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Hepatocellular carcinoma (HCC) is a highly aggressive cancer with a poor
prognosis. The molecular mechanisms underlying its development remain
unclear. Recent studies have highlighted the crucial role of RNA modifications in
HCC progression, which indicates their potential as therapeutic targets and
biomarkers for managing HCC. In this review, we discuss the functional role and
molecular mechanisms of RNA modifications in HCC through a review
and summary of relevant literature, to explore the potential therapeutic agents
and biomarkers for diagnostic and prognostic of HCC. This review indicates
that specific RNA modification pathways, such as N6-methyladenosine,
5-methylcytosine, N7-methylguanosine, and N1-methyladenosine, are
erroneously regulated and are involved in the proliferation, autophagy, innate
immunity, invasion, metastasis, immune cell infiltration, and drug resistance of
HCC. These findings provide a new perspective for understanding the molecular
mechanisms of HCC, as well as potential targets for the diagnosis and treatment of
HCC by targeting specific RNA-modifying enzymes or recognition proteins. More
than ten RNA-modifying regulators showed the potential for use for the diagnosis,
prognosis and treatment decision utility biomarkers of HCC. Their application value
for HCC biomarkers necessitates extensive multi-center sample validation in the
future. A growing number of RNA modifier inhibitors are being developed, but the
lack of preclinical experiments and clinical studies targeting RNA modification in
HCC poses a significant obstacle, and further research is needed to evaluate their
application value in HCC treatment. In conclusion, this review provides an in-depth
understanding of the complex interplay between RNA modifications and HCC
while emphasizing the promising potential of RNA modifications as therapeutic
targets and biomarkers for managing HCC.

KEYWORDS

hepatocellular carcinoma, N6-methyladenosine, 5-methylcytosine, N1-
methyladenosine, N7-methylguanosine, biomarkers, therapeutic targets
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1 Introduction

Liver cancer as one of the most prevalent malignant tumors
worldwide, ranks as the sixth most frequently diagnosed cancer and
the third leading cause of cancer-related deaths globally, with
865,000 new cases and 758,000 deaths in 2022, accounting for
4.3% and 7.8% of all malignant tumor morbidities and deaths
respectively (1, 2). Hepatocellular carcinoma (HCC), as the most
common liver cancer (75%-85% of cases) with the higher incidence
and mortality rates, is the top three causes of cancer-related death in
many countries (3, 4). HCC development is linked to multiple
factors such as hepatitis virus infection, alcohol consumption, non-
alcoholic fatty liver disease (NAFLD), and cirrhosis (2, 5). The
primary risk factors for the development of HCC are infection with
hepatitis B virus (HBV) and hepatitis C virus, with non-alcoholic
steatohepatitis linked to metabolic syndrome or diabetes mellitus
emerging as a more common risk factor in Western countries (5).
HBYV is a DNA virus that undergoes a complex life cycle involving
reverse transcription. Chronic infection with this virus is a leading
cause of liver cancer and cirrhosis on a global scale (6). In addition
to environmental factors, certain genetic factors, such as gene
mutations of TERT promoter, TP53, CTNNBI, amplifications of
VEGFA, etc. also play a role in the occurrence and development of
HCC (7, 8). The molecular mechanisms underlying HCC differ
based on the specific genotoxic factors and causes (5). Despite
advancements in our comprehension of the disease’s
pathophysiology and triggers, this information has not yet been
sufficient implemented in clinical settings.

Surgical therapies for HCC, including surgical resection and
liver transplantation represent potentially curative options for
appropriate candidates with tumors detected at earlier stages (4,
9). However, only a minority of patients are eligible for this
treatment because of factors such as cirrhosis (10), and local
ablation is the preferred method for patients diagnosed with HCC
in its early stages who are not candidates for surgery or
transplantation (4). For patients with intermediate-stage HCC,
chemoembolization is the main treatment strategy. Due to the
suboptimal sensitivity of existing HCC surveillance tools and their
underutilization in clinical practice, most patients with HCC are
diagnosed at an advanced stage, which leaves minimal options for
effective treatment (4, 11). Despite the advancements in immune-
checkpoint inhibitor-based therapies, the objective response rate for
patients with advanced-stage HCC is only around 30%, and the 3-
year overall survival rate is still below 50% (4). Challenges faced in
the management of HCC include difficulties in early diagnosis, high
rates of recurrence, poor prognosis, limited effective treatment
options and drug resistance (12).

RNA modification refers to the process of chemically modifying
RNA, which can impact RNA stability, translation efficiency, and
function (13). Recently, there has been increasing interest in
studying RNA modifications in HCC. RNA modification can
promote HCC progression by regulating other risk factors for
HCC, such as fat metabolism and virus life cycle. RNA
modifications have the ability to control viral replication by either
modifying the viral genome or altering the expression of genes
crucial for viral replication (6). NAFLD stands as a significant risk
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factor for the development of HCC. Researchers have revealed the
impact of RNA modifications on crucial aspects including steatosis,
inflammation, fibrosis, and tumorigenesis. RNA modification
induces NAFLD by regulating lipid metabolism, ultimately
leading to HCC transformation (14). More and more evidences
suggest that aberrant modifications of specific RNAs have been
correlated with the occurrence, development, metastasis, and
prognosis of HCC (15). One common RNA methylation is N6-
methyladenine (m6A), which has been found to be associated with
tumor proliferation, metastasis, and drug resistance in HCC (16).
Additionally, other RNA modifications, such as 5-methylcytosine
(m5C), N1-methyladenosine (m1A), and N7-methyladenosine
(M7G), have also been reported to play a role in the development
and progression of HCC (17). Currently, research on the role of
RNA modification in HCC mainly focuses on m6A, m1A, m5C, and
m7G. Recent studies have highlighted the crucial role of these RNA
modifications in HCC progression, which indicates their potential
as therapeutic targets and biomarkers for managing HCC.

In this review, we comprehensively summarize the functional
roles, molecular mechanisms, and potential clinical applications of
various RNA modifications in HCC. Clarifying the functional
mechanism of RNA modifications and identifying new
therapeutic targets in HCC will provide novel strategies for
treatment. Additionally, RNA modifications also exhibit potential
as biomarkers for the early diagnosis and prognostic evaluation of
HCC, thereby improving diagnostic accuracy and patient survival
rates. Overall, this review enhances our understanding of the role of
RNA modifications in HCC and offers new perspectives on its
diagnosis, prognosis, and treatment.

2 RNA modifications

As early as the 1950s, scientists discovered that there were some
special chemical modifications in RNA molecules (18-22). With
advancements in technology and in-depth research, various RNA
modification types have been discovered (23). Methylations on
RNA nucleotides, such as m6A, were the earliest modification
type identified. In 1955, scientists first discovered methylations in
RNA molecules (18). Subsequently, there has been continuous
identification of new RNA modifications, including m5C, mlA,
m7G, and pseudouridine (23). Increasing evidence shows that RNA
modifications play complex regulatory roles in the cell and exert
important effects on gene expression and cellular functions (24, 25).
Recent studies indicate that specific RNA modifications, such as
m6A, m5C, mlA, and m7G, through a series of modification
regulatory proteins, affect the fate of RNA molecules such as
precursor RNA processing, RNA splicing, stability, transport
processes and translation, thereby regulating the expression of
HCC-associated genes, and are involved in the progression of HCC.

2.1 N6-methyladenosine

N6-methyladenosine, also referred to as m6A, is an RNA
methylation that involves the transfer of a methyl group to
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adenosine (A) at N6 and is catalyzed by an RNA methyltransferase
(Figure 1). It is the most prevalent, abundant, and evolutionarily
conserved RNA methylation in eukaryotes (26). The regulation of
RNA m6A methylation involves three groups of proteins: m6A
methyltransferases (“writers”), m6A demethylases (“erasers”), and
m6A methylation recognition proteins (“readers”) (Figure 2) (27).
Accumulating evidence suggests that m6A is essential for the
progression of HCC. The expression of m6A regulators, including
“writer”, “eraser” and “reader” proteins, changed significantly in
HCC (Table 1).

The “writers” refer to the m6A methyltransferases, which
include methyltransferase-like protein (METTL) 3, METTL14,
Wilms’ tumor 1-associating protein (WTAP), and vir like m6A
methyltransferase associated (KIAA1429). These enzymes are
responsible for catalyzing m6A modification (Figure 2) (27). The
methylation of RNA to m6A is primarily carried out by the
METTL3/METTL14 complex. Within this complex, METTL3 acts
as the catalytic agent, while METTLI14 serves as an allosteric
activator that aids in binding to target RNA (46, 66).

The m6A modification of RNA is reversible, as it can be
removed by “eraser” enzymes such as the m6A demethylases
AlkB homolog 5 (ALKBH5) and fat mass and obesity-associated
protein (FTO). These enzymes can convert m6A to A and rapidly
remove m6A in a dynamic manner (Figure 2) (67). FTO belongs to
the Alkb dioxygenase family and is associated with obesity (26).
Knockdown of FTO significantly increases the level of RNA m6A
modification (26). Another important demethylase, ALKBHS5, is
responsible for demethylating mRNAs within the nucleus.
Knockout of ALKBHS5 results in a significant increase in the level
of RNA m6A modification (26, 67).

10.3389/fimmu.2024.1439485

m6A “readers,” such as embryonic tumor-associated RNA-
binding protein (IGF2BPs, insulin like growth factor 2 mRNA
binding proteins), proteins containing YTH domains (YTH family
proteins), and leucine-rich PPR-motif-containing protein (LRPPRC),
have the ability to recognize and bind to m6A-modified RNA.
Subsequently, they regulate the expression of related genes through
various processes (Figure 2) (68). Proteins with YTH domains
(YTHDF), such as YTHDF1, YTHDEF2, and YTHDEF3, can directly
bind to m6A and then regulate translation or RNA decay. Specifically,
YTHDFI1 primarily enhances the translation efficiency of m6A-
modified mRNAs, while YTHDF2 accelerates the degradation of
m6A-modified mRNAs by recruiting several complexes to promote
their degradation (61). The function of YTHDEF3 is relatively
complex, as it interacts with both YTHDF1 to promote protein
synthesis and with YTHDF?2 to facilitate mRNA degradation (69).
IGF2BPs increase the stability and translational efficiency of m6A-
modified mRNAs by recognizing m6A (70). Different members of the
IGF2BP family may exhibit differences in regulating mRNA
translation and stability; for example, IGF2BP1 and IGF2BP2 may
have a wider range of substrate mRNAs in some cell types, whereas
IGF2BP3 may focus more on specific mRNA molecules (71).

2.2 5-methylcytosine

5-Methylcytosine, also known as m5C, plays a pivotal role in the
modification of RNA. It is produced during RNA synthesis by
converting cytosine to 5-methylcytosine through the action of
cytosine deaminase (Figure 1) (72). The methylation of RNA
cytosines at the C5 position is facilitated by members of the
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Diagram of the m6A modification mechanism. M6A “writers”, including METTL3/14 and WTAP, cata
Removing the methylation of RNA needs the functions of m6A “erasers” that mainly consist of FTO
and others) recognize m6A modification sites and exert corresponding functions.

TABLE 1 The roles of m6A regulators in hepatocellular carcinoma.

lyze the m6A modification of adenosine on RNA.
and ALKBH5. M6A "readers” (such as YTHDF1/2/3

M6A Change  Target Change Molecular Mechanism Function
regulator (regulator) (target)
Writer
METTL3 Up circ-CCT3 Up circ-CCT3/miR-378a-3p/FLT1 Promotes HCC cell proliferation, 8)
invasion, and migration
Up circ-ARL3 Up circ-ARL3/miR-1305 ceRNA Promotes HCC progression (28)
Up IncRNA Up IncRNA GBAP1/miR-22-3p/ Promotes the migration, invasion (29)
GBAP1 BMPR1A/SMAD and proliferation of HCC cells
Up LINC00958 Up LINC00958/miR-3619-5p/HDGF Promotes the proliferation, migration | (30)
and invasion of HCC
Up Lnc-CTHCC Up Inc-CTHCC/hnRNPK/YAP1 Promotes the growth and metastasis (31)
of HCC
Up LncRNA Up c-Myc/cyclins Promotes the proliferation of (32)
MAAS HCC cells
Up PTEN Up HBV/METTL3/PTEN/IRF-3; PTEN/ Affects innate immunity and the (33)
PI3K/AKT development of HCC
Up ASPM Up Up-regulated ASPM expression Promotes the proliferation, migration | (34)
and invasion of HCC
Up EGFR - EGFR-pak2-erk5 Promotes drug resistance in (35)
HCC cells
Up MTF1 Up Up-regulated MTF1 expression Promotes tumor growth and (36)
migration of liver cancer
Up - UBCY9/SUMOylated METTL3/Snail Promotes the growth and metastasis (37)
of HCC cells
(Continued)
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TABLE 1 Continued

10.3389/fimmu.2024.1439485

M6A Change  Target Change Molecular Mechanism Function
regulator (regulator) (target)
Writer
METTL14 Down circSTX6 Up circSTX6/HNRNPD/ATF3 Accelerates HCC proliferation and (38)
tumorigenicity and strengthens
tumor metastasis
Down USP48 Down USP48/SIRT6 Stimulates HCC exacerbation (39)
Down HNEF3y Down HNF3y/OATP1B1/OATP1B3 Weakens the sorafenib response and (40)
promotes HCC progression
Down EGFR Up EGFR/PI3K/AKT Promotes the migration, invasion, (41)
and EMT of HCC cells
METTL3/14 Down ACLY; SCD1 Up FA synthesis and lipid production Leads to decreased HCC cell death (42)
and cell survival
WTAP Up ETS1 Up WTAP/ETS1-p21/p27 Promotes the proliferative ability and | (43)
tumor growth of HCC cells
Up LKB1 Down WTAP/LKB1/AMPK Resists autophagy and promotes (44)
cell proliferation
Up IncRNA Down IncRNA AC115619/WTAP Promotes HCC progression (45)
AC115619
KIAA1429 Up - - E-Ca/slug/snail Promotes invasion, migration, and (46)
EMT of HCC
Up GATA3 Down KIAA1429/GATA3 Promotes tumor growth (47)
and metastasis
Eraser
ALKBH5 Down LYPD1 Up ALKBH5/LYPD1 Stimulates HCC exacerbation (48)
Down LINC02551 Up The ALKBH5/Inc C02551/DDX24 axis Promotes HCC growth (49)
and metastasis
Up MAP3K38 Up ALKBH5/MAP3K8; ERK/JNK/IL-8 Promote HCC cell proliferation (50)
and metastasis
Up HBX Up HBX/wdr5/h3k4me3 Inhibits the growth and migration of (51)
HBV-driven tumor cells
FTO Up GLUT1 Up FTO-it1/FTO/c-Myc Promotes HCC progression (52)
and PKM2
Down GNAO1 Down SIRT1/FTO/GNAO1 Enhances HCC proliferation and in (53)
vitro invasion
RALYL Up TGF-p2 Up PI3K/AKT; STAT3 pathways Promotes HCC tumorigenicity, self- (54)
renewal, chemoresistance,
and metastasis
ZC3H13 Down m6A Down miR-362-3p/miR-425-5p-ZC3H13 Correlates with poor prognosis and (55)
modifications poor outcome in HCC
Reader
IGF2BP1 Up circMDK Up miR-346/874-3p-ATG16L1; PI3K/ Promotes cancer cell proliferation, (56)
AKT/mTOR migration and invasion
Up circMAP3K4 Up circMAP3K4-455aa/AIF Prevents cisplatin-induced apoptosis (57)
of HCC cells
Up IncRNA Up MIR44352HG/NOP58 Enhances the stem cell properties of (58)
MIR4435-2HG HCC cells and promote
tumorigenesis in vitro and in vivo
Up MGATS5 Up Stability of MGAT5 mRNA Promotes CSC liver phenotype and (59)
tumor metastasis
(Continued)
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TABLE 1 Continued

10.3389/fimmu.2024.1439485

M6A Change  Target Change Molecular Mechanism Function REF
regulator = (regulator) (target)
Reader
YTHDF1 Up ATG2A Up HIF-10/YTHDF1/ATG2A/ATG14 Promotes hypoxia-induced (60)
and ATG14 autophagy of HCC and autophagy-
related malignancies
YTHDEF2 Up OCT4 Up m6A methylation of OCT4 mRNA Promotes CSC liver phenotype and (61)
tumor metastasis
YTHDF3 Up circ_KIAA1429 Up TYHDF3/Zeb1/KIAA1429 Facilitates the migration, invasion, (62)
and EMT process of HCC
Up EGFR Up YTHDF3/m6A-EGFR/STAT3 and Promotes the proliferation, invasion (63)
EMT axis and migration of HCC cells
Up PFKL Up YTHDF3/m6A- PFKL Promotes proliferation, migration (64)
and invasion of HCC cells
LRPPRC Up PD-L1 Up Up-regulated PD-L1 expression Promotes tumor growth, improve (65)
tumor immunity and
immune infiltration

HCC, hepatocellular carcinoma; REF, references; EMT, epithelial-mesenchymal transition; CSC, cancer stem cell.

