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Metabolic diseases and cancers account for half of all mortalities in the world, 
underscoring the significance of understanding the etiology of these diseases and 
developing effective therapies.

Genomic research in the 21st century has brought cancer and metabolic disease, 
two once seemingly parallel ailments, as close to each other as they’ve ever been. 
Many genetic factors have been found to display functions regulating both cancer 
and metabolic disease. In this research topic: “Double-edged Swords: Genetic Factors 
That Influence The Pathogenesis of Both MetabolicDisease and Cancer”, you will be 
introduced to individual genes, as well as genetic pathways that play important roles 
in influencing the progression of both metabolic disease and cancer.

By no means covering an exhaustive list of genes qualified, this collection of articles 
rather serves as a precursor of what is yet to come in biomedical research. It paints 
the big picture of one of the major fields contributing to the future of “precision 
medicine”.
 

Citation: Kung, C.-P., Murphy, M. E., Lu, H., eds. (2019). Double-edged Swords: Genetic 
Factors That Influence the Pathogenesis of Both Metabolic Disease and Cancer. 
Lausanne: Frontiers Media. doi: 10.3389/978-2-88963-030-1

https://www.frontiersin.org/research-topics/6413/double-edged-swords-genetic-factors-that-influence-the-pathogenesis-of-both-metabolic-disease-and-ca
https://www.frontiersin.org/journals/endocrinology
http://doi.org/10.3389/978-2-88963-030-1


3Frontiers in Endocrinology August 2019 | Genes Regulating Metabolism and Cancer

04 Editorial: Double-Edged Swords: Genetic Factors That Influence the 
Pathogenesis of Both Metabolic Disease and Cancer

Che-Pei Kung, Maureen E. Murphy and Hua Lu

CHAPTER 1
INDIVIDUAL GENE FACTORS REGULATING METABOLIC DYSFUNCTION 

AND CANCER

06 The p53/Adipose-Tissue/Cancer Nexus

Kevin Zwezdaryk, Deborah Sullivan and Zubaida Saifudeen

15 The p53 Tumor Suppressor in the Control of Metabolism and Ferroptosis

Keerthana Gnanapradeepan, Subhasree Basu, Thibaut Barnoud, 
Anna Budina-Kolomets, Che-Pei Kung and Maureen E. Murphy

22 PTEN: Tumor Suppressor and Metabolic Regulator

Chien-Yu Chen, Jingyu Chen, Lina He and Bangyan L. Stiles

34 The Role for Myc in Coordinating Glycolysis, Oxidative Phosphorylation, 
Glutaminolysis, and Fatty Acid Metabolism in Normal and Neoplastic 
Tissues

Eric S. Goetzman and Edward V. Prochownik

59 ANRIL: A IncRNA at the CDKN2A/B Locus With Roles in Cancer and 
Metabolic Disease

Yahui Kong, Chih-Heng Hsieh and Laura C. Alonso

72 Critical Enzymatic Functions of FTO in Obesity and Cancer

Xiaolan Deng, Rui Su, Savanna Stanford and Jianjun Chen

CHAPTER 2
GENETIC PATHWAYS REGULATING METABOLIC DYSFUNCTION AND CANCER

79 Heparan Sulfate and Heparan Sulfate Proteoglycans in Cancer Initiation 
and Progression

Arvindhan Nagarajan, Parmanand Malvi and Narendra Wajapeyee

90 Deoxyribonucleotide Triphosphate Metabolism in Cancer and Metabolic 
Disease

Raquel Buj and Katherine M. Aird

100 Mitochondrial Dynamics in Type 2 Diabetes and Cancer

Michelle Williams and M. Cecilia Caino

108 The Role of RNA Editing in Cancer Development and Metabolic Disorders

Che-Pei Kung, Leonard B. Maggi Jr. and Jason D. Weber

Table of Contents

https://www.frontiersin.org/research-topics/6413/double-edged-swords-genetic-factors-that-influence-the-pathogenesis-of-both-metabolic-disease-and-ca
https://www.frontiersin.org/journals/endocrinology


EDITORIAL
published: 03 July 2019

doi: 10.3389/fendo.2019.00425

Frontiers in Endocrinology | www.frontiersin.org July 2019 | Volume 10 | Article 425

Edited and reviewed by:

Antonino Belfiore,

University of Catania, Italy

*Correspondence:

Che-Pei Kung

patkung@wustl.edu

Specialty section:

This article was submitted to

Cancer Endocrinology,

a section of the journal

Frontiers in Endocrinology

Received: 10 June 2019

Accepted: 13 June 2019

Published: 03 July 2019

Citation:

Kung CP, Murphy ME and Lu H (2019)

Editorial: Double-Edged Swords:

Genetic Factors That Influence the

Pathogenesis of Both Metabolic

Disease and Cancer.

Front. Endocrinol. 10:425.

doi: 10.3389/fendo.2019.00425

Editorial: Double-Edged Swords:
Genetic Factors That Influence the
Pathogenesis of Both Metabolic
Disease and Cancer

Che-Pei Kung 1,2*, Maureen E. Murphy 3 and Hua Lu 4

1Washington University School of Medicine, Saint Louis, MO, United States, 2Division of Molecular Oncology, Department of

Medicine, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, United States, 3 Program in

Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States, 4Department of Biochemistry and

Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States

Keywords: cancer, diabetes, metabolic disease, genetic factors, obesity

Editorial on the Research Topic

Double-Edged Swords: Genetic Factors That Influence the Pathogenesis of Both Metabolic

Disease and Cancer

Our understanding of cancer development has been marked by milestone discoveries in genetics,
including the identification and cloning of oncogenes and tumor suppressor genes (1). Successful
interventions of cancer, such as hormone therapies of breast cancers and vaccination of HPV, were
aided in their development by our knowledge of these critical etiological factors underlying cancer.
In contrast, metabolic disease was once thought to be a by-product of modern excessive lifestyles
(2). Our increased ability to interrogate massive amounts of genetic information has strengthened
the connection between genetics and metabolic disorders. As such, genetics-based therapy for
metabolic disease has, at last, become more likely.

In this special research topic, we aim to highlight versatile genetic factors capable of regulating
both cancer and metabolic disorders. By examining the existing literature, this collection of
review articles provides both comprehensive overview and critical discussion about genetic
factors/pathways that are involved in pathogenic mechanisms of multiple diseases, often through
under-appreciated aspects of their functions.

The tumor suppressor TP53 is well-known for its role in maintaining genome stability and
preventing cancer progression. Recent studies unveiled p53 functions in regulating metabolic
homeostasis and diseases, such as diabetes (3). In Zwezdaryk et al. detail our current understanding
of how p53 regulates functions of adipose tissues, often paradoxically, to influence the pathogenesis
of obesity and cancer. In Gnanapradeepan et al. explain how p53-mediated regulation of gene
expression contributes to a novel form of programmed cell death, ferroptosis (iron- and lipid-
peroxide-mediated cell death), in the context of metabolic dysfunctions and cancer.

In the nucleus, the stability and transcriptional activity of p53 is promoted by binding to the
regulatory region of another tumor suppressor gene, PTEN (4). In Chen et al. elegantly summarize
data indicating that, in addition to collaborating with p53, PTEN also regulates tumor metabolism
and insulin sensitivity through its phosphatase activity, suggesting PTEN as a potential target for
treatment of both cancer and diabetes.

It is now appreciated that cancer cells often repurpose metabolic pathways shared by
normal cells to facilitate pro-tumorigenic functions. Goetzman and Prochownik capture this
essence with a comprehensive review. In their essay, they thoroughly describe how the
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oncoprotein c-Myc regulates the metabolic balance in normal,
cancerous, and metabolically-defective cell states.

In addition to oncogenes and tumor suppressors, non-
coding RNAs also emerge as critical regulators of cellular
homeostasis (5). Kong et al. introduce one of the long non-
coding RNA (lncRNA), ANRIL. ANRIL resides in a genetic
locus that is proximal or overlapping to several cancer-
associated genes, including p16-INK4a, ARF (CDKN2a), and
p15-INK4b. Potential connections between structural and
functional characteristics, as well as unique SNPs (single
nucleotide polymorphisms) of ANRIL and their impact on
the development of cancer and metabolic diseases such as
cardiovascular disease or diabetes are addressed.

Compared to the roles of cancer-associated genes in metabolic
disorders, our understanding of how metabolic-disease genes
regulate tumorigenesis is only now emerging. Deng et al.
focus their mini-review, on one such gene, fat mass and
obesity-associated protein (FTO), which acquired its name from
epidemiological connections between its SNPs and obesity.
Combining the new investigations linking FTO to tumorigenesis
and its nature as an mRNA demethylase, development of FTO
inhibitors is in full swing to treat both cancer and metabolic
disease (6, 7).

Besides individual gene products, classes of genetic factors
and pathways that regulate both tumorigenesis and metabolism
are also discussed. In Nagarajan et al. summarize our current
knowledge about the role of Heparan Sulfate Proteoglycans
(HSPGs) in cancer development. Understanding the functions
of these “protein-carbohydrate” conjugates, as well as factors
regulating their metabolism, offers opportunities to develop
treatments against cancers with deregulated HSPGs. Due to
the diverse nature of HSPGs, it is not surprising that they are
also involved in metabolic disorders like atherosclerosis and
obesity (8).

Mechanisms to maintain the balance between biosynthesis
and degradation of deoxyribonucleotide triphosphates (dNTPs),
the building blocks of DNA, are keys to biological functions.

Buj and Aird outline the intensively studied connections
between dNTP metabolism and cancer development. They
also discuss the recently-identified associations between dNTP
homeostasis and metabolic diseases, and the potential novel
therapeutic strategies targeting these interconnections for cancer

and metabolic disorders.
As the organelle to produce ATP, the mitochondrion is

a critical player in maintaining dNTP homeostasis. However,
mitochondria also play multiple and important roles in human
physiology through a variety of pathways, such as oxidative
phosphorylation, production of reactive oxygen species (ROS),
and inflammation (9). In Williams and Caino describe how
the mitochondrial dynamics (shape and localization) in a cell
contributes to cellular homeostasis, and how dysregulation of this
network leads to cancer and type II diabetes.

Epigenetic alterations have been implicated in most human
diseases, including cancer and metabolic disorders (10). In the
review article, Kung et al. conduct a comprehensive review of
the literature for the impact of RNA editing enzymes in the
development of cancer and metabolic diseases. Importantly,
in the era of genome editing, investigations of RNA-editing
pathways could lead to promising therapeutic strategies.

To understand the complex nature of human diseases, a great
window of opportunity is given by studying versatile players
involved in multiple diseases. This collection of well-written
reviews offers readers with an updated grand view on the double
edged sword roles of genetic factors in connecting cancer with
metabolic disorders. For their outstanding works, we sincerely
thank all the authors as well as the reviewers/review editors for
offering their time and effort for this project, and the editorial
team at Frontiers, especially Dr. Emilie Schrepfer, for their helps
and professionalism as demonstrated throughout this process.
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Obesity and the resultant metabolic complications have been associated with an

increased risk of cancer. In addition to the systemic metabolic disturbances in obesity

that are associated with cancer initiation and progression, the presence of adipose tissue

in the tumor microenvironment (TME) contributes significantly to malignancy through

direct cell-cell interaction or paracrine signaling. This chronic inflammatory state can

be maintained by p53-associated mechanisms. Increased p53 levels that are observed

in obesity exacerbate the release of inflammatory cytokines that fuel cancer initiation

and progression. Dysregulated adipose tissue signaling from the TME can reprogram

tumor cell metabolism. The links between p53, cellular metabolism and adipose tissue

dysfunction and how they relate to cancer, will be presented in this review.

Keywords: p53, adipokines, obesity, cancer, white adipose tissue, metabolism

INTRODUCTION

Cancers associated with obesity are estimated to account for up to 40% of all cancers diagnosed
in the US (Centers for Disease Control and Prevention, CDC). Per CDC reports, the incidence of
non-obesity related cancers showed a decline from 2005 to 2014, while the rates of obesity-related
cancers increased (1). Causes of obesity and cancer are multifactorial with significant contribution
from genetics and environmental factors. TP53 (p53) is themost commonlymutated gene in cancer
with nearly half of all human cancers showing protein loss or mutation (2). Of the cancers that
do not have mutations in the p53 gene locus, the majority exhibit mutations or altered levels of
negative regulators of p53 (3, 4). Classically, p53 is known as a tumor suppressor, but recent work
highlights the diverse functions of p53, including p53’s contribution tometabolic and adipose tissue
regulation. As increasing evidence links obesity to the onset of cancer, in this review, we discuss the
crosstalk between adipose tissue and metabolism in cancer and the central role of p53 therein.

P53 OVERVIEW

p53 is best known as a tumor suppressor that maintains genomic stability and inhibits cell
proliferation pathways (5–11). Its significant role in tumor suppression is dependent on its activity
as a transcription factor regulating expression of genes in cell cycle regulation, apoptosis, DNA
repair, differentiation, and senescence pathways (Figure 1). Under conditions of mild stress, p53
initiates cell cycle arrest and DNA repair pathways. However, in response to catastrophic stress that
inflicts irreparable damage, p53 triggers an apoptotic response designed to limit propagation of
impaired cells.

6
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FIGURE 1 | Transcript ion-dependent and -independent p53 function. Different combinations of posttranslational modifications (red circles)—the PTM signature—will

dictate the context-specific transcriptional response that will translate to a phenotypic outcome. The PTMs dictate interactions of proteins with p53, enabling

stimuli-specific cellular output. Transcription-independent response involving mitochondria require mono-ubiquitination (blue circles) of p53. Localization of p53 at the

mitochondrial membrane and interaction with anti-apoptotic Bcl proteins stimulates apoptosis. Translocation into the mitochondrial matrix requires interactions with

proteins (denoted in green and yellow) where it interacts with mitochondrial proteins to preserve mitochondrial integrity. See text for details.

p53 protein levels are ubiquitously high in early
embryogenesis in germ layer progenitors and embryonic
stem cells until nearly mid-gestation (5, 12, 13), after which time
expression is restricted to specific tissues during organogenesis
as development progresses. Protein levels decrease postnatally to
follow the recognized expression pattern of stabilization under
cellular stress (5, 12, 14). Stimuli-induced post-translational
modifications (PTM) stabilize the protein (15–21). In the
absence of stress stimuli, negative regulation of p53 function is
mediated by Mdm2 and Mdmx (22, 23). Different combinations
of PTMs—the PTM signature—drive context-specific pathway
activation. Protein stability and function are controlled by:
(a) phosphorylation (b) acetylation (c) poly-ubiquitination (d)
sumoylation (e) neddylation and (f) methylation (17, 21, 24–28).
The N-terminus contains the transcription activation domain
(TAD). In addition to stabilizing p53, the PTMs dictate the
interactions of proteins with p53, enabling stimuli-specific
cellular output. For example, p53 interacts with histone
modifying enzymes and chromatin remodelers [e.g., HATs
p300/CBP (29, 30), lysine-specific demethylase LSD1 (31)]
which alter chromatin structure, along with interactions
with proteins in the basal transcription machinery complex
[TBP (32), and TBP-associated factors such as TFIIA and
TAF1 (33, 34)] to regulate gene transcription (33, 35, 36).
Transcription-dependent functions of p53 play a key role
in cell-fate decisions by regulating expression of genes that
control cell cycle arrest, DNA repair, apoptosis, senescence,
and autophagy to limit the propagation of cells with damaged
genomes (33–36).

Research in the last decade has revealed a critical role for
p53 well beyond its role in tumor suppression. These roles
include preserving stem cell health and differentiation in
embryonic life, development of senescence and maintaining
mitochondrial function in aging (5, 7, 37–41). Recent
evidence strongly implicates p53 in the regulation of

metabolism, linking p53 to metabolic abnormalities
observed in aging, obesity, inflammation, and cancer
(37, 42).

P53-MEDIATED REGULATION OF
INTERMEDIARY METABOLISM

Choice of metabolic pathway usage is determined by the
cell’s energy, biomass and metabolite demands. Many cancer
cells depend on glycolysis, even under aerobic conditions
(Warburg Effect) (43, 44). The shift to aerobic glycolysis
is an active reprogramming event that enables anabolic
growth. Intermediates from the glycolytic pathway serve
as precursors for biomass synthesis that are necessary for
proliferation. Additionally, the pentose phosphate pathway
(PPP) produces precursors for the synthesis of nucleotides that
are essential for DNA replication. In contrast, differentiated cells
preferentially utilize mitochondrial oxidative phosphorylation
(OXPHOS) (45).

Consistent with its role as a tumor suppressor, p53 inhibits
multiple steps of glycolysis and the PPP while promoting
OXPHOS (46). Expression of glucose transporters Glut1 and
Glut4 are downregulated by p53, resulting in the inhibition
of glucose uptake. Induction of the phosphatase TP53-
induced glycolysis and apoptosis regulator (TIGAR) decreases
the production of fructose-2,6-bisphosphate (F2, 6BP) which
allosterically activates phosphofructokinase 1 (PFK1) to increase
glycolytic flux (9). By inhibiting expression of the negative
regulator of the pyruvate dehydrogenase complex that is
responsible for the transfer of cytosolic pyruvate to the
mitochondria, p53 promotes OXPHOS by directing pyruvate to
acetyl CoA rather than lactate (47). Increased lactate levels in
the cell due to transcriptional repression of monocarboxylate
transporter 1 (mct1) expression, a p53 target gene which
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transports lactate out of the cell, also decreases glycolytic
flux (48).

p53 is a critical regulator of mitochondrial morphology,
mitochondrial genomic integrity, mitophagy, aerobic
metabolism and cellular redox state (38, 41, 49). In contrast to
inhibitory effects on anabolic glycolysis, p53 drives catabolic
mitochondrial respiration via induction of key genes such as
mitochondrial glutaminase (Gls2), Synthesis of cytochrome
c oxidase 2 (Sco2) and Complex 1 proteins that are involved
in fueling the tricarboxylic acid (TCA) cycle and driving
electron transport (50, 51). p53 was demonstrated to adaptively
regulate OXPHOS in Drosophila Myc+ cells and maintain
their super-competitive status by enhancing the metabolic flux
(52). In contrast to increased proliferation observed in cancer
cells upon the loss of p53, the response of Drosophila Myc+
cells to p53 loss is impaired metabolism and reduced viability,
suggesting a cell-context dependent regulation of cellular
processes. By inducing expression of the mitochondria-eating
protein (Mieap), p53 functions as a guardian of mitochondrial
health, facilitating the removal of damaged mitochondria
by mitophagy (53). Mitochondrial p53 physically interacts
with TFAM, the factor that is responsible for mitochondrial
DNA transcription, replication, and repair (11). Accordingly,
decreased mitochondrial DNA content or mitochondrial DNA
mutations are detected in fibroblasts from Li-Fraumeni patients
(54).

p53 also plays a critical role in both normal and pathological
lipid metabolism (55, 56). Generally, p53 is a negative regulator
of lipid synthesis and activates fatty acid oxidation (FAO)
via induction of expression of carnitine acetyltransferase genes
(CPT1) that transport fatty acids to the mitochondria for
oxidation. However, chronic p53 activation by nutrient stress
(obesity) leads to hepatic steatosis, insulin resistance, and
diabetes, pointing to the complexity of the homeostatic response
(57–59). Dysregulated cell metabolism is an accepted hallmark
of cancer and p53 can influence the function of many
metabolic pathways (60). Obesity is also recognized as a state of
dysregulated cell metabolism, and p53 is influential in adipose
tissue differentiation, accumulation, and cytokine secretion.

ADIPOSE TISSUE

Adipose tissue is broadly subdivided into white and brown
adipose tissue. The largest component of white adipose tissue
is the large, spherical adipocyte with a unilocular lipid droplet
occupying most of the cell volume. The primary role of white
adipose tissue is to store energy in the form of triglycerides.
When hormones signal the need for energy, fatty acids and
glycerol are released through lipolysis. White adipose tissue is
subdivided into unique depots highlighting the function and
location of the adipose tissue. Visceral adipose tissue surrounds
organs, subcutaneous adipose tissue forms a layer between the
muscle and dermal fascia, and intramuscular adipose tissue
protects tissue and supplies nourishment. Approximately 80%
of human adipose tissue is deposited in subcutaneous depots.
However, visceral adipose tissue is more metabolically active, and

its accumulation is more prognostic of obesity-related mortality
(61, 62). Both white adipose tissue depots store excess energy,
but visceral fat also protects organs from physical trauma. White
adipose tissue is capable of significant expansion that can lead
to the accumulation of excess adipose tissue and thus increased
propensity for obesity and related metabolic disorders (63).

In contrast to white adipose tissue, brown adipose tissue is
specialized to burn sugars and lipids to generate heat and to help
maintain body temperature through adaptive thermogenesis.
Brown adipose tissue is abundant in neonates but undergoes
rapid involution with age in humans. Consequently, adult human
brown adipose tissue is relatively limited in mass and restricted
to depots near the aorta and within the supraclavicular region
of the neck (64). Brown adipose tissue is densely innervated
by the sympathetic nervous system and is highly vascularized.
Brown adipocytes contain multilocular lipid droplets and large
numbers of mitochondria. The hallmark of brown adipose
tissue function is the presence and activation of mitochondrial
uncoupling protein 1 (UCP1) which uncouples OXPHOS from
ATP synthesis in the inner mitochondrial membrane, thereby
dissipating chemical energy as heat (65). A third adipose tissue
type termed beige or “brown-in-white” (brite) adipose, has
recently been characterized. Beige adipocytes can be induced by
cold and a broad spectrum of pharmacological substances and,
therefore, they are also known as “inducible brown adipocytes.”
These depots can be induced to appearmorphologically similar to
brown adipose tissue, but appear in classical white adipose tissue
depots and are derived from a non-classical brown adipose tissue
lineage (66, 67).

Recently, the bone marrow has been identified as a unique
adipose depot. Although the bone marrow contains few
adipocytes at birth, the number increases with age, and by
adulthood, bone marrow adipose tissue constitutes over 10%
of the total fat mass in lean, healthy humans. There are two
types of bone marrow adipose tissue classified as “regulated” that
may influence hematopoiesis and “constitutive” that is important
during early vertebrate development (68). The ontogeny of bone
marrow adipose tissue is not well defined. Bone marrow adipose
tissue differs in diet response, phenotype, gene expression and
physiological actions from other adipose depots [reviewed in
(69)]. For example, during conditions of starvation bone marrow
adipose tissue volume increases whereas white adipose tissue
volume decreases.

It is now clear that all adipose tissue acts in an
autocrine/paracrine and endocrine manner. Adipocytes secrete
an array of signaling molecules such as leptin, adiponectin,
plasminogen activator inhibitor (PAI-1), vascular endothelial
growth factor (VEGF), tumor necrosis factor-alpha (TNF-α),
and interleukin (IL)-6, collectively referred to as adipokines, that
communicate with other organs such as the brain, liver, muscle,
the immune system, and adipose tissue itself. An example
is metabolic symbiosis that occurs between tumor cells and
adjacent adipose tissue during cancer progression. Adipokines
and lipids are released from mature adipocytes and taken up
by cancer cells. Paracrine factors from adipose tissue-derived
stromal and immune cells that have infiltrated tumors, are
secreted into the tumor microenvironment (70).
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Differentiation of preadipocytes to mature adipocytes requires
transcription regulators such as the peroxisome proliferator-
activated receptor gamma (PPARγ) and members of the
CCAAT/enhancer-binding protein family (C/EBPs) (71). p53 is
a negative regulator of PPARγ expression, and concomitantly of
white adipocyte differentiation both in vivo and in vitro (72).
p53 inhibits an adipogenic program in 3T3-L1 preadipocytes
and mouse embryonic fibroblasts (MEFs) (73, 74). Knockdown
of p53 by specific shRNA enhances the adipogenic capacity in
both mouse and human cell lines, indicated by increased levels
of adipogenic markers such as PPARγ, AP2, and adiponectin
even without hormonal induction (74). Moreover, differentiation
of p53-null MEFs into adipocytes is more robust compared to
wild-type cells in an adipogenic medium (73–75). Accordingly,
transgenicmice overexpressing active p53 demonstrate decreased
adipose tissue deposition and reduction in body mass (76).
However, p53 is a positive regulator of brown adipocyte
differentiation (75). Also, using a murine model of diet-induced
obesity (DIO) weight gain was reduced in p53-null mice, and the
mechanism was through an increase in UCP1 expression, both in
brown and white adipose tissue (77).

ADIPOSE TISSUE
DYSFUNCTION—PROMOTED BY P53?

As adipose tissue expands, adipogenesis is upregulated,
mature adipocytes enlarge, and angiogenic processes promote
neovascularization. In obese states, enlarged adipocytes
experience hypoxic conditions due to larger distances from the
vasculature (78), as cardiac output and total blood flow do not
increase with increased obesity (79). In association with these
changes, the adipose tissue starts to produce chemotactic factors,
such as monocyte chemoattractant protein (MCP)-1, that attract
monocytes/macrophages into adipose tissue (80). Murine studies
have demonstrated that excess adiposity increases the proportion
of proinflammatory M1 to anti-inflammatory M2 macrophages
in white adipose tissue (81). As the adipose tissue becomes
inflamed, production of inflammatory cytokines increases and
production of adiponectin decreases, resulting in the inability to
store surplus free fatty acids (FFAs) leading to further adipose
tissue dysfunction (82). In vitro and in vivo studies by Shimizu
et al. indicated that increased release of FFAs led to ROS-induced
DNA damage and upregulation of p53 in adipose tissue (59)
(Figure 2). Activation of p53 upregulated the expression of
proinflammatory adipokines via the NF-κB signaling pathway,
and promoted adipose tissue inflammation, insulin resistance,
and diabetes, whereas inhibiting p53 activity attenuated the
inflammation (59). These changes in p53 expression related to
obesity have been observed in both murine models and obese
human subjects (55, 58, 83–86). The chronic inflammation
associated with dysfunctional adipose tissue is thought to
contribute to a favorable microenvironment for tumor growth
and progression (Figures 2, 3).

In addition to data indicating p53 stimulation in dysfunctional
adipose tissue exacerbates the pathology of adiposity, recent
studies implicate p53 as a primary mediator of adiposity. As

demonstrated by Kung et al. mice harboring the proline-to-
arginine 72 (P72R) variant of p53 developed more severe obesity
and glucose intolerance on a high-fat diet than mice with proline
72 variant (87). Further evidence supporting the adverse effect
of high p53 activity in promoting obesity was demonstrated in
mutant MDM2C305F mice that have impaired p53 regulation
of lipid metabolism (88). The mutation disrupts ribosomal
protein-MDM2 interaction that serves to sequester MDM2 and
allow p53 activation. Also, pharmacological inhibition of p53
was demonstrated to prevent high-fat diet-induced weight gain
observed in control mice (89). In summary, the data suggest that
high p53 levels, whether induced in response to or as an inducer
of adiposity, are likely counter-productive inmaintaining adipose
tissue homeostasis.

P53, ADIPOSE TISSUE, AND
METABOLISM—AN UNEXPLORED LINK IN
CANCER

Secretion of adipokines (leptin, adiponectin, endotrophin, etc.)
and growth factors from AT promote tumor growth. There
are more than 600 different adipokines currently identified
and many cancers, such as breast cancer, have adipokine
receptors present on the cancer cells (90, 91). Adipokine-linked
cancer progression may occur through increased proliferation,
migration, inflammation and anti-apoptotic mechanisms. Leptin
secretion from adipose tissue near tumors is increased, but
not in adipose depots that are distant from the tumors (92).
Interestingly, leptin is a known regulator of p53 expression
(93). Leptin binding to its receptor enhances the proliferation
and growth of breast cancer cells through numerous signaling
pathways including estrogen receptor, JAK/STAT3, and PI3K/Akt
pathways (94–96) (Figure 2). Aberrant signaling through these
pathways activates expression of genes that contribute to
cancer cell survival, proliferation, and migration (97–99).
Moreover, signaling pathway activation can reprogram cellular
metabolism to support the specific metabolite demands of
proliferating cells. Thus, ectopic activation of these pathways
promotes tumor progression (Figure 2). Leptin was also
shown to induce aromatase and this correlated positively
with BMI, leading to increased risk for breast cancer (100)
(Table 1). Given the participation of p53 in adipose tissue
inflammation (as discussed above in section Adipose Tissue
Dysfunction—Promoted by p53?) that promote proliferative
pathways vs. the known involvement of p53 as a tumor
suppressor restricting proliferation and cell growth, the role
of p53 in adipose tissue-driven tumorigenesis remains to be
elaborated.

Wild-type p53 in an inactivated or dysfunctional form
accumulates in the cytoplasm whereas stable p53 binds to
target genes in the nucleus. Expression of the p53 transcript,
nuclear localization of the protein and phosphorylation at
Ser15 was decreased in ASCs due to the effect of prostaglandins
(PGE2) (101). Wang et al. showed that the decrease in p53
protein expression and activity is through an inhibitory effect
of PGE2 on AMP-activated kinase (AMPK). AMPK can no
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FIGURE 2 | White adipose tissue and cancer. Excess adiposity increases the proportion of proinflammatory M1 to anti-inflammatory M2 macrophages in white

adipose tissue, resulting in production of inflammatory cytokines and stabilization of p53, further increasing adipokine transcription via p53/NF-κb activation. Adipokine

release from the white adipose tissue and action on the neighboring tumor cell, or cancer stem cell, activates oncogenic signaling pathways that can impact energy

metabolism pathways and transcriptional output via post-translational modifications of enzymes, transcription factors/co-factors, respectively, facilitating tumor

initiation/promotion.

FIGURE 3 | Yin and Yang of p53. (A) The p53/white adipose tissue/Cancer nexus. (B) The adipose tissue microenvironment contributes significantly to malignancy

through tumor microenvironment communication. Regardless of the p53 status of the tumor cell, stimulation of oncogenic signaling pathways by p53-dependent

adipokine production from the white adipose tissue in the microenvironment may facilitate tumor propagation.

longer phosphorylate p53 at Ser15 (103, 104), resulting in
decreased nuclear localization and transcriptional activity of
p53. In clinical samples of breast cancer, tumor-associated ASCs
had reduced nuclear p53 staining and increased perinuclear
staining compared to normal ASCs (101). This is important
as increased PGE2 is linked with many cancers and PGE2
associated inflammation is specifically associated with obesity
and breast cancer (105). PGE2 and TNFα may contribute to the
Warburg effect due to stimulation of GLUT1 and GLUT3 in
ASCs (106). Again, this mechanism is through adipose-derived

inflammation altering the metabolic microenvironment
resulting in reduced p53 nuclear localization. A mechanism
to the observed obesity-associated increase in aromatase and
its link to breast cancer has been suggested (100). Adipose
or ASC leptin secretion resulted in activation of PKC/MAPK
signaling pathways and inhibition of p53. Furthermore, HIF1α
and PKM2 were stabilized, resulting in increased expression of
aromatase, and an increased risk of estrogen-dependent breast
cancer. Conversely, p53 related mechanisms have been shown
to promote hepatocellular carcinoma cell apoptosis. Omentin-1,
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TABLE 1 | p53 and adipose tissue metabolism.

Type of cancer Model Mechanism Cancer-related outcome References

Breast cancer Primary breast adipose

stromal cells

Prostaglandin E2 (PGE2) decreases p53

expression and increases aromatase

levels.

Increased aromatase is associated with

increased estrogen production

(101)

Breast cancer Primary preadipocytes Leptin-mediated induction of aromatase

was dependent on PKC/MAPK signaling

and inhibition of p53

Increased aromatase is associated with

increased estrogen production

(100)

Hepatocellular cancer HepG2 and HuH-7 cell

line

Omentin-1 upregulated p53 through

sirtuin1-dependent deacetylation of p53

Apoptosis (102)

an adipokine, was added to hepatocellular carcinoma cells and
resulted in an inhibition of proliferation and an induction of
apoptosis (102). It was shown that omentin-1 upregulated p53
through sirtuin1-dependent deacetylation of p53. This is in
contrast to the actions of most reports on adipokines and cancer,
which show promotion of metastatic potential and cancer cell
survival.

Obesity has long been linked to increased local inflammation.
As discussed above, obesity also reprograms metabolism
systemically and can lead to increased levels of glucose and
dyslipidemia in the blood (107). Although these examples are
associated with obesity, the distribution of adipose tissue results
in proximate or direct contact of tumors with adipose tissue, both
in obese and non-obese conditions. This growing field of study
suggests that the adipose tissue microenvironment contributes
significantly to malignancy through tumor-microenvironment
communication (Figure 3). In an invasive ductal carcinoma
breast cancer model, increased lymph node metastasis was
reportedly linked to adipose tissue invasion at the tumor
margin (108). Tumor cells have been reported to induce
delipidation of adipocytes and promote lipolysis in the tumor
microenvironment (109). Regardless of the p53 status of the
tumor cell, stimulation of oncogenic signaling pathways by

p53-dependent adipokine production from the white adipose
tissue in the microenvironment may facilitate tumor propagation
(Figure 3).

Finally, bone marrow adipose tissue (BMAT) has recently
been shown to affect metastatic progression and drug resistance
in prostate and breast cancer. The mechanisms involved in
this new adipose depot are currently being resolved. Fairfield
et al. used a 3D culture model of BMAT to show that
BMAT adipocytes, when co-cultured with tumor cells, undergo
delipidation (110). This supports the model of exogenous lipid
dependency by tumor cells for metabolic flexibility within
the metastatic niche. Lipids from adipocytes in the tumor
microenvironment could potentially regulate metabolic and
signaling pathways in cancer cells, providing themwith a survival

advantage. A role for p53 in bone marrow adipose tissue has not
yet been investigated.

CONCLUSIONS AND FUTURE
DIRECTIONS

An increased risk of cancer development and a poorer cancer
prognosis is associated with increased obesity (107, 111–114).
Cancer survivors with a higher body mass index are more likely
to experience a cancer recurrence (115). The mechanisms linking
increased adiposity to malignancy are not entirely understood.
Altered interactions between adipose tissue and systemic or
neighboring tissue, changing endocrine hormone and adipokine
secretion that would facilitate tumor invasion and metastasis
are hypothesized to drive metabolic reprogramming in tumor
cells and provide metabolites and lipids required for tumor
progression and growth. Although brown adipose tissue is
metabolically more active than white adipose tissue, the link
between chronic metabolic diseases and brown adipose tissue
is unknown. Given the differential regulation by p53 of white
vs. brown adipose tissue, it will be interesting to compare the
influence of these different adipose depots for their potential to
contribute to cancer. A thorough understanding of the crosstalk
between cancer cells and the adiposemicroenvironmentmay well
reveal novel therapeutic targets for cancer treatment.
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The p53 tumor suppressor continues to be distinguished as the most frequently mutated 
gene in human cancer. It is widely believed that the ability of p53 to induce senescence 
and programmed cell death underlies the tumor suppressor functions of p53. However, 
p53 has a number of other functions that recent data strongly implicate in tumor sup-
pression, particularly with regard to the control of metabolism and ferroptosis (iron- and 
lipid-peroxide-mediated cell death) by p53. As reviewed here, the roles of p53 in the con-
trol of metabolism and ferroptosis are complex. Wild-type (WT) p53 negatively regulates 
lipid synthesis and glycolysis in normal and tumor cells, and positively regulates oxidative 
phosphorylation and lipid catabolism. Mutant p53 in tumor cells does the converse, pos-
itively regulating lipid synthesis and glycolysis. The role of p53 in ferroptosis is even more 
complex: in normal tissues, WT p53 appears to positively regulate ferroptosis, and this 
pathway appears to play a role in the ability of basal, unstressed p53 to suppress tumor 
initiation and development. In tumors, other regulators of ferroptosis supersede p53’s 
role, and WT p53 appears to play a limited role; instead, mutant p53 sensitizes tumor 
cells to ferroptosis. By clearly elucidating the roles of WT and mutant p53 in metabolism 
and ferroptosis, and establishing these roles in tumor suppression, emerging research 
promises to yield new therapeutic avenues for cancer and metabolic diseases.

Keywords: p53, metabolism, ferroptosis, apoptosis, tumor suppressor

iNTRODUCTiON

The tumor suppressor gene TP53 has been the most heavily studied human gene since its discovery 
nearly 40 years ago (1). The main reason behind this status is the critical role p53 plays in preventing 
cancer development, and it is widely regarded as the “guardian of the genome.” For some time it has 
been generally believed that p53’s role in tumor suppression is by virtue of its ability to induce the 
apoptosis, cell cycle arrest, and senescence of pre-cancerous cells (2). However, it is now increasingly 
clear that p53 regulates many other pathways in the cell and that these other pathways also play roles 
in p53’s ability to function as a tumor suppressor (3). In particular, p53’s role in the regulation of 
genes involved in metabolism and ferroptosis has been implicated in its ability to suppress tumor 
development. Ferroptosis is a novel cell death pathway first characterized in 2012 and can be best 
described as an iron-dependent, caspase-independent form of cell death driven by the formation of 
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FigURe 1 | The role of wild-type (WT) p53 in metabolism. Genes positively regulated by p53 are shown in green, and genes negatively regulated by p53 are shown 
in red. p53 inhibits glucose transport, glycolysis, and fatty acid synthesis while it promotes lipid uptake, fatty acid oxidation, oxidative phosphorylation, and 
glutaminolysis.
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lipid peroxidation (4). Specifically, two mouse models containing 
engineered mutations in p53 that eliminate the ability of p53 to 
induce apoptosis and senescence both retain the ability to suppress 
spontaneous tumor development; both of these mutants retain 
the ability to transactivate genes in metabolism and ferroptosis 
(5, 6). A summary of the data implicating p53 in the regulation 
of metabolism and ferroptosis is detailed below.

wiLD-TYPe (wT) p53 POSiTiveLY 
RegULATeS OXiDATive 
PHOSPHORYLATiON AND SUPPReSSeS 
gLUCOSe MeTABOLiSM

Wild-type p53 regulates the metabolic versatility of cells by 
favoring mitochondrial respiration over glycolysis, in part via 
the transactivation of SCO2 (cytochrome c oxidase assembly), 
which plays a direct role in oxidative phosphorylation (7). p53 also 
directly regulates the transactivation of GLS2 (Glutaminase 2);  
this enzyme allows glutamine usage as an energy source for 
the mitochondria (8). In addition, WT p53 negatively regulates 
glycolysis by transcriptionally repressing the glucose trans-
porters GLUT1 and GLUT4, and by transactivating RRAD and 
TIGAR; both are inhibitors of glycolysis (9–11). Finally, p53 also 
directly binds and inhibits the enzyme glucose-6-phosphate 
dehydrogenase, thus suppressing glucose metabolism (12). It 
is clear from these and other studies that in normal, unstressed 
organisms, p53 directly regulates the metabolic state in a cell 
(Figure 1). Not surprisingly, this gene and many of its regula-
tors are implicated in metabolic diseases, including obesity and 
diabetes (13).

MUTANT p53 POSiTiveLY RegULATeS 
wARBURg MeTABOLiSM (AeROBiC 
gLYCOLYSiS)

In contrast to the function of WT p53, mutant p53 in tumor cells 
favors aerobic glycolysis, in part by enhancing the trafficking of 
the glucose transporter GLUT1 to the plasma membrane, hence 
increasing glucose import (14, 15). Following the mutation of p53, 
the reduced levels of SCO2 and GLS2 and the increased levels of 
GLUT1 and GLUT4 favor aerobic glycolysis over oxidative phos-
phorylation. In this manner, mutant p53 is believed to contribute 
to the propensity of tumor cells to utilize aerobic glycolysis in favor 
of oxidative phosphorylation, or so-called Warburg metabolism 
(15). One of the hallmarks of cancer is deregulated metabolism, 
generally demonstrated by this switch from aerobic glycolysis to 
oxidative phosphorylation. Though this results in a lower and less 
efficient ATP yield, it is believed that cancer cells benefit by divert-
ing glycolytic intermediates to biosynthetic pathways necessary 
for rapid cell division (16). This metabolic switch also leads to 
decreased mitochondria-mediated apoptosis and more efficient 
signaling through available metabolites in cancer cells (17).

A COMMON geNeTiC vARiANT iN TP53 
iNFLUeNCeS iTS FUNCTiON iN 
MeTABOLiSM

There is a common coding region polymorphism of p53 at 
codon 72, encoding for either proline (P72) or arginine (R72). 
This amino acid variation can impact p53 function with regard 
to cell fate after stress. In response to DNA damage, the P72 
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variant of p53 predominantly triggers cell cycle arrest, while 
the R72 variant predominantly induces cell death, or apoptosis  
(18, 19). Despite these differences in function, the codon 72 
variation has not been consistently associated with cancer 
susceptibility (20). By contrast, in human studies this poly-
morphism is significantly associated with increased body mass 
index and risk for diabetes (21, 22). This premise is supported 
by studies in mice, where a mouse model for these codon 72 
variants shows increased high-fat diet-induced diabetes in mice 
with the R72 variant, compared to P72. In these studies, the 
p53 target genes TNFα and NPC1L1 were identified as critical 
regulators in the increase in diet-induced obesity in R72 mice 
(23). Interestingly, the R72 variant has also been shown to 
confer increased survival of cells in response to nutrient depri-
vation (24). These findings have led to the hypothesis that the 
R72 variant of p53 arose and was selected for as populations 
migrated north, where cold weather would require increased 
fat accumulation, but where survival in response to nutrient 
deprivation would also be under selection (24).

p53 RegULATeS LiPiD MeTABOLiSM

Though p53 is well known for regulating glycolysis and the citric 
acid cycle, p53 also has been shown to play a role in regulating 
lipid metabolism (25). It is believed that WT p53 enhances fatty 
acid oxidation while inhibiting fatty acid synthesis, thus acting 
as a negative regulator of lipid synthesis (25). There are several 
p53 target genes with roles in lipid metabolism. Sanchez-Macedo 
and colleagues demonstrated that carnitine palmitoyltransferase 
1C (CPT1C) is transcriptionally regulated by p53; this enzyme 
aids in the transport of activated fatty acids to the mitochondria. 
In support of a role for this p53-regulated gene in cancer, this 
group showed that Cpt1c-deficient mice display delayed tumor 
development and higher survival rates (26). Lipin 1 (LPIN1) is 
another p53 target gene; LPIN1 is necessary for proper adipocyte 
development and is induced under low nutrient conditions (27). 
Finck and colleagues showed that LPIN1 interacts with PGC-1α, 
another known p53 target gene with a role in metabolism, and 
that this interaction activates the expression of genes involved in 
promoting fatty acid oxidation (28).

In addition to directly regulating the transcription of genes 
involved in lipid metabolism, p53 can also regulate lipid metabo-
lism in a manner involving direct protein–protein interaction. 
For example, glucose-6-phosphate dehydrogenase, which is the 
rate-limiting enzyme in the pentose phosphate pathway, binds to 
and is directly inhibited by p53, resulting in decreased NADPH 
production and consequently decreased fatty acid synthesis (12). 
The sterol regulatory element-binding proteins (SREBP) family of 
transcription factors modulate the expression of genes involved 
in cholesterol, fatty acid, triacylglycerol, and phospholipid syn-
thesis (29–31). WT p53 represses SREBP function (32), while 
mutant forms of p53 bind directly to SREBP and enhance their 
transcriptional function, leading to increased SREBP activity in 
human tumors (33, 34). Consequently, mutant p53 is correlated 
with higher expression of sterol biosynthesis genes in human 
breast tumors (34, 35). Finally, AMP-activated protein kinase 
(AMPK) is an enzyme that is activated under low nutrient levels 

or energy stress and is known to inhibit fatty acid synthesis by 
interacting with acetyl-CoA-carboxylase and SREBP-1 (36, 37). 
Zhou and colleagues demonstrated that mutant p53 preferentially 
binds to and inhibits AMPK, leading to increased fatty acid syn-
thesis. As a result, mutant p53 proteins lead to increased AMPK 
signaling, contributing to invasive cell growth of tumor cells (33). 
A lesser explored area is the role of p53 in lipid transport. It has 
been shown that p53 transcriptionally regulates apolipoprotein B 
(apoB) and apoB editing enzyme complex 1, indicating the role 
of p53 in regulating atherogenic lipoproteins (38). Microarray 
analysis of human liver-derived cells identified phospholipid 
transfer protein, ATP binding cassette A12, and carboxyl ester 
lipase as three p53 target genes that all play a role in lipid trans-
port (39, 40). Overall, though it is clear that p53 plays a key role 
in mediating lipid synthesis and metabolism, the contribution of 
this pathway, and these p53 target genes, to tumor suppression by 
p53 remains to be determined (Figure 1).

FeRROPTOSiS iS A NOveL CeLL DeATH 
PATHwAY DRiveN BY LiPiD 
PeROXiDATiON

In 2012, Dixon and colleagues discovered a novel form of 
regulated cell death called ferroptosis. Ferroptosis is an iron-
dependent, caspase-independent form of cell death resulting 
from the accumulation of oxidized lipids (4, 41). This process is 
driven by the inactivation of glutathione peroxidase 4 (GPX4), 
an enzyme that is responsible for converting lethal lipid hydrop-
eroxides to non-toxic lipid alcohols, which requires glutathione 
in order to function (41). It is believed that peroxidation of 
polyunsaturated fatty acids (PUFAs) is the driving impetus for 
cell death by ferroptosis. PUFAs contain bis-allylic protons that 
can easily be abstracted and produce radicals that will react with 
oxygen, creating more radicals and resulting in a chain reaction 
of lipid reactive oxygen species (42). The exact mechanism of 
cell death by ferroptosis remains unknown, but one hypothesis 
is that the lipid damage leads to the destruction of the plasma 
membrane (43). It has been speculated that ferroptosis could 
be a mechanism of tumor suppression that works by eliminat-
ing cells that are nutrient deprived or have been exposed to an 
environmental stress or infection.

PHARMACOLOgiC RegULATiON OF 
FeRROPTOSiS

Ferroptosis can be induced using inhibitors of system xc
− such 

as erastin, or analogs such as glutamate and sorafenib, which 
inhibit the import of cystine, resulting in depleted glutathione 
and subsequent inactivation of GPX4. Alternatively, ferroptosis 
can be induced by (1S,3R)-RSL3 (hereafter referred to as RSL3), 
which directly binds to and inhibits GPX4 (4, 5, 42). Buthione 
sulfoximine, FIN56, FINO2, CCl4, and cisplatin are other agents 
that have been demonstrated to induce ferroptosis in cells. Death 
by ferroptosis can be prevented by suppressing lipid peroxidation, 
which can be accomplished by using lipophilic antioxidants, such 
as ferrostatin-1, liproxstatin-1, or vitamin E. Iron chelators such 
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as deferoxamine or cicloprox are another tool used to suppress 
ferroptosis by reducing the levels of iron. Depleting PUFAs or 
adding monounsaturated fatty acids to cell culture media can also 
rescue cells from ferroptosis (42, 44).

