
Edited by  

Chen Li, Yu-Dong Yao and Marcin Grzegorzek

Published in  

Frontiers in Microbiology

Artificial intelligence in 
pathogenic microorganism 
research

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/research-topics/64057/artificial-intelligence-in-pathogenic-microorganism-research
https://www.frontiersin.org/research-topics/64057/artificial-intelligence-in-pathogenic-microorganism-research
https://www.frontiersin.org/research-topics/64057/artificial-intelligence-in-pathogenic-microorganism-research


May 2025

Frontiers in Microbiology 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-6377-9 
DOI 10.3389/978-2-8325-6377-9

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


May 2025

Frontiers in Microbiology 2 frontiersin.org

Artificial intelligence in 
pathogenic microorganism 
research

Topic editors

Chen Li — Northeastern University, China

Yu-Dong Yao — Stevens Institute of Technology, United States

Marcin Grzegorzek — University of Lübeck, Germany

Citation

Li, C., Yao, Y.-D., Grzegorzek, M., eds. (2025). Artificial intelligence in 

pathogenic microorganism research. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-6377-9

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-6377-9


May 2025

Frontiers in Microbiology 3 frontiersin.org

05 Artificial intelligence applications in the diagnosis and 
treatment of bacterial infections
Xiaoyu Zhang, Deng Zhang, Xifan Zhang and Xin Zhang

18 Lesion region inpainting: an approach for pseudo-healthy 
image synthesis in intracranial infection imaging
Xiaojuan Liu, Cong Xiang, Libin Lan, Chuan Li, Hanguang Xiao and 
Zhi Liu

36 Comprehensive data optimization and risk prediction 
framework: machine learning methods for inflammatory 
bowel disease prediction based on the human gut 
microbiome data
Yan Peng, Yue Liu, Yifei Liu and Jie Wang

50 Application of machine learning based genome sequence 
analysis in pathogen identification
Yunqiu Gao and Min Liu

60 WSSS-CRAM: precise segmentation of histopathological 
images via class region activation mapping
Ningning Pan, Xiangyue Mi, Hongzhuang Li, Xinting Ge, Xiaodan Sui 
and Yanyun Jiang

76 Artificial intelligence in assisting pathogenic microorganism 
diagnosis and treatment: a review of infectious skin diseases
Renjie Han, Xinyun Fan, Shuyan Ren and Xueli Niu

85 Correlation between oxygenation function and laboratory 
indicators in COVID-19 patients based on non-enhanced 
chest CT images and construction of an artificial intelligence 
prediction model
Weiheng Kong, Yujia Liu, Wang Li, Keyi Yang, Lixin Yu and 
Guangyu Jiao

97 A transformer-based deep learning model for identifying the 
occurrence of acute hematogenous osteomyelitis and 
predicting blood culture results
Yingtu Xia, Qiang Kang, Yi Gao and Jiuhui Su

110 Harnessing AI for advancing pathogenic microbiology: a 
bibliometric and topic modeling approach
Tian Tian, Xuan Zhang, Fei Zhang, Xinghe Huang, Minglin Li, 
Ziwei Quan, Wenyue Wang, Jiawei Lei, Yuting Wang, Ying Liu and 
Jia-He Wang

125 Deformable multi-level feature network applied to nucleus 
segmentation
Shulei Chang, Tingting Yang, Bowen Yin, Jiayi Zhang, Liang Ma, 
Yanhui Ding and Xiaodan Sui

Table of
contents

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


May 2025

Frontiers in Microbiology 4 frontiersin.org

137 Assessment of body composition and prediction of infectious 
pancreatic necrosis via non-contrast CT radiomics and deep 
learning
Bingyao Huang, Yi Gao and Lina Wu

153 Prediction and analysis of toxic and side effects of tigecycline 
based on deep learning
Yin Xiong, Guoxin Liu, Xin Tang, Boyang Xia, Yalian Yu and 
Guangjun Fan

164 Revolutionizing diagnosis of pulmonary 
Mycobacterium tuberculosis based on CT: a systematic 
review of imaging analysis through deep learning
Fei Zhang, Hui Han, Minglin Li, Tian Tian, Guilei Zhang, 
Zhenrong Yang, Feng Guo, Maomao Li, Yuting Wang, Jiahe Wang and 
Ying Liu

184 The clinical prediction model to distinguish between 
colonization and infection by Klebsiella pneumoniae
Xiaoyu Zhang, Xifan Zhang, Deng Zhang, Jing Xu, Jingping Zhang 
and Xin Zhang

196 Construction of a predictive model for rebleeding risk in 
upper gastrointestinal bleeding patients based on clinical 
indicators such as Helicobacter pylori infection
Wei Zang, Ze Lin, Yanduo Zhao, Tianshi Jia and Xinglong Zhang

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


Frontiers in Microbiology 01 frontiersin.org

Artificial intelligence applications 
in the diagnosis and treatment of 
bacterial infections
Xiaoyu Zhang 1, Deng Zhang 2†, Xifan Zhang 1† and Xin Zhang 1*
1 First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 
Shenyang, China, 2 Department of Infectious Diseases, The First Affiliated Hospital of Xiamen 
University, Xiamen, China

The diagnosis and treatment of bacterial infections in the medical and public 
health field in the 21st century remain significantly challenging. Artificial 
Intelligence (AI) has emerged as a powerful new tool in diagnosing and treating 
bacterial infections. AI is rapidly revolutionizing epidemiological studies of 
infectious diseases, providing effective early warning, prevention, and control of 
outbreaks. Machine learning models provide a highly flexible way to simulate and 
predict the complex mechanisms of pathogen-host interactions, which is crucial 
for a comprehensive understanding of the nature of diseases. Machine learning-
based pathogen identification technology and antimicrobial drug susceptibility 
testing break through the limitations of traditional methods, significantly shorten 
the time from sample collection to the determination of result, and greatly 
improve the speed and accuracy of laboratory testing. In addition, AI technology 
application in treating bacterial infections, particularly in the research and 
development of drugs and vaccines, and the application of innovative therapies 
such as bacteriophage, provides new strategies for improving therapy and 
curbing bacterial resistance. Although AI has a broad application prospect in 
diagnosing and treating bacterial infections, significant challenges remain in data 
quality and quantity, model interpretability, clinical integration, and patient privacy 
protection. To overcome these challenges and, realize widespread application in 
clinical practice, interdisciplinary cooperation, technology innovation, and policy 
support are essential components of the joint efforts required. In summary, with 
continuous advancements and in-depth application of AI technology, AI will 
enable doctors to more effectivelyaddress the challenge of bacterial infection, 
promoting the development of medical practice toward precision, efficiency, 
and personalization; optimizing the best nursing and treatment plans for patients; 
and providing strong support for public health safety.

KEYWORDS

bacterial infections, artificial intelligence, machine learning, diagnosis, treatment, 
epidemiologic surveillance

1 Introduction

Bacterial infections remain a major challenge in medical and public health in the 21st 
century, with millions of patient deaths annually. According to a study published in The 
Lancet on November 21, 2022, bacterial infections are one of the leading causes of global 
health loss and have become the second leading cause of death globally, after ischemic heart 
disease (GBD, 2019). Accurate and rapid identification of pathogens and their drug 
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susceptibility profiles is essential for selecting the right treatment and 
reducing mortality. However, most current bacterial identification 
and drug susceptibility testing require culture times of several days, 
which not only delays the initiation of treatment, but also increases 
the risk of the development of resistant bacteria due to the long-term 
use of broad-spectrum antibiotics. At the same time, surveillance 
and management of bacterial infections are essential to prevent their 
spread and safeguard public health. In this context, the medical 
community urgently seeks new tools and strategies to better cope 
with bacterial infections. The rise of artificial intelligence (AI) 
technology, offers a new way to deal with bacterial infection (Mintz 
and Brodie, 2019; Larentzakis and Lygeros, 2021; Ting Sim 
et al., 2023).

Recently AI, as a powerful computational tool, has shown great 
potential in the diagnosis and treatment of bacterial infections 
(Goodswen et  al., 2021; Jiang et  al., 2022). AI is a science and 
technology that simulates human intelligence through computers, 
capable of mimicking human cognitive abilities and decision-making 
processes. In medicine, the main focus should be on the following 
terms: machine learning (particularly deep learning), natural language 
processing, computer vision, knowledge graph, and robotics, etc. 
(Mintz and Brodie, 2019) (Figure  1). The rapid expansion of AI 
technology spans from enhancing epidemiological surveillance to 
accelerating pathogen identification and predicting bacteria sensitivity 
to antimicrobial agents, Furthermore, AI supports the research and 
development of new drugs, vaccines, and innovative therapies, thereby 
promoting the development advancement of personalized medicine. 
tThe wide application of AI is expected to fundamentally transform 
the management, diagnosis, and treatment of bacterial infection 
(Wong et al., 2023).

Based on a comprehensive analysis of the existing literature and 
the latest research results, this study aimed to explore how AI 
technology can improve the efficiency and accuracy of medical 
diagnosis, as well as the level of personalized treatment, while focusing 
on the challenges that may hinder its practical clinical application. 
This will primarily provide medical workers with a comprehensive 
understanding of the application of AI technology in the diagnosis 
and treatment of bacterial infectious diseases, jointly promote the 
application of AI in the fight against bacterial infections, provide 
patients with more accurate and efficient medical services, and 
contribute to the development of global public health.

2 Application of AI in epidemiological 
surveillance of bacterial infectious 
diseases

AI and big data technologies are rapidly transforming the 
epidemiology of infectious diseases, particularly in the research and 
management of public health emergencies (PHEs). The modelsof 
infectious disease dynamics (IDD) and dynamic Bayesian networks 
(DBN)have not only promoted the spread of disease forecast accuracy, 
but also strengthened the ability analysis outbreakevolution (Gao and 
Wang, 2022). Through cloud computing platforms, AI can process 
massive data in real time and effectively monitor infectious disease 
outbreaks. Despite the challenge of long model training time, its 
practicability makes it an indispensable tool for early epidemic 
warning (Li et al., 2023). In addition, the development and application 

of geographic information systems (GIS), with its advanced data 
overlay capabilities, has greatly optimized the integration of public 
health data and has gained widespread acceptance (Wells et al., 2021). 
Similarly, the ToxPi*GIS Toolkit enables the visualization and analysis 
of geospatial data in the ArcGIS environment, a visualization 
framework that integrates multiple data sources and generates 
intuitive graphic files with through Python scripts, ArcGIS Pro 
methods, and custom toolkits (Fleming et al., 2022). In addition, the 
cloud data storage and use of Internet search data, such as Google Flu 
Trends, show the potential of disease surveillance systems based on 
large data to enhance real-time monitoring (Pfeiffer and 
Stevens, 2015).

Although these advanced tools and methods are currently used 
primarily in viral epidemiology, their potential for disease surveillance, 
data presentation and analysis, and public health decision-making 
continues to evolve. This suggests that their contribution to bacterial 
epidemiology is also expected to increase. For example, machine 
learning models can predict in advance the risk of Clostridioides 
difficile infection among patients in large hospitals, allowing healthcare 
teams to implement preventive measures proactively before infection 
occurs (Oh et al., 2018; Tilton and Johnson, 2019). Real-time locator 
systems can be used for contact tracing in the emergency department, 
which is not only more efficient and timely than tracing methods 
relying on electronic medical records, but also significantly increases 
the number of potentially exposed individuals identified while 
optimizing the use of time and resources (Hellmich et al., 2017). Maia 
Lesosky et al. revealed the impact of inter-hospital patient flow on 
methicillin-resistant Staphylococcus aureus (MRSA) transmission 
through Monte Carlo simulation (Lesosky et al., 2011). Further studies 
explored cross-hospital pathogen transmission using a susceptible 
infection model, demonstrating the important value of AI and big data 
in curbing hospital-acquired infections (Ciccolini et al., 2014).

AI is paving new ways to predict and prevent bacterial infections. 
AI technology integrates and analyzes vast amounts of complex data 
to achieve early recognition and accurate prediction of bacterial 
infection outbreaks. This optimizes prevention and control measures, 
guides public health decisions, and supports the global fight against 
infectious diseases and the new solution.

3 AI has revolutionized the study of 
bacterial infection mechanism

Further study of the pathogenesis of bacterial infectious diseases 
is crucial to fully understand the nature of these diseases. This 
process not only involves the complex process of how bacteria 
colonize, invade, and spread in the host but also involves the host’s 
immune response and its interaction with pathogens. Among them, 
pathogen-host interaction is the key link, and animal models have 
been an indispensable tool in traditional research. They provide 
valuable data for observing the infection process of pathogens, host 
immune response, and disease development (Younes et al., 2020; 
Burkovski, 2022). While such approaches, although capable of 
providing accurate and rich biologic insights, are often costly, time-
consuming, and associated with ethical concerns. With the rapid 
development of AI technology, especially the emergence of machine 
learning models, researchers can simulate and understand the 
complex interactions between pathogens and hosts without animal 
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experiments. For example, the PHISTO tool promotes a deep 
understanding of infection mechanisms by synthesizing different 
databases and using text mining techniques, supplemented by graph 
theory analysis and BLAST search (Durmuş Tekir et al., 2013). A 
novel set of modular structural plasmids named pTBH (toolbox of 
Haemophilus) demonstrates coexistence and co-infection kinetics 
of fluorescently labeled strains by 3D microscopy combined with 
quantitative image analysis (Rapún-Araiz et al., 2023). Furthermore, 
AI models can effectively simulate the complex interactions between 
bacteria and hosts in different metabolic states (Dillard et al., 2023). 
Using advanced fluorescence microscopy detection and automated 
image analysis techniques, researchers have found that 
Staphylococcus aureus isolates from patients with bone/joint 
infection, bacteremia, and infective endocarditis show different 
infection characteristics in different host cell types (Rodrigues Lopes 
et al., 2022). These techniques not only provide a visual basis for 
understanding microbial behavior in specific host environments but 
also assist in the design of drugs and vaccines.

The application of machine learning models provides us with a 
highly flexible way to predict and simulate the complex mechanisms 
of pathogen-host interactions, which not only accelerates the research 
process but also reduces the research cost. Although AI models are not 
a complete replacement for all animal model studies, they provide new 
ways to explore uncharted territories.

4 AI application in the diagnosis of 
bacterial infections

In the traditional approach to diagnosing bacterial infectious 
diseases, laboratory technicians rely on microbiological and 
biochemical tests to identify pathogens. It includes bacterial culture, 
morphological observation, biochemical reaction tests, and 
serological techniques (Ernst et  al., 2006; Váradi et  al., 2017) 
(Table 1). In addition, molecular biology techniques are widely used 
for the identification of bacterial DNA sequences, of which the 
polymerase chain reaction (PCR) is a commonly used method 
(Wilson, 2015; Deusenbery et al., 2021). Although PCR technology 
is more advanced than traditional biochemical and microbiological 
methods, it requires a long time to complete the experimental 
process. Moreover, the integration and application of AI technology 
not only optimizes the traditional bacterial detection and 
management process, but also has the potential to bring about a 
complete revolution (Ho et al., 2019; Wang et al., 2020; Paquin et al., 
2022; Howard et al., 2024) (Figure 2).

4.1 AI improves the efficiency and accuracy 
of pathogen identification

AI technology provides a new way to diagnose bacterial 
infections rapidly and accurately. For example, matrix-assisted 
laser desorption/ionization time-of-flight mass spectrometry 
(MALDI-TOF MS) combined with ClinProTools software 
provided a method for the rapid identification of two 
Staphylococcus aureus subspecies, which achieved 100% 
identification and classification accuracy through genetic analysis 
and a fast classifier model (Pérez-Sancho et al., 2018). Findaureus, 
an open-source application based on Python, demonstrated the 
ability to automatically locate bacteria in the tissue section using 
immune fluorescent tags. It overcomes the challenges of the 
manual threshold-setting process and optimizes the analysis of the 
condition of complex tissue cell efficiency (Mandal et al., 2024). 
PhenoMatrix (PM) Colorimetric Detection Module (CDM) digital 

FIGURE 1

The relationship between machine learning (particularly deep learning), natural language processing, computer vision, knowledge graph, robotics, and 
artificial intelligence.

TABLE 1 Advantages and limitations of the traditional bacterial 
identification methods.

Method Advantages Limitations

Bacterial culture 

(Baron, 2019)

 ✓ The cost is low

 ✓ Effective for 

various bacteria

 ✓ Easy to operate

 • Long 

time consumption

 • Some bacteria 

cannot develop

 • Susceptible 

to contamination

 • It is not suitable for 

highly specific tests

Morphological 

observation (Periasamy, 

2014)

 ✓ No special equipment

 ✓ Intuitive is strong

 ✓ Accumulation of 

experience

 • Subjectivity is strong

 • Limited information

 • The lack of specificity

 • Need to develop

Biochemical reaction 

tests (Ohkusu, 2000)

 ✓ Cost-effective

 ✓ Easy to operate

 • Limited specificity

 • Does not apply to all 

bacteria

Serological technique 

(Eldin et al., 2019)

 ✓ High specificity

 ✓ Quick results

 ✓ Quantifiable analysis

 • Greatly influenced by 

sampling time

 • There were false 

positive and false 

negative results

 • A variety of pathogens 

have cross-reacted
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FIGURE 2

Artificial intelligence facilitates the diagnosis of bacterial infectious diseases.

imaging software uses the automated Walk Away Specimen 
Processor to detect Group B Streptococcus (with high sensitivity 
similar to that of molecular testing methods, increasing laboratory 
productivity and reducing the potential for human error (Baker 
et al., 2020). In addition, DNA microarray technology, using a 
machine learning decision-making algorithm (DendrisChips), 
identifies 11 types of bacteria associated with respiratory tract 
infections within 4 h. This technology combines PCR 
amplification of bacterial 16S rDNA and specific oligonucleotide 
hybridization on DendrisChips®, which are read with a laser 
scanner, thereby achieving quick and accurate detection and 
differentiation with over 95% accuracy (Senescau et al., 2018). 
Using neural networks to analyze response patterns, a researcher 
has designed a sensor capable of identifying 16 different bacterial 
species and their Gram-staining properties with >90% accuracy. 
The sensor is stable for up to 6 months after preparation and 
requires one-thirtieth the amount of dye and sample as traditional 
solution-based sensors, compared to conventional techniques 
(Laliwala et al., 2022). Thus, this method provides an innovative 
diagnostic tool that promises clinical applications in resource-
limited settings.

In diagnosing diseases that pose a serious threat to human health, 
such as tuberculosis, although conventional microscopy methods are 
effective, they are slow and of limited sensitivity. The introduction of 
AI, specifically Metasystems’ automated antifungal bacilli (AFB) 
smear microscopy scanning and deep learning-based image analysis 

module (Neon Metafer), has greatly improved the speed and accuracy 
of antifungal bacilli (AFB) smear-negative slide recognition speed and 
accuracy (Desruisseaux et al., 2024). A deep neural network (DNN) 
classifier combined with an automated slide scanning system reduces 
analysis time from several minutes to approximately 10 s per slide 
(Horvath et al., 2020). Further, a novel diagnostic system combining 
T-SPOT with DL-based computed tomography image analysis can 
significantly improve the classification accuracy of nontuberculous 
mycobacterial lung disease and pulmonary tuberculosis (Ying et al., 
2022). AI tools, such as artificial neural networks, are becoming 
important in providing rapid and effective pathogen detection 
methods (Dande and Samant, 2018). AI technology brings 
unprecedented accuracy and speed to pathogen detection through 
efficient learning and analysis capabilities. It will not only promote the 
automation of pathogen detection but also substantially decrease error 
rates caused by human operation, thereby improving the reliability of 
the diagnostic process.

4.2 AI optimizes antimicrobial susceptibility 
testing

Identifying pathogens and performing Antimicrobial 
Susceptibility Testing (AST) in today’s clinical laboratories often relies 
on culturing and isolating pathogens. Standard AST methods (CLSI, 
2023 such as disk diffusion, microbroth dilution, and AGAR dilution 
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methods, typically require 2–3 days or longer from sample collection 
to obtaining culture and drug susceptibility results (Abu-Aqil et al., 
2023). To effectively control infections and prevent them from rapidly 
deteriorating or spreading to other parts of the body, clinicians often 
choose broad-spectrum antimicrobials for empirical treatment, given 
that many infectious diseases are often difficult to diagnose by 
symptoms in the early stages. However, this practice may increase the 
risk of drug-resistant strains arising due to inappropriate drug 
selection; therefore, there is an urgent need for rapid and accurate AST 
technologies to guide diagnosis and treatment.

With the rapid advancement of technology, AI has become an 
important tool in bacterial AST, providing various efficient and rapid 
methods to perform drug susceptibility testing. For example, Raman 
spectroscopy based on image stitching technology enables single-cell 
level detection, which can automatically, efficiently, and rapidly identify 
drug-resistant bacteria (Nakar et al., 2022; Dou et al., 2023). Combining 
machine learning and infrared spectroscopy enables rapid and definitive 
identification of urinary tract infection bacteria and their drug 
resistance, dramatically reducing the time from sample collection to 
results. This approach decreases the time of identification and 
sensitization of Escherichia coli, Proteus mirabilis, and Pseudomonas 
aeruginosa from 48 h to approximately 40 min (Ciccolini et al., 2014; 
Tilton and Johnson, 2019; Younes et  al., 2020; Burkovski, 2022). 
Similarly, the SlipChip microfluidic device uses electrophoresis 
technology to extract and enrich bacteria directly from positive blood 
cultures. This device enables parallel inoculation of bacteria into 
nanoscale droplets of broth, facilitating simultaneous multiple 
AST. Results can be reported to clinicians within 3–8 h, ensuring reliable 
AST results and enabling earlier reporting and targeted antimicrobial 
treatment (Yi et al., 2019).

Automation technology has also demonstrated high efficiency 
in detecting certain special drug-resistant bacteria, such as 
MALDI-TOF MS, for the detection of MRSA and carbapenem-
resistant Klebsiella pneumoniae (CRKP) (Wieser et  al., 2012; 
Zhang et al., 2023). However, the novel ML-based MALDI-TOF 
MS method enables rapid identification of MRSA and CRKP from 
labeled blood cultures within 1 h (Yu et  al., 2023a,b). Recent 
studies have shown that using computer science to analyze a large 
number of MALDI-TOF MS data can provide a comprehensive 
understanding of western blot mapping between resistant and 
sensitive isolates (Wang et al., 2021). WASPLab automation system 
can significantly shorten the vancomycin resistant enterococcus 
(VRE) recognition time (Cherkaoui et al., 2019). In addition, the 
automated plate evaluation system (APAS Independence) has 
significantly improved the productivity of high-throughput 
laboratories through its highly sensitive digital image analysis 
technology to accurately classify MRSA and sensitive 
Staphylococcus aureus (MSSA) cultures as negative or positive 
without human intervention (Gammel et al., 2021).

In conclusion, the application of AI technologies to antimicrobial 
susceptibility testing enables the rapid and accurate identification of 
drug-resistant bacteria, thereby dramatically shortening the time 
from sample collection to result confirmation, and can 
be accomplished without human intervention. These technologies 
provide laboratories with a rapid and automated means of drug 
resistance monitoring, which significantly improves diagnostic 
efficiency and helps clinicians make rational antimicrobial treatment 
decisions as early as possible (Table 2).

4.3 AI can improve bacterial genome 
sequencing

Genome sequencing technologies (including whole genome 
sequencing and next-generation sequencing) have significantly 
accelerated not only the identification of infectious agents, but also the 
tracking of transmission pathways in healthcare settings and the 
analysis of the impact of complex microbial communities on human 
health (d’Humières et  al., 2021; Deusenbery et  al., 2021). It also 
provides a powerful tool for monitoring and responding to 
antimicrobial resistance (AMR) globally (Waddington et al., 2022; 
Sherry et al., 2023).

TABLE 2 Artificial intelligence in the bacteria identification and drug 
sensitivity analysis.

Technology Application References

MALDI-TOF 

MS + ClinProTools 

software

Rapidly identified 

Staphylococcus aureus 

subspecies

Pérez-Sancho et al. 

(2018)

Findaureus Automatic localization of 

bacteria in 

immunofluorescently 

labeled tissue sections

Mandal et al. (2024)

PM + CDM + WASP High sensitivity to identify 

group B streptococcus

Baker et al. (2020)

Machine learning-based 

DNA micro-matrix 

technology

More than 95% accuracy 

in identifying respiratory 

bacteria

Senescau et al. (2018)

Neural network-based 

sensors

90% accuracy in bacterial 

identification

Laliwala et al. (2022)

AFB + Neon Metafer Significantly improved the 

speed and accuracy of 

identification of acid-

fighting bacilli (AFB) on 

smear-negative slides

Desruisseaux et al. 

(2024)

DNN + an automated 

slide scanning system

Significantly reduced slide 

analysis time

Horvath et al. (2020)

T-SPOT + DL-based 

technology

Significantly improved the 

classification accuracy of 

NTM—PD and PTB

Ying et al. (2022)

Raman spectroscopy 

based on image stitching 

technology

Automatically, efficiently 

and rapidly identified 

drug-resistant bacteria

Dou et al. (2023) and 

Nakar et al. (2022)

SlipChip microfluidic 

device

Significant reduction in 

bacterial drug sensitivity 

test time

Yi et al. (2019)

A novel MALDI-TOF 

MS method based on ML

Rapidly identified MRSA 

and CRKP

Yu et al. (2023a,b)

WASPLab automation 

system

Significantly shorten the 

vancomycin-resistant 

enterococcus (VRE) 

recognition time

Cherkaoui et al. (2019)

APAS Independence Accurately distinguish 

MRSA and MSSA

Gammel et al. (2021)
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Current genetic testing techniques mainly match based on 
sequence similarity; however, these tools are often unsuccessful in 
identifying new species without closely related genomes or related 
sequences in reference databases. In response to this challenge, the 
machine learning-based PaPrBaG method provides a reliable and 
consistent prediction method that maintains its reliability even with 
low genome coverage (Deneke et al., 2017). In addition, machine 
learning combined with metagenomic sequencing can significantly 
improve the diagnostic accuracy of diseases that are difficult to 
diagnose, such as tuberculous meningitis (Ramachandran et al., 2022).

Another challenge for genetic testing technologies is how to 
rapidly and accurately interpret high-dimensional genomic data as 
the cost of second-generation sequencing technology decreases and 
throughput increases. Machine learning techniques have shown their 
potential in processing large genomic data by analyzing and 
predicting the health impact of Shiga toxin-producing Escherichia 
coli infections, providing new methods and perspectives for 
microbial risk assessment (Njage et al., 2019). In addition, Bayesian 
neural networks using a nonparametric Bayesian algorithm excelled 
in accelerating the analysis of genetic association studies and 
efficiently and accurately identifying variant strains of infection 
(Beam et al., 2014).

Combining machine-learning models with genomics technology 
has shown excellent performance in predicting pathogen resistance, 
which is significantly better than existing methods. Some researchers 
have used machine learning to construct a knowledge map of 
antimicrobial resistance in Escherichia coli, which realizes the 
automatic discovery of knowledge of antimicrobial resistance in 
Escherichia coli and reveals unknown drug resistance genes (Youn 
et  al., 2022). Based on the XGBoost and convolutional neural 
network approaches, the researchers not only accurately predicted 
the minimum inhibitory concentrations of Klebsiella pneumoniae 
clinical isolates against 20 antimicrobial drugs, but also successfully 
identified strains with high drug resistance or high virulence 
(Nguyen et al., 2018; Liu et al., 2021; Lu et al., 2022). Similarly, some 
researchers have innovated a decision tree method called Treesist-TB 
for identifying mutant strains and predicting drug resistance, which 
has a recognition ability beyond the existing TB-Profiler tools 
(Deelder et al., 2022), This technique not only demonstrates the value 
of decision trees in the tuberculosis field but also provides a reference 
template to identify other drug-resistant pathogens.

AI has shown great potential in genome sequencing technology. 
In response to the challenges of identifying new species and 
interpreting high-dimensional data, machine learning has surpassed 
the limitations of traditional genetic detection techniques and 
deepened our understanding of the microscopic world of pathogens. 
Furthermore, machine learning excels in predicting antimicrobial 
drug resistance, outperforming traditional methods, and 
strengthening global antibiotic resistance (AMR) monitoring efforts.

5 Application of AI in the treatment of 
bacterial infections

The challenges in the treatment of bacterial infections are 
diverse, and one of the most serious is the increasing resistance to 
antimicrobial agents. The importance of Antimicrobialresistance was 
formally declared at the United Nations General Assembly 

High-level Meeting on antimicrobial Resistance in 2016, and 
countries were called on to commit to developing their national 
action plans on antimicrobial resistance. Nearly 5 million people 
died globally due to resistant pathogens in 2019 (Antimicrobial 
Resistance Collaborators, 2022). Current projections suggest that by 
2050, 10 million people globally could be burdened by antimicrobial 
drug resistance each year (Walsh et al., 2023). Over time, bacteria 
have acquired resistance to antimicrobial drugs through natural 
selection and genetic variation, thereby undermining the 
effectiveness of traditional treatments. In addition, the high diversity 
of bacteria and the complexity of bacterial-host interactions further 
increase the difficulty of treatment, making the development of 
vaccines and novel drugs difficult. Hence, developing new 
antimicrobial strategies and therapeutic approaches are urgently 
needed to address these issues (Stracy et al., 2022).

In this context, AI technology accurately simulates the complex 
interactions between pathogen, host, and drugs, revealing microbial 
infection features and optimizing drug and vaccine design (Figure 3). 
In addition, AI application in the field of phage therapy brings new 
hope for the fight against bacterial resistance.

5.1 AI revolutionizes drug discovery and 
development

In drug research and development, the application of AI is 
breaking the boundaries of traditional research, providing new 
strategies to overcome the problem of drug resistance. For example, 
by combining high-throughput biophysical analysis and machine 
learning, a framework was established to identify and predict bioactive 
targets of antimicrobial drugs, which successfully revealed the 
relationship between phenotype, target, and chemotype, providing an 
effective way to identify candidate therapeutic drugs (Santa Maria 
et al., 2017). Meanwhile, combining fragment-based drug design with 
quantitative structure–activity relationship modeling demonstrates 
the potential of artificial neural networks in the drug discovery 
process (Kleandrova and Speck-Planche, 2020). Using data-driven 
techniques, the study of bacterial minimal inhibitory concentration 
data using machine learning and matched molecular pair analysis has 
revealed key chemical features that affect bacterial biological activity, 
thus promising to expand the chemical space of broad-spectrum 
antimicrobial agents (Gurvic et al., 2022). In a study, a support vector 
machine learning approach was applied to analyze genomics, 
metabolomics, and transcriptomics data of Pseudomonas aeruginosa. 
This approach successfully identified a key molecular mechanism that 
distinguishes between pathogenic and non-pathogenic strains of 
Pseudomonas aeruginosa, which not only provides high-value targets 
for the development of novel antimicrobial therapeutics but also 
highlights the importance of dynamically integrating 
multidimensional data in modern drug discovery and development 
(Larsen et al., 2014).

Furthermore, significant breakthroughs have been made in the 
application of AI in specific disease areas, such as anti-tuberculosis 
drug development. The machine learning and artificial neural network 
method can be used to successfully find LeuRS for Mycobacterium 
tuberculosis and MetRS double targets of inhibitors (Volynets et al., 
2022), and small-molecule inhibitors of the enzymes required for 
M. tuberculosis topoisomerase I  have been successfully identified 
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(Ekins et al., 2017), providing a new strategy to overcome multidrug 
resistance in tuberculosis. In addition, combining public Mtb data 
with machine learning not only greatly improves the efficiency of drug 
discovery, but also accumulates valuable data resources for future anti-
tuberculosis research and new drug development (Lane et al., 2022).

These advanced technologies not only accelerate the research and 
development process of new drugs, but also enhance the possibility of 
discovering potential therapeutic options, fundamentally changing 
how researchers understand and operate complex biological systems, 
and heralding a new era of smarter and more precise development in 
the pharmaceutical field.

5.2 AI brings breakthroughs in vaccine 
development

Currently rapid progress has been made in vaccine research and 
development against viral diseases. In particular, the speed and 
efficiency of response to emerging virus epidemics have been greatly 
improved, such as the application of computer-aided design of 
COVID-19 vaccine candidates in the global pandemic of 
COVID-19 in early 2020 (Abbasi et al., 2022). In contrast, bacteria 
in the field of vaccine research and development are faced with 
more complicated challenges. The high variability of bacteria, 
rapidly evolving drug resistance, and complexity of interactions 

between bacteria and their hosts all challenge the development of 
effective vaccines against bacterial infectious diseases. To address 
these challenges, leveraging emerging tools such as artificial 
intelligence, computer-aided design, and advanced immunological 
evaluation techniques has become pivotal to accelerating the 
development of safe and effective vaccines.

In the process of vaccine design, scientists are challenged not only 
to identify the key antigens that can trigger lasting immune memory, 
but also to ensure that the vaccine can elicit broad protective immune 
responses, including humoral and cellular immune responses, to 
achieve effective protection in the long term. Recently, reverse 
vaccinology (RV) technology has been widely used in vaccine research 
and development. As a calculation method, RV is mainly applied to 
bacterial pathogens. Bexsero, a Neisseria meningitidis B vaccine 
designed by RV, has been registered and widely used in many countries 
(Heinson et  al., 2015). In addition, a key component of vaccine 
development—antigen identification—is strongly supported by 
computational tools such as deep learning, reverse vaccinology and 
immunoinformatics. In-depth analysis of vaccine targets derived from 
pathogen protein-coding genomes has led to the successful 
development of a multi-epitope subunit vaccine with potentially 
potent protection. Although the safety and immunogenicity of the 
vaccine need to be further verified (Rawal et al., 2021), this approach 
not only accelerates the vaccine design process and reduces the 
reliance on traditional trial methods, but also has important 

FIGURE 3

AI technology can model complex interactions between pathogens, hosts, and drugs.
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implications for addressing the threat of drug-resistant bacteria. 
Research shows that a new type of machine learning model, compared 
with traditional methods, achieves higher precision and sensitivity in 
predicting aspects of mycobacterium tuberculosis (Khanna and 
Rana, 2019).

The application of machine learning technology not only 
optimizes the vaccine development process and improves efficiency 
by reducing the reliance on traditional experiments and animal 
testing, but also provides strong scientific and technological support 
to cope with evolving epidemics of bacterial infections.

5.3 AI drives innovative applications of 
phage therapy

Phage therapy has attracted much attention from the scientific 
community for its potential advantages in combating drug-
resistant bacterial infections (Viertel et  al., 2014; Kulshrestha 
et  al., 2024). However, accurate prediction of the complex 
interactions between phages and their target pathogens and hosts 
remains challenging (Cisek et al., 2017), and AI models become 
an important tool to overcome this challenge. For example, a 
machine learning-based local K-mer strategy is used to accurately 
predict phage-bacteria interactions (Qiu et  al., 2024). 
Simultaneously, machine learning can assist in the design of 
clinical phage therapy, particularly for urinary tract infections 
caused by multidrug-resistant E. coli (Keith et  al., 2024). In 
addition, a tool called HostPhinder predicted phage host genus 
and species with 81 and 74% accuracy, respectively, demonstrating 
the technology’s ability to pinpoint therapeutic targets (Villarroel 
et al., 2016).

Consequently, the application of phages, either alone or in 
combination with antimicrobial agents, can be a viable alternative to 
treat infections with resistant pathogens (Tagliaferri et al., 2019). The 
rapid development of AI technology enhances the potential of phage 
therapy by accurately predicting complex interactions between 
pathogens and phages, thereby contributing to the design of 
personalized treatment. This not only accelerates the development of 
phage therapy but also enhances its treatment success.

5.4 AI-assisted clinical decision support 
systems

The timing of effective antimicrobials is a key determinant of 
morbidity and mortality in the management of infectious diseases, 
specifically in the case of septic shock (Evans et  al., 2021). Early 
identification can not only reduce the poor prognosis caused by 
delayed treatment, but also help avoid unnecessary medical 
intervention and reduce treatment costs, thus significantly improving 
the survival rate and quality of life of patients.

Under the background of increasing emphasis on individualized 
treatment and precision medicine, AI progress not only promotes 
medical innovation, but also may overturn the existing diagnosis and 
treatment mode. In bacterial infectious disease diagnosis and 
treatment, AI and ML are used to simplify the clinicians’ work process, 
improve the quality of decision-making, and promote the development 

of personalized treatment options (Langford et al., 2024). For example, 
ML models have been successfully applied to diagnose respiratory 
syncytial virus infection and pertussis in children by combining 
clinical symptoms with laboratory test results (Mc Cord-De Iaco et al., 
2023). Based on statistically significant clinical indicators such as sex 
and age, LightGBM and other ML models have a good effect on 
predicting the etiology of classical Fever of Unknown Origin in 
patients (Yan et al., 2021). In addition, ML models can rapidly predict 
the risk of MRSA infection in patients with community-acquired 
pneumonia and facilitate the implementation of targeted antimicrobial 
treatment (Rhodes et  al., 2023). Clinical decision trees generated 
based on recursive methods are valuable for determining the 
likelihood of infection with extended-spectrum beta-lactamase strains 
in patients with bacteremia (Goodman et al., 2016). A system for early 
warning of antimicrobial drug allergies, K-CDSTM, effectively warns 
of antimicrobial drug allergies and prevents patients from being 
prescribed antimicrobial drugs that may trigger allergic reactions 
(Han et  al., 2024). The ontology-driven clinical decision support 
system uses big data to assist the treatment decision-making of 
infectious diseases and constructs a bridge between patients and 
medical workers (Shen et al., 2018). In the development of predictive 
disease models, tools such as multiple infectious disease diagnostic 
models are significantly more accurate than traditional prediction 
techniques based on large amounts of training data (Wang et  al., 
2022). In a 3-month case–control study using a computerized clinical 
decision support system in an experimental group, time was reduced 
by approximately 1 h and antimicrobial costs were saved by 
approximately US $84,000 (McGregor et al., 2006).

In summary, machine learning models have been successfully 
used to improve diagnostic accuracy and predict disease risk in 
clinical decision-making, showing better accuracy and efficiency than 
traditional approaches (Figure 4). AI and ML technologies are leading 
the wave of medical innovation and have the potential to change the 
traditional methods of diagnosis and treatment.

6 AI helps personalized medical 
development

Through deep study and the analysis of the complex algorithm, 
AI can process and interpret patients with huge amounts of data, 
including genetic information, living habits and historical health 
records, etc. This not only enables accurate diagnosis of the disease, 
but also facilitates personalized treatment plans for each patient. For 
example, in cancer treatment, AI can help doctors choose the most 
appropriate combination of drugs for patients, reduce side effects, 
and improve cure rates. Similarly, AI can also predict efficacy and 
possible complications and provide tailored health management 
plans for patients (Bilgin et al., 2024; Elemento, 2024).

In the field of bacterial infections, a novel method called 
CombiANT can rapidly quantify antimicrobial synergy through a 
single test and automated image analysis, enabling personalized 
clinical synergy testing to improve the anti-infection combination 
therapy (Fatsis-Kavalopoulos et  al., 2020). Kuo-Wei Hsu et  al. 
developed an automated portable antimicrobial susceptibility 
testing system for four common urinary tract infection bacterial 
strains, taking only 4.5–9 h to complete the test, which holds 
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promise for future application in personalized medicine practice 
(Hsu et al., 2021). Connor Rees et al. showed an overall success rate 
of > 90% for correct diagnoses in the list of 10 differential diagnoses 
generated by ChatGP-3 (Hirosawa et al., 2023). In the future, more 
research is expected to focus on evaluating more complex cases and 
promote the development of fully trained artificial intelligence 
chatbots to improve the accuracy and completeness of diagnosis 
and further personalize patient treatment.

7 Challenges of AI in the medical field

Although the application of AI in the field of bacterial infections 
has great potential and prospects, it also faces numerous challenges. 
The first is the problem of data quantity and data quality. The 
collection, sorting and sharing of case data related to bacterial 
infectious diseases are restricted by privacy protection and 
standardization, which limits the training efficiency and application 
scope of AI models (Cath, 2018; Baowaly et al., 2019; Hummel and 

Braun, 2020). Second, deep-learning algorithms often lack the ability 
to provide a convincing explanation for their predictions—the 
so-called “black box” problem—which can affect prediction accuracy 
and public trust in AI systems (Schwartz et al., 2024). In addition, 
most healthcare AI research to date has been done in non-clinical 
Settings, with few instances of successful integration of AI into clinical 
care and most cases are still in the experimental stage (Alami et al., 
2020). Therefore, generalizing the results of the study may 
be challenging. Moreover, complex and variable bacterial infection 
mechanisms and rapid mutation of bacterial genes make it more 
difficult to accurately predict pathogen behavior and drug sensitivity. 
Furthermore, the establishment of AI models requires interdisciplinary 
fields, including microbiology, biochemistry, genetics, mathematics 
and computer science, etc. (Figure 5), This requires a high level of 
knowledge and skills from the researchers and developers, posing a 
significant challenge for research teams with limited resources.

Currently in the field of artificial intelligence, a perfect legal 
system and authoritative standards have not been established. With 
the continuous progress of technology and the expansion of 

FIGURE 4

The AI-assisted clinical decision support system can quickly collect the patient’s history of present disease, past history, personal history, family history, 
travel history, and antibiotic use history. Simultaneously, the system can integrate relevant auxiliary examination (including imaging examination and 
laboratory examination) and analysis of the genetic information of hosts and pathogens to provide the best treatment, becoming a bridge of effective 
communication between doctors and patients.
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FIGURE 5

The successful application of AI models in medicine relies on multidisciplinary collaboration.

application fields, formulating and updating relevant regulations is 
essential,which will be a dynamic development process (Rees and 
Müller, 2022).

8 Conclusion

The rise of AI technology has opened up a new way to deal with 
bacterial infections. With the help of advanced technologies such as 
machine learning and deep learning, AI has been applied in many key 
areas, from rapid pathogen detection and antimicrobial susceptibility 
analysis to the interpretation of complex genomic data and the 
development of personalized treatment options. Through highly 
optimized algorithms, AI technology not only greatly improves the 
speed and accuracy of pathogen identification, but also accurately 
predicts the susceptibility of pathogens to specific antibiotics based on 
historical data, thus providing strong scientific decision support for 
doctors. Similarly, in the field of epidemiological surveillance, AI 
technology has strengthened the real-time monitoring and early 

warning ability of the spread of bacterial infectious diseases by analyzing 
and processing a large amount of epidemiological dataand providing a 
powerful analytical tool and basis for public health decision-making.

Although AI has a broad application prospect in the treatment of 
bacterial infectious diseases, there remain important issues to 
be solved, such as how to ensure the transparency and interpretability 
of AI decision-making and how to accelerate the diagnosis and 
treatment while strictly controlling the ethics and patient safety. To 
overcome these challenges and achieve its wide application in clinical 
practice, interdisciplinary cooperation, technological innovation and 
policy support are needed.

Prospectively, AI technology will bring a profound transformation 
in the field of diagnosis and treatment of bacterial infections. With the 
continuous strengthening and maturity of AI in pathogen 
identification, drug susceptibility testing and genomic analysis, it will 
become the right hand of clinicians. With the assistance of AI, medical 
workers will can better cope with the challenges brought by bacterial 
infections, continue to promote the development of medical practice 
in the direction of more precision, efficiency, and personalization, and 
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ultimately achieve the goal of providing optimal care and treatment 
for patients.
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The synthesis of pseudo-healthy images, involving the generation of healthy

counterparts for pathological images, is crucial for data augmentation, clinical

disease diagnosis, and understanding pathology-induced changes. Recently,

Generative Adversarial Networks (GANs) have shown substantial promise in

this domain. However, the heterogeneity of intracranial infection symptoms

caused by various infections complicates the model’s ability to accurately

di�erentiate between pathological and healthy regions, leading to the loss

of critical information in healthy areas and impairing the precise preservation

of the subject’s identity. Moreover, for images with extensive lesion areas,

the pseudo-healthy images generated by these methods often lack distinct

organ and tissue structures. To address these challenges, we propose a three-

stage method (localization, inpainting, synthesis) that achieves nearly perfect

preservation of the subject’s identity through precise pseudo-healthy synthesis

of the lesion region and its surroundings. The process begins with a Segmentor,

which identifies the lesion areas and di�erentiates them from healthy regions.

Subsequently, a Vague-Filler fills the lesion areas to construct a healthy

outline, thereby preventing structural loss in cases of extensive lesions. Finally,

leveraging this healthy outline, a Generative Adversarial Network integrated with

a contextual residual attention module generates a more realistic and clearer

image.Ourmethodwas validated through extensive experiments across di�erent

modalities within the BraTS2021 dataset, achieving a healthiness score of 0.957.

The visual quality of the generated images markedly exceeded those produced

by competingmethods, with enhanced capabilities in repairing large lesion areas.

Further testing on the COVID-19-20 dataset showed that our model could

e�ectively partially reconstruct images of other organs.

KEYWORDS

pseudo-healthy image synthesis, generative adversarial networks, intracranial infection,

data augmentation, contextual residual attention module lesion inpainting for pseudo-

healthy synthesis

1 Introduction

Intracranial infections, involving the brain and its adjacent structures, pose

significant clinical challenges due to their potential to cause severe outcomes.

Characterized by inflammation and infection within the cranial cavity, these

conditions affect the brain parenchyma, meninges, and other intracranial structures.

A wide range of pathogens, including bacteria, viruses, fungi, and parasites,
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can instigate various infections such as meningitis, encephalitis,

brain abscesses, and subdural empyemas (Foerster et al., 2007).

Magnetic Resonance Imaging (MRI) is crucial in detecting,

assessing, and monitoring these central nervous system infections

and inflammations (Zimmerman and Girard, 2004; Mitchell and

Dehkharghani, 2014). By providing comprehensive imaging of the

brain and its meningeal coverings, MRI helps identify distinct

patterns and features indicative of different types of intracranial

infections. For example, MRI excels in distinguishing between

pyogenic and fungal abscesses; pyogenic abscesses typically present

with a well-defined rim and surrounding edema. In cases of

ventriculitis (Luque-Paz et al., 2021), MRI can display ventricular

enlargement, ependymal enhancement, and intraventricular debris.

Enhancing MRI images in instances of intracranial infection is

thus essential, as it provides clinicians with critical diagnostic

information, improving both diagnostic accuracy and efficiency.

Figure 1 illustrates an instance of intracranial infection (Deng and

Gaillard, 2014).

In recent years, the development of pseudo-healthy

image synthesis technology has become a pivotal tool in

data augmentation and medical image anomaly detection. In

the realm of data augmentation, generating pseudo-healthy

images significantly enriches datasets by creating numerous

representations from the same subjects’ pathological images

(Xia et al., 2020). This technique not only bolsters the model’s

generalization capabilities but also mitigates challenges associated

with data imbalance and limited sample availability. In anomaly

detection within medical imaging, synthesizing pseudo-healthy

images allows models to simulate representations of healthy

tissues (Tsunoda et al., 2014). By contrasting these images with

their pathological counterparts, clinicians can more accurately

pinpoint lesions. Thus, the production of high-quality pseudo-

healthy images is crucial for enhancing the detection and

diagnosis of conditions like intracranial infections. Furthermore,

comparing pathological images with pseudo-healthy ones deepens

the understanding of pathology-induced alterations, thereby

advancing insights into disease progression and pathology

development processes.

The process of synthesizing pseudo-healthy images involves

generating apparently normal, lesion-free images from pathological

data using sophisticated computer imaging and machine learning

techniques. Ideally, a pseudo-healthy image should possess two

essential attributes (Zhang et al., 2022): First, the image must

maintain a healthy appearance, closely mimicking a genuine

healthy image. This is the primary goal of pseudo-healthy image

synthesis. Second, the synthesized image must originate from the

same individual as the pathological image. This requirement is

equally important, as producing healthy images from different

individuals does not aid in medical diagnosis (Bowles et al., 2016).

Typically, it is not feasible for the tissues or organs of a single patient

to exhibit both pathological and healthy states simultaneously.

Therefore, identifying an exact corresponding pseudo-healthy

image for a specific pathological image is inherently complex

and fraught with uncertainties. In the context of pseudo-healthy

synthesis for intracranial infection, the varied manifestations of

the disease in MRI images present significant challenges. For

instance, severe cerebral edema in lesion areas can cause a

mass effect, compressing and deforming adjacent brain ventricles.

Consequently, pseudo-healthy synthesis for intracranial infection

should focus on restoring the anatomical integrity in affected

regions and accommodating the disease’s diverse presentations.

The synthesis of pseudo-healthy images entails creating

seemingly normal, lesion-free images from pathological data

through the use of advanced computer image processing and

machine learning techniques. Determining whether an image

is truly pseudo-healthy hinges on the absence of pathological

features, while maintaining the subject’s identity depends on the

intact preservation of non-pathological regions. Consequently, in

pseudo-healthy synthesis, accurately localizing pathological regions

and reconstructing their healthy analogs is paramount. Several

Generative Adversarial Network (GAN)-based approaches for

pseudo-healthy image synthesis have been previously proposed

(Baumgartner et al., 2018; Chen and Konukoglu, 2018; Baur

et al., 2019, 2020). These methods typically employ a generator,

structured as an encoder-decoder network, to convert pathological

images into their healthy-looking equivalents. Simultaneously, a

discriminator, competing against the generator, utilizes a classifier

to differentiate between the synthesized healthy images and actual

healthy images. Through this adversarial training process, the

generator and classifier refine their capabilities in a dynamic

interplay. However, a significant limitation of these methods is

their inability to effectively learn and incorporate pathological

information, which complicates the task of maintaining the

subject’s identity in the synthesized pseudo-healthy images. To

overcome these challenges, Xia et al. (2020) and Zhang et al.

(2022) introduced the use of a segmentor alongside pixel-level

annotations. This strategy involves the collaborative training

of both the generator and the segmentor. The segmentor’s

training loss is fed back to the generator, encouraging it to

differentiate pathological information from the subject’s identity

while preserving any healthy attributes present in the pathological

image. Despite these advancements, the methods still face several

drawbacks.

(1) Integrating the segmentor into the model results in an

overdependence on the segmentor’s efficacy for lesion localization.

The varied etiologies underlying intracranial infections lead to

significantly diverse symptoms. Thus, a singular segmentation

strategy is evidently inadequate to meet these demands.

(2) The generator creates segments devoid of lesion regions,

whereas the classifier’s visual focus is primarily on healthy areas.

This causes the generator to employ images from different subjects

to deceive the discriminator, unintentionally erasing the unique

identity of the subject.

(3) These models demonstrate a deficiency in learning

anatomical structures from healthy images, thus hindering their

capacity to accurately reconstruct anatomical features within lesion

areas, especially in cases involving extensive lesions.

To address the challenges and accommodate the anatomical

alterations caused by intracranial infections, we introduce a

novel three-stage pseudo-healthy image synthesis model called the

Lesion Region Inpainting Generative Adversarial Network (LRI-

GAN). This model is specifically tailored to manage the varying

characteristics of infection areas in brain imaging. It ensures the

preservation of the subject’s identity by accurately synthesizing
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FIGURE 1

A nodular mass is centered in the right basal nuclei with an irregularly thick contrast-enhancing rim. The central portion of the mass is mildly

hypointense to gray matter on T1-weighted imaging and hyperintense on T2-weighted imaging with poor suppression on FLAIR. Histological

examination of para�n sections 1 and 2 confirmed the presence of numerous Toxoplasma gondii tachyzoites and sporadic bradyzoite cysts. These

parasites are embedded within a context of extensive cerebral parenchymal necrosis, where a distinct boundary demarcates the necrotic areas from

the adjacent viable tissue. Imaging of necrotic regions reveals evidence of necrotic blood vessels, with the accumulation of neutrophils and chronic

inflammatory cells, as well as nuclear debris in the surrounding and perivascular regions. Within the surviving parenchyma, reactive proliferation of

small blood vessels is observed. Para�n section 3 displays both cortical and white matter structures. In the deep white matter, there is a significant

presence of Toxoplasma gondii tachyzoites along with sporadic bradyzoite cysts situated in areas of congestion and focal necrosis. Sporadic cysts

can also be identified in the more superficial white matter and cortical regions. These findings are consistent with a diagnosis of cerebral

toxoplasmosis. (A) T1-weight, (B) T2-weight (C) T1ce-weight (D) Flair-weight (E) Para�n section 1 (F) Para�n section 2 and (G) Para�n section 3.

and replacing lesioned areas with pseudo-healthy regions, thus

maintaining image integrity. The three-stage architecture enhances

the model’s effectiveness in constructing accurate healthy contours.

Initially, various segmentation models are pre-trained, based

on specific pathological requirements, or employing pixel-level

annotations from clinical experts to precisely pinpoint lesion areas.

Subsequently, in the second stage, a “Vague-filler” network fills

the identified lesion regions, including an adjacent 5 mm area,

capturing the essential characteristics of healthy tissues. The final

stage employs a Generator network, enhanced with a contextual

residual attention module, which adeptly learns from real healthy

images and extracts relevant features from non-lesioned parts of

the pathological image. This innovative approach results in pseudo-

healthy images that not only reflect a clearer visual quality but

also enhance diagnostic accuracy, as demonstrated in Figure 2. The

LRI-GAN thus represents a significant advancement in medical

imaging, particularly in the synthesis of images for diagnostic and

treatment planning in cases of intracranial infection.

To assess the efficacy of our proposed method, we utilized

image slices from the BraTS2021 dataset, featuring various

conditions like edema, hemorrhage, and deformation. Our

extensive testing shows that this method surpasses contemporary

leading techniques in performance. Further validation was

conducted using the COVID-19-20 dataset to evaluate the model’s

versatility across different organs, confirming consistent high

performance.

Key contributions of our study include:

(1) Development of an advanced pseudo-healthy image

synthesis approach tailored for intracranial infections, which

preserves the identity of the pathological region with meticulous

lesion area restoration.

(2) Introduction of a novel generator network architecture,

incorporating a flipped symmetrical structure and a contextual

residual attention mechanism, designed specifically to accurately

mend lesioned areas.

(3) Establishment of a new evaluation metric called “Structure

Healthiness” (SH), designed to gauge the capability of models to

restore the anatomical integrity of lesion areas.

2 Related works

In the field of medical image analysis, the synthesis of pseudo-

healthy images has attracted significant interest due to its potential

benefits for various downstream applications. Research in this

area can be categorized into two main groups based on the
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FIGURE 2

Our model generates clearer pseudo-healthy images in the presence of large lesions compared to the current state-of-the-art model GVS-GAN.

nature of the training data utilized (Zhang et al., 2022). The first

category is Pathology-deficiency based methods. These methods

exclusively rely on healthy images during the training process

and are consequently devoid of pathological information. They

do not require pathological data for training and are often

closely associated with unsupervised medical image segmentation

techniques (Bowles et al., 2017; Baumgartner et al., 2018; Tao

et al., 2023; Rahman Siddiquee et al., 2024). The second category

comprises Pathology-sufficiency based methods, which utilize a

comprehensive dataset containing both pathological and healthy

images during training. These approaches address the challenge

of pseudo-healthy image synthesis from an image translation

perspective. They incorporate pathological images along with their

corresponding image-level or pixel-level pathological annotations

to ensure that the synthesized pseudo-healthy images closely

resemble the characteristics of healthy tissues (Sun et al., 2020; Xia

et al., 2020; Zhang et al., 2022). This methodology facilitates more

accurate and clinically relevant outputs by incorporating essential

pathological details into the training process.

2.1 Pathology-deficiency based methods

Pathology-deficiency based methods begin by learning

the normative distribution, leveraging techniques focused on

compressing and recovering structures of healthy anatomical

features during training. Subsequently, during the testing phase,

these methods compress pathological images into a latent

space. The underlying hypothesis is that the resultant latent

representations closely approximate those of pseudo-healthy

images, leading to the reconstruction of pseudo-healthy images

from these representations. Chen and Konukoglu (2018) utilized

an autoencoder-based approach to capture the distribution of brain

MRIs from healthy subjects. Their objective was to map images

to regions proximate to corresponding healthy images in latent

space, employing specific constraints to guide this process. In a

similar vein, Baur et al. (2019) modeled the distribution of healthy

brain MRIs to identify pathological alterations through erroneous

reconstructions. They implemented a Laplacian pyramid technique

to compress and reconstruct healthy brain MRIs, which resulted in

higher reconstruction fidelity at greater resolutions. Nevertheless,

such methods are founded on idealized assumptions that often

do not hold in practical scenarios. Specifically, the challenge lies

in identifying an optimal latent representation that aligns with

pseudo-healthy images when pathological images are compressed

into the latent space. This difficulty frequently leads to a failure

to preserve the identity of the pseudo-healthy images. Therefore,

while the theoretical foundation of these methods is strong, their

practical application is hindered by limitations in capturing and

maintaining the true characteristics of the subject’s healthy state in

the synthesized images.

2.2 Pathology-su�ciency based methods

To synthesize higher-quality pseudo-healthy images, VA-GAN

(Baumgartner et al., 2018) introduces a GAN-based framework that

incorporates pathological information. This framework comprises

a generator, tasked with synthesizing images that appear healthy

while preserving the subject’s identity, and a discriminator, which

distinguishes between these synthesized images and real, unpaired
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healthy images. However, this method relies primarily on image-

level annotations, which limits its ability to accurately differentiate

between lesioned and non-lesioned areas, consequently impacting

the preservation of the subject’s identity in the synthesized

images. To mitigate these limitations, PHS-GAN (Xia et al.,

2020) and ANT-GAN (Sun et al., 2020), both variants of Cycle-

GAN, incorporate pixel-level annotations. PHS-GAN addresses

the one-to-many issue characteristic of medical images with

variable pathology by employing a segmenter alongside pixel-

level pathological annotations. This configuration allows precise

localization of lesions, facilitating the separation of pathological

information from healthy tissue, thus enhancing the precision of

pseudo-healthy image synthesis. This method effectively manages

pathological data to improve the accuracy and realism of the

generated images. ANT-GAN, on the other hand, utilizes the L2

loss calculated between non-lesioned areas of the pathological and

pseudo-healthy images. By reintegrating this feedback into the

entire cyclic network, ANT-GAN ensures that the identity of the

subject is maintained in the resultant images. To improve the

localization of lesions, GVS-GAN (Zhang et al., 2022) attempts

to resolve discrepancies between how healthy and pseudo-healthy

images are perceived by the segmenter, aiming for a harmonized

outcome. Nonetheless, these strategies, by trying to make the

segmenter less sensitive to lesions, may not truly achieve the

creation of “pseudo-healthy” images in the strictest sense. A

persistent challenge with these methods is their struggle to

fully grasp the anatomical features of a healthy brain, especially

when faced with images featuring extensive lesions. This often

leads to the generated images obscuring rather than restoring

the anatomical structure of the affected areas. Consequently,

while these approaches advance the field of pseudo-healthy

image synthesis by better managing pathological information and

improving image realism, they still face significant hurdles in

accurately rendering and restoring the detailed anatomy in areas

affected by pathology.

2.3 Our method

To facilitate the synthesis of pseudo-healthy images for

intracranial infections, we have integrated the aforementioned

methods and introduced a segmentation-first, then-repair strategy

for pseudo-healthy synthesis. This approach differs from previous

methodologies, which incorporated the segmentor within the

generative network during the training phase, thus performing

segmentation and generation simultaneously. Instead, our method

employs the segmentor specifically to localize lesion areas, a

strategy that prevents the segmentor from excessively influencing

the generative network during training and ensures that the

generator does not focus disproportionately on concealing lesions.

Additionally, this segmentation-first approach allows for the

flexible replacement of the segmentor, enhancing the model’s

adaptability to the varied manifestations of intracranial infections

evident in MRI images. Our method executes the synthesis of

pseudo-healthy images in a structured three-stage process. Initially,

in the first stage, lesion areas are precisely identified using either

a pre-trained segmentor model or manual annotations. Following

this, the second stage employs a Vague-Filler network designed

to infill these localized lesion areas, effectively mimicking the

appearance of healthy tissue. In the final stage, a generator equipped

with an inverted symmetrical structure and a contextual residual

attention module (Yi et al., 2020) is utilized. This sophisticated

arrangement enables the generator to learn effectively from both

flipped images and features outside the lesion areas, thereby

enhancing its capability to synthesize more accurate pseudo-

healthy images tailored to the specific requirements of intracranial

infection cases.

3 Methods

The architecture of LRI-GAN comprises three distinct

components aligned with the workflow: a Segmentor (responsible

for localization), a Vague-Filler (responsible for coarse filling),

and a Generator (responsible for fine reconstruction). Both the

Vague-Filler and the Generator are trainable elements, whereas

the Segmentor is a pre-trained deep learning model or manually

annotated pixel-level pathology. The structure of this paper is

as follows: Section 3.1 provides an overview of the problem;

Section 3.2 introduces the Segmentor; Section 3.3 describes the

Vague-Filler; Section 3.4 elaborates on the Generator; Section 3.5

discusses the loss function of LRI-GAN; Section 3.6 outlines the

training process of LRI-GAN; and Section 3.7 details the inference

procedure of LRI-GAN.

3.1 Problem overview

As illustrated in Figure 3, we consider a set of images

{xi}
N
i=1 ∈ X, with each i representing a slice, alongside their

binary annotations {yi}
N
i=1 ∈ Y . These images are classified into

two subsets based on their labels: pathological images {pi}
M
i=1 and

healthy images {hi}
N−M
i=1 . The data distributions of the pathological

and healthy samples are denoted as pi ∼ fp and hi ∼ fh,

respectively.

In the inference pipeline, for a given pathological image pi that

contains lesion regions, our objective is to derive the corresponding

yi (where 0 indicates normal regions and 1 indicates pathological

regions) via the Segmentor S. Subsequently, yi is combined with pi
and fed into the Vague-filler V to produce a vague pseudo-healthy

image vagueĥi. This image is then refined by the Generator G to

yield a clearer pseudo-healthy image ĥi, ensuring that ĥi adheres to

the distribution of healthy images (i.e., ĥi ∼ fh). Moreover, we aim

to maintain the normal anatomical structure of pi within ĥi.

In the training pipeline, we emphasize healthy images to

comprehensively learn their latent features. For a given healthy

image hi, we randomly mask 30%–60% of the regions to emulate

the process of a pre-trained Segmentor detecting lesion regions,

resulting in the correspondingmask yi. This mask is then combined

with hi and input into the Vague-filler V to generate a vague

pseudo-healthy image vagueĥi. The Generator G is then utilized to

refine vagueĥi, producing a clearer pseudo-healthy image ĥi, which

ensures that the masked regions in ĥi closely resemble the original

healthy image hi.
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FIGURE 3

The LRI-GAN mainly consists of three components: the Segmentor, the Vague-Filler, and the Generator. During the training stage, the model is

trained on healthy images. In the inference stage, it is applied to pathological images.

3.2 Segmentor

Before commencing the synthesis of pseudo-healthy images,

accurately identifying lesion locations within pathological images

is crucial. The primary aim during the Segmentor phase is to

obtain pixel-level annotations yi that precisely delineate lesion areas

in the pathological image pi. However, acquiring such detailed

pathological annotations is often expensive and time-consuming.

Therefore, for pathological images lacking specific annotations,

we utilize a pre-trained segmentor, S, to automatically generate

these annotations. In this study, we employ the U-Net architecture,

renowned for its effectiveness in medical image segmentation, as

the pre-trained segmentor (Ronneberger et al., 2015).

3.3 Vague-Filler

The Vague-Filler processes the pathological image pi, where

lesion regions are replaced by blanks, to produce a preliminary

pseudo-healthy image, vagueĥi. Detailed insights into the Vague-

Filler’s methodology are provided in the “Vague Filler” section

illustrated in Figure 4. This component accepts an image alongside

a binary mask of lesion regions as inputs and outputs a filled-

in image. It incorporates gated convolution as its sole learnable

mechanism. The Vague-Filler operates on a “straight-line” residual

network architecture devoid of skip connections, preserving the

input and output dimensions at H×W pixels. To broaden

the receptive field and minimize computational demands, the

input image is initially down-sampled to H
2 ×

W
2 pixels prior

to convolution. Subsequent convolutions further reduce the

resolution to H
4 ×

W
4 pixels using two gated convolutions. The

image then undergoes additional processing at the H
4 ×

W
4 scale

via a sequence of gated convolutions, which vary in stride and

padding, yet maintain a consistent size throughout the input and

output stages.

3.4 Generator

The Generator’s fundamental role is to enhance a vaguely

defined pseudo-healthy image, denoted as vagueĥi, into a

distinctly clearer image ĥi. This enhancement recognizes the

symmetric nature of brain medical imagery, incorporating

a flip-symmetric architecture detailed in the Generator

section of Figure 3. Initially, vagueĥi undergoes a flipping
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FIGURE 4

The structure of Vague-Filler V and Generator G; H is the height of the input image, and W is the width of the input image.

operation to prepare for convolutional processing. Both the

original and flipped versions of vagueĥi undergo parallel

convolutional operations.

flip vagueĥi = flip(vague ĥi) (1)

The convolution phase features a fully symmetric dual-path

structure that optimizes feature extraction:

LF = down_conv(vague ĥi) (2)

LF_flip = down_conv(flip vagueĥi) (3)

LF represents the latent features derived post-convolution,

and down_conv refers to the down-sampling convolution

process. The Attention Calculation Module (ACM)

calculates attention score matrices for both the forward and

flipped images:

PIAS Matrix = ACM(LF) (4)

FIAS Matrix = ACM(LF_flip) (5)

The PIAS Matrix denotes the Positive Image Attention Score

Matrix, detailing the interactions of the forward image with the

mask area, while the FIAS Matrix is the Flip Image Attention Score

Matrix, detailing interactions of the flipped image components with

the mask. After calculating these matrices, both pathways integrate

the residuals within the masked areas using their respective

Attention Transfer Modules (ATM), based on the attention scores

and contextual residuals:

ĥi = conv(LF, LF_flip,ATM(LF,PIAS Matrix),ATM(LF_flip, FIAS Matrix)) (6)
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The ACM uses cosine similarity measures for establishing

image attention scores across high-level feature maps:

ci,j =

〈
bi

‖bi‖
,

bj

‖bj‖

〉
(7)

bi and bj represent the patches outside and inside the mask

area, respectively. The resultant similarity scores are squared and

normalized to derive attention scores for each patch:

si,j =
c2i,j∑N
i=1 c

2
i,j

(8)

N represents the number of patches outside the mask area.

Despite the heterogeneity in lesion areas, a 256–256 matrix

uniformly stores potential affinity scores between any pair of

patches.

Finally, the ATM utilizes these attention scores to fill gaps in the

low-level feature map with contextually weighted patches:

bj =

N∑

i=1

si,jbi (9)

bi is extracted from outside the masked area and bj fills within

the mask. Each patch measures 16× 16, allowing for the extraction

of 256 patches in total.

Through residual aggregation, the model reconstructs detailed

aspects of the lesion area:

Rj =

N∑

i=1

si,jRi (10)

R denotes the residual image, with Ri and Rj representing the

patches involved in filling the masked area. These patches cover all

pixels seamlessly, ensuring a coherent integration of filled residuals

with the surrounding tissue. The resultant aggregated residual

image is then merged with the up-sampled blurry image from the

generator to enhance clarity.

3.5 Loss function

3.5.1 Vague-Filler loss
L1 Loss: To ensure uniformity throughout the training process

of the Vague-Filler, we utilize the L1 loss function. The formula for

this is given by:

Lv =
1

N

N∑

i=1

|hi − vagueĥi|

In training the Vague-Filler, our objective is to enhance the

model’s focus on the contour structures of healthy images, while

allowing a greater tolerance toward their textural features. The

L1 loss function is chosen because it minimally penalizes large

discrepancies and accommodates outliers effectively, making it an

appropriate choice for this application.

3.5.2 Generator loss
To enhance the stability of the generator’s training, we use

the hinge loss method for adversarial training. Additionally, to

enrich texture details in the generated images, we incorporate

perceptual loss.

Adversarial loss: For the adversarial training of the generator,

we employ the hinge loss method. The primary goal is to

maximize the separation between positive and negative samples,

thus enhancing categorical distinctions. This approach is based

on the methodology used in the Geometric GAN (Lim and Ye,

2017), which has demonstrated improvements in the effectiveness

of adversarial training. The adversarial losses for the discriminator

and the generator are defined as follows:

LD = E
[
max(0, 1− D(hi))

]
+ E

[
max(0, 1+ D(G(pi)))

]

LG = −E[D(G(hi))]

Here, G represents the generator, and D represents the

discriminator. For D, only positive samples where D(X) < 1

and negative samples where D(G(z)) > −1 impact the outcome,

implying that a small fraction of samples exceeding these thresholds

will not influence the gradients. This results in more stable training

dynamics.

Perceptual loss:To ensure that the images generated by

the generator network during high-definition reconstruction

closely align with the visual characteristics of healthy tissues,

we incorporate perceptual loss. Perceptual loss emphasizes the

perceptual quality of the restored images rather than solely focusing

on pixel-level differences. This loss is widely used in medical

imaging to enhance the restoration of textural details (Yang et al.,

2018; Li et al., 2021). The perceptual loss is defined as follows:

Lperc(G) = λE
[
‖φ(hi)− φ(G(hi))‖

]

Here, φ denotes the feature extraction function

from the VGG16 network, and λ, the weight of the

texture loss, is set to 64. The final loss function of the

generator is:

loss = LG + Lperc(G)

3.6 Training pipeline

The training process is elucidated within the “Training

Pipeline” section, as depicted in Figure 3. During this phase, the

grayscale values of all images are linearly adjusted to a range of

[−1, 1]. Masks are designated by a value of 1 for missing regions

and 0 for background areas. In this context, hi represents the input

healthy image, h̃i denotes the generated healthy image, and m

indicates the mask for missing regions. The operation ⊙ signifies

element-wise multiplication. The Vague-Filler V interprets the

concatenated masked image and mask as inputs to forecast the

vague image vaguey = V(hi,m), maintaining the same dimensions

as the input image. Following this, the Generator G uses the

combined vague image and mask to predict y = G(vaguey,m),
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1: Input: Training data H, Vague-filler model V,

Generator model G, Discriminator model D

2: Output: Trained Vague-filler model V, Generator

model G, Discriminator model D

3: Initialization;

4: while V or G has not converged do

5: // In order to amplify the adversarial impact,

the discriminator undergoes two updates for

each single update of the generator.

6: for 1, 2 do

7: Sampling batch images hi from training data

H;

8: Generating random masks m for hi;

9: Getting inpainted vague y← V(hi,m);

10: Pasting back vague h̃i ← y⊙m+ hi ⊙ (1−m);

11: Getting Pseudo-Healthy inpainted vague y ←

G(h̃i,m);

12: Pasting back h̃i ← y⊙m+ hi ⊙ (1−m);

13: Updating the Discriminator D with loss LD;

14: end for

15: Sampling batch images hi from training data H;

16: Generating random masks m for hi;

17: Getting inpainted vague y← V(hi,m);

18: Updating the Vague-filler V with loss LV;

19: Pasting back vague h̃i ← y⊙m+ hi ⊙ (1−m);

20: Getting Pseudo-Healthy inpainted vague

y← G(h̃i,m);

21: Pasting back h̃i ← y⊙m+ hi ⊙ (1−m);

22: Updating the Generator G with loss LG;

23: end while

24: Return Trained Vague-filler model V, Generator

model G, Discriminator model D;

Algorithm 1. Training of our approach.

producing a pseudo-healthy image with dimensions identical to

those of the input image. Detailed descriptions of this training

process are provided in Algorithm 1.

3.7 Inference pipeline

The inference process is detailed within the “Inference Pipeline”

section, as outlined in Figure 3. During inference, the grayscale

values of all images are linearly adjusted to range from [−1, 1].

Masks are used to indicate pathological regions with a value of 1 and

background areas with a value of 0. In this context, pi represents the

input pathological image, while h̃i signifies the generated healthy

image post vague filling. The operation ⊙ stands for element-

wise multiplication. The Vague-Filler V processes the concatenated

masked image and mask as input, forecasting a vague filled image

vague y = V(hi,m) that retains the dimensions of the input image.

Subsequently, the Generator G utilizes the combined vague image

and mask to generate y = G(vague(h̃i),m), resulting in the pseudo-

healthy image h̃i. This process is comprehensively described in

Algorithm 2.

1: Input: Test data T, Vague-filler model V,

Generator model G, Segmentor model S, Vague-filler

model weights Vweights, Generator model weights

Gweights, Segmentor model weights Sweights

2: Output: Pseudo-healthy images h̃i

3: Initialization;

4: Load weights for Vague-filler model V from Vweights;

5: Load weights for Generator model G from Gweights;

6: Load weights for Segmentor model S from Sweights;

7: Sampling batch images pi from test data T;

8: Getting masks m← S(pi);

9: Getting inpainted vague y← V(pi,m);

10: Pasting back vague x̃hi ← y⊙m+ pi ⊙ (1−m);

11: Getting Pseudo-Healthy inpainted vague y ← G(x̃hi ,m);

12: Pasting back h̃i ← y⊙m+ pi ⊙ (1−m);

13: Return h̃i;

Algorithm 2. Inferencing of our approach.

4 Experiments

4.1 Datasets

The proposed model was rigorously evaluated using the

T1 and T2 modalities of the BraTS2021 dataset, demonstrating

effectiveness across the T1ce and FLAIR modalities as well.

The model’s versatility was further assessed by examining its

adaptability to viral lesions in other organs with the COVID-19-20

dataset.

BraTS2021 Dataset (Menze et al., 2015; Bakas et al., 2017; Baid

et al., 2021): The BraTS2021 Dataset (Brain Tumor Segmentation

Challenge 2021 Dataset) is designed for the task of medical

image segmentation, specifically aimed at evaluating and advancing

algorithms for brain tumor segmentation. It comprises MRI

scans of the brain collected from multiple medical centers. Each

case in the dataset includes four different MRI modalities: T1-

weighted, T2-weighted, T1-weighted with contrast enhancement

(T1ce), and Fluid-Attenuated Inversion Recovery (FLAIR), along

with corresponding ground truth tumor segmentation. Comprising

1,251 cases in the training set, 219 in the validation set, and

530 in the test set, the BraTS2021 dataset ensures comprehensive

evaluation. All cases are skull-stripped, resampled to an isotropic

resolution of 1 mms, and co-registered. Each volume presents four

modalities: T1, T2, T1ce, and FLAIR, measured at dimensions of

240× 240× 155 (L×W×H).

COVID-19-20 Dataset (Roth et al., 2022): The COVID-19-20

challenge facilitates the evaluation of innovative techniques for

segmenting and quantifying lung lesions induced by SARS-CoV-

2 through CT images. Drawn from multiple institutions across

various countries, these images depict a diverse cohort in terms of

age, gender, and disease severity. The dataset includes 199 training

images and 50 validation images, each with a resolution of 512–512

pixels. Notably, these images detail lung lesions caused by SARS-

CoV-2 and include ground truth annotations derived from non-

contrast chest CT scans with confirmed positive RT-PCR results.
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4.2 Implementation details and baseline
comparisons

Environment:Windows 11, CUDA 11.7.