NOL1/NOP2/SUN structural domain (NSUN) protein family and
DNA (cytosine-5)-methyltransferase-like protein 2 (DNMT2).
Additionally, this modification can be reversed by the AlkB
homolog 1 (ALKBHI1) and ten-eleven translocation (TET)
demethylases (73). Furthermore, proteins such as Aly/REF export
factor (ALYREF) and Y-Box binding protein 1 (YBXI) can
recognize and bind to RNA m5C sites, resulting in downstream
biological effects (74).m5C modification has been reported to
regulate a broad variety of RNA functions, including increasing
the stability of RNA molecules and increasing their stability in cells;
affecting the translation efficiency of RNA; regulating the
expression level of proteins by affecting the translation of mRNA
and affecting the splicing process of RNA; and processing and
trimming the precursor RNA, thus affecting its maturation and
function (72, 75, 76). Via abnormal expression of regulators, m5C
modification regulates the expression of HCC-associated genes, and
is involved in the progression of HCC (Table 2).

2.3 N1-methyladenosine

N1-methyladenosine is a prevalent RNA modification primarily
found on the adenylate residues of mRNAs. This modification is
facilitated by an enzyme known as adenylate methyltransferase,
which adds a methyl group to the guanine ribose ring of
adenylate, resulting in ml1A modification (89). The RNA mlA
methyltransferases tRNA methyltransferase 10C (TRMT10C), 61B
(TRMT61B), 6 (TRMT6), and 61A (TRMT61A) can be reversed by
the ALKBH1 and AlkB homolog 3 (ALKBH3) demethylases (90).
Additionally, YTHDF1, YTHDF2, YTHDF3, and YTH Ne6-
methyladenosine RNA binding protein C1 (YTHDCI) serve as
binding proteins that specifically recognize the m1A site and induce
downstream effects (90). m1A modification plays a critical role in
enhancing RNA stability, reducing the degradation rate (91), and
protecting RNA molecules from damage in the external
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environment. This modification also extends their lifespan within
the cell (92). Furthermore, m1A is involved in the regulation of
RNA translation. Research has indicated that it can impact the
efficiency and accuracy of RNA translation, thereby controlling
protein synthesis levels (89). This may be achieved by influencing
the assembly and recognition of translation initiation complexes
(93). The abnormal expression of mIlA regulators, including

, “eraser” and “reader” proteins, were also found in HCC
indicating a pivotal role of m1A in HCC (Table 2).

“writer

2.4 N7-methylguanosine

N7-methylguanosine, also referred to as m7G, is an RNA
modification that involves the addition of a methyl group (-CH3)
to the nitrogen atom at position 7 of the guanine nucleotide within
the RNA molecule (88). This process is carried out by
methyltransferase enzymes, such as METTL1 and WDR4 (WD
repeat domain 4) (71). M7G modifications are primarily found in
eukaryotic mRNAs and certain noncoding RNAs, including
ribosomal RNA (rRNA) and transfer RNA (tRNA) (Figure 1) (94).

Similar to other modifications, m7G modification is also crucial
for regulating gene expression. m7G modifications in RNA can help
to stabilize mRNA molecules and reduce their degradation rate,
thus extending the lifespan of mRNAs (95). In addition, m7G
modification is involved in the translational regulation of mRNAs.
The formation of a cap structure and m7G modification can affect
the formation and recognition of translation initiation complexes,
which in turn affects the rate and precision of protein synthesis (96).
Furthermore, m7G modification also affects the transcriptional
regulation of mRNAs, including steps such as splicing and
translocation (94, 96). The upregulated expressions of m7G
“writer” proteins WDR4 and METTLI, are associated with the
progression of HCC via regulating the HCC-associated gene
expressions (Table 2).
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TABLE 2 The role of other RNA modification regulators in hepatocellular carcinoma.

10.3389/fimmu.2024.1439485

Category Regulator Change  Target Change Molecular Functions
(regulator) (target) Mechanism
m5C
Writer USUN2 Up LncRNA Up USUN2/ Promotes the proliferation, migration and invasion of (77)
H19 H19RBA/G3BP1 HCC cells
USUN2 Up GRB2 Up Ras and p- Promotes HCC progression and resistance to sorafenib (78)
Erk pathways
NOP2 Down XPD Down NOP2/XPD Promotes the proliferation, migration, and invasion of (79)
HCC cells
Reader ALYREF Up EGFR Up STAT3 Promotes the progress of liver hepatocellular carcinoma (80)
signaling pathway
milA
Writer TRMT6/ Up tRNA Up Increases Triggers cholesterol synthesis, activates Hedgehog (81)
TRMT61A PPARS translation  signaling, and drives self-renewal and tumorigenesis of
hepatic CSC
Eraser ALKBH3 Up - - p21/p27-mediated Promotes HCC tumor cell proliferation and (82)
cell-cycle arrest tumor formation
Reader YTHDF1 Up - - - Regulates immune cell infiltration in HCC tissues (83)
YTHDE2
YTHDEF3
m7G
Writer WDR4 Up CCNBI1 Up MYC/WDR4/ Promotes the proliferation, metastasis, and sorafenib (84)
CCNBI; PI3K/ resistance of HCC
AKT; P53
WDR4 Up TRIM28 Up TRIM28/Target Increases cell-acquired stemness and lenvatinib resistance (85)
genes
(IRF2, OCT4...)
METTL1 Up tRNA Up m7G dependent Promotes hepatocarcinogenesis (86)
translation control
METTL1/ Up tRNA Up EGFR pathway Induces lenvatinib resistance in HCC cells (87)
WDR4
METTL1/ Up tRNA Up SLUG/SNAIL Promotes the recurrence and metastasis of HCC (88)
WDR4 after IRFA

HCC, hepatocellular carcinoma; REF, references; CSC, cancer stem cell.

cancer-associated genes (33-37), METTL3 is involved in the
progression of HCC by regulating the stability of related RNAs
(Figure 3, Table 1).

Circ-CCT3 and circ-ARL3 play oncogenic roles in HCC. High
expression of circ-CCT3 has been reported to be associated with poor
prognosis in HCC patients (66). METTL3 can increase the level of

3 Functional mechanism of RNA
modifications in HCC

3.1 m6A in HCC

By regulating the RNA m6A modification of HCC-associated

. ) ) ) m6A modification of circ-CCT3; promote HCC cell proliferation,
genes, m6A regulators are involved in HCC cell proliferation,

invasion, and migration through the circ-CCT3/miR-378a-3p/FLT1

invasion, migration, epithelial-mesenchymal transition (EMT), axis; and subsequently promote HCC progression (66). The

:.autophagy, 1m1'nune eva51on', and drug resmtance't and play upregulated expression of METTL3 caused by HBx (an X protein
important roles in the progression of HCC (Table 2, Figure 3). encoded by hepatitis B virus) increases the m6A modification level of
circ-ARL3 and then leads to increased stability and enhanced
3.1.1 The "writers” and HCC
3.1.1.1 METTL3

METTLS3, the first methyltransferase found to be involved in

expression of circ-ARL3, causing dysregulation of the circ-ARL3/
miR-1305 axis and ultimately facilitating HCC progression (28).
METTL3 regulates m6A modifications of the oncogenes IncRNA

m6A modification, is significantly upregulated in HCC (29). By
modifying the methylation of circular RNA (circRNA) (28, 66),
long noncoding RNA (IncRNA) (29-32), and transcripts of other
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GBAPI, LINC00958, Lnc-CTHCC, and MAPKAPKS5_ASI (MAAS)
and subsequently promotes the progression of HCC (29-31).
The expression of the IncRNA GBAP1 is significantly increased in
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FIGURE 3

The molecular functions of m6A modification in HCC. M6A modifiers affect the proliferation, epithelial-mesenchymal transition (EMT), migration,
autophagy, immune escape and drug resistance of HCC cells. (Created with BioRender.com).

HCC tissues (29). METTL3 induces the expression and stability of the
IncRNA GBAP1 in HCC cells and promotes the migration, invasion,
and proliferation of HCC cells through the miR-22-3p/BMPRIA/
SMAD pathway (29). Heparin binding growth factor (HDGF) has
been identified as an HCC oncogene that affects cellular lipid
metabolism (30). METTL3 enhances the stability of LINC00958
through m6A modification and promotes lipogenesis through
the miR-3619-5p/HDGF axis, ultimately contributing to HCC
proliferation, migration and invasion (30). METTL3-mediated m6A
modification in Inc-CTHCC is recognized by (IGF2BP1)/IGF2BP3,
which maintains the stability of Inc-CTHCC and promotes HCC
growth and metastasis through the Inc-CTHCC/hnRNPK/YAP1 axis
(31). MAAS is an oncogene whose expression is upregulated in HCC
cancer tissues, and its high expression is closely associated with a low
likelihood of patient survival (32). Hepatitis B e antigen secreted by
HCC cells upregulates MAAS expression in M2 macrophages by
promoting METTL3-mediated m6A modification. MAAS is
upregulated in HCC cells via M2 macrophage-derived exosomes
and targets the MYC proto-oncogene to promote HCC cell
proliferation (32).

Phosphatase and tensin homolog (PTEN) is a tumor suppressor
that reduces carcinogenesis by inhibiting the PI3K/AKT pathway
(33). HBV increases the m6A methylation of PTEN RNA through
the regulation of METTL3, which leads to a decrease in its protein
level and promotes HCC (33). Abnormal spindle-like microcephaly
(ASPM) has been shown to be involved in tumor progression, and
its high expression in HCC predicts a poor prognosis (34).
METTL3-mediated m6A modification promotes the expression of
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ASPM, providing a new therapeutic strategy against HCC (34).
Another study suggested that METTL3 may also be associated with
lenvatinib resistance in HCC cells, driving cancer cell resistance
through the METTL3-M6a/EGFR-pak2-erk5 axis; thus, METTL3
may be a potential therapeutic target for drug resistance (35).

The function of METTL3 is closely associated with its acetylation.
When METTL3 undergoes substantial acetylation, its binding to
metal-responsive transcription factor 1 (MTF1) mRNA, METTL14,
and WTAP weakens, resulting in a decrease in m6A modification
induced by the METTL3-METTL14-WTAP methyltransferase
complex (36). In HCC, reduced m6A modification of MTF1
mediated by METTL3 acetylation leads to enhanced MTF1
expression, thereby promoting cell proliferation and tumor
progression (36). Furthermore, mitogen stimulation leads to an
increase in the small ubiquitin-related modifier (SUMO) ylation of
METTLS3, which is correlated with the upregulation of ubiquitin-
conjugating enzyme 9 (UBC9) and is positively associated with the
high metastatic potential of liver cancer (37). The UBCY9/
SUMOylated METTL3/Snail axis represents a novel pathway for
SUMO involvement in HCC progression (37).

3.1.1.2 METTL14

As a homolog of METTL3, METTL14 shares some similarities,
but METTL14 is downregulated in HCC, is closely associated with
tumor metastasis, and plays a regulatory role in the process of HCC
tumor metastasis (Figure 3, Table 1) (39).

METTLI14 can inhibit circSTX6 expression via m6A
modification (38). Downregulation of METTL14 dysregulates the
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circSTX6/HNRNPD/ATEF3 axis, accelerates HCC proliferation and
tumorigenicity, and enhances tumor metastasis (38). Notably, the
circSTX6-encoded protein circSTX6-144aa also independently
promoted HCC progression and is expected to be a potential
biomarker and therapeutic target for HCC (38).

Ubiquitin-specific peptidase 48 (USP48) is a member of the
ubiquitin-specific protease family and has been identified as an
inhibitor of HCC tumorigenesis by stabilizing sirtuin 6 (SIRT6)
(39). The downregulation of METTL14 in HCC leads to decreased
methylation levels of USP48 mRNA, resulting in reduced
expression of USP48. This dysregulation consequently affects
glycolysis through the USP48-SIRT6 axis and contributes to the
deterioration of HCC (39). These findings indicate that specifically
targeting hepatocyte USP48 or the USP48-SIRT6 axis may be a
potential therapeutic strategy for future HCC treatment.

Hepatocyte nuclear factor 3y (HNF3y) is a hepatocyte nuclear
factor that can inhibit HCC growth by transactivating organic anion
transporting polypeptide 1B1 (OATP1B1) and 1B3 (OATP1B3)
expression, which sensitizes HCC cells to sorafenib-induced growth
inhibition and apoptosis (40). METTL14-mediated m6A
modification plays an important role in maintaining high HNF3y
expression, and downregulation of METTL14 in HCC cells
decreases HNF3y expression and promotes HCC progression
(40). Another study showed that high levels of METTL3/14
enhanced the expression of ATP citrate lyase (ACLY) and
stearoyl-CoA desaturase 1 (SCD1) by regulating their mRNA
stability, which accelerated fatty acid synthesis and lipogenesis,
ultimately leading to lipid peroxidation or endoplasmic reticulum
stress, resulting in HCC cell death and a decrease in HCC cell
viability (42). Targeting METTL3/14 has proven to be a promising
anticancer therapeutic strategy.