FeRROPTOSiS iS iMPLiCATeD iN p53-
MeDiATeD TUMOR SUPPReSSiON

In 2012, Gu and colleagues developed a mouse model in which 
three normally acetylated lysine residues in the DNA-binding 
domain of p53 were mutated to arginine, and therefore could not 
be acetylated; this mouse is referred to as the 3KR mouse. Notably, 
cells from the 3KR mouse are unable to undergo p53-dependent 
apoptosis, cell cycle arrest, or senescence, and indeed the 3KR 
mutant of p53 fails to transactivate the majority of p53 target 
genes. Interestingly, this mouse model does not spontaneously 
develop cancer, implying that p53 could suppress tumor develop-
ment independent of senescence or apoptosis (45). This group 
found that the mutant 3KR protein retains the ability to undergo 
ferroptosis and regulate cystine metabolism by regulating the 
expression of the cystine importer SLC7A11; this suggested that 
ferroptosis might be one pathway that underlies p53-mediated 
tumor suppression. When wild type and 3KR MEFs were treated 
with the ferroptosis inducer Erastin, almost 50% cell death was 
observed whereas p53 null MEFs exhibited 20% cell death; this 
indicates that p53 sensitizes cells to ferroptosis, and also that other 
key regulators also play a role in ferroptosis (5). Subsequently, Gu 
and colleagues identified an additional acetylation site at lysine 
98 of p53, and they generated a mouse model in which all four 
acetylation sites were mutated to arginine (4KR). Interestingly, 
the 4KR mutant was unable to regulate genes involved in fer-
roptosis like SLC7A11, and unlike the 3KR mutant was unable to 
suppress tumor development (46). Though at present correlative, 
these data implicate the role of p53 in ferroptosis in its ability to 
suppress tumor development.

iN NON-TRANSFORMeD CeLLS, p53 
POSiTiveLY RegULATeS FeRROPTOSiS

In addition to SLC7A11, several other direct p53 target genes 
have been discovered to play a role in ferroptosis. These include 
GLS2, PTGS2, and SAT1. Studies from two separate groups sup-
port the role of GLS2 in ferroptosis, which is known to decrease 
glutathione and increase cellular ROS levels. Jiang and colleagues 
used ferroptosis inhibitors combined with glutaminolysis inhibi-
tors to inhibit Erastin-induced ferroptosis, thereby demonstrating 
that ferroptosis requires glutaminolysis and GLS2 (47). Murphy 
and colleagues showed that a polymorphic variant of p53 was 
able to induce growth arrest and senescence in both human and 
murine cells but failed to repress SLC7A11 or transactivate GLS2. 
This variant was markedly impaired at inducing ferroptosis and 
suppressing tumor development, thus again implicating the role 
of p53 in ferroptosis-mediated tumor suppression (48). Another 
p53 target gene with a role in ferroptosis is PTGS2, a gene encod-
ing the enzyme cyclooxygenase-2. Stockwell and colleagues first 
showed that the induction of ferroptosis using Erastin and RSL3 

led to the upregulation of PTGS2 (41). Notably, PTGS2 was not 
upregulated by ferroptosis inducers in p53-null cells, suggesting 
that this regulation is p53 dependent (5). Presently, the upregula-
tion of PTGS2 is widely used as a ferroptosis marker (5, 41).

A recent study by the Gu group showed that the p53 target 
gene SAT1 regulates ferroptosis (49). The authors identified 
SAT1 as a direct target of p53 and showed that silencing of SAT1 
reduced cell death induced by reactive oxygen species in cells 
with WT p53, but had no effect in p53-null cells. Mechanistically, 
this group showed that SAT1 increases the level and activity of 
arachidonate 15-lipoxygenase, an iron-binding enzyme that 
oxidizes PUFAs and increases lipid peroxidation. Notably, this 
study showed that neither p53 nor SAT1 alone appear to be suf-
ficient to induce ferroptosis. Instead, the combined data are more 
consistent with the premise that p53, by virtue of regulating genes 
that contribute to ferroptosis, regulates the sensitivity of cells to 
this pathway, rather than directly induces ferroptosis. Whether 
p53 regulates other genes involved in ferroptosis remains to be 
determined (Figure 2).

iN SOMe CeLLS, p53  NegATiveLY 
RegULATeS FeRROPTOSiS

A study recently published by Tarangelo and colleagues shows 
that p53 negatively regulates ferroptosis in cancer cells (50). This 
group found that pre-treating cells with Nutlin-3, a compound 
that stabilizes p53 delays the onset of ferroptosis in several cell 
types. The delayed onset of ferroptosis was found to depend 
on CDKN1A (encoding p21), a critical p53 transcriptional 
target. The mechanism through which p21 delays ferroptosis 
has yet to be elucidated, but it is believed that the conservation 
of intracellular glutathione may be a contributing factor for 
reduced ferroptosis sensitivity. The authors conclude that the 
p53–p21 axis enables cancer cells to survive under conditions 
of metabolic stress, such as cystine deprivation, by suppressing 
the onset of ferroptosis (50). A recent study showed that p53 
inhibits ferroptosis in colorectal cancer cells by binding to the 
enzyme dipeptidyl-peptidase-4 (DPP4), which is a modulator 
of ferroptosis and lipid metabolism. Mechanistically, this study 
showed that p53 antagonizes ferroptosis by sequestering DPP4 in 
a nuclear enzymatic inactive pool. In the absence of p53, DPP4 is 
free to interact with and form a complex with NOX1; this leads to 
increased lipid peroxidation and ferroptosis. Inhibition of DPP4 
suppresses ferroptosis significantly, whereas overexpression of 
DPP4 triggers Erastin sensitivity, particularly in p53-depleted 
cells (51). The bidirectional control of ferroptosis by p53 through 
transcription-dependent and transcription-independent mecha-
nisms may be context or cell-type dependent (Figure 2).

THe P47S POLYMORPHiSM OF TP53 
AFFeCTS FeRROPTOSiS AND TUMOR 
SUPPReSSiON

In addition to missense mutations, there are several functionally 
significant single-nucleotide polymorphisms (SNPs) in the TP53 
gene and other proteins known to regulate this pathway (such as 
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FigURe 2 | The various roles of p53 in ferroptosis. Inhibition of glutathione peroxidase 4 (GPX4), the key enzyme that catalyzes the conversion of polyunsaturated 
fatty acids (PUFAs) containing peroxides to alcohols, is the key driver of ferroptosis. Depending on the context, p53 can suppress ferroptosis (such as in colorectal 
cancer cells) or promote ferroptosis. Mutant p53 sensitizes cells to ferroptosis even more than wild-type p53.
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MDM2 and MDM4). The Pro47Ser variant (hereafter S47) is the 
second most common SNP found in the p53 coding region (after 
Pro72Arg) that alters the amino acid sequence of the protein. 
To better elucidate the impact of this variant on p53 function 
and cancer risk, the Murphy group generated a humanized p53 
knock-in mouse model, in which exons 4–9 of murine p53 were 
replaced by human p53 exons containing either the wild type or 
the S47 variant (52–55). The majority of S47 mice spontaneously 
developed tumors of various histologic types, particularly liver 
cancer, between 12 and 18 months of age, unlike WT p53 mice 
(48). In mouse embryonic fibroblasts and human lymphoblas-
toid cell lines, the S47 variant showed impaired programmed 
cell death in response to cisplatin and other genotoxic stresses. 
Mechanistically, the S47 variant is defective for transactivation 
of genes involved in metabolism, such as Gls2 (glutaminase 2) 
and Sco2 (48). Consistent with the role of Gls2 in ferroptosis, 
this group found that S47 cells were markedly resistant to the 
ferroptosis-inducing agents Erastin and RSL3 (47, 48). This defect 
may contribute to the tumor-prone phenotype observed in S47 
mice.

MUTANT p53 SeNSiTiZeS TUMOR CeLLS 
TO FeRROPTOSiS

Wild-type p53 negatively regulates the expression of the cystine 
importer SLC7A11, which inhibits sensitivity to ferroptosis (5). 
Although this regulation occurs in normal cells, in tumor cells, 
other mediators of SLC7A11 appear to predominate in the regula-
tion of this gene. For example, the master antioxidant transcrip-
tion factor NRF2 can also regulate the expression of SLC7A11 at 

the transcriptional level, and NRF2 has been implicated as a key 
player in protecting cancer cells against ferroptosis. For example, 
inhibition of NRF2 in hepatocellular cancer cells increases the 
anti-cancer activity of Erastin and Sorafenib in vivo (56). Mutant 
forms of p53 can inhibit NRF2 function by direct interaction, 
and one group found that tumors with mutant p53 contain very 
low levels of SLC7A11, and thus show increased sensitivity to 
ferroptosis. Notably, overexpression of SLC7A11 in mutant p53 
models led to drug resistance, suggesting that levels of SLC7A11 
expression must be considered when targeting mutant p53 
driven cancers with ferroptosis-inducing compounds (57). In 
support of this premise, recent work in colorectal (CRC) cancer, 
where mutation or deletion of p53 is a frequent event, showed 
that human CRC cell lines harboring mutant p53 were far more 
sensitive to Erastin-mediated cell death when compared to CRC 
cells with WT p53. To validate these findings, they showed that 
knock in of a p53 hotspot mutation in both HCT116 and SW48 
cells restored sensitivity to Erastin (51). These data highlight a 
novel mechanism by which cancers driven by mutant p53 can be 
exploited using targeted therapy.

CONCLUSiON

The role of p53 in metabolism is quite clear and possibly even 
intuitively obvious: WT p53 limits glucose metabolism and lipid 
synthesis, while mutant p53 appears to do the opposite. The con-
tribution of its metabolic role to tumor suppression by p53, and 
to the ability of mutant p53 to drive tumor progression, remains 
to be unequivocally proven. The role of p53 in the regulation 
of ferroptosis, and the contribution of this function, to tumor 
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suppression is even less clear. While compelling data from mouse 
models supports the premise that p53 regulates the sensitivity 
of cells to ferroptosis, this may be restricted to the ability of 
basal p53 to suppress spontaneous tumor development, and in 
oncogene-stressed mouse models, it is clear that senescence and 
apoptosis play the predominant role. Similarly, p53 may regulate 
ferroptosis sensitivity in a cell type-specific manner. More stud-
ies in animal models, with attention to ferroptosis in different 
tissues, need to be done to more fully understand the role of p53 
in ferroptosis and ferroptosis in tumor suppression. Additionally, 
a clearer idea of what p53-target genes play a role in sensitivity 
to ferroptosis needs to be attained. Resolution of these questions 
should provide for much needed novel avenues to combat tumors 
with mutant p53.
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Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN) is a dual

phosphatase with both protein and lipid phosphatase activities. PTEN was first

discovered as a tumor suppressor with growth and survival regulatory functions. In recent

years, the function of PTEN as a metabolic regulator has attracted significant attention.

As the lipid phosphatase that dephosphorylates phosphatidylinositol-3, 4, 5-phosphate

(PIP3), PTEN reduces the level of PIP3, a critical 2nd messenger mediating the signal

of not only growth factors but also insulin. In this review, we introduced the discovery

of PTEN, the PTEN-regulated canonical and nuclear signals, and PTEN regulation. We

then focused on the role of PTEN and PTEN-regulated signals in metabolic regulation.

This included the role of PTEN in glycolysis, gluconeogenesis, glycogen synthesis, lipid

metabolism as well as mitochondrial metabolism. We also included how PTEN and PTEN

regulated metabolic functions may act paradoxically toward insulin sensitivity and tumor

metabolism and growth. Further understanding of how PTEN regulates metabolism and

how such regulations lead to different biological outcomes is necessary for interventions

targeting at the PTEN-regulated signals in either cancer or diabetes treatment.

Keywords: PTEN, PI3K, AKT, cancer, metabolism

KEY CONCEPTS

• Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN) is a dual phosphatase
with both protein and lipid phosphatase activities.

• PTEN reduces the level of PI-3, 4, 5-P3, a critical 2nd messenger mediating the signal of not only
growth factors but also that of insulin.

• In addition to the canonical PI3K/AKT signaling, PTEN also functions in the nucleus.
• PTEN regulates signals in metabolic regulation, includes the role of PTEN in glycolysis,

gluconeogenesis, glycogen synthesis, lipid metabolism as well as mitochondrial metabolism.
• PTEN and PTEN regulated metabolic functions act paradoxically toward insulin sensitivity and

tumor metabolism and growth.

INTRODUCTION

PTEN (phosphatase and tensin homolog deleted on chromosome 10) (also namedMMAC1/TEP1)
was discovered in 1997 independently by three laboratories as a tumor suppressor of which the
expression is often lost in tumors (1–3). Later studies established that PTEN is a negative regulator
of a major cell growth and survival signaling pathway, namely the phosphatidylinositol-3-kinase
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(PI3K)/AKT signaling pathway (4, 5). It is now well established
that PTEN plays a role in growth and survival. Studies in recent
years also established a role of PTEN in metabolic regulation
(6, 7). In this review, we summarized the roles of PTEN as both
a tumor suppressor and a metabolic regulator and reviewed the
biological functions of PTEN and its downstream target proteins.
We also summarized the regulations of PTEN transcriptionally,
post-transcriptionally and through regulation of its subcellular
localization.

PTEN FUNCTION AND ITS REGULATION

PTEN: A Dual Phosphatase
PTEN is encoded on chromosome 10q23, a region where loss
of heterozygosity frequently occurs in various types of cancer
(8). The protein encoded by PTEN contains 403-amino acid
where the amino-terminal region shares sequence homology with
the actin filament capping protein TENSIN and the putative
tyrosine-protein phosphatase AUXILIN (1, 6). Crystal structure
of PTEN revealed a C2 domain that contains the affinity
for phospho-lipids on membrane and a phosphatase domain
that contains the CX5R signature motif for phosphatases (9)
(Figure 1). In vitro, PTEN is capable of dephosphorylating
phospho-peptides as well as phospho-lipids. Thus, PTEN is a dual
lipid and protein phosphatase. The biological effects of PTEN,
however are dominated by its ability to dephosphorylate the
lipid substrate phosphatidylinositol-3, 4, 5-triphosphate (PIP3)
whereas protein substrates for PTEN are still being discovered
(5, 7, 10). The lipid phosphatase motif of PTEN dephosphorylates
PIP3 at the 3

′ position and converts it back into PIP2 (5), leading
to reduced PIP3 production and signals that depends on PIP3 (11)
(Figure 2). PI3K functions to catalyze the reaction from PIP2 to
PIP3. It achieves this task by phosphorylating the hydroxyl group
of the 3rd position on the inositol ring of Phosphatidylinositols
(12). The enzymatic function of PTEN thus acts as a negative
regulatory signal for the PI3K mitogenic signaling pathway
(Figure 2).

While the lipid substrate is well characterized to be PIP3, the
identity of the protein substrates for PTEN in vivo has been
illusive (13). However, in vitro study has revealed that PTEN
is able to regulate cell migration by dephosphorylating itself,
providing insights for investigating potential protein substrates
for PTEN (14).

Regulation of PTEN
Localization of PTEN

Several non-canonical nuclear localization domains have been
found on PTEN (15). A cytoplasmic localization signal has been
identified for the N-terminus of PTEN that spans the residue
from 19 to 25 (16). Mutations in these residues leads to increased
nuclear localization of PTEN with unknown mechanisms.
Studies suggest that ubiquitination controls the shuttling of
PTEN between cytosol and nucleus (17–19).Monoubiquitination
of lysine 289 (K289) is necessary for PTEN to move into the
nucleus. Mutation of this site, K289E, is found in familial
Cowden’s syndrome that carries multiple mutations of the PTEN
gene (17, 20, 21). A second ubiquitination site K13 and several

other sites may also facilitate the nuclear transportation of PTEN
(Figure 1). In addition, the localization of PTEN is regulated by
Ca2+-mediated interactions with the major vault protein (MVP)
(22, 23). In the nucleus, PTEN is more stable and still capable
of inhibiting AKT and inducing cell death. Structural analysis
also reviewed that PTEN harbors a PDZ domain and two PEST
sequences in the C-terminal region (24). The PDZ domain is
thought to regulate PTEN’s subcellular localization whereas the
two PEST sequences regulate its protein stability (25) (Figure 1).

Interestingly, while monoubiquitination leads to its nuclear
shuttling, poly-ubiquitination of PTEN leads to its degradation.
Though disagreement exists, an E3 ubiquitin ligase for PTEN has
been reported (18, 21). NEDD4-1 was reported to add ubiquitin
to both K13 and K289 of PTEN molecule, leading to both mono-
and poly-ubiquitination of PTEN. However, others suggest that
NEDD4 is dispensable for the regulation of PTEN (21).

Transcriptional Regulation of PTEN

PTEN is also regulated on the transcriptional and post-
transcriptional levels. Several transcriptional factors have been
reported to control the transcription of PTEN, including the
tumor suppressor p53, the early growth response protein 1
(EGR-1), a metabolic regulatory gene peroxisome proliferation-
activator receptor γ (PPARγ) [for detail, see (6)] and active
transcription factor 2 (ATF2) (26). PTEN is also transcriptionally
repressed by SNAIL and SLUG (27). These two zinc finger-like
transcriptional factors compete with p53 for PTEN promoter
binding. In addition, the nuclear factor kappa B (NFkB), the
AP-1 transcription factor subunit c-Jun and the Notch signaling
coregulatory CBF-1 (C-promoter binding factor-1) also bind to
the PTEN promoter to regulate its transcription (28, 29).

More recently, regulation of PTEN by RNA-RNA interaction
is reported that include microRNAs and long noncoding RNAs.
Several miRNA including miR-205, miR-122, miR-21, etc.
were identified to bind to the 3′untranslated region of PTEN
mRNA. Elevated levels of many miRNAs are correlated with
a concomitant reduction of PTEN mRNA (30–33). The long
noncoding RNA that is encoded by the PTEN pseudogene
transcript PTENP1 shares sequence identity with PTEN mRNA
(34, 35). This transcript binds to miRNAs that target PTEN,
leading to stabilization of PTENmRNA. The antisense transcript
of this pseudogene binds to the promoter of PTEN and negatively
regulates the transcription of PTEN (34, 36).

Post-translational Regulation of PTEN

Post-translationally, PTEN is modified by acetylation, oxidation
and phosphorylation in addition to the ubiquitination discussed
above [for detail, see (37)] (Figure 1). Phosphorylation of PTEN
occurs on several clustered residues in the C-terminal domain
of PTEN (38, 39). Several enzymes are responsible for these
phosphorylations including casein kinase 2 (CK2), GSK3β, RhoA
kinase, and P110δ subunits of PI3K (38–43). Phosphorylation
of PTEN generally leads to the stabilization of the molecule
but may reduce its activity (38, 39, 44). Recently, it was shown
that ataxia-telangiectasia-mutated kinase (ATM) phosphorylates
SUMOylated PTEN in response to γ-irradiation which leads
to its nuclear exclusion (45). SUMOylation of PTEN typically
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FIGURE 1 | Structure and regulation of PTEN. PTEN is a 403-amino acid protein that shares sequence homology with tensin and auxilin at its amino-terminal. The

hosphatase domain (PTPase) contains the signature CX5R (HCKAGKGR) p-loop structure for phosphatases. The C2 domain contains the affinity for phospho-lipids.

PTEN also contains two PEST domains and a PDZ domain that may regulate its stability and subcellular localization, respectively. Several post-translational

modification sites are discovered on PTEN. Two lysine sites (K13 and K289) are found to be ubiquinated and affects the localization and stability of PTEN. K289 is also

sumoylated. Two additional sumoylation (K254 and K255) sites are identified that facilitates the binding of PTEN to the membrane. PTEN is also acetylated on K125

and K128 that decreases the ability of PTEN to inhibit PI3K/AKT activity. Oxidation of PTEN can occur that leads to formation of disulfide bond between C71 and

C124 which results to reduced PTEN activity. Clusters of phosphorylation sites are found on PTEN. Phosphorylations of PTEN in general increases its stability but

reduces its activity.

occurs on K254 and K255 (46) which facilitates its binding
to the membrane whereas modification on K289 is involved
in its nuclear shuttling due to competition with ubiquitination
modification. A couple of lysine residues at the catalytic domain
of PTEN, lysine 125 and 128 are acetylated by PCAF (47). These
acetylations lead to the diminished ability of PTEN to inhibit
downstream events. PTEN is also regulated by the redox status
of the cells. Two cysteine residues (124 and 71) form a disulfide
bond in response toH2O2 treatment that leads to reduced activity
of PTEN (48). Cys 124 is one of the “hot spots” that are often
found mutated in human cancers.

PTEN AS A TUMOR SUPPRESSOR

Canonical Signaling Pathways Regulated
by PTEN
Accumulation of PIP3 serves as a major signal for growth factor
stimulation. PIP3 binds to the pleckstrin homology (PH) domain
of downstream proteins (e.g., AKT) and provides a lipid moiety
and recruits these proteins to the plasmamembrane (49). Binding
of PIP3 to the PH domain also changes the confirmation of
these proteins so they can later be activated by phosphorylation.
By reducing the intracellular levels of PIP3, PTEN inhibits
the activation of downstream proteins of the PI3K pathway,
including the serine/threonine kinase AKT and the protein
kinase C (PKC).

A well-known downstream effector protein of the PTEN
signal is AKT (50), which plays a critical role in regulating
a number of cellular activities including cell growth, survival,
cell migration and differentiation, cell and organ size control,
metabolism, et al. [for detailed review, see (51)]. AKT, also known
as Protein Kinase B (PKB) is a serine/threonine kinase. Following
PI3K activation, accumulation of PIP3 allows recruitment of

AKT to the plasma membrane via direct interaction with its
PH domain (11). This binding of AKT to PIP3 not only allows
AKT to be translocated to the membrane but also exposes
sites on AKT where it can be further modified. It has been
shown that AKT is phosphorylated by another PH domain-
containing kinase 3-phosphoinositide-dependent protein kinase
1 (PDK1) at Thr308 (13, 52). This phosphorylation on Thr308 is
important for initial activation of AKT whereas phosphorylation
of Ser473 by mTORC2 is required for maximal AKT activation
(53) (Figure 2).

Activated AKT phosphorylates a plethora of downstream
targets including the regulations of kinases such as glycogen
synthase kinases (GSK3α and β) (54), IκB kinases (IKKα and
IKKβ) (55), apoptotic factors such as BAD (56), MDM2, a
ubiquitin ligase for p53 (57), GTPases like Rac and Rho (58), cell
cycle inhibitors p21 and p27 (59), and transcription factors such
as forkhead transcription family (FoxO) members (Figure 2)
(60–62). Phosphorylation by AKT regulates the functions of
thesemolecules that are important formultiple cellular processes.
For instance, phosphorylation of the pro-apoptotic factors BAD,
caspases 3 and 9 by AKT renders them inactive and thus
promotes cell survival (56, 63, 64). Phosphorylation of p21 on
T145 and p27 on T157 leads to their nuclear exclusion and the
inability of these cell cycle inhibitors to inhibit cell proliferation
(65, 66). Likewise, AKT also directly phosphorylates MDM2 and
MDMX (67, 68). The phosphorylated MDM2 and MDMX bind
to 14-3-3 proteins, leading to stabilization of the MDM2-MDMX
complexes which mediates the degradation of p53 to keep the
level of p53 low in the cells.

AKT also phosphorylates forkhead transcriptional factors and
induces their binding to 14-3-3 proteins (63). This process
blocks their translocation to the nucleus. Several members of
the forkhead transcriptional factor family are targets of AKT,
including FOXO1 and FOXO3. The binding elements for these
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FIGURE 2 | Canonical signals regulated by PTEN. PTEN dephosphorylates PIP3 on the 3′ position at the membrane and converts it back into PIP2. This action

antagonize that of PI3K which adds the phosphate onto the 3′ position, leading to increased PIP3 production. PIP3 binds to the pleckstrin homology (PH) domain of

downstream proteins (e.g., AKT) and provides a lipid moiety and recruits these proteins to the plasma membrane. AKT is one of the best characterized target of PI3K.

Accumulation of PIP3 allows recruitment of AKT to the plasma membrane via direct interaction with its PH domain. AKT is then phosphorylated by two kinases, PDK1

and mTORC2 that leads to its full activation. Activated AKT has a plethora of downstream targets that it phosphorylates. Together these molecules are involved in cell

growth and survival, metabolism and crosstalk with a number of other signaling pathways.

forkhead transcriptional factors are widely spread on promoter
regions of genes that regulate cell proliferation, survival and
metabolic changes (69). For example, FOXO3a binds to the
promoters of Bim and PUMA and can initiate apoptosis cascades
by inducing the transcription of these death genes (70, 71).
FOXO1 transcriptionally activates p21 and p27 and inhibits
cell proliferation through these actions (72, 73). Furthermore,
these forkhead transcriptional factors are also responsible for
many metabolic effects induced by insulin signaling through the
PI3K/AKT signaling pathway (74). Additional evidence suggests
that the forkhead transcriptional factorsmay play a key role in the
feedback regulation of the Insulin/PI3K/AKT signaling pathway
(75).

Two substrates of AKT, GSK3β and tuberous sclerosis
complex TSC1/2, play important roles in mediating cross talks
between PI3K/AKT signaling pathway and other signaling
pathways (Figure 2). GSK3β is phosphorylated by AKT on Serine
21/9 which inhibits its activity (76). GSK3β is an important
regulator inWnt signaling. It phosphorylates β-catenin, resulting
in its ubiquitin-mediated degradation. The crosstalk between
PTEN and Wnt signaling may underlie some of the effects of
PTEN on the regulation of stem cell maintenance (77–79) and
G0-G1 cell cycle regulation (80–84). Another substrate of AKT
is TSC1/2. TSC1/2 plays a key role in incorporating metabolism
and cell size control, together with cell growth and proliferation

regulation (85). The heterodimer of TSC1 and TSC2 is essential
for suppressing the function of mTOR (mammalian target of
rapamycin). TSC2 activity is inhibited when phosphorylated
by AKT (86). Therefore, by acting on TSC2, AKT induces
the activity of mTOR and the downstream events of mTOR
activation that include metabolic changes, protein translation as
well as cell proliferation. This regulation of mTOR by AKT-TSC-
mediated signal allows the crosstalk of PTENwith another tumor
suppressor LKB1 (87).

Nuclear PTEN
In earlier studies, PTEN was reported to be a protein that is
exclusively localized in the cytoplasm. However, it is clear now
that PTEN can be both cytoplasmic and nuclear (88–90). In
more differentiated and resting cells, PTEN is often found in the
nucleus even though it was originally identified to be a cytosolic
protein (using primarily tumor cells) (90). Nuclear PTEN also
plays other roles in addition to its lipid phosphatase activity
and the nuclear function of PTEN is important for the ability
of PTEN to inhibit tumor development (Figure 3). Nuclear
PTEN is reported to play important roles in chromosome
stability, DNA repair and cell cycle regulation. In the nucleus,
PTEN promotes the stability and transcriptional activity of the
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tumor suppressor p53 by directly associating with p53 (91–
93). Forced expression of PTEN in the nucleus led to MAP
kinase-dependent inhibition of cyclin D1 expression (15, 22).
Nuclear expression of PTEN results in the dephosphorylation
of MAP kinase. Whether this is a direct effect of the protein
phosphatase activity of PTEN is not clear. In addition, PTEN
is found to be associated with the centromere in the nucleus
by direct binding to the centromere specific binding protein C
(CENP-C) (94). Disruption of this binding leads to premature
centromere separation. In addition, PTEN is also found to
collaborate with E2F to induce the expression of Rad51 and
thus enhance DNA repair (94). This relationship between PTEN
and Rad51 may explain the observation that double-stranded
DNA breakage rate is found to be increased when nuclear PTEN
function is interrupted. PTEN also interacts with the anaphase-
promoting complex (APC) to promote its association with its
binding partner which together results in proteolysis of mitotic
cyclins (95).

PTEN AS A METABOLIC REGULATOR

As an important growth and survival regulatory gene, germline
deletion of Pten in mice was shown to be embryonic (96–
98). Heterozygous mice develop hamartomatous polyps in the
colon and tumors in multiple other tissues (99). In human,
germline PTEN mutation leads to a number of familial diseases
that are characterized by multiple hamartomatous lesions
and predisposition to cancer development (100). Conditional
deletion of Pten in mouse models has been done in multiple
organs. Collectively, these studies confirm the signaling studies
verifying PTEN as a tumor suppressor that regulates cell growth
and survival. These studies have been comprehensively reviewed
previously (6, 101).

While PTEN loss promotes tumorigenesis in multiple organs,
genetic studies also indicate that PTEN loss leads to a number
of metabolic changes that collectively improve overall insulin
sensitivity (Figure 4). PTEN, being a major negative regulator
of the PI3K/AKT signaling, is found to play an important role
in both lipid and glucose metabolism as well as regulation of
mitochondrial functions. Studies in C. elegans and Drosophila
have demonstrated a highly conserved signal regulated by PTEN
for both growth control and metabolism. In these organisms, the
insulin/PI3K pathway negatively regulated by PTEN is used to
control dauer formation, metabolism, and life span in response
to nutrient availability (102–104).

Regulation of Glucose Metabolism
Parallel signals for PTEN/PI3K have been reported for mammals
as it was in C. elegans and Drosophila. Insulin and insulin-
like growth factors (IGF) such as IGF-1 and IGF-2 binds to
the insulin and IGF receptors. Binding of insulin and IGF to
these receptors either directly induces the activation of PI3K or
results in phosphorylation of insulin receptor substrate (IRS) as
an adaptor protein to recruit and activate PI3K (10). Through
this action and the downstream activation of AKT, adipocytes
and myocytes sense the elevated insulin levels and initiate
glucose uptake. The serine/threonine kinase AKT phosphorylates

FIGURE 3 | Nuclear signals regulated by PTEN. In addition to the

dephosphorylating PIP3 at the plasma membrane. PTEN is also found in the

nucleus. In the nucleus, PTEN can act similarly as it does at the plasma

membrane by inhibiting the function of AKT. In addition, PTEN also associate

with a number of nuclear proteins and regulate other cellular functions such as

centromere stability, DNA repair, cell death and proliferation.

a 160-KDa substrate AS160 at Thr642 in adipocytes (105).
Phosphorylation of this protein, identified as a GTPase-activating
domain for Rab, is found to be responsible for membrane
trafficking of GLUT4 induced by the insulin/PI3K signaling. In
addition, AKT phosphorylates a variety of targets involved in
the regulation of metabolism. Phosphorylation and inhibition
of GSK3 not only contribute to regulation of β-catenin and
the cell cycle, it also activates glycogen synthase (6). When
PTEN is lost and GSK3 is phosphorylated, glycogen was found
to accumulate in hepatocytes of the liver-specific Pten null
mice (88). In hepatocytes, phosphorylation of FOXO by AKT
blocks the transcription of glucose-6-phosphatase (G6Pase) and
phosphoenolpyruvate carboxykinase (PEPCK) (74), two rate-
limiting enzymes in the process of gluconeogenesis. In addition,
AKT was also reported to directly phosphorylate proxisome
proliferator-activated receptor gamma co-activator (PGC-1a)
at S570 (106). This phosphorylation event was also found to
mediate the transcriptional repression of G6Pase and PEPCK.
These signals regulated by AKT and blocked by PTEN are
important for how metabolic organs like the liver, muscle and
adipose tissue respond to elevated insulin signals.

Consistent with these metabolic signals regulated by PTEN,
deletion of Pten in the liver led to robust downregulation of
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FIGURE 4 | Metabolic signals regulated by PTEN. In metabolic tissues, PTEN and PI3K/AKT signal mediates the action of insulin. In the liver, induction of PI3K/AKT

signal or PTEN loss leads to increased phosphorylation of several mitochondrial and glycolytic proteins that collectively increases glycolytic signaling. In addition,

G6Pase and PEPCK, two rate limiting enzyme involved in gluconeogenesis are inhibited by the induction of AKT. Cellular respiration is induced with upregulation of

PI3K/AKT due to their regulation on ERR and NRF, two mitochondrial biogenesis regulator. SREBP and FASn are induced through this signaling by insulin to induce

lipogenesis. In adipose tissue and muscle, AKT also phosphorylates AS160 to mobilize glucose transporter GLUT4 to the membrane in response to hyperglycemia

signals. In pancreatic β-cells. PTEN loss is found to rescue the age-onset loss of regenerating ability for β-cells. This phenotype appear to be regulated by the

inhibition of PTEN on senescence regulator p16 via E2F and Ezh2 signaling.

PEPCK (88). Moderate downregulation of G6Pase was also
reported. In the adipose tissue, deletion of Pten resulted in
increased insulin sensitivity and resistance to streptozotocin-
induced diabetes (107). Increased GLUT4membrane localization
on adipocytes was observed in these mice.

Regulation of Lipid Metabolism
In addition to glucose metabolism, the PTEN-regulated PI3K
signaling also controls lipid metabolism. The sterol receptor
element binding protein, SREBP, serves as a key transcriptional
factor for genes involved in the biosynthesis of fatty acids and
their further incorporation into triglycerides and cholesterol.
As a master transcriptional factor controlling the de novo
lipogenesis process, SREBP binds to the promoters of many
lipogenic enzyme genes, including fatty acid synthase (Fasn)
and acetyl-CoA carboxylase (ACC), as well as those controlling
the production of NADPH, a reducing equivalent needed for
lipid biosynthesis. The PTEN/PI3K/AKT signaling-controlled
SREBP expression is mediated through multiple levels including
transcriptional and post-translational processing of SREBP. The
downstream target of AKT, the forkhead transcriptional factor,
FoxO1 regulates SREBP and lipogenesis by repressing SREBP
transcription (108). Interestingly, the function of FOXO1 on
Fasn expression is dependent on whether PI3K/AKT signal is
induced (109). Using rapamycin and siRNA to inhibit mTORC1
and other signals involved in the AKT pathway, it was shown
that transcription induction of SREBP1 and lipogenesis is also
dependent on TORC1 activity (110). However, this effect was
not supported by observations in the TSC1-deficient mice,
defective in mTORC1 signaling, which are resistant, rather than
sensitive, to high fat diet (HFD)-induced steatosis (111). The
processing of SREBP is dependent on two proteins, SREBP
cleavage-activating protein (SCAP) and insulin induced gene

(Insig). In response to sterol demand, SCAP cleaves SREBP
to produce the mature active form of transcriptional factor
that moves to the nucleus. Binding of Insig to SCAP prevents
this action and thus inhibits the processing of SREBP. While
oxysterols suppresses the expression of Insig-1, inhibition
of PI3K/AKT activity blocks this inhibition and allows the
processing of SREBP (112), consistent with a role of AKT in
SREBP processing. This processing is both mTORC1-dependent
and mTORC1-independent (111). Thus, both PTEN/PI3K/AKT
downstream signaling targets, TORC1 and FoxO1, play critical
roles in controlling SREBP expression and lipogenesis. In
addition, Maf-1, a central repressor of genes transcribed by RNA
pol III is recently found to be regulated by PTEN through
AKT2 and mTOR (113). While SREBP binds to the promoter
of Fasn and positively regulates its expression, Maf-1 was
shown to occupy the promoter and repress the expression of
Fasn.

Consistent with these signaling analysis, loss of Pten in the
liver led to elevated de novo lipogenesis through robust induction
of SREBP and Fasn expression (88). The accumulation of lipid
and elevated lipogenesis is a result of activation of AKT2 as
deletion of Akt2 completely reversed the phenotype (109, 114).
This effect of AKT is both mTOR dependent and independent
(111). In addition, FOXO1 gain of function has also been shown
to induce lipid synthesis (115).

Regulation of Mitochondrial Metabolism
In recent years, studies attempt to elucidate the molecular signals
underlying “Warburg effects” have led to the discoveries of novel
roles for PI3K/AKT signaling in mitochondrial function (10). In
addition to regulating pro- and anti-apoptotic factors (10), AKT
promotes binding of hexokinase II to the mitochondrial voltage
dependent anion channel (VDAC) (116). This event, occurring at
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themitochondrial outer membrane allows rapid phosphorylation
of available glucose molecules and efficient conversion to ATP
from glycolysis. AKT was also found to be localized in the inner
membranes of the mitochondria (117, 118). In the mitochondria
matrix, AKT phosphorylates mitochondrial pool of GSK3β and
regulates mitochondrial respiration through phosphorylation
of pyruvate dehydrogenase (PDH) (118). In addition, the
mitochondrial localized AKT also plays a role in the transcription
regulation of mitochondrial DNA. A FOXO3-response element
has been found on the promoter of a mitochondrial encoded
gene, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) (119).

In the nucleus, the PI3K/AKT signaling controls
mitochondrial gene transcription network through multiple
different mechanisms. The forkhead transcriptional factor
FOXO3 has been demonstrated to be a transcriptional regulator
of mitochondrial genes. In colon cancer cells induced to express
a constitutively active form of FOXO3a, a large number of
mitochondrial genes are downregulated (120). These genes
include Tfam and TFB1M&2M, the nucleus-encoded auxiliary
factors for mitochondrial gene transcription. One of the
global regulators of metabolism including lipid and glucose
metabolism as well as mitochondrial metabolism is PGC-1 (121).
As a transcriptional coactivator, members of PGC-1 family of
coactivators have the ability to interact with a number of different
transcriptional factors including PPARs for fatty acid oxidation,
FOXO1 for lipogenesis, FOXO1 and glucocorticoid receptor
(GR) for gluconeogenesis, and estrogen-related receptors (ERRs)
for mitochondrial function.

The best characterized isoform of ERRs, ERRα is abundantly
expressed in high oxidative organs and recognized as a
key regulators of adaptive energy metabolism (122). ERRα,
itself, is a weak transcriptional factor. Both the activity and
expression of ERRα are significantly increased when physically
bound by PGC-1α (123). AKT activation was found to
control mitochondrial gene transcription by phosphorylating
and activating CREB transcriptional factor independent of the
cAMP mediated activation of PKA, the common signal that
induces CREB phosphorylation (124). When phosphorylated,
CREB induces the transcription of PGC-1. Thus, in addition
to removing the inhibition of FoxO and phosphorylating
PGC-1, activation of AKT also positively induces PGC-1
transcription by phosphorylating CREB. Being the coactivator,
PGC-1 robustly increases the transcriptional activity of ERRα

to promote transcription of genes encoding mitochondrial
function, including TFAM, TFB1M&2M and medium-chain
acyl-coA dehydrogenase (MCAD) (124). In hepatocytes, this
induction of ERRα leads to increased oxygen consumption and
elevated ROS production, likely contributed to the liver injury
(and lipid accumulation) phenotypes observed with Pten loss in
the liver.

In addition, the AKT substrate consensus sequence has been
found on NRF1, another gene involved in mitochondrial gene
transcription. In H4IIE hepatoma cells, phosphorylation of NRF1
by AKT is reported to mediate pro-oxidant t-BOOH induced
Tfam expression (125). Thus, through directly phosphorylating
FOXO and NRF1 or indirectly inducing ERRα expression, AKT
controls the gene transcriptional networks of mitochondria.

Consistently, over-expression of NRF1 and AKT has been
shown to mimic the effect of TFAM to abrogate 1-methyl-
4-phenyl-2, 3-dihydropyridinium ion induced mitochondrial
damage (126), confirming a signaling relationship between
PI3K/AKT/FOXO signal and mitochondrial gene transcription
regulation.

PARADOXICAL ROLES OF PTEN
REGULATED METABOLIC AND GROWTH
SIGNALS ON TUMOR GROWTH AND
METABOLISM

Metabolic Sensitivity Regulated by PTEN
In mammals, ectopic expression of PTEN by introduction of
bacterial artificial chromosomes (BACs) into the mouse genome
led to reduced body size, increased energy expenditure and low
body fat content (127, 128). Consistent with the observations
in C. elegance and Drosophila, these mice also have a longer
tumor free lifespan. This enhancedmetabolic phenotype however
is paradoxical with the enhanced metabolic functions associated
with PTEN loss observed with the tissue specific Pten deletion
mice. In adipose tissue, liver, pancreatic β-cells and muscle,
deletion of Pten consistently lead to enhanced insulin and
metabolic sensitivity as well as resistance to HFD induced
diabetes (88, 89, 107, 129–131). In addition to the enhanced
ability to transport and metabolize glucose by adipocytes,
myocytes and hepatocytes, PTEN loss was associated with
enhanced energy expenditure in brown adipose tissue (128). In
β-cells, deletion of Pten relieved the suppression of cell cycle
re-entry by inhibiting the senescence regulatory gene p16Ink4a

through E2F/Ezh2 mechanism (132). This regulation led to
the rescue of aging-induced loss of growth potential in β-
cells. The enhanced ability of pancreatic islets to respond to
hyperglycemic stress led to improved systemic metabolic health
(89, 130). Overall, PTEN loss and activation of PI3K/AKT
signal lead to the improved ability to handle metabolic stress
in mice. The improved metabolic health phenotypes observed
with overexpression of PTEN is likely contributed to metabolic
adaptation.

Tumor Metabolism Regulated by PTEN
While loss of PTEN leads to improved insulin sensitivity, this
metabolic effect has been credited for the tumor suppressing
functions of PTEN (7). The metabolic signals regulated
by this pathway, including the glycolytic signal such as
localization of glucose transporters, activation of hexokinase and
phosphofructokinase as well as induction of de novo lipogenesis
are among the signals that are recognized as promoting factors
for tumorigenesis. Indeed, a number of metabolic enzymes,
particularly glycolytic genes have been found to have oncogenic
or tumor suppressive functions as manipulation of these genes
modulate tumor growth. Particularly, expression of isoform
specific metabolic genes appears to be linked to tumorigenesis
(133). Association of lipogenic and other lipid metabolic genes
with tumors are recognized but more works are needed to
understand their contributions to tumorigenesis.
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FIGURE 5 | Steatosis regulation by PTEN alters the tumor microenvironment. Deletion of Pten leads to increased lipogenesis and deposition of lipid. In hepatocytes,

such lipid accumulation results in hepatocytes death which establishes a niche activation signal (e.g., Wnt). This then leads to the proliferation of tumor initiating cells

and tumorigenesis.

Steatosis Due to PTEN Loss Establishes a
Tumor Promoting Environment
During insulin resistance, suppression of hepatic glucose
synthesis by insulin is blunted and the persistence of hepatic
glucose output leads to postprandial hyperglycemia (134). At
the same time, hyperinsulinemia signal in the liver induces
lipogenesis, resulting in fatty liver disease that is a hallmark
of insulin resistance syndrome. This differential response of
gluconeogenesis and lipogenesis to insulin during insulin
resistance has been termed “selective hepatic insulin resistance”
(135). Mimicking insulin signal in the liver, loss of hepatic
PTEN resulted in non-alcoholic steatohepatitis (NASH) while
suppressing gluconeogenesis (89, 109, 136, 137). Unlike that
observed with insulin resistance, NASH developed in the liver-
specific Pten deletion mice is not due to hyperinsulinemia
resulting from high circulating glucose levels. Locally enhanced
hepatic PI3K/AKT signal actually led to improved ability for the
liver to handle glucose, turning the liver into a glucose sink,
leading to an improved ability to handle glycemic stress in these
mice.

While the increased insulin/PI3K/AKT signal in the liver
leads to improved systemic insulin sensitivity (88), the resulting
NASH due to increased de novo lipogenesis however forms an
environment that results in damage of the liver parenchymal
(138–142). When NASH is inhibited via either dietary approach
or genetic deletion of a metabolic AKT,Akt2, tumor development
is inhibited (79, 114). The NASH thus serves as a tumor
promoting event that promotes the development of tumors that
arose from the PTEN loss transformed tumor-initiating cells
(77–79, 114). How steatosis establishes a tumor environment is
being explored currently. In the liver, inflammation as a result of

damage to the liver parenchymal was shown to play an important
role (Figure 5). Wnt signal produced by macrophages is one
of the niche signals established by this NASH environment to
promote tumorigenesis (79).

FUTURE CONSIDERATIONS

PTEN is a critical regulator of cell growth/survival as well
as metabolism. As a metabolic regulator, PTEN controls the
metabolism of both glucose and fatty acids. These effects
of PTEN through targeting the PI3K/AKT dependent and
independent pathways lead to suppressed insulin sensitivity
and inhibited cell growth and survival. While the signals
by which PTEN regulates growth and survival has been
well elucidated, the mechanisms by which PTEN regulates
metabolism, particularly lipid and mitochondrial metabolism
is not well understood. Future studies to understand the
molecular signals that PTEN controls to regulate these cellular
functions are necessary for both the cancer and diabetes
treatment.
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That cancer cells show patterns of metabolism different from normal cells has been 
known for over 50 years. Yet, it is only in the past decade or so that an appreciation 
of the benefits of these changes has begun to emerge. Altered cancer cell metabolism 
was initially attributed to defective mitochondria. However, we now realize that most 
cancers do not have mitochondrial mutations and that normal cells can transiently adopt 
cancer-like metabolism during periods of rapid proliferation. Indeed, an encompassing, 
albeit somewhat simplified, conceptual framework to explain both normal and cancer 
cell metabolism rests on several simple premises. First, the metabolic pathways used 
by cancer cells and their normal counterparts are the same. Second, normal quiescent 
cells use their metabolic pathways and the energy they generate largely to maintain 
cellular health and organelle turnover and, in some cases, to provide secreted products 
necessary for the survival of the intact organism. By contrast, undifferentiated cancer 
cells minimize the latter functions and devote their energy to producing the anabolic 
substrates necessary to maintain high rates of unremitting cellular proliferation. Third, as 
a result of the uncontrolled proliferation of cancer cells, a larger fraction of the metabolic 
intermediates normally used by quiescent cells purely as a source of energy are instead 
channeled into competing proliferation-focused and energy-consuming anabolic path-
ways. Fourth, cancer cell clones with the most plastic and rapidly adaptable metabolism 
will eventually outcompete their less well-adapted brethren during tumor progression 
and evolution. This attribute becomes increasingly important as tumors grow and as 
their individual cells compete in a constantly changing and inimical environment marked 
by nutrient, oxygen, and growth factor deficits. Here, we review some of the metabolic 
pathways whose importance has gained center stage for tumor growth, particularly 
those under the control of the c-Myc (Myc) oncoprotein. We discuss how these path-
ways differ functionally between quiescent and proliferating normal cells, how they are 
kidnapped and corrupted during the course of transformation, and consider potential 
therapeutic strategies that take advantage of common features of neoplastic and meta-
bolic disorders.

Keywords: fatty acid oxidation, glutaminolysis, glycolysis, mitochondria, oxidative phosphorylation, Randle cycle, 
warburg effect
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THe ABNORMAL MeTABOLiSM OF 
CANCeR CeLLS: GLYCOLYSiS veRSUS 
OXiDATive PHOSPHORYLATiON 
(OXPHOS) AND BeYOND

The distinct metabolic behaviors of cancer cells have been appreci-
ated since the 1950s when Otto Warburg first observed their high 
rates of glycolysis even when there was sufficient oxygen present 
to support OXPHOS (1–4). Such “aerobic glycolysis,” now termed 
the Warburg effect, was initially attributed to defective mitochon-
dria but is now known to occur in rapidly growing normal cells 
and in cancers with no identifiable mutations in genes encoding 
mitochondrial proteins. More recently, the reprogramming of 
glutamine and fatty acid metabolism has also been identified in 
cancer cells (5–10). The still evolving consensus formulated over 
the past several years is that the altered metabolism of cancer 
cells is one of their so-called “hallmark” characteristics (11) and 
is both a direct and indirect consequence of oncogene and tumor 
suppressor gene mis-expression and/or mutation. Much less 
commonly does reprogramming occur as the result of metabolic 
gene mutation (12, 13). The two main advantages that metabolic 
re-wiring imparts to cancer cells are the ability to ensure sustained 
supplies of anabolic building blocks and to generate the energy 
needed for their assembly into macromolecules. This supports 
several other cancer hallmarks, including survival, sustained pro-
liferation, tissue invasion and metastasis, and the participation in 
tumor-initiated angiogenesis (11).

