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Editorial on the Research Topic

Navigating challenges and innovations in antimicrobial resistance,
environmental microbiology, and industrial solutions (ARTEMIS)

The silent pandemic of Antimicrobial Resistance (AMR) continues to escalate, posing
one of the most significant threats to global health, food security, and development
in the 21st century. The complex web of factors driving its emergence and spread
transcends clinical settings, deeply embedding itself within our environment and industrial
practices. It is from this understanding that our Research Topic, “Navigating Challenges
and Innovations in Antimicrobial Resistance: Environmental Microbiology, and Industrial
Solutions,” was born.

This Research Topic is proud to be organized in collaboration with the 2-day National
Conference on ARTEMIS 2024, held on the 21st and 22nd of March, 2024, at the Institute
of Advanced Research in Gandhinagar, India. This pivotal event, sponsored by the Gujarat
State Biotechnology Mission (GSBTM), the Science and Engineering Research Board
(SERB), and Frontiers, brought together the next generation of scientists to address this
global challenge. The conference was a resounding success, hosting 140 participants and
featuring vibrant scientific exchange through 27 oral and 46 poster presentations from
postgraduate and doctoral students. This Research Topic of articles was conceived to create
a lasting, peer-reviewed platform for the ideas and research discussed, uniting researchers
to explore the intersections of these critical fields and fostering a holistic approach to
understanding and combating AMR. The diverse and innovative articles presented here
are a testament to that collaborative vision.

The contributions to this Research Topic highlight three interconnected pillars:
the direct challenge of AMR, the crucial role of environmental microbiology, and the
development of sustainable industrial and agricultural solutions.
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Several articles tackle the challenge of AMR head-on, focusing
on improved detection and novel therapeutic strategies. The
development of rapid and accurate diagnostics is paramount to
effective surveillance and treatment. Addressing this, the work
by Zhu et al. provides a valuable new tool with their evaluation
of a two-dimensional PCR method for the rapid detection
of hypervirulent Klebsiella pneumoniae, a notoriously difficult
pathogen. Complementing this, Liang et al. developed three simple
and cost-effective assays to detect the activity of the AAC(6')-
Ib-cr enzyme, which confers resistance to multiple antibiotics,
offering a practical solution for resource-limited settings. Beyond
detection, the search for alternatives to conventional antibiotics is
urgent. Wang et al. present a promising approach by displaying a
prophage lysin on the surface of Bacillus subtilis spores, creating a
potent antibacterial agent against the swine pathogen Streptococcus
suis. In a similar vein, Liu et al. explore the natural world for
solutions, providing a preliminary but encouraging look into the
antimicrobial and antioxidant potential of Magnolia essential oil, a
potential source for novel bioactive compounds.

The environment is a critical reservoir and conduit for the
spread of resistance genes and resistant organisms. Several of our
authors have focused on harnessing the power of microorganisms
to remediate and protect our ecosystems. Recognizing that
contaminated waterways are hotspots for AMR, Patel et al.
demonstrate an innovative solution using a synergistic system
of plants and bacteria in floating treatment beds to efficiently
remove emerging contaminants from polluted river water. Directly
addressing pharmaceutical pollution, Yang et al. isolated and
characterized bacteria capable of efficiently degrading the antibiotic
neomycin, offering a bioremediation strategy for contaminated
wastewater and soil. The impact of industrial pollution is tackled
by Zheng et al, who characterized a bacterium from activated
sludge capable of degrading N,N-dimethylformamide, a widely
used industrial solvent, showcasing the power of microbes in
waste treatment.

Finally, this Research Topic underscores the immense potential
of microbial solutions in industrial and agricultural contexts, which
are key to a sustainable future. In agriculture, Du et al. show how
thermophilic microbial agents can accelerate the composting of pig
manure and spent mushroom substrate, transforming agricultural
waste into a valuable resource. Shifting from waste management
to crop protection, Kamath et al. explore the use of siderophores
produced by bacteria to defend mung bean plants against fungal
disease, presenting a biological alternative to chemical fungicides
that can inadvertently drive resistance.

Together, these articles paint a hopeful picture. They showcase a
dynamic research landscape where innovative diagnostics, nature-
inspired antimicrobials, and powerful bioremediation strategies
are being developed. The findings collected here reinforce the
necessity of a “One Health” perspective, where the intricate links
between human, animal, and environmental health are not just
acknowledged but are central to our research endeavors. We extend
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our sincere gratitude to all the authors who contributed their
valuable research and to the reviewers whose diligent efforts upheld
the quality of this work. It is our hope that this Research Topic, born
from the energy and intellect of the ARTEMIS 2024 conference, will
stimulate further discussion, collaboration, and innovation, moving
us closer to a world where the threat of antimicrobial resistance is
effectively contained.
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N,N-dimethylformamide (DMF) is an organic solvent with stable chemical
properties and high boiling point. Based on its good solubility, DMF is widely
used in synthetic textile, leather, electronics, pharmaceutical and pesticide
industries. However, the DMF pollutes the environment and does harm to
human liver function, kidney function, and nerve function. Herein, an efficient
DMF-degrading strain, DM175A1-1, was isolated and identified as Paracoccus
sulfuroxidans. This strain can use DMF as the sole source of carbon and nitrogen.
Whole-genome sequencing of strain DM175A1-1 revealed that it has a 3.99-Mbp
chromosome a 120-kbp plasmidl and a 40-kbp plasmid2. The chromosome
specifically harbors the dmfAl and dmfA2 essential for the initial steps of DMF
degradation. And it also carries the some part of genes facilitating subsequent
methylotrophic metabolism and glutathione-dependent pathway. Through
further DMF tolerance degradation experiments, DM175A1-1 can tolerate DMF
concentrations up to 10,000 mg/L, whereas the majority of Paracoccus strains
could only show degradation activity below 1,000 mg/L. And the efficiency
of organic nitrogen conversion to NH;-N in DMF can reach 99.0% when the
hydraulic retention time (HRT) is controlled at 5days. Meanwhile, it showed
a significant degradation effect at a pharmaceutical enterprise in Zhejiang
Province with high concentration of DMF wastewater. This study provides a new
strain Paracoccus sulfuroxidans DM175A1-1 which shows a significant influence
on DMF degradation, and reveals the characterization on its DMF degradation.
It lays the foundation for the application of biological method in the efficient
degradation of DMF in industrial wastewater.

KEYWORDS

N,N-dimethylformamide, Paracoccus sulfuroxidans, wastewater treatment, efficient
degradation, biological method
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Introduction

N,N-dimethylformamide (DMF) is a common multifunctional
solvent that is widely used in pesticide, pharmaceutical, petrochemical,
and other production industries (Ding and Jiao, 2012; Bromley-
Challenor et al., 2000; Nisha et al., 2015). In recent years, with the
expansion of the scale of chemical production, DMF has aggravated
the pollution of the environment with the increase of industrial
wastewater (Chen et al., 2016). DMF can enter the human body
through breathing and skin contact, which has greater harm to human
liver function, kidney function, and nerve function (Wang et al., 2014;
Li and Zeng, 2019). At present, there are physical, chemical, and
biological methods for treating DMF wastewater, and biological
processes have been applied in industrial wastewater treatment
because of their advantages of low cost and low pollution (Das et al.,
20065 Sun et al., 2008; Dziewit et al., 2010). When the concentration
of pollutants in wastewater is high, it will influence the growth and
degradation effect of microorganisms (Astals et al., 2015). At present,
the treatment of the DMF wastewater is mainly relying on activated
sludge. However, the activated sludge could only tolerant about
200mg/L DMF concentration compared to the 2,000mg/L DMF
concentration of factory wastewater (Zhou et al., 2018; Astals et al.,
2015). The low degradation rate of DMF will cause the exceedance of
total nitrogen released, which increase the difficulty in subsequent
treatment of nitrogen content. Hence, it needs to be domesticated and
isolated from the environment to get some strains that can degrade
DMEF efficiently, which is essential for practical industrial
production applications.

Several bacteria that degrade DMF have been isolated and
identified, such as Alcaligenes (Hasegawa et al., 1997), Paracoccus
(Nisha et al., 2015; Doronina et al., 1998; Czarnecki et al., 2017),
Pseudomonas (Ghisalba et al., 1985), Methylobacterium (Doronina
et al., 2000), Mycobacterium (Urakami et al., 1990), Ochrobactrum
(Veeranagouda et al., 2006), etc. Paracoccus is the main genus for
degrading DMF, and there are several Paracoccus strains were reported
that have the capability of degrading DMF effectively (Zhou et al.,
2018; Astals et al., 2015). Swaroop et al. (2009) found that the
Paracoccus sp. strain DMF bacteria would briefly accumulate
dimethylamine and methylamine during the growth process using
DME which would eventually be converted into ammonia and carbon
dioxide and degrade DME.

In previous study, they found that some of the strains Paracoccus
aminophilus JCM 7686 and Methylobacterium sp. Strain DM1
contained enzymes that could degrade DMF, named DMFase (Dziewit
et al,, 2010; Lu et al.,, 2019). In contrast, others did not include this
enzyme, so they speculated that there might be two pathways of DMF
degradation. The critical enzyme in one of the pathways was DMFase,
which degraded DMF to dimethylamine (DMA) and formic acid
(Dziewit et al., 2010). Subsequently, DMA forms methylamine and
formaldehyde by the action of dimethyl dehydrogenase. Then
methylamine will form ammonia and formaldehyde by the activity of
methylamine dehydrogenase (Ghisalba et al., 1985; Veeranagouda
et al., 2006). Another pathway of DMF degradation is achieved
through repeated oxidative demethylation of DME which is
speculated to be possessed by some Pseudomonas species (Hans-Peter
et al., 2010). The two methyl groups on N are removed by methyl
formamide oxidase and formamide oxidase, respectively, to form
formamide, which is further hydrolyzed by formamidase to produce
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ammonia and formic acid (Ghisalba et al, 1985). The DMF
degradation mechanisms of different genera may differ significantly,
and there are relatively few studies on DMF degradation mechanisms
in terms of genes. Therefore, it is essential to identify the DMF
degradation mechanisms of Paracoccus sulfuroxidans.

In this study, we isolated four efficient DMF degrading strains by
acclimatization, which were able to utilize DMF as the sole carbon and
nitrogen source. Among them, DM175A1-1 showed the best
degradation effect, and the whole gene sequencing data of this strain
were analyzed to elucidate its relevant genes and degradation pathways
responsible for DMF degradation. The DM175A1-1 can achieve
efficient ammonification of DMF, which could solve the difficulty of
converting organic nitrogen to ammonia nitrogen during the
degradation then, the nitrogen removal can be achieved in
combination with nitrification or denitrification processes
subsequently. Finally, in order to enhance the tolerance of the high
DMEF concentration about DM175A1-1, we further investigated its
degradation ability by tolerance test.

Materials and methods
Culture medium

The inorganic salt medium with DMF as the sole source of carbon
and nitrogen (1.2g/L KH,PO,, 6.8 g/L K,HPO,, 0.5g/L NaCl, 0.1g/L
MgSO,-7H,0, 0.1 g/L MnSO,-H,0, 0.1 g/L CaCl, 0.1 g/L FeSO,-7H,0,
0.006g/L  Na,MoO,2H,0, 0.006g/L CuSO,5H,0, 0.007g/L
ZnS04-7H,0, 0.0001 g/L CoCl,-6H,0, 0.0124 g/L H;BO;, 0.00001 g/L
Vitamin B1, pH 6.0) was used to domesticate the isolates. LB medium
as the seed solution medium for strains. DMFI medium as the
purification medium for strains (additional 0.2g/L DMF and 0.2 g/L
dimethylamine were added on top of the ingredients in LB medium).

Isolation and identification of
domesticated strains

Fresh sludge of 10mL from each pharmaceutical plant was
inoculated into a triangular flask containing 100 mL of inorganic salt
medium (DMF concentration of 1,000mg/L) and incubated in an
incubator at 30°C with 130 r/min oscillation, during which the total
nitrogen (TN) and NH;-N values in the system were sampled every
one day. The culture was incubated until the ammonification rate of
TN reached more than 90% (ammonification refers to the conversion
of organic nitrogen in TN into NH;-N), then transferred to fresh
inorganic salt medium (DMF concentration of 2,000mg/L) at 10%
inoculum, monitored the TN and NH;-N values in the system and
continued to incubate. The DMF concentration was gradually
increased to 5,000 mg/L by transferring five times consecutively.

One millilitre of bacterial broth from the culture system with good
growth condition of the strain was taken for high-throughput
sequencing. At the same time, the above bacteria were at a dilution of
107> to 10~* spread onto a solid medium containing 1,000 mg/L DMF
and incubated at 30°C for 5days single colonies were picked into
DMF1 medium, incubated at 30°C for 3 days, and then purified by
scribing, and the single purified strains were identified by DNA
sequencing. The morphology of the bacterium was observed by light
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microscopy and cultured with Petri dishes. The isolated and purified
strains were subjected to Gram staining and physiological and
biochemical characterization experiments, and the identification
results of 16S rDNA were used as the species name.

Genome sequencing and genetic
information analysis

The version of MEGA was MEGA X. The evolutionary using the
Neighbor-Joining method, Kimura 2-parameter method, Numbers at
branch points indicate bootstrap percentages (based on 1,000
replications). Only values above 50% are shown. Bar, 0.01 substitutions
per nucleotide position. The 16S rRNA gene sequence of Tropicibacter
naphthalenivorans CECT 7648 was used as the outgroup.

Genomic DNA was extracted using the Wizard genomic DNA
purification kit (product no. A1125; Promega). Whole-genome
sequencing was performed on the Illumina MiSeq and PacBio
sequencing platforms. Functional gene predictions and annotations
were performed using GeneMarkS,' the Rapid Annotation Subsystem
Technology (RAST) database, BLAST,> and UniProt.’ Insertion
elements were predicted using Isfinder.

Degradation of the DMF

The strains were amplified and cultured in LB medium until the
OD600 reached about 1.5, centrifuged at 6,000 r/min for 3 min, the
supernatant was discarded, and the pellet was used further. The pellet
was then resuspend with sterile distilled water to prepare the seed
solution. The feed water was an inorganic salt medium containing
5,000mg/L DME, adjusted pH=6.0-7.0, which was artificially
configured wastewater. The inorganic salt medium was added to the
strain treatment tank, adjusted pH=6.0-7.0, and various sub-liquids
were inoculated in the strain treatment tank according to 20%
inoculum, and granular activated carbon was added as the strain
carrier to enrich and retain the strain. The hydraulic retention time
(HRT) of the influent water in the strain treatment tank was controlled
to be 3 days, dissolved oxygen (DO) >2.0 mg/L, and water temperature
30-35°C. The primary water quality data in the system were
monitored daily, such as COD, NH;-N, and TN.

Statistical analysis

Every group of the experiments repeated for 4 times, n=4. Data
were expressed as the mean +standard error of the mean (SEM),
visualized using GraphPad Prism (8.3.0), one-way analysis of variance
(ANOVA) of SPSS (version 25.0), and Dunnett’s multiple comparison
test for statistical analysis, with significant differences between groups
(p<0.05).

1 http://exon.gatech.edu/GeneMark
2 https://www.ncbi.nlm.nih.gov/BLAST

3 www.uniprot.org
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Results and discussion

The acclimatization and isolation of the
strains

Fresh sludge was used for acclimatization, in which the strains
were cultured in an inorganic medium with a DMF concentration of
1,000mg/L for 1 week, the NH;-N in the system increased significantly
to about 160 mg/L, and the TN ammonification rate reached more
than 90%. Four strains of bacteria with DMF degradation effect were
obtained by acclimatization culture.

As shown in the results of Figure 1 and Table 1, in the group
system of P. sulfuroxidans DM175A1-1, both NH;-N and TN showed
a slowly increasing trend in the first 6 days, and the proportion of
NH;-N to TN was basically above 95%; as shown in Table 1, after the
7th day, both NH;-N and TN data in the treated system were stable at
about 780mg/L, and the proportion of NH; to TN was at above 98%.
In the system of the A. lusatiense 3-1-1, after the 7th day, the NH;-N
data in the treatment system were stable at about 575mg/L, the TN
data were about 780 mg/L, and the proportion of NH;-N to TN was
maintained at about 74%.

In the G. flavus 2-CZ-5 experimental system, after the 7th day, the
NH;-N data in the treated system were stable at about 473 mg/L, the
TN data at about 780 mg/L, and the proportion of NH;-N to TN was
maintained at about 60%. in the S. paucimobilis 3-3-10 experimental
system, after the 7th day, the NH;-N data in the treated system were
stable at about 575mg/L, the TN data at about 780mg/L, and the
proportion of NH;-N to TN was maintained at about 60%. The NH;-N
data were stable at about 572mg/L, and the TN data were about
780mg/L, and the proportion of NH;-N to TN was maintained at
about 73%.

The experimental results of DMF degradation by single
bacteria showed that in the four single bacteria experimental
systems, all strains could take advantage of DMF effectively and
their OD600 is over 1.50, pH in all four systems increased
significantly to more than 8.0, and a certain amount of acid should
be added daily to adjust pH to about 6. The DMF degradation effect
of P. sulfuroxidans DM175A1-1 was better than the other three
monocultures, and the DMF degradation rate reached more
than 90%.

Identification of the strains

After 3days incubation on LB Petri dishes, the colony
morphology was round and raised. The colony surface was
smooth and moist. The edge was neat and beige in color, Gram
negative, and the physiological and biochemical characteristics
were initially identified as Paracoccus. 16S rDNA sequence
comparison, the similarity between strain DM175A1-1 and
Paracoccus sulfuroxidans CGMCC 1.5364T was 99%, so the
phylogenetic tree was constructed by MEGA software, and strain
DM175A1-1 was also closely clustered with Paracoccus
sulfuroxidans CGMCC 1.5364T. As shown in Figure 2, the
phylogenetic tree was constructed by MEGA software, and strain
DM175A1-1 was also closely clustered with Paracoccus
sulfuroxidans CGMCC 1.5364T, so it was identified as Paracoccus
sulfuroxidans strain.
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FIGURE 2
Phylogenetic tree of strain P. sulfuroxidans DM175A1-1.

Paracoccus methylutens DM12 (AF250334)

Tropicibacter naphthalenivorans CECT 7648 (NR041596)

Multireplicon genome of strain DM175A1-1

Whole-genome sequencing was performed, and analysis of the
data revealed that the genome of strain DM175A1-1 has a
multireplicon structure, with a single circular chromosome and two
plasmids (Figure 3). The circular chromosome is 3,993,573 bp in size;
the plasmidl is 123,272 bp in size; and the plasmid2 is 46,324 bp in
size. The whole length of the genome sequence is 4,163,169, with a
G+ C content of 64.40%. After the analysis of the function, the CDS
results showed that the Gene number is 4,139, and the gene total
length is 3,800,551 bp, with a coding percentage of 91.3% (Table 2).

We submitted the genome of the DM175A1-1 to the blast server.
P. aminovorans JCM 7685, which has a complete DMF degradation
pathway, carries two genes, dmfAl and dmfA2, responsible for
encoding the DMFase that initially degrades DMF to DMA and MA
(Czarnecki and Bartosik, 2019). The DM175A1-1 also has the dmfA1
and dmfA2 genes encoding the DMFase, as shown in Figure 3, so the
initial pathway of DM175A1-1 to degrade DMF to DMA and MA may
be the same as that of the P aminovorans JCM 7685. Then
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P aminovorans JCM 7685 degrades DMA to formate by the NMG
pathway, in which key genes in the NMG pathway are not found in
DM175A1-1, so it was hypothesised that other DMA degradation
pathways may exist in DM175A1-1 (Czarnecki and Bartosik, 2019).
The MA degradation pathway has been reported in Paracoccus spp.
P, denitrificans Pd 1222, MA is degraded to formaldehyde by the action
of MA dehydrogenase encoded by mauA and mauB, and P. denitrificans
Pd 1222 oxidises formaldehyde to formate by a glutathione-dependent
pathway requiring three enzymes, namely S-(hydroxymethyl)
glutathione synthetase (gfa), S-(hydroxymethyl) glutathione synthase,
S (hydroxymethyl) glutathione dehydrogenase (flhA) and
S-formylglutathione hydrolase (fghA) (Czarnecki and Bartosik, 2019;
Luetal., 2019). As shown in Figure 3, the chromosome of DM175A1-1
carries the mau gene cluster encoding formaldehyde dehydrogenase,
where the cluster contains mauA and mauB, and three genes in the
pathway for further breakdown of formaldehyde to formate, as shown
in the Figure 3, flhA, fghA and gfa, respectively. Therefore, the product
of the initial degradation of DM175A1-1, MA, can be converted to
formaldehyde through the MA dehydrogenase encoded by mauA and
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TABLE 2 Gene information statistics.

Sample DM175A1-1

Gene number 4,139
Gene total length (bp) 3,800,551
Gene average length (bp) 918
Gene density (gene number/Kb) 0.994
GC content in gene region (%) 64.9
Gene/geonme (%) 91.3
Intergenetic region length (bp) 362,618
GC content in intergenetic region 58.8
(%)

Intergenetic length/genome (%) 8.71

mauB, which in turn is oxidised to formate through the glutathione-
dependent pathway. As DM175A1-1 contains some of the genes in the
DMF degradation pathway that have been studied, but also lacks some
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of the genes in the degradation pathway, new degradation pathways
may exist in DMI175A1-1 and are the next direction for
further research.

Tolerance test of the Paracoccus
sulfuroxidans DM175A1-1

To further verify the practical effect of strain DM175A1-1, the
DMEF concentration in the influent water was increased to 10,000 mg/L
for the experiment. The experimental procedure was the same as 1.4.2.
The system without the strain was set as the blank group, and the
system with the activated sludge (MLVSS of 6,000 mg/L) was set as the
control group, and the treatment effects of HRT 3 days and 5 days were
investigated. The purpose was to check the tolerance of the strain
P sulfuroxidans DM175A1-1 to DMF and compare it with the
treatment effect of activated sludge.

The results are shown in Figure 4 and Table 3. When the influent
DMEF concentration reached 10,000 mg/L, the activated sludge group
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was statistically significant (p <0.05).
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decreased in the late ammonification period, probably due to
poisoning, and the final ammonification rate was as low as 14.6%. In
contrast, the P sulfuroxidans DM175A1-1 strain treatment group
(groups C and D) had apparent growth and better activity in the
treatment system, with specific higher COD removal capacity and
ammonification capacity, and when the HRT was 3 days, the COD
removal rate was 91.0%, and ammonification rate was 80.0%; when the
HRT was extended to 5days, the COD removal rate continued to rise
t0 91.0% and When the HRT was extended to 5 days, the COD removal
rate continued to increase to 91.0%, and the ammonification rate
reached 99.0%. In conclusion, P. sulfuroxidans DM175A1-1 can tolerate
DMEF concentrations up to 10,000 mg/L, and the conversion efficiency
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of organic nitrogen to NH;-N in DMF can reach 99.0% when the HRT
is controlled at 5 days.

The treatment of the wastewater based on
Paracoccus sulfuroxidans DM175A1-1

The wastewater came from a pharmaceutical enterprise in
Zhejiang, with a DMF content of about 1.2% (w/v), a water volume
of 60t/d, and wastewater quality, as shown in Table 4. In order to
reduce the introduction of nitrogenous substances from the strain
medium into the wastewater, the centrifuges are not provided in the
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factory, so the strain was fermented with 1/5 concentration of LB

medium and was pitched when the fermentation reached about 1.5

OD600 value. The wastewater was supplemented with KH,PO,
0.5g/L, and H,SO, was used to adjust the pH of the wastewater =6.0.

TABLE 3 Effect of P. sulfuroxidans DM175A1-1 on the treatment of high

concentration DMF.

Index A B C D

Inlet COD (mg/L) 7,555 7,550 7,547 7,542
Treatment COD (mg/L) 7,468 6,695 680 308

Removal rate of COD 1.2% 11.3% 91.0% 95.9%
Inlet TN (mg/L) 1,768 1,786 1,781 1,785
Treatment TN (mg/L) 1,758 1,758 1,775 1,758
Treatment NH;-N (mg/L) 182 257 1,420 1,740
Ammonification rate 9.6% 14.6% 80.0% 99.0%

Values were displayed as the mean + SEM, n=4; the difference between groups was

statistically significant (p <0.05).

TABLE 4 Basic water quality of high concentration DMF wastewater.

10.3389/fmicb.2024.1419461

The device is used to handle the wastewater, a filler layer is
set at 1/3 of the distance from the bottom of the device, and the
filler is preferably granular activated carbon, with a dosage of
10-13% (the volume ratio of filler to the device). The aerobic
process was adopted, controlling HRT about 5 days, DO> 2 mg/L,
water temperature 30-33°C, and 20% of strain injection. During
the strain treatment, the pH of the strain treatment pool will rise
to 9.0, and H,SO, needs to be added to consistently control the
pH of the strain treatment pool = 6.0-7.0 (optimal 6.0). When the
treatment effect is not good, additional carbon sources such as
glucose 2-3 g/L can be supplemented or supplemented strains.
The primary water quality data in the system were
monitored daily.

The results are shown in Figure 5 and Table 5. P. sulfuroxidans
DM175A1-1 strain treated wastewater with DMF content up to
1.2% and TN about 2,000 mg/L well, and the COD removal rate was
nearly 95%, which could basically achieve mineralization; DMF
removal rate reached 100%, and combined with COD data, it was

presumed that the remaining material was the intermediate product
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FIGURE 5
Treatment effect of P. sulfuroxidans DM175A1-1 on high concentration DMF wastewater. (1) The COD treatment effect of the strain. (2) The TN
treatment effect of the strain and the ammonification effect. Values were displayed as the mean + SEM, n = 4; the difference between groups was
statistically significant (p < 0.05).
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TABLE 5 Treatment effect of P. sulfuroxidans DM175A1-1 on high
concentration DMF wastewater.

\[o} Index Data
1 Inlet COD (mg/L) 10,232
Treatment COD (mg/L) 531
Removal rate of COD 94.81%
2 Inlet DMF (mg/L) 11,700
Treatment COD (mg/L) 0
Removal rate of COD 100%
3 Inlet TN (mg/L) 2,079
Treatment TN (mg/L) 2,058
Treatment NH;-N (mg/L) 2,056
Ammonification rate 99.89%

Values were displayed as the mean + SEM, n=4; the difference between groups was
statistically significant (p <0.05).

in the process of DMF degradation; TN Basically, all of the TN was

converted into NH;-N, and the ammonification rate

reached 99.89%.

Conclusion

In this study, the DM175A1-1 was identified as Paracoccus
sulfuroxidans, which were growing with DMF as the only carbon
and nitrogen source. Whole-genome sequencing of strain
DM175A1-1 revealed that it has a 3.99-Mbp chromosome a
120-kbp plasmidl and a 40-kbp plasmid2. Through the comparison
of the genome to others, we found that the chromosome has the
key genes in the initial phase of methylotrophy pathways in the
genus Paracoccus. Then after the further DMF tolerance
degradation experiments, DMI175A1-1 can tolerate DMF
concentration up to 10,000 mg/L, and the efficiency of organic
nitrogen conversion to NH;-N in DMF can reach 99.0% when the
HRT is controlled at 5days. Meanwhile, the application
experiments were conducted for a pharmaceutical enterprise in
Zhejiang Province with a high concentration of DMF wastewater,
and the wastewater treatment effect was good. The prevailing
treatment methods for DMF-containing wastewater are typically
biochemical, which are frequently costly and environmentally
benign. At present, there are few applications of microbial
degradation in industry. This study has successfully demonstrated
the degradation of DMF in enterprise applications, providing
insights and support for future research. As the specific degradation
pathway of this strain has not yet been fully elucidated, future
research will focus on elucidating the mechanism and mechanism.
This will further deepen the connection between the genome and
degradation products, and determine the subsequent degradation
mechanism and pathway.
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Siderophores, specialized iron-chelating molecules produced by Bacillus amyloliquefaciens
D5, were investigated for their role in enhancing plant defense mechanisms against
Cercospora canescens in mung bean (Vigna radiata L.). Siderophores were extracted
and purified using Amberlite XAD-4 and applied to plants at concentrations of 5, 10, and
15 pg/mL, followed by pathogen inoculation. The treatments significantly influenced
enzymatic activities and defense-related gene expression. On Day 6, peroxidase (POD)
activity reached its highest value of 0.563 in the SP15 (siderophore + pathogen at 15 pg/
mL) treatment, with S15 (siderophore-only at 15 pg/mL) showing a lower but significant
increase of 0453, while control groups remained unchanged. Polyphenol oxidase
(PPO) activity peaked in SP15 (0.10 U/mL), followed by S15 (0.08 U/mL), highlighting
the role of these treatments in enhancing stress responses. Chitinase activity was
significantly elevated in SP15 on Day 6, with a sustained response through Day 8,
while no significant change was observed in the control group. Total phenolic content
was highest in SP15 (100 pg/mL), showing a a ramified immune response whereas
S15 recorded 80 pg/mL, significantly above the control. Gene expression analysis
further demonstrated the effectiveness of siderophore and siderophore + pathogen
treatments. Catalase expression was upregulated by 21.1-fold in siderophore-only
treatment and amplified to 25.9-fold in SP15. Epoxide hydrolase (EH) gene expression
increased by 77.3-fold in S15 and further synergized to over 90-fold in SP15. Similarly,
PR10 expression showed moderate upregulation in S15 and significantly higher levels
in SP15, reflecting enhanced pathogen defense. Calmodulin (CAL) gene expression
was moderately regulated in S15 but significantly amplified in SP15. These findings
underscore the dual role of siderophores in nutrient acquisition and as potent elicitors
of plant defenses, highlighting their potential as bio-stimulants. Field trials are essential
to validate these results under natural conditions and optimize their use in agriculture.

KEYWORDS

siderophore, plant growth-promoting rhizobacteria, leaf spot disease, plant defense,
induced systemic resistance

Introduction

In the quest for sustainable agricultural practices, researchers continually explore novel
strategies to enhance plant growth and defense against pathogens. Among the myriad of
approaches, harnessing the potential of plant growth-promoting bacteria (PGPB) has garnered
significant attention due to their ability to enhance nutrient availability, suppress pathogens, and
induce systemic resistance, making them a cornerstone of sustainable agricultural practices (Ha-
Tran et al,, 2021). One of the key mechanisms by which PGPR stimulate plant growth is through
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the solubilization of mineral nutrients, such as phosphorus and iron,
making them more accessible to plants. PGPR produce siderophores,
small molecules that chelate iron, making it available to plants in
environments where it is limited (Goswami et al., 2016; Vocciante et al.,
2022). PGPR also contribute to plant growth promotion through the
production of phytohormones, such as auxins, cytokinins, and
gibberellins, which regulate various aspects of plant growth and
development. These hormones stimulate root elongation, enhance
nutrient uptake, and promote the formation of lateral roots, leading to
increased root surface area and improved nutrient acquisition efficiency
(Santoyo et al., 2021; Jeyanthi and Kanimozhi, 2018; Prasad et al., 2019).
Additionally, PGPR-mediated induction of systemic resistance pathways
primes plants to defend against pathogen attacks, enhancing their
resilience to biotic stresses. Furthermore, PGPR can suppress plant
pathogens directly through mechanisms such as competition for
nutrients and space, antibiosis, and the induction of systemic resistance
in plants. By colonizing the rhizosphere and outcompeting deleterious
microorganisms for resources, PGPR produce signaling molecules,
including volatile organic compounds and quorum-sensing molecules
as well as secondary metabolites which modulate plant gene expression
and systemic defense responses. In response, plants secrete specific
compounds, such as flavonoids and phenolic acids, that attract beneficial
microorganisms to the rhizosphere and enhance their colonization.
Bacillus amyloliquefaciens, a ubiquitous soil bacterium, has emerged as a
promising candidate owing to its multifaceted beneficial effects on plant
health. These include enhancing nutrient uptake, producing
antimicrobial compounds, inducing systemic resistance pathways, and
secreting siderophores that chelate iron, thus improving plant resilience
against pathogens (Wu et al., 2024; Marquez et al., 2020).

As a prolific producer of bioactive compounds, this Gram-positive
bacterium exerts beneficial effects on plant health through various
mechanisms. B. amyloliquefaciens enhances plant defense mechanisms
against phytopathogens through the production of antimicrobial
compounds and the induction of systemic resistance pathways.
Notably, the secretion of siderophores, small iron-chelating molecules,
plays a pivotal role in the interaction between B. amyloliquefaciens and
plants. In a study reported by Dimopoulou et al., 2021 the siderophore
bacillibactin, produced by Bacillus amyloliquefaciens MBI1600, under
iron-limiting conditions, and its biocontrol activity against both
bacterial and fungal pathogens was explored. The findings demonstrate
that bacillibactin contributes to antimicrobial activity by inhibiting the
growth of Pseudomonas syringae pv. tomato and enhancing antifungal
activity. Additionally, the biosynthesis of bacillibactin is tightly
regulated with genes related to microbial competition and fitness,
further supporting its role in biocontrol. In comparison, the isolate
Bacillus amyloliquefaciens D5, identified in our study, also produces
significant amounts of siderophores, contributing to its biocontrol
properties and potential of inducing systemic resistance in plants
against pathogen invaders. Induced systemic resistance (ISR) is
triggered by plant growth-promoting rhizobacteria (PGPR) and other
microorganisms, primarily through jasmonate- or ethylene-sensitive
pathways. This mechanism, which helps plants resist various pathogens,
is activated by PGPR strains like Pseudomonas, Bacillus, and
Trichoderma. ISR operates similarly to pathogen-induced defense
mechanisms but involves complex microbial signals and determinants
that remain poorly understood. Future research aims to explore the
molecular regulation of ISR by addressing specific questions, such as
which microbial signals most effectively trigger resistance and how
these signals interact with plant hormonal pathways. Investigating the
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temporal dynamics of ISR activation and identifying genetic
determinants in both plants and microbes that enhance resistance
could guide the development of tailored biocontrol strategies (Pradhan
et al., 2023; Luo et al., 2022).

Siderophores are essential for iron acquisition in environments
where this vital micronutrient is limited. However, beyond their role in
iron uptake, siderophores exhibit diverse functions in plant-microbe
interactions, including plant growth promotion and defense mechanisms
facilitates iron acquisition from the rhizosphere, thereby alleviating iron
deficiency stress in plants (Ghazy and El-Nahrawy, 2021).

Iron, an essential micronutrient for various physiological processes,
is often limited in alkaline and calcareous soils, adversely impacting
plant growth and development. By solubilizing iron through chelation,
siderophores enhance its availability for plant uptake, consequently
ameliorating iron deficiency-induced chlorosis and promoting overall
plant vigor. Furthermore, siderophores play a pivotal role in modulating
the rhizosphere microbiome and enhancing plant resistance against
phytopathogens. The competitive advantage conferred by siderophore-
producing bacteria enables them to outcompete deleterious microbes
for iron, thereby suppressing their proliferation and pathogenicity
(Aznar and Dellagi, 2015). Moreover, siderophores exhibit direct
antagonistic effects against phytopathogens by sequestering iron
essential for their growth and virulence, thus impeding their
pathogenicity. Beyond their role in iron acquisition and pathogen
suppression, siderophores serve as signaling molecules mediating
plant-microbe communication and eliciting systemic resistance
responses in plants. Through intricate signaling pathways, siderophores
prime plants to mount a more robust defense response upon
subsequent pathogen encounters, thereby enhancing their resistance
to biotic stresses. Moreover, siderophore-mediated induction of
systemic resistance pathways stimulates the production of secondary
metabolites and phytohormones associated with plant defense, further
fortifying plants against pathogen invasion. This study aims to
investigate the role of siderophores extracted from Bacillus Bacillus
amyloliquefaciens D5 as elicitors of plant defense mechanisms and
enhancers of resilience under biotic stress conditions. It focuses on
evaluating their ability to activate defense enzymes, regulate gene
expression, and influence protein expression associated with systemic
resistance pathways in Vigna radiata. By elucidating these biochemical
and molecular responses, the research highlights the multifaceted
potential of Bacillus amyloliquefaciens-derived siderophores in
suppressing phytopathogens through rhizosphere modulation, and
inducing systemic resistance. These findings highlight the significance
of siderophores as eco-friendly elicitors and bio-stimulants, offering
sustainable and effective strategies for agricultural biotechnology.

Materials and methods
Bacterial and fungal strain

In this study, Bacillus amyloliquefaciens D5, previously isolated from
a soil sample collected from the Vagadkhol area, was used. The strain was
identified through 16S rRNA sequencing, and its taxonomic position was
confirmed using a phylogenetic tree constructed with closely related
sequences. The culture has been submitted to GenBank with the accession
number OQ536061, providing a validated reference for its identity.

The fungal strain used was Cercospora canescens MTCC no.
10835. The culture was routinely maintained on Potato Dextrose Agar.
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Extraction and purification of siderophore

Siderophore production by Bacillus amyloliquefaciens D5 was
carried out in an iron-depleted succinic acid medium containing
potassium phosphate, magnesium sulfate, ammonium sulfate, and
succinic acid. Cultures were inoculated at an initial density of 10° CFU/
mL and incubated at 28 + 2°C with continuous agitation (120 rpm) for
24-48 h. Optimization of production conditions, including pH,
temperature, and iron concentration, was performed prior to
purification. Following incubation, the culture supernatant was harvested
by centrifugation (5,000 rpm, 15 min), and siderophore content was
quantified using the Chrome Azurol S (CAS) assay. The CAS-positive
supernatant was concentrated using a rotary vacuum evaporator at 50°C
(pH 6.0). Purification was performed using an Amberlite XAD-400 resin
column prepared and activated as described by Sayyed et al. (2006) and
Nithyapriya et al. (2021). The supernatant was loaded onto the column
at a flow rate of 1-2 mL/min until column saturation, indicated by
browning. The column was sequentially washed with distilled water, and
siderophores were eluted using ethyl acetate as a solvent (Budzikiewicz,
1993). Filtrate, water wash, and eluted fractions were collected and
screened for siderophore activity using the CAS assay.

Siderophore induced biochemical enzyme
activity

The biochemical enzyme activity induced by siderophores was
evaluated using Vigna radiata (mung bean) seedlings. Plants were grown
in pots under controlled environmental conditions and pre-treated with
varying concentrations of Bacillus amyloliquefaciens D5-derived
siderophores (5 pg/mL, 10 pg/mL, and 15 pg/mL) to assess dose-
dependent effects on enzyme activity. Foliar treatment of siderophore
solution at different concentrations was applied to each plant. Control
treatments included untreated plants (no siderophore application) and
pathogen-only treatments, where plants were inoculated with Cercospora
canescens without prior siderophore treatment. Siderophore application
occurred 24 h before pathogen inoculation. Enzyme activity was
monitored from Day 0 to Day 8 post-inoculation. The inoculum was
prepared by suspending C. canescens spores in a sterile solution, with a
final concentration of 10° spores/mL used for pathogen inoculation. The
treatment groups were clearly defined as follows:

Untreated plant

Treatments
C - Control

CP - Control + Pathogen Pathogen Inoculation

S5-Siderophore (5 pg) Siderophore only (5 pg)

SP5 - Siderophore (5 pg) + Pathogen Siderophore (5 pg) challenge

inoculated with Pathogen

$10- Siderophore (10 pg) Siderophore only (10 pg)

SP10- Siderophore (10 pg) + Pathogen Siderophore (10 pg) challenge

inoculated with Pathogen
Siderophore (15 pg) Siderophore only (15 pg)

SP15- Siderophore (15 pg) + Pathogen Siderophore (15 pg) challenge

inoculated with Pathogen
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Each treatment group consisted of 10 plants, and all experiments
were conducted in triplicate to ensure statistical validity. This
experimental design enabled the assessment of the effect of
siderophore pre-treatment on plant defense enzyme activity in
response to pathogen infection.

Peroxidase activity

Peroxidase activity was measured as the oxidation of guaiacol
using hydrogen peroxide as substrate at 470 nm as described by
Hammerschmidt et al. (1982). One gram of plant tissue was
homogenized in 2 mL of 0.1 M phosphate buffer (pH 7.0) at 4°C. The
homogenate was centrifuged; the supernatant collected was used as
enzyme source. The reaction mixture consisted of 0.5 mL of enzyme
extract, 1.5 mL of 0.05 M pyrogallol, 1.5 mL of 1% H,0, was incubated
at room temperature. Changes in the absorbance at 470 nm were
recorded at 30s interval for 3 min. Activity was expressed as the
increase in absorbance at 470 nm/min/g of fresh tissue.

Polyphenol oxidase activity

Polyphenol oxidase (PPO) activity was determined by Am (1954)
using catechol as substrate. Formation of yellow colored product
benzoquinone by the oxidation of catechol as substrate was measured at
495 nm. Reaction mixture consisted of 0.5 mL of enzyme extract, 1.5 mL
of 0.1 M Sodium phosphate buffer (pH 6.5); to start the reaction 200 pL
0f 0.01 M catechol was added. Enzyme activity was expressed as units/ml.