3.1.1.3 Other "writers” and HCC

The M6A methylases WTAP and KIAA1429, also known as
tumor-associated proteins, are significantly upregulated in HCC
(43). WTAP can cause posttranscriptional repression of ETS proto-
oncogene 1 (ETS1) through m6A modification and promote the
proliferative capacity and tumor growth of HCC cells through the
WTAP/ETS1-p21/p27 axis (43). The micropeptide encoded by
IncRNA ACI115619 inhibited the growth of HCC tumors by
binding to WTAP and hindering the assembly of the m6A
methyltransferase complex, resulting in a reduction in the overall
methylation level (45). In addition, when researchers knocked out
the WTAP gene in HCC, the m6A level of liver kinase B1 (LKB1)
mRNA decreased, and its stability increased, which in turn
promoted autophagy in HCC cells via the WTAP/LKB1/AMPK
axis, suggesting that it is a promising target for HCC therapy (44).
KIAA1429 was found to be significantly upregulated in HCC
tissues. It has been demonstrated to promote the invasion,
migration, and EMT of sorafenib-resistant HCC cells (46).
Additionally, through its mediation of m6A methylation,
KIAA1429 was observed to decrease the expression of the E-Ca
protein while increasing the expression of the slug and snail
proteins (46).
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3.1.2 The “erasers” and HCC
3.1.2.1 ALKBH5

ALKBHS5 is a demethylating enzyme with extremely complex
regulatory mechanisms in vivo (67). The expression of ALKBH5
was reported to be downregulated in HCC, causing elevated m6A
levels and increased stability of Ly6/Plaur domain-containing 1
(LYPD1), leading to dysregulation of the ALKBH5/LYPD1 axis and
promoting the progression of HCC (48). DEAD-box helicase 24
(DDX24) is a tumor-associated gene that is often used as a marker
to assess tumor risk and treatment efficacy (49). Downregulation of
ALKBHS5 promotes the expression of LINC02551, which acts as a
molecular junction to block the binding of DDX24 to the E3 ligase
tripartite motif 27, thereby reducing the ubiquitination and
subsequent degradation of DDX24 (49). Moreover, stabilized
DDX24 promotes EMT in HCC (49). However, some researchers
have reported conflicting results. In contrast to the aforementioned
study, they proposed that ALKBHS5 is actually upregulated in HCC.
They suggested that this upregulation occurs through the activation
of the ERK/JNK pathway and the regulation of interleukin-8 (IL-8)
expression via the ALKBH5/MAP3K8 axis. Ultimately, this
promotes HCC development, metastasis, and macrophage
recruitment (50). According to reports, there is a strong positive
correlation between HBx and ALKBHS5 in HBV-HCC tissues (51).
It has been discovered that HBV increases the expression of
ALKBH5 through the HBx/wdr5/h3k4me3 pathway, while
ALKBHS5, in turn, enhances the stability of HBx mRNA by
reducing m6A modification (51). Additionally, studies have
indicated that the depletion of ALKBH5 significantly suppresses
the proliferation and migration of HBV-induced tumor cells both in
vitro and in vivo (51).

3.1.2.2 Other “erasers” and HCC

FTO plays key roles in the regulation of adiposity, lipogenesis,
and body weight (97). The expression level of FTO is elevated in
HCC, which is promoted by the IncRNA FTO-IT1 recruiting
interleukin enhancer binding factor 2 (ILF2) and 3 (ILF3) (52).
FTO overexpression increases the mRNA expression of the
glycolysis-associated genes glucose transporter type 1 (GLUTIL),
pyruvate kinase M2 (PKM2), and c-Myc by decreasing the
expression of m6A modifications, which subsequently promotes
HCC progression in a glycolysis-dependent manner (52). Sirtuin 1
(SIRT1) is a known deacetylase silencing information regulator that
destabilizes FTO, and its presence is positively correlated with
malignancy and metastasis (53). A reduction in FTO by SIRT1
can increase the m6A modification level of guanine nucleotide-
binding protein G (o) subunit o« (GNAOI1) and cause
downregulation of its mRNA expression (53). Deletion of
GNAOIL significantly enhanced HCC proliferation and invasion
in vitro (53).

RALY RNA Binding Protein Like (RALYL) is a recently
discovered demethylase that can increase the stability of TGE-f32
mRNA by reducing its m6A modification (54). RALYL promotes
the tumorigenicity, self-renewal, chemoresistance, and metastasis of
HCC through the TGF-f2/PI3K/AKT and STAT3 pathways (54).
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Zinc finger CCCH-type containing 13 (ZC3HI13) is a
methyltransferase whose expression is downregulated in HCC
(55). The miR-362-3p/miR-425-5p-ZC3H13 axis leads to
downregulation of ZC3HI3 and thus a reduction in m6A
modifications, which correlates with poor prognosis and poor
outcome in HCC patients (55).

3.1.3 The “readers” and HCC
3.1.3.1I1GF2BP1

IGF2BP1, a common m6A methylation recognition protein that
recognizes a wide range of m6A-modified RNAs, is highly expressed
in HCC (59). The expression of autophagy related 16 like 1
(ATG16L1), a member of the autophagy family, is increased in
both HCC cells and tissues. This finding suggested that autophagy
may play a role in the progression of HCC (56). IGF2BP1 can
recognize circMDK via m6A sites, activate the PI3K/AKT/mTOR
signaling pathway through the miR-346/874-3p-ATG16L1 axis, and
ultimately promote the proliferation, migration and invasion of
hepatoma cells (56). IGF2BP1 recognizes the m6A modification of
circMAP3K4 and promotes its translation, thereby preventing
cisplatin-induced apoptosis in HCC cells by increasing the
interaction of circMAP3K4-455 aa with apoptosis inducing factor
(AIF) (57). High levels of circMAP3K4 serve as an independent
prognostic factor for poor overall survival and disease-free survival in
HCC patients (57). Furthermore, IGF2BP1 is capable of recognizing
the m6A-modified IncRNA MIR4435-2HG and enhancing its
expression in HCC (58). Moreover, overexpression of MIR4435-
2HG significantly reduces cell sensitivity to lenvatinib, enhances the
stem cell properties of HCC cells, and promotes tumorigenesis in
vitro and in vivo (58). Additionally, IGF2BP1 enhances alpha-1,6-
mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase V
(MGAT5) mRNA stability by increasing m6A modification, which
contributes to the promotion of the HCC stem cell phenotype, self-
renewal, chemotherapy resistance, and tumorigenesis in mice (59). In
conclusion, IGF2BP1 is highly expressed in HCC and enhances the
translational stability of corresponding HCC-associated RNAs by
recognizing the m6A site. This finding suggests that it may be an
important target for anticancer therapy.

3.1.3.2 YTHDF family

The YTHDF family is classified as m6A recognition proteins
and consists of YTHDF1, YTHDF2, and YTHDF3. These proteins
have been linked to the progression of HCC (60-63). Under
hypoxic conditions, hypoxia-inducible factor-lo. (HIF-1ot)
promotes the expression of YTHDFI1 by directly binding to its
promoter region. This mechanism facilitates hypoxia-induced
autophagy in HCC and autophagy-related malignancies through
the HIF-1o0/YTHDF1/ATG2A/ATG14 axis (60). Additionally,
YTHDF2 regulates the m6A methylation of octamer-binding
transcription factor 4 (OCT4) mRNA, thereby promoting a
cancer stem cell (CSC) liver phenotype and tumor metastasis
(61). Targeting YITHDEF2 to eliminate CSCs is a key focus in the
development of novel anticancer therapies (61). The m6A
modification mediated by YTHDF3 has been shown to promote
HCC migration, invasion, and EMT processes, underscoring its
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potential as a promising therapeutic target for HCC (62, 63).
Additionally, Circ_KIAA1429 has been identified as an oncogene
that targets zinc finger E-box binding homeobox 1 (Zebl)
downstream of HCC. Its high expression level has been associated
with a lower overall survival rate in HCC patients (62). Through
M6A-dependent mechanisms, YITHDF3 enhances Zebl mRNA
stability and promotes HCC progression through the TYHDF3/
Zeb1/KIAA1429 axis (62). Furthermore, YITHDEF3 plays a role in
enhancing the translation and stability of m6A-modified epidermal
growth factor receptor (EGFR) mRNA. This stimulation further
drives HCC progression through the YTHDF3/m6A EGFR/STAT 3
and EMT pathways (63).

3.1.3.3 LRPPRC

Programmed cell death ligand 1 (PD-L1) is a transmembrane
protein expressed on the surface of activated T cells, B cells, and
natural killer cells, and acts as a ligand for programmed cell death
protein 1 (PD-1) and is commonly found on the surface of tumor
cells (98). The interaction between these two proteins can effectively
suppress the activation and proliferation of T cells, diminish the
cytotoxic capabilities of T-cells towards tumor cells, and promote
immune evasion and tumor cell growth (65). PD-L1 plays a crucial
role as a coinhibitory immune checkpoint, and the PD1/PD-L1
signaling pathway functions to dampen the cytotoxic T-cell-
mediated killing effect within the tumor microenvironment,
thereby aiding in immune evasion by tumors (65). Research has
indicated that LRPPRC is upregulated in HCC and enhances PD-L1
expression through a m6A-mediated mechanism. This process
leads to increased stability of PD-L1 mRNA in cancer cells,
ultimately promoting tumor growth and facilitating immune
evasion and invasion by tumor cells (65).

3.2 m5C in HCC

NSUNSs are a class of m5C methyltransferases in which NSUN2
and NSUN4 are upregulated and NOP2 is downregulated in HCC
tissues and cells (77, 78, 99). The expression of NSUN4 varies across
different survival rates and grade distributions, indicating its
potential as an independent prognostic factor for HCC (99).

NSUN2-mediated gene mRNA and IncRNA H19 m5C
modifications regulate the progression of HCC (77, 78). In HCC
tissues, the m5C modification level of mRNA is significantly greater
than that in normal tissue, and growth factor receptor-bound
protein 2 (GRB2), ring finger protein 115 (RNF115) and apoptosis
antagonizing transcription factor (AATF) are the top NSUN2-related
m5C hypermethylated genes (78). GRB2 is a growth factor receptor-
binding protein that is expressed at significantly higher levels in HCC
tissues than in normal tissues and is considered a potential
therapeutic target for HCC (78). NSUN2 interacts with lin-28B, a
protein capable of recognizing mb5c, to facilitate the m5¢ modification
of GRB2 and enhance the stability of GRB2 mRNA. This process
ultimately contributes to promoting resistance in HCC cells to
sorafenib by activating the Ras and p-Erk pathways (78). H19, an
important tumor-related IncRNA, is targeted by NSUN2 in HCC
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(77). The NSUN2-mediated IncRNA H19 m5C modification
enhances its stability and increases its ability to bind specifically to
Ras-GTPase activating SH3 domain-binding protein 1 (G3BP1) to
promote the proliferation, migration and invasion of HCC cells (77).

NOP2, also known as NSUN1, is a member of the NSUN family
whose expression is downregulated in HCC (79). NOP2
overexpression enhances the expression of the antioncogene
xeroderma pigmentosum D (XPD) via m5C methylation of XPD,
thereby inhibiting the proliferation, migration and invasion of HCC
cells (79). These findings suggest that XPD may be a potential target
for HCC treatment.

ALYREF is a protein that recognizes m5C and is upregulated in
HCC (100). The EGFR signaling pathway plays a crucial role in
various cellular processes, and abnormal activation of EGFR is
observed in a wide range of tumors (100). ALYREEF stabilizes EGFR
by binding to the m5C site on EGFR mRNA, thereby activating
STATS3 signaling and promoting HCC progression (80).

3.3 mlA in HCC

mlA modification is involved in the progression and
treatment of HCC (Table 2). In HCC tissues, the m1A
modification levels of RNA are aberrantly elevated (81). The
expression levels of m1A methyltransferases, such as TRMT6 and
TRMTG61A, are significantly elevated in HCC tissues and are
negatively correlated with patient prognosis (81). The PPARS
protein, also known as peroxisome proliferator-activated receptor,
is associated with cholesterol synthesis (81). TRMT6/TRMT61A
enhances m1A methylation in tRNA, leading to an increase in
PPARSJ translation. This subsequently promotes cholesterol
synthesis and activates Hedgehog signaling, ultimately driving
self-renewal and tumorigenesis of liver CSCs (81).

In addition, the m1A demethylase ALKBH3 is significantly
upregulated in HCC tissues compared to nontumor tissues.
Furthermore, high expression of ALKBH3 has been associated
with poor prognosis (43). The overexpression of ALKBH3 has
been found to stimulate the proliferation and tumorigenesis of
HCC tumor cells, indicating a functional role for m1A modification
in promoting the cell cycle (82).

For binding proteins that specifically recognize the m1A site,
members of the YT'H domain family, such as YTHDFI, YTHDEF2,
and YTHDEF3, have been reported to be upregulated in HCC tissues
compared to normal tissues (83). Additionally, the expression levels
of YTHDF1, YTHDEF2, and YTHDEF3 are positively correlated with
immune cell infiltration in HCC tissues. This finding indicates a
functional role for m1A regulators in regulating immune cell
infiltration (83).

In addition, there have been reports suggesting that patients with
smaller tumors and good liver function may benefit from a combined
regimen of mitoxantrone, 5-fluorouracil, and cisplatin (90). The clinical
use of doxorubicin in patients with elevated levels of m1A modification
is more scientifically supported. These findings contribute to mitigating
the risk of doxorubicin-induced cardiotoxicity in patients and reducing
unnecessary overtreatment (90).
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3.4 m7G in HCC

Methylation of m7G has been found to be associated with the
progression of HCC and resistance to drugs (Table 2). Both
METTL1 and WDR4, which are essential components of the
m7G methyltransferase complex, have been reported to be
upregulated in HCC tissues and cells (84, 86). In HCC cells, MYC
activates the transcription of WDR4, which subsequently enhances
the stability and translation of cyclin Bl (CCNB1) mRNA by
facilitating binding of eukaryotic initiation factor 2A (EIF2A) to
CCNBI mRNA. This process ultimately promotes proliferation,
metastasis, and resistance to sorafenib (84, 86). Furthermore,
METTLI-mediated modification of tRNA m7G contributes to
hepatocarcinogenesis through translational control of target
mRNAs (86).

Long-term drug resistance is a significant challenge in the
treatment of HCC. Studies have indicated that METTL1 and
WDR4 are upregulated in lenvatinib-resistant cells (87).
METTL1/WDR4-mediated tRNA m7G modification enhances the
translation of genes within the EGFR pathway, ultimately leading to
lenvatinib resistance in HCC cells. This suggests a potential strategy
for overcoming drug resistance (87). In glioblastoma, tripartite
motif containing 28 (TRIM28) has been identified as a specific
marker of stem-like cells, contributing to their invasion (85).
Additionally, WDR4 amplifies TRIM28 expression, subsequently
affecting the expression of target genes and promoting cell-acquired
stemness as well as lenvatinib resistance (85).

Insufficient radiofrequency ablation (IRFA) is a major
contributing factor to the high recurrence rate of HCC treatment
(88). Studies have shown an association between m7G-tRNA
modification and HCC recurrence following IRFA treatment (88).
Specifically, after IRFA therapy, there was a significant increase in
the level of m7G tRNA modification and its associated
methyltransferase complex component METTLI/WDR4. This
increase facilitated the translation of SLUG/SNAIL during
sublethal heat stress in a manner dependent on codon frequency,
ultimately leading to elevated HCC recurrence and metastasis (88).