Several general themes have begun to emerge from the study 
and cataloging of tumor-specific metabolic changes. One of 
these is that normal and malignant cells typically use the same 
basic metabolic pathways, which are deregulated in the latter 
and thus run at markedly different rates and/or are utilized to 
achieve different ends. For example, normal quiescent cells utilize 
glycolysis predominantly to generate small amounts of ATP (2 
molecules/molecule of glucose) and pyruvate. Pyruvate is then 
completely oxidized by the TCA cycle within mitochondria to 
generate the reducing equivalents needed to power the electron 
transport chain (ETC) and to generate considerably more ATP 
(~36 additional molecules). By contrast, cancer cells often utilize 
glycolysis at an exaggerated pace for the same energy-generating 
purpose but also as a source of anabolic precursors to support 
rapid proliferation. For example, pyruvate is the initial substrate 
for the biosynthesis of alanine, aspartate, and threonine, and 
pyruvate’s immediate upstream precursor, phosphoenol pyruvate 
(PEP), is the starting substrate for tyrosine, tryptophan, and 
phenylalanine. The even more proximal glycolytic intermediate 
3-phosphoglycerate can be directed into the synthesis of glycine 
and serine as well as purine nucleotides and the initial product of 
glucose catabolism, glucose-6-phosphate, can be diverted into the 
anabolic pentose phosphate pathway (PPP). TCA cycle intermedi-
ates such as citrate, succinyl coenzyme A (CoA), and oxaloacetate 
may also be used in non-mitochondrial biosynthetic pathways 
to furnish additional anabolic substrates for lipid, amino acid, 
and nucleotide biosynthesis, respectively. Any resulting depletion 
of these substrates from their mitochondrial stores may then be 
addressed by mobilizing the so-called anaplerotic (or “filling in”) 

reactions such as the conversion of glutamine to α-ketoglutarate, 
the β-oxidation of odd-chain fatty acids to succinyl-CoA, and the 
carboxylation of pyruvate to oxaloacetate.

Another theme is that these metabolic pathways are highly 
flexible and responsive in ways that ultimately benefit the growth 
and survival of the transformed cell. Indeed, cells with the most 
adaptable pathways will eventually outcompete their more meta-
bolically rigid peers and be favored to survive and clonally expand 
over the course of tumor evolution. Such metabolic plasticity is 
particularly advantageous given the rapidity and extent to which 
the tumor microenvironment can change and the relatively small 
distances over which these changes can occur (14–17). The con-
sequences of an inimical metabolic environment, which normally 
might promote cell cycle arrest or death, might be further assuaged 
by virtue of the loss of proapoptotic pathways mediated by TP53 
and other tumor suppressors. In some cases, these losses not only 
delay or inhibit the apoptotic response to nutrient deprivation or 
the reactive oxygen species (ROS) associated with them but can 
themselves further alter metabolic pathways in favor of survival 
(18, 19). Maximizing survival and proliferation as a consequence 
of metabolic adaptability can also allow for the acquisition of 
additional mutations that further contribute to tumor evolution 
and adaptability (20).

Finally, a third theme is that some cancer-related metabolic 
reprogramming generates metabolites that can dramatically 
impact tumor behavior and even alter gene expression profiles. 
These effects can be direct or indirect, and the metabolites can 
either be the normal products of cellular respiration or the so-
called “onco-metabolites,” which possess neomorphic properties 
and are generated as a consequence of mutations in mitochondrial 
enzymes. Examples of the first type include the excessive lactate 
generated by high rates of Warburg-type glycolysis. Lactate 
excretion lowers extracellular pH, thereby potentiating certain 
extracellular proteases and thus facilitating tumor invasiveness 
and metastatic spread (21). Lactate also upregulates vascular 
endothelial growth factor and hypoxia-inducible factor 1 alpha 
(HIF-1α), an oxygen-sensitive transcription factor that positively 
regulates glycolysis, particularly in collaboration with c-Myc 
(Myc), which is deregulated in the majority of human cancers 
(22–26). Furthermore, lactate, as well as Myc, can impart radi-
oresistance in some tumors and contribute to the escape from 
immune surveillance (27–30). Tumor-generated lactate can also 
stimulate neighboring fibroblasts to increase their synthesis and 
release of hyaluronan, an extracellular high-molecular weight 
glycosaminoglycan, which increases motility and facilitates 
tumor cell spread (31). Point mutations in the TCA cycle enzymes 
isocitrate dehydrogenase (IDH) 1 or IDH2, most of which have 
been described in myeloid leukemias and gliomas (32–35), can 
cause the enzymes to generate the novel onco-metabolite d-R-
2-hydroxyglutarate (d-R-2HG) rather than the normal TCA cycle 
intermediate α-ketoglutarate. d-R-2HG is a potent inhibitor of 
the Ten–Eleven Translocation 2 protein that normally converts 
5-methylcytosine to 5-hydroxymethylcytosine, a reaction that 
serves as an intermediate step in DNA de-methylation (32, 36, 
37). In a variation of this theme, both hypoxia- and lactate-
mediated intracellular acidification can impart new catalytic 
properties to the enzymes lactate dehydrogenase (LDH) and 
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malate dehydrogenase, allowing them to switch their normal sub-
strate preferences and instead convert α-ketoglutarate to a 2HG 
enantiomer, L-S-2HG, which is also a potent epigenetic regulator 
(38–40). Finally, in an example that combines each of the above 
mechanisms, the accumulation of succinate, due to inactivating 
mutations in any one of the four subunits of the heterotetrameric 
succinate dehydrogenase (SDH) complex, has been linked to 
paragangliomas, pheocytochromocytomas, and gastrointestinal 
stromal cell tumors. While the exact mechanism by which excess 
succinate leads to transformation and why it is only associated 
with these rare tumor types are currently unknown, suspected 
culprits include excess ROS, HIF-1α stabilization, aberrant 
genome methylation, and tumor-promoting inflammatory 
changes (41–43).

Here, we review some of the major metabolic pathways that 
go awry in cancer, particularly those under the purview of Myc, 
and attempt to relate these to normal metabolic functions. It is 
important to emphasize that our focus on Myc arises from the fact 
that it is among the most frequently deregulated oncoproteins 
across all cancer types, is virtually never mutated, and regulates 
numerous metabolic functions (5, 22, 24, 44–46). Thus, metabolic 
alterations attributable to Myc are due to quantitative and not 
qualitative differences in its behavior, thus making it somewhat 
easier to understand its role in normal metabolic processes. 
Myc’s wide-spread overexpression in cancer can most likely be 
attributed to the fact that it is a major transcriptional integrator 
of most, if not all, normal and oncogenic growth factor pathways 
(22, 24, 44–47). Understanding how Myc reprograms metabolic 
pathways can explain much of how they are altered by upstream 
mutant oncoproteins that constitutively upregulate Myc expres-
sion. Moreover, the most prominent transcript families under 
Myc’s control tend to encode proteins that supervise energy 
production, anabolic pathways, protein synthesis, and cell cycle 
progression, all of which intimately impact both tumor and nor-
mal cell growth and survival and likely explain why many tumors 
are “addicted” to Myc (22, 45, 47–50). The differential regulation 
of these pathways by Myc permits unique glimpses into how they 
respond to different levels of this central transcriptional regulator 
while providing a basis for understanding why pharmacologic 
inhibition of Myc is considered a “Holy Grail” in cancer therapy 
and why it may also be useful in the treatment of non-malignant 
diseases of excessive cell proliferation (51, 52). We also summarize 
how certain pathways under Myc’s influence differ functionally in 
quiescent and proliferating normal cells and how they are altered 
in tumors by Myc’s deregulated expression (22, 24, 44).

THe eARLY DAYS: HiNTS THAT MYC  
(AND OTHeR ONCOGeNeS) ReGULATe 
CeLLULAR MeTABOLiSM

In the aftermath of the initial discovery that Myc is the cellular 
homolog of the retroviral v-Myc oncogene (53), little more than 
a year elapsed before recognizing that the former was commonly 
rearranged, amplified, and/or otherwise deregulated in human 
cancers, most notably Burkitt’s lymphoma (54–62). Shortly 
thereafter, endogenous Myc was found to be responsive to various 

mitogenic and differentiation-promoting stimuli, with the first 
type tending to upregulate and the second tending to downregulate 
its expression. Deliberately overriding these behaviors tended to 
reverse these tendencies, thereby demonstrating that Myc served 
as an active participant rather than a passive bystander. It was also 
shown that elevated and deregulated Myc expression frequently 
accompanies tumor progression and that the overexpression of 
Myc, either alone or in combination with other oncoproteins, was 
potently transforming both in vitro and in vivo (63–88).

It was not until the mid-1980s, however, that the relationships 
between protooncogene expression, normal and neoplastic pro-
liferation, and altered metabolism began to truly take shape and 
mold our current outlook. For example, the eventual classifica-
tion of Myc as a so-called “immediate-early” gene in response to 
growth factor stimulation in fibroblasts (65, 78, 80, 81) led to the 
finding that the ectopic conditional expression of Myc alone was 
sufficient to promote an abortive G0 → S-phase transition (63). 
Shortly thereafter, studies in quiescent thymocytes and fibroblasts 
additionally showed that Myc induction following mitogenic 
stimulation was preceded by rapid and sequential changes in 
phosphoinositide metabolism, Ca2+ release, the activation of 
phospholipid-dependent kinase C and altered Na+/H+ exchange 
(89, 90). Enforced Myc or Ras expression in log-phase Rat1 
fibroblasts was also then found to stimulate glycolysis, which was 
further enhanced by the addition of the growth factor TGF-β (91). 
Subsequently, differential screening of cDNA libraries prepared 
from quiescent and serum-stimulated Balb/3T3 murine fibro-
blasts identified a small number of transcripts that were induced 
within 12 h of applying this mitogenic stimulus (92). In addition 
to Myc, these encoded LDH and enolase, thus hinting at the idea 
that Myc might be involved in the regulation of metabolism, that 
specific genes within the glycolytic pathway might be important 
for initiating the biomass accretion necessary for growth and 
division, and that Myc might somehow be involved in the regula-
tion of these genes. Being mindful of proper historical context, 
it is important to note that these studies preceded by over a year 
the initial reports that Myc was a DNA-binding transcription fac-
tor (93–96). Thus, the relationship between Myc and transcripts 
encoding metabolic enzymes remained enigmatic until this 
critical Myc function was unmasked. It is now known that nearly 
all genes encoding glycolytic enzymes are direct Myc targets and 
that the Warburg effect is at least partially under Myc control 
(97–99). Together, these findings underscore two of the three 
major themes mentioned in the preceding section: first, that the 
metabolic changes accompanying rapid normal and malignant 
proliferation utilize the same pathways as normal quiescent cells, 
although not always for the same reasons; and second, that malig-
nant cells maintain or corrupt these pathways for the singular 
purpose of gaining a proliferative and/or survival advantage over 
their normal counterparts, or even their transformed but less 
metabolically adaptable relatives.

Over the next several years, it gradually emerged that one of 
Myc’s principle functions, both in normal and cancer cells, was 
to regulate cell mass and, in doing so, to directly modulate the 
expression of genes involved in ribosomal biogenesis includ-
ing ribosomal structural genes, tRNAs, rRNAs, and all three 
eukaryotic RNA polymerases that control the expression of these 
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genes (100–109). The identification of these novel Myc targets 
was a satisfying observation as it began to shed light on how an 
oncoprotein could promote proliferation on the one hand while 
coordinating this with protein synthetic rates (or at least the pro-
tein synthetic machinery) and the doubling of cell mass that must 
precede division on the other (110). It also complemented earlier 
observations that transformed cells increase their uptake of both 
amino acids and the glucose analog 2-deoxy-glucose (2-DG) (91, 
110). Yet even by this time and with these observations in hand, 
little attention was paid to the other metabolic changes needed to 
support the growth and proliferation of cancer cells. Not that they 
had been entirely ignored; indeed, there were hints as early as the 
mid-1950s that such changes were intimately associated with the 
increased proliferation of cancer cells including the eponymous 
Warburg effect mentioned earlier (3, 111, 112).

MYC AND THe ReGULATiON OF 
GLYCOLYSiS, OXPHOS, AND eNeRGY 
BALANCe

As emphasized above, Myc’s pivotal role in the control of carbo-
hydrate metabolism emerged gradually in the mid-late 1980s and 
early 1990s. However, it first required demonstrating that Myc 
is a sequence-specific DNA-binding transcription factor (92–95, 
113, 114), together with the subsequent development of high-
throughput and unbiased methodologies to identify Myc-target 
genes (115–119). From among the earliest such attempts emerged 
one of the first direct Myc-target genes (120), namely, the “A” 
isoform of LDH (LDH-A), which, as noted above, had been 
previously identified, along with Myc itself, as being induced by 
serum in fibroblasts (92). Shim et al. and Lewis et al. subsequently 
demonstrated that Myc-mediated fibroblast transformation was 
attenuated following the genetic suppression of LDH-A, that 
these fibroblasts were highly susceptible to apoptotic death in 
the face of glucose deprivation and that LDH-A could cooperate 
with another Myc target, rcl, to transform fibroblasts (120–122). 
Rather than being directly transforming, however, it seems more 
likely that LDH’s role is more related to the fact that the LDH-
mediated generation of lactate from pyruvate requires NADH as 
an electron donor and that the product of this reaction, NAD+, 
may then function as an electron acceptor to support more 
proximal glycolytic reactions (Figure  1). This co-dependency 
between glycolysis and lactate generation ensures that the for-
mer pathway can be efficiently maintained regardless of its rate, 
particularly when oxygen concentrations are low, the generation 
of lactate is high and glycolysis is the major ATP source. Further 
supporting the importance of this positive feedback loop was the 
subsequent observation that most glycolytic enzyme-encoding 
genes are regulated at some level by Myc (120, 123–127). Thus, 
the production and excretion of lactate, an otherwise energeti-
cally wasteful activity, is actually necessary to sustain the Warburg 
effect as it ensures the continuous generation of NAD+ to serve 
as an electron acceptor during glucose oxidation. In the pres-
ence of oxygen, cytoplasmic NAD+ may also be supplied via the 
glycerol-3-phosphate shuttle and the malate–aspartate shuttle in 
which reducing equivalents are transferred to the mitochondria 

in exchange for generating an oxidized cytoplasm to maintain 
glycolysis (128, 129). While these shuttles are likely to be less 
important under the hypoxic conditions that often prevail during 
tumor growth, they nonetheless allow for cross talk, cooperation, 
and coordination between glycolysis and OXPHOS in well-
oxygenated environments (130–132).

Warburg-type glycolysis, in conjunction with the 
 abovementioned shuttles, couples the generation of reducing 
equivalents in the form of NADH with their indirect transfer 
into the mitochondrial matrix to drive the ETC and maintain 
membrane potential (ΔΨM) and the protomotive force that 
generates ATP via Complex V. The glycerol-3-phosphate and 
malate–aspartate shuttles thus provide sources of mitochondrial 
reducing equivalents independent of those generated by the TCA 
cycle when the supply of pyruvate-derived acetyl-CoA (AcCoA) 
might be compromised due to the diversion of glycolytic 
intermediates for anabolic purposes and/or the production of 
lactate. These shuttles also sustain mitochondrial NADH levels 
when TCA-generated substrates are consumed by other anabolic 
reactions, such as the synthesis of lipids and certain amino 
acids. Interestingly, rather than being transferred to Complex 
I or Complex II as occurs with TCA cycle-derived reducing 
equivalents, the NADH supplied by these shuttles is confined to 
the inner mitochondrial membrane and surrenders its electrons 
directly to Coenzyme Q and then to Complex III of the ETC 
(133). Such reducing equivalents, derived from glycolysis, thus 
provide an electron source that bypasses Complex I and Complex 
II and is under different regulatory supervision.

Glycolysis also indirectly generates reducing equivalents 
in the form of NADPH during the proximal steps of the PPP. 
NADPH is a source of cytoplasmic reducing equivalents that sup-
ports the reductive de novo synthesis of sterols and fatty acids, 
regenerating NADP+ in the process and providing an energetic 
and self-sustaining link between the biosynthesis of pentose 
sugars and lipids (134, 135). Thus, high rates of glycolysis and the 
lactate generation made in response to oncogenic stimuli such as 
Myc ensure a well-balanced and oxygen-independent supply of 
cytoplasmically generated ATP, reducing equivalents, and critical 
anabolic precursors (Figure 1).

Increased glycolytic flux ensures a rich supply of substrates that 
can be redirected into energy-consuming anabolic pathways with 
sufficient amounts remaining to generate AcCoA and drive the 
TCA cycle. But precisely how this occurs and whether any control 
is exerted remains somewhat enigmatic. Do the glycolysis-linked 
pathways simply “drink from the fire hose” of glycolytic interme-
diates as they rush down the pathway, or are there mechanisms 
that specifically direct glycolytic intermediates into anabolic 
pathways at the expense of mitochondrial OXPHOS, aided by the 
law of mass action? Support for the latter notion comes with the 
observation that the expression of the two isoforms of pyruvate 
kinase (PK), PKM1, and PK2, is altered in some cancers. PKM1, 
which tends to predominate in normal tissues, is replaced by 
PKM2, which has a higher Km for its substrate, PEP; the Km is even 
further increased by posttranslational modification. The overall 
lessened PK activity serves to redirect PEP and other upstream 
glycolytic substrates away from energy-generating OXPHOS and 
into energy-consuming anabolic pathways (136–140).
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FiGURe 1 | Control and distribution of ATP and reducing equivalents derived from glycolysis and oxidative phosphorylation (OXPHOS). Under normal aerobic 
conditions, most glycolysis-derived pyruvate produced by quiescent or slowly growing cells is converted to acetyl-CoA (AcCoA) in the mitochondria, with little being 
converted into lactate. This provides the mitochondrial reducing equivalents, in the form of NADH and FADH2, to power the electron transport chain (ETC), to 
generate a proton gradient (ΔΨM) and to establish the protomotive force necessary to drive ATP generation via Complex V. Excess cytoplasmic reducing equivalents 
in the form of NADH may be transferred to the mitochondria via the glycerol-3-phosphate and malate–aspartate shuttles and can potentially support OXPHOS when 
AcCoA levels are low. During hypoxia, glucose uptake, glycolytically derived ATP synthesis, and the “A” isoform of LDH (LDH-A)-catalyzed conversion of pyruvate to 
lactate are accelerated due to an inability of the ETC to reduce molecular oxygen to water and generate TCA cycle-derived ATP. Most pyruvate will be converted to 
lactate, thereby generating more NAD+ and sustaining anaerobic glycolysis. This positive feedback loop ensures a constant and balanced source of ATP as an 
energy source and the regeneration of NAD+ to serve as an electron acceptor for continued glycolysis. By contrast, dividing cells have “divided loyalties” with regard 
to the disposition of glycolytic intermediates, with some being used to generate pyruvate and others being used as anabolic building blocks. Just as glycolysis and 
lactate production engage in a positive feedback loop to provide a balanced amount of NAD+ and NADH in support of one another’s activity, the pentose phosphate 
pathway (PPP) and the biosynthesis of fatty acids and sterols, generate NADPH and NADP+, respectively, to support each others’ pathways. The pyruvate 
dehydrogenase complex (PDC), which includes pyruvate dehydrogenase, is the key enzymatic complex that connects glycolysis to the TCA cycle. It catalyzes the 
conversion of the last product of glycolysis, pyruvate, to the entry-level substrate for the TCA cycle, AcCoA. In doing so, it contributes one-fourth of the NADH that 
is produced by a single round of the TCA cycle.
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The PKM1 and PKM2 isoforms differ from one another as a 
result of mutually exclusive alternate mRNA splicing such that 
the PKM1 transcript encodes exon 9 but not exon 10 and PKM2 
encodes exon 10 but not exon 9. The splicing decision is gov-
erned by at least three heterogeneous nuclear ribonucleoproteins, 
hnRNP1, hnRNP2, and hnRNP, which bind to intron regions 
flanking exon 9 and negatively regulate its splicing. Interestingly, 
hnRNP1 and hnRNP2 are positively regulated by Myc (141, 
142). However, the switch to aerobic glycolysis, by whatever 
means, hardly signals an irreversible commitment; indeed, not 
only is the Warburg effect plastic but many tumors-even those of 

similar types are more dependent upon OXPHOS than glycolysis 
for their energy requirements and/or can rapidly balance these 
two processes to suit their needs (143). In addition to regulating 
glycolysis, Myc also exerts significant influence over mitochon-
drial structure and function. Initially relegated to a metabolic 
backwater following the realization that many cancer cells rely 
on the Warburg effect at the expense of OXPHOS, mitochondria 
do in fact play important roles in cancer metabolism (144, 145). 
Indeed, certain cancers remain highly reliant on OXPHOS 
as a means of energy production and show little predilection 
for Warburg-type metabolism (146). Analogous to glycolysis, 
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however, both mitochondria and the energy producing pathways 
they encompass undergo significant structural and functional 
revisions in response to Myc deregulation.

Among the first studies to examine Myc’s effect on mitochon-
drial structure and function were those of Li et al. (147). Utilizing 
P493-6 human B cells transfected with a tetracycline-inducible 
human Myc transgene, they showed that mitochondrial mass 
increased approximately twofold within 72 h of Myc induction, as 
measured by nonyl acridine orange staining, MitoTracker staining 
and mitochondrial DNA (mtDNA) content. Oxygen consumption 
increased to a similar extent thereby indicating a close relation-
ship between structure and function. Transcriptional profiling 
also identified approximately 200 Myc-responsive genes encod-
ing mitochondrial proteins, most of which were upregulated. 
Most notable among these was the transcript encoding Tfam, 
a nuclear-encoded mitochondrial transcription factor that also 
participates in mtDNA replication (148–150). The TFAM gene 
proximal promoter was also shown to contain a Myc-binding 
E-Box element. In serum-stimulated fibroblasts, endogenous Myc 
was shown to bind the same site (147). Although no functional 
studies were performed, it was assumed that this positive effect of 
Myc on mitochondrial biogenesis was accompanied by a parallel 
increase in TCA cycle activity and OXPHOS.

Elucidating the role of endogenous Myc in the regulation of 
metabolic pathways was hampered for quite some time by the 
lack of a suitable knockout model. This is because even short-
term Myc depletion in virtually all cell lines is accompanied by 
cell cycle arrest, apoptosis, or differentiation, thereby severely 
compromising long-term studies (50, 151, 152). Similarly, whole 
body inactivation of the myc gene is an embryonic lethal (153). 
Thus, the generation of a myc−/− cell line from rat fibroblasts by 
Mateyak et  al. in 1997 (154) provided a tremendous technical 
advance despite the fact that it remains unresolved as to how these 
cells survive and replicate.

Although viable, the myc−/− fibroblasts described by Mateyak 
et al. (154) are extremely abnormal. For example, they divide only 
once every 2–3 days versus every 18–24 h for the myc+/+ parental 
line, display an extremely flattened morphology and are highly 
contact inhibited. Cell cycle regulation is severely compromised 
at multiple points, with myc−/− cells showing a ca. 12-fold reduc-
tion in the expression of CyclinD–Cdk4 and CyclinD–Cdk6 
complexes during the G0/G1 transition and delayed activation of 
CyclinE–Cdk2 and CyclinA–Cdk2 complexes (145, 155). That 
most of these abnormalities can be rescued at least partially 
with retrovirally expressed Myc, the Myc homologs N-Myc and 
L-Myc, or the Myc-target genes MYCT1/MT-MC1, HMG-IY 
and SHMT (156, 157) indicates that the various phenotypes of 
myc−/− fibroblasts are directly related to myc gene inactivation and 
do not represent compensatory and Myc-independent growth-
enhancing adaptations.

The absence of Myc was also reflected in the mitochondrial 
structure and metabolism of these cells. Graves et  al. (158) 
showed that, compared with myc+/+ fibroblasts, the mitochondria 
of myc−/− fibroblasts were smaller, fewer in number, deficient 
in cristae and poorly interconnected. The activation of a Myc-
estrogen receptor fusion protein (MycER) by 4-hydroxytamox-
ifen (4OHT) complemented these defects, although, surprisingly, 

it required 4–5 weeks before maximal mitochondrial mass was 
restored. The extremely low ΔΨM of these cells (myc−/− MycER) 
cells also increased in parallel over this same time period. This 
provided indirect evidence that Myc was likely controlling some 
aspect of the TCA cycle and/or the availability of reducing 
equivalents needed to drive the ETC. Following 4OHT’s removal 
and the silencing of Myc, mitochondrial mass, ΔΨM and inter-
connectivity returned to near the baseline levels of myc−/− cells 
over another prolonged period exceeding 10 days (158).

In addition to the above major structural defects, which 
confirmed and extended those of Li et al. (147), mitochondrial 
function was also severely compromised in myc−/− cells in a 
manner that mirrored their structural defects. For example, the 
basal oxygen consumption rate (OCR) of myc−/− cells was about 
half that of myc+/+ cells and only 15% that of myc−/− cells stably 
reconstituted with a lentiviral vector that drove high level, con-
stitutive Myc expression (myc−/− Myc cells). The most prominent 
effect of Myc on OCR was seen in myc−/− Myc cells where the 
maximum respiratory capacity in response to the de-polarizing 
agent FCCP was >20 times higher than that of myc−/− cells and 
6 times higher than that of myc+/+ cells. Because Myc positively 
regulates virtually all glycolytic genes (96, 123, 124, 159), the basal 
rate of glycolysis in myc−/− cells was also about half that of myc+/+ 
cells and one-third that of myc−/− Myc cells (158).

Consistent with their markedly impaired OXPHOS and 
glycolysis, myc−/− cells showed a nearly 70% reduction in basal 
ATP levels, which normalized following Myc re-expression. In 
all three cell lines (myc−/−, myc+/+, and myc−/− Myc), exposure to 
2-DG caused a more pronounced ATP depletion than did the 
inhibition of OXPHOS with rotenone. Taken together, these 
results suggested that at least half the energy in these cells was 
derived from glycolysis. Consistent with their ATP deficient state, 
myc−/− cells expressed high levels of activated (phosphorylated) 
AMP-activated protein kinase (AMPK), a serine/threonine 
kinase that responds to ATP depletion (or more precisely to a high 
AMP:ATP ratio) by upregulating ATP-generating pathways and 
downregulating ATP-consuming pathways (160–162). However, 
since many of the energy-sparing and energy-generating effects 
of AMPK rely on the upregulation of Myc (160, 163, 164), AMPK 
seems to be unable to achieve a state of true energy equilibrium 
in myc−/− cells, thereby leading to its constitutive activation in the 
face of a chronic energy deficit. The restoration of Myc in myc−/− 
Myc cells did lead to AMPK dephosphorylation that correlated 
with the normalization of ATP levels (160).

The observation that myc+/+ and myc−/− Myc cells contained 
identical ATP levels could not initially be reconciled with the 
finding that the latter cells had significantly higher rates of gly-
colysis and OXPHOS. This discrepancy was resolved by showing 
that the ATP half-life in the latter cells was nearly 50% shorter 
(2.6 versus 3.6 min) (158). This was consistent with the previous 
finding that myc−/− WT cells had significantly faster growth rates 
than myc+/+ cells and thus likely utilized more ATP (165).

To further understand the role of endogenous Myc in main-
taining basal rates of glycolysis and OXPHOS in transformed 
cells, Graves et  al. (158) utilized the conditional, doxycycline-
regulatable expression of a short hairpin RNA directed against 
Myc to silence the oncoprotein’s expression in A549 human small 

39

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


Goetzman and Prochownik Myc and Metabolism

Frontiers in Endocrinology | www.frontiersin.org April 2018 | Volume 9 | Article 129

cell lung cancer cells, which normally express high levels of Myc. 
Conforming to the findings in the above-discussed rat fibroblast 
studies, the knockdown of Myc was associated with marked 
growth inhibition, a flattened cellular morphology, reduced 
mitochondrial mass, and the collapse of ΔΨM.

Relative to myc+/+ and myc−/− Myc cells, myc−/− cells demon-
strated abnormalities in overall structure and function of the 
ETC (158). Among these were reduced amounts of the so-called 
“supercomplexes” (SCs) between Complexes I, III, and IV, which 
allow for more efficient electron transfer (166, 167). Consistent 
with their atrophic mitochondrial cristae, which are believed 
to serve as a platform for the formation and accretion of SCs 
(168, 169), myc−/− mitochondria also contained lower levels 
of Complex I, II, and III as well as both the monomeric and 
dimeric forms of Complex V ATPase (Vm and Vd, respectively) 
relative to myc+/+ cells. In general, SC function in myc−/− cells, as 
measured by in situ enzymatic activity of individual complexes 
separated by non-denaturing blue native gel electrophoresis 
(BNGE), closely matched Coomassie Blue staining patterns. 
myc−/− fibroblast mitochondria also contained significant levels 
of an enzymatically inert complex (Complex “X”) that was shown 
by mass spectroscopy to be comprised of multiple subunits from 
Complexes II–V. It was speculated that during periods of relative 
oxidative quiescence, Complex X functions as a reservoir for 
certain mitochondria proteins, which can be rapidly summoned 
and assembled into their respective ETC complexes in response 
to increased metabolic needs. This seems like a logical cellular 
strategy in that cells with depleted energy levels as a result of ETC 
dysfunction might be better served by utilizing preexisting ETC 
components for rapid assembly and resumption of ETC function 
rather than expending even more energy by synthesizing them 
anew. On the other hand, the surprisingly long time it takes to 
restore normal mitochondrial structure and function in myc−/− 
cells (158) raises questions as to whether this is the true function 
of this complex.

Interestingly, myc−/− Myc cells showed only a partial normali-
zation of ETC structure and function as measured by the above 
methods, despite their high-level Myc expression. Relative to 
myc+/+ cells, myc−/− Myc cells contained only about half the levels 
of SCs, two-thirds the level Complex V monomers (Vm) and 
~15% the level of Complex V dimers (VD) as measured by both 
enzymatic activity and BNGE. While both VD and VM possess 
ATP synthase activity, the dimer appears to be more important 
for dictating the shape of mitochondrial cristae (170). Because the 
high-level re-expression of Myc also greatly increased glycolysis, 
it was surmised that this failure to entirely normalize ETC struc-
ture and function was due to a combination of factors including 
structural changes to the mitochondria and their cristae, differ-
ences in the relative contribution of glycolysis and OXPHOS to 
the energy landscape, subtle nuances relating to the control of 
Myc protein expression, and differential cellular growth rates and 
their resulting anabolic requirements (158).

The normalization of mitochondrial morphology by the 
enforced re-expression of Myc in myc−/− Myc cells (158) sug-
gested that Myc might influence mitochondrial fusion and/
or fission. The former process is regulated by the so-called 
“mitofusin” proteins such as Mfn1, Mfn2, and Opa1 whereas 

the latter process is regulated by the proteins Fis1 and Drp/
Dlp (171–175). Fusion is believed to maximize mitochondrial 
energy production by allowing old and/or damaged organelles 
to be “rejuvenated” by combining their contents with those of 
younger ones, thereby extending their life span and functional 
integrity and capacity (176, 177). By contrast, fission provides a 
mechanism by which mitochondrial mass can be reduced dur-
ing periods of relative metabolic quiescence or Warburg-type 
respiration or by which defective and/or aged mitochondria can 
be eliminated. Both fusion and fission can exert significant influ-
ence upon mitochondrial energy production and cell survival 
(176, 178, 179).

Virtually, all the above mitochondrial fission and fusion 
proteins were expressed at higher levels in Myc replete cells 
relative to myc−/− cells making it unclear how, as an integrated 
group, they affected mitochondrial biogenesis and, if so, which 
of the processes this favored. The question was answered by 
experiments in which 4OHT-treated myc−/− MycER cells were 
separately transfected with mitochondrially targeted green or 
red fluorescent proteins (GFP or RFP, respectively). Cells from 
the two populations were then mixed and fused by exposure to 
polyethylene glycol and the rate of GFP+ and RFP+ mitochondrial 
fusion into “yellow” merged organelles was quantified either in 
the continued presence of 4OHT or following its removal. Cells 
actively expressing Myc showed nearly twofold higher rates of 
mitochondrial fusion compared with cells in which Myc had 
been silenced for 2 days by removing 4OHT. The faster rate of 
mitochondrial turnover in the former cells suggested that they 
were under constant pressure to maintain only the youngest and 
healthiest mitochondria to meet the increased metabolic needs 
of this energetically more demanding and faster growing popula-
tion. Thus, along with affecting the levels of key mitochondrial 
transcription factors such as Tfam (123, 147), Myc also influences 
mitochondrial biogenesis and lifespan by modulating the levels of 
fission/fusion proteins.

Subsequent work demonstrated that alterations in mitochon-
drial structure and function can reciprocally impact the function 
of both endogenous and overexpressed Myc. In these studies, 
Sarin et al. (180) enforced the expression of the mitochondrial 
fission protein Drp/Dlp in Rat1a-MycER cells, leading to a state 
of non-stop, fission-induced mitochondrial fragmentation and 
a pronounced reduction in overall mitochondrial size, mass 
and interconnectivity. Accompanying this was a nearly 15-fold 
higher rate of mitochondrial fusion relative to control cells 
suggesting that Drp1/Dlp1-overexpressing cells constantly 
upregulate fusion in a futile compensatory attempt to offset their 
excessive Drp1/Dlp1-driven fission. Despite the fact that these 
cells expressed normal levels of Myc, their mitochondria were 
both structurally and functionally reminiscent of those from 
myc−/− cells. Structurally, their ETC complexes were defective; 
BNGE revealed a 28% reduction Complex I, a 45% reduction in 
Complex V and a 38% reduction in SCs. Furthermore, Complex 
“X,” the proposed repository for certain ETC subunits in myc−/− 
cells (158), now appeared. Thus, enforced and uncorrected mito-
chondrial hyper fission leads to a loss of mitochondrial structural 
integrity resembling that of myc−/− cells in the face of otherwise 
normal Myc levels.
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FiGURe 2 | The balance between glycolysis and oxidative phosphorylation (OXPHOS) in normal and tumor cells. The sizes of the triangles are meant to indicate the 
relative metabolic activity under each of the depicted conditions. (A) Under aerobic conditions, glucose in quiescent, non-proliferating cells is converted in a linear 
fashion into pyruvate, which is then consumed by the TCA cycle to produce the bulk of ATP (Figure 1). (B) Under hypoxic periods in these same cells, OXPHOS is 
no longer able to furnish ATP. Energy production then switches rapidly to glycolysis, which can temporarily maintain energy supplies. Both glucose uptake and 
glycolysis can be highly upregulated although at the expense of generating considerable amounts of lactate. (C) In well-oxygenated, rapidly proliferating tumor cells 
and normal cells, glycolysis and OXPHOS are both upregulated and balanced so as to provide for the most efficient production of ATP, the most rapid biomass 
accumulation and the most rapid rate of proliferation. The metabolic building blocks for these processes are derived from both the glycolytic pathway and the TCA 
cycle, thus explaining the need for each. Examples of the first include the diversion of glucose-6-phosphate into the pentose phosphate pathway to provide pentose 
sugars for nucleotide synthesis (Figure 1), the diversion of 3-phosphoglycerate for the synthesis of purine nucleotides and the diversion of phosphoenol pyruvate for 
the synthesis of tyrosine, tryptophan, and phenylalanine. Examples of the second include the transport of citrate into the cytoplasm for use in fatty acid and sterol 
biosynthesis and the diversion of oxaloacetate into the cytoplasm for conversion in aspartate, asparagine, and pyrimidine nucleotides. While the graphic here 
depicts an equal contribution by both glycolysis and OXPHOS, their relative contribution to overall metabolism can shift in response to proliferative rates (indicated 
by the small blue boxes), oxygen tension, and the supply of environmentally derived nutrients. In rare cancers, mutations in select TCA cycle genes can impart 
increased, and less reversible, reliance on aerobic glycolysis as a means of generating energy, thus confirming to Warburg’s original explanation of his eponymous 
effect (41–43).
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Further characterization of Drp1/Dlp1-overexpressing cells 
showed that, like myc−/− cells, they too had a critical energy 
shortage, with a >80% reduction in ATP levels and impaired gly-
colysis and OXPHOS. This energy-depleted state, coupled with 
the failure to adequately compensate for it, was evidenced by a 
ca. 30% decrease in mean cell volume and a >10-fold increase in 
phosphoAMPK (180). Collectively, these findings suggested that 
the price for such energy-conserving processes was a reduction 
in energetically demanding biomass accumulation. Most likely as 
a result of their abnormal ETC structure and/or their ATP deficit, 
Drp1/Dlp1 overexpressing cells, like myc−/− cells, expressed higher 
levels of ROS than control cells (181, 182). No obvious growth 
differences between control and Drp1/Dlp1-overexpressing cells 
were observed under standard conditions although the latter 
were significantly more resistant to apoptosis in response to Myc 
overexpression or serum deprivation and this was supported by 
the less pronounced release of cytochrome c from mitochondria. 
Treatment with 5-amino-1-b-d-ribofuranosyl-imidazole-4-car-
boxamide, an AMP analog that activates AMPK and increases 
ATP pools (161, 162, 183) doubled the ATP content of Drp1/Dlp1 
overexpressing cells, normalized their size and increased their 
sensitivity to apoptotic stimuli (180). The prolonged survival of 
Drp1/Dlp1-overexpressing cells may reflect the fact that ATP 

depletion tends to protect against apoptosis, perhaps by inhibit-
ing caspases 3 and 8 and Apaf-1, and that, in some circumstances 
AMPK activation can restore or promote apoptosis (184–188). 
Collectively, these results show that enforced mitochondrial 
fission driven by Drp1/Dlp1 can override Myc’s role in maintain-
ing normal mitochondrial integrity and adequate ATP levels. 
Whether this is due to a lack of response of mitochondria as a 
result of their inability to fuse in response to Myc (as seems likely) 
or another effect of Drp1/Dlp1 remains to be determined.

The above studies showed that, at least in proliferating fibro-
blasts propagated in  vitro, where nutrient supplies and oxygen 
concentrations are high and non-rate-limiting, both glycolysis 
and OXPHOS are subject to positive regulation by endogenous 
Myc. Moreover, they establish that the overexpression of Myc, 
to the levels required to drive proliferation and transformation, 
continues to exert a simultaneous positive effect on both glyco-
lysis and OXPHOS. The effects are quite heterogeneous, are both 
direct and indirect and involve changes in transcripts encoding 
glycolytic enzymes and mitochondrial structural and functional 
components. These studies show that the Warburg effect and 
OXPHOS are by no means mutually exclusive. Rather they are 
better viewed as being complementary, with neither one being 
entirely dispensable (Figure 2).
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The role of endogenous Myc in sustaining glycolysis and 
mitochondrial function has received additional support from 
studies in other cell types with several structurally and mecha-
nistically distinct small molecule Myc inhibitors (189–191). 
HL60 promyelocytic cells exposed for only 2–5  days to these 
compounds dramatically reduced their ATP content, activated 
AMPK, accumulated neutral lipids and downregulated Myc as 
they underwent terminal myeloid differentiation. Because the 
manipulation of Myc had long been know to exert profound effects 
on the differentiation of hematopoietic and other cell types (68, 
72, 77, 87, 192), Wang et al. repeated these experiments using two 
mechanistically distinct inhibitors of Complex I, metformin and 
rotenone (191). Decreased ATP, AMPK activation and myeloid 
differentiation were again noted, but Myc levels were unaffected. 
These studies supported the idea that ATP levels are a strong 
and Myc-independent determinant of differentiation, at least in 
myeloid cells (193). They further implied that a major role of Myc 
in differentiation is to maintain ATP levels, most likely with the 
purpose of allowing for the continued accumulation of biomass. 
This is also likely aided by Myc’s ability to induce the expression 
of many genes involved in cell cycle progression (101, 194, 195). 
Differentiation may therefore represent one possible means of 
maintaining viability in response to energy-depleted states.

In other studies using a transgenic mouse model of neuroblas-
toma driven by the highly related Myc homolog N-Myc, Zirath 
et al. (196) showed that the treatment of tumor-bearing animals 
with the small molecule Myc inhibitor 10058-F4 (197), which 
also binds to and distorts the structure of N-Myc (198), inhibited 
tumor growth and promoted tumor differentiation as evidenced 
by neurite outgrowth. It also caused the accumulation of high 
levels of intracellular neutral lipid (196).

Activated T-cells are among the most rapidly dividing 
metazoan cells. Following antigen stimulation, they accumulate 
biomass for approximately 24 h and then enter a phase of rapid 
proliferation and clonal expansion, with cell division occurring 
as frequently as every 4 h (199). It has long been known that this 
replicative phase is associated with markedly increased glycolysis 
and glutaminolysis although the precise pathways needed to effect 
this metabolic reprogramming remain ill defined (200–202). 
Wang et al. (203) investigated Myc’s contribution to the biomass 
accretion and proliferative expansion following ex vivo stimula-
tion of murine T-cells with anti-CD3+ anti-CD28. Immediately 
following their initial 24 h growth period, control cells entered 
the expected rapid proliferative phase during which time they 
were subject to metabolomic profiling using mass spectroscopy. 
Wang et al. (203) found that these cells accumulated metabolites 
during the initial growth phase and then activated glycolysis 
and directed glucose into the PPP. Concurrently, FAO declined 
as did the delivery of pyruvate into the TCA cycle. By contrast, 
OXPHOS and glutaminolysis increased, with a significant amount 
of the glutamine-associated carbon and nitrogen ultimately being 
incorporated into α-ketoglutarate and nucleotides, respectively. 
This latter finding indicated that exogenous glutamine was 
directed along two distinct pathways, the first being the TCA 
cycle in which glutamine was converted to glutamate and then 
to α-ketoglutarate and the second being the purine synthesis 
pathway in which both the N3 and N6 positions of the purine ring 

are derived from the glutamine amide moiety. Thus, not unlike 
the case of Myc-overexpressing fibroblasts discussed earlier 
(158), T-cell activation was accompanied by increases in both 
glycolysis and OXPHOS although the source of substrates for the 
latter pathway shifted from fatty acids and glucose to glutamine. 
Impaired proliferation was observed when the cells were deprived 
of either glucose or glutamine or when glycolysis and glutami-
nolysis, but not FAO, were blocked pharmacologically.

To investigate the molecular basis for the above-described 
metabolic reprogramming, Wang et al. (203) excised Myc from 
mycflox/flox T  cells following conditional activation of a 4OHT-
inducible CreER transgene and compared their ex vivo response 
to anti-CD3+ anti-CD28 activation to the above control mycflox/flox  
cells. They noted a severe impairment of both the initial mass 
accretion (growth) phase and the subsequent expansion phase. 
In vivo testing of these cells following their stimulation with 
staphylococcal enterotoxin B revealed a blunted response similar 
to that observed ex vivo, with a decrease in both the growth and 
activation phases. Metabolomic profiling showed that the accu-
mulation of amino acids, nucleotides and lipids in these cells was 
lower than that measured in similarly activated mycflox/flox cells. Of 
note was that myc−/− cells still activated both ERK and AKT path-
ways at levels commensurate with those seen in control mycflox/flox 
cells. This supported the idea that the observed effects were not a 
consequence of an inability to respond to signals upstream from 
Myc but rather to the lack of Myc itself. Further metabolomic 
inquiry showed that myc−/− T cells had impaired FAO and glucose 
flux during both the growth and proliferative phase, accumulated 
less lactate and directed less glucose-derived carbon into the PPP. 
Consistent with these findings, the induction of several glycolytic 
enzymes and glucose transporters were also suppressed as was 
glutaminolysis. The PKM2 isoform was also less highly induced 
in myc−/− T-cells.

THe ROLe OF GLUTAMiNOLYSiS iN 
MeTABOLiC RePROGRAMMiNG

It has been known since the mid-1950s that both normal and 
transformed cells share a particular predilection for exogenous 
glutamine and sometimes even prefer it to glucose as an energy-
generating substrate (204–207). Indeed, some tumors have such 
exaggerated demands for this amino acid that they can deplete 
host plasma glutamine levels despite its being the most abundant 
amino acid (208, 209). Recent evidence supports the idea that 
glycolysis and glutaminolysis cooperatively support high rates of 
cell proliferation (210, 211).

Glutaminolysis offers several advantages that explain its 
ability to complement and/or replace glucose as an energy 
source (Figure  3). First, it can be used directly for de novo 
protein synthesis as can the amino acids derived from it includ-
ing glutamate, proline, histidine, alanine, aspartic acid, and 
arginine. Second, it may facilitate the uptake of other amino 
acids, thereby regulating and coordinating their availability 
for protein synthesis as well (212–214). Third, it serves as the 
starting point for the biosynthesis of purine nucleosides, thereby 
linking protein and nucleic acid synthesis. It is noteworthy that 
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FiGURe 3 | Reprogramming of glutamine metabolism by rapidly proliferating cells. Extracellular glutamine, along with several other amino acids, is delivered to the 
cytosol by the SLC1A5/ASCT2 or SN2 transporters (212–214). Together, these contribute to de novo protein biosynthesis, whereas aspartate is also used in purine 
and pyrimidine synthetic pathways. In addition, glutamine can undergo reductive carboxylation to supply citrate, which can be converted by ATP citrate lyase to 
supply cytosolic acetyl-CoA (AcCoA) for de novo lipid synthesis (216, 217). Finally, glutamine can be catalyzed by glutamine synthase 1 (Gls1)/2 and then to 
α-ketoglutarate by the mitochondrial enzyme glutamine dehydrogenase generating a molecule of NADH (or NADPH) in a glycolysis-independent manner. α-
Ketoglutarate can also be furnished via the action of glutamine pyruvate transaminase (GPT) or glutamate oxaloacetate transaminase (GOT), which utilize pyruvate 
or oxaloacetate, respectively, in reactions that also yield alanine and aspartic acid. Taken together, glutaminolysis thus coordinates amino acid, lipid, and nucleoside 
biosynthesis while concurrently providing energy to support these processes and contributing to the anaplerotic substrate supply.
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the NADPH derived from the diversion of glycolytic substrates 
into the PPP can also positively impact glutamine uptake and 
sustain reactions involved in lipid synthesis (215, 216). Fourth, 
the glutamate dehydrogenase-mediated conversion of glutamate 
to α-ketoglutarate generates an additional molecule of NADH. 
This, together with the NADH generated by the α-ketoglutarate 
dehydrogenase and malate dehydrogenase reactions and the 
FADH2 generated by the SDH reaction, ensures that nearly 
normal levels of reducing equivalents can be supplied in a 
manner that is independent of AcCoA, glycolysis and FAO. 
Fifth, glutamine-derived α-ketoglutarate can also participate in 
a reverse carboxylation reaction to furnish citrate for the gen-
eration of cytoplasmic AcCoA for use in de novo fatty acid and 
cholesterol biosynthesis (216, 217). Finally, during periods of 
oxidative stress as commonly occur in many tumors, high levels 
of ROS can inhibit the aconitase-catalyzed conversion of citrate 
to isocitrate, thus limiting the supply of glycolytically derived 
α-ketoglutarate. Glutaminolysis provides a means of overcom-
ing metabolic roadblocks such as this and thereby ensuring a 

more stable and consistent supply of α-ketoglutarate and the 
downstream reducing equivalents derived from it (215, 218).

Given the central role of glutaminolysis for sustaining cellular 
proliferation, coupled with a previous finding that the apoptosis 
mediated by the absence of glutamine is Myc dependent (219), it 
was not surprising that Myc regulates this process at several levels. 
Wise et al. (220) first reported that glioma cells consumed large 
amounts of glutamine to drive OXPHOS and that the shRNA-
mediated suppression of Myc reduced glutamine consumption. 
They further observed that glioma cells were unable to survive in 
glutamine-deficient medium, even when supplied with glucose, 
and that the cell-permeable α-ketoglutarate analog dimethyl-α-
ketoglutarate could substitute for glutamine, thereby providing 
strong evidence that the shunting of exogenous glutamine into 
the TCA cycle was directly responsible its effect on survival. 
Moreover, they showed that glycolysis and glutaminolysis, while 
both Myc regulated, were under distinct forms of control by vir-
tue of the fact that PI3K/Akt signaling regulated the former but 
not the latter. Myc was subsequently found to bind selectively to 
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E-box-containing promoter regions of the glutamine transporter 
genes SLC1A5/ASCT2 and SN2. shRNA-mediated suppression of 
Myc resulted in lowered expression of both transporters’ tran-
scripts and reduced glutamine consumption. Finally, the enforced 
transient expression of high levels of Myc in MEFs upregulated 
SLCA15/ASCT2 as well as glutamine synthase 1 (Gls1) and 
diverted glucose away from its oxidative metabolism by the TCA 
cycle and into the Warburg-type aerobic glycolysis instead. The 
mechanism by which Myc upregulated Gls1 appeared to involve 
increased transcription and/or stabilization of its mRNA.