Chitinase activity

The modified method of Shimahara and Takiguchi (1988) was
followed to prepare colloidal chitin. 10 g of chitin flakes from
shrimp cells was mixed with 200 mL of concentrated HCL with
continuous stirring at chilled temperature overnight. The mixture
was then filtered through muslin cloth and dropped into 600 mL of
chilled ethanol with rapid stirring on ice. The colloidal chitin was
then collected and centrifuged at 8000 g for 30 min at 4°C. The
pellet was then washed with distilled water till the pH was neutral.
The filtrate was again filtered with whatman filter paper 1.0 and
washed until the washing solution was neutral. The colloidal chitin
was then stored at 4°C (Joe and Sarojini, 2017; Urja Pandya et al.,
2014). Homogenize plant tissues using 0.1 M sodium citrate buffer,
pH 5.0, centrifuge the homogenate at 13,000 rpm for 20 min, and
collect the supernatant. As per Boller and Mauch (1988),
colorimetric chitinase assay was carried out using colloidal chitin
as substrate. 0.4 mL of supernatant was mixed with 10 pL of 1 M
sodium acetate buffer (pH 4.0) to that 10 mg of colloidal chitin was
added incubate the reaction mixture at 37°C for 2 h. Centrifuge the
mixture to terminate the reaction at 8000 rpm for 5 min. 0.5 mL of
supernatant was taken in a fresh tube to that 50 pL of 1 M phosphate
buffer; pH 7.1 was added and incubated with 2 mL of dimethyl
amino benzaldehyde (DMAB) for 220 min at 37°C. The absorbance
was measured at 585 nm; the enzyme activity was expressed as
Units/ml.
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Phenylalanine ammonia lyase activity

One gram of plant tissue was homogenized with 3 mL of chilled
0.1 M sodium borate buffer (pH 7.0) containing 1.4 mM f-
mercaptoethanol and 0.1 g of polyvinylpyrrolidone (PVPP). The
enzyme extract was filtered and centrifuged at 13,000 rpm for 20 min.
0.4 mL of supernatant was incubated with 0.5 mL of 0.1 M borate
buffer (pH 8.8) and add 0.5 mL of 12 mM L-phenylalanine for 30 min
at 30°C. Phenylalanine ammonia lyase activity was measured based
on trans-cinnamic acid formation at 290 nm using L phenylalanine as
substrate. The enzyme activity was expressed as Units/mL (Dickerson
etal., 1984).

Total phenols

Total phenols were estimated according to Zieslin and Ben-Zaken
(1993). One gram of homogenized tissues of plant seedlings were
macerated in 80% of methanol and agitated for 15 min at 70°C. In
1 mL of methanolic extract, 5 mL of distilled water was added to that
250 pL of 1 N Folin-Ciocalteau’s phenol Reagent (FCR) was mixed
and kept the reaction mixture at 25°C. Measurement of blue color
developed was read at 650 nm.

SDS PAGE

Leaf proteins were extracted using an extraction buffer containing
1% SDS, 0.1 M Tris-Cl (pH 6.8), 2 mM EDTA-Na2, 20 mM DTT, and
2 mM PMSE The homogenate was transferred to tubes and centrifuged
at 15,000 rpm for 5 min. The supernatant was precipitated using equal
volumes of 20% TCA-acetone. Leaf tissue (1 g) was homogenized in
4 mL of 10% (w/v) TCA-acetone, kept on ice for 5 min, and centrifuged
again at 15,000 g for 5 min. The supernatant was discarded, and the pellet
was washed with acetone until colorless. The pellet was dried and
dissolved in SDS buffer (0.5% SDS, 50 mM Tris-Cl pH 6.8, 20 mM DTT)
(Niu et al., 2018). Protein content was determined using the Bradford
method (Bradford, 1976). The protein was stored at —80°C until further
use. Pellets were dissolved in a buffer containing 10% glycerol, 2.3% SDS,
5% 2-mercaptoethanol, 0.25% bromophenol blue, and 63 mM Tris-HCl
(pH 6.8), and heated at 95°C for 10 min. Twenty micrograms of protein
from different treatments were mixed with 5 pL of sample buffer in a
microfuge tube and boiled for 10 min at 95°C. Samples containing equal
amounts of protein were loaded into the wells of polyacrylamide gels
(Bio-Rad System). Broad-range molecular weight markers (Bangalore
Genei, India) were used, and electrophoresis was carried out at a constant
voltage of 75 volts for 2 h. The gels were stained with 0.2% Coomassie
Brilliant Blue (R250) solution.

Native PAGE

The isoform profile of PO and PPO were examined by native
PAGE (Laemmli, 1970). For all treatments, plants were pre-inoculated
with siderophores 24 h before pathogen inoculation. Plant samples for
biochemical enzyme assays (PO and PPO activity) were collected on
Day 6 post-pathogen inoculation, which corresponds to the peak of
enzyme activity. Plant samples were collected at the 6th day of
pathogen challenge for PO and PPO, respectively, from 4 treatments
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C- Control, P - Pathogen, S- siderophore (50 pg) and siderophore

(50 pg) + pathogen. The protein extract was prepared by
homogenizing 1 g of plant sample in 2 mL of 0.1 M sodium phosphate
buffer pH 7.0 and centrifuged at 13,000 g for 25 min at 4°C. After
electrophoresis, PO isoforms were visualized by soaking the gels in
staining solution containing 0.05% benzidine and 0.03% H,O, in
acetate buffer (20 mM, pH 4.2) (Nadolny and Sequeira, 1980). For
assessing PPO isoforms profile, the gels were equilibrated for 30 min
in 0.1% p-phenylenediamine followed by addition of 10 mM catechol

in the same buffer (Jayaraman et al., 1987).

Pre-treatment of plants for molecular
analysis

Foliar treatment of 50 pg/mL of purified siderophore was
given to the mung bean plants prior to Cercospora canescens
inoculation. The fungal inoculation was done at concentration of
10° spores/ml for inoculation. Four treatments as C. canescens
only, Siderophore only, Siderophore with C. canescens and Control
(untreated) were maintained. Plants (3 plants from each
replication) were uprooted at 6 days post-inoculation (dpi) and
used for further PCR analysis.

Reverse transcription PCR

Total RNA was isolated from the treatments manually by Trizol C
method. The cDNA synthesis was carried out using the Mastercycler
X40 thermo cycler by Eppendorf and Quantbio gscript cDNA synthesis
kit which included nuclease free water, qScript reaction mixture and
qScript RT (Reverse transcriptase). 5 pL of RNA sample was added to
the mixture at concentration of 1 pug and the total reaction mixture was
of 20 pL. The primers for various defense-related genes were designed
using the sequences of mung bean defense genes available in the NCBI
database (Dubey et al., 2018). The gene-specific primers (Table 1) were
used for quantitative PCR analysis. The actin gene was used as the
housekeeping gene for the normalization of the expression data (Dubey
etal, 2018; Azeem et al., 2021; Nivya and Shah, 2024).

Quantitative real time PCR

The real-time PCR was conducted using the StepOnePlus Real-
Time PCR System (Applied Biosystems). Each reaction included
10 pL of RealQ Flex 2X Master Mix, 0.4 pL each of forward and
reverse primers (Primer A and Primer B), 0.3 uL of ROX dye, and
7.9 puL of PCR grade water, with 1 pL of cDNA template added to
initiate the PCR process. The ROX dye was diluted from a stock
concentration of 200 pM to 300 nM by a 1:10 dilution in PCR grade
water, resulting in a final volume of 5 pL per 50 pL of ROX dilution.
The PCR conditions for PR10, epoxide hydrolase, calmodulin and
catalase genes were: initial denaturation at 95°C for 3 min, followed
by 45 cycles of denaturation at 95°C for 10 s, annealing at 60°C for
20 s, extension at 62°C for 20 s, and plate reading at 62°C. For the
calmodulin gene, the conditions were: initial denaturation at 95°C for
4 min, followed by 45 cycles of denaturation at 95°C for 10s,
annealing at 60°C for 30 s, and plate reading at 62°C. Each treatment
sample was run in triplicate. The relative expression ratios of the
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TABLE 1 List of primers for PCR analysis.

10.3389/fmicb.2024.1492139

Genes Accession number Primers Amplicon size
F-GACGAGGCAAACTTGGGATA

PR-10 AY792956.1 217
R-CAGCCTTGAAAAGTGCATCA
F-AACTGGGGGCCTCAACTACT

Epoxide hydrolase HQ316148.1 243
R-TCCTCTGCAGCTTCTTGGTT
F-AGTTCCCCATACCTCCTGCT

Catalase D13557.1 219
R-GAGAACGGTCAGCCTGAGAC
F-AACAAGGAGGTCGTGGTGTC

Calmodulin DQ778070.1 300
R-ATGCCGATCACAAAACAACA
F-TCGTGTGGCTCCTGAAGAAC

Actin AF143208.1 230
R-AGATTGCATGTGGAAGGGCA

defense genes were normalized using actin as a reference gene. The
crossing point (C(T)) values of each sample were compared to a
control sample (mock-inoculated) to determine relative expression
(Patil et al., 2021; El-Maraghy et al., 2020).

Statistical analysis

For each of the investigated biochemical parameters from control
and treated samples, three separate replication sets were conducted.
All the experimental measurement values were expressed as means of
three measurements = standard error. The significance of the
differences between the mean values of control and treatments were
evaluated using ANOVA and post hoc test Dunnett’s Multiple Range
Test and Tukey’s test using GraphPad Prism 5 software.

Results and discussion

Siderophore induced biochemical enzyme
activity

The effects of siderophore treatments on biochemical enzyme
activities and their role in plant defense against C. canescens
were assessed.

Total phenols increased in all treatments except the control
(untreated), with the highest values observed in the S15 and SP15
treatments (80 and 100 pg/mL, respectively) on Day 6. The SP15
treatment exhibited a synergistic effect of siderophore and pathogen,
leading to significantly enhanced phenol production, likely due to a
combination of pathogen-induced and siderophore-mimicked
immune responses. The peroxidase activity was highest in SP15
(0.563 units on Day 6), reflecting an induced defense response against
C. canescens invasion. Siderophore treatments, particularly at higher
concentrations (S10, S15), resulted in significant increases in
peroxidase activity, while the control remained unchanged, as
peroxidase is constitutively active under normal conditions.

Polyphenol oxidase (PPO) activity was highest in SP15 and S10
(0.1 and 0.08 U/mL, respectively), with peak levels observed on Day
6 and Day 8. This increase suggests that PPO plays a key role in the
plants defense mechanism against stressors like C. canescens, with
siderophores enhancing the availability of substrates for PPO activity.
Phenylalanine ammonia lyase (PAL) activity peaked in the SP15 group
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(100 U/mL) on Day 2, and increased progressively in the S10 and S15
treatments. PAL activity, which is vital for synthesizing antimicrobial
compounds, was upregulated in response to both the siderophore and
pathogen, indicating an enhanced defense response.

Chitinase activity was highest in the combined treatment
(Siderophore + C. canescens) on Day 4, with sustained elevation
observed through Day 8. This suggests a synergistic interaction
between siderophores and the pathogen, enhancing chitinase-
mediated defense mechanisms and also indicate a potential crosstalk
of defense pathways activated by both siderophore and pathogens.
Overall, these results demonstrate that siderophores, both individually
and in combination with pathogens, can induce significant defense-
related biochemical changes in plants, with higher concentrations
showing more pronounced effects. This study supports the potential
of siderophore applications for enhancing plant resistance to
pathogens. Similar findings were reported by Ashajyothi et al. (2023),
where purified hydroxamate siderophores from Pseudomonas putida
B25 induced increased peroxidase, PPO, and phenol levels in response
to Magnaporthe oryzae infection in rice (Figures 1-5).

SDS PAGE for protein expression analysis

The protein banding patterns was studied in various treatments
treated with only siderophores and in presence of pathogen along with
positive control (untreated plant) and negative control (pathogen
only). The result revealed the presence of 80 KDa; 32-46KDa; 25KDa,
22KDa bands in Control, 80KDa, 46-50KDa; 32-46KDa; 25KDa,
22KDa, 17KDa bands in Pathogen treatment, Siderophore -
46-50KDa; 32-46KDa; 25KDa, 22KDa, 17KDa and
Siderophore + Pathogen- 46-50KDa; 32-46KDa; 25KDa, 22KDa,
17KDa. Additional bands were observed in pathogen treated plants at
45-50Kda and 17Kda (Figure 6). Similar banding patterns to pathogen
were observed in siderophore treated plants indicating some proteins
may be broadly induced in response to different elicitors as part of a
general stress response mechanism in plants. These stress-responsive
proteins may be commonly detected in samples treated with
siderophores or pathogens, contributing to the observed similarity in
protein bands. The response to siderophore treatment may involve
cross-talk between defense mechanisms triggered by pathogen
recognition and nutrient signaling pathways activated in response to
siderophores (Devi et al., 2024a, b). This cross-talk could lead to
convergence observed in

in protein expression patterns
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Total phenols under various treatments. Statistical analysis was determined using ANOVA followed by Dunnett’s Multiple Range Test. C, Control; S,
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S10
Treatments

mDay0 mDay2 mDay4

i
01T 4l
:

S15 SP5 SP10 SP15

" Day6 mDay8

Peroxidase activity under various treatments: C, Control; S, Siderophore (5, 10, 15 pg); SP, Siderophore + Pathogen (5, 10, 15 pg). Statistical significance
was determined using ANOVA followed by Dunnett's Multiple Range Test. The asterisks represent comparisons relative to the Control group (C):

siderophore-treated and pathogen-treated sample. Similar banding
pattern was observed in siderophore + pathogen treatment indicating
that siderophores and pathogens have synergistic effects on plant
responses, leading to similar changes in protein expression or
modification. The combination of siderophores and pathogens may
potentiate certain defense mechanisms, resulting in overlapping
banding patterns compared to individual treatments. Siderophores
and pathogens may activate overlapping signaling pathways in plants.
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These pathways could converge on shared downstream targets, leading
to similar changes in protein expression or modification in response
to siderophore + pathogen treatment as observed in individual
treatments. The SDS-PAGE analysis of protein in biocontrol agents
treated plant showed eight proteins with molecular weight of 14, 23,
30, 35, 45, 50, 60, and 98 kDa. In healthy plants only six proteins
(excepting 14 and 98 kDa) appeared in biocontrol agents treated plant
two additional new proteins appeared (Ganeshamoorthi et al., 2008).
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Phenylalanine ammonia lyase activity under various treatments: C, Control; S,
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Statistical significance was determined using ANOVA followed by Dunnett’s Multiple Range Test. Asterisks indicate comparisons relative to the Control

Siderophore (5, 10, 15 pg); SP, Siderophore + Pathogen (5, 10, 15 pg).

Native PAGE

The Peroxidase (PO) and Polyphenol Oxidase (PPO) isoforms
were studied for the treatments Control, Pathogen, Siderophore
(50pg) and Siderophore + Pathogen. Similar isoform banding was
observed in the treatments that is PPO isoform 1, PPO isoform 2 and
PPO isoform 3. Some isoforms of PPO may be constitutively expressed
in plants where they are present under normal, untreated conditions
(control). These isoforms may play roles in various physiological
processes, such as defense against herbivores or pathogens, or in the
oxidation of phenolic compounds involved in plant development.
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Pathogen infection, siderophore treatment, or their combination may
induce changes in PPO expression levels or activity as part of the plant
defense responses. However, these treatments may not necessarily
result in the expression of entirely new isoforms of PPO. Instead, they
may modulate the expression levels or post-translational modifications
of existing isoforms. PO isoforms 1, 2 were expressed in all treatments
but PO isoform 3 was only found in control treatment as each
peroxidase isoform may have a distinct role in responding to different
types of stress. The treatment applied may only activate two of the
isoforms observed in the control because they are more directly
involved in responding to the specific stressor introduced by the
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SDS PAGE analysis of proteins under various treatments; C, Control;
P, Pathogen only; S, siderophore only; SP, siderophore + pathogen.

treatment, while the third isoform may be less relevant to the
treatment-induced stress response (Figure 7). The native gel
electrophoresis of enzyme extracts from biocontrol agent-treated
plants revealed that the combination treatments of biocontrol agents
led to higher induction of peroxidase (PO) and polyphenol oxidase
(PPO) isoforms. Specifically, the combination of PfI + Pyl5 + BsI6,
Pf1 + Bs16, and PfI + Py15 resulted in stronger induction of both PO
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and PPO isoforms. In contrast, the inoculated control treatment
showed lesser induction of PO isoforms, while the healthy and
inoculated control treatments exhibited mild induction of PPO
isoforms with lower intensity. This suggests that the combination of
the three biocontrol agents is more effective in enhancing enzyme
activity and isoform expression in mulberry plants (Ganeshamoorthi
et al., 2008).

Quantitative PCR

Catalase-mediated detoxification of ROS helps plants to limit
the spread of pathogens by preventing oxidative damage to host
cells. Additionally, the production of ROS by the plant in response
to pathogen recognition can act as a signaling molecule to activate
defense pathways and reinforce the plant immune response (Dubey
et al.,, 2018). In the absence of any treatment or stressor, the CAT
gene expression remains at baseline levels. This indicates that under
normal conditions, the plant maintains a steady-state level of CAT
expression necessary for basic cellular functions. The upregulation
of CAT gene expression by approximately 4.4-fold in response to
pathogen treatment suggests a significant induction of the
antioxidant defense system. Pathogen infection often triggers the
production of ROS as part of the plant defense response, leading to
oxidative stress. The substantial upregulation of catalase gene
expression by approximately 21.1-fold in response to siderophore
treatment indicates a strong activation of the antioxidant defense
mechanism. Siderophores are iron-chelating compounds that can
induce oxidative stress in plants due to their ability to generate ROS
as byproducts. The significant increase in CAT expression suggests
that plants respond robustly to siderophore-induced oxidative stress
by enhancing ROS detoxification capacity through
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catalase-mediated pathways. The synergistic effect observed in the
combined treatment of siderophore and pathogen, resulting in a
further upregulation of catalase gene expression by approximately
25.9-fold, suggests an amplified activation of catalase expression.
Lipid peroxides are generated as by-products of oxidative stress,
particularly under conditions of pathogen infection, drought, or
high light intensity. Epoxide hydrolases participate in the
metabolism of lipid peroxides, facilitating their conversion into less

FIGURE 7

PO (Peroxidase) and PPO (Polyphenol Oxidase) isoform staining. C,
Control; P, Pathogen only; S, siderophore only; SP, siderophore +
pathogen.

10.3389/fmicb.2024.1492139

reactive and cytotoxic compounds. This process helps to alleviate
oxidative damage and maintain cellular homeostasis under stress
conditions (Tripathi et al., 2023).

The expression of the EH gene is highly overexpressed in response
to pathogen treatment as part of the plant defense response to
pathogen infection. The expression of the EH gene is moderately
upregulated approximately 77.3 times in response to siderophore
treatment compared to the control condition while not as pronounced
as the response to pathogen treatment, this increase indicates a
significant induction of gene expression in response to siderophore
application, possibly as a protective and adaptive response to
siderophore-induced stress.

The combined treatment of siderophore and pathogen leads to a
very high expression or upregulation of EH gene as compared to
control condition. This synergistic effect suggests an intensified
response to the combined stressors resulting in a more
pronounced induction of gene expression compared to either
treatment alone. Following an inducing treatment, plant resistance
may manifest in three ways: (i) defenses are activated immediately
with no further change after pathogen challenge, (ii) initial defenses
are amplified or diversified upon pathogen challenge, or (iii) defenses
remain dormant until the pathogen triggers their activation (Walters
et al., 2005).

Calcium/calmodulin-dependent protein kinases (CCaMKs) and
other calmodulin-binding proteins phosphorylate and activate
transcription factors such as WRKY and MYB, which regulate the
expression of defense-related genes (Yuan et al., 2022). Calmodulin-
dependent protein kinases (CDPKs) directly phosphorylate and
activate enzymes involved in defense responses, such as pathogenesis-
related (PR) proteins, defense-related enzymes, and antimicrobial
compound. Calmodulin participates in the regulation of cell wall
modifications and modulates the activity of enzymes involved in the
synthesis and remodeling of cell wall components, such as
callose synthases, pectin methylesterases, and xyloglucan
endotransglucosylases/hydrolases (XTHs), which contribute to the
strengthening of cell walls and physical barriers against invading
pathogens (Wang et al, 2021). The CAL gene was moderately
regulated in pathogen treatment as compared to other treatments. The
higher gene expression was observed in siderophore pathogen
treatment followed by siderophore treatment. The higher gene
expression in siderophore + pathogen again attributes to the
synergistic effect of both elicitors. This creates an amplified response
to the presence of combined elicitors. The siderophore has the ability

CAL
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performed using one-way ANOVA followed by Tukey's Test to compare treatment groups against the control. ns indicates no significant difference
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to induce upregulation of CAL gene owing to its adaptive and
protective response toward pathogen attack.

PR-10 proteins are a subset of the pathogenesis-related (PR)
protein family, which comprises several groups of proteins that are
associated with plant defense mechanisms against pathogens (Dos
Santos and Franco, 2023). The PRI0 gene was upregulated in both
siderophore and siderophore + pathogen treatments owing to a more
heightened response to pathogen invasion and enhanced protection
to the plant. The pathogen treatment shows moderate levels of PR10
expression as plants may prioritize responses to different elicitors
based on the perceived severity and nature of the stress. While
pathogen infection is a potent trigger of defense responses,
siderophore treatment or combined stress may elicit additional or
stress signals that further enhance gene expression. Gene expression
patterns can vary over time, with different genes being induced or
repressed at different stages of the plant’s response to stress. The
effects of chemical elicitors salicylic acid (SA) and jasmonic acid (JA)
on expression of defense genes PR 10, epoxide hydrolase (EH),
catalase and calmodulin with infection by Rhizoctonia solani were
analyzed using qPCR at 1-4 days post inoculation/application (dpi)
in highly susceptible (HS; Ratna) and moderately resistant (MR;
HUML1) varieties of mungbean suggesting the upregulation of these
genes in both the varieties (Tripathi et al., 2023; Figure 8).

Conclusion

In conclusion, the results of this study confirm that siderophores
produced by Bacillus amyloliquefaciens enhance plant resistance
through the activation of key defense mechanisms. Our findings
demonstrate that siderophore treatments significantly increase
peroxidase (POD), polyphenol oxidase (PPO), phenylalanine
ammonia-lyase (PAL), and chitinase activities, indicating a strong
induction of plant immune responses. These enzyme activities,
along with changes in gene expression, such as upregulation of
catalase and epoxide hydrolase, suggest that siderophores activate
antioxidant defense systems and alleviate oxidative stress, further
supporting their role in boosting plant immunity against pathogens.
Notably, the synergistic effects observed in plants treated with both
siderophores and pathogens highlight the potential of siderophores
to amplify plant defense responses, making them a promising tool
for crop protection.

This study suggests that siderophore-producing bacteria could
serve as an eco-friendly alternative to chemical fungicides and also
that siderophores alone act as elicitor of defense responses and are
potential biostimulants, reducing their use in agriculture while
improving crop resilience. However, limitations such as the controlled
experimental setting and the need for field validation must
be addressed before broad application. Future research should focus
on conducting field trials to assess the effectiveness of siderophore-
based treatments under natural conditions and explore their broader
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Neomycin, an aminoglycoside antibiotic, is widely utilized for veterinary medicine
in disease prevention. Biodegradation is a key pathway for the removal of neomycin
from the environment. To date, only the white-rot fungus Trametes versicolor and
the ericoid mycorrhizal fungus Rhizoscyphus ericae have been documented to
efficiently degrade neomycin. However, no bacterial species with neomycin-degrading
capabilities have been reported, underscoring a significant gap in microbial research
related to neomycin remediation. In this study, Cupriavidus basilensis and Bacillus
velezensis were isolated from pharmaceutical wastewater and neomycin-free
mangrove soil through enrichment culture and gradual acclimatization, respectively.
These isolates demonstrated neomycin degradation rates of 46.4 and 37.6% in
96 h with 100 mg-L™! neomycin as the sole carbon source. Cupriavidus basilensis
achieved a degradation rate of 50.83% with ammonium sulfate supplementation,
while Bacillus velezensis exhibited a superior degradation efficiency of 58.44% with
soluble starch. Our findings offer valuable insights into the microbial degradation
of neomycin. Two neomycin-degrading bacteria were isolated for the first time.
Both species degraded neomycin as the sole carbon source or under co-metabolic
conditions within 4 days. Microorganisms from neomycin-free environments
adapted to neomycin stress and outperformed those from contaminated sources.
This challenges the assumption that antibiotic-degrading microorganisms mainly
originate from polluted environments. The findings expand the diversity of known
neomycin-degrading microorganisms and demonstrate their potential for removing
refractory neomycin from pharmaceutical wastewater.

KEYWORDS

Bacillus velezensis, Cupriavidus basilensis, neomycin-free soil, neomycin,
biodegradation

1 Introduction

Antibiotics are widely utilized as antimicrobial agents in both human healthcare and
veterinary medicine (Yang et al., 2021). Global antibiotic consumption increased by 16.3%
from 2016 to 2023, with projections indicating a potential 52.3% increase by 2030 (Klein et al.,
2024). The misuse and overuse of antibiotics have fueled the emergence of multidrug-resistant
pathogens, posing significant threats to public and animal health (Patangia et al., 2022).

27 frontiersin.org


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1544888&domain=pdf&date_stamp=2025-01-29
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1544888/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1544888/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1544888/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1544888/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1544888/full
mailto:lt_bb@wit.edu.cn
mailto:lc_tt@163.com
https://doi.org/10.3389/fmicb.2025.1544888
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1544888

Yang et al.

Antibiotic pollution primarily originates from pharmaceutical
wastewater, aquaculture, livestock farming, and landfill leachate (Anh
et al, 2021). Neomycin (Neo), an aminoglycoside antibiotic, is
extensively used in livestock and poultry production (Low et al.,
2021). The expansion of farming practices has further escalated the
demand for veterinary antibiotics (Guo et al., 2021; Shao et al., 2021;
Li S. et al, 2024). Besides agricultural runoff, pharmaceutical
manufacturing is a major contributor to aminoglycoside antibiotic
pollution (Tang et al., 2020). The extraction processes of antibiotics
release substantial amounts of contaminated wastewater into natural
ecosystems, exacerbating antibiotic resistance and promoting the
spread of resistance genes (Han et al., 2024). Antibiotic concentrations
in pharmaceutical effluents can reach mg-L™" levels (Sim et al., 2011;
Li K. etal, 2024). In response, the World Health Organization (WHO)
issued its first guidelines on pharmaceutical antibiotic pollution,
advocating preventive measures across municipal systems,
manufacturing, healthcare, and agri-food sectors (WHO, 2024).

The thermal stability and resistance to acidic and alkaline
conditions of aminoglycoside antibiotics render conventional removal
methods ineffective (Nian et al., 2023). In contrast, microorganisms
produce specific enzymes such as aminoglycoside acetyltransferases,
phosphotransferases, and nucleotidyltransferases that deactivate
aminoglycosides, thereby enabling microbial survival in environments
with high antibiotic concentrations (Li et al., 2012; Liu et al., 2017; Cox
etal, 2018; Stenholm et al., 2022). Moreover, microorganisms capable
of mineralizing aminoglycosides have been identified in various
ecosystems (Zeng et al., 2019), which has spurred interest in the
microbial degradation of these compounds (Apreja et al., 2022). Most
research has focused on the degradation of gentamicin and kanamycin.
For example, Stenotrophomonas maltophilia and Pseudomonas sp. have
been shown to degrade streptomycin (Fenton et al., 1973; Demars
etal, 2024); AMQD4 bacterial consortia can degrade gentamicin (Liu
et al,, 2017); and Aquamicrobium sp. I-A can degrade kanamycin
(Chen et al., 2023). These microorganisms are typically isolated from
antibiotic-contaminated soils, water sources, or pharmaceutical
wastewater. The feasibility of isolating Neo-degrading microorganisms
has also been proposed. However, Neo presents unique challenges due
to its stable aminocyclitol ring, which confers strong resistance to
microbial enzymatic cleavage (Obszynski et al, 2022). Only
Basidiomycetes have been reported to biodegrade Neo (Stenholm
etal,, 2022), but their long growth cycle (up to 12 days) results in low
degradation efficiency.

It is widely accepted that microorganisms exposed to antibiotic
pollution are more likely to develop antibiotic-degrading capabilities.
However, recent studies have identified antibiotic-degrading
microorganisms in environments devoid of antibiotic pollution,
challenging this conventional view. For instance, E. coli and
Cellulomonas sp., isolated from antibiotic-free soils, were found to
survive using aminoglycoside antibiotics as their sole carbon source
(Dantas et al., 2008; Bello Gonzilez et al, 2016). Similarly,
Stenotrophomonas maltophilia isolated from antibiotic-free soils
demonstrated efficient degradation of streptomycin (Bello Gonzalez
etal, 2016; Reis et al., 2020). While horizontal gene transfer (HGT) of
resistance genes has been proposed as a mechanism for this
phenomenon (Khmelevtsova et al., 2020; Liu et al., 2022), evidence
suggests that antibiotic degradation may not always depend on
HGT. In a study by Zhang et al., a strain capable of utilizing Neo as its
sole carbon source was isolated from soil without prior exposure to
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Neo. Although aph3’ and aac (3)-Ia aminoglycoside resistance genes
were detected in the soil, these genes were absent in the isolated strain
itself (Zhang and Dick, 2014). This finding indicates that microbial
antibiotic degradation capabilities can exist independently of HGT
mechanisms. Consequently, it highlights the potential to isolate highly
efficient antibiotic-degrading microorganisms from microbial
reservoirs such as soil that have not been exposed to antibiotics. Based
on this, we aimed to isolate Neo-degrading bacteria from both
pharmaceutical wastewater with long-term exposure to high
concentrations of Neo and from soil that had never been exposed to
Neo, to their
degradation characteristics.

evaluate biodegradation capabilities and

2 Materials and methods
2.1 Chemicals and medium

Neo (purity > 97%) used in this study was procured from Yichang
Sanxia Pharmaceutical Co., Ltd. Glucose was sourced from Tianjin
Kaitong Chemical Reagent Co., Ltd. Soluble starch, ammonium
citrate, ammonium sulfate, and defatted soy flour were obtained from
China National Pharmaceutical (Group) Shanghai Chemical Reagent
Company. Peptone was supplied by Biosharp. The Luria-Bertani (LB)
medium, utilized for enrichment, comprised 5 g-L™' NaCl, 10 g-L™!
yeast extract, and 10 g-L™' peptone, adjusted to a pH of 7.2.
Domestication and degradation experiments were conducted using a
modified M9 medium, which lacked carbon and nitrogen sources, to
screen for Neo-efficient degrading strains. The composition of the
modified M9 medium included 0.45gL™' KH,PO,, 0.1 gL
MgSO,7H,0, and 1.79 g-.L ™! K,HPO,. To prepare LB solid medium,
2.0% (w/v) agar powder was added to the LB medium. All media were
sterilized prior to use.

2.2 Determination of Neo concentration

The Neo concentration in soil and wastewater samples was
analyzed using a Thermo Scientific Dionex U3000 High-Performance
Liquid Chromatography (HPLC) system equipped with an ELSD 6000
Evaporative Light Scattering Detector. Separation was achieved on an
Apollo C18 column (4.6 mm x 250 mm, 5 um particle size) at a
column temperature of 25°C. The mobile phase consisted of a mixture
of 2.0% trifluoroacetic acid and 0.1% heptafluorobutyric acid (20:1,
v/v), filtered through a 0.22 pm membrane. Each sample injection
volume was set to 20 pL, and the flow rate was maintained at
0.6 mL-min". The evaporative light-scattering detector was configured
with an evaporation temperature of 110°C and a gas flow rate of
3.0 mL-min~" The gain value was set to 1 DT, and the impaction mode
was turned off. The total run time for each analysis was 20 min.

For liquid samples, Neo extraction involved centrifuging at 9,040x
g for 10 min. The supernatant was then mixed with Na,EDTA-
Mcllvaine buffer to chelate metal ions (He et al.,, 2021). For soil
samples, 20 mL of extraction solution (methanol: water = 1:1, v/v) was
added to sieved soil, followed by ultrasonication for 30 min and
centrifugation at 9040x g for 10 min. The resulting supernatants were
filtered through a 0.22 pm membrane and stored at —20°C for further
analysis (Yu et al., 2019; He et al., 2021). The linear regression equation
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for Neo standard solutions was determined as y = 0.3282x — 14.49
(Figure 1A), where y represents peak area and x represents Neo
concentration. The chromatographic profile of Neo exhibited
consistent retention times at 8.645 + 0.05 min (Figure 1B).

The degradation rate was calculated as follows:

initial Neo concentration —

residual Neo concentration
x100%

Degradation rate = —— -
initial Neo concentration

2.3 Sample sources and preparation

Shenzhen Longgang District (N22.48894, E114.58263), situated
within the city of Shenzhen, is a critical region for mangrove
distribution. The Shenzhen Bay Mangrove Wetland serves as an
essential ecological conservation area. Previous studies have indicated
that many mangrove wetlands in Shenzhen face significant ecological
risks due to contamination from various pollutants (Lingyun et al.,
2019). Soil samples were collected from three distinct locations,
excluding the topsoil layer and sampling at depths between 5 and
20 cm. The collected soil samples were air-dried for 7 days,
subsequently ground into a fine powder, and stored in sterile sealed
bags at temperatures below —20°C until further analysis. HPLC
analysis revealed no detectable Neo residues in the soil samples
(Figure 1C). Wastewater samples were obtained from a pharmaceutical
factory in Hubei Province, China, which manufactures Neo through
a fermentation-based process. Biochemical hydrolysis effectively
eliminates microorganisms that cannot tolerate antibiotics, rendering
the treated wastewater suitable for this study.

2.4 Enrichment culture of neo-tolerant
microorganisms

The LB medium supplemented with 100 mg-L™" Neo was used to
enrich the isolates. This concentration of Neo mimics the high levels
typically encountered in pharmaceutical wastewater treatment
processes. Initially, 1 mL of pharmaceutical wastewater or 1 g of soil
was suspended in 9 mL of sterile distilled water and mixed thoroughly
for 1 min. The suspension was then serially diluted 10°-fold using
sterile distilled water. Subsequently, a 10% (v/v) inoculum of the

10.3389/fmicb.2025.1544888

diluted suspension was added to 100 mL of sterile LB medium
containing 100 mg-L™' Neo. Cultures were incubated at 35°C with
shaking at 220 rpm for 7 days until an optical density (ODg) value of
1.000 was achieved. These cultures served as the inoculum for
subsequent domestication steps.

2.5 Domestication of neo-tolerant
microorganisms

To acquire strains capable of utilizing Neo as the sole carbon
source, 10 mL of the enriched bacterial suspension was inoculated
into 90 mL of optimized M9 medium supplemented with 50 mg-L™!
Neo. Cultures were incubated at 35°C with shaking at 220 rpm for
7 days to complete the first domestication cycle. For subsequent cycles,
10 mL of the previous culture was transferred to 90 mL of fresh
optimized M9 medium, with Neo concentrations incrementally
increased by 50 mg-L™! per cycle, reaching 200 mg-L™' by the fourth
cycle. ODg, values was measured following each acclimation period.

2.6 Isolation, purification, and 16S rRNA
identification of neo-degrading strains

The final domesticated culture was serially diluted 10°-fold with
sterile distilled water and plated onto LB agar plates. The cultures were
incubated at 35°C for 48 h. Distinct colonies based on morphology
were isolated using the streak plate method for further purification.
This purification process was repeated three times to ensure pure
cultures. The purified strains were then inoculated onto fresh LB agar
plates and incubated at 35°C for 18 h. Crystal violet staining and
bacterial morphology were examined under a biological microscope
(MODEL-ECLIPSE-E200, Nikon Corporation, Shanghai, China).
Genomic DNA was extracted from the purified strains using the
MGIEasy Bacterial DNA Extraction Kit (MDO01T-96, MGI, Wuhan,
China). The 16S rRNA gene was amplified using universal primers
27F and 1492R (Yu et al, 2013). PCR amplification conditions
included an initial denaturation at 96°C for 5 min, followed by
35 cycles of denaturation at 96°C for 30 s, annealing at 56°C for 30 s,
and extension at 72°C for 1 min, with a final extension at 72°C for
10 min. PCR products were verified by agarose gel electrophoresis and
subsequently sent to BGI (Beijing Genomics Institute) for sequencing.
The obtained sequences were analyzed using the BLAST tool (https://
www.ncbinlm.nih.gov/) for species identification. A phylogenetic tree
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was constructed using the Neighbor-Joining method in MEGA 11.0
software. The nucleotide sequences have been deposited in the
GenBank database (SH1: SUB14883397 and RS2: SUB14885154).

2.7 Neo biodegradation ability of strains
SH1 and RS2

The purified cultures of strain SH1 and strain RS2 were grown in
LB medium until they reached the logarithmic growth phase. Cells
were harvested and washed three times with 0.9% NaCl solution. The
ODy values of the cell suspensions was adjusted to 1.000 by diluting
with fresh LB medium, and measurements were conducted using a
SpectraMaxiD3 Microplate Reader (Shanghai Minggujia Electronic
Technology Co., Ltd.). Subsequently, the bacterial suspensions were
inoculated at a 10% inoculum size into modified M9 medium
containing 100 mg-L™' Neo, with an initial pH of 7.2, for
biodegradation assays (Yin et al., 2020). This Neo concentration was
selected based on preliminary studies, as concentrations exceeding
100 mg-L™" significantly inhibited bacterial growth during strain
domestication (Supplementary Table S1). Samples were collected
every 24 h to monitor Neo residuals and ODg, values (Li et al., 2021).
A control group with the same Neo concentration in M9 medium was
established to minimize potential external influences.

2.8 Study of Neo biodegradation
characteristics

To optimize the cultivation conditions for the Neo-degrading
strains SH1 and RS2, we systematically evaluated the effects of varying
substrate concentrations (100, 500, and 1,000 mg-L™"), nitrogen
sources (ammonium sulfate, peptone, and defatted soy flour), and
carbon sources (citric acid ammonium, glucose, and soluble starch)
on degradation efficiency. Each condition was tested in triplicate with
a blank control group included. Bacterial suspensions were collected
at multiple time points over a 96 h incubation period, and ODg,
values were measured to assess bacterial growth. After sample
processing, Neo concentrations were quantified using HPLC, and
degradation rates were subsequently calculated.

2.8.1 Effect of substrate concentration on growth
and degradation rates of strains SH1 and RS2

Neo solutions with initial concentrations of 100, 500, and
1,000 mg-L™" were added to M9 medium adjusted to pH 7.2. A 10%
(v/v) inoculum of the bacterial suspension was introduced into the
medium, and the cultures were incubated at 35°C for 96 h.
Uninoculated samples served as controls. Each condition was tested
in triplicate. After the 96 h incubation period, OD, values and
residual Neo concentrations were measured.

2.8.2 Effect of nitrogen sources on growth and
degradation rates of strains SH1 and RS2

Neo solutions at a concentration of 100 mg-L™" were added to the
M9 medium, which was adjusted to pH 7.2. Ammonium sulfate,
peptone, and defatted soy flour were incorporated into the medium at
concentrations of 0.1 g-L™" each. A 10% (v/v) inoculum of the bacterial
suspension was introduced into the medium, and the cultures were
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incubated at 35°C for 96 h. Uninoculated samples served as controls.
Each condition was tested in triplicate. Following the 96 h incubation
period, ODg, values and residual Neo concentrations were measured.

2.8.3 Effect of carbon sources on growth and
degradation rates of strains SH1 and RS2

A 100 mg-L™" Neo solution was added to the M9 medium adjusted
to pH 7.2. Ammonium citrate, glucose, and soluble starch were each
added at a concentration of 0.1 g-L™". A 10% (v/v) inoculum of the
bacterial suspension was introduced into the cultures, which were
then incubated at 35°C for 96 h. Uninoculated samples served as
controls. Each condition was tested in triplicate. After the 96 h
incubation period, ODy, values and residual Neo concentrations were
measured to evaluate the impact of different carbon sources on
bacterial growth and Neo degradation efficiency.

3 Results and discussion

3.1 Isolation, purification, and 16S rRNA
identification of neo-degrading strains

Through enrichment culture and gradual domestication using
Neo-contaminated pharmaceutical wastewater and Neo-free
mangrove soil samples, two strains capable of utilizing Neo as the sole
carbon source were isolated. These strains were designated as SH1 and
RS2. The strains were purified, stained with crystal violet, and
characterized based on their morphological features. Strain SH1 was
identified as a Gram-negative short rod with small, smooth, raised
colonies, while strain RS2 was identified as a Gram-positive rod with
larger, wrinkled, raised colonies (Figure 2).

Strains SH1 and RS2 were identified as Cupriavidus basilensis and
Bacillus velezensis, respectively (Table 1). Molecular biological analysis
revealed that PCR-amplified DNA fragments from strains SH1 and
RS2 exhibited consistent single-band patterns, with lengths of
approximately 1,360 bp and 1,410 bp, respectively (Figure 3).
Sequencing confirmed full-length gene sequences of 1,368 bp and
1,413 bp for strain SH1 and strain RS2, respectively, corroborating the
electrophoresis results (Figure 3A). BLAST comparisons of the 16S
rRNA sequencing results showed 100% sequence similarity for both
strains. Based on these findings, a phylogenetic tree was constructed
(Figures 3B,C).