In summary, RNA modifications, such as m6A, m5C, m1A, and
m7G, through a series of modification regulatory proteins regulate
the expression of HCC-associated genes and are involved in the
progression of HCC via different signal axes. It is important to
emphasize that the alterations in the expression of RNA
modification regulatory proteins with similar functions in HCC
are somewhat inconsistent. Methyltransferases, such as METTL3
and METTLI14, as well as USUN2 and NOP2, exhibit opposite
expression changes in HCC. Their opposite expression changes play
a similar role in the progression of HCC by regulating the
expression of different target genes and subsequent signaling
pathways through RNA modification. There is no consensus on
the expression changes of some RNA modification regulatory
proteins, such as ALKBHS5 and FTO, in HCC. This suggests that
the expression of RNA modification regulatory proteins in HCC
may be dynamic and have different mechanisms of action in various
stages and types of the HCC. Therefore, more in-depth and detailed
classification research is needed to clarify this.
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At present, research on the role of RNA modification in HCC
mainly focuses on m6A, mlA, m5C, m7G, etc. Their combined
interactions form an intricate RNA modification network that
significantly influences the physiological and pathological
processes of HCC cells. However, whether these RNA
modifications interact with each other in HCC has not been
studied yet. The interactions between different types of RNA
modifications are complex and diverse, and they may affect each
other through synergistic effects, competitive relationships, cascade
effects (101). Both m6A and inosine occur at the N6 position of the
adenosine ring, but they do not compete for the same adenosine
(102). m5C and m6A work together to regulate the export of mRNA
to the cytoplasm through interactions with ALYREF and ALKBH5
(101). The m6A and m1A modifications on mRNA are recognized
by the same reader proteins YTHDF1-3. In addition, m7G plays a
role in facilitating the N6, 2-O-dimethyladenosine modification
within the cap structure of the extended RNA polymerase II
transcript (103). Despite the specific interplay between RNA
modifications not being fully elucidated, further research is
anticipated to unveil more about the mechanism and function of
these modifications, offering new insights and approaches for the
treatment and diagnosis of diseases.

4 Potential applications of RNA
modifications in HCC

4.1 Potential for use as diagnosis and
prognosis biomarkers

Proteins and genes associated with RNA modifications have the
potential to serve as biomarkers for the diagnosis and prognostic
evaluation of HCC (Table 3). This capability has the potential to
improve diagnostic accuracy and ultimately enhance the survival
rate of patients.

4.1.1 Role of m6A regulators in HCC diagnosis,
prognosis and drug resistance

The expression levels of KIAA1429, ALKBH5 and FTO were
reported to have the diagnostic potential in HCC (Table 3). A study
found that KTAA1429 expression had up to 0.85 of the area under
the curve (AUC) in the receiver operating characteristic curve
(ROC) analysis, which indicated that it has a relatively high
diagnostic value in HCC (47). Although studies have suggested
the potential diagnostic potential of ALKBH5 and FTO, their
potential and value as diagnostic markers have been reduced due
to inconsistent expression in different studies (52, 104, 105) and a
lack of ROC analysis data for diagnostic markers (48).

For the upregulated m6A methyltransferases in HCC cells, the
higher expression levels of KIAA1429, WTAP, and METTL3 are
associated with poorer overall survival outcomes and indicate a
poor prognosis and increased likelihood and severity of patients (35,
37, 43, 46). The micropeptide AC115619-22aa encoded by IncRNA
AC115619, as an inhibitor of WTAP, is also a potential prognostic
indicator for HCC (36). Additionally, the elevated expression of
ASPM facilitated by METTL3 via m6A modification is also strongly
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associated with a poor prognosis of HCC (34). The
methyltransferase METTL14 is downregulated in HCC, and lower
expression levels of METTL14 are associated with increased
likelihood and severity of HCC patients who underwent a poorer
overall survival (41). Besides, there are many pathways downstream
of METTL14 that increase the likelihood and severity of HCC (107).
Reduced HNF3y expression is associated with the malignant
features of HCC and is correlated with poor patient survival (40).
CircSTX6 and its encoded proteins are expected to have the
potential to serve as biomarkers for the diagnosis, prognosis, and
treatment of HCC (38).

Low expressions of demethylases ALKBH5 and ZC3H13 are
associated with poor prognosis in HCC patients (48, 50, 55).
Additionally, the overexpression of ALKBH5 has been found to
cause a decrease in the level of the lincRNA LINC02551, which has
been utilized as a prognostic biomarker for HCC (49). Furthermore,
the overexpression of the demethylase RALYL has been associated
with a poorer prognosis, lower levels of differentiation, and an
increased likelihood of metastasis in clinical HCC patients (54). The
expression of FTO varies in different studies, with one study
showing high expression and another showing low expression,
both of which were linked to poorer survival in HCC patients
(52, 104, 105). These conflicting findings indicate the multifaceted
and functionally complex nature of FTO in HCC, highlighting the
need for further research to elucidate its molecular mechanism. The
deacetylase SIRT1 reduces the expression of the m6A demethylase
FTO, thereby increasing the m6A levels of its downstream target
GNAOI! and downregulating its mRNA expression during HCC
tumorigenesis (53). The discovery of potential diagnostic
biomarkers such as SIRT1, FTO, and GNAOI offers a promising
direction for future research. This area holds significant promise for
further investigation and exploration (53).

The significant overexpression of the m6A reading proteins
IGF2BP1, YTHDF1, YTHDF2, YTHDF3, and LRPPRC in HCC
tissues has been associated with a poorer prognosis for patients
(Table 3). IGF2BP1 can promote the progression of HCC through
the m6A-mediated upregulation of circMDK and circMAP3K4,
which are associated with poor survival in HCC patients and serve
as potential tumor biomarkers (56, 57). Furthermore, the results of
multivariate Cox regression analysis indicated that the expression of
YTHDEF1 served as an independent prognostic factor for patients
with HCC (60). In addition, scientists have shown a negative
correlation between YTHDEF2 expression and patient survival
(61). Therefore, YTHDF2 plays a significant role in the
oncogenesis of HCC and can serve as a valuable biomarker for
HCC patients. Additionally, the expression level of YTHDF3 in
HCC tissues was found to be significantly greater than that in
adjacent liver tissues (62). YTHDEFS3 plays a crucial role in regulating
the progression of HCC, providing a promising new target for HCC
treatment (63). In conclusion, the YTHDF family is closely
associated with the prognosis of HCC patients and may represent
a potential target for the future treatment of HCC. Additionally,
LRPPRC is frequently upregulated in HCC tumors, which is linked
to advanced disease stages and poor prognosis (65).

Overall, about thirteen m6A regulators are reported to be
closely related to HCC prognosis and have a potential for use as
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TABLE 3 Potential for use as diagnosis and prognosis biomarkers of HCC.

10.3389/fimmu.2024.1439485

. . . : Prognosis . .
Biomarker < Expression Diagnosis (AUC) (E|R) Treatment decision utility
HCC di i
KIAA1429 Up (TCG;?%:;;S Poor prognosis (>1) Promote sorafenib resistance (46, 47)
WTAP Up - Poor prognosis (>3) - (43)
METTL14 Down - Increased h,kethOd and Weaken sorafenib response (39-41)
severity (>2)
I likelih
METTL3 Up - nereased 1.ke thood and Promote lenvatinib resistance (35, 37)
severity (>1)
HCC di i
ALKBH5 Down ce (1;)1gn051s Poor prognosis (>2) - (48)
HCC di i
FTO Up (‘?gm’“s Poor survival (>1) - (52, 104)
Down - Poor survival (>1) - (105)
Enh: isplati d 5-
RALYL Up - Poor survival (>4) fhance cispiatin an (54)
fluorouracil resistance
ZC3H13 Down - Poor survival(>1) - (55)
IGF2BP1 Up - Poor survival (>1) Promote lenvatinib resistance
YTHDF1 Up - Poor prognosis (>1) - (60)
YTHDF2 Up - Poor prognosis (>1) - (61)
YTHDEF3 Up - Poor prognosis (>5) - (62, 64)
LRPPRC Up - Poor prognosis (>1) - (65)
NSUN2 Up B Increased li.kelihood and B 78)
severity (>1)
H . .
ALYREF Up ce C(h;gms‘s Poor prognosis (>2) - (80, 106)
I d likelihood and
METTL1 Up - nerease i cinood an: Promote lenvatinib resistance (87)
severity (>1)
I d likelihood and
WDR4 Up - nerease l cihood an Promote sorafenib resistance (84)
severity (>1)

HCC, hepatocellular carcinoma; REF, references; AUC, area under receiver operating characteristic curve; HR; hazard ratio of overall survival; TCGA, the cancer genome atlas.

prognosis biomarkers, including four methyltransferases
(KIAA1429, WTAP, METTL14 and METTL3), four demethylases
(ALKBHS5, FTO, RALYL and ZC3H13), and five reading proteins
(IGF2BP1, YTHDF1-3 and LRPPRC (Table 3). Among them, the
high expression of WTAP, RALYL, YTHDE3, etc. showed a higher
hazard ratio of overall survival (>3) in survival analysis, indicating a
more significant correlation and impact on poor survival rates,
suggesting that these markers have relatively higher prognostic
value (Table 3). It should be noted that the expression changes of
ALKBHS, and FTO in HCC vary in different studies, and these
contradictory results need further research and clarification. In
addition, the differences in the patient source, quantity, and
calculation method of the survival curve analysis of these
regulatory proteins indicate strong heterogeneity. Therefore, the
confirmation of the prognostic value of each factor still requires
multi-center large-scale sample validation. Confirming the
prognostic performance of these potential markers through
further ROC curve analysis of large sample sizes is an important
research direction for the future. In addition, most previous studies
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have analyzed these factors as independent prognostic factors for
patients with HCC, attempting to conduct a joint analysis of these
factors for prognosis, which may provide a more comprehensive
display of the relationship between m6A regulators and
HCC prognosis.

In addition to patient survival rates, some m6A regulators also
exhibit a correlation with targeted anti-cancer drugs or chemotherapy
drugs, promoting cancer cell drug resistance (Table 3). High
expression of KIAA1429 and low expression of METTL14 can
promote sorafenib resistance in HCC cells. KIAA1429 is involved
in promoting invasion, migration, and EMT in sorafenib-resistant
HCC by mediating m6A methylation (21). THNF3y reduction caused
by METTL14 knockdown upregulates the expression of the sorafenib
influx transporters OATP1B1 and OATPI1B3, thereby rendering
sorafenib resistance in HCC, and enforced HNF3y expression
enhances the cellular response to sorafenib in HCC (40). Similarly,
high expression of METTL3 and IGF2BP1 can promote lenvatinib
resistance in HCC cells, while high expression of RALYL enhances
cisplatin and 5-fluorouracil resistance. Targeting METTL3 with the
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specific inhibitor STM2457 improved sensitivity to lenvatinib in both
in vitro and in vivo studies (35). This discovery suggested that
METTL3 might serve as a potential therapeutic target for
overcoming lenvatinib resistance in HCC. There have been reports
suggesting that patients with smaller tumors and good liver
function may benefit from a combined regimen of mitoxantrone,
5-fluorouracil, and cisplatin (108). Inhibiting RALYL could
potentially improve the effectiveness of a combination therapy
involving mitoxantrone, 5-fluorouracil, and cisplatin, providing
new strategies for treating HCC. These results not only provide a
theoretical basis for personalized medication for patients but also
offer new directions for increasing drug sensitivity research. The
combination of specific inhibitors or downstream target genes that
modify related proteins with chemotherapy drugs may provide new
strategies for the treatment of HCC.

4.1.2 Role of m5C regulators in HCC diagnosis,
prognosis and drug resistance

Regulators of RNA m5C modification and their target HCC-
related oncogenes are potential diagnostic and prognostic
biomarkers for HCC (Table 3). A significant increase in the
expression of IncRNA H19 was reported to be associated with the
development of various types of tumors (77). The RNA m5C
methyltransferase NSUN2 regulates the stability of IncRNA HI19
through m5C modification and may serve as a potential new target
and biomarker for the treatment of HCC (77). In addition, NSUN2
has been found to impact the sensitivity of HCC cells to sorafenib by
regulating the activity of the Ras pathway (78). The sensitivity of
NSUN?2 knockout cell lines to sorafenib was significantly greater
than that of control cells (78). ALYREF, functioning as a “reader”
for the m5C site in RNA, is a protein that shuttles between the
nucleus and cytoplasm, and plays a critical role in facilitating the
transportation of RNA from the nucleus to the cytoplasm. The
upregulation of ALYREF has been associated with poor prognosis
in HCC patients, indicating its potential as a valuable target for
diagnosing and predicting prognosis in HCC patients (80, 100). The
higher HR value of ALYREF than NSUN2 suggests a priority
prognostic value of ALYREF. However, due to the lack of
necessary ROC analysis, further analysis of large sample sizes is
needed to confirm the prognostic or diagnostic values of NSUN2
and ALYREF.

4.1.3 Role of m7G regulators in HCC prognosis
and drug resistance

The upregulation of the m7G methyltransferases METTLI1 and
WDR4 has been reported to be correlated with advanced tumor
stage and unfavorable patient survival outcomes in the literature
(86). Investigators have shown that METTL1-mediated tRNA m7G
modification plays a critical role in lenvatinib resistance in HCC
cells by enhancing the translation of EGFR pathway genes (87).
WDR4 overexpression significantly increased the half-maximal
inhibitory concentration value of sorafenib in HCC cells (77).
Some researchers propose that both METTL1 and WDR4 have
the potential to serve as biomarkers for predicting the efficacy of
lenvatinib and sorafenib (87). The potential application of m7G
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regulators in HCC is still in the early stages of research. Further
exploration of new m7G regulators involved in the occurrence and
progression of HCC may provide new targets for the prognosis and
treatment of HCC.

4.1.4 Potential applications of non-coding RNAs
regulated by RNA modification

Non-coding RNAs, as important target sequences regulated by
RNA modifications, play a crucial role in the pathogenesis of HCC
(Figure 3). Upregulated circRNAs dependent on M6A modification,
including circ-CCT?3, circSTX6, circ-ARL3, circMDK, circMAP3K4,
and circ KIAA1429, are involved in the proliferation, invasion,
migration, and apoptosis of HCC cells. Upregulated IncRNAs
dependent on m6A modification, such as GBAPI, Inc-CTHCC,
LINC00958, MIR4435-2HG, etc., play similar functional roles in
the progression of HCC. Certain non-coding RNAs regulated by
RNA modification showed significant application potential in the
diagnosis, prognosis, and treatment of HCC. The elevated expression
of circSTX6 has an AUC of up to 0.8565 in the diagnostic ROC
analysis, suggesting a considerable diagnostic significance in HCC
(38). The high expression of LINC00958, Inc-CTHCC showed a
higher hazard ratio of overall survival (>2) in survival analysis,
indicating a more significant correlation and impact on poor
survival rates, suggesting that these markers have relatively higher
prognostic value (30, 31). Overexpression of MIR4435-2HG
significantly reduced cell susceptibility to lenvatinib, suggesting its
role in cell resistance to lenvatinib (58). Nevertheless, most research
has focused solely on investigating the impact of partial non-coding
RNA in m6A modification, leaving a gap in understanding the
connection between miRNA and RNA modification, along with the
correlation between m5C, m1A, m7G, and RNA modification. This
presents a promising avenue for further investigation.