Framework: The methodology is implemented using the

PyTorch framework.

Optimizer: Model training is facilitated using the Adam

optimizer.

Learning rate: The initial learning rate is set at 0.001 and

reduces by 50% every 5 epochs.

Batch size: Given the slice dimensions of the BraTS2021 dataset

at 240 × 240 and those of the COVID-19-20 dataset at 512 × 512,

batch sizes are accordingly adjusted. A batch size of 16 is employed

for the BraTS2021 dataset, while a smaller batch size of 4 is utilized

for the COVID-19-20 dataset.

Training hardware: The model is trained on an NVIDIA

GeForce 4080 Super 16GB GPU.

Comparedmethods: The effectiveness of the proposed method

is assessed against three pathologically-informed pseudo-healthy

synthesis approaches [GVS-GAN (Zhang et al., 2022), PHS-GAN

(Xia et al., 2020), and VA-GAN (Baumgartner et al., 2018)] and two

widely-used generative adversarial models [AAE (Makhzani et al.,

2016) and Cycle GAN (Zhu et al., 2020)].

Code sources: For the implementation, official codebases are

used for GVS-GAN, VA-GAN, and PHS-GAN, while the most

popular GitHub repositories are sourced for AAE and Cycle GAN.

Data processing: For the BraTS2021 dataset, we extracted one

slice every five slices, resulting in a total of 13,759 slices. For the

COVID-19-20 dataset, we filtered the slices to include only those

with clearly visible lungs, extracting one slice every two slices, which

yielded a total of 2,965 slices.

4.3 Structure healthiness

In certain instances, significant deformations are often

observed in pathological images, particularly when large lesion

areas are present. Figure 5 illustrates pseudo-healthy images and

their corresponding Canny edge maps synthesized under such

conditions. Notably, it is common for models to still generate

pseudo-healthy images with deformations. To address this issue,

Xia et al. (2020) suggested the use of a classifier to categorize

Canny edge maps of both healthy and lesioned images to evaluate

the presence of deformations. Despite this approach, our statistical

analysis of 13,759 pathological slices revealed that only 1,059 slices

presented large lesions, where the lesion area exceeded 20% of the

total brain area. This indicates that large lesions are relatively rare

among pathological slices. Therefore, solely classifying Canny edge

maps of healthy and lesioned images does not provide a reliable

assessment of a model’s deformation correction capability in cases

with extensive lesions.

Building on the methodology, we introduce the concept of

“Structural Health” (SH) to more accurately explore models’

abilities to correct deformations in images with substantial lesion

areas. We specifically employed the BraTS21 dataset for this

purpose, analyzing Canny edge maps of medical images both

with and without extensive lesions. A binary classifier, trained

on the VGG network, was utilized. This classifier demonstrated

a high level of performance, achieving an average accuracy of

91.2% during its pre-training phase, which underscores its efficacy

in detecting deformations in images. The classifier’s output, a

continuous value ranging from 0 to 1, indicates the likelihood of an

image being free from deformations. During the evaluation phase,

we focused exclusively on pseudo-healthy images generated from

samples with extensive lesions. Here, SH is quantified as the average

probability that these images maintain structural integrity and are

free from deformations.

SH = Exp∼P
[
Cp

(
GeN(xp)

)]
(11)

In this formula, xp denotes the pathological image, Cp

represents the pre-trained edge map classification model, and GeN

indicates the pseudo-healthy synthesis network.

4.4 Other metrics

4.4.1 Healthiness
To evaluate the “healthiness” of pseudo-healthy images, Xia

et al. (2020) developed a metric named “healthiness.” This metric

utilizes a pre-trained segmentation model, which is further refined

on a validation set. The fundamental role of this segmenter is

to identify pathological regions within both generated pseudo-

healthy images and their original pathological counterparts. The

healthiness metric is quantified by the proportion of matching

pathological pixels found in these images, where a higher

percentage indicates a more extensive presence of pathological

regions, thus denoting a lower healthiness. The healthiness index

(HEALTHINESS, H) is calculated using the following formula:

H = 1−
Exp∼P[N(fp(GeN(xp)))]

Emp∼pm [N(fp(xp))]

Here, xp represents the pathological image, fp is the pre-

trained segmentation model, N(·) denotes the number of pixels

identified as pathological by fp, and GeN refers to the pseudo-

healthy generation network. The denominator incorporates the

segmentation output fp(xp) of the pathological image rather than

the actual maskmp, to counter potential biases from the pre-trained

model. Subtracting this term from 1 indicates that a reduction in

the pathological mask correlates with an increase in H, signifying

enhanced healthiness.

4.4.2 Identity preservation
The metric for Identity Preservation quantifies the degree to

which the generated pseudo-healthy images maintain the subject’s

identity (Zhang et al., 2022), specifically assessing the likelihood

that both the synthesized pseudo-healthy image and the input

pathological image are derived from the same subject. This metric

evaluates the structural similarity and peak signal-to-noise ratio of

non-pathological regions between the pseudo-healthy image and its

corresponding pathological counterpart. The calculations are based

on the following formulas:

MP = PSNR
[
(1− yt)⊙ G

(
xp

)
, (1− yt)⊙ xp

]
(12)
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FIGURE 5

The pseudo-healthy synthetic images generated by VAGAN, PHS-GAN, GVS-GAN, and the method proposed in this paper, alongside their

corresponding edge maps that display the anatomical structures.

MS = SSIM
[
(1− yt)⊙ G

(
xp

)
, (1− yt)⊙ xp

]
(13)

Where xp represents the pathological image, yt denotes

the corresponding pathological mask, ⊙ signifies element-wise

multiplication, and PSNR and SSIM are abbreviations for Peak

Signal-to-Noise Ratio and Multi-Scale Structural Similarity Index,

respectively.

4.5 Evaluation of healthiness and identity
preservation

We conducted a thorough evaluation of our proposed method

alongside five other models, examining them across four essential

dimensions: Healthiness (H), Mask Peak Signal-to-Noise Ratio

(MPSNR), Mask Structural Similarity Index Measure (MSSIM),

and Structural Healthiness (SH). The outcomes for the T1

modality are detailed in Table 1, and those for the T2 modality

appear in Table 2. Under the T1 modality, the AAE model

achieved the highest Healthiness score and maintained strong

performance in the T2 modality. This superior performance

is primarily due to the blurriness of the images it generated,

which impacts the segmentor’s ability to accurately locate lesion

regions, thus resulting in higher health metrics. On the other

hand, the PHS-GAN and GVS-GAN models, tailored specifically

for brain medical imaging, significantly outshine the other

models in both health and subject identity metrics. However,

their heavy reliance on the segmentor for identifying lesion

regions slightly compromises subject identity preservation. The

AAE, VAGAN, and CycleGAN models exhibit a noticeable

deficiency in preserving subject identity compared to other

models, as they do not incorporate pixel-level pathological

annotations, leading to less precise lesion region localization.

Our method, which accurately replaces the pathological region

and its adjacent 5mm area, nearly flawlessly preserves subject

identity. Additionally, extensive training with healthy brain

medical images allows the pseudo-healthy brain images synthesized

by our method to be more coherent, ensuring a superior

Healthiness score.

4.6 Evaluation of visual quality

We conducted experiments comparing our model against

five baseline models, assessing their performance in synthesizing

pseudo-healthy images under the T1 and T2 modalities, as

depicted in Figure 6. Each method’s efficacy was evaluated based

on subject identity and healthiness. Healthiness is assessed by

how well pathological and normal regions integrate in the

synthesized images. Images where pathological regions blend

seamlessly with normal areas are considered “healthy,” while

those where pathological areas are distinctly separate are regarded

as “unhealthy.” Our findings indicate that images generated by

the AAE model often do not maintain the subject identity of

the input images and appear notably blurred. The VAGAN-

produced images can reconstruct lesion regions to a degree,

but the quality of reconstruction is poor, and the inaccurate

localization of lesions leads to a loss of subject identity.

PHS-GAN, similar to CycleGAN, and CycleGAN itself both

face challenges in preserving subject identity while repairing

extensive lesion regions, resulting in some images losing subject

identity and having less coherent repaired organ structures. The

performance of GVS-GAN relies heavily on the segmentor’s

accuracy during the generation process, with errors leading to

the creation of lesion-free but blurred tissue structures in the

synthesized images. In contrast, our method effectively preserves

subject identity in pseudo-healthy images by specifically replacing
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TABLE 1 Quantitative comparison of health and identity preservation metrics for AAE, CycleGAN, VAGAN, PHS-GAN, GVS-GAN, and the proposed

method under the T1 modality.

Models Healthiness MPSNR MSSIM Structure healthiness

AAE (Makhzani et al., 2016) 0.968 20.64 0.795 0.702

CycleGAN (Zhu et al., 2020) 0.701 31.63 0.968 0.294

VAGAN (Baumgartner et al., 2018) 0.721 21.50 0.899 0.422

PHS-GAN (Xia et al., 2020) 0.831 32.18 0.987 0.580

GVS-GAN (Zhang et al., 2022) 0.909 33.32 0.993 0.749

Ours 0.929 34.92 0.995 0.843

Bold indicates the highest values.

TABLE 2 Quantitative comparison of health and identity preservation metrics for AAE, CycleGAN, VAGAN, PHS-GAN, GVS-GAN, and the proposed

method under the T2 modality.

Models Healthiness MPSNR MSSIM Structure healthiness

AAE (Makhzani et al., 2016) 0.849 21.93 0.775 0.733

CycleGAN (Zhu et al., 2020) 0.744 32.98 0.964 0.496

VAGAN (Baumgartner et al., 2018) 0.783 22.47 0.898 0.499

PHS-GAN (Xia et al., 2020) 0.887 32.55 0.977 0.621

GVS-GAN (Zhang et al., 2022) 0.945 33.11 0.984 0.589

Ours 0.957 33.65 0.992 0.749

Bold indicates the highest values.

pathological regions. Enhanced by a context residual mechanism,

the synthesized images exhibit a balanced tissue structure

distribution, clear visual quality, and consistent preservation of

subject identity.

4.7 Other modalities

We conducted comparative experiments focusing on the

T1ce and Flair modalities, alongside the PHS-GAN and GVS-

GAN models, which previously showed promising results in

T1 and T2 modalities. As depicted in Figure 7, the qualitative

analysis reveals that images from all three models exhibit

a degree of blurring in the T1ce modality. Our model,

however, demonstrates superior performance in lesion repair

and restoration of brain structures compared to PHS-GAN

and GVS-GAN. In the Flair modality, both PHS-GAN and

our model show areas of high signal intensity, with PHS-

GAN’s high signal areas extending throughout the brain.

Meanwhile, the images generated by GVS-GAN display no

significant high signal areas but fall short in restoring brain

structures effectively.

The quantitative results, as presented in Table 3, show that our

approach significantly surpasses the other methods in the T1ce

modality. In the Flair modality, while GVS-GAN excels in terms of

healthiness, our method outperforms in other significant metrics.

Overall, the qualitative and quantitative outcomes underscore our

method’s comparative advantage in both T1ce and Flair modalities

over competing approaches, affirming its efficacy in producing

more accurate and clinically relevant pseudo-healthy images.

4.8 COVID-19-20 dataset

Our method was applied to the COVID-19-20 dataset

to generate pseudo-healthy images, specifically targeting viral

lesions. Despite this, the challenges inherent in COVID-19

segmentation and the complex nature of pneumonia cases

mean that pixel-level annotations are not sufficiently precise.

Consequently, there is a noticeable disparity between the

synthesized pseudo-healthy images and actual healthy images.

As shown in Figure 8, our approach achieves some success

in cases with small-scale lesions and relatively straightforward

backgrounds. However, in scenarios involving extensive lung

lesions, the synthesized images significantly diverge from true

healthy lung images, highlighting the limitations in current

segmentation and synthesis techniques in handling complex

clinical scenarios.

4.9 Ablation study

To evaluate the effectiveness of the proposed flip symmetry,

we conducted both qualitative and quantitative analyses on

three variations of GAN networks within the T1 modality:

the standard GAN, GAN with Contextual Residual Attention

(GAN+CRA), and GAN with Contextual Residual Attention plus

Flip Symmetry Network (GAN+CRA+FLIP). The qualitative

results are illustrated in Figure 9, and the quantitative outcomes

are detailed in Table 4. The findings demonstrate that networks

equipped with Contextual Residual Attention significantly

surpass the basic GAN in both quantitative and qualitative

evaluations. Furthermore, from a qualitative standpoint,

Frontiers inMicrobiology 12 frontiersin.org29

https://doi.org/10.3389/fmicb.2024.1453870
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2024.1453870

FIGURE 6

Shows experimental results on five samples (one per row) from the BraTS2021 dataset under the T1 and T2 modalities. The columns, from left to

right, display the original pathological images, followed by the synthesized pseudo-healthy images generated by AAE, CycleGAN, VAGAN, PHS-GAN,

GVS-GAN, and the proposed method.
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FIGURE 7

Experimental results of five samples each for T1 and T2 modalities on the BraTS dataset: original pathological images and pseudo-healthy images

synthesized by PHS-GAN, GVS-GAN, and our method (from left to right).

networks incorporating the flip structure produce pseudo-healthy

images that exhibit greater symmetry compared to those

without the flip structure. This difference in STRUCTURAL

HEALTHINESS confirms that the images generated by networks

with the flip structure align more closely with established

health standards.

5 Conclusion

We have introduced a novel pseudo-healthy synthesis method

that utilizes an inpainting approach to generate images for

intracranial infections. Unlike previous methods, our approach

prioritizes the visual quality of the synthesized images. It consists
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TABLE 3 Quantitative comparison of health and identity preservation metrics for PHS-GAN, GVS-GAN, and the proposed method under the T1ce

modality and flair modality.

Modal Models Healthiness MPSNR MSSIM Structure healthiness

PHS-GAN (Xia et al., 2020) 0.831 31.78 0.979 0.571

T1ce GVS-GAN (Zhang et al., 2022) 0.909 33.13 0.989 0.529

Ours 0.935 37.53 0.994 0.679

PHS-GAN (Xia et al., 2020) 0.731 31.27 0.966 0.552

FLAIR GVS-GAN (Zhang et al., 2022) 0.912 32.16 0.979 0.602

Ours 0.891 35.58 0.992 0.605

Bold indicates the highest values.

FIGURE 8

Displays the pseudo-healthy images generated by the proposed method on the COVID-19-20 dataset, with three samples shown, one per column.

of three components: a Segmentor, a Vague-Filler, and a Generator.

The Segmentor identifies and localizes pathological regions, the

Vague-Filler constructs inpainted pseudo-healthy images, and the

Generator refines the reconstructions of the pathological input

images. We have also established numerical evaluation metrics to

assess the anatomical structure quality of the synthesized images.

Demonstrated on the BraTS2021 dataset, our method exceeds

current state-of-the-art benchmarks in qualitative, quantitative,

and subjective evaluations.

Looking ahead, several promising research directions emerge

from our work and the broader field. Our method effectively

patches lesion regions, enhancing the preservation of subject

identity. Post-patching, the Generator leverages global information,

allowing the synthesized pseudo-healthy regions to integrate

more seamlessly with adjacent areas. Although our results are

impressive, our approach is limited by the need for dense,

accurate segmentation annotations, which are challenging to

amass in clinical settings. Future research should aim to reduce

the reliance on precise pixel-level annotations, possibly through

more sophisticated segmentation models or unsupervised learning

techniques (Ma et al., 2024). Additionally, we have proposed

a method to repair regions surrounding lesions to counteract

pathologies beyond the lesion areas, though further refinement

is needed for more accurate synthesis. Our method also shows

limitations in synthesizing pseudo-healthy images of other organs

(Liu et al., 2022), prompting future efforts to integrate more

advanced localization techniques for a broader application of

pseudo-healthy synthesis.
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FIGURE 9

Comparison of pseudo-healthy images generated on the BraTS dataset: basic GAN, GAN with contextual residual attention, and GAN with contextual

residual attention plus flipped symmetrical network across five samples (one sample per column).

TABLE 4 Quantitative results for basic GAN networks, GAN networks with contextual residual attention mechanism, and GAN networks featuring both

contextual residual attention mechanism and mirrored symmetry network.

Models Healthiness MPSNR MSSIM Structure healthiness

GAN 0.591 32.72 0.962 0.245

GAN + CRA 0.882 34.03 0.989 0.660

GAN + CRA + FLIP 0.929 34.92 0.995 0.843

Bold indicates the highest values.
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Comprehensive data optimization 
and risk prediction framework: 
machine learning methods for 
inflammatory bowel disease 
prediction based on the human 
gut microbiome data
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Over the past decade, the prevalence of inflammatory bowel disease (IBD) has 
significantly increased, making early detection crucial for improving patient survival 
rates. Medical research suggests that changes in the human gut microbiome are 
closely linked to IBD onset, playing a critical role in its prediction. However, the 
current gut microbiome data often exhibit missing values and high dimensionality, 
posing challenges to the accuracy of predictive algorithms. To address these 
issues, we proposed the comprehensive data optimization and risk prediction 
framework (CDORPF), an ensemble learning framework designed to predict IBD 
risk based on the human gut microbiome, aiding early diagnosis. The framework 
comprised two main components: data optimization and risk prediction. The data 
optimization module first employed triple optimization imputation (TOI) to impute 
missing data while preserving the biological characteristics of the microbiome. 
It then utilized importance-weighted variational autoencoder (IWVAE) to reduce 
redundant information from the high-dimensional microbiome data. This process 
resulted in a complete, low-dimensional representation of the data, laying the 
foundation for improved algorithm efficiency and accuracy. In the risk prediction 
module, the optimized data was classified using a random forest (RF) model, and 
hyperparameters were globally optimized using improved aquila optimizer (IAO), 
which incorporated multiple strategies. Experimental results on IBD-related gut 
microbiome datasets showed that the proposed framework achieved classification 
accuracy, recall, and F1 scores exceeding 0.9, outperforming comparison models 
and serving as a valuable tool for predicting IBD onset risk.

KEYWORDS

gut microbiome, inflammatory bowel disease, novel risk warning framework, machine 
learning, data imputation, parameter optimization

1 Introduction

Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn’s 
disease (CD), is a group of chronic inflammatory disorders of the gastrointestinal tract (Flynn 
and Eisenstein, 2019). IBD is associated with an increased risk of intestinal malignancies (Faye 
et al., 2022), and it can also lead to complications involving the joints, skin, eyes, and central 
nervous system (Rogler et al., 2021). Additionally, patients with IBD frequently experience 
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comorbid depression and anxiety (Bisgaard et al., 2022). Although no 
specific pathogen has been definitively implicated in the etiology of 
IBD, a growing body of evidence suggests a significant association 
between the human gut microbiome and the development of IBD 
(Kostic et al., 2014).

The development of high-throughput sequencing technologies 
has enabled researchers to capture a comprehensive snapshot of the 
microbial community of interest (Almeida et al., 2019). Among these, 
16S rRNA gene sequencing stands out as an efficient and cost-effective 
method for identifying and classifying bacteria and archaea within 
microbial populations (Johnson et al., 2019).

Although new technologies have significantly enhanced our 
ability to characterize the human gut microbiome and its potential in 
predicting IBD, several key challenges remain in effectively utilizing 
these data to construct predictive models. Firstly, due to the high-
dimensional sparsity of microbiome data and the limitations of 
sequencing technologies, data missingness is a prevalent issue. Most 
current studies employ simple mean imputation, zero-filling methods 
or K-nearest neighbors (KNN) imputation (Liñares-Blanco et  al., 
2022), which fail to adequately capture the intrinsic structure and 
complex relationships within the data, potentially leading to decreased 
model performance. While multiple imputation by chained equations 
(MICE) is widely utilized for data imputation, it possesses several 
constraints. Its performance could be considerably influenced if the 
data fails to meet the assumption of missing completely at random 
(MCAR) (Azur et al., 2011). Furthermore, MICE is susceptible to the 
selection of model parameters (Doove et al., 2014), particularly with 
non-linear relationships or interactions, which might result in less 
reliable imputation outcomes. The approach also brings in uncertainty, 
as the results may vary across different datasets or subsets of the same 
dataset. Most crucially, MICE is inclined to overfitting when dealing 
with high-dimensional data (Tang and Ishwaran, 2017). Hence, 
considering the high-dimensional characteristic of gut microbiome 
data, MICE might not be the optimal choice for imputation in this 
context. Secondly, the human gut microbiome involves thousands of 
genes or microbial features, many of which are irrelevant or noisy, 
obscuring the relationship between key features and health, leading to 
overfitting. High-dimensional risk factors increase computation time 
(Wang et al., 2023a), and complex interrelationships reduce prediction 
accuracy. In situations with a small sample size, a large number of 
features can lead to the curse of dimensionality, rendering the data 
sparse within the feature space. 

A review (Armstrong et  al., 2022) evaluates dimensionality 
reduction techniques for microbiome data, including principal 
component analysis (PCA), non-metric multidimensional scaling 
(nMDS), t-SNE and UMAP. PCA and nMDS are not suitable for 
handling sparse data, whereas t-SNE and UMAP, although effective in 
capturing non-linear patterns, are highly sensitive to parameter 
settings, making their results less reliable and harder to reproduce.
Additionally, some studies have also explored nonlinear techniques 
such as Variational Autoencoders (VAE) (Rezende et al., 2014), which 
introduce probabilistic generative models and nonlinear 
transformations to achieve more representative low-dimensional 
representations (Li et al., 2020). However, these models encounter 
challenges such as training instability, slow convergence, and the issue 
of vanishing gradients when dealing with ultra-high-dimensional 
datasets. Thirdly, individual machine learning models exhibit variable 
performance across different datasets, resulting in inconsistent 

predictions and limited generalization (Ansarullah and Kumar, 2019). 
While deep learning models can enhance prediction accuracy, they 
require substantial data, computational resources and face challenges 
in multi-dimensional data processing (Yekkala et al., 2017). Ensemble 
learning has yielded promising results across various prediction tasks 
(Peng et  al., 2023; Kalaiselvi and Geetha, 2024). Similarly, it has 
demonstrated efficacy in predicting the risk of IBD (Alfonso Perez and 
Castillo, 2023). Studies have shown that random forest (RF), as an 
ensemble learning method, performs exceptionally well in predicting 
IBD. One study demonstrated that RF model based on laboratory 
markers exhibit high accuracy in classifying IBD, particularly 
achieving AUC values of 97% for Crohn’s disease and 91% for 
ulcerative colitis (Kraszewski et al., 2021). A study developed a RF 
model using baseline clinical and serological parameters, achieving an 
AUC of 0.90 to successfully predict CD patients’ response to IFX 
treatment, outperforming a logistic regression model (Li et al., 2021). 
Moreover, research by Alfonso Perez and Castillo (2023) further 
confirmed that RF models excel in handling complex medical data, 
making them an excellent choice for IBD prediction, outperforming 
many other commonly used machine learning algorithms. In addition, 
hyperparameter settings significantly impact ensemble learning model 
accuracy. Traditional hyperparameter optimization methods like 
random search (RS) and grid search (GS) are computationally 
intensive (Hutter et  al., 2019), while Bayesian optimization (BO) 
(Chen et al., 2023) and particle swarm optimization (PSO) (Wang 
et  al., 2023b), and Gray Wolf optimization (GWO) (Mafarja and 
Mirjalili, 2017) can get trapped in local optima. Direct use of aquila 
optimizer (AO) (Abualigah et al., 2021) also risks local optima issues.

To address these issues, we  proposed the CDORPF, a 
comprehensive data optimization and risk prediction framework. This 
framework was divided into two main modules: data optimization and 
risk prediction. In the data optimization module, we first employed 
triple optimization imputation (TOI) to impute missing data while 
preserving the biological characteristics of the gut microbiome data. 
Next, we introduced the importance-weighted variational autoencoder 
with integrated evaluation (IWVAE) method, which incorporated 
feature importance ranking and a comprehensive scoring approach 
based on VAE, to enhance the dimensionality reduction process by 
retaining critical features. This resulted in a more complete dataset and 
a low-dimensional representation, laying a solid foundation for 
improving algorithm efficiency and accuracy. In the risk prediction 
module, the optimized data was classified using the RF model, while 
the improved aquila optimizer (IAO), enhanced with multiple 
strategies, was employed for global hyperparameter optimization of 
the RF model. The effectiveness of the CDORPF framework had been 
validated through multiple comparative experiments.

2 Materials and methods

2.1 CDORPF

The overall framework structure of CDORPF is illustrated in 
Figure 1.

Where, the input is a N*M matrix, and the output is a N′*M′ 
matrix. N represents the number of original data items, M refers to the 
feature dimension of the data items, and N′ and M′ denote the sample 
size and feature dimension, respectively, after data optimization.
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The workflow of the model is as follows:

 (1) Data optimization: TOI is applied to impute missing data in the 
original dataset. IWVAE is then utilized for dimensionality 
reduction, and SMOTE (Feng et  al., 2023) is employed to 
address sample imbalance, ensuring consistency and reliability 
of the human gut microbiome data while maintaining 
biological accuracy.

 (2) Predictive model construction: Initial parameter ranges for the 
RF model are set, including n_estimators, max_depth, min_
samples_split and min_samples_leaf. IAO optimizes these 
parameters through iterative searches. Enhancements such as 
dynamic adjustment Sobol sequence (DASS), adaptive 
parameter adjustment, and dynamic mutation rates are 
introduced. The optimized hyperparameters are used to train 
the RF model, which is then evaluated on a validation set.

 (3) Model evaluation: Performance metrics for the predictive 
model are proposed and compared with classical and widely-
used models to assess CDORPF.

2.2 Data imputation based on TOI

Gut microbiome data frequently exhibit high-dimensional sparsity 
(Xie and Lederer, 2021), and multicollinearity may be present among 
the features (Die et al., 2022). For sparse data, relying solely on KNN 
often encounters challenges in identifying sufficiently similar 
neighboring samples, while using MICE alone may fail to capture 
strong feature correlations. KNN excels at managing locally similar 
samples and effectively captures local structural characteristics between 
them, whereas MICE employs regression models that leverage global 
feature correlations for imputation. By combining KNN and MICE, 
both local and global information can be  leveraged to more 
comprehensively fill in missing values. Additionally, introducing ridge 
regression during MICE imputation can effectively reduce model 

instability caused by multicollinearity, enhancing the robustness of the 
model and making the imputation results more stable and accurate. 
Ridge regression achieves this through regularization, which prevents 
overfitting to noise inherent in sparse data while preserving reasonable 
correlations among features.

Based on the above three methods, we proposed TOI. TOI not 
only preserves the dataset’s integrity but also retains the intrinsic 
structure and relationships within the microbiome data, supporting 
reliable subsequent analysis and model development.

The process is as follows:
Step  1. Initial imputation: For a dataset X containing missing 

values, the KNN is employed for preliminary imputation.
 (1) Distance calculation: The distance between record i and other 

records in the dataset is computed using the appropriate 
Equation 1.

 
( ) ( )2, ,

1
,

p

i m n m
m

d i n x x
=

= −∑
 

(1)

 (2) Select nearest neighbors: Based on the calculated distances, 
select the k records that are closest.

 (3) Calculate mean: Compute the mean of feature j across these k 
nearest neighbors using Equation 2 and use this value to 
impute the missing data.
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∧

∈
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where, ,i jx
∧

 represents the imputed value of feature j for record i, 
( )kN i  denotes the set of indices corresponding to the k nearest 

neighbors of record i, ,n jx  refers to the values of feature j among these 
nearest neighbors.

FIGURE 1

Flow work of CDORPF.
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Step 2. Iterative optimization of imputation: Building on the initial 
imputation, multiple imputation is performed with iterative 
refinement. In each iteration, a Bayesian ridge regression model is 
used to predict the imputed values.

 (1) Target feature selection: In each iteration, select feature j as the 
target variable, with the remaining features serving as predictors.

 (2) Model construction: Using the other feature values ( )
,
t

i jx ¬  of 
record i, construct the Bayesian Ridge Regression model jf  and 
compute the regression coefficients β

∧
, as shown in Equation 3.

 ( ) 1T TX X I X yβ λ
∧ −
= +

 
(3)

 (3) Based on the Equation 4, predictions are made to obtain 
updated imputed values.

 

( )
( )( ) ( )

1

, , ,

t
t t

i j j i j i jx f x ε
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where, 
( )1

,

t

i jx
+∧

 represents the imputed value of feature j for record 
i in the t + 1 iteration, jf  denotes the regression model for feature j, 
( )
,
t

i jx ¬  refers to all feature values of record i excluding feature j in the t 
iteration, ( )

,
t

i jε  is the residual value.
Step 3. Iterative refinement: Repeat the iterative process, selecting 

each feature for imputation and continuously optimizing the imputed 
values until convergence is achieved or the maximum number of 
iterations is reached.

Step  4. Final imputation results: Obtain the final optimized 
imputation results, filling in all missing values.

In summary, TOI combines the simplicity of KNN, the iterative 
refinement capability of MICE, and the regularization strength of 
Bayesian ridge regression. TOI effectively captures both linear and 
nonlinear relationships in the data, ensuring data integrity and 
enhancing model prediction performance for more accurate and 
stable missing data handling.

2.3 Data dimensionality reduction based on 
IWVAE

Building on VAE, we propose IWVAE, which integrates feature 
importance ranking and a comprehensive scoring mechanism to 
effectively reduce data dimensionality while maintaining high 
classification performance.

Step 1. Calculate feature importance: Feature importance scores 
are computed using RF, and features are ranked accordingly. This 
approach prioritizes the retention of the most critical features for 
classification tasks, enhancing the efficiency of the dimensionality 
reduction process.

Step 2. Definition of VAE: The encoder maps high-dimensional 
data into a low-dimensional latent space, while the decoder 
reconstructs the high-dimensional data from this latent representation. 
The encoder outputs include the latent mean µ  and the latent 
log-variance ( )2log σ , with the KL divergence loss term constraining 
the distribution in the latent space as shown in Equation 5.
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The decoder reconstructs the data using the latent variable z, and 
the reconstruction error is computed based on the following 
Equation 6:
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where, ix  represents the original data, ix
∧

 represents the 
reconstructed data, N  denotes the sample size.

Step 3. Preliminary screening stage: Features are selected at intervals 
of 1/10 of the total dimensionality. The trained VAE model is used to 
calculate reconstruction errors, and RF is trained on the dimensionally 
reduced data. Classification accuracy is evaluated through cross-
validation. By balancing reconstruction error and classification accuracy, 
the introduction of a comprehensive score avoids bias and overfitting, 
enabling a more thorough model evaluation and ensuring an optimal 
balance between preserving data features and predictive capability. Both 
the reconstruction error and classification accuracy are standardized 
using specific Equations 7, 8, and a comprehensive score is computed 
using Equation 9. The optimal latent dimensions are then recorded.

 

( )
( ) ( )

Reconstruction error min reconstruction error
SRE

max Reconstruction error min Reconstruction error
−

=
−  

(7)

 

( )
( ) ( )

Modelaccuracy min Modelaccuracy
SMO

max Modelaccuracy min Modelaccuracy
−

=
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(8)

 ( )Combinedscore SRE 1 SMO= + −  (9)

Step  4. Refined screening phase: Conduct a more detailed 
screening around the optimal latent dimensions identified in the 
preliminary screening phase. All steps from the preliminary screening 
are repeated within this refined range to ensure precision.

2.4 IAO-RF risk prediction model 
construction

2.4.1 IAO
The traditional AO initializes the population randomly, which may 

result in insufficient exploration during the early stages and an increased 
risk of becoming trapped in local optima. Furthermore, its fixed parameter 
selection and singular search strategy can cause an imbalance between 
global exploration and local exploitation. To overcome these limitations, 
IAO incorporates multiple strategies to enhance AO, achieving a balance 
between local and global optimization while improving search efficiency. 
The following optimizations have been implemented:

 (1) DASS is employed to initialize the population, enhancing the 
diversity of the initial population.
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The Sobol sequence is a quasi-random sequence used to generate 
low-discrepancy samples. The DASS refines this by incorporating 
feature importance information to adjust the search space dynamically, 
overcoming the limitation of the traditional Sobol sequence, which 
cannot adapt to problem-specific characteristics.

 a Calculate feature importance: The importance of each feature is 
calculated using a baseline model, as described in Equation 10.
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1importance Gini
= ∆
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i t
t

i
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(10)

where, ( )Gini∆ t i  represents the contribution of feature i to the 
Gini index in the t-th tree.

 b Dynamic adjustment of search space: The search space is 
adjusted based on feature importance. If a feature’s importance 
exceeds a certain threshold, its search range is expanded as 
specified in Equation 11.
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where, θ  is a predefined threshold.

 c Sobol sequence generation: The Sobol sequence is used to generate 
uniformly distributed points, as defined in Equation 12.

 ( )Sobol ,u d N=  (12)

where, u is a d × N matrix, d represents the dimensionality of the 
hyperparameters, N refers the population size.

 d Mapping to the dynamically adjusted search space: Using 
Equation 13, the values from the Sobol sequence in the range of 
[0, 1] are mapped to the dynamic adjustment range of 
each parameter.

 ( )min, max, min,ij j ij j jx x u x x= + ⋅ −  (13)

where, ijx  represents the j-th parameter of the i-th individual, 
min, jx  and max, jx  denote the minimum and maximum ranges of the 

j-th parameter.
Figure 2 shows the distribution of a 2D initial population of size 

200 generated using the DASS, the traditional Sobol sequence, and 
random generation methods. It is evident that the population generated 
by the dynamically adjusted Sobol sequence is more uniformly 
distributed, providing broader coverage of the solution space. Notably, 
within the parameter ranges of higher feature importance, this method 
maintains better population diversity, which can enhance the 
optimization speed and convergence accuracy of the algorithm.

 (2) Adaptive parameter adjustment and dynamic mutation rates 
are introduced to adaptively modify the search range and 
mutation rates at different stages of the optimization process. 

This effectively balances global exploration and local 
exploitation, thereby enhancing overall 
optimization performance.

 a Adaptive parameter adjustment: As shown in the Equation 14, 
parameters are dynamically adjusted based on the number of 
iterations. This approach strengthens global exploration in the 
early iterations and enhances local exploitation in the later 
stages, preventing premature convergence.

 

max_ iterations iteration
max_ iterations

α −
=

 
(14)

 b Dynamic mutation rate: As shown in the Equation 15, the 
mutation rate is dynamically adjusted based on the number of 
iterations, enhancing population diversity and preventing 
premature convergence.

 

iterationmutation _ rate 0.1 1
max_ iterations

 
= × − 

  
(15)

 (3) Incorporate a position update strategy, as different strategies 
can facilitate exploration and exploitation during the 
optimization process.

 a Exploration strategy: The position of individuals is updated 
using the current best individual ( bestx ) as a reference point. A 
wide range of movement is achieved through a random factor 
(rand) and an adaptive parameter (α ), expanding the search 
space and enhancing global exploration capabilities. As shown 
in the Equation 16:

 ( )new
besti i ix x rand x xα= + ⋅ ⋅ −  (16)

where, new
ix  represents the new position of individual i, ix  is the 

current position of individual i, α  is an adaptive parameter that 
gradually decreases with the number of iterations, rand is a random 
number between 0 and 1.

 b Exploitation strategy: The position of individuals is updated 
using the current worst individual ( worstx ) as a reference point. 
Local exploitation is achieved through a random factor (rand) 
and an adaptive parameter (α ), enhancing local search 
capabilities. This allows for finer exploration within the current 
search region, preventing premature convergence to local 
optima. As shown in the Equation 17:

 ( )new
worsti i ix x rand x xα= + ⋅ ⋅ −  (17)

 c Levy flight: Individual ix  approaches the current best individual 
( bestx ) using a random step length ( )Levy β  based on the Levy 
distribution and an adaptive parameter (α ), as shown in 
Equations 18, 19. This strategy helps to overcome the 
limitations of local optima and further enhances global 
exploration capabilities. The formula is as follows:
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 ( ) ( )new
bestLevyi i ix x x xα β= + × × −  (18)

 
( ) 1Levy u

v β
β =

 

(19)

where, u and v are random variables that follow a normal 
distribution, and meanx  is a parameter of the Levy distribution.

 d Gradual convergence strategy: In the middle to late stages of 
the optimization process, individuals gradually converge 
toward the population mean, as shown in Equation 20. This 
approach balances global exploration and local exploitation, 
leading to a gradual convergence. The formula is as follows:

 ( )new
meani i ix x rand x xα= + ⋅ ⋅ −  (20)

 (4) Introduce diversity measurement and adaptive strategy 
selection to dynamically adjust optimization strategies, 
enabling the algorithm to better balance exploring new solution 
spaces and optimizing the current solution space.

IAO dynamically selects different search strategies at various 
optimization stages based on population diversity. When diversity is 
high, the algorithm favors the exploration strategy and Levy flight to 
expand the search space. Conversely, when diversity is low, it leans 
toward the exploitation strategy and gradual convergence strategy to 
optimize the current solution. The standard deviation across each 
dimension of the population is calculated using Equation 21 to 
measure population diversity, effectively reflecting the distribution of 
the population within the search space.

 1

1 n
j

j
D

n
σ

=
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(21)

where, D represents the population diversity, n is the number of 
dimensions, and jσ  is the standard deviation of the population in the 
j-th dimension.

2.4.2 The algorithmic process of IAO-optimized 
RF

The key steps in optimizing RF with IAO are as follows:
Step  1: Initialize parameters: population size, parameter 

dimensions (dim), parameter ranges (x_min and x_max) and 
maximum iterations (max_iterations).

Step 2: Define the fitness function.
Step 3: Initialize the population using DASS.
Step 4: Iterative optimization process:

 • Calculate the population mean ( meanx ) and the worst 
individual ( worstx ).

 • Calculate adaptive adjustment parameters based on the 
Equation 14.

 • Compute the dynamically adjusted mutation rate using the 
Equation 15.

 • Retain the current best individual ( bestx ) using an elite strategy.
 • Execute the search strategy for each individual:

Select the search strategy based on population diversity.
Implement exploration, exploitation, Levy and gradual 
convergence strategies.

 • Calculate the fitness of new individuals and update 
the population.

Step 5: Output the optimal parameters to construct the IAO-RF 
model for prediction tasks.

2.5 Model performance measures

Using stratified random sampling to maintain class distribution 
consistency, the dataset was divided into two subsets: 80% for the 
training dataset and 20% for the test dataset. The training dataset was 
used to train the machine learning models, and the test dataset was 
used to evaluate model performance. Ten-fold cross-validation was 
performed. Based on the test dataset and the model predicted target 
variables, five statistical measures were used to evaluate the model 
performance: accuracy, precision, recall, F1-score and AUC.

FIGURE 2

Comparison of population initialization.
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2.6 Baseline methods

To demonstrate the effectiveness of the proposed model, 
we  compared it with several widely used models across different 
categories. For evaluating the effectiveness of various imputation 
methods, we employed classifiers such as logistic regression (LR), 
SVM, MLP, XGBoost, LightGBM and RF. To assess the performance 
of dimensionality reduction methods, we compared PCA, VAE and 
IVAE. For evaluating parameter optimization methods, we compared 
RS, GS and BO.

3 Results

3.1 Data selection

The experimental data used in this study is from the Inflammatory 
Bowel Disease Multi’omics Database (IBDMDB) within the Integrated 
Human Microbiome Project (iHMP) (Lloyd-Price et  al., 2019). 
Microbial community structure and diversity were analyzed using 16S 
rRNA gene sequencing, specifically targeting the V4 region. This gut 
microbiome dataset comprises 178 participant records, in which 137 
with IBD and 41 without. Each record consists of 983 fields. Notably, 
one field serves as an indicator for the presence or absence of IBD, 
while the remaining 982 fields represent an array of microbial features. 
However, many feature values in most samples are either close to zero 
or exactly zero, leading to a sparse data distribution in high-
dimensional space. Despite this overall sparsity, some samples exhibit 
high abundance in specific feature dimensions, creating locally dense 
regions. Additionally, approximately 491 features have missing values, 
with missing rates ranging from 0.56% to 9.55%, and an average 
missing rate of 5.27%.

In summary, this dataset is characterized by high-dimensional 
sparsity, the presence of missing values, differences in class 
distribution, and local density regions.

3.2 Data optimization

3.2.1 Data imputation based on TOI and 
effectiveness analysis

3.2.1.1 Validation of the rationale for using TOI
Data missingness can be  classified as missing completely at 

random (MCAR), missing at random (MAR) and not missing at 
random (NMAR). To validate the rationale for using the TOI for data 
imputation, the first step is to identify the type of missing data within 
the dataset.

3.2.1.1.1 Analysis of missing data types in the dataset
A correlation matrix was used to analyze the types of missing data 

by displaying the correlations between missing values across different 
features. The matrix colors range from blue (negative correlation) to 
red (positive correlation). Blue indicates that when one feature is 
missing, another is likely to be present, while red suggests that missing 
values in two features tend to occur together.

As shown in Figure 3, the correlation matrix of missing values in 
the IBD dataset is predominantly blue, indicating no significant 

correlation between the missing values of different variables. This 
suggests that the missing values in this dataset are likely to be MAR, 
meaning that the missingness of certain variables may be related to 
other observed variables, but not to the missing data itself. The red 
areas are mainly along the diagonal, showing that each variable is 
perfectly correlated with its own missing values, which is expected. 
Therefore, this figure suggests that most variables have independent 
missing values, indicating the missingness mechanism in this dataset 
is likely MAR.

3.2.1.1.2 Analysis of grouped statistical analysis and hypothesis 
testing results

Grouped statistical analysis provides a statistical comparison 
between missing and non-missing groups by analyzing their means 
and standard deviations. Hypothesis testing, through t-tests on key 
variables, evaluates whether significant differences exist between 
missing values and other variables. Selected experimental results are 
shown in Table 1.

Most variables show no significant differences between missing 
and non-missing samples (p-value >0.05), indicating a weak 
association with missingness. However, some features exhibit 
significant differences (p-value <0.05), suggesting a potential 
relationship, while others show near-significant differences (p-value 
close to 0.05), indicating a possible but not conclusive association. 
These findings suggest that the majority of missing data in the dataset 
are not significantly related to other variables, implying a likely MAR.

The combined results of both experiments confirm that the 
missing data mechanism in the IBD dataset is MAR, supporting the 
rationale for using TOI for imputation.

3.2.1.2 TOI-based data imputation

3.2.1.2.1 Imputation results of the dataset
The original IBD dataset contains 491 features with missing 

values, with missing rates ranging from 0.56 to 9.55%. TOI successfully 
imputed all missing values. A comparison of the dataset before and 
after imputation is presented in Figure 4.

3.2.1.2.2 Comparison of distributions before and after 
imputation

By comparing the data distributions before and after TOI 
imputation, the impact of TOI on the data was visually assessed, 
validating the effectiveness and fidelity of the imputed data. If the 
post-imputation distribution aligns with the original data, it indicates 
that the imputation method is appropriate. Selected experimental 
results are shown in Figure 5.

Figure 5 illustrates the comparative distributions of variables with 
substantial missing rates, both prior to and following imputation. 
Each subplot displays the distribution of an individual variable, where 
the original data are depicted in green and the imputed data in purple. 
The histograms illustrate the frequency distribution of the variables, 
and by contrasting the green and purple histograms, one can distinctly 
perceive the alterations in data frequency across diverse value ranges 
before and after imputation. The kernel density estimation (KDE) 
curves offer a smooth estimation of the probability density, further 
highlighting the distribution tendencies of the data.

The outcomes imply that the distribution of the variable__
Erysipelotrichaceae_UCG_003 remains highly consistent before and 
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after imputation, indicating that the imputed data effectively preserves 
the traits of the original data. For the variable__Defluviitaleaceae_
UCG_011.2, the imputed data fills the sparse regions of the original 
distribution, leading to a more smoother distribution, which attests to 
the efficacy of the imputation technique. On the whole, the imputed 
distributions (purple) closely resemble the original distributions 
(green) for the majority of variables, as evidenced by the similarity in 
the histograms and KDE curves in each subplot. These findings 
indicate that our imputation methodology effectively preserves the 
key distributional properties of the original dataset. For variables 
exhibiting long-tailed distributions, the imputed data preserve this 

characteristic, thereby underscoring the efficacy of the imputation 
technique in addressing sparsity.

3.2.1.3 Evaluation of imputation results validity
To further validate the effectiveness of TOI, comparative 

experiments were conducted using datasets imputed with KNN, 
MICE and TOI. Classifier models such as LR, SVM, MLP, XGBoost, 
LightGBM and RF were selected for analysis. The experimental results 
are presented in Figure 6.

Figure  6 compares the performance of different imputation 
methods across various classifier models: red for TOI, green for MICE 

FIGURE 3

Missing value correlation matrix.

TABLE 1 Results of grouped statistical analysis and hypothesis testing.

Feature Variable Mean (missing) Mean (non-missing) t-statistic p-value

_Tepidimonas _Bacteroides 3348.25 2366.95679 −1.136126196 0.257484265

_Tepidimonas _Bacteroides.6 2147.166667 1618.566265 −0.617270031 0.537854396

_Prevotella _Bacteroides 1857.416667 2477.388889 0.716181482 0.474850527

_Prevotella _Faecalibacterium.2 1785.666667 2335.963855 0.737912748 0.461550206

_Prevotella _Escherichia_Shigella 447.6666667 626.9036145 0.300885428 0.763857015

_Belnapia _Bacteroides.6 434 1661.096045 0.426897256 0.669975915

_Belnapia _Dialister.2 318 147.3619632 −0.662256296 0.508748001

_Belnapia _Lachnoclostridium.1 272 86.81920904 −0.781271529 0.435692463
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FIGURE 4

Example of data tables before and after imputation (partial sample).

FIGURE 5

Distribution of variables before and after imputation.
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and blue for KNN. The results show that the TOI imputation method 
achieves the highest AUC values in the evaluations of LR, SVM, MLP, 
LightGBM and RF models, indicating superior classification 
performance. Although MICE slightly outperforms TOI in the 
XGBoost, the AUC difference is only 0.0042. Overall, the TOI 
imputation method provides better classification performance, 
demonstrating excellent generalization capability and robustness.

Furthermore, when comparing the performance of various 
imputation methods, the RF model stands out as particularly 
exceptional across the entire dataset. With the TOI, the RF achieves 
an AUC of 0.7896, which is higher than that of most other models 
using the same method. For example, the AUC for the SVM, LR and 
XGBoost models under the TOI are 0.7561, 0.7326 and 0.7346, 
respectively. Additionally, even with the MICE and KNN, the RF’s 
AUC values remain highly competitive, outperforming those of most 
other models. These results indicate that the RF model not only 
maintains a high level of classification performance when handling 
imputed data but also demonstrates greater stability across different 
imputation methods, making it the optimal choice for this dataset.

3.2.2 Data dimensionality reduction based on 
IWVAE and effectiveness analysis

3.2.2.1 Selection of data dimensions
Figure 7 shows the impact of latent dimensions on reconstruction 

error (blue curve), model performance (red curve) and the combined 
score (green curve) during the refinement phase. The blue curve, 
representing reconstruction error, exhibits fluctuations but generally 
trends downward as the number of dimensions increases, indicating 
that data after dimensionality reduction effectively reconstructs the 
original dataset. The red curve illustrates variations in model 
performance, with accuracy oscillating between 0.765 and 0.795, 
suggesting that predictive capability remains relatively stable across 

different dimensionalities. The green curve, reflecting the combined 
score, demonstrates significant variability—particularly at higher 
dimensions—indicating that the dimensionality reduction method is 
more effective at specific levels. From this figure, it is evident that 
while both reconstruction error and model performance remain 
relatively stable as latent dimensions vary, the fluctuations in combined 
scores imply substantial changes in overall model efficacy across 
different dimensions. Based on this analysis, 147 dimensions were 
identified as optimal for achieving an ideal balance between 
minimizing reconstruction error and enhancing model performance.

3.2.2.2 Analysis of the effectiveness of dimensionality 
reduction

To further validate the effectiveness of IWVAE, comparative 
experiments were conducted using the imputed dataset as the 
experimental dataset. The RF model was applied to the full feature set, 
as well as to the feature sets reduced by PCA, VAE and IWVAE. The 
experimental results are presented in Table 2.

As shown in Table  2, IWVAE outperforms all other methods 
across all metrics, with accuracy, precision, recall and F1 scores all 
exceeding 0.8. This demonstrates that IWVAE has superior feature 
extraction capabilities when handling this type of data, significantly 
enhancing the overall performance of the model.

Following data optimization, the dataset comprises 274 samples 
with 147 features and no missing values. Of these, 137 samples are 
from IBD patients, while the remaining 137 are from healthy controls.

3.3 IBD risk prediction based on the IAO-RF

3.3.1 Sensitivity analyses
The primary role of sensitivity analysis is to evaluate the model’s 

response to variations in input parameters and to help identify key 

FIGURE 6

ROC curves comparison.
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parameters that have the most significant impact on the model’s 
output. Sensitivity analysis allows us to understand how the model 
performs under different parameter settings, determining its stability 
and robustness, thereby preventing overfitting or underfitting.

Figure 8 shows the sensitivity analysis of four hyperparameters on 
the accuracy of the RF model. The top-left plot indicates that 
increasing the n_estimators from 100 to 120 significantly improves 
accuracy, which then stabilizes beyond 120 trees, suggesting limited 
benefits from adding more trees after this point. The top-right plot 
demonstrates that increasing the max_depth improves accuracy until 
it plateaus at a depth of 10, implying that deeper trees capture data 
complexity better, but further increases do not boost accuracy. The 
bottom-left plot reveals that setting min_samples_split around 5 
achieves optimal accuracy, with further increases leading to a decline, 
indicating that too high a threshold for node splitting can cause 
underfitting. Lastly, the bottom-right plot indicates that setting min_
samples_leaf to 2 maximizes accuracy; further increases in this value 
negatively impact accuracy, implying that a higher number of samples 
in leaf nodes may reduce model complexity and predictive power.

In summary, hyperparameter selection is crucial for RF 
performance. Proper tuning of parameters like n_estimators and 
max_depth can significantly enhance accuracy, while excessively high 
values for min_samples_split and min_samples_leaf can hinder 
performance. Consequently, careful adjustment based on the dataset 
is essential for optimal results.

3.3.2 Parameter settings
The RF model includes multiple hyperparameters within a large 

parameter space. In this experiment, IAO was employed to optimize four 
key hyperparameters: n_estimators, max_depth, min_samples_split and 
min_samples_leaf. The optimization results are presented in Table 3.

Comparative experiments and model evaluation
To further validate the effectiveness of IAO, a comparative 

experiment was conducted using the processed dataset. The RF model 
was optimized using no optimization, RS, GS, BO and IAO. The 
experimental results are presented in Table 4.

As shown in Table 4, IAO outperformed all other methods on all 
metrics, achieving accuracy, precision, recall and F1 scores above 0.9, 
significantly surpassing other approaches. In contrast, BO and GS 
failed to notably improve model performance, and although RS 
provided some enhancement, it remained inferior to IAO. Overall, 
IAO exhibited a distinct advantage in parameter optimization, leading 
to enhanced model accuracy, precision, recall and F1 scores.

3.4 Effectiveness of CDORPF

To further validate the effectiveness of CDORPF, we conducted 
a comparative experiment. This experiment compared commonly 
used machine learning models with CDORPF and the results are 
presented in Table 5.

Table  5 clearly demonstrates that the CDORPF framework 
significantly outperforms other commonly used machine learning 
models across all evaluation metrics, confirming its superior accuracy 
and reliability. Moreover, CDORPF exhibits a notable level of 
consistency in accuracy, precision, recall and F1-score, which is 
critically important for practical applications.

4 Discussion and interpretation

We developed a framework named CDORPF to address the issue 
of missing values in microbiome data, transforming high-dimensional 

FIGURE 7

Optimal latent dimension selection.

TABLE 2 Results of IBD risk prediction using different dimensionality 
reduction strategies.

Method Accuracy Precision Recall F1-
score

Full features 0.7863 0.6888 0.7863 0.7098

PCA 0.7980 0.7817 0.7980 0.7711

VAE 0.7696 0.5926 0.7696 0.6695

IWVAE 0.8369 0.8459 0.8369 0.8146
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microbiome profiles into low-dimensional representations and 
constructing classification models based on these representations.

In the initial phases of this research, our primary objective was 
data imputation, as most machine learning algorithms are not 
designed to effectively handle missing values, which can lead to bias. 
We explored traditional KNN and MICE methods for imputation; 
however, the results were suboptimal. To preserve the inherent 
structure and relationships within microbiome data, we proposed the 
TOI method that integrates KNN, MICE and Bayesian ridge 
regression. By analyzing the types of missing data present in the IBD 

dataset, we  validated the rationale behind the TOI method and 
successfully imputed all missing values while maintaining internal 
structural integrity. As illustrated in Figure 5, experimental results 
indicate that the distribution of imputed data closely aligns with that 
of original data—demonstrating that TOI enhances completeness 
while preserving critical features—thereby laying a solid foundation 
for subsequent analyses and model development.

Building upon this groundwork, we  conducted dimensionality 
reduction experiments since high dimensionality in 16S rRNA data 
introduces noise detrimental to downstream predictions. Our proposed 
IWVAE method outperformed PCA and VAE by effectively reducing 
dimensions while retaining essential features. As presented in Table 2, 
IWVAE achieved superior performance across metrics such as accuracy, 
precision, recall and F1 score—significantly enhancing overall model 
efficacy and showcasing its exceptional capability in feature extraction.

FIGURE 8

Sensitivity analysis of RF hyperparameters.

TABLE 3 The hyper-parameters tuning results of IAO-optimized RF.

Hyper-
parameter

Description Parameter 
range

Tuning 
result

n_estimators The number of trees in the 

forest

[10, 200] 200

max_depth The maximum depth of the 

trees

[1, 50] 9

min_samples_

split

The minimum number of 

samples required to split an 

internal node

[2, 10] 2

min_samples_

leaf

The minimum number of 

samples required at a leaf 

node

[1, 5] 1

TABLE 4 Results of different parameter optimization methods.

Method Accuracy Precision Recall F1-
score

No optimization 0.8727 0.8731 0.8727 0.8726

BO 0.8545 0.8626 0.8545 0.8540

GS 0.8727 0.8775 0.8727 0.8725

RS 0.8909 0.8996 0.8909 0.8905

IAO 0.9043 0.9084 0.9043 0.9040
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In our model optimization experiments involving global 
hyperparameter tuning using IAO-RF demonstrated notable 
advantages over RS, GS and BO (Table 4). This further substantiates 
the effectiveness of IAO optimization strategies in improving model 
performance particularly when dealing with complex datasets 
characterized by enhanced accuracy and stability.

In summary, our CDORPF framework exhibits significant strengths 
in addressing issues related to incompleteness, high dimensionality and 
sparsity within microbiome datasets. As evidenced by Table 5, CDORPF 
surpasses traditional machine learning models across all evaluated 
metrics offering improved accuracy alongside consistency thus 
affirming its potential applicability within real-world scenarios.

By adeptly integrating components such as data imputation, 
dimensionality reduction and risk prediction, the CDORPF 
framework effectively confronts challenges associated with 
microbiome information. Future investigations could further validate 
this framework’s robustness on larger more intricate datasets whilst 
exploring prospective applications across diverse fields.

5 Conclusion

In recent years, IBD has become a global health challenge with a 
substantial treatment burden. Research has consistently shown a 
strong association between the human gut microbiome and IBD 
pathogenesis, making it crucial for risk prediction. To address the 
challenges of high-dimensional, sparse, and incomplete microbiome 
data, this paper introduces a novel integrated data optimization and 
risk prediction framework, CDORPF. Compared to traditional 
methods, this approach excels in handling complex microbiome data 
by preserving the inherent structure of the data, minimizing biases 
from missing data, and significantly enhancing data integrity and 
analytical reliability. Additionally, it effectively retains the core 
information during dimensionality reduction, while markedly 
improving model predictive performance. This approach offers a 
comprehensive solution to the challenges of missing values and high 
dimensionality commonly found in microbiome data.

In clinical workflows, CDORPF can serve as a complementary 
tool to existing diagnostic methods by providing additional risk 
assessment information through microbiome analysis. This not only 
enhances diagnostic accuracy but also optimizes the treatment 
process, making patient management more refined and personalized. 
For example, in the initial screening phase, CDORPF can leverage gut 
microbiome data to help identify high-risk patients, prioritizing 
further diagnostic or intervention measures and reducing unnecessary 

delays. Future research can further explore the performance of 
CDORPF in large-scale, multi-center clinical trials to validate its 
applicability and robustness across different populations and disease 
subtypes. Moreover, the successful application of the CDORPF 
framework offers new research directions for the early diagnosis of 
other complex diseases, such as cardiovascular disease or cancer, 
through microbiome analysis, thereby advancing broader applications 
in personalized medicine.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found here: https://hmpdacc.org/ihmp/.

Ethics statement

The studies involving humans were approved by Institutional 
Review Board at Washington University in St. Louis. The studies were 
conducted in accordance with the local legislation and institutional 
requirements. Written informed consent for participation was not 
required from the participants or the participants’ legal guardians/
next of kin in accordance with the national legislation and 
institutional requirements.

Author contributions

YP: Conceptualization, Formal analysis, Investigation, 
Methodology, Supervision, Writing – original draft, Project 
administration, Writing – review & editing. YuL: Conceptualization, 
Data curation, Software, Visualization, Writing – original draft, 
Writing – review & editing. YiL: Data curation, Validation, 
Visualization, Writing – review & editing, Software. JW: Investigation, 
Methodology, Project administration, Validation, Writing – review & 
editing, Funding acquisition.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This work is 
supported by the National Natural Science Foundation of China 
(Grant no. 62172287).

Acknowledgments

The authors express our deep gratitude to everyone who has 
provided assistance with this manuscript.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

TABLE 5 Effectiveness of CDORPF.

Model Accuracy Precision Recall F1-
score

XGBoost 0.7500 0.6481 0.6607 0.6535

LightGBM 0.7222 0.3889 0.5000 0.4375

CatBoost 0.7778 0.6563 0.5893 0.6000

SVM 0.7778 0.3889 0.5000 0.4375

Mice + RF 0.8333 0.8627 0.8333 0.7914

Mice + SVM 0.7778 0.6049 0.7778 0.6806

CDORPF 0.9043 0.9084 0.9043 0.9040
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Infectious diseases caused by pathogenic microorganisms pose a serious threat 
to human health. Despite advances in molecular biology, genetics, computation, 
and medicinal chemistry, infectious diseases remain a significant public health 
concern. Addressing the challenges posed by pathogen outbreaks, pandemics, 
and antimicrobial resistance requires concerted interdisciplinary efforts. With 
the development of computer technology and the continuous exploration 
of artificial intelligence(AI)applications in the biomedical field, the automatic 
morphological recognition and image processing of microbial images under 
microscopes have advanced rapidly. The research team of Institute of Microbiology, 
Chinese Academy of Sciences has developed a single cell microbial identification 
technology combining Raman spectroscopy and artificial intelligence. Through 
laser Raman acquisition system and convolutional neural network analysis, the 
average accuracy rate of 95.64% has been achieved, and the identification can 
be completed in only 5  min. These technologies have shown substantial advantages 
in the visible morphological detection of pathogenic microorganisms, expanding 
anti-infective drug discovery, enhancing our understanding of infection biology, 
and accelerating the development of diagnostics. In this review, we discuss the 
application of AI-based machine learning in image analysis, genome sequencing 
data analysis, and natural language processing (NLP) for pathogen identification, 
highlighting the significant role of artificial intelligence in pathogen diagnosis. AI 
can improve the accuracy and efficiency of diagnosis, promote early detection 
and personalized treatment, and enhance public health safety.

KEYWORDS

artificial intelligence (AI), antibiotic resistance, pathogenic microorganisms, machine 
learning (ML), diagnosis

Introduction

Pathogenic microorganisms include viruses, bacteria, parasites, and fungi that can cause 
infections in humans and animals. They spread rapidly through aerosols, body fluids, food, 
and direct contact, leading to various infectious diseases and even death (Zhang et al., 2018). 
Early detection, diagnosis, and treatment are crucial for preventing infectious diseases. Since 
the discovery of penicillin in 1928, antibiotics have become vital public health tools, saving 
countless lives globally (Fleming, 2001; Davies and Davies, 2010). Today, a wide range of 
antibacterial, antifungal, and antiviral drugs are used in clinical practice. However, the misuse 
of these antimicrobial drugs has led to increased drug resistance in microorganisms, reducing 
the effectiveness of these treatments, a phenomenon known as antimicrobial resistance 
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(Prestinaci et al., 2015). According to the World Health Organization 
(WHO) in 2020, antimicrobial resistance (AMR) is among the top ten 
global public health threats facing humanity. In 2022, The Lancet 
published a systematic analysis of the global burden of bacterial AMR, 
including data from over 200 countries. The study revealed that AMR 
poses a significant threat to global health. In 2019, AMR infections 
directly caused approximately 1.27 million deaths and indirectly 
resulted in about 4.95 million deaths worldwide (Antimicrobial 
Resistance Collaborators, 2022). By 2022, around 1.3 million deaths 
were related to antibiotic resistance (Ranjbar and Alam, 2023). If left 
unaddressed, it is projected that by 2050, antibiotic-resistant infections 
could cause 10 million deaths annually, with direct economic losses 
exceeding $10 trillion (de Kraker et  al., 2016; Ventola, 2015). 
Developing new antimicrobial drugs is becoming increasingly 
difficult, often taking 10–15 years and costing over 6 billion (Wouters 
et  al., 2020; DiMasi et  al., 2016). The emergence of more severe 
multidrug-resistant bacteria will pose significant treatment challenges. 
These data highlight the substantial burden that infectious diseases 
and antimicrobial resistance place on human health and the 
global economy.

The technologies in pathogen detection include nucleic acid and 
immunological methods (Whiley and Taylor, 2016) (Figure 1). These 
technologies help identify pathogenic bacteria or potential health 
risks, making accurate and rapid detection crucial for diagnosing and 
preventing diseases in public health, environmental pollution 
monitoring (Zhang et al., 2023), and clinical diagnosis (Smith and 
Kirby, 2020). However, current detection techniques often fall short of 
clinical needs due to long processing times, cumbersome procedures, 
and reliance on large instruments, limiting fast and efficient 
identification. The traditional methods for identifying pathogenic 
microorganisms, including smear microscopy, isolation and 
cultivation, biochemical assays etc., are not without limitations. These 
methods are often characterized by prolonged timeframes, intricate 
procedures, and suboptimal sensitivity. A case in point is the 
identification of mycobacterial strains, which can extend to a lengthy 
period of 30 to 40 days. Furthermore, certain fastidious bacteria and 
viruses demand cultivation conditions that are so stringent they may 
prove unattainable, or the organisms may be refractory to culture 
altogether. Molecular diagnostic techniques, anchored in PCR, have 
made strides in addressing some of the aforementioned challenges in 
pathogen detection. However, they encounter significant hurdles 

when it comes to the identification of unknown microorganisms. The 
absence of known nucleic acid sequences renders the design of specific 
primers an insurmountable obstacle for these technologies. While 
immunological and PCR methods boast high sensitivity and 
specificity, enabling the detection of a broad spectrum of pathogens, 
they are constrained by their targeted nature. This means that a single 
experiment is typically capable of detecting only one pathogen, which 
can lead to diminished diagnostic efficiency. The indistinguishable 
symptoms and signs of many infectious diseases further complicate 
matters, as identical clinical presentations may be induced by a variety 
of pathogens or result from co-infections. The laborious and time-
consuming process of detecting pathogens one at a time can 
potentially lead to diagnostic delays.

A key breakthrough in overcoming these limitations is the 
deployment of AI driven genome sequencing tools, which analyze 
complex genomic data to quickly and accurately identify pathogenic 
microorganisms with high throughput and speed. For example, 
DeepVariant is a mutation caller based on deep learning that can 
improve the accuracy score of single nucleotide mutation and Indel 
detection (Poplin et al., 2018). Integrating image processing and big 
data analysis into detection methods is therefore highly significant 
(Kothari et al., 2014; Jain et al., 2016). Recent advancements in AI, 
particularly in computer vision and image processing, have shown 
promising potential in the morphological detection of 
pathogenic microorganisms.

The development of AI has progressed through several key stages. 
It began in 1945 with Alan Turing’s idea of using computers to 
simulate the human brain. During the 1950s to the 1970s, AI started 
to become practical with the creation of the first generation of AI 
systems. The 2010s saw an explosion in AI capabilities, driven by 
advances in deep learning and big data technologies like chatGPT 
(LeCun et al., 2015; Esteva et al., 2017). Today, AI excels in numerous 
fields, including disease diagnosis, risk management, facial recognition 
(Figure 2).

AI has significant applications in microbial diagnosis. It uses 
machine learning algorithms to analyze microbial genome data, 
identify antibiotic resistance genes, speed up pathogen identification, 
and improve diagnostic accuracy. AI can also process vast amounts of 
complex data, provide real-time diagnostic support, aid in the early 
detection and control of infectious diseases, and enhance public health 
prevention and control efforts (Esteva et al., 2017).

FIGURE 1

Pathogenic microorganism detection technology.
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The potential of AI in microbiology is yet to be fully realized. 
Microbial research generates vast amounts of biological image data, 
and AI has proven crucial in analyzing high-throughput sequencing 
data and using natural language processing to identify pathogenic 
microorganisms. Traditional computing methods are slow in 
processing these data, whereas AI, especially deep learning, excels in 
both accuracy and speed (Camacho et al., 2018; Ching et al., 2018). 
Deep learning has introduced new applications to microbial research, 
significantly advancing microbial identification and diagnosis. The 
application of deep learning in microbial image recognition and 
classification has grown rapidly (Wainberg et al., 2018; Cao et al., 
2018; Jiang et al., 2022). This article reviews the use of AI in identifying 
and diagnosing pathogenic microorganisms.

Application of AI in image analysis of 
pathogenic microorganisms

AI, particularly machine learning and deep learning, has made 
significant strides in the automatic recognition and classification of 
pathogenic microorganisms in microscope images. These technologies 
effectively analyze and classify bacteria, viruses, fungi, and parasites. 
Deep learning has made microscope image analysis more efficient and 
universal, enabling accurate cell detection and classification (Figure 3). 
Compared to traditional methods, deep learning significantly 
enhances the accuracy and reliability of microorganism detection 
(Esteva et al., 2021; Chen and Asch, 2017).

To address the challenges of pathogen detection, particularly 
with large sample sizes and the identification of difficult bacteria, 
researchers have been exploring intelligent clinical microbial 
morphology testing. In 2020, Professor Aydogan Ozcan’s team at the 
University of California developed a highly sensitive, precise, timely, 
and low-cost microbial online monitoring AI platform. This system 
combines coherent microscopy imaging with deep neural network 

analysis to enable the intelligent identification and classification of 
live microorganisms. By analyzing growth delay holograms, the 
system achieves rapid detection of bacterial growth and species 
classification, with a detection limit of approximately 1 CFU/L for 
Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa 
within ≤9 h. This significantly reduces the testing time compared to 
the EPA gold standard method, which takes at least 24 h (Wang 
et al., 2020). Similarly, a team from the University of Geneva in 
Switzerland has developed an automated urine culture analysis 
system. The WASPLab software automatically reads and analyzes 
bacterial colony images on urine culture plates, quickly reporting 
urine culture results. Using automated equipment, the turnaround 
time is reduced by nearly 50%, minimizing manual reading errors 
and improving detection efficiency and accuracy (Cherkaoui 
et al., 2020).

Currently, the interpretation of imaging results relies heavily on 
the subjective clinical experience of professional imaging doctors. 
Clinically, there is a strong expectation for the testing department to 
diagnose pathogens rapidly and provide accurate drug sensitivity 
results. AI is now widely used in medical imaging, particularly in 
detecting and diagnosing infectious diseases. For instance, during the 
global COVID-19 outbreak in 2019, AI significantly improved the 
diagnostic accuracy and efficiency of chest CT scans and X-rays, 
enabling rapid and precise screening, identification, and 
characterization of COVID-19 (Hassan et al., 2022). AI also aids in 
detecting and analyzing secondary pulmonary infections in 
COVID-19 patients, enhancing diagnostic accuracy and helping to 
assess disease severity and predict clinical outcomes (Viswanathan 
et al., 2022). In lymphoma patients, deep learning accurately identifies 
high metabolic tumor sites in 18F-FDG-PET/CT scans, potentially 
aiding in excluding metabolically active diseases (Ikeda et al., 1987). 
These studies highlight AI’s potential in enhancing diagnostic 
efficiency and accuracy for infectious diseases and its broad 
application prospects in medical imaging.

FIGURE 2

Major milestones in the development of artificial intelligence.
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We conducted a bibliometric analysis using the Web of Science 
database to search for original research on the application of AI in 
medical imaging over the past decade, with the keywords “Artificial 
Intelligence” and “Medical Imaging.” We  analyzed the retrieved 
literature and generated a citation report. A total of 50,547 articles 
were found, with a notable increase in publication volume since 2020. 
Europe and the United  States remain leaders in this field, while 
Chinese scholars have shown rapid development in the past 2 years, 
now leading in publication volume. However, the impact of Chinese 
research is relatively low, indicating an academic quality gap with 
European and American countries in AI-assisted medical imaging 

(Tables 1, 2; Figure 4). Most clinical research focus on using deep 
learning and its derivative algorithms to improve image segmentation 
accuracy and assist clinical diagnosis. According to our statistical 
results, AI ranks ninth in the field of infection research. With 
significant progress in AI-driven microbial microscopy image 
detection, the application of deep learning in microbial image 
recognition and classification has immense development potential.

FIGURE 3

The application of AI related algorithms in image analysis.

TABLE 1 Top 10 countries/regions medical imaging in artificial 
intelligence research from 2014 to 2023.

Rank Countries/regions Number of 
publications/article

1 CHINA 14,338

2 USA 11,309

3 INDIA 5,377

4 ENGLAND 3,291

5 UK 3,184

6 SOUTH KOREA 2,575

7 GERMANY 2,505

8 CANADA 2,390

9 SAUDI ARABIA 1946

10 ITALY 1932

TABLE 2 Top 10 research area in artificial intelligence research from 2014 
to 2023.

Rank Research area Number of 
publications/article

1 Mathematical Computational 

Biology

42,691

2 Radiology Nuclear Medicine 

Medical Imaging

36,960

3 Engineering 35,466

4 Communication 33,268

5 Mathematics 20,565

6 Neurosciences Neurology 9,151

7 Science Technology Other Topics 9,003

8 Imaging Science Photographic 

Technology

6,757

9 Oncology 6,608

10 Automation Control Systems 6,347
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The application of AI in genome 
sequencing data analysis

AI is widely used in analyzing next-generation sequencing (NGS) 
data, particularly for pathogen identification and classification. AI 
technology can quickly process NGS data and identify pathogens in 
samples, which is crucial for the timely diagnosis of infectious 
diseases. In a study published in Nature Medicine, scientists have 
developed an AI framework that integrates a multi detection platform 
for detecting and identifying biomolecules. The system analyzes three 
representative plasmids with different color signals, which are derived 
from drug-resistant Klebsiella pneumoniae bacteria. Compared with 
traditional technology, this system demonstrates excellent recall and 
accuracy, detecting 93.8% of events in real-time and achieving a 
classification accuracy of 99.8%. This study demonstrates the potential 
of AI in medical diagnosis, especially in clinical environments that 
require rapid and accurate analysis (Ganjalizadeh et al., 2023). A study 
published in Scientific Reports, researchers used AI algorithms 
combined with NGS data from T cell receptors (TCRs) to diagnose 
glioma patients. This study explores multidimensional classification 
and feature selection of TCR sequence diversity index, as well as 
two-dimensional classification and feature selection analysis of TCR 
related sequences. The results indicate that through these analyzes, 
researchers were able to identify two sets of core sequences, each 
containing three sequences, sufficient to achieve a 96.7% accuracy in 
glioma detection and diagnosis (Zhou et al., 2024).

The metagenomic high-throughput sequencing technology (mNGS) 
has shown great potential in pathogen detection. It identifies pathogenic 
microorganisms by directly sequencing nucleic acids in samples, without 
the need to pre-set target sequences, thus overcoming the limitations of 
traditional microbial detection methods. The IDseq platform is a cloud 
based open-source platform developed by the Chan Zuckerberg 
Initiative. Based on pathogen metagenomics detection technology, high-
throughput sequencing technology is used to analyze microorganisms 
and host nucleic acids in clinical samples, enabling unbiased detection of 
various pathogenic microorganisms, including bacteria, fungi, viruses, 
and parasites. This technology has shown important application value in 
the detection of infectious diseases pathogens, especially when the 

traditional etiological diagnosis methods are difficult to meet the clinical 
needs. This platform has the comprehensiveness to process diverse 
samples and detect numerous pathogens, high sensitivity to improve 
pathogen detection sensitivity, and in-depth analysis capabilities for drug 
resistance and virulence analysis. Its open-source nature and cloud 
computing foundation make it easy to access and process big data on a 
global scale, reducing the need for bioinformatics experts and local server 
level hardware resources through automated processes, thereby lowering 
costs and time. The platform is user-friendly and supports real-time 
pathogen detection, including newly emerging pathogens. It also 
supports the generation of environmental background models and data 
sharing, promoting scientific research collaboration (Kalantar et  al., 
2020). In a case of pathogen discovery in childhood meningitis in 
Bangladesh, researchers used the IDseq platform to reanalyze three 
meningitis samples with the aim of exploring unknown pathogens. These 
three samples include one meningitis sample caused by Streptococcus 
pneumoniae (CHRF 0002), one meningitis sample caused by 
chikungunya virus (CHRF 0094), and one water control sample (CHRF 
0000). The IDseq platform has successfully identified pathogens through 
effective host sequence filtering and quality control. Especially in the 
CHRF 0094 sample, after host filtering and QC steps, the chikungunya 
virus accounted for 63% of non-host reads, and through the coverage 
visualization tool of the IDseq portal, researchers were able to observe the 
whole genome coverage of the chikungunya virus in the sample. This 
indicates that the IDseq platform can effectively assist researchers in 
quickly obtaining in-depth insights into sample quality, microbial 
content, and cohort trends (Saha et al., 2019).