Gao et  al. (221) extended these results by showing that the 
levels of Gls1 protein in P-493 B cells and PC3 prostate cancer 
cells varied in direct proportion to the degree of Myc expression. 
However, and in contrast to Wise et al. (220), this was not true 
for Gls1 transcript levels leading the investigators to eventually 
determine that Myc regulated Gls1 at the posttranscriptional 
level by inhibiting the expression of two microRNAs, miR23a and 
miR23b (miR23a/b). Both miRNAs were noted to have homol-
ogy to potential “seed” binding sequences in the Gls1 mRNA 
3′-untranslated (3′ UT) region. A luciferase reporter vector 
containing the Gls1 3′ UTR was shown to be responsive to these 
miRNAs. Thus, the Myc-mediated upregulation of Gls1is indirect 
by virtue of its inhibition of at least two miRNAs, which inhibit 
Gls1 mRNA translation.

In a variation of the above theme, Qing et al. (222), extended 
these findings to include several human neuroblastoma cell lines 
and 80 primary human neuroblastomas with varying degrees of 
N-Myc overexpression. As with the studies of Wise et al. and Gao 
et al. (221), they found that the cell lines underwent apoptosis in 
an N-Myc-dependent manner when deprived of glutamine. They 
also found higher levels of expression of Gls2 (but not Gls1), glu-
tamate oxaloacetate transaminase (GOT2), SLCA15/ASCT2 and 
several other amino acid transporters that correlated with N-Myc 
expression levels. Apoptosis in cell lines in response to glutamine 
deprivation could also be inhibited or delayed by providing the 
cell-permeable TCA substrate dimethyl α-ketoglutarate in place 
of glutamine.

Pérez-Escuredo et  al. (211) showed that the uptake of 
3H-glutamine and its utilization by highly oxidative cervical 
cancer cells was enhanced by lactate, which also accelerated 
tumor growth. They also showed that Matrigel-embedded tumor 
cells grown subcutaneously in immunocompromised nu/nu 
mice in the presence of high local concentrations of extracel-
lular lactate upregulated Slca1A5/ASCT2 and Gls1 at the protein 
level. shRNA-mediated knockdown of the lactate transporter 
MCT1 abolished these effects indicating that actual transport of 
extracellular lactate was mediating the effects on glutaminolysis. 
The upregulation of Slca1A5/ASCT2 and Gls1 appeared to be 
mediated by Myc, whose levels were significantly increased by as 
little as a 6-h exposure to lactate. Further investigation found that 
the conversion of lactate to pyruvate blocked the activity of prolyl 
hydroxylases, which are negative regulators of hypoxia-inducible 
factors (HIFs) 1α and 2α (223). It was suggested that HIF-2α 
stabilizes Myc via its intranuclear binding to Myc-Max heterodi-
mers (224) and indeed, this tripartite interaction was observed 
in co-immunoprecipitation experiments. Furthermore, the 
silencing of HIF-2α abolished the upregulation of Myc, Slc1A5/

ASCT2 and Gls1. Although HIF-1α was not shown to interact 
with Myc or Max, it is known to collaborate with Myc to induce 
the expression of glycolytic genes, thus potentially contributing to 
the intracellular lactate burden and further stabilizing Myc (224). 
These effects may have been further aided by the stabilization of 
HIF-1α by Myc itself (225).

Wang et  al. (203) also examined glutamine dependency in 
the previously mentioned model of normal T-cell activation 
discussed earlier. They determined that glutamine deprivation 
resulted in impaired T-cell activation as well as decreased lipid 
and protein biosynthesis and led to an eventual G0/G1 arrest 
without affecting viability.

Although the Warburg effect and glutaminolysis are typically 
associated with high levels of proliferation (1, 2, 5, 226), they 
have also been observed in response to hypertrophy in otherwise 
non-dividing cells. Piao et al. (227), showed that the heart, which 
relies primarily on glycolysis and FAO for energy, reverts to 
using glutminolysis and also increases glucose utilization when 
subject to conditions that induce hypertrophy. Using two differ-
ent models of right ventricular hypertrophy, they found variable 
degrees of Myc induction and increased expression of glutamine 
receptors SLC1A5/ASCT2 and Slc7A5 as well as increases in the 
mRNAs encoding the Glut1 glucose transporter and hexokinase 
(HK) 1. Consistent with the former of these findings, the inves-
tigators also noted increased 14CO2 production derived from 
14C-labeled glutamine. In response to the glutamine antagonist 
6-diazo-5-oxo-l-norleucine a decrease in glutaminolysis was 
noted and was associated with a compensatory increase in glu-
cose oxidation and elevated cardiac output. These studies strongly 
implicate glutaminolysis as being directly involved in the biomass 
accumulation that accompanies active proliferation but not in 
proliferation per se.

DiSTiNCT IN VIVO MeTABOLiC ROLeS 
FOR MYC: NOT ALwAYS THe SAMe 
FUNCTiON iN NORMAL AND 
NeOPLASTiC TiSSUeS

Myc’s unequivocal role in integrating normal mass accretion 
and proliferative signals with altered metabolism in fibroblasts, 
myeloid cells, T-cells, and other cell types in vitro as discussed 
earlier contrasts sharply with recent studies in hepatocytes where 
Myc was found to be entirely dispensable for the long-term 
regeneration of normal liver parenchyma (228). Several previous 
studies had indicated that mice with a conditional, hepatocyte-
specific knockout of the myc gene could regenerate hepatic mass 
following two-thirds partial hepatectomy (PH) (229–232). Less 
clear was whether this was achieved as rapidly as occurred in 
control livers. To some extent, this uncertainty was the conse-
quence of different groups having used different and mostly 
indirect techniques to measure hepatocyte proliferation and liver 
regeneration. Further compounding this was the fact that the PH 
model is a relatively crude and suboptimal way to measure long-
term regenerative potential given that the average hepatocyte 
must divide only about 1.6 times to replace the resected liver 
mass and that the entire regenerative process is complete within 
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7–10 days (233). Moreover, as many as 30–40% of the hepatocytes 
in the regenerating liver remnant remain quiescent following PH, 
and about the same amount of “regeneration” can be attributed 
to hypertrophy rather than actual cell division (234, 235). Thus, 
none of these reports actually addressed the question of whether 
Myc was necessary to support sustained, long-term hepatocyte 
proliferation as might occur during the course of normal hepato-
cyte turnover or repair from chronic injury, both of which are 
processes of much longer duration (234). It further left open the 
questions of whether subtle but nonetheless significant differ-
ences in regeneration rates might have escaped detection using 
the PH model and what, in fact, was actually being measured in 
these other reports.

Edmunds et al. (228) addressed all of these issues by capital-
izing on an elegant, robust, and sensitive murine model of Type 
I hereditary tyrosinemia (236, 237). In these mice, as in humans, 
inactivation of the fumarylacetoacetate hydrolase (FAH) gene, 
which encodes the final enzyme in the pathway for tyrosine catab-
olism, leads to the accumulation of toxic levels of the upstream 
tyrosine catabolites maleylacetoacetate and fumarylacetoacetate, 
eventually causing hepatocyte death, fibrosis, and hepatic failure 
(238). This ultimately fatal outcome can be blocked with the drug 
2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione 
(Nitisinone or NTBC), a reversible inhibitor of the enzyme 
4-hydroxyphenylpyruvate dioxygenase (HPPD) (239). HPPD is 
a more proximal enzyme in the pathway and converts the first 
tyrosine catabolite 4-hydroxyphenylpyruvate to homogenistate. 
In this way, fah−/− mice can be maintained in a healthy state simply 
by providing NTBC in their drinking water and thereby block-
ing tyrosine catabolism and the accumulation of the deleterious 
metabolites.

Fah−/− mice can also be cured by the intrasplenic injection 
of as few as 105 fah+/+ hepatocytes followed by the intermittent 
discontinuation and resumption of NTBC (236, 237). Animals 
initially lose weight as they accumulate the toxic tyrosine catabo-
lites. However, as endogenous fah−/− hepatocytes are gradually 
replaced by the fah+/+ donor population over 4–5  months, the 
recipient mice are eventually rendered NTBC-free and their livers 
are comprised of 50–80% donor hepatocytes (228, 236, 237, 240). 
As a way of monitoring hepatocyte proliferative potential, this 
model offers several advantages over PH. First, because the donor 
cells must divide 50- to 100-fold during recipient liver repopula-
tion, they undergo many more population doublings than do 
post-PH hepatocytes, thereby providing a more demanding 
and long-term replicative challenge. Second, donor hepatocytes 
from different sources can be used in “competitive” repopulation 
assays, analogous to those used for decades in bone marrow 
transplantation studies (241, 242). Provided that the recipient and 
donor populations can be distinguished, the ultimate contribu-
tion of each to the steady-state transplanted liver can be assessed 
with exquisite precision and even quite small deviations from the 
input donor ratios can be easily quantified (228, 240). Third, if so 
desired, the input ratio of the competing donor populations can 
be varied to reveal even more dramatic differences in regenerative 
potential. Finally, because the competing donor populations rep-
licate in identical environments, differences in regeneration rates 
can be ascertained with many fewer animals than are required 
with PH-based experiments.

Edmunds et al. (228) exploited the FAH model to assess the 
regenerative capacities of mixed fah+/+ populations of myc+/+ 
and myc−/− hepatocytes. Surprisingly, the ratio of the two donor 
hepatocyte populations recovered from the fully reconstituted 
recipient livers more than 4 months after their co-transplantation 
was identical to that of the input donor populations. Thus, even 
under the most demanding of circumstances, Myc’s absence did 
not impair the long-term regenerative potential of hepatocytes in 
this particular model.

In addition to being at odds with the above-discussed role for 
Myc in the proliferation of fibroblasts and T-cells and numerous 
other cell types (154, 158, 191, 196, 203), these results also differ 
from studies in Drosophila and some cancer lines showing that 
cells expressing higher levels of Myc tend to outcompete those 
with low levels (243–245). Similarly, the conditional deletion of 
myc or its dominant-negative inhibition in intestinal crypt cells or 
bone marrow cells is associated with severe proliferative defects 
although these may be ameliorated over time (49, 246–248). 
Thus, the elimination of endogenous Myc seems to have highly 
variable and tissue-specific effects, with liver representing an 
atypical although perhaps not unique example.

Ultimately, while the metabolic consequences of endogenous 
Myc loss are tissue specific and variable, it seems reasonable to 
conclude that, in most cases, Myc is responsible for maintain-
ing context-appropriate levels of ATP and anabolic substrates 
by regulating the uptake and oxidation of nutrients that furnish 
glycolysis and the TCA cycle. In Myc’s absence, as noted above, 
many tissue types appear to adapt to the associated nutrient 
and energy deficits via various strategies that include variable 
reductions in cell mass, proliferative rate and anabolic activity 
(49, 158, 180, 228, 249). Interestingly, while Edmunds et al. (228) 
did not observe any significant differences in cell size, ATP levels 
or AMPK phosphorylation in the livers of mice following trans-
plantation with myc+/+ or myc−/− hepatocytes, these studies were 
performed on hepatocytes that had already re-populated the liver 
and reached a non-proliferating equilibrium state. It is certainly 
possible that more profound energy deficits might have been 
observed had the actual proliferating population been assessed 
at an earlier time following transplant. Nonetheless, these 
studies clearly demonstrated that myc−/− hepatocytes remain as 
fully capable as their wild-type counterparts at contributing to 
the long-term repopulation of the liver irrespective of whatever 
defects they may harbor.

Although myc−/− hepatocytes demonstrated no obvious 
proliferative impairment in the above-described repopulation 
assay, they nevertheless showed several abnormalities that were 
evident even prior to transplantation (228). First, despite body 
weights identical to those of myc+/+ mice, juvenile mice with 
hepatocyte-specific deletion of myc had smaller livers, consistent 
with a previous observation that myc hypomorph mice tend to 
have smaller numbers of otherwise normal-sized cells in some 
organs, including liver (249, 250). At first glance, this would seem 
to be inconsistent with fact that myc+/+ and myc−/− hepatocytes 
competed equally in repopulation studies (228). However, it is 
possible that the requirements for Myc in the developing liver 
versus the fully developed liver are different. There may thus exist 
a phase early in development, but not beyond, during which Myc 
is required for hepatocyte expansion. Alternatively, the smaller 
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size of myc−/− livers may more reflect an unappreciated role of 
Myc in regulating organ size (251, 252) than in limiting the 
proliferative potential of its individual constituent cells, which is 
what is measured in hepatocyte transplant studies.

In contrast to the above findings, adult myc−/− livers actually 
weighed more than myc+/+ livers. The former possessed a signifi-
cantly higher neutral lipid and triglyceride content, which likely 
accounted for their increased mass (228). This implied either that 
myc−/− livers take up and store greater amounts of these lipids 
and/or utilize less of them. Arguing against the latter point was 
the finding that myc−/− livers showed variable but significant 
increases in FAO. This suggested that, in the absence of Myc, 
hepatocytes both take up and utilize more fatty acids, with the 
former process outpacing the latter, eventually culminating in an 
increased storage pool, not unlike that seen in myc−/− fibroblasts 
or following short-term pharmacologic Myc or N-Myc inhibition 
in other cell types (191, 196, 228).

Edmunds et  al. (228) studied the structure and function of 
isolated mitochondria from myc+/+ and myc−/− livers using BNGE 
and noted no obvious differences in the stoichiometries of the 
protein subunits of ETC Complexes I–IV or the ATP synthase 
(Complex V). Mass spectroscopic quantification of over 400 
mitochondrial proteins, including all 93 subunits of the ETC, 
also showed no significant quantitative differences between the 
two groups. However, Complex I and Complex II activities were 
modestly but significantly reduced in mitochondria from myc−/− 
livers in response to ADP and succinate whereas the activity of 
Complex V was increased by about the same amount. Coupled 
with the finding that ATP levels in myc+/+ and myc−/− livers were 
comparable, this suggested that the loss in ETC function in myc−/− 
livers was compensated for by a more efficient generation of ATP 
via Complex V and/or by the more inherently efficient process 
of FAO (253).

Collectively, these findings suggest a form of metabolic 
reprogramming by the myc−/− liver only partially resembling that 
seen in myc−/− fibroblasts, which may reflect the different tissues 
under consideration as well as their different proliferative rates. 
For example, ATP and AcCoA levels were markedly diminished 
in myc−/− fibroblasts but were maintained at normal levels in 
myc−/− livers (158, 228) (Figure  4). This appears to have been 
due to the employment of FAO as an alternative energy source 
by hepatocytes as well as to an increase in neutral lipid accu-
mulation that has been previously reported in myc−/− fibroblasts, 
in hematopoietic cells following short-term inhibition of Myc, 
and in neuroblastomas following treatment with small molecule 
Myc inhibitors (158, 191, 196). The neutral lipid accumulation 
by myc−/− hepatocytes was even more striking following their 
transplantation into fah−/− recipient mice. Oil Red O staining 
of fully reconstituted livers confirmed their significantly higher 
triglyceride content as well as larger and more numerous neutral 
lipid droplets (228). Indeed, the lipid within these livers was 
so abundant that much of it was extracellular. This was likely 
responsible for the significant inflammatory cell infiltrate that was 
observed as well as for the upregulation of numerous transcripts 
involved in acute and chronic inflammation, leukocyte signaling 
and fibrosis. Immunohistochemical staining for 4-hydroxynon-
enal, a by-product of ROS-mediated lipid peroxidation, was also 

detected as was evidence for dysregulated mitochondrial struc-
ture and function as previously reported in mice maintained on 
high fat diets (254–256). Other findings included the downregu-
lation of 19 of the 44 transcripts encoding subunits of Complex 
I and seven of the 20 transcripts encoding subunits of Complex 
V. In the latter group, 10 of the remaining 13 transcripts were 
upregulated. Taken together, these studies suggested that the loss 
of Myc expression in resting hepatocytes is initially associated 
with the gradual accumulation of neutral lipid, not unlike that 
seen in non-alcoholic fatty liver disease (NAFLD) in association 
with ETC dysfunction (257, 258). When coupled with the meta-
bolic stress imposed by regeneration-associated proliferation and 
chronic inflammation, this progressed to a phenotype closely 
resembling non-alcoholic steatohepatitis (NASH), a long-term 
consequence of NAFLD that is associated with high levels of oxi-
dative stress, inflammation, fibrosis and eventual hepatic failure 
(257, 259). It is tempting to speculate that the loss of Myc in these 
hepatocytes, particularly during times of proliferation and high 
energy demand, leads to an attenuated glycolytic response and 
the dysregulation of mitochondrial structure and function. The 
resulting energy depletion and mitochondrial stress is accompa-
nied by an increased reliance on FAO coupled with unbalanced 
fatty acid uptake and storage, intracellular ROS generation, 
inflammation, and long-term parenchymal damage that mimics 
NAFLD and NASH (228).

The above findings do not provide simple explanations for 
how endogenous Myc affects metabolism during normal growth. 
They do suggest, however, that these changes occur at multiple 
levels and that the compensation by myc−/− hepatocytes ultimately 
affects neither ATP generation, AcCoA levels nor proliferation. It 
remains to be determined precisely how ATP levels in myc−/− livers 
are maintained but it appears to be dependent on several different 
pathways including an increased efficiency of ATP production as 
suggested by the Complex V assays and the provision of alternate 
sources of AcCoA mainly from enhanced FAO. An alternative 
source might originate with increased glutaminolysis, which 
could conceivable circumvent the need to rely on glycolysis- or 
FAO-derived AcCoA by providing reducing equivalents in the 
form of both NADH and FADH2. Whatever the cumulative cor-
rective mechanisms are that help to normalize hepatocyte energy 
generation and proliferative function, they come at considerable 
metabolic cost in the form of increasingly severe lipid storage and 
utilization defects.

Metabolic changes have also been studied in myc−/− hepato-
cytes in response to oncogenic signaling following the induc-
tion of hepatoblastoma (HB). HB is the most common pediatric 
liver cancer, almost invariably arising in children under the 
age of 3 years and is associated with somatic mutations of the 
β-catenin gene in >80% of cases (260, 261). A useful mouse 
model of HB has recently been described in which tumors arise 
with nearly 100% penetrance following the hydrodynamic 
tail vein injection-mediated delivery of “Sleeping Beauty” 
plasmids (262, 263) encoding patient-derived mutant forms 
of β-catenin and yes-associated protein (YAP) (264–266). A 
major transcriptional target for β-catenin is Myc (267) and, 
not unexpectedly, Myc is among the most highly upregulated 
genes in HBs (Monga and Prochownik, unpublished data). 
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FiGURe 4 | Regulation of neutral lipid accumulation in myc−/− hepatocytes is both Myc dependent and Myc independent. (A) In myc+/+ hepatocytes, the pathways 
indicated by red arrows are regulated both by Myc and Myc-independent factors. Stored lipid and circulating lipid are maintained in equilibrium. Stored lipid 
contributes minimally to energy generation (via FAO) or the synthesis of new membranes or other lipids when ATP and acetyl-CoA (AcCoA) are derived via glycolysis. 
Under these conditions, lipids such as fatty acids and sterols are largely synthesized from cytoplasmic AcCoA that originates from TCA cycle-derived citrate. (B) In 
myc−/− hepatocytes, basal rates of glycolysis, oxidative phosphorylation, and fatty acid synthesis are depressed thereby allowing for a compensatory increase in 
FAO. This allows basal levels of ATP and AcCoA to be sustained to meet energetic needs. New membrane synthesis thus becomes more reliant upon the uptake of 
exogenous lipids, which accumulate in the form of neutral lipids, leading to mitochondrial dysfunction and reactive oxygen species (ROS) generation (254–256). 
Additional ROS are generated as a result of the accumulation of intracellular and extracellular neutral lipid (257–259).
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Given that Myc plays no role in normal hepatocyte repopula-
tion as discussed earlier (228), it was of interest to determine 
whether Myc is needed to support the more rapid growth and 
increased metabolic demands of HBs. Indeed, Wang et  al. 

(125) found that, although tumors arose in myc−/− livers at the 
same frequency as they did in myc+/+ livers, their growth rates 
were significantly impaired. Thus, while Myc was dispensable 
for normal hepatocyte proliferation and for the induction of 
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HBs, it was clearly required for determining the rate of tumor 
growth (125, 228).

To understand the basis for Myc’s selective role in HB prolif-
eration (228), the metabolic properties of myc+/+ and myc−/− HBs 
were compared. An initial assessment of mitochondrial function 
showed both types of HBs had lower OCRs and Complex II 
activity compared with corresponding livers. However, less sup-
pression of these activities was seen in myc−/− HBs. It is likely 
that this reflected their slower growth rates and thus a reduced 
tendency to rely on Warburg-type aerobic glycolysis for energy 
generation. Consistent with this, glycolytic transcripts as a 
group were upregulated in myc+/+ HBs to a significantly greater 
extent than they were in myc−/− HBs (11.2-fold versus 8.9-fold, 
P < 0.0004). The presumptive lower glycolytic rate of the latter 
likely accounted for their lower AcCoA levels. Despite these dif-
ferences, both tumor types showed elevated levels of ATP and 
a downregulation of phosphoAMPK relative to their respective 
livers. This suggested that, despite differences in their metabolic 
activities, the slower growth rates of myc−/− HBs were not the 
result of any obvious energy deficit. On the other hand, it is 
conceivable that myc−/− HBs were energetically constrained and 
that they maintained a rate of growth that was compatible with 
these limitations while still allowing normal levels of ATP to be 
maintained. The presumptive reduced rate of glycolysis by myc−/− 
HBs may also have restrained the supply of anabolic precursors 
necessary for sustaining rapid tumor growth. In addition, these 
tumors were also less able than myc+/+ tumors to upregulate the 
group of transcripts encoding the ~80 ribosomal protein genes 
(3.6-fold versus 5.2-fold, P < 10−4) (125). Thus, rather than being 
severely deprived of energy, as in the case for myc−/− fibroblasts, 
myc−/− HBs may instead be deprived of anabolic precursors and 
the ability to increase protein synthesis rates, despite adequate 
energy supplies. Protein synthesis rates and ribosomal protein 
content are known to be rate-limiting factors in the growth of 
many cancers (108, 268).

In further pursuit of an explanation for the overall downregu-
lation of OXPHOS by tumors, Edmunds et al. (228) quantified 
mtDNA using qPCR to amplify two distinct regions of the 
mitochondrial genome. They documented a ~60–80% reduced 
mitochondrial mass in both myc+/+ and myc−/− tumors, thus 
providing a structural explanation for the Warburg effect. Results 
published at about the same time by Reznick et al. (269) showed 
a similar loss of mtDNA from a wide variety of human cancers 
whose genomic data had been compiled in The Cancer Genome 
Atlas (https://cancergenome.nih.gov).

In HBs arising in myc+/+ and myc−/− livers, eight of the 14 
most deregulated pathways identified by Ingenuity Pathway 
Analysis involved lipid biosynthesis. Importantly, transcripts 
encoding several key enzymes involved in fatty acid synthesis 
(FAS) such as ATP citrate lyase (ACLY), fatty acid synthase, and 
AcCoA carboxylase were markedly upregulated, although not 
in a Myc-dependent manner. By contrast, transcripts encoding 
enzymes involved in FAO such as trifunctional protein, carnitine 
palmitoyltransferase-2 and very long-chain acyl-CoA dehydro-
genase were markedly downregulated. Indeed, even transcripts 
whose encoded enzymes participate in peroxisomal FAO such as 
the fatty acid transporter ATP-binding cassette-D3, peroxisomal 

biofunctionalized protein, and acyl-CoA oxidase-1 were down-
regulated. Functional assays of the FAO pathway were consistent 
with these findings and showed marked downregulation of FAO 
activity in both myc+/+ and myc−/− tumors (125). Taken together, 
these studies imply that, unlike the case in fibroblasts, where 
the loss of Myc leads to a near cessation of both glycolysis and 
OXPHOS and an upregulation of FAO as an alternate energy 
source, in HBs, glycolysis and OXPHOS are much less affected 
and rely less on FAO to supply energy.

MeTABOLiC LiNKS BeTweeN NORMAL 
AND NeOPLASTiC STATeS

As discussed at length above, proliferating tumor cells require a 
continual supply of the basic cellular building blocks consisting 
of amino acids, nucleic acids, and lipids. In this regard, tumor 
cells are not very different from the progenitor cells that give rise 
to our various organs during embryogenesis, or the regenerative 
stem cells now known to reside within many of our adult tissues. 
Furthermore, differentiated cells may dedifferentiate and then 
proliferate to repair an injury, followed by re-differentiation. The 
metabolic similarities between these different types of proliferat-
ing cells are striking: all rely heavily upon glucose and glutamine 
to meet their steep anabolic needs (270–272). Not coincidentally, 
Myc maintains stem cell pluripotency and self-renewal, perhaps 
through its effects on driving glucose/glutamine uptake and 
metabolism (273). On the other end of the spectrum are non-
proliferative, differentiated cells that are often metabolically 
reliant upon FAO. Several fetal tissues that rely upon glucose 
during growth and development undergo a metabolic switch to 
FAO after birth. The best-known example of this is the heart 
(274) and we have made similar observations in human kidney 
(Goetzman, unpublished data). Senescence is also characterized 
by a switch to FAO while lipid synthesis is turned off (275, 276). 
With some notable exceptions (i.e., prostate cancer) most can-
cers are glucose/glutamine dependent and not FAO dependent 
(277, 278).

The glucose/glutamine versus FAO dichotomy is maintained 
in both normal and neoplastic tissues by a key metabolic phenom-
enon called the Randle cycle, sometimes simply referred to as the 
glucose–fatty acid cycle. The Randle cycle refers to the reciprocal 
nature of mitochondrial rates of pyruvate oxidation and FAO 
(279, 280). The Randle cycle centers on pyruvate dehydrogenase 
(PDH) and carnitine palmitoyltransferase 1 (CPT1), which are 
the rate-limiting enzymes of pyruvate oxidation and FAO, respec-
tively. When glucose is abundant and glycolysis is high, pyruvate 
concentrations rise and inhibit pyruvate dehydrogenase kinase 
(PDK1), the kinase responsible for phosphorylating and silencing 
PDH. PDK1 inhibition activates PDH and increases mitochondrial 
pyruvate oxidation to generate AcCoA and NADH. Increases in 
intramitochondrial AcCoA and NADH have two consequences 
for FAO. First, the intramitochondrial FAO machinery is directly 
inhibited by high NADH/NAD+ and AcCoA/CoA ratios (281). 
Second, the entry of pyruvate-derived AcCoA into the TCA cycle 
produces citrate, which is exported from mitochondria to the 
cytosol where it is reconverted to AcCoA via the action of ACYL. 
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FiGURe 5 | Co-regulation of glycolysis and FAO. Starvation or glucose deprivation mobilizes lipolytic pathways and upregulates FAO to provide an alternate source 
of acetyl-CoA (AcCoA) and maintain oxidative phosphorylation. More so than glycolysis, FAO increases NADH/NAD+ and AcCoA/coenzyme A ratios as well as 
cytoplasmic citrate thereby inhibiting pyruvate dehydrogenase (PDH), phosphofructokinase, hexokinase (HK), and glucose uptake (284–286). By contrast, glucose 
utilization by the TCA cycle tends to produce a greater buildup of citrate-derived, cytoplasmic coenzyme A (CoA) and malonyl-CoA, which exerts potent negative 
control over Cpt1.
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Cytoplasmic AcCoA is then converted to malonyl-CoA by AcCoA 
carboxylase (ACC). Malonyl-CoA in turn is a potent inhibitor of 
CPT1. CPT1 is the gatekeeper for FAO via its role in regulating 
fatty acid transport across the mitochondrial membrane; thus, the 
result of sustained PDH flux is the sequestration of fatty acids in 
the cytosol, away from the degradative FAO machinery. Cytosolic 
fatty acids are then either converted to triglyceride droplets to 
fuel the cell should glucose become unavailable, or in the case 
of proliferating cells, incorporated into phospholipid acyl-chains 
for synthesizing new membranes. The same malonyl-CoA which 
silences CPT1 also feeds into the de novo FAS pathway to further 
support the anabolic needs of the cell (282). Because of this cycle, 
the rate of PDH flux has been shown to highly correlate with 
lipogenesis in many cell types. In the liver, for example, insulin 
increases PDH activity and lipogenesis from glucose-derived 
AcCoA, while starvation rapidly inhibits PDH activity and thus 
limits glucose-derived lipogenesis (283).

The Randle cycle also works in the opposite direction, i.e., high 
rates of FAO suppress glucose utilization. In the same way that 
glucose-derived AcCoA and NADH inhibits the FAO machinery, 
FAO-derived AcCoA and NADH potently inhibit PDH via activa-
tion of PDK1. There is also some evidence that fatty acid-derived 
citrate exported to the cytosol can suppress glycolysis at the level 
of phosphofructokinase-1 (284–286). The resulting accumula-
tion of glucose-6-phosphate feeds back to inhibit hexokinase 

(HK) and glucose uptake (Figure  5) (286). Overall, the net 
result of these various points of negative feedback control are a 
downregulation of glucose utilization by FAO. A key theme of 
the Randle cycle is that lipogenesis sides with glucose oxidation, 
and that cells cannot simultaneously conduct FAO and FAS. This 
is because activation of FAS, by virtue of cytosolic conversion of 
citrate to AcCoA to malonyl-CoA, would inhibit FAO at the level 
of CPT1. This maybe the reason why proliferating cells, be they 
cancerous or not, suppress FAO such that they can drive their 
absolute requirement for FAS and membrane synthesis. Likewise, 
it explains how terminally differentiated and senescent cells are 
able to sustain high rates of FAO for their energetic needs. In 
short, because of FAO suppression of glucose-derived FAS, it is 
difficult for cells to proliferate while conducting a high rate of 
FAO. Exogenous fatty acids can be incorporated into membranes 
directly, but in FAO-dependent cells the phospholipid synthesis 
pathways would be in continual competition with mitochondria 
for incoming exogenous fatty acids.

The Randle cycle and connection between glucose utilization 
and FAS would suggest that tumors would tend to have low FAO 
and high FAS. Indeed, this has been observed in many cancers, 
and inhibition of the FAS pathway has been shown to slow cancer 
growth in many instances (287, 288). In the HB mouse model 
discussed at length above, FAO was found to be markedly lower 
than in normal control liver while PDH activity was increased 
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several-fold (240). This occurred both in the presence and 
absence of Myc suggesting that there are multiple mechanisms 
responsible for driving the glucose–fatty acid cycle in tumors. A 
similar reciprocal relationship between FAO and PDH activity 
was also seen in a model of hepatocellular carcinoma induced 
by the deregulated, doxycycline-regulated induction of Myc 
(126). Of course, as is true with all aspects of cancer metabolism, 
there have also been multiple studies demonstrating cancers with 
the opposite metabolic phenotype, i.e., high FAO and low PDH 
activities (289–294). It is interesting to note that prostate cancer, 
the best-characterized example of a cancer with high FAO, is well 
known for its typically slow growth rate. Some studies have shown 
that maximizing pyruvate flux through PDH by inhibiting PDK 
with dichloroacetate can sensitize cells to other chemotherapies, 
presumably by promoting mitochondrially driven apoptosis 
(295). As with many metabolic pathways, too much of any one 
thing may lead to cell death. In the case of PDH, it has been shown 
in normal liver that most PDH capacity is not being used, even 
under fed, insulin-stimulated conditions (283). Only about 10% 
of the PDH in fed rodent liver is in the active (unphosphorylated) 
state; acute insulin exposure doubles this to 20%. Dichloroacetate 
increased the active state to 100%. Therefore, it remains possible 
that either supraphysiological activation or inhibition of PDH 
may be beneficial in crippling cancer growth, with the usual 
caveat that it depends upon the cancer being treated.

With regard to liver cancers, the commonality of high PDH 
activity in both HBs and HCC (125, 240) led to the hypothesis 
that eliminating PDH may slow tumor growth. First, Jackson 
et al. examined the consequences of conditional inactivation of 
the catalytic PDHA1 subunit on normal hepatocyte proliferation 
in murine liver (240). Using the above-described competitive 
hepatocyte re-population assay, it was determined that wild-
type and PDH knockout hepatocytes contributed equally to the 
long-term reconstitution of fah−/− recipient livers. Thus, despite 
the severing of the direct line of communication between gly-
colysis and the TCA cycle, and between glucose utilization and 
FAS, proliferation remained unaffected. That PDH is profoundly 
linked to lipogenesis was demonstrated by the striking loss of 
lipid stores in PDH KO liver (Figure 6). Based on this observation 
it is tempting to speculate that PDH inhibition could represent a 
novel therapeutic approach for the treatment of NAFLD. What 
remains to be determined is the magnitude of PDH suppression 
needed to achieve this outcome, the length of time PDH sup-
pression must continue, and how rapidly lipid re-accumulates 
following its reactivation.

Two approaches were next taken to ascertain how inactiva-
tion of PDH altered the properties of HBs induced by mutant 
β-catenin  +  YAP (125, 240). In the first approach, both the 
resultant tumors and the adjacent, non-transformed parenchyma 
were rendered PDH-negative (“pan KO”), whereas in the second, 
only tumors and not the adjacent non-transformed liver tissue 
were rendered PDH-negative (“restricted KO”). Survival of the 
pan KO tumor group did not differ significantly from that of the 
control group with normal levels of PDH expression in all tissues 
whereas survival of restricted KO tumor group was significantly 
prolonged (mean survival ~125 versus 90 days). Further investi-
gation showed that pan KO HBs tended to be smaller than control 

tumors despite the similar survival of the two groups. By contrast, 
HBs from the long-surviving restricted KO group were about the 
same size as control tumors. These apparent discrepancies were 
ultimately resolved by showing that mice in the pan KO group 
had a severe lactic acidosis at the time of their demise. It was 
concluded that, in the face of the absence of PDH activity in pan 
KO hepatocytes, HB-derived lactate could not be metabolized 
back to pyruvate by the untransformed hepatocytes as it could 
by the PDH-expressing hepatocytes of restricted KO mice. The 
demise of the pan KO animals was thus due to a combination of 
tumor burden and lactic acidosis. The normal respiratory com-
pensation that attempts to correct metabolic acidosis was almost 
certainly compromised in these mice as well due to the restricted 
diaphragmatic mobility imposed by the tumor burden.

The most notable metabolic defect in PDH KO tumors was 
a ca. 80% reduction in total AcCoA levels. Surprisingly, only a 
slight, statistically non-significant increase in compensatory FAO 
was observed (240). Importantly, while the Randle cycle shows 
that driving one pathway will limit the other, these studies suggest 
that directly limiting one pathway does not necessarily stimulate 
the other (i.e., eliminating PDH may not necessarily stimulate 
high FAO). Interestingly and unexpectedly, the PDH KO studies 
indicated that despite the profound inability to maintain normal 
levels of AcCoA, KO hepatocytes were able to sustain normal or 
near-normal rates of growth even following their transformation 
into highly proliferative tumor cells. It is possible that reductive 
carboxylation of glutamine, which was not examined, could sup-
ply just enough cytosolic AcCoA to drive the fatty acid synthesis 
needed to supply lipids for new membranes. In this scenario, the 
minimal induction of compensatory FAO might be explained by 
glutamine-derived malonyl-CoA, which would limit the capacity 
for FAO by inhibition of CPT1. In short, this series of studies with 
PDH KO mice highlight the amazing metabolic plasticity of both 
normal and neoplastic livers, and stress the difficulty of targeting 
metabolic pathways to treat cancers.

THeRAPeUTiC STRATeGieS AiMeD AT 
TARGeTiNG MYC AND iTS eFFeCTORS

Myc has long been viewed as an exciting but challenging onco-
logic target (51, 52, 296). The enthusiasm stems from the fact that 
Myc is among the most commonly deregulated oncoproteins in 
all of cancer (24, 51, 52, 97). Even in those neoplasms where Myc 
deregulation is not immediately appreciable, other oncogenic 
signaling pathways that are deregulated invariably converge upon 
Myc which then carries out their transcriptional bidding. In these 
cases, inhibiting Myc still leads to cell cycle arrest, the collapse 
of ATP production and apoptosis (50, 191). Unfortunately, Myc’s 
lack of enzymatic activity or prominent structural features makes 
it extremely difficult to target with small molecules (51, 52, 
296). The means by which Myc inhibition has been attempted 
and descriptions of the successes and (mostly) failures along the 
way have been recently reviewed (297). These attempts included 
strategies such as altering the structure of Myc DNA-binding 
sites, inhibiting the structure and/or function of Myc-Max het-
erodimers, and inhibiting Myc’s engagement with and activation 
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FiGURe 6 | Differential utilization of neutral lipid stores in the absence of pdha1. (A) Oil Red O-stained liver sections from 6- to 8-week-old pdha1 WT and KO mice 
showing the latter to be nearly devoid of neutral lipid. Each panel is from a different animal. All sections are 40× magnification. (B) Lipid metabolism in the normal 
[pyruvate dehydrogenase (PDH)-WT] liver where there exists a balance between exogenous lipid uptake, storage, and utilization. The latter consists of direct 
incorporation of stored lipids into new membranes and FAO. Both of these occur at low levels because they compete with glycolysis to supply acetyl-CoA (AcCoA). 
The AcCoA derived from glycolysis is used as a substrate for the energy-generating TCA cycle and the energy-depleting synthesis of de novo membrane. (C) Lipid 
metabolism in PDH KO livers. The activation of FAO provides an alternate source of AcCoA when it cannot otherwise be supplied by glycolysis. Although this route 
is sufficient to serve as an energy-generating substrate, it is insufficient to allow for de novo fatty acid and sterol synthesis. Thus, stored hepatic lipid is also utilized 
directly for this purpose. The net result is the depletion of stored neutral lipid reserves.
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of the transcriptional activation machinery (297). A second chal-
lenge to inhibiting Myc is that the plethora of target genes whose 
expression is altered, either directly or indirectly, in response to 
Myc deregulation includes many that are transforming in their 
own right. Thus, an obvious alternate strategy, such as targeting 
one of these rather than the intimidating Myc itself, is likely to fail 
because of their sheer number and oncogenic functional redun-
dancy. A final challenge is that many of the early Myc inhibitors 
that have been described to date, even those which function well 
in  vitro, have demonstrated disappointing therapeutic efficacy 
in  vivo due to poor tissue penetration, low potency, or rapid 
metabolism (51, 52, 296, 297).

While these issues are clearly important when considering 
the targeting of oncogenic pathways, some become less so when 
contemplating the employment of inhibitors in non-neoplastic 
settings where Myc is a potential target that may not require 
systemic inhibition. For example, the intimal hyperplasia that 

accompanies atherosclerotic stenosis has long been known to 
be accompanied by and to be dependent upon Myc overexpres-
sion (52, 298, 299). We have proposed that drug-eluting stents, 
which released Myc inhibitors continuously and over short 
distances, would provide a means by which high-local compound 
concentrations could be achieved thus overcoming some of the 
pharmacologic shortcomings that plague their systemic delivery 
(52). Myc antisense oligonucleotides have shown efficacy is this 
regard even though their ability to reduce Myc levels has been 
somewhat modest (300, 301).

Non-neoplastic settings also now permit the consideration of 
downstream Myc effectors that would not otherwise represent 
tractable targets due to their neoplastic redundancy as men-
tioned earlier. An excellent example of this is PDH, which is 
neither an oncoprotein nor even a direct Myc target although it is 
dramatically upregulated and activated in response to activation 
of the Myc pathway (Figure 6) (125, 126, 240). Inhibiting PDH 
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via more traditional approaches than are available for Myc could 
prove to be of enormous therapeutic benefit for the treatment of 
NAFLD, a common condition associated with considerable non-
neoplastic morbidity and mortality as well being a significant 
predisposing factor for the development of cancer (257). Time 
will tell whether the inhibition of Myc and its partners in crime 
will be of greater therapeutic benefit for cancer, for metabolic 
disorders, or for those diseases harboring overlapping features 
of both.
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The CDKN2A/B genomic locus is associated with risk of human cancers and metabolic

disease. Although the locus contains several important protein-coding genes, studies

suggest disease roles for a lesser-known antisense lncRNA encoded at this locus, called

ANRIL. ANRIL is a complex gene containing at least 21 exons in simians, with many

reported linear and circular isoforms. Like other genes, abundance of ANRIL is regulated

by epigenetics, classic transcription regulation, splicing, and post-transcriptional

influences such as RNA stability and microRNAs. Known molecular functions of

ANRIL include in cis and in trans gene regulation through chromatin modification

complexes, and influence over microRNA signaling networks. Polymorphisms at the

ANRIL gene are linked to risk for many different cancers, as well as risk of atherosclerotic

cardiovascular disease, bone mass, obesity and type 2 diabetes. A broad array

of variable reported impacts of polymorphisms on ANRIL abundance, splicing and

function suggests that ANRIL has cell-type and context-dependent regulation and

actions. In cancer cells, ANRIL gain of function increases proliferation, metastasis, cell

survival and epithelial-mesenchymal transformation, whereas ANRIL loss of function

decreases tumor size and growth, invasion and metastasis, and increases apoptosis and

senescence. In metabolic disease, polymorphisms at the ANRIL gene are linked to risk

of type 2 diabetes, coronary artery disease, coronary artery calcium score, myocardial

infarction, and stroke. Intriguingly, with the exception of one polymorphism in exon 2 of

ANRIL, the single nucleotide polymorphisms (SNPs) associated with atherosclerosis and

diabetes are non-overlapping. Evidence suggests that ANRIL gain of function increases

atherosclerosis; in diabetes, a risk-SNP reduced the pancreatic beta cell proliferation

index. Studies are limited by the uncertain relevance of rodent models to ANRIL studies,

since most ANRIL exons do not exist in mouse. Diverse cell-type-dependent results

suggest it is necessary to perform studies in the relevant primary human tissue for each

disease. Much remains to be learned about the biology of ANRIL in human health and

disease; this research area may lead to insight into disease mechanisms and therapeutic

approaches.

Keywords: ANRIL, CDKN2A, CDKN2B, long noncoding RNA, diabetes, pancreatic islet, cancer, metabolic disease
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INTRODUCTION

The discovery of functional noncoding RNAs has opened a
kaleidoscopic world of unanticipated mechanisms extending
far beyond the DNA-RNA-protein paradigm; noncoding RNAs
may in fact outnumber coding RNAs (1). Long noncoding
RNAs (lncRNAs) have been discovered throughout the genome;
scientists are working to explore their functions in health and
disease. The ANRIL lncRNA was first identified in a melanoma
kindred with a large (403 kb) deletion at the CDKN2A/B locus
(2). ANRIL has attracted broad attention because it is located
at a genomic hotspot for disease heritability, the CDKN2A/B
locus. Although protein coding genes at this locus have important
well-studied roles in cell cycle regulation, data suggest that some
locus disease-associated single nucleotide polymorphisms (SNPs)
act through effects on ANRIL itself. Intriguingly, studies suggest
ANRIL not only impacts the biology of cancer, but also has cell-
type-specific roles in metabolic disease. Although ANRIL has
been reviewed in the past (3, 4), knowledge has exponentially
increased in recent years. Here we review advances in ANRIL
SNPs, gene regulation, cell biology, and disease roles of ANRIL.

THE CDKN2A/B LOCUS

ANRIL, or CDKN2B-AS1, is located at the human CDKN2A/B
locus at 9p21.3. This gene cluster, extending over a nearly 350 kb
genomic region housed within a single topologically associated
domain (TAD) (5), contains three protein coding genes and,
antisense to them, the ANRIL lncRNA (Figure 1). The protein
coding genes include S-methyl-5

′

-thioadenosine phosphorylase
(MTAP), CDKN2A, which encodes splice variants p16INK4A and
p14ARF, and CDKN2B, which encodes p15INK4B (9, 10). MTAP
lies at one end of the locus, 192 kb telomeric to the 5

′

start of
ANRIL. At the centromeric end of the locus, the ANRIL gene
contains 19–21 reported exons over a 126 kb region. CDKN2A
lies between MTAP and ANRIL, near the first exon of ANRIL;
CDKN2B is located within the first intron of ANRIL, in an
antisense direction. The proteins encoded by CDKN2A and
CDKN2B are tumor suppressors with well-established roles in cell
proliferation, apoptosis, senescence and aging (11, 12). p16INK4A

and p15INK4B are cyclin dependent kinase (CDK) inhibitors,
inhibiting retinoblastoma phosphorylation by CDK4/6. The
p14ARF protein, a splice variant of CDKN2A which due to
a frame shift has no amino acid homology to the principal
other CDKN2A splice variant, p16INK4A, modulates p53 activity.
ANRIL is transcribed by RNA polymerase II and spliced into
multiple linear and circular isoforms in a tissue-specific manner.
In general, ANRIL roles, explored in detail below, include gene
regulation in cis and in trans through interaction with polycomb

Abbreviations: CAD, coronary artery disease; CAC, coronary artery calcium;

CDK, cyclin dependent kinase; circANRIL, circular ANRIL; circRNA, circular

RNA; GWAS, genome-wide association study; lncRNA, long noncoding RNA;

miRNA,microRNA;MI, myocardial infarction; MTAP, S-methyl-5
′

-thioadenosine

phosphorylase; PBMC, peripheral blood mononuclear cell; PBTL, peripheral

blood T-lymphocytes; PRC, polycomb repressive complex; SNP, single nucleotide

polymorphism; VSMC, vascular smooth muscle cells.

repressive complex (PRC) histone modifiers, as well as RNA-
RNA interactions such as microRNA (miRNA) sponge activity
(3, 13). Known biological impact of ANRIL activities include
modulation of proliferation, apoptosis and cellular adhesion
pathways (14).

EVOLUTION OF THE ANRIL GENE

The evolutionary development of the human ANRIL gene has
been studied by comparative analysis of the genomes of 27
organisms including non-mammalian vertebrates, non-placental
mammals, non-primate placental mammals, and primates (15).
ANRIL originated in ancestors of the Eutherian (placental)
mammalian clade. Initially the gene contained only a few exons;
over time, ANRIL underwent clade-specific evolution, adding
exons in many mammals but losing exons in rodents. The full 21
exon gene is present only in simians. ANRIL genes contain many
repeat elements, both intronic, and exonic; evidence suggests
that transposon activity has mediated many of the observed
evolutionary changes in exon presence or absence, location,
sequence, conservation, and structure, as well as introduction of
splice sites (15).

Early ANRIL variants were likely not transcribed or functional
(15). One hallmark of functional RNAs is splice signals at
intron/exon boundaries. In simians, 191 intron/exon boundaries
contained canonical splice signals, while 20 did not. In lower
mammals, however, only about half of intron/exon junctions
contained identifiable splice signals (15). This finding suggests
that as ANRIL gained exons, and exon sequences became more
conserved across species, it also increased the number of splice
signals and gained functionality. Taken together, data suggest that
ANRILmay be functional only in simians, and that functionality
may have been introduced by transposon activity (15).