4.2 Potential agents targeting
RNA modification

4.2.1 Potential agents targeting m6A

As the link between RNA modifications and cancer continues to
be discovered, the demand for inhibitors of the associated proteins
is increasing. The role of the m6A methyltransferase METTL3 in
various diseases is continuously expanding, and there is also a
growing focus on the development of METTL3 inhibitors. This has
garnered increasing attention in academic research and scholarly
discourse (Figure 4). Adenosine was the first reported METTL3
inhibitor that acts in a SAM-competitive manner to reduce the level
of m6A modification (109). UZH2 is a small molecule inhibitor that
selectively targets METTL3 and reduces the m6A levels of
polyadenylated RNA in the MOLM-13 (acute myeloid leukemia)
and PC-3 (prostate cancer) cell lines and has great potential as a
therapeutic agent for cancer (110, 111). Curcumin, a polyphenolic
pigment derived from turmeric, is yellow in color and has been
reported to exhibit anti-inflammatory, anticancer, antioxidant, and
antibacterial activities (112). Curcumin can increase the level of
m6A modification in piglet liver by affecting the mRNA expression
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of METTL3, METTL14, ALKBH5, FTO, and YTHDF2 and
subsequently attenuate polysaccharide-induced disorders of
hepatic lipid metabolism (113).

FTO, a m6A demethylase, has been reported to play important
roles in various diseases, including HCC and diabetes mellitus, and
is a potential therapeutic for related diseases (114). Entacapone and
meclofenamic acid (MA) are reported to be inhibitors of the m6A
demethylase FTO (Figure 4) (114-116). As a chemical inhibitor,
entacapone inhibits FTO-mediated metabolic regulation through
forkhead box O1 (FOXO1) (114). MA, a nonsteroidal anti-
inflammatory drug, has been identified as a highly selective FTO
inhibitor that competitively binds to FTO, thereby enhancing
overall m6A modification levels (97). In the case of inhibitors
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targeting another m6A demethylase, ALKBHS5, only a small
number of nonselective compounds have been discovered
(Figure 4). The majority of these compounds are 20G oxygenase
inhibitors, with only a limited few characterized as ALKBH5
inhibitors. Currently, there is a lack of significant selective
inhibitors for ALKBH5 (117).

In addition, Hong et al. conducted a structure-based drug
screening and identified tegaserod as a potential inhibitor of
YTHDEF1 (Figure 4) (118). Tegaserod functions by blocking the
binding of YTHDF1 to m6A-modified mRNA, thereby inhibiting
the YTHDF1-mediated translation of Cyclin E2. This suggests that
tegaserod may serve as a promising antitumor agent (119).

Modulation of the tumor immune microenvironment has
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emerged as a novel approach for cancer immunotherapy in HCC,
with m6A modification being an ideal target due to its role in the
immune response (120). The expression of IGF2BP1, which
recognizes m6A modifications, is significantly upregulated in
HCC and is associated with immune cell infiltration (121).
Cucurbitacin B has been demonstrated to inhibit the binding of
IGF2BP1 to m6A-modified mRNA and increase immune cell
infiltration, suggesting that it is a potential anti-HCC agent
(Figure 4) (121).

4.2.2 Potential agents targeting m5C

The m5C writing protein is a promising target for the treatment
of HCC. The upregulation of the m5C methyltransferase NSUN2 in
HCC has been observed (77). Knocking down NSUN2 leads to
reduced levels of m5C modification, and some unmodified tRNAs
undergo complex changes to become tfRNAs (tRF-GIn-CTC-026),
which effectively alleviate liver injury by inhibiting global
protein synthesis (GPS) (122). Efforts to deplete NSUN2 and
provide protective tfRNAs are potential treatments for liver injury
and have significant implications for reducing the risk of
HCC occurrence.

4.2.3 Potential agents targeting m1A

Thiram, a potent inhibitor of the m1A methyltransferase
complex TRMT6/TRMTG61A, has been shown to significantly
inhibit the self-renewal of hepatic CSCs and hepatic tumor
growth (Figure 4) (81). Furthermore, when combined with the
PPARS antagonist GSK3787, thiram synergistically inhibits the
development of HCC and the growth of tumors that are
hypermethylated with m1A (81).

4.2.4 Potential agents targeting m7G

Ribavirin is a widely used antiviral medication that has recently
been shown to possess antitumor effects as a m7G cap analog that
inhibits cell proliferation (Figure 4) (123). Additionally, the eIF4E
antisense oligonucleotide drug (4EASO) is a well-established
medication that competitively inhibits eIF4E binding to the m7G
cap (124). These medications have shown promising results in
halting cancer progression and improving prognosis, offering
hopeful prospects for the development of additional m7G-
targeted drugs.

5 Challenges and opportunities for
RNA modification

Currently, research on the role of RNA modification in HCC
mainly focuses on m6A, m1A, m5C, and m7G. The expression of

» o«

RNA modification regulators, including “writer”, “eraser” and
“reader” proteins, changed significantly in HCC, and are involved
in the proliferation, autophagy, innate immunity, invasion,
metastasis, immune cell infiltration, and drug resistance of HCC
via different signal axes. The varying expression of RNA
modification regulatory proteins with similar functions in HCC,

along with the lack of consensus on the expression changes of some
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RNA modification regulatory proteins, indicates that the expression
of these proteins in HCC may be dynamic and have different
mechanisms of action in various stages and types of the disease.
Consequently, further comprehensive and detailed classification
research is necessary to elucidate this matter. Additionally,
additional investigation is required to ascertain the relationships
between these various forms of RNA modifications. In addition to
the aforementioned modifications, there are still multiple types of
RNA modifications involved in regulating post-transcriptional gene
expression, including 5-hydroxymethylcytosine, pseudouridine,
and 2’-O-methylation. Exploring whether these recently
discovered RNA modifications are also involved in the occurrence
and development of HCC may be a new research hotspot in the
future. As high-throughput sequencing technology and novel
biomarkers continue to advance, we will be able to delve deeper
into the intricate regulatory network of RNA modifications in HCC,
ultimately providing more precise and effective approaches for
clinical diagnosis and treatment.

Studying RNA modifications in HCC will contribute to an in-
depth understanding of the pathogenesis of HCC, the search for
new diagnostic and prognostic markers, the development of new
therapeutic strategies, and the assessment of treatment efficacy and
the monitoring of recurrence. These findings provide a new
perspective for the diagnosis and treatment of HCC by targeting
specific RNA-modifying enzymes, recognition proteins, or related
RNAs. More than ten RNA-modifying regulators showed the
potential for use for the diagnosis, prognosis, and treatment
decision utility biomarkers of HCC. KIAA1429 has a relatively
high diagnostic value in HCC. For other potential diagnostic
markers, further research is needed because of inconsistent
expression in different studies and a lack of ROC analysis data for
diagnostic markers. WTAP, RALYL, and YTHDEF3 exhibit
significantly higher prognostic significance in HCC. However, the
validation of their prognostic value necessitates extensive multi-
center sample validation and ROC curve analysis in the future. On
the other hand, prior research has focused on examining these
factors separately as prognostic indicators for HCC patients.
Conducting a combined analysis of these factors could offer a
more comprehensive understanding of the association between
RNA-modifying regulators and HCC prognosis. Some RNA-
modifying regulators also exhibit an association with targeted
anti-cancer drugs or chemotherapy drugs, which provide a
theoretical basis for personalized medication for patients. The
concurrent administration of drugs and inhibitors of regulatory
proteins based on the relationship between regulatory proteins and
drug resistance may enhance the sensitivity of drugs and offer novel
approaches for managing HCC.

A growing number of RNA modifier inhibitors are being
developed, but the lack of preclinical experiments and clinical
studies targeting RNA modification in HCC poses a significant
obstacle, and further research is needed to evaluate their application
value in HCC treatment. Studying RNA modifications in liver
cancer necessitates careful consideration of the potential and
challenges associated with its translational application. Although
RNA modification may present a novel target for HCC treatment,
the lack of specific drugs targeting RNA modification poses a
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significant obstacle. Many RNA modifications occur at low levels,
making it difficult to selectively target and manipulate modified
RNA molecules without affecting unmodified ones. Additionally,
our understanding of the structural domains of certain RNA
modifiers, such as those in the NSUN and TRMT families,
remains limited. This lack of knowledge makes it even more
challenging to design inhibitors that effectively target these
proteins. Therefore, further investigation into the mechanism of
action of RNA modification is imperative to identify effective
strategies for regulating this process and to evaluate its safety and
efficacy. The development of effective tools and techniques for
targeting and manipulating specific RNA modifications is an
ongoing challenge. Overcoming these obstacles will pave the way
for the development of targeted therapies and interventions that can
harness the potential of RNA modifications in various biological
and disease settings.

6 Conclusion

RNA modifications play a crucial role in HCC progression.
Specific RNA modification pathways, such as m6A, m5C, m1A, and
m7G, are erroneously regulated by a series of modification
regulatory proteins, thereby regulating the expression of HCC-
associated genes, and are involved in the proliferation, autophagy,
innate immunity, invasion, metastasis, immune cell infiltration, and
drug resistance of HCC. These functional roles and molecular
mechanism advancements of RNA modification offer new
perspectives on the pathogenesis, as well as potential new
diagnostic and prognostic markers and therapeutic strategies of
HCC. At present, over ten RNA-modifying regulators have
displayed promise as biomarkers for the diagnosis, prognosis, and
treatment decisions related to HCC. However, the practical
application of these biomarkers in HCC necessitates thorough
validation across multiple centers in the future. Agents targeting
RNA modification are potential therapeutic strategies for HCC. The
concurrent administration with the inhibitors of RNA modification
may enhance the sensitivity of drugs and offer novel approaches for
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managing HCC. While a growing number of RNA modifier
inhibitors are being developed, the absence of preclinical and
clinical studies focusing on targeting RNA modification in HCC
presents a significant challenge. Further investigation is crucial to
assess the efficacy of these inhibitors in the treatment of HCC.
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RNA modifications are epigenetic changes that alter the structure and function of
RNA molecules, playing a crucial role in the onset, progression, and treatment of
cancer. Immune checkpoint inhibitor (ICl) therapies, particularly PD-1 blockade and
anti-CTLA-4 treatments, have changed the treatment landscape of virous cancers,
showing great potential in the treatment of different cancer patients, but sensitivity to
these therapies is limited to certain individuals. This review offers a comprehensive
survey of the functions and therapeutic implications of the four principal RNA
modifications, particularly highlighting the significance of m6A in the realms of
immune cells in tumor and immunotherapy. This review starts by providing a
foundational summary of the roles RNA modifications assume within the immune
cell community, focusing on T cells, NK cells, macrophages, and dendritic cells. We
then discuss how RNA modifications influence the intricate regulatory mechanisms
governing immune checkpoint expression, modulation of ICI efficacy, and
prediction of ICI treatment outcomes, and review drug therapies targeting genes
regulated by RNA modifications. Finally, we explore the role of RNA modifications in
gene editing, cancer vaccines, and adoptive T cell therapies, offering valuable insights
into the use of RNA modifications in cancer immunotherapy.

KEYWORDS

RNA modification, cancer, immune checkpoint, immune cell, immune therapy

Introduction

RNA modification is an epigenetic change that alters the structure and function of RNA
molecules by inserting, deleting, or substituting nucleotides at specific locations, playing a key
role in cellular physiology and pathology. Currently, the roster of RNA modifications that
have been pinpointed has extended to over 170 distinct subtypes (1), including methylation,
acetylation, pseudouridinization, among others.
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RNA methylation modifications are regulated by specific
proteins, including methyltransferase “writers” that add marks,
demethylase “erasers” that remove them, and “readers” that
recognize these modifications. Among RNA modifications, N1-
methyladenosine (m1A) (2), 5-methylcytosine (m5C) (3), N6-
methyladenosine (m6A) (4), and 7-methylguanosine (m7G) have
been the focus of comprehensive studies regarding their oncogenic
properties and are viewed as key determinants in the occurrence (5),
development, and treatment of tumors.

Immune cells within tumors play a key role in clearing the
tumor. Activating immune cells, especially the tumor-clearing
functions of T cells, can suppress tumor growth. However,
immune cells in the tumor microenvironment are typically in a
state of suppression, leading to immune evasion. We have found
that RNA modifications are involved in the regulation of immune
cell suppression in tumors. Immunotherapy, such as anti-PD-1/PD-
L1 therapy, has been widely applied in clinical practice, but only a
subset of patients is sensitive to immunotherapy. The efficacy of
cancer immunotherapy is contingent upon a multitude of factors,
including the type of tumor, tumor’s mutational burden, the
stability of microsatellites, and the combined use of chemotherapy
drugs. Notably, the presence of immune cell infiltration within the
tumor microenvironment and the expression of immune
checkpoints on the tumor’s surface play pivotal roles in the
therapy’s success. We have found that RNA modifications,
primarily the m6A modification, have a complex regulatory effect
on the tumor infiltration of immune cells and the expression of PD-
L1. By targeting the m6A regulators in tumors or immune cells, it is
possible to increase immune cell infiltration, regulate the expression
of PD-LI, sensitize patients to immunotherapy, inhibit tumor
growth, and ultimately improve patient prognosis.

We have compiled a summary of the regulatory roles of four
types of RNA methylation modifications, mainly m6A
modification, in immune cells, as well as their regulatory effects
on the expression of PD-L1 in tumor cells and the research progress
on m6A regulators as therapeutic targets. We also reported on the
predictive role of methylation modification-related genes in the
efficacy of immunotherapy.

Overview of RNA modifications

mo6A, representing N6-adenosine methylation, is recognized as
the most frequent and plentiful type of post-transcriptional RNA
modification, predominantly occurring within mRNA in the
nucleus (6). This modification contributes to essential life
processes such as hematopoiesis, central nervous system
development, and germ cell differentiation (4). Common
regulatory enzymes include “writers” METTL3, METTL14,
METTLI16, “readers” YTHDF1, YTHDF2, YTHDF3, LRPPRC,
IGF2BP1 and IGF2BP3, among others, and “erasers” FTO,
ALKBHS5. METTL3 is the most critical ‘writer’ enzyme for m6A
modification, serving as the catalytic subunit of the
methyltransferase complex that mediates N6-methyladenosine
(m6A) methylation on mRNA. It commonly forms a heterodimer
with METTL14, facilitating the process (7). Wilms Tumor 1
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Associated Protein (Wtap), a regulatory subunit of the complex,
enhances the binding affinity of METTL3 for mRNA (8). METTL3
and METTL14 are primarily located in the nucleus, while
METTLI6 is mainly found in the cytoplasm. Although METTL16
also mediates the m6A modification, its role in promoting
tumorigenesis in various cancers is more noteworthy, which is
related to the acceleration of mRNA translation by METTL16
binding to eIF3a/b in the cytoplasm (9). YITHDFs recognize
mRNAs modified with m6A; YTHDF1 promotes the translation
of these mRNAs, while YTHDF?2 accelerates their degradation (10).
YTHDEF3 interacts with YTHDF1 to augment translation of m6A-
modified mRNA and influences the RNA binding activity of
YTHDEF2 (11). And IGF2BPs enhance the stability of mRNA after
recognizing m6A modification (12). FTO and ALKBHS5 are the only
two demethylases identified for m6A demethylation, which remove
the m6A modification from RNA (Figure 1). The role of m6A
regulatory enzymes in cancer has been widely reported. Several
preclinical experiments have demonstrated that the use of drugs
targeting m6A regulators can inhibit tumor growth or enhance the
therapeutic efficacy of immunotherapy (Table 1).

mlA and m5C modifications predominantly occur in mRNA,
tRNA, and rRNA. The m1A modification is mainly found in tRNA
and shares some similarities with m6A modification in mRNA,
although it occurs at a much lower frequency. The similarities
between mIA and m6A modifications are also reflected in their
shared binding proteins YTHDF1, YTHDEF2, YTHDEF3, and the
demethylase FTO (2). m5C plays an important role in maintaining
the structure and stability of tRNA and rRNA. m5C modification
can occur in mRNA and can regulate the stability of mRNA, but the
research on m5C in mRNA is not sufficiently in-depth and
comprehensive (3). m7G is widely present in mRNA and is
crucial in the translation process and is involved in many
important physiological processes (5).