AI algorithms can accurately classify pathogens based on genomic 
data, which is crucial for monitoring their evolution and transmission. 
MetaPhlAn (Metagenomic Phylogenetic Analysis) is a widely used 
bioinformatics tool that provides species-level analysis of microbial 
composition from metagenomic shotgun sequencing data. A 2023 
Nature article detailed how researchers integrated extensive new 
microbial genome and metagenomic data into the MetaPhlAn 
database, defining 26,970 Species-Level Genome Bins (SGBs). This 
expansion allows MetaPhlAn 4 to analyze metagenomic data more 
accurately, particularly in identifying uncharacterized species and 
improving the explanatory power of microbial community 

FIGURE 4

(A) Search for keywords “artificial intelligence” and “medical imaging” to rank the top major concepts in terms of article volume. (B) The number of 
articles and publications retrieved using “artificial intelligence” and “medical imaging” as keywords from 2014 to 2023.
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composition analysis (Blanco-Miguez et  al., 2023). Antibiotic 
resistance is a pressing global health threat. Rapid whole-genome 
sequencing offers opportunities to predict antibiotic resistance from 
genomic data. In 2024, the Helmholtz Center for Infection Research 
in Braunschweig, Germany, evaluated four advanced machine 
learning methods (Kofer, PhenotypeSeeker, Seq2Geno2Pheno, and 
Aytan Aktig), a baseline ML method, and ResFinder. The results 
showed significant performance differences among these technologies 
and datasets, with ML methods excelling in closely related strains and 
ResFinder performing better with more divergent genomes. 
ResFinder, combining AI technology, can detect and classify antibiotic 
resistance genes from NGS data, providing crucial data for public 
health monitoring (Hu et al., 2024).

To address data diversity, break down information silos, meet the 
demands of big data analysis, enhance research efficiency, support 
interdisciplinary research, and leverage modern information 
technology, integrating databases and knowledge bases has become 
essential. AI algorithms, combined with extensive databases like 
NCBI1 and EMBL-EBI2, and knowledge bases, can significantly 
improve the accuracy of pathogen identification and classification. For 
instance, Kraken2 is a highly efficient pathogen classification tool that 
uses AI technology and a comprehensive reference database to enable 
rapid analysis of NGS data.

Application of NLP in identification of 
pathogenic microorganisms

What is Natural Language Processing (NLP)? NLP is a machine 
learning technology that enables computers to interpret, process, and 
understand human language. It serves as a crucial bridge for 
communication between humans and machines.

Medical literature is an essential resource for both medical and 
clinical research. The vast variety of pathogenic microorganisms and 
parasites associated with infectious diseases, however, poses significant 
challenges for doctors and researchers when it comes to consulting 
and organizing this massive volume of literature. The application of 
NLP technology facilitates the extraction of valuable insights from 
medical literature and enhances the accuracy and convenience of 
laboratory data analysis. NLP technology can process microbial data 
through structured data techniques, such as standardizing EMR 
(Electronic Medical Records) and laboratory data, then storing this 
information in databases. Additionally, deep learning algorithms can 
denoise, segment, and extract features from imaging data (Ananiadou 
et  al., 2010; Chen et  al., 2015; Wang et  al., 2018; Lee et  al., 2020; 
Rajkomar et al., 2019). An article published in Scientific Reports in 
2024 introduced a MarkerGeneBERT system, an NLP system 
developed by CapitalBio Technology, which automatically extracts 
information on species, tissues, cell types, and cell marker genes from 
single-cell sequencing literature. In a study, the system extracted 8,873 
human and 9,064 mouse cell markers from 3,987 studies, 
demonstrating 76% completeness and 75% accuracy, surpassing the 
CellMarker2.0 system. In addition, MarkerGeneBERT has discovered 

1 https://www.ncbi.nlm.nih.gov/

2 https://www.ebi.ac.uk/

89 new cell types and 183 new marker genes. In terms of gene 
recognition, the system achieved an F1 score of 87%, with a cell name 
recognition accuracy of 92%. More than 20,000 genes and 4,000 cell 
types were identified from literature, with accuracies of 90.8 and 
92.7%, respectively. Additionally, 1764 new cell types were added, all 
of which were not previously recorded in the database (Cheng 
et al., 2024).

In 2022, David Burstein’s team published an article in Nature 
Communications on using NLP to interpret microbial gene function. 
They developed a deep learning model that utilized gene embeddings, 
calculated based on the co-occurrence rate of gene families, as input 
for a classifier to predict gene function. The word2vec algorithm was 
employed to calculate the gene embedding space, providing a simple, 
fast, and direct method. Through scarcity analysis, the study 
highlighted functional categories with high discovery potential and 
uncovered hypothetical bacterial membrane-binding mechanisms and 
microbial defense systems in the human microbiome. Additionally, 
NLP models can be fine-tuned to explore specific systems or functions, 
such as training classifiers for particular genes or creating new 
embeddings using relevant corpora (such as virus genomes, specific 
microbial communities). This approach is applicable not only for 
inferring functions of genes without sequence similarity to 
characteristic proteins but also for exploring diverse functions of 
homologous genes. This greatly enhances the understanding of 
microbial gene functions and aids in interpreting unknown microbial 
gene functions and evolution (Miller et al., 2022). In the same year, 
another article in Nature Communications introduced a universal 
“gene semantic” model using NLP. This model employed convolutional 
neural networks (CNN) to classify peptide sequences and identify 
potential antimicrobial peptides (AMPs). The deep learning model 
demonstrated significantly higher accuracy and recall in identifying 
AMPs compared to traditional methods. A new set of AMPs sequences 
was identified from the human gut microbiome, showing strong 
antibacterial activity in vitro and validating the model’s predictions 
(Ma et al., 2022).

Representative case

Antibiotics have been used to treat life-threatening infections for 
nearly a century, but with the increase of drug-resistant bacteria, 
traditional therapies are no longer effective against these infections. 
The crisis of antibiotic resistance has become an urgent global health 
issue that requires the discovery of a new generation of nucleic acid 
and peptide based antibiotics. However, traditional methods for 
developing antimicrobial peptides (AMPs) are slow and costly.

In 2023, Nat Commun published an article exploring methods to 
accelerate the development of AMPs by combining cell-free protein 
synthesis (CFPS) and deep learning techniques. Researchers use 
generative deep learning models to learn from a large number of 
unlabeled natural protein sequences and propose new AMPs 
sequences. Combined with the CFPS system, this in vitro transcription 
and translation system uses DNA templates for protein synthesis, 
enabling rapid and small-scale production and screening of hundreds 
of peptides, overcoming the cytotoxicity issues in traditional cell 
expression systems. Within 24 h, researchers designed, produced, and 
screened 500 candidate AMPs, ultimately identifying 30 functional 
AMPs, of which 6 exhibited high antibacterial activity against 
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multidrug-resistant pathogens and low cytotoxicity to human cells. 
This study demonstrates the potential of deep learning and CFPS 
technology in accelerating the development of AMPs, providing an 
efficient and economical new approach to combat microbial resistance 
(Pandi et al., 2023).

In 2024, Fudan University and a team of Virtue scientists 
combined AI and biomedical research to predict nearly 1 million new 
antimicrobial peptides from the global microbiome. They developed 
a new machine learning algorithm that effectively reduces the false 
positive rate in AMP recognition. They predicted nearly 1 million 
novel non redundant antimicrobial peptides from 63,410 
environmental and host related metagenomes worldwide, as well as 
87,920 high-quality bacterial and archaeal genomes. They also created 
the AMP comprehensive database AMPSphere, which was published 
in the main issue of Cell (Santos-Junior et al., 2024).

In May 2023, Professor James Collins and his team published a 
paper in Nature Chemical Biology, using AI algorithms to discover a 
novel antibiotic abaucin that can specifically kill the drug-resistant 
bacterium Acinetobacter baumannii. This study is the first to use AI 
and interpretable deep learning to discover a groundbreaking new 
class of antibiotics that are effective against multidrug-resistant 
pathogens, demonstrating the enormous potential of AI in drug 
discovery and combating antibiotic resistance (Liu et al., 2023).

In a study published in the journal Antibiotics, researchers used a 
decision tree based machine learning algorithm to predict antibiotic 
resistance. This study trained 10 machine learning classifiers and 
generated predictive models for meropenem, ciprofloxacin, and 
cefotaxime drugs. Research has found that certain models exhibit 
higher F1 scores, accuracy, precision, and specificity among all 
machine learning models used. For example, RandomForestClassifier 
showed moderate F1 score (0.6), accuracy (0.61), and specificity 
(0.625) for ciprofloxacin. For cefotaxime, RidgeClassifier performed 
well and displayed F1 score (0.652), accuracy (0.654), and specificity 
(0.652) values. For meropenem, KNeighborsClassifier showed 
moderate F1 scores (0.629), accuracy (0.629), and specificity (0.629) 
(Yasir et  al., 2022). In 2022, a collaboration between the Federal 
Institute of Technology Zurich, Basel University Hospital, and Basel 
University used mass spectrometry combined with AI algorithms to 
identify multidrug-resistant pathogens. Researchers collected over 
300,000 clinical strains from four diagnostic laboratories in 
Switzerland between 2016 and 2018, using Bruker’s MALDI Biotyper 
microbial mass spectrometry system. The mass spectrometry data 
were associated with drug resistance information to create the 
DRIAMS dataset, which includes data for 803 bacterial strains, over 
300,000 clinical strains, and 768,300 antibiotic resistance entries for 
more than 70 antibiotics. Using this dataset, they trained three 
machine learning algorithms—logistic regression, gradient-boosted 
decision trees (LightGBM), and deep neural networks (MLP)—to 
establish a classification model for drug-resistant bacteria. The 
prediction model was validated with Staphylococcus aureus, 
Escherichia coli, and Klebsiella pneumoniae, showing AUROC values 
of 0.80, 0.74, and 0.74, respectively, indicating accurate predictions of 
antibiotic resistance. This study highlights the significant impact of AI 
in the image analysis of pathogenic microorganisms. Automated and 
intelligent image analysis technologies enable medical institutions to 
diagnose infectious diseases more quickly and accurately, enhancing 
overall public health prevention and control capabilities (Weis et al., 
2022; Tahir et al., 2018).

Advantages and challenges

The main advantages of AI in diagnosing pathogenic 
microorganisms are:

 (1) Rapid Processing and Analysis: AI can quickly process large 
volumes of microbial data, including genomic and 
metabolomic information, significantly reducing the time 
needed for differential diagnosis. AI programs can complete 
complex data analysis in minutes, saving substantial time 
compared to traditional methods (Erlich and Narayanan, 2014; 
He et al., 2010; Topol, 2019).

 (2) High Accuracy: AI models, through training, achieve high-
precision identification and classification, especially with 
complex microbial communities. Using machine learning and 
deep learning algorithms, AI can recognize specific microbial 
features and provide accurate diagnostic results (Knights et al., 
2011; Libbrecht and Noble, 2015; Esteva et al., 2017).

 (3) Automation and Scalability: AI systems automate the microbial 
identification and diagnosis process, reducing manual 
operations and improving laboratory efficiency. These models 
continuously update and optimize with new data, adapting to 
evolving pathogenic microorganisms (Mamoshina et al., 2016).

 (4) Data Integration and Knowledge Discovery: AI integrates 
information from various sources—genomic, metabolite, and 
clinical data—to offer comprehensive diagnostic insights. 
Through big data analysis, AI uncovers new characteristics and 
resistance mechanisms in pathogens, contributing to public 
health and disease prevention (Marx, 2013; Libbrecht and 
Noble, 2015; Topol, 2019).

Currently, AI integration in global healthcare is driving a 
technological revolution. However, AI faces several major challenges:

 (1) Data Issues: Despite accumulating a large amount of medical 
data, high-value data is still scarce and scattered. Lack of unified 
data standards, widespread data silos, and enhanced 
requirements for personal medical information security (Topol, 
2019; Raghupathi and Raghupathi, 2014). The other main 
challenges faced by AI in processing genomic data include 
incomplete and noisy data, which may lead to inaccurate analysis 
results. To overcome these issues, researchers have proposed 
various strategies, such as using interpolation techniques to fill 
missing values, using hybrid models to enhance robustness to 
noise, improving model generalization ability through data 
augmentation and transfer learning, and applying multi view 
learning and deep learning techniques to more comprehensively 
understand and predict genomic data. These methods help 
improve the accuracy and reliability of genomic data analysis, 
providing stronger support for researchers and clinical 
applications (Gupta and Gupta, 2019).

 (2) Data Interpretability: To prevent errors or inaccuracies in the 
application of artificial intelligence in healthcare, one can 
improve the data interpretability of AI models through various 
strategies. These include the use of transparent and simple 
algorithms, the application of local and global interpretation 
techniques, the calculation of SHAP values, the conduct of 
internal model analyzes, the assurance of model accountability, 

56

https://doi.org/10.3389/fmicb.2024.1474078
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Gao and Liu 10.3389/fmicb.2024.1474078

Frontiers in Microbiology 08 frontiersin.org

the inference of causality, the establishment of clear model 
boundaries, the implementation of adversarial testing, the 
practice of continuous evaluation, the development of user-
friendly interpretations, and the adoption of multimodal 
interpretation methods. Such methods aid in enhancing user 
trust in AI decision-making processes, ensuring model 
transparency and accountability, and fulfilling regulatory 
requirements (Finlayson et al., 2019; Chu et al., 2023).

 (3) Data Privacy: In order to protect data privacy in artificial 
intelligence applications that enhance pathogen identification, 
various technologies and methods can be adopted, including 
federated learning, group learning, privacy computing 
technology, PHDtools platform, and differential privacy. These 
methods can effectively protect data involving personal privacy 
while improving the accuracy of pathogen identification by 
means of collaborative training models, combining edge 
computing and blockchain, applying homomorphic encryption 
and secure multi-party computing, developing interactive 
online platforms, and introducing data processing noise. These 
developments provide new ideas and solutions for privacy 
protection of medical data (Obermeyer and Emanuel, 2016; 
Price and Cohen, 2019; Ahuja, 2019; Martin and Zimmermann, 
2024; Khalid et al., 2023).

Conclusion

With the advancement of algorithmic computing power, computer 
hardware, and the advent of the big data era, AI technology has 
flourished and penetrated the medical field, transforming traditional 
medical practices. This review discusses the significant role of AI in 
identifying and diagnosing pathogenic microorganisms. Machine 
learning and deep learning algorithms enable faster, more accurate 
pathogen recognition with automation, efficiency, high sensitivity, and 
specificity. AI-assisted imaging technology allows computers to 
analyze vast amounts of medical imaging data, helping doctors make 
quicker and more accurate diagnoses. Natural language processing in 
AI extracts valuable information from scientific literature and 
databases, aiding clinical decision-making and research. Additionally, 
AI algorithms accurately classify pathogens based on genomic data, 

crucial for monitoring pathogen evolution and transmission. Using 
machine learning to optimize antibiotic use in healthcare settings is a 
forward-thinking approach to combating antimicrobial resistance 
now and in the future. In order to further promote the development 
of this field, interdisciplinary collaboration between artificial 
intelligence researchers and microbiologists is particularly important. 
This will help combine the professional knowledge of microbiology 
with the powerful analytical capabilities of artificial intelligence to 
jointly develop more accurate and efficient pathogen 
identification tools.
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Introduction: Fast, accurate, and automatic analysis of histopathological images

using digital image processing and deep learning technology is a necessary task.

Conventional histopathological image analysis algorithms require the manual

design of features, while deep learning methods can achieve fast prediction and

accurate analysis, but rely on the drive of a large amount of labeled data.

Methods: In this work, we introduceWSSS-CRAM aweakly-supervised semantic

segmentation that can obtain detailed pixel-level labels from image-level

annotated data. Specifically, we use a discriminative activation strategy to

generate category-specific image activation maps via class labels. The category-

specific activationmaps are then post-processed using conditional randomfields

to obtain reliable regions that are directly used as ground-truth labels for the

segmentation branch. Critically, the two steps of the pseudo-label acquisition

and training segmentation model are integrated into an end-to-end model for

joint training in this method.

Results: Through quantitative evaluation and visualization results, we

demonstrate that the framework can predict pixel-level labels from image-

level labels, and also perform well when testing images without image-level

annotations.

Discussion: Future, we consider extending the algorithm to di�erent

pathological datasets and types of tissue images to validate its generalization

capability.

KEYWORDS

histopathological image, precise semantic segmentation, weakly-supervised method,

category-specific image activation maps, deep learning

1 Introduction

Cancer is a leading cause of death worldwide, with increasing incidence and mortality

rates, and high treatment costs that impose a heavy burden on families and society

(Sung et al., 2021; Ferlay et al., 2021). Histopathological slides are the gold standard for

cancer diagnosis, providing not only basic information on tumor grading and subtype

classification but also a wealth of information about the tumor microenvironment (TME).

This not only plays a crucial role in explaining tumor development and metastasis but also

in influencing the treatment outcomes and prognosis of cancer patients. Recent studies

have found that the spatial organization of different tissues and cells is highly correlated

with tumor progression, and TME features can reveal gene expression in biological

pathways (Wang et al., 2020). Therefore, there is an urgent need for detailed segmentation

of different tissues for further clinical research.

Clinically, histopathological slides are visually inspected by pathologists and evaluated

semi-quantitatively, and the diagnostic results are reflected in the pathology report.

Quantitative assessment for research purposes requires manual annotation by pathologists.

Frontiers inMicrobiology 01 frontiersin.org60

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2024.1483052
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2024.1483052&domain=pdf&date_stamp=2024-10-03
mailto:yanyun.jiang@qq.com
https://doi.org/10.3389/fmicb.2024.1483052
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1483052/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Pan et al. 10.3389/fmicb.2024.1483052

However, the reproducibility and consistency of manual

segmentation have been questioned due to inter-observer

annotation differences and inter-observer variability (Wang

et al., 2020). Due to the specific data storage format and large

size of histopathological slides, specific tools need to be used for

viewing and labeling, such as QuPath (Bankhead et al., 2017),

which makes data annotation work difficult. In addition, manual

annotation is very time-consuming and labor-intensive, requiring

several days for detailed segmentation of each histopathological

slide. Therefore, public research on histopathological image

segmentation is usually limited to partial areas of pathological

slides, or uses classification methods to achieve segmentation-like

effects on whole-slice histopathological images (Lu et al., 2021;

Yan et al., 2022; Pan et al., 2023), with very few studies focusing

on tissue segmentation in whole-slide histopathological images

(Cardenas et al., 2019; Amgad et al., 2022; Chan et al., 2019).

Therefore, it is imperative to develop fast and efficient methods

for the rapid, accurate, and consistent delineation of target

tissue areas. Semantic segmentation is a fundamental task in

computer vision, and deep learning-based automatic segmentation

frameworks have shown remarkable performance in medical image

segmentation tasks (Hesamian et al., 2019; Xun et al., 2022),

achieving outstanding results in various competitions. Popular

models for this task include FCN (Long et al., 2015), U-Net

(Ronneberger et al., 2015), V-Net (Milletari et al., 2016), nnU-Net

(Isensee et al., 2021), among others. Furthermore, other hybrid

models have also demonstrated excellent performance in medical

image segmentation (Jin et al., 2021; Leube et al., 2023; He et al.,

2023).

However, there are two major challenges in using deep-

learning-based segmentation algorithms for histopathological

image analysis tasks: (1) the performance of deep learning models

heavily relies on the quality and quantity of annotated data, and

histopathological image data is difficult to annotate, with pixel-level

annotation being even more challenging; (2) tumors from different

regions exhibit specificity, resulting in high costs for the transfer

learning of trained networks.

Although high-quality pixel-level annotation data is scarce,

coarse-grained or image-level annotation data is readily available.

In fact, for the problem of analyzing histopathological images,

there are publicly available datasets that can be downloaded and

used for research, such as TCGA,1 which contains tumor and

normal tissues from over 11,000 patients. The database provides

image-level descriptions of entire tissue pathology slides and

corresponding genomic sequencing results. To reduce the need for

pixel-level annotated images during model training, researchers

have proposed semi-supervised and weakly supervised learning

models, which attempt to improve the model’s performance by

providing unlabeled or image-level annotated data and hoping to

improve the model’s generalization ability.

Drawing inspiration from weakly-supervised deep learning

methods, we propose a weakly-supervised segmentation algorithm

based on Class Region Activation Maps (CRAM) for tissue region

segmentation in histopathological images. The framework utilizes

1 https://www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga

image-level annotations to obtain Class Activation Maps (CAM)

as pseudo-labels for semantic segmentation. The algorithm can

be summarized into two main steps: (1) Obtain the CRAM:

using a deep learning classification model, high-quality pixel-level

pseudo-labels are generated based on image-level labels. (2) Train

a segmentation model: the pixel-level pseudo-labels generated in

step (1) are used as ground truth for model training. However,

salient region activation can exhibit a higher response to a single

class, while typically, multiple classes are present in one region of

a pathological image. Therefore, this paper uses a Discriminative

Activation (DA) layer to generate specific category masks for

foreground and background, which serve as initial segmentation

responses. To further increase the reliability of the pseudo-labels,

this paper introduces a joint training method by merging the

two steps into an end-to-end model. Furthermore, a joint loss

function is adopted to optimize both branches and then improves

the pseudo-labels’ quality. Furthermore, an additional Conditional

Random Field (CRF) operation is performed on the activation

regions, which are modified into more reliable regions as pseudo-

labels.

This approach primarily focuses on whole-slide images

(WSI) of lung adenocarcinoma stained with H&E. The

research dataset is sourced from the WSSS4LUAD2 challenge

dataset, with the goal of achieving pixel-level segmentation for

normal tissue, tumor epithelium, and tumor-associated stroma

within the histopathological sections. Figure 1 presents image

patches extracted from whole-slide pathology images of lung

adenocarcinoma, scanned at a resolution of 0.2517µm/pixel and

40× magnification. Corresponding segmentation labels for the

three prevalent tissue types are also provided. As depicted, these

three tissue types may simultaneously appear within a single

image patch, particularly tumor epithelium and tumor-associated

stroma, since tumor cells often adhere to the stroma. Thus,

tumors and stroma frequently coexist in the same image patch.

Figure 2 displays examples from the training dataset, where each

image patch is annotated with image-level labels indicating the

presence of tumor, stroma, and normal tissue. The training dataset

encompasses a total of 10,091 image patches. A comprehensive

description of the dataset is presented in Section 4.1 of this paper.

Our main contributions are illustrated as follows: (1) Proposing

a WSSS-CRAM that improves the traditional CAM method by

activating corresponding regions for each class in the image,

effectively utilizing the supervisory information of image-level

labels. (2) Integrating the steps of obtaining pseudo-labels and

training the segmentation model into an end-to-end model for

joint training. (3) Performing additional post-processing on the

activation regions, using a CRF operation to modify the activation

regions into more reliable pseudo-label regions.

2 Related work

This paper centers on the main research subject of

semantically segmenting tissue in lung adenocarcinoma.

The pertinent techniques predominantly center on semi-

supervised segmentation methods based on CAM. Therefore,

2 https://wsss4luad.grand-challenge.org/
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FIGURE 1

Histopathological images of lung adenocarcinoma tissue and their segmentation illustration. The blue area in the image represents the tumor region,

the green area represents the stroma region, and the yellow area represents the normal region.

FIGURE 2

Examples from the training set of the WSSS4LUAD Challenge. 1 indicates the presence of the tissue in the image, while 0 indicates the absence of the

tissue in the image. Top row: Tumor region; Second row: Tumor and stroma region; Third row: Stroma region; Fourth row: Normal region.

before delving into the specifics of the methods, we initially

introduce the task of region segmentation in histopathological

images of tissues. Following that, we offer a concise

analysis of pertinent research concerning semi-supervised

segmentation methods.

2.1 Histopathological image segmentation

Since the emergence of whole-slide pathology scanning

techniques, the utility of whole-slide tissue pathology imaging

has been confirmed across various applications within the
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realm of pathology. Digitized tissue pathology images have

facilitated tasks including remote expert consultations, prognostic

analysis, and tumor biomarker assessment (Kumar et al., 2020).

As scanning technologies and computational capacities have

advanced, significant strides have also been made in the domain

of tissue pathology image segmentation. Early approaches entailed

manual feature extraction, employing models such as support

vectormachines and Bayesianmodels for the segmentation of tissue

pathology images. For example, Hiary et al. (2013) employed a

Bayesian model to automatically segment stromal tissue in breast

tissue pathology images, leveraging color and texture attributes.

With the advancement of deep learning techniques, the remarkable

performance exhibited by deep learning in image segmentation has

prompted its application in the segmentation of tissue pathology

images. Among these techniques, FCN and U-Net have emerged

as the most frequently employed foundational architectures. For

instance, Chen et al. (2017a) introduced the utilization of a Deep

Contour-Aware Network (DCAN) for the segmentation of colonic

glands. This model incorporated auxiliary supervision mechanisms

to tackle the challenge of gradient vanishing during training (Chen

et al., 2017a). This approach secured the first rank in the 2015

MICCAI Gland Segmentation Challenge and the 2015 MICCAI

Nuclei Segmentation Challenge. Oskal et al. (2019) employed a

U-Net-based architecture to achieve a positive predictive value of

0.89 ± 0.16 and sensitivity of 0.92 ± 0.1 in epidermal or non-

epidermal pixel classification tasks. In recent years, semi-supervised

methods have also gradually been employed in tissue pathology

image segmentation tasks to address the issue of limited annotated

data (Jin et al., 2022).

Moreover, in recent years, various international competitions

have introduced challenges related to the analysis of tissue

pathology regions. For instance, the Digestive-System Pathological

Detection and Segmentation Challenge (DigestPath 2019) held

within MICCAI 2019 (Da et al., 2022; Li et al., 2019) was

centered around automating the segmentation of benign and

malignant regions within complete tissues. The Multi-organ

Nuclei Segmentation and Classification Challenge (MoNuSAC)

(Verma et al., 2021) in ISBI 2020 encompassed the identification

and segmentation of multiple cell types across four organs.

Additionally, the AGGC 2022 (Automated Gleason Grading

Challenge) within MICCAI 2022 addressed the automatic

segmentation of five tissue types in prostate cancer whole-slide

pathology images.

2.2 Weakly-supervised semantic
segmentation utilizing CAM

Instance segmentation, one of the most challenging problems

in computer vision, has undergone extensive research (He et al.,

2017; Arnab and Torr, 2017; Liu et al., 2018). However, many

of these studies necessitate manual annotation of instance masks

to provide strong supervision, thereby constraining their utility

on datasets with sparsely annotated structures. Semi-supervised

and weakly supervised instance segmentation strategies strive to

transcend this constraint. In scenarios involving solely image-level

categories, synthetic labels extracted from class response maps are

harnessed to train networks for paired semantic segmentation (Ahn

and Kwak, 2018). Employing a classification model to derive CAM

stands as a standardized process for generating pseudomasks in the

realm of Weakly Supervised Semantic Segmentation (WSSS).

2.2.1 Class activation maps
The Vanilla CAM approach initially scales the feature map

using fully connected weights learned for each individual class.

Subsequently, seedmasks are generated through channel averaging,

spatial normalization, and thresholding (Zhou et al., 2016). The

GAIN model applies CAM to the original image for mask

generation, minimizing model prediction scores to capture features

beyond the prior step’s activation map in successive training

rounds. This gradually refines the activated regions, ensuring

complete coverage of the target area (Li et al., 2018). Recently

emerged erase-based approaches also embrace similar principles

(Zhang et al., 2018; Kweon et al., 2021). The distinction lies

in their direct erasure of seed regions in CAM, followed by

inputting the erased image into the model to generate the next

round’s CAM, expected to capture new regions. Moreover, certain

schemes have been proposed to optimize CAM. For instance,

in Qin et al. (2022), Activation Modulation and Recalibration

Scheme (AMR) employs channel/spatial attention mechanisms for

fine-tuning activation area calibration, thereby achieving adaptive

modulation for segmentation-oriented activation responses. The

ReCAM strategy reactivates CAM activation regions using Softmax

Cross-Entropy Loss (SCL), resulting in ReCAM with Binary

Cross-Entropy (BCE) constraints (Chen et al., 2022). Embedded

Discriminative AttentionMechanism (EDAM) is a recent endeavor

that employs CAM-based perturbations to optimize an additional

classifier. It employs an extra DA layer to generate class-specific

masks (Wu et al., 2021).

2.2.2 Generation of pseudo-labels
The seed masks generated from CAM or its variations can

undergo refinement steps to enhance the quality of pseudo-labels,

employing both non-learning-based and learning-based methods.

SEC introduced the principles of Seed, Expand, and Constrain for

refining CAM, which have been widely adopted by subsequent

works (Kolesnikov and Lampert, 2016). Among these, CRF is an

earlier post-processing method that is user-friendly, independent

of features extracted by the trained model, and relies solely on the

original image features. DSRG, inspired by Seeded Region Growing

(SRG), employs CAM as seeds to expand regions of interest (Huang

et al., 2018). This approach integrates the SRG process into the

deep segmentation network, deviating from the previous strategy

of training segmentation models using pseudo-labels generated

through SRG.

Learning-based methods introduce additional network

modules. For example, AffinityNet employs a deep neural network

to predict semantic affinities between adjacent image coordinates,

achieving semantic propagation through random walks (Ahn and

Kwak, 2018). IRNet estimates rough regions of individual instances

and detects boundaries between different object classes. It focuses

on pixel relations on the graph and computes affinities based on

these relations (Ahn et al., 2019). Furthermore, incorporating
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confidence regions from saliency maps into CAM for pseudo-label

refinement has become a common practice in recentmethodologies

(Chen et al., 2022; Wu et al., 2021). Approaches like OOA (Jiang

et al., 2019) and CONTA (Zhang et al., 2020b) integrate CAM

inferences generated through multiple training iterations, directing

attention accumulation toward various parts of objects.

3 Methodology

In this section, the main focus is on introducing the CRAM

algorithm framework. We provide a comprehensive explanation

of the CNN-based pseudo-label acquisition module, the target

semantic segmentation module, and the employed loss functions

in the algorithm.

3.1 Framework

The foundational model for the CAM-based semi-supervised

segmentation algorithm used in this paper is divided into

two distinct steps: pseudo-label acquisition and independent

segmentation model training modules, as depicted in Figure 3.

The pseudo-label acquisition module utilizes a standard image

classification network supervised by image-level labels. By

accentuating response areas of image-level labels through CAM,

it generates pixel-level masks corresponding to each image,

serving as pseudo-labels for the semantic segmentation module.

The semantic segmentation module can be any end-to-end

segmentation network, using the pixel-level pseudo-labels

generated by the pseudo-label acquisition module as actual

labels for training the model. During inference, segmentation

predictions can be achieved solely by utilizing the semantic

segmentation module.

The model presented in this paper is based on the algorithm

outlined in Figure 3 and is divided into two primary modules: the

pseudo-label acquisition module and the semantic segmentation

module. Differing from the majority of previous methodologies

that adopt independent two-step procedures, this paper

amalgamates pseudo-label acquisition and semantic segmentation

into a cohesive end-to-end model for joint training. As illustrated

in Figure 4, following feature extraction by a backbone network,

the image is directed to both the pseudo-label acquisition module

and the semantic segmentation module. The integrated model is

subject to joint training via a full loss function.

The pseudo-label acquisition module: Within this module,

the model incorporates a DA layer to extract category-specific

activation regions. Unlike CAM, which employs a single activation

map for classification, the DA layer generates category-specific

activation maps for each category. These category-specific

activation maps are fused with the original feature layer to derive

category-specific feature maps. The self-supervised layer explores

collaborative information within and across images in a batch.

Ultimately, classification predictions are made based on the

collaborative information corresponding to each image. Given

that all images in the training set are associated with image-level

labels, a binary cross-entropy (BCE) loss function is employed

independently for each category.

The semantic segmentation module: This module initially

refines the feature maps extracted from the backbone network

through a series of convolutional layers. Subsequently, an

independent CRF is employed to enhance the category-specific

activation maps obtained from the pseudo-label acquisition

module. This refinement process helps eliminate mislabeled

pixels, resulting in comparatively reliable pseudo-labels. The target

semantic segmentation module applies cross-entropy loss and

energy loss to the confident and non-confident regions of the

pseudo-labels, respectively.

Joint loss function: The loss function is used to supervise

the optimization of parameters within the model. In the

presented algorithm, the classification and segmentation models

are integrated into an end-to-end framework for joint training. As

a result, the overall loss function comprises a binary cross-entropy

loss for classification, as well as cross-entropy loss and energy loss

for segmentation.

3.2 Pseudo-label acquisition based on
CNN classification model

3.2.1 Discriminative activation layer
For a given batch of data X =

{(
xn, ln

)}
N
, where N represents

the number of mini-batches, xn represents the n-th image in this

batch, and ln represents the corresponding class label. It should

be noted that ln is represented as {0, 1}K , indicating image-level

labels corresponding to K categories. Backbone network extracts

the feature map Fn ∈ R
C×H×W corresponding to image ln, where

C represents the number of channels in the feature map, and H

andW represent the height and width of the feature map. Connect

the DA layer to generate activation maps Mn ∈ R
(K+1)×H×W

corresponding to K target categories. To explicitly represent the

background region, in addition to generating activation maps

for each category, the DA layer also generates activation maps

corresponding to the background.

Applying L2-norm regularization to the activation map Mn

can generate pixel-level probabilities for the corresponding class

or background:

M̂n(i, j) = L2− norm
(∣∣Mn(i, j)

∣∣) . (1)

After the L2-norm regularization operation, M̂n(i, j) represents

the pixel-level class probability distribution at position (i, j), and

M̂k
n(i, j) represents the probability corresponding to class k at

position (i, j). Through the above operations, activation maps

corresponding to each category in the image are obtained.

3.2.2 Self-supervised layer
Combining the feature map Fn ∈ R

C×H×W corresponding to

image ln with the activation map M̂k
n(i, j) corresponding to K target

categories, generates feature maps for each class:

Fkn = Fn · M̂
k
n, (2)

where Fkn is the feature map corresponding to category k in the

image ln.
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FIGURE 3

Basic conceptual diagram of CAM-based semi-supervised segmentation algorithm, which contains two main modules: (A) The pseudo-label

acquisition module; (B) The semantic segmentation module.

For a batch of B images, the corresponding feature maps are

represented as Fk =
[
Fk1 , F

k
2 , . . . F

k
B

]
∈ R

B×C×H×W . After a

1×1 convolution, the feature maps are transformed into activation

features F̂k ∈ R
1×(B×C×H)×d corresponding to each category. The

combination of activationmaps with the initial feature maps is used

to explore collaborative information specific to category activation

maps. The self-supervised layer simultaneously considers feature

attention within and between images in a batch, making the

exploration of collaborative information more effective. The model

generates category-specific feature maps for each category, using

global average pooling and employing a specific classifier for label

prediction of the given category. Since in histopathological images,

one image often corresponds to multiple image categories, to make

the activation regions corresponding to categories more effective,

this paper transforms the multi-class problem into multiple binary

classification problems.

The purpose of the self-supervised layer is to highlight similar

regions in the activation maps corresponding to images in a batch

through self-attention mechanisms, to obtain better activation

maps for each category.

3.2.3 Classification loss function
The category-specific features output by the self-supervised

layer are mapped to categories through a fully connected layer, with

image-level labels corresponding to the image as supervision. The

classification loss function is represented as:

Lclass =
1

B× K

B∑

n=1

K∑

k=1

LBCE ( Linear
(
GAP

(
Ak
n

))
, lkn

)
, (3)

where

[
Ak
1,A

k
2, . . . ,A

k
B

]
= SelfAttention

(
F̂

k
)
, (4)

where Ak
n is the activation map corresponding to input image xn

after the self-supervised layer for the k-th category, lkn ∈ [0, 1]

represents the true label of input image xn corresponding to the

k-th category. Since the input to the self-supervised layer is a

combination of category-specific activationmaps and initial feature

maps, the loss function of the self-supervised layer will, through
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FIGURE 4

Weakly-supervised segmentation algorithm based on category activation regions.

backpropagation, affect the distinguishing activation layers of all

foreground categories, thereby influencing the parameter training

of the backbone network.

3.3 Target semantic segmentation model

3.3.1 Reliable semantic segmentation labels
From the pseudo-label acquisition module, activation

maps corresponding to each category can be obtained, which

highlight the regions where each category plays a role in

classification. In this activation map, select the high-confidence

foreground and background regions as reliable regions, and the

remaining regions as unreliable regions. High-confidence maps are

represented as:

pr(i, j) =

{
M̂k(i, j), if M̂k(i, j) < α or M̂k(i, j) > β

255, else
(5)

where α and β represent pre-established thresholds. When the

threshold falls below α, it signifies the region as a dependable

background area; conversely, when the threshold surpasses β , the

region is retained as a foreground area.

We employ CRF for post-processing the activation maps,

removing incorrectly labeled pixels, and enhancing the probability

maps associated with each category:

pcrf = CRF(x, M̂). (6)

Taking into account the constraints imposed by CRF on

the activation maps, the ultimate pixel-level pseudo-labels are

as follows:

ppseudo(i, j) =

{
pr(i, j), if pr(i, j) = pcrf (i, j)

255, else.
(7)

If pr(i, j) = pcrf (i, j), signifying alignment between the high-

confidence map and the CRF activation map, we retain this region

as the confident pseudo-label area, with the rest designated as

non-confident pseudo-label areas.

3.3.2 Segmentation loss function
The pseudo-labels generated by the model serve as the ground

truth labels for training the semantic segmentation module,

encompassing both areas with high-confidence pseudo-labels and

areas with low-confidence pseudo-labels.
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In the case of confident pseudo-label regions, the model utilizes

the standard cross-entropy loss function, denoted as:

Lce = −
∑

(i,j)∈ϕ

B(i, j) log
(
Pknet(i, j)

)
, (8)

where B(i, j) is a binary label indicating whether the label belongs

to class k. ϕ represents the confident pseudo-label region, i.e.,

when ppseudo(i, j) 6= 255. Pknet(i, j) represents the prediction of the

segmentation model.

The model utilizes the dense energy loss function (Zhang et al.,

2020a), applied to both confident and non-confident regions, and it

is represented as:

Lenergy =

H,W∑

i=0,j=0

H,W∑

a=0,b=0
(i,j)6=(a,b)

S(i, j)E((i, j), (a, b)), (9)

where S(i, j) represents a soft filter. For regions with confident

pseudo-labels, soft filter weights are determined based on the

model’s predicted class probabilities. In contrast, for regions with

non-confident pseudo-labels, a dense energy loss is employed.

Cross-entropy loss functions are designed for hard labels, while

the pseudo-labels used in this study are not guaranteed to

be 100% accurate. Therefore, applying the cross-entropy loss

directly to confident regions could introduce errors during model

training. The dense energy loss function, using a soft labeling

strategy for confident regions, allows for further refinement of

the confident regions generated in the preceding step. S(i, j) is

defined as:

S(i, j) =

{
1−maxk∈K

(
Pknet(i, j)

)
, (i, j) ∈ ϕ

1, else
(10)

Here, E((i, j), (a, b)) represents the energy formula that

characterizes the relationship between pixel (i, j) and pixel (a, b):

E((i, j), (a, b)) =
∑

k1 ,k2∈K
k1 6=k2

G((i, j), (a, b))Pk1net(i, j)P
k2
net(a, b), (11)

where G((i, j), (a, b)) is a Gaussian filter.

The total loss function associated with the target semantic

segmentation network comprises both cross-entropy loss and

energy loss:

Lseg = Lce + Lenergy. (12)

3.4 Joint loss function

The approach presented in this paper integrates

classification and segmentation models into an end-to-

end framework. The overall loss function comprises the

Lclass loss function from the pseudo-label acquisition

module and the Lseg loss function from the semantic

segmentation network. The combined loss function is

shown below:

LTotal = Lclass + λLseg = Lclass + λ(Lce + Lenergy), (13)

where λ is a weighting coefficient that controls the balance

between the pseudo-label acquisition module and the target

segmentation module.

3.5 Independent semantic segmentation
model

After weakly-supervised training, the combination of

the backbone network and the target semantic segmentation

network can serve as an independent inference module for

generating semantic segmentation results during the testing

phase. Alternatively, the model proposed in this paper can

be used as a whole for pseudo-label acquisition. During the

training phase, the segmentation model outputs optimized region

segmentation results, which are used as artificial pseudo-labels for

an independent semantic segmentation model.

Define an independent semantic segmentation module: This

semantic segmentation module is designed as a standalone

component, utilizing pseudo-labels obtained from the previous

step’s image classification model as training labels for the training

model. During the final inference phase, running inference is as

simple as using this trained model. The standalone segmentation

model can employ any end-to-end semantic segmentation model

as its backbone network, such as FCN (Long et al., 2015), U-Net

(Ronneberger et al., 2015), DeepLab v3 (Chen et al., 2017b), and

so on. In this paper, we draw inspiration from previous research in

weakly-supervised segmentation, where the semantic segmentation

module combines the ResNet model and the DeepLab v3 model.

This network model consists of two parts: an Encoder based on the

ResNet model and a Decoder based on the DeepLab v3.

4 Algorithm validation and evaluation

4.1 Datasets

The dataset used in this paper is publicly available data

from the WSSS4LUAD challenge (Han et al., 2022a,b), which

includes 67 H&E (Hematoxylin and eosin)-stained WSI

(Whole Slide Images) from the Guangdong Provincial People’s

Hospital (GDPH) and 20 WSI images from the TCGA public

dataset. These images have annotations for three common and

meaningful tissue types: tumor epithelial tissue, stromal tissue, and

normal tissue.

The training dataset in this dataset consists of 63 WSI (49

from GDPH and 14 from TCGA), from which 10,091 image

patches were cropped and selected. The image size ranges from

150×150 to 300×300. Each image in the training set has image-

level annotations in the form of a three-digit label [tumor,

stroma, normal]. It includes 6,579 images of tumor tissue, 7,076

images of stromal tissue, and 1,832 images of normal tissue.
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The most common label is [1,1,0], indicating images containing

both tumor and stroma, with a total of 5,393 images. This

is followed by 1,832 images with the [0,0,1] label (indicating

normal tissue), 1,680 images with the [0,1,0] label (indicating

stromal tissue), and 1,181 images with the [1,0,0] label (indicating

tumor tissue).

The validation set comprises 12 WSI (9 from GDPH and 3

from TCGA), from which 40 image patches are cropped. These

include 9 large image patches ranging in size from 1,500×1,500

to 5,000×5,000 and 31 small image patches ranging in size from

200×200 to 500×500. The validation dataset has pixel-level labels

and is used to validate the trained models.

The test set also consists of 12 WSI (9 from GDPH and 3 from

TCGA), from which 80 image patches are cropped. These include

14 large image patches ranging in size from 1,500 × 1,500 to 5,000

× 5,000 and 66 small image patches ranging in size from 200× 200

to 500 × 500. The test dataset has pixel-level labels and is used for

the final model testing.

4.2 Experimental settings

This experiment was conducted in a PyTorch environment,

utilizing NVIDIA CUDA (version 11.4) and cuDNN library

(version 8.2.2). All experiments were performed on a computer

running Ubuntu 20.04 LTS, using 4 NVIDIA Tesla A100 GPUs

with 40GB of VRAM each. The model’s backbone network was

pre-trained on the ImageNet dataset and further fine-tuned on the

target dataset used in this paper.

The model used an SGD optimizer with a batch size of 8,

an initial learning rate of 0.001, weight decay set to 0.0002, and

momentum set to 0.9. Two hyperparameters, α and β , were set to

0.3 and 0.9, respectively.

During both training and testing, a CRF operation was used

to generate refined labels, with parameters following the default

values as described in Huang et al. (2018). During training, the

loss functions computed by the classification and segmentation

modules were updated through backpropagation to update the

backbone network. During testing, only the segmentation module

was used to generate region segmentation corresponding to

the images.

Considering the irregular sizes of image patches in this dataset,

they were standardized through resizing before being fed into

the model. During the training phase, the image dimensions

were initially randomly increased to two to three times their

original size. Subsequently, these enlarged images were uniformly

cropped to a size of 513 × 513 pixels, serving as the input

images for the model. In the testing phase, the image dimensions

were enlarged to 2.5 times their original size, and the model

made predictions and generated segmentation results based on the

enlarged images. Due to limitations in GPU VRAM, particularly

with extremely large pixel images, they were proactively cropped

to a fixed size (ranging from 400 × 400 to 500 × 500 in this

paper). The model’s predicted results were then combined for

visualization purposes.

4.3 Performance evaluation metrics

In the experiments, model evaluation is performed using

the mean Intersection over Union (mIoU), which is expressed

as follows:

mIoU =
1

k+ 1

k∑

k=0

TP

FN + FP + TP
(14)

where TP stands for true positives (correctly predicted positive

instances), while FN and FP represent false negatives (positive

instances incorrectly predicted as negative) and false positives

(negative instances incorrectly predicted as positive), respectively.

The variable k denotes the number of classes. In our experiments,

the test dataset includes a background label. Therefore, when

computing the final mIoU, the background region is excluded and

not included in the calculation area.

4.4 Model analysis

4.4.1 Comparison with state-of-the-art methods
Table 1 presents a comparison between our proposed method

with the existing fully supervised baseline segmentation methods

TABLE 1 Comparison with the state-of-the-art methods.

Model mIoU Tumor Stroma Normal

Supervised U-Net (Ronneberger et al., 2015) 0.5362 0.4158 0.7075 0.4854

ResNet101 (He et al., 2016) 0.5992 0.5312 0.7323 0.5342

DeepLab v3 (Chen et al., 2017b) 0.6222 0.5859 0.7318 0.5489

Weakly-supervised ChunhuiLin 0.8413 0.8389 0.8919 0.7931

baseline0412 0.8222 0.8402 0.8343 0.7921

Vison307 0.8058 0.8165 0.8554 0.7456

WSSS-CRAM1 0.7265 0.7074 0.8125 0.6597

WSSS-CRAM2 0.7618 0.7493 0.8237 0.7125

WSSS-CRAM3 0.8401 0.8293 0.8923 0.7987

Bold values indicates best result obtained for predictions.
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and the top three performers in the WSSS challenge, including

ChunhuiLin, baseline0412, and Vison307, with the best result

highlighted in bold. The fully supervised approach was trained

using training data containing only one tissue category, with

[1,0,0], [0,0,1], and [0,1,0] corresponding to 1,181, 1,832, and

1,680 images, respectively. Among the comparison weakly-

supervised methods, including ChunhuiLin, baseline0412, and

Vison307 are semi-supervised methods. Training details can be

found in the paper (Han et al., 2022a). WSSS-CRAM1 entails

training a model exclusively using image-level labels from the

training set, without any reference to pixel-level labels from

the validation set throughout the training process. Building

upon jointly optimized pseudo-labels, WSSS-CRAM2 establishes

a separate segmentation module to learn pixel-level pseudo-

labels, the model is shown in Figure 3. In contrast, WSSS-

CRAM3 incorporates pixel-level labels from the validation set as

a supervisory condition when training a separate segmentation

model with pseudo-labels. Notably, our proposed approach,

when training a dedicated semantic segmentation module and

incorporating pixel-level labels from the validation set into the

model training, achieves results differing by a mere 0.0012

from the competition’s top performance, indicating a remarkable

quantitative proximity. This outcome may be attributed to the

omission of weight consideration for pseudo-labels compared

to the known labels from the validation set during the model

training process.

4.4.2 Ablation experiment
Table 2 presents the results of ablation experiments aimed

at demonstrating the effectiveness of our method’s design. To

maintain control over the variables in these experiments, we

focused solely on the acquisition of pseudo-labels. In this process,

pseudo-labels obtained from the training dataset were combined

with pixel-level annotated labels from the validation data to train

TABLE 2 Ablation experiments for each module in the network.

Joint
optimization

CAM DA CRF mIoU

X 0.6925

X X 0.7680

X X X 0.7912

X X 0.7684

X X X 0.8059

X X X X 0.8401

Bold values indicates best result obtained for predictions.

FIGURE 5

Visualization of segmentation results: the first column features the original images, the second column showcases the model’s predictions, and the

third column reveals the ground truth labels. Notably, red boxes highlight representative regions, which are further magnified in the second row.
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FIGURE 6

Visualization of segmentation results: the first row is normal regions, the second row is stroma regions, the third row includes stroma and tumor, and

the fourth row features a large image containing normal, stroma, and tumor areas.
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FIGURE 7

Category-specific activation maps corresponding to the tumor, stroma, and normal regions.

separate semantic segmentation modules. It’s worth noting that

CAM, which serves as the foundational strategy for obtaining

pixel-level labels from image-level labels, was included in all

ablation models. As observed in the table, the joint optimization

of segmentation and classification modules yields a significant

improvement in segmentation performance. Furthermore, the

strategy of DA layer and CRF also contributes to enhancing

segmentation performance.

4.5 Visualized results

4.5.1 Visual presentation of results
Figure 5 presents the segmentation results obtained in the test

dataset. The first column contains image blocks extracted from

the overall histopathological image, the second column showcases

the model’s predictions, and the third column displays the ground

truth labels. In the second row, specific details from the first-

row images have been selectively magnified for closer inspection.

The result images clearly demonstrate a close alignment between

the model’s predictions and the ground truth labels. The trained

model exhibits the capability to accurately segment regions within

histopathological images of lung adenocarcinoma. In the second

row of enlarged images, regions, where the model’s predictions

deviate from the ground truth labels, are enclosed within blue

and orange rectangles. Upon a closer examination of the original

images, it becomes apparent that the region inside the blue

rectangle corresponds to a blank area in the original image, whereas

the region within the orange rectangle should indeed be labeled as

stroma, consistent with the ground truth. While this result may

differ from the manually annotated ground truth, it may offer a
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FIGURE 8

Comparison of pseudo-labels before and after CRF operations.

more precise representation of the intricate details in comparison to

the human-labeled labels. This comparative analysis indicates that

the model not only learns pixel-level annotations from image-level

labels but also excels in accurately predicting tissue boundaries and

intricate details.

Figure 6 showcases various segmentation examples from the

test dataset. In the first column, you’ll find the original images,

while the second column reveals the model’s predictions, and

the third column displays the ground truth labels. The result

images clearly depict that the first and second rows represent

image blocks from normal and stroma regions, respectively. In

these cases, the model excels in delivering remarkably accurate

predictions that closely align with the ground truth labels.

Moving to the third row, we encounter images featuring the

coexistence of tumors and stroma. Upon close examination, it

becomes apparent that the model also produces relatively precise
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predictions, with minor boundary prediction errors occurring

solely at the edges of the tumor and stroma regions. Finally,

in the last row of Figure 6, this is a typical example of a large

image block, encompassing tumor, stroma, and normal areas.

The model’s prediction results affirm that the proposed method

consistently yields precise segmentation results, even for intricate

histopathological images.

4.5.2 Category-specific activation maps from
discriminative activation layer

Figure 7 presents the activation maps generated by the model

after differentiating the activation maps from the activation

layer output. The data showcased here is sourced from the

training dataset and, therefore, lacks corresponding pixel-level

annotations. The four examples shown correspond to image-level

labels [1,0,1], [1,1,0], [0,0,1], and [0,1,0], representing tumor and

normal, tumor and stroma, normal, and stroma, respectively.

In the first column, you can see the original images, while the

second column displays the activation maps for tumor regions,

the third column displays the activation maps for stroma regions,

and the fourth column reveals the activation maps for normal

regions. Higher brightness in the activation maps indicates a

higher probability of the corresponding region belonging to

that class. From these images, it’s evident that distinguishing

the activation layer enables the generation of activation regions

corresponding to each class. Remarkably, even without the explicit

use of pixel-level annotations during training to inform the model

about specific regions as the tumor, stroma, or normal, weakly

supervised learning using only image-level labels demonstrates

the ability to produce pixel-level activations, showcasing a crucial

feature of CAM.

4.5.3 CRF refinement of pseudo-labels
Figure 8 demonstrates the refinement of pseudo-labels through

CRF operations. The first column showcases the original images,

the second column displays the pseudo-labels before CRF

refinement, and the third column reveals the pseudo-labels

after CRF refinement. Let’s compare the state of the labels

before and after CRF operations based on these results. From

the examples in the first row, it’s evident that the pseudo-

labels before CRF refinement exhibit distinct boundaries between

tumor and normal regions but overlook individual tumor cells

present in the finer details. CRF operations, guided by the

original image, rectify these boundaries, resulting in a more

precise demarcation between tumor and normal regions. In the

second row of examples, it becomes apparent that CRF not

only refines details but also corrects more extensive areas of

segmentation error. The third and fourth rows represent normal

and stromal tissues, and a comparison with Figures 4, 5 reveals

that activation maps can emphasize specific classes without clearly

defined activation boundaries for the image’s boundary details.

Consequently, in the pseudo-labels of the second column, only the

categories are nearly discernible. After undergoing CRF operations,

the distinctions between foreground and background become

much clearer.

5 Conclusion

This paper proposes a novel weakly-supervised segmentation

method based on class region activation mapping, effectively

achieving the segmentation of tissue regions in lung

adenocarcinoma pathological images. The paper incorporates

distinguishing activation layers and self-supervised layers into the

classification network to predict activation maps corresponding to

each category in the image and explore inter-image collaborative

information. Subsequently, pseudo-labels generated from the

activation maps are used as training labels for the target semantic

segmentation module. The fusion of the pseudo-label prediction

module and the target segmentation module allows for better

utilization of pixel-level segmentation of target regions with

image-level labels. Experimental results on the test set of a publicly

available lung adenocarcinoma dataset validate the performance of

the weakly-supervised segmentation algorithm based on category-

specific activation. Compared to traditional weakly-supervised

semantic segmentation methods based on category activation

maps, this algorithm exhibits a significant improvement in

segmentation accuracy in the literature.

The algorithm has only been validated on a lung

adenocarcinoma dataset. Although the algorithm performs

well on the lung adenocarcinoma dataset, its generalization ability

to other diseases or types of tissue images has not been verified.

Therefore, the method’s performance on other image datasets may

not be as expected. Future, we consider extending the algorithm to

different pathological datasets and types of tissue images to validate

its generalization capability. Consider integrating pathological

images with other types of medical imaging (e.g., CT, MRI) for

multimodal analysis to enhance diagnostic accuracy and the

applicability of the model.
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pathogenic microorganism 
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of infectious skin diseases
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The skin, the largest organ of the human body, covers the body surface and 
serves as a crucial barrier for maintaining internal environmental stability. Various 
microorganisms such as bacteria, fungi, and viruses reside on the skin surface, 
and densely arranged keratinocytes exhibit inhibitory effects on pathogenic 
microorganisms. The skin is an essential barrier against pathogenic microbial 
infections, many of which manifest as skin lesions. Therefore, the rapid diagnosis of 
related skin lesions is of utmost importance for early treatment and intervention of 
infectious diseases. With the continuous rapid development of artificial intelligence, 
significant progress has been made in healthcare, transforming healthcare services, 
disease diagnosis, and management, including a significant impact in the field of 
dermatology. In this review, we provide a detailed overview of the application of 
artificial intelligence in skin and sexually transmitted diseases caused by pathogenic 
microorganisms, including auxiliary diagnosis, treatment decisions, and analysis 
and prediction of epidemiological characteristics.

KEYWORDS

artificial intelligence, pathogenic microorganisms, infectious skin diseases, auxiliary 
diagnosis, treatment decisions

1 Introduction

Infectious skin diseases caused by pathogenic microorganisms are diverse, and many 
clinical manifestations appear similar. Diagnosis often requires assistance from 
dermatopathology, and is a complex process that necessitates experienced skin pathology 
specialists. These intricate procedures make the diagnosis of many skin diseases challenging, 
particularly infectious skin diseases, where prolonged diagnostic processes can lead to 
treatment delays. Furthermore, there are a relatively limited number of dermatologists, leading 
to many diseases being diagnosed and treated by non-specialists, resulting in lower diagnostic 
accuracy and the likelihood of improper or delayed treatment (Liu et al., 2020). Therefore, 
there is an urgent need to introduce artificial intelligence algorithms to assist physicians in 
rapid diagnosis and treatment.

Artificial intelligence (AI) simulates human intelligence using computer systems. This is 
a new technological science that studies and develops theories, methods, technologies, and 
application systems to simulate, extend, and expand human intelligence. Machine learning 
is a subset of AI that enables machines to learn tasks automatically by inferring data patterns. 
Neural networks are flexible mathematical models that employ various algorithms to identify 
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complex relationships in large databases. Neural networks are 
currently the most popular machine learning technology, particularly 
with subtypes such as deep learning and convolutional neural 
networks (CNNs). We input data in the input layer, process it in a 
hidden multilayer algorithm, and the processed data is displayed in 
the output layer. Deep learning can be understood as a computational 
process with very many hidden layers, rather than a simple neural 
network with only one or a few layers of nodes between the input and 
output layers. As the computational power grows, the number of 
hidden layers can even be stacked indefinitely, resulting in a machine 
with higher sensitivity and specificity (Jartarkar, 2023). Convolutional 
Neural Networks are a deep learning model with great success in the 
computer field, inspired by the biological visual system and designed 
to mimic the processing of human vision. It uses convolutional 
operations to capture localized features in an image without being 
affected by their positions. And unlike traditional feature extraction 
methods, it does not require manual extraction of features (Li 
Z. et al., 2022). AI can not only process large amounts of data quickly 
but also access infinite sources of information, with capabilities for 
perpetual learning and rapid processing (Lillicrap and Morrissey, 
2023). With its powerful functions, AI is widely used in the medical 
field. AI is often used for medical image recognition and 
interpretation, such as combining with histopathology to identify 
specific cells in pathological images, and combining with imaging to 
identify key features in the images to achieve further assisted 
diagnosis of various diseases, such as cardiovascular diseases, 
endocrine diseases, and tumors (Hutchinson et al., 2023; Giorgini 
et al., 2024; Makimoto and Kohro, 2024). AI is also able to analyze 
multi-parameter data to develop personalized treatment and care 
plans that can be referenced, such as combining with radiology to 
assist in the treatment of diseases such as tumors (Alabi et al., 2024; 
Bo et al., 2024), and can also be used to improve the efficiency of 
cardiovascular disease care (Jain et  al., 2024). In surgery, AI can 
automate robotic surgeries, provide computer vision, perform 
pre-operative risk assessment, and post-operative monitoring 
(Mirshahvalad et al., 2024). AI is used not only for the classification 
and recognition of skin diseases but also for epidemiological analysis 
and predictions, as well as for drug and vaccine development (Russo 
et al., 2020; Paul et al., 2021; Sung and Hopper, 2023). In dermatology, 
AI is often used for diagnostic recognition of various skin tumors 
(Brancaccio et al., 2024; Hartmann et al., 2024), as well as for assisted 
diagnosis, management, and evaluation of various inflammatory and 
autoimmune diseases (Doolan and Thomas, 2024; Li Pomi et al., 
2024). We  carefully searched the literature on AI in the field of 
infectious dermatology to organize and analyze the applications of 
AI in this field.

2 AI-assisted diagnosis of skin diseases 
related to pathogenic microorganisms

The development of AI can assist both professional and 
nonprofessional individuals in diagnosing and distinguishing 
diagnoses. By utilizing a large number of clinical case images for 
training and testing AI algorithms and continuously adjusting and 
updating them to enhance their sensitivity and specificity, rapid and 
efficient identification of new case images can be  achieved 

(Figure  1). Currently, there have been some advancements in 
AI-assisted diagnosis of skin lesions caused by pathogenic microbial 
infections. We  have organized and summarized AI-assisted 
diagnosis as follows:

Deep CNNs can classify images based on their unique features 
and are widely used in skin disease classification and diagnostic 
identification. CNN can be  developed and integrated into 
applications that assist individuals with the diagnosis of monkeypox 
skin lesions.

Monkeypox, caused by the monkeypox virus (MPXV), is a 
zoonotic disease (Elsayed et  al., 2022). It is characterized by skin 
lesions that initially present as progressive macules and papules, and 
later progress to vesicles, pustules, or pseudo-pustules. Thieme et al. 
(2023) utilized a large dataset of images depicting both monkeypox 
and non-monkeypox skin lesions to train a CNN algorithm for 
detecting MPXV skin lesions (MPXV-CNN). The SHapley Additive 
exPlanations (SHAP) algorithm was employed to identify the regions 
of high feature importance in the images. In the validation and testing 
sets, MPXV-CNN exhibited sensitivities of 0.83 and 0.91, and 
specificities of 0.965 and 0.898, respectively. The effects of factors such 
as the number of lesions, duration, and site of occurrence on the 
algorithm have been evaluated (Thieme et al., 2023). An algorithm 
based on the Al-Biruni Earth radius optimization-based stochastic 
fractal search was used to fine-tune the CNN, improving its 
performance from 0.9337 to 0.9883 (Khafaga et al., 2022). Enhanced 
residual CNNs based on λ function and context transformer 
(LaCTResNet) (Chen and Han, 2023) and Chaos game optimization 
algorithm-based fusion of deep neural networks (CGO-ensemble) 
(Asif et  al., 2024) were also employed for monkeypox image 
recognition, enhancing the efficiency of monkeypox identification. 
McNeil et al. (2023) developed an AI algorithm based on a ubiquitous 
U-Net deep learning architecture to calculate the number of 
monkeypox lesions in patient photographs, which employs a 
segmentation method that categorizes each pixel in each photograph 
as either belonging to a monkeypox lesion or not belonging to a 
monkeypox lesion, aiding in monitoring the staging and severity 
of monkeypox.

Deep CNNs can also be used for the auxiliary diagnosis of skin 
fungal infections, especially onychomycosis (Han et al., 2018; Kim 
et al., 2020; Lim et al., 2021; Gupta and Hall, 2022; Zhu et al., 2022; 
Fang et al., 2023).

Fungal nail disease is caused by fungal infections and leads to 
discoloration, thickening, and separation of the nail bed (Westerberg 
and Voyack, 2013). Microscopy and fungal culture are the gold 
standard techniques for diagnosing onychomycosis; however, they 
have a relatively high false negative rate (Gupta et  al., 2020). The 
combination of the YOLO v4 deep convolutional network with 
microscopy enables automation of fungal identification and detection 
(Koo et  al., 2021). The developers trained the target detection 
convolutional neural network YOLO v4 on microscope images with 
magnifications of 100×, 40×, and (100 + 40)×. Its sensitivity and 
specificity were, respectively, 0.952 and 1.0 in the 100× data model, 
and 0.99 and 0.866  in the 40× data model; the sensitivity and 
specificity in the combined (100 + 40) × data model were 0.932 and 
0.89, respectively, indicating that mycelium was detected with reliable 
accuracy. Additionally, the integration of the VGG16 and InceptionV3 
models with deep CNNs (Yilmaz et  al., 2022), as well as image 
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processing models based on residual neural networks (ResNet) (Gao 
et  al., 2021), allows for automatic detection of skin fungi using 
microscopy. Furthermore, employing AI to assist single-cell Raman 
spectroscopy technology not only distinguishes between bacterial and 
fungal skin infections but also identifies fungal species, with 
researchers reporting a 100% accuracy rate at the strain level (Xu et al., 
2023). AI deep learning combined with histopathology can serve as a 
screening tool to highlight suspicious mycelial areas for rapid 
confirmation by dermatopathologists (Decroos et al., 2021). Moreover, 
AI deep learning has been applied in the diagnosis of cryptococcosis 
(Wei et al., 2023).

For bacterial skin diseases, AI has been widely used in the 
auxiliary diagnosis of acne (Yang et al., 2021) and leprosy (Barbieri 
et  al., 2022; Fernandes et  al., 2023), achieving good results in 
monitoring, preventing, and guiding patient medication. We made a 
table to make it easier to see (Table 1). The Inception-v3 network, a 
deep learning-based classification model, was trained by the 
researchers using common clinical photographs of acne of varying 
severity to model the assessment of acne severity and classify the type 
of lesion based on the image; Inception-v4 and ResNet-50 were also 
used to train the assessment of leprosy images.

In conclusion, intelligent AI diagnosis can be applied to viral, 
bacterial, and fungal skin diseases, especially for the rapid 
identification of monkeypox skin lesions and the differential diagnosis 
of skin fungi, demonstrating high sensitivity and specificity, and can 
serve as an important screening tool.

3 The application of AI in predicting 
and monitoring infectious skin 
diseases and sexually transmitted 
diseases

Infectious diseases are associated with the presence of pathogenic 
microorganisms. Understanding their epidemiological characteristics, 
early prediction, and monitoring of at-risk populations can help in 
disease prevention and control.

The EPIWATCH system can analyze the epidemiological 
characteristics of febrile exanthematous diseases such as monkeypox. 
It uses automated technology to scan large amounts of open-source 
data from media reports, news releases, official reports, and social 
media for early warning of emerging infectious diseases (Hutchinson 
et al., 2023). Additionally, researchers have compared the accuracy of 
nine AI models in predicting monkeypox outbreaks and provided the 
details of each model (Chadaga et al., 2023).

Early detection of Mycobacterium leprae and its infections is a key 
factor in breaking the leprosy transmission chain. An AI molecular 
and serological comprehensive analysis method based on the random 
forest algorithm can be  used to better diagnose and predict new 
leprosy cases among contacts. Its sensitivity in the diagnosis of 
polymicrobial leprosy was 90.5%, better than traditional anti-LID-1 
(0.632), anti-ND-O-LID (0.579), and especially in oligomicrobial 
leprosy (70.6%), which also showed a significant increase in sensitivity, 
with a total specificity of 92.5% (Gama et al., 2019).

FIGURE 1

Artificial intelligence-assisted diagnostic model diagram.
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TABLE 1 Application of AI algorithm model in infectious skin diseases.

Pathogen Disease AI Algorithm model and features Application

Virus infection

Monkeypox

CNN + SHAP (Thieme et al., 2023)

CNN + BERSFS (Khafaga et al., 2022)

CGO-ensemble (Asif et al., 2024)

ResNet (Chen and Han, 2023)

Identify the image features; better than 

clinical CNN
Auxiliary diagnosis

EPIWATCH system (Hutchinson et al., 2023) Analyze the epidemiological characteristics Risk prediction

Warts
IAPSO for AIRS (Abdar et al., 2019)

Fuzzy rule-based system (Khozeimeh et al., 2017)
Predict and evaluate treatment response Clinical Decision

AIDS/HIV Infection

GBM, RF, DL, XGBoost (Bao et al., 2021)
Can be used for high-risk populations and 

individuals
Risk prediction

ChatGPT 3.5 (Koh et al., 2024) Provide treatment advice for patients
Clinical Decision

Logistic regression, RF, AdaBoost (Maskew et al., 2022) Guide the adjustment of interventions

RF, SVM, MLP (Li B. et al., 2022)
Predicted changes in immune function after 

9.9 years Prognosis prediction

Bayesian Additive Regression Trees (Elder et al., 2021) Recurrence risk prediction

Graph neural network (GNN) (Wang et al., 2023)

Simplified Molecular Input Line System (Chavez-Hernandez et al., 2021)

Decision trees, Logistic regression, Artificial neural networks (Singh and Su, 2016)

For HIV-1 protease inhibitors Treatment target prediction

Artificial neural networks (Conti and Karplus, 2019) Estimate the breadth of antibodies
Vaccine development

IDEPI (Hepler et al., 2014) Predicted antibody epitope

Fungal infection
Onychomycosis

DCNN+YoLov4 (Koo et al., 2021)

DCNN+VGG16 + InceptionV3 (Yilmaz et al., 2022)

ResNet (Gao et al., 2021)

Combined with a microscope for automatic 

detection
Auxiliary diagnosis

Cryptococcosis VGG19, MobileNet, InceptionV3, Incept ResNetV2, DenseNet201 (Wei et al., 2023) – Auxiliary diagnosis

Bacterial 

infection

Acne Inception-v3 (Yang et al., 2021) – Auxiliary diagnosis

Lepra

Inception-v4, ResNet-50 (Barbieri et al., 2022) – Auxiliary diagnosis

RF (Gama et al., 2019) New case prediction Risk prediction

Bayesian networks (de Andrade Rodrigues et al., 2023) Predict LR probability Clinical Decision

Pyemia Bayesian networks (Komorowski et al., 2018) – Clinical Decision
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AI can also be employed to predict HIV infection risk in high-risk 
populations, showing significant improvements over traditional 
prediction methods (Bao et  al., 2021). Pre-exposure prophylaxis 
(PrEP) involves the use of specific antiviral drugs by individuals not 
infected with HIV before engaging in HIV-susceptible behaviors. 
Machine learning algorithms have substantial potential to optimize 
PrEP by enhancing the identification of high-risk HIV populations 
(Marcus et  al., 2020). Risk scores generated by the AI-based risk 
assessment tool MySTIRisk, in conjunction with the Jördan index, 
exhibited 86% sensitivity and 65.6% specificity for identifying 
populations at high risk for HIV/sexually transmitted diseases (Latt 
et al., 2024). Researchers have utilized the MySTIRisk tool to develop 
an online self-assessment questionnaire for predicting individual HIV 
and sexually transmitted infection risks (Xu et  al., 2022). Using 
machine learning, researchers designed an algorithm model based on 
electronic health records to swiftly identify individuals at higher risk 
of HIV infection (Burns et  al., 2023), ultimately contributing to 
increased PrEP utilization. AI plays a crucial role in revolutionizing 
healthcare, demonstrating significant potential for HIV prevention 
and intervention strategies (Khatami and Gopalappa, 2021; Xiang 
et al., 2022).

Many studies have utilized new AI algorithms to predict the 
occurrence of syphilis in high-risk populations, which could 
potentially serve as tools for controlling and monitoring its spread 
(Albuquerque et al., 2023).

The application of AI algorithms aids in the early detection of 
infectious diseases, such as smallpox and leprosy, helping to break the 
chain of transmission. Predicting high-risk populations for sexually 
transmitted diseases such as HIV and syphilis is beneficial for the 
prevention and control of related diseases and for guiding the rational 
distribution of health resources.

4 AI aids in developing better 
treatment plans for infectious skin 
diseases and sexually transmitted 
diseases

In addition to assisting in the diagnosis and monitoring of 
infectious skin diseases, AI also aids in the development of optimal 
treatment plans.

These include classifying leprosy cases, ensuring patient 
compliance with drug therapy, monitoring geographical treatment 
coverage, and facilitating the early detection of adverse drug reactions 
and antimicrobial resistance. AI can also help in the early detection of 
nerve damage in patients with leprosy, thereby aiding disability 
prevention and rehabilitation planning (Deps et  al., 2024). An 
AI-based leprosy screening cross-platform application can classify 
cases as paucibacillary leprosy or multibacillary leprosy, assisting 
professionals in accurate disease classification and determining 
appropriate treatment methods (De Souza et al., 2021). The leprosy 
reaction (LR) is a severe inflammatory response in patients with 
leprosy and is a major cause of permanent nerve damage. Assessing 
the risk factors for LR in patients is challenging, but AI can be used to 
predict LR. An AI system developed based on Bayesian networks and 
utilizing the NETICA software can assess LR risk based on clinical, 
demographic, and genetic data, thereby effectively guiding clinical 
decisions. It has an accuracy of 0.827, a sensitivity of 0.793 and a 

specificity of 0.862 (de Andrade Rodrigues et al., 2023). AI models can 
also provide personalized and clinically interpretable treatment 
decisions for sepsis, thereby improving patient outcomes (Komorowski 
et al., 2018).

Abdar et al. (2019) proposed a novel evolutionary computer-aided 
diagnosis (CAD) system, whose main architecture is a combination of 
improved adaptive particle swarm optimization (IAPSO) and an 
Artificial Immune Recognition System (AIRS). The CAD system can 
be used to evaluate the response of warts to immunotherapy and 
cryotherapy. AIRS is a classification algorithm modeled after the 
human immune system, and IAPSO has improved the treatment 
response performance of AIRS by improving the algorithm. Other 
scholars have utilized Fuzzy rule-based system to predict and assess 
treatment responses to these two therapies for warts by using 
information gain to identify the factors that characterize the effective 
treatment, and then the Fuzzy rule-based system to predict the 
treatment effect, aiding physicians in selecting the optimal treatment 
method (Khozeimeh et al., 2017; Singh, 2021).

Trained ChatGPT can provide professional and scientific answers 
to common treatment queries from HIV-infected individuals, offering 
consultations and advice on antiretroviral therapy to guide patients 
through the treatment process (Koh et al., 2024). Machine learning 
algorithms can also predict and identify HIV patients at risk of 
treatment interruption and unsuppressed viral load, allowing targeted 
interventions through differentiated care models to improve cost-
effectiveness and prognosis before patients deviate from treatment 
plans (Maskew et  al., 2022). Domínguez-Rodríguez et  al. (2022) 
compared seven machine learning algorithms and found accurate 
predictions of the prognosis of children with perinatally acquired HIV 
infection (Domínguez-Rodríguez et al., 2022). AI machine learning 
models can utilize clinical monitoring indicators to predict changes in 
the immune function of AIDS patients after 9.9 years of antiretroviral 
therapy, aiding in patient prognosis assessment (Li B. et al., 2022). 
Machine learning linked to electronic medical records can be used to 
predict the risk of recurrent infectious diseases and provide valuable 
insights (Elder et al., 2021).

In summary, AI can integrate and analyze large amounts clinical, 
demographic, genetic, and epidemiological data to provide 
personalized clinical diagnosis and treatment decisions for patients 
with high-risk infectious diseases such as leprosy and AIDS. It has 
achieved favorable results in clinical indicator monitoring, disease 
progression prediction, and cost-effectiveness improvement, thereby 
providing a more comprehensive perspective on the diagnosis and 
treatment of infectious skin diseases.

5 AI assists in drug development and 
vaccine research

With the development of computer-aided drug design technology, 
AI has been successfully utilized for rapid innovation in the virtual 
screening of candidate drugs (Wang et al., 2023). The application of 
graph neural networks to predict the antibiotic activity and 
cytotoxicity of 12,076,365 compounds aids in the selection of 
molecules with antibiotic activity (Wong et al., 2024). Graph neural 
networks have also been employed to accurately predict potential 
therapeutic drugs for HIV-1/HBV coinfection, showing potential 
applications in multi-target drug virtual screening (Wang et al., 2023). 
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The development of a virtual HIV-1 protease inhibitor library based 
on natural compound fragments using AI can facilitate the discovery 
of effective HIV-1 protease inhibitors (Chavez-Hernandez et  al., 
2021). AI algorithms can also be utilized to predict HIV-1 protease 
cleavage sites, contributing to the development of HIV-1 protease 
inhibitors (Singh and Su, 2016; Hu et al., 2022).

Artificial neural networks (ANNs) are a powerful tool that can 
be used to predict multiple resistances to HIV-1 protease and reverse 
transcriptase inhibitors (Sheik Amamuddy et al., 2017; Tunc et al., 
2023). The EuResist engine was used to forecast responses to anti-HIV 
treatments, effectively assisting virology experts in selecting effective 
target drugs for patients carrying drug-resistant HIV strains (Zazzi 
et al., 2012). A combination of chemoinformatics and artificial neural 
network methods can be employed to predict and score the activity of 
ligands that bind to the catalytic core domain of the HIV-1 integrase 
enzyme (Thangsunan et al., 2016). Regularized ANNs have also been 
employed to simulate the activity of cyclic urea (a type of HIV-1 
protease inhibitor) (Fernandez and Caballero, 2006).