3.2 Neo biodegradation ability of strains
SH1 and RS2

Strains SH1 and RS2 demonstrated 96-h Neo degradation rates
of 37.67 and 46.49%, respectively, when Neo was used as the sole
carbon source at a concentration of 100 mg-L™" (Figure 4). Previous
studies have shown that several Cupriavidus species can effectively
degrade ochratoxin A (Ferenczi et al., 2014), bisphenol A (Fischer
et al.,, 2010), and assist in copper bioremediation (Kugler et al.,
2022). Similarly, some Bacillus species have been identified as
capable of degrading sulfamethoxazole (Lin et al, 2024) and
tetracycline (Al-Dhabi et al., 2021). This study is the first to report
that Cupriavidus basilensis and Bacillus velezensis can degrade Neo.
Most isolated  from

antibiotic-degrading  strains  are
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FIGURE 2
Morphology and Gram staining of screening strains.

TABLE 1 Homology comparison of 16S rRNA gene sequences of screened strains.

Strains number The closest species Identity % Genus submission
Latin name Accession No.

SH1 Cupriavidus basilensis CP062804.1 100 SUB14883397

RS2 Bacillus velezensis CP054714.1 100 SUB14885154

Bacibus velezensis|CR-502AY603658

Bacilus siamensislKCTC 13613jAIVF01000043

99 NR_102851.1_Cupriavidus_necator_strain_N-1

Bacilus amylolauefaciensiDSW 7IFNSO7644

NR_028766.1_Cupriavidus_necator_strain_N-1

Bacilus subtisNCIB 3610ABQL01000001

NR_164934.1_Cupriavidus_lacunae_strain_S23

Bacilus aNUANSHIKF2DASICO1000029

85]

0 | Bacilus saensis subsp. safensisIFO-36bAS 001000027

0 NR_025138.1_Cupriavidus_basilensis_strain_DSM_11853
NR_040987.1_Cupriavidus_pinatubonensis_strain_1245
NR_040869.1_Cupriavidus_laharis_strain_1263a
NR_113619.1_Cupriavidus_oxalaticus_ NBRC_13593
97INR_117018.1_Cupriavidus_oxalaticus_strain_CCUG_2086

Bacilus safensis subsp. osmophius/BCOIKY90920

Bacilus paralchenformisi)-1KY694465.

Bacilus icheniformis)ATCC 14590AE017333

Bacilus haynesiiNRRL B-413271MRBLO1000076.

83
Tonao04

Rossellomorea aquimarisTF-12AF 463625
86

99 NR_114128.1_Cupriavidus_metallidurans_strain_NBRC_102507
—m‘—lj NR_027607.1_Cupriavidus_metallidurans_CH34
Rossellomorea arthrocnemiEARBIMZ416782
99 NR_043444.1_Cupriavidus_metallidurans_strain_DSM_2839
FIGURE 3

Molecular biological analysis of strain SH1 and RS2: (A) PCR electrophoresis product of strain SH1 and RS2; (B) Phylogenetic tree for the strain SH1 and
related bacterial strains; (C) Phylogenetic tree for the strain RS2 and related bacterial strains.

NR_116994.1_Cupriavidus_pampae_strain_CPDB6

antibiotic-contaminated environments such as wastewater, solid  sulfadiazine resistance genes played a key role in the degradation
waste, and soils (Table 2). Wang et al. isolated sulfadiazine-degrading ~ process (Wang et al., 2024). Additionally, Rodriguez-Verdugo et al.
bacteria from antibiotic-contaminated soils and found that evolved Escherichia coli B under heat stress (42.2°C) over 2000
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Neo degradation ability of enriched strains. (A) Control; (B) SH1; (C) RS2.
TABLE 2 Antibiotics from different sources degrade microorganisms.
Antibiotic Microorganisms Sample source References
Streptomycin Stenotrophomonas maltophilia Soil-dwelling Fenton et al. (1973)
Pseudomonad bacterium Estrogen-containing urban soil Demars et al. (2024)
Gentamicin AMQD4 Gentamicin-containing sludge Liu et al. (2017)
Aspergillus terreus FZC3 Gentamicin produces solid waste and wastewater Liu et al. (2016)
Kanamycin Domestication strain DSM, Aquamicrobium sp. I-A Antibiotic contaminated soil and Wastewater Chen et al. (2023)
Tetracycline Arthrobacter nicotianae OTC-16 Activated sludge from pharmaceutical Wastewater Shi et al. (2021)
treatment plants
Pseudomonas sp. DX-21 Sludge of a long-operating SBR Yang et al. (2024)
Erythromycin Paracoccus versutus W7 Sewage sludge for municipal sewage treatment Ren et al. (2023)
Chloramphenicol Klebsiella sp. YB1 Earthworm gut content Tan et al. (2023)
Sulfamethoxazole Proteus mirabilis sp. ZXY4 Sludge from sewage treatment plants Yan et al. (2023)

generations in an environment free of rifampicin (Rodriguez-
Verdugo et al,, 2013), resulting in spontaneous mutations in the rpoB
gene, which conferred rifampicin resistance. This suggests that gene
mutations leading to antibiotic resistance can occur even in
environments without antibiotics, depending on the mutation
background and environmental conditions. In this study, we have
discovered and isolated neo-degrading bacteria from environments
free of Neo. Specifically, Bacillus velezensis was isolated from
Neo-free soil, while Cupriavidus basilensis was isolated from
Neo-pharmaceutical wastewater, both exhibiting Neo degradation
abilities. The degradation ability of these strains may be linked to
Neo resistance genes.

3.3 Effects of different culture conditions
on Neo biodegradation by SH1 and RS2

When Neo served as the sole carbon source, strains SH1 and RS2
exhibited differential 96h at
concentrations ranging from 100 to 1,000 mg-L™" (Figures 5A,B). As the

degradation efficiencies over
Neo concentration increased, both the degradation rate and bacterial
growth were progressively inhibited. Specifically, at an initial Neo
concentration of 100 mg-L™", optimal degradation rates and growth
conditions were observed for strains SH1 and RS2, with degradation
rates reaching 35.83 and 43.54%, respectively, and ODg,, values
attaining 0.235 and 0.302. These findings suggest that the initial
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substrate concentration significantly affects the efficiency of Neo
biodegradation. The high degradation rate at 100 mg-L™" can likely
be attributed to enhanced bacterial growth and the secretion of
functional enzymes involved in biotransformation (Sanchez-San
Martin et al., 2024). Conversely, at higher initial concentrations of
500 mg-L™" and 1,000 mg-L™", metabolic overload may have occurred,
resulting in the accumulation of metabolites or by-products that
inhibited bacterial growth and reduced degradation efficiency (Chen
et al,, 2022).

In the optimized M9 medium containing 100 mg-L™" Neo,
we investigated the effects of different nitrogen sources—ammonium
sulfate, peptone, and defatted soy flour—on Neo degradation by
strains SH1 and RS2 (Figures 5C,D). Compared to the control,
defatted soy flour significantly inhibited Neo degradation in both
strains, resulting in degradation rates of only 9.54% for SHI and
9.14% for RS2. The underlying mechanism of this inhibition warrants
further investigation. In contrast, ammonium sulfate enhanced the
Neo degradation ability of both strains, achieving the highest
degradation rates of 50.83% for SH1 and 50.71% for RS2. When
bacteria utilize inorganic nitrogen sources such as ammonium sulfate
for metabolism, they require additional carbon sources (Hargreaves,
2006), which may explain the observed increase in Neo degradation
rates. This finding is consistent with previous studies on sulfonamide
biodegradation, where sodium nitrate and ammonium chloride were
shown to promote biodegradation (Vijayaraghavan et al., 2021).
Unlike glucose, Neo served as the sole carbon source in our study,
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suggesting that inorganic nitrogen might enhance carbon
metabolism similarly.

The effects of different carbon sources—ammonium citrate,
glucose, and soluble starch—on the Neo degradation ability of the two
strains at a 100 mg-L™' Neo concentration (Figures 5E,F) were
investigated. Compared to the control group (without additional carbon
sources), all three carbon sources significantly increased the degradation

Frontiers in Microbiology

rates to varying extents, indicating that these carbon sources can
enhance Neo removal by the bacteria (Leng et al., 2016; He et al., 2021).
Specifically, strain SH1 exhibited the highest Neo degradation rate of
45.53% when supplemented with glucose. Strain RS2 also showed
enhanced growth and Neo degradation ability in the presence of
glucose and soluble starch, achieving degradation rates of 54.69 and
58.44%, respectively. The addition of appropriate co-substrates can
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activate functional enzymes (Zhang et al., 2020) and accelerate the
biodegradation of recalcitrant organic compounds (Barnhill

etal., 2010).

4 Conclusion

In this study, Cupriavidus basilensis and Bacillus velezensis were
isolated from Neo pharmaceutical wastewater and from soil that had
not been exposed to Neo. These isolates demonstrated the ability to
utilize Neo as the sole carbon source. The degradation experiments
revealed that both Cupriavidus basilensis and Bacillus velezensis
exhibited significant Neo degradation capabilities. Specifically,
Cupriavidus basilensis achieved a maximum degradation rate of 50.83%
for 100 mg-L™" Neo within 96 h when ammonium sulfate was used as
the nitrogen source. Meanwhile, Bacillus velezensis reached a maximum
degradation rate of 58.43% under the same Neo concentration when
soluble starch served as the additional carbon source.

The results demonstrate that substrate concentration significantly
influences the efficiency of Neo degradation, with appropriate
co-substrates promoting bacterial growth and enhancing Neo
biodegradation. The identification of Cupriavidus basilensis and
Bacillus velezensis as Neo-degrading strains expands the known range
of microorganisms capable of degrading Neo. These findings suggest
their potential utility in the bioremediation of Neo-contaminated
soils and wastewater. However, further studies are required to
evaluate their performance under actual environmental conditions.
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Synergistic removal of emerging
contaminants using bacterial
augmented floating treatment
bed system (FTBs) of Typha
latifolia and Canna indica for
rejuvenation of polluted river
water

Vandan Patel!, Shruti Sharma!?, Chirayu Desai?,
Bhavtosh Kikani'* and Datta Madamwar'*

'Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of
Science and Technology (CHARUSAT), Anand, Gujarat, India, ?Department of Environmental
Biotechnology, Gujarat Biotechnology University (GBU), Gandhinagar, Gujarat, India

Introduction: Floating Treatment Bed systems (FTBs) provide an effective
approach to remove pollutants from the rivers. These systems consist of aquatic
plants anchored on mats, which support the growth of microbial communities.
Such a synergy between plants and microbes in FTBs plays a pivotal role to
improve efficacy of river restoration strategies.

Methodology: The effectiveness of the FTBs was evaluated for the rejuvenation
of polluted water from the Mini River in Gujarat, India. These systems consisted
of wetland plants, either Typha latifolia or Canna indica, which were augmented
with the bacterial consortium VP3. Furthermore, the 16S rRNA gene amplicon
sequencing approach identified the dominant bacterial communities and
relative microbial community shifts within the FTBs. The presence of emerging
contaminants, antimicrobial resistance genes, and pathogenic bacterial species
in the untreated river water was evaluated, along with their reduction following
treatment through FTBs. This analysis yielded important insights into the
microbial dynamics governing the reduction of these contaminants.

Results and discussion: The bacterial augmented FTBs consisting wet plants
achieved reduction of 57%, 70%, 74%, and 80% in biochemical oxygen
demand (BOD), chemical oxygen demand (COD), total phosphate, and
sulfate, respectively. Moreover, the 16S rRNA gene amplicon sequencing
identified Proteobacteria as the dominant phylum, with Pseudomonas species
and Hydrogenophaga species being the most abundant genera in FTBs
containing T. latifolia and C. indica, respectively. The functional gene prediction
indicated presence of various xenobiotic degrading genes too. Non-targeted
LC-HRMS analysis of treated water demonstrated complete elimination of
antibiotic derivatives and dye intermediates, along with the partial removal of
pharmaceutical and personal care products (PPCPs) and chemical intermediates.
Additionally, the abundance of probable pathogenic bacteria and dominant
antibiotic resistance genes was significantly reduced upon treatment. The
phytotoxicity analysis of the treated water supported the outcomes. The studies
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on removal of emerging contaminants in the polluted river ecosystem has been
relatively less explored, highlighting novelty and future possible applications of
the plant-microbial augmented FTBs in rejuvenation of polluted rivers.
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GRAPHICAL ABSTRACT

1 Introduction

The rivers are facing an unprecedented crisis as a result of rapid
industrialization and anthropogenic activities globally (Gomes
2023; Bandyopadhyay and De, 2017). Starting from the
mighty Amazon to the Ganges, these crucial waterways that have

et al.,

nurtured life for centuries are now in the danger (Gomes et al,
2023; Su et al,, 2023; Richards et al., 2023). This crisis has damaged
the aquatic ecosystems and also poses health risks to billions of
people depended on these waterways (Madhav et al., 2020).

These rivers are directly exposed to varieties of anthropogenic
pollutants originating from industrial effluents, agricultural runoff,
domestic sewage, and disposal of solid waste. Consequently,
the number of severely polluted rivers in India is increasing
at an alarming rate, posing substantial health risks to
communities residing along their banks. The presence of
highly toxic, carcinogenic, and mutagenic substances in these
water bodies underscores the urgent need for eco-friendly,
cost-effective, and sustainable mitigation strategies to address
river pollution.
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Biological treatment technologies have emerged as promising
solutions to mitigate river pollution effectively (Singh et al,
2020). Amid, traditional phytoremediation techniques, such as
constructed wetlands have shown superior pollutant removal
efficiency and cost-effectiveness. However, their widespread
adoption is hindered by significant land area they require. In
contrast, floating treatment bed system have gained prominence
as viable alternatives for restoring eutrophic rivers and lakes due
to their demonstrated effectiveness and ease of management (Tao
2020; Yadav and Goyal, 2022). Studies have highlighted

its potential as an affordable technology for restoring polluted

et al,

rivers, primarily due to its minimal land requirement and lower
operational costs compared to other treatment methods (Yadav and
Goyal, 2022; Asghar et al., 2022; Fahid et al., 2020; Tao et al., 2020).

The Floating Treatment Bed system (FTBs) represent a
practical approach to enhance pollutant removal in rivers (Nandy
et al,, 2022; Liu et al., 2016; Samal and Trivedi, 2020; Huang et al.,
20205 Yao et al., 2021). FTBs typically consist of aquatic plants and
a specialized mat structure that supports an enhanced microbial
population. This synergistic combination of plants and microbes
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plays a crucial role in improving the efficacy of river restoration
strategies (McCorquodale-Bauer et al., 2023). However, despite
their advantages, the application of FIBs for removing emerging
contaminants from polluted river water remains underexplored.
Rivers contaminated by diverse waste sources often carry emerging
contaminants, posing challenges for effective river restoration
(Srivastava et al., 2017).

Antibiotic resistance has emerged as a critical environmental
and public health concern, affecting ecosystems, human health, as
well as animal husbandry (Koch et al.,, 2021; Hernando-Amado
et al., 2019). The origins of antibiotic resistance are multifaceted
and complex, influenced by factors such as overuse and improper
disposal of antibiotics in both human medicine and agriculture
(Kinney and Heuvel, 2020; Bengtsson-Palme et al., 2018). Avila
et al. (2021) demonstrated the effective removal of antibiotics and
antibiotic resistance genes (ARGs) from urban wastewater using
vertical subsurface flow constructed wetlands, highlighting the
potential of phytoremediation techniques in mitigating antibiotic
resistance in the aquatic environments. Similarly, Bano et al.
(2023) successfully treated amoxicillin-contaminated water using
an improved FTB augmented with antibiotic-degrading bacteria,
showcasing the capability of microbial technologies to address
antibiotic pollution in water bodies.

The current study employed two native wetland plants, Typha
latifolia (T. latifolia) and Canna indica (C. indica), cultivated
on floating beds to investigate their efficacy in improving
river water quality. The study monitored changes in physico-
chemical parameters, such as biological oxygen demand (BOD),
chemical oxygen demand (COD), total phosphate and sulfate
along with pathogenic bacterial counts as indicators of water
quality improvement. Additionally, 16S rRNA gene amplicon
sequencing approach was used to identify the predominant
bacterial communities within the FTBs, while the Shannon-Wiener
diversity index characterized microbial community structures. The
occurrence of antibiotics and corresponding ARGs was assessed in
all FTBs at the end of the operational period, providing insights
into the dynamics of microbial populations involved in antibiotic
removal. This comprehensive approach lays a foundation for
enhancing the overall quality of polluted urban rivers, offering
valuable insights into the potential of FTBs as sustainable solutions
for mitigating anthropogenic pollution and improving overall
health of the invaluable riverine ecosystems.

2 Materials and methods

2.1 Collection and characterization of
water from polluted river

The water was collected from the Mini river, Vadodara,
Gujarat, India (22°23/35” N, 73°05'49” E). The Mini river receives
pollutants from various sources, i.e., industrial, household as
well as agricultural runoff. Samples were filtered using 0.45 wm
nylon filter paper (PALL Corporation, USA) prior to analysis,
and all the mentioned parameters were evaluated in triplicates.
The parameters such as pH, EC, TDS, total nitrogen and
dissolved oxygen (DO) were analyzed using HQ440D multi-
meter (HACH, USA). The samples were analyzed for chemical
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TABLE 1 Source of enriched bacterial consortia; where, GIDC stands for
Guijarat Industrial Development Corporation.

Consortia  Source Location

VP1 Wastewater polluted site GIDC, Vatva, Gujarat

VP2 Waste disposal site Sankarda, Gujarat

VP3 Wastewater polluted site GIDC, Nandesari,
Gujarat

VP4 Mini river Anagadh, Gujarat

VP5 Mahi river Sindhrot, Gujarat

oxygen demand (COD), biochemical oxygen demand (BODs),
total phosphate, and sulfate were estimated using closed reflux
spectrophotometric method, titrimetric method, stannous chloride
method, and turbidimetric method respectively as per American
Public Health Association (APHA, 2017) for the characterization of
the river water quality based on the Indian Standard Water Quality
Guidelines (BIS, 2012).

2.2 Enrichment of bacterial consortium
from soil sediment of industrially polluted
sites

The bacterial consortia for bioremediation of the polluted
Mini river water were developed following enrichment culture
technique using polluted soil and sediments collected from the
Mini river as shown in Table 1. A total of five bacterial consortia
were developed and enriched in the polluted water of the Mini
river supplemented with Bushnell-Hass medium (BHM) along with
co-substrates (0.01% w/v glucose and 0.01% w/v yeast extract) at
37°C. The active cultures were sub-cultured on every 5 day. After
50 subcultures the enriched bacterial consortia were evaluated for
treatment of the polluted water of the Mini river by analyzing their
treatment efficiencies for COD and BOD removal as described in
the standard methods for water and wastewater analysis (APHA,
2017).

2.3 Development of small-scale floating
treatment bed systems

Specifically, six parallel laboratory scale FTBs were developed
using plastic tanks (60cm x 40cm x 22.5cm). The effective
depth of the device was about 20 cm, and the total volume was
10L. The FTBs were consisted of either of the two floating
frameworks; (1) Styrofoam sheet or (2) Polyvinyl chloride pipe-
frames (Supplementary Figure Sla). Each of the FTB developed
with Styrofoam sheet has equally spaced eight PVC holders with the
diameter of 6 cm. All the holders contain coconut coir as a floating
bed material. Whereas, FTB developed with PVC pipe-frames have
fiber mat with coconut coir as support (Supplementary Figure S1b).
Two potential macrophytes, T. latifolia and C. indica originated
from polluted zone of the Mini river, Gujarat, India were collected
for the study. Both the plants were acclimatized in polluted river
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water for 21 days before actual experiments in FITBs. Each FTB
contains total of 24 plant saplings. Detailed description of each FTB
is enlisted in Table 2. The bacterial consortium, VP3 was enriched
using the samples collected from the polluted source to capture the
indigenous bacteria capable of removal of emerging contaminants.
VP3 augmentation was performed for VP3-augmented FTBs taking
1L active culture of VP3 consortium. The consortium VP3 for
augmentation was prepared using Bushnell Haas Medium (BHM)
without the addition of external BOD. The inoculum was applied
at a concentration of 107 cells/mL, ensuring an effective microbial
load for bioaugmentation. The developed FTBs were operated at
different HRTSs, mainly 1 day, 2 day, 3 day, 5 day, and 10 day.

2.4 Performance evaluation of FTB

The quality of FTB treated polluted water was determined using
various physico-chemical parameters, according to the standard
methods for water and wastewater analysis (APHA, 2017) as
described in the Section 2.1.

Pathogenic indicator bacterial populations of each FTB were
determined using membrane filtration techniques (MFT) using
different selective media such as Hi-Chrome M-TEC for Escherichia
coli, deoxycholate citrate agar for Salmonella species and Shigella
species, and TCBS media for Vibrio cholerae. All media for the
study were purchased from Hi-Media, India. All samples were
serially diluted for enumeration of bacterial pathogens using 0.9%
(w/v) sterile normal saline. The samples were filtered using S-Pak
white gridded filter membranes (Merck Millipore, Germany). The
filter membrane was aseptically removed and placed over the agar
surface of the respective agar plate. All the plates were incubated at
37°C for 24 h. Standard viable counting was performed to evaluate
the colony-forming units (CFU/mL) representing the pathogens.

2.5 Determination of emerging
contaminants removal by FTB from
polluted river water

Removal of emerging contaminants from polluted water of the
Mini river by FTB were analyzed based on the previously reported
methods with few modifications (Liu et al., 2021; Zhou et al., 2012).
The untreated and treated river water samples were subjected
to solid-phase extraction (SPE) using Oasis HLB cartridges with
specifications of 60 pum particle size, 80 A pore size, 500 mg
sorbent weight and 6 cc barrel size (Waters, Milford, MA, USA).
Cartridges were pre-conditioned with 10 mL methanol, followed
by 15 mL ultrapure water (3 times x 5 mL). Later, the untreated
and treated river water samples were passed through the pre-
conditioned SPE cartridges and elution was carried out using 10 mL
methanol in the Waters Extraction Manifold (Waters, Milford,
MA, USA). The extracts were concentrated and re-constituted in
10mL ACN: H,O (9:1) and filtered through 0.2 pm filter before
subjecting to LC-HRMS analysis. The extracted sample (10 L) was
injected using the in-built auto-sampler into a Thermo Scientific™
Hypersil GOLD™ C18 column [100 mm () x 2.1 mm (i.d.), 1.9
pm particle size] maintained at 30 °C at a flow rate of 0.3 mL/min.

Frontiers in Microbiology

10.3389/fmicb.2025.1512992

TABLE 2 Floating treatment bed (FTB) systems used for the study; where,
first two letters FT, Floating bed treatment; P, Polystyrene frame; S,
styrofoam frame; CN, control without plant; Cl, C. indica; TL, T. latifolia.

Name Floating mat Floating Plant used
of FTB matrix
FT-P-CN Polystyrene pipes Coconut coir No plant (control)
and nylon mesh
FT-S-CN Styrofoam sheet Coconut coir No plant (control)
and plastic pots
FT-P-CI Polystyrene pipes Coconut coir C. indica
and nylon mesh
FT-P-TL Polystyrene pipes Coconut coir T. latifolia
and nylon mesh
FT-S-CI Styrofoam sheet Coconut coir C. indica
and plastic pots
FT-S-TL Styrofoam sheet Coconut coir T. latifolia
and plastic pots

The mobile phase comprised of eluent A (0.1% formic acid in
ultrapure water) and eluent B (acetonitrile with 0.1% formic acid).
Subsequently, elution and detection of ECs were performed using
Thermo Scientific™ Vanquish™ (liquid chromatography) coupled
with Orbitrap Exploris™ 240 mass spectrometer (Thermo Fisher
Scientific, USA). The mass spectrometry was conducted with a
heated electrospray ionization (HESI) source operating in positive
and negative ionization modes and data analysis was conducted
using Thermo Scientific™ Xcalibur™ 4.4 software.

2.6 Microbial community analysis

All the VP3-augmented FIBs and control FIBs (FT-P-CN,
FT-S-CN) were dismantled and the plant roots and matrix
materials were vigorously mixed with water samples of respective
FTBs to acquire complete microbial community of the system. The
metagenomic DNA was extracted by filtering 1,500 mL sample
through using 0.22 pm DURAPORE PVDF membrane filter
(Merck Millipore, Germany). The filter pads were transferred
aseptically to the extraction of the metagenomic DNA using
XpressDNA Soil Kit (MagGenome, India) according to the
manufacturer’s protocol. The experiments were conducted in
triplicates. The extracted metagenomic DNA quantity and quality
was checked using Nanodrop 2000 (Thermo Fisher Scientific,
USA) and 0.8% w/v agarose gel electrophoresis, respectively.
Pooled metagenomic DNA of each VP3-augmented FTBs
were outsourced for high-throughput amplicon sequencing
of the V3-V4 regions of the 16S rRNA gene using Illumina
NextSeq 2000 platform (MedGenome, India). All of the 16S
rRNA gene sequence data obtained for the study was submitted
to NCBI under Project ID: 1170026 Biosample: All of the
16S rRNA gene sequence data obtained for the study was
submitted to NCBI under Project ID: 1170026 Biosample:

SAMN44091849 (Sample VP3), SAMN44089104 (Sample
FT-S-TL+VP3), SAMNA44089103 (Sample FT-S-CI+VP3),
SAMN44089102 (Sample FT-P-TL+VP3), SAMN44089101
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(Sample FT-P-CI4+VP3), SAMN44089100 (Sample FT-S-CN), and
SAMN44089099 (Sample FT-P-CN).

Multiplexed paired-end reads (2 x 300 bp) generated on the
Mumina platform were analyzed using The Quantitative Insights
into Microbial Ecology 2 (QIIME 2) program version 2022.8
(Bolyen etal., 2019). The “demux summarize” plugin was employed
to assess the read quality, followed by quality filtering, denoising
to amplicon sequence variants (ASVs), and chimeric sequence
removal via “dada2 denoise-paired” plugin, where reads with Q <
30 were removed (Callahan et al., 2016). Feature-IDs were mapped
to sequences from the representative sequence file and feature-table
obtained after “q2-dada2.” Taxonomy classification was performed
with the “feature classifier” (classify-sklearn) plugin leveraging a
naive Bayesian classifier trained on the latest version (2022.10) of
the Greengenes database (McDonald et al.,, 2012). The classified
taxonomies were visualized using the “taxa barplot” plugin in
QIIME 2-view.

The functional metabolic capability of the VP3-augmented FTB
was predicted using PICRUSt2 software (Douglas et al, 2020)
according to the denoizing algorithms that enables phenotypic
predictions via functional Enzyme Commission (EC) number
(Kanehisa and Goto, 2000).

2.7 Effect of FTBs on antibiotic resistance
profiles of Mini river water

Each metagenome was evaluated for the presence of four
antibiotic resistance genes (ARGs): sull and sul2 (resistant to
sulphonamides), blaTEM (resistant to beta-lactams), and aac(6')-
Ib-Cr (resistant to aminoglycosides). These ARGs were previously
identified as abundant in the Mini river (Patel et al., 2024), and thus
were selected for evaluating the antibiotic resistance in Mini river
water treated by VP3-augmented FTBs along with control FTBs.
The Supplementary Table S1 contains a list of the ARG-specific
primers used during the investigation. The primer sequences were
obtained from the previous studies (Park et al., 2006; Pei et al,
20065 Adegoke et al., 2020). The polymerase chain reaction (PCR)
was conducted in triplicates along with no template control using
SureCycler 8800 Thermocycler (Agilent Technologies, USA). 1.2%
w/v Agarose gel electrophoresis was performed to determine the
presence of ARGs. The PCR program was carried out as follows:
initial denaturation at 94°C for 4 min, followed by 30 cycles of
denaturation at 94°C for 40s, annealing at 55°C for 45s and
extension at 72°C for 60 s; and final extension at 72°C for 5 min.

The Invitrogen™ PureLink™ Quick Gel Extraction Kit
(Thermo Fisher Scientific, USA) was used to extract the PCR
products for cloning. Subsequently, the purified DNA was cloned
using the Mighty TA-Cloning Kit (Takara, Japan) according to
the manufacturer’s instructions. Cloned plasmids were isolated
using Invitrogen™ PureLink™ Quick Plasmid Miniprep Kit
(Thermo Fisher Scientific, USA). Quantification of cloned plasmids
was performed using NanoDrop 2000 (Thermo Fisher Scientific,
USA). Log dilution of cloned plasmids was used in RT-qPCR
to prepare standard curves for each primer pair. Prior to use
for final RT-qPCR analysis, each pair of primers was validated
against each standard for product size and annealing temperature
confirmation using normal PCR amplification and 1.2% agarose gel
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electrophoresis. Quantification of targeted ARGs was performed
using the Stratagene Mx3005P (Agilent Technologies, USA) in
triplicate experiments as per the user instructions. The RT-
PCR analysis was conducted using PowerUp™ SYBR® Green
MasterMix (Thermo Fisher Scientific, USA). The RT-PCR program
was carried out as follows: initial denaturation at 95°C for 3 min;
followed by 40 cycles of denaturation at 95°C for 30's, annealing at
55°C for 30 s, and extension at 72°C for 60 s; and final extension at
72°C for 5 min.

2.8 Phytotoxicity analysis

Phytotoxicity of FTBs treated and untreated Mini river water
was performed using Vigna radiata plant seeds following the
procedure described by Rane et al. (2014). In brief, 10 healthy
V. radiata seeds were kept in 20 mL FTBs treated and untreated
samples at an ambient temperature, where 20 mL distilled water
served as a control. The seed germination percentage was calculated
after 3 days using following equation according to Ghosh et al.
(2023):

Seed Germination Percentage (SG%) =

(Number of germinated seeds/ Total number of seeds) x 100

2.9 Statistical analysis

Statistical analysis was performed for all the dataset using
GraphPad Prism 8 (GraphPad Software, San Diego, CA, USA).
One-way ANOVA was used for the data analysis. Post-hoc
analysis was conducted using Tukey’s multiple comparison test to
determine significant differences between the groups. A value of p
< 0.05 was considered statistically significant.

3 Results

3.1 River water characterization

The overall quality of the Mini river water is mentioned
in Table 3. Designated best use water quality criteria suggested
by the Central Pollution Control Board (CPCB) (2018) of India
(https://cpcb.nic.in) reveals that the obtained values for BOD
and DO were Below-E. It means that the water is not suitable
for drinking, outdoor bathing, fisheries or irrigation purposes.
Moreover, the values of COD, sulfate and phosphate are also above
the acceptance limits of general standards set by CPCB of India for
industrial discharge.

3.2 Performance evaluation of the enriched
bacterial consortia

The degradation potential of the enriched bacterial consortia
was evaluated based on the removal efficiencies for COD, BOD,
sulfate, and phosphate. In total, 5 consortia were established
(Table 1), of which VP3 performed best and was therefore used for
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TABLE 3 Water quality assessment of the Mini river with reference to the
standard Indian water quality criteria.

Water Mini river  Water General

quality water quality industrial

parameters SEIEN discharge
per limits
IS:10500*  (CPCB**)

pH 8.62 = 0.04 C 5.5-9.0

Temperature (°C) 27.5+0.00 Not < 5°C

from AT

DO (mg/L) 1.55+0.78 Below-E

COD (mg/L) 898.4+£2535 | - 250

BOD (mg/L) 3527+042 | Below-E 30

Sulfate (mg/L) 872 +0.06 - 10

Phosphate (mg/L) 119.38 +1.98 - 5

Total Nitrogen 0.29 £0.02 - 0.3

(mg/L)

*Indian Standard for drinking water specification. **Central Pollution Control Board
of India. C represents drinking water source after conventional treatment and disinfection,
whereas Below-E represents not suitable for drinking, bathing or irrigation.

bio-augmentation. The bacterial consortium VP3 demonstrated the
following removal efficiencies (as shown in Table 4): COD (60.4 £+
4.14%), BOD (72.45 % 0.1%), sulfate (57 & 4.22%), and phosphate
(75.89 £ 0.59%).

To characterize the microbial community of VP3, metagenomic
DNA was extracted and sequenced. QIIME-2 analysis was
performed to reveal the microbial community composition of VP3
(Figure 1A). The dominant phyla in VP3 were Proteobacteria,
followed by Firmicutes, and Bacteroidetes. Where, the abundance
of multiple genera namely Pseudomonas, Hydrogenophaga,
Brevibacillus, Brevundimonas, Aquincola, Delftia, Methylibium,
Acidovorax, and Sphingomoas belonging to different class of
phylum Proteobacteria were obtained in consortium VP3.

3.3 Performance evaluation of the floating
treatment bed systems

The biological oxygen demand (BOD) and chemical oxygen
demand (COD) are generally used to evaluate the organic and other
pollutants in the waterbodies and their quality. In this study, VP3-
augmented Floating Treatment Bed systems (FIBs) demonstrated
significant performance, achieving over 57 & 1.65% reduction in
BOD (Figure 2A) and approximately 70 % 1.34% reduction of
COD (Figure 2B) in 3-day Hydraulic Retention Time (HRT). The
performance of floating treatment beds (FTBs) was improved in
presence of macrophytes, T. latifolia and C. indica. These plants
achieved better remediation compared to the non-vegetated FTB
controls (FT-P-CN and FT-S-CN), i.e., approximately 40 £ 1.65%
BOD removal and 37 % 1.67% COD removal at a 3-day hydraulic
retention time (HRT). This highlights the role of macrophytes in
improving the purification efficiency of FIBs. Moreover, sulfate
and phosphate contributes significantly in the eutrophication
process, generation of algal blooms, and oxygen depletion in the
aquatic ecosystems. All vegetated floating treatment beds (FTBs),
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including FT-P-TL, FT-P-CI, FT-S-TL, and FT-S-CI, achieved
over 60 £ 2.5% sulfate removal efficiency. Among these, VP3-
augmented FTBs demonstrated the highest efficiency, with sulfate
removal exceeding 80 =+ 2.04% (Figure 2C). A similar pattern was
observed for phosphate removal, with vegetated FTBs achieving
an average efficiency of 51 £ 0.42% and the highest removal of
74 £ 0.6% recorded in VP3-augmented T. latifolia-planted FTBs
(Figure 2D, Table S3).

3.4 Assessment of FTBs for the mitigation
of the probable pathogens

The effectiveness of VP3-augmented Floating Treatment Bed
systems (FTBs) for the removal of microbial pathogenic strains was
assessed using the selective plate count method. The control FTBs,
which did not incorporate plants or the VP3 consortium, exhibited
nearly twice as many pathogens compared to the experimental
setups (Figure 3). Specifically, Salmonella and Shigella were found
in the highest concentrations in the FT-P-CN (control FTB without
plants and VP3) and were least prevalent in the FTBs containing
VP3 and T. latifolia (FT-P-TL). Similarly, the counts for Vibrio
species and E. coli were highest in FT-P-CN and FT-S-CN (control
FTBs). The lowest pathogen counts were observed in the FTBs
containing both VP3 and T. latifolia. This indicates that the
combination of T. latifolia and VP3 is highly effective in reducing
pathogen levels.

3.5 Evaluation of the microbial status of
polluted Mini river water after FTB
treatment

The microbial community structure of floating treatment beds
(FTBs) was analyzed to assess the impact of the VP3 consortium
on microbial composition. The predominant microbial phyla in
VP3-augmented FTBs included Proteobacteria, Actinobacteria,
Bacteroidetes, and Planctomycetes, demonstrating notable
differences compared to control FTBs. The dominance of the
Proteobacteria highlighted the significant influence of VP3 on
the overall performance of the FIBs. In particular, the relative
abundance of Actinobacteria increased to 7.2%, 6.4%, 3.1%, and
4.4% in FT-P-TL+VP3, FT-P-CI4+VP3, FT-S-TL+VP3, and FT-S-
CI+4VP3, respectively, compared to 2.1% and 1.7% in the control
FTBs FT-S-CN and FT-P-CN (Figure 1B). This phylum, previously
associated with the bioremediation of heavy metals, antibiotics,
and pesticides, exhibited enhanced abundance in VP3-augmented
FTBs (Behera and Das, 2023; Antezana et al., 2023; Alvarez et al.,
2017).

Additionally, increased relative abundances of Acidobacteria,
Chloroflexi, and Firmicutes were observed in FT-P-CI+VP3
and FT-S-CI4+-VP3 compared to the controls. The phylum
Verrucomicrobia was notably enriched in FT-P-TL (3.8%) and
FT-S-TL (2.7%), suggesting plant-specific microbial community
shifts.

bioremediation of xenobiotic pollutants, remained the most

The Proteobacteria are known for their role in the

dominant phylum (Jokhakar et al., 2022; Srivastava and Verma,
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TABLE 4 Analysis of % removal efficiencies (+SD) regarding the potential of enriched bacterial consortia after 5days; where, COD, Chemical Oxygen

Demand; BOD, Biochemical Oxygen Demand.

VP1 VP2 VP3 VP4 VP5
COD 31.82+9.88 2343 £421 60.40 = 4.13 4455 £9.16 19.01 £2.57
BOD 63 +£4.17 61.5 £ 2.69 7245 £0.1 47.29 +£0.51 55.02 4 3.43
Sulfate 4593 £ 118 37.19 £ 2.06 57.9 £ 4.22 41.06 = 1.79 21.97 £3.59
Phosphate 70.9 £ 1.25 57.82 +1.08 75.89 = 0.59 71.98 = 1.04 53.27 +2.94
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FIGURE 1
(A) Microbial community composition of the developed consortium VP3. Pie chart represents the phylum level microbial community and donut chart
represents abundant genera of the consortium VP3. (B) Relative abundance of bacterial community at phylum level in VP3-augmented FTBs and FTB
controls. FT, Floating bed treatment; P, Polystyrene frame; S, styrofoam frame; CN, control without plant; CI, C. indica; TL, T. latifolia. (C) Relative
abundance of bacterial community at genus level in VP3-augmented FTBs and FTB controls. FT, Floating bed treatment; P, Polystyrene frame; S,
styrofoam frame; CN, control without plant; Cl, C. indica; TL, T. latifolia.

2023; Zhang et al., 2020). Firmicutes, along with Proteobacteria
and Actinobacteria, have been reported to establish compatibility
with the rhizosphere of T. latifolia (Pietrangelo et al., 2018).
Moreover, Proteobacteria were predominant in FTBs with C.
indica for tetracycline antibiotic bioremediation (Xu et al,
2023). Notably, Verrucomicrobia, a key phylum in submerged
membrane bioreactors for sulfonamide antibiotic removal, showed
increased relative abundance in FTBs planted with T. latifolia
(Yu et al., 2018).
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At the genus level, microbial shifts were evident between
control FIBs (FT-P-CN, FT-S-CN) and VP3-augmented
FTIBs (FT-P-CI+VP3, FT-S-CI+VP3, FT-P-TL+VP3, FT-S-
TL+VP3), indicating the influence of VP3 and the planted
macrophytes The
control FTBs were dominated by the genera Bacillus species
and Woodsholea species, whereas VP3-augmented FIBs with
T. latifolia (FT-P-TL4+VP3, FT-S-TL+VP3) exhibited a shift
In  contrast,

on microbial community composition.

toward dominance of Pseudomonas species.
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FIBs with C. indica (FT-P-CI+VP3, FT-S-CI4+VP3) were
predominantly enriched with Hydrogenophaga species (Figure 1C).
The genus level microbial profiles in VP3-augmented FIBs
closely mirrored those of the developed VP3 consortium.

FIBs with T. latifolia were characterized by the dominance

Frontiersin Microbiology

of Pseudomonas along with notable abundances
Hydrogenophaga, Delftia,

Hyphomicrobium, and Planctomyces. In contrast, FTBs with C.

species,
of Brevundimonas, Azospirillum,
indica were primarily dominated by Hydrogenophaga, followed by
Delftia, Acidovorax, Pseudomonas, and Azospirillum, showcasing
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plant-specific microbial community structures induced by the
VP3 augmentation.

3.6 Functional gene annotation of the
bacterial community involved in the FTB
treatment

The predicted metabolic capabilities acquired from PICRUSt
based on 16S profiles of the FTB-treated samples identified 80 genes
associated with the degradation of various xenobiotic compounds
(Figure 4). Notably, the genes involved in antibiotic degradation
were more prevalent in the test FIBs (FT-P-TL+VP3, FT-S-
TL+VP3, FT-P-CI+VP3, FT-S-CI+VP3) compared to the control
FTBs (FT-P-CN, FT-S-CN). Among these, approximately 40 genes
were linked to the degradation of a range of pollutants, including
pesticides,
detergents, heavy metals, and azo dyes. The abundance of these
genes was higher in the test FTBs (FT-P-TL+VP3, FT-S-TL+VP3,
FT-P-CI+VP3, FT-S-CI4+VP3) compared to the control FTBs (FT-
P-CN, FT-S-CN). Conversely, 9 genes associated with antibiotic
resistance were found in higher abundance in the control FIBs

antibiotics, aromatic hydrocarbons, plasticizers,

(FT-P-CN and FT-S-CN) and were present in lower quantities
in the test FTBs (FT-P-TL+4VP3, FT-S-TL+VP3, FT-P-CI+VP3,
FT-S-CI+VP3). This suggests a reduced prevalence of antibiotic
resistance mechanisms in the test FIBs compared to the controls.
These findings indicate that VP3-augmented FTBs have a greater
potential for the removal of various emerging contaminants.