The emergence of new sequencing technologies and bioinformatics
tools has facilitated the detection and in-depth understanding of RNA
modifications. However, there are still many RNA modifications that
have not yet been discovered, and research on many that have been
confirmed is far from adequate. We have primarily focused on the
function of m6A modification, as it is the most prevalent and well-
studied modification in mRNA, but it is important to recognize that
other RNA modifications also hold significant potential. The
relationship between RNA modifications and the occurrence and
development of tumors, as well as their therapy, is currently a
hotbed of research. Multiple regulators of RNA modifications are
considered oncogenes and have shown potential therapeutic value.
The exploration of gene editing technology to enhance RNA
modifications that combat tumors and reduce those that promote
tumor growth also presents a valuable research avenue.

RNA modifications in immune cells
T cells

T cells have been pivotal in the ongoing oversight and
extermination of tumors (33), and their function within tumors is
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The process of m6A modification: m6A modification is catalyzed by “writers” in the nucleus and regulates the stability, translation, and degradation
of RNA after being recognized by “readers” in the cytoplasm. The m6A modification is removed by “erasers”.

regulated by RNA modifications (Figure 2). The m6A methylation
catalyzed by METTL3 is essential for preserving T cell stability and
directing their differentiation, with influence over the growth and
specialization of naive T cells through the IL-7/STATS5/SOCS axis.
Removal of METTL3 from T cells leads to a contraction of the Th17
and Thl lineages and an escalation in the Th2 cell presence among
naive T cells, contrasting with the METTLI14 knockout, which
impedes T cell maturation beyond the naive stage (34). The m6A/
ALKBHS5 mechanism is instrumental in controlling the equilibrium
of Y0 T cell development. ALKBH5 modulates the signaling of
Jagged1/Notch2 by removing m6A modifications on them, thereby
imposing a restraint on the developmental progression and the
lineage specification of ¥ T cells (35). Moreover, METTL3 dictates
the progression and role of iNKT cells through the METTL3/m6A/
Crebl axis. Deletion of METTL3 impairs the proliferation,
differentiation, and cytokine secretion of iNKT cells, leading to a
deficiency in tumor resistance (36).

In CD4" T cells, the m1A modification (tRNA-m1A58) at the
58th nucleotide position within the tRNA sequence, mediated by
the “writer” protein TRMT61A, ensures the efficient translation of
Myc mRNA, thereby supporting the propagation and the functional
diversification of CD4" T cells (37). The expression levels of m5C
“writer” NSUN3 and NSUN4 are positively correlated with CD8* T
cell infiltration, and NSUN4 expression levels are positively
associated with the presence of CD4" T cells (38). The expression
level of NSUN2 is also related to CD4" T cells and may be involved
in the regulation of CD4 memory T cells (39). Regulatory T cells
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(Treg), a specialized subset of CD4" T lymphocytes, are pivotal in
sustaining immune tolerance and averting autoimmune responses.
In tumors, Treg cells can suppress immune responses within the
tumor, leading to immune evasion (40). Mettl3 contributes to the
upregulation of the IL-2/STATS5 pathway via its capacity to catalyze
m6A modifications, regulating members of the SOCS family,
thereby maintaining the function and stability of Treg cells and
promoting T cell suppression (41). YTHDFI reads the m6A-
modified c-Myc mRNA, thereby regulating the translation and
expression of c-Myc in Treg cells, and thus coordinating Treg
homeostasis (42). YTHDF2 is involved in the regulation of Treg
cells in the tumor microenvironment (TME), maintaining the
survival and function of Treg cells by controlling the TNF-NF-xB
signaling pathway within Treg cells. The absence of YTHDF2 in
Treg cells of the tumor microenvironment leads to an increase in
CD8" T cell infiltration and the expansion of the antitumor CD4"*
TH1 subset (43). In squamous cell carcinoma of the head and neck,
METTLI deletion leads to a substantial reduction in Treg cells and
the amelioration of CD4" T cell exhaustion. This indicates that
METTLI1-mediated m7G modulates immune infiltration by
regulating the levels of Treg cells (44, 45). Follicular helper T
(Tth) cells, a specialized subset of CD4™ T cells, are instrumental
in the orchestration of humoral immune responses. METTL3
regulates the Tcf7 transcript through m6A modification, ensuring
proper differentiation and development of TFH (46). As an
indispensable element of the heterodimeric methyltransferase
complex, Wtap also participats in the regulation of T cells. The
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TABLE 1 Drugs targeting m6A and their mechanisms.

10.3389/fimmu.2024.1463847

Targeting Cancer type Function References
Regulators

STM2457 METTL3 myeloid leukemia decrease acute myeloid leukemia growth, increase its (13)
differentiation and apoptosis

miR-4429 gastric cancer inhibit GC cells proliferation and induce apoptosis (14)

Metformin breast cancer inhibit the miR-483-3p/METTL3/m6A/p21 pathway to (15)
suppress proliferation of breast cancer cells

BTYNB IGF2BP1 melanoma and ovarian cancer inhibit the binding of IMP1 to c-Myc mRNA suppresses (16)
the proliferation of ovarian cancer and melanoma cells

Triptonide nasopharyngeal carcinoma disrupt Lnc-THOR-IGF2BP1 signaling and inhibit (17)
tumor growth

Ucurbitacin B HCC induce tumor cell apoptosis and increase immune cell (18)
infiltration by allosterically blocking the interaction
between IGF2BP1 and m6A through the KH1-2 domain

CWII1-2 IGF2BP2 acute myeloid leukemia(AML) inhibited glutamine absorption and impair mitochondrial (19)
function in AML cells, suppress AML progression

ABCF1 mRNA IGF2BP3 Ewing’s sarcoma bind and inhibit IGF2BP3, suppress the growth of Ewing’s | (20)
sarcoma cells

Berberine colorectal cancer downregulate IGF2BP3 and inhibit PI3K/AKT pathway to | (21)
inhibit the proliferation of colorectal cancer cells

LNP-iYthdfl YTHDF1 nonalcoholic steatohepatitis-related enhance the efficacy of PD-1 blockade therapy (22)

hepatocellular carcinoma

DF-A7 YTHDEF2 colon adenocarcinoma and melanoma | promote the infiltration and M2 polarization of CX3CR1" = (23)
macrophages, inhibit glycolysis in tumor cells, and
enhance the effector functions of CD8" T cells

1X5 T-cell acute lymphoblastic leukemia bind to the IGF2BP2 KH3-4 domain and inhibit (24)
proliferation of tumor cells

CS1 and CS2 FTO AML inhibit FTO activity and signaling thereby suppresses the (25)
viability of AML cells

Saikosaponin D inhibit proliferation of AML cells, promote cells apoptosis | (26)
and cycle arrest

R-2HG target the FTO/m6A/MYC/CEBPA signaling to inhibit (27)
proliferation of AML cells

FB23-2 inhibit proliferation of AML cells (28)

Dac51 melanoma increase infiltration and cytotoxicity of CD4"T cells, (29)
inhibit tumor growth, and have a synergistic effect with
anti-PD-L1 blockade

MV1035 ALKBH5 Glioblastoma inhibit ALKBHS5, thereby suppress the migration and (30)
invasiveness of tumor cells

ALK-04 melanoma inhibit Mct4/Slc16a3 expression, lactate content, Treg cells | (31)
MDSC in TME and enhance the efficacy of GVAX/anti-
PD-1 therapy

Hiram TRMT6/TRMT61A HCC inhibit the growth of HCC (32)

knockout of WTAP leads to a reduction in the abundance and
spontaneous activation of peripheral CD4" and CD8" T cells and
eliminates the expansion effect induced by the T cell receptor
(TCR). Additionally, Wtap is essential for the regulatory control
of apoptosis in CD4" T cells, impacting their survival upon TCR
engagement (47).

The absence of YTHDEF2 in tumors impairs tumor glycolytic
metabolism, therefore enhancing the mitochondrial respiration of
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CD8" T cells to strengthen antitumor capabilities (23). A pan-
cancer examination has shown that METTLI, an enzyme
responsible for m7G methylation, is positively correlated with
Treg cell numbers in diverse cancer subtypes. The m7G
methyltransferase WBSCR22 has been shown to regulate the
Zacl/p53 pathway to exert a pro-tumorigenic effect and is highly
expressed in activated CD8" T cells, indicating that WBSCR22 may
participate in the regulation of CD8" T cells (48, 49). The m5C
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methylation reader YBX1 is positively correlated with CD4"
memory T cells, CD8" T cells, type 1 and type 2 T helper cells in
pancreatic ductal adenocarcinoma (50). The m5C
methyltransferase NSUN2 mediates m5C modification of TREX2
transcripts after being activated by glucose, inhibiting the activation
of cGAS/STING, thus inhibiting the infiltration of CD8" T cells
(51). Inhibition of METTL3 leads to an increase in dsRNA
formation, which in turn enhances interferon signaling and
augments the capacity of T cells to eliminate cancer cells (52).
Similarly, the knockout of Mett]14 leads to a significant reduction in
iNKT cells mediated by the p53 apoptosis pathway (53).
Additionally, m6A modification mediated by Mettl3 in T cells
regulates the migration of T cells in an acidic tumor
microenvironment. By inducing Mettl3-mediated m6A
modification in T cells, the expression of integrin o subunit
ITGB1 can be upregulated, thereby enhancing T cell tumor
infiltration and antitumor activity, and relieving the suppression
of T cells by the acidic microenvironment (54).

Natural killer cells

As part of the innate immune response, NK cells are essential
for monitoring and eliminating cancerous cells, and they represent
a key target for cancer immunotherapy (55). The m6A modification
plays an indispensable role in maintaining the tumor infiltration
and cytotoxicity of NK cells, primarily regulated by METTL3,
METTLI14, and YTHDF2. METTL3-mediated m6A methylation
promotes the maturation, expansion, and functionality of NK cells
through the modulation of IL-15 signaling within the AKT-mTOR/
MAPK-ERK pathway. Similarly, YTHDF2 in NK cells regulates the
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proliferation or survival of NK cells after reading the m6A
modification of Tardbp, and modulates the expression of
cytotoxicity-related molecules through the STAT5-YTHDEF2
positive feedback axis, which participates in the survival,
proliferation, and terminal maturation of IL-15-mediated NK
cells (56). When METTL3 is knocked out in NK cells, the tumor
infiltration and the ability to secrete immune factors such as GzmB
and INF-y are significantly decreased, cytotoxicity is markedly
reduced, and an increase in expression levels of the inhibitory
receptor TIGIT is observed in the TME (57). m6A contributes to
mRNA stability and promotes the early activation and effector
functions of NK cells by directly modifying important mRNAs such
as Prfl and Gzmb. The mTORCI supports m6A methylation in NK
cells through the c-MYC-MAT2A axis to promote SAM synthesis
(58). The expression level of the m5C methyltransferase NSUN2 is
associated with the level of resting NK cells and may takes part in
the regulation of NK cells (39). The m5C methylation reader YBX1
is found to be positively related to the presence of NK cells in cases
of pancreatic ductal adenocarcinoma (50).

Macrophages

Macrophages are innate immune cells that play a crucial and
complex role in tumor immunity, with the antitumor Ml
polarization and the pro-tumor M2 polarization being two
common differentiations of macrophages in tumor immunity.
Tumor-infiltrating macrophages (TAMs) typically acquire the
immunosuppressive M2 polarization (59, 60). RNA modifications
participate in the regulation of macrophages in various aspects.
Tumor-associated macrophages constitute a major part of the
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cellular composition within the TME. METTL3 promotes the
degradation of Irakm mRNA by adding m6A modification,
enhancing TLR4 signaling, activating macrophages, and inducing
M1 polarization in TAMs, thereby increasing their tumor-killing
ability (61). The METTL3 in macrophages increases the stability of
STAT1 mRNA transcripts by adding m6A modifications,
promoting the M1 polarization of macrophages (62). In myeloid
cells, METTLS3 activates the NF-kB pathway and STAT3 signaling,
leading to M1 and M2-like polarization of macrophages, and fosters
the proliferation and spread of cancer cells, contingent upon the
infiltration of M1 and M2 phenotype-like TAMs (63), and
maintains YIT'HDF1-mediated SPRED2. Additionally, the FTO
demethylase influences the NF-xB pathway, stabilizing STAT1
and PPAR-y mRNAs, crucial for activating M1 and M2
macrophages. YITHDF2 is involved in this process and
antagonizes FTO in regulating the stability of PPAR-y mRNA
(64). TL-4 stimulates an increase in IGF2BP2, which then binds to
the m6A-modified TSC1. This binding modulates the signaling
through the TSCI/mTORC1 and TSC1/2/MEK/ERK axes,
orchestrating the balance between M2 and M1 macrophage states,
and driving a transition toward the M2 phenotype within
macrophage populations (65). In the tumor lactoacidotic
environment, H3K178ac induces the acetylation and upregulation
of METTL3 expression. METTL3 mediates m6A modification of
the Jackl mRNA transcript in TIM, which is then read by YTHDF1
to enhance the translation efficiency of JAKI and the
phosphorylation of STAT3, thereby enhancing the
immunosuppressive function of TIM (66). The high-risk score of
m5C-IncRNA is associated with the high expression of M0 and M2
phenotype macrophages in pancreatic cancer, suggesting that m5C-
related IncRNAs may regulate the polarization of macrophages in
pancreatic cancer (67). The m7G methyltransferase METTLI is
negatively correlated with M2 and M0 macrophages in tenosynovial
giant cell tumors, suggesting that METTL]1 may induce M1
polarization of macrophages in tenosynovial giant cell tumors.
However, in prostate cancer, METTL]l-mediated m7G
modification induces M2 polarization of macrophages, indicating
the heterogeneity of METTLI1 functions in different tumors (44, 68).
Additionally, tumor-associated macrophages regulate the
expression of CD8" T cells through m6A-associated mechanisms.
C1q'TAMs specifically express METTL14 and YTHDF2, and
maintain the level of tumor infiltration and cytotoxicity of CD8"
T cells in a METTL14-dependent manner (69).