ANRIL ISOFORMS AND STRUCTURE

With at least 21 exons (new exons discovered as recently as 2017
(7)), the ANRIL gene can potentially generate a large number of
splice variants. In fact, many ANRIL isoforms have been reported
(Figure 1) (16). Exon numbering has changed over time as new
exons were discovered. Studies observe multiple isoforms in any
given cell type, mostly at low abundance. A different range of
isoforms may be identified from one cell type to another, but
tissue-dependent isoform expression in primary cells or tissues
has not yet been comprehensively quantified using the same
reagents and techniques. Intriguingly, many studies have now
identified both linear and circular ANRIL isoforms (6–8). The
longest open reading frame identified in any ANRIL variant is 86
codons, supporting the concept that functionality of this gene is
through RNA activity (16).

Linear and Circular Isoforms
Many conventional linear polyadenylated ANRIL isoforms are
detected in different cell types. Circular ANRIL (circANRIL)
isoforms, without polyadenylation, have also been described.
Circular RNAs, which are formed by “back-splicing” in which
a downstream splice donor site is joined to an upstream splice
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FIGURE 1 | CDKN2A/B locus and ANRIL isoforms. (A) At the CDKN2A/B

locus, the ANRIL lncRNA is antisense to the protein coding genes. The

p15INK4B gene is contained within intron 1 of ANRIL. (B) To date, ANRIL has

21 reported exons. (C,D) Numerous linear (C) and circular (D) exons have

been reported. Due to the discovery of additional exons, distal exons in some

circular isoforms have been renumbered based on the current 21 reported

exons. *Exons 15-16 refer to exons 14-15 in Holdt et al. (6). **Exon 16 refers

to exon 14 in Sarkar et al. (7) and Burd et al. (8).

acceptor site, were discovered in 2012 to be a broadly occurring
phenomenon across developmental stages and tissues, arising
from at least 14% of human transcribed genes (17, 18). CircRNAs
enjoy distinct properties from linear RNAs, including, in general,

enhanced stability and longevity, cytoplasmic localization, and
lack of translation (although if an IRES is engineered, circRNAs
can support translation) (19). Traditional PCR using antisense-
oriented primers cannot distinguish between linear and circular
isoforms; other methodology, such as PCR using “outward-
facing” primers directed away from each other, detection of
specific exon-exon junctions, or protection from RNAse R
digestion can quantify circular RNAs.

Careful examination of melanoma cell lines showed that
the abundance of individual ANRIL exons is non-uniform,
supporting the presence of different isoforms (7). In both
transformed cell lines and in human brain derived cells,
abundance of ANRIL exons was lower than exons from
locus protein-coding genes CDKN2A and CDKN2B (8). Linear
isoforms tend to include proximal exons (1-2), whereas isoforms
with only central exons (4-16) are more likely to be circular (8).
In melanoma cells, proximal exons (exon 1 and exon 5-6) were
more highly expressed than distal exons. This suggests that short
isoforms of ANRIL, which tend to include proximal exons, are
more abundant than longer isoforms in this cell type (7). In
human peripheral blood mononuclear cells and a monocyte cell
line, four major groups of ANRIL transcripts were found, all with
common proximal exons including exons 1, 5, and 6 but with
different distal exons, of various lengths (8). Multiple circular
ANRIL isoforms have been detected. A circANRIL isoform with
an exon 14-5 head-to-tail junction was reported to be the
predominant form in both an immortalized fibroblast cell line (8)
and in amajority of melanoma cell lines (7). Other non-canonical
back-spliced junctions observed in melanoma samples included
exon 14-5, 7-4, 10-5, and 14-4 (7). The exons most commonly
observed in circANRIL in melanoma cells were 4, 5, 6, 7, 10, 13,
and 14; in varied human cell types, the majority of circANRIL
species were exon 5-6-7 containing (6). ANRIL exons 1, 2, 3,
8, 9, 11, and 12 were rarely included in circular RNA products
(8). In melanoma lines, no correlation was observed between
abundance of linear and circANRIL (7). However, circANRIL
expression was inversely correlated with linearANRIL expression
in peripheral blood mononuclear cells in a cardiovascular cohort
(6). CircANRIL was found to be resistant to RNAse R digestion
compared with linear ANRIL, and an actinomycin D time course
confirmed enhanced stability of the 14-5 circANRIL isoform
compared with linear isoforms (7, 8).

Secondary Structure
Structure and function of lncRNAs is of high interest in
the scientific community, given the increasing recognition of
lncRNA roles in cancer and the normal biology of higher
organisms. As such, prediction of lncRNA structures is an
important computational challenge. One approach is to identify
structural elements through comparison of related lncRNAs. The
MONSTER tool was used to compare ANRIL to two lncRNAs
with similar biological function: HOTAIR and COLDAIR (20).
MONSTER identifies sequence-predicted secondary structure,
such as regions likely to be single stranded RNA, double
stranded RNA, hairpin loops, interior loops and bulges.
Comparing predictions of two lncRNAs with similar functions
is proposed as a mechanism to identify structural motifs.
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When HOTAIR, COLDAIR, and ANRIL were compared, several
common structures were identified, putative structural motifs
related to their common function in epigenetic regulation,
which could lead to a molecular understanding of mechanism
of action in future studies (20). Another study identified
the region of ANRIL that interacts with CBX7, a polycomb
repressor component; secondary structure analysis revealed
hairpin structural motifs with significant binding affinity to
CBX7. Fluorescence anisotropy suggested a ternary complex
between a particular loop of ANRIL, CBX7 and a H3K27me3
methylated histone peptide (21).

Cellular Localization
RNA localization impacts function. In melanoma cells, linear
ANRIL species containing proximal (exon 1) and distal
(exons 13b, 19) exons were predominantly found in the
nucleus. However, middle exons (exons 5, 6, and 7), which
are found in both linear and circANRIL, were observed
in cytoplasmic fractions, suggesting that circANRIL species
may be predominantly cytoplasmic (7). Nuclear localization
suggests linear isoforms may be responsible for the known
ANRIL function of regulating gene transcription via chromatin
modulation (see below). Conversely, cytoplasmic localization
suggests circANRIL forms may participate in post-transcriptional
functions. In gastric (22), prostate (21), and urothelial (23)
cancer cells, ANRIL was predominantly nuclear. In a beautiful
high-resolution analysis of single-molecule lncRNA localization,
ANRIL was found to be mostly localized to cell nuclei, in one
or several bright foci. Like other lncRNAs analyzed, ANRIL
nuclei foci were lost in mitotic cells (24). Physiological stimuli
that change ANRIL localization may provide clues as to ANRIL
functions. Intriguingly, in a retinal cell line ANRIL isoforms were
observed by fluorescence in situ hybridization to localize to the
peri-nuclear cytoplasmic space. ANRIL abundance was induced
by glucose, but ANRIL localization did not change with high
glucose exposure (25). On the other hand, a study in HUVEC
cells, using primers predicted to detect both linear and circular
isoforms, found ANRIL to be mostly nuclear; nuclear ANRIL was
increased after exposure to TNF-α (26). At least one study has
used ANRIL as a nuclear positive control to test localization of
other transcripts (27). Future cell type specific studies of ANRIL
localization under basal, stimulated, and stress conditions may
lead to clues as to ANRIL roles in tissue health and disease.

REGULATION OF ANRIL ABUNDANCE

Abundance of ANRIL species is determined by promoter
transcriptional activity, splicing decisions, and RNA stability
(Figure 2). Like other genes, ANRIL promoter activity is
influenced by epigenetic control and transcription factor
occupancy. Intriguingly, epidemiological findings suggest that
epigenetic regulation of ANRIL, through promoter methylation,
has important long-lasting consequences for tissue function (29–
31). As such, ANRIL regulation is one mediator of the impact of
early life environmental signals on adult human health.

ANRIL Promoter Methylation
Epidemiological and experimental findings demonstrate that
methylation of theANRIL promoter region regulatesANRIL gene
expression and has functional importance. The first exons of
ANRIL and p14ARF are separated by only 300 bp, in head-to-
head antisense orientation; the intergenic region between them
is a bidirectional promoter (4, 32, 33). In silico analysis of
ENCODE ChromHMM data (34) revealed that this region is
enriched for both promoter and enhancer activity, and DNAse
I hypersensitivity, across multiple cell types, suggesting this is
a regulatory region. This region is bound by CTCF, usually
considered to be a transcriptional repressor, insulating promoters
from enhancer activity. Oddly, CTCF binding at the ANRIL
promoter was associated with active-chromatin mark histone
H3K4 trimethylation (35). CTCF binding, and ANRIL and
p14ARF expression, were inhibited by methylation of local CpG
islands and increased by demethylation. Knockdown of CTCF
prevented the demethylation-induced expression of ANRIL
and p14ARF, confirming that CTCF is a methylation-sensitive
positive regulator of ANRIL promoter activity (35).

Additional evidence supports the functional importance of
CpG sites for ANRIL promoter activity, locus gene expression
and transcription factor binding. Mutagenesis of the CpG sites
affects both ANRIL and p14ARF promoter activity (29, 30).
Methylation status of several CpG differentially methylated
regions at ANRIL in umbilical cord tissues was positively
associated with abundance of linear but not circular ANRIL,
but inversely associated with p14ARF and p16INK4a expression
(29). CpG methylation also affects other transcription factors
binding at the ANRIL promoter to regulate downstream gene
expression, such as interferon gamma, SMAD3/4 and ERα (29,
30). Methylation status of CpG islands around the p16INK4A
transcription start site was also shown to coordinate transcription
of ANRIL and p16INK4A in human cells (36). Given the
multiple protein complexes binding across different CpG sites,
and variable quantitative impact of individual CpG region
mutagenesis on ANRIL isoforms and locus gene expression,
regulation appears to be complex.

Transcription Factors Regulate ANRIL

Production
ANRIL expression is influenced by cellular processes such as
genotoxic stress, tumorigenesis, senescence, and inflammation.
Activity at the bidirectional promoter region upstream of both
ANRIL and p14ARF genes is influenced by the critical cell
cycle regulator E2F1 (32, 33). In response to the genotoxic
stress of DNA damage, E2F1 transcriptionally activates ANRIL
in an ATM-dependent manner (33, 37). In this case, ANRIL
is thought to promote cell growth by suppressing locus INK-
family inhibitors after DNA repair is complete, allowing re-
entry into cell cycling (33). The ANRIL promoter was also
responsive to E2F1 in cancer cells (32). In addition to E2F1,
several known potent oncogenes regulate ANRIL expression
in various cancers. In lung cancer, c-MYC binds to an E-box
in the ANRIL promoter and induces ANRIL expression (38).
In nasopharyngeal carcinoma, transcription factor SOX2 was
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FIGURE 2 | Summary of regulation and functions of the ANRIL lncRNA. (Left) Some of the known mechanisms by which ANRIL abundance is regulated, at the

transcriptional and post-transcriptional levels. On the (Right), a selection of known ANRIL cellular functions are depicted. We apologize for observations not included

in this summary image. The ANRIL structural prediction in the center is of a common long-isoform of ANRIL, and was generated from Gruber et al. (28).

shown to bind directly to the ANRIL promoter and activate
transcription of ANRIL and its downstream effector β-catenin
(39). In liver cancer, SP1 binds the ANRIL promoter and
positively regulatesANRIL transcription (40). On the other hand,
TET2, a tumor suppressor in human gastric cancer, binds to the
promoter region of ANRIL and regulates expression of ANRIL as
well as p16INK4a, p15INK4b, and p14ARF (41). Transcription
regulation of ANRIL is involved not only in cell DNA damage
and oncogenesis, but also in disparate processes such as cell
senescence and inflammation. In senescence, oncogenic Ras
was found to reduce expression of ANRIL (13, 21, 42). In
inflammation, STAT1 activates the ANRIL locus in vascular
endothelial cells has been reported; CAD-associated ANRIL SNP
rs10757278, located in a known downstream enhancer region,
disrupts the STAT1 binding site and modulates IFN-γ induced
ANRIL expression via stimulation (43). Intriguingly, the binding
of STAT1 at this enhancer exerts cell-type specific regulation
of ANRIL expression: repression in lymphoblastoid cells lines,
but activation in HUVEC cells (43). In sum, data support an
important role for cell-type specific transcriptional regulation of
theANRIL lncRNA in a range of cellular processes and outcomes.

Regulation of ANRIL Splicing
Cell type dependent variation in abundance of different ANRIL
isoforms suggests that splicing may be a point of regulation
(8, 44). Almost nothing is known aboutANRIL splicing decisions.
Disease-associated ANRIL gene polymorphisms have shed light
on this process. In lymphocytes, the coronary artery disease
(CAD) associated SNP rs10757278 (intron 12) correlates with
abundance of certain circular (14-5 and 4-6) and linear (exon 1-2,
but not 18-19, containing) isoforms (8). The rs10757278A allele
was found to inhibit skipping of exon 15, promoting circANRIL

species ending in exon 14 (8). Mechanisms regulating ANRIL
splicing require further study.

Post-Transcriptional Regulation
Determinants of ANRIL transcript longevity and stability remain
uncertain, but miRNAs can participate. ANRIL, downregulated
following Kaposi’s sarcoma associated herpesvirus (KSHV)
infection, contains multiple seed matches for KSHV miRNAs.
Forced miRNA expression decreased ANRIL abundance, and
miRNA pull-down experiments confirmed a direct interaction.
In addition, KSHV latency associated proteins vFLIP and
vCyclin also decreased ANRIL abundance, suggesting post-
transcriptional miRNA-dependent and independent regulation
(45).

FUNCTIONS OF THE ANRIL LNCRNA

Transcription Regulation via Chromatin

Modifying Complexes
Many studies show that ANRIL functions in cells to regulate
gene expression via chromatin modification. Acting in cis,
ANRIL interacts with both PRC-1 and−2 to mediate epigenetic
transcriptional repression of neighboring genes CDKN2A and
CDKN2B, through mechanisms involving histone modification
and chromatin remodeling (13, 21, 33). ANRIL interacts with
PRC1 component CBX7 to recruit PRC1 to the p14ARF
and p16INK4A loci, silencing the CDKN2A locus by H3K27-
trimethylation (21). At CDKN2B, ANRIL was shown to
recruit SUZ12, a subunit of the PRC2 (13). ANRIL also
interacts with PRC-associated protein YY1 (46). Intriguingly,
the structural conformation of the methyl-lysine binding pocket
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in the chromodomain of CBX7, which interacts with H3K27-
trimethylation to cause chromatin compaction, is influenced
by allosteric RNA-protein binding with ANRIL (47). However,
despite this well-documented repression of other locus genes
by ANRIL, a positive correlation between ANRIL (both short
and long isoforms), CDKN2A and CDKN2B RNA abundance
has been frequently reported, suggesting transcriptional co-
regulation of these genes predominates in many tissues (8, 10, 14,
16, 44, 48–51).

ANRIL also acts in a PRC1/2 dependent mechanism to
repress distant genes in trans (32, 46). Trans regulation by
ANRIL may be dependent on Alu motifs, which are found both
in ANRIL transcripts and in the promoters of ANRIL target
genes (46). This mechanism was shown to regulate the CARD8
gene in endothelial cells (52). Polycomb group proteins, which
are highly enriched near Alu motifs across the genome, are
recruited to target gene promoters upon ANRIL over-expression.
In support of this concept, silencing ANRIL impacts expression
of a large number of genes across the genome (14). Separate
from chromatin modification,ANRIL is reported to regulateWnt
signaling by binding to SOX2, increasing transcriptional activity
of the WNT/β-catenin pathway (39).

miRNA Abundance and Activity
ANRIL also influences gene expression via miRNA networks.
ANRIL regulates miRNAs both at the epigenetic level, through
regulation of miRNA transcription, and through direct binding
to miRNAs, acting as a miRNA “sponge.” In gastric cancer
cells, ANRIL epigenetically silences miR-99a/miR-449a through
a PRC2 mechanism (22). In general, expression of ANRIL and its
target miRNAs are negatively correlated in tissues and cell lines
(22, 53–57). ANRIL has been described as having pro-oncogenic
effects by sponging miRNAs (see below for more details). On the
other hand, circANRIL containing exons 5-6-7 was found to lack
miRNA sponge activity (6). Inhibition of miRNAs can reverse the
effects of ANRIL knockdown.

Cellular Outcomes of ANRIL Activity
ANRIL has broad impacts on cell biology, including influence
over proliferation, senescence, apoptosis, extracellular matrix
remodeling, and inflammation (14). In cancer, ANRIL-miRNA
interactions regulate networks of downstream targets of miRNAs,
promoting an oncogenic role for ANRIL in cell proliferation,
metastasis, invasion, radio-resistance, drug-induced cytotoxicity
and apoptosis, involving many different signaling pathways (22,
53–57). Specifically, repression of cell cycle inhibitors p14ARF,
p15INK4B, and p16INK4A increases proliferation, decreases
senescence, and contributes to the DNA damage response
(13, 21, 33). PRC-mediated epigenetic repression of Kruppel-
like factor 2 (KLF2) influences proliferation and apoptosis
(40, 58). Cooperation between ANRIL and PRC-associated YY1
increases TNF-alpha dependent inflammatory mediators (IL-6,
IL-8) throughNF-kB (26).ANRIL influences the cellular response
to oxidative stress through a miR-125a regulation of MCL-1
(59). Circular ANRIL species were found to regulate ribosome
biogenesis in vascular smooth muscle cells (6).

THE ANRIL GENE IS ASSOCIATED WITH

HUMAN DISEASE

A primary driver of interest in ANRIL is the large body of
genomic data linking theANRIL gene with risk of human disease.
Genome-wide association studies (GWAS) have identified many
disease-associated SNPs in or near the ANRIL gene (60).
The CDKN2A/B locus is remarkable for the large number of
associated diseases, ranging from aging and frailty to cancer
to metabolic disease. Perhaps surprisingly given the validated
importance of the products of the CDKN2A and CDKN2B genes
in cell biology, in some cases ANRIL expression shows stronger
phenotype association than protein-coding CDKN2A/B locus
genes (4, 48), linking ANRIL itself to a range of important human
diseases.

ANRIL SNPs and Disease Risk
Studies indicate that SNPs in the ANRIL gene can impact ANRIL
expression and function. The CDKN2A/B locus is associated with
risk of cancer, atherosclerotic disease, type 2 diabetes, stroke,
aneurysm, periodontitis, Alzheimer’s disease, aging, frailty,
glaucoma, endometriosis, multiple sclerosis, hypertension (10,
61). Reviewed here are only SNPs within or downstream of the
ANRIL gene; broader CDKN2A/B locus disease associations have
been reviewed previously (10, 62). Integrating information from
published observations and the NCBI linkage disequilibrium
database (63), we find that disease-associated SNPs in the ANRIL
gene that modulate locus gene expression fall into approximately
six groups (Table 1) defined loosely by linkage block and reported
effects. Exceptions outnumber the rules, however; for nearly all
groups there are reports of SNPs with different or even opposite
effects. Summarized here is a generalized synopsis of the majority
of reports. Group A SNPs, while located in ANRIL introns,
generally impact CDKN2A/B but not ANRIL biology (48, 50, 64).
All other SNP groups have reported impacts on ANRIL itself, but
reports often describe conflicting direction of change. Some SNPs
are reported to fall in enhancer regions (43, 49, 64) or to impact
ANRIL splicing (8) or secondary structure (69, 74). The data are
incomplete. A particular weakness of the field is that although
tissue-specific effects are likely to determine how polymorphisms
impact disease risk, in many cases the relevant primary tissue has
not been tested.

Disease-Associated SNPs May Influence

ANRIL Abundance
There is no consistent global pattern with respect to SNP
impact on ANRIL abundance. For most SNP groups, risk-SNPs
are reported that both increase and decrease ANRIL levels
in different studies. Variability may be related to differences
in technique used to detect ANRIL that favor one isoform
over others, cell type studied, acute and chronic biology and
genetic origin of the cellular material studied, and of course the
individual biology of each polymorphism. Most ANRIL SNPs fall
in large linkage blocks, which are variable among different human
genetic groups; in many cases the SNP tested may not be the
causative SNP in the linkage block, and published linkage blocks
may not apply to the material tested if not carefully matched by
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TABLE 1 | Disease associated SNPs in/near the ANRIL gene that modulate locus gene expression.

SNP

group

Location in

ANRIL

SNPs Diseases associated Cell type tested Impact References

A Intron 1 rs2811712

rs598664

rs3218018

rs3218005

Frailty, cancers, diabetes,

MI, CAC

Blood, leukocytes Altered CDKN2A and

CDKN2B expression, but no

change in ANRIL expression

or not reported

(14, 48, 50, 64, 65)

Intron 2 rs662463

B Intron 1 rs3217992

rs3218020

CAD, glaucoma, cancer Blood Risk SNPs decrease ANRIL

expression

(14, 48)

C Intron 1 rs1063192 CAD, glaucoma, stroke, MI,

diabetes, cancers

Blood, lympho-blastoid

cells, HUVEC, lymphocytes,

islets

Increase/decrease ANRIL

expression. Possible

enhancer. Disrupt miRNA

binding site. Reduce beta

cell proliferation index

(14, 48, 66–68)

Exon 2 rs564398

Intron 2 rs7865618

D Intron 1 rs7044859

rs496892

Cancers, CAD, Stroke, MI,

CAC, glaucoma, cancers

Blood, PBMC,

lymphoblastoid cells,

HUVEC, leukocytes

Exonic SNPs change

predicted ANRIL free energy

calculation, may impact

secondary structure. Most

intronic SNPs decrease

ANRIL expression; possible

predicted enhancers

(4, 14, 43, 48, 50,

69, 70)

Exon 2 rs10965215

Intron 3 rs2151280

Exon 6 rs10738605

Intron 6 rs944799

E Intron 13 rs10116277

rs6475606

rs10738607

rs10757274

CAD, stroke, intracranial

aneurysm, MI, endo-

metriosis, hypertension,

cancers

Blood, PBMC, PBTL,

VSMC, atherosclerotic

plaque, primary vascular

tissue, lympho-blastoid,

HUVEC

Isoform-specific ANRIL

up/downregulation.

Experimentally tested

enhancer regions.

rs10757278 may impact

ANRIL splicing, promoting

circANRIL production

(8, 14, 16, 43, 44,

48, 49, 51, 71–73)

Intron 14 rs10757278

Intron 18 rs2383206

rs2383207

Intron 19 rs1333045

Distal to exon

21

rs10811656

rs1333049

F Distal to exon

21

rs2383208

rs10811661

Type 2 diabetes Blood, islets Decrease/increase ANRIL

expression, Predicted

enhancer region

(48, 68)

Groups A–F are defined loosely based on linkage disequilibrium (defined as LD>0.8 in Caucasian population in LDHap) and by predicted or tested impact on ANRIL expression or

structure. Intron and exon numbers are based on 21 exons.

origin. It is entirely possible that all conflicting results are correct;

for example, a CAD risk-SNP could increase pro-proliferative

ANRIL isoforms in endothelial, macrophage or vascular smooth

muscle cells to drive atherosclerosis, whereas a diabetes risk-

SNP at the same position could decrease proliferative ANRIL

isoforms in beta cells to limit beta cell mass. The complexity of the

human system necessitates testing the relevant ANRIL isoforms

in the relevant cell type, preferably in primary cells, in tissue- and

disease-specific manner.
A comprehensive review of all SNP effects is beyond the

scope of this review. Some ANRIL located disease-associated
SNPs impact both ANRIL expression and CDKN2A/CDKN2B

expression (14, 48); others impact ANRIL but not CDKN2A or
CDKN2B (14, 48, 60), and still others impact CDKN2A/CDKN2B
but not ANRIL (48, 50, 64). Some SNPs are located within
predicted or proven enhancer regions (10, 43, 48, 49, 64, 75) or
miRNA binding sites (65, 66), providing possible mechanisms of
cell type specific gene regulation.

Disease-Associated SNPs May Influence

ANRIL Structure or Function
Beyond regulation ofANRIL transcription, polymorphisms could
impact ANRIL function by influencing relative abundance of
different isoforms through RNA splicing or stability, or through
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altering the secondary structure or interactions of any given
isoform. Several studies have identified ANRIL isoform-specific
effects (50, 53, 67, 71, 72); for example, four SNPs forming an
atherosclerosis risk haplotype were associated with increased
expression of some, but not all, ANRIL isoforms (44). SNPs may
influence the relative abundance of linear compared to circular
isoforms (8). Several SNPs are reported to impact ANRIL free
energy of folding, resulting in a predicted change in secondary
structure, with implications for function and stability (48, 69, 74).

ANRIL IN CANCER

ANRILwas initially identified in a kindred of familial melanoma-
neural system tumor with a germ-line deletion of the entire
CDKN2A/B locus (2). Although the CDKN2A/B locus is deleted
or silenced in approximately 40% of human cancers, related to
the tumor suppressive actions of CDKN2A and CDKN2B (76),
ANRIL itself has pro-oncogenic properties. ANRIL is implicated
in many malignancies, including cancers of the bladder (77),
ovary (78, 79), lung (38, 58, 80–82), liver (40, 54, 83), stomach
(22), breast (57, 84, 85), esophagus (86), nasopharyngeal cavity
(39, 87, 88), thyroid (89), bone (90), cervix (91), colon (92),
prostate (21, 56), glioma (55), and others (76). High tissue
abundance of ANRIL in cancers is associated with aggressive
clinicopathologic features such as high histological grade tumor
size, advanced tumor-node-metastasis stage, and poor overall
survival (22, 38, 40, 58, 78, 79, 83, 87, 89, 91–93). Certain
SNPs within the ANRIL gene are associated with ANRIL and
CDKN2A/B locus gene expression and clinical parameters (4, 48,
70, 94–96). ANRIL may be useful as a prognostic biomarker and
a therapeutic target for clinical cancer management.

Molecular Mechanisms of ANRIL in Cancer
Accumulating evidence suggests that ANRIL participates in
tumorigenesis by influencing cell proliferation, apoptosis and
metastasis. Depletion or overexpression of ANRIL changes
expression levels of many genes involved in proliferation, cellular
adhesion and apoptosis (14, 32, 46). ANRIL overexpression
promotes proliferation, migration, invasion, and epithelial-
mesenchymal transformation but inhibits cell apoptosis; ANRIL
loss-of-function represses tumor size and growth rate, cell
proliferation, migration, invasion, metastasis, and enhances
apoptosis and senescence (22, 38, 55, 56, 58, 77, 80, 81, 84,
89–92). Suppression of ANRIL is required for Ras-induced
senescence (13, 21, 42). High ANRIL levels are associated
with resistance to chemotherapy, and ANRIL knockdown may
promote chemosensitivity (37, 79, 88, 97–99). On the other hand,
ANRIL mediated anti-oncogenic effects of phospholipase D in
lung cancers (82).

ANRIL may promote carcinogenesis through a number
of mechanisms. Canonical ANRIL transcriptional mechanisms
may play a role, such as by in cis suppression of the
CDKN2A/CDKN2B tumor suppressor genes (80, 81, 100), or
through PRC-mediated in trans gene regulation (40, 58, 80).
ANRIL miRNA regulation has been implicated in cancers as
well, including mechanisms involving let-7a and miR-125a in
nasopharyngeal and oral carcinoma (56, 88, 101), miR-99a/miR-
449a in gastric cancer (22), miR-122-5p in hepatocellular

carcinoma (54), miR-186 in cervical cancer (91), and miR-199a
in breast cancer (57), miR-34a in glioma (55), and miR-323 in
pediatric medulloblastoma (102). Transcription factors affected
by ANRIL in cancers include KLF2 (40, 58), SMAD (56, 86,
89) and β-catenin. ANRIL interacts with signal transduction
pathways in cancers such as PI3K/AKT, p38 MAPK, TGF-β,
ATM-E2F1, and MTOR (33, 55, 56, 86, 89, 99, 103). ANRIL can
also drive cancer progression by increasing glucose uptake for
glycolysis (87), through lymphangiogenesis via LYVE-1, VEFG-
C, and VEGFR-3 (92), and through invasion and metastasis via
MET and MMP3 (78). An intriguing but mostly unexplored
phenomenon is breakpoint fusion transcripts including exons
from ANRIL fused with exons from MTAP, a neighboring
protein-coding gene, which were identified in 20% of screened
melanoma cell lines (104).

ANRIL IN METABOLIC DISEASE

In addition to cancer, genome-wide association studies have
repeatedly and confidently identified links between the genomic
region containing ANRIL and risk of developing cardiometabolic
disease, including type 2 diabetes and manifestations of
atherosclerosis such as CAD and stroke (10, 62). This locus
influences risk not only of classic type 2 (obesity-related)
diabetes, but also with related syndromes such as gestational
diabetes, transplant-associated diabetes, and cystic fibrosis
related diabetes, but not risk of type 1 (autoimmune) diabetes
(10). Although diabetes is a clinical risk factor for atherosclerosis,
the genetic influence for these conditions at the ANRIL locus
is mostly non-overlapping, with atherosclerosis SNPs located
throughout the ANRIL gene, and T2D SNPs located distal to the
last ANRIL exon (7). One exception is a SNP located in ANRIL
exon 2, rs564398, which is associated with both T2D and CAD
(105). Since CDKN2A/B locus genes are known for their roles
in cell cycle regulation and cancer, and not metabolism, many
questions remain as to how this locus impacts metabolic disease.

ANRIL and Atherosclerotic Disease
Since ANRIL locus SNPs influence risk of atherosclerosis, many
studies have now tested whether ANRIL gene expression is
related to atherosclerosis-associated diseases. In subjects with
angiographically confirmed CAD in the Leipzig heart study,
specific ANRIL isoforms were positively correlated with CAD
risk SNP haplotype in PBMCs, whole blood, and atherosclerotic
plaque tissue (44). In the Framingham heart study, ANRIL
SNPs were associated with multiple CAD-related outcomes, and
showed isoform-specific ANRIL correlation in leukocytes, with
short isoforms predicted to contribute to CAD pathogenesis
(50). CAD risk-SNPs may regulate the relative abundance of
linear and circular ANRIL isoforms (8). Intriguingly, abundance
of ANRIL in circulating plasma was positively correlated with
in-stent restenosis (53), but in PBMCs harvested at the time
of angioplasty/reperfusion, ANRIL levels were lower in subjects
with myocardial infarction, but higher in subjects with older
age, diabetes, hypertension. In this cohort, ANRIL levels in
PBMCs improvedmodel prediction of subsequent left ventricular
dysfunction (106). ANRIL promoter methylation may mediate
an epigenetic influence on future cardiac risk; higher CpG
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methylation at birth was associated with higher pulse wave
velocity, a marker for increased arterial stiffness indicating
greater cardiovascular risk, at 9 years of age (31).

Mechanisms by which ANRIL impacts atherosclerotic disease
remain debated. In aortic smooth muscle cells, knockdown of
ANRIL using siRNA targeting exon 1 or exon 19 revealed altered
gene expression networks impacting cell proliferation, apoptosis,
extracellular matrix, and inflammation (14). Atherogenic gene
expression networks were regulated by ANRIL via the Alu
mechanism, in which Alu motifs target ANRIL to particular
gene locations, recruiting PRC complexes and altering gene
methylation status (46). ANRIL may impact risk of ischemic
stroke by regulating the Caspase recruitment domain 8 (CARD8)
gene in endothelial cells (52). A known CAD-associated miRNA,
miR-92a, may mediate some ANRIL effects; ANRIL targets
GATA2, MAP1B, and ARG1 were found to require miR-92a,
placing this miRNA downstream of ANRIL for some atherogenic
effects (69). Finally, ANRIL is related to inflammation: ANRIL
is increased by pro-inflammatory factors NF-κ B and TNF-α
in endothelial cells, and ANRIL was found to bind directly to
the YY1 transcription factor to mediate TNF-a induction of
cytokines IL-6 and IL-8 (26).

ANRIL and Obesity, Bone Mass, and

Estrogen Signaling
Although GWAS studies do not suggest a link between
CDKN2A/B locus SNPs and obesity risk in adult populations,
intriguingly, ANRIL may be a genomic site of environmental
epigenetic influence on obesity. The ANRIL promoter contains
CpG methylation sites that are differentially regulated across
samples. In human tissues taken at birth, lower CpGmethylation
in infancy predicted higher fat mass at 6 years of age, as well as
increased bone size, mineralization and density (29, 30). ANRIL
promoter methylation was also negatively correlated with BMI in
contemporaneous samples of peripheral blood from adolescents
and in adipose tissue from adults (29). Methylation of these CpG
sites increased tissue abundance of ANRIL RNA, in a mechanism
that might include increased activity of an estrogen response
element. Functional studies in a liposarcoma cell line showed that
transcription factor binding to an adjacent ERE was enhanced by
methylation, and estradiol increased ANRIL expression (29).

ANRIL and Type 2 Diabetes
Multiple SNPs in different linkage blocks at the CDKN2A/B locus
are associated with T2D risk; evidence in human populations
suggests these SNPs impact pancreatic islet mass or function (10).
Despite the fact that the T2D risk SNPs are located in or near the
ANRIL gene, the field has largely assumed the effect was mediated
by the protein coding genes at the locus, due to extensive
published work implicating p16INK4A in the regulation of
beta cell mass (10). However, although studies have found no
association between CDKN2A/B T2D SNPs and transcript level
of p14ARF, p15INK4B, or p16INK4A in human islets (10, 107), an
age-dependent positive association was identified between distal
T2D risk-SNPs (group F in Table 1) and ANRIL expression (68).
On the other hand, a T2D risk-SNP in ANRIL exon 2 (group C

in Table 1) was associated with reduced ANRIL expression, again
with no change in p14ARF, p15INK4B, or p16INK4A expression
(14, 48); however, these studies were carried out in blood rather
than islets. In human islets, this exon 2 SNPwas shown to remove
a CpG methylation site; risk allele was associated with reduced
islet insulin content but no change in locus gene expression (108).
Risk allele at this SNP was associated with impaired beta cell
proliferation response to high glucose (68). In a study relevant
to diabetic retinopathy, high glucose exposure increased ANRIL
expression in human retinal epithelial cells (25). In ANRIL was
found to increase expression of VEGF, a critical element of the
neovascularization that is central to damage from retinopathy, via
a mechanism involving PRC2 and miR200b (25, 109).

SUMMARY

Studies suggest the ANRIL lncRNA influences risk of a number
of diseases, including many types of cancer as well as metabolic
disease. Current understanding of ANRIL biology indicates
the primary function of this lncRNA is to regulate gene
expression, both locally at CDKN2A/B as well as across the
genome, via mechanisms including chromatin modulation,
transcription factor binding, and miRNA regulation. Knowledge
concerning ANRIL function in cancers is more solid and
advanced than for metabolic tissues. Mechanisms by which
SNPs influence ANRIL abundance remain uncertain and require
more study; how DNA methylation regulates ANRIL in cancers
also will benefit from more study. Much remains to be
learned about the structural complexity of ANRIL; how the
various identified linear and circular isoforms impact tissue
biology to modulate disease risk is mostly unknown. There
is an urgent need for deeper understanding of how ANRIL
isoforms modulate cellular function in human organs and
tissues, and to explore the differing roles of ANRIL in cancer
and metabolic disease. Given the advent of RNA therapeutics,
and the broad disease relevance of ANRIL, it is possible
that these studies may lead to future disease prevention and
treatment.
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Fat mass and obesity-associated protein (FTO) single-nucleotide polymorphisms (SNPs)

have been linked to increased body mass and obesity in humans by genome-wide

association studies (GWAS) since 2007. Although some recent studies suggest that the

obesity-related SNPs in FTO influence obesity susceptibility likely through altering the

expression of the adjacent genes such as IRX3 and RPGRIP1L, rather than FTO itself,

a solid link between the SNP risk genotype and the increased FTO expression in both

human blood cells and fibroblasts has been reported. Moreover, multiple lines of evidence

have demonstrated that FTO does play a critical role in the regulation of fat mass,

adipogenesis, and body weight. Epidemiology studies also showed a strong association

of FTO SNPs and overweight/obesity with increased risk of various types of cancers.

As the first identified messenger RNA N6-methyladenosine (m6A) demethylase, FTO has

been shown recently to play m6A-dependent roles in adipogenesis and tumorigenesis

(especially in the development of leukemia and glioblastoma). Given the critical roles of

FTO in cancers, the development of selective and effective inhibitors targeting FTO holds

potential to treat cancers. This mini review discusses the roles and underlying molecular

mechanisms of FTO in both obesity and cancers, and also summarizes recent advances

in the development of FTO inhibitors.

Keywords: fat mass and obesity-associated protein (FTO), obesity, cancer, mRNA N6-methyladenosine (m6A),

m6A demethylase, AML, GBM, FTO inhibitors

INTRODUCTION

As the first genome-wide association studies (GWAS)-identified obesity susceptibility gene, the
fat mass and obesity-associated gene (FTO) has been well known for the strong association of
the multiple single-nucleotide polymorphisms (SNPs) located in its intron 1 with risk of obesity
(1–10). Although there are some controversial reports regarding the association between FTO
SNPs and FTO expression (11–13), mouse model studies have shown the pivotal role of FTO
in the regulation of fat mass, adipogenesis, and body weight (14–20). The link between the
SNP risk genotype and increased FTO expression in human fibroblasts and blood cells has
also been demonstrated (21–23). Studies have demonstrated that a strong association exists
between FTO SNPs and/or overweight/obesity with the increased risk of various types of cancers
(24–29), implying a role of FTO in the pathogenesis of cancers. Indeed, the oncogenic role of
FTO has been reported in leukemia and glioblastoma (GBM), where FTO is highly expressed (30–
32). More importantly, FTO was reported as the first N6-methyladenosine (m6A) demethylase
of eukaryotic messenger RNA (mRNA) (33), and the functions of FTO in adipogenesis and
tumorigenesis have been linked to its m6A demethylase activity (30–32, 34). As the most abundant
internal modification in eukaryotic mRNAs, m6A usually occurs at the consensus motif of
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RRm6ACH ([G/A/U][G>A]m6AC[U>A>C]); enriched in 3′

untranslated region (UTR), gene coding regions, and especially
near stop codons (35, 36). The m6A modification is deposited
by the METTL3-METTL14-WTAP methyltransferase complex
(i.e., writer) (37–39) and can be removed by m6A demethylases
(i.e., erasers) such as FTO and ALKBH5 (33, 40). The m6A
modification functions as a post-transcriptional modulator of
gene expression by decreasing or increasing mRNA stability, or
promoting mRNA translation efficiency through its recognition
of different m6A reader proteins (41–48). The roles of m6A
modification and the associated machinery in the pathogenesis
of various types of cancers have been reported recently (30–
32, 48–59). This review focuses on the functions of FTO in
both adipogenesis and tumorigenesis and on the underlying
m6A-dependent mechanisms, along with a brief discussion of
recent advance in the development of FTO inhibitors and their
therapeutic potential to treat cancers.

ASSOCIATION OF FTO WITH
OVERWEIGHT/OBESITY AND ITS ROLE IN
ADIPOGENESIS

Obesity and overweight populations have become a global
crisis, with the numbers increasing every year in adults and
children. In 2015, there were 603 million adults and 108
million children who were diagnosed obese in 195 countries,
and the population suffering with obesity has increased two-
fold in over 70 countries during 25 years (60). Obesity is
commonly caused by inherited or behavioral factors (food intake,
physical activities, etc.), and it may induce other chronic diseases:
diabetes, heart disease, chronic kidney disease, bone disorders,
and many types of cancer (10, 26, 60). SNPs of FTO in intron
1 was first found to be associated with human obesity in
European populations in 2007 (1–3), and subsequently validated
by different groups in other populations including Asians (4–
6), Africans (7), Hispanics (8), and Native Americans (9, 10),
demonstrating a strong association between FTO SNPs in intron
1 (rs9939609, rs17817449, rs3751812, rs1421085, rs9930506,
and rs7202116) and overweight or obesity (61) (see Figure 1).
People carrying FTO risk alleles typically have a high body
mass index (BMI), which may be due to a higher food intake
(62, 63) and diminished food satiety (64), but not related to
energy expenditure (62). Meta-analysis studies (65–67) have
validated and confirmed that the influence of FTO variants
on obesity risk is attenuated through physical activities as well
as dietary and drug-based interventions (68, 69), although the
underlying mechanism remains elusive. Some recent studies have
suggested that the association between FTO SNPs in intron
1 and obesity might be owing to their potential influence on
expression of IRX3, IRX5, and RPGRIP1L, rather than on their

Abbreviations: FTO, the fat mass and obesity-associated protein; SNP, single-

nucleotide polymorphism; GWAS, genome-wide association study; mRNA,

messenger RNA; m6A, N6-methyladenosine; GBM, glioblastoma; UTR,

untranslated region; BMI, body mass index; CSCC, cervical squamous cell

carcinoma; AML, acute myeloid leukemia; R-2HG, R-2-hydroxyglutarate; GSCs,

glioblastoma stem(-like) cells; ATRA, all-trans-retinoic acid; AZA, azacitidine;

αKG, α-ketoglutarate; MA, meclofenamic acid.

expression of FTO (11–13). However, there is also compelling
evidence showing that such FTO SNPs are associated with
increased expression of FTO (21–23, 70, 71). Moreover, animal
model studies have shown that FTO plays a critical role in
regulating fat mass, adipogenesis, and total body weight (14–
20). For instance, FTO-deficient mice develop postnatal growth
retardation and show a reduction in both adipose tissue and
lean body mass (14). Conversely, overexpression of FTO in mice
develops obesity by increased food intake (15), demonstrating the
pivotal role of FTO expression itself in obesity (58). Therefore,
there is no doubt that there is still a robust association of the
FTO expression level/function with obesity and increased body
mass, though the underlying mechanism has yet to be fully
elucidated.

The recent discovery of FTO acting as an m6A eraser paved a
novel way to reveal themolecular mechanism that links FTOwith
the increased susceptibility to overweight and obesity. A study in
2013 showed that the FTO obesity-risk allele (rs9939609 T/A) is
associated with increased FTO expression, reduced m6A ghrelin
mRNA methylation, and increased ghrelin expression (22).
Ghrelin, the “hunger hormone,” is a key mediator of ingestive
behavior, and its increased expression results in increased food
intake and a preference for energy-dense foods, tending to lead
to overweight and obesity (22, 72). A later study also reported
that the FTO genotype (the AA (risk) genotype at the rs9939609
locus of FTO) impacts food intake and corticolimbic activation
(73).

Excessive accumulation of adipose tissue under obese
condition is a main mechanism for storage of excess energy (61).
It has been reported that a positive correlation exists between the
FTO level in subcutaneous adipose tissue and BMI, with a higher
FTO mRNA level in adipose tissue from obese individuals than
that in control populations (61, 74, 75). Zhao et al. demonstrated
that FTO-mediatedm6Ademethylation regulatesmRNA splicing
and plays a critical role in the regulation of adipogenesis (34).
They showed that FTO expression is inversely correlated with
the m6A level during adipogenesis, and FTO depletion blocks
differentiation and wild-type FTO (but not FTOmutant) restores
adipogenesis; mechanistically, FTO mediates differentiation
through the regulation of m6A levels around splice sites, thereby
controlling the exonic splicing of the adipogenic regulator
factor RUNX1T1 (34, 76). Similarly, another study also revealed
that the demethylase activity of FTO is functionally required
for pre-adipocyte (3T3-L1) differentiation (77). Furthermore,
Merkestein et al. showed FTO regulates adipocyte differentiation
in vivo, and further revealed that FTO enhances adipocyte
numbers during mitotic clonal expansion at an early stage of
adipogenesis (19). The compelling evidence of these studies
supports FTO-mediated m6A demethylation playing a pivotal
role on adipogenesis regulatory.

ASSOCIATION OF FTO WITH CANCERS
AND ITS ONCOGENIC ROLE IN BOTH
TUMORIGENESIS AND DRUG RESPONSE

Epidemiology studies show that FTO SNPs (including rs9939609,
rs17817449, rs8050136, rs1477196, rs6499640, rs16953002,
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FIGURE 1 | FTO SNPs associated with obesity. FTO SNPs in intron 1 (rs9939609, rs17817449, rs3751812, rs1421085, rs9930506, and rs7202116) have a strong

association with overweight or obesity (61).

rs11075995, and rs1121980) and overweight/obesity are
strongly associated with an increased risk of various types
of cancers, including breast cancer, prostate cancer, kidney
cancer, endometrial cancer, pancreatic cancers, lymphoma, and
leukemia (24–29). For instance, several SNPs of intron 1 of FTO
(including rs7206790, rs8047395, rs9939609, and rs1477196) are
all significantly associated with breast cancer risk, and rs1477196
shows the strongest association (29). Notably, SNPs outside of
intron 1 of FTO could also be associated with cancer risk. For
example, rs16953002 of intron 8 of FTO has been identified to
be significantly associated with melanoma risk (28). It is possible
that the obesity-associated SNPs lead to increased expression

of FTO, which in turn contributes (at least to some extent) to
an increased susceptibility to overweight and obese, as well as
an increased risk of cancer development (30). Indeed, several
recent studies have suggested that FTO plays an oncogenic role
in various types of cancers such as leukemia, brain tumor, breast
cancer, gastric cancer, endometrial carcinoma, and cervical
squamous cell carcinoma (CSCC) where it is overexpressed
(30–32, 78–82). Li et al. provided the first in vivo animal model
study demonstrating a critical oncogenic role of FTO in cancer
(30). They reported that FTO is highly expressed in certain
subtypes of acute myeloid leukemias (AMLs) such as those
carrying t(11q23)/MLL-rearrangements, t(15;17)/PML-RARA,
FLT3-ITD, and/or NPM1 mutation (30). They further showed
that forced expression of FTO significantly promoted human
AML cell survival and proliferation and inhibited human
AML cell differentiation and apoptosis, and forced expression
of FTO significantly promoted leukemogenesis in mice (30).
The opposite was true when endogenous expression of FTO
was depleted (30). Subsequently, Su et al. reported that by
the inhibition of FTO’s oncogenic role, R-2-hydroxyglutarate
(R-2HG), a previously well-recognized oncometabolite (83–90),
actually exhibits a broad and intrinsic antitumor activity in AML
and GBM (31). Cui et al. reported that targeting glioblastoma
stem(-like) cells (GSCs) with a FTO inhibitor in mice could

significantly inhibit the development of GSC-initiated tumor
in vivo (32). It was also reported that the depletion of FTO
expression significantly inhibited cell proliferation, migration,
and invasion of human gastric cancer cell lines, and the opposite
phenomenon was observed when FTOwas forced expressed (80).

FTO has also been reported to affect the response of cancer
cells to drug treatment. Li et al. showed that a knockdown of FTO
could significantly enhance the response of human AML cells to
all-trans retinoic acid (ATRA) treatment and promote ATRA-
induced AML cell differentiation (30). Su et al. reported that
analogous to FTO depletion, R-2HG treatment also sensitized
human AML cells to standard chemotherapeutic agents such

as ATRA, azacitidine (AZA), Decitabine, and Daunorubicin
in vitro (31). They further showed that R-2HG treatment also
sensitized human AML cells to Decitabine and Daunorubicin
in vivo in immunodeficient xenotransplantation recipient mice
(31). Similarly, Zhou et al. reported that FTO enhanced the
resistance of CSCC cells to chemo-radiotherapy (82). Consistent
with the function of FTO in drug resistance, it was reported
that overexpression of FTO is a marker for poor prognosis
in cancers such as gastric cancer and endometrial carcinoma
(80, 81).