3.7 Removal of emerging contaminants by
FTB treatment

Non-targeted screening using LC-HRMS revealed the presence
of various pollutants in the VP3-augmented FIBs after treatment.
The analysis showed that FT-P-CN contained 304 pharmaceutical
and personal care chemicals (PPCPs), which were reduced to 114
in FT-P-TL+VP3 and 132 in FT-P-CI4+-VP3. Similarly, FT-S-CN
initially had 296 PPCPs, which were decreased to 112 in FT-S-
TL+VP3 and 131 in FT-S-CI4VP3. Chemical intermediates, which
are often associated with anthropogenic pollution and adverse
effects on aquatic ecosystems were found in quantities of 226
and 217 in FT-P-CN and FT-S-CN, respectively. These numbers
were significantly reduced in the VP3-augmented FTBs, with 49
intermediates in FT-P-TL+VP3, 47 in FT-S-TL+VP3, 51 in FT-
S-CI+VP3, and 54 in FT-P-CI4+-VP3 (Supplementary Figure S2).
Pesticides, known contributors to river pollution, were present
in 44 compounds in FT-P-CN and 47 in FT-S-CN. The VP3-
augmented FTBs reduced pesticide concentrations to 29 in FT-
P-TL+VP3, 26 in FT-P-CI4+-VP3, 27 in FT-S-TL+VP3, and 24
in FT-S-CI+VP3. Notably, 7-12 antibiotic derivatives and 6 dye
stuff intermediates were detected in FT-P-CN and FT-S-CN,
but these compounds were completely eliminated in all VP3-
augmented FTBs. The detailed information about various emerging
contaminants have been provided in the Supplementary Table S2.
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3.8 Impact of FTBs on antibiotic resistance
profiles of the Mini river water

The results showed that the majority of the abundant ARGs
of untreated Mini river water were absent in the FTBs treated
samples (Supplementary Table S4). Specifically, the FT-P-CI4+VP3
and FT-P-TL+VP3 completely eliminated all four ARGs. Whereas,
FT-S-CI+VP3 and FT-S-TL+VP3 reduced the prevalence of these
ARGs after treatment. However, the control FIBs; FT-P-CN and
FT-S-CN revealed presence of all four tested ARGs. It indicates
role of bacterial consortium and macrophytes in reduction
of ARGs.

The Real-time PCR analysis of four selected antibiotic
resistance genes (ARGs) confirmed a significant reduction in
gene copy numbers following treatment with floating treatment
beds (FTBs). The standard curves for the ARGs exhibited
strong linear relationships (R*> > 0.925), and the melt curves
validated the absence of non-specific amplification during RT-
PCR (Supplementary Figure S3). Comparative analysis revealed a
significant reduction in ARG abundance in FT-P-CI and FT-P-TL
compared to control FTBs, FT-P-CN and FT-S-CN (Figure 5).

The sull gene, conferring resistance to sulfonamide antibiotics,
was the most prevalent ARG, with initial copy numbers of 3.57
x 10° and 1.42 x 10 copies/mL in FT-P-CN and FT-S-CN,
respectively. These were substantially reduced to 4.72 x 10%, 7.55
x 10%,1.13 x 10°, and 1.88 x 10° copies/mL in FT-P-TL, FT-P-CI,
FT-S-TL, and FT-S-CI, respectively. A similar trend was observed
for sul2, which initially had 2.74 x 10° and 4.22 x 10° copies/mL
in FT-P-CN and FT-S-CN, showing a reduction of 5.0 to 5.68 log
folds in FT-P-TL, FT-P-CI, and FT-S-TL.

The aminoglycoside resistance gene aac (6')-Ib-Cr showed a
marked decrease from 6.04 x 108 to 1.52 x 10® copies/mL in
the control FTBs to 1.91 x 10* copies/mL in FT-P-CI and FT-P-
TL. Similarly, the extended-spectrum beta-lactam resistance gene
blaTEM exhibited significant reductions, with initial copy numbers
0f 9.99 x 108 and 4.21 x 10® in FT-P-CN and FT-S-CN dropping
0 9.97 x 10%, 1.33 x 10%,5.62 x 10%, and 6.2 x 10* copies/mL in
FT-P-TL, FT-P-CI, FT-S-TL, and FT-S-CI, respectively.

3.9 Phytotoxicity evaluation of the Mini
river water treated using FTBs

The toxicity of Mini river water treated by VP3-augmented
FTBs was evaluated using the Vigna radiata seed germination assay.
The results indicated that the FTB planted in a PVC frame with T.
latifolia was the most effective in reducing toxicity, followed by the
FTBs with C. indica in PVC and Styrofoam frames. Water treated
by the VP3-augmented FTBs demonstrated a higher percentage of
seed germination compared to the controls FT-P-CN and FT-S-
CN (Supplementary Figure S4). However, the percentage of seed
germination in the treated water was slightly lower than that
observed in the positive control (distilled water). Untreated Mini
river water exhibited the lowest percentage of seed germination due
to the presence of various pollutants.
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FIGURE 4
Predicted functional genes involved in biodegradation in VP3-augmented FTBs and FTB controls. FT, Floating bed treatment; P, Polystyrene frame; S,
styrofoam frame; CN, control without plant; Cl, C. indica; TL, T. latifolia.
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4 Discussion

The Mini river water quality was not suitable for drinking as
per the CPCB criteria. This adversely affects the riverine ecosystems
and ultimately disturbs the food web. The FTBs vegetated with
T. latifolia and C. indica in presence of VP3 efficiently reduced
the COD and BOD of the polluted water of Mini river. This
efficiency aligns with the known capabilities of floating treatments
in handling organic pollutants. The VP3-augmented FTBs achieved
approximately 70% COD removal within a hydraulic retention
time (HRT) of 3 days. This aligns with previous studies
demonstrating that microbial augmentation significantly enhances
the biodegradation of organic and inorganic pollutants, achieving
COD reductions of 65% to 85% depending on pollutant load
and system design (Liu et al., 2021). Among the systems, FT-P-
TL+VP3 achieved the highest phosphate removal of 100.1 &+ 1.07
mg/L (~84.7 £ 0.91%) from an initial phosphate concentration of
118.1 & 1.53 mg/L. The phosphate uptake by macrophytes such
as C. indica, T. latifolia, Phragmites australis, and Iris pseudacorus
has been previously reported to reduce nutrient levels in polluted
wastewater due to their robust root systems, which support
microbial growth and enhance phosphate uptake (Haritash et al,,
2017; Han et al,, 2022). Similarly, Chand et al. (2021) reported
that constructed wetlands incorporating biochar and Typha species
achieved 73.92% sulfate removal after a 6-day retention time. In
this study, the VP3-augmented FTBs demonstrated a maximum
sulfate removal of over 83.6% within a 5-day HRT, indicating the
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role of microbial mechanisms in bioremediation and facilitating
nutrient uptake by macrophytes such as T. latifolia and C. indica.
Kumar and Singh (2017) also reported that microbial consortium
augmentation with Eichhornia crassipes enhanced sulfate removal
efficiency in constructed wetlands. These findings confirm that
VP3-augmented FIBs, including FT-P-TL+VP3, FT-P-CI+VP3,
FT-S-TL+VP3, and FT-S-CI+VP3, exhibit superior pollutant
removal potential compared to non-augmented FTBs (FT-P-CI,
FT-P-TL, FT-S-CI, and FT-S-TL).

The effectiveness of VP3-augmented FTBs
synergistic interaction between the bacterial consortium and the

suggests a

vegetated system. These findings are consistent with the earlier
studies, such as Shahid et al. (2019); which reported improved
water quality in FTBs vegetated with Typha domingensis and
Lepidagathis fusca, augmented with a mixed bacterial culture for
treatment of polluted water of Ravi river, Lahore. Where, they
obtained the COD and BODs decreased to 47 and 21 mg/L from
initial concentration of 405 and 190 mg/L, respectively in the
system consisting bacteria augmented T. domingensis.

The probable pathogenic enumeration reveals that the
inclusion of VP3 and T. latifolia in FTBs significantly reduces
the abundance of microbial pathogens compared to control FTBs
that lack these components. The significantly lower pathogen
counts in the FTBs containing both VP3 and T. latifolia suggest
a synergistic effect, where both components work together to
improve the overall efficacy of the FIBs. The presence of T.
latifolia likely contributes to enhanced pathogen removal through
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processes such as root filtration and microbial interactions, while
the VP3 consortium may further assist in reducing pathogen counts
through its bioremediation capabilities. This finding supports the
use of VP3-augmented FTBs with macrophytes like T. latifolia in
mitigating waterborne pathogenic outbreaks, especially in polluted
waterways such as the Mini river. Earlier, Donde et al. (2020)
emphasized the critical role of macrophytes in reducing fecal
pathogenic bacteria and importance of combining local emergent
and submerged macrophytes for efficient treatment. These finding
uncovers the potential of VP3-augmented FIBs in managing
microbial contamination in water bodies.

The microbial community of VP3 exhibits greater similarity
with the microbial community at similarly polluted sites in Budha
Nala and Tung Dhab drain at Punjab, India (Kumar and Saini,
2024). The phyla Proteobacteria and Actinomycetota consist of
variety of genera efficient for bioremediation of polluted waterways
(Joye et al, 2016) as well as potential plant growth promoting
microbes involved in rhizo-remediation (Behera and Das, 2023;
Singh et al, 2018). The phylum Proteobacteria comprises of
genera such as Brevundimonas species, Pseudomonas species and
Desulfobacca species reported for bioremediation of petroleum
and oily sludge contaminated by total petroleum hydrocarbons,
saturates, aromatics, and polar compounds (Gonzélez-Toril
et al, 2023). Chen et al. (2023) noted that a consortium
dominated by Pseudomonas species, Stenotrophomonas species,
and Delftia species exhibited high degradation potential for
phenanthrene. This suggests that the microbial community within
consortium VP3 has a robust capacity to metabolize a range of
emerging pollutants.

To understand the potential of the FIBs, the composition
of microbial communities developed during treatment is crucial.
In this study, the dominant phyla Proteobacteria, Actinobacteria,
Bacteroidetes, and Planctomycetes were consistent across all FTB
configurations, indicating their fundamental role in the treatment
processes. The microbial community of the VP3-augmented
FTBs was dominated by phylum Proteobacteria representing the
successful augmentation of the VP3 with the macrophytes used for
the study. This consistent dominance of Proteobacteria in all the
VP3-augmented FIBs reinforces potential of VP3 consortium for
degradation of various pollutants (Jokhakar et al., 2022; Srivastava
and Verma, 2023; Zhang et al, 2020). However, the control
FTBs (FT-P-CN and FT-S-CN) where no plants were introduced
has relatively less abundance of the phylum Proteobacteria. The
increase in the relative abundance of Acidobacteria, Chloroflexi,
and Firmicutes in FTBs with T. latifolia and C. indica suggests that
these plant species may enhance the growth of these microbial
groups, potentially improving bioremediation efficacy. Observed
presence of Actinobacteria aligns with its ability to remediate
heavy metals and organic pollutants (Antezana et al., 2023; Alvarez
et al, 2017). Earlier, Pietrangelo et al. (2018) noted that the
phyla of Proteobacteria, Actinobacteria, and Firmicutes involved
in the foundation of the microbiota with some other phyla such
as Acidobacteria, Bacteroidetes, Chloroflexi, and Verrucomicrobia
which varies according to the plant species. The presence of
Firmicutes in association with T. latifolia and its compatibility
with rhizosphere environments supports its role in effective
bioremediation within VP3-augmented FIBs with T. latifolia.
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Similarly, the prominence of Proteobacteria in FIBs with C. indica
highlights its adaptability and efficacy in various bioremediation
contexts. This combination of Proteobacteria with C. indica was
earlier reported for degradation of tetracycline antibiotics from
water using mycorrhizal fungi based vertical flow constructed
wetlands with more than 90% removal efficiency (Xu et al.,, 2023).
The increased abundance of Verrucomicrobia in FTBs planted
with T. latifolia is compelling interest, as this phylum has been
previously associated with the removal of sulfonamide antibiotics
(Yuetal,, 2018). This suggests that T. latifolia may foster conditions
conducive to the growth of Verrucomicrobia, enhancing the overall
pathogen removal efficiency of the FTBs.

These findings indicate that both plant species, T. latifolia and
C. indica, play significant roles in shaping microbial community
structure and enhancing the bioremediation capacity of FTBs.
The synergy between plant and microbial components in FTBs
discloses the potential for improved water treatment of polluted
rivers. The prevalence of the genus Pseudomonas in FTBs with T.
latifolia aligns with its well-documented role in biodegrading a wide
range of pollutants, including antibiotics, personal care products
(PPCPs), pesticides, heavy metals, and aromatic hydrocarbons
(Tang et al., 2024; Pépai et al., 2023). The dominance of potential
plant growth promoting bacterial genus Azospirillum in the VP3-
augmented FTBs planted with T. latifolia enhances the stress
tolerant abilities of the plant. Earlier genus Azospirillium was
reported to have significantly reduced the damage to roots of
Polygonum hydropiperoides planted constructed wetlands exposed
to the heavy metal contamination (Barbosa et al., 2023). The
presence of the Genus Hydrogenophaga species in FTBs with C.
indica is also significant, as this genus is known for its ability to
degrade aromatic compounds and certain chlorinated compounds
used in pesticides and PPCPs (Borah et al., 2023; Yang et al,
2023). These findings unveil the impact of macrophytes on shaping
microbial communities and highlight the role of specific bacterial
genera in the bioremediation processes within FTB systems. The
interplay between macrophytes and microbial communities are
key contributors optimizing the effectiveness of pollutant removal
in FTBs.

The
for mitigating their environmental impact and preventing

effective degradation of xenobiotics is essential
the proliferation of antibiotic-resistant bacteria (ARB). The
identification of approximately 40 genes related to the degradation
of various pollutants including pesticides, aromatic hydrocarbons,
plasticizers, detergents, heavy metals, and azo dyes, demonstrates
the versatility of the test FTBs in addressing a wide spectrum
of contaminants. These findings, supported by LC-HRMS
analysis, confirm that VP3-augmented FTBs are highly effective in
degrading critical pollutants such as antibiotics and dyes. Overall,
the results underscore the strong potential of VP3-augmented
FTIBs to reduce diverse contaminants, making them valuable
tools for improving water quality and addressing pollution
challenges in river systems. The potential transfer of ARGs to
pathogenic bacteria remains a significant global public health
concern. However, the present study revealed a substantial
reduction in ARG absolute abundances (1.84 to 6 log fold)
within the VP3-augmented FTBs. The observed reduction in
gene copies/mL highlights the progressive elimination of ARGs
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across these systems. For instance, Porras-Socias et al. (2024)
reported a decrease in sull abundance from 4.3 x 10° to 6.9 x
10* copies/mL in constructed wetlands planted with Sparganium
erectum. Similarly, in this study, the VP3-augmented FTBs
significantly reduced ARGs, including sull, sul2, blaTEM, and
aac(6')-Ib-Cr, through mechanisms such as plant uptake, bacterial
host die-off, or sorption to organic matter (Sabri et al., 2021).
The robust root systems of wetland plants like T. latifolia and C.
indica play a pivotal role in this process by supporting microbial
communities involved in filtration, adsorption, absorption, and
biotransformation of ARGs. Additionally, macrophytes provide
oxygen to microbes and act as primary filters for solid particles,
enhancing microbial activity, reducing ARG accumulation,
and promoting overall ARG removal (Fang et al., 2017). These
findings align with Donde et al. (2020), who demonstrated
the effectiveness of T. latifolia in constructed wetlands for the
removal of 12 antimicrobial agents and their associated resistance
genes, achieving a purification efficiency of 75% in effluents from
Lake Dianchi, China. Similarly, Avila et al. (2021) reported that
subsurface flow constructed wetlands vegetated with Phragmites
australis effectively removed antibiotics, including ciprofloxacin,
ofloxacin, pipemidic acid, and azithromycin, alongside ARGs
such as sull (46%—97%), sul2 (33-97%), ermB (9%—99%), qnrS
(18%—97%), and blaTEM (11%—98%). These studies support
the current findings, emphasizing the significant role of the VP3
microbial consortium, combined with suitable macrophytes, in
mitigating antibiotic resistance in river systems. This integrated
bioremediation strategy highlights its potential to address complex
pollution challenges in environmental remediation effectively.

The findings from the Vigna radiata seed germination assay
suggests that the VP3-augmented FIBs effectively reduce the
toxicity of Mini river water. Specifically, the FTBs planted with
T. latifolia in PVC frames showed the highest efficiency in
toxicity removal, making it the most promising option for further
applications. The treated water from the VP3-augmented FTBs
exhibited significantly higher seed germination rates compared to
the untreated controls (FT-P-CN and FTI-S-CN), although it did
not fully match the germination rates seen with distilled water.
These results are consistent with previous studies, such as those
by Kumar et al. (2018), who reported that polluted Hindon river
water adversely affected Vigna radiata seed germination, indicating
poor water quality due to anthropogenic pollution. Their study
concluded that diluted water was more suitable for irrigation
practices. In contrast, the treated water from the VP3-augmented
FTBs, particularly with T. latifolia, showed that it could be used
directly without further dilution for agricultural purposes. Overall,
the data highlighted the effectiveness of the VP3-augmented FIBs
in removing toxicity from polluted water bodies, suggesting a
viable approach for improving water quality and suitability for
agricultural use.

5 Conclusion

The study demonstrates that the plant-microbial combination
enhances the overall efficiency of floating treatment bed (FTB)
systems in removing sulfate, phosphate, COD, and BOD from
polluted river water. Further, it also exhibited significant
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potential for pathogen elimination from contaminated water. The
metagenomic analysis revealed that the VP3-augmented FTBs
host a microbial community predominantly composed of the
genera Pseudomonas species and Hydrogenophaga species, both
belonging to the phylum Proteobacteria. In addition, the VP3-
augmented FTBs possess a range of functional genes critical for the
degradation of antibiotics, pesticides, pharmaceutical and personal
care products (PPCPs), polycyclic aromatic hydrocarbons (PAHs),
and other emerging contaminants (ECs). ARG detection confirmed
that VP3-augmented FTBs were more efficient in reduction of
ARGs, with lower ARG distribution compared to control FIBs. It
could remove 7-12 antibiotic residues, 6 dye intermediates, and
over 50% of pesticides, which further establishes its effectiveness in
reduction of ECs in the polluted rivers. Phytotoxicity testing using
Vigna radiata revealed that water treated by FT-P-TL and FT-P-CI
exhibited improved seed germination rates, indicating enhanced
environmental safety. These findings highlight the potential of
FTBs, especially those enriched with bacterial consortia, as effective
and sustainable solutions for removing a broad range of emerging
pollutants under environmental conditions. The study underscores
the advantages of FIBs over intensive treatment approaches for
improving water quality in polluted river systems.
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lysin, on Bacillus subtilis spores
and its antibacterial activity
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Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China, *Hubei Jiangxia
Laboratory, Wuhan, China

Introduction: Streptococcus suis, an important zoonotic and opportunistic
pathogen in pigs, brings huge economic losses to the pig-raising industry and
infects humans with diseases. Phage lysin is regarded as a promising substitute
for antibiotics due to its ability to quickly and efficiently kill bacteria without
easily developing resistance. However, their clinical applications have been
hindered by inherent instability under environmental stressors.

Methods: We constructed B. subtilis spores displaying bacteriophage lysin Lys0859
using spore coat protein CotG as an anchoring motif. Environmental tolerance was
evaluated through thermal (37-95°C), pH (1.0-8.0), and enzymatic challenges,
while antibacterial efficacy against S. suis was assessed using agar diffusion assays
and murine infection models with systemic bacterial load quantification.

Results: The spore-display system enhanced environmental resistance of Lys0859
while preserving its bactericidal efficacy. In vitro assays demonstrated 1 x 10°
CFU rBS¢et6-08%9 gpores exhibited equivalent bactericidal activity to 39.11 ug free
Lys0859 against S. suis. In vivo, spore treatment reduced S. suis SC19 colonization
by 0.47-1.96 log units (p < 0.05) across all tissues compared with PBS controls.

Discussion: This study achieved functional display of prophage lysin LysO859
on B. subtilis spores through CotG anchoring, demonstrating potent in vitro
anti-streptococcal activity. Crucially, this strategy streamlined bioproduction by
eliminating purification demands and lowering costs, lays the foundation for the
clinical application of prophage lysin.

KEYWORDS

Streptococcus suis prophage lysin, Bacillus subtilis, CotG, spore surface display,
Streptococcus suis infection

1 Introduction

Streptococcus suis (S. suis) is an important zoonotic pathogen responsible for infecting
both humans and a wide range of animal species. S. suis can spread and infect through
contact with infected animals or contaminated animal products, causing serious threats to
the pig industry (Wang et al., 2022) and public health security worldwide (Feng et al., 2010).
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In China, there were two large-scale human infections of S. suis in
1998 and 2005, resulting in 53 deaths, which attracted great social
attention (Normile, 2005; Tang et al., 2006). So far, 29 serotypes of
S. suis have been identified based on capsular polysaccharide, among
which serotype 2 is the serotype with the highest clinical isolation
rate and is considered to be one of the most virulent serotypes
(Goyette-Desjardins et al., 2014; Liu et al., 2019; Okura et al., 2016).
S. suis mainly inhabits the upper respiratory tract of pigs, especially
the tonsils and nasal cavities, as well as the digestive and genital
tracts (Goyette-Desjardins et al., 2014). After humans or pigs are
infected with the virulent strains of S. suis, they often exhibit
meningitis, septicemia, arthritis, endocarditis, pneumonia, and
other diseases (Gottschalk and Segura, 2000; Segura et al., 2017).
Like most other bacterial infections, antibiotic therapies remain one
of the most effective methods for S. suis infection. However, an
increasing number of studies have reported that the prolonged use
or misuse of antibiotics can lead to environmental pollution,
antibiotic residues, and the production of multidrug-resistant
bacteria (Brown and Wright, 2016; Zhang et al., 2018; Hall et al,,
2020). Therefore, there is an urgent need to find a novel antibacterial
drugs or antibiotic alternatives to combat the infection of S. suis.

Phage lysin is a cell wall hydrolase encoded by bacteriophage,
which can rapidly destroy the cell wall structure by degrading
peptidoglycans in the cell wall upon contact with the host cells, and
release newly assembled bacteriophages (Young et al., 2000). Compared
with traditional antibiotics, bacterial resistance to lysin is difficult to
develop, and lysin can specifically lyse target pathogens without
disturbing commensal flora (Wang Z. et al., 2019). Therefore, lysin as a
promising antibacterial agent has been studied for various biomedical
applications, and its effectiveness has been conformed in multiple
animal model of infected with resistant bacteria (Gilmer et al., 2013;
Eichenseher et al., 2022). However, lysin is sensitive to multiple
environmental factors, such as temperature, pH, and proteases, which
affect their bioactivity and thus limit the bactericidal effect in clinical
practice. Therefore, there is an emergent search for a method to
enhance the resistance of lysin to cope with environmental stresses.
B. subtilis spore surface display is considered one of the most effective
ways to deliver heterologous proteins with high biological activity and
stability (Iwanicki et al., 2014). The United States Food and Drug
Administration (FDA) has classified B. subtilis as a Generally
Recognized as Safe (GRAS) strain. It can be used as a food additive in
food preparations for both humans and animals, and is also applicable
in the treatment of gastrointestinal diseases (Cutting et al., 2009).
B. subtilis spores offer several advantages in anchoring heterologous
proteins: (1) B. subtilis spores exhibit greater adaptability to extreme
environments, including nutrient deprivation, drastic temperature and
pH fluctuations, ultraviolet irradiation, and toxic substances (Ullah
etal,, 2024). (2) Heterologous proteins anchored on the spore surface
do not need to cross the cell membrane. This not only avoids protein
misfolding but also ensures the structure and biological activity of the
exogenous proteins (Guo et al., 2018). (3) Enzymes displayed on the
spore surface generally possess good reusability and stability (Guo et al.,
2018). For instance, the p75 protein was displayed on the surface of
B. subtilis spores using spore coat protein CotG as an anchoring motif,
and the peptidoglycan hydrolase activity, stability, and the antibacterial
activity of the spore-displayed p75 protein were significantly enhanced
(Kang et al., 2020). However, we have hardly found any reports on the
display of prophage lysin on the spore surface of B. subtilis.
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In this study, the prophage lysin Lys0859 from S. suis SS0859 was
successfully exhibited on the spore surface by employing the outer coat
protein G (CotG) of B. subtilis spores as the anchor protein. Then,
we evaluated the in vitro resistance of Lys0859 displayed on the spore
surface of recombinant bacteria against environmental assaults, as well
as antimicrobial spectrum of the recombinant bacteria in vitro.
Furthermore, we explored the protective effect of recombinant bacteria
on S. suis SC19 infection by murine model of systemic S. suis infection.

2 Materials and methods
2.1 Bacterial strains and growth conditions

The bacterial strains used in this study are listed in
Supplementary Table S1, and plasmids and primers are listed in
Supplementary Table S2. The streptococci strains were cultured in
tryptic soy broth (TSB) (BD Biosciences, MD, United States)
supplemented with 5% (v/v) fetal bovine serum (Solarbio, Beijing,
China) or TSB plates containing 1.5% (w/v) agar and 5% (v/v) fetal
bovine serum at 37°C. The other strains were cultured in Luria-
Bertani (LB) broth or LB plates containing 1.5% (w/v) agar at
37°C. B. subtilis sporulation was cultured in Difco sporulation
medium (DSM), as previously described (Mascarenhas et al., 2002).

2.2 Construction of CotG-0859 fusion
protein expression plasmid

To display phage lysin 0859 (Lys0859), which was previously
discovered in our laboratory (Li et al., 2023), on the surface of
B. subtilis 168 spores, we constructed a CotG-0859 fusion. The CotG
gene was amplified with primers CotG-F/CotG-R from the B. subtilis
168 chromosomes. The Lys0859 gene from S. suis 0859 was amplified
using primers 0859-F/0859-R by PCR. Then, the CotG and 0859 genes
were constructed into a CotG-0859 fusion by overlap-extension PCR,
digested with BamH I and EcoR I (Takara, China), and ligated into
pDG364 vector to obtain the recombinant plasmids pDG364-
CotG-0859. Meanwhile, pCold-CotG-0859 (CotG-F/CotG-R, 0859-
F/0859-R1, BamH I/Hind III) and pCold-0859 (0859-F1/0859-R1,
BamH I/Hind III) were constructed using the same methods.
Recombinant plasmids were transformed into E. coli DH5a and the
positive colonies were identified by colony-PCR.

2.3 Construction of recombinant Bacillus
subtilis 168

The obtained pDG364-CotG-0859 recombinant plasmid was
linearized by Kpn I (Takara, China) enzyme digestion, and transformed
into the amylase E (AmyE) gene of the competent B. subtilis genome by
the natural transformation method (Spizizen, 1958). Then, the clones
generated after the integration of the target gene at the AmyE locus of
B. subtilis were selected on LB agar plates supplemented with 5 pg/mL
chloramphenicol. Used LB agar plates containing 1% starch to screen
positive strains with amylase gene deletion. Extracted recombinant
bacterial genomic DNA and used AmyE-F/AmyE-R, G8-F/G8-R,
G8-F/AmyE-R, and AmyE-F/G8-R for PCR identification, respectively.
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2.4 Spore preparation

The sporulation of wild-type B. subtilis 168 (WT) and
recombinant B. subtilis were induced at 37°C for 48 h using Difco
Sporulation Medium (DSM). Spore purification was performed as
previously described, with some modifications. The spores were
collected by centrifugation 8,000 g for 10 min at 4°C, and washed
with 0.5 M NaCl. Resuspend the spores in Tris—HCI (50 mmol/L, pH
7.2) containing a final concentration of 50 pg/mL of lysozyme and
incubate at 37°C in a water bath for 1 h. Then, the spores were
harvested by centrifugation and washed with 1M NaCl, 1M KCl, and
distilled water (three times), respectively. After incubation at 65°C
for 1 h, pure spores were harvested and resuspended in sterile PBS,
and stored at —40°C.

2.5 Expression of fusion proteins in
Bacillus subtilis and SDS-PAGE and
western blot analysis

The purified spores were incubated with SDS-DTT extraction
buffer at 70°C for 30 min to extract spore coat proteins. To confirm
that the surface display of Lys0859 on the spore coat, the extracted
spore coat proteins was subjected to SDS-PAGE. Subsequently, one
portion was stained with Coomassie Brilliant Blue, while the other
portion was transferred to polyvinylidene fluoride (PVDF) membrane.
The membrane was incubated with PBST containing 5% skim milk for
2 h. After three washes with PBST, incubates with Lys0859 antiserum
(1:5,000 in PBST) for 2 h. Then, the membrane was incubated with
HRP-conjugated Goat anti-Mouse IgG second antibody (1:5,000 in
PBST) for 1 h at room temperature and visualized by ECL detection.

2.6 Immunofluorescence microscopy

To detect Lys0859 on the surface of spores, 1 mL of purified spore
solution was harvested after 48 h of B. subtilis induction and fixed on
a glass slide, and blocked with 5% BSA for 2 h. Anti-Lys0859 antibody
(1:400 in PBST) was added and incubated for 2h at room
temperature. Then, FITC labeled goat anti-mouse IgG antibody
(1:400 in PBST) was added and the spores were observed with a
fluorescence microscope (Olympus, Japan).

2.7 The growth curves and sporulation
rate of recombinant Bacillus subtilis

To investigate whether the insertion of exogenous proteins
affects the activity of the strain, we determined the growth
curves and sporulation rate of B. subtilis 168 and rBS©'¢-05%9,
B. subtilis 168 and rBS®'¢%° were inoculated into LB medium
or DSM sporulation medium (final concentration 1 x 10* CFU/
mL) respectively, and incubated at 37°C with shaking
(180 rpm). Samples were collected every 2 h to prepare 10-fold
serial dilutions and spread onto LB agar plates and cultured at
37°C for 12 h before bacterial counting. For spore counting,
the spore suspensions were treated at 85°C for 5 min, and then
10-fold serial dilutions were prepared to place on LB agar
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plates and cultured at 37°C for 12 h before counting. The
sporulation rate was calculated with the following equation:
Sporulation rate = number of spores/ number of vegetative cells.

2.8 In vitro resistance assay of recombinant
spores

The rBS'¢%% spores (1 x 107 CFU) were separately resuspended
into 1 mL of sterile PBS with different pH values (1, 2, 3, 4, 5, 6, 7, or
8), or simulated gastric fluid (SGE, HCI, pH 1.2) containing 10 g/L of
pepsin in 0.85% NaCl solution, or simulated intestinal fluid (SIF,
NaOH, pH 6.8) containing 10 g/L of trypsin in 0.05 M KH,PO,
solution, and incubated at 37°C. At predetermined time points, the
samples were centrifuged at 6,000 g for 5 min at 4°C, and bacterial
cells were washed twice with sterile PBS and resuspended in 100 pL of
PBS. Next, bacteriostatic activity of rBS<'%%* gpores (1 x 10’ CFU)
against S. suis SC19 was tested by the agar-well diffusion assays. The
plates were incubated at 37°C for 12 h, and the diameter of inhibition
zone was measured with vernier caliper.

One milliliter of rBS®'“* gpores (1 x 107 CFU) were separately
placed in water baths at different temperatures (37°C, 45°C, 55°C,
65°C, 75°C, 85°C, or 95°C) for 30 min. Bacterial cells were then
collected by centrifugation (6,000 g, 5 min, 4°C), washed twice and
resuspended in 100 pL sterile PBS. The bacteriostatic activity was
measured as described above.

2.9 Genetic stability of recombinant spores

To assess the genetic stability of recombinant bacteria, the rBS©'¢-0%?
were serially passaged on LB agar plates up to 10 times. A single
bacterial colony was picked and inoculated into 1 mL of LB medium
(contains 5 pg/mL chloramphenicol) and incubated overnight at 37°C
with shaking (180 rpm). PCR identification of rBS®“%* clone was
performed using 168-F/168-R and G8-F/G8-R primers, respectively.
The rBS'%-% (the 1st to 10th generation colonies) were induced to
sporulate in DSM for 48 h at 37°C and purified them. The antibacterial
activity of rBS<'“% (the 1st to 10th generation) against S. suis SC19
by agar diffusion assay. All plates were cultured at 37°C for 12 h before
observing the inhibition zone, and the diameter of the inhibition zone
was measured using a vernier caliper. The presence of a clear zone
indicated antagonistic activity.

2.10 In vitro antibacterial activity of
recombinant spores

The in vitro antagonistic activity of rBS®%%% spores was tested
using the agar well-diffusion method against common pathogens. The
bacterial lawns were prepared by mixing 10 mL of TSB medium
containing 5% fetal bovine serum (FBS) with bacterial culture suspension
(1 x10° CFU/mL) and then poured onto a sterile plate covered with LB
agar and Oxford cups, wells of 8 mm diameter were made on TSB agar
after removing the cups. The rBS“'“** spores and different dosages of
Lys0859 in a total volume of 100 pL were then added separately into the
well on the agar plate. After incubating at 37°C for 12 h, and measuring
the diameter of inhibition zone. The diameter of the inhibition zone
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(mm) was the average of three independent experiments and presented
in the form of a bar graph. The five known doses of Lys0859 and their
corresponding inhibition zone sizes were displayed on the x-y scatter
plot, respectively. Thereafter, the best-fit linear regression equation (LRE)
was plotted based on the linear trend line. After inhibition zone diameter
(rBS®'<%%) were fitted in the LRE, the equivalent dose of lysis enzyme
activity of the recombinant bacteria was ultimately obtained.

2.11 In vivo study of bactericidal activity of
recombinant spores

A model of S. suis SC19 infection mouse was established using
4-week-old specific pathogen-free (SPF) female ICR mice purchased
from the Experimental Animal Center of Huazhong Agricultural
University, Wuhan, China. Mice were randomly divided into 4 groups
(n = 6): (i) control; (ii) SC19 + PBS group; (iii) SC19 + BS168; (iiii)
SC19 + rBS®%%® On the first experimental day, all mice were
injected intraperitoneally with 100 pL of SC19 (6 x 10’ CFU/mouse)
in the SC19 + PBS group, SC19 + BS168 group, and SC19 + rBS<¢-
%59 group. On days 1, 2, 3 and 4 following SC19 infection, mice in the
SC19 + rBS®“%* group and SC19 + BS168 group separately received
200 pL (2 x 107 CFU/mouse) of rBS<'%% spores and BS168 spores
via gavage administration. In contrast, the mice in the control group
and the SC19 + PBS group were administered the same volume of
sterile PBS. Fresh fecal samples were collected daily following SC19
infection and directly resuspended in sterile PBS. The number of
rBSC¢%? in mice feces from the SC19 + rBS®¢%% group was then
determined by spreading a series of 10-fold dilutions on LB agar
plates containing 10 pg/mL chloramphenicol. The general health of
all mice was monitored on a regular daily throughout the experiment.
On the 7th day after SC19 infection, all mice were sacrificed by
cervical vertebra dislocation, the blood and the major organs (heart,
liver, spleen, lung, kidney, and brain) were collected and fixed with
4% paraformaldehyde. Then, the remaining organ tissues were
weighed and homogenized. The number of SC19 in the heart, liver,
spleen, lungs, kidneys, brain, and blood were determined by
spreading a series of 10-fold dilutions on TSA plates.

SColG -0859

To further study the prophylactic efficacy of rB spores
against SC19 infection, another independent experiment was
conducted using four-week-old female ICR mice (SPF). Twenty-four
mice were randomly divided into four groups (n = 6): control group,
PBS + SC19 group, BS168 + SC19 group and rBS““**® + SC19 group.

On days 1 to 7, each mouse in the rBS©1¢-0%°

+ SC19 group received
200 pL (2 x 107 CFU/mouse) of rBS®'“*®? spores via gavage once a day.
At the same time, mice in the BS168 + SC19 group received an equal
amount of BS168 spores, while intragastric gavages with 200 puL of
sterile PBS to mice of the control group and PBS + SC19 group. On day
7, all mice in the PBS + SC19 group, BS168 + SC19 group, and rBS<¢-
859 + SC19 group were injected intraperitoneally with 200 puL of SC19
(6 x 10 CFU/mouse). Fresh fecal samples were collected daily
following SC19 infection and directly resuspended in sterile PBS. The
number of rBS®S%¥ in feces of mice from the rBS“ %% + SC19
group was determined referring to the method described in the rBS“¢-
859 therapeutic trial. Throughout the study, the health of the mice was
monitored on a regular daily. On day 12, all mice were sacrificed by
cervical vertebra dislocation, the blood and the major organs (heart,
liver, spleen, lung, kidney, and brain) were collected and fixed with 4%
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paraformaldehyde. Then, the remaining organ tissues were weighed
and homogenized, and the number of SC19 in the heart, liver, spleen,
lungs, kidneys, brain, and blood was measured using TSA plates.

All animal experiments were performed with the approval of the
Scientific Ethic Committee of Huazhong Agricultural University (no.
HZAUMO-2024-0075).

2.12 Statistical analysis

Statistical analysis was performed using GraphPad Prism 8.3.0
(GraphPad Software, San Diego, CA, United States). Data were
expressed as mean + standard deviation (SD), and analysis
comparisons were carried out using one-way analysis of variance
(ANOVA) followed by Tukey’s multiple-comparison test (*p < 0.05,
**p <0.01, and **p < 0.001).

3 Results

3.1 Construction of recombinant plasmids
and bacterial strains

To validate whether Lys0859 displayed on the spore surface
enhances antibacterial activity or tolerance, we constructed a
recombinant B. subtilis strain (rBS®%) expressing Lys0859 on its
spore surface. Briefly, the exogenous fusion gene CotG-0859 was
inserted into the amylase gene of B. subtilis through homologous
recombination, resulting in the inactivation of the amylase gene
(Figure 1a). Therefore, recombinant bacteria (rBS<'“%*) could not
hydrolyze starch compared to the wild-type (Figure 1b). To further
verify whether CotG-0859 was successfully inserted into the AmyE
gene, PCR were performed using 4 sets primers. The results of
agarose-gel electrophoresis showed that the bands amplified from the
genome of rBS®'“%* were 4,448 bp, 1,544 bp, 3,831 bp, and 2,161 bp
from left to right, which was consistent with the expected size
(Figure 1c). We used Coomassie blue staining to identify the capsid
proteins extracted from the rBS<%%% spores. A specific band with
molecular weight of 51 kDa appeared in the extracts of rBS<¢-%%
spores, but extract from wild strains (B. subtilis 168) did not (Figure 1d).
In addition, western blot results showed that a positive hybridization
band with 51 kDa was detected in the capsid proteins extracted from
the rBS'S% gpores. Conversely, it was not detected in the extracts of
wild strains (B. subtilis 168) (Figure le). The surface expression of the
fusion protein was also confirmed by immunofluorescence (IF), with

SCmG—OSSQ

strong fluorescence was observed on rB! spores compared to

wild-type spores (Figure 1f).

3.2 The growth and sporulation rate of
rBScete-0859 and its in vitro resistance assay

The growth curve and sporulation rate of B. subtilis 168 and
rBSCS0% were determined through a standard plate-counting

method. As shown in Figure 2a, the growth curve of the rBS®-0%%

was
always consistent with the B. subtilis 168, indicating that the insertion
of exogenous DNA did not affect the growth of the recombinant

strains. In addition, the high-level expression of heterologous proteins
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FIGURE 1

Construction of recombinant B. subtilis with surface display of phage lysin 0859. (a) The construction process of recombinant B. subtilis with surface
display of Lys0859 on the surface (rBS<°'%8%)_(b) Starch hydrolysis test. B. subtilis 168 and rBS<°-%8% were cultured on a LB-agar medium containing
1% starch and stained with iodine. (c) PCR analysis of B. subtilis using different primer pairs: (1) AmyE-F and AmyE-R; (2) G8-F and G8-R; (3) G8-F and
AmyE-R; (4) AmyE-F and G8-R. In the results displayed for each primer pair, the left lane represents B. subtilis 168 and the right lane represents
rBSCetc-0859 (d) SDS-PAGE and (e) western blot analysis of proteins extracted from spores of the B. subtilis wild-type (WT) strain and rBS°'¢-08%; and
Lys0859 or CotG-0859 proteins obtained from prokaryotic expression were used as a control; (f) Immunofluorescence of CotG-0859 on the spore
surface at 48 h after induction of wild-type (WT) and rBS<®'“-%8 The scale bar represents 10 pm.

85

Frontiers in Microbiology 57 frontiersin.org


https://doi.org/10.3389/fmicb.2025.1519935
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Wang et al.