Dendritic cells

Dendritic cells, pivotal in the immune response, function as
essential antigen-presenting entities that engage in the acquisition,
modification, and conveyance of tumor antigens, as well as in the
stimulation of T cell responses (70). In tumor immunity, RNA
modifications regulate the antigen cross-presentation of dendritic
cells and their subsequent function in activating T cells, as well as the
migration of dendritic cells. YITHDF1 boosts the synthesis of
lysosomal proteases by recognizing the m6A mark on their mRNA,

Frontiers in Immunology

10.3389/fimmu.2024.1463847

potentially accelerating the breakdown of tumor antigens internalized
by dendritic cells. This action may consequently suppress the
dendritic cells’ capacity to initiate a cross-priming response in T
cells (61, 71). In studies on gastric cancer, YTHDF1 was shown to not
only suppress the recruitment of mature DC cells and T cell
activation but also inhibit the expression of MHC II and IL-12
(72). METTL3 facilitates the development and maturation of
dendritic cells, as well as the subsequent activation of T cells,
through its role in m6A methylation. It boosts the translation
efficiency of mRNAs encoding CD40, CD80, and the TLR4-
associated signaling molecule Tirap. Additionally, METTL3
amplifies the activity of the TLR4/NF-xB signaling cascade and
stimulates the synthesis of cytokines that drive an inflammatory
response (73). m6A modification is also involved in the migration of
dendritic cells; after being read by YTHDE2, it reduces the expression
level of Inc-Dpf3, whose expression negatively regulates the induction
of CC-chemokine receptor 7 (CCR7) and the migration of dendritic
cells to the draining lymph nodes. Moreover, Inc-Dpf3 forms a
complex with HIF-1a, impeding the expression of glycolysis-driven
genes under HIF-1a’s control, like Ldha. This interaction curtails the
glycolytic activity and the movement potential of DCs (74). The m5C
methylation reader YBX1 is related to activated dendritic cells in
pancreatic ductal adenocarcinoma (50).

Research on the specific regulators of m1A/m5C/m7G and their
relationship with immune cells is limited, but growing evidence
suggests that these RNA modifications are involved in the
regulation of immune cells in various types of cancer. For instance,
in clear cell renal cell carcinoma(ccRCC), the score of m7G-related
genes is positively correlated with CD4 ", CD8" T cells, and Treg cells,
MO macrophages, and negatively correlated with dendritic cells, M2
macrophages, and other immune cells (75). In diffuse large B-cell
lymphoma, m5C-related genes regulate the infiltration of eosinophils,
Treg cells, and M2 macrophages, and control the activation of T cells
by modulating immune checkpoints such as PD-L1 and CTLA-4
(76). In prostate cancer, there are significant expression differences in
CD8" T cells, M1 macrophages, and M2 macrophages among the two
m5C immune subtypes. In colon cancer, alow m1A score is related to
the proliferation of CD8" T effector cells (77). In lung
adenocarcinoma, the m1A score is related to all immune cells (78).
We have summarized the effects of m6A modification on immune
cells that have not been previously mentioned (Table 2).

We have reviewed the important role of RNA modifications,
especially m6A modification, in regulating immune cells. m6A
modification has a profound impact on tumor immune
surveillance and the response to immunotherapy by affecting the
maturation, differentiation, and function of T cells, NK cells,
macrophages, and dendritic cells. These findings not only reveal
new regulatory mechanisms of immune cells in the tumor
microenvironment but also provide potential targets for the
development of new cancer treatment strategies.

Despite significant progress in existing research, there are still
some limitations. For example, most studies focus on specific types
of cancer, and the universality of RNA modifications across
different cancer types and their roles at various stages of tumor
development are not yet fully understood. Future research needs to
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TABLE 2 Regulation of immune cells by m6A modification.

10.3389/fimmu.2024.1463847

Regulators Cancer type Function References
Writers METTL3 colorectal carcinoma reduce infiltration of CD8" T cells (79)
increase recruitment of M2 macrophages (80)
colorectal cancer inhibit CD4" T cells and CD8" T cells by promoting the (81)
accumulation of MDSCs
facilitate M2 macrophage polarization (82)
HCC reduce infiltration of GZMB* IFN-y *CD8" T cells (83)
promote macrophages recruitment and M2 polarization (84)
melanoma reduce infiltration of CD8" T cells (79)
NSCLC reduce infiltration of CD8" T cells (85)
thyroid cancer reduce M2 macrophages and infiltration of Tregs (86)
METTL14 colorectal carcinoma reduce infiltration of CD8" T cells (79)
melanoma reduce infiltration of CD8" T cells (79)
colorectal cancer maintain the function of CD8" T cells (69)
cervical cancer increase the proportion of PD-1+ TAMs, inhibit the (87)
phagocytic function of macrophages
lung cancer inhibit activation and infiltration of CD8" T cells (88)
METTL16 HCC promote macrophages recruitment and M2 polarization (84)
pancreatic ductal aenocarcinoma increase infiltration of CD8" T cells and B cells (89)
Readers YTHDF1 HCC inhibit CD8" T cells by promoting the accumulation (22)
of MDSCs
prostate cancer inhibit the cytotoxicity of CD8" T cells (90)
colorectal cancer inhibit CD8" T cells by promoting the migration 91)
of MDSCs
YTHDF2 bladder cancer inhibit recruitment of CD8" T cells (92)
melanoma reduce infiltration of CD8" T cells and reduce CD4™" (43)
Th1 subset
colon carcinoma
triple-negative breast cancer promote the pro-tumoral phenotype polarization (93)
of macrophages
YTHDF3 ccRCC increase infiltration of CD8" T cells (94)
melanoma inhibit recruitment and antitumoral polarization of (23)
macrophages and activation and cytotoxicity of CD8"
colon adenocarcinoma T cells
thyroid cancer increase infiltration of CD4" T cells and macrophages (95)
IGF2BP1 colon cancer inhibit the cytotoxicity of CD8" T cells (96)
HCC increase infiltration of CD4", CD8'T cells, CD56"NK cells | (18)
and F4/80+ macrophages
IGF2BP3 HCC promote infiltration and M2 polarization of macrophages, | (97)
inhibit activation of CD8"T cells
LRPPRC HCC reduce infiltration of CD4" and CD8" T cells as well as (18, 98)
CD56" NK cells and F4/80" macrophages
Erasers FTO melanoma restrict activation and function of CD8" T cells (29)
HCC inhibit recruitment and activation of CD8" T cells (99)
ALKBH5 colorectal cancer (100)
(Continued)
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TABLE 2 Continued

Regulators Cancer type

intrahepatic cholangiocarcinoma
HCC

gioblastoma mltiforme

ovarian cancer

NSCLC

lung adenocarcinoma

more comprehensively and deeply explore the regulatory eftects of
RNA modifications on immune cells in different cancer types and
assess their potential as biomarkers and therapeutic targets.

RNA modifications and
immune checkpoint

RNA modifications have been shown to be associated with the
expression of various immune checkpoints, such as the upregulation
of PDCD1 and KIR3DL1 and the downregulation of TIGIT, IDO1,
and BTLA in the high-risk group established based on m6A scoring
in diffuse large B-cell lymphoma (109). In breast cancer, the groups
differentiated by m1A scoring exhibit differential expression of
immune checkpoints, for example, TIGIT, IDO1, LAG3, and ICOS
(110). We mainly summarize and introduce the research findings
related to RNA modifications and PD-1/PD-L1 and CTLA-4.

PD-L1

PD-L1 is mainly expressed on the surface of tumor cells and
suppresses the functions of cytotoxic T cells by binding to PD-1 on
the surface of T cells. PD-1/PD-L1 blockade therapy has improved
the prognosis of many cancers, yet only a subset of patients are
sensitive to anti-PD-1 or PD-L1 treatment, and resistance may
occur (111). Across a range of malignancies, the metrics derived
from the analysis of m6A, m1A, m5C, and m7G regulatory factors
exhibit a substantial association with the levels of PD-LI protein
expression (50, 75, 77, 78, 112-121). Firstly, regulators of m6A
modification can directly or indirectly regulate the stability and
activation of PD-L1 mRNA. In Non-Small Cell Lung Carcinoma
(NSCLC), METTL3-mediated m6A modification destabilizes PD-
L1 mRNA, resulting in a reduction of PD-L1 expression (122).
Furthermore, METTL3 can also regulate the ubiquitination of PD-
L1 by controlling LINC02418 in NSCLC, thereby downregulating

Frontiers in Immunology

10.3389/fimmu.2024.1463847

Function References
inhibit CD8" T cells and NK cells by promoting the

accumulation of MDSCs

promote M2 macrophage polarization (101)
inhibit the expansion and cytotoxicity of CD8" T cells (102)
increase recruitment of PD-L1" macrophages (103)
increase recruitment of tumor-associated macrophages, (104, 105)
reduce infiltration of CD3", CD4", CD8" T cells

promote M2 polarization of macrophages (106)
recruit PD-L1" TAMs, promote M2 (107)
macrophage polarization

regulate the polarization of M1/M2 macrophages (108)

the expression of PD-L1 (85). Additionally, METTL3 mediates
m6A modification of circIGF2BP3, upregulating the expression of
PKP3, which enhances the stability of OTUB1 mRNA and increases
the abundance of PD-L1 by reducing the ubiquitination of PD-L1
(123). Conversely, within the context of breast cancer, the m6A
modification catalyzed by METTL3 not only bolsters the longevity
of PD-L1 mRNA transcripts but also facilitates their transcriptional
activation, a process that hinges on the recognition of the m6A
mark by the IGF2BP3 protein (124). YTHDF3 reads and destroys
m6A-modified CBX1 mRNA in nasopharyngeal carcinoma,
inhibiting the upregulation of PD-L1 mediated by the IFN-y/
STAT1 signal (125). In HNSCC, TRMT61A-mediated tRNA-
mlA modification upregulates the expression of PD-L1, which
may be accomplished by regulating INFy (126). m5C methylation
reader YBXI is related to PD-LI expression levels in pancreatic
ductal adenocarcinoma (50). In colorectal cancer, m6A-modified
IFIT1 upregulates the expression of PD-L1 by reducing the
ubiquitination and degradation of PD-L1 (127). Similarly, in
cholangiocarcinoma, METTL14 mediates m6A modification of
Siah2 and promotes the degradation of Siah2 upon reading by
YTHDEF2, inhibiting the ubiquitination of PD-L1 mediated by
Siah2, ultimately leading to an increase in PD-L1 expression
levels (128). It is worth mentioning that in colorectal cancer, the
metabolite S-adenosylmethionine of methionine promotes the
occurrence of m6A modification in cancer cells and enhances
the translation of PD-L1 (129). m6A-regulated IncRNA has been
proven to be associated with PD-L1 expression in various tumors
(130-133). In pancreatic cancer, METTL3 increases the expression
of PD-L1 by upregulating the expression of IncRNA MALATI in
cancer cells (134). In hepatocellular carcinoma(HCC), intestinal
bacterial lipopolysaccharide regulates the expression of PD-L1 on
the surface of cancer cells by upregulating METTL14 and
METTL14-mediated m6A modification of MIR155HG,
modulating the miR-223/STAT1 axis (135). We present a
summary of the effects of m6A modifications on PD-1/PD-L1
that have not been previously mentioned in this review (Table 3).
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TABLE 3 Regulation of PD-L1 by m6A modification.

Regulators Cancer type  Function References
METTL16 colorectal cancer reduce PD- (136)
L1 expression
pancreatic reduce PD- (89)
ductal L1 expression
adenocarcinoma
METTL3 ccRCC increase PD- (137)
L1 expression
IGF2BP1 colon cancer increase PD- (96)
L1 expression
HCC increase PD- (18)
L1 expression
IGF2BP3 bladder cancer increase PD- (138)
L1 expression
YTHDF1 NSCLC reduce PD- (139)
L1 expression
YTHDEF2 NSCLC reduce PD- (139)
L1 expression
lower-grade glioma increase PD- (140)
1 expression
ALKBH5 gioblastoma increase PD- (105)
mltiforme L1 expression
intrahepatic promote the (141)
cholangiocarcinoma | expression of
PD-L1 on
monocytes/
macrophages
HCC recruit PD-L1 (103)
+ macrophages
FTO OsCC increase PD- (142)
L1 expression

CTLA-4, like PD-1, is a non-redundant checkpoint that inhibits
the proliferation and activation of T cells. Therapy targeting the
CTLA-4 pathway has been implemented in the field of
immunotherapy and may be synergistically combined with PD-1
inhibitory therapy for specific cancer types (111). There are no
definitive research results regarding how RNA modifications
regulate CTLA-4, but we have found that RNA modifications are
associated with the expression levels of CTLA-4 and can predict the
outcomes of CTLA-4 blockade immunotherapy. The m6A-
modified reader YTHDF2 has been proven to be positively
correlated with the expression of CTLA-4 in low-grade glioma
(140). In the high-risk group related to m5C-IncRNA, CTLA-4 is
highly expressed (143). In tumors such as pancreatic
adenocarcinoma, hepatocellular carcinoma, and pancreatic cancer,
the scores of m6A-modified regulatory genes are significantly
correlated with the expression of CTLA-4 and can be used to
predict prognosis and response to immunotherapy (144-146). A
study of m5C in diffuse large B-cell lymphoma has identified a
correlation between m5C-affected genes and the modulation of
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immune checkpoint genes, specifically CTLA-4 and PD-L1. In
prostate cancer, CTLA-4 is also found to be differentially
expressed in two m5C immune subtypes and is related to the
degree of immune cell infiltration (76). Similarly, in the
immunological model calculated based on the regulatory genes of
m7G such as CDKI1, ANOI1, and PDGFRA, CTLA-4 is highly
expressed in the high-risk group (147). Another similar study
shows that m7G is not only related to immune checkpoints such
as CTLA-4 but also can predict the effects of immunotherapy (148).
In addition, a low score based on the methylation enzyme scoring
established by m6A/m5C/m1A/m7G regulatory genes is related to
the positive expression of CTLA4 (149).

In this section, we have summarized the regulatory effects of
RNA modifications on the immune checkpoint PD-L1, as well as
the correlation with CTLA-4 expression and its predictive role in
therapeutic efficacy. It provides new insights into the understanding
of tumor immune evasion mechanisms. The research indicates that
RNA modifications influence the expression of PD-L1 and CTLA-4
through various mechanisms, including the regulation of mRNA
stability, transcriptional activation, and interactions with specific
proteins. These findings offer new perspectives for anti-PD-1/PD-
L1 therapy and reveal the research value of RNA modifications in
anti-CTLA-4 therapy.