The traditional production of vaccines requires several years and 
involves high costs. By utilizing AI to assist vaccine development and 
design, significant time and economic costs can be reduced. Machine 
learning also plays a role in HIV and antibody research, with AI 
computational methods used to predict applications in antibodies, 
neutralizing breadth against multiple viral strains, detecting antibody-
virus binding sites, enhancing antibody design, and studying 
antibody-induced immune responses (Danaila et al., 2022). Machine 
learning and molecular modeling can also estimate the breadth of 
CD4bs-targeting HIV antibodies, a method that holds promise for use 
in the design of HIV antibodies (Conti and Karplus, 2019). By 
leveraging open-source general machine learning algorithms and 
libraries, Hepler et al. (2014) developed a software package called 
IDEPI (IDentify EPItopes) for learning genotype-to-phenotype 
prediction models from sequences with known phenotypes with the 

aim of rapidly predicting HIV-1 antibody epitopes and other 
phenotypic characteristics (Hepler et al., 2014).

With its powerful learning ability, AI can process large amounts of 
data in a short period, greatly enhancing the efficiency of screening and 
predicting molecules with pharmaceutical activity and drug therapeutic 
targets. They can also help to predict the binding sites of viruses and 
antibodies, evaluate the neutralization potency of antibodies, and play 
important roles in drug development and vaccine design.

6 Discussion

AI, with its powerful computing and learning capabilities, has 
become a technological direction with huge potential that profoundly 
impacts social development and human civilization. AI is widely applied 
in the fields of infectious skin diseases and sexually transmitted diseases, 
not only for assisting in diagnosis but also for helping in disease 
treatment, epidemic prevention and control decision-making, 
prediction of drug treatment targets, and vaccine development 
(Figure 2). There are more and more researches on the combination of 
AI with dermoscopy and dermatopathology in the recognition and 
diagnosis of infectious skin diseases, however, there are many kinds of 
skin diseases, and many diseases have similar skin lesion manifestations, 
which makes it easy for even experienced dermatologists to make 
mistakes, therefore, AI still needs to be improved in terms of accuracy 
in the assisted diagnosis of dermatological diseases, and perhaps more 
dimensional parameters other than pictures can be added to improve 
the diagnostic efficiency and lead toward more precise diagnosis and 
treatment. Additionally, the application of AI is mostly in the research 
stage at present, and the types of skin diseases involved are not 
comprehensive; the algorithms of AI rely on the selection of reasonable 
parameters, and their learning mode is limited by the quality of the 
received information, with various factors affecting whether the 

FIGURE 2

The application of artificial intelligence in infectious skin diseases and sexually transmitted diseases in dermatology.
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algorithm produces an impact, all of which need to be carefully and 
rigorously tested. In addition, ethical issues in the application of AI need 
to be pondered, which may involve issues such as data security, privacy 
invasion, and the lack of standardized regulations (Goldust and Grant-
Kels, 2024; Gordon et al., 2024), which may require safeguards to ensure 
the sound application of AI. Overall, AI is constantly progressing, and 
these limitations will receive more attention and discussion in the future. 
It is expected that in the future, AI algorithms and computing power will 
continue to improve; be applied to more skin diseases; computer science, 
biology, and medicine more cross-field cooperation, and joint 
participation in the research and application of AI in dermatology and 
venereology, improve the effectiveness of disease diagnosis and 
treatment; effectively reduce the health, psychological, and economic 
burden on patients; and make greater contributions to human health.
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Correlation between oxygenation 
function and laboratory indicators 
in COVID-19 patients based on 
non-enhanced chest CT images 
and construction of an artificial 
intelligence prediction model
Weiheng Kong 1†, Yujia Liu 2†, Wang Li 3, Keyi Yang 1, Lixin Yu 1 and 
Guangyu Jiao 1*
1 Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical 
University, Shenyang, China, 2 College of Traditional Chinese Medicine, Liaoning University of 
Traditional Chinese Medicine, Shenyang, China, 3 Department of Radiology, Shengjing Hospital of 
China Medical University, Shenyang, China

Objective: By extracting early chest CT radiomic features of COVID-19 patients, 
we explored their correlation with laboratory indicators and oxygenation index 
(PaO2/FiO2), thereby developed an Artificial Intelligence (AI) model based 
on radiomic features to predict the deterioration of oxygenation function in 
COVID-19 patients.

Methods: This retrospective study included 384 patients with COVID-19, whose 
baseline information, laboratory indicators, oxygenation-related parameters, 
and non-enhanced chest CT images were collected. Utilizing the PaO2/FiO2 
stratification proposed by the Berlin criteria, patients were divided into 4 groups, 
and differences in laboratory indicators among these groups were compared. 
Radiomic features were extracted, and their correlations with laboratory 
indicators and the PaO2/FiO2 were analyzed, respectively. Finally, an AI model 
was developed using the PaO2/FiO2 threshold of less than 200  mmHg as the 
label, and the model’s performance was assessed using the area under the 
receiver operating characteristic curve (AUC), sensitivity and specificity. Group 
datas comparison was analyzed using SPSS software, and radiomic features 
were extracted using Python-based Pyradiomics.

Results: There were no statistically significant differences in baseline 
characteristics among the groups. Radiomic features showed differences in 
all 4 groups, while the differences in laboratory indicators were inconsistent, 
with some PaO2/FiO2 groups showed differences and others not. Regardless of 
whether laboratory indicators demonstrated differences across different PaO2/
FiO2 groups, they could all be  captured by radiomic features. Consequently, 
we  chose radiomic features as variables to establish an AI model based on 
chest CT radiomic features. On the training set, the model achieved an AUC 
of 0.8137 (95% CI [0.7631–0.8612]), accuracy of 0.7249, sensitivity of 0.6626 
and specificity of 0.8208. On the validation set, the model achieved an AUC of  
0.8273 (95% CI [0.7475–0.9005]), accuracy of 0.7739, sensitivity of 0.7429 and 
specificity of 0.8222.

Conclusion: This study found that the early chest CT radiomic features of 
COVID-19 patients are strongly associated not only with early laboratory 
indicators but also with the lowest PaO2/FiO2. Consequently, we developed an 
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AI model based on CT radiomic features to predict deterioration in oxygenation 
function, which can provide a reliable basis for further clinical management and 
treatment.

KEYWORDS

SARS-CoV-2, COVID-19, artificial intelligence, machine learning, chest CT radiomic 
features, PaO2/FiO2, laboratory indicators

1 Introduction

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and has become 
a global pandemic threatening worldwide health (Sudre et al., 2021). 
SARS-CoV-2 infection can affect multiple organs and presents a 
variety of clinical symptoms (Wang et al., 2023). In the pathogenesis 
of COVID-19, a key factor is the dysregulation of immune 
inflammation (Xu et  al., 2020). SARS-CoV-2 primarily enters 
respiratory epithelial cells by binding to angiotensin-converting 
enzyme 2 (ACE-2), triggering an immune inflammatory responses 
that results in varying degrees of damage to the alveolar epithelium, 
formation of hyaline membranes, and lung consolidation (Camporota 
et al., 2022; Caso et al., 2020; Qin et al., 2023). Therefore, the clinical 
symptoms of patients infected with COVID-19 exhibit significant 
heterogeneity; some patients are asymptomatic or exhibit only mild 
upper respiratory symptoms, while others may develop respiratory 
distress, potentially progressing to Acute Respiratory Distress 
Syndrome (ARDS) (Poston et al., 2020). The lungs are the organs most 
affected early and severely by COVID-19, and the rapid deterioration 
in respiratory function due to lung damage is a major cause of the high 
mortality rate in COVID-19 patients (Torres-Castro et  al., 2021; 
Huang et al., 2020).

Clinically, the PaO2/FiO2 is used to represent oxygenation 
function and serves as a reliable predictor of acute lung injury 
(Matsubara et  al., 2024). Since oxygenation dysfunction is an 
independent risk factor for progression to severe/critical COVID-19, 
deterioration in the PaO2/FiO2 provides an important basis for early 
clinical identification of worsening conditions in COVID-19 patients 
(Zhang et al., 2021). However, some critically ill patients may have 
mild clinical manifestations early in the disease, which do not 
correspond to the degree of oxygenation dysfunction due to severe 
lung damage (Tobin et al., 2020). Several laboratory indicators, such 
as lymphocytes, neutrophils, and pro-inflammatory cytokines, have 
been studied for predicting disease worsening and severe outcomes in 
COVID-19 patients (Del Valle et al., 2020; Zhao et al., 2020). Although 
these indicators reflect the immune-inflammatory status after SARS-
CoV-2 infection, they are not directly indicative of oxygenation 
function and the extent of lung damage. Research by Fatima N et al. 
suggested a good correlation between early chest CT images and the 
PaO2/FiO2 in COVID-19 patients, indicating that chest CT can 
effectively assess the extent of lung damage and has potential for 
predicting severe cases of COVID-19 (Fatima et  al., 2023; Liu 
F. et al., 2020).

Currently, semi-quantitative chest CT scoring systems have been 
developed to predict the severity and clinical outcomes of COVID-19 
patients. However, these systems require radiologists to visually assess 
all chest CT images, which introduces considerable human error and 
prevents precise assessment (Wasilewski et al., 2020). Additionally, 

manual annotation of all infected areas for training leads to a 
substantial workload, making routine application challenging (Arian 
et al., 2023). To improve the sensitivity of COVID-19 assessment, 
AI-assisted quantitative analysis of chest CT is emerging as a new 
trend (Shaikh et al., 2021). Limited existing AI studies have extracted 
features such as lung lesion volume, inflammation area, and lesion 
density from chest CT images, with sample sizes generally around 100 
cases, which limits comprehensive assessment of lung damage (Zhang 
et al., 2020; Pu et al., 2021; Pang et al., 2021). There is a pressing need 
to extract more lung features from larger samples to develop AI 
models that meet clinical needs for predicting severe lung damage in 
COVID-19 patients. Currently, researches based on AI primarily focus 
on employing AI techniques to analyze the different imaging findings 
presented in chest CT images of COVID-19 patients in order to 
predict disease severity and prognosis (Arian et al., 2023; Cai et al., 
2020). There is a lack of comparative studies regarding oxygenation 
function and chest CT images using AI.

Therefore, this study will analyze the early chest CT radiomic 
features of COVID-19 patients using the PaO2/FiO2 as a stratification 
standard, exploring the correlation between early laboratory 
indicators, early chest CT radiomic features, and the PaO2/FiO2. 
We aim to establish an AI model to predict the extent of lung injury 
and deterioration in oxygenation function, providing a reliable basis 
for the early clinical management and treatment of 
COVID-19 patients.

2 Methods

2.1 Study subjects and clinical data

This retrospective study included patients admitted to our hospital 
from January 1, 2023, to June 1, 2024, with a diagnosis of novel 
coronavirus infection.

Inclusion criteria:

 1 Diagnosed with novel coronavirus infection upon admission 
(National Health Commission, 2023).

 2 Underwent CT examination on the day of admission and 
multiple blood gas analyses during the hospital stay.

 3 Aged ≥18 years.

Cases that may interfere with this study or where obtaining 
imaging data is challenging will be excluded, including:

 1 Patients requiring mechanical ventilation.
 2 Pregnant patients or those with end-stage cancer.
 3 Patients with concurrent pulmonary diseases such as 

pneumothorax, pulmonary edema, or mediastinal emphysema.
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 4 Patients with severe cardiac or renal dysfunction.
 5 Patients with incomplete clinical data (Patients with incomplete 

laboratory indicators relevant to this study).
 6 Patients with failed image acquisition (Cases with poor image 

quality or missing key frames during the CT imaging process).

A total of 384 patients were ultimately included in the study. The 
flowchart for the inclusion and exclusion of patients is shown in 
Figure 1.

Relevant clinical and laboratory data from the included patients 
will be collected, including: Baseline Characteristics: Age, sex, BMI, 
smoking history, and comorbidities. Blood Gas Analysis and PaO2/
FiO2: Blood gas analysis results (partial pressure of oxygen, PaO2), 
oxygen concentration (FiO2), and calculation of the PaO2/FiO2, with 
the lowest PaO2/FiO2 during hospitalization recorded. Laboratory 
Indicators on Admission Day: White blood cell count, neutrophil 
count and percentage, lymphocyte count and percentage, platelet 
count, C-reactive protein (CRP), D-dimer, lactate dehydrogenase 
(LDH), interleukin-6 (IL-6), ferritin, liver function indicators (AST, 
ALT), and cardiac indicators (B-type natriuretic peptide (BNP), 

troponin). Composite indicators such as the neutrophil-to-
lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and 
systemic immune-inflammation index (SII) = platelet count × NLR 
were also calculated.

Quality control measures for laboratory indicators include: all 
operators complied with operational procedures, with no human-
induced errors. The experimental instruments were all within their 
calibration periods. Reagents, quality control materials, and 
calibration standards for each indicator were all within their expiration 
dates and were properly stored. The laboratory environment’s 
temperature and humidity were maintained within acceptable ranges. 
During the experiments, all indicators passed quality control, with no 
random or systematic errors observed.

2.2 CT imaging protocol

Chest non-enhanced CT imaging was performed on the day of 
admission. All scans were conducted in the supine position with the 
patient in the inspiratory phase. The CT scans were performed using a 

FIGURE 1

Flowchart for inclusion and exclusion of patients.
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Philips Brilliance ICT 256-slice spiral CT scanner, with the scanning 
range extending from the lung apex to the level of the costophrenic angle. 
Scanning parameters commonly used in our center included: tube voltage 
of 120 kV, tube current adjusted automatically, matrix of 512 × 512, pitch 
of 1, conventional image thickness of 3.0 mm, and thin-slice images with 
1.0 mm intervals for 3D reconstruction.

2.3 Lung segmentation and features 
extraction

To reduce the interference of extrathoracic factors on the model, 
we developed a machine learning segmentation algorithm for lung 
segmentation. The image matrix values were first converted to 
attenuation values for CT images, and pixels with attenuation values 
less than −700 were used as a mask. After image erosion, only the 
largest connected domain was retained, and the mask was then 
expanded again to determine it as the region of interest (ROI) for the 
lungs, as shown in Figure 2.

Radiomic features were extracted using Python-based 
Pyradiomics. Prior to feature extraction, the segmented images were 
preprocessed to minimize the impact of contrast and brightness 
variations on the radiomic features. A total of 944 radiomic features 
were generated for each patient, based on first-order (n = 18), shape 
(n = 14), texture (n = 75), Gaussian Laplacian filters (n = 93), and 
wavelet filters (n = 744).

2.4 Machine learning

In clinical practice, patients with PaO2/FiO2 less than 200 mmHg 
are considered to have moderate to severe ARDS and usually require 

mechanical ventilation (Ranieri et  al., 2012; Qadir et  al., 2024). 
Therefore, we used PaO2/FiO2 200 mmHg as the grouping criterion, 
dividing patients into a mechanical ventilation group (PaO2/
FiO2 ≤ 200 mmHg) and a non-mechanical ventilation group (PaO2/
FiO2 > 200 mmHg). The machine learning models for this study, 
developed using the Python sklearn library, employed various 
machine learning methods to predict the aforementioned labels. 
Model performance was evaluated using the area under the receiver 
operating characteristic curve (AUC), sensitivity and specificity. 
Internal validation was used to assess the machine learning models. 
During model development, the entire dataset was randomly divided 
into training and validation sets, and five-fold cross-validation was 
used for model validation.

In this study, we  employed the Linear Discriminant Analysis 
(LDA) algorithm, a form of supervised learning, for dimensionality 
reduction and essential feature extraction. We  extracted over 900 
radiomic features for each patient in the study. By utilizing this 
algorithm, we aimed to reduce the number of features in the input 
data, enabling the representation of the output affecting labels with a 
minimal set of features. The fundamental concept is to project the 
training sample set onto a single line in such a way that the projection 
points of samples from the same class are as close together as possible, 
while the centers of the projection points from different classes are as 
far apart as possible (Xu et al., 2022).

2.5 Statistical analysis

Statistical analysis was performed using IBM SPSS 27.0 
software. All data were tested for normality; normally distributed 
quantitative data were described as mean ± standard deviation, 
while non-normally distributed quantitative data were described as 

FIGURE 2

Diagram of lung segmentation. Panels A1–A3 show chest CT cross-sectional images, while panels B1–B3 display the regions of interest (ROI) for the 
lungs identified by the machine learning model on chest CT. A1–B1 are axial CT images, A2–B2 are sagittal CT images, and A3–B3 are coronal CT 
images.
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median (interquartile range). The Kruskal-Wallis test was used for 
comparing multiple groups, and the Mann–Whitney U test was 
used for multiple comparisons among groups. Categorical data were 
described using frequencies (percentages) and compared using the 
chi-square (χ2) test. A p-value of <0.05 was considered statistically 
significant. Statistical plots were generated using Python-
based matplotlib.

3 Results

3.1 Basic characteristics

A total of 384 patients were included in this study. Table 1 presents 
the clinical characteristics of the included patients. The median age of 
all patients was 71.00 (62.25, 78.00) years, and the median BMI was 
24.29 (22.19, 26.88). Among the patients, 227 (59.1%) were male and 
157 (40.9%) were female. A total of 105 patients (27.3%) had a history 
of smoking. The most common comorbidities among the included 
patients were hypertension, diabetes, and cardiovascular diseases. 
Based on the Berlin definition guidelines for ARDS (Ranieri et al., 
2012), patients were divided into four groups according to their PaO2/
FiO2: PaO2/FiO2 > 300 mmHg, PaO2/FiO2 200-300 mmHg, PaO2/FiO2 
100-200 mmHg, and PaO2/FiO2 ≤ 100 mmHg.

There were no statistically significant differences in sex, age, BMI, 
smoking history, or comorbidities among the four patient groups 
(p > 0.05). See Table 2.

As the PaO2/FiO2 decreases, the range and density of lung lesions 
in the chest CT images increase. In the PaO2/FiO2 > 300 mmHg group, 
patients exhibit a few scattered exudative lesions in the lungs (see 
Figures 3A1–A3). In the PaO2/FiO2 200-300 mmHg group, patients 
show fewer lung lesions, primarily ground-glass opacities (GGOs) with 
limited extent (see Figures 3B1–B3). In the PaO2/FiO2 100-200 mmHg 
group, patients have a larger number of lung lesions, including GGOs 
and some consolidation, with a more extensive distribution (see 
Figures  3C1–C3). In the PaO2/FiO2 ≤ 100 mmHg group, patients 
present with dense lung lesions, including diffuse consolidation, with 
widespread distribution throughout the lungs (see Figures 3D1–D3).

3.2 Analysis of differences in radiomic 
features across different PaO2/FiO2 groups

As shown in Figure 4, we compared the differences in radiomic 
feature expressions among different groups. There are significant 

TABLE 1 The clinical characteristics of the included patients.

Characteristics Statistical value

Cases number 384

Sex

Male 227 (59.1%)

Female 157 (40.9%)

Age 71.00 (62.25, 78.00)

BMI 24.29 (22.19, 26.88)

Smoking history

Yes 105 (27.3%)

No 279 (72.7%)

Comorbidity

Hypertension 184 (47.9%)

Diabetes 97 (25.3%)

Cardiovascular disease 76 (19.8%)

COPD 5 (1.3%)

Chronic kidney disease 23 (6.0%)

PaO2/FiO2 Grouping

>300 mmHg 106 (27.6%)

200-300 mmHg 127 (33.1%)

100-200 mmHg 119 (31.0%)

≤100 mmHg 32 (8.3%)

TABLE 2 Comparison of baseline characteristics among four groups of patients.

Characteristics >300  mmHg 
n  =  106

200-300  mmHg 
n  =  127

100-200  mmHg 
n  =  119

≤100  mmH 
n  =  32

Statistical 
value

p value

Sex χ2 = 3.927 0.269

Male 61 (59.1%) 68 (53.5%) 78 (65.5%) 20 (62.5%)

Female 45 (42.5%) 59 (46.1%) 41 (34.5%) 12 (37.5%)

Age 68.50 (60.00, 74.25) 71.00 (64.00, 78.00) 71.00 (63.00, 79.00) 72.00 (67.25, 76.75) H = 7.676 0.053

BMI 23.75 (22.15, 26.83) 24.77 (21.87, 27.17) 24.22 (22.22, 26.89) 25.23 (22.71, 26.73) H = 1.246 0.742

Smoking history χ2 = 4.201 0.241

Yes 25 (23.6%) 30 (23.6%) 39 (32.8%) 11 (34.4%)

No 84 (76.4%) 97 (76.4%) 80 (67.2%) 21 (65.6%)

Comorbidities

Hypertension 46 (43.4%) 58 (45.7%) 59 (49.6%) 21 (65.6%) χ2 = 5.278 0.153

Diabetes 20 (18.9%) 32 (25.2%) 32 (26.9%) 13 (40.6%) χ2 = 6.463 0.091

Cardiovascular disease 13 (12.3%) 27 (21.3%) 26 (21.8%) 10 (31.3%) χ2 = 6.920 0.074

COPD 1 (0.9%) 2 (1.6%) 2 (1.7%) 0 (0.0%) χ2 = 0.735 0.865

Chronic kidney disease 6 (5.7%) 7 (5.5%) 7 (5.9%) 3 (9.4%) χ2 = 0.727 0.867
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FIGURE 3

Chest CT images of patients in different PaO2/FiO2 groups. A1–A3 are chest CT images of patients with PaO2/FiO2  >  300  mmHg; B1–B3 are chest CT 
images of patients with PaO2/FiO2 200-300  mmHg; C1–C3 are chest CT images of patients with PaO2/FiO2 100-200  mmHg; D1–D3 are chest CT 
images of patients with PaO2/FiO2  ≤  100  mmHg. A1–D1 show axial CT; A2–D2 show sagittal CT; A3–D3 show coronal CT. The red thin arrows indicate 
ground-glass opacities (GGOs) and interlobular septal thickening; the blue thick arrows indicate consolidation.

differences in the radiomic features among patients in different PaO2/
FiO2 groups (p < 0.05). Specifically, patients in the PaO2/
FiO2 ≤ 100 mmHg group show the most pronounced differences in 
radiomic features compared to the other three groups (Figures 4A–C). 
As the PaO2/FiO2 increases, the differences in radiomic features 
gradually decrease (Figures 4D–F).

3.3 Analysis of laboratory indicators across 
different PaO2/FiO2 groups

Comparing laboratory indicators across different PaO2/FiO2 
groups, we observed statistical differences in immune-inflammatory 
indicators, coagulation indicators, and cardiac-related indicators 
among the four groups (p < 0.05). However, no statistical differences 
were found in platelet counts and liver-related indicators (AST, ALT) 
(p > 0.05) (see Table 3).

To clarify the specific differences between groups, we performed 
pairwise post-hoc comparisons (see Figure 5). We found statistically 
significant differences in neutrophil percentage, lymphocyte 
percentage, LDH, NLR, SII, and troponin across different PaO2/FiO2 
groups (p < 0.05).

However, the differences in laboratory indicators such as white 
blood cells, neutrophils, lymphocytes, CRP, IL-6, ferritin, D-dimer, 
BNP, and PLR varied inconsistently among the PaO2/FiO2 groups. 
Specifically, differences in these indicators between the PaO2/
FiO2 ≤ 100 mmHg group and the PaO2/FiO2 200-300 mmHg group, 
as well as the PaO2/FiO2 > 300 mmHg group, were statistically 
significant (p < 0.05). Conversely, white blood cells, D-dimer, IL-6, 
and ferritin showed no significant differences between the PaO2/
FiO2 200-300 mmHg group and the PaO2/FiO2 > 300 mmHg group, 
or between the PaO2/FiO2 200-300 mmHg group and the PaO2/
FiO2 100-200 mmHg group (p > 0.05). Therefore, the direct 
correlation between laboratory indicators and PaO2/FiO2 is not 
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clear, and these indicators cannot accurately reflect the PaO2/
FiO2 status.

As shown in Figure  6A, correlation analysis between the 
aforementioned laboratory indicators and radiomic features reveals 
that changes in laboratory indicators are directly reflected in the 
patients’ chest CT images and are sharply captured by radiomic 
features. Among these radiomic features that can capture laboratory 
indicators, the majority show significant differences between different 
PaO2/FiO2 groups, regardless of whether the laboratory indicators 
themselves differ between the PaO2/FiO2 groups, as illustrated in 
Figure 6B.

3.4 Chest CT radiomic features model

In different PaO2/FiO2 groups, there are statistically significant 
differences in radiomic features. Additionally, regardless of whether 
laboratory indicators have differences between PaO2/FiO2 groups, they 
can be captured by radiomic features. Therefore, we selected only 
radiomic features as variables and established a chest CT radiomic 
features AI model. To efficiently and accurately predict whether 
COVID-19 patients require mechanical ventilation due to decreased 
PaO2/FiO2, we combined patients with PaO2/FiO2 ≤ 100 mmHg and 
100-200 mmHg into the mechanical ventilation group, and those with 
PaO2/FiO2 200-300 mmHg and > 300 mmHg into the non-mechanical 
ventilation group.

On the training set, the model’s AUC was 0.8137 (95% CI 
[0.7631–0.8612]), with an accuracy of 0.7249, sensitivity of 0.6626, 
and specificity of 0.8208. On the validation set, the model’s AUC 
was 0.8273 (95% CI [0.7475–0.9005]), with an accuracy of 0.7739, 

sensitivity of 0.7429, and specificity of 0.8222, as shown in 
Figure 7.

4 Discussion

This study is the first to use machine learning methods to 
segment lung ROIs and extract radiomic features from early chest CT 
images of over 380 COVID-19 patients. We utilized these radiomic 
features as intermediate variables to explore the direct and indirect 
correlations between laboratory indicators and PaO2/FiO2, thereby 
validating the assessment capability of CT—one of the most 
commonly used imaging modalities for COVID-19—of the overall 
physiological and pathological state represented by laboratory 
indicators. Finally, we developed an AI model based on early chest 
CT radiomic features of COVID-19 patients to predict whether 
mechanical ventilation would be  required due to a decrease in 
PaO2/FiO2.

SARS-CoV-2 infection can trigger a robust immune response 
(Gallais et al., 2021). Early immune response in COVID-19 plays a 
protective role in viral clearance, whereas an excessive immune 
response can release an overabundance of pro-inflammatory cytokines 
and chemokines, leading to cytokine storms and systemic immune 
cascade reactions, which in turn alter laboratory immune-
inflammatory indicators and coagulation indicators (Alzaabi et al., 
2021; Chen, R. et al., 2020). Additionally, exacerbated and dysregulated 
immune responses can cause multi-organ damage, with the lungs 
being among the earliest and most severely affected organs (Chen 
N. et al., 2020). Researches by Liu and Fu et al. have demonstrated that 
laboratory indicators can be used to predict the overall deterioration 

FIGURE 4

Comparison of radiomic features between different PaO2/FiO2 groups via volcano plot. There are significant differences in radiomic feature expressions 
between different PaO2/FiO2 groups (A–F). Patients in the PaO2/FiO2 ≤  100  mmHg group show the most pronounced differences in radiomic features 
compared to the other three groups (A–C). The differences in radiomic features between the PaO2/FiO2 100-200  mmHg group and the PaO2/FiO2 
200-300  mmHg group, as well as the PaO2/FiO2 ≥  300  mmHg group, are notable (D,E). There are differences in radiomic features between the PaO2/
FiO2 200-300  mmHg group and the PaO2/FiO2 ≥  300  mmHg group, but the differences are small (F). In the figure, blue points and red points represent 
significant differences, while gray points indicate no difference. A higher number of points indicates a greater degree of difference.
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TABLE 3 Differential analysis of laboratory indicators among four groups of patients.

Laboratory indicators >300  mmHg n  =  106 200-300  mmHg n  =  127 100-200  mmHg n  =  119 ≤100  mmHg n  =  32 Statistical value p value

Immune-inflammatory indicators

White blood cell count (109/L) 6.52 (5.14, 8.69) 7.00 (4.83, 9.12) 7.20 (5.48, 9.98) 8.44 (6.45, 12.51) H = 13.649 0.003

Neutrophil percentage (%) 69.90 (62.85, 80.60) 76.50 (68.40, 85.30) 80.20 (71.70, 87.60) 86.70 (79.93, 91.13) H = 45.212 <0.001

Neutrophil count (109/L) 4.60 (3.40, 6.30) 5.10 (3.20, 7.00) 5.90 (4.10, 8.10) 7.55 (5.10, 11.23) H = 27.300 <0.001

Lymphocyte percentage (%) 19.30 (11.03, 26.53) 14.80 (8.50, 20.30) 10.30 (5.90, 16.90) 5.75 (3.48, 12.15) H = 55.444 <0.001

Lymphocyte count (109/L) 1.20 (0.70, 1.53) 0.90 (0.60, 1.40) 0.80 (0.50, 1.10) 0.55 (0.40, 0.90) H = 28.781 <0.001

CRP (mg/L) 15.55 (5.46, 48.01) 25.40 (9.60, 62.00) 38.90 (9.70, 87.30) 71.99 (27.21, 100.87) H = 23.440 <0.001

LDH (U/L) 270.00 (21.75, 301.00) 297.00 (242.00, 309.00) 301.00 (280.00, 343.00) 341.00 (287.25, 430.25) H = 37.108 <0.001

IL-6 (pg/mL) 7.12 (2.39, 16.27) 11.55 (3.17, 20.35) 12.90 (3.95, 27.02) 16.85 (7.65, 30.82) H = 16.268 <0.001

Ferritin (ng/mL) 316.50 (226.48, 514.48) 387.00 (241.10, 537.50) 486.40 (267.00, 573.50) 537.50 (367.95, 705.13) H = 18.150 <0.001

NLR 3.6667 (2.4152, 7.5000) 4.8889 (3.2500, 10.0000) 7.7500 (4.4444, 15.5000) 14.0417 (6.4560, 24.5000) H = 53.106 <0.001

PLR 184.7802 (117.3438, 291.2500) 202.5000 (146.1905, 350.0000) 283.3333 (173.3333, 410.0000) 294.1667 (204.5000, 512.5000) H = 27.752 <0.001

SII 763.0833 (464.8472, 1605.5000) 1147.0000 (540.5714, 2141.6667) 1515.5556 (854.0000, 2908.8889) 2527.0000 (1205.5130, 6080.9583) H = 41.347 <0.001

Coagulation indicators

platelet count (109/L) 200.00 (149.75, 258.00) 199.00 (142.00, 261.00) 207.00 (148.00, 287.00) 179.00 (141.00, 257.75) H = 1.426 0.699

D-dime r (μg/L) 180.00 (96.75, 425.50) 215.00 (133.00, 499.00) 264.00 (160.00, 486.00) 599.00 (257.75, 2818.75) H = 29.910 <0.001

Liver-related indicators

AST (U/L) 21.50 (16.00, 31.75) 22.00 (15.00, 33.00) 24.00 (17.00, 35.00) 27.00 (22.00, 44.00) H = 7.235 0.065

ALT (U/L) 23.00 (16.00, 37.50) 27.00 (18.00, 43.00) 28.00 (18.00, 42.00) 34.00 (18.50, 50.75) H = 4.934 0.177

Cardiac-related indicators

BNP (pg/mL) 50.15 (17.28, 82.03) 69.00 (16.30, 100.31) 80.30 (35.30, 122.00) 67.25 (33.93, 146.40) H = 16.990 <0.001

Troponin (μg/L) 0.0056 (0.0038, 0.0088) 0.0072 (0.0041, 0.0113) 0.0089 (0.0058, 0.0160) 0.0120 (0.0077, 0.0345) H = 36.531 <0.001

The values in bold indicate that the p-values are less than 0.05, meaning there are significant differences among the four groups of data with statistical significance.
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FIGURE 5

Heatmap of differences in laboratory indicators between pairs of PaO2/FiO2 groups. The x-axis represents laboratory indicators, and the y-axis 
represents pairwise comparisons between PaO2/FiO2 groups. Differences were analyzed using the Mann–Whitney U test. The bar in the figure indicates 
the p-value (0–1), with p <  0.05 indicating statistical significance and p >  0.05 indicating no statistical significance.

FIGURE 6

Texture feature map showing the correlation between laboratory indicators and radiomic features. In pairwise comparisons of different PaO2/FiO2 
groups, different laboratory indicators are directly captured by the intensity of radiomic features (A). Radiomic features that both capture laboratory 
indicators and show differences between different PaO2/FiO2 groups are illustrated in (B).
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FIGURE 7

The ROC curves for the training and validation sets.

and adverse outcomes in COVID-19 patients (Fu et al., 2020; Liu 
J. et al., 2020). However, to date, there have been no studies directly 
predicting the degree of lung injury and oxygenation function through 
the analysis of changes in laboratory indicators. To address this, 
we explored whether multiple laboratory indicators directly correlate 
with the PaO2/FiO2. Results showed that while there are overall 
differences in laboratory indicators across four different PaO2/FiO2 
groups, the differences are inconsistent when comparing pairwise 
groups. For example, white blood cell count, CRP, IL-6, and ferritin 
were statistically significant between the PaO2/FiO2 ≤ 100 mmHg 
group and the PaO2/FiO2 200-300 mmHg group, but there were no 
statistical differences between the PaO2/FiO2 200-300 mmHg group 
and the PaO2/FiO2 > 300 mmHg group. These results suggest that 
laboratory indicators alone do not fully and accurately assess 
oxygenation function and the extent of lung damage in COVID-19 
patients. Therefore, more appropriate assessment indicators are 
needed clinically.

We subsequently focused on early chest CT images to analyze 
their correlation with the PaO2/FiO2. We  found significant 
differences in radiomic features among different PaO2/FiO2 groups, 
particularly in the patients with PaO2/FiO2 ≤ 100 mmHg, whose 
radiomic features showed a very significant difference compared to 
the other three groups. Thus, the radiomic features derived from 
non-contrast chest CT images may provide a valuable tool for 
predicting the PaO2/FiO2. Furthermore, we conducted a correlation 
analysis between radiomic features and laboratory indicators, 
revealing significant correlations between them. Notably, even 
laboratory indicators that were not directly related to the PaO2/FiO2 
showed a strong association with the radiomic features, indicating 
that these features may also serve as accurate reflections of the body’s 
inflammatory response level.

This study is the first to extract radiomic features from early 
chest CT scans of over 380 COVID-19 patients, using the PaO2/FiO2 
as the stratification criterion. We established an AI model based on 
early chest CT radiomic features, which achieve an accuracy of 
0.8 in predicting stratification for the PaO2/FiO2 above and below 
200 mmHg. Although AI-driven quantitative analysis of CT scans 
has shown promise in assessing clinical classifications, predicting 
disease progression, and evaluating sequelae in COVID-19 patients, 
the current research often relies on radiologists visually assessing 
and manually annotating CT images (Salahshour et  al., 2021; 
Tanaka et al., 2023; Wasilewski et al., 2020). This heavy workload 

limits the ability to evaluate large samples, and reducing human 
error remains a significant challenge. Furthermore, studies utilizing 
AI technology for CT imaging primarily focus on identifying and 
analyzing specific features such as lesion volume, inflammatory 
area, or lesion density (Pang et al., 2021; Alilou et al., 2023; Chung 
et al., 2021). This narrow focus may lead to incomplete assessments 
and, similarly, suffers from issues related to high error margins and 
low accuracy.

This study departs from traditional visual assessment methods by 
disruptively applying computer programming languages to extract 
over 900 radiomic numerical features from CT images, including 
first-order, shape, texture, Gaussian Laplacian filters, and wavelet 
filters. Using machine learning for training and validation, 
we  ultimately selected the feature parameter combinations most 
strongly correlated with the PaO2/FiO2 to construct a CT-AI model 
for lung assessment, achieving high accuracy and specificity in 
predicting oxygenation function. Clinically, patients with an PaO2/
FiO2 below 200 mmHg generally require mechanical ventilation 
(Qadir et al., 2024). Santus P and Zhou W have confirmed that an 
PaO2/FiO2 < 200 mmHg at admission is independently associated 
with higher mortality, which can help clinicians identify high-risk 
patients early in their hospital stay (Santus et al., 2020; Zhou et al., 
2021). Therefore, we selected PaO2/FiO2 200 mmHg as the threshold 
value in clinical practice, dividing patients into two groups: the 
mechanical ventilation group (including the PaO2/FiO2 ≤ 100 mmHg 
group and the PaO2/FiO2 100–200 mmHg group) and the 
non-mechanical ventilation group (including the PaO2/FiO2 
200–300 mmHg group and the PaO2/FiO2 > 300 mmHg group). The 
results indicate that this model can predict stratification tasks with an 
accuracy of 0.8 for determining whether the PaO2/FiO2 is above or 
below 200 mmHg. This capability can assist clinicians in automatically 
identifying high-risk patients through early admission CT scans, 
effectively guiding the monitoring of critically ill patients, the need 
for increased oxygen supplementation, and decisions regarding 
mechanical ventilation.

This study does have some limitations. First, it is a single-center 
study, lacking multi-center data to further validate these 
conclusions. Second, the study only explored the AI model’s ability 
to predict the lowest PaO2/FiO2 during hospitalization, lacking 
comprehensive monitoring throughout the patient’s disease course, 
the further model can be established for dynamic monitoring and 
the prediction of the long COVID-19 in the future. Third, we used 
only the PaO2/FiO2 as the primary parameter for assessing 
COVID-19 severity, without considering other complications that 
may arise during the disease course. Finally, given the high 
heterogeneity of COVID-19, future research will further explore 
their corresponding mechanism and the impact of genetic 
susceptibility on the PaO2/FiO2.

5 Conclusion

This study found that the early chest CT radiomic features of 
COVID-19 patients show a strong correlation with early laboratory 
indicators and the lowest PaO2/FiO2. Therefore, we established an AI 
model based on the early chest CT radiomic characteristics of 
COVID-19 patients, which can be used to predict the deterioration of 
oxygenation function in COVID-19 patients, providing a basis for 
selecting further clinical management and treatment measures.
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Background: Acute hematogenous osteomyelitis is the most common form of 
osteomyelitis in children. In recent years, the incidence of osteomyelitis has been 
steadily increasing. For pediatric patients, clearly describing their symptoms can 
be quite challenging, which often necessitates the use of complex diagnostic 
methods, such as radiology. For those who have been diagnosed, the ability to 
culture the pathogenic bacteria significantly affects their treatment plan.

Method: A total of 634 patients under the age of 18 were included, and the 
correlation between laboratory indicators and osteomyelitis, as well as several 
diagnoses often confused with osteomyelitis, was analyzed. Based on this, a 
Transformer-based deep learning model was developed to identify osteomyelitis 
patients. Subsequently, the correlation between laboratory indicators and the 
length of hospital stay for osteomyelitis patients was examined. Finally, the 
correlation between the successful cultivation of pathogenic bacteria and 
laboratory indicators in osteomyelitis patients was analyzed, and a deep learning 
model was established for prediction.

Result: The laboratory indicators of patients are correlated with the presence 
of acute hematogenous osteomyelitis, and the deep learning model 
developed based on this correlation can effectively identify patients with acute 
hematogenous osteomyelitis. The laboratory indicators of patients with acute 
hematogenous osteomyelitis can partially reflect their length of hospital stay. 
Although most laboratory indicators lack a direct correlation with the ability to 
culture pathogenic bacteria in patients with acute hematogenous osteomyelitis, 
our model can still predict whether the bacteria can be successfully cultured.

Conclusion: Laboratory indicators, as easily accessible medical information, 
can identify osteomyelitis in pediatric patients. They can also predict whether 
pathogenic bacteria can be  successfully cultured, regardless of whether the 
patient has received antibiotics beforehand. This not only simplifies the diagnostic 
process for pediatricians but also provides a basis for deciding whether to use 
empirical antibiotic therapy or discontinue treatment for blood cultures.

KEYWORDS

deep learning, osteomyelitis, blood culture, anti-infection treatment, pathogenic 
microorganism
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FIGURE 1

Inclusion and exclusion flowchart of patients in this study.

1 Introduction

Osteomyelitis is one of the common bone and muscle infections 
in children. Acute hematogenous osteomyelitis (AHO) is the most 
common form of this disease in pediatrics. In recent years, the 
incidence of osteomyelitis has been increasing annually (Walter et al., 
2021). The incidence is generally higher in males compared to females, 
and lower limb infections are more prevalent than upper limb 
infections (Kremers et al., 2015; Disch et al., 2023). Typically, healthy 
bones have strong resistance to pathogen invasion. The occurrence of 
osteomyelitis mainly occurs through three mechanisms: direct 
inoculation, extension from adjacent lesions, and hematogenous 
dissemination. Additionally, in conditions of bone ischemia, trauma, 
or foreign bodies, pathogens are more likely to adhere to exposed 
bone locations, leading to bone infection. Most cases of osteomyelitis 
can be  cured; however, a small number of affected children may 
experience discrepancies in limb length between the affected and 
unaffected sides (Liu et al., 2024).

The presentation of AHO varies, ranging from localized infections 
at a single epiphyseal site to multifocal infections accompanied by 
septic shock (Funk and Copley, 2017). Fever and pain are the most 
common manifestations of bone infections. Common signs of 
osteomyelitis include fever, pain, swelling, erythema, localized 
warmth, and varying degrees of functional impairment. The onset of 
symptoms can differ depending on the type of pathogen involved 
(Calvo et al., 2016). When the lower limb bones are affected, children 
often have difficulty bearing weight or may exhibit noticeable limping, 
whereas involvement of the pelvis may lead to a waddling gait. Overall, 
the functional impairment and the location of the infection are highly 
correlated (Dich et  al., 1975). In fact, similar symptoms can 
be observed in various pediatric orthopedic conditions. For example, 
osteosarcoma (OSC) and Ewing’s sarcoma (EWS) are the most 
common primary malignant bone tumors in children and young 

adults, and they also present with significant pain and swelling (Wang 
et  al., 2022). Fractures also present with localized pain, swelling, 
functional impairment, deformities, and abnormal movements. 
Considering that children may have difficulty responding accurately 
to physical examinations, confirming a diagnosis of osteomyelitis 
through simple procedures is more challenging.

Acute hematogenous osteomyelitis is often caused by pathogen 
infections, so identifying the type of pathogen early in the disease is 
crucial for treatment (Jahan et al., 2024). This not only directly guides 
the physician’s treatment but also provides psychological comfort to 
the family. Although Staphylococcus aureus is the most common 
pathogen in osteomyelitis (McNeil, 2020), pathogen culture is the gold 
standard for pathogen diagnosis, with blood culture being the most 
common method (Woods et al., 2021). To obtain accurate culture 
results, samples need to be  taken before the use of antibiotics. 
However, in practice, it is difficult to ensure that patients have not 
self-medicated with antibiotics before admission. Bone biopsy or 
aspiration is also limited to the early stages of the disease. Thus, to 
achieve accurate culture results, discontinuing antibiotics is often 
necessary (Manz et al., 2018). For critically ill patients, discontinuing 
antibiotics to obtain accurate bacterial culture results is clearly 
impractical. Despite the stringent sampling requirements, not all 
children with acute osteomyelitis can successfully culture the pathogen 
(Section et al., 2015). Discontinuing antibiotics is often difficult for 
patients due to the potential risks of disease progression. Therefore, 
discontinuing medication to diagnose the pathogen type is a 
significant clinical challenge.

Artificial intelligence has been widely applied in the diagnosis and 
treatment of osteomyelitis. AI methods not only efficiently handle 
repetitive tasks and improve diagnostic efficiency but also explore 
complex relationships between medical information, mapping features 
to manifestations, and establishing quantitative relationships between 
medical information and clinical outcomes. A 2022 study classified 
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acute osteomyelitis, chronic osteomyelitis, and Ewing’s sarcoma using 
patient X-ray images (Consalvo et  al., 2022). Another 2022 study 
proposed a machine learning model based on clinical features and 
biomarkers to classify diabetic foot, necrotizing fasciitis, and 
osteomyelitis, trained and validated on a dataset of 1,581 samples 
(Kim et al., 2022). A 2024 study included 145 patients with diagnosed 
spinal infections undergoing metagenomic next-generation 
sequencing (mNGS) to differentiate pathogen types in iatrogenic 
vertebral osteomyelitis (IVO) and native vertebral osteomyelitis 
(NVO) (Gao et al., 2024). These studies demonstrate the potential of 
AI in the diagnosis and treatment of osteomyelitis.

This study explored the correlation between laboratory parameters 
and diseases commonly confused with acute hematogenous 
osteomyelitis. Based on this, we developed an intelligent diagnostic 
system based on clinical and laboratory features, which can classify 
patients into categories of acute hematogenous osteomyelitis, benign 
bone tumors, malignant bone tumors, and fractures. At the same time, 
we  investigated the correlation between the ability to culture 
pathogenic bacteria and the number of hospital days, and established 
a deep learning model to predict whether pathogenic bacteria can 

be cultured. This model supports clinicians in deciding whether to 
discontinue antibiotics for blood culture purposes.

2 Materials and methods

2.1 Patient

This study is a retrospective analysis that includes patients under 
18 years of age who were hospitalized at our institution from January 
1, 2016, to June 1, 2024. Baseline characteristics, including age and 
gender, were collected, as shown in Figure 1.

Inclusion criteria were as follows:

 1 Age under 18 years at the time of admission.
 2 Diagnosis of one of the following conditions: acute 

hematogenous osteomyelitis, benign bone tumor, malignant 
bone tumor, or fracture. AHO was diagnosed based on both 
laboratory indicators and clinical presentation. Benign and 
malignant bone tumors were diagnosed through pathology, 

FIGURE 2

Research workflow of this study. (A) We constructed feature vectors using patients’ clinical characteristics and laboratory parameters, and utilized the 
deep learning architecture proposed in this study for classification tasks. (B) The structural diagram of the model in this study. Input was encoded 
through a standard ANN (with three linear layers and RELU activation function) and decoded through a transformer.
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TABLE 1 Baseline information of patients.

AHO/100
Benign bone 
tumor/238

Malignant bone 
tumor/70

Fracture/226

Sex M67/F33 M146/F92 M31/F39 M153/F73

Gender 9.00 (5.00, 11.25) 11.50 (9.00, 14.00) 13.00 (10.25, 15.00) 9.00 (6.00, 11.00)

Length of hospital stay 19.50 (14.75, 27.00) 6.00 (5.00, 8.00) 15.00 (11.25, 19.00) 4.00 (3.00, 7.00)

EO# 0.15 (0.08, 0.22) 0.11 (0.10, 0.20) 0.10 (0.10, 0.20) 0.07 (0.02, 0.12)

EO% 2.40 (1.58, 3.73) 2.00 (1.30, 3.30) 1.70 (0.90, 2.90) 0.90 (0.20, 1.70)

HCT 33.95 (31.58, 36.95) 39.65 (37.60, 41.80) 34.45142 37.70 (35.25, 39.98)

HGB 112.00 (103.75, 121.00) 133.00 (124.00, 140.75) 115 126.00 (118.00, 133.00)

MCH 27.50 (26.48, 28.73) 28.40 (27.90, 29.50) 29.11285 28.40 (27.40, 29.00)

MCHC 331.18 335.00 (332.00, 340.00) 335.00 (329.00, 342.75) 335.00 (328.00, 339.00)

MCV 82.50 (80.00, 86.00) 85.00 (83.72, 87.83) 87.38571 85.00 (82.00, 87.00)

MPV 7.508 9.60 (8.50, 10.30) 9.26142 8.20 (7.50, 8.50)

PCT 0.2599 0.26394 0.278 0.25 (0.22, 0.27)

PLT 337.00 (285.75, 394.75) 280.50 (240.25, 323.75) 298.00 (260.25, 349.50) 298.00 (262.25, 342.75)

WBC 6.29 (4.98, 7.38) 6.89 (5.70, 8.00) 7.39 (5.93, 8.68) 8.41 (7.39, 11.82)

RBC 4.20 (3.80, 4.50) 4.40 (4.40, 4.71) 4.32 (4.00, 4.40) 4.40 (4.20, 4.80)

RH 1.00 (0.00, 1.00) 0.00 (0.00, 1.00) 0.00 (0.00, 0.00) 1.00 (1.00, 1.00)

A/G 1.30 (1.10, 1.60) 1.70 (1.60, 1.90) 1.586714286 1.68 (1.60, 1.90)

ALT 13.50 (10.00, 25.25) 13.00 (9.00, 18.00) 18.00 (12.00, 30.00) 13.00 (11.00, 15.00)

AST 21.00 (17.00, 25.00) 19.00 (15.00, 23.00) 19.00 (15.00, 26.00) 22.00 (21.00, 26.00)

GGT 17.00 (14.00, 28.00) 14.00 (11.00, 18.00) 21.00 (14.00, 30.25) 14.00 (12.00, 15.00)

TP 69.889 68.42521 64.57142 68.90 (68.22, 73.20)

Urea 4.31 (3.52, 4.77) 4.42 (3.81, 5.36) 4.00 (3.39, 4.59) 4.31 (3.83, 4.82)

FIGURE 3

Expression of laboratory parameters in different disease types.
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while fractures were diagnosed through imaging or clear 
clinical manifestations (i.e., pain, deformity, and 
restricted movement).

 3 For patients with AHO, at least one blood-based bacterial 
culture must have been performed during hospitalization.

Exclusion criteria were as follows:

 1 Presence of metabolic diseases.
 2 Presence of other primary tumors.
 3 Presence of multiple primary infections.
 4 Presence of primary heart, kidney, or liver dysfunction.

2.2 Laboratory parameters and blood 
culture

Collect laboratory data for the included population, The parameters 
related to blood cell counts include white blood cell count (WBC), red 
blood cell count (RBC), and platelets (PLT), all of which are obtained 
through the electrical impedance method (Coulter principle). 
Hemoglobin (HGB) is obtained using the sodium dodecyl sulfate 
hemoglobin colorimetric method. The white blood cell classification 
parameters include absolute eosinophil count (EO#, Eosinophil Count) 
and percentage (EO%, Eosinophil Percentage), absolute basophil count 
(BA#, Basophil Count) and percentage (BA%, Basophil Percentage), 
absolute lymphocyte count (LY#, Lymphocyte Count) and percentage 
(LY%, Lymphocyte Percentage), absolute monocyte count (MO#, 
Monocyte Count) and percentage (MO%, Monocyte Percentage), and 
absolute neutrophil count (NE#, Neutrophil Count) and percentage 
(NE%, Neutrophil Percentage). EO# and EO%, BA# and BA%, LY# and 
LY%, MO# and MO%, NE# and NE% are all obtained through VCS 
counting [V represents dual motor direct current characteristics 
(Coulter principle); C represents radio frequency conduction 
characteristics; S represents laser scattering]. Biochemical indicators 
include the albumin/globulin ratio (A/G), alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), where AST is obtained 
through the reduced coenzyme method (NADH method). Albumin 
(AlbG) is obtained using the bromocresol green (BCG) method, and 
direct bilirubin (BilD) and total bilirubin (BilT) are obtained through 
the vanadate oxidation method. Gamma-glutamyl transferase (GGT) 
is obtained using the l-γ-glutamyl-3-carboxy-4-nitroaniline substrate 
method, and total protein (TP) is obtained using the biuret method. 
RH represents the Rh blood type (Rhesus Blood Type), obtained 
through the gel microcolumn method. Hematocrit (HCT), platelet 
count (PLT), mean platelet volume (MPV), plateletcrit (PCT), platelet 
distribution width (PDW), mean corpuscular volume (MCV), mean 
corpuscular hemoglobin (MCH), mean corpuscular hemoglobin 
concentration (MCHC), red cell distribution width (RDW), and 
unconjugated bilirubin (UNBIL) are all calculated values.

2.3 Blood culture

After the patient visits, blood samples should be collected as 
soon as possible. Draw 10 mL of blood from each arm of the patient 
for both aerobic and anaerobic blood cultures. Subsequently, send 
the blood culture bottles to the laboratory for testing. The detection 
involves monitoring whether bacteria consume nutrients in the 
culture bottles or produce new metabolites, triggering an alarm. 
Generally, if no alarm is triggered by the instrument within 5 days, 
the result is considered negative. If an alarm is triggered by the 
culture bottle, it is necessary to perform Gram staining microscopy 
and plate inoculation with the mixed solution from the culture 
bottle. For positive alarms in aerobic blood culture bottles, blood 
agar and MacConkey agar plates are commonly used. For positive 
alarms in anaerobic blood culture bottles, ensure anaerobic 
procedures and perform incubation in an anaerobic or 
microaerophilic environment.

2.4 Deep learning model

We developed a deep learning model structure to process 
laboratory parameters. The model consists of an ANN and a 
transformer. The transformer is a sequence-to-sequence model 
based on the attention mechanism, with the core idea of using self-
attention to capture contextual relationships at different positions 
in the input sequence (Vaswani et al., 2017). We constructed 
feature vectors from clinical and laboratory data. The input is 
encoded through an ANN (including three linear layers with RELU 
activation functions) and then decoded by the transformer to 
classify the patients. For the two tasks in this study—differentiating 
AHO and identifying infection bacteria through blood cultures—
we used the same model architecture, only changing the final fully 
connected layer to suit different tasks. The research workflow of 
this study is shown in Figure 2. The deep learning model in this 
study was trained on a workstation equipped with an NVIDIA RTX 
4090 GPU (24GB VRAM) and 64GB of system memory. The 
training was based on PyTorch 2.4.1 and utilized CUDA 11.8 
for acceleration.

TABLE 2 Association between categorical variables and disease 
classification using cramér’s V.

Indicator Cramér’s V χ2 P-value

Gender 0.14607 13.528 *0.00362

RH 0.41983 111.745 *0

*Has statistical significance.

TABLE 3 Analysis of variations in continuous variables across different 
disease groups.

Indicator
H-

value
P-

value
Indicator

H-
value

P-
value

Age 88.93294 *0 PCT 21.60439 *0

EO# 80.67734 *0 PLT 37.97623 *0

EO% 108.21281 *0 WBC 109.35881 *0

HCT 136.72223 *0 RBC 66.77762 *0

HGB 133.80915 *0 A/G 133.28753 *0

MCH 47.72300 *0 ALT 24.30355 *0

MCHC 14.29948 *0.00252 AST 43.32638 *0

MCV 49.52752 *0 GGT 68.77069 *0

MPV 229.19484 *0 TP 50.19360 *0

Urea 16.94605 *0.00072

*Has statistical significance.
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TABLE 4 Baseline characteristics of the training, validation, and test sets for multicategory deep learning of laboratory parameters in AHO, benign bone tumors, malignant bone tumors, and fractures.

Train/380 Validation/126 Test/128

AHO/70
Benign 
bone 

tumor/142

Malignant 
bone 

tumor/37
Fracture/131 AHO/18

Benign 
bone 

tumor/40

Malignant 
bone 

tumor/16
Fracture/52 AHO/12

Benign 
bone 

tumor/56

Malignant 
bone 

tumor/17
Fracture/43

Sex M47/F23 M88/F54 M17/F20 M85/F46 M12/F6 M28/F12 M5/F11 M32/F20 M8/F4 M30/F26 M9/F8 M35/F8

Gender
9.00 (5.00, 

11.00)

11.00 (8.00, 

13.00)
12.64865 9.00 (6.00, 11.00) 8.50000 12.05000

14.00 (11.00, 

14.25)
8.94118 7.66667

12.00 (9.50, 

14.00)
11.82353 8.72093

EO# 0.15 (0.08, 0.22) 0.12 (0.10, 0.21) 0.10 (0.10, 0.20) 0.07 (0.02, 0.11)
0.11 (0.08, 

0.14)
0.10 (0.10, 0.20) 0.10 (0.10, 0.23) 0.06 (0.01, 0.13) 0.22250 0.14 (0.10, 0.20)

0.10 (0.02, 

0.19)
0.10 (0.03, 0.11)

EO% 2.60 (1.60, 3.80) 2.05 (1.20, 3.48) 2.00 (0.90, 3.20) 0.90 (0.20, 1.70) 2.05556 1.80 (1.50, 2.77) 2.00 (1.08, 3.10) 0.80 (0.15, 1.70) 3.65833 2.00 (1.60, 3.30) 1.41765 1.00 (0.30, 1.75)

HCT
34.40 (32.10, 

37.20)
39.43873 35.23514

37.70 (35.45, 

40.05)
34.06667

40.05 (37.70, 

43.52)
32.57500

37.70 (34.80, 

39.90)
31.28333 39.09455

31.70 (30.70, 

35.80)
37.16977

HGB
113.00 (106.00, 

122.00)
131.99296 117.94595

126.00 (119.00, 

133.50)
113.44444 135.20000 109.62500

126.00 (115.50, 

132.00)
103.75000 130.38182 113.64706 124.74419

MCH
27.30 (26.50, 

28.60)

28.50 (27.90, 

29.60)
29.07297

28.40 (27.40, 

29.30)
27.80556

28.40 (27.93, 

28.73)
28.98750 27.91961 26.74167 28.39818 29.31765 28.61163

MCHC 331.08696
335.00 (332.00, 

339.75)
335.27027

335.00 (329.00, 

339.00)
332.50000 336.75000 339.43750 333.58824 330.75000 334.92727 330.94118 335.69767

MCV
82.00 (80.00, 

85.00)
85.51479 86.95946

85.00 (82.00, 

87.00)
83.61111

85.00 (83.88, 

86.27)
86.42500 83.70588 80.83333 85.18545 89.21765 85.30233

MPV 7.48116
9.60 (8.60, 

10.30)
9.13514 8.20 (7.60, 8.50) 7.62222 9.54500 9.58750 8.01569 7.47500 9.31455 9.22941 8.50 (7.50, 8.60)

PCT 0.26536 0.26711 0.28 (0.25, 0.30) 0.25 (0.21, 0.27) 0.22778 0.25525 0.28125 0.26 (0.21, 0.28) 0.27750 0.26309 0.27294 0.26 (0.23, 0.28)

PLT
345.00 (292.00, 

401.00)

279.00 (242.25, 

331.25)

298.00 (267.00, 

339.00)

298.00 (251.50, 

337.50)

285.00 

(254.25, 

325.50)

274.00 (232.75, 

298.00)
312.00000 316.54902 375.25000

296.00 (256.00, 

324.50)
304.41176

303.00 (278.00, 

342.00)

WBC 6.29 (5.04, 7.75) 6.90 (5.83, 8.54) 7.11541 8.40 (7.39, 11.75) 6.09000 6.48675 7.23875 9.97098 6.92917 7.03382 8.65471 8.27 (7.39, 9.96)

RBC 4.20 (3.90, 4.60) 4.42 (4.40, 4.71) 4.39 (4.00, 4.44) 4.40 (4.20, 4.80) 4.07778 4.40 (4.40, 4.65) 4.20 (4.04, 4.40) 4.40 (4.20, 4.80) 3.88333 4.48 (4.40, 4.80) 4.14294 4.40 (4.15, 4.75)

RH 1.00 (0.00, 1.00) 0.00 (0.00, 1.00) 0.00 (0.00, 0.00) 1.00 (1.00, 1.00)
0.00 (0.00, 

1.00)
0.00 (0.00, 1.00) 0.00 (0.00, 0.00) 1.00 (1.00, 1.00)

0.50 (0.00, 

1.00)
0.00 (0.00, 1.00)

0.00 (0.00, 

0.00)
1.00 (0.00, 1.00)

A/G 1.30 (1.10, 1.60) 1.75690 1.57541 1.68 (1.60, 1.80)
1.45 (1.20, 

1.66)
1.74300 1.57813 1.68 (1.50, 1.90) 1.38833 1.70 (1.60, 1.86) 1.61941 1.68 (1.60, 1.90)

ALT
14.00 (10.00, 

25.00)

13.00 (9.00, 

18.00)

21.00 (12.00, 

30.00)

13.00 (11.50, 

15.00)

19.50 (13.00, 

37.00)

12.50 (9.75, 

18.25)

18.00 (9.75, 

34.50)

13.00 (10.00, 

15.00)
13.25000

13.00 (9.00, 

16.00)

14.00 (10.00, 

24.00)

13.00 (11.50, 

14.00)

(Continued)
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2.5 Statistical analysis

Statistical analysis was performed using IBM SPSS software 
version 26.0. First, the Kolmogorov–Smirnov test was conducted to 
assess the normality of all data. For normally distributed data, the 
mean ± standard deviation was used for description, while for 
non-normally distributed data, the median (interquartile range) was 
used. Differences in continuous variables among multiple groups 
were analyzed using the Kruskal–Wallis H test, while categorical 
variables were analyzed using the chi-square test, with Cramér’s V 
used to quantify the strength of association. In the analysis between 
two groups, after testing for normality, the Mann–Whitney U test 
was applied to non-normally distributed data, and the t-test was 
used for normally distributed data. Differences in categorical 
variables were analyzed using the chi-square test, and Cramér’s V 
was used to quantify the association between categorical variables. 
Correlations between continuous variables were assessed using 
Pearson’s test for normally distributed data and Spearman’s test for 
non-normally distributed data. A p-value of <0.05 was considered 
statistically significant. Statistical plots were generated using 
Python’s matplotlib.

3 Results

3.1 Baseline

A total of 634 patients were included in this study, with variables 
having missing values greater than 20% being removed. Table 1 shows 
the clinical information and laboratory parameters of the 
included patients.

3.2 Multicategory correlation analysis of 
laboratory parameters for AHO, benign 
bone tumors, malignant bone tumors, and 
fractures

The expression of laboratory parameters in patients with different 
disease types is shown in Figure 3.

Correlation test results for disease types and clinical 
characteristics, as well as laboratory parameters, are presented in 
Tables 2, 3. We  found that, among clinical characteristics, both 
gender and age were related to orthopedic disease types. In 
laboratory parameters, all parameters included in this study were 
related to orthopedic disease types.

3.3 Multicategory deep learning of 
laboratory parameters for AHO, benign 
bone tumors, malignant bone tumors, and 
fractures

By removing columns with more than 20% missing values and 
imputing the missing values, a total of 21 common variables across the 
four diseases were used in modeling. The training, validation, and test 
sets were split in a 6:2:2 ratio, with baseline characteristics shown in 
Table 4.T
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FIGURE 4

Accuracy and loss curves of the multicategory deep learning model for laboratory parameters in AHO, benign bone tumors, malignant bone tumors, 
and fractures on the training and validation sets.

TABLE 5 Correlation between continuous variables and hospitalization duration.

Indicator Correlation P-value Indicator Correlation P-value

Age 0.00963 0.92427 LY# −0.02446 0.80911

EO# 0.04269 0.67326 LY% 0.05748 0.56999

EO% 0.09702 0.33692 MO# 0.08611 0.39429

HCT −0.33353 *0.00070 MO% 0.07880 0.43583

HGB −0.35001 *0.00036 NE# −0.07093 0.48315

MCH −0.25294 *0.01112 NE% −0.09425 0.35096

MCHC −0.15533 0.12281 RDW 0.37916 *0.00010

MCV −0.26286 *0.00824 A/G −0.03404 0.73673

MPV 0.03388 0.73787 ALT 0.02556 0.80071

PCT −0.05340 0.59771 AST −0.15158 0.13222

PLT 0.08313 0.41091 AlbG −0.06810 0.50082

WBC −0.05722 0.57176 BilD 0.01904 0.85087

RBC −0.22104 *0.02710 BilT −0.05883 0.56096

PDW 0.04390 0.66454 GGT −0.07641 0.44987

BA# 0.08405 0.40572 TP −0.08939 0.37648

BA% 0.06003 0.55300 UNBIL −0.12966 0.19854

*Has statistical significance.

The training results are shown in Figure 4. Over 32 epochs, the 
model achieved optimal performance on the validation set and 
attained an accuracy of 1.0 on the test set.

3.4 Correlation between hospitalization 
duration for AHO and laboratory 
parameters

As shown in Tables 5, 6, although AHO is more common in males, 
there is no correlation between the patient’s gender or age and their 
hospitalization duration. Among the laboratory parameters, RDW is 
positively correlated with the length of hospital stay, while HCT, HGB, 
MCH, MCV, and RBC are negatively correlated with the length of 
hospital stay, with a p-value of <0.05. This indicates a strong link between 
the patient’s hospitalization duration and their red blood cell 
physiological state. Although inflammation markers can assess disease 

TABLE 6 Analysis of variations in hospitalization duration across different 
categorical variables.

Indicator U-value P-value

Bacterial culture 1636.0 *0.00362

Gender 1272.0 0.22296

RH 943.0 0.07069

*Has statistical significance.
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severity, they are not directly related to the patient’s hospitalization 
duration. Liver function also shows no correlation with the 
hospitalization duration for AHO. The correlation between bacterial 
culture results and clinical information or laboratory parameters in AHO 

patients reveals statistical differences in HCT, HGB, RDW, A/G, and 
AlbG. Additionally, there is a significant difference in the length of 
hospital stay between the negative and positive culture sample groups. 
As shown in Table  7, patients with positive cultures have a longer 
hospital stay.

3.5 Correlation analysis of bacterial culture 
results in AHO

Baseline information for AHO patients is shown in Table  7. 
Additionally, among the patients with positive cultures, the identified 
strains included 51 Staphylococcus aureus, 1 Acinetobacter baumannii, 

TABLE 7 Baseline information for AHO bacterial culture.

Negative/42 Positive/58

Gender M26/F16 M41/F17

Age 8.00 (4.00, 11.00) 10.00 (6.00, 12.00)

Length of hospital 

stay
16.00 (12.00, 23.00) 21.00 (16.00, 28.00)

EO# 0.14 (0.08, 0.27) 0.15 (0.09, 0.21)

EO% 2.40 (1.55, 4.00) 2.45 (1.60, 3.55)

HCT 35.25476 32.65172

HGB 119.00 (110.00, 125.00) 107.91379

MCH 27.65714 27.50 (26.10, 28.75)

MCHC 332.40476 330.29310

MCV 83.21429 82.00 (78.50, 85.00)

MPV 7.52857 7.49310

PCT 0.25905 0.26052

PLT 333.50 (288.25, 376.00) 352.81034

WBC 5.99 (4.90, 7.69) 6.36 (5.03, 7.30)

RBC 4.21429 4.10 (3.80, 4.45)

PDW 16.20952 16.20 (15.93, 16.40)

BA# 0.03310 0.03 (0.02, 0.04)

BA% 0.60 (0.40, 0.70) 0.50 (0.40, 0.70)

LY# 2.35 (1.80, 3.05) 2.20 (1.80, 2.90)

LY% 41.83571 37.92931

MO# 0.40 (0.33, 0.60) 0.40 (0.40, 0.60)

MO% 7.60000 7.35 (5.62, 8.10)

NE# 2.70 (2.02, 3.75) 3.10 (2.02, 4.20)

NE% 46.96429 51.12759

RDW 14.44524 14.60 (14.03, 16.10)

RH 1.00 (0.00, 1.00) 1.00 (0.00, 1.00)

A/G 1.30 (1.20, 1.40) 1.22759

ALT 16.00 (10.00, 20.00) 16.00 (11.25, 30.75)

AST 20.00 (18.25, 25.75) 20.00 (16.00, 23.00)

AlbG 39.55 (38.50, 41.30) 38.40 (36.05, 39.27)

BilD 1.60 (1.30, 2.27) 1.70 (1.30, 2.85)

BilT 4.75 (3.17, 6.35) 4.80 (3.82, 6.80)

GGT 18.00 (13.25, 23.00) 19.50 (16.25, 30.00)

TP 70.06905 69.91552

UNBIL 3.00 (2.02, 4.28) 3.00 (2.42, 4.07)

TABLE 8 Association between categorical variables and bacterial culture 
negative/positive groups using cramér’s V.

Indicator Cramér’s V χ2 P-value

Gender 0.07067 0.49937 0.47978

RH 0.05376 0.28907 0.59082

TABLE 9 Analysis of variations in continuous variables between bacterial 
culture negative and positive groups.

Indicator U-statistic P-value

Age 1,416 0.16587

EO# 1,187 0.83119

EO% 1137.5 0.57622

HGB 751 *0.00111

MCH 1,073 0.31273

MCV 1058.5 0.26504

PLT 1,257 0.78801

WBC 1238.5 0.88891

RBC 982.5 0.10002

PDW 1199.5 0.89968

BA# 1,251 0.81698

BA% 1165.5 0.71384

LY% 1,012 0.15122

MO# 1193.5 0.86423

MO% 1,124 0.51365

NE% 1433.5 0.13321

RDW 1,431 0.13761

A/G 896.5 *0.02347

ALT 1381.5 0.25372

AST 1,071 0.30436

AlbG 762.5 *0.00146

BilD 1444.5 0.11271

BilT 1,362 0.31502

GGT 1516.5 *0.03702

UNBIL 1284.5 0.64422

Indicator t-statistic P-value

HCT 3.15776 *0.00211

MCHC 0.97213 0.33338

MPV 0.21465 0.83049

PCT −0.10334 0.91791

LY% 1.39233 0.16697

NE% −1.47695 0.14289

TP 0.11779 0.90647

*Has statistical significance.
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FIGURE 5

Upregulation and downregulation of parameters in the groups with 
or without detection of pathogenic bacteria in AHO patients: 
parameters were adjusted as follows: RDW was upregulated, while 
A/G, HGB, HCT, and AlbG were downregulated.

1 Staphylococcus epidermidis, 1 Bacillus subtilis, 1 Achromobacter 
xylosoxidans, 1 Klebsiella, 1 Malassezia furfur, and 1 
Pseudomonas aeruginosa.

As shown in Tables 8, 9, there are no significant differences in 
gender and RH between the negative and positive culture sample 
groups. Only HGB, A/G, AlbG, GGT, and HCT showed significant 
differences between the negative and positive culture sample groups. 
According to Table 7, the positive culture group had lower levels of 
HGB, A/G, AlbG, and HCT, and higher levels of GGT. The 
upregulation and downregulation situations in the two groups are 
illustrated in Figure 5.

3.6 Deep learning model for detecting 
pathogenic bacteria in AHO

By removing columns with more than 20% missing values and 
filling in the missing values, 34 common variables from both bacterial 
culture negative and positive AHO patients were used for modeling. 
The baseline features are shown in Table 10.

The training/testing ratio was 6:2:2. The training results are 
shown in Figure 6. Over 58 epochs, the model achieved optimal 
performance on the validation set and an accuracy of 1.0 on the 
test set.

4 Discussion

Acute hematogenous osteomyelitis is a challenging diagnosis in 
pediatric emergency departments. The condition can develop 
gradually over a few days but typically manifests within 2 weeks. 
Patients may present with localized symptoms such as redness, 
swelling, and fever at the infection site. They might experience dull 
pain, with or without movement, and sometimes systemic symptoms 
such as fever or chills. In subacute cases, some patients may exhibit 
generalized discomfort, mild pain over several weeks accompanied 
by slight fever or other systemic symptoms (Schmitt, 2017). The 

variety of symptoms and the difficulty children have in clearly 
describing their condition make the diagnosis and treatment of 
osteomyelitis quite challenging (Stephan et al., 2022). In this study, 
we  propose a diagnostic model consisting of two deep learning 
models that can accurately diagnose AHO in children and predict 
whether the pathogenic bacteria can be identified through blood 
cultures. This study not only provides clinicians with a 
straightforward method for confirming AHO but also offers support 
for decisions regarding the necessity of stopping antibiotics for 
bacterial culture.

There are several methods for diagnosing AHO, with blood 
cultures and X-rays currently being strongly recommended. 
However, both methods have their drawbacks. Blood cultures 
require a lengthy period to yield results and cannot always ensure 
accuracy (Doern et al., 2019). X-rays, while simple, quick, and safe, 
have low sensitivity (Zaki and Morrison, 2024). Additionally, MRI 
often requires sedation for pediatric patients, and collecting samples 
from the affected area for bacterial culture through invasive methods 
faces the same issues as blood culture (Dartnell et al., 2012; Dong 
et al., 2019). In addition to these two types of examination methods, 
recent research by Paliwal et al. (2021) has revealed the diagnostic 
capability of ultrasound for acute hematogenous osteomyelitis 
(AHO). By assessing the accumulation of deep soft tissue fluid 
around the bones in AHO cases, rapid diagnosis can be achieved. 
This method is also expected to advance the diagnosis of AHO 
(Paliwal et al., 2021).

Additionally, Stephan et al. (2022) identified elevated C-reactive 
protein (CRP) and erythrocyte sedimentation rate (ESR) as the most 
sensitive laboratory markers in pediatric emergency settings. In the 
study by Manz et  al. (2020), elevated CRP was also found to 
be  associated with poor long-term outcomes in AHO. Based on 
previous studies, Stephan et al. (2024) also demonstrated in subsequent 
experiments that elevated CRP and ESR are closely related to poor 
long-term prognosis in AHO. In this study, we propose a method for 
diagnosing AHO through laboratory parameters. By employing a 
multiclass model structure, it can effectively diagnose several common 
orthopedic conditions, significantly enhancing diagnostic efficiency. 
Considering that the model in this study needs to differentiate between 
osteomyelitis and other orthopedic diseases, and that C-reactive protein 
and erythrocyte sedimentation rate are not essential laboratory 
parameters for orthopedic diseases, they were not included in this study.

Different types of pathogenic bacteria may lead to variations in 
hospital length of stay. A 2023 study indicated that there is a difference 
in hospital stay duration for osteomyelitis caused by methicillin-
resistant Staphylococcus aureus (MRSA) and methicillin-sensitive 
Staphylococcus aureus (MSSA) (Wen et al., 2023). Additionally, children 
with acute osteomyelitis who are Black, Hispanic, or of other races and 
ethnicities have longer hospital stays compared to White children 
(Campbell et al., 2023). In our study, we found that the infection level 
and liver function levels of patients were not associated with the length 
of hospital stay. Considering that in China, the length of hospital stay 
is highly correlated with the patient’s recovery of physical health and is 
less influenced by the wishes of the patients and their families, 
we believe that the status of the red blood cells is an important factor 
affecting the recovery process of AHO. This study found a positive 
correlation between RDW and length of hospital stay, while HCT, 
HGB, MCH, MCV, and RBC showed a negative correlation with length 
of hospital stay. This may be due to the important role of red blood cells 
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in oxygen transport and bone tissue repair. If there is an insufficient 
number of red blood cells (as seen in anemia) or abnormal red blood 
cell function, the bone tissue may not receive enough oxygen, which 
can delay repair.

The Pediatric Infectious Diseases Society and the Infectious 
Diseases Society of America recommend performing blood cultures 
before the use of antibiotics (Woods et al., 2021). Despite the presence 
of clear symptoms, the detection rate of blood cultures remains 
unsatisfactory, and this rate rarely exceeds 60% in various cohorts 
(Russell et al., 2015; McNeil et al., 2019). Although sampling from 
adjacent infected sites can somewhat improve the detection rate, it 

does not provide an overwhelming advantage over blood cultures 
(Athey et al., 2019). In practical medical work, patients often have 
already been on oral antibiotics for some time by the time they arrive 
at the hospital. Once effective antibiotics are started, the detection 
rate of blood cultures usually drops rapidly within a few hours of 
exposure. Therefore, deciding whether to stop antibiotics for culture 
testing is a challenging decision for physicians. Previous studies have 
analyzed different clinical features as independent predictors of 
positive blood cultures (Burns et al., 2023). In this study, our model 
accurately predicts whether pathogens can be  identified through 
blood cultures. This provides guidance for clinicians on whether to 

TABLE 10 Baseline features of the deep learning model for pathogen detection in training, validation, and test sets.

