65.40 i 3,540 250 | 32 126 47.00 150 Uiges§ Go13)
5 72.88 40.81 0.56 3,620 252 4.00 156 42.00 168
6 46.99 3294 0.60 3,167 237 887 35 489 043 Zhoueet al.
(2019)
7 32.69 14.04 043 2,703 232 1269 581 991 126 Huang etal.
(2021)
8 84.82 68.96 081 3,558 239 5.84 244 000 000 Chen (2011)
9 115.55 403 035 2,660 248 7.50 3.02 27.00 203 Zietal. (2018)

Jia etal. (2018)

10 30.11 14.86 0.49 2,331 271 12.12 4.47 9.00 1.09
| Liao et al.

(2019)

11 21.14 8.36 0.40 1864 2.68 13.69 5.11 10.00 137

12 102.3 88.0 0.86 3,908 238 5.08 213 0.00 0.00 Cai et al. (2020)

13 71.26 46.89 0.66 3,165 242 5.59 3.01 0.00 0.00 Weng et al.
(2020)

14 30.68 18.76 0.61 3,233 253 6.65 2.63 8 053 Xie etal. (2022)

15 1.69 0.69 0.41 1799 1.60 36.30 22,69 3.00 1.09

16 859 427 050 2374 195 3170 1626 200 063 V"“g;f;“ i

17 12.09 7.23 0.60 2,740 1.98 21.70 10.96 250 054
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Type d (Mpa) 2 (MPa)

YB 63.96 48.83 076 2,659 3,888 258 493 21
YR 48.57 2284 047 25532 2,667 226 14.96 103
YY 74.09 51.63 0.66 2818 3,031 221 1623 78
YG 93.48 66.80 0.66 3213 3,882 249 694 174
Zhp 149.2 106.3 071 3,636 4,305 263 214 128
ZhG 159.53 13155 082 4,082 4,878 262 387 20
ZhL 201.2 ‘ 171.62 0.85 4,787 5,120 265 052 185
ShR 49.76 29.42 057 2176 2225 222 1643 98
ShG 44.52 27.50 0.62 2712 3,046 219 17.01 187
shy 47.62 3178 0.67 2,658 2,985 233 1298 11
SB 46.18 21.02 0.46 1702 2089 226 1481 46
sY 3271 11.64 0.36 1,381 1701 21 2178 7
SG 94.69 47.47 050 2,845 3,178 257 453 211
sw 75.15 39.45 052 2,740 2,988 241 9.07 146
HR 63.55 28.75 045 2779 2,817 24 1294 106
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Number  Location Petrographic classification Clay mineral

chl  Mon cm
» Yunnan Finegrained ldpatho- i sandstone s | sa | as | w2 | o o oo o a2 | o
" Vomnan Finegrainedlih eldsptic sandstone 26 | 3 | ss | o0 | os o o a4 o o
v Yunnan Fie-graned lihic quarz sandtone w2 | 0 0 o | o 0 o |2 | s | o o o
o Yunnan Finegratned liho eldsptic sandstone ws | om0 0w o o ms | ose o o o
2 Zhjang Finegrtnedltho eldspatic sandstone ae | e | o | sa | os o o ks | o o o o
6 Zhejang Finegraind Litho-ldspahic sndsone 7 | w | as | 0 | 2 s0 o s ua | o o o
z Zigons Finegrained lih eldsptic sandstone o || o | o0 | o2s 109 o o ms o o o
s Shaanat Finegrtned ltho eldspatic sandstone s | we | e | 17 | o9 o o e | o o 3 | o
6 Shaanss Mediam grinedliho-dspathic sndsone we | w2 o | o | o o o w | ue | o o o
s Stau Fine grainedlihic quart sndsone wo | o o o | o o u o o o o o
@ | scum Modiom-fn grined quarts sandtons a0 | 0 o | o o s | 1 | ow | o 0w | o
st Siehuan Fine-graned eldpathic sndetone | es | 0 | o | o o o om om0 o ses
s Sichuan Finegrtned ldpatho-lthic sandstone s | a2 1 | o o o e a2 o0 25 o
sw Sichuan Fine grtned e quartz sandeone ma | es | o | a2 | o o s s e | 0 | o
™ Hubei Medum-fne grined Libo fddspathic sndsone. | 632 | 217 | 12 | 23| 10 o s | os | o o w0

Notes: Qua- Quartz Fel-Feldspar; CalCalie; Dol-Dolomie; Pyr-Pyit; Kao-aalinie: -t Chl-Chloite; Mon-Montmrillonite, M-t and Montmorilonit mixed layer;and C/M-Chiorite and Montmorillonite mixed aye. YB-Yonnan back sandstone; YR
Vunman red sandstone; YY-Yannan yellow sandstone; YG-Yunnan grey sadstone; Z1P Zhejiang purple sandstone; ZhG: Zhefiang green sandstone: ZhLZhejang light geen sandstone; ShR-Shaansi rd sandstone; ShG-Shaani grey sandstone; Y- Shaani yellow
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Rock type Regio