Mechanistically, the roles of FTO in tumorigenesis and drug
response have been linked to its m6A demethylase activity.
Li et al. reported that FTO negatively regulates expression of
a set of tumor suppressor target genes, such as ASB2 and
RARA [two genes implicated in leukemia cell proliferation
and drug response (91–93)], through post-transcriptionally
modulating m6A abundance of the target mRNA transcripts
and thereby affecting their stability (30). Su et al. further
reported that FTO also positively regulates expression of a
set of oncogenic targets such as MYC and CEBPA through
an m6A-dependent mechanism (31). The suppression effect of
the FTO inhibitor on GSC growth/proliferation and survival
is also believed to be owing to the inhibition of the m6A
demethylase activity of FTO (32). In CSCC, FTO has been
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reported to enhance chemo-radiotherapy both in vitro and
in vivo through positively regulating expression of β-catenin
(CTNNB1) via an m6A-dependent mechanism (82). Collectively,
evidence is emerging that FTO plays critical oncogenic roles
in various types of cancers as an m6A demethylase, and
post-transcriptionally regulates expression of a number of
functionally important target genes through m6A-dependent
mechanisms.

IDENTIFICATION OF SMALL MOLECULE
INHIBITORS TARGETING FTO

Since the discovery of FTO as an m6A demethylase in 2011
(33), efforts have been made to identify selective small-molecule
inhibitors targeting FTO’s m6A demethylase activity (94–98).
FTO belongs to the AlkB family, and the crystal structure of
FTO resolved in 2010 (99) shows a strong Fe (II) and α-
ketoglutarate (αKG) dependent activity as a dioxygenase, at N-
terminals. Chen et al. reported in 2012 that rhein, a natural
product, competitively binds to an FTO active site, and exerts

an inhibitory activity on FTO-dependent m6A demethylation
in cells, through directly disrupting the bindings between FTO
and the m6A substrate (94). In 2014, Zheng et al. developed
a selective FTO inhibitor that also selectively inhibits the m6A
demethylase activity of FTO and increases the m6A levels
in cells (95); a later study showed that this FTO inhibitor
(i.e., MO-I-500) could significantly inhibit the survival and/or
colony formation of human SUM149 cells, a triple-negative
inflammatory breast cancer cell line (97). Meclofenamic acid
(MA), a nonsteroidal anti-inflammatory drug, was discovered
to specifically inhibit FTO’s m6A demethylase activity, while
paring ALKBH5 (96). MA has been further proved to
effectively inhibit the survival and growth of GBM cells through
suppression of the m6A demethylase activity of FTO (32).
In addition, Compound 12 has been developed based on a
α-KG tethering strategy, which could selectively inhibit FTO

over other AlkB subfamilies (including ALKBH5) and α-
KG oxygenases (98). Su et al. showed that R-2HG is also
an inhibitor of FTO that binds direct to FTO protein and
significantly inhibits the m6A demethylase activity of FTO in
a dose-dependent manner, leading to a significant increase of
global m6A abundance in R-2HG-treated sensitive leukemia
cells (31).

DISCUSSION AND CONCLUSIONS

A growing body of evidence suggests that FTO plays critical
roles in both overweight/obesity and cancers. As the first
m6A demethylase identified, FTO has been shown to regulate
expression of a number of important target genes through post-
transcriptionally reducing their m6A levels and thereby affecting
the stability and/or splicing of target mRNAs, in turn leading to
promoting adipogenesis, tumorigenesis, and drug resistance of
cancer cells. Therefore, although FTO may regulate expression
of distinct sets of target mRNAs in different cell types, it
affects overweight/obesity and cancers likely through similar,

m6Ademethylase activity-dependentmechanisms (see Figure 2).
The strong association between FTO SNPs or overweight/obesity
with an increased risk of cancers suggests that the obesity-
associated function of FTO in metabolism may also contribute
to its effects in cancers (Figure 2). Indeed, the FTO gene variant
related to cancer risk is unlikely independent of adiposity
(100). In addition, it was reported that by targeting the
PI3K/AKT signaling, FTO influences breast cancer cell energy
metabolism including lactic acid, ATP, pyruvate kinase activity,
and hexokinase activity (79).

Given the essential role of FTO in cancer development and
drug resistance, targeting FTO holds therapeutic potential in
treating cancers in which FTO is overexpressed. Thus far, FTO
inhibitors have been tested in vitro and in vivo, and show
potent antitumor effects in treating both GBM and breast
cancer (32, 97). Similarly, Su et al. showed that by targeting

FIGURE 2 | Schematic illustration of the roles of FTO in RNA m6A modification, overweight/obesity, and tumorigenesis/drug response. As an m6A demethylase, FTO

post-transcriptionally regulates expression of its critical target genes and thereby contributes to overweight/obesity (likely through affecting adipogenesis, food intake,

and energy metabolism) and cancers (including tumorigenesis and drug response). The obesity-associated function of FTO in metabolism may also contribute to

cancers. Inhibition of FTO-mediated m6A demethylation by various inhibitors holds therapeutic potential to treat FTO-overexpressing cancers. MA, meclofenamic

acid; 2HG, 2-hydroxyglutarate; C12, Compound 12 (98).
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FTO directly, R-2HG exhibits a strong antitumor effect in
both leukemia and GBM, especially when in combination with
standard chemotherapeutic agents (31). These studies provide
proof-of-concept evidence demonstrating that FTO is a realistic
druggable target in treating cancers. In the near future, when
more effective and selective inhibitors of FTO are developed,
they could be applied, especially in combination with other
therapeutic agents, into the clinic to treat various types of cancers.
On the other hand, although FTO also plays a role in obesity, it
was argued that FTO might not be a good pharmaceutical target
to treat obesity, because the factors leading to obesity might be
more complex (101, 102). Thus, a deeper understanding of the
factors contributing to obesity could lead to the development of
therapeutics targeting obesity.
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Heparan sulfate (HS) are complex unbranched carbohydrate chains that are heavily

modified by sulfate and exist either conjugated to proteins or as free, unconjugated

chains. Proteins with covalently bound Heparan sulfate chains are termed Heparan

Sulfate Proteoglycans (HSPGs). Both HS and HSPGs bind to various growth factors and

act as co-receptors for different cell surface receptors. They also modulate the dynamics

and kinetics of various ligand-receptor interactions, which in turn can influence the

duration and potency of the signaling. HS and HSPGs have also been shown to exert a

structural role as a component of the extracellular matrix, thereby altering processes such

as cell adhesion, immune cell infiltration and angiogenesis. Previous studies have shown

that HS are deregulated in a variety of solid tumors and hematological malignancies

and regulate key aspects of cancer initiation and progression. HS deregulation in

cancer can occur as a result of changes in the level of HSPGs or due to changes in

the levels of HS biosynthesis and remodeling enzymes. Here, we describe the major

cell-autonomous (proliferation, apoptosis/senescence and differentiation) and cell-non-

autonomous (angiogenesis, immune evasion, and matrix remodeling) roles of HS and

HSPGs in cancer. Finally, we discuss therapeutic opportunities for targeting deregulated

HS biosynthesis and HSPGs as a strategy for cancer treatment.

Keywords: heparan sulfate, heparan sulfate proteoglycans, cancer, immune evasion, signaling

INTRODUCTION

Normal cells acquire series of genetic and epigenetic aberrations to become cancerous. The
acquired cancer growth and progression enabling attributes are collectively referred to as hallmarks
of cancer (1). Several hallmarks of cancer, such as sustained growth signaling, suppression of
apoptosis, deregulated metabolism, immune evasion and angiogenesis can also be enhanced
through pathological alterations of normal physiological processes (1).

Heparan sulfates (HS) are unbranched chains of disaccharide repeats that are heavily sulfated at
various positions on their sugar residues (2, 3). HS can occur either conjugated to amino acids,
creating heparan sulfate proteoglycans (HSPGs), or as unconjugated chains (4). Both HS and
HSPGs play important roles in cancer initiation and progression. Previous studies have implicated
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the role of HS and HSPGs in several types of solid tumors as well
as hematological malignancies (5–11).

HSPGs are complex biopolymers whose synthesis is
orchestrated by many enzymes, which catalyze the various
steps of HS synthesis with very little redundancy (Figure 1).
The majority of HS deregulation in cancer occurs due to
alterations in the expression of HS-synthesizing and HS-
modifying enzymes, however, alterations in HSPGs can
also contribute to HS deregulation (12) (also see Table 1)
(10, 11, 13–84).

In this review, we provide an overview of the cell-autonomous

and cell-non-autonomous roles of HS and HSPGs in cancer
initiation and progression. In addition, we will also discuss

opportunities to develop cancer therapies by targeting the HS and
HSPG axis.

CELL-AUTONOMOUS ROLE OF HS AND

HSPGs IN CANCER INITIATION AND

PROGRESSION

HS and HSPGs regulate diverse cell-autonomous functions,

including oncogenic signaling, apoptosis, and cellular
differentiation. In this section, we describe the cell-autonomous

functions of HS and HSPGs in cancer initiation and progression.

FIGURE 1 | Overview of the enzymes involved in heparan sulfate synthesis and modification.

Growth Factor Signaling and Regulation of

Proliferation
Previous studies have shown important roles of HS and HSPGs
in oncogenic signaling (85–88). In this regard, FGF binding
interactions are best characterized by the role of HS in altered
Receptor Tyrosine Kinase (RTK) signaling. For example, HS-
modified HSPGs bind FGF ligands and receptors to form a
ternary complex and enhance signaling by promoting FGF
receptor (FGFR) dimerization (89–91). This in turn results
in receptor activation and enhanced FGFR signaling, which
consequentially promotes tumor growth (89–91). In addition
to FGF, HS binds to several different mitogenic growth factors
such as PDGF, Heparin-Binding Epidermal Growth Factor-like
Growth Factor (HB-EGF), andHepatocyte Growth Factor (HGF)
and modulates their signaling in a context dependent manner
(86).

Breast cancer cells are also shown to overexpress HSPGs,
such as Glypican 1 (GPC1) and Syndecan 1 (SDC1), which
enhance the proliferative response after treatment with various
growth factors due to prolonged signaling (86). Similar to
breast cancer, GPC1 also has been shown to have growth-
promoting effects in pancreatic cancer and gliomas (49, 92, 93).
Collectively, these studies highlight wide-spread deregulation
of HSPGs in different cancers that exert tumor promoting
roles.
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TABLE 1 | Deregulation of HS and HSPGs and enzymes involved in HSPG metabolism in cancer.

Alteration in

cancer

Functional consequence(s) Cancer type(s)

Enzyme involved in HSPG metabolism

HS2ST1 Upregulated Promote cell proliferation, invasion

and growth factor signaling

Prostate cancer (13)

HS3ST2 Epigenetic

silencing

Suppression of tumor growth and

invasion

Lung cancer (14)

HS3ST2 Upregulated Invasion and migration Breast cancer (15)

HS3ST3B1 and HS3ST4 Upregulated Promote cell proliferation,

invasiveness, and tumor angiogenesis acute myeloid leukemia (16)

Colorectal cancer (17)

Pancreatic cancer (18)

HS6ST1 and HS6ST2 Upregulated Increased tumor Angiogenesis Ovarian cancer (19)

HS6ST2 Upregulated Poor survival of patients Colorectal cancer (20)

HS6ST2 Upregulated Bone metastasis Breast cancer (21)

HPSE Upregulated Tumor metastasis and angiogenesis Neuroblastoma (22), breast cancer (23), prostate cancer

(24), colon cancer (25), lung cancer (26), liver cancer

(27), ovarian cancer (28), and pancreatic cancer (29),

human myeloma (30)

NDST1 and NDST2 Upregulated Tumor progression Hepatocellular carcinoma (31)

SULF1 Downregulated Suppress tumor cell proliferation and

invasion

Breast cancer, Pancreatic, Ovarian and head and neck

cancers (32)

Hepatocellular carcinoma (33)

SULF2 Unaltered Tumor progression Hepatocellular carcinoma and glioblastoma (34)

SULF2 Upregulated Tumor growth Hepatocellular carcinoma (33, 35, 36)

HSPG

Agrin Elevated Angiogenesis Hepatocellular carcinoma (37, 38), glioblastoma (39),

cholangiocarcinoma (37)

CD44 Elevated Adhesion, invasion, cancer stem cell Breast cancer (40), colorectal cancer (41), oral

squamous cell carcinoma (42), melanoma (43)

Neuroblastoma (44)

Collagen XVIII Reduced Angiogenesis Cutaneous squamous cell carcinoma (45, 46)

GPC1 Elevated Proliferation Breast cancer (47), pancreatic ductal adenocarcinoma

(48), glioma (49)

GPC3 Elevated Proliferation Hepatocellular carcinoma (50), follicular thyroid cancer

(51), testicular germ cell tumor, neuroblastoma (52),

Wilms’ tumor (53), yolk sac tumor (54), lung squamous

cell carcinoma (55), hepatoblastoma (56)

GPC5 Elevated Proliferation, invasion Rhabdomyosarcoma (10), non-small cell lung cancer (57)

Reduced Initiation Non-small cell lung cancer (58)

Perlecan Elevated Proliferation, angiogenesis Prostate cancer (59), hepatoblastoma (60), pancreatic

ductal adenocarcinoma (61), melanoma (62)

SDC1 Elevated Proliferation Breast cancer (63), pancreatic ductal adenocarcinoma

(64), ovarian cancer (65), multiple myelom (66)

SDC2 Elevated Adhesion, proliferation Breast cancer (67), prostate cancer (68), colorectal

cancer (69), bladder cancer (70), glioma (71), sarcoma

(72)

SDC3 Elevated Perineural invasion and poor

prognosis

Pancreatic ductal adenocarcinoma (73)

SDC4 Reduced Differentiation Neuroblastoma (11)

TbRIII Elevated Migration, proliferation Colon cancer (74), non-Hodgkin’s lymphoma (75),

Reduced Invasion, proliferation, differentiation,

immune response

Breast cancer (76), prostate cancer (77), ovarian cancer

(78), multiple myeloma (79), neuroblastoma (11),

non-small cell lung cancer (80), pancreatic ductal

adenocarcinoma (81), endometrial cancer, renal cell

carcinoma (82), melanoma (83)
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Additionally, HSPGs also influence cell-matrix interactions
by binding matrix proteins such as fibronectin, laminin,
thrombospondin, and collagen (89, 94). For example, SDC2 has
been shown to be overexpressed in colon cancer cell lines and
inhibition of SDC2 in these cells results in cell cycle arrest (69).
Similarly, RKIP and HMGB2-dependent breast cancer survival
and metastasis was shown to be regulated in SDC2 dependent
manner (67). However, it is important to note that in addition
to the pro-tumorigenic effects, some HSPGs, such as SDC2,
exert tumor suppressive effects depending on the cancer type
(95, 96).

Interestingly, HSPGs on the cell surface can also shed,
generating soluble proteins that influence cellular proliferation
by accumulating in intercellular spaces and sequestering growth
factors (89). HSPGs are also often expressed in the tumor
stroma and affect several cancer cell growth-enabling features
(89). For example, stromal SDC1 that is released into the
tumor microenvironment promotes breast carcinoma growth by
enhancing FGF2 signaling (97). Interestingly, SDC1 shedding
into the stroma is enhanced by heparanase expression, in
part through removal and reduction of heparan sulfate chains
(30). Thus, various components of the HS signaling pathway
coordinate to promote carcinogenesis.

HSPGs secreted into the stroma can also inhibit cancer cell
proliferation. For example, increased FGF2 signaling due to
soluble HSPGs suppresses neuroblastoma proliferation (11, 98).
Specifically, it has been shown that growing neuroblastoma cells
with soluble HSPGs promote its differentiation by enhancing
both basal and FGF1 mediated phosphorylation of ERK1/2 and
expression of transcription factor ID1 (11). Another study has
shown that the HSPG, type III TGF-β receptor (TGFBR3) acts
as a co-receptor in FGF2 mediated neuroblastome differentiation
(98). Similarly, SDC1 that is expressed in multiple myeloma
has been shown to activate WNT signaling by two mechanisms
(99). First, Wnts bind to the SDC1 HS side chains and activates
WNT pathway in a paracrine manner via Frizzled. Second,
SDC1 binds to R-spondins produced in osteoblast and stabilizes
Frizzled in a LGR4-dependent manner (99). In other instances,
soluble HSPGs sequester growth factors, reducing certain pro-
proliferative signals. For example, GPC3 promotes hepatocellular
carcinoma growth by activating WNT signaling (100). However,
contrary to this, soluble GPC3 has been shown to block
hepatocellular carcinoma growth by blockingWNT signaling and
MAP kinase and AKT pathways (101). Taken together, these
studies underpin that HS and HSPGs can exert diverse cancer
promoting or inhibitory functions depending upon the context.

Apoptosis and Cellular Senescence

Regulation
HS and HSPGs can also play important role in the regulation of
apoptosis and cellular senescence. For example, the upregulation
of the RTK signaling pathway by HSPGs induces an anti-
apoptotic effect through upregulating phosphatidylinositol 3-
kinase (PI3K)- and Mitogen-Activated Protein Kinase (MAPK)-
mediated survival pathways (102). Additionally, HS and
chondroitin sulfate directly inhibit H2O2-induced apoptosis by

blocking cytochrome c release and caspase-3 and -9 activation
(103). Death receptor-mediated apoptosis pathway, which is
mediated through the cell surface receptors for Fas ligand (FasL)
and Tumor Necrosis Factor-related Apoptosis-Inducing Ligand
(TRAIL) can also be regulated by HSPGs. For example, SDC1
suppresses TRAIL-mediated apoptosis in multiple myeloma cells
(104). The same study also reported that SDC1 knockdown in
lymphoma cells protected them against FasL-mediated apoptosis.
In addition to the regulation of apoptosis, a recent study
also revealed that heparan sulfation is essential for preventing
senescence (105). This study revealed that the depletion of
3’-phosphoadenosine 5′-phosphosulfate synthetase 2 (PAPSS2),
an enzyme that synthesizes the sulfur donor PAPS, and the
small molecule inhibitor-mediated repression of HS sulfation led
to premature cell senescence (105). Collectively, these studies
further demonstrate the importance of HS and HSPGs in the
regulation of cancer growth relevant cellular processes, such as
apoptosis and senescence.

Cellular Differentiation Regulation
HS, HSPGs, andHSmodifiers have also been shown to determine
the cellular differentiation state. In this regard, the role of
HS modifiers in regulating epithelial-to-mesenchymal transition
(EMT) is noteworthy. EMT plays an important role in metastatic
progression and drug resistance (106). Cells overexpressing
the HS modifier sulfatase 2 (SULF2) present with reduced
levels of the trisulfated disaccharide UA(2S)-GlcNS(6S). This
reduction is followed by an increase in EMT markers and WNT
signaling (107). Tumor cell-mediated tumor stroma modulation
can also suppress differentiation and increase proliferation. The
expression of several HSPGs is low in neuroblasts and high
in the Schwannian stroma, and neuroblastomas with a high
TβRIII, GPC1, and SDC3 expression have improved prognosis
(11). The same study also found that soluble HSPGs and heparin
promoted differentiation and decreased proliferation through
FGFR1 and ERK phosphorylation. Similarly, another study
has shown that neuroblastoma differentiation is promoted by
release of a GPI-anchored HSPG, Glypican-6 (GPC6) through
via Glycerophosphodiesterase (GDE2). This study also found
that high GDE2 or low GPC6 level in neuroblastoma predicted
significantly increased patient survival (108). These studies are
of high significance as they make two major points; first, that
the differentiation state of the cancer cells predict survival, and
second, that HS and HSPGs are among the key regulators of
cancer differentiation states.

CELL-NON-AUTONOMOUS ROLES OF HS

SIGNALING IN CANCER

Several features of cancer such as sustained angiogenesis,
tissue invasion and migration and immune evasion require a
complex interplay between more than one cell type and involve
multiple organ systems. In this section, we describe the cell-non-
autonomous functions of HS and HSPGs in cancer initiation and
progression.
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Role in Angiogenesis
Angiogenesis is considered a key requirement for cancer growth
and progression (109). This is highlighted by the fact that
several angiogenesis inhibitors are in clinical trials for cancer
treatment (110). HS and HSPGs modify angiogenesis due to
their effect on angiogenic factors, such as FGF, PDGF, and
VEGF. For exmaple, SDC1 binds to VEGF, and SDC1 shedding
increases the VEGF concentration in the matrix and promotes
angiogenesis in myeloma (111). The same study also showed that
heparanase expression increases SDC1 shedding (112). SDC1
is overexpressed in endothelial cells derived from patients with
multiple myeloma. In addition to suppressing cell proliferation,
RNAi silencing of SDC1 in patient-derived endothelial cells
reduces capillary-like structure organization, which is correlated
with reduced VEGF receptor (VEGFR)-2 surface expression
(111). Other members of the syndecan family, such as SDC2 and
SDC3, also affect tumor angiogenesis (113, 114).

Another HSPG with an opposing effect on angiogenesis is
Perlecan. Perlecan is a secreted HSPG which is also found
on cancer cell surface and in cancer microenvironment (115).
Perlecan is shown to promotes angiogenesis in its intact
form (115). However, Perlecan can also be partially cleaved
by proteases, which results in a C-terminal fragment, called
endorepellin, which has been shown to exert anti-angiogenic
effects (116). Thus, HSPGs modulate tumor angiogenesis in
multiple ways: they increase the tumor microenvironment
VEGF concentration, affect VEGFR surface localization, and
fine-tune interaction of VEGF with its receptor and co-
receptor.

Role in Immune Evasion
Immune response is the first line of systemic defense against
tumorigenesis (117). Recent success of immunotherapeutic
approaches to treat cancer further highlights the importance
of immune evasion mechanisms for cancer initiation and
progression (118, 119). HSPGs can serve as cancer biomarkers,
which can also be used to target antibodies for immunotherapies
(120, 121). At the same time, evidence suggests that HSPGs in
the extracellular matrix (ECM) or those expressed on bystander
cells are involved in reducing immune signaling to dendritic
cells (DCs) (122). One of the well-studied HSPGs roles in
melanoma immunity involves myeloid-derived suppressor cells
(MDSCs) that suppresses immunity against melanoma (122).
Previous studies have shown that melanoma immune evasion
involves myeloid-derived suppressor cells (MDSCs) that express
an immune-suppressive molecule called dendritic cell-associated,
HSPG-dependent integrin ligand (DC-HIL) (122). DL-HIL
engages Syndecan-4 on effector T cell causing anergy (122).
Furthermore, targeting DC-HIL with neutralizing antibody or
its genetic knockout delayed the growth of transplantable B16
melanoma in syngeneicmice, which further strengthen the role of
DC-HIL as a potential target for enhancing the immune response
and cause tumor eradication (123).

HSPGs also affect innate immune response against cancer
cells by modulating Natural Killer (NK) cell-mediated activity
against cancer cells. NK cells exert their cytotoxic activity on
cancer cells through recognition of specific ligands, one group

of which is called the natural cytotoxicity receptors (NCR)
(124). The NCRs bind to HSPGs and their interaction promotes
NK cell-mediated cancer cell eradication (125). Additionally,
it has been shown that cancer cells upregulate heparanase
through activation of bromodomain PHD finger transcription
factor (BPTF), leading to reduced NCR-HSPG interaction,
which results in dampened NK cell response (126). Collectively,
these studies demonstrate that by activating immune tolerance,
enhancing signaling pathways, and interfering with immune cell-
tumor interactions, HSPGs regulate immune evasion functions in
cancer cells.

Role in the Regulation of Extracellular

Matrix Modification
HSPGs, free HS chains and heparin are structural components
of extracellular matrix (ECM) (12). The ECM is a major part of
the tumor microenvironment and influences tumor progression
by several mechanisms, including growth factor concentrations,
angiogenesis, and immune infiltration (127). The changes in
HSPGs and HS metabolizing enzymes vary widely with cancer
type and have varying context dependent roles.

Right-sided colorectal cancers show that the expression of
the HSPGs glypican-1,-3, and -6 and betaglycan are altered
in non-metastatic tumors, whereas in metastatic tumors, only
glypican-1 and SDC1 are modified. Interestingly, alterations
were found in only non-metastatic tumors, affecting N-sulfation,
and the isoforms of heparan sulfate 6-O-sulfotransferase 1
(HS6ST1), heparan sulfate-glucosamine 3-sulfotransferase
3B1 (HS3ST3B1) and heparan sulfate-glucosamine 3-
sulfotransferase 5 (HS3ST5) (128). The HSPG SDC2 induces
MMP-7-mediated E-cadherin shedding in colorectal cancer.
E-Cadherin shedding led to reduced cell-to-cell contacts
and the acquisition of a fibroblast-like morphology, which
are both associated with cancer metastasis (129). Another
important study showed that SDC1-positive human mammary
fibroblasts (HMF) induced extracellular matrix remodeling
by promoting an aligned fiber architecture, which promoted
directional migration and invasion of breast cancer cells
(130).

Apart from syndecans, perlecan and agrin, two other
basement membrane constituents are also involved in cancer
progression (131–133). Antisense RNA against perlecan inhibits
tumor growth and angiogenesis in colon carcinoma (134).
Moreover, the ECM protein agrin stimulated osteosarcoma
cell growth and migration. Agrin also induces a switch from
topoisomerase I to topoisomerase II (135). Therefore, these
studies collectively reveal the role of HSPG ECM constituents
and cell surface HSPGs in regulating cell-to-cell and cell-matrix
adhesion, which in turn control tumor cell migration and
shedding.

TARGETING HS AND HSPGs FOR CANCER

TREATMENT

Understanding the biology behind HS and HSPG
deregulation in cancers has enabled the development of
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various therapeutic strategies aimed at various HS- and
HSPG-mediated cancer growth and progression enabling
features. Small molecule inhibitors, which interfere with
the activities of various enzymes involved in HSPG
synthesis and modification, have been developed (6).
Additionally, small molecule inhibitors and monoclonal
antibodies, which target interactions between HSPGs and
their targets, are being developed (136, 137). Below, we
describe some of these agents and their value as anti-cancer
agents.

Antibody and Small Molecule Targeting

HS-Modifying Enzymes, HS, and HSPGs
Among the enzymes involved in HS synthesis and modifications,
heparanases, and sulfatases are considered good drug targets.
Heparanase is overexpressed in a wide-variety of solid
tumors and hematological malignancies (29). A previous
study assessed the therapeutic value of heparanase targeting
using heparanse-neutralizing antibodies for the treatment
of diffuse non-Hodgkin’s B-cell lymphoma and follicular
lymphoma (138). This study found that heparanase inhibition
blocked xenograft tumors and growth of lymphoma cells
in the bones of mice (138). Additional studies have shown
that antibody-mediated anti-heparanase-therapies inhibit
cell invasion and tumor metastasis (138–140). Recently, a
small molecule inhibitor of hepranase was developed and
was shown to reduce metastatic attributes in a model of
hepatocellular carcinoma (141). Thus, these studies collectively
establish heparanase as a potential drug target for cancer
therapy.

Small molecule inhibitors, which prevent growth hormone
binding to HSPG, reduce the proliferative HSPG-mediated
signal. A similarity-based screening of small molecule libraries
identified bi-naphthalenic compounds, which can inhibit
FGF binding to both, HSPGs and FGFR1 binding. In vitro
and ex vivo, these compounds inhibit FGF2 activity in
angiogenesis models, with improved therapeutic potency
(142). Monoclonal antibodies developed against the HS chain
on GPC3 inhibit Wnt3a/β-catenin activation, recapitulating
GPC3 knockdown by reducing HCC migration and
motility (137).

Small molecule inhibitors against sulfatases have shown
promise in inhibiting tumor growth. A disulfonyl derivative of
phenyl–tert–butyl nitrone (PBN) called OKN-007 inhibited Sulf2
activity in hepatocellular carcinoma (HCC) cell lines and blocked
HCC tumor xenograft growth in mice (136).

HS signaling modulation also affects immune cell
trafficking and associated immune responses. Deletion of
the glycosyltransferase gene exostosin glycosyltransferase
1 (Ext1), which is essential for HS chain formation,
in myxovirus resistance-1 (Mx-1)-expressing bone
marrow stromal cells increased hematopoietic stem cells
(HSCs) efflux from the bone marrow to the spleen in
response to granulocyte colony-stimulating factor. Thus, a
therapeutic that targets Ext1 may help mobilize immune
cells to target cancer cells (143). For detailed review

on the role of different enzymes in HS synthesis and
modification readers are referred to a review by Bishop et
al. (12).

Heparan Sulfate Mimetics
HS mimetics were also used as anti-cancer agents. HS mimetics
induce an immune response against lymphoma through
activation of natural killer (NK) cells (144). The HS mimetic
PG545, in addition to its anti-heparanase and anti-angiogenic
effect shows pleiotropic effect by enhancing toll-like receptor 9
(TLR9) activation through increasing the TLR9 ligand CpG in
DCs. It was shown that treatment with PG545 resulted in the
accumulation of CpG in the lysosomal compartment of DCs.
This in turn enhanced the IL-12 production, which was essential
for the ability of PG545 to activate NK cells (144). Furthermore,
PG545 was also shown to directly bind to WNT3A and WNT7A
and inhibitsWNT/β-catenin signaling, inhibiting proliferation in
pancreatic tumor cell lines (145). These studies further highlight
the possibility of using heparin sulfate mimetics as agents for
cancer therapy.

HSPGs as Immunotherapeutic Targets
Some recent studies have also indicated that the upregulation of
HSPGs on cancer cells can be used as unique biomarkers that
can be targeted to selectively deliver cytotoxic drugs (146, 147). A
recent study that analyzed differential expression of cell surface
proteins on neuroblastoma identified the HSPG, Glypican-2
(GPC2) as selectively expressed on neuroblastoma where it
enhances neuroblastoma proliferation (148). The researchers
were able to develop an antibody drug conjugate that selectively
eradicated GPC2 positive neuroblastoma (148). This is another
exciting area of emerging research where HSPGs can be exploited
to serve as targets for selective drug delivery to cancer cells.

CONCLUSION

Recent cancer therapies have largely focused on targeting
driver mutations and their downstream effectors. However, the
emerging body of evidence now shows that driver-mutations are,
in fact, enhanced and modified by a host of other modifications
as cancer evolves. HS and HSPG deregulation are major
contributing factors to cancer evolution. This review has covered
some of the well-established and emerging roles of HS and
HSPGs in cancer. However, new, non-canonical functions of
HSPGs are still being discovered. For instance, in addition
to modulating growth factors and RTK interactions, HSPGs
also transport growth factors directly to the nucleus, where
these factors modify gene regulation (149). HSPGs have also
been shown to influence cancer exosome shedding and uptake,
thereby modulating cell-to-cell communication between cancer
and healthy fibroblasts, immune cells, and endothelial cells (150,
151). HSPGs can also influence actin cytoskeleton remodeling
and cancer cell motility (95). The HSPG, SDC2 binds Ezrin, a
cytoskeletal protein (152) and serves as adapter molecules for
IGF1 mediated activation of ERK (95). Additionally, HSPGs are
implicated in lipoprotein uptake and cellular stress signaling
(153, 154). As more researchers validate these findings, newer
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areas of HS- and HSPG-mediated regulation will be discovered.
Additionally, as cancer treatment moves from single target
to combination therapies, HS- and HSPG-targeting therapies
will likely emerge as a major new direction for cancer
therapeutics.
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The maintenance of a healthy deoxyribonucleotide triphosphate (dNTP) pool is critical 
for the proper replication and repair of both nuclear and mitochondrial DNA. Temporal, 
spatial, and ratio imbalances of the four dNTPs have been shown to have a mutagenic 
and cytotoxic effect. It is, therefore, essential for cell homeostasis to maintain the balance 
between the processes of dNTP biosynthesis and degradation. Multiple oncogenic signa­
ling pathways, such as c­Myc, p53, and mTORC1 feed into dNTP metabolism, and there is 
a clear role for dNTP imbalances in cancer initiation and progression. Additionally, multiple 
chemotherapeutics target these pathways to inhibit nucleotide synthesis. Less is under­
stood about the role for dNTP levels in metabolic disorders and syndromes and whether 
alterations in dNTP levels change cancer incidence in these patients. For instance, while 
deficiencies in some metabolic pathways known to play a role in nucleotide synthesis 
are pro­tumorigenic (e.g., p53 mutations), others confer an advantage against the onset 
of cancer (G6PD). More recent evidence indicates that there are changes in nucleotide 
metabolism in diabetes, obesity, and insulin resistance; however, whether these changes 
play a mechanistic role is unclear. In this review, we will address the complex network of 
metabolic pathways, whereby cells can fuel dNTP biosynthesis and catabolism in cancer, 
and we will discuss the potential role for this pathway in metabolic disease.

Keywords: purines, pyrimidines, c-Myc, p53, mTORC1, diabetes, obesity

inTRODUCTiOn

The maintenance of deoxyribonucleotide triphosphate (dNTP) pools is critical for multiple cellular 
pathways. For instance, imbalances in dNTPs are associated with genomic instability (1). Likewise, 
they have also been shown to disturb mitochondrial DNA (mtDNA) and consequently mitochon-
drial fitness, which may lead to mitochondrial diseases (MDs), such as diabetes, obesity, and cancer 
(2). Additionally, disorders of purine and pyrimidine metabolism (DPPM) profoundly affect cell 
metabolism, underlying the importance of nucleotides for cell behavior (3). Thus, both nucleotide 
synthesis and degradation must be exquisitely fine-tuned. In this review, we will focus on synthesis 
of dNTPs and the consequences of dNTP pool imbalances in cancer and MDs.

HeALTHY dnTP POOLS

A correct balance of dNTPs is necessary for the prevention of multiple pathologies. A healthy cell 
must maintain two asymmetric and spatial-temporal dNTP pools; one for nuclear DNA synthesis 
and repair and another for mtDNA replication and repair. Disruptions in dNTP balance are associ-
ated with enhanced mutagenesis, leading to genomic instability, which promotes cancer (4), and may 
have a role in metabolic disease (5).
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Cytosolic dNTP pool concentrations positively correlate with 
the cell cycle. In fact, the amount of dNTPs at the beginning 
of S-phase is not enough for a complete DNA duplication (6). 
The S-phase increase in dNTPs is necessary for faithful nuclear 
DNA replication. mtDNA is replicated continuously in post-
mitotic cells, and faithful maintenance of mtDNA also depends 
on correctly balanced dNTPs (7). Thus, both proliferating and 
non-proliferating cells need to fine-tune nucleotide and dNTP 
synthesis to allow for both nuclear and mtDNA replication and 
repair to maintain the health of the cell.

Anabolism and Catabolism of nucleotides
Cells possess two biosynthetic pathways to produce dNTPs:  
de novo and salvage (8). Purines and pyrimidines arise from two 
different de novo pathways that generate nucleotides starting from 
raw material (glucose, glutamine, aspartate, and HCO3) (9). The 
de novo nucleotide synthesis pathway is highly energy-intensive 
(9). Therefore, cells have developed a more energy-efficient route 
to synthesize nucleotides, termed the salvage pathway (10). The 
salvage pathway acts as a recycling plant taking free nitrogen 
bases and nucleosides arising from nucleic acid breakdown and 
diet (9). Nucleosides are hydrophilic compounds, thus proper 
function of nucleoside transporters (SLC29 and SLC28 families) 
is an essential requirement for salvage pathway function (11). 
Ribonucleotides obtained by either pathway can be reduced to 
their deoxyribonucleotide counterpart in a reaction catalyzed by 
ribonucleotide reductase (RNR) (12).

Turnover of RNA and other nucleotides occurs regularly to 
maintain homeostasis. Human cells cannot break down the purine 
ring. Purine catabolism involves a sequence of three reactions in 
which nucleotides are stripped step-by-step from their phosphates 
and sugar to finally become oxidized to the end product uric acid 
(UA), which is excreted into the urine (13). Conversely, uracil 
and thymidine rings can be completely degraded to β-alanine and 
β-aminoisobutyrate, respectively. Subsequently, both metabolites 
can be excreted or transformed into intermediates of the tricar-
boxylic acid (TCA) cycle (14). Biosynthesis and catabolism of 
nucleotides and dNTPs are highlighted in Figure 1.

iMPAiReD nUCLeOTiDe MeTABOLiSM in 
CAnCeR AnD MeTABOLiC DiSeASe

Deregulation of nucleotide metabolism is associated with a broad 
spectrum of pathological conditions, including cancer and MDs 
(15–17). Virtually all metabolic pathways have been implicated 
in dNTP biosynthesis. Thus, de novo and salvage pathways, as 
well as all involved anapleurotic reactions (Figure 1), need to be 
highly cross-regulated.

It is well known that cancer cells must increase dNTP biosyn-
thesis (18) to ensure rapid replication of the genome (17). This 
occurs through a variety of pathways (discussed below). In con-
trast, MDs are caused by congenital or acquired genetic defects 
in metabolic enzymes. DPPM are due to abnormalities in the bio-
synthesis, interconversion, and degradation of nucleotides (19). 
DPPM have a wide variety of clinical presentations, highlighting 
the importance of proper nucleotide metabolism for cell and 

organism function (15). Alterations in nucleotide metabolism 
are also present in other metabolic-related pathological condi-
tions, such as diabetes, obesity, and insulin resistance (20–22) 
(Table  1). In this section, we will summarize some important 
features affecting nucleotide metabolism in cancer and MDs.

Deregulation of Major Growth Signaling 
Pathways Leads to nucleotide Pool 
imbalances in Cancer and Metabolic 
Disease
The main growth signaling pathways (PI3K-AKT and ERK1/2-
MAPK) are induced and maintained during metabolic repro-
gramming of cancer (18). Additionally, deregulation of these 
pathways may contribute to different MDs, including diabetes, 
obesity, or steatosis resistance (33, 89, 90). These pathways sense 
and orchestrate nutrient utilization; therefore, is not surprising 
that alterations in these pathways affect energy and biomass 
production and cause a broad variety of diseases.

mTOR is a central signaling pathway that integrates environ-
mental inputs (e.g., nutrients and hormones) into downstream 
pathways to control many cellular processes (91). This includes 
regulation of metabolism, growth, and survival (32). Indeed, the 
mTORC1/2 pathway not only promotes glucose uptake and protein 
and lipid biosynthesis, but also promotes nucleotide biosynthesis 
(29, 30) and uptake of nucleosides through transporters (88). At 
least one member of this pathway is altered in 38% of human cancer 
(92). Altered metabolism induced by aberrant mTORC1 activation 
has also been shown to play a role in diabetes and obesity (32, 93).

c-Myc, one of the most commonly altered proteins in human 
cancer, is also regulated by PI3K-AKT and ERK1/2-MAPK 
pathways (94). c-Myc is a highly pleiotropic transcription fac-
tor considered a master regulator of cell metabolism (34, 35) 
through regulation of glycolysis, glutamine metabolism, and 
mitochondrial biogenesis (95, 96). Indeed, c-Myc has been shown 
to induce hepatic glucose uptake and utilization, while blocking 
gluconeogenesis and ketogenesis, suggesting a counteracting 
effect of c-Myc in obesity and insulin resistance (36, 97). In addi-
tion to regulating glucose and glutamine, substrates for purine 
and pyrimidine biosynthesis (Figure  1) (98), c-Myc also tran-
scriptionally regulates nucleotide metabolic enzyme gene expres-
sion (35). Thus, deregulation in c-Myc acutely alters nucleotide 
homeostasis in cancer (99), and it is interesting to speculate that 
the role of c-Myc in MDs is also related to nucleotide metabolism.

Previous publications from our laboratory and others have 
shown that DNA damage and DNA damage response (DDR) 
proteins regulate dNTP biosynthesis in the context of cancer 
(80, 100, 101). Interestingly, upregulation of p53, a key player in 
the DDR, in adipose tissue is associated with increased inflam-
mation and insulin resistance (102). Notably, wild-type p53 
negatively regulates G6PD activity (37), the rate-limiting enzyme 
of the pentose phosphate pathway and one of the most important 
sources of nucleotides (103). Upregulation of G6PD correlates 
with functional defects in liver, heart, and pancreas of obese and 
diabetic animals (104). Although the relationship between G6PD 
upregulation and increased oxidative stress has been studied in 
MD (105), the implication for nucleotide metabolism has not 
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FiGURe 1 | Pathways of deoxyribonucleotide metabolism in mammalian cells. Simplified representation of purine (blue) and pyrimidine (orange) metabolism and 
their crosstalk with the major metabolic pathways, the pentose phosphate pathway [(PPP), red] and the tricarboxylic acid cycle (green). Key metabolic enzymes 
(green), their principal reactive substrates (gray), and the four deoxyribonucleotide triphosphate (dNTP) end­products (magenta) are shown. Glucose and glutamine 
feed into both purine and pyrimidine metabolism to donate carbons and nitrogens to all dNTPs. Abbreviations: RAT, phosphoribosylpyrophosphate 
amidotransferase; GARS, glycinamide ribonucleotide synthetase; GART, glycinamide ribonucleotide transformylase; FGAMS, phosphoribosylformyl­glycineamide 
synthetase; AIRS, phosphoribosylaminoimidazole synthetase; AIRC, phosphoribosylaminoimidazole carboxylase; SAICAR, phosphoribosylaminoimidazole­
succinocarboxamide; ADSL, adenylosuccinate lyase; AICART, phosphoribosylaminoimidazolecarboxamide formyltransferase; IMPS, inosine monophosphate 
synthase; ADSS, adenylosuccinate synthetase; AK, adenylate kinase; NMPK, nucleotide monophosphate kinase; IMPS, inosine monophosphate dehydrogenase; 
GMPS, guanosine monophosphate synthetase; GK, guanylate kinase; XOR, xanthine oxidoreductase; HGPRT, hypoxanthine­guanine phosphoribosyltransferase; 
RNR, ribonucleotide reductase; CPS II, carbamoyl phosphate synthetase II; ATC, aspartate carbamoyltransferase; DHO, dihydroorotase; DHOD, dihydroorotase 
dehydrogenase; OPRT, orotate phosphoribosyltransferase; OMPD, orotidine monophosphate decarboxylase; CPTS, cytidine triphosphate synthetase; TS, 
thymidylate synthase; DUD, dihydrouracil dehydrogenase; DHP, dihydropyrimidinase; UP, ureidopropionase; Glut, glutamine; Gly, glycine; FTHF, N10­
formyltetrahydrofolate; Asp, aspartate; PRPP, phosphoribosylpyrophosphate; Q, ubiquinone; MTHF, N5,N10­methylenetetrahydrofolate.
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yet been addressed. More research is needed to understand the 
contribution of dNTP imbalances due to G6PD deregulation in 
diabetes and obesity.

An imbalance in nucleotides has been shown in two different 
studies related to diabetes (106, 107). Additionally, pyrimidine 
metabolism has been linked to fatty liver (26). Interestingly, 
increasing evidence suggests a link between obesity, a risk 
factor for non-alcoholic fatty liver disease (108), and cancer. 
Obese patients show many cancer-promoting features, such 
as chronic low-level inflammation (109), insulin-resistance/

diabetes (110), and deregulation of mTORC1 (111). Although 
the contribution of deregulated nucleotide pools promoting 
cancer has been extensively demonstrated (18, 112–115), their 
role in MD and metabolic-related diseases has not yet been 
elucidated. Based on these recent studies, we speculate that 
deregulation of nucleotide pools may in part contribute to the 
altered metabolic landscape promoting obesity and diabetes. 
Studying the implications of altered nucleotide pools in these 
diseases would open a therapeutic window based on modula-
tion of nucleotide metabolism.
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TABLe 1 | Genes, protein families, and pathways discussed in this review: role in deoxyribonucleotide triphosphate (dNTP) metabolism and expression in cancer and 
metabolic disease.

Gene/family/
pathway

Known role in dnTP metabolism expression in 
cancer

expression in metabolic disease

Purine/pyrimidine 
synthesis pathway

Necessary for de novo dNTP biosynthesis (8)a Increased (23) or 
mutated (24, 25)

Heptatic steatosis (uridine metabolism) (↓) (26)
Diabetesb (↓) (27)

MTOR Promotes glucose uptake (28); promotes de novo nucleotide  
biosynthesis (29, 30)

Increased (31) Diabetes (↑) (32)
Obesity (↑) (33)

MYC Induces glucose uptake and utilization (34); transcriptionally regulates 
nucleotide metabolic enzymes (23, 35)

Increased 
(oncogene) (23)

Insulin resistance (↑)c

Obesity (↑)c (36)

TP53 Negative regulator of pentose phosphate pathway through G6PD (37); gain­
of­function mutations increase gene transcription of genes for  
dNTP synthesis (38)

Decreased or 
mutated (tumor 
suppressor) (39)

Insulin resistance (↑)
Glucose intolerance (mut) (5)
Mitochondrial changes (mut)d (40)

PI3K­AKT pathway Oncogenic activation promotes glucose and glutamine uptake and 
catabolism (41)

Increased 
(oncogenes) (41)

Diabetes (↑) (42)
Nonalcoholic fatty liver disease (↑) (43)
Obesity (↑) (44)

ERK­MAPK  
pathway

Regulation of CPS II in de novo pyrimidine synthesis (45) Increased 
(oncogenes) (46)

Diabetes (↑) (47)
Obesity (↑) (48)

G6PD Rate­limiting for ribose­5­phosphate synthesis from the PPP (49)a Increased or 
mutated (50)

Obesity (↑) (51)
Diabetes (↑) (52)

RRM1 Catalytic subunit of the ribonucleotide reductase (RNR); catalyzes the 
reduction of deoxyribonucleotides from ribonucleotides (12)a

Increased or 
decreased (53)

Unknown

RRM2 Regulatory subunit of RNR (12); S­phase regulated (54); rate­limiting enzyme 
in the reduction of deoxyribonucleotides from ribonucleotides (55)a

Increased 
(oncogene) (53)

Unknown

RRM2B Regulatory subunit of the RNR (56); formation of deoxyribonucleotides from 
ribonucleotides for DNA damage repair and mitochondrial DNA (mtDNA) 
replication (57–59)a

Increased or 
decreased (53)

Mitochondrial disorders (↓) (60)

SLC25 family Mitochondrial nucleoside transporters (61)
Important for mtDNA pools through the salvage pathway (62)

Increased (63) Mitochondrial disease (mut)e

Mitochondrial dysfunction (↓)f (61)

SLC29 and SLC28 
families

Nucleoside transporters that are important for the salvage pathway  
(11, 64, 65)

Increased (11) Diabetes (mut)g (66)

TK2 Phosphorylates deoxycytidine to generate dCTP (67) Unknown Mitochondrial disease (↓) (68)

DGUOK Catalyzes the conversion of deoxyguanosine to dGMP (67)a Mutatedh (69, 70) Mitochondrial disease (mut) (69)

TWNK Mitochondrial helicase (71) Unknown Mitochondrial dysfunction (mut) (72, 73)

POLG Catalytic subunit of the mitochondrial DNA polymerase (74) Mutated (75–77) Mitochondrial disease (mut) (77–79)

Ataxia-telangiectasia 
mutated

Increases glucose/glutamine uptake and inhibits the PPP (80) Mutated (81) Mitochondrial dysfunction (mut)i

Insulin resistance (mut)i (82)

XOR Catalyzes the conversion of xanthine to uric acid (83)a Increasedj or 
decreased (84)

Metabolic syndrome (mut)k

Insulin resistance (mut)k

Diabetes (mut)k

Fatty liver disease (mut)k (85)

aThese genes/pathways are shown in Figure 1.
bThese studies show that purines and pyrimidines are downregulated in diabetes. It is not known whether changes in purine or pyrimidine synthesis genes are the mechanism behind 
this observation.
cIncreased MYC expression counteracts insulin resistance and obesity.
dOccurs in patients with Li–Fraumeni syndrome.
eSLC25A4 (86).
fSLC25A33 and SLC25A36 have only been tested in mouse models (87, 88).
gSLC29A3 is the only gene in this family that has been found to affect metabolic disease.
hWhile the data are limited, some patients with DGUOK mutations have hepatocellular carcinoma.
iOccurs in patients with ataxia-telangiectasia.
jIncreased XOR expression/activity is likely important for cancer initiation; however, XOR expression is decreased in most established tumors.
kOccurs in patients with XOR deficiency.
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RnR in Cancer and Metabolic Disease
Ribonucleotide reductase reduces ribonucleotides to the cor-
responding deoxyribonucleotides (116, 117). In mammals, RNR 
is a tetrameric enzyme composed of two homodimeric subunits, 

RRM1 and RRM2. Whereas, RRM1 is continuously expressed 
throughout the cell-cycle, expression of RRM2 is activated upon 
entry into S-phase (54, 118). Additionally, RRM2 is rapidly 
degraded via the proteasome in G2 (12, 119). Thus, RRM2 is 
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considered rate-limiting for RNR activity. RRM2B (RNR subunit 
M2B) is an alternative M2 subunit that is induced by p53 activa-
tion in response to DNA damage (56). RRM2B is not cell-cycle 
regulated per se, but it plays key roles in enhancing dNTP synthesis 
in cells under stress (120–122) and mediating mtDNA synthesis 
and repair (57–59).