Train Validation Test

Negative Positive Negative Positive Negative Positive

Sex M15/F13 M 25/F7 M 3/F3 M 8/F6 M 8/F1 M 8/F3

Gender 6.51852 10.00 (6.75, 11.25) 11.40000 7.85714 9.75000 11.00 (8.50, 13.00)

EO# 0.15 (0.08, 0.27) 0.14 (0.09, 0.20) 0.07200 0.13 (0.09, 0.17) 0.26375 0.18636

EO% 2.60 (1.15, 4.00) 2.55 (1.68, 3.08) 2.10 (1.10, 2.10) 1.60 (1.10, 4.28) 4.12500 3.23636

HCT 35.19259 32.66875 34.18000 34.32857 36.16250 29.70909

HGB 116.88889 108.46875 106.80000 112.92857 122.12500 104.00 (85.50, 108.50)

MCH 27.67778 27.65 (26.60, 29.02) 27.14000 27.28571 28.12500 24.42727

MCHC 332.33333 331.90625 328.20000 328.64286 337.62500 327.45455

MCV 83.33333 82.00 (80.75, 85.25) 82.60000 83.00000 83.37500 74.63636

MPV 7.57407 7.39688 7.62000 7.34286 7.33750 7.85455

PCT 0.24 (0.23, 0.29) 0.26094 0.22600 0.24929 0.27375 0.27727

PLT 331.00 (289.50, 365.50) 336.00 (289.75, 407.75) 301.40000 342.35714 379.37500 359.90909

WBC 6.78630 6.35 (4.83, 6.96) 4.78000 7.03786 6.29625 6.27636

RBC 4.22593 3.99688 3.94000 4.13571 4.35000 4.04545

PDW 16.26667 16.24063 16.10000 15.98571 16.07500 16.34545

BA# 0.03556 0.03 (0.02, 0.04) 0.02800 0.04071 0.03 (0.02, 0.03) 0.03091

BA% 0.60 (0.40, 0.70) 0.50 (0.40, 0.72) 0.64000 0.59286 0.55000 0.49091

LY# 2.70 (1.90, 3.30) 2.24375 1.56000 2.56429 2.11250 2.30 (1.80, 2.60)

LY% 45.11481 37.85000 32.88000 38.67857 34.76250 39.34545

MO# 0.40 (0.35, 0.60) 0.48125 0.46000 0.40 (0.40, 0.47) 0.45000 0.43636

MO% 7.31481 7.75 (6.57, 8.30) 9.00000 6.65 (5.38, 7.95) 7.12500 6.87273

NE# 2.70 (2.00, 3.40) 3.05 (2.18, 3.88) 2.86000 3.76429 3.43750 3.18182

NE% 43.90741 51.00313 56.04000 50.32857 53.46250 50.05455

RDW 14.57037 14.60 (14.10, 15.72) 15.28000 14.45000 13.65000 17.81818

RH 1.00 (0.00, 1.00) 0.50 (0.00, 1.00) 1.00 (1.00, 1.00) 1.00 (0.00, 1.00) 1.00 (0.75, 1.00) 1.00 (0.50, 1.00)

A/G 1.30 (1.20, 1.45) 1.18125 1.48000 1.31429 1.27500 1.22727

ALT 15.00 (9.00, 20.00) 16.00 (11.00, 28.25) 23.80000 17.00 (12.25, 40.25) 14.50000 16.00 (13.50, 23.50)

AST 23.00 (19.50, 26.00) 19.00 (16.00, 22.25) 19.40000 20.50 (19.00, 26.75) 18.12500 20.00 (17.00, 21.50)

AlbG 39.30 (38.45, 41.20) 36.88438 41.20000 37.76429 39.95000 38.60 (37.35, 40.55)

BilD 1.70 (1.30, 2.45) 1.70 (1.30, 2.70) 1.40 (1.30, 2.30) 1.60 (1.30, 2.55) 1.40000 1.70 (1.65, 2.40)

BilT 5.50000 4.80 (3.10, 6.42) 3.70 (3.40, 5.40) 5.19286 3.98750 4.80 (4.60, 6.95)

GGT 15.00 (12.50, 20.00) 21.00 (16.75, 30.00) 26.40000 29.00 (17.50, 50.25) 21.00000 19.18182

TP 69.84444 70.17500 69.44000 67.52143 71.50000 71.26364

UNBIL 3.52222 3.00 (1.95, 4.17) 2.60 (2.30, 3.10) 3.00 (2.60, 3.33) 2.57500 3.20 (2.75, 4.05)
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FIGURE 6

Accuracy and loss curves of the deep learning model for pathogen detection on training and validation sets.

proceed with empirical antibiotic treatment. This study reveals that, 
in addition to affecting the recovery process of AHO patients, red 
blood cell status also influences the results of bacterial culture. This 
may be related to how red blood cell status affects the overall function 
of the immune system, thereby impacting the proliferation and 
distribution of bacteria within the body. Abnormal red blood cell 
function may weaken the immune response to infections, allowing 
pathogens to become localized in tissues and making them more 
difficult to detect in blood cultures.

Despite this, the study has some limitations. First, it is a single-
center study, including both laboratory parameters and blood culture 
results. This suggests that the study may have potential issues with 
generalizability. Second, the study only established a classification 
method between acute hematogenous osteomyelitis and benign bone 
tumors, malignant bone tumors, and fractures, without exploring 
classifications for different subtypes and disease progressions of 
osteomyelitis, which is also due to a lack of data. Third, while the 
study predicted whether pathogens could be successfully cultured 
from patients, it did not further classify the cultured pathogens. 
Fourth, this study only included laboratory parameters from AHO 
patients, while the diagnosis of AHO can also rely on imaging 
information. Due to a lack of data, this study did not include any 
medical imaging information. Therefore, the next step for this 
research is to collect data from multiple centers, expand the cohort, 
and include more data modalities.

5 Conclusion

Early laboratory parameters can accurately diagnose whether 
pediatric patients have acute hematogenous osteomyelitis. Laboratory 
parameters can describe the severity of acute hematogenous 
osteomyelitis and are somewhat correlated with the patient’s length of 
hospital stay. Early laboratory parameters can predict whether a 
patient’s blood sample will successfully culture pathogens, thereby 
guiding clinical decision-making, indirectly improving clinical 
outcomes, and shortening the hospital stay.
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Introduction: The integration of artificial intelligence (AI) in pathogenic microbiology 
has accelerated research and innovation. This study aims to explore the evolution and 
trends of AI applications in this domain, providing insights into how AI is transforming 
research and practice in pathogenic microbiology.

Methods: We employed bibliometric analysis and topic modeling to examine 
27,420 publications from the Web of Science Core Collection, covering the 
period from 2010 to 2024. These methods enabled us to identify key trends, 
research areas, and the geographical distribution of research efforts.

Results: Since 2016, there has been an exponential increase in AI-related 
publications, with significant contributions from China and the USA. Our analysis 
identified eight major AI application areas: pathogen detection, antibiotic 
resistance prediction, transmission modeling, genomic analysis, therapeutic 
optimization, ecological profiling, vaccine development, and data management 
systems. Notably, we found significant lexical overlaps between these areas, 
especially between drug resistance and vaccine development, suggesting an 
interconnected research landscape.

Discussion: AI is increasingly moving from laboratory research to clinical 
applications, enhancing hospital operations and public health strategies. It plays a 
vital role in optimizing pathogen detection, improving diagnostic speed, treatment 
efficacy, and disease control, particularly through advancements in rapid antibiotic 
susceptibility testing and COVID-19 vaccine development. This study highlights 
the current status, progress, and challenges of AI in pathogenic microbiology, 
guiding future research directions, resource allocation, and policy-making.

KEYWORDS

pathogenic microorganisms, artificial intelligence (AI), machine learning (ML), deep 
learning (DL), bibliometrics, topic modeling, antimicrobial resistance (AMR)

1 Introduction

Pathogenic microorganisms, including viruses, bacteria, fungi, and parasites, cause 
infections and diseases in hosts. Since the 1960s, the widespread use of antibiotics has driven 
the evolution of these microorganisms through natural selection, gene recombination, and 
horizontal gene transfer (HGT), leading to antibiotic resistance (AMR).
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AMR results in millions of deaths annually worldwide, posing 
a severe threat to public health (Saha and Sarkar, 2021; Uddin et al., 
2021). Traditional culture-based methods fail to address the 
increasing genetic diversity and resistance of pathogens. In the era 
of big data, research on pathogenic microorganisms heavily relies 
on high-throughput sequencing, metagenomics, proteomics, and 
targeted techniques (Lewis et al., 2021; Wani et al., 2022). Effectively 
organizing, analyzing, and interpreting the vast amounts of 
biomedical data generated has emerged as a new challenge.

AI, a field that simulates and extends human intelligence through 
computational devices, provides powerful tools to address these 
challenges. Machine learning (ML) improves computer performance 
through pattern recognition and analysis, enabling precise microbial 
classification, biomarker identification, small molecule compound 
library screening, and novel anti-infective drug discovery.

Deep learning (DL), comprising multilayer neural networks, boosts 
data generation capabilities for pathogenic microorganisms through 
neural networks, generative models, and variational autoencoders (Huo 
and Wang, 2024; Wong et  al., 2023). Computer vision (CV) rapidly 
detects pathogens in microscope or fluorescence sensor images (Zhao 
et  al., 2024; Matias et  al., 2021). Natural language processing (NLP) 
automatically identifies information from scientific literature on pathogen 
research (Jimeno-Yepes and Verspoor, 2023) and analyzes bacteriophage 
genomes to predict their life cycles (Tynecki et al., 2020).

The application of AI in pathogenic microbiology has been 
widely explored, with many scholars evaluating its use in related 
research. Literature reviews date back to 2014. Specifically, Nourani 
et al. studied ML, homology prediction, and structural prediction in 
predicting pathogen-host protein interactions (PHI) between 2009 
and 2014, crucial for understanding infection mechanisms (Nourani 
et al., 2015). Rondon-Villarreal et al. reviewed ML in antimicrobial 
peptide design, a potential new class of antimicrobial drugs to 
combat AMR (Rondon-Villarreal et  al., 2014). Qu et  al. 
comprehensively reviewed ML in microbiology, covering microbial 
classification from high-throughput sequencing data, environmental 
and host phenotype prediction, and microbial-disease association 
analysis (Qu et al., 2019). Agany et al. explored data mining and ML 
in understanding vector-host-pathogen relationships from 2012 to 
2020, highlighting advances in DL and association rule analysis 
(Agany et  al., 2020). Peiffer-Smadja et  al. studied ML in clinical 
microbiology, identifying 97 ML systems aimed at assisting clinical 
microbiologists with bacterial, parasitic, viral, and fungal infection 
analysis and antimicrobial sensitivity assessment up to 2020 (Peiffer-
Smadja et al., 2020). Pillai et al. summarized various AI models (e.g., 
logistic regression, random forests, support vector machines, neural 
networks, ensemble methods) in predicting zoonotic disease 
outbreaks and identifying risk factors (Pillai et al., 2022). He et al. 
introduced AI’s role in infectious disease drug delivery, including 
drug development, resistance prediction, dose optimization, and 
drug combination selection (He et al., 2021). Hu et al. discussed ML’s 
broad applications in protozoan pathogen and infectious disease 
research, covering detection, diagnosis, monitoring, host–parasite 
interactions, drug discovery, and vaccine development (Hu et al., 
2022). Kaur et  al. reviewed AI techniques in predicting and 
monitoring vector-borne diseases and their pathogens, noting 
significant progress in disease prediction, vector identification, and 
outbreak monitoring through ML and DL (Kaur et al., 2022).

Despite several studies exploring the application of AI in specific 
areas of pathogenic microbiology, a systematic analysis of the overall 

development trends and knowledge structure of the field is lacking. 
Previous literature reviews have primarily focused on AI’s performance 
in specific application scenarios. These studies provide important 
references for understanding AI’s value in specific applications but fail to 
offer a comprehensive grasp of the overall development landscape of AI 
in pathogenic microbiology research.

In this context, bibliometrics and topic modeling offer powerful 
methods to explore and understand scientific research in this 
domain. Bibliometrics, a statistical method widely used to analyze 
publication trends and relationships in the medical field, includes 
evaluative and relational bibliometrics. The latter reveals hidden 
relationships and research status by analyzing metadata from authors, 
papers, and journals (Ninkov et al., 2022). Topic modeling, a natural 
language processing technique, identifies latent semantic patterns in 
document collections, helping researchers discover cross-disciplinary 
themes and research trends. Latent Dirichlet Allocation (LDA) is the 
most widely utilized technique for this purpose (Vayansky and 
Kumar, 2020). This study aims to conduct a large-scale quantitative 
analysis of AI applications in the field of pathogenic microbiology 
through bibliometrics and topic modeling methods. Compared to 
existing studies, this paper has the following innovations and 
contributions: (1) By utilizing 27,420 publications spanning 2010 to 
2024, the study conducts a comprehensive quantitative analysis of the 
field for the first time, covering a wide scope; (2) The integration of 
bibliometrics and topic modeling techniques not only reveals 
research hotspots and trends but also deeply explores the potential 
knowledge structure; and (3) A systematic review of AI’s 
advancements in eight major application areas within pathogenic 
microbiology provides a scientific basis for future research directions 
and resource allocation.

2 Methods

2.1 Data collection

To ensure the scientific rigor and authority of the literature review, 
we retrieved data from the Web of Science Core Collection (WoSCC), 
the oldest and most widely used research publication and citation 
database globally (Birkle et al., 2020). The citation index includes various 
versions of WoSCC, such as the Science Citation Index Expanded 
(SCI-EXPANDED), Social Sciences Citation Index (SSCI), Current 
Chemical Reactions (CCR-EXPANDED), and Index Chemicus (IC).

The search terms were derived from key phrases mentioned in 
previous review articles on AI applications in pathogenic microbiology 
(Table 1). The final search string was: TS = (“Pathogen-host protein–
protein interactions” OR Host OR Pathogen OR “Drug Resistance” 
OR “Antimicrobial Peptides” OR Viruses OR Bacteria OR Fungi OR 
“Vector-Host-Pathogen Relationships” OR Vector OR Parasites OR 
“Infectious Diseases” OR “Pathogenic Microbes”).

AND TS = (“Deep Learning” OR “Association Rule Mining” OR 
“Artificial Neural Network” OR “Support Vector Machine” OR 
“K-nearest Neighbors” OR “Decision Trees” OR “Regression Trees” 
OR “Classification Trees” OR “Gradient Boosting” OR “Adaptive 
Boosting” OR “eXtreme Gradient Boosting” OR “Long Short Term 
Memory network” OR “Generative Adversarial Network” OR “Auto-
Encoder” OR “Convolutional Neural Networks” OR “Ensemble 
Classifiers” OR “Support Vector Machine”). This search yielded 
151,593 results.
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2.1.1 Screening criteria
Inclusion and exclusion criteria were established to filter the 

results. The inclusion criteria focused on research articles related to AI 
and pathogenic microorganisms. Exclusion criteria were set for 
outdated articles, non-English literature, irrelevant disciplines, 
conference abstracts, and duplicate documents. The screening was 
performed independently by two authors to ensure accuracy and 
consistency. The specific steps were:

 1. Year Limitation: Restricting the publication years to 2010–
2024 eliminated 4,858 articles. This timeframe was selected 
because the rapid advancements in AI and pathogenic 
microbiology, particularly the widespread application of 
metagenomics and high-throughput sequencing, began around 
2010 (Sheetal Ambardar et al., 2016; Park et al., 2016).

 2. Language Restriction: Non-English articles (163) were 
removed to ensure the inclusion of high-impact research and 
important results published in major journals.

 3. Disciplinary Focus: Articles from non-medical fields (78,574), 
such as engineering or computer science, were excluded. These 
fields often focus more on technical developments and 
algorithm optimization, which could introduce noise into the 
bibliometric analysis.

 4. Document Type: Only “Article” and “Review Article” 
categories were included, eliminating 40,457 documents from 
other types like proceeding papers, book chapters, letters, and 
news items.

 5. Duplicate Removal: Using Endnote software, 121 duplicate 
documents were automatically removed to ensure data 
uniqueness and completeness.

TABLE 1 Sources of search terms for this study.

Author Paper title Keywords related to 
AI

Keywords related to pathogenic 
microorganisms

Year

Nourani Computational approaches for prediction 

of pathogen-host protein–protein 

interactions

Homology-based prediction

Structure-based prediction

Pathogen-host protein–protein interactions

Host

Pathogen

2015

Rondon-Villarrea Machine Learning in the Rational Design 

of Antimicrobial Peptides

Machine learning Drug Resistance

Antimicrobial Peptides

2014

Qu Application of Machine Learning in 

Microbiology

Supervised Learning

Unsupervised Learning

Support Vector Machine

Naïve Bayes

Random Forest

K Nearest Neighbor

Viruses

Bacteria

Fungi

2019

Agany Assessment of vector-host-pathogen 

relationships using data mining and 

machine learning

Data Mining

Deep Learning

Association Rule Mining

Vector-Host-Pathogen Relationships

Vector

2020

Peiffer-Smadja Machine learning in the clinical 

microbiology laboratory: has the time 

come for routine practice?

Artificial Neural Network

Support Vector Machine

Logistic Regression

K-nearest Neighbors

Decision\Regression\

Classification Trees

Gradient Boosting

Adaptive Boosting

Parasites 2020

Pillai Artificial Intelligence Models for Zoonotic 

Pathogens: A Survey

eXtreme Gradient Boosting

Long Short Term Memory 

network

Generative Adversarial Network

Auto-Encoder

2020

He Artificial intelligence and machine learning assisted drug delivery for effective 

treatment of infectious diseases

Infectious Diseases 2021

Hu Machine Learning and Its Applications for 

Protozoal Pathogens and Protozoal 

Infectious Diseases

Convolutional Neural Networks 2022

Kaur Artificial Intelligence Techniques for 

Predictive Modeling of Vector-Borne 

Diseases and its Pathogens: A Systematic 

Review

Ensemble Classifiers

Support Vector Machine

Pathogenic Microbes 2022
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The final dataset comprised 27,420 articles for analysis (Figure 1).

2.2 Bibliometric analysis

The data was exported in plain text format, including full records 
and cited references. The clean dataset was imported into three 
software programs for visualization analysis: R-Bibliometrix 4.3.1, 
CiteSpace 6.1.R6 (64-bit) Advanced, and VOSviewer 1.6.19.

2.2.1 Bibliometrix
This R-based bibliometric analysis package, launched in 2017, 

offers robust data processing and multi-dimensional chart generation 
capabilities (Aria and Cuccurullo, 2017; Arruda et al., 2022). We used 
Bibliometrix 4.3.1 to analyze annual publications, author H-indices, 
productivity over time, high-impact journals, and highly cited papers.

2.2.2 CiteSpace
Developed by Professor Chaomei Chen in 2004, CiteSpace is a 

Java-based scientific literature analysis software capable of document 
co-citation, collaboration network, and burst term analysis (Chen, 
2018). We  used CiteSpace 6.1.R6 (64-bit) Advanced to generate 
co-occurrence maps of institutions.

2.2.3 VOSviewer
Launched in 2010, VOSviewer is a software tool for creating and 

exploring maps based on network data, offering network, overlay, and 

density visualizations (Arruda et al., 2022). We used VOSviewer for 
author and country co-occurrence collaboration analysis.

2.3 Topic modeling analysis

Compared to traditional bibliometric keyword clustering methods, 
topic modeling offers more precise and detailed research classifications, 
uncovering the underlying structures and dynamic trends within 
research fields. In our study, we employed Latent Dirichlet Allocation 
(LDA) for topic modeling using the Python Gensim library. LDA is a 
generative model that leverages unsupervised machine learning to 
analyze large volumes of unstructured data, eliminating the need to 
divide data into training and test sets. It assumes that documents 
comprise multiple topics, each represented by a probability distribution 
over words (Chauhan and Shah, 2021; Yang et al., 2024).

Initially, we conducted text preprocessing, including the removal 
of stopwords and punctuation, as well as stemming, to ensure data 
consistency and cleanliness. Subsequently, we set the parameters for 
the topic modeling. Optimization of topics was performed through 
perplexity and coherence evaluation. Finally, we generated the topic-
word distribution and a topic-term relationship network graph.

The specific hyperparameter choices for the LDA model were as 
follows: alpha = “symmetric” (symmetric prior), and eta = None 
(default prior). These parameters control the prior beliefs regarding 
the document-topic and topic-word distributions. The chunksize was 
set to 2000, meaning that the corpus of 27,420 documents was divided 

FIGURE 1

Flow chart of literature search and selection.
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into approximately 14 chunks for processing, thereby avoiding the 
necessity of loading all documents into memory simultaneously. The 
passes parameter was set to 1 since the model’s performance was 
satisfactory with a single pass through the corpus. The model was 
trained using the LdaModel class provided by Gensim, which 
implements an online LDA algorithm that enables streaming and 
incremental training of the corpus, thereby effectively handling large-
scale text data. The save and load methods were used for model 
persistence, ensuring the reproducibility of the experimental results.

3 Results

3.1 Publication trends analysis

Polynomial regression analysis (Figure 2) from 2010 to 2023 reveals a 
significant upward trend in the number of publications, with exponential 
growth evident since 2016. The number of publications is projected to 
reach approximately 4,500 by 2024. This growth is primarily attributed to 
the increase in interdisciplinary collaboration, the impact of global health 
challenges such as the COVID-19 pandemic, and the rapid advancements 
in AI and computational technologies, particularly breakthroughs in deep 
learning algorithms, convolutional neural networks, and disease prediction 
models since 2016 (Jelodar et al., 2019).

3.2 Authors

Figure 3A presents the metrics for the top four contributing authors. 
Wang Wei leads with 69 publications and an H-index of 25, signifying 
that at least 25 publications have been cited at least 25 times (Zhang 
et al., 2022). Wang Jing was notably prolific in 2018, publishing 11 
papers and achieving a Total Citations per Year (TCpY) score of 98.67 
(Figure 3B). VOSviewer analysis (Figures 3C,D) of 70 authors, each with 
a minimum of 5 publications and 1,000 citations, reveals three primary 
collaborative groups centered around Li Hao, Zhang Wei, and Wang Lie. 
Notably, Zhang Wei’s collaborative network is the largest, comprising 13 
members. The collaboration between Li Hao and Chen Wei is the most 
frequent, with 28 co-authored papers (Bihari et al., 2023).

3.3 Institutions

Figure  4 illustrates that there are 917 collaborative interactions 
among 776 institutions. Although the overall network density is low 
(0.003), certain institutions display frequent and intensive collaborations. 
This phenomenon can be  attributed to the high specialization in 
pathogenic microbiology and AI technologies, which leads collaborations 
to be concentrated among a select few capable institutions. As shown in 
Table 2, the Chinese Academy of Sciences leads with 486 publications, 
while the Universitair Medisch Centrum Utrecht demonstrates 
significant research impact with a betweenness centrality of 0.49.

3.4 Countries

Figure 5A indicates that China and the United States have been 
leading in pathogenic microbiology research. Notably, China’s 

publication volume significantly decreased in 2021, likely due to the 
impact of the COVID-19 pandemic. However, since 2022, China’s 
publication rate has grown exponentially, surpassing other 
countries. VOSviewer analysis (filtering for countries with at least 
*100 publications) revealed an international collaboration network 
comprising 32 countries. The thickness of the connecting lines 
indicates collaboration strength, with China and the U.S. exhibiting 
the tightest cooperation (link strength = 974). This suggests 974 
instances of collaboration between researchers from these two 
countries, reflecting their central role and significant advantages in 
knowledge and resource sharing, which are crucial for advancing 
pathogenic microbiology research and addressing global health 
challenges (Figure 5B).

3.5 Journals

In analyzing the evolution and trends of AI in pathogenic 
microbiology research, we identified the top ten journals in this 
field, including their H-index, impact factor, and JCR indicators 
(Table  3). These metrics reflect the research activity and the 
journals’ influence within the academic community. “Computers in 
Biology and Medicine” has the highest number of publications in 
this field, while “Clinical Infectious Diseases,” the only Q1 journal 
among the top ten by publication volume, is the most cited, 
demonstrating its authority. Notably, four of the top ten journals are 
Q2, indicating that research outcomes are increasingly being 
published in higher-quality journals.

3.6 Topic modeling

To determine the optimal number of topics, we undertook the 
following steps: First, we trained LDA models with varying numbers 
of topics (2 to 15) and calculated their perplexity scores on the test 
set. Lower perplexity indicates a better model fit (Figure 6A). Second, 
we  computed the topic coherence score for each model, which 
measures the semantic consistency of words within a topic; higher 
values indicate more coherent topic structures (Figure 6B). Finally, 
we  plotted perplexity and coherence scores on a scatter plot 
(Figure 6C). The top-right region of the plot shows data points for 8, 
9, 10, and 12 topics, which performed well in balancing perplexity 
and coherence. Further manual analysis revealed that although 9, 10, 
and 12 topics offered higher model performance, they led to overly 
fine and dispersed classifications, which are impractical for real-
world applications. An 8-topic model provided an efficient and 
practical classification structure, laying a solid foundation for further 
interpretation. Consequently, we selected the 8-topic model. The 
resulting themes include AI in pathogen detection, drug resistance, 
transmission and control, genomics, treatment optimization, 
ecology, vaccine development, and data analysis and management 
(Table 4). A word cloud was then utilized to visually represent the 
intrinsic connections between different research themes, with each 
cluster marked in different colors. The clusters were interconnected 
through shared keywords (red nodes), and the size of each node 
reflected keyword frequency, while the thickness of connecting lines 
indicated the distribution strength of words within specific topics 
(Figure 7).
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4 Discussion

4.1 Eight major topics

This section summarizes the eight topics identified through topic 
modeling and discusses the research advancements within 
each domain.

4.1.1 Application of artificial intelligence in 
pathogen detection

Traditional diagnostic methods, such as microbial culture and 
isolation, are often time-consuming and prone to false-negative 
results (Daim et  al., 2006). The application of multi-modal data 
fusion techniques in pathogen detection has gained significant 
attention in recent years. These techniques integrate image data with 
genetic data to provide more comprehensive and accurate diagnostic 
outcomes. For instance, Khan et al. (2019) developed models using 
automated image capture technology and convolutional neural 
networks (CNN), successfully classifying and identifying Gram-
stained blood cultures. Their model achieved a classification accuracy 
of 94.9% for both Gram-positive cocci and Gram-negative bacteria. 
By integrating microbial genome sequencing data with the 
capabilities of CNNs, researchers can further subtype pathogens 
based on pattern recognition. This multi-modal fusion approach 
significantly enhances sensitivity and specificity in diagnostics by 
simultaneously analyzing the visual and genetic characteristics of 
pathogens, thus making pathogen diagnosis more efficient 
and precise.

Additionally, machine learning models can rapidly analyze 
complex data patterns, thereby improving diagnostic speed and 
accuracy (Smith et al., 2018). For instance, models used for DNA 
sequencing can quickly process the genomes of bacteria and viruses 
(Ali et al., 2023).

4.1.2 Application of artificial intelligence in 
antimicrobial resistance research

Artificial intelligence has been effectively utilized in the analysis 
and prediction of microbial drug resistance, marking a significant 
advancement in antimicrobial resistance research. The increasing 

prevalence of resistant bacteria underscores the critical importance of 
analyzing genomic and sequence data. Traditional antibiotic 
susceptibility testing (AST) methodologies require a minimum of 
4 days, which is excessively time-consuming for urgent clinical 
scenarios where swift decision-making is crucial, especially in the face 
of rapidly spreading infections (Mardis, 2008). This predicament 
underscores the urgent need for innovative diagnostic techniques that 
can adapt to the rapid evolution of antibiotic resistance.

The integration of techniques like MALDI-TOF MS with 
sophisticated data analysis algorithms has been shown to expedite the 
identification of resistant strains (Garcia et al., 2024). A retrospective 
clinical case study involving 63 patients revealed that adopting such 
methodologies would have altered the clinical management of nine 
patients, benefiting eight of them (89%). Consequently, machine 
learning based on MALDI-TOF mass spectrometry emerges as an 
essential new tool for therapy optimization and antibiotic stewardship 
(Theodosiou and Read, 2023). Deep learning algorithms, such as 
Convolutional Neural Networks (CNN) and Long Short-Term 
Memory (LSTM) networks, can perform rapid and accurate antibiotic 
susceptibility testing by classifying bacteria into active or non-active 
strains (Weis et al., 2022).

AI technologies, encompassing machine learning and natural 
language processing, enable the processing of vast quantities of 
genomic data, which leads to the identification of resistance-associated 
genetic mutations and evolutionary patterns (Yu et al., 2018). This 
capability not only enhances our understanding of how bacteria 
develop drug resistance but also provides invaluable insights for novel 
drug development (Zhou and Troyanskaya, 2015). Furthermore, 
machine learning models have the potential to predict mutational 
trends and resistance to specific drugs, thereby aiding clinicians in 
selecting the most effective treatment regimens (Gupta et al., 2021).

4.1.3 Application of artificial intelligence in 
pathogen transmission and control

Artificial intelligence demonstrates significant potential in 
monitoring and controlling pathogen transmission. By employing 
machine learning to recognize transmission patterns, it provides vital 
decision support for public health authorities, enabling the 
implementation of more effective outbreak control strategies (Májek 
et al., 2021). AI can analyze historical epidemic data to predict future 
disease transmission (Ren et al., 2023). Additionally, AI technologies 
are utilized for real-time monitoring of infection trends, allowing 
rapid responses to outbreaks. AI-driven warning systems enhance the 
predictive capacity for future outbreaks, improving resource allocation 
and management strategies (Vahedi et al., 2021). These technologies 
provide scientific evidence for disease control and prevention, 
bolstering the resilience of public health systems.

4.1.4 Application of artificial intelligence in 
pathogen genomics

Deep learning, as a crucial AI technology, offers new perspectives 
and tools for analyzing diversity and evolution in pathogen genomics 
research. Xu et al. employed deep learning algorithms to efficiently 
identify various antimicrobial peptides from metagenomic data, 
significantly advancing the development of next-generation 
antimicrobials (Wang et al., 2024). AI’s ability to analyze large volumes 
of genomic sequence data allows it to identify and compare genetic 
characteristics of diverse microorganisms, revealing their evolutionary 

FIGURE 2

Article quantity trend analysis.
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relationships and functional traits (Xu et  al., 2020). This robust 
potential for genome annotation and functional prediction provides 
vital support for microbial ecology and functional research (Angly 
et al., 2006). Furthermore, constructed databases allow for in-depth 
exploration of complex interactions between microorganisms and 
environmental contexts (Sun et  al., 2023). This provides valuable 
insights for research in microbial genomics, ecological analysis, and 
disease prevention.

4.1.5 Application of artificial intelligence in 
optimization of treatment strategies

Artificial intelligence is playing an increasingly important role 
in optimizing treatment strategies for pathogens. By analyzing 
clinical data, AI can predict the efficacy of various treatment 
regimens and adjust strategies in real-time according to individual 
patient condition changes. Li Jinquan utilized AI to identify 
differences in high-dimensional features of antimicrobial 
candidate proteins, discovering the best-in-class lytic enzyme 
LLysSA9, effective in treating bovine mastitis and combating 
Staphylococcus aureus infections (Hirose et  al., 2024). This 
personalized medicine approach not only enhances treatment 
outcomes but also reduces unnecessary treatments and potential 
side effects. AI-powered decision support systems integrate 
medical literature, patient data, and clinical trial results to provide 
scientific foundations for optimizing treatment plans (Wong 
et al., 2023).

Moreover, AI excels in drug repurposing and new drug 
development, using models to simulate the effects of different 
drugs on pathogens, thereby advancing personalized treatment 
(Zhang et  al., 2024). Liu G et  al. highlighted challenges in 
discovering new antibiotics against Acinetobacter baumannii 
through traditional screening methods, while James J. Collins and 
colleagues utilized machine learning to screen approximately 7,500 
molecules, swiftly identifying those inhibiting A. baumannii 
growth in vitro (Melo et  al., 2021). Khaledi et  al. predicted 
antimicrobial susceptibility based on genomic and transcriptomic 
markers, enhancing diagnostic performance by identifying 
resistance characteristics early in disease progression (Liu 
et al., 2023).

4.1.6 Application of artificial intelligence in 
ecology studies of pathogens

The application of artificial intelligence in ecological studies of 
pathogens opens up new avenues for understanding the ecological 
roles of microorganisms in various environments (Khaledi et  al., 
2020). Neural network technology, in particular, demonstrates 
remarkable performance in this domain. For instance, the vedoNet 
neural network algorithm, developed by Ananthakrishnan et  al., 
integrates microbiome and clinical data and achieves superior 
classification capability for clinical remission in inflammatory bowel 
disease (IBD). Detailed research indicates that early trajectories of 
microbiome changes can serve as markers for treatment response 

FIGURE 3

(A) Total number of publications and H-index of top 4 authors; (B) Authors’ production over time; (C) Network visualization of author co-authorship 
analysis; (D) Density visualization of author co-authorship analysis.
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(Lopatkin and Collins, 2020). Additionally, machine learning and data 
mining techniques are extensively applied to model and predict 
microbial community behavior under various environmental 
conditions, thus helping to reduce disease incidence associated with 
environmental changes (Ananthakrishnan et  al., 2017). This 
interdisciplinary research not only enhances the understanding of 

microbial ecology but also provides a scientific foundation for 
formulating effective environmental management strategies.

4.1.7 Application of artificial intelligence in 
vaccine development

Traditional vaccine development has largely relied on 
laborious experimental methods that, while effective, are often 
time-consuming and have limited success rates (Ai et al., 2020). 
Recently, data mining and big data analytics have paved new 
pathways for vaccine development, with artificial intelligence (AI) 
revolutionizing the field as a tool for antigen selection and 
immunogen design (Brisse et  al., 2020). By utilizing advanced 
algorithms, AI extracts crucial data from extensive genomic 
datasets, protein structure information, and immune system 
interactions, quickly identifying potential vaccine candidate 
antigens (Aswathy and Sumathi, 2024). For example, AI-driven 
neural network prediction models trained on a large dataset of 
over 24,000 peptides can accurately recognize key epitopes 
detected by the immune system. Prioritizing these epitopes and 
recommending experimental validation allows AI to significantly 
shorten the discovery time while minimizing resource investment 
(Olawade et al., 2024).

By integrating AI algorithms with experimental validation and 
clinical trials, the vaccine development process is substantially 
accelerated. This data-driven approach enhances vaccine development 
efficiency and demonstrates significant potential during global health 

FIGURE 4

Institution co-occurrence map (node labels: by centrality).

TABLE 2 The top five institutions by number of publications and 
intermediate centrality.

Number of publications Institution

486 Chinese Acad Sci

397 Fudan Univ

383 Capital Med Univ

371 Zhejiang Univ

369 Shanghai Jiao Tong Univ

BC (betweenness centrality) Institution

0.49 Univ Med Ctr Utrecht

0.35 German Canc Res Ctr

0.28 Second Mil Med Univ

0.28 Univ Amsterdam

0.26 Chinese Acad Sci
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crises (Ward et al., 2021). During the COVID-19 pandemic, AI played 
a crucial role in quickly identifying novel antigens through detailed 
data mining, providing essential support for the rapid development of 
vaccines (Brisse et al., 2020). In mRNA-based COVID-19 vaccines, AI 
not only optimized vaccine sequences but also effectively screened 
delivery vectors, improving overall research and development 
efficiency (Federico et al., 2023).

4.1.8 Application of artificial intelligence in data 
analysis and management of pathogens

With the explosion of data volume, the application of AI in 
image data processing technology for pathogen detection becomes 
increasingly critical (Zhang et  al., 2023). Traditional detection 
methods, such as nucleic acid and immunological assays, are often 
time-consuming and complex (Haymond and McCudden, 2021). 
Through the incorporation of machine learning, particularly deep 
convolutional neural network (CNN)-based image processing 
algorithms, AI can rapidly process and analyze microscopic image 
data, automatically identifying pathogens, thus significantly 
reducing diagnostic time. For instance, Rahman et al. utilized the 
DenseNet CNN model to classify 89 fungal genera from 
microscopic images, achieving a prediction accuracy of 65.35% 
(Whiley and Taylor, 2016), marking a notable enhancement in 

detection efficiency. Tao Chenglong integrated the HMI system 
with Buffer Net, developing a CNN-based AI-assisted system for 
rapid and automatic bacterial identification (Rahman et al., 2023). 
Additionally, Devan et al. employed a transfer learning method 
based on CNN, requiring minimal preprocessing to detect HCMV 
nucleocapsids in TEM images (Tao et al., 2022). In tuberculosis 
detection, Kuok et  al. attained an 86% detection rate using a 
region-refined Faster R-CNN algorithm to automatically detect 
acid-fast bacilli on slides, significantly outperforming the 
traditional support vector machine (SVM) method, which had a 
detection rate of 70.93% (Shaga Devan et al., 2021). Chung et al. 
combined MALDI-TOF MS (matrix-assisted laser desorption 
ionization-time of flight mass spectrometry) with CNN technology 
for the rapid identification of hemolytic streptococci, quickly 
pinpointing infection sources, effectively preventing epidemic 
spread, and providing robust technical support for public health 
management (Kuok et al., 2019).

4.2 Interconnections among topics

As illustrated in Figure 7, there is significant lexical overlap 
among the various research topics, reflecting a strong 

FIGURE 5

(A) Top 5 countries’ production over time; (B) Country network visualization.

TABLE 3 Top 10 journals.

Source Document Citation IF JCR

Computers in Biology and Medicine 455 14,681 7 Q2

BMC Bioinformatics 371 10,308 2.9 Q3

Clinical Infectious Diseases 333 16,107 8.2 Q1

Computer Methods and Programs in Biomedicine 318 10,240 4.9 Q2

Diagnostics 318 2,447 3 Q3

IEEE Computational Intelligence Magazine 302 2,815 10.3 Q2

Frontiers in Oncology 272 2,546 3.5 Q3

IEEE Journal of Biomedical and Health Informatics 228 8,545 6.7 Q2

Bioinformatics 223 10,347 4.4 Q4

Medicine 212 2079 1.3 Q4
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interconnection and a trend towards interdisciplinary integration 
in the field. In the topic modeling analysis, drug resistance (Topic 
1) and vaccine development (Topic 6) exhibited the highest 
weights (0.226 and 0.195, respectively). The growing global 
challenge of bacterial drug resistance and the threat from emerging 
infectious diseases in recent years have heightened the need for 
large-scale immunization efforts. AI contributes to the rapid 
development of vaccines by accelerating antigen identification and 
predicting immune responses.

Genomics research (Topic 3) and drug resistance research 
(Topic 1) are closely linked through shared genetic analysis 
methods. Genomics plays a critical role in drug resistance 
research; AI can swiftly analyze genomic sequencing data to 
identify and classify antibiotic resistance genes (Qu et al., 2019), 
and this genomic data can be integrated into machine learning 
models to predict antibiotic sensitivity and resistance phenotypes 
(Chung et al., 2019).

The word cloud also reveals a synergy between transmission 
control (Topic 2) and ecological research (Topic 5), particularly in 
environmental monitoring. For example, combining AI algorithms to 
develop predictive models can forecast high- and low-risk areas for 
pathogen outbreaks under future climate conditions. This approach is 
especially effective when linking climatology research (analyzing 
factors such as temperature and precipitation) with ecological studies 
(focusing on pathogen vectors or hosts), thereby significantly 
enhancing the predictive accuracy and interpretability of these 
models, enabling precise control and prevention (Melo et al., 2021; 
Farooq et al., 2022).

Data analysis and management (Topic 7) appears to be  a 
crucial link across all research topics. Data analysis and 
management is not merely an independent theme but rather a key 
element throughout the pathogen research process. AI algorithms 
heavily depend on the quality of pathogen data and metadata to 
enhance research accuracy and reliability. From pathogen 

FIGURE 6

(A) Perplexity for topics 2–15; (B) Coherence for topics 2–15; (C) Topic model optimal parameter selection diagram.
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detection to predicting antibiotic resistance and optimizing 
treatments, substantial amounts of genomic sequencing data, 
electronic health records, and other clinical data are collected, 
processed, and analyzed, forming the training datasets for 
machine learning models.

4.3 Practical applications

The application of artificial intelligence in pathogen research is 
gradually transitioning from laboratory research to clinical practice, 
with official approval in certain regions. For example, the U.S. Food 
and Drug Administration (FDA) has approved Clever Culture 
Systems’ APAS Compact system for the automated assessment of 
plates in clinical microbiology laboratories, demonstrating high 
sensitivity and specificity in detecting urine cultures (Peiffer-Smadja 
et al., 2020).

Many hospitals have already implemented AI for pathogen 
detection. Taiwan’s Tri-Service General Hospital, along with four 
secondary hospitals, has successfully deployed a solution powered 
by an AI clinical decision support system (AI-CDSS) to expedite 
the detection of carbapenem-resistant Klebsiella pneumoniae 
(KP). This system integrates MALDI-TOF MS technology with 
machine learning algorithms, accelerating the prediction of 
bacterial resistance—particularly to carbapenems and colistin—by 
1 day compared to traditional antibiotic susceptibility tests (AST). 
It provides healthcare professionals with resistance probability 
scores through a web interface, enabling rapid and informed 
treatment decisions (Ali et  al., 2024). Massachusetts General 
Hospital employs AI to assess the risk of Clostridium difficile 
infections. In a multicenter study involving at least nine hospitals, 
Dascena’s machine learning algorithms have been used for early 
sepsis detection and stratification, antimicrobial prescription 
recommendations, and resistant microorganism colonization 
predictions, demonstrating the potential to reduce hospital 

mortality rates, shorten hospital stays, and decrease 30-day 
readmission rates (Jian et  al., 2024; Shimabukuro et  al., 2017; 
Burdick et al., 2020).

AI and machine learning (ML) technologies are also extensively 
applied in addressing healthcare-associated infections (HAIs). AI 
systems are capable of predicting surgical site infections (SSIs), 
hospital-acquired pneumonia (HCAP), and hospital-acquired urinary 
tract infections (HA-UTI) (McCoy and Das, 2017). For instance, a 
machine learning model monitoring SSI in colon surgeries has 
reduced manual workload by 83.9% (Radaelli et al., 2024). A new 
AI-based training and monitoring system (AITMS) has improved 
personal protective equipment (PPE) wearing and doffing skills, 
successfully reducing pathogen infection rates from 1.31 to 0.58% in 
a Japanese hospital (Cho et al., 2024). The University of Iowa Hospitals 
and Clinics utilized machine learning to decrease surgical site 
infection rates by 74%, while Philips’ “Connected Care” system 
reduced detection time for nosocomial infections by 87% (Huang 
et al., 2023).

Artificial intelligence has also played a practical role in global 
public health. Systems like HealthMap utilize natural language 
processing to analyze online news and professional resources, 
providing global alert information for outbreaks such as the Middle 
East respiratory syndrome coronavirus (MERS-CoV) and severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Agrebi 
and Larbi, 2020; Ali et al., 2023). The U.S. CDC employs machine 
learning models to predict influenza trends (Hossain and Househ, 
2016). During the COVID-19 pandemic, AI technologies were 
implemented in genomic classification, lineage mapping, and 
optimization of testing strategies. The ZOE COVID Study collected 
symptom data via a smartphone app, offering invaluable insights 
for public health (Reich et al., 2019). Singapore airport implemented 
thermal imaging for temperature monitoring of potential 
infections, combining physiological parameters with advanced 
analytical methods to classify high-risk influenza patients (Menni 
et al., 2020).

TABLE 4 Topic-word distribution (manually screened).

Theme Intensity Distribution

Topic0 0.043646 Recognition, detection, microorganisms, diagnosis, sensitivity, specificity, algorithms, models, deep learning, rapid, 

automation, pathogens

Topic1 0.225899 Resistance, drugs, genes, sequences, mutations, evolution, prediction, analysis, antibiotic resistance, bacteria, 

experimental data, antibiotics

Topic2 0.082465 Transmission, infection, control, epidemic, prediction, monitoring, public health, transmission routes, risk assessment, 

early warning systems, spread

Topic3 0.089147 Genome, sequencing, genes, analysis, microorganisms, diversity, evolution, comparative, database, functional 

prediction, gene expression

Topic4 0.174416 Treatment, optimization, plans, personalized, efficacy, prediction, assessment, therapeutic outcomes, decision support, 

patient data, medical protocols

Topic5 0.107509 Ecology, microorganisms, environment, interactions, communities, ecosystems, analysis, monitoring, modeling, 

biodiversity

Topic6 0.195139 Vaccine, development, antigens, immune response, prediction, experimental data, simulation, efficacy, protection rate, 

bioinformatics, clinical trials

Topic7 0.08178 Data, analysis, management, databases, informatics, storage, big data, data mining, computation, statistics, automated 

processing
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4.4 Opportunities and challenges

The real-world application of artificial intelligence (AI) in 
pathogen research is still in its infancy; however, it reveals immense 
potential for development while facing numerous challenges and 
obstacles. The following are four key directions for enhancing AI 
application in this field:

Advanced Machine Learning Algorithms: With the increase in 
computational power and data accumulation, more sophisticated and 
accurate deep learning models can be applied to pathogen research to 
improve the accuracy of disease prediction and enhance the capability 
to handle multidimensional data.

Richer Sample Data: By collecting additional sample data from 
diverse clinical settings worldwide, AI systems can improve their 
generalization ability, thereby increasing their robustness across varied 
medical environments.

User-Friendly Interface Design: Developing intuitive and easy-
to-use interfaces, along with providing adequate training for 
healthcare professionals, can significantly promote the widespread 
application of AI technologies in clinical practice.

Application of Extreme Value Theory: Integrating extreme value 
theory with robust statistical methods in epidemiology and public 
health can aid in the early detection of anomalies in transmission 
dynamics. This is particularly beneficial for the early warning of rare 

FIGURE 7

Topic-word relationship diagram.
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infectious events, such as emerging infectious diseases, providing 
strong support for public health interventions.

However, several challenges must be  overcome to advance 
AI applications:

High Costs: The development, deployment, and maintenance of 
AI models are capital-intensive. Solutions include utilizing open-
source AI tools and models and creating government subsidy policies 
to lower the barrier to technology access.

Training and Talent Shortage: Healthcare professionals require 
appropriate training to effectively use AI tools. This issue can 
be addressed by implementing targeted AI training programs and 
cultivating more medical professionals with expertise in AI.

Data Quality and Accessibility: High-quality data is crucial for 
training AI models. Challenges can be  tackled by establishing 
standardized data-sharing mechanisms, improving data collection and 
annotation methods, and enhancing data security and 
privacy protections.

Ethical and Legal Issues: The use of AI in medical decision-
making involves ethical and legal responsibilities. This necessitates the 
development of ethical guidelines and legal regulations for AI 
applications, clearly defining accountability and establishing effective 
oversight mechanisms to ensure lawful and compliant use of 
AI systems.

Model Explainability: The “black box” nature of AI models affects 
their applicability and acceptance in clinical practice. Therefore, 
developing more interpretable AI models can help clinicians 
understand their decision processes, thereby increasing trust and 
encouraging their use (Sun et al., 2015; Hassija et al., 2024).

5 Conclusion

In this study, we conducted a comprehensive analysis of the 
application of artificial intelligence (AI) in pathogenic 
microbiology research using bibliometrics and topic modeling. 
We  examined 27,420 relevant publications from 2010 to 2024, 
uncovering an exponential growth trend in publications since 
2016, primarily focused on eight key areas: pathogen detection, 
antibiotic resistance prediction, transmission and control, genomic 
analysis, therapeutic optimization, ecological studies, vaccine 
development, and data management systems.

The results from topic modeling indicate that the application 
of AI in pathogen research has become diverse and specialized. 
For instance, in pathogen detection, AI has significantly 
improved diagnostic speed and accuracy through the integration 
of multimodal data fusion technologies. In the realm of antibiotic 
resistance prediction, machine learning and deep learning 
models have expedited the identification and analysis of 
resistance genes. In vaccine development, AI has facilitated rapid 
progress in antigen recognition and immunogen design, thus 
playing a critical supportive role in the development of 
COVID-19 vaccines.

Despite AI’s substantial potential in pathogenic microbiology 
research, its practical implementation remains in the early stages and 
faces numerous challenges. Key factors limiting effective AI 
application include the acquisition and sharing of high-quality data, 
AI system interpretability, ethical and legal responsibilities, and the 
high cost of development. To foster further advancements in this 

field, we recommend strengthening interdisciplinary collaboration to 
enrich AI model training data, enhancing the user-friendliness of AI 
tools to promote their adoption and application in clinical practice, 
and supporting policies to reduce the economic barriers to AI 
utilization. Addressing these issues collaboratively will enable a fuller 
realization of AI technologies in tackling challenges in the field of 
pathogenic microbiology, ultimately contributing to the resilience of 
health management and public health systems and providing 
unprecedented opportunities to address global public 
health challenges.
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Deformable multi-level feature
network applied to nucleus
segmentation

Shulei Chang, Tingting Yang, Bowen Yin, Jiayi Zhang, Liang Ma,

Yanhui Ding and Xiaodan Sui*

School of Information Science and Engineering, Shandong Normal University, Jinan, China

Introduction: The nucleus plays a crucial role in medical diagnosis, and accurate

nucleus segmentation is essential for disease assessment. However, existing

methods have limitations in handling the diversity of nuclei and di�erences in

staining conditions, restricting their practical application.

Methods: A novel deformable multi-level feature network (DMFNet) is proposed

for nucleus segmentation. This network is based on convolutional neural

network and divides feature processing and mask generation into two levels. At

the feature level, deformable convolution is used to enhance feature extraction

ability, and multi-scale features are integrated through a balanced feature

pyramid. At themask level, a one-stage framework is adopted to directly perform

instance segmentation based on location.

Results: Experimental results on the MoNuSeg 2018 dataset show that the

mean average precision (mAP) and mean average recall (mAR) of DMFNet reach

37.8% and 47.4% respectively, outperforming many current advanced methods.

Ablation experiments verified the e�ectiveness of each module of the network.

Discussion: DMFNet provides an e�ective solution for nucleus segmentation

and has important application value in medical image analysis.

KEYWORDS

nucleus segmentation, pathology images, deep learning, convolutional neural network,

deformable multi-level feature network

1 Introduction

The nucleus plays an important role in the examination of hematoxylin and eosin

stained tissue sections.Nuclear morphometric features and appearance, including the

color of the surrounding cytoplasm, also help in identifying various types of cells,

such as epithelial (glandular), stromal, or inflammatory cells, which in turn, provide an

understanding of the glandular structure and disease presentation at low power (Kumar

et al., 2017). In disease diagnosis, nuclear characteristics are key indicators. For example,

abnormal morphological and structural changes in cancer cell nuclei, such as nuclear

enlargement and nuclear-cytoplasmic ratio imbalance, can assist doctors in determining

the type and stage of cancer. Moreover, nuclear segmentation can also contribute to

pathological research by enabling the understanding of cellular level changes during the

development of diseases.Therefore, accurate nucleus segmentation is critical in the field

of medicine.
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Owing to the importance of nuclear information in

medicine, numerous researchers have proposed pathology

image segmentation methods (Xinpeng et al., 2020; Liu et al.,

2021), including level sets (Peifang et al., 2016), graphbased

segmentation (Fuyong and Lin, 2016), mathematical morphologies

(Wang et al., 2016), and pixel classification (Liu et al., 2019).

However, such methods fail to generalize across a wide spectrum

of tissue morphologies due to inter- and intra-nuclear color

variations in crowded and chromatin sse nuclei (Kumar et al.,

2017). Traditional methods face numerous limitations, and under

these circumstances, machine learning techniques have gradually

become a new hope for solving the nuclear segmentation problem

due to their unique advantages.Techniques based on machine

learning can provide better results for challenging cases of nucleus

segmentation because they can be trained to recognize nucleus

shapes and color variations (Yiming et al., 2018; Xieli et al., 2019).

However, automatic nucleus segmentation continues to be very

challenging owing to variations in the nuclei, ambiguous borders,

and differences in staining conditions. Nucleus segmentation tasks

are challenging in three respects. Firstly, the shapes of the nuclei

in the pathology images vary in shapes; however, the convolution

kernel of the convolutional neural network (CNN) modules is a

fixed geometric structure. In other words, the CNN modules do

not possess the internal mechanism to handle nuclei of different

shapes. Secondly, deep high-level features in the backbones have

more semantic meanings, while shallow low-level features are more

content descriptive (Zeiler and Rob, 2014). For example, high-

level information can provide many semantic details, like staining

conditions. Low-level information can provide content, such as

the location of the nucleus. Thirdly, most instance segmentation

methods based on CNN comprise two stages, which are complex

and have room for improvement in accuracy.

Over the past dozen years, deep learning has emerged as a

prominent category of machine learning algorithms, including

natural language processing, computer vision, and more. One

of the most representative models in deep learning models is

CNN. In computer vision, different locations on images may

correspond to objects with different scales or deformation (Jifeng

et al., 2017); for example, fully convolutional networks (FCNs)

(Jonathan et al., 2015) provide semantic segmentation with the

ability of adaptive determination of scales or receptive field sizes

for visual recognition tasks with fine localization; however, their

performance warrants further improvements. Feature integration

has led to the development of instance segmentation. FPN (Tsung-

Yi et al., 2017) and PANet (Shu et al., 2018) integrate features

via lateral connections to achieve excellent performance; however,

they cannot merge shallow and deep information with each other.

AdaptIS (Konstantin et al., 2019) predicts point proposals for

classagnostic instance segmentation, and then generates a mask

for the object located at this point. PolarMask (Xie et al., 2020)

uses instance center classification and dense distance regression

in a polar coordinate system to predict the contour of instances.

These methods may be considered as a semidirect adigm. They are

anchor-free andmake the CNN simple; however, all of them require

additional complex processing methods. ooTensorMask (Xinlei

et al., 2019) operates in a dense sliding window and segments

objects in fixed local patches, limited by patch scale. SOLO aims

to segment instance masks directly, under the supervision of full

instance mask annotations rather than in-box masks or additional

pixel pairwise relations (Xinlong et al., 2020).

Recently, the most common instance segmentation method

is the two-stage method. It has two approaches. The first one is

“detect then segment”. It first detects the target to create bounding

boxes and then divides the mask in each box. The second one

is “label then cluster”. First, each pixel is predicted, and then the

pixels of the same instance are grouped together.This approach is

usually not as effective as the first approach. A typical example

of a two-stage approach is Mask R-CNN, which uses a region

proposal network (RPN) (Shaoqing et al., 2017) to obtain and

classify candidate regions, which are then segmented using an FCN

(Jonathan et al., 2015) model. Two stage methods achieve both

step-wise and indirect object localization and mask generation,

which either rely heavily on bounding box detection or clustering.

On the contrary, one-stage instance segmentation methods can

simultaneously achieve object localization and mask generation.

SOLO (Xinlong et al., 2020) is one of the representative methods

of one-stage instance segmentation methods, which takes an image

as input and directly outputs instance masks and corresponding

class probabilities, using a fully convolutional, frameless and

groupless adigm.

Faisal et al. (2020) enhanced structured prediction capabilities

for nucleus segmentation through conditional generative

adversarial networks trained with synthetic and real data.

Peter et al. (2019) formulated the nuclear segmentation task as

the regression of intra-nuclei map distance to solve the joint

segmentation of close nuclei. Similar to the nucleus segmentation

task, Hao et al. (2016) proposed a deep contouraware network

integrating multiple layers of contextual features to accurately

segment glands from pathological images. Carsen et al. (2021)

proposed a segmentation method called Cellpose that can

accurately segment cells from various image types, with exciting

results. For better generating bounding box proposals, Jingru

et al. (2019) proposed a keypoint-based detector combined with

cell instance segmentation. Oskar et al. (2019) segmented nuclei

based on Mask R-CNN and used bounding boxes to detect

nuclei instances. However, the shape of the nucleus tends to

be oval, which presents an occlusal problem. This means that

each bounding box may contain pixels representing two or more

instances, which suggests that the bounding box may end up

being suboptimal for kernel segmentation (Shengcong et al.,

2020). Ortiz et al. (2020) proposed an instance segmentation

method based on a recurrent residual network, which offers the

advantages of improved segmentation accuracy and enhanced

feature propagation stability. However, the method has some

drawbacks, including high computational cost and training time,

limited flexibility when handling complex scenarios, and sensitivity

to the quality of input data. In recent years, methods based on

Transformer have gradually emerged. Chen et al. (2021) combined

the Transformer encoder with the U-Net architecture for medical

image segmentation, which is especially suitable for medical

image segmentation tasks. This method can effectively capture

long-distance global dependencies and improve the segmentation

accuracy. However, the computational resource consumption of

Transformer is relatively large, resulting in long training time
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and high memory requirements. Cao et al. (2022) enhanced the

segmentation performance of medical images by introducing Swin

Transformer and utilizing its multi-scale characteristics, especially

performing prominently in medical image segmentation tasks.

However, when dealing with very large or complex images, the

local windowing method of Swin Transformer may limit the ability

to extract global information. He et al. (2023) enhanced the model’s

ability by introducing convolution operations in SwinUNETR.

However, the training process may be relatively complex, involving

a variety of techniques and adjustments, which may increase the

implementation difficulty in practical applications.

In this study, we introduce a novel method called the

deformable multi-level feature network (DMFNet) for nucleus

segmentation. The DMFNet is based on a CNN using images of

H&E stained tissue specimens. The DMFNet employs two levels

to process the features and masks separately. To address the three

challenges mentioned earlier, the DMFNet effectively combines

deformable convolutional networks (DCNs) (Jifeng et al., 2017),

balanced feature pyramid (BFP) (Jiangmiao et al., 2019), and

segmenting objects by locations (SOLO) (Xinlong et al., 2020).

Even though each of these components has been used in the past,

we demonstrate that their combination in nuclei segmentation

is superior to the existing standard methods. Thus, the main

contributions of this study are as follows:

First, we use a novel module to replace the feature extraction

module of a conventional CNN for dense spatial transformations;

this can increase the transformation modeling capability. In the

new module, the convolution kernel can be in various forms of

deformation for free sampling.

Second, we integrate multi-level features, which are rescaled,

integrated, refined, and strengthened to obtain balanced

semantic features and refine the same. Finally, we use a

one-stage network to directly distinguish instances by the

center locations and object sizes instead of masks in boxes

or pixel-pairwise relations. Nuclei segmentation by location

renders the segment framework simple, and flexible. The

DMFNet achieved the best performance on the MoNuSeg

2018 dataset, with its mAP and mAR approaching 37.8% and

47.4%, respectively.

2 Materials and methods

SOLO is a one-stage algorithm, and its backbone comprises

a residual network (ResNet) (Kaiming et al., 2016) and FPN

(Tsung-Yi et al., 2017). To mitigate the complex structure

in the two-stage methods, our DMFNet is based on SOLO

for nucleus segmentation. The proposed model consists

of a feature level and a mask level, as shown in Figure 1.

Specifically, the input image is first extracted with features

in ResNet, which incorporates a deformable convolution

(Jifeng et al., 2017). Then, the features are integrated into

a balanced feature pyramid to obtain enhanced multi-level

semantic features. Finally, a mask generation network predicts

categories and generates instance masks simultaneously,

thus achieving an effective instance segmentation under a

one-stage network.

2.1 Feature extraction

At the feature level, a deformable residual network is trained for

an efficient feature extraction. The standard convolution consists of

the following two steps: (1) use a regular grid R for sampling on

the input feature map x; and (2) perform a weighting operation.

For example,

R = (−1,−1), (−1, 0), ..., (0, 1), (1, 1) (1)

where R defines the size and dilation. Here, it defines a 3 × 3

kernel with a dilation of 1. Each position p0 on the output feature

map y, is calculated using the following formula:

y(p0) =
∑

pn∈R

w(pn) · x(p0 + pn) (2)

where w is the weight of the sampled values, and pn is an

enumeration of the locations listed in R. In this network, the regular

grid R is expanded by adding offsets, where N = |R|. The same

position p0 becomes:

y(p0) =
∑

n∈R

w(pn) · x(p0 + pn + δpn) (3)

Now, the sampling location has become an irregular location.

As the offset δpn is usually a decimal number, Equation (3) is

implemented via a bilinear interpolation, shown in Equation (4)

below. Here, p defines an arbitrary location and q is an enumeration

of all the integral spatial locations listed in feature map.

x(p) =
∑

q

G(p, q) · x(q) (4)

whereG(., .) denotes a bilinear interpolation kernel. It is divided

into two one-dimensional kernels as follows:

G(p, q) = g(qx, px) · g(qy, py) (5)

where g(a, b) = max(0, 1− |a− b|).

As illustrated in Figure 2, the offsets are obtained by applying

a convolutional layer over the same input feature map. To learn

the offsets, the gradients are back propagated using Equations 4,

5. The deformable network is integrated with the state-ofthe-art

architecture ResNet to enhance the capability of the DMFNet

for modeling the transformations. This possesses excellent feature

extraction capability for nuclei of various shapes.

2.2 Feature integration

Feature integration occupies a crucial position in the field

of deep learning. It focuses on merging and summarizing the

feature information obtained from different network layers,

diverse functional modules, or various feature extraction methods,

ultimately creating a more comprehensive expression that

accurately depicts the target features. This technique plays a
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FIGURE 1

Illustration of our proposed DMFNet architecture.

FIGURE 2

Feature extraction module for feature level. The upper part is the standard convolution, and the lower part is the deformable convolution.

significant role in enhancing the model’s ability to understand

and process complex data. The Balanced Feature Pyramid is

an innovative structure specifically designed to optimize the

feature integration process. In the ongoing evolution of deep

learning models, while traditional feature pyramid networks are

capable of capturing multi-scale features, they often face the

challenge of imbalanced information distribution when merging

features from different levels. For example, in tasks such as cell

nucleus segmentation, this imbalance can lead to inaccurate and

incomplete descriptions of nuclear features. In response to this

challenge, the Balanced Feature Pyramid was developed, with its

core mission being to address this issue. Through a series of unique

designs and operations, it makes the feature integration process

more efficient and precise, thus providing a higher-quality feature

foundation for subsequent tasks, such as cell nucleus segmentation.

Next, we utilize the balanced feature pyramid in our DMFNet

to strengthen the multi-level features. The essential purpose of this

module is to strengthen the multi-level features using the same

deeply integrated balanced semantic features. It consists of four

steps, namely rescaling, integrating, refining, and strengthening

(Jiangmiao et al., 2019). The structure of this module is shown in

Figure 3. To obtain balanced semantic features, we first resize the
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FIGURE 3

Feature integration module for feature level.Q2, Q3, Q4, and Q5 are multi-level features, and U2, U3, U4, and U5 are multi-level output signals.

multi-level features {Q2,Q3,Q4,Q5} which have been generated by

the FPN to the same size asQ4, and merge them to obtainQint with

interpolation andmax-pooling. The balanced semantic features can

be expressed as:

Qint =
1

L

lmax∑

lmin

Ql (6)

where L is the number of multi-level features; Ql is the

feature of resolution level l; and lmin and lmax are subtables

representing the lowest and highest level indices, respectively.At

this time, each resolution obtains equivalent information from the

other resolutions.

Next, we use a non-local module (Xiaolong et al., 2018) to refine

the balanced semantic features for more distinguishing features and

better results. Non-local operations in deep neural networks are

represented as:

Ui =
1

C(v)

∑

∀j

f (vi, vj)g(vj) (7)

where i and j represent the indices of the output position and

all possible associated positions, respectively; v indicates the input

signal; U indicates the output signal, with the same size as v; and f

(vi, vj) calculates the scalar between i and j. For example, the farther

the distance between the positions of i and j, the smaller the value

of the pairwise function f , which means that the position of j has

less influence on i. g(vj) calculates the representation of the input

signal at position j and C(v) is the normalization parameter.

Finally, the refined features of the four levels are added to

the original features through interpolation or pooling to enhance

the original features. We effectively create the semantic features

of different layers using the BFP. This offers a better accuracy for

nucleus segmentation.

2.3 Mask generation

At the mask level, we further process the category prediction

and instance mask generation. The pipeline for the same is shown

in Figure 4.

We divide the picture into an S × S grid. The network

output is divided into two branches, namely classification and

mask branches. Simultaneous with the category prediction, each

grid generates a corresponding instance mask. The size of the

classification branch is S × S × C, where C is the number

of categories. The mask branch size is H × W × S2, where

S2 is the maximum number of instances predicted. When the

center of the target object falls in the grid, the corresponding

position of the classification branch and corresponding channel

of the mask branch are responsible for the prediction of the

object. For example, if the instance is allocated to the grid

(i, j), then the channel k = i · S + j on the mask branch

is responsible for predicting the mask of the target; each grid

belongs to a single instance only. Finally, we use the non-

maximum-suppression (NMS) algorithm to obtain the final results.

Compared with a two-stage method, our one-stage method is

simpler and can connect nucleus segmentation to a location to

achieve better results.

The loss function includes two parts: category branch andmask

branch. The loss function is as follows:

LDMF = Lfocal + γ Lm (8)

The Sigmoid activation function output is used

here. Lfocal represents the category branch, and uses

the traditional semantic segmentation loss function

Focal Loss (Shaoqing et al., 2017) to measure the gap

between the predicted category and the ground truth.

Lm is the loss function of the mask branch, specifically

expressed as:

Lm =
1

N

∑

k

βp{i,j>0}Ldice (9)
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FIGURE 4

Mask generation network for mask level.

3 Results

3.1 Dataset

MonuSeg stands for Multi-organ Nucleus Segmentation, and

the dataset was published at the official satellite event of MICCAI

2018.The MoNuSeg 2018 dataset contains 30 tissue images and

21,623 annotated nuclear boundaries, each image of size 1, 000 ×

1, 000 pixels (Kumar et al., 2017). The dataset used H&E-

stained tissue slides digitized at 40x magnification and contained

nuclei of varying sizes from seven different organs. These organs

include the bladder, liver, breast, kidney, colon, prostate, and

stomach. We cropped each image into 16 patches, and the size

of each patch was 250 × 250 pixels. Specifically, we generated

480 images, including 352 training, 32 validation, and 96 test

images. Furthermore, we used data augmentation to augment the

size of the datasets and reduce overfitting. Before the image is

input into the model, it will go through a channel composed of

different data enhancement methods. Each enhancement method

is set with a certain probability value and different enhancement

factors. In other words, each image will follow the data in

the channel. Augmentation is randomly combined with a set

probability. Numerous image transformation schemes that were

used include brightness enhancement, contrast reduction, Gaussian

noise, impulse noise, and Poisson noise. Some representative

examples of data augmentation are shown in Figure 5.

3.2 Implementation details

The DMFNet was implemented in PyTorch and trained on an

NVIDIA Tesla V100 GPU with 32 GB of video memory. During

the training, the mini-batch strategy was used to iteratively train

the DMFNet for 200 epochs, and each iteration used two samples

as a batch, with a total of 35,200 iterations. The validation set

was evaluated after each training epoch. The network used batch

normalization (Sergey and Christian, 2015) for regularization every

time the weight was updated, and the stochastic gradient descent

was used to update the model parameters. The learning rate,

weight decay, and momentum were set to 0.0025, 0.0001, and

0.9, respectively.

3.3 Evaluation metrics

In object detection, the intersection-over-union (IoU) metric,

which is the ratio of the intersection to the union of the prediction

bounding box generated by the network and the original ground

truth bounding box, was used. The evaluation method of instance

segmentation was very similar to the evaluation method of object

detection, with the difference being that the IoU of the mask was

calculated in lieu of the IoU of the bounding box. In this study,

precision and recall under a specific IoU threshold were considered

as the evaluation indicators, and the expressions for the same are

as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

whereTP is the number of nuclei that are actually nuclei and are

predicted by the model to be nuclei; FP is the number of nuclei that

are actually background, but are predicted by the model; and FN

is the number of nuclei that are actually nuclei, but not recognized

as nuclei by the network. The Precision measures the proportion

of samples that the model predicts as positive class (in nucleus

segmentation, that is, predicted as nuclei) and are actually positive

class among the samples predicted as positive class by the model.

The Recall represents the proportion of samples that are actually

positive class and are predicted as positive class by themodel among

the total number of actual positive class samples.The threshold

of the IoU was calculated every 0.05 from 0.5 to 0.95 and the

average precision (AP) was calculated every 0.05. The mean average

precision (mAP) of all the results was used as the main indicator
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FIGURE 5

Representations of some image transformation schemes used. (A) Original. (B) Brightness enhancement. (C) Contrast reduction. (D) Gaussian noise.

(E) Impulse noise. (F) Poisson noise.

to report the results of the DMFNet. The AP under a specific IoU

threshold was calculated as follows:

APIoU=k =
1

101

∑

r∈R

pinterp(r) =
1

101

∑

r∈R

max
r̃·r̃≥r

p(r̃) (12)

where k indicates the threshold in K :[0.5, 0.55, ..., 0.90, 0.95], r

denotes the recall, and R :[0, 0.01, 0.02, ..., 0.99, 1.0], with an interval

of 0.01 and a total of 101 values. p(r̃) denotes the precision related

to the recall rate r̃. To calculate the AP value at the ten thresholds,

we considered the average value at the ten thresholds as the mean

average precision (mAP). In addition, we also used the average

recall (AR) as an evaluation metric, which was obtained by testing

the mean ARIoU = k of more than 10 IoU thresholds, and a

maximum of the top 100 predicted masks were given. Similarly,

we also considered the average value at the ten thresholds as

the mean average recall (mAR). In this study, the task of the

model was to identify only one category; therefore, ARIoU = k

at a specific threshold was equal to R in Equation 12. mAP is

an important indicator for evaluating model performance, which

measures the model’s ability to accurately identify cell nuclei.

A high mAP value indicates that the model performs well in

accuracy and completeness. AR reflects the ability of the model

to detect actual cell nuclei. In cell nucleus segmentation, high AR

ensures that cell nucleus information is not missed, which can help

detect diseased cells in early cancer screening in a timely manner.

mAR measures the average performance of the model at different

recall thresholds, calculating the average proportion of correctly

predicted positive samples at multiple levels to the actual total

number of positive samples. In addition, for mAP and mAR, we

also used the following metric:

1. AP50: AP value over a single threshold of IoU = 0.50.

2. AP75: AP value over a single threshold of IoU = 0.75.

3. AR50: AR value over a single threshold of IoU = 0.50.

4. AR75: AR value over a single threshold of IoU = 0.75.

3.4 Ablation study

To verify the effectiveness of the feature extraction and feature

integration modules, we used a network with and without those

modules, embedded the same into the DMFNet, and then trained

and evaluated them separately. To make an unbiased comparison,

both these models used the same experiment and hyperparameter

configuration. Table 1 summarizes the ablation studies on the

effects of each module of the DMFNet.

As shown in Table 1, the DCN module was embedded in the

SOLO, and the AP and AR scores of the segmented network were

significantly improved, which means that the deformable feature

extraction could better improve the transformation modeling

capability of the model. This also proves that the deformable

convolution had a higher accuracy for the irregular circle of

the nucleus. When the BFP module was added, the mAP and

mAR increased by 1.9% and 0.9%, respectively. This verifies that

the multi-level feature integration played a key role. Specifically,
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the enhancement effect of the two modules was inconsistent;

however, using the two modules at the same time yielded a better

result, and it was proved that the DMFNet integrated the two

modules effectively.

Next, we visualized the ablation study and analyzed the details

of our model. More typical examples are provided in Figure 6,

including different stained nuclei and their masks. Amodel without

the modules would result in errors, such as a small number

of segmented nuclei and a lack of distinction between adjacent

nuclei. The reason for this behavior was that the network did

TABLE 1 E�ects of each module of the DMFNet (%).

DCN BFP mAP AP50 AP75 mAR AR50 AR75

29.7 64.6 24.8 38.6 72.3 38.4

X 34.9 ↑5.2 70.1 ↑5.5 32.5 ↑7.7 43.0 ↑4.4 77.3 ↑5.0 46.6 ↑8.2

X 31.6 ↑1.9 67.7 ↑3.1 26.1 ↑1.3 39.5 ↑0.9 73.9 ↑1.6 40.0 ↑1.6

X X 37.8 ↑8.1 77.8 ↑13.2 33.6 ↑8.8 47.4 ↑8.8 85.3 ↑13.0 49.0 ↑10.6

not completely learn the overall features and, hence, did not fully

identify the edges of the features. In contrast, the DMFNet could

segment more nuclei, correctly segment adjacent nuclei, and also

segment each nucleus more completely. This means that our model

offers advantages in nuclei edge extraction and global feature

integration, and it is also proved that the two modules played a

significant role.

3.5 Comparisons

To verify the effectiveness of the DMFNet on nuclei

segmentation, we compared the proposed model with a few state-

of-the-art methods, with the same experimental configuration.

Table 2 lists the instance segmentation results of each of these

methods. Compared to the existing baseline methods, for example,

Mask R-CNN (Kaiming et al., 2017), TensorMask (Xinlei et al.,

2019), and PolarMask (Xie et al., 2020), the proposed method

yielded better results than the state-of-the-art methods. The

DMFNet achieved the best performance on the MoNuSeg 2018

FIGURE 6

Visualization comparison between the DMFNets (with or without the two feature processing modules) and examples of segmentations model; the

first row contains the original tissue images; the second row contains the images from the DMFNet without the two modules; while the third row

contains the images from our proposed DMFNet.
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TABLE 2 E�ects of each module of the DMFNet (%).

Method mAP AP50 AP75 mAR AR50 AR75

PolarMask 21.7 52.4 14.5 31.8 64.1 29.4

Mask R-CNN 30.3 67.8 24.1 40.9 77.4 40.2

TensorMask 31.4 67.4 27.1 39.8 74.0 39.7

SOLO 29.7 64.6 24.8 38.6 72.3 38.4

DMFNet 37.8 77.8 33.6 47.4 85.3 49.0

dataset, with its mAP and mAR approaching 37.8% and 47.4%,

respectively. Furthermore, when the IoU threshold was 0.50 and

0.75, our method yielded a better performance, and both AP and

AR were the best.

Figure 7 shows the segmentation P-R curves (smoothed) of five

models with 10 IoU thresholds ranging from 0.5 to 0.75 with an

interval of 0.05. Figure 7 shows that with a change in the IoU

threshold, the trend of the model was approximately the same, and

the corresponding P-R curve gradually approached the coordinate

axis; however, the closing speed of the P-R curve of the proposed

model was slower than that of the other models. This proves that

the prediction result of the proposed DMFNet had a higher score

and better overall quality.