10.3389/fmicb.2025.1519935

104 1.2+
-~ B. subtilis 168

4 8- - % = pgCotG-0859
£ = 0.8+
g 67 8
° i
- 4 S
(= =
S - B.subtilis 168 S 047

2+ = (BgCOIG-0859 »

0 T 1 T 1 1 1T 1T 1T 1T 1T T 1 0.0+

0 2 4 6 8 101214 16 18 20 22 24 0 2 4 6 8 1012141620 24 30 36 42 48
Time/(hour) Time/(hour) Temperature (°C)
E 12 - SGF SIF
£ £ 144
5 101 £ -
£ 8- £ 10-
s £
o 67 5 8
c 1]
] S 6+
N 4 ]
g c 4+
£ 24 2
£ 0- g 0 T
PBS 1 2 3 4 S5 6 7 8 PBS 0 1 2 3 4 5 5 10 15 30 60
pH Time/(hour) Time/(min)

h [

-
o
]

P5 P6 P7 P8 P9 P10

PBS WT P1 P2 P3 P4

-
N
1

(=]
1

»~
1

Inhibition zone size (mm)

0
Q‘b" LTPPRE et @R

FIGURE 2

The growth and sporulation rate of rBS®*'¢-08% and resistance assay in vitro. (@) Growth curves of B. subtilis 168 and rBS<'¢-%85°_(b) The sporulation
curves of B. subtilis 168 and rBS®'¢-%8%°_Effects of (c) different temperatures, and (d) different pH on the antibacterial activity of rBS<'¢-%8 spores. The
rBSCote-085% spore (1 x 107 CFU) was exposed to (e) SGF supplemented with gastric protease (pH 1.2) and (f) SIF containing trypsin (pH 6.8). At
predetermined time points, bacteriostatic activity of rBS<'¢-%8 spores (1 x 107 CFU) against S. suis SC19 was tested by the agar-well diffusion assays.
The diameter of inhibition zone was measured after incubation for 12 h at 37°C. (g) PCR analysis of the 1st to 10th generation rBS<'¢-%6%° ysing different
primer pairs: G8-F and G8-R; 168-F and 168-R. (h) The antibacterial activity of rBS©°'¢-%8% (the 1st to 10th generation) against S. suis SC19 after passage.
(i) The size of each inhibition zone shown in figure H was measured using a vernier caliper, and presented as a bar chart.

did not have a significant effect on the sporulation rate of rBS““**®  declining tendency toward when the pH decreased (Figure 2d), and

compared with the B. subtilis 168 (Figure 2b).

Moreover, we evaluated the effects of temperature, pH, SGFE, and
SIF on the antibacterial activity of rBS®'“%* spores. As shown in
Figure 2c, the antibacterial activity of rBS®“%* spores against S. suis
SC19 showed a gentle downward trend with increasing temperature.
Meanwhile, the antibacterial activity of rBS'“**® spores showed a

Frontiers in Microbiology

still maintained excellent antibacterial activity at pH 1.0. Similar
experimental results were observed in both simulated gastric fluid
(pepsin 1 mg/mL, pH 1.2) (Figure 2¢) and simulated intestinal fluid
(trypsin 1 mg/mL, pH 6.8) (Figure 2f). Furthermore, the rBS®¢-0%%
were serially passaged on LB agar plates up to 10 times
(Supplementary Figure S1), and identified by PCR analysis. Nucleic
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acid electrophoresis showed that the bands amplified from the 1st to
10th generation rBS®'“*® genome were 1,544 bp and 4,854 bp
(Figure 2g), which was consistent with the expected size. As shown in
Figures 2h,i, the 1st to 10th generation rBS®°¢-0%%
good antibacterial activity against S. suis SC19.

spores exhibited

3.3 Bactericidal activity of Lys0859
displayed by rBS<°t-%8% 3gainst
Streptococcus suis SC19

Following confirmation that the Lys0859 enzyme successful
displayed on the surface of rBS®'“"* spores, we validated whether the
rBSC69%% gpores exhibited bactericidal activity against S. suis SC19
through an agar-well diffusion assay. The purified rBS“'%% spores
were added into an 8-mm diameter well on agar plate confluent with
S. suis SC19, and incubated at 37°C for 12 h. The well containing
Lys0859 enzyme displayed an antibacterial zone, served as a positive
control, while the spore of B. subtilis 168 has no antibacterial activity
and used as a negative control (Figure 3a). The inhibition zone
diameters (11.56, 11.92, 12.17, and 12.41 mm, respectively) of Lys0859
enzyme with different dosages (from low to high were 20, 30, 40, and
50 pg) were measured on a double-layer agar plate containing S. suis

10.3389/fmicb.2025.1519935

SC19 (Figure 3c). To better understand the relationship between dose
and inhibition zone, three known dosages of Lys0859 enzyme and
corresponding inhibition zones were transformed into a linear
regression equation, which is y=0.0028x + 11.035, R*>=0.9896
(Figure 3b). After incorporating the inhibition zone diameters of
rBSCG08 gpores (1 x 10° CFU) into the regression equation, the
antibacterial potency against S. suis SC19 were equivalent to 39.11 pg
Lys0859 enzyme, respectively.

3.4 Bactericidal activity of rBScctc-08%9
against common pathogens

Based on the excellent antibacterial effect of Lys0859 displayed by
BSOS against S. suis SC19, we next examined whether rBS©6-0%9
spores could kill clinical isolates (pathogenic bacteria) of S. suis. Here
we still use Lys0859 as a positive control for the agar well diffusion assay,
and B. subtilis 168 spores (1 x 10" CFU) as a negative control. The results
of the study demonstrated that Lys0859 exhibited a dose-dependent
antibacterial effect against streptocci. Four dosages of Lys0859 with
concentrations of 20, 30, 40, and 50 pg showed an average inhibition
zone of 11.2,12.02, 12.41, 12.66 mm (Supplementary Figure S2a), 14.15,
14.77,14.92, 15.25 mm (Supplementary Figure S2b), 12.95, 13.3, 13.73,

14+
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FIGURE 3
Bactericidal activity of Lys0859 displayed by rBS“'“-0%% against S. suis SC19. (a) The antibacterial efficacy of rBS“'“-%%% was determined by agar diffusion
assay against S. suis SC19. (b) The regression equation was obtained based on four known dosages of Lys0859 that corresponded to their inhibition
zones. Antibacterial potency equivalent to Lys0859 of rBS°'“-%%% spores against S. suis SC19 was determined. (c) The size of each inhibition zone
shown in (a) was measured using a vernier caliper, and presented as a bar chart.
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13.96 mm (Supplementary Figure S2¢), 12.03, 12.31, 12.74, 12.92 mm
(Supplementary Figure S2d), 11.22, 11.53, 11.86, 12.17 mm
(Supplementary — Figure S2e), 8.98, 9.25, 9.82, 9.93mm
(Supplementary Figure S2f), and 12.65, 12.98, 13.34, 13.57 mm
(Supplementary Figure S2g), respectively, on the agar plate containing
S. suis SS3, S. suis 18SS35, S. suis SS4, S. suis 18SS8, S. suis SS19, S. suis
1SS3 or S. suis 185S75. The rBSC'“%* spores with concentrations of
1 x 10° CFU exhibited an average inhibition zone of 12.54, 14.34, 14.11
and 12.25 mm against S. suis SS3 (Supplementary Figure S2a), S. suis
188835  (Supplementary  Figure  S2b), S.  suis  SS4
(Supplementary ~ Figure  S2¢) 18SS8
(Supplementary Figure S2d), respectively. Additionally, the rBS<¢-05%

and S. suis

spores at a concentration of 1 x 10° CFU displayed mean inhibition zone
of 11.78 mm, 10.86 mm, and 13.58 mm against S. suis SS19
(Supplementary Figure S2e), S. suis 1SS3 (Supplementary Figure S2f)
and S. suis 18SS75 (Supplementary Figure S2g), respectively. Based on
the linear regression analysis (Table 1), the bactericidal activity of
1 x 10° CFU rBS®'%%% gpores against S. suis SS3, S. suis 18SS35, S. suis
SS4 and S. suis 18SS8 were equivalent to 44.52 pg, 22.14 pg, 52.45 pg and
26.93 pg of Lys0859, respectively. The bactericidal activity of 1 x 10° CFU
rBSC%% gpores against S. suis SS19, S. suis 1SS3 and S. suis 18SS75
were equivalent to 37.44 ug, 75.35 ug, 49.58 ug of Lys0859, respectively.

For S. suis SS15, S. suis SS23, S. suis SS30, S. suis 18SS23, S. suis
18SS29, S. suis 18SS91 and S. suis 19SS9, four different dosages of
Lys0859 (20, 30, 40, and 50 pg) exhibited an average inhibition zone
of 13.86, 14.22, 14.51, 14.94 mm (Supplementary Figure S3a), 14.75,
15.11, 15.34, 15.49 mm (Supplementary Figure S3b), 13.67, 14.17,
14.35, 15.21 mm (Supplementary Figure S3c), 12.89, 13.16, 13.46,
13.89 mm (Supplementary Figure S3d), 13.87, 14.31, 14.66, 14.87 mm
(Supplementary Figure S3e), 12.85, 13.22, 13.76, 14.32mm
(Supplementary Figure S3f), and 9.72, 10.38, 10.97, 11.21 mm
(Supplementary Figure S3g), respectively. The rBS<'%-% spores with
concentrations of 1 x 10” CFU showed an average inhibition zone of
13.57, 14.39, 12.85, 13.67, 14.43, 13.19 and 11.12 mm against S. suis
SS15 S$3a), . 523
(Supplementary Figure S3b), S. suis SS30 (Supplementary Figure S3c),
S. suis 18SS23 (Supplementary Figure S3d), S. suis 18SS29
(Supplementary Figure S3e), S. suis 185591 (Supplementary Figure S3f)
and S. suis 19SS9 (Supplementary Figure S3g), respectively.

(Supplementary  Figure suis

Calculated based on the linear regression equation shown in Table 1,
the bactericidal activity of 1 x 10" CFU rBS®%% gpores against
S. suis SS15, S. suis SS23, S. suis SS30, S. suis 18SS23, S. suis 185529,
S. suis 185891 and S. suis 19SS9 were equivalent to 12.09 pg, 30 pg,
3.75 pug, 44.70 pg, 34.56 pg, 27.7 ug and 45.51 pg of Lys0859,
respectively.

Next, we performed another antimicrobial test on Streptococcus
agalactiae ATCC13813, Streptococcus agalactiae X2 and Streptococcus
dysgalactiae SD002. Analogous to the above experiments, different
dosages of Lys0859 (20, 30, 40, and 50 pg) exhibited an average
inhibition zone of 9.95, 10.42, 10.83, 11.19 mm, 8.81, 9.46, 9.91,
10.21 mm, and 9.78, 10.42, 10.65, 10.87 mm on the agar plate
containing S. agalactiae ATCC13813 (Supplementary Figure S4a),
S. agalactiae X2 (Supplementary Figure S4b) or S. dysgalactiae SD002
(Supplementary Figure S4c), respectively. The average inhibition
zones of rBS®S%% gpores (1 x 10° CFU) against S. agalactiae
ATCC13813, S. agalactiae X2 and S. dysgalactiae SD002 were 10.21,
11.68, and 10.84 mm, respectively. The bactericidal activity of
1 x 10° CFU rBS®'%%* gpores against S. agalactiae ATCC13813,
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TABLE 1 The linear regression equation (LRE) of each pathogen showed
on agar well diffusion assay.

Pathogenic Enzyme LRE R?
bacteria used

S. suis SS4 Lys0859 y=0.0035x + 12.274 0.9876
S. suis SS15 Lys0859 y=0.0035x + 13.147 0.9945
S. suis SS19 Lys0859 y =0.0032x + 10.582 0.9998
S. suis SS30 Lys0859 y = 0.0048x + 12.67 0.9332
S. suis 18S3 Lys0859 y =0.0034x + 8.298 0.9431
S. suis SS23 Lys0859 y =0.0025x + 14.315 0.9642
S. suis 18558 Lys0859 y=0.0031x + 11.415 0.9786
S. suis 185523 Lys0859 y =0.0033x + 12.195 0.9875
S. suis 185529 Lys0859 y=0.0034x + 13.255 0.9768
S. suis 185535 Lys0859 y =0.0035x + 13.565 0.9339
S. suis 185575 Lys0859 y =0.0031x + 12.043 0.9923
S. suis 185591 Lys0859 y =0.005x + 11.805 0.9918
S. suis SS3 Lys0859 y =0.0048x + 10.403 0.9302
S. suis 19559 Lys0859 y=0.0051x + 8.799 0.9638
S. aureus Lys0859 y = 0.004x + 9.997 0.9391
ATCC43300

S. agalactiae Lys0859 y =0.0041x + 9.152 0.9965
ATCC13813

S. agalactiae X2 Lys0859 y =0.0047x + 7.97 0.9723
S. dysgalactiae SD002 Lys0859 y = 0.0035x + 9.205 0.9216

LRE represented the relationship between Lys0859 dose and inhibition zone shown on the
agar plate. Lys0859, phage lysin 0859; R2, coefficient of correlation.

S. agalactiae X2 and S. dysgalactiae SD002 was equivalent to 25.85 pg,
57.65 pg and 46.71 pg of Lys0859 through linear regression analysis.

We also validated the bactericidal activity of rBS®%% spores
against S. aureus ATCC43300 and found that Lys0859 with different
dosages of 20, 30, 40, and 50 pg exhibited an average inhibition zone
of 10.68, 11.38, 11.55, 11.95mm (Supplementary Figure S4d),
respectively. The rBS®'“%* (1 x 107 CFU) spores displayed an average
inhibition zone of 10.79 mm on the agar plate containing S. aureus
ATCC43300. Based on the results of a simple linear regression
analysis, it was determined that the bactericidal activity of 1 x 10" CFU
rBSCS%% gpores against S. aureus ATCC43300 was found to
be equivalent to 19.83 pg of Lys0859 (Supplementary Figure S4d).

3.5 In vivo pathogen challenge test

To evaluate the antibacterial efficacy of rBS®S%¥ in vivo,
we challenged mice with the S. suis SC19 and treated with rBS©°t¢-06%
spores by oral gavage (Figure 4a). As shown in Figure 4b, at least
10° CFU/g of rBS®'“%% was detected in feces of mice at day 1-4 after

SCoG-08%9 in mouse feces

post-infection. Subsequently, the amount of rB!
showed a progressively decreasing trend from day 5 to day 7. The
treatment of rBS“*'“** spores reduced the SC19 in the heart, liver,
spleen, lungs, kidneys, brain, and blood of mice by 1.14, 1.53, 1.81, 1.96,
0.97,0.47, and 0.52 logs, respectively (Figure 4c), compared to PBS-treat
group. Meanwhile, the treatment of rBS®'“%* spores decreased the

SC19 in the heart, liver, spleen, lungs, kidneys, brain, and blood of mice
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by 0.93, 1.50, 1.43, 1.53, 1.07, 0.69, and 0.39 logs, respectively
(Figure 4c), compared with the BS168 treatment group. Histology
revealed that the rBS“'“%® spores significantly relieved brain and lung
inflammation and pathological damages such as inflammatory cell
infiltrates, alveolar thickening, alveoli interstitial congestion, and edema
in the brain and lung of infected mice (Figure 4d).

Based on the enhanced efficacy of rBS“'“* spores in the
treatment of SC19 infection, the potential of disease prevention was
further explored through pre-treatment (Figure 5a). As shown in
Figure 5b, the number of rBS® %% in mouse feces showed a
gradually decreasing trend from day 8 to day 12 of the experiment,
which is similar to the results of the therapeutic experiment. The
prophylactic treatment of rBS<'“%* spores reduced the SC19 in the
heart, liver, spleen, lungs, kidneys, brain, and blood of mice by 1.42,
1.48,0.77,1.09, 1.21, 0.87, and 1.05 logs respectively, compared to the
group pretreated with PBS (Figure 5¢). Similarly, the prophylactic

10.3389/fmicb.2025.1519935

§CetG-08%9 gphores declined the SC19 in the heart, liver,

treatment of rB
spleen, lungs, kidneys, brain, and blood of mice by 0.92, 1.25, 1.05,
1.21, 1.16, 0.38, and 0.75 logs respectively, compared with the BS168
pretreated group (Figure 5¢). The results of histological analysis
further that oral administration of rBS®%%* gpores significantly
reduced the severity of brain and lung injury (Figure 5d), consistent

with the overall results of the therapeutic trial.

4 Discussion

S. suis is an important zoonotic pathogen that cause systemic
infection in pigs as well as humans (Xia et al., 2019), which not only
lead huge economic losses in the pig industry, but also pose a threat
to the public health (Pei et al., 2020). Although bacterial infections are
commonly treated with antibiotics, the overuse of antibiotics
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Oral rBS'“%8% spores alleviated the infection in mice with S. suis SC19. (a) Experimental design for treatment in this study. Orally administrated with
either PBS, BS168, or rBS'“%5% spores by gavage at days 1, 2, 3, and 4 after S. suis SC19 infection (6 x 10”7 CFU/mouse), respectively. All mice were
euthanized at day 7 after S. suis SC19 infection. (b) Bacterial count of rBS“'“%%% in mouse feces. Fecal samples were collected per day after rBS!¢-0859
treatment and resuspended in sterile PBS (0.1 g of fecal resuspended in 1 mL of sterile PBS). Each sample performed a serial of 10-fold dilutions and
spread on selective agar plates (10 pg/mL chloramphenicol) and incubated at 37°C for 12 h before bacterial counting. (c) The bacterial loads of S. suis
SC19 in heart, liver, spleen, lungs, kidneys, brain, and blood. (d) H&E-stained brain and lung tissue sections. Scale bar: 50 pm.
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contribute to the development of antibiotic resistance in recent years
(Laxminarayan et al., 2013). Therefore, a promising alternative to
antibiotics is particularly important.

An increasing number of studies demonstrated that endolysins
encoded by bacteriophage is a potentially attractive method of
treating bacterial infections. For example, Li et al. reported that
prophage lysin Lys0859 could significantly reduce the bacterial load
of Streptococcus agalactiae in mouse mammary glands, and also
significantly improve the survival of S. suis mice with systemic
infection (Li et al., 2023). Lood et al. also reported the novel phage
lysin PlyF307 could effectively kill multidrug-resistant Acinetobacter
baumannii in mice, thereby rescuing mice from lethal bacteremia
(Lood et al., 2015). In addition, some chimeric lysins exhibited a
stronger bactericidal activity (Diez-Martinez et al., 2015; Briers et al.,
2014; Duan et al., 2023). However, by its very nature, lysin is formed
from polypeptides or proteins by folding, which may result in the
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rapid degradation and inactivation after introduced into the
gastrointestinal tract. It is well known that bacillus endospores are
highly resistant to many physical and chemical assaults and are able
to persist in complex environment. In this study, B. subtilis
endospores were used as a microparticle platform, introducing
prophage lysin Lys0859 on the surface of the spores. It was discovered
that the resistance of tethered lysin Lys0859 against environmental
assaults outperformed that of the free lysin Lys0859. Similarly, the
haloalkane dehalogenase DhaA displayed on B. subtilis spores
exhibited enhanced stress resistance and activity compared to free
DhaA in harsh chemical environments (Wang F. et al, 2019).
Particularly, to our knowledge, Lys0859 was the first phage lysin to
exhibit highly effective bactericidal activity by displaying on the
surface of B. subtilis endospores. Furthermore, we have found that the
growth rate and spore generation rate of recombinant bacteria are
consistent with those of wild strains.

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1519935
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Wang et al.

Although B. subtilis spores significantly enhanced the extreme
resistance and antibacterial activity of Lys0859, stably passaged of
recombinant B. subtilis are also crucial for clinical application from a
genetic perspective. The efficacy of recombinant B. subtilis in exerting
bactericidal effects is primarily contingent upon the presence of exogenous
fusion protein on its spore surface. Nevertheless, the inadvertent loss of
the target gene fragment during successive passaging may significantly
compromise the antibacterial potency of the recombinant bacteria,
thereby impeding its clinical utility. Hence, the stable passaging and
expression of exogenous gene fragments is particularly important. The
findings of this investigation demonstrate that the fusion gene remained
intact and continued to demonstrate robust antibacterial or bactericidal
properties even after 10 consecutive passages of the recombinant bacteria.

It has been reported that Lys0859 exhibits excellent antibacterial
activity against multiple serotypes of S. suis, especially S. suis SC19
(serotype 2). In this study, we obtained consistent experimental results
that support the results previously reported by Li et al. (2023). Because
we have found that the recombinant spores displaying Lys0859 on the
surface can effectively kill multiple streptococci, including S. suis,
S. agalactiae, and S. dysgalactiae. More specifically, based on the agar
well diffusion assay, we found that the antibacterial potency of rBS<¢-
859 spores with 1 x 10° CFU against S. suis SC19, S. suis SS3, S. agalactiae
ATCC13813,and S. dysgalactiae SD002 were equivalent to 39.11, 44.52,
25.85, and 46.71 pg of Lys0859, respectively. The surface display of
B. subtilis spores not only compensates for the deficiencies of Lys0859
stress resistance, but also maintains its original bactericidal activity,
which providing a feasible alternative for application of bacteriophage

lyases in the clinical. Moreover, the application of rBS<'¢-%5%

may
greatly reduce the widespread use of antibiotics in livestock and poultry
breeding industry. More importantly, Lys0859 is a biodegradable
protein that will not remain and accumulate in livestock and poultry.
In order to investigate the antibacterial activity of recombinant
bacteria against S. suis SC19 in vivo, we established a mouse model of
S. suis SC19 infection. The results showed that 4 days after treatment
with rBS®'S% gpores (2 x 107 CFU), the bacterial loads had decreased
0.47 to 1.96 logs (p < 0.05) in all organs and blood tested for S. suis.
Similarly, streptococcal prophage Ply30 lysin reduced the load of S. suis
in all organs and blood of mice by 3 to 5 logs (p < 0.01) (Tang et al.,
2015). Besides, Li et al. found that the intraperitoneal injection of
100 pg/mouse of Lys0859 at 1 h post-infection decreased the load of
S. suis SC19 in all organs and blood of mice by 0.57-1.39 logs (Li et al.,
2023). Next, we evaluated the prophylactic efficacy of rBS<'“% on
S. suis SC19 infection through pretreatment. The results revealed
rBSC¢%% prevention trials obtained similar results as the treatment,
such as significantly reduced the load of S. suis in various organs. In
summary, this study revealed that the efficacy of lysins anchored to the
surface of rBS“'“*®® spores outperform that of the free enzymes.
Although this study has demonstrated that rBS®'“* gpores can
significantly reduce the bacterial load in infected tissues and improve
pathological damage, immune efficacy evaluation remains a crucial
missing piece in the puzzle of our research. However, the dynamic
changes in the host immune response are still a key dimension for
evaluating its therapeutic efficacy. Previous experiments have shown
that Lys0859 can reduce the levels of TNF-a and IL-6 in mice after
mastitis infection (Li et al., 2023). B. subtilis 168-CLE can effectively
increase the levels of IgA and IgG in mice, indicating that the COE
displayed on the spore surface has the ability to stimulate mucosal
immunity and the production and secretion of more antigen-specific
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antibodies by B cells (Tian et al., 2024). In the subsequent experimental
plan, it is necessary to measure cytokine and antibody levels, analyze
immune cell subsets, and study the distribution and activation of
immune cells in infected tissues. By integrating these immune-related
data with our existing results on tissue bacterial load and pathological
changes, we can draw more comprehensive and accurate conclusions
about the effectiveness and mechanism of action of our treatment.

5 Conclusion

In conclusion, in this study, we successfully displayed
prophage lysin Lys0859 on the surface of B. subtilis spores using
CotG as an anchor protein, and demonstrated excellent
bactericidal activity against Streptococci in vitro. On the other
hand, our experimental results strongly demonstrated that the
surface display of B. subtilis spores not only significantly enhances
the stress resistance of Lys0859, but also maintains the bactericidal
activity of Lys0859. Most importantly, the surface display of
B. subtilis spores not only reduces complex and time-consuming
preparation and purification steps, but also reduces the costs, this
lays the foundation for the clinical application of prophage lysin.
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In this study, the chemical composition of Magnolia essential oil (MEO)
was analyzed using gas chromatography-mass spectrometry (GC-MS). The
results indicated that terpenoids were the primary constituents, with the
main components being 1,8-cineole (44.87%), (+)-citronellal (6.93%), and
linalool (29.1%). The antibacterial activity of MEO against four target
bacteria was confirmed through inhibition zone assays, minimum inhibitory
concentration (MIC), and minimum bactericidal concentration (MBC) tests. The
bacterial growth curve demonstrated that MEO significantly inhibited bacterial
growth and effectively delayed the logarithmic growth phase. Mechanistic
studies suggested that MEO primarily acts in the initial stages of bacterial
growth by disrupting the bacterial cell membrane, leading to substantial
leakage of intracellular materials, impairing metabolic activities, inducing lipid
peroxidation, and enhancing oxidative stress, thereby inhibiting normal bacterial
proliferation. Furthermore, MEO's antioxidant properties were evaluated through
its scavenging effects on DPPH and hydroxyl radicals, as well as its ferric
reducing antioxidant power (FRAP). The findings revealed that MEO exhibited
the strongest scavenging activity against DPPH radicals, followed by hydroxyl
radical scavenging, with the FRAP results being comparatively weaker. These
results suggest that MEO not only possesses potent antibacterial effects but also
exhibits notable antioxidant activity, indicating potential for broader applications.

KEYWORDS

magnoliae flos, essential oil, GC-MS, chemical composition, antibacterial, antioxidant

1 Introduction

For a long time, natural plant essential oils have been recognized for
their wide-ranging biological activities, including antibacterial, antifungal, and
antioxidant properties. Essential oils are complex mixtures of volatile compounds,
primarily com-posed of terpenoids, phenols, and other bioactive constituents
(Wu et al, 2020; Hadidi et al., 2020; Bouyahya et al, 2017). These compounds
exhibit various therapeutic characteristics, making essential oils an attractive
focus for researchers seeking alternative and effective treatments, particularly
against drug-resistant pathogens (Der Torossian Torres and de la Fuente-Nunez,
2019). Rich in terpenoids, these essential oils demonstrate potent antibacterial
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effects by disrupting the integrity of microbial cell walls and
membranes, leading to cell lysis and ultimately resulting in bacterial
death (Visan and Negut, 2024).

Magnolia essential oil (MEO), extracted from the dried
flower buds of Magnolia biondii Pamp., Magnolia denudata Desr.,
and Magnolia sprengeri Pamp., is a volatile oil rich in bioactive
compounds such as eugenol, a-pinene, and linalool. Traditionally,
these flower buds have been used in Chinese medicine to dispel
wind-cold, alleviate nasal congestion, and relieve headaches
caused by cold exposure. Beyond its conventional medicinal uses,
recent studies have demonstrated that MEO exhibits significant
antibacterial, anti-inflammatory, and antioxidant properties,
making it a promising natural agent for various applications.
In the field of food preservation, MEO has been recognized for
its ability to inhibit foodborne pathogens and delay spoilage by
targeting bacterial cell membranes and oxidative stress pathways.
Its antimicrobial efficacy, coupled with its antioxidant capacity,
suggests potential for extending the shelf life of perishable foods
while maintaining their quality and safety, and its volatile nature
allows for application in vapor-phase antimicrobial packaging
systems, offering an alternative to synthetic preservatives (Liu Y.
et al, 2024). Meanwhile, in the pharmaceutical industry, MEO’s
anti-inflammatory and immunomodulatory effects have drawn
attention for treating respiratory conditions, including rhinitis
and allergic reactions. While some studies have explored its role
in traditional medicine, research into its precise antibacterial
mechanisms and interactions with bacterial metabolism remains
insufficient. A deeper understanding of these mechanisms
could pave the way for novel antimicrobial agents derived from
MEO, addressing the growing concern of antibiotic resistance.
By expanding the exploration of MEO beyond traditional
applications, this study aims to further elucidate its potential in
both food preservation and medicinal fields, contributing to the
broader utilization of natural plant-based antimicrobials.

Bacteria such as Escherichia coli (E. coli), Staphylococcus
aureus (S. aureus), Listeria monocytogenes (L. monocytogenes), and
Salmonella typhimurium (S. typhimurium) are common foodborne
pathogens that can cause severe health issues when contaminating
food (Oh et al, 2017). These bacteria are capable of inducing
symptoms ranging from food poisoning and gastroenteritis to fever,
posing significant risks, especially to vulnerable populations like
the elderly, pregnant women, and children. In recent decades,
the misuse and overuse of antibiotics have led to a rapid rise
in antibiotic resistance, with the World Health Organization
recognizing antimicrobial resistance as one of the top global public
health threats (King et al, 2019). Multidrug-resistant strains of
these pathogens have emerged, rendering conventional treatments
increasingly ineffective and leading to higher morbidity, mortality,
and economic burden worldwide. As antibiotic resistance becomes
a more pressing concern, there is an urgent need to develop safe,
natural antibacterial agents that are less likely to induce resistance.
Essential oils derived from plants, known for their broad-spectrum
antimicrobial properties, have emerged as promising alternatives
(Sanchez-Hidalgo et al., 2018; Khaliullina et al., 2024). These
natural substances can effectively disrupt bacterial cell structures
and inhibit metabolic pathways, offering a potential solution to the
growing problem of antibiotic resistance.

This study identified terpenoids as the major components of
MEO via GC-MS analysis and revealed its antibacterial mechanism,
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which primarily involves disrupting bacterial cell membranes,
leading to metabolic dysfunction, lipid peroxidation, and oxidative
stress, ultimately inhibiting bacterial growth and reproduction,
while in vitro assays also confirmed its antioxidant activity.
By integrating enzyme activity assays and membrane integrity
tests, this study provides a more comprehensive molecular-
level understanding of MEO’ antibacterial effects compared
to previous research, which mainly focused on its chemical
composition and therapeutic applications in rhinitis. Given the
rising concern over antibiotic resistance, these findings highlight
MEQO’s potential as a natural antibacterial agent with a lower risk
of resistance development, making it a promising alternative to
traditional antibiotics.

2 Materials and methods

2.1 Materials and reagents

Magnolia essential oil was obtained from Jiangxi Cedar
Natural Medicinal Oil Co., Ltd. in Jiangxi, China. Nutrient
broth (NB) and nutrient agar (NA) purchased from Guangdong
Huankai Biotechnology Co., Ltd (Guangzhou, China). Escherichia
coli (GDMCC NO.1.1917), Staphylococcus aureus (GDMCC
NO. 1.221), Listeria monocytogenes (GDMCC NO. 1.2408)
and Salmonella typhimurium (GDMCC NO. 1.237) were
obtained from Guang-dong Microbial Culture Collection Center
(Guangzhou, China). Alkaline Phosphatase (AKP), 1,1-Diphenyl-
2-Picrylhydrazyl Radical (DPPH), hydroxyl radicals, Ferric Ion
Reducing Antioxidant Power (FRAP) and ATPase (ATP) kits
were purchased from Nanjing Jiancheng Bioengineering Institute
(Nanjing, China). Malondialdehyde (MDA) and superoxide
dismutase (SOD) kits were purchased from Solarbio science &
technology Co., Ltd. (Beijing, China). Other chemical reagents
were of analytical grade and purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China).

2.2 Chemical composition analysis of
MEO

The GC-MS analysis was conducted utilizing an Agilent 6890N-
5973 gas chromatography mass spectrometer equipped with an
HP-INNOWax model gas chromatography column (Li et al., 2023).
In a 20 mL extraction bottle, 1 g of MEO was sealed and immersed
in a 60°C water bath with magnetic stir-ring set at 500 rpm. After
a 20 min equilibration period, extraction was carried out for an
additional 30 min upon insertion of the extraction needle. Prior
to use, the extraction needle was activated at the gas injection
port for 20 min at 250°C. The temperature program included an
inlet temperature of 250°C, GC interface temperature of 250°C,
carrier gas flow rate of 1.5 mL/min, and a split ratio of 4:1. The
temperature program was as follows: initially set at 40°C, held for
5 min, ramped at 5°C/min to 250°C, and then held for 10 min.
MS conditions comprised an ion source temperature of 230°C,
quadrupole temperature of 150°C, EI ionization at 70 eV, and a
full scan from 35-550 m/z. Identification of compounds within
MEO was accomplished using the National Institute of Standards
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and Technology (NIST14) database alongside literature references.
The relative content of each compound in the chromatogram was
determined employing the area normalization method.

2.3 Antibacterial activity

2.3.1 Bacterial liquid incubate

The frozen strains of E. coli, S. aureus, L. monocytogenes and
S. typhimurium were revived by inoculating them on NA solid
medium. Single colonies were picked and transferred into NB
liquid medium, where they were cultured at 37°C for 24 h (Su
et al., 2023). The bacterial cultures were then stored at 4°C. Before
starting the experiments, the bacterial suspensions were adjusted
to a concentration of 108 CFU/mL using a McFar-land turbidity
standard.

2.3.2 Method for assessing antimicrobial activity

The antibacterial activity of MEO against common foodborne
bacteria (E. coli, S. aureus, L. monocytogenes, and S. typhimurium)
was evaluated using the filter paper disk diffusion method (EI
Barnossi et al, 2020). A 100 pL bacterial suspension with a
concentration of 1 x 10° CFU/mL was spread evenly on NA agar
plates using a sterile spreader. Sterile filter paper disks were gently
placed at the center of each plate. MEO (5 L) was added to the
filter paper disks, and sterile water was used as a blank control. The
plates were incubated at 37°C for 24 h. The inhibition zones were
measured and photographed. This procedure was repeated three
times for accuracy.

2.3.3 The MIC and MBC of MEO to bacteria

The MIC and MBC of MEO were determined using the
microdilution method (Veiga et al., 2019). Initially, a solution of
MEO in NB medium was prepared at a concentration of 60 pL/mL,
with 4% DMSO added as a cosolvent. This solution was then
further diluted to concentrations of 10, 9, 8, 7, 6, 5, 4, 3, 2 and
1 pL/mL. In a sterile 96-well plate, 100 wL of the diluted MEO
solution was added to each well from left to right, followed by the
addition of 100 WL of bacterial suspension (1 x 10° CFU/mL),
gently mixing the contents. The plate was then incubated at 37°C
for 24 h in a constant-temperature microbiological incubator. The
bacterial growth in each well was observed and analyzed, with the
lowest concentration showing no bacterial growth and no increase
in optical density (OD) defined as the MIC value (Kowalska-
Krochmal and Dudek-Wicher, 2021). The incubation continued
for an additional 48 h, and the growth was reassessed. The lowest
concentration with no bacterial growth and no increase in OD
was defined as the MBC value. The experiment was repeated three
times. The blank group did not contain MEO or DMSO, while the
control group only included DMSO.

2.3.4 Growth curve

The determination of growth curve referred to the method of
Feng et al. (2022). The effect of MEO on the growth curve of the
test bacteria was assessed in a sterile 96-well plate. MEO solutions
at concentrations of 0.25 MIC, 0.5 MIC, and 1 MIC, determined
from preliminary experiments, were added sequentially, with 200
WL of each solution introduced into the wells. NB medium without
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MEQO served as the blank control. Subsequently, 20 L of bacterial
suspension (1 x 10° CFU/mL) was added to each well, and the plate
was incubated at 37°C in a shaking water bath at 100 rpm. The OD
at 600 nm was measured and recorded every 2 h to plot the growth
curve. Each group was tested in triplicate, and the bacterial growth
curve was represented by the average turbidity, with absorbance
corresponding to the time intervals.

2.3.5 Nucleic acid and protein leakage assay

The determination of the contents is based on the method
of Liu et al. (2020). In a 10 mL suspension of test bacteria
(1 x 10° CFU/mL), MEO was added, using 4% DMSO as a co-
solvent, to achieve a final concentration equal to the MIC. The
blank group consisted of samples without MEO or DMSO, while
the control group included only DMSO. The bacterial suspension
was then incubated at 37°C in a shaking water bath at 100 rpm
for 2 h. Following incubation, the suspension was centrifuged at
8000 rpm for 10 min to collect the supernatant. This supernatant
was transferred to fresh tubes for analysis, where the optical density
at 260 and 280 nm was measured to quantify the nucleic acids and
proteins released from the cytoplasm.

2.3.6 Electric conductivity assay

The solution conductivity was determined according to the
method of Wingfield (2014). In a 10 mL suspension of test bacteria
(1 x 10° CFU/mL), MEO was added, with 4% DMSO used as
a co-solvent, to achieve a final concentration corresponding to
the MIC. The blank group consisted of samples without MEO
or DMSO, while the control group included DMSO only. The
bacterial suspension was incubated at 37°C in a shaking water bath
at 100 rpm for 2 h. After incubation, the suspension was centrifuged
at 8,000 rpm for 10 min to collect the supernatant, which was
then transferred to fresh tubes. The conductivity of each tube’s
supernatant was measured using a conductivity meter.

2.3.7 Biochemical index assay

The determination of intracellular enzymes referred to previous
research methods (Shi et al., 2016; Rubeena et al., 2020; Li et al.,
2019). In a 10 mL suspension of test bacteria (1 x 10° CFU/mL),
MEO was added, along with 4% DMSO as a co-solvent, to achieve
a final concentration at the MIC. The blank group consisted of
samples without MEO or DMSO, while the control group included
DMSO only. The bacterial suspension was then incubated at 37°C
in a shaking water bath at 100 rpm for 2 h. Following this, the
suspension was centrifuged at 8,000 rpm for 10 min, discarding
the supernatant and collecting the bacterial pellet. High-efficiency
RIPA lysis buffer was added to the cells, and a cell disruptor was
used to thoroughly lyse the cells while in an ice bath. The lysate
was centrifuged again at 8,000 rpm for 10 min, and the supernatant
was transferred to a new tube and kept on ice for subsequent
biochemical assays. The detection steps for AKP, ATP, MDA, and
SOD activities are detailed in the kit instructions.

2.3.8 Scanning electron microscope (SEM) assay
To confirm and validate the results observed under an optical
microscope, we slightly modified the previously reported method
of observing test bacteria using SEM (Bai et al., 2019). The bacteria
(at a concentration of 108 CFU/mL) were treated with MEO at MIC
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concentration for 2 h at 37°C. The precipitate was then centrifuged
at 6,000 rpm for 10 min and washed three times with PBS. The
collected cells were fixed in 2.5% glutaraldehyde at 4°C for 24 h,
followed by dehydration using a series of ethanol concentrations
(15%, 30%, 45%, 60%, 75%, 90%, and 100%) for 10 min each.
Finally, the dehydrated samples were gold-coated and examined
using SEM. A control experiment was conducted without MEO
treatment.

2.4 Antioxidant activity

2.4.11,1-diphenyl-2-picrylhydrazyl (DPPH) radical
scavenging activity assay

To prepare the MEO solutions, anhydrous ethanol was used
to create concentration gradients of 1.25, 2.5, 5, 10, 15, 20, and
40 mg/mL. A 5 mg/mL BHT solution served as the positive control.
For each test, 0.5 mL of the sample solution was mixed with an
equal volume of a 0.2 mM DPPH anhydrous ethanol solution. The
mixture was thoroughly mixed and then placed in the dark for
30 min, with three parallel operations for each concentration. The
absorbance was measured at a wavelength of 517 nm (Ashmawy
et al,, 2024). The experiment was repeated three times. The DPPH
radical scavenging rate was calculated using the following formula
(1):

1 100%

A1 —A
DPPH radical scavenging activity [1— (1A70)

2

Ay represents the absorbance of the sample group (sample without
DPPH solution), A; represents the absorbance of the sample group
containing DPPH, and A, rep-resents the absorbance of the control
group (sample without DPPH solution).

2.4.2 Hydroxyl radical scavenging activity assay
To prepare the MEO solutions, anhydrous ethanol was used
to create concentration gradients of 1.25, 2.5, 5, 10, 15, 20,
and 40 mg/mL, with a 5 mg/mL BHT solution serving as the
positive control. A 9.0 mmol/L FeSO4 solution, a 9.0 mmol/L
ethanol-salicylic acid solution, and a 3% H2O2 solution were
prepared and stored after thorough mixing. In a test tube, 1 mL
of the sample solution was taken, followed by the addition of
1 mL of the prepared FeSO4 solution and 1 mL of the ethanol-
salicylic acid solution. Finally, 1 mL of the H202 solution
was added. The mixture was shaken thoroughly and incubated
in a water bath at 37°C for 30 min. The absorbance was
then measured at a wavelength of 510 nm (Zhu et al, 2024).
This experiment was repeated three times. The hydroxyl radical
scavenging rate was calculated using the following formula (2):

(A1—Ar)
A

0

Hydroxyi radical scavenging activity [1— ] 100%

Ay represents the absorbance value of distilled water participating
in the reaction instead of the sample solution. A; represents
the absorbance value of the sample solution participating
in the reaction. A, represents the absorbance value of the
sample solution and distilled water instead of 3% H202
in the reaction.
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2.4.3 Ferric ion reducing antioxidant power
(FRAP) assay

To prepare the MEO solutions, anhydrous ethanol was used
to create concentration gradients of 1.25, 2.5, 5, 10, 15, 20, and
40 mg/mL, with a 5 mg/mL BHT solution serving as the positive
control. In a 10 mL centrifuge tube, 1 mL of the solution was
centrifuged, and then 2.5 mL of phosphate buffer (0.2 mol/L,
pH 6.6) and 2.5 mL of 1% potassium ferricyanide solution were
added. The mixture was thoroughly mixed and reacted at 50°C
for 20 min before being rapidly cooled. Next, 2.5 mL of 10% tri-
chloroacetic acid solution was added, followed by centrifugation at
4,000 rpm for 15 min. The supernatant (2.5 mL) was then taken
and mixed with 2.5 mL of distilled water and 0.5 mL of 0.1% ferric
chloride solution. After sufficient mixing, the reaction was allowed
to proceed for 10 min, and the absorbance was measured at a wave-
length of 700 nm. This experiment was repeated three times to
ensure accuracy and reliability (Chebbac et al., 2023).