The role of RNR in cancer is clear as it was one of the first 
identified DNA damage-induced enzymes (123). While RRM2 
overexpression is tumorigenic, leading to lung neoplasms in vivo, 
RRM1 reduces tumor formation, migration, and metastasis 
[reviewed in Ref. (53)]. Previous studies from our lab and others 
have shown the potential of RRM2 as a prognostic and diagnostic 
biomarker in multiple cancers (112, 124–127). However, the util-
ity of RRM1 and RRM2B as a tumor biomarker is still unclear 
[reviewed in Ref. (53)].

Although there is no study directly linking RNR with MD, 
RRM2B is required for mtDNA synthesis and healthy mitochon-
drial function (57). Deregulated mitochondria are associated with  
a higher risk of diabetes and obesity (discussed below). Therefore,  
it is possible that RNR function is linked to these MDs (Table 1). 
More mechanistic studies will be needed to determine the role 
for RNR in obesity and diabetes.

Mitochondrial Dysfunction in dnTP Pool 
Disruption During Cancer and Metabolic 
Disease
The mitochondria are one of the most important organelles 
for eukaryotic function (128). In addition to the production of 
ATP through oxidative phosphorylation, mitochondria are also 
the scaffold of several metabolic reactions for cellular building 
block synthesis (e.g., fatty acid beta-oxidation, one-carbon/folate 
cycle, TCA cycle, amino acid metabolism, etc.) (129). Hence, 
altered mitochondrial behavior has a broad impact on cellular 
metabolism.

Maintenance of mitochondrial dNTP pools is critical for 
proper mtDNA function. Alterations in nuclear genes involved 
in transport of cytosolic dNTPs (e.g., SLC25A4), the salvage 
nucleotide biosynthesis in the inner mitochondrial membrane 
(e.g., TK2 and DGUOK), and genes involved in mtDNA replica-
tion (e.g., TWNK and POLG) are implicated in both cancer and 
metabolic syndromes (63, 68, 77–79, 130–133). Moreover, dys-
function in the electron transport chain induces oxidative stress, 
which has been associated with impaired one-carbon metabolism 
(134, 135), an essential anapleurotic pathway for both purine 
and pyrimidine nucleotides. Mitochondrial genomic instability 
due to increased levels of reactive oxygen species (ROS) and/or 
mutations in mtDNA or nuclear genes involved in mitochondria 
function are underlying factors of MDs, and contribute to cancer 
and diabetes (136). Alterations in genes discussed above that are 
important for dNTP homeostasis and mitochondrial function are 
highlighted in Table 1.

Although the link between mitochondrial dysfunction and 
MD has been studied for the past two decades, the results are con-
tradictory (137). These contradictory results mainly arise from 
the complex relationship between mitochondria and metabolism, 
but also from the lack of global and standardized methodological 

strategies to phenotype insulin-resistance in humans (138). 
Dysregulation of nucleotide metabolism is an important aspect 
of mitochondrial dysfunction; therefore, their role in MDs should 
not be ignored.

Relationship Between DPPM and Cancer
It is clear that cancer is a metabolic disease; however, a predis-
position to cancer is not a foregone conclusion in patients with 
DPPM, who by definition have alterations in nucleotide supplies. 
Interestingly, while deficiencies in some metabolic pathways 
known to play a role in nucleotide synthesis are pro-tumorigenic, 
others confer an advantage against the onset of cancer. This 
highlights the large variability in the clinical presentation of these 
disorders.

Alterations in p53 or ataxia-telangiectasia mutated (ATM) 
lead to metabolic changes and predispose patients to cancer. 
Patients with germline TP53 (encoding for p53) mutations have 
Li–Fraumeni syndrome and are predisposed to cancer (139, 140). 
Interestingly, a recent report showed that nucleotide metabolism 
is regulated by the gain-of-function activity of mutant p53 (38). 
Consistently, wild-type p53 negatively regulates G6PD and PPP 
activity to decrease dNTP synthesis (37). Similarly, our group has 
previously shown that ATM (mutated in some ataxia-telangiecta-
sia patients) inactivation increases glucose uptake and enhances 
glucose flux through the PPP and ultimately increases dNTP 
biosynthesis (Figure  1) (80, 141). Indeed, patients with ATM 
mutations show alterations in glucose homeostasis (142, 143). It 
is well-known that these patients have an increased susceptibility 
to cancer (144). It is interesting to speculate that alterations in 
dNTP metabolism may play a role in the cancer predisposition 
in these patients; however, further studies are needed to support 
this notion.

Other DPPM confer a tumor suppressive benefit. For instance, 
patients with G6PD deficiency have a reduced risk of some cancers 
(145–147) (Table  1). This suggests that hyperactivity of dNTP 
synthesis is more likely to increase cancer risk than deficiencies 
in synthesis.

Finally, some DPPM have both a pro- and anti-tumorigenic 
effect. Deficiency in xanthine oxidoreductase (XOR), the enzyme 
that catalyzes the last step in purine catabolism (Figure  1), 
increases UA (148). There is a dual role for UA in cancer, the 
so-called the oxidant–antioxidant UA paradox (149). On one 
hand, extracellular UA is a potent ROS scavenger, thus protect-
ing cells against oxidative stress (150). On the other hand, high 
intracellular levels of UA in a XOR-deficient cellular background 
promote dNTP biosynthesis and tumor growth by shuttling XOR 
precursors (xanthine and hypoxanthine) into the purine salvage 
pathway (149). Additionally, intracellular UA is pro-inflammatory 
by inducing NADPH-oxidases that lead to oxidative stress and 
cancer (151, 152). This again emphasizes the complex nature of 
these disorders in relation to cancer (Table 1).

Together, the lack of consensus in predisposition to cancer in 
DPPM patients points to the significant redundancy in the dNTP 
biosynthetic pathways. This should not be surprising due to the 
fact that dNTP synthesis is critical for organismal survival and, 
therefore, we have evolved to have multiple metabolic arms feed-
ing into the same pathway. Understanding whether these patients 
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are predisposed or not to cancer will be incredibly important for 
the clinical management of these patients.

THeRAPeUTiC MODULATiOn OF 
DeOXYRiBOnUCLeOTiDe MeTABOLiSM 
in CAnCeR AnD MeTABOLiC DiSeASe

As described in this review, the balance of dNTPs must be tightly 
regulated in the cell. Many cancer types show alterations in dNTP 
levels, supporting their rapid proliferation. Likewise, defective 
mutations in anabolic and catabolic nucleotide enzymes, causing 
imbalances in the dNTP pools or in their precursors, are associ-
ated with different grades of disease severity in DPPM. Thus, it 
is not surprising that therapies for both cancer and DPPM focus 
on restoration of the normal balance of intracellular nucleotides.

Some of the first chemotherapeutic agents were cytotoxic 
nucleoside analogs and nucleobases (e.g., thiopurines and 
fluoropyrimidines) (153). These antimetabolites have a similar 
molecular structure to endogenous nucleotides and interfere with 
nucleotide metabolic pathways and DNA/RNA synthesis (154). 
Inhibitors of RNR were one of the first cancer therapies [reviewed 
in Ref. (53)] and are still used today. For instance, gemcitabine, 
a chemotherapeutic nucleoside analog, is used in pancreatic 
adenocarcinoma, but also in breast, bladder, and non-small 
cell lung cancer (155). Unfortunately, resistance to gemcitabine 
in common, often through an increase in nucleotide synthesis 
pathways or transport of nucleosides (156). Other successful 
chemotherapeutic regimens include methotrexate, which reduces 
substrates for purine and pyrimidine biosynthesis (157). Finally, 
specific inhibition of enzymes in the de novo pathway and/or in 
anapleurotic reactions (glucose and glutamine metabolism) has 
also been used as adjuvant therapies in cancer (154).

The spectrum of nucleotide therapies for DPPM is much 
broader in scope due to the high variability of deficiencies (3). 
Thus, deficiencies resulting in the overproduction of UA are 
treated with allopurinol, an inhibitor of xanthine oxidase (16). 
In other cases, patients can be treated with oral supplements of 

specific nucleotides they are lacking (16). What is clear is that 
cancer patients with DPPM cannot be treated with antimetabo-
lites such as 5-fluoro-uracil due to severe side effects (19). This 
suggests that cancer patients, DPPM must remain above a certain 
threshold of nucleotide pools to remain healthy. Finally, no 
nucleotide therapies are currently used for MDs, such as diabetes 
or obesity. More studies will need to be performed to determine 
whether nucleotide metabolism plays a contributing role to these 
pathologies before these types of therapies can be tested.

COnCLUSiOn

For decades researchers and clinicians alike have recognized the 
importance of fine-tuned dNTP levels for cellular homeostasis, 
as shown by the number of anti-cancer therapies based on the 
abolishment of nucleotide synthesis. In addition, the broad range 
of pathologies associated with congenital defects in nucleotide 
metabolic enzymes further demonstrates the importance of 
healthy intracellular dNTP levels. However, the association 
between cancer and MD and whether nucleotide pools are 
interconnected in these pathologies remains unclear. Future work 
will need to focus on mechanistic and population-based studies 
to determine whether nucleotide pool imbalances in MD lead 
to changes in cancer predisposition and whether targeting these 
pathways for cancer therapy affects metabolic homeostasis and 
function in normal cells.
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Mitochondria are bioenergetic, biosynthetic, and signaling organelles that control var-
ious aspects of cellular and organism homeostasis. Quality control mechanisms are 
in place to ensure maximal mitochondrial function and metabolic homeostasis at the 
cellular level. Dysregulation of these pathways is a common theme in human disease. 
In this mini-review, we discuss how alterations of the mitochondrial network influences 
mitochondrial function, focusing on the molecular regulators of mitochondrial dynamics 
(organelle’s shape and localization). We highlight similarities and critical differences in 
the mitochondrial network of cancer and type 2 diabetes, which may be relevant for 
treatment of these diseases.

Keywords: mitochondria, fission, fusion, diabetes, cancer

inTRODUCTiOn

All living organisms rely on cellular and physiological mechanisms of homeostasis in order to 
maintain an internal environment optimal for life and function. Mitochondria are the foundation of 
cellular homeostasis, via their multiple roles in energy production, biosynthesis, calcium regulation 
and signaling, redox balance, and generation of reactive oxygen species. Not surprisingly, cells have 
evolved multiple mechanisms of quality control to ensure that mitochondria function at their best. 
These include protein import (1), folding and degradation (2), antioxidant defense mechanisms 
(3), mitochondrial turnover via autophagy (4), mitochondrial biogenesis (5), mitochondrial shape 
changes and cristae remodeling (6), and communication with the nucleus to coordinate transcrip-
tional responses (7).

Emerging evidence indicate that mitochondrial dysfunction is associated with disparate dis-
eases, including aging (8), neurodegenerative diseases (9), mitochondrial diseases (10), obesity 
(11), diabetes, and cancer. Although some controversies remain regarding whether functional or 
dysfunctional mitochondria are responsible for metabolic disorders, there is a resurgence of inter-
est in understanding the mechanisms responsible for such mitochondrial alterations in disease. 
This review focuses on the molecular regulators of mitochondrial dynamics (organelle’s shape and 
localization) in cancer and metabolic pathologies.

ReGULATiOn OF MiTOCHOnDRiAL DYnAMiCS

Mitochondria constantly undergo shape and number changes thanks to the two opposing pro cesses 
of fission and fusion (12). In turn, changes in gross mitochondrial morphology and the intercon-
nectivity of the mitochondrial network impact on energy production (13), calcium signaling, 
mitochondrial DNA distribution, apoptosis, mitophagy, and segregation of mitochondria between 
daughter cells (6). The fine-tuning of the fusion–fission balance is crucial for cellular fitness in 
response to extracellular stimuli and environmental stress (14). Thus, alterations of the fission–
fusion balance lead to oxidative stress, mitochondrial dysfunction, and metabolic alterations.

At the molecular level, dynamin-like GTPases orchestrate mitochondria shape changes. The 
fission protein dynamin-related protein 1 (DRP1) assembles into ring-like structures to constrict 
mitochondrial membranes in a GTP-dependent manner (6). DRP1 is recruited to mitochondria by 
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FiGURe 1 | Mitochondrial shape alterations in T2D. Mitochondrial 
fragmentation and impaired mitochondrial trafficking are a hallmark of T2D. 
These changes in mitochondrial dynamics lead to pathological responses in 
β-cells, skeletal muscle, adipocytes, and vessels. Abbreviations: INS, insulin; 
Glc, glucose; T2D, type 2 diabetes.
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fission protein 1 (FIS1), mitochondrial fission factor (MFF), and 
the mitochondrial dynamic proteins of 49 (MiD49) and 51 kDa 
(MiD51). On the other hand, the fusogenic proteins mitofusin 
1 and 2 (MFN1/2) are located in the outer mitochondrial mem-
brane, and tether two mitochondria through homo- and hetero-
typic dimerization (13). A single GTPase, optic atrophy protein 1 
(OPA1), achieves fusion of the IMM.

An expanding number of degenerative disorders are associated 
with mutations in the genes encoding MFN2 and OPA1, including 
Charcot–Marie–Tooth disease type 2A and autosomal dominant 
optic atrophy (15). Defective mitochondrial dynamics seem to 
play a more general role in the molecular and cellular pathogen-
esis of common neurodegenerative diseases (Alzheimer’s and 
Parkinson’s) (14), as well as in cardiovascular disease (16), type 2 
diabetes (T2D), and cancer.

MiTOCHOnDRiAL DYnAMiCS in T2D

The clinical complications of T2D include dyslipidemia, hyper-
glycemia (17), insulin resistance, and defects in insulin secretion 
from pancreatic beta cells (18). A major cause of such clinical 
complications is the increased production of mitochondrial 
ROS by hyperglycemia (17, 19). A common feature of mito-
chondrial morphology in T2D is an increased fragmentation 
(Figure 1), achieved via activation/upregulation of DRP1 and/or  
downregulation of MFN2 levels. In turn, increased fission and 
fragmentation of mitochondria was linked to HG-induced 
overproduction of ROS (20) and insulin secretion in mouse 
and human islets (21). Importantly, both HG-induced ROS and 
insulin secretion were blocked by inhibiting DRP1-induced 
fission. Furthermore, impaired mitochondrial fusion has been 
associated with insulin resistance in skeletal muscle (22) and 
with glucose intolerance and enhanced hepatic gluconeogenesis 
in a liver-specific MFN2 knockout (KO) mice (23). Interestingly, 
MFN2 KO led to increased ROS production, activation of JNK 
and endoplasmic reticulum (ER) stress response. Studies in 
rat models show that MFN2 overexpression improved insulin 
sensitivity and reduced lipid intermediates in muscle (24) and 
liver (25). At the molecular level, liver expression of MFN2 was 
associated with increased expression of the insulin receptor and 
the glucose transporter GLUT2, and activation of the PI3K/
AKT2 pathway.

In addition, dyslipidemia models of T2D show increased 
mitochondrial fission (Figure 1). Excess palmitate (PA)-induced 
mitochondrial fragmentation and increased mitochondrion-
associated DRP1 and FIS1 in differentiated muscle cells (26). 
In addition, PA induced mitochondrial depolarization, lower 
ATP synthesis and increased oxidative stress, and reduced 
insulin-stimulated glucose uptake (Figure 1). Both genetic and 
pharmacological inhibition of DRP1 attenuated PA-induced 
mitochondrial fragmentation and insulin resistance. In another 
study, DRP1 was induced in rat islets after stimulation by free 
fatty acids (FFAs), and this DRP-1 upregulation was accompanied 
by increased pancreatic β cell apoptosis (27).

Mitochondrial fission is associated with various processes 
that contribute to atherosclerosis in T2D (Figure 1), including 
endothelial dysfunction (28), collagen matrix alteration (29), 

and motility and proliferation of vascular smooth muscle cells 
(30). From a therapeutic standpoint, silencing FIS1 or DRP1 
in venous endothelial cells isolated from patients with T2D 
blunted HG-induced mitochondrial fission and ROS production 
(28). Furthermore, metformin attenuated the development of 
atherosclerosis in diabetic mice by reducing DRP1-mediated 
mitochondrial fission in an AMP-activated protein kinase 
(AMPK)-dependent manner (31). Mitochondrial fission induced 
by DRP1 also plays a critical role in the pathogenesis of microvas-
cular [nephropathy (32), retinopathy (33), and neuropathy] and 
macrovascular [stroke and myocardial ischemia (34)] complica-
tions of diabetes.

In summary, we know that many of the clinical complications 
of T2D are associated with mitochondrial fragmentation. We also 
know that tipping the balance toward increased mitochondrial 
fragmentation in mice leads to models of T2D. Furthermore, 
blocking DRP1 (or increasing MFNs) ameliorated hypergly-
cemia, dyslipidemia, and atherosclerosis in T2D models. Less 
clear are the mechanisms of alterations in expression and/or 
activity of DRP1/MFNs. Up to date, most of the studies have 
shown correlation between the hallmarks of T2D and increased 
fragmentation of mitochondria (Table 1). However, more studies 
should focus on understanding the spatiotemporal regulation 
of DRP1 and MFN1/2 levels during the natural progression of 
T2D. In this context, there are a number of open questions. For 
example, are there alterations on the regulation of DRP1/MFNs 
at the transcriptional, translational, or posttranslational level? 
Are DRP1/MFNs regulated by insulin, glucose, FFA signaling 
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TAbLe 1 | Mitochondrial dynamics in T2D and cancer.

Disease Regulatory event Molecular pathway Cell function Reference

T2D DRP1 enrichment in 
calcified human carotid 
arteries

DRP1 controls matrix mineralization, cytoskeletal rearrangement,  
mitochondrial dysfunction, and reduced type 1 collagen secretion  
and alkaline phosphatase activity

Extracellular matrix changes  
in cardiovascular complications

(29)

FFA DRP1 leads to cytC release, caspase-3 activation,  
and generation of ROS

Apoptosis (27)

Hyperglycemia ROCK1 phosphorylates DRP1 Nepropathy (32)

PA Fragmentation was associated with increased oxidative  
stress, mitochondrial depolarization, loss of ATP  
production, and reduced insulin-stimulated glucose uptake

Insulin stimulated glucose  
uptake in skeletal muscle

(26)

FIS1 and DRP1  
increased in T2D patients

DRP1 induced ROS, and nitric oxide synthase activation Endothelial dysfunction (28)

Hyperglycemia HG leads to DRP1-mediated fragmentation and ROS Cellular respiration (20)

Inflammatory signaling 
(TNF-α)

TNF-α induced MiR-106b which led to MFN2 downregulation Insulin resistance (23)

Insulin Unknown Unknown (30)

Dyslipidemia MFN2 prevents accumulation of lipid intermediates,  
including diacylglycerol and ceramides

Insulin resistance in  
skeletal muscle

(24)

Dyslipidemia MFN2 promotes the insulin signaling pathway (INSR/IRS2/GLUT2PI3K/AKT) Insulin resistance in liver (25)

Hyperglycemia MFN2 deficiency impaired insulin signaling in muscle and  
liver, induced ER stress, ROS production, and JNK activation

Insulin and glucose  
homeostasis

(23)

Cancer Oncogenic MAPK  
signaling

RasG12V or BRAFV600E activate ERK1/2, which then  
phosphorylates and activates DRP1

Mitochondria function and  
cell survival

(56)

mTOR mTORC1/4E-BP-dependent translation of MTFP1 leads  
to activation and recruitment of DRP1 to mitochondria

Cell survival (58)

Nestin Nestin binds DRP1 and enhances DRP1 recruitment Proliferation and invasion (59)

EHD1 EHD1 and Rabankyrin-5 interact with the retromer complex and induce  
VPS35-mediated removal of inactive DRP1 from mitochondrial membranes

Unknown (60)

AMPK AMPK phosphorylates MFF, which increases DRP1  
recruitment to mitochondria

Unknown (61)

SPOP loss-of- 
function mutants

SPOP mutations allow localization of INF2 to mitochondria, where  
it recruits DRP1

Cell migration and invasion (62)

SIRT4 SIRT4 inhibited Drp1 phosphorylation and weakened Drp1 recruitment  
to the mitochondrial membrane via an interaction with FIS1

Cell migration and invasion (63)

Estradiol Estradiol stimulates mitochondria fission by decreasing  
MFN1/2 levels

Cell migration and proliferation (66)

Androgen Androgens increase DRP1 expression via the AR Cell proliferation (65)

The upstream regulators of mitochondrial shape are presented along with the molecular mechanisms at play.
SPOP, speckle-type POZ protein; FFA, free fatty acid; FIS1, fission protein 1; DRP1, dynamin-related protein 1; AMPK, AMP-activated protein kinase; MFF, mitochondrial fission 
factor; T2D, type 2 diabetes; ER, endoplasmic reticulum; MFN1/2, fusogenic proteins mitofusin 1 and 2; AR, androgen receptor.
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pathways? What are the tissue- and cell-specific differences in 
the regulation of mitochondrial shape in T2D? Identifying such 
molecular pathways controlling DRP1/MFN alterations in T2D 
might enable therapeutic efforts in prediabetic patients to prevent 
full-blown settlement of the disease.

Another question that warrants further investigation is 
whether genetic susceptibility variants of DRP1 or MFNs are 
associated with T2D. A recent study in type 1 diabetes patients 
identified genetic factors associated with kidney disease (35). We 
propose that a similar approach in T2D patients could address 
to what extent genomic alterations of the mitochondrial shape 
genes are associated with disease. A potential association between 
genomic alterations of mitochondrial shaping genes and T2D 
might allow for better screening of susceptibility and/or risk 
prediction of certain T2D complications.

MiTOCHOnDRiAL DYnAMiCS in CAnCeR

Recent evidence indicates that mitochondrial shape, size, and 
localization regulate several of the hallmarks of cancer. For 
instance, mitochondrial shape dynamics have been linked to 
metabolic adaptation, cell cycle progression (36), necroptosis 
(19), apoptosis (37–39), autophagy (40), tumor growth, tumor 
cell motility (41, 42), invasiveness, and metastasis (43). The role 
of mitochondrial shape changes as regulators of cancer biology is 
reviewed in Ref. (44). Here, we will discuss recent insights into 
how mitochondrial dynamics are regulated in cancer.

When considering the common alterations in mitochondria 
shape, we find a dichotomy between tumors with enhanced 
mito chondrial fragmentation versus tumors with enhanced mito-
chondrial fusion. For instance, hepatocellular carcinoma (45), 
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osteosarcoma (46), medulloblastoma (47), thyroid (42), colorectal 
(48), endometrial (49), and breast cancer (43) show increased 
mitochondrial fragmentation, due to upregulation of DRP1 levels 
and a concomitant reduction in MFN1/2 levels. On the other 
hand, tumors of the prostate (50), neuroblastoma (51), leukemia 
(52), glioblastoma (53), and lung (54) are associated with down-
regulation of DRP1 and increased MFN1/2 levels. What could  
be driving these contrasting preferences of fission versus fusion 
of the mitochondrial networks in cancer? Plausible explanations 
could lie on the genomic landscape, hormonal/growth factor 
context, tumor microenvironmental conditions, and therapy 
responses of the tumors in question.

Oncogenic and tumor suppressor signaling converge on 
mitochondria to reprogram cellular metabolism (55); thus, the 
particular genomic events driving a tumor might favor mitochon-
drial shape changes to meet the metabolic demands of the tumor 
cells. According to this hypothesis, oncogene-induced metabolic 
reprogramming should induce changes in mitochondrial shape. 
Indeed, recent studies show that oncogenic RasG12V, BRAFV600E 
and MAPK/ERK (56, 57), mTOR (58) Nestin (59), and the endo-
cytic protein EDH1 (60) increase DRP1-mediated mitochondrial 
fission. Similarly, the energy-sensing AMPK increased recruit-
ment of DRP1 to mitochondria via phosphorylation of the MFF 
and (61). Speckle-type POZ protein loss-of-function mutations 
commonly found in primary prostate cancer were associated 
with increased DRP1 activation, mitochondrial fission, and 
prostate cancer cell invasion (62). Recently, loss of expression of 
the sirtuin SIRT4 was shown to lead to increased mitochondrial 
fragmentation (63). The signaling events that lead to DRP1 
activation downstream of genomic and epigenetic alterations are 
summarized in Table 1.

In addition to the increasing number of oncogenes and tumor 
suppressors, growth factors and hormones regulate mitochondrial 
shape. Examples include Sonic Hedgehog (47), non-canonical 
Wnt ligands, pro-inflammatory cytokines, transforming growth 
factor-β, estradiol (64), and androgens (65). Estradiol promotes 
mitochondrial fragmentation through a reduction of MFN2 with 
parallel increase of FIS1 levels in ER+ breast cancer (66). From 
a translational standpoint, overexpression of MFN2 prevented 
estradiol-induced cell proliferation and motility (66). On the 
other hand, DRP1 is a transcriptional target of the androgen 
receptor, and androgen-stimulated DRP1 expression sensitizes 
prostate cancer cells to therapy-induced apoptosis (65). The pos-
sibility that other hormone-related malignancies exploit similar 
mechanisms of mitochondrial shape awaits further confirmation.

Tumor microenvironmental conditions exert yet another 
layer of regulation of mitochondrial shape. For instance, mito-
chondrial elongation is induced by nutrient deprivation in cancer 
cells (67). A hypoxic environment enhances mitochondrial fis-
sion in breast cancer (68) and glioblastoma (69). In this context, 
DRP1 was essential for hypoxia-stimulated cell motility. Indeed, 
silencing or expression of a dominant-negative mutant of DRP1 
inhibited hypoxia-induced migration in both tumor cell models.

Finally, cancer cells also remodel their mitochondrial network 
in response to therapy. For instance, DRP1-mediated mitochon-
drial fragmentation is associated with cisplatin (68, 70), cytara-
bine and methotrexate (71), and tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL) (70) treatment among others. 
However, other therapeutic agents such as histone deacetylase 
inhibitors (72) produce the opposite effect, namely increased 
elongation of mitochondria. These opposite effects of therapy upon 
mitochondria morphology can be reconciled when considering the 
divergent signaling pathways elicited by the drugs. In the case of 
HDAC inhibitors, a decreased expression of FIS1 impaired DRP1 
recruitment to mitochondria. These effects were independent of 
apoptosis induction. On the other hand, increased mitochondrial 
fragmentation on cisplatin and TRAIL-treated cells is coupled 
to apoptosis. Also worth considering, HDAC inhibitors could  
have additional roles in regulating mitochondrial morphology, 
due to non-histone-acetylating activity (acetylation of non-histone 
proteins, regulation of signaling kinases). A final consideration is 
the influence of the genomic background and tumor microenvi-
ronment on eliciting fission versus fusion upon therapy.

In summary, emerging evidence suggests that the contribu-
tion of the mitochondrial shaping genes to tumor cell biology 
is tumor type dependent and may reflect the genetic makeup, 
hormonal/growth factor context, tumor microenvironment 
conditions, and therapy responses of the tumor. Future efforts 
should aim to integrate these novel regulatory pathways and 
reach a comprehensive picture of the regulation of mitochon-
drial shape and function in cancer. Second, more emphasis 
should be directed toward identifying metabolic-dependent 
versus -independent functions of DRP1 and MFNs in cancer. 
For instance, which of the phenotypes associated with DRP1 
activation in cancer are explained on basis of metabolism 
(increased glycolysis versus respiration)? Is it DRP1’s function 
on apoptosis (or mitochondrial localization) also important?  
A third area of interest for future research would be the develop-
ment of anti-cancer therapies targeting mitochondrial dynam-
ics. Encouraging fresh evidence indicates that modulating 
mitochondria morphology enhances anti-cancer therapies (73), 
particularly death receptor ligands (74–76) and antimitotic 
drugs (77).

TARGeTinG MiTOCHOnDRiAL DYnAMiCS

The involvement of DRP1-mediated fission in disparate dis-
eases settings has fueled the development of pharmacological 
approaches to inhibit mitochondrial fission. Mitochondrial divi-
sion inhibitor-1 (mdivi-1) selectively impairs the GTPase activity 
of DRP1, without affecting the activity of dynamin-1, MFN1/2, 
or OPA1 (78). The mechanism of action of mdivi-1 involves 
allosteric binding and stabilization of a conformational form of 
unassembled DRP1 that cannot polymerize. mdivi-1 treatment 
induces rapid mitochondrial fusion, dampens ROS production 
and increases ATP production. Interestingly, the original report 
described a second function of DRP1 in mitochondrial outer 
membrane polarization (MOMP). DRP1 facilitated BAX/BAK-
dependent MOMP in response to C8-BID or staurosporine, 
independently of mitochondrial fragmentation. Thus, mdivi-1 
impaired staurosporine-induced apoptosis (78). Interestingly, 
mdivi-1 can induce apoptosis in DRP1-KO cells (79), suggesting 
that mdivi-1 has off-target effects. In contrast to these initial stud-
ies in which mdivi-1 prevented apoptosis, later studies showed 

103

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


Williams and Caino Mitochondria, Diabetes, and Cancer

Frontiers in Endocrinology | www.frontiersin.org April 2018 | Volume 9 | Article 211

that mdivi-1 sensitized cells to TRAIL-dependent apoptosis (74). 
This potentiation of apoptosis by mdivi-1 occurred through acti-
vation of mitochondrial and ER apoptosis pathways. Thus, these 
controversial results suggest that mdivi-1 can act either as pro- or 
anti-apoptotic pharmacologic agent, depending on the cell types 
and apoptotic stimuli in question (80).

In T2D models, mdivi-1 prevented mitochondrial fragmen-
tation, oxidative stress and inflammation, and improved endo-
thelial cell function (31). Another study showed that mdivi-1 
prevented HG-stimulated insulin secretion in mouse and 
human islets (21). Furthermore, mdivi-1 rescued palmitate-
induced mitochondrial dysfunction and ROS generation, as 
well as insulin resistance in skeletal muscle (26). Inhibition 
of Drp1 with mdivi-1 improved mitochondrial function and 
cardiac function in a model of myocardial ischemia/reperfusion 
of diabetic hearts (34).

In cancer cells, DRP1 inhibition has been shown to modulate 
therapy sensitivity, tumor metabolism, growth, and invasiveness. 
For instance, mdivi-1 suppressed mitochondrial autophagy, 
metabolic reprogramming, cancer cell viability, and motility of 
breast cancer cells (81). In regards to therapy modulation, mdivi-1 
potentiated TRAIL-induced apoptosis in melanoma (74, 76) and 
ovarian cancer models (75). Furthermore, mdivi-1 induced cell 
death (75) and synergized apoptotic effects of platinum agents 
in drug resistant ovarian tumor cells (79). However, mdivi-1 
prevents apoptosis induced by cisplatin in breast cancer (68) and 
leukemia (52). As discussed above, these controversial results 
suggest that mdivi-1 can act either as pro- or anti-apoptotic agent, 
depending on the cell types and apoptotic stimuli in question 
[reviewed in Ref. (80)]. Further investigations should address the 
precise mechanisms dictating the differential effects of mdivi-1 
on cell survival.

Regarding the potential utility of mdivi-1 in the clinic,  
a number of questions remain open. For instance, what are the 
consequences of sustained in vivo inhibition of mitochondrial 
fission? What are the pharmacokinetics and cytotoxicity pro-
files for mdivi-1? Another point to consider is that mdivi-1 has 
poor solubility in water (80). This fact might limit the utility of 
mdivi-1 and might open the door for the design of new DRP1 
inhibitors with improved solubility, specificity, and potency. In 
this regard, another pharmacological agent targets the recruit-
ment of DRP1 to mitochondria via its interaction with FIS1. 
The small peptide inhibitor P110 blocks DRP1/FIS1 binding 
(82) and has shown promising results in neurodegenerative 
disease models. When tested in hepatocellular carcinoma, 
P110 blocked cell proliferation in vitro and in vivo (83). Future 
research will be needed to evaluate the utility of P100 both in 
T2D and cancer models.

COnCLUSiOn

Given the metabolic alterations that are a hallmark of both 
T2D and cancer, it is not surprising that mitochondrial altera-
tions are a shared feature in these disparate diseases. Over the 
past few years, we have learnt that mitochondria are not static, 
solitary organelles, but they rather undergo constant changes in 
morphology and subcellular distribution to meet the metabolic 

demands of the cell. Defects in mitochondrial dynamics play a 
role in the molecular and cellular pathogenesis of both T2D and 
cancer. Now, how similar or different are these two pathologies 
in regards to mitochondrial dynamics? In T2D, the literature 
unanimously reports an increase of mitochondrial fission medi-
ated by DRP1. In cancer, most tumors follow this same pattern 
of increased DRP1-mediated mitochondrial fission. However, 
although less frequently, tumors might display augmented mito-
chondrial fusion via an increase of MFN1/2 levels and/or activity. 
How are these differences and similarities in the mitochondrial 
network explained at the molecular level? Up to date, most of 
the studies have shown correlation between T2D and altered 
mitochondrial shape. More studies should focus on understand-
ing the spatiotemporal regulation of DRP1 and MFN1/2 levels 
and activity during the natural progression of T2D. Likewise, 
there is limited information on how the genetic, epigenetic, and 
microenvironmental factors influence mitochondrial dynamics, 
or which signaling pathways integrate extracellular stimuli with 
mitochondrial shape in T2D. Thus, due to this limited informa-
tion, is not possible to conclude if T2D and cancer utilize similar 
or divergent mechanisms of control of mitochondrial shape.  
In this regard, it would be interesting to address how metabolic 
pathways commonly altered both in T2D and cancer impinge on 
mitochondrial morphology. Examples of such pathways include 
PI3K/AKT and AMPK. Another question that warrants further 
investigation is whether other aspects of mitochondrial biology 
are dysregulated in these diseases. For instance, are there altera-
tions in mitochondrial quality control, mitochondria crosstalk to 
other organelles, or mitochondrial localization present in both 
T2D and cancer?

Regarding the use of DRP1 inhibitors as anti-T2D and - 
cancer agents, further studies should determine long-term 
effects of targeting mitochondrial dynamics in vivo, and esta-
blish the pharmacokinetics and cytotoxicity profiles for mdivi-1.  
In addition, the involvement of potential compensatory or 
resistance mechanisms to mdivi-1 has not been explored yet 
and should be addressed in the future. An area in need of 
further investment is the development of selective MFN1/2 
inhibitors. Despite the existence of a few DRP1 inhibitors, there 
is no equivalent therapeutic agent to target fusion. The fact that 
several tumors show increased fusion might warrant further 
effort in this area.
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Numerous human diseases arise from alterations of genetic information, most notably

DNA mutations. Thought to be merely the intermediate between DNA and protein,

changes in RNA sequence were an afterthought until the discovery of RNA editing 30

years ago. RNA editing alters RNA sequence without altering the sequence or integrity

of genomic DNA. The most common RNA editing events are A-to-I changes mediated

by adenosine deaminase acting on RNA (ADAR), and C-to-U editing mediated by

apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1). Both A-to-I

and C-to-U editing were first identified in the context of embryonic development and

physiological homeostasis. The role of RNA editing in human disease has only recently

started to be understood. In this review, the impact of RNA editing on the development

of cancer and metabolic disorders will be examined. Distinctive functions of each RNA

editase that regulate either A-to-I or C-to-U editing will be highlighted in addition to

pointing out important regulatory mechanisms governing these processes. The potential

of developing novel therapeutic approaches through intervention of RNA editing will be

explored. As the role of RNA editing in human disease is elucidated, the clinical utility of

RNA editing targeted therapies will be needed. This review aims to serve as a bridge of

information between past findings and future directions of RNA editing in the context of

cancer and metabolic disease.

Keywords: RNA editing, ADAR, APOBEC1, cancer, metabolic disease

INTRODUCTION

Genetic complexity, or plasticity, is the foundation to develop complicated biological functions in
living organisms. To maximize the versatility of limited amounts of genetic material, a variety of
changes take place at the genomic level, including RNA metabolism and modification (1). RNA is
involved in some of the most evolutionarily conserved cellular processes, including transcription
and translation. The mechanisms of RNA regulation, including modification, processing and
degradation, have been extensively studied. Among these mechanisms, site-specific substitution
of RNA, or “RNA editing,” has garnered increasing attention in recent years, despite its discovery
more than 30 years ago.

The year of 1987 marked the first milestone for the journey of RNA-editing. A cytidine (C)
to uridine (U) conversion in the mRNA of human apolipoprotein B (apoB) was identified to
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be responsible for the production of a shorter version of apoB
(apoB48) by creating a new stop codon (2). This alteration
is mediated by an enzyme complex that contains the catalytic
deaminase, apolipoprotein B mRNA editing enzyme, catalytic
polypeptide 1 (APOBEC1) (3).

Meanwhile, a curious phenomenon of destabilization
of double-stranded RNA was observed during the early
embryogenesis of Xenopus laevis (4, 5). Hoping to use antisense
RNA inhibition to study genetic factors in the embryonic
development, investigators were surprised to learn that the
same technique that works well in early-stage oocytes was
not successful in later-stage oocytes and embryos due to
failed formation of RNA duplex. This observation prompted
speculations of a RNA-unwinding mechanism that either
controls RNA stability or helps RNAs shape their secondary
structures. It was further characterized by the loss of RNA’s
base-pairing properties and attributed to the conversion of
adenosines (A) to inosines (I), an activity later found to be
mediated by members of the adenosine deaminase acting on
RNA (ADARs) family (6–8).

In the last 30 years, the physiological functions of APOBEC
and ADAR protein family members have been gradually
revealed (9, 10). These RNA editing enzymes (referred to
as editases herein) can shuttle between the nucleus and
cytoplasm, and homodimerization is required for their catalytic
activity. APOBEC-mediated RNA editing has been implicated
in maintaining homeostasis in digestive organs, such as the
liver and small intestine, while ADAR-mediated RNA editing is
thought to play a crucial role in regulating the innate immune
response to infection. More recently, next generation sequencing
has expedited the identification of specific RNA-editing targets
and their associated functional consequences in human diseases.

The functional impact of RNA editing on cell biology is
demonstrated through (i) changing amino acid sequences of
proteins (recoding); (ii) altering splicing patterns of pre-mRNA;
(iii) causing changes in seed sequences of microRNAs (miRNAs)
or in sequences of miRNA targeting sites; and (iv) influencing the
stability of targeted RNAs (9, 10) (Figure 1).

This review aims to (1) provide a summary of recently
identified RNA-editing events that regulate both cancer
development and metabolic dysfunctions, (2) highlight the
existing gaps in our knowledge of RNA-editing mechanisms, and
(3) describe the potential implications for the development of
novel therapeutic approaches to regulate RNA editing.

RNA Editing in Cancer Development
Biogenesis of RNAs and RNA-regulated functions have been well-
established in playing important roles in tumorigenesis (11).
With the ability to change DNA-encoded genetic information
after transcription, deregulated RNA-editing could be an
important contributor in cancer development. Studies of RNA
editing in a variety of cancer types (mostly in the context of A-to-
I editing) have generated conflicting reports regarding the exact
role RNA-editing plays.

The consistent finding from these reports is that RNA
editing is a common phenomenon in cancer helping to drive
transcriptomic and proteomic diversity, and overall levels of

RNA editing mirror the expression levels of editases in cancers
compared to normal tissues (ex. overexpression= general hyper-
editing; reduced expression = general hypo-editing) (12–15).
In contrast, the relationship between the overall editing level
and tumorigenic potential of cancers appears to be unsettled.
Increased level of RNA editing has been found to correlate
with enhanced tumorigenesis in some cancers but reduced
tumorigenesis in others, sometimes with both correlations in the
same cancer type (12–14, 16–18).

These conflicting reports suggest that the relationship between
RNA editing and cancer development is complicated and
potentially influenced by other factors such as the origin,
stage and microenvironment associated with the studied cancer.
Instead of attempting to connect an individual cancer with the
global level of RNA editing, connecting specific RNA editing
events to cancer-related functions could prove to be more
informative.

ADAR1

Currently, three ADAR gene family members have been
identified and studied for their RNA-editing functions: ADAR1
(encoded byADAR), ADAR2 (encoded byADARB1) andADAR3
(encoded by ADARB2) (9).

The mRNAs of multiple proteins have been identified as direct
targets of ADAR1 and undergo nonsynonymous amino-acid
substitutions associated with cancer development (Figure 2).
In hepatocellular carcinoma (HCC), esophageal squamous cell
carcinoma (ESCC), colorectal cancer (CRC) and breast cancer
(BC), overexpression of ADAR1 leads to the creation of an
oncogenic version of antizyme inhibitor 1 (AZIN1; S367G).
Edited AZIN1 is stabilized and serves as an analog of ornithine
decarboxylase (ODC) to block antizyme-mediated degradation
of ODC and cyclin D1. Accumulations of ODC and cyclin D1
lead to increased cell proliferation and metastatic potential, as
well as tumor initiating capacity (17, 19–21). In cervical cancer
(CC), ADAR1 promotes tumorigenesis by editing multiple
sites within the YXXQ motif of bladder cancer-associated
protein (BLCAP), a tumor suppressor. Edited BLCAP loses its
ability to interact with and inactivate signal transducer and
activator of transcription 3 (STAT3), resulting in increased cell
proliferation (22).

ADAR1 can exert anti-tumorigenic activities through RNA
editing-mediated protein recoding, too. In BC, GABAA receptor
alpha 3 (GABRA3) activates the Akt pathway and promotes cell
migration, invasion and metastasis. ADAR1-mediated editing
of GABRA3 (I342M) reduces its cell surface expression and
suppresses Akt activation and metastatic potential of cancer
cells (23).

A recent study revealed a novel function of ADAR1 in cancer-
associated immune environment. In subsets of tumor samples,
including ovarian cancer (OC), melanoma and BC, increased
levels of ADAR1-edited peptides are presented by human
leukocyte antigen (HLA) molecules (24). Presentations of these
edited peptides, such as cyclin I (CCNI; R75G), elicit antigen-
specific killing of tumor cells through cytotoxic (CD8+) T cells. It
presents an intriguing possibility to explore immunotherapeutic
approaches utilizing information of RNA editing. Alternatively, it
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FIGURE 1 | RNA editing leads to functional consequences through multiple mechanisms. RNA editases (ADAR1, ADAR2, ADAR3, and APOBECs in this review)

regulate their targets through multiple mechanisms, including altering mRNA sequences in exons to change amino acid sequences (protein recoding; red arrows),

changing splicing patterns of pre-mRNA to create novel products (alternative splicing; orange arrows), influencing miRNA specificity by altering seed sequences of

miRNAs or sequences of miRNA targeting sites (miRNA specificity; green arrows), and directly impacting the stability of edited RNAs (RNA stability; magenta arrows).

X represents a RNA base targeted by RNA editases (Adenosine for ADARs; Cytidine or Guanosine for APOBECs), and Y represents the resultant RNA base after the

editing (Inosine for ADARs; Uridine or Adenosine for APOBECs). The hairpin structure in the mRNA represents Alu repeat elements that are frequently targeted by RNA

editases. UTR, untranslated region. The figure was created with BioRender.

also poses a potential mechanism that cancers can hijack in order
to avoid effective immune surveillance.

The boundary between pro-tumorigenic and anti-
tumorigenic functions of ADAR1 can be blurry even with
the same amino-acid-sequence-altering event. The glioma-
associated oncogene 1 (GLI1) activates the Hedgehog (HH)
signaling pathway to promote cell proliferation (25). In multiple
myeloma (MM), amplified ADAR1 edits GLI1 (R701G) and
stabilizes GLI1 expression by preventing the binding of its
negative regulator, suppressor of fused (SUFU). Edited GLI1
displays higher transcriptional activity to drive HH signaling
and promote malignant regeneration and drug resistance of
MM (26). Interestingly, this exact same editing event has
the opposite effect in medulloblastoma (MB) and basal cell
carcinoma (BCC) to inhibit tumorigenesis. ADAR1-edited GLI1
(R701G), despite its resistance to SUFU binding, also becomes
much less accessible to one of its activators, Dual specificity
tyrosine-phosphorylation-regulated kinase 1A (DYRK1A). The

net result is reduced oncogenic potential of edited GLI1 in MB
and BCC (27).

In metastatic melanoma, ADAR1 confers tumor-suppressive
activities by editing miRNA sequences to alter their target
specificity. ADAR1-mediated editing of miR455-5p results
in lack of inhibition of the tumor suppressor cytoplasmic
polyadenylation element-binding protein 1 (CPEB1), while
edited miR378a-3p targets the oncogene, α-Parvin, for
downregulation (28, 29). During the course of melanoma
progression, transcriptional repressors of ADAR1, such as
cyclic AMP-responsive element binding protein (CREB),
are upregulated to reduce ADAR1 expression to promote
malignancy.

Not surprisingly, ADAR1 is also capable of hijacking the
miRNA biogenesis process to promote tumorigenesis. In blast
crisis chronic myeloid leukemia (BC CML), JAK2 activation
and BCR-ABL1 amplification was shown to increase ADAR1
expression promoting leukemia stem cell (LSC) self-renewal (30).
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FIGURE 2 | ADAR1-mediated RNA editing in cancer development. The color of the first arrow in each pathway indicates the mechanism (refer to Figure 1) by which

ADAR1 regulates its direct targets, depicted in pink icons or shapes. Dashed lines indicate suggested/unproven functions/relationships. Additional activators and

inhibitors of specific pathway steps are depicted in red and yellow rounded rectangles, respectively. Specific diseases and phenotypes/functions affected by

ADAR1-mediated RNA editing are only labeled in the first appearance (ex. proliferation…etc). HCC, hepatocellular carcinoma; ESCC, esophageal squamous cell

(Continued)
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FIGURE 2 | carcinoma; CRC, colorectal cancer; BC, breast cancer; CC, cervical cancer; OC, ovarian cancer; MM, multiple myeloma; MB, medulloblastoma; BCC,

basal cell carcinoma; CML, chronic myeloid leukemia; PC, prostate cancer; LUAD, lung adenocarcinoma; KC, kidney cancer; BLC, bladder cancer. The figure was

created with BioRender.

A follow-up study revealed that ADAR1 accomplishes this feat
by reducing the expression of the tumor-suppressive miRNA let-
7 (31). Mechanistically, overexpression of ADAR1 promotes the
induction of the pluripotency gene LIN28 and the editing of the
primary miRNA pri-let-7 at multiple sites, both events reduce the
production of let-7 family members (32, 33).