4 Discussion

Changes in nuclear morphology are closely related to the

growth state of tumors. For nearly 150 years, changes in nuclear

morphology have been the gold standard for cancer diagnosis,

so it is critical to understand single nuclear instances. With the

development of digital pathology, the emergence of electronic

pathology pictures helps pathologists get rid of microscopes,

but it is very cumbersome and difficult to browse and observe

pathological nuclei on the computer. The main method for

pathologists to quantify nuclei is subjective estimation, which

cannot be done precise quantification.

In digital pathology research, instantiating nuclei can help

pathologists understand the structure of individual nuclei.

Quantitative analysis of the spatial distribution of nuclear clusters

and the number of mitoses, which are key factors in cancer

diagnosis and prognosis. In practice, there are independent nuclei

and clusters of nuclei that are clustered together. Although the

semantic segmentation of nuclei has an excellent effect and can

extract nuclei from pathological images, it is not suitable for

independent study of nuclei clusters or adjacent nuclei. Scene of

the nucleus in a cell.

For the above reasons, we propose a model DMFNet to

segment pathological image nuclei from the perspective of instance

segmentation. DMFNet analyzes the process of nucleus instance

segmentation at both feature and segmentation levels. At the

feature level, we added a feature extraction module for the

diversemorphological characteristics of nuclei, which enhanced the

model’s transformation and modeling capabilities to better sample

target instances. In nucleus segmentation, both detail features and

semantic features play a very important role, so we propose to use

the feature integration module to integrate and enhance the two

features. At themask level, we replace the traditional methods using

anchor boxes or clustering with a one-stage location-based instance

segmentation method, making the model simpler. Experiments

show that the method in this paper can effectively improve the

accuracy of nucleus instance segmentation.

In summary, both feature extraction and feature integration

modules can improve the accuracy of nucleus segmentation;

moreover, their combination can further improve the performance,

which not only validates that their combination is suitable for

the task of nucleus segmentation, but also shows that they

differ from feature level Aspects enhance the segmentation task.

Therefore, we can use these two modules simultaneously in the

application scenario of nucleus segmentation to achieve optimal

segmentation results.

In the field of medical image processing, the development of

automatic annotation technologies is of critical significance for

improving the efficiency of clinical applications. The DMFNet

model in this study demonstrates remarkable potential in the

automatic annotation of medical images. By achieving precise

segmentation of cell nuclei, the model can automatically identify

and annotate key information such as the location and boundaries

of the nuclei. This greatly reduces the workload associated

with manual annotation. Traditional manual annotation methods

require significant time and effort from pathologists, especially

when handling large-scale medical image data. In contrast, the

DMFNet model can rapidly and accurately perform the annotation

task. For example, annotating pathological slide images containing

numerous cell nuclei may take several hours or even days

manually, while the DMFNet model can complete the preliminary

annotation in a much shorter time, achieving high accuracy. This

not only improves annotation efficiency but also provides timely

and reliable data support for subsequent clinical diagnosis and

research, thereby promising to enhance overall clinical application

efficiency and provide robust support for early disease diagnosis

and precision treatment.

In terms of practical clinical applications, this nuclear cell

segmentation model holds great potential. In the process of cancer

diagnosis, accurate nuclear cell segmentation is a crucial step.

Currently, the incidence rate of cancer remains at a relatively high

level, and early diagnosis is of great significance for improving

patients’ survival rates and quality of life. By enhancing the accuracy

of nuclear cell instance segmentation, this model can provide

pathologists with more accurate and detailed information about

nuclear cells. For example, in the diagnosis of common cancers

such as breast cancer and lung cancer, pathologists can utilize

this model to observe the morphology, size, and distribution

of nuclear cells more clearly, thereby making a more accurate

judgment on the benign or malignant nature of the tumor. This

is of great importance for the early detection of tiny tumors,

the determination of cancer staging, and the formulation of

personalized treatment plans. Moreover, during the follow-up after

cancer treatment, this model can also be used to monitor changes

in the morphology of nuclear cells, enabling the timely detection of

signs of cancer recurrence.

We analyzed the problem of nuclei segmentation in

pathological images and proposed amodel for nuclei segmentation,
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FIGURE 7

P-R Curves of state-of-the-art models over di�erent IoU thresholds, compared with those of the proposed DMFNet.

but with the change of datasets and the development of medical

images, the model still needs to be further optimized. Although

the nucleus segmentation dataset we used is a well received work

in recent years, in the process of analyzing the edges, it is found

that the labeling of the edges is not fine enough and the amount

of training data is relatively small.Therefore, transfer learning

should be performed in combination with newly released datasets

to improve the robustness and accuracy of the model. We only

segment the nuclei in the pathological images without considering

the types of nuclei. In tumor tissues, the cells included not only

cancer cells, but also stromal cells, lymphocytes, macrophages,

etc. Recent studies have shown that tumor cell nuclei Stromal cell

interactions are involved in tumor progression and metastasis. In

the following work, the fine-grained classification of the research

cells is also needed, and the cells are divided into tumor cells,

stromal cells, lymphocytes, etc.

5 Conclusions

In this study, we proposed an innovative model, DMFNet,

which holds significant value in clinical applications. This model

is mainly used for nuclear segmentation from digital pathology

images of different organs, a function that is of great significance

for the clinical diagnosis and treatment of diseases such as cancer.

In clinical practice, the accuracy of nuclear segmentation is crucial

for determining the nature and development stage of tumors.

We conducted a detailed analysis of the nuclear segmentation

process and made targeted improvements to key components

such as feature extraction, fusion, and template generation.

Through these enhancements, DMFNet effectively combines DCN,

BFP, and SOLO, significantly improving the performance of the

segmentation network.

However, the DMFNet model still has certain limitations. At

the methodological level, although it exhibits good performance

on the existing dataset, with the development of medical imaging

technology and the emergence of new datasets, the model may

face adaptability issues. From the perspective of network structure,

although the performance has been improved through module

combination, when dealing with large-scale, high-resolution

pathological images, the problem of excessive consumption of

computational resources is rather prominent, which affects the

running efficiency of the model to a certain extent. In terms

of feature extraction, the expression of features such as the

morphology and texture of the cell nucleus is not rich enough,

making it difficult to capture some subtle but critical pathological

features, which may thus affect the accuracy of segmentation.

In the process of feature fusion, the fusion method of different

hierarchical features is not optimal, resulting in information loss

or redundancy, leading to the underutilization of some features.

The template generation process is not flexible enough in adapting

to the diverse morphological distributions of cell nuclei, and the

processing ability of the model is limited when facing complex

pathological situations.

In the future, we will further improve the model from the

directions of enhancing model performance (such as optimizing

feature extraction, fusion, and template generation), expanding

application scenarios (to more organ diseases and integrating
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with clinical processes), and increasing model interpretability

(visualization and constructing explanatory models). When

the DMFNet was applied to the MoNuSeg 2018 dataset,

the experimental results clearly demonstrated the performance

advantages of this method over some existing methods. This

implies that in actual clinical scenarios, pathologists can utilize

this model to more accurately extract nuclear information from

pathological images. Meanwhile, during the follow-up of diseases,

this model also helps in continuously monitoring the changes of

cell nuclei, enabling the timely detection of disease progression

or recurrence.

In summary, the DMFNet model provides important support

for clinical diagnosis and treatment and has remarkable clinical

value.
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Aim: The current study aims to delineate subcutaneous adipose tissue (SAT), 
visceral adipose tissue (VAT), the sacrospinalis muscle, and all abdominal 
musculature at the L3–L5 vertebral level from non-contrast computed 
tomography (CT) imagery using deep learning algorithms. Subsequently, 
radiomic features are collected from these segmented images and subjected to 
medical interpretation.

Materials and methods: This retrospective analysis includes a cohort of 315 
patients diagnosed with acute necrotizing pancreatitis (ANP) who had undergone 
comprehensive whole-abdomen CT scans. The no new net (nnU-Net) 
architecture was adopted for the imagery segmentation, while Python scripts 
were employed to derive radiomic features from the segmented non-contrast 
CT images. In light of the intrinsic medical relevance of specific features, two 
categories were selected for analysis: first-order statistics and morphological 
characteristics. A correlation analysis was conducted, and statistically significant 
features were subjected to medical scrutiny.

Results: With respect to VAT, skewness (p = 0.004) and uniformity (p = 0.036) 
emerged as statistically significant; for SAT, significant features included 
skewness (p = 0.023), maximum two-dimensional (2D) diameter slice 
(p = 0.020), and maximum three-dimensional (3D) diameter (p = 0.044); for the 
abdominal muscles, statistically significant metrics were the interquartile range 
(IQR; p = 0.023), mean absolute deviation (p = 0.039), robust mean absolute 
deviation (p = 0.015), elongation (p = 0.025), sphericity (p = 0.010), and 
surface volume ratio (p = 0.014); and for the sacrospinalis muscle, significant 
indices comprised the IQR (p = 0.018), mean absolute deviation (p = 0.049), 
robust mean absolute deviation (p = 0.025), skewness (p = 0.008), maximum 
2D diameter slice (p = 0.008), maximum 3D diameter (p = 0.005), sphericity 
(p = 0.011), and surface volume ratio (p = 0.005).

Conclusion: Diminished localized deposition of VAT and SAT, homogeneity 
in the VAT and SAT density, augmented SAT volume, and a dispersed and 
heterogeneous distribution of abdominal muscle density are identified as risk 
factors for infectious pancreatic necrosis (IPN).
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1 Introduction

Acute necrotizing pancreatitis (ANP), a grave complication of 
acute pancreatitis (AP), arises from the aberrant activation of 
pancreatic digestive enzymes, resulting in tissue necrosis. This necrotic 
tissue creates an environment conducive to bacterial proliferation, 
which frequently precipitates infectious pancreatic necrosis (IPN), 
occurring in approximately 30% of ANP patients and manifesting a 
mortality rate as high as 30%. Consequently, the early and precise 
diagnosis and treatment of IPN are of paramount importance. Given 
the intimate connection between the pathophysiology of ANP and 
systemic metabolism, recent research has focused on the roles of 
muscle and adipose tissue in ANP and its complications (Yee et al., 
2021; Zhang X. et al., 2024).

In unraveling the intricate pathogenesis of IPN, it is essential to 
consider the potential contributions of body composition, particularly 
with respect to muscle and fat. Skeletal muscle, a fundamental 
component of the human body, not only underpins essential motor 
functions but is also intimately associated with an individual’s 
metabolic state, inflammatory responses, and long-term clinical 
outcomes. Adipose tissue, especially visceral fat, is recognized as a 
“metabolically active” entity that secretes various bioactive molecules 
involved in regulating energy metabolism, inflammatory reactions, 
and immune functions. Recent evidence suggests that alterations in 
muscle and fat content and distribution may exert direct or indirect 
influences on the progression and outcomes of AP (Fu et al., 2023; 
Dawra et al., 2023). Nonetheless, a comprehensive understanding of 
the specific roles these changes play in the development of IPN 
remains elusive. This study seeks to bridge this gap by examining the 
distinctive alterations in muscle and fat among IPN patients, thereby 
offering a novel perspective on the multifaceted disease trajectory of 
IPN. While the previous studies have acknowledged the significance 
of assessing body composition, they have been mainly confined to 
macroscopic observations and correlative analyses, with a limited 
exploration of the precise mechanisms by which muscle and fat impact 
IPN. Hence, this study will utilize CT scans to meticulously evaluate 
the distribution of muscle and fat in IPN patients. This methodological 
approach is anticipated to elucidate the intrinsic correlation between 
muscle and fat status and the pathophysiological underpinnings of 
IPN, providing a scientific foundation for early diagnosis, therapeutic 
strategy development, and prognostic enhancement. The objective is 
to furnish new theoretical insights and practical guidance for precision 
medicine and IPN management.

Computed tomography (CT), as a prevalent imaging technique, 
offers distinct advantages in assessing body composition. It not only 
delineates the distribution of muscles and fats with clarity but also 
quantitatively analyzes critical parameters, such as muscle area and 
fat content, through precise measurement tools, thereby affording 
clinicians a wealth of morphological and functional information 
(Zhang R. et  al., 2023; Vogele et  al., 2023). In the evaluation of 
pancreatitis, CT accurately portrays pancreatic morphological 
alterations, necrotic regions, and the spread of inflammation, playing 
a pivotal role in diagnosing ANP and monitoring disease progression 
(Balthazar et al., 1990). Moreover, CT has proven to be particularly 
adept at assessing muscle and fat, enabling the exact measurement 
of their distribution and proportions, which is instrumental in 
evaluating patients’ nutritional status, inflammatory responses, and 
disease prognoses (Hou et  al., 2024). The advent of artificial 

intelligence technology, particularly the extensive application of 
deep learning algorithms in medical image processing, has 
introduced a novel perspective and set of tools for exploring the 
complex pathological mechanisms of AP (Zhang C. et al., 2024; Yin 
et al., 2024). By leveraging deep learning algorithms, we can uncover 
the profound features embedded within the vast repository of CT 
image data (Zhang R. et al., 2023), which may be intimately linked 
to the pathological changes of IPN, thereby facilitating early 
prediction and precise treatment of the condition. Despite the 
limitations of non-enhanced CT in the traditional visual diagnosis 
of pancreatic diseases due to the lack of contrast, its amalgamation 
with radiomics technology has yielded promising diagnostic 
outcomes (Koç and Taydaş, 2020; Janisch et  al., 2022; Cao 
et al., 2023).

This study explores the utility of body composition assessment 
based on non-contrast CT in ANP patients and harnesses deep 
learning and radiomics techniques to delve into the potential 
connections between body components and the onset of 
IPN. Additionally, we aspire to provide novel insights and strategies 
for the early detection and personalized treatment of the disease by 
examining the interplay with body composition.

2 Materials and methods

2.1 Patients

This study was conducted in accordance with the Declaration of 
Helsinki and received ethical approval from the Ethics Committee of 
Shengjing Hospital at China Medical University, with a waiver of 
informed consent for participants (ethical approval number: 
2024PS1480K). As depicted in Figure 1, we conducted a retrospective 
analysis of data from patients who were diagnosed with ANP and 
admitted to our institution between March 2019 and August 2024 and 
underwent CT scans within a week of symptom onset. Inclusion criteria 
included CT scans performed within 1 week of admission. Exclusion 
criteria included: (1) pregnancy; (2) age below 18 years; (3) concurrent 
malignancy; and (4) non-whole-abdomen CT scans, poor image quality, 
or incomplete clinical data that could compromise the accuracy and 
reliability of the assessment outcomes.

Clinical data collected included age, sex, IPN status, diabetes, 
hypertension, hyperlipidemia, hypoxemia, coronary heart disease, 
gallstone pancreatitis, mechanical ventilation, and hospital stay duration.

2.2 CT image acquisition

Patients were subjected to whole-abdomen CT imaging within 
1 week following admission. All scans were performed with the patients 
in a supine position during inhalation using a (1) Philips Brilliance ICT 
256-slice spiral CT scanner (Philips Healthcare). (2) Python package 
PyRadiomics version 3.0.1 (Python Software Foundation). (3) Statistical 
Package for the Social Sciences (SPSS) version 26.0 (IBM Corp). The 
scanning field extended from the diaphragmatic dome to the pubic 
symphysis. Scan parameters were set as follows: tube voltage at 120 kV, 
tube current adjusted to automatic milliamperage, matrix size of 
512 × 512, a pitch of 1, with routine images at a slice thickness of 3.0 mm, 
and thin-section images at 1.0 mm intervals.
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2.3 Data annotations

The present study utilized a stringent data annotation protocol 
to guarantee precision and consistency. To ensure the model’s 
generalizability and to reduce the interference of pancreatitis on the 
delineation of visceral fat, we employed CT images from a distinct 
cohort of individuals without pancreatitis for region of interest 
(ROI) annotation. Two experienced radiologists, each with over 
5 years of expertise in diagnostic imaging and unaware of the study’s 
aims, initially demarcated the subcutaneous fat (SAT), visceral fat 
(VAT), sacrospinalis, and all abdominal muscles at the L1–S1 
vertebral level (Figure 2). To further bolster the reliability of the data 
annotation, a seasoned diagnostic radiologist with over 15 years of 
experience, also unfamiliar with the study’s objectives, was brought 
in to scrutinize the ROIs. This senior radiologist, well-versed in 
medical imaging and rich in clinical diagnostic acumen, 
meticulously reviewed and corrected the annotations made by the 
junior physicians; during the review, the senior radiologist engaged 
in profound discussions with the junior physicians regarding 

controversial or unclear areas. However, these discussions were 
restricted to technical matters and excluded any discourse on the 
patient’s clinical conditions or the study’s hypotheses. Consensus 
was achieved through negotiation to ensure that each ROI 
annotation was exact and precise. This blinded data annotation 
process helped minimize the influence of subjective bias on the 
study’s outcomes.

2.4 Segmentation network

For the segmentation model, we adopted a 5-fold cross-validation 
approach with a data partition ratio of 5:1. Specifically, the dataset was 
initially randomly divided into five subsets, with four subsets (80%) 
serving as the training set and the remaining subset (20%) as the 
validation set. This procedure was replicated 5 times to ensure that 
each data point was used as a validation set exactly once. This ensures 
that we can maximize data utilization while more accurately evaluating 
the model’s generalization ability.

FIGURE 1

Patients’ enrollment and exclusion process in the infectious pancreatic necrosis (IPN) database.

FIGURE 2

(A) Non-pancreatitis crowd image; (B) Delineated subcutaneous adipose tissue (SAT) (green), visceral adipose tissue (VAT) (yellow), sacrospinalis (blue), 
and abdominal muscles (blue and purple).
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A neural network architecture was employed for accurate image 
segmentation. The process began with the segmentation of the L3–L5 
vertebrae. For ROI regions with smaller initial segmented areas and 
errors, erosion processing was applied to enhance their accuracy. 
Following this, connected component analysis was conducted, revealing 
that the segmentation accuracy of the L4 vertebra was the highest. 
Using this information, we  expanded one connected component 
upward and one downward to accurately identify the L3–L5 vertebral 
region. Subsequently, the muscles and fat within this region 
were delineated.

Our segmentation network was constructed based on the 
nnU-Net architecture (Isensee et  al., 2021). nnUNet can 
automatically perform preprocessing based on the characteristics of 
the dataset. Additionally, it offers various architectures that handle 
3D matrices effectively, making it highly suitable for CT images. Our 
segmentation network exclusively used non-enhanced CT images as 
a data source.

2.5 Evaluation of ANP and IPN

For the assessment of ANP (Figures 3A–C), all case evaluations were 
conducted by two radiologists specializing in imaging diagnostics, each 
with over 8 years of diagnostic experience, who reviewed all imaging 
studies performed during the inpatient stay of the enrolled patients, 
devoid of any clinical information and adverse outcomes. Regarding the 
assessment of IPN (Figures 3D–F), an abdominal CT specialist with over 
a decade of diagnostic experience evaluated the cases by synthesizing 
clinical data, imaging findings, and laboratory test results. It is pertinent 
to note that IPN was defined as the initial percutaneous catheter drainage 
or surgical retrieval, yielding a positive culture or the observation of 
extraluminal gas on CT scans. Pancreatic necrosis refers to areas within 

the pancreatic parenchyma that exhibit hypoattenuation or lack of 
enhancement on CT imaging. Peripancreatic necrosis is characterized by 
collections containing varying amounts of fluid and necrotic tissue 
associated with necrotizing pancreatitis, and it can be diagnosed when 
non-liquid components of non-enhancing areas are visualized on 
CT scans.

2.6 Radiomics feature selection

Utilizing the Python package PyRadiomics version 3.0.1, 
we conducted the extraction of radiomic features from non-contrast CT 
images that had been segmented automatically. In recognition of the 
intrinsic clinical relevance of specific attributes, we narrowed our focus to 
two principal categories: first-order and shape characteristics. The first-
order features encapsulate the distribution patterns of pixel intensities 
within the images (refer to Table  1, items 1–18), whereas the shape 
features concentrate on delineating the geometric attributes of the imaged 
structures (refer to Table 1, items 19–32).

2.7 Statistical analysis

Statistical computations were executed utilizing Statistical Package for 
the Social Sciences (SPSS) version 26.0. Quantitative data were expressed 
in terms of mean deviation ( )x s±  and were subjected to comparison via 
t-tests. Qualitative data were represented in frequencies and were 
evaluated using the χ2/Fisher exact tests, as appropriate. In radiomic data, 
the t-tests were employed for data that exhibited a normal distribution. In 
contrast, the Mann–Whitney U test was utilized for data that did not 
conform to a normal distribution. p < 0.05 was deemed indicative of 
statistical significance.

FIGURE 3

(A–C) Female, 50-year-old, acute necrotizing pancreatitis (ANP), showing a slightly hypodense lesion without enhancement after contrast (C, arrow); 
(D–F) Female, 31-year-old, infectious pancreatic necrosis (IPN), with scattered gas within the necrosis (F, arrow).
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TABLE 1 Radiomics features and their mathematical explanations used in this study.

Number Feature Mathematical explanation

1 10 percentile The 10th percentile value of the voxel intensities within the region of interest (ROI). This is the value below which 

10% of the data falls.

2 90 percentile The 90th percentile value of the voxel intensities within the ROI. This is the value below which 90% of the data falls.

3 Energy A measure of the magnitude of voxel values in an image. It is the sum of the squares of the voxel values.

4 Entropy Specifies the uncertainty/randomness in the image values. It measures the average amount of information required to 

encode the image values.

5 IQR The difference between the 75th percentile (Q3) and the 25th percentile (Q1) of the voxel intensities within the ROI. 

It is a measure of the spread of the middle 50% of the data.

6 Kurtosis A measure of the “peakedness” of the distribution of voxel intensities within the ROI. A high kurtosis value indicates 

a sharp peak and heavy tails, while a low kurtosis value indicates a flat distribution.

7 Maximum The maximum voxel intensity value within the ROI.

8 Mean The average voxel intensity value within the ROI.

9 MAD The average of the absolute differences between the individual voxel intensities and the mean voxel intensity.

10 Median The middle value of the voxel intensities within the ROI, such that half of the data is above and half is below this 

value.

11 Minimum The minimum voxel intensity value within the ROI.

12 Range The difference between the maximum and minimum voxel intensity values within the ROI.

13 Robust MAD A measure of the spread of the data that is less sensitive to outliers than the MAD.

14 Root mean squared The square root of the mean of the squares of the differences between the individual voxel intensities and the mean 

voxel intensity.

15 Skewness A measure of the asymmetry of the distribution of voxel intensities within the ROI. A positive skewness indicates a 

tail on the right side of the distribution, while a negative skewness indicates a tail on the left side.

16 Total energy The energy feature scaled by the volume of the voxel in cubic mm. It takes into account both the magnitude of the 

voxel values and the size of the ROI.

17 Uniformity A measure of the homogeneity of the voxel intensities within the ROI. It is the sum of the squares of each voxel 

intensity value divided by the square of the sum of the voxel intensity values.

18 Variance The average of the squared differences between the individual voxel intensities and the mean voxel intensity. It 

measures the spread of the data around the mean.

19 Elongation The elongation of the ROI shape is a measure of the relationship between the two largest principal components of the 

ROI.

20 Flatness The flatness of the ROI shape is a measure of the relationship between the largest and smallest principal components 

of the ROI.

21 Least axis length The length of the smallest principal axis of the ROI.

22 Major axis length The length of the largest principal axis of the ROI.

23 Maximum 2D diameter 

column

The maximum 2D diameter of the ROI in the column direction (typically the y-axis in an image).

24 Maximum 2D diameter row The maximum 2D diameter of the ROI in the row direction (typically the x-axis in an image).

25 Maximum 2D diameter 

slice

The maximum 2D diameter of the ROI in the slice direction (typically the z-axis in a 3D image).

26 Maximum 3D diameter The maximum 3D diameter of the ROI is the largest Euclidean distance between any two points on the surface of the 

ROI.

27 Mesh volume The volume of the ROI is calculated from the triangular mesh that represents the surface of the ROI.

28 Minor axis length The length of the second-largest principal axis of the ROI

29 Sphericity A measure of how spherical the ROI is. It is the ratio of the surface area of a sphere with the same volume as the ROI 

to the actual surface area of the ROI.

30 Surface area The surface area of the ROI.

31 Surface volume ratio The ratio of the surface area of the ROI to its volume. A lower value indicates a more compact, spherical shape.

32 Voxel volume The volume of a single voxel within the ROI.
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The overall study workflow is shown in Figure 4.

3 Results

3.1 Clinical characteristics

The present study enrolled a total of 315 patients. Table  2 
delineates the clinical attributes of the participants within the IPN and 
non-infected pancreatic necrosis (NPN) cohorts.

A comparative analysis of the clinical characteristics between the 
IPN (n = 101) and NPN (n = 214) groups revealed no significant 
disparities with respect to sex, diabetes, hypertension, hyperlipidemia, 
and coronary heart disease. However, patients in the IPN cohort were 
notably older (p = 0.038), exhibited a more significant requirement for 
mechanical ventilation (p < 0.001), and experienced significantly 
prolonged hospital admissions (p < 0.001) compared to their NPN 
counterparts. While a higher incidence of hypoxemia was observed 
among IPN patients, this discrepancy did not reach statistical 
significance. These observations proffer critical insights for subsequent 
inquiries into the pathophysiology and prognostic determinants of IPN.

3.2 Segmentation results

Following a comprehensive assessment across five validation 
datasets, utilizing a 5-fold cross-validation approach with each 
model undergoing 100 training epochs, the model exhibiting 
superior performance was designated as the definitive model 
(Figures 5–7). The optimal model achieved an accuracy of 0.91 in 
segmenting the L3–L5 vertebral region within the 
validation dataset.

Within the L3–L5 vertebral range, we executed segmentation of 
the SAT, VAT, sacrospinalis, and all abdominal musculature (Figure 8).

3.3 Correlation between body composition 
and infectious pancreatic necrosis

We conducted a detailed analysis of the first-order and shape 
characteristics of the segmented VAT, SAT, sacrospinalis, and all 
abdominal muscles. For the statistically significant features, 
we attempted to provide explanations and presented them in the form 
of box plots (Figure 9).

FIGURE 4

Study flowchart.
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3.3.1 VAT
As shown in Table 3, for the first-order VAT features, skewness 

(p = 0.004) and uniformity (p = 0.036) were statistically significant; 
the other features were not.

The skewness feature of VAT is correlated with the symmetry of 
VAT pixel distribution, with higher skewness values indicating 

excessive fat accumulation in certain areas and relatively less in others; 
within this set of features, skewness is 0.60 in the negative group, and 
lower in the positive group (0.48), suggesting that VAT in IPN patients 
exhibits less localized accumulation.

The uniformity feature pertains to whether VAT is 
evenly distributed within the ROI, with values closer to 1 

TABLE 2 Comparison of clinical characteristics between infectious pancreatic necrosis (IPN) and non-infected pancreatic necrosis (NPN) groups.

Clinical characteristics IPN (n = 101) NPN (n = 214) p

Sex (n) Male 70 (69.3%) 143 (66.8%) 0.66

Female 31 (30.7%) 71 (33.2%)

Age (years) 47.91 ± 15.45 44.14 ± 13.85 0.038

Diabetes mellitus (n) Yes 44 (43.6%) 98 (45.8%) 0.71

No 57 (56.4%) 116 (54.2%)

Hypertension (n) Yes 35 (34.7%) 61 (28.5%) 0.269

No 66 (65.3%) 153 (71.5%)

Hyperlipidemia (n) Yes 44 (43.6%) 108 (50.5%) 0.252

No 57 (56.4%) 106 (49.5%)

Coronary heart disease (n) Yes 5 (5.0%) 8 (3.7%) 0.762

No 96 (95.0%) 206 (96.3%)

Mechanical ventilation (n) Yes 32 (31.7%) 19 (8.9%) <0.001

No 69 (68.3%) 195 (91.1%)

Biliary pancreatitis (n) Yes 13 (12.9%) 26 (12.1%) 0.856

No 88 (87.1%) 188 (87.9%)

Concurrent hypoxemia (n) Yes 31 (30.7%) 49 (22.9%) 0.138

No 70 (69.3%) 165 (77.1%)

Length of hospital stay (days) 35.83 ± 33.06 19.71 ± 19.00 <0.001

FIGURE 5

L3–L5 segmentation results.
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FIGURE 6

Fat segmentation results.

FIGURE 7

Muscle segmentation results.

FIGURE 8

(A) Original image of a patient with pancreatitis. (B) A senior radiologist with over 15 years of experience manually delineates the ROI for assessing the 
effectiveness of segmenting human body components in patients with pancreatitis under human visualization (using a model not trained for 
pancreatitis). (C) Model-segmented ROI.

144

https://doi.org/10.3389/fmicb.2024.1509915
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Huang et al. 10.3389/fmicb.2024.1509915

Frontiers in Microbiology 09 frontiersin.org

indicating a more uniform texture and values farther from 1 
suggesting greater heterogeneity. The negative group exhibits 
slightly lower uniformity than the positive group (0.47 compared 
to 0.48), indicating that the VAT density in IPN patients is 
more uniform.

3.3.2 SAT
As shown in Table 4, for the first-order features of SAT, skewness 

(p = 0.023) showed statistical significance; among the shape features, 
maximum two-dimensional (2D) diameter slice (p = 0.020) and 
maximum three-dimensional (3D) diameter (p = 0.044) were 
statistically significant; the other features were not.

The skewness feature of SAT is higher in the negative group (1.14) 
compared to the positive group (0.96), indicating that SAT in IPN 
patients has less localized accumulation.

The maximum 2D diameter slice measures the maximum 
diameter of the SAT area in a 2D image, reflecting the extent of SAT 
expansion in the axial plane; the average maximum 2D diameter slice 
in the positive group (362.97) is greater than that in the negative group 
(350.19). The maximum 3D diameter reflects the overall size and 
shape of SAT in 3D space. Similarly, the maximum 3D diameter in the 
positive group (374.06) is larger than that in the negative group 
(358.72). Both features suggest that the volume of subcutaneous 
adipose tissue in IPN patients is larger relative to NPN patients.

3.3.3 Abdominal muscles
As shown in Table  5, for the abdominal muscles’ first-order 

features, interquartile range (p = 0.023), mean absolute deviation 
(p = 0.039), and robust mean absolute deviation (p = 0.015) were 
statistically significant; among the shape features, elongation 

(p = 0.025), sphericity (p = 0.010), and surface volume ratio 
(p = 0.014) were statistically significant; and the other features 
were not.

The interquartile range (IQR) of the abdominal muscles reflects 
their stability or variability under different conditions, describing the 
degree of dispersion in data distribution. It represents the range of 
the middle 50% of the data. The IQR in the negative group is less 
than that in the positive group (20.00 vs. 22.00). This may indicate 
that in patients who develop infectious pancreatic necrosis, the 
signal intensity distribution of the abdominal muscles is 
more dispersed.

Mean absolute deviation (MAD) is another statistical measure 
of data distribution dispersion, which quantifies the average 
distance of data points from the mean. The robust mean absolute 
deviation is a more robust version of MAD, insensitive to outliers. 
The findings of these two features are consistent, indicating that 
the signal intensity distribution of the abdominal muscles in 
patients who develop infectious pancreatic necrosis may 
be more uneven.

Elongation reflects the extent of longitudinal extension of muscle 
fibers or muscle blocks, with the elongation rate in the positive group 
being greater than that in the negative group (0.67 vs. 0.64). This may 
suggest that the shape of the abdominal muscles in patients who 
develop infectious pancreatic necrosis is more elongated in 
one direction.

Sphericity measures the similarity of the shape of an ideal sphere, 
reflecting the compactness and regularity of the shape of muscle fibers 
or muscle blocks; the sphericity in the negative group is greater than 
that in the positive group (0.48 vs. 0.44). This may imply that the shape 
of the abdominal muscles in patients who do not develop infectious 

FIGURE 9

Radiomic features with statistical significance in body composition.
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pancreatic necrosis is closer to spherical. In contrast, the shape of the 
abdominal muscles in patients who develop infectious pancreatic 
necrosis may become less regular due to inflammation or other 
pathological changes.

The surface volume ratio reflects the ratio of muscle surface 
area to volume, with the positive group having a higher surface 
volume ratio than the negative group (0.21 vs. 0.19). This may 
indicate that the abdominal muscles of patients who develop 

TABLE 3 Correlation between visceral adipose tissue (VAT) radiomic features and infectious pancreatic necrosis (IPN).

Feature Negative Positive Statistical 
methods

Statistic p

10 Percentile −113.00 (−118.00, −107.00) −112.27 Mann–Whitney U 9057.5 0.087

90 Percentile −50.00 (−58.00, −44.00) −50.75 Mann–Whitney U 9560.5 0.308

Energy 5559141605.50 

(3540920150.50, 

7802701555.75)

5517645106.00 

(3029784775.75, 

8244608979.00)

Mann–Whitney U 10,517 0.766

Entropy 1.26 (1.19, 1.32) 1.23 (1.17, 1.30) Mann–Whitney U 11,721 0.05

IQR 31.00 (28.00, 35.00) 31.73 Mann–Whitney U 10,240 0.935

Kurtosis 3.05 (2.65, 3.72) 2.85 (2.55, 3.43) Mann–Whitney U 11,718 0.051

Maximum 30.00 (16.00, 41.75) 21.50 (12.00, 41.25) Mann–Whitney U 11,696.5 0.054

Mean −84.93 −84.93 t-test 1.78111074 0.076

MAD 18.87 (17.33, 20.14) 18.47 (17.20, 20.04) Mann–Whitney U 10,971 0.356

Median −89.00 (−96.00, −82.00) −88.61 Mann–Whitney U 8,889 0.052

Minimum −233.00 (−301.50, −187.25) −220.50 (−282.00, −175.00) Mann–Whitney U 9,205 0.132

Range 268.00 (219.00, 337.25) 247.50 (202.75, 317.75) Mann–Whitney U 11,636 0.066

Robust MAD 13.40 (11.99, 14.55) 13.24 (11.79, 14.80) Mann–Whitney U 10,482 0.803

Root mean squared 88.78 (82.43, 94.47) 88.32 Mann–Whitney U 11,603 0.073

Skewness 0.6 0.48 (0.26, 0.72) Mann-–Whitney U 12,390 0.004

Total energy 12114180613.50 

(8090181675.25, 

17111404744.75)

12041332397.50 

(6156355601.50, 

18040494741.50)

Mann–Whitney U 10,499 0.785

Uniformity 0.47 (0.44, 0.51) 0.48 (0.46, 0.52) Mann–Whitney U 8,779 0.036

Variance 556.66 (488.00, 616.44) 527.72 (467.94, 606.80) Mann–Whitney U 11,270 0.182

Elongation 0.61 (0.54, 0.68) 0.61 (0.56, 0.67) Mann–Whitney U 9,754 0.452

Flatness 0.40 (0.35, 0.45) 0.40 (0.36, 0.47) Mann–Whitney U 9,526 0.287

Least axis length 110.84 (104.00, 121.47) 111.99 (105.00, 140.59) Mann–Whitney U 9,345 0.189

Major axis length 285.63 (264.87, 311.07) 291.49 (277.58, 313.18) Mann–Whitney U 9,020 0.078

Maximum 2D diameter 

column

288.81 (268.45, 308.03) 292.30 (275.25, 314.29) Mann–Whitney U 9,355 0.193

Maximum 2D diameter 

row

205.30 (182.48, 229.82) 208.38 (187.62, 233.90) Mann–Whitney U 9,794 0.486

Maximum 2D diameter 

slice

276.66 (257.45, 300.00) 284.43 (267.16, 301.85) Mann–Whitney U 9,070 0.09

Maximum 3D diameter 295.28 (272.07, 315.35) 296.97 (279.89, 326.37) Mann–Whitney U 9,335 0.184

Mesh volume 1594888.51 (1116303.11, 

2059782.88)

1565850.12 (994337.63, 

2122169.49)

Mann–Whitney U 10,245 0.94

Minor axis length 176.57 (154.86, 198.44) 177.83 (157.36, 205.76) Mann–Whitney U 9,538 0.294

Sphericity 0.19 (0.16, 0.21) 0.18 Mann–Whitney U 11,307 0.166

Surface area 348265.70 (276579.17, 

415143.35)

345724.42 (280669.46, 

450891.29)

Mann–Whitney U 9,911 0.593

Surface volume ratio 0.23 (0.19, 0.29) 0.24 (0.20, 0.31) Mann–Whitney U 9,719 0.424

Voxel volume 1595786.56 (1117477.57, 

2062007.94)

1577308.92 (998146.19, 

2124513.29)

Mann–Whitney U 10,240 0.935
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infectious pancreatic necrosis have a relatively larger surface area 
in proportion to volume, possibly reflecting tissue edema due to 
the inflammatory response.

3.3.4 Sacrospinalis
As shown in Table 6, for the first-order features of sacrospinalis, 

interquartile range (p = 0.018), mean absolute deviation 

TABLE 4 Correlation between subcutaneous adipose tissue (SAT) radiomic features and infectious pancreatic necrosis (IPN).

Feature Negative Positive Statistical 
methods

Statistic p

10 Percentile −116.00 (−121.00, −111.00) −116.00 (−120.00, −110.00) Mann–Whitney U 9,656 0.453

90 Percentile −61.00 (−72.00, −52.00) −60.59 Mann–Whitney U 9,035 0.107

Energy 7382051504.50 

(4423188997.75, 

10268867202.75)

7420446548.00 

(4086489735.00, 

10569815384.00)

Mann–Whitney U 10,304 0.883

Entropy 1.23 (1.13, 1.32) 1.23 Mann–Whitney U 9,958 0.741

IQR 25.00 (21.00, 31.00) 27.00 (22.00, 31.50) Mann-–Whitney U 8,953.5 0.084

Kurtosis 5.48 (4.11, 7.55) 5.12 (3.45, 6.55) Mann–Whitney U 11,508 0.069

Maximum 57.50 (35.25, 125.75) 48.00 (20.00, 104.00) Mann–Whitney U 11,139 0.192

Mean −93.04 (−98.62, −87.12) −92.63 (−97.19, −82.42) Mann–Whitney U 9,097 0.127

MAD 17.07 (14.82, 19.31) 17.39 Mann–Whitney U 9,674 0.469

Median −98.00 (−103.75, −92.25) −97.00 (−101.00, −87.00) Mann–Whitney U 8,987.5 0.093

Minimum −301.00 (−416.00, −195.50) −296.00 (−383.00, −203.50) Mann–Whitney U 9,966.5 0.75

Range 392.50 (243.25, 536.25) 350.00 (237.50, 511.00) Mann–Whitney U 10,705 0.482

Robust MAD 10.93 (9.08, 13.27) 11.4 Mann–Whitney U 9,067 0.117

Root mean squared 95.87 (90.82, 100.83) 95.92 (86.10, 99.67) Mann–Whitney U 11,329 0.117

Skewness 1.14 (0.67, 1.44) 0.96 (0.55, 1.27) Mann–Whitney U 11,835 0.023

Total energy 15276971006.50 

(10189081819.00, 

22145540431.25)

15458624133.00 

(10131235701.00, 

22930332683.00)

Mann–Whitney U 10,199 0.998

Uniformity 0.47 (0.45, 0.52) 0.47 (0.44, 0.50) Mann–Whitney U 10,760 0.435

Variance 508.17 (410.41, 646.90) 516.61 (397.99, 650.74) Mann–Whitney U 10,310 0.876

Elongation 0.78 (0.73, 0.83) 0.79 (0.72, 0.84) Mann–Whitney U 10,009 0.795

Flatness 0.26 (0.24, 0.30) 0.27 (0.24, 0.34) Mann–Whitney U 9,773 0.557

Least axis length 112.77 (105.52, 124.29) 113.79 (105.34, 146.02) Mann–Whitney U 9,525 0.352

Major axis length 433.34 (402.80, 460.00) 434.86 Mann–Whitney U 9,442 0.295

Maximum 2D diameter 

column

350.19 (334.44, 383.90) 362.97 (338.26, 397.18) Mann–Whitney U 8,978 0.091

Maximum 2D diameter 

row

283.24 (263.04, 305.95) 286.41 (261.52, 314.55) Mann–Whitney U 9,870 0.651

Maximum 2D diameter 

slice

342.91 (320.82, 366.55) 353.30 (334.67, 385.09) Mann–Whitney U 8,521 0.02

Maximum 3D diameter 358.72 (340.51, 392.78) 374.06 (345.72, 403.56) Mann–Whitney U 8,742 0.044

Mesh volume 1653557.96 (1235842.07, 

2195203.36)

1680448.40 (1204551.02, 

2591183.65)

Mann–Whitney U 9,960 0.743

Minor axis length 337.98 (312.61, 373.83) 338.29 Mann–Whitney U 9,658 0.455

Sphericity 0.25 0.25 t-test 1.448543564 0.148

Surface area 255759.30 (220992.29, 

311631.51)

267878.28 (219325.30, 

333155.36)

Mann–Whitney U 9,592 0.402

Surface volume ratio 0.16 (0.13, 0.21) 0.17 (0.12, 0.22) Mann–Whitney U 9,590 0.4

Voxel volume 1654703.97 (1238486.14, 

2195450.68)

1680171.98 (1205763.96, 

2590036.86)

Mann–Whitney U 9,973 0.757

IQR, interquartile range; MAD, mean absolute deviation.
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(p = 0.049), robust mean absolute deviation (p = 0.025), and 
skewness (p = 0.008) exhibited statistical significance; among the 
shape features, maximum 2D diameter slice (p = 0.008), maximum 
3D diameter (p = 0.005), sphericity (p = 0.011), and surface volume 

ratio (p = 0.005) were statistically significant; the other features 
were not.

The interquartile range of the sacrospinalis is equal in the median 
for both groups, but the confidence interval for the positive group is 

TABLE 5 Correlation between abdominal muscles radiomic features and infectious pancreatic necrosis (IPN).

Feature Negative Positive Statistical methods Statistic p

10 Percentile 30.00 (25.00, 35.00) 28.50 (21.00, 35.00) Mann–Whitney U 11,216 0.207

90 Percentile 69.00 (64.00, 75.00) 69.00 (62.00, 78.00) Mann–Whitney U 10,101.5 0.785

Energy 239309670.50 

(155707966.75, 

357551615.00)

241836573.50 

(122022174.50, 

368706009.75)

Mann–Whitney U 10,375 0.918

Entropy 1.04 (0.99, 1.09) 1.04 (0.99, 1.15) Mann–Whitney U 9,891 0.574

IQR 20.00 (18.00, 23.00) 22.00 (19.00, 27.00) Mann–Whitney U 8,649 0.023

Kurtosis 4.55 (3.81, 8.97) 4.80 (3.84, 9.29) Mann–Whitney U 10,139 0.825

Maximum 147.50 (115.00, 351.75) 171.00 (119.75, 510.00) Mann–Whitney U 9,185 0.125

Mean 49.46 (44.72, 54.10) 50.00 (42.57, 54.91) Mann–Whitney U 10,608 0.672

MAD 12.64 (11.20, 14.75) 13.21 (11.66, 17.42) Mann–Whitney U 8,799 0.039

Median 50.00 (45.25, 54.00) 50.50 (43.00, 55.00) Mann–Whitney U 10,501.5 0.782

Minimum −63.50 (−75.00, −50.00) −64.00 (−82.50, −51.50) Mann–Whitney U 10,818 0.476

Range 213.00 (179.25, 429.00) 247.50 (184.75, 672.50) Mann–Whitney U 9,092 0.096

Robust MAD 8.58 (7.67, 9.77) 9.19 (8.12, 11.61) Mann–Whitney U 8,527 0.015

Root mean squared 52.48 (47.75, 56.90) 53.14 (45.53, 58.53) Mann–Whitney U 10,322 0.976

Skewness −0.29 (−0.51, 0.31) −0.23 (−0.47, 0.72) Mann–Whitney U 9,782 0.476

Total energy 504705905.60 

(331904476.82, 

745238186.75)

505832574.90 

(277667575.85, 

814704451.82)

Mann–Whitney U 10,407 0.883

Uniformity 0.51 (0.49, 0.54) 0.50 (0.49, 0.55) Mann–Whitney U 10,606 0.674

Variance 274.30 (214.07, 396.96) 295.51 (227.77, 519.59) Mann–Whitney U 8,972 0.067

Elongation 0.64 (0.60, 0.69) 0.67 (0.60, 0.72) Mann–Whitney U 8,669 0.025

Flatness 0.23 (0.20, 0.26) 0.23 (0.21, 0.28) Mann–Whitney U 9,539 0.295

Least axis length 43.31 (36.50, 49.07) 42.02 (36.22, 51.25) Mann–Whitney U 10,513 0.77

Major axis length 178.21 (166.32, 199.38) 175.26 (166.77, 199.52) Mann–-Whitney U 10,828 0.467

Maximum 2D diameter 

column

149.23 (140.63, 186.94) 147.74 (138.45, 201.81) Mann–Whitney U 10,701 0.581

Maximum 2D diameter 

row

117.22 (109.44, 134.28) 118.61 (107.65, 148.15) Mann–Whitney U 9,896 0.578

Maximum 2D diameter 

Slice

140.85 (132.95, 159.86) 139.52 (131.26, 163.66) Mann–Whitney U 10,818 0.476

Maximum 3D diameter 163.09 (153.48, 222.48) 161.51 (152.06, 226.11) Mann–Whitney U 10,598 0.682

Mesh volume 170053.90 (124849.08, 

226962.00)

158223.70 (114210.53, 

203752.58)

Mann–Whitney U 11,066 0.292

Minor axis length 114.68 (107.51, 125.67) 115.75 (105.68, 144.08) Mann–Whitney U 9,822 0.511

Sphericity 0.48 (0.40, 0.50) 0.44 (0.37, 0.49) Mann–Whitney U 12,166 0.01

Surface area 32950.71 (26557.99, 

38100.90)

32240.91 (25502.50, 

39481.43)

Mann–Whitney U 10,503 0.78

Surface volume ratio 0.19 (0.16, 0.24) 0.21 (0.17, 0.26) Mann–Whitney U 8,516 0.014

Voxel volume 170378.76 (125078.19, 

227293.64)

158435.95 (114481.55, 

203957.85)

Mann–Whitney U 11,068 0.29

IQR, interquartile range; MAD, mean absolute deviation.
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greater than that for the negative group; the results of MAD and 
robust MAD are consistent with those of the abdominal muscles, 
indicating a more uneven signal intensity distribution in the IPN 

group; the median Sphericity is equal for both groups, but the 
confidence interval for the positive group is smaller than that for the 
negative group; the surface volume ratio for the positive group is 

TABLE 6 Correlation between sacrospinalis radiomic features and infectious pancreatic necrosis (IPN).

Feature Negative Positive Statistical 
methods

Statistic p

10 Percentile 21.00 (16.00, 25.00) 21.22 Mann–Whitney U 11,298 0.169

90 Percentile 63.00 (58.00, 69.00) 63.50 (57.75, 72.50) Mann–Whitney U 9,998 0.678

Energy 1249152060.00 

(764619051.75, 

1994064418.25)

1187720175.50 

(668420562.50, 

2087340047.00)

Mann–Whitney U 10,681 0.6

Entropy 0.99 (0.86, 1.04) 1.00 (0.85, 1.09) Mann–Whitney U 9,841 0.528

IQR 22.00 (20.00, 24.00) 22.00 (21.00, 26.25) Mann–Whitney U 8,587.5 0.018

Kurtosis 10.42 (5.55, 61.15) 23.54 (5.97, 66.70) Mann–Whitney U 9,273 0.157

Maximum 526.50 (382.25, 756.25) 528.50 (402.00, 796.25) Mann–Whitney U 9,686.5 0.398

Mean 43.95 (38.19, 48.39) 43.25 (37.46, 49.67) Mann–Whitney U 10,389 0.903

MAD 13.25 (12.16, 14.78) 13.39 (12.62, 16.81) Mann–Whitney U 8,868 0.049

Median 45.00 (39.00, 49.00) 45.2 Mann–Whitney U 10,492.5 0.791

Minimum −44.00 (−57.00, −34.00) −44.00 (−58.25, −29.00) Mann–Whitney U 10,068.5 0.75

Range 579.50 (415.50, 814.25) 571.50 (445.75, 847.75) Mann–Whitney U 9,730.5 0.433

Robust MAD 9.29 (8.43, 10.13) 9.40 (8.92, 10.94) Mann–Whitney U 8,671 0.025

Root mean squared 47.21 (41.66, 51.93) 47.15 (41.68, 55.19) Mann–Whitney U 10,241 0.936

Skewness 0.32 (0.01, 3.77) 1.01 (0.19, 4.42) Mann–Whitney U 8,375 0.008

Total energy 2847674195.50 

(1720109062.25, 

4205653583.50)

2575449699.50 

(1406155363.00, 

4910820334.25)

Mann–Whitney U 10,661 0.619

Uniformity 0.54 (0.50, 0.63) 0.54 (0.50, 0.63) Mann–Whitney U 10,773 0.515

Variance 286.91 (244.39, 468.43) 307.96 (256.65, 654.50) Mann–Whitney U 9,045 0.084

Elongation 0.68 0.68 t-Test 1.31513754 0.189

Flatness 0.32 (0.29, 0.37) 0.32 (0.29, 0.42) Mann–Whitney U 10,156 0.843

Least axis length 108.65 (101.74, 120.38) 109.74 (102.19, 151.06) Mann–Whitney U 9,466 0.251

Major axis length 346.65 (320.52, 374.80) 356.08 (327.14, 381.18) Mann–Whitney U 8,989 0.071

Maximum 2D diameter 

column

331.83 (307.16, 355.28) 334.92 (309.67, 366.12) Mann–Whitney U 9,127 0.106

Maximum 2D diameter 

row

263.36 (238.13, 296.13) 265.74 (231.65, 304.67) Mann–Whitney U 10,007 0.687

Maximum 2D diameter 

slice

330.38 (303.91, 365.72) 342.84 (313.74, 382.86) Mann–Whitney U 8,369.5 0.008

Maximum 3D diameter 343.67 (318.46, 379.83) 359.58 (329.37, 408.87) Mann–Whitney U 8,284 0.005

Mesh volume 1211160.13 (843465.21, 

1518283.12)

1119268.25 (755711.11, 

1583688.32)

Mann–Whitney U 10,954 0.368

Minor axis length 234.46 (212.14, 258.54) 238.73 (205.35, 263.39) Mann–Whitney U 9,996 0.676

Sphericity 0.15 (0.12, 0.18) 0.15 Mann–Whitney U 12,137 0.011

Surface area 324534.33 (273229.10, 

450328.40)

338175.63 (268258.35, 

528150.56)

Mann–Whitney U 9,860 0.545

Surface volume ratio 0.32 (0.25, 0.40) 0.35 (0.28, 0.49) Mann–Whitney U 8,247 0.005

Voxel volume 1211242.46 (846322.89, 

1519310.32)

1117691.58 (755909.58, 

1586327.08)

Mann–Whitney U 10,966 0.359

IQR, interquartile range; MAD, mean absolute deviation.
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greater than that for the negative group (0.35 vs. 0.32). These findings 
are consistent with the overall abdominal muscles.

The skewness feature of the sacrospinalis shows statistical 
significance, whereas there is no statistical difference in the abdominal 
muscles, with the median of the positive group being greater than that 
of the negative group (1.01 vs. 0.32), indicating that the intensity 
distribution of the sacrospinalis in IPN patients may be more uneven.

For the sacrospinalis, the maximum 2D diameter slice and 
maximum 3D diameter exhibit statistical significance, whereas there 
is no statistical difference for the abdominal muscles. These features 
have significant discriminative or representative value in assessing the 
morphology, structure, or function of the sacrospinalis. Both features 
are greater in the positive group than the negative group, indicating 
that the volume of the sacrospinalis in IPN patients is larger in 
NPF patients.

4 Discussion

IPN, as a severe complication of ANP, poses a significant 
clinical challenge due to its high mortality rate and incidence (Li 
et al., 2022). However, prolonged antibiotic use in the absence of 
infection may lead to multidrug-resistant bacterial infections, 
further increasing mortality (Lu et al., 2022). Therefore, early and 
accurate diagnosis of IPN followed by timely and effective 
treatment measures is crucial. This study delineated muscles and 
fat tissues using deep learning techniques based on non-contrast 
CT images. Subsequently, we extracted 18 first-order features and 
14 shape features using radiomic techniques and conducted a 
correlation analysis. Notably, we  provided detailed medical 
interpretations for the statistically significant features, revealing 
the potential physiological and pathological significance behind 
these features. This study highlights the important role of body 
composition, including muscles and fat tissues, in acute 
pancreatitis. It provides a quantitative evaluation tool based on 
highly standardized and readily available non-contrast CT data 
using artificial intelligence.

The application of deep learning enables precise segmentation 
of muscle and fat (Graffy et al., 2019; Shen et al., 2023), which is 
crucial for delving into the complexity of infectious diseases. It 
not only enhances our comprehension of the disease’s 
pathophysiological mechanisms but also significantly enriches the 
means of assessing patients’ nutritional status and inflammatory 
responses. For instance, the study by Zhang et  al. explored 
radiomic features from CT images of 1,245 adrenal glands and 
surrounding fat tissues, strongly demonstrating their correlation 
with disease progression in COVID-19 patients (Zhang M. et al., 
2023). Similarly, Yoo et al. utilized deep learning techniques to 
quantify liver and spleen volumes, as well as SAT and VAT tissues 
and skeletal muscle indices, providing valuable prognostic 
information for patients with chronic hepatitis B (CHB) (Yoo 
et al., 2023). Compared to traditional assessment methods (such 
as modified CT severity index [MCTSI], Ranson, bedside index 
for severity in acute pancreatitis [BISAP], etc.), these methods, 
while concise and easy to understand, have limitations due to the 
limited factors they consider, making it difficult to fully reflect the 
complexity and dynamic changes of diseases. Previous studies 
have primarily focused on the pancreas itself (Zhang C. et  al., 

2024; Xue et al., 2023; Lin et al., 2020; Chen et al., 2023). In our 
study, the detailed evaluation of VAT, SAT, abdominal muscles, 
and sacrospinalis not only deepened our understanding of the 
disease’s pathophysiological mechanisms but also significantly 
improved our ability to assess patients’ nutritional status and 
inflammatory responses. Through in-depth analysis of radiomic 
data, we found that some parameters showed a good correlation 
with disease states, further validating the reliability and 
effectiveness of these body composition indicators as disease 
assessment tools. This discovery not only emphasizes the 
importance of muscle and fat segmentation in the evaluation of 
infectious diseases but also lays a solid foundation for the future 
development of more precise and comprehensive disease 
assessment systems.

The World Health Organization defines obesity as a 
pathological condition characterized by excessive accumulation 
of body fat, with a body mass index (BMI) of ≥30 kg/m2 (Whitlock 
et al., 2009), which exerts certain effects on inflammation (Ponce-
de-Leon et  al., 2022). Numerous epidemiological studies and 
meta-analyses have demonstrated that obesity is a prognostic 
factor affecting the severity of acute pancreatitis (AP) (Chen et al., 
2012; Martínez et al., 2006; Cruz-Monserrate et al., 2016; Wang 
et al., 2011). This study found significant correlations between 
certain radiomic features of SAT and VAT and the occurrence of 
IPN: our results suggest that for patients developing IPN, less 
localized accumulation of VAT and SAT, uniform density of VAT 
and SAT, and a larger volume of SAT are risk factors. These 
findings may be related to age and sex (Zhou et al., 2022; Lizcano 
and Guzmán, 2014; Tchernof and Després, 2013; Frank et  al., 
2019; Palmer and Kirkland, 2016; Pascot et al., 1999): under the 
influence of sex hormones, men tend to accumulate fat tissue 
predominantly in visceral regions, while women accumulate it 
more subcutaneously, leading to symmetrical differences in fat 
distribution between genders; with advancing age, the distribution 
of fat in both genders also changes, which may affect the localized 
accumulation and uniformity of VAT density, thereby explaining 
why adjusted body composition parameters based on age and sex 
in previous studies could more accurately predict the severity of 
AP and avoid the fat paradox (Horibe et al., 2022). Furthermore, 
we  hypothesize that the statistical significance of skewness 
features may also be  associated with the distribution of fat 
necrosis; if so, our study’s results suggest that the inflammatory or 
necrotic process is more diffused in the adipose tissue of IPN 
patients, or there may be more synchronized pathological changes. 
Our conclusions indicate that the volume of SAT has a positive 
effect on the occurrence of IPN, and we  speculate that the 
increased volume of subcutaneous adipose tissue may be related 
to enhanced or systemic inflammatory responses, which could 
exacerbate the infection of necrotic pancreatic tissue.

Skeletal muscle, as a pivotal component of the human body, not 
only supports fundamental motor functions but is also closely 
associated with individual metabolic status, inflammatory 
responses, and long-term disease prognosis (Akturk et al., 2021; 
Picca and Calvani, 2021; Modesto et  al., 2020). In this study, 
we conducted an in-depth analysis of the sacrospinalis muscle and 
all abdominal muscles, including the sacrospinalis. Patients with 
IPN exhibited scattered and heterogeneous muscle density 
distributions in the overall abdominal muscles and the sacrospinalis, 
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a significant difference compared to the NPN population. This 
alteration was manifested in an increased surface area-to-volume 
ratio and a morphological deviation from the ideal spherical 
structure. These findings suggest that such changes in muscle tissue 
may represent an adaptive response to the pathological state of IPN, 
and we have posited several hypotheses: First, the dispersion and 
heterogeneity of muscle density might be  related to the level of 
inflammation within IPN patients. Inflammatory responses could 
lead to alterations in the intramuscular environment, affecting 
muscle cell growth, metabolism, and extracellular matrix 
remodeling (Tu and Li, 2023); second, the increased volume of the 
sacrospinalis, particularly in IPN patients, may reflect compensatory 
changes in muscle tissue during disease progression. The increase 
in muscle volume might be an adaptation to the additional load 
imposed by inflammation and metabolic disturbances, and it may 
also represent an attempt by the body to maintain essential 
physiological functions. The significant differences in skewness 
features indicate that the muscle density distribution in IPN 
patients deviates from the normal range, and the increased 
asymmetry may be related to the damage and repair processes in 
muscle tissue. During the continuous self-repair of muscle tissue, 
structural and functional asymmetries may arise due to the 
influence of an inflammatory environment.

While this study has made certain progress in body composition 
assessment and IPN prediction based on non-contrast CT, there are 
still some limitations. First, this is a single-center study with a 
relatively limited sample size, which may limit the generalizability of 
the findings. Second, this study did not quantitatively assess the 
degree of pancreatic infection, which may affect the in-depth 
understanding of the mechanism of IPN occurrence. Additionally, 
this study did not provide a detailed analysis of patient prognosis and 
length of hospital stay; future studies can further explore the 
relationship between body composition and the prognosis of 
pancreatitis patients. Finally, due to the unclear boundaries of 
pancreatitis, this study did not segment pancreatic lesions, which may 
limit the in-depth exploration of the pathophysiological mechanisms 
of pancreatitis itself.

5 Conclusion

This study, utilizing deep learning techniques in conjunction 
with unenhanced CT imaging, has elucidated the close association 
between muscle and fat tissue and the progression of ANP to IPN, 
providing a novel tool for early warning and personalized treatment 
of IPN. The research identified that first-order features of fat (such 
as skewness, uniformity, etc.), first-order features of muscle, and 
shape features (such as interquartile range, sphericity, etc.) are all 
significantly correlated with IPN. In-depth analysis revealed that 
less localized accumulation of VAT and SAT, uniform density of 
VAT and SAT, larger volume of SAT, and the dispersion and 
heterogeneity of abdominal muscle density distribution are all risk 
factors for IPN. This not only confirms the pivotal role of body 
composition in the progression of ANP but also provides a scientific 
basis for the implementation of early preventive treatment in clinical 
practice for high-risk patients. The findings of this study offer 
important references and guidance for improving the overall 
prognosis of pancreatitis patients and optimizing clinical 
management strategies.
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Background: In recent years, with the increase of antibiotic resistance, tigecycline 
has attracted much attention as a new broad-spectrum glycylcycline antibiotic. 
It is widely used in the treatment of complex skin and soft tissue infections, 
complex abdominal infections and hospital-acquired pneumonia by inhibiting 
bacterial protein synthesis. Tigecycline can exhibit significant time-dependent 
bactericidal activity, and its efficacy is closely related to pharmacokinetics. It can 
be evaluated by the ratio of AUC0-24 to the minimum inhibitory concentration 
(MIC) of pathogens. However, tigecycline may cause nausea, vomiting, diarrhea 
and a few patients have elevated serum aminotransferase, especially in critically 
ill patients. The safety of patients still needs further study.

Methods: In this study, the clinical data of 263 patients with pulmonary infection 
in Shengjing Hospital of China Medical University and the Second Affiliated 
Hospital of Dalian Medical University were collected retrospectively, and the 
hepatotoxicity prediction model was established. The potential correlation 
between the toxic and side effects of tigecycline and the number of hospitalization 
days was preliminarily discussed, and the correlation analysis between the 
number of hospitalization days and continuous variables was established. Finally, 
the deep learning model was used to predict the hospitalization days of patients 
through simulated blood drug concentration and clinical laboratory indicators.

Results: The degree of abnormal liver function was significantly correlated with 
AST, GGT, MCHC and hospitalization days. Secondly, the correlation between 
hospitalization time and clinical test indexes and simulated drug concentration 
was analyzed. It was found that multiple clinical laboratory parameters of 
patients (such as EO #, HCT, HGB, MCHC, PCT, PLT, WBC, AST, ALT, Urea), 
first dose (Dose), age and APACHE II score were significantly correlated with 
hospitalization days. The simulated blood drug concentration was correlated 
with the length of hospital stay from 12 h after administration, and reached the 
strongest between 24 and 48 h. The AUC of the liver function prediction model 
can reach 0.90. Further analysis showed that there was a potential correlation 
between hepatotoxicity and hospitalization days. The median hospitalization 
days of patients in the non-hepatotoxicity group, liver function injury group and 
hepatotoxicity group were 20, 23, and 30 days, respectively. Based on these 
results, the length of hospital stay was predicted by the deep learning prediction 
model with an error within 1 day.

Conclusion: In this study, the hospitalization days of infected patients were 
predicted by deep learning model with low error. It was found that it was related 
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to clinical test parameters, hepatotoxicity and dosage after administration. The 
results provided an important reference for the clinical application of tigecycline, 
and emphasized the need to pay attention to its toxic and side effects in use.

KEYWORDS

deep learning, tigecycline, pharmacokins, hospital days, hepatotoxicity

1 Introduction

In recent years, with the increasing resistance of antibiotics, the 
treatment of infection has become more complicated, which further 
highlights the necessity of new antibiotics in clinical application 
(Gupta et al., 2017).

Tigecycline, as a new broad-spectrum glycylcycline antibiotic, 
plays a role by inhibiting bacterial protein synthesis. It is widely used 
in the treatment of complex skin and soft tissue infections, complex 
abdominal infections, and hospital-acquired pneumonia and other 
infections (Bradford et al., 2005; Xie et al., 2017). First, tigecycline has 
obvious time-dependent bactericidal activity, and the efficacy is 
closely related to the relationship between pharmacokinetics (PK) and 
pharmacodynamics (PD). The ratio of AUC0-24 to the minimum 
inhibitory concentration (MIC) of the pathogen can better predict the 
therapeutic effect of the drug (Van Wart et al., 2006; Koomanachai 
et al., 2009; Bhavnani et al., 2012). Tigecycline is mainly excreted 
through bile, and its excretion in the kidney is low, only about 20% of 
the prototype drug, which provides more options for the use of 
patients with renal insufficiency (Ap, 2008; Yamashita et al., 2014).

The most common adverse reactions of tigecycline in clinical 
application are nausea, vomiting and diarrhea, but in phase 2 and 
phase 3 clinical trials, it was found that about 2–5% of patients had 
elevated serum aminotransferase (Babinchak et al., 2005; Ellis-Grosse 
et  al., 2005; Sacchidanand et  al., 2005). Elevated serum 
aminotransferase often suggests abnormal changes in liver function. 
However, so far (Geng et al., 2018), in the field of related research, 
there are few studies on the abnormal liver function caused by the use 
of tigecycline in critically ill patients. This may hinder the 
comprehensive understanding of the safety characteristics of 
tigecycline, and the use of tigecycline may cause serious damage to the 
liver function of critically ill patients, thus affecting the therapeutic 
effect of patients.

Population pharmacokinetic model (PPK) is a mathematical 
model that can describe the typical pharmacokinetic characteristics 
and variability of the population by integrating the plasma 
concentration and individual information of multiple individuals and 
considering the variability between individuals and within individuals. 
The model can effectively capture the influence of covariates such as 
patient’s age, weight, and disease status on pharmacokinetic 
parameters. Through the combination of PPK model and Bayesian 
method, compared with the traditional analysis method, the advantage 
of Bayesian theorem is that it can make full use of prior information 
and improve the accuracy of estimation. Through the dynamic 
feedback mechanism, the continuous optimization of model 
parameters is realized, which is effectively applied to complex and 
changeable situations, so as to accurately simulate the blood 
concentration of individual patients.

In recent years, artificial intelligence technology (Iezzi et al., 2019) 
has gradually shown broad application prospects in pharmacokinetic 

studies. Based on Deep Learning (LeCun et al., 2015), it can not only 
process large-scale biomedical data, but also identify complex 
nonlinear relationships. This ability makes AI a powerful tool in 
pharmacokinetic studies, especially in the fields of drug concentration 
prediction, drug interaction analysis, and risk assessment of adverse 
reactions, thereby providing support for personalized medication and 
clinical decision-making. A 2023 study explored the significant 
development of therapeutic drug monitoring (TDM) and model-
guided precision drug delivery (MIPD) driven by advances in 
computing and mathematical technology (Poweleit et al., 2023). A 
2022 study that combines a physiologically based pharmacokinetic 
(PBPK) model with machine learning (ML) or artificial intelligence 
(AI) techniques to predict ADME parameters using ML/AI, and 
integrates these prediction models into the PBPK model to predict 
pharmacokinetic (PK) statistical results (Chou and Lin, 2023). In 
another study, neural-ODE is applied to PK modeling for the first 
time. The final results show that it has a wide range of applicability and 
may have an important impact on future research (Lu et al., 2021). All 
of these indicate the potential application of artificial intelligence in 
pharmacokinetic analysis.

Therefore, this study aims to explore the potential risk factors for 
hepatotoxicity in patients treated with tigecycline by means of artificial 
intelligence-based technology. By analyzing the correlation between 
abnormal liver function and laboratory parameters, hospitalization 
days, etc., the mechanism of hepatotoxicity of tigecycline and its 
potential relationship with prolonged hospitalization days 
were revealed.

In addition, by exploring the effect of tigecycline hepatotoxicity 
on hospitalization days, a prediction model of hospitalization days was 
established to provide scientific reference for clinical practice, and 
then provide an important reference for optimizing the clinical 
application of tigecycline.

2 Method

2.1 Study population

This study retrospectively collected the clinical data of two 
patients with cardiopulmonary infection. The study was approved by 
the Ethics Committee, Ethics No. (2019 no. 049). Inclusion criteria: 
Patients included in this study should meet the following criteria: (1) 
patients with clinical intravenous use of tigecycline for more than 
three days; (2) Tigecycline is for therapeutic use; (3) Pulmonary 
infection caused by Gram-positive or Gram-negative bacteria, such as 
pneumonia or bronchitis, is diagnosed or highly suspected by 
clinicians. Exclusion criteria: (1) patients with cirrhosis or liver failure; 
(2) Patients died within 24 h after the use of tigecycline; (3) Pregnancy; 
and (4) Other medications that may affect the liver during tigecycline 
treatment. Inclusion and exclusion as shown in Figure 1.
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2.2 Data collection

All enrolled patients were treated with tigecycline, and laboratory 
indicators and basic information were recorded in detail. This study 
collected patient data through the hospital’s electronic medical record 
system and nursing system. The collected laboratory indicators 
included: (1) patient age, initial dose of tigecycline (Dose), and length 
of hospital stay; (2) laboratory examination results of patients during 
medication. Such as EO # (absolute number of eosinophils), EO % 
(percentage of eosinophils), HCT (hematocrit), HGB (hemoglobin), 
MCH (mean corpuscular hemoglobin content), MCHC (mean 
corpuscular hemoglobin concentration), MCV (mean corpuscular 
volume), MPV (mean platelet volume), PCT (platelet hematocrit), 
PLT (platelet count), WBC (white blood cell count), RH 
(hemorheology), A/G ratio (albumin/globulin ratio), ALT (alanine 
aminotransferase), AST (aspartate aminotransferase), GGT 
(γ-glutamyl transferase), TP (total protein), Urea (urea), and 
APACHE II score. (3) Drug-induced adverse reactions, such 
as hepatotoxicity.

The abnormal liver function of tigecycline was defined as the ALT 
value measured twice in a row was between the upper limit of the 
normal value (5–40 U/L) and the upper limit of the normal value by 
3 times, and its hepatotoxicity was defined as the ALT value measured 
twice in a row >3 times the upper limit of the normal value (or blood 
bilirubin >1.5 times the upper limit of the normal value), or greater 
than 1.5 times the baseline value (if the baseline value is abnormal) 
(Fan et al., 2020).

2.3 Blood concentration simulation

In this study, we constructed a population pharmacokinetic model 
based on previous research results (Luo et al., 2023) (Equations 1, 2). 
Bayesian feedback method (Aggelopoulos, 2015) was used to simulate 
the blood concentration of patients at different time points after 
administration. We determined the mathematical form of the model, 
including key kinetic processes such as drug absorption, distribution, 
metabolism, and excretion, taking into account individual differences, 

FIGURE 1

Inclusion and exclusion process of patients in this study. Finally, 263 patients using tigecycline in two centers were retrospectively collected through 
the inclusion and exclusion criteria, and the data were trained in a deep learning model according to the corresponding proportion.
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residual variation, and drug characteristics. The parameter values of 
the model were based on previous research reports, and the Bayesian 
feedback method was used to simulate the corresponding blood 
concentration values at different time points. The final model formula:

 ( ) ( ) 0.065/ 11.30 0.14CL L h APACHE II e= − ∗ ∗  (1)

 ( ) ( ) 0.160105.00 1 0.0059V L AGE e=  ∗ − ∗  ∗   (2)

2.4 Deep learning model

In order to solve the complex problem of hepatotoxicity prediction 
during treatment, we used the latest KAN network (Liu et al., 2024) to 
establish a tigecycline hepatotoxicity prediction model. KAN is derived 
from Kolmogorov-Arnold representation theorem, whose core idea is 
that any continuous function can be represented by a combination of 
one-dimensional functions. We map the blood drug concentration and 
the patient’s clinical laboratory indicators to the input layer of the KAN 
model. Through its specific multi-layer structure, KAN nests these 
multi-dimensional input features into a one-dimensional function 
combination, and then approximates the complex nonlinear 
relationship between drugs and liver function indicators. Based on 
these input characteristics, we established a predictive model that can 
not only predict the number of days of hospitalization, but also further 
predict the possible liver toxicity of patients during treatment, and 
provide support for personalized treatment and clinical decision-
making. The research flow chart of this study is shown in Figure 2.

2.5 Statistical analysis

Statistical analysis was performed using IBM SPSS 26.0 software. 
First, we test the normality of all data using the Kolmogorov–Smirnov 
test. For data that conform to the normal distribution, we use the 
mean ± standard deviation to describe; for data that do not conform 
to the normal distribution, the median (quartile) is used to describe. 
For categorical data, the t test was used for data that conformed to the 
normal distribution, and the Mann–Whitney U test was used for data 
that did not conform to the normal distribution. For continuous 
variables, Pearson correlation analysis was used for data that met the 
normal distribution, and Spearman correlation analysis was used for 
data that did not meet the normal distribution. Differences were 
considered statistically significant at p < 0.05. The statistics chart will 
be drawn using the Python-based matplotlib library.

3 Results

3.1 Baseline

A total of 263 patients from two centers were included in this study: 
200 from Institution I (Shengjing Hospital Affiliated to China Medical 
University) and 63 from Institution II (Second Hospital Affiliated to 
Dalian Medical University). All patients were treated with tigecycline. In 

terms of data, the training, validation and test sets are divided according 
to the proportion of 6: 2: 2 patients, which ensures the rationality of 
model training, tuning and evaluation. This division method helps to 
improve the generalization ability of the model and effectively avoid 
over-fitting. Table 1 lists the baseline information of the included patients.

3.2 Abnormal liver function, toxicity and 
laboratory relevance

Different laboratory indicators are helpful to evaluate the degree 
of liver injury. The overall ALT group, abnormal liver function group 
and hepatotoxicity group were established to explore the relationship 
between these three groups and laboratory indicators. Based on this 
grouping, the effects of different types and degrees of liver injury on 
various test indicators can be  accurately analyzed. As shown in 
Table 2, it was found that there was a significant correlation between 
the number of hospital stays and the ALT group and the abnormal 
liver function group, suggesting that liver function damage may affect 
the length of hospital stay. At the same time, MCHC, AST and GGT 
showed significant correlation with the three groups, indicating that 
poor liver function can indirectly affect the formation and function of 
red blood cells, thus affecting the MCHC value. In addition, liver cells 
are damaged, and AST is released from the liver cells into the blood, 
resulting in an increase in AST, and if the biliary system is damaged, 
GGT levels will increase accordingly.

3.3 Prediction of hepatotoxicity based on 
deep learning

Due to the small sample size of patients with hepatotoxicity in this 
study, there are some challenges in directly predicting hepatotoxicity. 
Therefore, we  indirectly reflect the potential risk of tigecycline-
induced hepatotoxicity by predicting whether the patient has 
abnormal liver function. The training results are shown in Figure 3. 
The model showed high performance in the testing set, with a 
sensitivity of 0.94, a specificity of 0.87, and an AUC value of 0.9, as 
shown in Figure 4. This shows that by predicting the abnormal liver 
function of hospitalized patients, we  can indirectly capture the 
potential risk of hepatotoxicity and provide an early warning model 
for early clinical identification and intervention of possible liver injury.