2.5 Statistical analysis

All experimental procedures were repeated three times. All data
are presented as mean =+ standard deviation (SD). Graphs were
created using GraphPad Prism 10, and statistical analysis including
one-way analysis of variance (ANOVA) and Duncan’s multiple
range test was conducted using SPSS 27 software. P < 0.05 was
considered as statistically significant.

3 Results

3.1 Chemical component analysis of MEO

The chemical composition of essential oil was analyzed using
GC-MS, with the results presented in Table 1. A total of 49
compounds were identified from the database search, accounting
for 99.04% of the total essential oil content. The major components
with higher concentrations include 1,8-cineole (44.87%), (+)-
citronellal (6.93%), and linalool (29.1%). The primary constituents
of MEO are terpenoids.

Based on the chemical composition obtained in Table 1 and the
database search results, Figure 1 illustrates the structural formulas
of monomeric compounds with a relative content greater than
0.5%.

3.2 Antibacterial activity assay

3.2.1 Determination of inhibition zone

The inhibition ability of MEO was evaluated using the
disk diffusion method. As shown in Figure 2, MEO exhibited
growth inhibition against E. coli, S. aureus, L. monocytogenes,
and S. typhimurium. The diameters of the inhibition zones are
presented in Table 2, with the inhibition zones for E. coli,
S. aureus, L. monocytogenes, and S. typhimurium measured at
12.63 + 0.35 mm, 10.94 + 0.44 mm, 12.63 + 0.35 mm, and
12.5 &£ 0.24 mm, respectively. These results demonstrate that MEO
has significant antibacterial potential.
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TABLE 1 The chemical component analysis of magnolia essential (MEO).

Relative content (%)

1 8.827 a-Pinene 80-56-8 0.25
2 10.107 Camphene 79-92-5 0.07
3 11.600 B-Pinene 127-91-3 0.30
4 11.935 a-Phellandrene 99-83-2 0.17
5 12.082 B-Phellandrene 555-10-2 0.47
6 13.603 Sabinene 3387-41-5 0.81
7 13.997 a-Terpipene 99-86-5 3.72
8 14.555 Limonene 138-86-3 2.97
9 15.889 1,8-cineole 470-82-6 44.87
10 16.283 y-Terpinene 99-85-4 0.04
11 16.459 B-(Z)-ocimene 3338-55-4 0.04
12 17.005 p-Cymene 99-87-6 091
13 17.323 a-Terpinolene 586-62-9 0.03
14 17.611 Octanal 124-13-0 0.01
15 18.944 6-Methyl-5-hepten-2-one 110-93-0 0.03
16 19.414 2,6-Dimethyl-5-heptenal 106-72-9 0.03
17 21.870 Cis-Linalool oxide 1365-19-1 0.02
18 22.352 3-Furaldehyde 498-60-2 0.02
19 22.570 Trans-Linalool oxide 34995-77-2 0.01
20 23.116 (+)-Citronellal 2385-77-5 6.93
21 25.031 Linalool 78-70-6 29.10
22 25.566 Isopulegol 89-79-2 0.43
23 25.930 B-Elemene 515-13-9 0.73
24 26.048 Cubebene 13744-15-5 0.06
25 26.142 Trans-Caryophyllene 87-44-5 0.03
26 26.324 Citronellyl formate 105-85-1 0.01
27 26.788 (+)-Epi-bicyclosesquiphellandrene 54324-03-7 0.02
28 27.317 Citronellyl acetate 150-84-5 0.55
29 27.640 a-Humulene 6753-98-6 0.08
30 27.910 Z-Citral 106-26-3 0.04
31 27.999 y-Muurolene 30021-74-0 0.09
32 28.134 a-Terpineol 98-55-5 0.04
33 28222 Geranyl formate 105-86-2 0.02
34 28.586 Germacrene-d 23986-74-5 0.44
35 28.792 a-Muurolene 10208-80-7 0.23
36 29.015 Geranial 141-27-5 0.08
37 29.415 Geranyl acetate 105-87-3 0.41
38 29.638 Citronellol 106-22-9 2.80
39 30.296 Nerol 106-25-2 0.03
40 30.372 a-Cadinene 24406-05-1 0.04
41 31.177 Calamenene 483-77-2 0.02
42 31.412 Geraniol 106-24-1 2.44
43 31.665 Geranylacetone 3796-70-1 0.02
44 33.357 (E)-2,6-Dimethylocta-3,7-diene-2,6-diol 51276-34-7 0.03
45 36.166 Elemol 639-99-6 0.20
46 37.746 Eugenol 97-53-0 0.20
47 37.858 y-Eudesmol 1209-71-8 0.08
48 38.181 T-Muurolol 19912-62-0 0.02
49 39.021 a-Cadinol 481-34-5 0.03
Total - - 99.04
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FIGURE 1

Structural formula of chemical components with content greater than 0.5% in magnolia essential oil (MEO).
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FIGURE 2
In vitro antibacterial activity of magnolia essential oil (MEO)
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TABLE 2 Inhibition zone determination of magnolia essential oil (MEO) against four tested bacterial strains.

Diameter of bacterial inhibition zone of different system categories (mm) ‘

S. aureus

‘ L. monocytogenes

Control

S. typhimurium

MEO 12.63 £ 0.35* 10.94 + 0.44°

11.34 £ 0.53° 12,5+ 0.24%

“-” It means no bacteriostatic effect. Different letters in the same figure indicate statistically significant difference at P < 0.05 between different samples. Each value represents the mean of three

replicates =+ standard deviation.

3.2.2 The MIC and MBC of MEO to bacteria

The MIC and MBC values of MEO against four bacterial strains
were determined using the broth microdilution method, with the
results shown in Table 3. The MIC values for E. coli, S. aureus,
L. monocytogenes, and S. typhimurium were 5, 5, 4, and 4 nL/mL,
respectively. The corresponding MBC values were 5, 8, 5, and
5 nwL/mL, respectively. These results indicate that MEO exhibits
relatively weaker bactericidal activity against S. aureus compared to
the other strains. In the control group, bacterial growth was normal,
confirming that the addition of a certain amount of DMSO had no
inhibitory effect on bacterial growth.

3.2.3 Growth curve

The effect of MEO on the growth of E. coli, S. aureus,
L. monocytogenes, and S. typhimurium is shown in Figure 3. In
the control group, all four bacteria rapidly entered the logarithmic
growth phase. However, treatment with 0.25 MIC and 0.5 MIC
of MEO effectively delayed the logarithmic growth phase for all
test bacteria. At the 12 h mark, different concentrations of MEO
exhibited inhibitory effects on the four bacterial strains. The optical
density (OD) values at 1 MIC remained almost unchanged within
12 h, indicating that the test bacteria were highly sensitive to this
concentration. Significant differences were observed between the
MEO-treated groups and the control group.

3.2.4 Nucleic acid and protein leakage

The release of intracellular substances after MEO treatment
was measured using UV spectrophotometry. As shown in Figure 4,
after incubating the four bacterial strains with MEO for 2 h, the
absorbance at 260 and 280 nm significantly increased. A statistically
significant difference (p < 0.05) was observed between the test
group and both the blank and control groups. The rise in
extracellular nucleic acids and proteins suggests that MEO disrupts
the permeability of the bacterial cell membranes, leading to
the leakage of intracellular materials and consequently inhibiting
bacterial growth and reproduction.

3.2.5 Electric conductivity

The electric conductivity of bacterial cultures was measured
after incubation with MEO using a conductivity meter. As shown
in Figure 5, after 2 h of incubation, the conductivity of the
test group significantly increased compared to the blank group
(p < 0.05), which aligns with the findings in Figure 4. This increase
in conductivity is due to the leakage of intracellular substances
such as nucleic acids and proteins, which carry charges and elevate
the ionic concentration in the culture medium. In contrast, the
conductivity of the control group slightly decreased compared to
the blank group, likely because DMSO, a non-ionic solvent, does
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TABLE 3 The minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC) of magnolia essential oil (MEO) against
four tested bacterial strains.

Bacteria

MIC (uL/mL)

E. coli 5
S. aureus - - 5 8
L. monocytogenes - - 4 5
S. typhimurium - - 4 5

“-” It means no bacteriostatic effect.

not contribute to ion concentration and may reduce the number of
conductive ions per unit volume.

3.2.6 AKP activity

Alkaline phosphatase enzyme is closely related to bacterial
metabolic activity, membrane stability, and the synthesis and
degradation of the cell wall. When the level of AKP decreases, it
indicates damage to the bacterial cell membrane or wall, leading
to reduced metabolic activity and slower growth. Therefore, a
reduction in AKP enzyme levels can be considered a marker of
bacterial damage (Zhou et al., 2022; Shi et al., 2024). As shown in
Figure 6A, after 2 h of co-incubation with MEO, the AKP levels in
all four test bacteria were significantly reduced. Furthermore, there
was a notable difference between the test group and the blank and
control groups (p < 0.05). This suggests that MEO has a destructive
effect on the bacterial cell wall.

3.2.7 ATP activity

ATPase plays a crucial role in bacterial cells by hydrolyzing ATP
into ADP, releasing energy necessary for various cellular processes.
When the level of ATPase decreases, the bacteria experience
multifaceted damage (Mao et al., 2024). As illustrated in Figure 6B,
after 2 h of incubation with MEO, the ATPase content in all four
test bacteria showed a significant reduction. Moreover, there was
a noticeable difference between the experimental group and the
blank and control groups (p = 0.05). A reduction in ATPase levels
leads to insufficient energy metabolism, impaired transmembrane
ion transport, membrane potential imbalance, and weakened stress
responses. In severe cases, these disruptions can inhibit bacterial
growth or even lead to cell death.

3.2.8 MDA activity

Malondialdehyde is one of the primary markers of lipid
peroxidation in cell membranes, typically produced under
oxidative stress conditions. An increase in MDA levels often
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The growth curves of E. coli (A), S. aureus (B), L. monocytogenes (C), and S. typhimurium (D) were treated with different concentrations of magnolia
essential oil (MEO). Each value represents the mean of three replicates + standard deviation.
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indicates that the bacteria have undergone oxidative damage or
that their membrane structure has been compromised (Suo et al.,
2022; Chen et al.,, 2022). As shown in Figure 7A, after 2 h of co-
incubation with MEO, the MDA content in the four test bacteria
significantly increased. There was a marked difference between the
experimental group and the blank and control groups (p < 0.05).
The increase in MDA levels is a sign of severe oxidative damage
to bacterial cells, representing structural damage to the membrane
and heightened oxidative stress, which negatively impacts bacterial
growth and reproduction.

3.2.9 SOD activity

Superoxide dismutase primarily functions to eliminate
superoxide anions in bacteria by catalyzing their conversion
into hydrogen peroxide and oxygen, thereby protecting cells from

oxidative damage. An increase in SOD levels typically indicates that

the bacteria are experiencing oxidative stress (Mohammad et al.,
2014). As shown in Figure 7B, after 2 h of co-incubation with MEO,
the SOD enzyme content significantly increased in the four test
bacteria. There were statistically significant differences between the
experimental group and the blank and control groups (p < 0.05).
The elevated SOD levels reflect the bacterial response to oxidative
stress, indicating that the bacteria are under environmental

pressure, which may involve membrane damage, oxidative damage
to proteins and DNA, and metabolic dysfunction.

3.2.10 Scanning electron microscope

The impact of MEO on the cellular morphology of the four
test bacteria was observed using SEM. As shown in Figure 8,
the control group displayed bacteria with smooth, intact surfaces,

Frontiers in Microbiology 73

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1509796
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Liu et al. 10.3389/fmicb.2025.1509796
~ —
g Blank
E ) a . . . Control
~ a T
Z210b . T b b est
.E c C C
13}
E
S 357
3
CE
13}
=
= 0
A\ S S I
0 e“ “e “
6‘ ¢ S 0/‘“ XO% W\,x\
: O(ﬁ Q‘ﬂ
FIGURE 5

The electric conductivity of bacterial culture medium after treatment of E. coli, S. aureus, L. monocytogenes, and S. typhimurium in different groups.
Different letters in the same figure indicate statistically significant difference at P < 0.05 between different samples. Each value represents the mean
of three replicates + standard deviation.
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(A) Is the alkaline phosphatase (AKP) enzyme activity of E. coli, S. aureus, L. monocytogenes, and S. typhimurium in different groups. (B) Is the
ATPase activity of E. coli, S. aureus, L. monocytogenes, and S. typhimurium in different groups. Different letters in the same figure indicate
statistically significant difference at P < 0.05 between different samples. Each value represents the mean of three replicates + standard deviation.

regular edges, full bodies, and tightly packed structures. However,
after treatment with MEO at the MIC level, varying degrees of
deformation were evident in all four bacteria. The bacterial surfaces
became unclear, collapsed, with cell membrane indentations,
ruptures, and distorted shapes. These results indicate that MEO
damaged the bacterial cell wall and membrane structures. The
disruption of these structures led to the leakage of intracellular
contents, compromising bacterial integrity and resulting in its
antibacterial effect.

3.3 Antioxidant activity

As shown in Figure 9, within the tested concentration range,
the radical scavenging activity of MEO against DPPH, hydroxyl
radicals, and FRAP exhibited a dose-dependent relationship. The
scavenging rate increased with increasing MEO concentration,
indicating that its effect was concentration-dependent. Among the
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measured antioxidant capacities, MEO demonstrated the highest
scavenging activity against DPPH (ICsy = 7.421 mg/mL), followed
by hydroxyl radicals (ICso = 1.794 mg/mL), while FRAP exhibited
the lowest activity. This suggests that MEO possesses a stronger
ability to neutralize DPPH radicals compared to its reducing power
as measured by hydroxyl radical and FRAP assays.

4 Discussion

Plant-derived natural medicines have long been valued for their
diverse biological activities, including antibacterial, antioxidant,
anti-inflammatory, and antiviral properties (Zhang et al., 2024).
Compared with traditional antibiotics, essential oils (EOs) are
gaining attention due to their broad-spectrum antimicrobial
efficacy and lower risk of inducing bacterial resistance (Wells,
2024). Previous studies have demonstrated that terpenoids and
phenolic compounds in EOs can disrupt bacterial membranes, alter
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statistically significant difference at P < 0.05 between different samples. Each value represents the mean of three replicates + standard deviation.
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ion gradients, and interfere with key metabolic pathways, ultimately
leading to cell death (Visan and Negut, 2024). Among them,
tea tree oil (Melaleuca alternifolia) and lavender oil (Lavandula
angustifolia) are well-known for their strong antibacterial and
antioxidant properties, with proven effectiveness against foodborne
pathogens (Kokina et al., 2019). The present study confirms that
MEO exhibits similar antibacterial activity against Escherichia
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coli, Staphylococcus aureus, Listeria monocytogenes, and Salmonella
typhimurium, with its primary active components—1,8-cineole,
citronellal, and linalool—playing a crucial role (Gyorgy et al., 2020).
Compared with other plant EOs, MEO demonstrated notable
antibacterial potential against both Gram-positive and Gram-
negative bacteria, suggesting that its bioactive compounds may
have broader applications in food safety and medical fields.
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The increasing prevalence of antibiotic-resistant bacteria has
become a major global health concern, particularly in foodborne
pathogens such as E. coli, S. aureus, and L. monocytogenes
(Bajrami et al., 2024). This has driven the search for alternative
antimicrobial agents that are both effective and safe. In this
study, inhibition zone determination, MIC, and MBC assays
confirmed the potent antibacterial effects of MEO, with results
comparable to or even exceeding those of previously studied
EOs. Growth curve analysis further demonstrated that MEO
significantly prolonged the logarithmic growth phase of bacteria,
indicating a bacteriostatic effect. Moreover, MEO was found to
cause substantial leakage of intracellular materials, induce lipid
peroxidation, and generate oxidative stress, ultimately impairing
bacterial metabolism and survival. These antibacterial mechanisms
align with those reported for tea tree and cinnamon oils (Graziano
et al,, 2016), reinforcing the hypothesis that essential oils primarily
act by disrupting bacterial membrane integrity. In addition to its
antibacterial activity, MEO exhibited antioxidant properties, as
evidenced by its strong scavenging effect on DPPH and hydroxyl
radicals, although its ferric reducing antioxidant power (FRAP) was
relatively weaker. While the antioxidant activities of tea tree and
lavender oils have been widely studied, further research is needed
to fully understand the antioxidative mechanisms of MEO and its
potential applications in preventing oxidative deterioration in food
systems.

Despite its promising antimicrobial and antioxidant properties,
several challenges must be addressed before MEO can be widely
applied in food preservation and healthcare. One major concern
is its stability, as essential oils are highly volatile and susceptible
to degradation under environmental factors such as heat, light,
and oxygen exposure (Liu L. et al, 2024). Additionally, the
potential cytotoxicity of MEO at high concentrations should be
thoroughly evaluated to ensure its safety for human consumption.
Furthermore, while essential oils have been explored as natural
food preservatives, their strong aroma and hydrophobic nature may
limit direct application in food products (Shaukat et al., 2023).
To overcome these limitations, future research should focus on
enhancing the stability and controlled release of MEO through
nanoencapsulation or emulsification techniques. Additionally,
investigating the synergistic effects of MEO with other natural
antimicrobials, such as organic acids or plant polyphenols, may
help improve its efficacy while reducing the required concentration
(Timbe et al., 2021). Lastly, comprehensive toxicological studies
and clinical evaluations are necessary to confirm its long-term
safety and effectiveness. By addressing these challenges, MEO
has the potential to become a viable natural alternative to
synthetic preservatives and antibiotics, contributing to safer and
more sustainable solutions in food preservation and medical
applications.

5 Conclusion

In this study, the chemical constituents of MEO were analyzed
by GC-MS. The highest proportion of compounds was terpenoids,
and the main components with higher content were 1,8-cineole
(44.87%), (+) -Citronellal (6.93%) and Linalool (29.1%). Through
the determination of inhibition zone, MIC and MBC, it was
preliminarily concluded that MEO had good antibacterial effect
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on the four test bacteria. The growth curve shows that MEO has
an inhibitory effect on the growth and reproduction of the test
bacteria, and can effectively delay the logarithmic growth period of
the bacteria. Through the preliminary exploration of the bacterial
mechanism, it was found that MEO mainly acts on the initial
stage of bacterial growth. By destroying the cell membrane, they
cause a large amount of material loss in bacteria, affect bacterial
metabolic activity, cause peroxidation of bacteria, stimulate their
oxidative stress, and cannot maintain the normal growth and
reproduction of bacteria. The scavenging ability of MEO on DPPH
and hydroxyl radicals and FRAP were also determined. MEO had
the best scavenging effect on DPPH, followed by hydroxyl radical
scavenging effect, and FRAP had the worst effect.
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The enzyme AAC(6')-Ib-cr belongs to plasmid-mediated quinolone resistance
(PMQR), first reported in 2006 and now widely disseminating. Here, we
developed three phenotypic methods to detect AAC(6')-lb-cr enzyme-
producing Enterobacteriaceae (APE), two of which are proposed innovatively
in this research. These tests are based on the following principles: (i) Matrix-
assisted laser desorption/ionization time-of-flight (MALDI-TOF MS) can measure
the mass shift of 42 Da resulting from ciprofloxacin acetylation by the AAC(6')-
Ib-cr enzyme. (ii) Co-incubation of ciprofloxacin disks with APE results in
inactivation of the drug activity, making it unable to inhibit the growth of the
indicator organism. We named this test the quinolone inactivation method
(QIM). (iii) Based on the principles of the modified Hodge test, we designed
the quinolone Hodge test (QHT). Through exploration of optimal conditions
for three methods, we found that MALDI-TOF MS provides the most intuitive
results after 1 h of incubation. The interpretability of the QIM and QHT results
was significantly improved when the indicator organism E. coli ATCC25922 was
replaced with a quinolone-slightly-resistant isolate. However, Proteus mirabilis
was excluded from both QIM and QHT due to its swarming motility. Next, a
validation study was conducted using a prospectively collected set of 187 clinical
strains, demonstrating 100% specificity (MSM: 141/141; QIM,QHT: 135/135) and
100% sensitivity (MSM: 46/46; QIM,QHT: 33/33) compared to the genotype. In
a word, this study presented three simple, efficient, and cost-effective methods
for detecting APE, suitable for clinical microbiology laboratories under various
conditions for the prevention and control of hospital infections.

KEYWORDS

AAC(6')-lIb-cr, PMQR, quinolone, antimicrobial resistance, Enterobacteriaceae

Introduction

Quinolone antibiotics are chemically synthesized drugs with advantages of high
blood concentrations, excellent broad-spectrum antibacterial activity, and strong tissue
penetration (Ahmed and Daneshtalab, 2012; Ball et al., 1998), making them a preferred
agent for empirical treatment of infections (Gupta et al., 2011; Pilatz et al., 2020; Taplitz
et al, 2018). They were the second most frequently prescribed antimicrobial drugs after
B-lactam (Mercuro et al., 2018; Sanchez et al., 2016; Shapiro et al., 2014), but followed
by serious bacterial resistance (Logan et al., 2019; Pitout et al., 2022; Zhao et al., 2024).
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Researches have shown that bacterial resistance to quinolones
is mainly mediated by chromosomal mechanisms, including
alterations in drug action sites (DNA gyrase and topoisomerase
IV gene mutations) and decreased drug accumulation capacity
(loss of membrane porins and overexpression of efflux pumps)
(Darby et al, 2023; Pham et al, 2019). Of greater concern
were plasmid-mediated quinolone resistance (PMQR) due to their
higher transmissibility (Ellabaan et al, 2021), including: Qnr
protein families, which protect quinolone targets; the AAC(6')-
Ib-cr enzyme, which acetylates ciprofloxacin and norfloxacin; and
efflux pumps mediated by gepA and 0gxAB plasmid genes (Ruiz
et al., 2012). Among them, the aac(6')-Ib-cr gene is the most
threatening as it provides a selective advantage in the presence
of ciprofloxacin (Phan et al., 2022). Since its first report in
2006 (Robicsek et al., 2006), the prevalence of strains carrying
the aac(6’)-Ib-cr gene has been increasing in both clinical and
environmental settings. According to recent studies, this gene has
been detected in various countries of Asia (Al-Khafaji et al., 2024;
Kuo et al., 2024; Sohrabi et al., 2024; Zhan et al., 2021), Europe
(Hrovat et al., 2019; Mounsey et al., 2021; Piccirilli et al., 2021),
Africa (Al-Gallas et al., 2024; Masoud et al., 2021; Swedan et al.,
2023), and the Americas (de Oliveira Alves et al., 2022; Golden
et al., 2021; Logan et al, 2023) across multiple Gram-negative
bacteria. The detection rates of the gene vary significantly by region
and source, typically ranging from 10% to 50%. Furthermore,
the distribution of the aac(6’)-Ib-cr gene is widespread, with its
presence detected not only in clinical strains but also in animals,
food, and water sources (Al-Gallas et al., 2024; Mounsey et al., 2021;
Patel et al., 2024; Zahra et al., 2023).

However, unlike the gnr, gepA, and 0gxAB screening, which
can be accomplished by PCR amplification of the target genes,
the detection of aac(6')-Ib-cr is more complicated. This is
because AAC(6')-Ib-cr belongs to a variant of aminoglycoside
acetyltransferases, and the differences between its encoding gene
aac(6')-Ib-cr and the wild-type aac(6’)-Ib exist only on just
two nucleotides (Trpl02Arg and Aspl79Tyr) (Robicsek et al,
2006). These specific point mutations enable the acetylation of
norfloxacin and ciprofloxacin at the amino nitrogen on position 7-
C of the piperazine ring, thereby reducing drug activity (Vetting
et al., 2008; Maurice et al., 2008). Therefore, the screening for
aac(6’)-Ib-cr traditionally involves amplification of the target gene,
followed by sequencing or restriction analysis (Pitout et al., 2008).
Obviously, this is a time-consuming and expensive work. Although
several studies have proposed alternative methods for aac(6’)-1b-cr
sequencing (Hidalgo-Grass and Strahilevitz, 2010; Wareham et al.,
2010), these methods still relied on the use of large equipment not
typically available in ordinary laboratories. To date, no study has
proposed a method for detecting the AAC(6")-Ib-cr enzyme based
on common antimicrobial susceptibility testing consumables.

Here, we proposed three low-cost phenotypic methods of
detecting the AAC(6')-Ib-cr enzyme in Enterobacteriaceae. They
each possess distinct characteristics and are suitable for clinical
microbiology laboratories under different conditions. We aim to (i)
improve existing phenotypic detection methods for AAC(6)-Ib-cr,
(ii) develop and validate QIM and QHT as reliable alternatives, and
(iii) compare their performance with mass spectrometry and PCR.
These methods are based on the following principles: (i) Matrix-
assisted laser desorption/ionization time-of-flight (MALDI-TOF
MS) is able to measure the mass transfer of 42 Da resulting
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from acetylation of ciprofloxacin by the AAC(6')-Ib-cr enzyme.
Based on this, the appearance of spectrum peaks representing
acetylated ciprofloxacin and its sodium or potassium adduct
reveals the presence of the AAC(6')-Ib-cr enzyme. This method
was initially reported by Pardo et al. (2016), and we followed
their steps with some modifications while enriching the species
of the measured strains. (ii) The quinolone inactivation method
(QIM), which is introduced and named for the first time in this
study, is based on a principle derived from the Carbapenem
Inactivation Method (CIM) (Pierce et al., 2017; van der Zwaluw
et al., 2015): after co-incubation with test strains for some time,
the ciprofloxacin adhered onto the disk will be inactivated by the
enzyme-producing strains, thereby unable to inhibit the growth
of the indicator organism. Furthermore, replacing the indicator
organism E. coli ATCC 25922 with an isolate with only slight
resistance to quinolones can greatly improve the observation
of results. Because AAC(6')-Ib-cr enzyme can easily reduce the
quinolone concentration to a level where slightly resistant strains
can grow, but it still cannot be lowered enough to support
the growth of highly sensitive wild-type strains, as this would
require nearly complete depletion of the quinolone. (iii) The last
approach is based on the reduction of quinolone drug activity by
the AAC(6')-Ib-cr enzyme-producing Enterobacteriaceae (APE),
allowing indicator organisms to grow in a curved manner along
the inoculum of the tested strain toward the disk. This principle
was first proposed by Hodge et al. (1978) to detect penicillinase
and has subsequently been modified multiple times for detection
of pB-lactamases. The excellent performance of Modified Hodge
Test (MHT) for screening carbapenase has been repeatedly
demonstrated (Lee et al., 2001; Pasteran et al,, 2016). In this study,
we attempt to apply this principle to the detection of quinolone
acetyltransferases, and therefore name it the quinolone Hodge
Test (QHT).

Materials and methods

Bacterial isolates

(i) Isolates genetically tested: During the first stage of this study, a
total of 14 Enterobacteriaceae strains were included to explore
the optimal conditions for the three methods. All isolates
have been previously characterized at the molecular level to
determine the various mechanisms of resistance to quinolone
antibiotics, including aac(6')-1b-cr, gnrA, qnrB, qnrC, qnrD,
qnrS, qepA, as well as the quinolone resistance-determining
regions (QRDRs) of the gyrA and parC genes encoding type
II topoisomerases.

(ii) Indicator organisms: We collected four E. coli strains for the
screening indicator organisms in QIM and QHT, including
E. coli 28B220 with a single QRDR mutation (gyrA: S83L),
E. coli B2-4 with a single QRDR mutation (gyrA: D87N), E. coli
B2-5 with two QRDR mutations (gyrA: S83L; parC: S80I), and
E. coli ATCC 25922. All of these strains were confirmed to not
carry any of the aforementioned PMQR genes.

(iii) Prospective clinical isolates: A total of 187 quinolone non-
susceptible Enterobacteriaceae isolates representing 9 genera,
including E. coli (n = 104), K. pneumoniae (n = 47), Klebsiella
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oxytoca (n = 1), P. mirabilis (n = 19), Raoultella ornithinolytica
(n = 2), Serratia marcescens (n = 3), Enterobacter spp.
(n = 3), Citrobacter spp. (n = 4), Morganella spp. (n = 3)
and Salmonella sp. (n = 1), were isolated from clinical
specimens in Wenzhou Hospital of Traditional Chinese
Medicine from March to June 2023. A single isolate per
patient was collected. All isolates were re-identified by Matrix-
Assisted Laser Desorption/Ionization Time-of-Flight Mass
Spectrometry (MALDI-TOF MS; bioMérieux, Lyons, France)
and utilized for methodological validation experiments of the
three methods in the second stage of the study.

Antimicrobial susceptibility testing

The MICs of ciprofloxacin and levofloxacin were determined
by the broth microdilution method (Nucien Pharmaceutical Co.,
Ltd. Guangzhou, China) and interpreted according to Clinical and
Laboratory Standards Institute (CLSI)! guidelines.

PCR and sequencing

The test strains and indicator organisms used in this study were
all characterized at the molecular level by PCR and sequencing
methods to identify quinolone resistance genes, including aac(6¢')-
Ib-cr, qnrA, qnrB, qnrC, qnrD, gnrS, qepA, as well as the quinolone
resistance-determining regions of gyrA and parC. Bacterial DNA
was extracted by the boiling method. The amplification reagents
and primer designs were obtained from Shanghai Sangon Biotech
Co., Ltd (Shanghai, China). Primers for these genes are shown
in the Supplementary Table 1 (Kim et al., 2009; Lavilla et al,
2008; Nakano et al., 2019). Positive PCR products were sequenced
by Sanger sequencing method in Shanghai Sangon Biotech Co.,
Ltd. The obtained DNA sequences were analyzed using the Blast
program on the NCBI website? to determine the genotypes.

Exploration of optimal conditions

In the first stage of the study, we aim to explore the optimal
conditions for the three methods and show the experimental steps
in Figure 1.

(i) Mass spectrometry method: We followed the method
of Pardo et al. (2016) and Oviano et al. (2017), and made
some modifications. First, for reagent preparation, we diluted
100 ml:0.2 g ciprofloxacin injection (Nucien Pharmaceutical
Co., Ltd. Guangzhou, China) with normal saline to obtain a
concentration of 50 wg/mL. If the number of tests is small,
the above solution could be obtained directly by immersing
5-7 ciprofloxacin disks (Kont Biology & Technology Co., Ltd.
Wenzhou, China) in 2 mL normal saline. For analysis of bacteria,
briefly, using a sterile inoculating loop, one colony was picked

1 http://www.clsi.org
2 http://blast.ncbi.nlm.nih.gov/blast.cgi
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and suspended in 100 pL of the aforementioned CIP solution in
an Eppendorf tube. Then, the mixture was vortexed for 10 s and
incubated at 35°C for 30 min/1 h/18 h (with the incubation time
being set as the variable of this method). At the end of incubation,
1 wL of the supernatant obtained after centrifugation was dropped
onto a polished steel MALDI target plate, followed by direct overlay
with 1 pL of MALDI-TOF matrix [10 mg/mL a-cyano-4-hydroxy-
cinnamic acid (HCCA) in 50% acetonitrile and 0.1% trifluoroacetic
acid (Bruker Daltonics GmbH, Bremen, Germany)]. The mixture
was allowed to dry together. Spectra were acquired using the
flexControl 3.3 software on a MALDI-TOF MS instrument (Bruker
Daltonics GmbH, Bremen, Germany), with parameter settings:
positive ion linear mode, mass range of 300~600 Da, ion source
1 (IS1) at 10 kV, IS2 at 9.08 kV, lens at 3.00 kV, pulse ion extraction
time of 10 ns, and laser frequency at 60 Hz. Additionally, a control
experiment was conducted without the addition of any bacteria.

For data analysis, the relative molecular mass of ciprofloxacin
(C17H18FN303) is 331, and the mass spectrometry peaks for
[M+HT], [M+NaT], and [M+K*"] appeared at 332, 354, and
370 Da, respectively, as shown in Figure 2. Upon acetylation by
AAC(6')-Ib-cr enzyme, N-acetylciprofloxacin (C19HpoFN304) has
gained an additional 42 Da, corresponding to peaks of 374, 396,
and 412 Da for these three ionic adducts. Therefore, the presence
of these three peaks indicating N-acetylated ciprofloxacin on the
acquired spectral graph suggested that the tested bacteria were
enzyme-producing strains.

(ii) Quinolone inactivation method: Briefly, using a sterile
inoculation loop, 2-3 colonies of test isolate were added to a
glass tube containing 1 mL of Mueller-Hinton Broth (Binhe
Microbiological Reagents Co., Ltd. Hangzhou, China), followed by
vortexing for 5-10 s (control test was performed without adding
any bacteria). Next, a susceptibility-testing disk containing 5 pg
ciprofloxacin (Kont Biology & Technology Co., Ltd. Wenzhou,
China) was gently immersed at the bottom of the suspension
and incubated at 35°C for 1 h/2 h/4 h (variable 1). Near the
end of incubation, indicator organisms adjusted to 0.5 McFarland
turbidity standard were inoculated onto Mueller-Hinton Agar
(MHA; Autobio Biological Engineering Co., Ltd. Zhengzhou,
China) plates by swabbing. In this study, we tested four indicator
organisms (E. coli 28B220, B2-4, B2-5, and ATCC 25955, as
previously described) as the second variable in the methodology.
In addition, the antimicrobial susceptibility phenotypes and genetic
characterizations of these organisms are detailed in Table 1. After
incubation, the disk was carefully removed from the suspension
using an inoculation loop and gently placed onto freshly inoculated
MHA plates. The plates were then incubated overnight at 35°C. It
is worth noting that when removing the disk, one should avoid
dragging it along the inner wall of the glass tube, as condensate
water on the wall may dilute the concentration of antibiotics
adhering to the paper disks, leading to false-positive results. In
addition, the control experiment followed the same steps except
that no bacteria were added during incubation, as previously
described.

Next day, use a ruler to measure the diameter of the inhibition
zone around each CIP disk. If the diameter of the inhibition
zone in the test group was smaller than the control experiment
by more than 5 mm, it was considered a positive result, i.e., the
tested strain was APE. If the inhibition zone diameter was equal
to or greater than the control experiment, it was considered as
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FIGURE 1

Workflows of mass spectrometry method, quinolone inactivation method and quinolone Hodge test. Each performance of mass spectrometry
method and quinolone inactivation method required a concurrent control test which follows the same steps as the regular test, except that the test
bacteria are not added. In addition, another variable for quinolone inactivation method and quinolone Hodge test is the four different indicator

organisms, which are not annotated in the figure.

NAPE. If the value was within the range of the above two, it was
considered an uncertain result. The selection of this cutoff value
was based on the fact that, according to our repeated experimental
experiences, conducting the test under optimal conditions resulted
in most positive results (inhibition zone diameter) differing
from the control experiment by more than 6 mm. Additionally,
negative results always exhibited slightly larger diameters than the
control experiment.

(iii) Quinolone Hodge test: First, the suspension of the
indicator organisms (the four indicator organisms were the only
variable for the method) was swabbed on the MHA plate as
described previously. Next, a CIP disk was placed on the surface
of the plate. Then, using a 10-pl loop, 1-2 monoclonal colonies
of the tested bacteria were inoculated onto the plate in a straight
line out from the edge of the disk, extending outward for a distance
of 20-25 mm. Incubate overnight at 35°C. For the interpretation
of the results, the production of AAC(6')-Ib-cr was considered
positive when the shape of inhibition zone on both sides of the
tested strain was observed to bend toward the disk. Otherwise,
the production of AAC(6')-Ib-cr was considered negative when the
shape of inhibition zone did not change.

Validation experiment

In the second part of the study, we evaluated the optimized
procedure among the 187 blinded clinical isolates previously
described. Specifically, under the optimal conditions of the three
methods, 187 clinical isolates were tested by MSM, and 168
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clinical isolates were tested by QIM and QHT. The prospectively
collected strains were directly used for validation tests conducted
every three days. Each experiment required one negative control
and one positive control, which were selected from the APE
and NAPE identified in the first phase of this study. It is
worth mentioning that the 19 strains of Proteus mirabilis we
collected were excluded from both QIM and QHT due to their
swarming motility, which caused the entire plate to be covered
and prevent observation of indicator results. Subsequently, PCR
and sequencing of amplification products were performed to
determine the presence of the aac(6')-Ib-cr gene in each strain.
Molecular characterization served as the gold standard to calculate
the specificity and sensitivity of the three methods, evaluating
their performance [Specificity = number of samples with negative
results in both the method being evaluated and aac(6')-Ib-cr gene
detection / number of samples with negative results in gene
detection; Sensitivity = number of samples with positive results in
both the method being evaluated and gene detection / number of
samples with positive results in gene detection].

Results

Antimicrobial susceptibility testing and
molecular characterization of quinolone

resistance genes
and

Antimicrobial ~ Susceptibility ~Testing (AST) the

detection of quinolone resistance genes were conducted on

82 frontiersin.org


https://doi.org/10.3389/fmicb.2025.1513425
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Liang et al.

10.3389/fmicb.2025.1513425

[M+H]* [M+Na]* v+ [am+H]*  [AM+Na]® [AM+K]*
R 332228
b i 3854201
4000 a
466,965
2000 379'173 444988 e
N AN A I\N
332.109
3000 i
2000 b
384201
1000 ﬁ\w 370039 379.045
2 BEs
xt0d 332208
08 f
06
04 ﬂ 354078 i C
314205 l 7 370039
02 = i : 370.045
o PN N ' | P AL 9 - J
X103 332226
08
06 d
04 354212
02] 20447s 314199 i 370291 379473 484,067
9 ; B \ X :
x10 332288
15 i
I
354230
by N 374241 e
f 1 306209
05 314'211 ) & 412285 460.949
00 332348 374.085 395338
4000 f
oo 467.107
x104, 374338
08 i
06 g
04 396.338
i 304538 T 412285

FIGURE 2

test strains are enzyme-producing strains.

Results of the three methods under different conditions. Results of the mass spectrometry method (a—g), the quinolone inactivation method (h—k)
and the quinolone Hodge test (1-0). MALDI-TOF MS spectra of ciprofloxacin after 0.5 h (b), 1 h (c), and 18 h (d) incubation with NAPE and after 0.5 h
(e). 1 h (f), and 18 h (g) incubation with APE, and 1 h (a) incubation without bacteria. The spectral peaks at 322, 354, and 370 Da represent the three
adducts of ciprofloxacin molecular ions: [M+H]*, [M+Nal*, and [M+K]*. The spectral peaks at 374, 396, and 412 Da represent the three adducts of
acetylated ciprofloxacin molecular ions: [AM+H] T, [AM+Na]*, and [AM+K]* (indicated by the arrows). E. coli ATCC 25922 (h, 1), E. coli 28B220 [gyrA:
S83L; (i, m)], E. coli B2-4 [gyrA: D87N; (j,n)] and E. coli B2-5 [gyrA: S83L, parC: S80I; (k,0)] were used as indicator organisms. Marked @, ®, ®, ®, and
® in the figures (h,l) are the results of NAPE, NAPE, APE, APE, and control test, respectively, and they correspond to the same positions on the other
six plates. In figures (m,n), the curved growth of the indicator organisms on both sides of the test strains, indicated by the arrows, represents that the

14 Enterobacteriaceae isolates and 3 indicator organisms. Among  combinations of quinolone resistance genes. The molecular

these, 8 isolates carried the aac(6')-Ib-cr gene, 1 isolate carried  characterization of the 3 indicator organisms was also re-validated.

wild-type aac(6')-Ib, and the remaining 5 isolates did not carry = The AST results and resistance determinants for the above isolates

this gene. Additionally, the 14 isolates were found to carry various  are detailed in Table 1.
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TABLE 1 Genotypes, quinolone susceptibility, and QHT results of strains involved in the first stage.

a pecie NE e a a pe O od @ O e Hodge
PMQR QRDR oF-1{[e d O ga
P qnr gepA gyrA Da 1h 8 A 8B 0 B2-4 B2-5
9
Test isolate
A2 (E. coli) 64 32 qnrS = S83L&D87N S80I +¢ +€ + - + + -
A3 (Enterobacter hormaechei) 64 16 qnrB - S831 S801 + + + - + + -
Al141 (E. coli) 128 16 - - S83L&D87N S80I + + + + + + -
B24 (K. pneumoniae) 64 32 qnrB - S831 S80I + + + - + + -
B26 (K. pneumoniae) 16 4 qnrB&qnr$ - wt wt + + + - + + -
A63 (E. coli) > 128 32 - - S83L&D87N S80I&E84V + + + - + + -
A67 (Citrobacter freundii) 32 8 qnrB - S83T wt + + + - + + -
A113 (P. mirabilis) 64 16 - - S831 S80I + + + Not applicable assay?
A105 (E. coli) 32 32 - - S83L&D87N S80I - - - - - - -
A117 (K. pneumoniae) 64 64 qnrB&qnrS - S831&D87G S80I - - - - - - -
A102 (K. pneumoniae) 32 32 - - S83L&DS7N S801 - - - - - - -
6B107 (E. coli) <0.125 <025 - - wt wt - - - _ _ _ _
B1-5 (E. coli) 0.5 1 - - S83L wt - - - - - - -
A6 (K. pneumoniae) 16 32 - - S831 S801 - - - - - - -
Indicator organism
28B220 (E. coli) 0.5 (28)° 1 - - S83L wt
B2-4 (E. coli) 0.5(27) 1 - - D87N wt
B2-5 (E. coli) 2(20) 4 - - S83L S80I
ATCC25922 (E. coli) <0.125 <0.25 - - wt wt
(33)

2CIP, ciprofloxacin; LVE, levofloxacin; MIC, minimum inhibitory concentration; CIP MICs of < 0.25 is considered susceptible, and > 1 is considered resistant; LVF MICs of < 0.5 is considered susceptible, and > 2 is considered resistant; PMQR, plasmid-mediated
quinolone resistance; QRDR, quinolone resistance-determining regions; wt, wild type. ®Two values represent the MIC (outside the parentheses) and the Kirby-Bauer method results (inside the parentheses). ©: visually detectable positive results, but not the most

readable outcomes. ¢P. mirabilis is excluded from QIM and QHT due to swarming motility. *Shaded cells highlight test results under ideal conditions.
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FIGURE 3

Effect of indicator organisms and incubation time on the inhibition zone diameter in the quinolone inactivation method. The x-axis represents the
incubation time of the test bacterium with CIP disks, and the y-axis represents the inhibition zone diameter of four indicator organisms. Data of the
blue boxes are from the results of APE, while data of the red boxes are from the results of NAPE. The green lines represent the results of the control

tests. Arrows point to the test results under ideal conditions.