P-wave velocity (Unit: km/s)

Number of samples

icted function

R2

References

~10V, x n-115 ()"

Granite Tarkiye N=19 5.53V,-55 080 | Tugrul and Zarif (1999)
48 rocks Turkiye N=27 0, =995V, 1! 083 Kahraman (2001)
Sandstone, etc Tiirkiye =150 56.71V,-192.93 067 | Gobanoglu and Gelik (2008)
Ignimbrite Tiirkiye N =264 9V, 0.65 Binal (2009)
Sandstone Iran N=70 .0244exp (ﬂ.DUlZVP) 0.83 Rezaei et al. (2019)
Flint ‘ Europe N=7 0. =091 VPJISDO.é 0.87 Aliyu et al. (2019)
Shale Iran N=33 0.=2% 107V, 1 0.93 Rastegarnia et al. (2021)
Calcarenite Spain N=5 20365 (V, ) 096 Rabat et al. (2020)
Gypsum Tiirkiye N =250 0= 3.9348exp (0.6129V) 082 | Yilmazand Yuksek (2009)
Density (Unit: g/cm?)
Siltstone, etc Tiirkiye N=67 0. = 0.13exp (0.2134p%) 090 | Erguler and Ulusay (2009)
Travertines Hungary N=40 0.0001exp (5.24350) 0.85 | Torok and Vasarhelyi (2010)
Sandstone, etc India N=20 0. =2877p" -615.9 076 | Mishraand Basu (2013)
Sandstone United States - = 0.03exp (3.41p°) 092 | Kimand Changani (2016)
Flint North-West Europe N=7 ~6716.8 (p%)° + 35,905.6p" ~47454.4 0.90 Aliyu etal. (2019)
Calcarenite Spain N=5 6% 10 %exp (1.889p%) 078 Rabat et al. (2020)
Porosity (Unit: %)
Gypsum Tiirkiye N =250 0, = ~28.429In(n) + 78.989 0.80 Yilmaz and Yuksek (2009)
Sandstone, etc India N=20 -55.7In(n) + 172.1 088 | Mishraand Basu (2013)
Mudstone ‘ Trinidad N=7 0= -661n+244.4 070 Tyare etal. (2021)
Shale Iran N=33 =-026n+7.5 079 | Rastegarnia etal. (2021)
Water content (Unit: %)
Gypsum Tarkiye N=29 0, = 16.68exp (-0.8193W,) + 24 093 Yilmaz (2010)
Siltstone, etc Tarkiye N=67 67.1W, 095t 0.87 | Erguler and Ulusay (2009)
Sandstone China N=16 19.95exp (~0.659W,) + 468 094 Zhou etal. (2016)
Sandstone Australia N=25 43.63exp (-02W,) 089 Masouni etal. (2017)
Sandstone China N=41 0, = 80.6exp (-0.904W,) + 43.17 098 Tang (2018)
Siltstone China N=12 7.4dexp (-0.383W,) + 17.71 097 Lietal (2019)
Shale Iran N=33 ~0.067W,2 +0.058W, +7.081 071 | Rastegarnia etal. (2021)
Clay content (Unit: %)
Sedimentary Tiirkiye N=65 /0, ey 1.134exp [~1.1302CM/CM™] 079 | Gokceoglu et al. (2009)
Mudstone Trinidad N=7 16.12CM +218.47 043 Tyare et al. (2021)
Multivariate
Limestone, etc Iran N=8 =5.98 (p/n) +22.032 065 | Rajabzadeh etal. (2012)
Sandstone, etc Tiirkiye N=13 log [0, (S,)] = 1.368 + 0.794 Log (1 + 091 | Karakul and Ulusay (2013)
V,)-0.2018,-0.056E,.
Limestone Iran N =105 0,=90-0.021V, +3 () +0.019n 093 “Torabi-Kaveh et al. (2015)
Limestone Iran N=18 0. =2054+0.013V,-3.27n 092 Jamshidi et al. (2018)
Limestone Chile N=13 0% =2.0137 exp (0.794V-0.401n) 085 Gonzilezetal. (2019)
Travertine Chile N=29 ~13648 + 2407V, +5623p + 3220982V, x p* | 0.84 Saldaia et al. (2020)

Note that: V,,-P-wave velocity, V- P-wave velocity at saturation condition, p-Dry density; p*- Saturated density, o Saturation uniaxial compressive strength, o, -Uniaxial compressive

itareth, - Weiihorof ssanaiion, CM-Clay wiiaral coniléint.

'W.-Water content, S,-Water saturation, n-porosity of rock, E._-Effective clay mineral content.
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