3.4 Potential association between liver 
function and length of hospital stay

Although we cannot directly analyze the relationship between drug-
induced hepatotoxicity and length of hospital stay, we can preliminarily 
explore whether there is a potential correlation between the degree of 
abnormal liver function after drug treatment and the length of hospital 
stay. Therefore, we divided the patients into three groups according to 
the definition of hepatotoxicity as shown in Table 3: hepatotoxic group, 
liver function injury group (defined as two consecutive ALT values 
between 40 U/L and 120 U/L), and non-hepatotoxic group. Through 
Figure 5, the box diagram visually shows the distribution characteristics 
and abnormal values of hospitalization days in different patient groups. 
The results showed that the length of hospital stay in the non-hepatotoxic 
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group was shorter, with a median of 20 days, but the distribution of 
length of hospital stay was wider, suggesting that there may be extreme 
values of individual length of hospital stay in this group. For the liver 
function injury group, the distribution of hospitalization days was 
relatively concentrated and the variability was small. The median 
(23 days) was located above the box, indicating that the hospitalization 

days of this group of patients were generally longer. Finally, the box of 
the hepatotoxicity group was wider and the overall was higher, 
indicating that the median length of hospital stay in this group was 
higher (30 days), and the overall length of hospital stay was the longest 
among the three groups. In addition, there was no significant extreme 
value or outlier in the length of hospital stay in this group. The overall 

 orrela�on between various 
ators and length of hospital 

stay

FIGURE 2

Overall flow chart of this study. (A) This study retrospectively collected the clinical laboratory indicators of the two centers, and the blood 
concentration simulated by Bayesian feedback method, established the correlation between liver function and clinical test, and based on this, a 
hepatotoxicity prediction model was constructed. (B) Establish the correlation between hospitalization days and clinical experimental indicators and 
simulated blood concentration, and explore and confirm the potential relationship between hospitalization days and hepatotoxicity. By inputting test 
indicators and blood concentration to the KAN network, the hospitalization days were predicted and the hepatotoxicity was indirectly predicted, and 
finally the prediction results with lower errors were obtained.

TABLE 1 Patient baseline information.

Hospital name Total number 
of patients

Number of 
participants in 
the training set 

(60%)

Number of 
people in the 
validation set 

(20%)

Number of 
people in the 
test set (20%)

Average age 
(year)

Age range 
(year)

Institution I 200 120 40 40 66 14–98

Institution II 63 38 13 12 58 18–89

Total 263 158 53 52 62 14–98
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results reflect the significant differences in the number of hospitalization 
days among different patient groups, suggesting that hepatotoxicity may 
have a greater impact on the length of hospitalization, while the liver 
function injury group showed a more uniform hospitalization demand.

3.5 Correlation between hospitalization 
days and clinical laboratory indexes

Table 4 shows the correlation between the length of hospital stay 
and clinical information of the included patients. Among the 
laboratory parameters, EO#, HCT, HGB, MCHC, PCT, PLT, WBC, 
AST, ALT, urea p < 0.05, that is, these indicators may be potential 
factors reflecting hepatotoxicity. The p value of dose was <0.05, 
indicating that higher doses may lead to greater toxic and side effects, 
which in turn leads to longer hospital stay. Similarly, age and 
APACHEII p values <0.05 indicated that tigecycline had a higher risk 
of toxicity in elderly or more severe patients.T
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FIGURE 3

In the 121st round, the training and validation phases achieved the 
best results, and the accuracy of the liver function prediction model 
reached 84.71 and 83.76, respectively.

FIGURE 4

The area under the curve (AUC) was 0.90, indicating that the model 
had a high ability to distinguish whether there was abnormal liver 
function.
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3.6 The correlation between hospitalization 
days and blood drug concentration

The plasma concentration (ng/ml) of patients at 10 time points 
(4, 8, 12, 24, 36, 48, 60, 72, 74, and 78 h) after the first administration 
was simulated by the constructed pharmacokinetic model. The 
results are shown in Table  5. In the correlation analysis of 
hospitalization days and blood drug concentration, as shown in 
Table 6, the correlation began to appear 12 h after administration, 
and reached the strongest between 24 and 48 h. To a certain extent, 
this shows that the residual concentration of the drug is the most 
significant toxic and side effects for patients in the 24–48 h period. 
Therefore, it is recommended to use this time period as an 
important node for clinical testing so that clinicians can make 

corresponding intervention and treatment decisions in a 
timely manner.

3.7 Prediction results of hospitalization 
days based on deep learning

The simulated blood drug concentration and laboratory 
parameters were integrated into the constructed deep learning model. 
The training results are shown in Figure  6. In the training and 
verification stages, we observed that the model loss was maintained 
below 1. This result means that the error between the predicted 
hospitalization days and the actual hospitalization days can 
be effectively controlled within one day, showing the high accuracy 

FIGURE 5

Distribution and difference of hospitalization days in patients with different liver function status. The number of hospitalization days in the non-
hepatotoxicity group was the most widely distributed, and there were more extreme hospitalization days. The distribution of hospitalization days in the 
liver function injury group was more concentrated, and the hospitalization time was longer as a whole; the distribution of hospitalization days in the 
hepatotoxic group was more balanced, and no abnormal value was found. It reflects the difference in hospitalization days among different patient 
groups.

TABLE 3 Descriptive statistics of the number of hospitalization days in the patient group.

Patient group Number of people Average length of 
hospital stay

Median length of 
hospital stay

Standard deviation

No hepatotoxicity 202 25 20 16.37

Liver function injury 50 26 23 16.59

Hepatotoxicity 11 32 30 19.97

The difference was statistically significant (p < 0.05).
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and reliability of the model in predicting hospitalization days 
(Table 6).

4 Discussion

This study first analyzed the effect of liver function injury on test 
indicators. The results showed that the length of hospital stay was 
significantly correlated with ALT group and abnormal liver function 
group, suggesting that liver function injury may prolong the length of 
hospital stay. At the same time, MCHC, AST and GGT were 
significantly correlated with the three groups, reflecting the impact of 
poor liver function on red blood cell function, liver cell damage and 
biliary system damage, and had potential clinical evaluation value.

Secondly, the liver function early warning model established in 
this study has good performance and indirectly captures the potential 
risks of hepatotoxicity. By exploring the potential relationship between 
hospitalization days and tigecycline hepatotoxicity, the results showed 
that the degree of liver function damage was associated with 

TABLE 4 The correlation between continuous variables and hospitalization days.

Indicator Statistic p-value Indicator Statistic p-value

Age 263 0.001* WBC 263 0.001*

EO# 263 0.004* Dose 263 0.048*

EO% 263 0.065 RH 263 0.053

HCT 263 0.001* A/G 263 0.345

HGB 263 0.001* ALT 263 0.027*

MCH 263 0.092 AST 263 0.001*

MCHC 263 0.008* GGT 263 0.367

MCV 263 0.161 TP 263 0.151

MPV 263 0.323 Urea 263 0.048*

PCT 263 0.001* APACHEII 263 0.001*

PLT 263 0.001*

*The difference was statistically significant (p < 0.05).

TABLE 5 Through the constructed pharmacokinetic model, the blood concentration at different time points after the first administration was 
simulated.

Training set/158 Validation set/53 Testing set/52

4.0 h 1568.23 (728.41, 3119.10) 1605.29 (780.61, 2266.90) 1480.72 (762.71，2380.40)

8.0 h 900.72 (432.17, 1881.60) 870.55 (426.39, 1413.80) 886.90 (449.74, 1582.30)

12.0 h 526.26 (216.02, 1425.90) 480.67 (194.17, 881.76) 522.87 (224.83, 1051.80)

24.0 h 371.16 (134.19, 1016.30) 325.21 (115.42, 654.79) 371.71 (140.44, 834.83)

36.0 h 340.65 (124.87, 929.15) 298.69 (107.98, 599.72) 340.84 (363.75, 771.1)

48.0 h 334.30 (123.61, 910.61) 293.87 (107.28, 586.37) 334.27 (128.61, 752.39)

60.0 h 332.91 (123.45, 906.67) 292.95 (107.21, 583.13) 332.81 (128.45, 746.89)

72.0 h 332.58 (123.43, 905.83) 292.76 (107.21, 582.34) 332.48 (128.42, 745.27)

74.0 h 1283.29 (633.02, 2562.00) 1298.10 (641.67, 1895.20) 1245.04 (654.06, 2067.50)

78.0 h 742.19 (349.25, 1578.20) 710.59 (348.88, 1182.00) 731.19 (363.74, 1374.30)

FIGURE 6

In the training and validation stages, the model maintained a good 
consistency in the prediction of hospitalization days, and the error 
could eventually be maintained within 1 day, which confirmed that 
the model established in this study had good prediction 
performance.
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hospitalization days. The hospitalization time of the patients in the 
hepatotoxicity group was longer as a whole, and the hospitalization 
days of the patients in this group showed a large change, which may 
be  related to the severity of hepatotoxicity and the increase of 
treatment needs.

Then, by analyzing the correlation between the actual 
hospitalization days and the patient information and clinical 
indicators, it was found that there was a significant correlation 
between a number of clinical indicators and the actual hospitalization 
days. The actual hospitalization days obtained by the analysis were 
strongly related to the patient’s age, WBC, EO #, Dose, HCT, HGB, 
AST, ALT, MCHC, Urea, PCT, PLT, APACHEII.

Finally, this experiment uses simple and easy-to-obtain 
hospitalization days to replace the clinical index values that need to 
be measured multiple times, and uses the constructed deep learning 
model to predict hospitalization days. The error between the predicted 
results and the actual days is controlled at about one day. However, 
this cannot completely replace the clinical judgment of the liver side 
effects of tigecycline. There is a certain error. As the patient ages, the 
body function and various indicators will gradually decline. According 
to the study of Huang et al., the in-hospital mortality and length of 
stay gradually increased with age (Huang et al., 2023), which was 
consistent with the results of this experiment. However, if we want to 
further explore the relationship between the liver side effects of 
tigecycline and age in this experiment, we need to further collect 
clinical index data for correlation test.

At the same time, it was also found that the liver side effects of 
tigecycline were negatively correlated with the WBC level of the 
patients. As the side effects increased, the WBC and PCT levels of the 
patients decreased. Li et al. found that cefoperazone combined with 
tigecycline in the treatment of ICU infection can effectively improve 
the therapeutic effect of the disease, and significantly enhance the 
bacterial clearance, while reducing serum WBC and PCT levels (Li 
and Zhang, 2022). This suggests that when tigecycline is used alone, 
although there is a certain effect on the infection of patients, the toxic 
and side effects also increase. Whether there is the possibility of 
cefoperazone alleviating the toxic and side effects of tigecycline, which 
also provides a direction for future research and provides evidence for 
this experiment; the toxic and side effects were negatively correlated 
with the levels of HCT, HGB, AST, MCHC, PCT and PLT. With the 
increase of toxic and side effects, the levels of HCT, HGB, AST, 
MCHC, PCT and PLT decreased, which represented the decrease of 
liver function and coagulation function.

In a number of case reports and experiments (Sabanis et al., 2015; 
McMahan and Moenster, 2017; Cui et al., 2019), it is mentioned that the 
use of tigecycline will affect the coagulation system of patients, cause 
coagulation disorders, and produce adverse clinical outcomes. Therefore, 
in this experiment, the use of simple and easy-to-obtain hospitalization 
days can be a good warning for the occurrence of adverse coagulation 
events in patients. At the same time, in the study of Zhang et al., it was 

also found that in patients using tigecycline, renal dysfunction also 
caused tigecycline-induced coagulation-related adverse events (Zhang 
et al., 2020). In this experiment, the toxic and side effects of patients were 
negatively correlated with urea levels. Urea showed the liver function of 
patients to a certain extent, which also provided more evidence sources 
for the clinical manifestations of tigecycline toxicity.

We can find that most clinical indicators point to the decline of 
liver function. In recent studies, the deep learning of pharmacokinetics 
is combined with clinical imaging to empower the metabolic changes 
of pharmacokinetics in various organs, and accurately segment and 
refine the role of organs (Arledge et al., 2022; Ota and Yamashita, 
2022; Dhaliwal et al., 2024). Although this study replaced the toxic and 
side effects of tigecycline and analyzed the correlation with a number 
of laboratory indicators, the experiment can further carry out more 
accurate analysis in the metabolic imaging of the patient’s liver, match 
the number of days of hospitalization, and refer to the number of days 
of hospitalization. More accurate, and in the future, we can try to build 
a liver model to achieve a simulated drug metabolism process, provide 
clinicians with more predictive medication recommendations, and 
avoid excessive or excessive medication.

At the same time, there are still corresponding limitations in this 
experiment. In view of the lack of sample size of patients with 
hepatotoxicity in this study, although the liver function prediction 
model has alleviated the problem of insufficient number of patients with 
hepatotoxicity to a certain extent, it also limits the specific interpretation 
of drug hepatotoxicity prediction. At the same time, further research on 
the correlation between hepatotoxicity and hospitalization days needs 
to verify this conclusion in a larger patient group and other external 
centers in the future to enhance the reliability and generalization of the 
results. As well as the defects that the study did not include the total 
number of patients’ medications and the total amount of medications 
into the experimental data, the patient stratification was not diversified 
enough, resulting in the inability to present a more detailed correlation 
analysis, which will be improved in future research.

5 Conclusion

Tigecycline, as a new type of antibiotic, has shown good clinical 
application potential in the treatment of complex infections. This study 
preliminarily explored the correlation between drug liver dysfunction, 
toxicity and laboratory parameters. By indirectly reflecting the 
potential possibility of hepatotoxicity, an early warning model of liver 
injury that can be  clinically identified and intervened early was 
established. The significant correlation between liver function status 
and hospitalization days, as well as hospitalization days and clinical 
laboratory parameters and simulated dose after the first administration 
was determined. Finally, through the prediction and analysis of drug 
side effects on the simple and easy-to-obtain hospitalization days, it 
provides an important reference for the clinical application of 

TABLE 6 Correlation between blood drug concentration and hospitalization days.

4 h 8 h 12 h 24 h 36 h 48 h 60 h 72 h 74 h 78 h

Hospital 

days

Statistic 263 263 263 263 263 263 263 263 263 263

P-value 0.193 0.111 0.029* 0.010* 0.010* 0.010* 0.012* 0.011* 0.201 0.110

*The difference was statistically significant (p < 0.05).
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tigecycline, and suggests that the side effects of drugs should be paid 
attention to in clinical use, especially in critically ill patients.
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Introduction: The mortality rate associated with Mycobacterium tuberculosis

(MTB) has seen a significant rise in regions heavily affected by the disease over

the past few decades. The traditional methods for diagnosing and differentiating

tuberculosis (TB) remain thorny issues, particularly in areas with a high TB

epidemic and inadequate resources. Processing numerous images can be time-

consuming and tedious. Therefore, there is a need for automatic segmentation

and classification technologies based on lung computed tomography (CT) scans

to expedite and enhance the diagnosis of TB, enabling the rapid and secure

identification of the condition. Deep learning (DL) offers a promising solution

for automatically segmenting and classifying lung CT scans, expediting and

enhancing TB diagnosis.

Methods: This review evaluates the diagnostic accuracy of DL modalities for

diagnosing pulmonary tuberculosis (PTB) after searching the PubMed and Web

of Science databases using the preferred reporting items for systematic reviews

and meta-analyses (PRISMA) guidelines.

Results: Seven articles were found and included in the review. While DL has been

widely used and achieved great success in CT-based PTB diagnosis, there are

still challenges to be addressed and opportunities to be explored, including data

scarcity, model generalization, interpretability, and ethical concerns. Addressing

these challenges requires data augmentation, interpretable models, moral

frameworks, and clinical validation.

Conclusion: Further research should focus on developing robust and

generalizable DL models, enhancing model interpretability, establishing ethical

guidelines, and conducting clinical validation studies. DL holds great promise for

transforming PTB diagnosis and improving patient outcomes.
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deep learning, pneumonia, tuberculosis, diagnosis, review

Frontiers in Microbiology 01 frontiersin.org164

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2024.1510026
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2024.1510026&domain=pdf&date_stamp=2025-01-08
https://doi.org/10.3389/fmicb.2024.1510026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1510026/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1510026 January 3, 2025 Time: 14:55 # 2

Zhang et al. 10.3389/fmicb.2024.1510026

1 Introduction

Tuberculosis (TB) is caused by the Mycobacterium tuberculosis
(MTB), which predominantly targets the lungs, resulting in
pulmonary tuberculosis (PTB). TB has coexisted with humans for
a thousand years and approximately 1.3 million people died from
TB in 2022, according to a recent report by the World Health
Organization (WHO) in 2023 (Kaufmann, 2016; Ruiz-Tagle et al.,
2024). There have been reports of TB across all age categories
and in all nations, making it the second leading infectious killer
globally, behind corona virus disease 2019 (COVID-19) (Qi et al.,
2024). Furthermore, the WHO has estimated that 10.6 million
individuals, including 5.8 million men, 3.5 million women, and
1.3 million children, have been diagnosed with confirmed TB
infections globally (WHO, 2022). The progression of TB infection
can be divided into four stages: innate immune response, immune
balance, TB reactivation, and transmission. The development of
effective preventative and treatment methods for this disease
depends on the capacity to understand its underlying mechanisms
and patterns of progression (Ernst, 2012).

PTB involves multiple pathological processes, including
inflammatory exudation, granuloma formation, necrosis
absorption, fibrosis, and calcification (Xu et al., 2015). TB’s
pathogenesis involves transmitting MTB by releasing aerosols
containing the bacteria, which occurs when an infected individual
coughs or sneezes (Figure 1). These aerosols can be inhaled
by another individual, leading to infection. Upon entering the
pulmonary system, MTB is phagocytosed by macrophages.
Recognition of MTB components by pattern recognition receptors
on macrophages, such as Toll-like receptors, initiates an immune
response. Macrophages then secrete cytokines that activate T cells
and promote the activation and proliferation of macrophages.
The aggregation of MTB and immune cells results in granulomas
forming, which confine bacterial dissemination. However,
compromised immunity can lead to the breakdown of these
granulomas, facilitating the recurrence and transmission of TB
(Borah et al., 2021).

Artificial intelligence (AI) offers a faster and more convenient
technology for predicting the effectiveness of TB treatments,
especially in the detection of PTB. AI can improve the precision

Abbreviations: TB, tuberculosis; MTB, Mycobacterium tuberculosis; PTB,
pulmonary tuberculosis; WHO, World Health Organization; COVID-19,
corona virus disease 2019; CT, computed tomography; AI, artificial
intelligence; ML, machine learning; DL, deep learning; CNN, convolutional
neural network; AUC, area under the receiver operating characteristic
curve; PRISMA, preferred reporting items for systematic reviews and
meta-analyses; CAP, community-acquired pneumonia; TST, tuberculin
skin test; IGRA, interferon-gamma release assay; QFT, QuantiFERON-TB
Gold; LAM, lipoglycan lipoarabinomannan; SPECT, single-photon emission
computed tomography; PCR, polymerase chain reaction; NAA, nucleic
acid amplification; LAMP, loop-mediated isothermal amplification; LPA,
line probe assay; CXR, chest X-ray; US, ultrasound; MLR, monocyte to
lymphocyte ratio; NGS, next-generation sequencing; LSTM, long short-
term memory; RNN, recurrent neural network; GAN, generative adversarial
network; ROI, region of interest; GMM, Gaussian mixture model; JI,
Jaccard index; DSC, Dice similarity coefficient; ROC, receiver operating
characteristic; ANN, artificial neural network; MLP, multi-layer perceptron;
MAResNet, multi-scale attention residual network; CBAM, Convolutional
Block Attention Module; NTM-LD, non-tuberculous mycobacterial lung
disease; mSv, millisievert; ULDCT, ultra-low-dose computed tomography;
MDR-PTB, multidrug-resistant PTB; Grad-CAM, gradient-weighted class
activation mapping.

of medical evaluations by screening, diagnosing, and predicting
outcomes with the help of imaging or clinical data (Zhan et al.,
2022). A crucial part of AI is machine learning (ML), which
works by training models with current data so that they can
accurately predict future outcomes given past knowledge (Hussain
and Junejo, 2019). Many fields of medical study have used ML,
including cancer research, pharmaceutical development, illness
detection, and structure of proteins prediction (Yang et al., 2022;
Zhu et al., 2024). ML and deep learning (DL) have substantially
contributed to computer-aided detection. Yet, DL, particularly
convolutional neural networks (CNNs), has risen to prominence
for detecting various pulmonary conditions, with a significant focus
on diagnosing PTB. In recent years, DL, a subset of ML, has been
widely adopted to develop automatic and semi-automatic systems.

DL methods are a type of hierarchical learning of
representations. They are better than regular ML because
they use many layers of computations to learn patterns that are
not linear and have a lot of dimensions. CNNs are a type of
DL design that is translation invariant. This means that once
a pattern is learned, it can find it anywhere in an image, no
matter where it is or how it is oriented. CNNs are often used
in DL, a well-known field. These networks have many layers:
input, convolutional, pooling, fully connected, and output. They
can make specific predictions from digital inputs like images,
sounds, genetic sequences, and clinical data (LeCun et al., 2015).
Identifying PTB through imaging and ML faces several challenges,
including the diverse and sometimes subtle presentations of PTB
in imaging, making it difficult for ML algorithms to distinguish it
from other lung conditions. ML models may overfit the training
data, performing well on the data they were trained on but poorly
on unseen data. As new data and knowledge about PTB become
available, ML models must be updated and retrained to maintain
their accuracy and relevance. Several strategies can address those
challenges: employ regularization techniques to mitigate overfitting
and enhance model efficacy on novel data. Utilize transfer learning
methodologies in which a model initially trained on an extensive
dataset is refined on a smaller, more specialized dataset to enhance
performance. Extensive testing must be conducted to ensure that
ML models are robust against various types of input data and can
handle different imaging conditions.

This review examines seven studies about applying DL
techniques in identifying PTB (Ma et al., 2020; Zhang et al., 2020,
2024; Li X. K. et al., 2021; Haq et al., 2022; Lu et al., 2022;
Huang et al., 2023). The primary focus of the study is to assess
the performance of various DL algorithms in diagnosing PTB.
Utilize metrics such as precision, recall, F1-score, and area under
the receiver operating characteristic curve (AUC) to evaluate and
compare the diagnostic accuracy of different DL models. Explore
strategies for integrating DL tools into clinical practice and identify
the critical areas for future enhancement of the methodologies
above. The outline of the review is as follows: section 2 describes
the main methods of this review. Section 3 describes the traditional
detection methods for PTB. Section 4 presents the DL diagnosis
process for TB. Section 5 depicts the applications of DL in CT-based
PTB detection. Section 6 discusses the future directions. Finally,
section 7 summarizes the conclusions drawn from the review.
Prior studies have not yet offered an integrated, comprehensive
analysis of detecting PTB using DL alongside imaging modalities
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FIGURE 1

Pathogenesis and typical symptoms of TB. Created in BioRender. Zhang (2024a).

datasets. This study examines the methodologies, procedures, and
techniques of DL and imaging modalities.

2 Materials and methods

This systematic review aimed to assess the role of DL in
diagnosing PTB based on CT imaging. The preferred reporting
items for systematic reviews and meta-analyses (PRISMA)
guidelines were used in conducting this research (Page et al.,
2021). These guidelines were instrumental in structuring the
study selection, offering a standardized framework to streamline
and document articles’ identification, screening, eligibility, and
inclusion. A thorough search was conducted among PubMed and
Web of Science databases. The search query was formulated using
the PICO strategy and included the terms “tuberculosis,” “artificial
intelligence,” “machine learning,” “deep learning,” “neural network,”
and “natural language processing” (Cacciamani et al., 2023). In
this study, the inclusion criteria were developed by the research
question: in individuals undergoing diagnosis for PTB using CT
scans, how effective are diagnostic models utilizing DL techniques
for image analysis? This question was formulated using the PICO
strategy. The population (P) comprised individuals undergoing
diagnosis for PTB using CT scans, with the intervention (I) being
the application of DL techniques for image analysis, and while

there was no direct comparison group (C), comparisons were made
with traditional diagnostic methods; the outcomes (O) focused
on quantitative data regarding the performance of DL models,
including primary outcomes such as accuracy, specificity, and
sensitivity in diagnosing PTB. The exclusion criteria were non-
English articles, letters, and reviews. Studies not related to PTB or
not using CT scans for diagnosis. Studies lack a clear description of
the DL methodology (studies without original data or not providing
performance metrics).

Fei Zhang and Maomao Li screened the titles and abstracts
of the identified studies, and full texts were retrieved for further
analysis. Any discrepancies were resolved through consensus and
by consulting Jiahe Wang. Data were extracted using a predefined
form to collect details on the author’s name, paper publication
year, journal, country of the dataset, number of patients (with
male/female distribution), study purpose, type of DL algorithm,
dataset source, validation methods, reference standard, and the
reported performance. The research search yielded 1,643 records;
following the title and abstract screening, 120 records underwent
full-text evaluation, including six publications in the review.
Moreover, following citation analysis of pertinent documents, an
additional article was incorporated, increasing the total number of
included articles to seven. A PRISMA flow diagram was created
to depict the article selection process, specifying the number of
records obtained from all sources and the explanation for exclusion
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(Figure 2). The QUADAS-2 instrument was utilized to appraise the
potential for bias within the studies under consideration (Table A1).
This framework assesses bias across four principal areas (Whiting
et al., 2011). Figure 3 illustrates the yearly number of publications
on AI in TB from 2005 to 2024, there was a rapid increase in the
publication of studies.

3 Traditional detection methods
for PTB

3.1 Clinical symptoms and physical
examination diagnosis

Acute PTB often presents with acute respiratory symptoms,
including dry cough, fever, and chest pain (Moreira et al.,
2011). Symptom duration generally surpasses 2 weeks before
hospitalization. The clinical appearance is comparable to non-
tuberculous community-acquired pneumonia (CAP), but patients
with PTB experience less intense pleural unease, toxemia, and
fatigue than those with non-tuberculous bacterial pneumonia
(Sharma and Mohan, 2004). Acute PTB is more likely to
cause weight loss than non-tuberculous CAP, while hemoptysis
is relatively rare (Morena et al., 2023). The typical symptoms
of TB are vividly shown in Figure 1. Generally speaking, the
diagnosis of PTB is made using a combination of conventional
and contemporary techniques. This diagnosis depends primarily
on the patient’s medical symptoms and findings from the physical
examination, complemented by various diagnostic test results.
These include bacteriological tests, the tuberculin skin test (TST),
imaging studies such as X-ray or CT scans, histopathological
evaluations, T-SPOT test, and the reaction to the therapy
plan of antituberculosis medications (Kang et al., 2021). The
distribution of mycobacterium TB in the human body is shown in
Figure 4.

3.2 Etiologic diagnosis

The WHO regards TB culture as the “gold standard” for
diagnosing TB; nonetheless, conventional solid and liquid culture
media exhibit several drawbacks, such as impracticality, bacterial
cross-contamination, and extended culture durations. Sputum
smear microscopy is a diagnostic technique for TB that is widely
acknowledged as effective (Kessel et al., 2023, pp. 2013–2017).
Due to its affordability and relative simplicity compared to other
advanced diagnostic methods, sputum smear microscopy remains
a critical diagnostic instrument for PTB, particularly in nations
with low incomes. In this process, sputum samples are coughed
up by patients exhibiting symptoms and are treated with chemicals
and applied to plain glass microscope slides. Yet the inconsistent
clinical performance of this method, combined with the challenges
in sputum collection from patients and accessibility to healthcare
services, constitutes one of the main reasons for TB being
undiagnosed. Subsequently, these slides are subjected to laboratory
analysis to detect the presence of TB. The resulting images from
a sputum smear test are typically viewed using fluorescence or

light microscopy. The resolution and size of these images are
determined by the level of magnification employed. For laryngeal
swabs, the pooled sensitivity was 57.8% (95% CI: 50.5–65.0),
and the specificity was 93.8% (88.4–96.8). For nasopharyngeal
aspirates, the sensitivity was 65.2% (95% CI: 52.0–76.4), and the
specificity was 97.9% (95% CI: 96.0–99.0). For oral swabs, the
sensitivity was 56.7% (95% CI: 44.3–68.2), and the specificity was
91.3% (95% CI: 81.0–96.3) (Savage et al., 2023). Fluorescence
microscopy offers advantages such as labor reduction and enhanced
productivity. Nevertheless, the potential drawback of this technique
is the danger of false-positive results, which is a result of the
fluorochrome dyes’ non-specific binding (Steingart et al., 2006).
The non-invasive collection process and its association with TB
transmission have long been why breath has been regarded as an
appealing diagnostic specimen for TB (Ghosh et al., 2021; Pham
and Beauchamp, 2021). Electronic nose tests reportedly have an
estimated sensitivity of 92% (95% CI: 82–97%) (Saktiawati et al.,
2019).

3.3 Immunological diagnosis

Serological assays frequently demonstrate inadequate
sensitivity and specificity, relying on a humoral immune reaction
to detect antibodies against TB antigens (Steingart et al., 2011).
A strategy attracting increased attention is the identification
of host responses indicative of TB infection. In this regard,
interferon-gamma release assays (IGRAs), such as T-Spot (Oxford
Immunotec) and QuantiFERON (Qiagen), have limited use in
detecting acute infections but are effective in detecting latent TB.
However, IGRAs are affected by diseases such as diabetes, and the
high cost also limits its application in underdeveloped regions
(Takasaki et al., 2018). Currently, the T-SPOT test is extensively
utilized for diagnosing infections caused by TB (Sollai et al., 2014).
Despite its importance in identifying Mtb infections, a significant
drawback of the T-SPOT test is that it cannot differentiate between
active TB and latent TB infection (Ling et al., 2013).

The benefits and constraints of the QuantiFERON-TB Gold
(QFT) test parallel those of the T-SPOT test. The QFT test
offers a more straightforward operational process than T-SPOT,
eliminating the need to separate peripheral blood mononuclear
cells and opting to use whole blood instead (Lalvani and
Pareek, 2010). Only a handful of antigenic biomarkers have been
identified for TB. Lipoglycan lipoarabinomannan (LAM) is the
most extensively investigated, most promising, and accessible from
a simple sample such as urine (MacLean et al., 2019). The FujiLAM
is a lateral flow urine test that finds LAM antigens. In adults with
TB, it has a sensitivity of 70% and a specificity of 93% (Li Z.
et al., 2021). The TST is a traditional diagnostic technique that
uses a pure protein derivative of tuberculin to identify delayed-
type hypersensitivity responses. Individuals infected with TB can
generate sensitized T cells that recognize MTB antigens. Upon
re-stimulation by MTB antigens, these sensitized T cells secrete
different soluble lymphokines that enhance permeability, local
erythema, and induration (Kowalewicz-Kulbat et al., 2018). The
TST method finds the average diameter of the induration 72 h after
an injection of a pure protein derivative tuberculin. An induration
diameter <5 mm or no reaction is negative; ≥5 mm is positive
(Abubakar et al., 2018).
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FIGURE 2

PRISMA study flow diagram.

FIGURE 3

Annual number of publications of AI in TB from 2005 to 2024.
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FIGURE 4

Distribution of MTB in the human body. Created in BioRender. Zhang (2024b).

3.4 Molecular techniques

Molecular imaging, which integrates molecular biology with
medical imaging, is increasingly being explored to enhance our
understanding of PTB. This high-tech imaging method allows
biological processes at the molecular and cellular levels inside
live things to be witnessed and measured. Techniques such as
single-photon emission computed tomography (SPECT) are being
investigated for their potential to offer detailed molecular-level
data. SPECT’s high sensitivity and resolution make it a promising
tool for identifying and tracking disease processes associated with
PTB (Dimastromatteo et al., 2018). Along with smear microscopy,
the Centers for Disease Control and Prevention suggests that
each individual who might have PTB should also have at least
one nucleic acid amplification (NAA) test, like polymerase chain
reaction (PCR) (Parrish and Carroll, 2011). The high guanine
and cytosine in the TB genome make it harder to conduct PCR
studies. As a result, when dealing with MTB, it is essential to
meticulously consider the methods for sample collection, bacterial
cell disruption, nucleic acid isolation, and PCR assay design. The
“Xpert MTB/RIF assay” is a rapid NAA test capable of detecting
TB and determining resistance to rifampicin (Naidoo et al., 2023).
The sensitivity of Xpert MTB/RIF Ultra when applied to oral swabs
varied between 45% and 77.8%, in contrast to an approximate
sensitivity of 90% for sputum samples (Mesman et al., 2019; Lima
et al., 2020; Andama et al., 2022). Identifying bacterial RNA allows
for the pinpointing of active TB. The quantification of bacterial
quantity in sputum samples can be achieved using the detection
of 16S ribosomal RNA, providing a sensitivity comparable to
that of solid culture techniques (Honeyborne et al., 2014). Loop-
mediated isothermal amplification (LAMP) is a PCR method
that functions at a uniform temperature. The TB-LAMP method

exhibits a sensitivity marginally lower than the Xpert MTB/RIF
assay, yet both tests maintain similar specificity (Phetsuksiri et al.,
2020). The WHO advocates TB-LAMP as a superior alternative
to smear microscopy because of its improved diagnostic efficacy
(Huang et al., 2022). A line probe test (LPA) is a quick, accurate,
and flexible way to determine if someone has TB. It can detect
TB in various clinical specimens, including sputum, pleural, and
cerebrospinal fluid. The LPA can identify resistance to first-line TB
medications such as isoniazid. Different commercial LPA kits are
available, including the GenoType MTBDRplus 1.0 assay from Hain
Lifescience and the INNO-LiPA Rif TB kit offered by Innogenetics
(Rossau et al., 1997; Crudu et al., 2012). LPA is crucial for the
management of multidrug-resistant TB. Truenat MTB, Truenat
MTB Plus, and Truenat MTB-Rif Dx assays are quick molecular
real-time PCR tests that can find TB. Results are usually ready in an
hour (Nikam et al., 2013; Georghiou et al., 2021).

3.5 Imaging techniques

Most individuals with PTB exhibit abnormal chest X-ray (CXR)
findings, which indicate a PTB diagnosis (Nachiappan et al.,
2017). Given the relative accessibility of CXR and its utility in
identifying these signs, the WHO advises using chest radiography
for TB screening in populations at high risk for the disease
(Liang et al., 2022). Different TB lesions appear differently on
X-rays; exudative lesions appear as cloud-like or patchy shadows,
proliferative lesions as nodular shadows, and caseous lesions
as high-density and uneven shadows. The advantages of CT
scanning include its relatively low cost, enhanced capability to
differentiate between tissue types, rapid image acquisition, and
broader accessibility. Compared to X-ray chest films, CT scans

Frontiers in Microbiology 06 frontiersin.org169

https://doi.org/10.3389/fmicb.2024.1510026
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1510026 January 3, 2025 Time: 14:55 # 7

Zhang et al. 10.3389/fmicb.2024.1510026

provide more explicit sectional images of the lungs, avoiding the
issue of overlapping pictures and displaying the delicate structures
and lesion details of lung tissue. Various pathological changes
of TB, such as exudation, proliferation, caseation, fibrosis, and
calcification, can be well displayed on CT scans. CT can detect early
small lesions, bronchial dissemination foci, and mediastinal lymph
node enlargement, aiding in a definitive diagnosis. It is also useful
in diagnosing suspected TB cases that are atypical or negative on
X-ray chest films. Additionally, CT has an extra role in assisting
with fluid aspiration, biopsy confirmation, and guiding therapeutic
interventional procedures, such as fluid drainage. PET/CT, which
utilizes the cellular uptake of 18F-fluorodeoxyglucose to assess
pulmonary inflammation, is highly sensitive for the early detection
of TB (Ankrah et al., 2018). X-ray chests are the initial step in
investigating PTB, followed by ultrasound (US), CT, and magnetic
MRI for further evaluation. Additional imaging modalities, such
as intravenous urography and barium studies, may also be
helpful.

3.6 Other techniques

Innovative techniques are being developed to evaluate, track,
and quantify PTB conditions at the point of care. Techniques such
as lung ultrasonography and electrical impedance tomography are
becoming more popular as they complement traditional diagnostic
methods. These methods are being extensively researched for
their potential to supplement standard procedures and, in
certain respiratory conditions, to serve as an alternative due
to the absence of ionizing radiation and their simplicity (Ball
et al., 2017). A meta-analysis has revealed that chest US,
when used for diagnosing pediatrics PTB, has a sensitivity of
84% and a specificity of 38% (Muljadi et al., 2024). Many
molecular biomarkers can also be used to diagnose PTB. The
combined sensitivity and specificity of monocyte to lymphocyte
ratio (MLR) in detecting TB are 79.5% (95% CI: 68.5–87.3)
and 80.2% (95% CI: 67.3–88.9), respectively (Adane et al.,
2022).

Non-sputum biomarker tests for TB could have a market value
of between $56 million and $84 million in countries with a high
incidence of TB, like South Africa, Brazil, China, and India. It is
thought that 14 million tests will be done (Tb Diagnostics Market
Analysis Consortium, 2014, 2015; Maheshwari et al., 2016; Zhao
et al., 2016). Dai et al. (2019) made a model for predicting TB
by testing three iron-related biomarkers in blood serum, which
can recognize TB. There is optimism that this approach could
be broadened to enhance the diagnostic techniques for PTB.
Next-generation sequencing is considered a revolutionary method
for medication susceptibility testing of TB, providing data much
faster than conventional clinical culture-based methods (Walker
et al., 2015). Mass spectrometry technology can accurately detect
biomarkers, which helps with the early diagnosis of TB. Chen
et al. (2020) utilized Matrix-Assisted Laser Desorption/Ionization
Time-of-Flight Mass Spectrometry and Liquid Chromatography-
Tandem Mass Spectrometry to identify a TB-specific serum peptide
signature, thereby creating diagnostic models for swift and accurate
TB detection. More details can be found in Table 1, which compares
various TB diagnostic methods.

4 DL diagnosis process for TB

4.1 Overview of DL architectures

Deep learning neural networks, a category of computational
models, can learn complex feature hierarchies by deriving advanced
features from simpler ones. Fukushima introduced this concept
in 1980, inspired by the mechanisms of human vision based on
biological principles (Yoon and Kim, 2020). DL emulates the
human brain’s process of information filtering to facilitate accurate
decision-making. DL instructs a computational model to handle
inputs through a series of layers, analogous to the human brain’s
approach, to bolster data prediction and categorization. Each layer
feeds its output to the subsequent layer, akin to the progressive
filtering mechanisms employed by neural networks within the
brain. The iterative feedback process continues until the production
remains consistent with the previous iteration. Weights are first
allocated to each layer to produce the desired output, and these
weights are further refined during the training process to attain the
exact result (Lalmuanawma et al., 2020).

In the fields of CT-based disease diagnosis, multiple DL models
are frequently utilized for tasks. CNNs like VGGNet, Google Net,
ResNet, and DenseNet are essential for image categorization and
feature extraction (Pavithra et al., 2023). U-Net, V-Net, SegNet, and
DeepLab are commonly employed for segmentation jobs because of
their proficiency in accurately delineating regions of interest (ROIs)
(Yuan et al., 2022). Detection and classification jobs frequently
employ models such as YOLO, SSD, and the R-CNN series, which
are proficient in recognizing and categorizing objects in photos
(Vilcapoma et al., 2024). GANs and their derivatives, such as
DCGAN, cGAN, CycleGAN, and Pix2Pix, are utilized for data
augmentation, picture reconstruction, and style transfer, improving
training data’s diversity and quality (Simion et al., 2024). Three-
dimensional (3D) CNNs and their variants, including 3D U-Net,
are explicitly engineered for volumetric data, which is essential
for examining 3D structures in CT scans (Wen et al., 2023).
Furthermore, sophisticated models such as Dual-Path Networks
and those developed by neural architecture search are reviewed to
enhance performance in CT image processing, guaranteeing that
the models are efficient and precise (Min et al., 2024).

Deep learning comprises three fundamental methodologies:
supervised, semi-supervised, and unsupervised (Liporaci et al.,
2024). For medical image analysis tasks, including disease detection
and classification, CNNs have grown into the predominant DL
architecture (Odimayo et al., 2024). A schematic representation of
a typical CNN architecture is shown in Figure 5. Widely utilized
during the diagnosis of numerous illnesses, CNNs specialize in
extracting pertinent information from medical pictures, including
X-rays, CT scans, and MRI scans. While CNNs excel at processing
spatial information in medical images, recurrent neural networks
(RNNs) and their variants, such as long short-term memory,
have proven effective in handling sequential data, which is often
encountered in healthcare settings (Chae et al., 2024). Generative
adversarial networks (GANs) have emerged as a powerful tool
to address the limited availability of labeled data by generating
synthetic medical data that can be used to augment the training
datasets (Su et al., 2023). Among these techniques, GANs stand
out for their unique capabilities in data augmentation and image
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TABLE 1 Comparison of TB methods.

Detection method Methodology Interpretation Shortcomings

X-ray A chest X-ray is taken to visualize the lungs and chest
cavity.

Detects lung shadows, cavities, and
calcifications.

Difficulty in distinguishing
between active and latent TB,
limited value for diagnosing
extrapulmonary TB.

CT A CT scan of the chest is performed to obtain detailed
images of the lungs.

Detects lung inflammation, nodules,
and cavities with precise localization.

Higher cost, radiation exposure,
misinterpretations.

MRI MRI scan of the chest is performed to visualize the
lungs and chest cavity.

Detects lung inflammation, nodules,
cavities, and soft tissue lesions.

Higher cost, less effective in
detecting calcifications and bony
lesions compared to X-ray.

Ultrasound Ultrasound scan of the chest is performed to visualize
the lungs and chest cavity.

Detects lung effusions, consolidations,
and pleural effusions.

Requires skillful operator, lower
specificity for diagnosing TB.

Bronchoscopy A bronchoscope is used to visualize the bronchi and
lung tissue, and samples are collected.

Direct visualization of lung lesions
and pathological examination.

Invasive procedure with associated
risks.

Tissue biopsy Tissue samples are collected from the lungs or lymph
nodes for pathological examination.

Confirms TB diagnosis and performs
drug susceptibility testing.

Invasive procedure with associated
risks.

Tuberculin skin test Tuberculin is injected under the skin, and the skin
reaction is observed.

Detects the immune response to
Mycobacterium tuberculosis to
determine past infection.

Cannot distinguish between active
and latent TB, limited value in
vaccinated populations.

Sputum smear test Sputum is stained and examined under a microscope
for the presence of Mycobacterium tuberculosis.

Rapid detection of active TB, low cost. Lower sensitivity, requires
multiple tests.

Fluorescent microscopy Sputum is stained with a fluorescent dye and examined
under a fluorescent microscope for the presence of
Mycobacterium tuberculosis.

Improves the sensitivity of sputum
smear test.

Higher cost, requires specialized
equipment.

Culturing bacteria Sputum or tissue samples are cultured on selective
media to grow Mycobacterium tuberculosis.

Confirms TB diagnosis and performs
drug susceptibility testing.

Higher cost, requires longer time.

Xpert MTB/RIF Molecular diagnostic technique that detects
Mycobacterium tuberculosis DNA in sputum and
determines drug resistance.

Rapid, accurate, simultaneous
detection of drug resistance.

Higher cost, requires specialized
equipment.

LAMP Rapid diagnostic technique based on nucleic acid
amplification that amplifies Mycobacterium
tuberculosis DNA within a short time.

Rapid, easy to operate. Slightly lower specificity than
Xpert MTB/RIF.

LPA Molecular diagnostic technique based on DNA probes
that detects drug resistance genes of Mycobacterium
tuberculosis.

Rapid, accurate detection of drug
resistance.

Requires specialized equipment,
more complex operation.

Micro real-time PCR Rapid diagnostic method based on real-time
fluorescent quantitative PCR that amplifies and detects
Mycobacterium tuberculosis DNA within a brief time.

Rapid, accurate, detection of drug
resistance.

Requires specialized equipment,
higher cost.

Next-generation sequencing Molecular diagnostic method based on
high-throughput sequencing that comprehensively
analyzes the genetic information of Mycobacterium
tuberculosis.

Detection of drug resistance and
identification of new resistance genes.

Very high cost, requires
specialized bioinformatics
analysis.

Mass spectrometry Molecular diagnostic method based on mass
spectrometry that detects proteins or metabolites of
Mycobacterium tuberculosis.

Detection of drug resistance,
identification of new resistance
mechanisms.

Very high cost, requires
specialized mass spectrometry
analysis.

IGRAs Detects the level of interferon-γ in the blood to
determine Mycobacterium tuberculosis infection.

Detection of latent TB infection. Requires laboratory conditions,
cannot distinguish between active
and latent TB.

Antibody detection Detects Mycobacterium tuberculosis-specific antibodies
in the blood.

Assists in the diagnosis of TB. Lower specificity, easily affected by
other factors.

LAMP, loop-mediated isothermal amplification; LPA, line probe assay; IGRAs, interferon-gamma release assays.

quality enhancement. GANs consist of two neural networks, a
generator and a discriminator, that engage in a competitive training
process. While the discriminator assesses their veracity against
actual data samples, the generator generates new data instances.
The generator learns to create more realistic data because of this

adversarial process, which is especially useful in medical imaging
where class imbalance and data scarcity are frequent problems.
GANs can produce synthetic CT images of PTB that resemble
actual TB lesions, increasing the data available for DL model
training. This improves the model’s generalization across various
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patient populations and imaging settings and reduces overfitting.
Semi-supervised learning methods, which leverage labeled and
unlabeled data, have shown promising results in tasks like medical
image segmentation and disease classification (Tseng et al., 2024).
These techniques can help improve model performance when
the labeled data is limited. Furthermore, unsupervised learning
approaches, such as clustering and anomaly detection, have been
utilized to identify novel disease subtypes, detect rare diseases, and
uncover hidden patterns in medical data (Thabtah et al., 2022).
These methodologies can yield essential insights for physicians and
scientists, potentially facilitating the identification of novel disease
biomarkers and enhanced patient screening.

4.2 Overview of the pipeline for PTB
detection based on CT

4.2.1 Data acquisition and pre-processing
The lack of CT data might lead to data overfitting and affect

the efficiency of the imaging model. Studies by Li X. K. et al.
(2021) increased the number of training samples through random
cropping and left-right flipping (Wu et al., 2019). A workflow
for PTB diagnosis using DL based on a CT pipeline is shown
in Figure 6. The initial phase of image preparation entails
transforming the unprocessed images into a suitable format for
subsequent analysis. Medical imaging data from various equipment
exhibit dimensions, layer thickness, and scan count differences.
Collectively, these variables result in a diverse array of imaging
datasets, causing inconsistencies among the data sets. For accurate
classification of medical images, the preprocessing phase should
significantly minimize noise without compromising the integrity
of vital image elements. Consequently, the preprocessing phase
consists of resizing, normalizing, and occasionally converting color
images from RGB to grayscale. Additionally, images are enhanced
using techniques such as Gaussian blurring, median filtering,
morphological smoothing, and various other methods for image
adjustment.

4.2.2 Feature extraction and classification
The process of transforming images into features that reflect

various image attributes is called feature extraction. The success
of DL models in CT-based diagnosis is heavily dependent on the
quality of annotated data used for training and validation. In
this systematic review, CT scans were annotated by experienced
radiologists or pulmonary disease specialist following standardized
clinical guidelines (Ma et al., 2020; Zhang et al., 2020, 2024;
Li X. K. et al., 2021; Haq et al., 2022; Lu et al., 2022; Huang
et al., 2023). Image segmentation is indeed a pivotal step in image
processing. It involves partitioning images into distinct sections
or ROIs to isolate and analyze specific features or objects within
the image (Shahzad et al., 2024). Several types of features are
used in image analysis. These include texture, shape, contrast,
and brightness (Kaifi, 2023). Slices exhibiting PTB lesions and
regular slices devoid of pathological findings were individually
marked manually and employed as the benchmark dataset to
train the DL model. Some open-source tools, such as ITK-SNAP,
delineate bounding boxes around CT imaging lesions (Yan et al.,
2021b). This process entails identifying and segmenting the lesions

from the scans. Nevertheless, manual segmentation of the lung
region is a laborious, monotonous, and time-consuming endeavor
that significantly depends on the proficiency and experience of
radiologists. Feature extraction is a cornerstone of diagnostic
imaging, particularly when utilizing DL to analyze CT scans.

Gordaliza et al.’s (2019) study offers a glimpse into the
potential of unsupervised learning for lung image segmentation.
According to Wang et al. (2023), they created a GAN-based
design that can separate different lung lesions. GAN is an ML
model made up of a generator and a discriminator. It is often
used to create images and split them into groups. This model
can identify and segment multiple lesion areas present in CT
scans. In a GAN, the discriminator may experience “forgetting,”
which means losing the ability to recognize certain features during
training. They implement a method to mitigate this forgetting
phenomenon. It introduces a self-supervised rotation loss to
help address the issue of discriminator forgetting. Self-supervised
learning is free of data to be labeled by hand, and rotation
loss might include flipping pictures to aid the model in learning
better. The recommended approach achieved Dice coefficients of
68.5% on test datasets for multi-center PTB. The architecture
consists of a dual attention module and a cascaded context-
aware pyramid feature extraction method, making it possible
to understand the semantic dependencies linked to lung lesion
characteristics in space and time. This unified method makes the
model’s training more effective. The study by Gordaliza et al.
(2019) develops a methodology for the automated extraction of
a radiological biomarker from CT scans to assess the disease
burden of TB, which may also be modified for pneumonia
identification. The pipeline involves lung segmentation, tissue
type classification, and applying a Gaussian mixture model
(GMM) to differentiate between healthy and diseased tissue. The
process consists of using an adaptive thresholding method to
identify air-like organs in chest CT scans, such as healthy lungs,
the airway tree, and the stomach, by utilizing the topological
properties of the organs. Geodesic Active Contours are pivotal
in refining the lung boundaries by including lesions attached
to the pleura and discarding motion artifacts. Furthermore, the
GMM is employed to model the probability distribution of
voxel intensities within the segmented images. By assuming that
the tissue intensities follow a Gaussian mixture, the GMM, in
conjunction with the Expectation-Maximization algorithm, allows
for the automatic computation of thresholds that distinguish
different tissue types. This statistical approach provides a robust
framework for classifying lung tissue based on its intensity
values.

4.2.3 Performance evaluation
The effectiveness of the entire pipeline is measured using

evaluation metrics such as precision, accuracy, recall, specificity,
F1-score, and AUC, among others. The training subset is utilized to
generate a specific model. In contrast, the suitability of the training
process and the model is evaluated by simultaneously observing
overfitting or underfitting on the validation subset. Ultimately,
the unseen testing subset is used to judge the performance to
which the created model works. Sensitivity is the ratio of accurate
positive results to the actual positive cases. Specificity refers to the
proportion of true negative cases that are accurately recognized
as such. The Jaccard index (JI) is a percentage that shows how
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FIGURE 5

Schematic representation of a typical CNN architecture. Created in BioRender. Zhang (2024c).

FIGURE 6

A workflow for PTB diagnosis using DL based on a CT pipeline. Created in BioRender. Zhang (2024d).

much the model’s predicted output and the accurate annotation
ground-truth mask match. The similarity index measures the
unity between the segmentation generated by the model and
the expert-annotated ground truth. It evaluates the extent to
which the model’s delineation of the PTB region aligns with
the input image’s actual PTB area. A Dice similarity coefficient
(DSC) of zero indicates no spatial overlap between the model’s
annotations and the actual PTB location, while a DSC of one
signifies perfect spatial overlap. The AUC summarizes the receiver
operating characteristic (ROC) curve. The ROC curve compares

the sensitivity to the false positive rate to see how well a classifier can
tell the difference between classes. Additional details can be found
in Table 2, which provides some standard performance metrics for
DL models.

4.2.4 DL-related concepts
Deep learning is a subset of ML that focuses on deep

artificial neural networks (ANNs). Common types of DL algorithms
encompass multi-layer perceptrons (MLPs), CNNs, RNNs, graph
neural networks, Transformers, and more. Overfitting is a
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FIGURE 7

The application of DL in TB management. Created in BioRender. Zhang (2024e)

TABLE 2 Common performance metrics for DL models.

Metric Description Formula

Accuracy The ratio of correctly predicted instances to the total instances Accuracy = (TP + TN) / (TP + TN + FP + FN)

Precision The ratio of true positive predictions to the total positive predictions Precision = TP / (TP + FP)

Recall The ratio of true positive predictions to the total actual positives Recall = TP / (TP + FN)

Specificity The ratio of true negative predictions to the total actual negatives Specificity = TN / (TN + FP)

Kappa A statistic that measures inter-rater agreement for categorical items Kappa = (Po − Pe) / (1 − Pe)1

F1-score The harmonic mean of precision and recall, balancing both metrics F1-score = 2 × precision × recall / (precision + recall)

Dice similarity coefficient A measure of overlap between two sets, often used in image
segmentation tasks

Dice = (2 × TP) / (2 × TP + FP + FN)

1Po is observed agreement, and Pe is expected agreement.

modeling error that arises when a model learns the random noise
and fluctuations in the training data to the extent that it negatively
impacts the model’s performance on new, unseen data. Essentially,
the model becomes too tailored to the training set and fails to
generalize well to independent data sets, such as those used for
testing. Cross-validation is a way to see if the outcomes of a
statistical test can be applied to a different data set. It is mainly
used when the goal is to make a prediction and figure out how
well a prediction model will work in real life. In k-fold cross-
validation, the original sample is split into k subsamples of the
same size. Only one k subsamples are kept as confirmation data
to test the model, and the other k − 1 subsamples are used as
training data. After that, this process is done k times, and each
k subsample is used only once as confirmation data. In leave-
one-out cross-validation, one observation from the sample is used
as the validation set, and the rest are used as the training set.

This is a type of k-fold cross-validation, where k is the total
number of data points. Because this is done repeatedly, each
measurement in the dataset is used as the validation set a single
time. The same dataset is used for training and validation in
cross-validation, so it is an internal validation method. External
validation, on the other hand, uses a different set of data that
was not used to train and test the model in the first place.
This could involve data from a different time, location, or group
of subjects. In the bootstrap validation technique, for every
iteration, a subset of the original dataset is selected randomly
with replacement to serve as the training dataset for the model.
The data points not included in the training subset, known
as the out-of-sample points, constitute the validation set. This
procedure is conducted n times consecutively, and the average
error rate from these n iterations is calculated to assess the model’s
predictive accuracy.
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5 Applications of DL in CT-based
PTB detection

Multiple DL algorithms have been widely applied to CT-
based PTB diagnosis, including 3D CNN, MLP, U-Net, DTE-SVM,
ICNN, and GNN. These algorithms have unique feature extraction
and classification capability characteristics suitable for different
datasets and diagnostic tasks. U-Net is often used for medical
image segmentation tasks and performs well in segmenting and
diagnosing PTB lesions. Ma et al. (2020) utilized U-Net to process
CT data from 337 ATB cases, 110 pneumonia cases, and 120 healthy
individuals. Utilizing an independent dataset for testing, they
achieved exceptional results, demonstrating a positive predictive
value of 0.971 and an AUC score of 0.980.

Three-dimensional CNNs can process 3D chest CT data, fully
exploiting spatial information for diagnosis. Li X. K. et al. (2021)
developed a 3D CNN to assist in diagnosing PTB, achieving
93.7% precision and 98.7% recall by learning from 501 PTB
patients and an equal number of standard samples. Most studies
employ cross-validation methods like 5-fold or 10-fold cross-
validation. For example, Zhang et al. (2024) used MAResNet
with 905 chest CT samples provided by Beijing Chest Hospital,
adopting fivefold cross-validation, achieving an accuracy of 94%
with sensitivity and specificity reaching 93.80% and 94.20%,
respectively. Haq et al. (2022) used an ANN-based classifier, MLP,
with 10-fold cross-validation, achieving an accuracy of 99% and a
very high Kappa coefficient (0.98). Some studies use independent
test data for model performance evaluation, such as in the study
by Li X. K. et al. (2021). Open data sharing can accelerate
the development and validation of CT-based PTB algorithms,
improving research validation capabilities. The study by Huang
et al. (2023) illustrates this value well; their research is based
on the data released by Zhang et al. (2020). They employed a
DTE-SVM algorithm, showing satisfactory results in terms of
accuracy and sensitivity. In conclusion, these research findings
demonstrate that as DL algorithms mature, their application in
CT-based PTB diagnosis is becoming increasingly widespread and
practical. Characteristics of the included studies are shown in
Table 3.

5.1 Detection and classification of TB
lesions

Conventional techniques for PTB detection frequently depend
on radiologists’ expertise, which may be subjective and protracted.
The integration of DL into this process has shown promising
advancements. The application of DL in TB management is
shown in Figure 7. Zhang et al. (2024) introduces a 3D
multi-scale attention residual network (MAResNet) to recognize
PTB utilizing CT images. MAResNet is the integration of the
Convolutional Block Attention Module (CBAM) alongside residual
modules. This dual mechanism enhances the distinguishability
of image features and allows for the efficient reuse of shallow
features. The accuracy of MAResNet in classifying PTB reaches
94%, which is essential for differential diagnosis and treatment
planning.

Another study by Yoon et al. (2023) a 3D neural network
model, nnU-Net, will be created to investigate the clinical
significance of CT cavity volume and evaluate the model’s efficacy in
cavity detection. The research retrospectively analyzed 392 patients
with mycobacterial pulmonary disease, including TB and non-
tuberculous pulmonary disease. The nnU-Net model demonstrated
high sensitivity in detecting cavities, with a mean DSC of 78.9. One
notable application is the cascading deep supervision U-Net model,
as highlighted in the study by Hu et al. (2022), which concentrates
on the diagnosis of pneumoconiosis complicated by PTB. The
CSNet model leverages the strengths of HRCT to provide high-
resolution imaging coupled with the DL framework to enhance the
segmentation and diagnosis of affected lung tissues. This approach
has shown superior performance over traditional U-Net models,
with an AUC value of 0.947.

5.2 Differentiation between TB and other
lung diseases

5.2.1 Distinguishing PTB and non-tuberculous
mycobacteria lung disease

Wang et al. (2021) retrospectively amassed chest CT images
from 301 patients with non-tuberculous mycobacterial lung disease
(NTM-LD) and 804 patients with PTB. The definitive diagnostic
criterion was pathogenic microbiological analysis. They utilized a
3D ResNet model, attaining AUC scores of 0.90, 0.88, and 0.86 for
the training, validation, and testing datasets. Additionally, when
assessed on an external dataset consisting of 40 cases of NTM-LD
and 40 cases of MTB-LD, the AUC was 0.78. The 3D-ResNet model
had a markedly enhanced capacity to distinguish between the two
circumstances relative to radiologists with 10 years of expertise, and
its diagnosis speed surpassed that of the radiologists by more than
1,000 times.

5.2.2 Distinguishing PTB and pneumonia
The advent of DL has revolutionized the field of medical

imaging, particularly in the differentiation between PTB and CAP.
Han et al. (2023) have used the power of 3D-CNNs to discern
PTB from CAP using chest CT images. Their model was trained
and validated using a dataset comprising 493 patients from two
imaging centers. The model achieved an accuracy of 0.989 in
the internal and 0.934 in the external test set, showcasing its
robustness in differentiating the two conditions. The ability of the
3D-CNN to directly extract abstract features from images without
the need for manual segmentation aligns with the growing trend in
radiomics, which relies on high-throughput feature analysis. This
method accelerates the diagnosis process and reduces the impact
of subjective interpretation prevalent in conventional radiological
evaluations.

5.2.3 Distinguishing PTB and lung cancer
Lung cancer can be categorized into three main groups.

Distinguishing PTB from lung cancer is challenging due to
their overlapping clinical and radiological features. Feng et al.
(2020) used a CNN method to extract features from CT images,
creating a DL signature to predict the likelihood of PTB or lung
adenocarcinoma. They also developed a DL nomogram combining
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TABLE 3 Characteristics of the included studies.

References Journal Country Number of
patients
(male/female)

Purpose Deep learn
algorithm
type

Dataset
source

Dataset Validation Reference
standard

Performances

Zhang et al.,
2024

Medical & Biological
Engineering &
Computing

China N/A Diagnosis of
PTB with 3D
neural network

MAResNet Beijing Chest
Hospital

905 chest CT
scans (500 PTB
vs. 405 normal)

Fivefold
cross-validation

Radiologist
annotation

Accuracy: 94%;
sensitivity: 93.80%;
specificity: 94.20%; AUC:
0.97

Haq et al., 2022 Symmetry Pakistan N/A Diagnosis of
PTB

ANN based
classifier MLP

Bahawal
Victoria
Hospital

200 chest CT
scans (100 PTB
vs. 100 normal)

10-fold
cross-validation

Pulmonary
disease
specialist label

Accuracy of 99%; kappa:
0.98

Ma et al., 2020 Journal of X-Ray
Science and
Technology

China 518/328 Diagnosis of
ATB

U-Net Hebei University
Affiliated
Hospital

337 ATB, 110
pneumonia, and
120 normal cases

Independent test
data containing
139 ATB, 40
pneumonia, and
100 normal cases

Sputum smear
for ATB
patients; CT
report result for
normal and
pneumonia
patients.

Accuracy: 0.968;
sensitivity: 0.964;
specificity: 0.971; positive
predictive value: 0.971;
negative predictive value:
0.964; AUC: 0.980

Huang et al.,
2023

IEEE/ACM
Transactions on
Computational
Biology and
Bioinformatics

N/A 88/46 Diagnosis of
PTB

DTE-SVM Hospital
database

288 CT images
(144 PTB, 144
normal)/68 PTB
and 66 normal

10-fold
cross-validation

Radiologist Accuracy: 94.62% ± 1.00;
F1-score: 94.62% ± 1.00;
precision: 95.30% ± 1.24;
sensitivity:
93.89% ± 1.96;
specificity:
95.35% ± 1.31; AUC:
0.9579

Zhang et al.,
2020

Journal of Ambient
Intelligence and
Humanized
Computing

N/A 88/46 Diagnosis of
secondary PTB

ICNN Hospital
database

144 CT imaging
datasets from 68
secondary PTB
and 144 CT
image datasets
from 66 normal
people

Independent test
data containing
29 secondary
PTB and 29
normal images

Radiologists Accuracy: 93.95%;
sensitivity: 94.19%;
specificity: 93.72%

Li X. K. et al.,
2021

Applied Intelligence China N/A Diagnosis of
PTB

3D CNN Affiliated
Hospital of
Zhejiang
University

501 CT imaging
datasets from
223 PTB and 501
CT image
datasets from
normal people

Five-folder
cross-validation
and independent
test data
(containing 75
PTB and 75
normal cases)

Radiologist
label

Precision = 93.7%,
recall = 98.7%

Lu et al., 2022 Computer Methods
and Programs in
Biomedicine

China N/A Diagnosis of
PTB

Graph neural
network

Fourth Hospital
of Huai’an

840 chest CT
scans (420 PTB
vs. 420 normal)

Fivefold
cross-validation

Radiologist Accuracy: 98.93%;
sensitivity: 100%;
specificity: 97.94%;
precision: 97.86%; F1
score: 98.91%

PTB, pulmonary tuberculosis; HC, healthy controls; MAResNet, multi-scale attention ResNet; ANN, artificial neural network; MLP, multi-layer perceptron; ATB, active tuberculosis; DTE-SVM, deep transferred efficientNet with SVM; CNN, convolutional neural
network; ICNN, improved convolutional neural network.
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the DL signature with clinical factors and CT-based findings. The
DL nomogram showed impressive AUCs of 0.889 in the training
set, 0.879 in the internal validation set, and 0.809 in the external
validation set. Tan et al. (2022) utilized a customized VGG16 model
trained with transfer learning and achieved an accuracy of 90.4%
in distinguishing between TB lung nodules and lung cancer. The
accurate differentiation between TB and pulmonary nodules in CT
images is crucial for effective diagnosis and treatment planning.
Conventional techniques frequently depend on the proficiency of
radiologists, which may be subjective and labor-intensive. The
advent of DL has introduced a paradigm shift in this domain,
offering automated and efficient solutions.

5.3 Quantitative analysis of PTB lesion
progression

In addition to identifying PTB, DP is adept at monitoring
changes in patients’ conditions following treatment and assessing
the severity of the disease.

The accurate quantification of lesion progression in PTB
from CT images is pivotal for disease monitoring and treatment
response evaluation. The integration of depth information in
the ResNet model allowed for capturing the 3D characteristics
of pulmonary lesions, providing a more comprehensive analysis
than traditional 2D image assessments. This approach underscores
the potential of DL in identifying the presence of disease and
quantifying its extent and severity. Gao et al. (2020) developed
a 3D ResNet incorporating depth information at each layer,
the suggested depth-ResNet model demonstrated remarkable
performance, with an average classification accuracy of 92.7% in
predicting severity scores. Wu et al. (2019) utilize DL to create a
diagnostic framework that detects PTB lesions and classifies them
into specific types, such as military and tuberculoma. Applying
a Noisy-Or Bayesian function to calculate an overall infection
probability enhances the diagnostic report with quantitative
analysis, offering clinicians a more thorough comprehension of
the infection’s scope and characteristics. The approach utilized
advanced 3D CNNs to examine CT imaging datasets from
233 patients with active PTB and 501 healthy controls. The
recall and precision for identifying PTB patients were 98.7%
and 93.7%, respectively. The classification accuracy of PTB was
90.9%.

5.4 Reducing CT radiation dose for
diagnosing PTB

Studies have shown that the effective radiation dose from
a single CT scan can range from a few millisieverts (mSv) to
over 8 mSv, which is significantly higher than the typical annual
background radiation exposure of around 3 mSv (Sharma and
Surani, 2020; McKenna and McMonagle, 2024). Using ionizing
radiation in CT scans has raised concerns about the potential
health risks. The mean radiation exposure for ultra-low-dose
computed tomography (ULDCT) ranges from 0.05 to 0.26 mSv,
representing a significant reduction when compared to the
radiation levels associated with standard-dose CT scans (Heltborg

et al., 2024). Yan et al. (2021a) demonstrates the application of
a CycleGAN model for denoising ultralow-dose CT images in
evaluating PTB. The optimized CycleGAN model improved the
peak signal-to-noise ratio by 2.0 dB and the structural similarity
index by 0.21, providing satisfactory image quality with lower
noise levels than hybrid and model-based iterative reconstruction
techniques. The optimized CycleGAN technology might enable
chest ULDCT to generate diagnostically acceptable images for TB
evaluation.

5.5 Further expansion of PTB diagnosis

5.5.1 Diagnosis of multidrug-resistant TB
Postprimary TB manifests in five distinct forms: infiltrative,

focal, tuberculoma, miliary, and fibrocavernous. Multidrug-
resistant PTB (MDR-PTB) often exhibits similar characteristics to
those of drug-susceptible TB. DL techniques have demonstrated
the potential to improve multidrug-resistant TB’s diagnostic
precision and efficacy (MDR-TB). Gao and Qian (2018) using
CT lung image data from a public dataset, a patch-based DL
approach was proposed to classify multidrug-resistant TB and
drug-sensitive TB. The CNN allied to the SVM classifier achieved
an accuracy of 91.11% with the patch-based DL technique.
This study overcame the challenge of a limited dataset of only
230 samples by using patches instead of full images, effectively
expanding the dataset from hundreds to thousands. Duwairi and
Melhem (2023) employed multi-channel models that incorporated
image frames, mask frames, and gender/age data as inputs,
utilizing transfer learning based on VGG19 and ResNet neural
networks for feature extraction from CT scans. Their study’s best-
performing model for MDR classification achieved an accuracy of
74.13% and an AUC of 64.2%. DeepTB is a DL system created
using CNN-ResNet to learn transfer learning. It can quickly
diagnose DR-TB and divide it into three main types: rifampicin-
RTB, MDR-TB, and extensively drug-RTB. Utilizing complex
network structures, DeepTB transforms input data into target
predictions, achieving high performance for DR-TB diagnosis
(AUC: 0.943). The model also attained an AUC of 0.880 for
RR-TB, 0.928 for MDR-TB, and 0.918 for XDR-TB. Integrating
class activation maps (CAMs) offers a visual explanation of the
decision-making process, addressing the “black-box” issue of CNNs
and boosting clinical trust in the system’s outputs (Liang et al.,
2024).

5.5.2 Diagnosing the infectiousness of PTB
The utilization of DL models in the analysis of CT images

has demonstrated considerable potential in differentiating the
infectivity of PTB patients. Gao et al. (2023) created a DL model
called TBINet, which employs a 2D projection-based CNNs to
assess the infectivity of PTB patients using CT images. The
algorithm was trained on a dataset of 925 individuals from
four sites, with infectivity classified according to several sputum
samples conducted within a month. The TBiNet model exhibited
enhanced performance, achieving an AUC of 0.753 on the external
test set, surpassing current DL methodologies. Gradient-weighted
class activation mapping (Grad-CAM) technology indicated that
CT scans exhibiting increased consolidation, voids, upper lobe
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involvement, and larger lymph nodes were more frequently
associated with patients suffering from highly infectious types of
PTB.

5.5.3 Diagnosing comorbidities of PTB
The diagnosis of comorbidities in patients with PTB is crucial

for effective management and treatment. Several studies have
highlighted the significance of identifying comorbidities such as
diabetes mellitus and HIV infection in recently diagnosed PTB
individuals (Sama et al., 2023). When diagnosing PTB, it is crucial
to take into account a variety of factors, including age, sex, previous
TB treatment history, and other comorbidities (Jiang et al., 2024).
Additional research and guidelines are required to improve the
diagnosis and management of comorbidities in PTB patients.

5.6 Integration with clinical decision
support systems

While the initial validation results are impressive, further
prospective validation studies are necessary within actual clinical
settings. Once these commercial AI systems have been thoroughly
tested, they could offer physicians globally convenient, efficient, and
precise diagnostic tools, thereby aiding clinical decision-making in
the foreseeable future. Integrating clinical decision support systems
is a key challenge in applying DL to CT-based PTB diagnosis.
This requires seamlessly integrating AI models with existing
healthcare systems to ensure that diagnostic results are effectively
communicated to physicians and influence clinical decision-
making. Specifically, it requires addressing several challenges: First,
integrating the output of AI models with data from existing systems
like electronic medical records and PACS to ensure diagnostic
results are associated with the patient’s other clinical information.
This requires addressing issues around data formats and security.
Second, ensuring AI-assisted diagnosis can seamlessly integrate
into the physician’s clinical workflow without adding extra steps or
disrupting the normal diagnostic process. This requires optimizing
and redesigning existing workflows. Finally, physicians must
understand the rationale and logic behind the AI model’s diagnoses
to evaluate the results and perform secondary confirmations. This
requires improving the interpretability of the AI model so that
physicians can gain insights into its inner workings. Interpretability
remains a critical challenge in the domain of CT-based pneumonia
and PTB diagnosis, as DL models used for image analysis are often
regarded as “black boxes” due to their high-dimensional and non-
linear nature. Providing clear and actionable explanations can help
physicians and DL models jointly improve diagnostic accuracy,
reducing the risk of misdiagnosis of PTB. One effective approach
involves using Grad-CAM to visualize the regions of the lungs that
the model focuses on during the diagnosis of PTB, such as lesions or
areas of consolidation (Jegatheeswaran et al., 2024). Additionally,
Shapley additive explanations or local interpretable model-agnostic
explanations can be applied to identify the most significant features
contributing to the model’s predictions, such as pixel intensities or
specific ROIs (Chung et al., 2024; Peng et al., 2024). Interactive
tools like heatmaps can further enhance interpretability by allowing
physicians to explore the model’s behavior and examine specific
predictions in detail (Liu et al., 2020). It is also important to
evaluate interpretability methods with physicians to ensure that

the explanations are comprehensible and clinically relevant. Finally,
ensuring compliance with regulatory standards and incorporating
feedback from medical professionals will further support the safe
and effective deployment of these systems in actual clinical settings.

6 Discussion

Data scarcity is a significant challenge in medical imaging,
particularly for diseases like PTB, where annotated CT scans are
limited. One potential solution is to employ a GAN framework to
create synthetic CT images like real-world data features. Current
research indicates that models trained on synthetic data can
perform comparable to those trained on real data alone (Ali
et al., 2024). Various geometric transformations, such as rotations,
scaling, and flipping, help the model learn invariant features
crucial for accurate diagnosis across different patient presentations.
These transformations enhance the model’s ability to recognize
disease patterns despite patient positioning and imaging technique
variations (Mastouri et al., 2024). Transfer learning represents
another promising strategy to address data scarcity (Wajgi et al.,
2024). Researchers can initialize the network weights and fine-tune
the model on the PTB CT data by leveraging pre-trained models
on large-scale medical imaging datasets or even non-medical image
datasets. For instance, models pre-trained in general lung disease
detection tasks may have learned useful low-level and mid-level
features such as lung structure identification and texture analysis.
These pre-trained features can be transferred and further adapted
to the specific task of TB diagnosis, thereby enhancing the model’s
performance on limited datasets. To prevent overfitting and reduce
model complexity, regularization techniques such as dropout and
weight decay improve the model’s ability to generalize to new
data by discouraging the model from relying too heavily on any
training example. Future studies could focus on developing more
advanced data augmentation techniques that mimic real-world
variations in imaging data. Additionally, exploring hybrid transfer
learning methods that combine multiple pre-trained models could
optimize generalization for PTB diagnosis. Such approaches may
lead to more robust and accurate diagnostic models, even in limited
training data.

The application of DL in clinical settings has revolutionized
healthcare, offering promising advancements in diagnostics.
However, this technological leap also presents many ethical
concerns that require careful consideration and resolution.

First, using DL in healthcare often involves processing sensitive
patient data, raising concerns about privacy and security. To
address this, robust encryption, anonymization, and secure data-
sharing protocols are proposed to protect patient data (Mirzaei
et al., 2024). Additionally, federated learning techniques are being
explored to train models on decentralized data, which can help
preserve privacy while allowing for practical model training
(Mukund et al., 2024). Second, DL models can be affected by
biases in the training data, which can cause doctors to make bad
decisions. To fix this problem, researchers use data augmentation,
data balance, and fairness-aware training to ensure that models
accurately represent diverse groups of people and do not make
differences worse. This method is essential for ensuring that DL
systems are trustworthy in clinical settings. Third, the intricacy of
DL models, frequently called “black boxes,” makes it challenging
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to understand and interpret how they make decisions fully.
In clinical settings, the lack of transparency in the predictions
made by algorithms can lead to skepticism among medical
professionals regarding the model’s reliability (Rajpurkar et al.,
2022). Scientists are creating explainable AI methods like saliency
maps and attention processes to improve explainability (Cerekci
et al., 2024). These offer insights into model predictions and
support the development of transparency and confidence in clinical
decision-making. Finally, the algorithms fail to complete accuracy,
and the accountability for any detrimental outcomes resulting
from erroneous predictions remains ambiguous. This engenders
uncertainty among physicians and patients. The imprecise accuracy
of AI systems presents significant responsibility concerns related to
harm (Morin-Martel, 2023). This requires careful evaluation of DL’s
diagnostic accuracy and its impact on clinical workflows, ensuring
the technology is practical and ethically integrated into healthcare
practices.

The accuracy of DL models in TB diagnosis is essential,
as misdiagnoses can have severe consequences. Rigorous testing
and validation of DL models against gold standards are required
to guarantee accuracy. Consistently enhance the models to
accommodate the evolving clinical landscape and emerging
scientific findings. Innovative models must be evaluated in real-
world medical settings and integrated smoothly into the standard
operational procedures, particularly in nations with a high TB
burden and limited access to sophisticated medical technology and
specialized medical personnel to guide clinical practice effectively.
Additionally, improving patient comprehension of the diagnostic
procedure and clinician trust are benefits of developing explainable
AI approaches for DL models used in TB diagnosis. These
factors are critical for properly implementing these technologies in
clinical settings.