Mass spectrometry method

MS spectra showed the ion peaks corresponding to the
ciprofloxacin molecular ions: [M+H] T at 332 Da, its sodium adduct
[M+Na]™ at 354 Da, and potassium adduct [M+K]" at 370 Da.
The acetylation of ciprofloxacin by AAC(6')-Ib-cr resulted in a
42 Da shift, with the addition of three acetylation molecule peaks:
[AM+H]* at 374Da, [AM+Na] ™ at 396.35 Da and [AM+K]*
412 Da (Figure 2).

For the evaluation of experimental variables, the incubation
time significantly affects result readability. While a 30-min
incubation suffices for visually detectable positive results, we found
that a 1-h incubation yields the most readable outcomes, as
briefly illustrated in Figures 2e—~f. Upon 18 h of incubation, some
positive results showed a complete disappearance of spectral peaks
representing ciprofloxacin, as depicted in Figure 2g. Additionally,
as expected, NAPE consistently lacked spectral peaks of the
acetylated form even after 18 h of incubation. Furthermore, in the
result of the control test (Figure 2a), the peak at 370 Da representing
the ciprofloxacin potassium adduct was absent, whereas it appeared
in the experimental groups. We believe that ciprofloxacin was
dissolved in NaCl solution lacking potassium ions, which explains
the absence of the 370 Da peak. Upon adding bacteria to the
solution, potassium ions were partially extruded from bacterial cells
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into the solution via ion pumps, thereby resulting in weak spectral
peaks representing potassium adducts (370 Da and 412 Da).

Quinolone inactivation method

To explore the optimal conditions for QIM, two variables
influencing the outcomes were identified: the use of indicator
organism E. coli 28B220 (gyrA: S83L) or E. coli B2-4 (gyrA: D87N),
and the selection of a 2-h incubation time under which all AAC(6')-
Ib-cr enzyme-producing and non-producing isolates were correctly
categorized based on the maximum difference in diameter of
inhibition zone, as shown in Figure 3.

While studying the feasibility and accuracy of QIM, we
observed in preliminary experiments that the indicator organism
E. coli ATCC25922 was unsuitable for this method. Subsequently,
three
comparative experiments involving the above four indicator

we redesigned indicator organisms and conducted
strains in further studies. Through testing 14 isolates, we found
that the difference in the inhibition zone diameters of APE and
NAPE could not be effectively distinguished when either E. coli
ATCC 25922 or E. coli B2-5 (gyrA: S83L, parC: S80I) was used as
indicator organism, due to the inhibition zones being either too

large or too small. However, when E. coli 28B220 or E. coli B2-4 was
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TABLE 2 Detection of AAC(6')-Ib-cr enzyme producing clinical isolates using the three methods in this study.

Species (No. of isolates)

MIC range (g/ml)

No. of positive results

AAC(6')-1b-cr-producing Enterobacteriaceae

E. coli (n=12) >8 >4 12 12 12
K. pneumoniae (n = 18) >8 >4 18 18 18
P. mirabilis (n = 13) 4->38 >4 13 ND ND
Enterobacter hormaechei (n=1) >8 >4 1 1 1
Citrobacter braakii (n = 1) 2 >4 1 1 1
Citrobacter freundii (n=1) >8 >4 1 1 1
non-AAC(6’)-1b-cr enzyme producer

E. coli (n=92) 0.5->8 0.5->4 0 0 0
K. pneumoniae (n = 29) 1->8 0.5->4 0 0 0
P. mirabilis (n = 6) 1->8 1->4 0 ND ND
Salmonella sp. (n =1) >8 >4 0 0 0
Klebsiella oxytoca (n = 1) >8 >4 0 0 0
Enterobacter cloacae (n=1) >8 >4 0 0 0
Enterobacter hormaechei (n = 1) 1 1 0 0 0
Raoultella ornithinolytica (n = 2) 4 2 0 0 0
Serratia marcescens (n = 3) 0.5-1 0.25-1 0 0 0
Citrobacter amalonaticus (n = 1) >8 >4 0 0 0
Citrobacter freundii (n = 1) >8 >4 0 0 0
Morganella morganii (n = 3) 2-4 1-4 0 0 0

ND, not determined (P. mirabilis is excluded from QIM and QHT due to swarming motility.); MSM, mass spectrometry method; QIM, quinolone inactivation method; QHT,

quinolone Hodge test.

TABLE 3 Performance evaluation of different methodologies.

Detection method Cost per test Time of Specificity Sensitivity Limitations of
(equipment) perform method
testP
MSM < $1.00 <2h <0.5h 100% 100% MALDI-TOF MS is
(MALDI-TOF MS) required in the
laboratory.
QIM < $1.00 (Not 18-24h < 20 mins 100% 100% This method is not
required) applicable to P. mirabilis.
QHT < $0.10 (Not 18-24h < 10 mins 100% 100% (i) This method is not
required) applicable to P. mirabilis.
(ii) The interpretation of
the results is subjective.
PCR+sequencing > $10.00° (PCR 1-2 days >5h - - The cost is expensive and
system and the equipment is
sequenator) complex.

ATAT: turnaround time. ®Incubation time is not included. “The cost of testing varies in different regions.

used as indicator organism, this difference became significantly
pronounced. Moreover, the maximum difference occurred with a
2-h incubation time, as shown in Figures 2h-k.

Considering that the diversity of equipment and consumable
specifications may affect the outcomes of this method, we did
not set specific inhibition zone diameter values for positive and
negative results. Instead, differentiation between positive and

negative results was determined through concurrent control testing
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conducted during each trial. Values were set to < 5 mm compared
to the control test for positive results and > the control test
for negative results, as previously described. This difference was
sufficient to distinguish between positive and negative results. In
fact, this difference was above 6 mm for all tests under optimal
conditions, as shown in Figure 3. Interestingly, the inhibition zone
diameters of all NAPEs were slightly larger than those of the control
test. Our explanation for it was that bacterial suspension adhered
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to the lifted disk, which increased the fluid’s surface tension due
to bacterial particulates, resulting in greater absorption of residual
antibiotics, a phenomenon that did not occur in the control test
(Miller et al., 2017).

Quinolone Hodge test

We also tested the performance of the four indicator organisms
in QHT. The results were similar to those in QIM. When E. coli
ATCC 25922 was used as the indicator organism, the bending of the
inhibition zone was too faint to distinguish between positive and
negative results. In contrast, when using E. coli 28b220 or E. coli B2-
4 instead, significantly enhanced growth of the indicator organism
was observed on both sides of the APE streak, which was easily
recognized by the naked eye. No such phenomenon occurred with
NAPE (Figures 21-0). Additionally, E. coli B2-5 was eliminated once
again due to its initially small zone of inhibition.

Validation experiment

The results of PCR and sequencing of 187 clinical isolates
used for method performance validation showed that a total of
46 APEs were screened in this prospective study, accounting for
24.6% (46/187), including E. coli (12/104), K. pneumoniae (18/47),
P. mirabilis (13/19), Enterobacter spp. (1/3), Citrobacter spp. (2/4),
and no APE was detected in the remaining genera (0/10). All APEs
(including strains studied in the first phase) carried the aac(6’)-Ib-cr
gene with both Trp102Arg and Asp179Tyr mutations, which means
that no single-point mutation was found across all strains. This
finding was consistent with earlier reports (Robicsek et al., 2006).
Additionally, 7 isolates carrying the wild-type aac(6’)-Ib gene were
detected. They exhibited identical assay results to non-AAC(6')-Ib-
cr enzyme producers in the validation study. Thus, the proportion
of -cr variant among the total number of the gene was calculated as
86.8% (46/53) in this study.

Under optimal conditions, validation experiments were
conducted for MSM, QIM, and QHT. The results indicated
that MSM correctly identified all APEs and NAPEs with 100%
specificity and sensitivity (141/141; 46/46). However, despite QIM
and QHT also demonstrating 100% specificity (135/135) and
sensitivity (33/33) compared to the genotype, Proteus mirabilis was
excluded from these data. The data are detailed in Table 2.

Performance evaluation and selection
guide of methods

We described the specificity, sensitivity, cost, required
equipment, turnaround time, and test execution time of four APE
detection methods in Table 3. And based on the experience gained
from this work, we provide a step-by-step recommendation for
selecting genotypic testing, MSM, QIM, or QHT based on existing
resources. (i) If MALDI-TOF MS is available, MSM should be
prioritized over genotypic testing. This is because the aac(6)-Ib-cr
gene cannot be detected by a PCR device alone without sequencing
equipment. In fact, even in most hospitals of developed countries,
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only PCR devices are commonly available. More importantly,
Phenotypic testing provides a more accurate assessment of clinical
resistance compared to genotypic testing, which only detects
the presence of aac(6')-Ib-cr gene without accounting for the
functional expression of it. (ii) In less developed areas, QHT can be
chosen as an initial screening method, followed by QIM to recheck
samples with subjective controversy in the screening results.

Discussion

The resistance phenotype to quinolones is typically insufficient
to distinguish between PMQR and other resistance mechanisms
(Rodriguez-Martinez et al., 2016; Strahilevitz et al., 2009). As the
most prevalent PMQR (Guillard et al., 2014; Jomehzadeh et al,
2022; Shrestha et al., 2023; Tayh et al, 2024), AAC(6)-Ib-cr
confers a low level of quinolone resistance in host organisms,
generally below the resistance breakpoints established by CLSI
(Machuca et al, 2016; Robicsek et al, 2006; Ruiz, 2019), yet
it poses a significantly grave clinical threat (Redgrave et al,
2014; Tacconelli et al., 2018). Several factors substantiate its
significance in this process, including its increasing prevalence
(Kuo et al,, 2024; Zhan et al., 2021), association with other
resistance elements (Dulyayangkul et al., 2024; Raherison et al,
2017), as well as the accelerated induction of mutations in
QRDRs (Liang et al., 2023; Ortiz-Padilla et al., 2020; Recacha
et al., 2019). Of concern is that clinical microbiology laboratories
have not yet considered these genes in antimicrobial resistance
screening, which may be attributed to the current lack of reliable
screening assays for AAC(6)-Ib-cr (Strahilevitz et al., 2009). In
this study, we proposed three methods for detecting the AAC(6')-
Ib-cr enzyme in Enterobacteriaceae, all of which demonstrated
an overall performance with 100% specificity and sensitivity.
Additionally, all three methods cost less than $1 per test, and QIM
and QHT did not require complex equipment and professional
personnel to perform, as they were easy to operate and yield
simple results. Furthermore, our experiments clearly showed that
neither mutations in quinolone action target genes nor plasmid-
mediated Qnr proteins would interfere with the determination
of AAC(6')-Ib-cr in these new methods. This is not difficult
to explain. All tests are based on the acetylation modification
activity of the AAC(6)-Ib-cr enzyme toward ciprofloxacin, which
is specific and independent among all mechanisms of resistance to
quinolone(Robicsek et al., 2006; Ruiz et al., 2012).

In fact, the concept of using mass spectrometry for the
detection of resistant enzymes was already commonplace and dated
back to the early 2000s (Burckhardt and Zimmermann, 2011).
Currently, it is mainly applied in the detection of carbapenemases
(Alvarez-Buylla et al., 2013; Zhang et al., 2023). In contrast to
carbapenemases, the detection of the AAC(6')-Ib-cr enzyme by
MS has an additional advantage, because the former result is
explained by the complete disappearance of the spectral peaks
representing ertapenem (Burckhardt and Zimmermann, 2011),
which requires sufficient reaction time, while the latter result
is explained by the appearance of new peaks representing the
modified products, which are produced early in the reaction
(Oviano et al, 2017; Pardo et al, 2016). Therefore, although
the activity of modifying enzymes is much lower than that of
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hydrolyzing enzymes, the incubation time required for AAC(6')-
Ib-cr detection is still shorter than that needed for carbapenemase
detection. In addition, we found that MS was extremely sensitive
to CIP detection, as clear ion peaks could be obtained with
a 10 pg/ml CIP solution. This was why we believed that CIP
reagents could be directly obtained by immersing CIP disks
in normal saline. Such adjustments offered numerous benefits:
simplifying reagent preparation, reducing costs, and the fact
that antibiotic disks are often easy to store for a long time.
Furthermore, preliminary research experience showed us that
adding the matrix solution directly before the sample droplet
dries did not affect the spectral peaks (allowing co-drying).
Such a research was necessary because the drying time for
sample droplets without surfactants was extremely long at room
temperature. Adding the matrix solution could reduce the surface
tension of the liquid, similar to the effect of surfactants, and
greatly shorten the waiting time for drying (Miller et al., 2017;
Wu et al.,, 2019).

The QIM and QHT methods were proposed for the first
time in this study, and our objective was to design a low-
cost, as minimally instrument-free method for the detection of
the plasmid-mediated quinolone resistance determinant AAC(6')-
Ib-cr in Enterobacteriaceae. However, in our previous study
(Yunxiang et al., 2015), we found that when E. coli ATCC 25922
was used as an indicator organism, it was only suitable for
enzymes with strong hydrolytic activity, such as carbapenemases.
Its performance was unsatisfactory in detecting aac(6’)-Ib-cr-
mediated acetyltransferase. Therefore, through the comparative
experiments involving four strains of E. coli with different degrees
of QRDR mutations, we attempted to propose new insights into
indicator organisms that played a critical role in the test.

The selection of an ideal indicator organism must meet two
simple criteria: (i) its minimum inhibitory concentration (MIC)
of ciprofloxacin should range between 0.25 to 1 pg/ml. (ii) in
the Kirby-Bauer disk diffusion susceptibility test, the indicator
organism which must be non-mucoid, should exhibit a clear
boundary with an inhibition zone diameter of 28-30 mm. Such
organisms, which are readily obtainable from clinical samples,
share a common feature of a single-point mutation (S83L or D87N)
in the gyrA gene, resulting in low-level resistance to quinolones.
However, they still exhibit good susceptibility to ciprofloxacin in
the Kirby-Bauer test (Machuca et al, 2016; Pham et al, 2019).
Our approaches are based on the fact that the enzyme AAC(6')-
Ib-cr produced by the test strains modifies ciprofloxacin, reducing
the drug’s effective concentration to such a level that the indicator
organism with weak quinolone resistance is sufficient to protect
itself, while the highly sensitive wild-type strain (E. coli ATCC
25922) remains difficult to survive (Robicsek et al., 2006). This
principle is similar to that when a bacterium possesses both a
gyrA mutation and plasmid-mediated AAC(6')-Ib-cr enzyme, it
always exhibits a higher level of resistance to quinolones (Machuca
et al, 2016). We redesigned the indicator organism aiming to
combine these two low-level resistance mechanisms to exhibit
enhanced drug resistance effects in both QIM and QHT methods.
Indeed, The combination of resistance mechanisms is also common
to other classes of antibiotics. For example, the resistance of
Pseudomonas aeruginosa to imipenem is due to a decrease
in antibiotic uptake (via downregulation of OMPD2) and the
production of AmpC-type B-lactamase (Livermore, 1992). Either
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mechanism alone is not sufficient to cause clinically significant
levels of resistance, but only their combination results in high-
level resistance. Therefore, as our experimental results showed,
when E. coli ATCC25922 was used as the indicator organism, its
indication effect for AAC(6')-Ib-cr production was not significant.
However, when it was replaced by strain E. coli 28B220, there
would be an “illusion” of high level of resistance at the junction
of the two bacteria (quinolone Hodge test), similar to that shown
when the two resistance mechanisms worked together. When
another resistance mechanisms is added, the inherently small
inhibition zone may dilute the changes caused by the AAC(6')-Ib-cr
enzyme.

In addition, it was worth noting that the aac(6')-Ib-cr
genes carried by all 46 strains of APE in this study exhibited
identical mutations at codons 102 (Trp-Arg) and 179 (Asp-Tyr).
The remaining codons showed high similarity to the wild-type
aac(6')-Ib gene, and no independent occurrences of the W102R
or D179Y mutations were observed. This was consistent with
previous studies (Robicsek et al, 2006). We believed that the
high sequence homology ensures relatively consistent enzyme
activities of the encoded products (Vetting et al., 2008), which
was the primary reason for the high performance of these enzyme
activity methods. Therefore, compared to labor-intensive, time-
consuming and expensive genotype testing, direct detection of
AAC(6')-Ib-cr enzyme activity represents a more cost-effective
laboratory strategy. On the other hand, we observed that CIP
was completely modified after incubation with APE for up to
18 h (no 322 Da peak was shown; Figure 2g). This compelled
us to reassess the AAC(6')-Ib-cr enzyme. To our knowledge, the
concept of AAC(6')-Ib-cr as a low-level resistance mechanism is
based on in vitro experiments (Robicsek et al., 2006), which are
inherently short-term studies. Thus, its prolonged presence in the
human body and its sustained impact on antibiotic efficacy warrant
re-evaluation.

There are some limitations to our study. Although all three
methods demonstrated 100% specificity and sensitivity, real-
world variability should be acknowledged. For example, we
are still unable to explain whether a single mutation of the
aac(6')-Ib gene (W102R or D179Y) in strains might challenge
these methods, whether our methods are applicable to non-
fermenting Gram-negative bacilli, whether severe porin protein
loss that prevents ciprofloxacin from entering the periplasmic
space could lead to false negatives, and the variability between
different laboratories.

In summary, this study presents three simple, efficient,
and cost-effective methods for the detection of AAC(6')-Ib-
cr in Enterobacteriaceae. Each method has its own advantages:
MSM is a rapid and highly accurate method for AAC(6')-Ib-
cr detection, but it relies on MALDI-TOF MS. QIM and QHT
offer cost-effective alternatives but are unsuitable for P. mirabilis.
Overall, these methods can enhance routine clinical screening for
PMQR mechanisms.
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Livestock and poultry manure, as a significant organic resource, had an enormous
annual production but a utilization rate of less than 50%. Improperly managed
manure had become the primary source of agricultural non-point pollution, posing
severe challenges to the ecological environment. Achieving efficient resource
utilization of livestock manure was a critical step in promoting green agricultural
development. Existing research indicated that microbial activity significantly
influences the transfer and dissemination of antibiotic resistance genes (ARGs)
and the community dynamics of human pathogenic bacteria (HPB) during pig
manure composting. However, the specific mechanisms remain unclear. This study
innovatively introduced two thermophilic microbial agents (TMS1 and CTMS2)
into a pig manure-spent mushroom compost (SMC) aerobic composting system
to systematically investigate their regulatory effects on pollutant reduction. The
results showed that persistent ARGs (ErmF, ErmQ, ErmX, blaR1, QnrAl, QnrA6,
bla-F, QnrA2, QnrA5, Qnra4 and bla-VIM) primarily rely on vertical gene transfer
(VGT) for dissemination, whereas easily removable ARGs (tetX, tetW, tetG, tetC,
sull and sul2) were regulated by both horizontal gene transfer (HGT) and VGT.
Notably, the co-addition of thermophilic microbial agents and SMC reduced
persistent ARGs by lg0.45-3.73, significantly decreased the abundances of HPB
such as Bacteroides and Treponema, and reduced the enrichment of related
metabolic pathways, greatly improving compost quality. In stark contrast, the
control group (with only SMC and no thermophilic microbial agents) exhibited ARG
proliferation. Overall, the application of thermophilic microbial agents not only
extended the high temperature phase of composting by over 30% and shortened
the composting cycle by 50%, but more importantly, it achieved comprehensive
improvement in compost quality by selectively enriching functional microbial
communities such as Pseudomonas. This study provides a theoretical foundation
and data support for the industrial application of CTMS2 in the safe production
of organic fertilizers and the synergistic control of environmental risks.

KEYWORDS

antibiotic resistance genes, aerobic fermentation, human pathogenic bacteria, spent
mushroom compost, thermophilic microbial agents

92 frontiersin.org


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1575397&domain=pdf&date_stamp=2025-06-18
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1575397/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1575397/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1575397/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1575397/full
mailto:xhding@sdau.edu.cn
https://doi.org/10.3389/fmicb.2025.1575397
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1575397

Duetal.

1 Introduction

According to statistics, the annual amount of livestock and poultry
manure resources in China reaches 4 billion tonnes, of which 40%
remain untreated and unutilized, making it the primary source of
agricultural non-point source pollution. Among them, pig manure
accounts for 36.71% of the total output (He et al., 2021; Zhang S. et al.,
2025). Pig manure, an organic complex that riched in crude protein,
fiber, and hemifiber (Samanta et al., 2022), could serve as a valuable
nitrogen source and slow-release fertilizer. It could enhance soil
fertility and improved the physical and chemical environmental
properties of soil. However, owing to various technological and
process limitations, nearly 60% of pig manure resources was wasted
(Wu et al., 2020), posing a great threat to environmental safety.
Therefore, exploration of green treatment methods for pig manure and
the development of efficient recycling systems for its utilization were
urgently needed.

Current treatment methods include anaerobic digestion (AD) and
aerobic fermentation (AF). While AD of livestock and poultry manure
76.5% of cellulose and 84.9% of hemicellulose were converted into
methane (Ma et al., 2021; Muhammad and Birgitte, 2021), its
resilience on specialized equipment and risks of secondary pollution
limit practicality. In contrast, AF is simpler, cost—effective, and
increasingly adopted for manure treatment (Zhao et al., 2024). Key
factors influencing AF efficiency include carbon-to-nitrogen (C/N)
ratios, feedstock particle size, and moisture content (Ji et al., 2022),
with the optimal performance achieved at a C/N ratios of 25 and a
turning frequency of twice per day (Chen et al., 2023). Agricultural
wastes like spent mushroom compost (SMC)—a byproduct of
mushroom cultivation with high nutrient and water-holding
capacity—are widely used to adjust compost properties. For instance,
adding 15% woody peat to pig manure reduces nitrogen loss by
suppressing denitrifying bacteria and related functional genes (Xie
etal., 2023; Wu et al., 2023).

Similarly, co-composting organic waste of different sizes, such as
5cm corn straw (Ren et al., 2023) and 2 cm branch piles (Zhang
D. etal, 2023; Jiao J. X. et al., 2023) with animal manure can reduce
greenhouse gas emissions and accelerate the composting process. The
co-addition of organic waste during composting has also been shown
to inhibit and reduce the expression of antibiotic resistance genes
(ARGsS), affecting species diversity and ARG migration pathways
(Zhou Y. W. et al., 2022). For example, coconut shell, bamboo (Awasthi
etal, 2021), wine grape pomace (Zhang J. et al., 2023), and 5% humic
acid (Shi et al., 2023) have been reported to enhance antibiotic
removal from pig manure and inhibit the accumulation and spread of
ARGs (Tong et al., 2022). SMC, a type of agricultural waste, with high
water-holding capacity and nutrient content (Tao et al., 2022), had a
production volume of 2.2 x 107 tonnes (dry weight) in China in 2020
(Guo et al., 2022). When mixed with chicken manure, it can shorten
the high-temperature composting period by 2 days (Pan et al., 2023;
Jia et al., 2022), promote humification, and immobilize heavy metals
such as Cu, Zn, Cd, Cr, and Pb (Kong et al., 2022). This mixture also
reduces emissions of ammonia (NH;), hydrogen sulfide (H,S),
dimethyl sulfur, and dimethyl disulfide (Wei et al., 2022; Yan et al,,
2020), recruits beneficial microbial communities, suppresses potential
plant pathogens (Xu M. Y. et al., 2022; Wang L. et al., 2024), and
significantly reduces the abundances of pathogenic fungi associated
with rice blast disease (Zeng et al., 2023).
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Microorganisms play an important role in the transformation
of organic materials during composting, leading to significant
changes in bacterial community composition (Wang Y. et al., 2024).
Solid and semi-solid microbial agents, including lignocellulosic
hemicellulose-degrading biological agents, thermophilic microbial
agents, fungal agents, and antibiotic-degrading agents, contribute
to organic matter degradation and nutrient enrichment. These
microbial agents also enhance pollutant degradation, alter microbial
communities, increase enzyme activity, promote fungal abundance,
and immobilize heavy metals (Yin Y. N. et al., 2023; Wu et al., 2022).
Additionally, they facilitate ARG removal (Chen X. J. et al., 2022; Li
etal., 2022), enhance lignocellulose degradation efficiency (Bikram
etal., 2021; Shangguan et al., 2022; Zhang Y. G. et al., 2023), improve
methane production rates in AD systems (Bikram et al., 2020), and
(Bohrer et al., 2023).
Thermophilic microbial agents have been shown to promote the

accelerate substance transformation

decomposition of recalcitrant organic compounds in biogas
residues and improve the seed germination index (Xu S, Y. et al,,
2022). In this study, two thermophilic strains, Bacillus flexus FM
and B.cereus KU, were screened and used as microbial agents to
study their corresponding effects on promoting pig manure
composting fermentation.

Recent research had addressing antibiotic residues in pig manure
composting has predominantly examined the effects of non-biological
and biological factors on ARGs, cadmium, human pathogenic bacteria
(HPB), and other toxic substances in compost materials (Chen
Z. Q. et al., 2022; Abdellah et al., 2023; Jiao J. X. et al., 2023). Under
heat stress conditions, the abundances of ARGs and mobile genetic
elements (MGEs) had been decreasd in pig manure significantly (Sun
et al,, 2021; Sun et al., 2023; Zhu et al., 2023; Tang et al., 2023). The
transmission and transfer of ARGs occured through horizontal gene
transfer (HGT) mechanism mediated by MGEs or through vertical
gene transfer (VGT) mechanism mediated by host bacterial
proliferation and functional gene enrichment (Luo et al., 2023). This
study utilized thermophilic microbial agents to promote the
co-composting of pig manure and SMC. The research systematically
examined the dynamics of ARGs, HPB and the structural and
compositional shifts in beneficial microbial communities during
composting. The results provided critical theoretical and empirical
support for tracking the fate of hazardous contaminants in livestock
manure, while advancing the sustainable utilization of livestock and
poultry manure and the development of eco-circular agriculture.

2 Materials and methods
2.1 Screening of thermophilic strains

A total of 62 culturable strains were isolated from pig manure at a
farm in Tai’an city, Shandong province, China (Huang et al., 2014; Du
etal., 2022). The primary selection criteria were the ability to survive
at a high temperature of 60°C, along with the capacity to produce at
least two of the following enzymes: cellulase (Subhojit et al., 20165
Warasirin et al., 2017), laccase (Aslam et al., 2012) and xylanase
(Fatma and Filiz, 2023). Based on these criteria, B. flexus FM and
B. subtilis KU were isolated. The fermentation broth of B. flexus FM
was mixed with soybean meal in a 1:1 ratio to obtain the thermophilic
microbial agents S1 (TM S1). Similarly, a composite thermophilic
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microbial agent S2 (CTM S2) was prepared by mixing the fermentation
broths of B. flexus and B. subtilis KU with soybean meal in a 1:1:2.

2.2 Composting experimental design and
sample collection

Pig manure was collected from a breeding farm in Tai’an city,
Shandong province, China. SMC and pig manure were purchased
from Shandong Hengxin Biotechnology Co., Ltd., and Wenshi Pig
Breeding Co., Ltd., both of which were located in Shandong province,
China. The pig manure had a moisture content of 83.40%, a pH of
7.51, a total carbon content of 30.41%, and a total nitrogen content of
1.74%. The SMC had a moisture content of 62.5%, a pH of 6.39, a total
carbon content of 38.57%, and a total nitrogen content of 2.50%.

Four experimental treatments were established: (A) pig manure
and TM S1, (B) pig manure and SMC, (C) pig manure, SMC and
TMS]I, and (D) pig manure, SMC and CTMS?2, each treatment was
replicated three times. Physicochemical indicators, resistance gene
abundance, microbial diversity, and cadmium content were measured
on days 0, 1, 4, 7, and 11. Additionally, non-target metabolite
indicators were assessed using LC-MS for each treatment group at 0,
4 and 11 days (the BO sample data were the same as those of the C0O
and DO samples). Each test was performed in triplicate.

2.3 Determination of non-biological
indicators

Stack and ambient temperatures were recorded three times daily
and the average values were calculated. The total carbon (TC) and
total nitrogen (TN) contents in the stack were analyzed using an
elemental analyzer (Vario Macro Cube, Elementar, Germany).
Phosphorus was determined via chromatography (Chen, 2015), while
potassium content was measured using tetraphenylboron sodium
mass method (Wang et al., 2016), The water content was assessed
using the vacuum oven method (Yin Y. Y. et al., 2023), and the
cadmium content was determined by atomic fluorescence photometry
(Zhang et al., 2015). Each test was conducted also in triplicate.

2.4 DNA extraction and qPCR

DNA extraction: Genomic DNA was extracted from 100 mg of
freeze-dried samples using the TTANAMP Soil DNA Kit (DP336) and
eluted with low melting point solvent (DES). The quality and
concentration of the extracted DNA were assessed using 1.5% (w/v)
agarose gel electrophoresis and an enzyme plate instrument
(BiotekElx808). High-throughput quantitative PCR (HT-qPCR) was
performed using a StepOnePlus™ Real-time PCR system (Thermo
Fisher Scientific) with a TB Green™ Premium Ex Taq™II (Tli
RNaseH Plus) kit (Takara, Code No. RR820A). Each HT-qPCRs assay
was conducted in triplicate as described by Gong C. P. et al. (2024).

This study focused on six representative ARGs: (1) tetracycline
resistance genes (tetC, tetG, tetM, tetW and tetX), (2) sulfonamide
resistance genes (sull and sul2), (3) macrolide resistance genes (ermF,
ErmQ and ermX), (4) quinolone resistance genes (gryA and gnrA), (5)
B-lactam resistance genes (bla-VIM and bla-CTX), and (6)
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aminoglycoside genes [aac (6")-Ib-cr]. Additionally, three MGEs,
nameed Tn916/1545, intl1, and ISCRI, were analyzed alongwith 16S
rRNA for simultaneous quantification (Zhou et al., 2021).

2.5 Metagenomic sequencing

Total genomic DNA was extracted from the compost samples
using the E.ZN.A.® Soil DNA Kit (Omega Biotek, Norcross, GA, U.S.)
according the manufacturer’s instructions. The concentration and
purity of the extracted DNA were measured using a TBS-380
fluorometer and NanoDrop2000 spectrophotometer. The quality of
the extracted DNA was verified by electrophoresis on a 1% agarose gel.

Metagenomic data were assembled using MEGAHIT (Li et al.,
2015; https://github.com/voutcn/megahit, version 1.1.2), which used
succinct de Bruijn graphs. Contigs with a length > 300 bp were
selected as the final assembly result, and these contigs were
subsequently used for gene prediction and annotation.

Open reading frames (ORFs) from each assembled contig were
predicted using MetaGene (Noguchi et al., 2006; http://metagene.
cb.k.u-tokyo.ac.jp/). Predicted ORFs with a length of > 100 bp were
retrieved and translated into amino acid sequences using the NCBI
translation table." Antibiotic resistance annotation was performed
using Diamond (Buchfink et al., 2015; http://www.diamondsearch.
org/index.php, version 0.8.35) against the ARDB database’ or the
CARD database’ with an e-value cutoff of 1e™>.

2.6 Non-target metabolite determination

A 50 mg solid sample was added to a 2 ml centrifuge tube along
with a 6 mm diameter grinding bead, and 400 pl of extraction solution
(methanol:water = 4:1, v/v) containing 0.02 mg/mL internal standard
(L-2-chlorophenylalanine) was added. The samples were then ground
using a Wonbio —96°C frozen tissue grinder (Shanghai Wanbo
Biotechnology Co., Ltd) for 6 min at —10°C and 50 Hz followed by
low-temperature ultrasonic extraction for 30 min at 5°C and 40 kHz.
Afterward, the samples were incubated at —20°C for 30 min and
centrifuged for 15 min at 4°C and 13,000 rpm, after which the
resulting supernatant was transferred to an injection vial for LC-
MS analysis.

2.7 Statistical analysis

SPSS 25.0 (IBM, Armonk, NY, USA) was used to compare
differences and determine correlations among the experimental
results. The histograms were generated using Origin 2024b software.
Principal coordinate analysis and Procrustes analysis were performed
using the Meiji Biocloud platform (Shanghai, China). Heatmap and
cluster analysis were conducted with SciPy (Python) Version 1.0.0,
whereas differentially abundant metabolite analyses were performed

1 http://www.ncbi. nlm.nih.gov/Taxonomy/taxonomyhome.html/index.
cgi?chapter=tgencodes#SG1
2 http://ardb.cbcb.umd.edu/

3 https://card.mcmaster.ca/home
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using Ropls (R packages) Version 1.6.2. The correlation coefficient
between Spearman and Gephi in the network analysis was determined
to be 0.9.2 (p < 0.01). AMOS 26.0 software was used for structural
equation modeling to elucidate causal relationships between variables.

3 Results and discussion

3.1 Target ARG and MGE fate during
composting process

Normalizing the copy number of ARGs to the relative abundances
evaluation method of bacterial abundance changes was a more
effective way for evaluating ARGs dynamics (Czekalski et al., 2015).
In this study, the relative abundances indicators of 15 ARGs and three
MGEs had shown that tetracycline, macrolide, sulfonamide, and
quinolone-resistant ARGs dominated across all composting samples
(Figure 1), Co-composting of livestock manure with plant-derived
organic waste effectively reduced the relative abundances of most
tetracycline ARGs (tetM, tetW and tetX), sulfonamide ARGs (sulI and
sul2) and macrolide ARGs (ermF).

In this study, the addition of thermophilic microbial agents had
significantly reduced the abundances of most ARGs in the windrows.
Compared with traditional composting methods (Wu et al., 2023; Jiao
J. X. etal., 2023), the thermophilic microbial agents extended the high-
temperature phase by over 30% and shortened the compost maturation
time by 50%. Moreover, compared to B0 sample, the relative
abundances of the seven types of ARGs of C11 and D11 samples
(tetM, tetW, ermF, ermQ, tetC, gryA and tetX) decreased significantly
(p < 0.05), with values ranging from 0.45-2.98lg and 0.48-3.73lg,

10.3389/fmicb.2025.1575397

respectively. Moreover, compared with those of the C11 sample (11th-
day data of C sample), two types of D11 sample (11th-day data of D
sample) with ARGs (tetM and tetW) presented decrease in relative
abundances of 0.82lg and 0.74lg, respectively (p < 0.05), this indicated
that CTMS2 had unique advantages over TMS] in the degradation of
some ARGs. However, compared with those in BO sample, the two
ARGs (blaR1I and QnrA2) in the C11 and D11 samples increased by
0.02-0.63lg and 0.78-0.83lg, respectively, which indicated that
removing some heat-resistant ARGs during composting were difficult.

In this study, Intll and Tn916/1545 emerged as the main
constituents contributing to the abundances of MGEs during the
composting process (Figure 1C). Compared to those of the B0 sample,
the relative abundances of two types of MGEs (ISCRI and Th916/1545)
had been decreased between 0.08lg and 1.41lg in C11 and D11
samples, highlighted that the efficacy of thermophilic microbial agents
in promoting the degradation of MGEs in SMC and pig manure
co-composting, which was consistent with trend changes in seven
ARGs (tetM, tetW, ermF, ermQ, tetC, gryA and tetX). Moreover,
compared with that in the C11 sample, the MGE (intII) in the D11
sample had been decreased by 0.28lg (p < 0.05), indicated that CTMS2
might have a greater advantage than TMS1 in inhibiting the rebound
of MGE abundance.

3.2 Analysis of the bacterial community
composition structure

The bacterial community was the main driving factor for changes
in the composition and abundance of ARGs (Zhang V. G. et al., 2023),
and the differences in bacterial community structure in this study
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FIGURE 1
Abundances of ARGs and MGEs at the beginning and end of composting. (A) Normalized relative abundance of ARGs and MGEs. The same color
indicates that ARGs or MGEs belong to the same category, and the size of the circles indicates the normalized value; (B) Accumulated relative
abundance of ARGs; (C) Accumulated relative abundance of MGEs.
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were using principal coordinate analysis to compared and analyzed,
as detailed in the Supplementary materials. The results had shown that
different samples had a significant effect on the type and abundance
of microbial communities in the compost (Supplementary material S6).
The interpretation rate of the first and second main components for
the results was 85.00%. In addition to the A0 and A1l samples,
different samples were clustered together at each stage of compost,
indicated that the composition of the bacterial community had an
important influence on the progress of pig manure compost (Jie
etal., 2023).

Figure 2 illustrates the 30 bacterial dominant phyla, classes and
genera with the greatest relative abundances during pig manure
composting. Among them, the horizontal distribution of the dominant

10.3389/fmicb.2025.1575397

bacterial phyla in the initial stage of pig manure composting was
mainly Pseudomonadota, Bacillota, Bacteroidota and Actinomycetota,
accounting for more than 62.7% of the total bacterial count in each
sample. Moreover, in the high-temperature thermophilic phase of pig
manure composting, compared with that in the BO sample, the
abundance of Pseudomonas increased between 1.43lg and 1.37lg in
the C11 and D11 samples, whereas the abundance of Bacillota
increased between 0.93lg and 0.96lg. Conversely, the abundance of
Bacteroidota decreased between 1.15lg and 1.24lg, whereas the
abundance of Actinomycetota increased between 1.36lg and 0.891g in
the same sample. Pseudomonadota and Bacillota maintained
dominance across all the samples, followed by Actinomycetota.
Compared with the B11 sample, the C11 and D11 samples resulted in
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decreases of 0.60lg and 1.07lg, in Actinomycetota. Therefore, a high
level of HGT mechanism might still have occured in sample B and
indirectly led to an increase in the abundances of some ARGs.

The 30 most abundant bacteria in the C11 sample were
(14.15%), (6.48%)
Pseudoxanthomonas (4.87%), whereas those in the sample D11
included Pseudomonas (12.23%), Pseudoxanthomonas (8.87%) and
Xanthomonas (5.8%). Compared with those in the BO sample,
Bacteroides (9.11%), Bacillus (0.47%) and Actinomyces (0.03%),
significantly changed the abundances of Bacteroides (0.59 and 0.67%),
Bacillus (3.65 and 3.97%), and Actinomycetes (0.76 and 0.25%), were
observed in the C11 and D11 samples, respectively (see Figure 2B).

Pseudomonas Xanthomonas and

The increase in the horizontal abundance of Bacillus species in the
windrow might be due to the increase in the abundance of high-
temperature resistant Bacillus (see the Supplementary material).

In this study, HPB were found to belong to 9 genera, included
Bacteroides, Fibrobacter, Clostidium, and Trepinema, which collectively
represented 90.91% of the total HPB (Figure 2C). Compared with
those in the BO sample, the HPB abundances in the C11 and D11
samples were 0.82 Ig and 0.90 1g lower, respectively (p < 0.05), and
Bacteroides was the pathogenic microorganism with the greatest
reduction in abundance, followed by Treponema. Most HPB were
potential hosts of ARGs and MGEs (Imtiaz et al., 2022), therefore,
HPB species and abundances were commonly used as potential
measures of ARGs and MGEs. However, the B11 sample, which did
not receive the addition of thermophilic microbial agents, exhibited a
significant increase in the abundance of Treponema (see
Supplementary materials). This suggests that some HPB may have
undergone incomplete degradation or partial enrichment. These
findings further emphasize the necessity of incorporating thermophilic
microbial agents in the aerobic composting process of pig manure.

3.3 Bacterial community composition and
structure lead to changes in ARG
abundance

Figure 3A showed the correlation between ARGs and MGEs,
one-third of the ARGs (tetX, tetW, tetG, tetC, sull and sul2) were
positively correlated with MGEs (p < 0.05). However, ARGs which
mediated by MGEs could be easily transferred and spreaded after
composting, indicated that the inhibitory effect of the HGT
mechanism might play a crucial role in preventing their spread.
Similarly, the remaining ARGs (ErmF, ErmQ, ErmX, blaR1, QnrAl,
QnrA6, bla-F, QnrA2, QurA5, Qnra4 and bla-VIM) were not
significantly correlated with MGEs, and were difficult to degrade
during the composting process. Considered that the overall trend of
abundance changes during the composting process, its degradation
transfer might been mediated by other mechanisms.