In addition to altering miRNAs directly, ADAR1 also edits
miRNA targets to affect their susceptibility to miRNA-mediated
repression. ADAR1 was shown to edit over two dozen sites on
the three prime untranslated region (3’UTR) of dihydrofolate
reductase (DHFR). In BC, edited DHFR becomes resistant to the
targeting of miR25-3p and miR125a-3p. As a result, the protein
levels of edited DHFR increase to promote cell growth and
resistance to chemotherapeutic agents like methotrexate (34).

ADARs have been shown to regulate RNA stability through
a variety of mechanisms, including alterations of subcellular
localization or changing the secondary structure of edited RNAs
(35–37). Although the detailed molecular processes remain
elusive, several recent studies highlighted ADAR1’s role in this
capacity to impact cancer development. In prostate cancer (PC),
ADAR1-mediated editing of prostate cancer antigen 3 (PCA3),
an intronic long noncoding RNA, increases its stability and
expression. PCA3 acts as a dominant-negative oncogene and
forms a double-stranded RNA with precursor mRNA (pre-
mRNA) of prune homolog 2 (PRUNE2), a tumor suppressor
gene (38). The formation of the PCA3-PRUNE2 complex
promotes tumorigenesis in cell and mouse models through the
downregulation of PRUNE2, whose expression also inversely
correlates with PCA3 in human PC samples.

ADAR1-mediated RNA editing also occurs within the introns
of protein-coding RNAs. One such example involves an
important facilitator of tumor metastasis, focal adhesion kinase
(FAK). In lung adenocarcinoma (LUAD), the most common
form of non-small cell lung cancer (NSCLC), ADAR1-mediated
editing of intron 26 of FAK results in increased stabilization of
FAK mRNA and protein. Induction of FAK contributes to cell
invasiveness and is associated with tumor recurrence in LUAD
patients (39).

A recent study linking ADAR1 to intron-editing showed
that ADAR1 edits the intron of heterogeneous nuclear
ribonucleoprotein L-like (HNRPLL) to create an additional
exon (E12A) for HNRPLL (40). E12A-containing HNRPLL acts
as an enhancer of oncogenic splicing factor serine/arginine
rich splicing factor 1 (SRSF1), resulting in a positive feed-back
loop to increase the abundance of E12A-containing HNRPLL
transcript. E12A-containing HNRPLL regulates expressions
of cyclin D1 and transforming growth factor beta receptor 1
(TGFBR1) to promote cell proliferation in kidney and bladder
cancers. Interestingly, this editing event is also mediated by
ADAR2, pointing to potential interactions between ADAR1- and
ADAR2-mediated RNA editing.

ADAR2

First cloned in 1996, ADAR2 is the second identified A-to-
I RNA editase that is also capable of editing itself (41, 42).
ADAR2 was first identified as the main RNA editase of glutamate
receptor subunit B (GluR-B) (Figure 3). Underediting of GluR-B
(Q607R) results in early-onset epilepsy in a mouse model (43).
Mice with mutant ADAR2 are also seizure-prone and experience
early postnatal death, establishing the functional significance of
ADAR2-mediated editing of GluR-B (44, 45). The translational
impact of this connection was found in malignant human brain
tumors in both adults and children, where ADAR2-mediated
editing of GluR-B is reduced compared to control samples.
Although brain tumors are not present in ADAR2-mutant mice,
likely due to early postnatal death, these observations potentially
explain the aggressive nature of these cancers and neurologic
symptoms suffered by human patients (16, 46).

These early studies inspired mechanistic investigations to
directly link ADAR2 with malignant brain tumors such as
high-grade astrocytoma or glioblastoma multiforme (GBM). The
same team that made the initial connection between ADAR2-
mediated RNA editing and brain tumors identified several
pathways downstream of ADAR2 regulating GBM pathogenesis.
By editing multiple sites within intron 7 of the CDC14B
phosphatase pre-mRNA, ADAR2 promotes upregulation of
CDC14B, subsequently causing the degradation of E3-ligase S-
phase kinase-associated protein 2 (SKP2) (47, 48). In GBM,
downregulation of ADAR2-mediated RNA editing of CDC14B
results in overexpression of SKP2. Increased level of SKP2
then leads to ubiquitin-mediated degradation of cell cycle
inhibitors, p27Kip1 and CDKN1A/p21Cip1/Waf1, to promote cell
cycle progression and tumorigenesis.

Interestingly, ADAR2-mediated downregulation of p27 is
also connected to ADAR2’s ability to edit selected miRNAs
in the brain. ADAR2-mediated editing reduces expression
of oncogenic miRNAs, such as miR21 and miR221/222. In
GBM, failed editing/reduction of miR21 and miR221/222
lead to downregulation of their respective targets, tumor
suppressors programmed cell death protein 4 (PDCD4) and
p27Kip1 (49).

ADAR2 was found to edit numerous miRNAs, regulating
tumorigenesis by balancing the functions of oncogenic and
tumor-suppressive miRNAs (49, 50). This “balancing act”
of ADAR2 can also be achieved by switching miRNAs
between their oncogenic and tumor-suppressive activities
via altering target specificities. The first such example was
demonstrated by ADAR2’s ability to edit miR376a to inhibit
GBM progression (51). ADAR2-edited miR376a targets and
downregulates autocrine motility factor receptor (AMFR) to
inhibit tumor migration and invasion. Unedited miR376a,
however, switches its affinity from AMFR to Ras-related
protein RAP2A, a tumor suppressor protein acting on actin
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FIGURE 3 | ADAR2-mediated RNA editing in cancer development. The color of the first arrow in each pathway indicates the mechanism (refer to Figure 1) by which

ADAR2 regulates its direct targets, depicted in pink icons or shapes. Dashed lines indicate suggested/unproven functions/relationships. Specific diseases and

phenotypes/functions affected by ADAR2-mediated RNA editing are only labeled in the first appearance (ex. brain cancer). HCC, hepatocellular carcinoma; ESCC,

esophageal squamous cell carcinoma; CRC, colorectal cancer. The figure was created with BioRender.

remodeling. In GBM, deactivated ADAR2 flips the switch
through miR376a to tilt the balance toward malignant tumor
progression.

A recent study revealed another ADAR2-controlled switch
through miRNA editing in GBM. In normal brain tissues,
ADAR2 edits nearly 100% of miR589-3p to target and

reduce expression of disintegrin and metalloproteinase domain-
containing protein 12 (ADAM12), a metalloprotease that
promotes cancer metastasis. In high-grade GBM, editing of
miR589-3p decreases dramatically and unedited miR589-3p
targets protocadherin 9 (PCDH9), a tumor suppressor protein,
instead (52). These studies likely represent only a small
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percentage of such “switches” regulating pathogenesis of GBM
and other cancers.

In addition to GBM, ADAR2 also displays tumor-suppressive
functions in other types of cancer. ADAR2 is downregulated
in ∼50% of HCC and overexpression of ADAR2 in ADARs-
deficient HCC cells reduces their oncogenic potential (53).
ADAR2’s HCC-suppressing function is thought to be mediated
through editing coatomer protein complex subunit α (COPA)
mRNA (I164V), whose editing level inversely correlates with
HCC pathogenesis. The lack of ADAR2-mediated editing of
COPA was also observed in aggressive subtypes of CRC with
an epithelial-to-mesenchymal (EMT) phenotype leading to liver
metastasis (54).

Curiously, this seemingly straightforward assertion of
“ADAR2 edits COPA to suppress tumorigenesis” is complicated
by recent studies showing that (i) ADAR2 is overexpressed in a
small subset of HCC (55); and (ii) edited COPA has been shown
to promote a malignant phenotype of BC cells in vitro (15). This
suggests that RNA-editing mechanism is subject to complex
regulations to contribute to cancer-specific phenotypes.

ADAR2 can also serve as a dual-role regulator in esophageal
cancers. In ESCC where ADAR2 is downregulated, reduced
editing and expression of insulin-like growth factor-binding
protein 7 (IGFBP7; K95R) lead to activation of Akt and inhibition
of programmed cell death (56). In contrast, ADAR2 is a potential
predisposing factor in familiar ESCC. Elevated levels of ADAR2
lead to editing and reduction of solute carrier family 22member 3
(SLC22A3; N72D), which in turn promotes metastasis in familial
ESCC by inhibiting the interaction between SLC22A3 and its
inhibitory target α-actinin-4 (ACTN4), an actin-binding protein
facilitating filopodia formation (57).

A recent study described an interesting “tug-of-war”
relationship between ADAR2 and ADAR1 in gastric cancer
(GC). Unedited podocalyxin-like protein (PODXL) promotes
GC tumorigenesis by regulating cell adhesion mechanisms.
PODXL can be targeted by both ADAR1 and ADAR2 to
cause synonymous (ACA>ACG; T238T) and nonsynonymous
(CAC>CGC; H241R) amino acid substitutions, respectively. In
normal tissues, high ratio of ADAR2/ADAR1-mediated editing
keeps PODXL in its edited form (H241R) preventing oncogenic
onset. In GC, amplification of ADAR1 and reduction of ADAR2
cause imbalanced editing of PODXL to accumulate unedited
PODXL to drive tumorigenesis (58).

ADAR3

Few studies have focused on investigating ADAR3’s functional
importance in RNA editing. ADAR3 shares significant sequence
and structural similarities with ADAR1 and ADAR2, including
nuclear localization, deaminase, and RNA-binding domains (59).
Despite these similarities, ADAR3 has not been shown to display
deaminase activity to influence physiological functions such as
cancer development. A recent study demonstrated that ADAR3
may instead act as a dominant-negative form of other ADARs.
Overexpressed in GBM compared to normal brain tissues,
ADAR3 competes with ADAR2 for binding and editing of GluR-
B through its RNA-binding domain (60). Given the observation
that ADAR3 is expressed primarily in the brain, it is reasonable

to speculate that ADAR3 regulates tumorigenesis of brain cancers
by modulating ADAR2/ADAR1-mediated RNA editing (61).

APOBECs

In the human genome, there are eleven genes that belong
to the APOBEC protein family. Functionally, APOBECs are
cytidine deaminases and evolutionally conserved in vertebrates.
The majority of research activities regarding APOBECs have
focused on their ability to restrict viral infections by creating
mutational imbalances in the viral genome (62). Recent
developments, however, identified several APOBEC proteins,
particularly APOBEC3 subfamily members (A3A, A3B, and
A3H), being capable of catalyzing hypermutations in cancers to
drive tumorigenesis and therapy resistance (63, 64). Interestingly,
these connections have mostly been made with APOBECs’ ability
to modify single-stranded DNA instead of mRNA, despite what
their names indicate (65).

So far, APOBEC1 is the most well-established APOBEC
member that displays RNA editing activities (Figure 4). The first
direct connection between APOBEC1-mediated RNA editing
and tumorigenesis was made in 1995, when transgenic rabbits
and mice expressing rabbit APOBEC1 in livers developed HCC
(66). This outcome was found to be associated with hyperediting
and reduced expression of a translational repressor NAT1 (novel
APOBEC1 target no.1; also known as eukaryotic translation
initiation factor 4 gamma 2, or EIF4G2), which regulates
the expression of cell cycle inhibitor CDKN1A/p21Cip1/Waf1

(67, 68). APOBEC1 was also shown to bind the 3′UTR
of c-myc mRNA to increase its stability (69). These results
suggest that APOBEC1 might affect expression levels of
tumor-associated genes via its RNA-binding and –editing
capabilities.

Similar to its ability to edit apoB mRNA to create a
truncated form apoB48 (Q2153Stop), APOBEC1 was found
to edit the mRNA of neurofibromin 1 (NF1) to generate a
truncated NF1 (R1306Stop) in a subset of peripheral nerve–
sheath tumor (PNSTs) samples (70). It results in inhibition
of the tumor-suppressor function of NF1, and could be
responsible for development of neuronal tumors associated with
Neurofibromatosis (NF) Type 1 (71, 72). Interestingly, increased
expression of APOBEC1 and editing of NF1 were also found in
CRC, suggesting that other tumor types could also be affected by
this pathway (73).

Unconventional G-to-A RNA edits were identified
in the mRNA of Wilms Tumor 1 (WT1) (74). These
modifications increase in non-progenitor umbilical cord blood
mononuclear cell samples (CBMCs) compared to acute myeloid
leukemia (AML), implicating their roles in tumorigenesis.
RNA interference screening identified APOBEC3A as the
responsible RNA editase, opening up the possibility to
investigate the relationships between all APOBEC members
and cancer-associated RNA editing events. Interestingly, a
functionally-important RNA conversion between C and U was
also observed in WT1 in rat kidney during development (75). It
is unclear which RNA editase is responsible for this conversion,
but the fact that APOBEC1 is the only known C-to-U editase
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FIGURE 4 | APOBECs-mediated RNA editing in cancer development. The color of the first arrow in each pathway indicates the mechanism (refer to Figure 1) by

which APOBECs regulates its direct targets, depicted in pink shapes. Dashed lines indicate suggested/unproven functions/relationships. CRC, colorectal cancer;

PNST, peripheral nerve-sheath tumor; AML, acute myeloid leukemia. The figure was created with BioRender.

suggests that WT1 could be subject to RNA editing mediated by
multiple APOBECs.

RNA Editing in Metabolic Functions and
Disorders
The fact that RNA editases (ADARs and APOBEC1) are
expressed in major metabolic organs, such as the liver and
pancreas, offers an initial clue that RNA-editing might play
an important role in metabolic regulation (3, 76, 77). Deep-
sequencing data collected longitudinally from one individual
predisposed to and diagnosed with type 2 diabetes suggested
that RNA-editing could have predictive and diagnostic values
across healthy and diseased states (78). Moreover, RNA editing
events in diabetes-associated genes were identified in human
pancreatic islets from 89 deceased donors in an effort to
uncover genetic mechanisms affecting glucose metabolism
(79).

There is evidence to suggest that the RNA editing machinery
is one of the evolutionarily-adaptive mechanisms developed
while living organisms were becoming more complex. A-to-I
RNA editing occurs mainly in primate-specific Alu repetitive
elements that form secondary structures of dsRNA (80, 81).
APOBEC1-mediated editing of apoB, thus the production of
apoB48, only occurs in mammals (82). Evolutionarily-aligned
genetic alterations are thought to have important metabolic
consequences (83). Such speculation is prevalent when debating
the origins of human metabolic diseases, hence the proposal
of the thrifty gene hypothesis (84). Due to the lack of proper
experimental models, few genetic events have been functionally
proven to influence metabolic disorders in human. One recent
example is the codon 72 polymorphism (Pro72Arg or P72R) in
the tumor suppressor protein TP53 (85). The ancestral variant
of this polymorphism (P72) is only present in primates, while
the diversion from P72 to R72 only arose during the modern
human evolution (86). Using cell and transgenic mouse models,
the P72 variant was found to be a stronger responder tometabolic
stresses to cause cell death, and the R72 variant is a predisposing
factor for diet-induced obesity and diabetes (87, 88). Through
its ability to regulate numerous target genes, RNA editing has

potential to cause broader effects on human metabolic health
than a single genetic alteration such as a mutation or a genetic
polymorphism.

ADAR1

It has been suggested that ADAR1 expression in the liver
is important for early embryonic development. The absence
of ADAR1 in the mouse liver results in impaired embryonic
erythropoiesis, liver disintegration, and early death of the fetus
(76, 89). Mechanistically, ADAR1 protects liver homeostasis by
inhibiting inflammation (Figure 5). Silencing ADAR1 in liver
cells induces levels of pro-inflammatory cytokines and type I
interferons, partially through the NFκB pathway, to cause liver
damage through inflammation, lipid accumulation, hepatitis and
fibrosis (90, 91). ADAR1’s ability to maintain liver homeostasis
partially relies on its RNA-editing function, but no specific
editing target has yet been identified as the responsible effector
(90).

ADAR1-mediated RNA editing has recently been shown to
contribute to cardiovascular disease (CVD). One mechanism
for ADAR1 to promote CVD is through the phenotypic
modulation of smooth muscle cells (SMC), a pivotal step during
the development of CVD. The signature characteristic for the
phenotypic modulation of SMC is the downregulation of SMC-
specific genes, such as smooth muscle myosin heavy chain (SM-
MHC) and smooth muscle α-actin (ACTA2), often mediated
by platelet-derived growth factor (PDGF)-BB. In response to
PDGF-BB, ADAR1 edits pre-mRNA of these SMC genes to
cause abnormal splicing and subsequent downregulation of their
mRNAs (92).

ADAR1’s role to attenuate an aberrant innate immune
response has been well established (93, 94). Its ability to
inhibit unwanted inflammation also manifests in the form of
Aicardi-Goutières syndrome (AGS), an autoimmune disease
caused by ADAR1 mutations (95). Interestingly, ADAR1 acts
as a promoting factor in the context of inflammation-driven
CVD. Under hypoxia or pro-inflammatory conditions, ADAR1

expression is induced in endothelial cells to edit the 3
′

UTR
of cathepsin S (CTSS) mRNA. This editing event promotes
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FIGURE 5 | ADAR1-mediated RNA editing in metabolic disorders. The color of the first arrow in each pathway indicates the mechanism (refer to Figure 1) by which

ADAR1 regulates its direct targets, depicted in pink shapes. Additional activators of specific pathway steps are depicted in red rounded rectangles. Specific diseases

and phenotypes/functions affected by ADAR1-mediated RNA editing are only labeled in the first appearance (ex. CVD). CVD, cardiovascular disease; SMC, smooth

muscle cell. The figure was created with BioRender.

the recruitment of the RNA binding protein human antigen
R (HuR) to stabilize the mRNA of CTSS, a cysteine protease
known to be associated with atherosclerosis (96). Independent
of its involvement in the regulation of the immune system,
ADAR1 also plays critical roles regulating the development
and homeostasis of multiple organs, including the spleen, small
intestine, and kidney (97). These observations suggest that
ADAR1 could impactmetabolic functions in a systematicmanner
affecting multiple organs, possibly through its RNA-editing
capability.

The links between circadian rhythms, sleep, and metabolism
have been strengthened in recent years and presented as viable
targets of therapeutic intervention for metabolic diseases (98, 99).
A recent study, using Drosophila melanogaster as the model,
demonstrated that deficiencies in ADAR1 results in synaptic
dysfunction in glutamatergic neurons and sustained release of

neurotransmitter to promote sleep (100). It underlines the variety
of mechanisms ADAR1 could exploit to control an individual’s
susceptibility to metabolic disorders.

ADAR2

The first identified target of ADAR2-mediated RNA editing is
GluR-B, a subunit of the glutamate receptor (41). Around the
same time of this discovery, glutamate receptors were found to
regulate functions of pancreatic β-cells (101, 102). Despite this
hint, a decade would pass before ADAR2 was directly connected
to the metabolic functions of the pancreas (Figure 6). Using
levels of ADAR2 expression and GluR-B editing as indicators
in a mouse model, ADAR2 was found to be deactivated in
pancreatic β-cells during fasting and activated in response to
a high-fat diet (77). This regulation is mediated through the
JNK-c-Jun pathway, as JNK-phosphorylated c-Jun acts as the
transcription factor to induce ADAR2 expression in response to
nutrient stimulation (103). Activated ADAR2 in turn promotes
the secretion of insulin from the pancreas by influencing the
expression of key factors involved in exocytosis (104). It remains
to be seen if ADAR2-mediated editing of GluR-B is solely

responsible for ADAR2’s function in the pancreas, or if it involves
other ADAR2 targets.

Certain metabolic diseases, such as diabetes or obesity,
can manifest in the condition of hyperuricemia (abnormally
high uric acid level). Interestingly, increased levels of uric
acid were detected in the cortex of ADAR2-knockout mice

(105). Hyperuricemia mediated by the loss of ADAR2 in
the cortex correlates with the induction of phosphoribosyl
pyrophosphate synthetase 1 (PRPS1), an essential enzyme
involved in the synthesis of uric acid. Expression of PRPS1
is downregulated by miR376, whose seed sequence is

edited by ADAR2 to increase its hybridization with PRPS1
mRNA.

Due to ADAR2’s role in facilitating insulin secretion upon
nutrient stimulation and reducing uric acid levels, one would
assume that ADAR2 might be an active gate-keeper to prevent
metabolic diseases. ADAR2-transgenic mice, however, develop
hyperglycemia and severe obesity (106). ADAR2-induced obesity
in transgenic mice is the result of altered behavior patterns
presented in the form of addictive overeating (hyperphagia)
(106, 107). Whether ADAR2-mediated RNA editing is necessary
for this phenotype is unclear, as transgenic mice expressing
mutant ADAR2 (E396A), defective for RNA-editing ability,
developed similar levels of obesity compared to wild-type
ADAR2 (106). On the contrary, strong evidence does exist
to support the connection between ADAR2-mediated RNA
editing and hyperphagia. For example, expression and editing
levels of the ADAR2 target, serotonin 2C receptor (5-HT2cR),
correlate with ADAR2 expression in the brains of ADAR2-
transgenic mice and other mouse models of obesity (107,
108). In another study, transgenic mice solely expressing
the fully-edited isoform of 5-HT2cR developed phenotypic
characteristics of Prader-Willi syndrome (PWS), including
hyperphagia (109). PWS is a genetic imprinting disorder that
manifests in hyperphagia, early-onset obesity and diabetes. One
of the imprinting genes lost from the paternal copies in PWS
is the small nucleolar RNA (snoRNA) HBII-52 (MBII-52 in
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FIGURE 6 | ADAR2-mediated RNA editing in metabolic disorders. The color of the first arrow in each pathway indicates the mechanism (refer to Figure 1) by which

ADAR2 regulates its direct targets, depicted in pink icons or shapes. Dashed lines indicate suggested/unproven functions/relationships. Additional activators and

inhibitors of specific pathway steps are depicted in red and yellow rounded rectangles, respectively. CVD, cardiovascular disease. The figure was created with

BioRender.

mouse). MBII-52 was found to specifically inhibit ADAR2-
mediated RNA editing of 5-HT2cR, and loss of MBII-52
results in elevated 5-HT2cR RNA editing and PWS phenotypes
(110, 111).

In CVD patients, RNA editing of Filamin A (FLNA), an
actin crosslinking protein whose inactivation is linked to vascular
abnormalities, is significantly reduced. ADAR2 was identified
as the editase of FLNA, and ADAR2-edited FLNA (Q2341R)
prevents cardiac remodeling and hypertension (112). This is the
first known example linking ADAR2-mediated RNA editing to
development of CVD through regulation of vascular function
and blood pressure.

Like ADAR1, ADAR2 was also recently found to play a role
in regulating circadian rhythm. CLOCK (Circadian Locomotor
Output Cycles Kaput) – ARNTL (Aryl hydrocarbon Receptor
Nuclear Translocator-Like protein (1) protein complex, a critical
transcription factor during circadian cycles, was found to regulate
the expression of ADAR2 and ADAR2-mediated RNA editing
corresponding with the circadian rhythm in the liver (113).
ADAR2 contributes to circadian clock maintenance through a
couple mechanisms. First, ADAR2 regulates the recoding and
stability of a subset of “rhythmic genes,” whose expressions align

with the circadian cycle. Secondly, ADAR2 alters expression
levels of major “clock proteins” (whose expression is essential
for the circadian rhythmicity), such as Cryptochrome 2 (CRY2),
by regulating biogenesis of their targeting miRNAs (in the case
of CRY2, let-7) (114). ADAR2-knockout mice display disrupted
rhythms of fatty acid metabolism and gain excessive weight with
a high-fat diet, highlighting the significance of ADAR2 at the
intersection between circadian rhythm and metabolic regulation.

ADAR3

Other than its preferred presence in the brain and inability to
catalyze RNA editing on any proven target, little is known about
ADAR3’s functional connections to human diseases, including
metabolic disorders. The aforementioned study in glioblastoma
suggests a similar role for ADAR3 in metabolic diseases, as an
inhibitor of RNA editing mediated by other active editases (60).

Despite the lack of mechanistic data, the large amount of
genetic information available from the general population has
shed some light on potential connections between ADAR3
and metabolism. Multiple single nucleotide polymorphisms
(SNPs) in ADARB2 (encodes ADAR3) were found to be
associated with human longevity, using genetic information
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collected from centenarians in the US (115). Moreover, this
association was later linked to a variety of metabolic parameters,
including abdominal circumference, body mass index and serum
triglyceride level (116). While the correlation between ADAR3
and aging was preliminarily demonstrated in mutant strains of
Caenorhabditis elegans, more sophisticated models are needed
to establish ADAR3’s functional role in aging and metabolic
regulation (115).

APOBECs

The first identified, and most studied, RNA editing target
of APOBEC1 is apolipoprotein B (apoB; Q2153Stop) (2).
Unedited and edited apoB encodes for a full-length form
apoB100 and a truncated form apoB48, respectively. ApoB100
is synthesized in the liver and is a part of the assembly of
low density lipoprotein (LDL) and very low density lipoprotein
(VLDL), while apoB48 is mostly produced in the intestine
and is required for chylomicron formation and fat absorption
(117).

An elevated level of apoB100-containing LDL in the plasma is
one of the major characteristics in patients with atherosclerosis,
a disease state mimicked by mouse models that either lose
APOBEC1’s RNA editing activity or express apoB100 exclusively
(118–120) (Figure 7). A recent genome-wide association study
(GWAS) identified novel SNPs at APOBEC1 that are associated
with cholesterol composition, signifying APOBEC1’s role in
cholesterol-linked human diseases, such as atherosclerosis (121).

A transgenic rabbit model with reduced expression of
APOBEC1 presented a lean phenotype compared to wild type
when challenged with a high-fat diet (122). This phenotype
is consistent with (i) apoB48’s role in promoting chylomicron
formation and lipid absorption, and (ii) observations in earlier
studies that apoB48/apoB100 ratio and APOBEC1 expression
were higher in obese and diabetic rats (123, 124).

However, the relationship between apoB and metabolic
diseases is more complicated than just apoB48 (edited)
leading to diabetes/obesity and apoB100 (unedited) leading
to atherosclerosis. In an apoE-deficient mouse model, apoB48
promotes higher levels of cholesterol accumulation and
atherosclerotic lesion formation. This phenotype is the
manifestation of apoB48 being cleared exclusively through
apoE, while apoB100 can be cleared through the LDL receptor
alone (119, 125). On the other hand, links between apoB100
and obesity and diabetes have also been established. In rodent
models fed high-fat diets, accumulation of apoB100 in the
liver induces endoplasmic reticulum (ER) stress and insulin
resistance (126, 127). This phenotype is caused by JNK-
mediated phosphorylation of insulin receptor substrate (IRS-1),
a connection known to link ER stress, obesity and diabetes (128).

These studies highlight the significant connections between
apoB regulation, thus APOBEC1-mediated RNA editing, and
metabolic disorders. Despite efforts made to identify other RNA
editing targets of APOBEC1, no other target has yet been
shown to play a role connecting APOBEC1-mediated RNA
editing with metabolic disease (129). Data from one patient
with a predisposition to type 2 diabetes showed that C-to-U
editing is the second most frequent RNA editing event (next

to A-to-I), indicating that RNA editing mediated by APOBEC1
or other C-to-U editases is an important factor in metabolic
homeostasis (78).

Gap in Knowledge and Future Directions
The Complexity Between RNA Editases

An established link of “Enzyme-Target-Function” provides
the clearest blueprint to plan effective interventions of the
RNA editing machinery. Numerous examples mentioned in
this review fit this description providing multiple intervention
points, including modulation of the levels and activity of
editases, as well as correction of the edited target(s). There
are, however, plenty of ambiguities in the world of RNA
editing.

In the context of A-to-I editing, many disease-relevant editing
targets lack clear identification of the responsible editase(s). Such
examples include hyperediting-mediated alternative splicing of
protein tyrosine phosphatase PTPN6 in AML, and hyperediting-
activated ras homolog family member Q (RHOQ) in CRC (130,
131). In cases where involvement of editases were confirmed,
the relationships among editases could be complicated. For
example, ADAR1 and ADAR2, the two major A-to-I editases,
can display either collaborative or antagonistic functions
with each other. One example is the aforementioned editing
of PODXL in GC. The disease outcome is not controlled
by the function of one editase, but rather by the ratio
between ADAR1- and ADAR2-mediated PODXL editing (58).
More complications could come from ADAR3, whose role
in RNA editing is just starting to be appreciated (60,
115). The possibility remains that further identifications and
characterizations of proteins closely related to ADARs, such
as ADAD1 (Adenosine Deaminase Domain Containing 1) and
ADAD2, can further increase the complexity of A-to-I RNA
editing (9).

The functional difference between the two ADAR1 isoforms,
p150 and p110, is also an important factor to consider when
determining ADAR1’s role in human disease. Earlier studies
characterized p110 as constitutively expressed, while p150 is
interferon-inducible and the main isoform responsible for innate

immune response modulation and AGS (93, 95, 132, 133). In the
context of cancers and metabolic diseases, not all ADAR1-related
studies have clearly differentiated the involvement between p150
and p110, creating potential issues to pinpoint the underlying
mechanisms. As our understanding of functional distinctions
between p150 and p110 improves overtime, there will be
a need to revisit their individual roles in different diseases
(97, 134–136).

As mentioned previously, APOBECs are better known for

their abilities to edit DNAs in viral and tumor genomes. Recent
identifications of APOBEC3A-mediated G-to-A RNA editing
and APOBEC3G as a novel RNA editase signaled that (i) other
APOBECs could also engage in RNA editing activities; and (ii)
APOBEC-mediated RNA editing is not limited to the conversion

from C to U (74, 137). In fact, APOBEC3A was recently shown
to be a C-to-U RNA editase in immune cells, making it the

first proven RNA editase capable of performing multiple RNA
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FIGURE 7 | APOBEC1-mediated RNA editing in metabolic disorders. The color of the first arrow in each pathway indicates the mechanism (refer to Figure 1) by

which APOBEC1 regulates its direct targets, depicted in pink shapes. Additional activators of specific pathway steps are depicted in red rounded rectangles. Gray

arrows point to ApoB-associated secondary functions. ER, endoplasmic reticulum; LDL, low-density lipoprotein; VLDL, very-low-density lipoprotein. The figure was

created with BioRender.

editing conversions (138). Further, albeit indirect, evidence to
support these hypotheses is the recent realization that ADARs,
well-known for their RNA editing functions, are also capable
of performing DNA editing (139, 140). These developments
spotlight not only the significance of carefully establishing the
“Enzyme-Target-Function” connections, but also the untapped
potential in uncovering the vast network of RNA editing in the
context of human disease.

RNA Editing-Independent Functions

The effects between RNA and DNA editing can be distinguished
through careful planning and execution of sequencing strategies.
RNA editases, however, possess functions that are independent of
their RNA-editing abilities. RNA editing-independent functions
of ADARs were first noted in their effects on miRNA expression.
Both ADAR1 and ADAR2 are capable of influencing miRNA
expression by either directly interacting withmiRNAs or affecting
miRNA biogenesis through regulation of important factors, such
as Dicer, Drosha or DGCR8 (DiGeorge Syndrome Critical Region
8) (141–143). RNA editing-independent functions of RNA
editases play prominent roles in the processes of proliferation,
metastasis, and immune evasion during tumorigenesis (49, 144–
146).

The RNA editing-independent functions of ADARs have
been demonstrated by utilizing their catalytically inactive
forms. This approach has helped identify these non-catalytic
functions beyond the confines of miRNA biogenesis. The
MAPK-phosphorylated ADAR1 p110 isoform can be shuttled by
Exportin-5 to the cytoplasm, where it protects the expression
of anti-apoptotic genes by competitively inhibiting binding of
Staufen1 to their 3′UTRs (134). In metastatic melanoma, RNA
editing-incompetent ADAR1 is able to negatively regulate the
expression of the metastatic enhancer integrin beta-3 (ITGB3) by

(i) inhibiting the transcriptional activator of ITGB3, PAX6, and
(ii) promoting FOXD1-mediated induction of miR22 to block
ITGB3 translation (147). As mentioned previously, catalytically
inactive ADAR2 mimics WT ADAR2 in an overexpression
mouse model causing hyperphagia and obesity, dissociating this
phenotype from ADAR2’s RNA-editing capability (106).

Little information is available regarding RNA editing-
independent functions of C-to-U editases, such as APOBEC1.
However, APOBEC-mediated functions that don’t require its
deaminase domains have been reported in humans and other
species (148, 149). Asmore functional studies of RNA editases are
reported, clear differentiations between RNA editing-dependent
and –independent mechanisms will be necessary to adequately
assess their contributions to the development of cancers and
metabolic diseases.

Regulations of RNA Editing

RNA-editing events are subjected to highly precise regulatory
mechanisms. Mechanisms that regulate general localization and
expression of RNA editases have been well-studied (9, 10).
Functional regulation of RNA editing in the context of cancer
and metabolic disease, however, remains a gap in our knowledge.
Depending on the tissue of origin and disease stage, different
cancers have been associated with overall induction or reduction
of RNA-editing levels (12, 13, 18). Even in diseases with either
a clear overall editing profile (hyper- vs. hypo-editing) or an
apparent alteration of RNA editase expression, many targets
are edited in the opposite manner (12). Moreover, alterations
of a single editase do not always yield the same result, as
demonstrated by the aforementioned pro- and anti-tumorigenic
functions displayed by both ADAR1 and ADAR2 in different
cancers.
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More dramatic examples can be found in situations where the
same editing event leads to completely different functional or
phenotypic outcomes. Such examples include ADAR1-mediated
editing of GLI1 and ADAR2-mediated editing of COPA in
tumorigenesis (15, 26, 27, 53). APOBEC1-produced apoB48 and
its full-length counterpart apoB100 contribute to developments
of atherosclerosis and obesity to different extents based on the
surrounding regulatory environment (119, 125). Even replicating
a complex editing profile on one target, such as editing of 5-
HT2cR, could result in opposite phenotypes (obesed vs. lean) in
two different animal models (109, 150).

Several regulatory mechanisms of RNA editing have been
recently identified. In aggressive forms of BC, such as triple-
negative BC and metaplastic BC, the presence of ADAR1
is important for their tumorigenic capacity. Recent studies
found that in these cancers, the expression and activity of
ADAR1 can be regulated by tumor-promoting proteins CPSF6
(cleavage and polyadenylation factor-6) and mutant RPL39
(ribosomal protein L39, A14V). CPSF6 interacts with ADAR1
to stabilize its localization and enhance its RNA editing activity
(151). Moreover, CPSF6-mediated activation of ADAR1 can
be inhibited by prolactin, a mammary differentiation factor.
The oncogenic mutant of RPL39 (A14V) induces expression of
ADAR1 to promote tumor growth and chemoresistance through
the functions of iNOS (inducible nitric oxide synthase) and
activated STAT3 (152).

In the brain, where functions of ADAR2 have been extensively
studied, a splicing factor SRSF9 (serine and arginine rich splicing
factor 9) was found to repress ADAR2-mediated RNA editing.
SRSF9 interacts with ADAR2 and its editing targets in the nucleus
to disrupt the formation of ADAR2 dimer, which is necessary
for the editing of genes involved in controlling cell survival
(153, 154). These findings also signaled the importance of the
splicing machinery in the regulation of RNA editing (155). In
CRC, PKCζ (protein kinase C zeta) phosphorylates ADAR2
to activate its RNA editing activity. Phosphorylated ADAR2
inhibits liver metastasis of CRC by promoting the accumulation
of miR-200, potentially through editing of COPA and other
targets (54).

Considering the complex relationship between ADAR1-
and ADAR2-mediated RNA editing, it is not surprising that
mechanisms exist to regulate their RNA-editing functions
simultaneously. One recent example of this is the RNA helicase,
DHX9 (DEAH box helicase 9). By using an overexpression
system in an esophagus carcinoma cell line (EC109), DHX9
was found to preferentially promote and repress ADAR1- and
ADAR2-mediated RNA editing, respectively (156). The end
result is a strong correlation between DHX9 expression and
tumorigenesis. High-throughput screening has been employed
to identify endogenous regulators of ADAR-mediated RNA
editing (157, 158). Attempts to identify additional enhancers
and inhibitors, both intrinsic and extrinsic, of the RNA editing
machinery are ongoing.

APOBEC1-mediated C-to-U RNA editing is carried out
in a multiprotein “editosome” (159). Many components that
are important for the function of this editosome have been
identified, including ACF (APOBEC1 complementation factor),

HNRNPAB (heterogeneous nuclear ribonucleoprotein A/B; or
ABBP-1), DNAJB11 (DnaJ heat shock protein family member
B11; or ABBP-2), KSRP (KH-type splicing regulatory protein),
CELF2 (CUGBP Elav-like family member 2; or CUGBP2),
SYNCRIP (synaptotagmin binding cytoplasmic RNA interacting
protein; or GRYRBP), and RBM47 (RNA binding motif protein
47) (160–166). A rare negative regulator of this editosome,
BAG4 (Bcl2-associated Athanogene-4), was found to suppress
APOBEC1-mediated RNA editing by shuttling APOBEC1 to the
cytoplasm (167). Aside from ACF and RBM47, the physiological
significance of these regulators remains to be confirmed beyond
in vitro experiments (166, 168).

Although more investigations are needed to confirm the
roles of these APOBEC1 partners in APOBEC1-regulated
cancer development, an interesting study using a mouse model
of testicular germ cell tumors (TGCTs) hinted strongly at
such connections. Using 129/Sv inbred mice that develop
spontaneous TGCTs, Apobec1 deficiency was found to affect
TGCT susceptibility either alone or in combination with
mutations of Dnd1 (Deadend1), another TGCT risk factor
that shares strong sequence homology with Apobec1-editosome
member Acf (169). Pending validation of the involvement
of Apobec1-mediated RNA editing in this model, this result
suggests that APOBEC1-mediated impact on tumorigenesis is
subjected to complex regulatory mechanisms, possibly involving
one or more members of the editosome. More interestingly,
the effect of Apobec1 deficiency on TGCT susceptibility was
influenced by the context of germ-lineage (maternal vs. paternal)
and it manifests in a transgenerational manner. It suggests that
APOBEC1 regulates heritable epigenetic changes, presumably
through RNA-editing, to impact the development of human
diseases such as testicular cancer (170).

One major regulator of metabolism, peroxisome proliferator-
activated receptor alpha (PPARα), impacts APOBEC1-mediated
RNA editing in vivo. In mice lacking LDL receptor, PPARα

agonist ciprofibrate (a common cholesterol-lowering drug)
reduces hepatic RNA editing of apoB by decreasing the
expression of Acf (171). The result is increased accumulation
of apoB100-associated VLDL and atherosclerosis. It also
demonstrated that regulatory mechanisms of RNA editing
could impact human diseases by affecting their response to
treatments.

Since RNA editing plays a prominent role in cancer
development, tumorigenesis-associated pathways and factors
could prove to be important regulators of the machinery. For
example, tumor suppressor protein TP53 is involved in nearly
all aspects of tumorigenesis, but few connections have been
made between TP53 and RNA editing (172). So far, TP53 has
only been deleted to create viable cell models to study ADAR1-
mediated RNA editing in the innate immune response (93). The
fact that TP53 status influences the ADAR1-associated phenotype
indicates a larger role for TP53 in the world of RNA editing.
A recent study identified IFI16 (interferon gamma inducible
protein 16) as a common interacting partner of ADAR1 and p53,
strengthening this possibility (173).

There are stronger hints for roles of another TP53-related
protein, ARF (alternative reading frame; or CDKN2A/p14), in
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RNA editing. ARF is well known for its ability to activate TP53
by inhibiting MDM2 (mouse double minute 2), but many TP53-
independnet functions of ARF have also been identified (174).
One of such functions was recently demonstrated in triple-
negative BCs, where ARF collaborates with TP53 to suppress a
tumor-promoting inflammatory pathway involving interferon-β
and STAT1, which are also important factors in ADAR-mediated
RNA editing (90, 93, 132, 175). Combined with the fact that both
ARF and ADAR use the nucleolus as a critical hub, it seems
to place ARF in close proximity to the center of RNA editing
universe (176–178).

As our understanding of RNA editing in cancers and
metabolic disorders improves, it is likely that many other
connections will be discovered between RNA editing and
established factors associated with these human diseases.

Opportunities for Therapeutic Applications
With greater understanding of the relationship between RNA
editing and human disease comes the opportunity for innovative
therapeutic approaches. RNA-based therapies, which include
targeting both RNA itself and its modifications, are becoming
viable options to slow down or even reverse the course of
human disease (179–181). This warrants further investigation of
the mechanisms of RNA-editing and including it as an integral
part of RNA-based therapies. Indeed, not only the overall role
of RNA editing is being studied in various diseases, but also
creative molecular technologies are being developed to identify
and verify specific RNA editing events using cell lines or clinical
samples (12, 17, 182). High-throughput sequencing and “omics”
profiling enable researchers to create comprehensive “maps” of
RNA editing in the human transcriptome (158, 183, 184). A
recent study integrated genomic, transcriptomic, and proteomic
data to pinpoint RNA editing events that are directly responsible
for proteomic diversity leading to disease-relevant alterations in
cancer samples (15).

Modulation of RNA Editing

In principle, modulating the expression or activity of RNA
editases is a reasonable strategy for treating diseases driven
by dysregulated RNA editing. In cancer cells with elevated
ADAR-mediated RNA editing, such as breast and lung cancers,
downregulation of ADAR expression reduces their tumorigenic
capacity (17, 39, 185). To counteract apoB48-mediated
chylomicron formation and lipid absorption, expression of
APOBEC1 was reduced to create transgenic rabbits that are
resistant to diet-induced obesity (122). Beyond altering the
expression of RNA editases, molecular tools are also being
developed to perform selective inhibition of RNA editing. For
example, target-specific inhibition of RNA editing has been
demonstrated by using either morpholino-based or 2′-O-
methyl/locked nucleic acid mixmer antisense oligonucleotides
(186, 187).

In situations where the RNA editing level is inversely
correlated with disease progression, promoting RNA editing
could have beneficial effects. In cancer cells where ADAR2
is downregulated, overexpression of ADAR2 displays tumor-
suppressive activity (16, 53). Overexpression of APOBEC1

combined with an endothelial functional modulator, SR-BI
(scavenger receptor, class B, type I), was tested in a cell culture
model to show anti-atherogenic potential by altering lipoprotein
composition and increasing nitric oxide levels (188). To augment
the effect of RNA editing, artificial and manipulatable tools have
been engineered to control the RNA editing machinery. SNAP-
tag technology was used to assemble, through covalent bonding, a
RNA-editing complex containing the catalytic domain of ADAR1
and a guide RNA. By integrating a light-sensitive protection
molecule between the editase and the guide RNA, the target–
specific RNA editing machinery can be switched on and off via
light (189).

Application of RNA Editing

The concept of creating a RNA-guided editase has been adopted
to attempt target-specific RNA editing. Proof-of-principle studies
have been conducted to demonstrate the potential to target
disease-relevant genes and restore proper protein function
through RNA editing (190, 191). This strategy has also been
applied through the CRISPR (Clustered Regularly Interspaced
Short Palindromic Repeats)-Cas genomic editing system. By
fusing the deaminase domain of ADAR2 with a catalytically
inactive Cas13, this complex can be led by a guide RNA to
perform specific and robust RNA editing (192, 193). Continuous
efforts to increase the efficiency, reduce off-target editing, and
promote simultaneous editing of multiple targets, will push these
technologies closer to therapeutic application (194, 195).

Unintended Consequences and Unique Opportunities

As intriguing as the idea to reverse disease conditions by
modulating RNA editing levels, it is not without potential
drawbacks. Since different human diseases are associated
with either elevated or reduced levels of RNA editing,
altering it one way or the other poses the risk of undesired
consequences. For example, it is theoretically possible to
modulate the overall levels of inosine-containing RNA by
regulating ribonuclease V (196, 197). But dysregulation of
ribonuclease V has been linked to cancers and psychiatric
disorders, indicating the potential hazards (198, 199).
This concern can be extended to approaches targeting
an individual RNA editase, as mutations of ADAR1 and
ADAR2 have been linked to devastating genetic diseases
(95, 200).

In addition to impacting disease progression, RNA editing
could also affect drug response. In MM, ADAR1-mediated
RNA editing promotes immunomodulatory drug resistance (26).
APOBEC1-mediated RNA editing of apoB influences the liver’s
response to lipid-lowering drugs like fibrates (171). Moreover,
ADAR1 can directly alter the cellular response to a drug
by regulating the RNA editing and expression of xenobiotic-
metabolizing-related factors, such as AhR (aryl hydrocarbon
receptor) and CYP1A1 (Cytochrome P450, family 1, member A1)
(201). These studies highlight potential side-effects of both stand-
alone and combinatorial therapies involving modulation of RNA
editing.

Man-made, RNA-guided, and target-specific RNA editing has
the potential to become the next revolution in (epi)genetic
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therapy. It offers a unique opportunity to modulate protein
functions without altering the sequence and integrity of
the genome. Indeed, its unique characteristics haven’t gone
unnoticed and RNA editing has been incorporated into cutting-
edge technologies, such as CRISPR-Cas genome editing (192).
Recent studies pointing out the potentially crippling effects
of genome editing, however, should serve as a cautionary
tale when considering using RNA editing in a similar
fashion (202–205). Further studies are needed to ensure the
efficacy and safety of this approach before considering clinical
applications.

Having mentioned the potential problems, it should be
acknowledged that there are tremendous opportunities for RNA-
editing-based therapies to treat human diseases. By engaging
biological events at the RNA level, RNA-editing could be
associated with many-to-one or one-to-many relationships
between RNA editases/events and downstream effects. Examples
of “many-to-one” include the “see-saw” effect of PODXL
editing by ADAR1 and ADAR2 in GC, and the ability
of both ADAR1 and ADAR2 to regulate biogenesis of
miRNA let-7 (31, 49, 58). It points out common downstream
effectors of multiple editases, offering therapeutic targets
that are more specifically linked to diseases. There are also
“one-to-many” cases, such as the association of ADAR2-
mediated editing of miR376 with both glioblastoma and
metabolic disorders (51, 105). Intervention strategies targeting
“ADAR2-miR376” as a unit thus could have broader range of
applications.

The relationship between cancer development and metabolic
disorders has been strengthened in recent years, and it appears
to be a two-way street. It is well-established that cancers
often overcome unwanted stresses by hijacking metabolic
pathways, and metabolic disorders like obesity and diabetes are
strong predisposing factors to cancers (206, 207). Reversely,
cancers can create systematic metabolic imbalances in patients
resulting in metabolic diseases such as diabetes or CVD
(208, 209). Understanding the cross-talk between cancer and
metabolic diseases is one of the most critical challenges for
human health, and RNA editing is an important piece of the
puzzle.

CONCLUSION

As this review shows, there has been an explosion of information
regarding RNA editing in the last 3–5 years. This is indeed
an exciting time to study this unique epigenetic phenomenon,
with plenty of opportunities and challenges ahead. Some burning
questions, as highlighted throughout this review, will need to be
answered in the near future. How is new information used to
reshape the central dogma of cell biology of “DNA to RNA to
protein?” Are there more RNA editases waiting to be discovered?
How do we reliably identify RNA editases, and corresponding
editing events, in specific human diseases? Can part of the
RNA editing machinery be targeted as a monotherapy, or is
combining these interventions with other parallel treatments,
such as immunotherapy, a better course of action?

Outside the purview of this article, RNA editing also plays
significant roles in other physiological conditions, such as
infectious, inflammatory/autoimmune, and neurodegenerative
diseases (210–213). It will be interesting, in some cases necessary,
to investigate the inter- and intra-relationships between the
roles of RNA editing in these diseases with those in cancers
and metabolic disorders. The ultimate goal is to leverage this
information into actionable therapeutic innovations. More than
30 years after its initial discovery, the significance of RNA editing
in human disease is being recognized more than ever.
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