Two frameworks were recommended to ensure the ethical
application of DL in diagnosing PTB. The Principles of Biomedical
Ethics serve as a foundational guide, emphasizing four central
bioethical principles: autonomy, beneficence, non-maleficence, and
justice (Mirzaei et al., 2024). These principles are crucial for
evaluating the ethical implications of DL applications in the
diagnosis of PTB, ensuring that they benefit patients without
causing harm, respecting patient autonomy, and promoting
equitable access to care. Furthermore, the Trustworthy AI
Framework provides a comprehensive set of criteria for AI systems
(Schwabe et al., 2024). It highlights the importance of human
agency and oversight, diversity, non-discrimination, and fairness,
underscoring the necessity for DL systems to be designed and
deployed trustworthy to respect human rights.

7 Conclusion

Artificial intelligence-based techniques, such as DL and
other traditional ML algorithms, when applied to PTB, offer
an autonomous, convenient, and efficient approach to enhance
diagnostic precision and speed, often surpassing the capabilities
of radiologists. This study underscores the complexity involved
in diagnosing PTB. It emphasizes the significant role of
sophisticated DL and imaging diagnostic methods. The main
goal of medical image processing is to use algorithms to

get accurate and valuable information out of images with
as little mistake as possible. The segmenting, classifying, and
diagnosing PTB utilizing CT data generally comprises four
essential stages: data acquisition and preprocessing, feature
extraction, and classification. Furthermore, it is imperative
to prioritize the interpretability of DL models when they
are implemented in clinical decision-making processes. The
research may be improved by examining the integration of
multi-modal datasets and deploying real-time DL solutions in
healthcare environments. Therefore, DL tools can be considered
a promising diagnostic resource for PTB and various other life-
threatening diseases.
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APPENDIX

APPENDIX TABLE A1 Evaluation of bias risk and applicability in selected studies.

Study Risk of bias Applicability concerns

Patient
selection

Index test Reference
standard

Flow and
timing

Patient
selection

Index test Reference
standard

Zhang et al.,
2024

Unclear risk Low risk Low risk Unclear risk Unclear risk Low concern Low concern

Haq et al., 2022 Unclear risk Low risk Low risk Unclear risk Unclear risk Low concern Low concern

Ma et al., 2020 Low risk Low risk Low risk Unclear risk Low risk Low concern Low concern

Huang et al.,
2023

Low risk Low risk Low risk Unclear risk Low risk Low concern Low concern

Zhang et al.,
2020

Low risk Low risk Low risk Unclear risk Low risk Low concern Low concern

Li X. K. et al.,
2021

Unclear risk Low risk Low risk Unclear risk Unclear risk Low concern Low concern

Lu et al., 2022 Unclear risk Low risk Low risk Unclear risk Unclear risk Low concern Low concern
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The clinical prediction model to 
distinguish between colonization 
and infection by Klebsiella 
pneumoniae
Xiaoyu Zhang 1†, Xifan Zhang 1†, Deng Zhang 2, Jing Xu 1, 
Jingping Zhang 1*‡ and Xin Zhang 1*‡

1 First Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, 
Shenyang, China, 2 Department of Infectious Diseases, The First Affiliated Hospital of Xiamen 
University, Xiamen, China

Objective: To develop a machine learning-based prediction model to assist 
clinicians in accurately determining whether the detection of Klebsiella 
pneumoniae (KP) in sputum samples indicates an infection, facilitating timely 
diagnosis and treatment.

Research methods: A retrospective analysis was conducted on 8,318 patients 
with KP cultures admitted to a tertiary hospital in Northeast China from January 
2019 to December 2023. After excluding duplicates, other specimen types, 
cases with substandard specimen quality, and mixed infections, 286 cases 
with sputum cultures yielding only KP were included, comprising 67 cases in 
the colonization group and 219 cases in the infection group. Antimicrobial 
susceptibility testing was performed on the included strains, and through 
univariate logistic regression analysis, 15 key influencing factors were identified, 
including: age > 62 years, ESBL, CRKP, number of positive sputum cultures for 
KP, history of tracheostomy, use of mechanical ventilation for >96 h, indwelling 
gastric tube, history of craniotomy, recent local glucocorticoid application, 
altered consciousness, bedridden state, diagnosed with respiratory infectious 
disease upon admission, electrolyte disorder, hypoalbuminemia, and admission 
to ICU (all p < 0.05). These factors were used to construct the model, which was 
evaluated using accuracy, precision, recall, F1 score, AUC value, and Brier score.

Results: Antimicrobial susceptibility testing indicated that the resistance rates 
for penicillins, cephalosporins, carbapenems, and quinolones were significantly 
higher in the infection group compared to the colonization group (all p < 0.05). 
Six predictive models were constructed using 15 key influencing factors, including 
Classification and Regression Trees (CART), C5.0, Gradient Boosting Machines 
(GBM), Support Vector Machines (SVM), Random Forest (RF), and Nomogram. 
The Random Forest model performed best among all indicators (accuracy 
0.93, precision 0.98, Brier Score 0.06, recall 0.72, F1 Score 0.83, AUC 0.99). 
The importance of each factor was demonstrated using mean decrease in Gini. 
“Admitted with a diagnosis of respiratory infectious disease” (8.39) was identified 
as the most important factor in the model, followed by “Hypoalbuminemia” 
(7.83), then “ESBL” (7.06), “Electrolyte Imbalance” (5.81), “Age > 62 years” (5.24), 
“The number of Positive Sputum Cultures for KP > 2” (4.77), and being bedridden 
(4.24). Additionally, invasive procedures (such as history of tracheostomy, use of 
ventilators for >96 h, and craniotomy) were also significant predictive factors. 
The Nomogram indicated that CRKP, presence of a nasogastric tube, admission 
to the ICU, and history of tracheostomy were important factors in determining 
KP colonization.
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Conclusion: The Random Forest model effectively distinguishes between infection 
and colonization status of KP, while the Nomogram visually presents the predictive 
value of various factors, providing clinicians with a reference for formulating 
treatment plans. In the future, the accuracy of infection diagnosis can be further 
enhanced through artificial intelligence technology to optimize treatment 
strategies, thereby improving patient prognosis and reducing healthcare burdens.

KEYWORDS

Klebsiella pneumoniae, colonization, infection, sputum culture, risk factors, machine 
learning, clinical prediction model

1 Introduction

Klebsiella pneumoniae (commonly referred to as KP) is a 
frequently encountered opportunistic pathogen in clinical settings, 
typically colonizing the human gut and upper respiratory tract 
(Podschun and Ullmann, 1998). KP colonization can be detected in 
more than 40% of the population (Guilhen et al., 2019). At the same 
time, this bacterium is the third most common bacterial cause of 
hospital-acquired pneumonia (Jones, 2010). KP infections are also 
common in ventilator-associated pneumonia (VAP) (Alnimr, 2023). 
With the emergence of multi-drug resistant (MDR) strains, it has been 
classified by the World Health Organization (WHO) as a priority 
pathogen for which urgent new therapies are needed (Antimicrobial 
resistance: global report on surveillance, n.d.). Sputum culture is an 
important method for identifying respiratory tract infection pathogens 
in clinical practice; however, for the opportunistic pathogen KP, 
clinicians often find it challenging to distinguish between colonization 
and infection. Colonization refers to the adherence and growth of 
microorganisms on the surface of host tissues, while infection 
describes the process by which microorganisms invade host cells or 
tissues, leading to pathological conditions. Colonization and infection 
are closely related (Vornhagen et al., 2024). When the host’s immune 
response is suppressed or there are other risk factors present, 
colonizing Klebsiella pneumoniae may begin to proliferate and invade 
surrounding tissues, leading to severe infection (Cai et  al., 2024). 
Misclassifying colonization as infection can lead to overtreatment in 
clinical settings, increasing the incidence of adverse reactions and 
promoting the development of antibiotic resistance. This includes 
mechanisms such as enzymatic antibiotic inactivation and 
modification (e.g., ESBLs, AmpC, and NDM), spread of resistance 
genes, absence of outer membrane porin expression, and 
overexpression of active efflux pump systems, among others (Li et al., 
2023) (as shown in Figure 1, which illustrates the main resistance 
mechanisms of KP). Conversely, misclassifying infection as 
colonization can delay clinical treatment and increase patient 
mortality rates. Therefore, there is a need for a tool to assist clinicians 
in better differentiating between KP colonization and infection.

Previous studies have typically used logistic regression analysis to 
identify risk factors associated with infection and colonization (Wang 
X. et  al., 2024). However, logistic regression struggles to capture 
complex nonlinear relationships between features and lacks intuitive 
clarity. In recent years, artificial intelligence and machine learning 
have shown great potential in the diagnosis and treatment of bacterial 
infections. They can effectively handle complex data, integrate various 
patient characteristics to construct predictive models, and help 
doctors understand more intuitively how different clinical features 

influence the occurrence of diseases, providing more reliable support 
for clinical decision-making (Deo, 2015; Jiang et  al., 2022; Seyer 
Cagatan et al., 2022). Therefore, the aim of this study is to develop a 
predictive model that can accurately identify colonization versus 
infection of KP in sputum cultures. This model is intended to provide 
clinicians with scientific evidence to optimize treatment strategies and 
reduce the risk of misdiagnosis and inappropriate use of 
antimicrobial agents.

2 Methods

2.1 Setting and participants

A retrospective analysis was conducted on 8,318 patients with 
microbiological cultures identified as KP admitted to a tertiary hospital 
in Northeast China from January 2019 to December 2023. After 
excluding duplicate cases, other types of specimens, cases with 
substandard specimen quality, and mixed infections, a total of 286 
cases were included, which consisted of patients with sputum cultures 
yielding only Klebsiella pneumoniae. Among these, 67 cases were 
classified as the colonization group and 219 cases as the infection group 
(Figure 2). This study has been reviewed and approved by the Ethics 
Committee of the First Affiliated Hospital of China Medical University 
[Ethics ID(2023)2023-142-2]. Infectious disease specialists confirmed 
the diagnosis of KP infection or colonization (diagnostic criteria are 
shown in Table 1). (In Figure 3 we show the CT lung images and 
sputum cultures of a relatively typical case of pneumonia due to KP).

2.2 Microbiological methods

Clinical data for the included cases were collected through the 
hospital’s electronic medical record system. Using a case–control study 
design, a retrospective analysis of the clinical data from all patients 
was conducted. Antimicrobial susceptibility testing was performed on 
the KP (KP) strains obtained from the included cases. Identification 
of all pathogens and antimicrobial susceptibility testing were carried 
out using the VITEK 2 automated bacterial identification and VITEK 
2 Compact antimicrobial susceptibility testing system from 
bioMérieux, France. The results of the antimicrobial susceptibility tests 
were categorized as susceptible, intermediate, and resistant according 
to the standards set by the Clinical and Laboratory Standards Institute 
(CLSI) (CLSI, 2023; Vornhagen et al., 2024). Extended spectrum beta-
lactamase (ESBL) strains were detected through double disk synergy 
tests and phenotypic confirmation tests (antimicrobial susceptibility 
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test disks were purchased from Oxoid, United  Kingdom). In this 
study, carbapenem-resistant bacteria were defined as those resistant 
to either imipenem or meropenem.

2.3 Statistical method

Statistical analysis was conducted using SPSS 27.0 software. 
Categorical data were expressed as counts and percentages. The 
Chi-square test was used to compare the differences in resistance 
rates between the KP colonization group and the infection group 
(p < 0.05 was considered statistically significant). Univariate binary 
logistic regression analysis was performed to identify factors with 
statistically significant differences between the two groups (p < 0.05 
was considered statistically significant), and these factors were 
included as predictive variables in the model. Predictive models to 
distinguish between KP colonization and infection were constructed 
using R 4.4.1 software, including Classification and Regression 
Trees (CART), C5.0, Gradient Boosting Machine (GBM), Support 
Vector Machine (SVM), Random Forest (RF), and Nomogram 
models. The function set.seed(42) was used to ensure the 

reproducibility of the random process, allowing the same data to 
yield identical training and test set divisions. The trainControl 
function was employed to set the model training control parameters 
for 10-fold cross-validation. The performance of each model was 
evaluated using accuracy, precision, recall, F1 Score, AUC value, 
and Brier score.

3 Results

3.1 Antimicrobial susceptibility testing of 
KP

Antimicrobial susceptibility testing was performed on strains 
isolated from sputum cultures of the final 286 enrolled cases 
(Figure 4). Compared with the colonization group, the infection group 
exhibited generally higher resistance rates to various antibiotics, with 
all differences being statistically significant (p < 0.05) (see 
Supplementary Table S1 for detailed results). A total of 141 CRKP 
strains were isolated, including 17 strains from the colonization group 
and 124 strains from the infection group.

FIGURE 1

Major resistance mechanisms of KP. In clinical practice, sputum culture is an important tool for diagnosing respiratory tract infections. However, 
misinterpreting colonizing Klebsiella pneumoniae as an infectious pathogen may lead to unnecessary antimicrobial treatment. In such cases, this could 
contribute to the development of resistance in Klebsiella pneumoniae. We have illustrated several common resistance mechanisms of Klebsiella 
pneumoniae in the figure.
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3.2 Clinical characteristics of the 
participants

The clinical data of the included cases were collected (Table 2), 
and univariate logistic regression analysis revealed the following 
important factors influencing colonization and infection: 
age > 62 years, ESBL positivity, CRKP positivity, number of positive 
sputum cultures for KP, history of tracheostomy, use of ventilator for 
>96 h, presence of indwelling gastric tube, craniotomy, recent history 
of topical glucocorticoid use, altered consciousness, bedridden status, 
diagnosis of respiratory infectious disease upon admission, electrolyte 

disturbances, low serum protein levels, and admission to ICU (all 
p < 0.05).

3.3 Construction and evaluation of 
predictive models

The 15 important influencing factors obtained from univariate 
logistic regression analysis were used to construct models including 
Classification and Regression Trees (CART), C5.0, Gradient Boosting 
Machine (GBM), Support Vector Machine (SVM), Random Forest 

FIGURE 2

Case selection process.

TABLE 1 Inclusion, exclusion, and diagnostic criteria.

Inclusion criteria Diagnostic criteria

 • Sputum culture positive for KP

 • Sample quality meets standards

The diagnosis of KP infection or colonization was confirmed by infectious disease specialists based on the 

“Diagnostic Criteria for Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia in Chinese 

Adults” (2018 Edition) (Subspecialty Group of Infectious Diseases, Respiratory Society, Chinese Medical 

Association, 2018) and the “Guidelines for the Diagnosis and Treatment of Adult Community-Acquired 

Pneumonia” (Practical Edition, 2018) (Chinese Medical Association, Chinese Medical Association Journal, 

Chinese Medical Association General Medicine Society et al., 2019).

Duplicate strains

 • Non-sputum samples

 • Samples of unsatisfactory quality

 • Cases with mixed viral, other bacterial, or fungal infections
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(RF), and Nomogram. These models were designed to differentiate 
between colonization and infection status of KP. The performance of 
the models was evaluated using several metrics, including accuracy, 
precision, recall, F1 Score, Area Under the Curve (AUC), and 
Brier Score.

In this study, the predictive models were evaluated, and the 
Random Forest model demonstrated the best performance across all 
metrics: accuracy of 0.93, precision of 0.98, Brier Score of 0.06, recall 
of 0.72, and F1 Score of 0.83, indicating excellent predictive 
performance. The C5 model also performed well, with an accuracy of 
0.87, precision of 0.92, and an F1 Score of 0.65, suggesting its reliability 
in predicting KP infections. The CART model achieved an accuracy 
of 0.85, precision of 0.76, and an F1 Score of 0.61, showing 

performance similar to that of the C5 model. Although both C5 and 
CART effectively distinguished between colonization and infection, 
their recall rates were relatively low, and their Brier Scores were higher, 
indicating slightly insufficient predictive performance. The SVM 
model had an accuracy of 0.84 and effectively identified infection 
samples, reducing the risk of false negatives; however, its overall 
performance was still inferior to that of the C5 and CART models. The 
GBM model performed relatively weakly across all metrics, 
particularly in recall (0.35) and F1 Score (0.46), suggesting a higher 
probability of missed detections. The AUC (Area Under the Curve) is 
an important metric for measuring a model’s discriminative ability. In 
this study, the Random Forest model achieved an AUC of 0.99, while 
the Nomogram model also exhibited a high AUC of 0.85. In contrast, 

FIGURE 3

CT imaging and sputum culture of a typical case of pneumonia due to KP.

FIGURE 4

Comparison of drug resistance rates. It shows the rates of resistance to common antimicrobial agents in the colonized and infected groups. The X-axis 
represents the antimicrobial agents (Ampicillin, Cefuroxime, Ceftazidime, Ceftriaxone, Cefepime, Ampicillin/Sulbactam, Piperacillin/Tazobactam, 
Aztreonam, Imipenem, Meropenem, Gentamicin, Amikacin, Levofloxacin, Nitrofurantoin, Sulfamethoxazole/Trimethoprim), and the Y-axis represents 
the resistance rate. Yellow indicates the colonized group and green indicates the infected group. Detailed information can be found in 
Supplementary Table S1.
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TABLE 2 Clinical characteristics of cases with KP colonization and infection and univariate logistic regression analysis.

Clinical characteristics/influencing factors Colonization 
[n = 67, Strains(%)]

Infection 
[n = 219, 

Strains(%)]

Univariate logistic 
regression analysis

p 95%CI

Basic information

Sex
Male 53(79.10) 163(74.43)

0.437 0.396–1.491
Female 14(20.90) 56(25.57)

Agea >62 26(38.8) 124(56.62) 0.011 1.176–3.601

ESBL 19(28.36) 149(68.04) <0.01 2.944–9.822

CRKP 17(25.37) 124(56.62) <0.01 2.082–7.078

The number of Positive Sputum 

Cultures for KP > 2b
5(7.46) 81(36.99) <0.01 2.810–18.849

Underlying disease

Smoking for ≥ 10 Years 15(22.39) 46(21.00) 0.809 0.476–1.784

Hypertension 17(25.37) 64(29.22) 0.541 0.652–2.263

Diabetes 15(22.39) 61(27.85) 0.782 0.702–2.553

Coronary heart disease 9(13.43) 20(9.13) 0.310 0.280–1.499

Cerebrovascular disease 11(16.42) 62(28.31) 0.054 0.988–4.090

Gastrointestinal bleeding 2(2.99) 10(4.57) 0.575 0.332–7.279

Invasive procedure

Tracheal intubation 31(46.27) 110(50.23) 0.571 0.677–2.028

Tracheostomy 11(16.42) 65(29.68) 0.034 1.058–4.364

Ventilator 32(47.76) 132(60.27) 0.071 0.957–2.878

Ventilator use > 96 h 11(16.42) 85(38.81) 0.01 1.602–6.511

Bronchoscope 7(10.45) 27(12.33) 0.678 0.500–2.907

Peripherally inserted central catheter 20(29.85) 73(33.33) 0.595 0.649–2.128

Gastric tube indwelling 31(46.27) 137(62.56) 0.019 1.116–3.372

Recent surgery 25(37.31) 70(31.96) 0.416 0.446–1.397

Craniotomy 4(5.97) 36(16.44) 0.039 1.061–9.050

Medication history in 

the last 2 weeks

History of proton pump inhibitor (PPI) 

use
38(56.72) 148(67.58) 0.104 0.909–2.785

History of systemic steroid use 12(17.91) 73(33.33) 0.18 1.155–4.545

Recent history of topical glucocorticoid 

usec
19(28.36) 98(44.75) 0.018 1.129–3.707

Others

Dysbiosis 12(17.91) 50(22.83) 0.394 0.674–2.730

Disturbance of consciousness 10(14.93) 78(35.62) 0.002 1.525–6.521

Bedridden status 43(64.18) 190(86.76) <0.01 1.940–6.894

Admitted with a diagnosis of 

respiratory infectious disease
13(19.40) 97(44.29) <0.01 1.704–6.40

Moderate to severe anemia 13(19.40) 51(23.29) 0.505 0.638–2.493

Electrolyte imbalance 27(40.30) 144(65.75) <0.01 1.621–4.991

Hypoalbuminemia 22(32.84) 149(68.04) <0.01 2.429–7.805

Liver dysfunction 24(35.82) 107(48.86) 0.062 0.973–3.013

Kidney dysfunction 8(11.94) 37(16.89) 0.332 0.661–3.400

Heart Failure 4(5.97) 20(9.13) 0.418 0.522–4.804

Admitted to the ICU 32(47.76) 145(66.21) 0.007 1.23–3.734

Prognosis Die 7(10.45) 40(18.26) 0.136 0.815–4.502

aThe average age of the subjects in this study is 62 years, which is used as the cutoff value.
bThe number of KP sputum cultures: the average number of KP sputum cultures in all cases was 2, which was the critical value.
cRecent history of topical glucocorticoid use was defined as nebulized glucocorticoid inhalation.
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the AUC values for the CART, GBM, and C5 models ranged from 0.75 
to 0.80, indicating moderate discrimination ability. In summary, the 
Random Forest model performed best in distinguishing between 
colonization and infection of KP, while the Nomogram model also 
proved to be a reliable choice, suitable for the accurate identification 
of colonization and infection states in clinical applications (see 
Figure 5 and Table 3).

3.4 Evaluation of feature importance in the 
Random Forest model

To better understand the relationship between the model and the 
data, we visually analyzed the best-performing Random Forest model 
using Mean Decrease Gini. The X-axis represents the “Mean Decrease 
Accuracy” values for each feature; higher values indicate a more 
significant decline in model performance when that feature is 
removed. The influencing factors are ranked according to their 
importance, with features at the top contributing the most to the 
model. The most important factor in the model is “Admitted with a 
diagnosis of respiratory infectious disease” (8.39). The second most 
important feature is “Hypoalbuminemia” (7.83), followed by “ESBL” 
(7.06), “Electrolyte Imbalance” (5.81), “Age” (5.24), and “The number 

of Positive Sputum Cultures for KP > 2” (4.77). In contrast, factors 
such as “Craniotomy” (1.97), “Nasogastric Tube Placement” (2.62), 
and “ICU Admission” (2.99) contributed relatively little to 
determining whether the sputum culture for KP indicated infection 
(see Figure 6).

3.5 Nomogram model

Due to the good performance of the Nomogram, which is more 
intuitive than the Random Forest model, we also presented the drawn 
Nomogram (Figure 7). It clearly shows that “Admitted with a diagnosis 
of respiratory infectious disease” is the most important factor, followed 
by “bedridden status,” “the number of positive sputum cultures for 
KP > 2,” ESBL, and craniotomy. Additionally, CRKP, nasogastric tube 
placement, ICU admission, and tracheostomy are all important factors 
for determining KP colonization.

4 Discussion

In this study, the resistance rates of various antimicrobial 
drugs in the infection group were generally higher than those in 

FIGURE 5

ROC curves for the six models. Here are the ROC (receiver operating characteristic) curves for six different models, with the horizontal axis of each plot 
representing specificity, the vertical axis representing sensitivity, and the diagonal as the baseline for random guesses. AUC is an important indicator of 
ROC curve, which is used to evaluate the classification performance of the model. The values of AUC range from 0 to 1 and are explained as follows: 
AUC = 1: perfect. 0.7 ≤ AUC < 0.8: good. 0.6 ≤ AUC < 0.7: general. AUC < 0.6 was considered poor. In the figure, the closer the curve is to the upper 
left corner, the higher the AUC value, indicating better model performance (the specific AUC values can be found in Table 3).
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the colonization group, with statistically significant differences 
(p < 0.05). The proportion of ESBL and CRKP in the infection 
group was significantly higher than that in the colonization group, 
indicating that the infection status is highly likely associated with 
the extensive use of antimicrobial drugs. Previous studies have 
shown that the use of broad-spectrum antimicrobial agents and 
carbapenems are independent risk factors for the occurrence of 
ESBL and CRKP (Lou et al., 2022; Zhu et al., 2023; Lopera et al., 
2024). High resistance rates will place significant pressure on the 
selection of antimicrobial agents in clinical practice. Infection 
status not only increases the demand for antimicrobial drugs 
among patients but may also accelerate the proliferation and 
transmission of resistant strains. Previous studies have indicated 
that colonizing strains of KP (KP) have a high degree of homology 
with infecting isolates, with 50% of KP infections arising from the 
patient’s own microbiota (Gorrie et al., 2017). However, this study 
found that there was a significant difference in the resistance rates 
of the strains isolated from the colonization group and the 
infection group. From the host’s perspective (Gonzalez-Ferrer 
et al., 2021), during an infection, the patient’s immune system may 

be compromised, and the transmission of resistant strains through 
cross-infection in healthcare environments, such as hospitals 
(Córdova-Espinoza et al., 2023), may result in the strains in the 
infection group being more resistant. In contrast, the strains in the 
colonization group may not experience a significant increase in 
resistance due to the pressure from antimicrobial agents, as they 
exist in a relatively stable colonization state. From a 
microbiological perspective (Gomez-Simmonds and Uhlemann, 
2017), Colonized strains may convert to infection by acquiring 
additional resistance genes through mechanisms such as 
horizontal gene transfer, gene mutation, and so on. In summary, 
the resistance rates in the infection group are significantly higher 
than those in the colonization group, indicating that we should 
enhance the monitoring and research of resistant strains in clinical 
practice. Particularly, preventing and controlling the spread of 
resistant bacteria will be an important focus for future research 
and practice.

In this study, we constructed Classification and Regression 
Trees (CART), C5.0, Gradient Boosting Machine (GBM), Support 
Vector Machine (SVM), Random Forest (RF), and Nomogram 

TABLE 3 Evaluation measures of the model.

CART GBM C5 SVM Nomogram Random forest

Accuracy 0.85 0.78 0.87 0.84 0.84 0.93

Precision 0.76 0.67 0.92 0.73 0.72 0.98

Recall 0.51 0.35 0.51 0.49 0.51 0.72

F1 score 0.61 0.46 0.65 0.59 0.60 0.83

AUC 0.77 0.75 0.80 0.84 0.85 0.99

Brier score 0.12 0.17 0.11 6.56 0.12 0.06

FIGURE 6

Evaluation of feature importance in the random forest model. This bar chart shows the importance of different clinical factors in the random forest 
model. The X-axis represents the “Mean Decrease Gini,” while the Y-axis lists the clinical factors, arranged in order of their importance to the outcome 
from high to low. ≥ 8.0, High; 5.0–7.9, Medium-High; 3.0–4.9, Medium; 1.0–2.9, Low; 0.0–0.9, Very Low or None.
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models through univariate logistic regression analysis. All six 
models achieved AUC values above 0.75, indicating that our 
research can provide a reference for differentiating between KP 
colonization and infection in clinical settings. The Random Forest 
model performed the best across all metrics, with an AUC of 0.99, 
an accuracy of 0.93, effectively distinguishing between KP 
colonization and infection status while significantly reducing the 
probability of misclassification. The precision was 0.98, indicating 
that nearly all samples predicted as infections were correct, thus 
reducing the occurrence of false positives. The Brier Score was 
0.06, reflecting excellent predictive performance. In many 
practical scenarios, Random Forest has demonstrated outstanding 
performance, and this powerful ensemble learning 
algorithm is particularly well-suited for clinical data analysis 
and prediction (Jin et  al., 2024; Mendapara, 2024; Wang 
Y. et al., 2024).

To better understand the relationship between the model and 
the data, we performed a visual analysis of the Random Forest 
model, which exhibited the best performance, by examining the 
importance of different factors using Mean Decrease Gini. These 
factors hold significant clinical relevance. Specifically, “Admitted 
with a diagnosis of respiratory infectious disease” is identified as 
the primary predictor of KP infection. The significant increase in 
infection risk for patients diagnosed with respiratory infectious 
diseases upon admission highlights the importance of early 
infection identification. This is particularly crucial as a large 
proportion of KP infections originate from the community, and 
studies have shown a strong correlation between KP-CAP (KP 
Community-Acquired Pneumonia) infections and higher, earlier 
mortality rates (Grosjean et  al., 2024). This suggests that 
clinicians should promptly conduct pathogen detection and 
identification when seeing patients with respiratory infection 

symptoms, ensuring early detection, diagnosis, and treatment. 
Hypoalbuminemia, electrolyte imbalance, ESBL presence, and 
bedridden status are all important influencing factors for KP 
infection, closely related to the patient’s overall health status and 
immune function. Being bedridden indicates that the patient’s 
mobility is limited, which may lead to a series of health issues, 
such as muscle atrophy, venous thromboembolism, and 
complications like pneumonia. Hypoalbuminemia can result in 
malnutrition, reduced immunity, and poor healing capacity 
(Wang et al., 2023). This highlights the potential contribution of 
a patient’s nutritional and metabolic status to the risk of infection. 
For bedridden patients, it is crucial to regularly monitor serum 
albumin and electrolyte levels. An age greater than 62 years has 
been identified as an important risk factor, which is consistent 
with previously published studies indicating that nearly half of 
KP infections (45.7%) occur in the elderly population (Liu and 
Guo, 2019). This may be  related to the decreased immune 
function and the prevalence of underlying diseases in the elderly 
population. The number of positive sputum cultures for KP 
(greater than 2) indicates a higher probability of infection, 
suggesting that multiple cultures are crucial for improving 
diagnostic accuracy in clinical practice. Invasive procedures such 
as tracheostomy and the placement of nasogastric tubes are also 
significant factors in KP infections. These invasive interventions 
can partially disrupt the normal structure of the upper respiratory 
tract, affecting the cleanliness and protective functions of the 
airway, making infections more likely. When the duration of 
mechanical ventilation exceeds 96 h, the risk of infection 
significantly increases. This may be related to the formation of 
respiratory biofilms, which can serve as breeding grounds for 
bacteria and elevate the risk of infection (Mishra et al., 2024). 
Craniotomy is also an important influencing factor, which may 

FIGURE 7

Nomogram model. The Y-axis of the nomogram represents various clinical factors, with each axis line corresponding to an input variable. The figure 0 
on the axis indicates colonization, while the figure 1 indicates infection. The scale value on the X-axis represents the points or measurements of that 
clinical factors, and the corresponding point can be found to determine the contribution of that factor in the total score.
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be because craniotomy is often difficult and lasting for a long 
time, and some patients are critically ill and need immediate 
surgery. Inadequate preoperative preparation and non-standard 
use of prophylactic antibiotics can lead to an increased probability 
of infection (He et al., 2024). Recent use of local corticosteroids 
can suppress local immune responses, reducing the body’s 
defenses against infections and making it easier for infections to 
develop. This immunosuppressive effect can lead to an increased 
risk of KP infections, particularly in patients who may already 
be  vulnerable due to other underlying health conditions or 
invasive procedures (Fernández Peláez et al., 2000). Patients with 
disorders of consciousness usually lack the cough reflex to 
effectively clear respiratory secretions, and at the same time, the 
probability of aspiration is increased, which increases the risk of 
KP infection (Kobata, 2023).

Although the Random Forest model demonstrated good 
overall performance, it is not very intuitive. In contrast, a 
Nomogram is an intuitive visual tool used to display the risks or 
outcomes of multivariable prediction models. It is easy to use and 
understand, and it clearly illustrates the relative contributions of 
various factors to the outcome, making it particularly suitable for 
personalized decision-making in clinical practice (Yang et al., 
2022; Gao et al., 2024; Luo et al., 2024). This study found that 
certain factors can serve as important criteria for assessing 
whether KP is colonized. When a patient’s sputum culture results 
indicate CRKP (Ceftazidime-Resistant KP), or if the patient has 
a nasogastric tube in place, is undergoing tracheostomy, or is in 
the ICU, we must exercise greater caution and thoroughness in 
assessment and judgment rather than blindly initiating 
antimicrobial therapy. Only by comprehensively considering the 
patient’s specific circumstances can clinicians develop more 
rational treatment plans, significantly improving the targeting 
and effectiveness of treatment while minimizing the misuse of 
medications and the emergence of resistance.

Although this study provides important insights into the 
diagnosis and management of KP infections, several limitations 
remain, which we hope to overcome in future research. First, the 
study included only 286 cases of KP positivity, and the data were 
sourced from a single center. Future studies should aim to expand 
the sample size and conduct multi-center collaborative research 
to enhance the generalizability and reliability of the findings. 
Moreover, the determination of colonization and infection relies 
on clinicians’ judgments and experiences, which may vary among 
different doctors and affect the accuracy of the results. We look 
forward to the development of more standardized clinical 
guidelines to reduce subjective differences among physicians and 
improve diagnostic consistency. Although this study identified 
15 influencing factors, the occurrence of infections in clinical 
practice may be affected by other potential factors, such as the 
composition of the microbiome, environmental factors, and the 
psychological state of the patient. Additionally, molecular 
mechanisms, such as the development of bacterial resistance and 
the host’s immune response, are also important influencing 
factors. However, due to limitations in laboratory conditions and 
funding, we were unable to include these factors in this study. 
We hope that future research can develop a more comprehensive 
clinical model to provide clinicians with a more scientific and 
accurate basis for their judgments. Additionally, we anticipate 

integrating our constructed model into a clinical decision support 
system (CDSS) in the future. Regular evaluation of the model’s 
performance, along with the collection of feedback from 
healthcare professionals and patients, will be critical. This will 
allow us to update the data and retrain the model, continuously 
improving its usability and accuracy.

5 Conclusion

In this study, we  successfully constructed six predictive 
models. Among them, the Random Forest model performed the 
best, achieving an area under the curve (AUC) of 0.99, with an 
accuracy of 0.93 and a precision of 0.98. This model effectively 
distinguishes between KP (KP) infection and colonization status, 
significantly reducing the rate of misjudgment. The Brier Score 
was 0.06, further validating the model’s excellent predictive 
performance. Key factors such as being diagnosed with 
respiratory infections upon admission and the number of positive 
sputum cultures underscore the importance of early diagnosis 
and repeated cultures. Additionally, factors closely related to the 
overall health status of patients, such as being bedridden, 
electrolyte imbalances, and hypoalbuminemia, significantly 
impact the risk of KP infection. To enhance the model’s 
applicability in clinical practice, we  employed an intuitive 
nomogram, making it easier for clinicians to understand and 
utilize multivariable predictions. When faced with patients whose 
sputum cultures test positive for CRKP, or who have nasogastric 
tubes, tracheostomies, or are receiving ICU treatment, it is crucial 
to conduct a more cautious evaluation rather than initiating 
antimicrobial therapy blindly. This approach allows for more 
precise decision-making in patient management. We  look 
forward to applying artificial intelligence technologies in future 
research to improve the accuracy of infection diagnoses, optimize 
antimicrobial treatment strategies, reduce unnecessary use of 
antibiotics, and thereby enhance patient outcomes and decrease 
the burden on healthcare systems.
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Construction of a predictive 
model for rebleeding risk in upper 
gastrointestinal bleeding patients 
based on clinical indicators such 
as Helicobacter pylori infection
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1 Department of Radiology, ShengJing Hospital of China Medical University, Shenyang, Liaoning, 
China, 2 The Second Clinical College of China Medical University, Shenyang, Liaoning, China, 3 The 
Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China

Background: The annual incidence of upper gastrointestinal hemorrhage 
(UGIB) is about 60 cases/100,000 people, and about 40% of UGIB patients have 
hemorrhagic ulcers. Ulcer formation is often associated with Helicobacter pylori 
(H. pylori) infection, non-steroidal anti-inflammatory drugs (NSAIDs) use and 
other factors, so ulcerative disease is the main cause of upper gastrointestinal 
bleeding. H. pylori induces chronic superficial gastritis with neutrophils 
infiltrating into the mucosa, so it is assumed that H. pylori infection is the basis 
of bleeding lesions. H. pylori infection is widespread worldwide, with about 50% 
of the population carrying the bacteria. Mortality during hospitalization is higher 
in patients with UGIB because rebleeding significantly increases the risk of 
death, especially if timely intervention is not provided. Rebleeding may also lead 
to severe complications such as shock and multiple organ failure. At present, 
the commonly used clinical scores for UGIB patients mainly include Rockall 
score (RS), AIMS65 score and Glasgow-Blatchford score (GBS). Because some 
hospitals are limited by local medical and health conditions, they lack timely and 
accurate endoscopic diagnosis and treatment equipment, and it is difficult to 
make accurate and timely judgments on patients.

Method: In this experiment, 254 patients with upper digestive tract hemorrhage 
from Shengjing Hospital affiliated to China Medical University were collected, 
and the clinical indicators and information of H. pylori infection, age, shock 
state, concomitant disease, H. pylori infection degree, systolic blood pressure, 
blood urea nitrogen, hemoglobin, pulse, black stool, syncope, liver disease 
and other patients were finally collected. We analyzed the correlation between 
various clinical indicators and rebleeding in hospitalized patients. Based on the 
collected clinical information and laboratory indicators, this study constructed a 
deep learning model, the data is divided into four categories (clinical information, 
vital signs, laboratory examination items, stool examination) as input, and 
Transformer is used as feature extractor. KAN as a classifier to predict the risk of 
rebleeding in patients with upper gastrointestinal bleeding. The model uses five-
fold cross validation and calculates key metrics such as accuracy to evaluate its 
performance. In addition, the deep learning model was compared with a variety 
of machine learning methods (decision tree, random forest, logistic regression, 
K-nearest neighbor) and common clinical risk scores (Rockall score, AIMS65 
score, Glasgow-Blatchford score) to verify its effectiveness and advantages. In 
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order to highlight the importance of H. pylori infection degree to the model 
performance, we conducted a comparative experiment to observe the role of 
H. pylori infection degree in the model.

Results: In the correlation analysis between rebleeding and clinical data and 
related indicators, the risk of rebleeding in men (62.5%) was higher than that in 
women (43.47%), and the risk of rebleeding in patients with concurrent diseases 
(60.37%) was higher than that in patients without concurrent diseases. In the 
analysis of the correlation between the degree of infection and the laboratory 
test items, the hemoglobin level of patients will also change with the change of 
the degree of infection of patients (p < 0.05  in the above correlation analysis, 
all had statistical significance). The rebleeding detection rates of Rockall score, 
AIMS65 score and Glasgow Blatchford score were 16.14%, 0 and 77.17%, 
respectively. Of the four machine learning models, Random Forest (RF) had the 
highest accuracy on the test set at 0.68. The accuracy of the deep learning model 
on the verification set is the highest of 0.9750, and the accuracy of the test set 
is the highest of 0.9615. In addition, by exploring the influence of infection on 
the model prediction, it was found that the prediction accuracy of rebleeding in 
the non-H. pylori infection group (0.8989) was lower than that in the H. pylori 
infection group (0.9636), and other evaluation parameters were also lower than 
that in the infection group. In addition, by adding irrelevant random noise to 
mask the influence of infection degree on model output, it is found that the 
model prediction accuracy (0.7992) is significantly reduced.

Conclusion: Based on the degree of H. pylori infection in patients with upper 
gastrointestinal bleeding, combined with a number of clinical laboratory tests and 
clinical data, we developed a clinical model for predicting the risk of rebleeding 
in patients with upper gastrointestinal bleeding. It provides an early prediction of 
rebleeding during a patient’s hospitalization and optimizes early intervention for 
patients to a certain extent. It provides a more concise, convenient and effective 
guidance scheme for small and medium-sized hospitals to make clinical 
decisions for UGIB patients.

KEYWORDS

deep learning, UGIB, Helicobacter pylori, Rockall score, Glasgow-Blatchford score, 
AIMS65 score

1 Introduction

Upper gastrointestinal hemorrhage (UGIB) refers to the 
occurrence of blood in the esophagus, stomach and duodenum, and 
the clinical symptoms of hematemesis or black stool (Lanas et al., 
2009; Thiebaud et al., 2017). It is estimated that the annual incidence 
of UGIB is about 60 cases / 100,000 people (Gu et al., 2023; Laine et al., 
2012), among which gastric and duodenal ulcers are the common 
causes of UGIB, according to statistics, about 30% to 50% of UGIB 
cases are related to peptic ulcers (Kamboj et al., 2019). Ulcer formation 
is often associated with H. pylori infection, the use of non-steroidal 
anti-inflammatory drugs (NSAIDs), and excessive alcohol 
consumption. Studies have shown that H. pylori can induce chronic 
superficial gastritis, and neutrophils infiltrate the mucosa (Popa et al., 
2021). H. pylori infection will damage the inner wall of blood vessels, 
resulting in impaired vascular skin function, resulting in decreased 
vascular tension, and promoting the development of acute upper 
gastrointestinal bleeding. Moreover, under the action of H. pylori, a 
large number of inflammatory factors will be produced, resulting in 
increased inflammation and a large number of platelet aggregation in 
blood vessels. It can cause thrombosis, block blood vessels and affect 

blood clotting function (Toews et al., 2024). Therefore, it is speculated 
that H. pylori infection is the basis of bleeding lesions. According to 
current guidelines, patients with UGIB should undergo 
esophagogastroduodenoscopy (EGD) within 12 to 24 h after 
hemodynamic resuscitation (Gralnek et al., 2021; Karstensen et al., 
2020). When erythema with recent bleeding is observed through 
EGD, endoscopic treatment is required to reduce mortality, recurrent 
bleeding, and surgical intervention rates (Veisman et  al., 2022). 
Mortality and risk of rebleeding in UGIB patients should be evaluated 
after endoscopic and laboratory examinations. Mortality during 
hospitalization is higher in patients with UGIB because rebleeding 
significantly increases the risk of death, especially if timely 
intervention is not provided. Rebleeding may also lead to severe 
complications such as shock and multiple organ failure (Chen et al., 
2021; Matsuhashi et  al., 2021; Shung and Laine, 2024). Common 
clinical scores include Rockall score (RS), AIMS65 score, and 
Glasgow-Blatchford score (GBS). RS score is mainly used for risk 
assessment of rebleeding and death, and a number of clinical 
prediction models rely on RS score. The accuracy of this score has 
always been an advantage due to its endoscopy project (Redondo-
Cerezo et al., 2020; Seo et al., 2020; Shung et al., 2020), but many 
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hospitals are limited by their own conditions, and it is difficult to 
achieve timely and effective use of endoscopy. Therefore, GBS score 
and AIMS65 score independent of endoscopy project have wider 
application scenarios, high sensitivity, good generality, simple 
economy, suitable for early application in emergency treatment, and 
can also be used to predict UGIB inpatient mortality (Stanley et al., 
2017), while GBS and AIMS65 score are not as accurate as RS score. 
This brings some difficulties to the diagnosis and treatment of patients 
(Alali et al., 2023; Cazacu et al., 2023). Deep learning is a kind of 
machine learning method based on artificial neural network, its core 
idea is to automatically extract and represent complex features of data 
through multi-layer neural network structure. Deep learning 
implements complex feature learning through invisible 
transformations between layers and deep learning models 
automatically extract useful features from inputs through multi-
system neural networks, avoiding the strong dependence on feature 
engineering in traditional machine learning (Koetzier et al., 2023; 
LeCun et al., 2015; Schmidhuber, 2015). In recent years, the diagnosis 
and treatment of digestive system diseases has been fully developed 
through deep learning, which mostly focuses on the diagnosis and 
treatment of digestive system tumors and the establishment of deep 
learning models through endoscopic content, and the semi-automatic 
or fully automated diagnosis and treatment of diseases (Dong et al., 
2022; Kim et al., 2023; Zhang et al., 2023; Zhuang et al., 2022).

However, the current deep learning models using clinical 
indicators are still not completely divorced from endoscopy, but there 
are few studies on H. pylori infection. Therefore, this study established 
a deep learning model by obtaining the H. pylori infection situation of 
patients with upper gastrointestinal bleeding and combining with a 
number of clinical indicators to assess the risk of rebleeding in patients 
with UGUB in the absence of endoscopic information.

2 Methods

2.1 Inclusion criteria

A total of 254 UGIB patients admitted to Shengjing Hospital 
Affiliated to China Medical University from January 2017 to June 2024 
were selected and divided into H. pylori infection group and H. pylori 
non-infection group according to whether they were infected with 
H. pylori. There were 165 patients in H. pylori infection group and 89 
patients in H. pylori non-infection group. The patients with H. pylori 
infection UGIB were further divided into weak positive (17 cases), 
positive (4 cases), weak positive for active infection (42 cases) and 
positive for active infection (102 cases). Inclusion criteria for UBIG 
patients: (1) Clinical manifestations included hematemesis, black 
stool, shock or other gastrointestinal bleeding symptoms; (2) 
Decreased hemoglobin level, decreased coagulation function, stool 
occult blood and other laboratory positive tests; (3) CT and endoscopy 
indicated upper gastrointestinal bleeding; (4) H. pylori infection was 
examined after hospitalization. Exclusion criteria: (1) Patients with 
past operations on upper gastrointestinal tract; (2) Anti-H. pylori 
infection treatment during hospitalization; (3) Patients with venous 
upper gastrointestinal bleeding. The flow chart of the row is shown in 
Figure 1. Detection of H. pylori infection in UGIB patients based on 
serological testing (antibody testing) and detection of H. pylori 
electrophoresis IgG antibodies. If the patient had H. pylori before and 

had anti-H. pylori infection, he was previously infected with H. pylori; 
if the patient had no H. pylori infection detected in the past and no 
anti-H. pylori infection in the past, he was currently infected with 
H. pylori. Combined with high titer warning and breath test, the 
infection was divided into positive and weak positive.

2.2 Rating

2.2.1 Rockall rating
Rockall belongs to the post-endoscopic risk score, which was 

published in 1996 and was designed to predict mortality based on 4,185 
UGIB cases. The full score ranges from 0 to 11 and includes five variables, 
two of which depend on endoscopy results: age, hemodynamic stability, 
comorbidities, endoscopic diagnosis, and erythema of recent bleeding 
(Rockall et al., 1996). According to the score, patients can be divided into 
high risk (≥5 scores), medium risk (3–4 scores), and low risk (0–2 
scores). Specific scores are shown in Table 1.

2.2.2 Blatchford rating
GBS belongs to the preendoscopic risk score, which was published 

in 2000 and is based on 1,748 UGIB patients with a full score of 0 to 
23 and includes eight variables: blood urea nitrogen; Hemoglobin; 
Systolic blood pressure; Heart rate; Black stool; Fainting; Presence of 
liver disease (known history or clinical/laboratory evidence) and heart 
disease (known history or clinical/laboratory evidence). The objective 
is to determine whether the patient requires intervention, defined as 
transfusion, endoscopic or surgical intervention, death, or rebleeding 
(Blatchford et  al., 2000). According to the score, patients can 
be  divided into medium-high risk (≥6 scores) and low-risk (<6 
scores). Specific scores are shown in Table 2.

2.2.3 AIMS65 score
The AIMS65 score, a preendoscopic risk score published in 2011, 

included 29,222 UIGB patients admitted to 187 hospitals from 2004 to 
2005. AIMS65 was externally validated 1 year later, and a total of 
32,504 patients were included in the database for its development. On 
a scale of 0 to 5, AIMS65 includes five clinical or laboratory variables: 
age of onset; Albumin, INR (as an indicator of coagulation function of 
patients, “INR” is an abbreviation of the international standardized 
ratio, derived from the international sensitivity index of prothrombin 
time and determination reagents); Changes in mental status and 
systolic blood pressure. Used to predict patient mortality (Saltzman 
et al., 2011). According to the score, patients can be classified into high 
risk (≥2 scores) and low risk (<2 scores). Specific scores are shown in 
Table 3.

Three scores were used to perform risk scores for the enrolled 
patients and compared with final patient outcomes and predictions in 
the deep learning model to show the efficacy of the current 
scoring model.

2.3 Methods for determining rebleeding

According to the clinical manifestations of the patient during the 
hospital, such as whether the patient has hematemesis, hematochezia 
or black stool, and the changes of the patient’s clinical indicators, such 
as changes in the hemoglobin level and coagulation function such as 
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platelets during the hospital stay, if the patient has undergone 
endoscopy during the hospital stay, a comprehensive judgment will 
be made on whether the patient has rebleeding during the hospital 
stay combined with the contents of the endoscope.

2.4 Machine learning methods

Four machine learning methods were used in this study, including 
Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), 
K-Nearest Neighbors (KNN).

DT is a classification or regression model with a tree-like structure 
that splits a sample into different branches by conditions to ultimately 
generate a prediction result. Maximize the information gain (or 
reduce the Gini coefficient) after each partition by dividing the input 
feature space. The gradient of the tree is generated from the root node 
to the leaf node, and the leaf node stores the prediction results. It is 
fast to train, easy to visualize, does not require data consumption 
(such as normalization), can handle multiple classification problems, 
but is sensitive to data noise. RF is an integrated learning algorithm 
based on decision trees that builds multiple decision trees and outputs 
the results by voting. The bagged method is used to randomly sample 
multiple sub-data sets from the original data. Each tree selects some 
features during training and obtains the final prediction result by 
voting (classification) or averaging (regression). It is suitable for 

classification and regression, and can handle nonlinear relationships 
between high-dimensional data and features. But computation costs 
are high, training and prediction are slow, and interpretative 
differences are output. LR is a linear model used for binary 
classification problems. It predicts the probability of an event 
occurring by using a linear combination of feature inputs and converts 
the output to a probability value between 0 and 1 using the Sigmoid 
function. The model is simple, easy to understand and implement, and 
can provide a probability value for each predicted output to explain 
and make decisions. At the same time, compared with other complex 
models, it has faster training and prediction speed and wider 
applicability, but it is more sensitive to noise and outliers, which may 
affect the model performance and can only handle binary classification 
problems. KNN algorithm is an instance-based learning method used 
for classification and regression problems. It does not go through an 
explicit training process, but instead calculates the distance (usually 
using Euclidean distance or Mahalanobis distance) between the 
predicted sample and the training set samples directly, and finds the 
nearest K neighbors. The prediction is made based on the categories 
(or numerical values) of these neighbors. Its transformation is simple 
to implement and easy to understand, and does not require a training 
process. It is suitable for problems without explicit distribution 
assumptions and can handle classification and regression problems, as 
well as multi-class classification. However, its computational cost is 
high and it is not suitable for high-dimensional data with irregularities.

FIGURE 1

Flow chart of admission and discharge.
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2.5 Deep learning model

This study classifies the information into four major categories: 
clinical information (including gender, age, concomitant diseases such 
as heart failure, ischemic heart disease, and other significant 
concomitant diseases, liver failure, renal failure, cancer metastasis, 
other manifestations, and diabetes history), vital signs (including 
systolic blood pressure, syncope, heart failure), blood indicators 
(including the degree of infection, hemoglobin, INR, and blood urea 
nitrogen), and stool examination (melena).

This study proposes a novel model based on Transformer and 
Kolmogorov–Arnold Networks (KAN), where the final linear layer 
of the Transformer is replaced by KAN. In the structure of the 
model, after each category of information is processed by the 
Transformer, one feature value is output. Finally, the feature values 
of the four types of information are concatenated and input into the 
final classification layer (KAN). This fusion structure not only 
combines the powerful feature extraction capability of Transformer, 
but also generates symbolic formula by introducing KAN to 
facilitate the analysis of the influence of different dimension 
information on the prediction results. The performance evaluation 
of the model is conducted by plotting the line graphs of the loss 
function (loss) and accuracy (accuracy). This approach visually 
demonstrates the convergence of the model during the training and 
validation processes as well as the changing trend of the 
classification performance, facilitating the assessment of the model’s 
stability and generalization ability. In order to evaluate the 
generalization ability of deep learning models more comprehensively 
and stably, and make full use of limited data to avoid overfitting, 
this paper used five-fold cross validation to test the model.

In addition, we wanted to explore whether the infection situation 
would affect the prediction efficiency of the deep learning model. 
We designed two comparative experiments: one was to predict the 
best trained model in the H. pylori infected group and the H. pylori 
non-infected group; the other was to evaluate the prediction efficiency 
of the best model by setting the degree of infection as irrelevant 
random noise.

2.6 Statistics methods

IBM SPSS 26.0 software was used for statistical analysis. We first 
run the Kolmogorov–Smirnov normality test on all the data. For 
binary classification, the Mann–Whitney U test was used for inter-
group differences of continuous variables, Chi-square test was used 
for inter-group differences of class variables, and Kruskal-Wallis H 
test was used for multi-class variables and continuous variables. The 
odds ratio and 95% confidence interval were increased for 

TABLE 1 Content of Rockall rating.

Variables Score

Age

60–79 years old 1

>80 years old 2

Shock index

Heart rate (beats per minute) > 100 and 1

Systolic blood pressure (mmHg) > 100

Heart rate (beats per minute) > 100 and 2

Systolic blood pressure (mmHg) < 100

Concomitant disease

Heart failure, ischemic cardiomyopathy and other important 

concomitant diseases

2

Liver failure, kidney failure and disseminated malignancy 3

Endoscopic diagnosis

Mallory Weiss had lacerations, no lesions 0

All other diagnoses 1

Malignant tumors of the upper digestive tract 2

Erythema of recent bleeding

None, only dark spots 0

Blood, adhesion clot, ejection blood vessel 2

TABLE 2 Blatchford ratings.

Variables Score

Heart rate (beats per minute)

≥100 1

Heart rate (beats per minute)

100–199 1

90–99 2

<90 3

Heart rate (beats per minute)

6.5–7.9 2

8.0–9.9 3

10.0–24.9 4

>25.0 6

Hemoglobin (mmol/L)

Male 120–130 1

110–119 3

<100 6

Female 100–120 1

<100 6

Other indicators

Pulse ≥ 100 1

Accompanied by black stool 1

Present as syncope 2

Liver disease 2

Heart failure 2

TABLE 3 AIMS65 score content.

Variables Score

Albumin < 30 g/L 1

INR > 1.5 1

Altered mental state 1

Systolic blood pressure (mmHg) ≤ 90 1

Age > 65 years 1
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Kruskal-Wallis H test and Chi-square test. For Mann–Whitney U test, 
r effect size was increased. p < 0.05 was considered 
statistically significant.

The flow chart of the experiment is shown in Figure 2.

3 Results

3.1 Baseline

A total of 254 patients were included in the study, and variables 
with missing values greater than 20% were excluded. Table 4 shows 
clinical information and laboratory parameters for included patients.

3.2 Correlation between rebleeding and 
various indicators

3.2.1 Correlation between rebleeding and clinical 
information

Table  5 shows the correlation between rebleeding in included 
patients and clinical information. In the correlation analysis between 
rebleeding and clinical data, the risk of rebleeding in males (62.5%) was 
higher than that in females (43.47%) (p < 0.05, with statistical 

significance). The risk of rebleeding increased with age (p > 0.05, 
without statistical significance). The risk of rebleeding in patients with 
combined disease (60.37%) was higher than that in patients without 
combined disease (58.70%) (p < 0.05, with statistical significance). The 
risk of rebleeding was higher in patients without diabetes (59.21%) 
than in patients with diabetes (56.00%) (p < 0.05, without 
statistical significance).

3.2.2 Correlation between rebleeding and vital 
signs

Table 6 shows the correlation between rebleeding and vital signs 
in included patients. In the correlation analysis between rebleeding 
and vital signs, the risk of rebleeding gradually increased with the 
increase of systolic pressure (p > 0.05, without statistical significance), 
and the risk of rebleeding in patients without fainting (60.57%) was 
higher than that in patients with fainting (12.50%) (p < 0.05, with 
statistical significance).

3.2.3 Correlation between rebleeding and 
laboratory examination items

Table 7 shows the correlation between rebleeding in included patients 
and the items examined in the laboratory. In the correlation analysis 
between rebleeding and laboratory examination items, the probability of 
rebleeding did not change with the increase of H. pylori infection degree 

FIGURE 2

Experimental flow chart. Various laboratory indicators such as blood tests and stool tests were gathered from patients with acute upper gastrointestinal 
bleeding. In combination with the patients’ Helicobacter pylori infection, a risk prediction model for rebleeding in inpatients with UGIB was 
constructed.
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(p > 0.05, without statistical significance). With the changes of 
hemoglobin, INR and blood urea nitrogen, the probability of rebleeding 
would also change (p > 0.05, without statistical significance).

3.2.4 Correlation between rebleeding and stool 
examination

Table  8 shows the correlation between rebleeding and stool 
examination in included patients. In the correlation analysis between 
rebleeding and stool examination, the risk of rebleeding in patients 
with black stool (59.55%) was higher than that in patients without 
black stool (55.88%) (p > 0.05, without statistical significance).

3.2.5 Correlation between Helicobacter pylori 
infection degree and laboratory examination 
items

Table 9 shows the correlation between H. pylori infection degree and 
laboratory examination items of included patients. In the correlation 
analysis between the degree of H. pylori infection and laboratory 
examination items, the hemoglobin level of patients changed with the 
degree of infection (p < 0.05, with statistical significance), and the other 
laboratory indicators of patients also changed with the degree of infection 
(p > 0.05, without statistical significance).

FIGURE 3

(A) ROC curve of DT, (B) ROC curve of RF, (C) ROC curve of LR, (D) ROC curve of KNN.

TABLE 4 Basic information of patients.

Rehaemorrhagia Normal

Sex M130/F20 M78/F26

Age 52.23 (49.44,55.01) 53.85 (50.67,57.02)

Concomitant 

diseases

Y32/N118 Y21/N83

Whether have 

diabetes

Y15/N135 Y11/N93

Systolic pressure 121.01 (117.96,124.06) 123.28 (119.73,126.82)

Whether syncope Y1/149 Y7/97

Whether heart 

failure

Y0/N150 Y0/N104

Degree of infection N60/A9/B1/C22/D58 N29/A8/B3/C20/D44

Hemoglobin 92.08 (88.13,96.03) 93.32 (87.73,98.91)

INR 0.89 (0.77,1.01) 0.98 (0.77,1.20)

Blood urea nitrogen 10.72 (2.51,18.92) 6.32 (5.37,7.27)

Ulcer lesions Y87/N63 Y56/N48

Tarry stool Y131/N19 Y89/N15
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3.3 Comparison between three common 
ratings, machine learning algorithm and 
deep learning algorithm model

3.3.1 Results of three common ratings
The three scores for the patients in this study are shown in 

Table 10.

3.3.2 Comparison of accuracy of four machine 
learning scoring methods

According to Table 11, the accuracy of the test set for DT analysis 
of machine learning methods is 0.53; the accuracy of the test set of RF 
machine learning method is 0.68; the accuracy of the test set of the 
machine learning method of LR machine learning method is 0.67; the 
accuracy of the test set of KNN machine learning method is 0.59. 

TABLE 5 Correlation between rebleeding and clinical information.

Statistic p value Statistical 
method

r effect 
size

Odds ratio 95%CI 
lower

95% CI 
upper

Sex 4.8776 0.0272* Chi-square test 2.1667 1.1344 4.1380

Age 8449.5 0.2595 Mann–Whitney U test 0.0708

Concomitant 

diseases
0.0040 0.9497 Chi-square test 1.0719 0.5778 1.9883

Whether have 

diabetes
0.7921 0.6730 Chi-square test 0.8768 0.3813 2.0162

*The difference is statistically significant (p < 0.05).

TABLE 6 Correlation between rebleeding and vital signs.

Statistic p value Statistical 
method

r effect size Odds ratio 95%CI lower 95% CI 
upper

Systolic pressure 8458.5 0.2510 Mann–Whitney U test 0.0720

Whether fainting 5.5495 0.0185* Chi-square test 0.0930 0.0113 0.7678

*The difference is statistically significant (p < 0.05).

TABLE 7 Correlation between rebleeding and laboratory examination items.

Statistic p value Statistical 
method

r effect 
size

Odds ratio 95%CI 
lower

95% CI 
upper

Degree of infection 5.7306 0.2202 Chi-square test 0.5438 0.1902 1.5546

Hemoglobin 7916.5 0.8403 Mann–Whitney U test 0.0126

INR 7,787 0.9822 Mann–Whitney U test 0.0014

Blood urea nitrogen 7821.5 0.9709 Mann–Whitney U test 0.0023

TABLE 8 Correlation between rebleeding and stool examination.

Statistic p value Statistical method Odds ratio 95%CI lower 95% CI upper

Tarry stool 0.0470 0.8283 Chi-square test 1.1620 0.5608 2.4078

TABLE 9 Correlation between degree of infection and stool examination.

Statistic p value Statistical method 95%CI lower 95% CI upper

Hemoglobin 11.6905 0.0198* Kruskal-Wallis H test 4.6882 30.3764

INR 1.8235 0.7682 Kruskal-Wallis H test 0.8621 14.6232

Blood urea nitrogen 2.3471 0.6722 Kruskal-Wallis H test 0.8160 15.7447

*The difference is statistically significant (p < 0.05).

TABLE 10 Three categories of ratings and their detection rates.

RS GBS AIMS65 score

Low risk 213 58 254

Middle and high risk 41 196 0

Detection rate 16.14% 77.17% 0
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ROC curves for the four types of machine learning are shown in 
Figure 3.

3.3.3 Effect of deep learning model
In this study, after processing each type of information by 

transformer, a characteristic value will be output, and the characteristic 
value will be represented by x1-4, respectively. x1-4 represents clinical 
information, vital signs, laboratory examination items and stool 
examination respectively, which can be understood as dimensionally 
reduced by transformer. Finally, x1-4 is spliced and input into the final 
classification layer (KAN) to make predictions and provide symbolic 
formula: 0.32*x_1 + 1.61*x_2 – 0.42*x_3 + 0.23*x_4 – 0.23* tanh 
(8.13*x_1 + 1.14) + 0.54. The formula combines linear terms and 
hyperbolic tangent functions to capture the multilevel and nonlinear 
effects of the input variables (x_1, x_2, x_3, x_4) on the target variable 
(y). The formula can express complex variable relationships and reveal 
the mode of action of different factors in the risk of recurrent 
gastrointestinal bleeding. The flow chart of the KAN model is shown 
in Figure 4.

In the results of five-fold cross validation, the training performance 
of the fourth fold is particularly prominent, and the model achieves 
the best prediction accuracy on both the validation set 
(accuracy = 0.9750) and the test set (accuracy = 0.9615). In addition, 
by comparing the accuracy and loss curves in the training process, 

better fitting effect and more stable gradient descent trend can 
be observed, which further verifies the robustness of the training. The 
results of the five-fold cross validation and the results of the confusion 
matrix are shown in Figures 5–9 and Table 12.

In addition, by exploring the influence of infection on the model 
prediction, it was found that the prediction accuracy of rebleeding in 
the non-H. pylori infection group (0.8989) was lower than that in the 
H. pylori infection group (0.9636), and other evaluation parameters 
were also lower than that in the infection group. In addition, by adding 
irrelevant random noise to mask the influence of infection degree on 
model output, it is found that the model prediction accuracy (0.7992) 
is significantly reduced. The results of the comparison experiment are 
shown in Table 13.

4 Discussion

Based on four types of data (including vital signs, clinical 
information, blood indicators and stool detection) of UGIB 
patients infected with Helicobacter pylori (H. pylori), this study 
uses Transformer network as a feature extractor and KAN 
network as a classifier to build a deep learning prediction model. 
To predict the risk of rebleeding in UGIB patients during 
hospitalization, and compared with four machine learning 

TABLE 11 Results of machine learning algorithm.

Accuracy Sensitivity Specificity PPV NPV AUC 95%CI 
Lower

95% CI 
Upper

DT 0.5337 0.5905 0.4521 0.6078 0.4342 0.4959 0.4145 0.5808

RF 0.6842 0.7556 0.5806 0.7234 0.6207 0.6312 0.4933 0.7667

LR 0.6711 0.8667 0.3871 0.6724 0.6667 0.5491 0.4073 0.6889

KNN 0.5921 0.7556 0.3548 0.6296 0.5 0.514 0.3777 0.6449

FIGURE 4

Deep learning model visualization. x0,1: clinical information, x0,2: vital signs, x0,3: blood parameters, x0,4: stool examination.
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models, good results were obtained, and the accuracy of the final 
model reached 0.9615.

In a model that predicted the risk of gastrointestinal bleeding 
rebleeding, the effect of vital sign depth features was positive. Tari 
et al. (2023) found that UGIB patients with impaired hemodynamics 
were at increased risk for all associated adverse outcomes, such as 
higher rates of hospitalization and increased rates of re-bleeding 
within 30 days. In addition, UGIB patients with impaired 
hemodynamics require surgery more frequently. This result is 
consistent with the conclusion of the model in this study that 
abnormal vital signs are associated with an increased risk of rebleeding.

Secondly, although the clinical information depth feature presents 
a positive linear relationship, due to the hyperbolic tangent (tanh) 
nonlinear term contained in it, the information may lead to complex 
fluctuations under different circumstances. The depth characteristics 
of blood indicators showed a relatively small negative relationship. In 
most studies on the risk of UGIB rebleeding, different models analyzed 
different clinical information and blood markers and achieved better 
results, although the specific information and markers were different 
(Ungureanu et al., 2023; Uysal, 2021; Zhuang et al., 2023). However, 
in a recent study by Taylor et al. (2025), blood type was found to 
be  associated with the risk of upper gastrointestinal bleeding, 
thrombosis and peptic ulcer disease. Blood type B is associated with a 
reduced risk of overall outcomes, including rebleeding, the need for 
surgery or embolization, and mortality, compared to non-B blood 
type. In part, this may explain that even when the same blood 

indicators or clinical information is used, their contribution to the 
prediction of rebleeding in patients may vary. Finally, fecal depth 
features showed a slight positive effect on the risk of recurrence, 
suggesting that fecal occult blood suggests the risk of rebleeding. 
Compared to deep learning models, the lower prediction accuracy of 
traditional machine learning models is due to their limited ability to 
handle highly nonlinear data or complex relationships, making it 
difficult to capture the intrinsic connections between various 
indicators. Deep learning, on the other hand, overcomes this 
limitation by seamlessly linking the internal relationships among all 
indicators, integrating them into a unified whole to accomplish tasks.

In the correlation between the risk of rebleeding and various 
indicators, we found that gender was related to the risk of rebleeding, 
that is, men were more likely to have rebleeding during hospitalization 
for upper gastrointestinal bleeding, which was also demonstrated in 
the study of Jeon et al. (2021), which found that gender could be used 
as a set of variables to predict rebleeding in UGIB patients. Similarly, 
the study results of Snipe et al. show that when women are in the 
follicular phase of the menstrual cycle, biological sex has no effect on 
intestinal epithelial injury and permeability, and has the least effect on 
gastrointestinal symptoms and the systemic cytokine spectrum in 
response to stress of exhaustion. However, the influence of males after 
exercise is greater than that of females (Snipe and Costa, 2018). 
Therefore, whether to keep calm after detecting the symptoms of 
upper gastrointestinal bleeding? Avoiding unnecessary exercise can 
reduce the risk of rebleeding, which is worth exploring. And in the 

FIGURE 5

Fold 1 results and Validation confusion matrix and Test confusion matrix.
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study by Zheng et al. (2022), it can be seen that although the incidence 
of UGIB has decreased in recent years, the age/sex-adjusted incidence 
of GIB increased from 378.4 per 100,000 people to 397.5 per 100,000 
people between 2006 and 2019, so it is important to focus on the 
elderly. In particular, the incidence of UGIB in older men and the risk 
of rebleeding after hospitalization are necessary and meaningful 
behaviors. In the scoring system studied by Jeon et al. (2021), whether 
syncope is associated with mortality within 30 days after 
hospitalization in UGIB patients, syncope and rebleeding risk 
obtained in this experiment can supplement this experiment to some 
extent. Heyer et al. (2018) found that nausea associated with syncope 
was related to the change of gastric myoelectric activity and the 
increase of vasopressin and epinephrine in time, which could also 
explain that syncope patients were more likely to induce rebleeding to 
a certain extent, and the related mechanism of syncope and rebleeding 
could be further explored in future studies. In addition, in two reports 
on rare cases of upper gastrointestinal bleeding (Li et  al., 2024; 
Ulbricht et al., 2022), syncope occurred in both patients. Although the 
internal correlation between syncope and rebleeding has not been 
actually explored, it can also suggest that current UGIB patients 
should pay attention to the clinical changes if syncope occurs. To 
provide clinical improvement measures as soon as possible. In the new 
UGIB treatment management, for all UGIB patients, it is 
recommended to resuscitate with intravenous infusion and red blood 
cell infusion according to the need, and the hemoglobin threshold is 

70–80 g/L. When the hemoglobin of UGIB patients is lower than this 
threshold, resuscitation and red blood cell infusion therapy are 
performed (Stanley and Laine, 2019), which shows the influence of 
hemoglobin value on clinical treatment decision making. The new 
treatment management is based on the patient’s current vital signs and 
does not investigate how the remaining risks during hospitalization 
are reflected in the hemoglobin value, however, a number of studies 
have been involved in the study of hemoglobin and the risk of 
rebleeding, and it is found that there is a certain correlation between 
hemoglobin and rebleeding. In addition, Extrat et  al.’s study, 
hemoglobin level after arterial embolization in UGIB patients is more 
likely to reflect the early mortality and the risk of rebleeding in 
patients (Extrat et al., 2022; Tatlıparmak et al., 2022; Zheng et al., 
2019). This has further defined the research direction for clinical 
research, which can be focused on in future studies. In addition, there 
is still some controversy about the hemoglobin threshold for red blood 
cell transfusion (Carson et al., 2021; Kola et al., 2021; Laine et al., 2021; 
Page et al., 2021; Teutsch et al., 2023), and the results of individual 
studies show that if the transfusion is started with a lower threshold, 
the incidence of transfusion reaction and post-transfusion 
intervention is lower. A hemoglobin threshold greater than 80 g/L 
may result in a higher rate of adverse outcomes. In conclusion, the 
correlation mechanism between hemoglobin value and clinical events 
during hospitalization should be  explored, and then the optimal 
restrictive transfusion threshold should be further studied. As the 

FIGURE 6

Fold 2 results and validation confusion matrix and test confusion matrix.
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most direct sign of UGIB diagnosis, endoscopy is usually the most 
concerned result in clinic. However, limited by the scale and the use 
of instruments in some small and medium-sized hospitals, the current 
research focuses on the diagnosis of UGIB by skipping endoscopy or 
replacing endoscopy or predicting clinical outcome.

In addition, we wanted to explore whether the infection situation 
would affect the prediction efficiency of the deep learning model. 
We designed two comparative experiments: one was to predict the best 
trained model in the H. pylori infected group and the H. pylori 
non-infected group; the other was to evaluate the prediction efficiency 
of the best model by setting the degree of infection as irrelevant random 
noise. Although the correlation analysis did not find significant 
correlation between the degree of H. pylori infection and the risk of 
rebleeding. This may be due to the uneven distribution of data on the 
degree of certain infections or the fact that the infection affects the risk 
of rebleeding in a more complex non-linear relationship. However, 
compared with non-infected patients, it can be found from the results 
of the comparative experiment that the model has a higher prediction 
accuracy for rebleeding risk in infected patients with subdivided 
infection degree. Meanwhile, when the information of infection degree 
is ignored in the model, the prediction efficiency of the model is greatly 
reduced. Therefore, we believe that H. pylori infection plays a crucial 
role in the risk prediction of rebleeding, and H. pylori infection may 
affect the final prediction results in a non-linear manner by influencing 
other factors or complex combinations of variables. Although few 
studies have included the degree of H. pylori infection in the diagnosis 

and treatment of upper gastrointestinal bleeding (UGIB), there have 
been studies that have analyzed the correlation between the diagnosis 
of H. pylori infection and gastroscopy (EGD) results in other 
gastrointestinal diseases, such as gastric and duodenal ulcers. Attempts 
were made to replace gastroscopy to some extent by non-invasive 
detection of H. pylori infection (Liao et al., 2023). In the Pritchard DM 
study, the use of H. pylori infection testing as an alternative to 
gastroscopy and treatment was found to be  the most cost-effective 
strategy (Pritchard et al., 2021). At the same time, H. pylori diagnostic 
methods have been increasingly improved, such as serological detection, 
fecal antigen detection and urea breath test, all of which are practical 
and highly sensitive (Ghazanfar et al., 2024). This study also explored 
the value of incorporating H. pylori infection in predicting the risk of 
rebleeding in patients with upper gastrointestinal hemorrhage 
during hospitalization.

At present, for the risk of rebleeding during hospitalization in 
UGIB patients, in addition to timely and accurate endoscopy, there are 
multiple scoring mechanisms. We  found that the three types of 
traditional scoring are for different emergency time periods, and there 
are some problems in the detection efficiency, and the scoring also 
represents the risk in different time periods, and there is a certain lag 
or inaccuracy in clinical measures, but the four types of machine 
learning scoring methods can integrate all factors and examinations to 
evaluate the overall period of hospitalization of patients. Patients were 
monitored as a whole, but the accuracy of machine learning is not 
satisfactory. Meanwhile, deep learning models with higher testing 

FIGURE 7

Fold 3 results and validation confusion matrix and test confusion matrix.
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FIGURE 8

Fold 4 results and validation confusion matrix and test confusion matrix.

FIGURE 9

Fold 5 results and validation confusion matrix and test confusion matrix.

208

https://doi.org/10.3389/fmicb.2025.1510126
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zang et al. 10.3389/fmicb.2025.1510126

Frontiers in Microbiology 14 frontiersin.org

efficiency provide stronger technical support for overall detection. For 
patients with UGIB, collecting relevant information based on deep 
learning models helps to make the fastest and most accurate judgments 
in the absence of endoscopy. However, this study is limited to a single 
center and lacks validation from multicenter experimental data, which 
will be an important direction for future research.

5 Conclusion

Based on the degree of H. pylori infection in patients with upper 
gastrointestinal bleeding, combined with a number of clinical laboratory 
tests and clinical data, we developed a clinical model for predicting the 
risk of rebleeding in patients with upper gastrointestinal bleeding. It 
provides an early prediction of rebleeding during a patient’s 
hospitalization and optimizes early intervention for patients to a certain 
extent. It provides a more concise, convenient and effective guidance 
scheme for small and medium-sized hospitals to make clinical decisions 
for UGIB patients.
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TABLE 12 Result of five-fold cross validation.

Accuracy Precision Recall F1-score

Fold 1 Validation set 0.9512 0.9259 1.0000 0.9615

Test set 0.9038 0.9000 0.9730 0.9351

Fold 2 Validation set 0.9512 0.9167 1.0000 0.9565

Test set 0.9038 0.8810 1.0000 0.9367

Fold 3 Validation set 0.9750 1.0000 0.9500 0.9744

Test set 0.9038 0.9000 0.9730 0.9351

Fold 4 Validation set 0.9750 0.9600 1.0000 0.9796

Test set 0.9615 0.9487 1.0000 0.9737

Fold 5 Validation set 0.9000 0.8571 1.0000 0.9231

Test set 0.8269 0.8043 1.0000 0.8916

TABLE 13 The results of the comparison experiments.

Accuracy Precision Recall F1-score

Non-infection group 0.8989 0.9180 0.9333 0.9256

Infection group 0.9636 0.9565 0.9778 0.9670

Noised infection level group 0.7992 0.7765 0.9267 0.8450
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