Procrustes analysis had revealed that the abundances of ARGs and
MGE:s were significantly correlated with the bacterial community
composition at the genus level (M? = 0.253, p < 0.05), which was
consistented with the Mantel Test results (r = 0.6062, p = 0.01). Many
easily removable ARGs (tetM, tetW, tetX, tetG, tetC, sull, sul2, ermF
and ermQ) had been found positively correlated with genus-level
changes in multiple bacterial groups (p < 0.01), However, persistent
removable ARGs correlated with the levels of only a few bacterial
genera, such as Treponema, Borrelia and Bacteroides.
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3.4 Relationships between bacterial
microflora and environmental factors

In this study, redundancy analysis (RDA) was used to determine
the relative contributions of environmental factors, MGEs and ARGs
to the bacterial community, and the explanatory rates of the sample
bacterial community were 93.32, 0.70 and 0.27%, respectively (see
Supplementary materials). Among these factors, the bacterial
community composition had been found to be the main
environmental factor. Among all abiotic environmental factors,
temperature (99.97%) and TC (99.97%) were accounted for the
greatest proportion of bacterial community changes, followed by TK
(75.56%). In addition, this study revealed that the changes in ARGs
during composting were similar to the changes in bacterial
communities and environmental factors as determined by principal
coordinate analysis.

This study used structural equation modeling to explore in more
detail the potential causal relationships between multiple factors and
ARGs (Figure 4A). The analysis had revealed that compost
characteristics had the greatest impact on compost quality (r = 0.413,
p<0.01) (Figure 4B), provided important theoretical insights for
guide compost in production practices. Temperature also had a
negative effect on ARGs, with a relatively high degree of influence
(A=-0.834, p <0.01) (Figure 4B), which was consistent with the
results of the redundancy analysis. Therefore, temperature was the
main driver of changes in the ARG pedigree, the distribution of ARGs
during composting might be more closely related to the biological
mechanisms of microorganisms.

The organic carbon content in the windrow was significantly
negatively correlated with both ARGs (A =—0.759, p <0.01) and
MGEs (A = —0.538, p < 0.01), mainly because of its different effects on
microbial communities (Figure 4C). Organic carbon was suspected to
be a key influencing factor of the host during composting (r = 0.899,
p < 0.01), whereas organic carbon was significantly correlated with the
quality of the compost (r = 0.303, p < 0.01). The addition of SMC that
stem from agricultural waste reduced the abundances of Bacteroides,
Treponema and Borrelia, which were carriers of persistent ARGs (sull,
tetG and bla_VIM) in the windrow. Moreover, compared with sample
A, the addition of SMC had significantly increased the organic carbon
content in the samples C11 (17.83%) and D11 (19.71%), which was
also a necessary and sufficient condition for normal compost.

Among the non-biological factors, compost characteristics (TN,
and C/N ratio) were found strongly correlated with ARGs (A = —0.624,
p <0.01) and MGEs (A = —0.326, p < 0.05) (Figure 4B), which had
indirectly affected ARGs through the concentration of organic carbon.
According to the RDA results, the C/N ratio had the greatest impact
on ARGs. The relatively high nitrogen content and low C/N ratio in
the windrow might provide more available nitrogen sources for
microbial growth, increasing the TN content in the mature stage of
compost (Supplementary materialsS1). Consistent with the results of
this study, the difference in nitrogen content is an important
environmental factor related to the relative abundance changes of
ARGs and MGEs, thermophilic microbial agents were necessary for
aerobic compost of pig manure, and the addition of SMC alone could
not effectively reduce the abundances of ARGs in the compost.

Interestingly, on the basis of Mantel Analysis, three indicators of
microbial nutritional growth (TC content, TN content and the C/N
ratio) were found to be common key factors in the metabolism of
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(A) Mantel test results based on the correlation between ARGs and MGEs. The color gradient represents the ARGs abundance on the basis of the
Spearman correlation coefficient and the edge width and color represent the r-value and statistical significance of the Mantel test, respectively. (B) Based
on Spearman correlation coefficient network co-occurrence patterns of ARGs, MGEs and their potential host bacteria (top 30 genera) (p < 0.01).

ARGs could be carried by many potential host bacterial communities
and MGEs, whereas persistent ARGs could be carried by only a few
possible host bacteria (Figure 3B).

easily removable ARGs and persistent ARGs. The abundances of both
types of ARGs was significantly correlated with temperature (p < 0.05)
(Figure 4C). Network analysis had revealed that easily removable
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of selected variables of ARGs.

(A) Mantel correlation test results between two types of ARGs and multiple indicators (non-biological factors and MGEs). (B) Standardized total impact

3.5 Bacterial microflora and metabolite
analysis

Figure 5A showed the correlation between the 30 most abundant
bacterial genera and the 20 most abundant metabolites in the compost.
Approximately one-third of the antibacterial metabolites such as
corchorifatty acid F, coniferaldehide, 13,14-dihydro-15-keto-tetranor
PGE, sorbitan laurate, and PG [i-22:0/22:6 (5Z, 7Z, 10Z, 13Z, 16Z, 1,
and azelaic acid)], were associated with the induction of plant
resistance metabolism (Masanobu et al., 2020; Leonard et al., 2020).
These genera presented significant positive correlations with the
abundances of Pseudomonas, Thermomonospora, and Thermopolyspora
(p < 0.05). This enrichment also indicated that the resistance of the
compost material to the growth and infection of pathogenic
microorganisms increased (Supplementary materials). Research had
shown that high doses of macrolide drugs inhibited the mineralization
of natural 17 f-estradiol in animal manure and urine, thereby
increasin the retention of 17p-estradiol and its metabolites in free and
non-extractable residue forms (He et al., 2019), and the key molecule
azelaic acid in the plant biological stress response could mobilize
Arabidopsis thaliana immunity in a concentration dependent manner
(Francesca et al., 2019; Nagy et al., 2017; Finni et al., 2014). In-depth
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research and exploration of the relationships between metabolic
products in compost and changes in bacterial flora and related
functional gene abundance had important practical significance for
controlling ARGs transfer.

Microorganisms were the main influencing factors of changes in the
composition and content of antimicrobial and intermediate metabolites,
so studying and determining their relationships was of great practical
significance. Procrustes analysis had shown that antibacterial and
intermediate metabolites were significantly correlated with the bacterial
community composition at the genus level (M? = 0.253, p < 0.01) which
was consistent with the Mantel test results (r=0.5029, p=0.01).
Therefore, the changes in bacterial community structure and abundance
led to changes in the metabolites detected during the composting process.
Furthermore, the co-occurrence associations between specific
antibacterial metabolites, bacterial genera, and intermediate metabolites
were explored to identify their potential hosts during the composting
process. According to the network diagram, there were 6 antibacterial
metabolites, 3 intermediate metabolites and 30 bacterial genera
(Figure 3B). Differences in the distribution of potential hosts in
rhizosphere soils were related to the abundance and composition of
metabolites (Guo et al.,, 2020). Many easily removable antibacterial metals
(corchorifatty acid E coniferaldehide, 13,14-dihydro-15-keto-tetranal
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FIGURE 5
(A) Results of the Mantel correlation test between two types of metabolites and the 30 most abundant genera. (B) Network co-occurrence patterns of
metabolites (20 most abundant) and potential host bacteria (top 30 genera) (p < 0.01).

PGE, sorbitan laurate, and PG [i-22:0/22:6 (5Z,7Z,10Z,13Z,16Z, 1, and
azelaic acid]) were significantly positively correlated with the abundances
of multiple bacterial genera (p<0.05) (Supplementary materials),
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indirectly indicating that the composition and abundance of bacteria in
the windrow and the inhibition of the HGT mechanism might play
crucial roles in preventing its spread. Similarly, intermediate metabolites

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1575397
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Duetal.

(I1-naphthylamine, benzyl acetate and xi-7-hydroxyhexadecanedioic
acid) were products of antibiotics, benzene rings and pesticide metabolic
intermediates. These genera were significantly positively correlated with
the abundances of Bacteroides, Fibrobacter, Treponema and Spirochaeta
genera (p < 0.01) (Supplementary material), and it was observed that they
were difficult to metabolize and degrade during composting, resulting in
incomplete or partial enrichment of HPB degradation.

3.6 Prediction of bacterial community
function

Functional enrichment analysis was a computational method used
to analyze the degree of functional pattern enrichment in gene sets or
genomic data (Mahantesha et al., 2013). This information could help
researchers understand the biological significance of gene sets, thereby
revealing the regulatory mechanisms of biological processes,
metabolic pathways, cellular components, etc., under specific
conditions and providing valuable guidance for further experimental
design and research (Zakrzewski et al., 2013).

Compared with sample A, the mixed composting of thermophilic
microbial agents and SMC with pig manure reduced the metabolic
abundance of multidrug resistance efflux pumps, the Embden-
Meyerhof pathway and beta-lactam resistance pathway in mature
compost piles (Figure 6A). This reduction might promote the
metabolism of multiple beta-lactam antibiotics and inhibit the VGT
mechanism and the HGT mechanism of ARGs from compost
products to the soil environment. The transmission of ARGs was
usually regulated by key regulatory genes in certain bacterial pathways.

10.3389/fmicb.2025.1575397

In previous studies, 10 specific genes involved in glycolysis, multidrug-
resistance efflux pumps and B-lactam resistance regulation were
identified (Lin et al., 2021). As shown in Figure 6A, compared with
the A11 sample, the addition of SMC was more effective than the
addition of multiple drug resistant efflux pumps. Furthermore, the
enrichment of pathways related to the metabolism of multiple
antibiotics in p-lactam (K03585 and K02171) was relatively low,
indicating that thermophilic microbial agents might inhibit the
expression of related genes. Moreover, compared with those in the
sample A, the enrichment of ARG-related metabolic pathways had
been decreased to varying degrees by the additive of TMS1 (sample
C) and CTMS?2 (sample D), furthermore, the CTMS2 showed the
greatest decrease in the total abundances of ARG-related genes.
Therefore, in the context of co-composting SMC and thermophilic
microbial agents, the combination of CTMS2 and SMC had a greater
inhibitory effect on the expression of ARG-related genes, led to a
deeper decrease in the abundances of ARGs (Fu et al., 2024).
Human disease-related KEGG pathway 3 significantly changed
during the composting process (Figure 6B). The enrichment of
clusters associated with human disease, such as pf-lactam resistance,
cationic antimicrobial peptide resistance, vancomycin resistance,
legionellosis, alcoholic liver disease, and central carbon metabolism
in cancer, tended to decrease, with the D sample showing the greatest
decrease during composting. Notably, although samples C and D
presented a reduced abundance of clusters related to infectious
diseases, the residual levels in sample C were significantly greater than
those in sample D. Therefore, on basis of the results had shown that in
the HPB abundances stacking bar chart (Figure 2C), it could be find
that the co-composting process of pig manure utilizing a combination
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of CTMS2 and SMC was to yield compost products with less harmless
compost products than that of sample C.

4 Conclusion

The findings of this study had indicated that the co-addition of
organic waste such as SMC, which was the basis for the successful
compost of pig manure during aerobic composting, and had
advantages in reducing the abundances of ARGs, MGEs, and
HPB. The co-composting of thermophilic microbial agents and SMC
could limit the proliferation of ARG-related hosts and decreas the
abundances of ARG-related metabolic pathways, regulatory genes,
and human disease clusters, potentially leading to ARG attenuation.
The VGT mechanism might play a key role in shaping the progressive
degradation of ARGs, especially on persistent ARGs. Compared with
TMS1, the CTMS2 had significantly better effects and potential in the
compost process, which was convenient for storage, transportation,
and easy to use, promoted rapid heating of the compost, had a long
duration of high temperature, and was conducive to killing pathogenic
bacteria in the compost. In addition, when site requirements were not
strict, organic fertilizer could be composted separately by farmers and
returned to the field or sold on a large scale, and the organic fertilizer
produced had good quality and great application and promotion value.

5 Discussion

The misuse of antibiotics in livestock farming and the unregulated
discharge of livestock and poultry manure (Li S. Y. et al., 2023), had
caused severe environmental pollution while promoting the
enrichment and transmission of ARGs to plants and animals, posing
significant risks to human health (Zhang Y. et al., 2025; Wu et al,,
2025). However, aerobic composting had been demonstrated to
substantially reduce antibiotic residues and ARG abundance in
livestock manure (Li et al., 2024; Zhao et al., 2024). Research had
found that co-composting of livestock and poultry manure with plant-
derived organic waste could effectively reduce the relative abundances
of most tetracycline ARGs (tetM, tetW, tetX), sulfonamide ARGs (sull
and sul2), and macrolide ARGs (ermF) (Jiao J. X. et al.,, 2023; Fu et al.,
2024). The abundance of most ARGs were significantly associated
with MGEs, and reducing the abundance and suppressing HGT
spread of MGEs could mitigate the spread and diffusion of ARGs (Liu
et al,, 2023). Bacteroidota, Proteobacteria and Actinomycetota were
potential hosts associated with the enrichment and transfer of ARGs
and MGEs, and were the main carriers for the transmission of ARGs
and MGEs (Wang et al., 2022; He et al,, 2023; Wu et al,, 2024). The
solid bacterial agents (TMS1 and CTMS2) inhibited the enrichment
and transfer of ARGs and MGE:s by altering the composition and
abundance of bacteria in the windrow.

Thermophilic composting, as an innovative composting
technology involving exogenous thermophilic microbial agents (Zhang
Y. G. etal, 2023), induces sustained high temperatures that promoted
both the degradation of extracellular ARGs (eARGs) (Jiao J. X. et al,
2023) and the release of intracellular ARGs (iARGs). Certain
thermophilic microorganisms, such as Novibacillus thermophiles,
Bacillus thermolactis and Ammoniibacillus agariperforans, could
accelerate cellulolytic and xylanolytic decomposition. This process
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enhances microbial diversity in compost materials while facilitating the
recruitment of beneficial microbes and suppressing pathogen
proliferation (Youn et al., 2020; Wang et al., 2023), thereby optimizing
both the composting efficiency and final product quality of livestock
manure (Bang et al., 2024; Wang L. et al., 2024). Notably, Zhang et al.
(2022) identified significant positive correlations between specific
ARGs in swine manure (including tetC, tetG, tetX, sull and gnrS) and
the abundances of pathogenic microorganisms. During the compost
maturation phase, the abundances of pathogenic microorganisms from
Bacteroides and Verrucomicrobia genera progressively decreased,
consequently reducing pathogen-mediated VGT of ARGs and
significantly enhancing the quality of the organic fertilizer product.
While elevated temperatures generally accelerate bacterial community
succession, in contrast to conventional microbial inoculants, the TMS1
and CTMS2 that employed in this study exhibited remarkable
thermophilic properties, maintaining viability even when compost
temperatures exceeded 60°C. Compared to previous composting
research, these novel thermophilic microbial agents demonstrated
rapid temperature elevation in composting materials, extended
duration of the thermophilic phase, and achievement of higher peak
temperatures. These superior thermal characteristics collectively
contributed to enhanced nutrient preservation, more efficient
degradation of hazardous substances, and ultimately, the production of
higher quality organic fertilizers.

Research had shown that, ARGs could be distributed through
aerobic composting (Ren et al., 2023), anaerobic composting (Chen
et al., 2023), soil mediums (Wen et al., 2024) and rivers mediums
(Patel et al., 2024). ARGs had a broad range of potential hosts and they
could regulate the abundances changes of ARGs by mediating the
abundances of related factors such as (tetW, sull and Tn916/1545)
(Xiu et al,, 2021; Zhou et al., 2021; Zhang D. et al., 2023). Moreover,
microorganisms were the primary carriers of ARGs and MGEs,
therefore, the changes in bacterial community composition and
abundance led to changes in the relative abundances of ARGs and
MGEs during the composting process (Wang Y. et al., 2024; Nnorom
etal., 2025).

In this study, the SMC was co-composting with pig manure, the
abundances of some bacterial genera which associated with organic
compound degradation increased during the maturation stage, which
might have led to a decrease in the abundances of potential host
bacteria carrying ARGs and MGEs, at the same time, the proliferation
of microbial communities associated with organic matter degradation
might limit the growth of some potential hosts of ARGs (Wei et al.,
2022; He et al., 2023; Wang et al., 2023). Temperature was considered
the most important abiotic factor in aerobic composting processes,
and changes in temperature could greatly alter the abundance and
content of microbial communities and other abiotic factors (He et al.,
2023; Zhao et al., 2024). Although some researchers believed that
HGT is one of the important factors for the transfer of ARGs during
composting, HGT might not be the main driver of ARGs distribution
(Liu et al., 2023; Zhou P. Z. et al., 2022). In other words, this meant
that the distribution of ARGs during composting might be more
closely related to the biological mechanisms of microorganisms.

In fact, the compost properties were often considered nutrients
for bacteria, as most of them were essential for microbial growth
(Magid et al., 2006; Grosso et al., 2016), which was potentially relate
to the VGT mechanism of ARGs. Some compost characteristics could
be adjusted by adding organic carbon to the compost stage, which
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could affect the structural composition of bacterial communities
during the composting process (Gong X. et al., 2024; Hu et al., 2023),
which could affect changes in ARGs also (Ya et al., 2023; Shan et al,,
2024). Guo et al. (2019) reported that differences in nitrogen content
were important environmental factors which related to changes in the
relative abundances of ARGs and MGEs. The TC content, TN content
and C/N ratio were important environmental factors for the survival
and reproduction of microorganisms in livestock and poultry manure,
which might indirectly affect the abundances of ARGs and MGEs by
affecting changes in the host bacterial community of ARGs (Sun et al.,
2020; Kai et al., 2023; Jiao M. N. et al., 2023). Therefore, these findings
suggested that the VGT mechanism might play a key role mechanism
in the transfer and transformation of ARGs during the composting
process in this study, especially for persistent ARGs, whereas easily
removable ARGs were also regulated by the HGT mechanism.
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Application and evaluation of a
rapid detection method based on
two-dimensional PCR technology
for hypervirulent Klebsiella
pneumoniae

Wenwen Zhu', Yiting Wang', Xin Jiang and Yan Zhao*

Department of Laboratory Medicine, Jinshan Hospital, Shanghai Medical College, Fudan University,
Shanghai, China

Objectives: Hypervirulent K. pneumoniae (hvKp) is an emerging pathogen that
is more virulent than classical K. pneumoniae (cKp). This study aimed to develop
an economical, high-throughput, and accurate two-dimensional polymerase
chain reaction (2D-PCR) assay for the rapid detection of hvKp.

Materials and methods: Recombinant plasmids containing the iucA, peg-344,
rmpA2, and rmpA virulence genes were constructed and used for assessing
the sensitivity and specificity of the 2D-PCR. Clinical samples (n = 105) were
collected and evaluated the performance of the 2D-PCR to comparison with
conventional PCR methods.

Results: The minimum detection limit of the 2D-PCR assay for iucA, peg-344,
rmpA2, and rmpA were 10%, 102, 10°, and 10° copies/pL, respectively. Additionally,
the concordance rates between the 2D-PCR and conventional PCR for detecting
IUcA, peg-344, rmpA2, and rmpA were all over 95%. The analysis revealed a
sensitivity of 100.0% and a specificity of 96.2% when compared to conventional
PCR.

Conclusion: A 2D-PCR-based multiplex method for virulence genes of hvKp
was successfully developed, demonstrating its outstanding features of high
specificity, high sensitivity, and high throughput capability. This method could
be used for the rapid diagnosis of infectious diseases caused by hvKp in clinical
settings.

KEYWORDS

2D-PCR, hypervirulent Klebsiella pneumoniae, virulence genes, diagnosis, biomarkers

Introduction

Klebsiella pneumoniae (K. pneumoniae) is one of the most common gram-negative
opportunistic pathogens that are responsible for a variety of infectious diseases, including
urinary tract infections, bacteremia, pneumonia, and liver abscesses (Wang et al., 2020;
Stojowska-Swedrzyniska et al., 2021). At present, K. pneumoniae can be divided into the
following two main types: classical K. pneumoniae (cKp) and hypervirulent K. pneumoniae
(hvKp) (Zhang et al., 2023). cKp strains are frequently correlated with nosocomial infections
or infections in a long-term care settings, indicating that a degree of immunocompromised
state is essential for inducing disease by cKp strains (Walker and Miller, 2020). hvKp differs
from cKp in its clinical and phenotypic characteristics. Patients infected with hvKp, who are
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typically younger and immunocompetent, present with more severe
disease compared to those with cKp and originate from community
settings (Choby et al., 2019). While the association of hvKp with
community-acquired disease is more common (Pomakova et al.,
2011), there has been an increasing number of reports suggesting the
participation of hvKp isolates in healthcare-associated disease,
particularly in pulmonary, ventilator, and healthcare-associated
bacteremia (Zhu et al., 2021). An outbreak of carbapenem-resistant
hvKp (CR-hvKp) in a hospital in China resulted in the death of five
patients infected with ventilator-associated pneumonia (Gu et al.,
2018). The increased transmission of hvKp strains in hospitals may
raise the overall burden of this pathogen.

Currently, there is no consensus on the definition of hvKp, the
accurate diagnosis and rapid identification of hvKp trains are
essential for appropriate infection control measures. Traditional
detection technologies, such as string tests, the mouse killing assay,
and the Galleria mellonella infection model, cannot meet the fast
and specific needs of clinical detection (Mai et al., 2023). Polymerase
Chain Reaction (PCR) is an important detection technique in
molecular biology, significantly enhancing the efficiency of
pathogen detection (Schrader et al., 2012). Molecular diagnostic
techniques, including traditional PCR, quantitative real-time
polymerase chain reaction (qQPCR), and other PCR assays, have been
developed to identify hvKp and have shown satisfactory results.
However, these methods are limited by low detection throughput
and can cause nonspecific amplification (Schrader et al., 2012;
Janik-Karpinska et al, 2022; Mai et al, 2023). A defining
characteristic of hvKp strains is the presence of large and highly
similar virulence plasmids pK2044 (224,152 bp) and pLVPK
(219,385 bp), which harbor several virulence-encoding genes that
confer the hypervirulent phenotype to hvKp (Chen et al., 2004; Wu
etal., 2009). Therefore, the virulence genes on plasmids can be used
as specific hypervirulence markers for the clinical detection of
hvKp, such as rmpA and rmpA2 (capsular polysaccharide (CPS)-
regulating genes), peg-344 (metabolism genes), and iucA
(siderophore genes).

Two-dimensional polymerase chain reaction (2D-PCR) is a
multiplex PCR detection method that identifies multiple target genes
in the same PCR tube using base-quenched probe technology and
fluorescence melting temperature (Mao et al., 2018; Zhan et al., 2020).
In 2D-PCR systems, a synthesized pre-tag sequence located at the 5
end of a specific primer is utilized, and some bases in the pre-tag
sequence are changed, allowing one probe to recognize multiple tags
with various melting temperature (Tm) values. Therefore, this study
aimed to establish a rapid molecular diagnostic method to accurately
identify hvKp by detecting the virulence genes iucA, peg-344, rmpA2,
and rmpA.

Materials and methods

A total of 105 nonrepetitive K. pneumoniae strains were collected
from the clinical laboratory of Fudan University Affiliated Jinshan
Hospital from January to June 2024, these isolates were identificated
using AUTOF MS 1000 AUTOBIO (Autobio Diagnostics, Zhengzhou,
China). K. pneumoniae strain RJF293 (Xu et al, 2021) and
K. pneumoniae strain HS11286 (Liu et al., 2012) were used as positive
control and negative control, respectively. The nucleotide sequences
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of rmpA (633 bp), rmpA2 (637 bp), iucA (1725bp), and peg-344
(903 bp) from the virulence plasmid pRJF293 of K. pneumoniae
RJF293 were cloned into the pMD20-T vector (TaKaRa, Japan). The
positive recombinant plasmid was subsequently transferred into
Escherichia coli DH5a (Tiangen Biotech, Beijing, China) and
confirmed by sequencing. The gene sequences of iucA, peg-344,
rmpA2, and rmpA were downloaded from the GenBank database.
Subsequently, the primers were designed using Primer Premier 5
software. The sequences of the primers and probes are shown in
Table 1.

DNA extraction

The genomic DNA of K. pneumoniae was obtained using the
Tianamp Bacteria DNA Kit (Tiangen Biotech, Beijing, China)
according to the manufacturer’s instructions. Plasmid DNA of E. coli
DHb5a was obtained by using the TianampTIANprep Mini Plasmid Kit
(Tiangen Biotech, Beijing, China). Finally, approximately 80 pL of the
DNA solution was prepared to serve as a template for the DNA
reaction. The extracted DNA concentration was measured with a
NanoDrop™ 2000 spectrophotometer (NanoDrop Technologies,
LLC, Wilmington, DE, USA) and —-20°C for
subsequent analysis.

stored at

Traditional PCR assays for biomarkers

The virulence-associated factors iucA, rmpA, rmpA2, and peg-344
were investigated using the traditional PCR method. For each reaction,
12.5 pL Premix Taq (TaKaRa, Japan), 0.5 pL of each primer (10 pM),
1 pL genomic DNA (approximately 100ng/puL) and 10.5pL of
deionized water (HPLC grade). PCR was performed under the
following cycling conditions: 94°C for 4 min, followed by 35 cycles of
94°C for 30 s, 55°C for 30 s and 72°C for 30 s, with a final extension at
72°C for 10 min, these reactions were conducted in a thermal cycler
(T-100, BioRad, USA). Each run included a positive control
(K. pneumoniae RJF293), a negative control (K. pneumoniae HS11286)
and a blank control (deionized water). The PCR products were analyzed
by electrophoresis on a 0.8% agarose gel and visualized with UV light.

2D-PCR

The 2D-PCR assays were run on the QuantStudio 3 (Thermo
Fisher, USA), with each reaction containing a total volume of 25 pL. The
FAM channel was employed for all experiments. The reaction mixture
contained 2.5 puL 10 x PCR buffer (Mg** free), 1.5 pL MgCl, (25 mM),
0.7 uL ANTP Mixture (2.5 mM each), 0.5 uL Taq Hot Start Polymerase
(TaKaRa, Japan), 0.1 pL each of labeled forward primer, 0.6 pL reverse
primer, 0.4 pL FAM probe, 2 pL extracted DNA template, the volume
was adjusted to 25 pL with nuclease-free water. The 2D-PCR cycling
parameters were as follows: an initial heating step at 95°C for 10 min,
followed by 40 cycles of 95°C for 10 s, and 60°C for 30 s. Following the
amplification, a melting curve analysis was performed, starting at 30°C
for 4 min and gradually increasing by 0.1 C/s until reaching 80°C. The
fluorescence signal was acquired every second during this step. Finally,
a cooling step was carried out at 40°C for 30 s.
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TABLE 1 Primers and universal probe used in this study.

10.3389/fmicb.2025.1554660

Primer Sequences (5" — 3') Amplicons size (bp) References
2D-PCR
peg-344-F2 CCATTACCTTGCTTATACACTTCCACAGCGAAAGAATAACCCCAG o0 Zhu et al. (2022)
Peg-344-R2 GGAAAGGACAGAAAGCCAG This study
p-rmpA-F2 CCATTACCAACCTTATACACTTCCACTTCAGGGAAATGGGGAGGGTA Zhu et al. (2022)
252
p-rmpA-R2 CATTGCAGCACTGCTTGTTCC This study
p-rmpA2-F2 CCATTACCTACCTTATACACTTCCACGTTAACTGGACTACCTCTGGTTT . Wu et al. (2022)
104
p-rmpA2-R2 ATCCGGCTATCAACCAATACTC This study
iucA-F2 CCATTACCTAGCTTATACATTTCCACTGTTTACGGCTGAAGCGGAT o Zhu et al. (2022)
iucA-R2 CACGGTAGATAAGCCCGACC This study
intl-P FAM-CCATTACCAACCTTATACACTTCCAC-P Zhu et al. (2022)
Traditional PCR
Peg344-F CTTGAAACTATCCCTCCAGTC
508 Luo et al. (2023)
Peg344-R CCAGCGAAAGAATAACCCC
rmpA-F TTAACTGGACTACCTCTGTTTCAT
332 Luo et al. (2023)
rmpA-R AATCCTGCTGTCAACCAATACT
rmpA2-F ATCCTCAAGGGTGTGATTATGAC
430 Luo et al. (2023)
rmpA2-R CCTGGAGAGTAAGCATTGTAGAAT
iucA-F CTCTTCCCGCTCGCTATACT
239 Luo et al. (2023)
iucA-R GCATTCCACGCT TCACTTCT

The primer tags were underlined, and point mutations within these tags were highlighted in bold.

Results
2D-PCR specificity for identifying hvKp

The specificity of the 2D-PCR test to detect iucA, peg-344, rmpA2,
and rmpA was evaluated using positive plasmid samples with
concentrations of approximately 10° copies/pL. First, a single positive
plasmid was used as template to confirm the specificity of the primers.
The results demonstrate that the melting curves are clear, with the Tm
of iucA, peg-344, rmpA2, and rmpA being approximately 43°C, 52°C,
58°C, and 64°C, respectively (Figure 1). The Tm difference between the
four target genes is at least 5°C, which makes them easy to distinguish.
To assess the capability of 2D-PCR in simultaneously detecting multiple
target genes, a mixture of positive plasmids containing four virulence
genes was utilized as a DNA template. The results showed that 2D-PCR
successfully detected all four genes simultaneously. As shown in
Figure 2, the 2D-PCR technique effectively detected four virulence
genes simultaneously, with clearly distinguishable peaks for each target.
Thus, this assay was highly specific for the detection of iucA, peg-344,
rmpA2, and rmpA from hvKp.

2D-PCR sensitivity for identifying hvKp

To assess the minimum detection limit of the 2D-PCR system,
four virulence plasmid samples were serially diluted across a
gradient ranging from 107-10" copies/pL. As shown in Figure 3, all
corresponding targets were successfully detected in samples with
a concentration of 10° copies/pL. However, only the peg-344 target
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gene was detected in samples at 10> copies/pL, and no
corresponding targets were identified in samples below this
concentration. The lowest detectable concentrations of this
method for the iucA, peg-344, rmpA2, and rmpA genes were 10°,
10% 10%, and 10° copies/pL, respectively. Meanwhile, the signal for
each target gradually weakened as the template concentration
decreased.

Testing of clinical samples

All 105 samples confirmed strains of K. pneumoniae were tested
using the proposed 2D-PCR system (Figure 4). In 105 samples,
2D-PCR detected 55 samples of hvKp positive (iucA, peg-344, rmpA2,
and rmpA) and 50 samples of other types that were negative (Figure 5).
The positive rate of iucA, peg-344, rmpA2, and rmpA were 63.8, 75.2,
63.8, and 73.3%, respectively. There are differences in the ability of
2D-PCR and conventional PCR to detect the four virulence genes, for
the detection of iucA and peg-344, the concordance between both
methods was 99.1%. Among these, two samples tested positive in
2D-PCR and negative in conventional PCR. For the detection of
rmpA2, the concordance rate is 97.1%, with three samples showing
positive results in 2D-PCR but negative in conventional PCR. The
results for rmpA detection were completely consistent between the
two methods. All samples that tested positive by 2D-PCR also tested
positive in conventional PCR, while all inconsistent results were
positive in 2D-PCR and negative in conventional PCR (Table 2).
Compared with traditional PCR, the specificity of 2D-PCR is 96.2%,
and the sensitivity is 100.0%.
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control, respectively.

Single gene detection by 2D-PCR. (A) iucA, (B) peg-344, (C) rmpA2, and (D) rmpA. The approximate Tm values corresponding to iucA, peg-344,
rmpA2, and rmpA are 43°C, 52°C, 58°C, and 64°C, respectively. The curves without dissolution peaks represent the negative control and the blank
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The presence of four melting valleys in the mixture of four gene plasmids confirmed the simultaneous detection of all four target genes. The curves
without dissolution peaks represent the negative control and the blank control, respectively.

Discussion

HvKp is undergoing spread globally as a notorious clinical
pathogen causing multiple severe infections. In the past, hvKp has
been perceived as having a hypermucoviscosity phenotype, exhibiting
susceptibility to antimicrobial agents, and a propensity to induce
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invasive infections among healthy individuals in the community (Han
et al., 2024). However, partly due to antibiotic abuse, multidrug-
resistant hvKp, particularly CR-hvKp, has garnered significant
attention in recent years. CR-hvKp, which is associated with high
morbidity and mortality rates, poses a significant challenge to
infection control and clinical treatment (Pu et al., 2023). HvKp with
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Sensitivity test of 2D-PCR. The minimum detectable concentration of (A) iucA, (B) peg-344, (C) rmpA2 and (D) rmpA were 10°, 102 10°, and 10° copies/
uL, respectively. The curves without dissolution peaks represent the negative control and the blank control, respectively.
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Clinical samples were examined to identify hvKp strains using 2D-PCR. The curves without dissolution peaks represent the negative control and the

blank control, respectively.
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FIGURE 5
The heat map of virulence genes in 105 K. pneumoniae isolates showed the prevalence of these genes across different clinical samples, with blue
indicating the presence of a virulence gene and pink representing its absence. The strain in which four virulence genes, iucA, peg-344, rmpA2 and
rmpA, were simultaneously present was identified as hvKp. BALF: Bronchoalveolar lavage fluid.

TABLE 2 Comparison of 2D-PCR and conventional PCR results.

Virulence genes  2D-PCR Conventional PCR Total samples  Concordance rate (%)
Positive Negative
samples samples
Positive samples 66 1 67
iucA 99.1
Negative samples 0 38 38
Positive samples 78 1 79
peg-344 99.1
Negative samples 0 26 26
Positive samples 64 3 67
rmpA2 97.1
Negative samples 0 38 38
Positive samples 77 0 77
rmpA 100.0
Negative samples 0 28 28

high virulence and epidemic potential is threatening human health.
Improving the identification of hvKp and achieving early and accurate
detection is crucial to support subsequent effective treatment
among patients.

A common feature of hvKp is the combined expression of multiple
virulence factors that serve as reliable biomarkers for accurately
differentiating hvKp from cKp. Previous studies have established a PCR
detection method for hvKp based on the combination of peg-344, iroB,

Frontiers in Microbiology

iucA, ;rmpA, and ,rmpA2, along with siderophore production (SP)
exceeding 30 pg/mL, with accuracy greater than 95% (Russo et al,
2018). Cai et al. developed a multiplex q-PCR assay targeting iroB, iucA,
rmpA, and rmpA2 as molecular biomarkers for the rapid detection of
hvKp. This assay demonstrated 100% sensitivity and 98% specificity in
clinical validation studies (Cai et al., 2025). In this study, a 2D-PCR
analysis of four virulence genes was conducted on 105 clinical isolates.
The positive rates of the hvKP virulence genes were detected as peg-344,
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rmpA, iucA, and rmpA2 in descending order, and the detection rate of .
four virulence genes were more than 60%. Peg-344 is widely distributed 5 g % g 3 a
on the virulence plasmid of hvKp strains, and appears to be hvKp- % j: = 8 § 5 "g
specific (Bulger et al., 2017). Liao et al. (2020) established a LAMP 5 3 - j: g 2
detection method for hvKp based on peg-344 as a target molecular ;0:3 2 ;m &l & R =
biomarker, with an accuracy of 97%, a sensitivity of 99% and a specificity &
of 96%. rmpA and rmpA2 are regulatory genes for polysaccharide
expression in the capsule of hvKp, which decrease capsule production z 9 5 E“
and virulence of strains if missing (Matono et al., 2022). Yan et al. (2023) L .g 2 g g % ‘qa": E" :; g
effectively developed a recombinase-aided amplifcation (RAA) 42 % T::;‘ g £ & g §: § é é
detection method targeting peg-344 and rmpA, enabling the rapid S E} g ! g g & % % g §
identification of hvKp in clinical samples with both 100% sensitivity and g ® F i;’; % 2 g* E g E
specificity. The iucA genes that are responsible for producing aerobactin [a) g £ Tg = g £ E £ E
and salmochelin also demonstrate specificity in hvKp (Mydy et al., E § 7 g " g
2020). These biomarkers have the potential to be used as a rapid
diagnostic test for differentiating hvKp from cKp. Therefore, the four £
virulence genes iucA, peg-344, rmpA2, and rmpA in this study can k. gg . ~
be used as accurate molecular markers for hvKP (Table 3). . E .E',* E _g'; E E
Traditional PCR and multiplex PCR are often used to detect s = 2 =38 R 2 3 ¢
virulence genes (Compain et al., 2014; Albasha et al., 2020). The E o 35: -é QE; -E § -§ % é
traditional PCR method has significant disadvantages in clinical E % 5 S '?.; % 3 g g E
diagnosis, such as long processing time, the need for electrophoresis 'g 3 %D % i é ;f Z% 4:_% é
after amplification to identify the results, and the limitation that a 9 = @ g g _g 2 E}, = E
specific primer pair can only detect one gene type (Pan et al., 2025). 8 2 3 & % & &
Multiplex PCR has some limitations, such as false-positive results, a § Z ]
long processing cycle, complex workflows, and low efficiency £ &
(Dessajan and Timsit, 2024). Therefore, researchers have made E -
significant efforts in recent years to improve and develop molecular '% ®
methods for hvKp identification, such as RAA and LAMP. Compared 5 :3; X S
with existing hvKp detection methods, 2D-PCR overcomes the E. 2
inherent limitations of multiplex PCR by introducing Tm as the 2
second dimension, which strictly relies on proportional relationships E =
among fluorescence channels, probes, and detectable targets. A high- % E S S 2 g g
throughput closed-tube detection system has been established, s g = - - -
significantly improving the detection throughput of single-tube 3 KA
reactions and reducing false positives caused by nonspecific 2
amplification (Wang et al., 2025). Its probe design strategy allows a % >,
single probe to recognize multiple targets, greatly reducing the ) 5 o o
number of probes required. Compared with conventional probes, ‘g § X & kS g $
2D-PCR probes do not require quenchers, significantly reducing § &
detection costs. The experimental process is simplified, eliminating )
the need for subsequent operations such as electrophoresis, making it g
suitable for large-scale clinical screening. S 5 = g
2D-PCR is a closed-tube multiplex PCR technology that g‘ .‘é g = = é g =
combines melting curve analysis with PCR and is simple and 2 I - w s
sensitive for clinical applications. 2D-PCR is considered an s = 2
excellent amplification detection technology widely used for the 2z A ~ ) é
quantification of various pathogens, assisting in the diagnosis '{::: :;; g- 3 g i
of various diseases such as human papillomavirus (HPV) (Wu § ;5 ~ “g T < E‘Z’ P g
et al., 2022) and inflammatory bowel disease (Wu et al., 2024). g § <‘§ ;; § § § % _;“j g g
In the present study, a 2D-PCR method was established for the = E - g g 3 i g 25 ¢ %
detection of hvKp. To successfully detect multiple genes in a '% § | § g & p :E;g é ¢
single tube while reducing the number of probes required for § ;;: né‘ § § & £ T%* é
the detection of multiple genes, we introduced pre-labeled g = s ;E g g é
sequences and probes that can recognize multiple target genes é E g 2 ; g
in the 2D-PCR reaction system and evaluated the sensitivity and " % a i & g % '!é _é g
specificity of this method. The experimental results indicate that E & £ 2 3 g é; ! & g b
the melting temperature difference of the four virulence genes = = - - = S ESSgE
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was about 5°C, and there was no cross-reactivity. When a
mixture of four virulence plasmids is used as a template,
2D-PCR can detect four virulence genes in a single closed-tube
assay. Simultaneously, we found that the minimum detection
limit of iucA, peg-344, rmpA2, and rmpA genes were 10°, 10%,
10% and 10° copies/pL, respectively. The limit of detection in
this study was consistent with the multiplex qg-PCR method for
detecting hvKP reported by Cai et al. (2025). Finally, to evaluate
the clinical applicability of our 2D-PCR assay, we screened 105
clinical samples using 2D-PCR and conventional PCR. The
sensitivity and specificity of the 2D-PCR assay were 100 and
96.2% compared with conventional PCR as the reference
standard. The 2D-PCR method developed in this study
demonstrates a high degree of concordance with traditional
PCR results in clinical practice. This method can be effectively
employed for the detection of clinical samples, providing a rapid
diagnosis of hvKp in clinical samples.

The definition of hvKp virulence genes remains controversial, and
further research and verification are necessary to determine which
virulence genes should be fully defined as hvKp (Kocsis, 2023). So, this
study has some limitations. First, the selection of virulence genes is not
comprehensive enough. We only detected four virulence genes, this
can be addressed by increasing the number of fluorescent channels
and tag sequences to improve the detection throughput of 2D-PCR, it
is highly possible for 2D-PCR to identify more than 30 genes
simultaneously. Second, the number of clinical samples we selected is
relatively small, and further expansion of the sample size to evaluate
the clinical application potential of 2D-PCR comprehensively.

Conclusion

This study presents a simple, high-throughput method for the rapid
identification of biomarkers for hvKp strains, enabling accurate detection
of hvKp with excellent specificity and sensitivity. Additionally, 2D-PCR
also shows high specificity in clinical performance analyses, meeting the
needs of clinicians diagnosing hvKp. Thus, 2D-PCR is a powerful tool
for early diagnosis and epidemiological surveillance of hvKp.
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