The regulatory role of RNA
modification in ICl therapy

RNA modifications exhibit differential impacts on PD-1 blockade
therapy across various tumors. Targeting specific RNA modification
regulators can enhance the efficacy of PD-1 blockade therapy
(Figure 3). In NSCLC, METTL3-driven m6A methylation leads to
the destabilization of PD-L1 mRNA, which reduces the therapeutic
efficacy of anti-PD-1/PD-LI interventions; however, the knockout of
METTL3 increases immune cell infiltration and enhances the
therapeutic efficacy of anti-PD-1/PD-L1 (122). Similarly, the
deletion of METTL3 or METTL14 in immune-resistant melanoma
tumor cells makes the tumor sensitive to immunotherapy (79).
Targeting METTL3 in NAFLD-HCC and NSCLC can improve the
effectiveness of PD-1 therapy. In the NAFLD-HCC mouse model, the
knockout of METTL3 in conjunction with anti-PD-1 therapy
synergistically suppressed tumor growth, resulting in a reduction of
over 90% in both tumor volume and weight (83). In NSCLC, the
suppression of METTL3 can enhance the sensitivity of tumor-bearing
mice to anti-PD-1 treatment, and patients with NSCLC exhibiting
low METTL3 expression have a more favorable prognosis with
immunotherapy (122). In thyroid cancer, high expression of
METTL3 in tumor cells inhibits the demethylation of CD70mRNA,
maintains the degradation of transcripts mediated by YTHDEF2,
thereby releasing T cells from suppression and enhancing the
efficacy of PD-1 blockade (86). Similar observations have been
made in melanoma and lung cancer, where high expression of
METTL3 in macrophages is beneficial for immunotherapy (63).
Targeting the YY1-CDK9 transcription elongation complex in
glioblastoma results in lowered METTL3 expression, which in turn,
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enhances the therapeutic impact of PD-1 blockade (150). Abrine
treatment inhibits IFN-y-induced m6A modification, thereby
regulating JAK1/STAT1 and suppressing the expression of PD-L1.
Combined therapy with PD-1 blockade can inhibit tumor growth
(151). Targeting YTHDF1 in colorectal cancer can relieve the
inhibition of CD8" T cells and enhance the efficacy of anti-PD-1.
Targeting YTHDF1 significantly reduced the resistance to anti-PD-1
therapy in the MC38 tumor model, leading to better prognosis for
tumor-bearing mice. Similar observations were made in mice with the
CT26 tumor model, which is insensitive to PD-1 therapy; the deletion
of YTHDF1 in CT26 cells followed by anti-PD-1 treatment markedly
inhibited tumor growth (91). Knocking out ALKBHS5 in glioma or
targeting it with IOX1 reduces the expression of the PD-LI protein,
inhibits tumor growth, extends the survival of mice, and enhances
these effects of PD-1 blockade therapy (105). Similarly, inhibiting
ALKBHS5 in melanoma enhances the efficacy of PD-1 blockade,
patients with low expression of ALKBH5 are more likely to benefit
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from PD-1 blockade therapy (31). The use of FTO inhibitors in HCC
and melanoma can enhance immune activation and sensitivity to
anti-PD-1 treatment (99, 152). Targeting circular RNA circRHBDD1
can block its m6A-dependent mediated rapid translation of PIK3R1
and improve the efficacy of anti-PD-1 therapy (153). NSUN2-
mediated m5C methylation modulates TREX2 expression, thereby
suppressing the cGAS/STING pathway and contributing to resistance
against PD-1 checkpoint blockade (51).

In this part, we have explored the regulatory role of RNA
modifications on PD-1 blockade therapy across different types of
tumors. By affecting the expression of genes involved in immune
activation and suppression, RNA modifications have significantly
impacted the therapeutic efficacy of immune checkpoint blockade
and have provided ideas for specific treatment plans: by targeting
specific RNA modification regulators, we may be able to increase
the response rate to immunotherapy and overcome patient
resistance to existing treatments.
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RNA modification and prediction of
immunotherapy efficacy

Genes related to the RNA modifications m6A, m1A, m5C, and
m7G can predict tumor sensitivity to immunotherapy, either
individually or in combination. By conducting bioinformatics
analysis on many samples in databases, key genes are screened,
and corresponding scores are established. For instance, in HCC, an
m6A score derived from m6A-associated feature genes categorizes
patients into distinct risk groups. The high-risk cohort
demonstrates increased immune evasion and immune system
dysregulation, correlating with heightened responsiveness to anti-
CTLA-4 and anti-PD-1 therapies (154). The m6A score has been
studied in multiple tumors but varies depending on the analysis
method and selected genes. Patients with oral squamous cell
carcinoma exhibiting a high m6A score are more likely to
experience enhanced efficacy from treatments targeting the PD-1
and CTLA-4 pathways (155), lung squamous cell carcinoma (156),
soft tissue sarcoma (157), gastric cancer (102), and hepatocellular
carcinoma (158), while a low m6A score suggests greater sensitivity
to immunotherapy in thyroid cancer (159), NSCLC (160), follicular
lymphoma (161), breast cancer (162), and head and neck squamous
cell carcinoma (163). Additionally, the score of m6A
methyltransferase regulators can effectively predict the efficacy of
immunotherapy in urothelial cancer patients (164).

A prognostic model established using m6A-related IncRNA
suggests that esophageal cancer in the low-risk group responds
better to immunotherapy (165). Similarly, a model established using
m5C-related genes can also evaluate prognosis and immune therapy
efficacy, with liver and pancreatic cancers with lower m5C scores
being more sensitive to anti-CTLA-4 therapy, and pancreatic cancer
also being sensitive to anti-PD-1 therapy (166). A score based on
m7G indicates that colorectal cancer and rectal cancer in the low-
scoring group are more sensitive to anti-PD-1 therapy (119, 121).
Lung adenocarcinoma with a low score has a higher immune
prognostic score (120). Interestingly, in low-grade glioma, the
high m7G score group is sensitive to anti-PD-1 treatment, while
the low m7G score group is more sensitive to anti-PD-L1 (167). In
colorectal cancer, a low m1A score suggests a better prognosis with
anti-PD-L1 treatment (77). Lung adenocarcinoma with a low m1A
score has a lower TIDE score, indicating greater sensitivity to
immunotherapy (78).

In addition to establishing models based on the scores of single
RNA modifications, analyzing multiple RNA modification genes
simultaneously can also establish effective predictive models. In
cervical cancer, a prognostic model established using m6A/m5C/
mlA indicates that the high-risk group is more sensitive to anti-
CTLA-4 treatment (168). In colon cancer, the low-risk group is
more sensitive to anti-CTLA-4 and anti-PD-1 treatments (169). In
HCC, a methylation score composed of m1A/m5C/m3C/m6A
suggests that a low score is sensitive to anti-PD-L1 therapy (170).
The Writer-Score established according to m1A and m6A RNA
modification enzymes indicates that a low score is associated with
better outcomes in immunotherapy (171).
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Through bioinformatics analysis of large-sample databases, we
have been able to screen for key genes and establish corresponding
scoring systems. These scoring systems have demonstrated the
potential to predict responses to immunotherapy across various
types of tumors, offering new tools for personalized medicine.
However, many scoring systems still require further validation
and research to explore their applicability in oncology and
immunotherapy strategies.

RNA modification regulators as
therapeutic targets

Therapeutic interventions targeting RNA modification-related
genes or proteins have been extensively studied, and numerous
effective drugs have been developed. For instance, metformin can
specifically inhibit FTO and block its demethylation effect on m6A
modification (172). Targeting specific regulatory genes or proteins
of RNA modification can enhance the therapeutic efficacy of
immunotherapy in certain types of cancer. For example, targeting
ALKBH5 in melanoma can enhance the effectiveness of PD-1
blockade (31). Lower levels of METTL3 in NSCLC are also
associated with better outcomes from anti-PD-1 therapy (122).
Moreover, targeting specific RNA modification regulators” genes or
proteins can directly exert tumor-suppressive effects. For example,
miR-4429, which targets METTL3 in gastric cancer, can inhibit the
proliferation of GC cells and induce apoptosis (14). Although the
vast majority of drug treatments target m6A regulatory genes or
proteins, we found that targeting the mlA methyltransferase
complex TRMT6/TRMT61A in HCC with Hiram can effectively
inhibit the progression of HCC (32), indicating that targeting other
RNA modification regulatory genes or proteins also has therapeutic
significance. We have summarized the specific targeted drugs and
their mechanisms of action (Table 1).

This section of our study extensively explores therapeutic
interventions targeting genes or proteins associated with RNA
modifications and outlines the development of a series of effective
drugs. Targeting regulators such as METTL3, METTL14, IGF2BP3,
or YTHDF] can alleviate T-cell suppression in melanoma, colorectal
cancer, non-small cell lung cancer (NSCLC), and breast cancer.
Targeting regulators like METTL3, METTLI14, the IGF2BP family,
ALKBHS, or FTO can enhance the efficacy of PD-1 blockade therapy
in renal clear cell carcinoma, colorectal cancer, melanoma, NSCLC,
breast cancer, hepatocellular carcinoma, and intrahepatic
cholangiocarcinoma. Inhibition of tumor cell proliferation can be
achieved by blocking METTL3, TRMT6/TRMT61A, the IGF2BP
family, YTHDF2, or ALKBH5. Targeting “writers” such as
METTL3 or METTL14 blocks the formation of m6A and thus can
play a role in multiple tumor-suppressing or immune therapy-
enhancing effects; however, this may also greatly impact normal
physiological functions and lead to severe side effects. RNA
modifications have a considerable number of “readers,” so targeting
specific “readers” in specific tumors may achieve precise therapeutic
effects with lower side effects, but it may need to be specific to certain
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tumors and may not be universally applicable. Targeting “erasers,”
mainly FTO and ALKBHS5, seems to primarily enhance PD-1
blockade therapy and inhibit tumor cells, being key to combined
immunotherapy. However, targeting FTO and ALKBHS5 results in the
inability to remove m6A, which may also lead to severe side effects.

Discussion

In this review, we primarily discuss the relationship between m6A,
mlA, m5C, and m7G modifications and tumor immunity and
immunotherapy, and summarized the regulation of immune cells
and immune checkpoints, as well as drug treatment targeting RNA
modification regulators and immune prediction based on the four
RNA modifications. Research related to RNA modifications has the
following limitations: m6A is the most abundant modification in
mRNA and has been extensively studied; however, the physiological
processes in which m6A is involved are not fully understood, and there
may be undiscovered regulatory proteins related to m6A modification.
The specific roles of ml1A, m5C, and m7G in tumors have been
insufficiently studied, possibly due to variations in modification sites
and abundance. There are also limitations and challenges in tumor
therapy related to RNA modifications: some proteins among RNA
modification-related proteins have dual identities, and the same
regulatory factor may have multiple roles, possessing both oncogenic
and tumor-suppressive effects, requiring specific research to provide
solutions. For example, knocking out METTL3 in melanoma can
inhibit tumor development and increase the infiltration of CD8" T
cells (79), but another study has shown that the absence of METTL3
expression in macrophages can promote the growth and metastasis of
melanoma and weaken the efficacy of PD-1 blockade (63).
Additionally, RNA modifications are widely involved in physiological
activities, and it is challenging to target RNA modifications in the
tumor microenvironment without affecting normal physiological
processes. Researchers have obtained drugs with high specificity
through complex drug design and optimization, but this issue has
not been resolved. Moreover, although many RNA modification
regulators have been identified, only a few can be used as therapeutic
targets for cancer treatment. Finally, current research is mainly focused
on mouse models, and there may be differences in the physiological
activities and tumor therapy based on mRNA between mice and
humans, requiring more research to clarify the specific situation.

Despite certain achievements of drugs targeting RNA
modifications in preclinical models, no related drugs have yet
entered the clinical research phase. Future research in the following
areas may be helpful: designing drugs to specifically target RNA
modification regulators, especially in the tumor microenvironment,
to reduce the impact on normal tissues; exploring appropriate drug
dosages to balance efficacy and side effects; continuing drug safety
research to assess the side effects of different targeted drugs; developing
new therapeutic targets or drugs to improve treatment safety; and
exploring the combined application of RNA modification-targeting
drugs with other drugs in tumor therapy. In addition, tumor vaccines
are also related to RNA modifications such as m6A and have
therapeutic potential. Introducing encoded mRNA molecules into
the bodies of tumor patients, translating them into proteins with anti-
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tumor effects in the body to trigger anti-tumor immune responses is a
new treatment method (173). RNA modifications play a key role in
cancer vaccines. Through RNA modifications, the immunogenicity of
RNA vaccines can be eliminated, and the rapid translation of anti-
tumor proteins may be promoted, improving anti-tumor effects. This
direction has considerable potential for development. Furthermore,
lifting the immune suppression caused by RNA modifications may
help improve the efficacy of adoptive immunotherapy. By lifting the
toxicity suppression and infiltration suppression of T and NK cells
caused by RNA modifications, the corresponding tumor-killing ability
can be restored, which can be used for ex vivo expansion and then re-
introduced into the patient’s body to play an anti-tumor role. Lifting
the immune suppression of the tumor microenvironment is beneficial
for adoptive immune cells to clear the tumor. This could greatly
enhance adoptive immunotherapy and holds value for research.
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Background: Recent studies have underscored the biological significance of
RNA modifications in tumorigenicity and progression. However, the potential
roles of RNA modifications in immune regulation and the formation of the tumor
microenvironment (TME) in head and neck squamous carcinoma (HNSC)
remain unclear.

Methods: We collected 199 untreated HNSC samples and clinicopathological
data from Fujian Provincial Cancer Hospital. MeRIP-seq and RNA-seq were
performed to generate methylation and gene expression profiles, respectively.
Consensus molecular subtyping was employed to identify prognosis-related
genes and RNA modification patterns in HNSC. Experiments confirmed the
potential oncogenic behavior influenced by key genes. Molecular subtypes
were identified through consensus clustering and validated using external
cohort validation sets.

Results: Among the RNA modification-related genes, IGF2BP1 emerged as the
most prognostic. HNSC patients were categorized into high and low IGF2BP1
expression groups. High-expressing patients exhibited poorer survival and
reduced chemosensitivity, coupled with increased tumor mutational burden,
low PD-L1 expression, and limited immune cell infiltration, indicative of
aggressive disease. Analysis revealed two distinct RNA modification patterns
associated with IGF2BP1 expression: biosynthetically intense type (BIT) and
oncogenically active type (OAT), each characterized by distinct clinical
features, outcomes, and biological pathways. In an independent
immunotherapy cohort, BIT patients displayed enhanced immune responses
and sustained clinical benefits.

a1 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2024.1469435/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1469435/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1469435/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1469435/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1469435/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1469435&domain=pdf&date_stamp=2024-10-24
mailto:hudan@fjmu.edu.cn
mailto:sufangqiu@fjmu.edu.cn
https://doi.org/10.3389/fimmu.2024.1469435
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1469435
https://www.frontiersin.org/journals/immunology

Ding et al.

10.3389/fimmu.2024.1469435

Conclusions: This study highlights the crucial link between RNA modification and
TME diversity. Evaluating RNA modification in tumors improves our
understanding of TME features and supports the development of effective
immunotherapy strategies.

tumor microenvironment, IGF2BP1, molecular subtypes, head and neck squamous
carcinoma, RNA modification

Introduction

RNA modification, involving chemical group addition to RNA
nucleotides, governs RNA functions (1). Modifications like mIA,
m6A, m6Am, m5C, m7G, ac4C, m3C, and W regulate gene
expression, affecting mRNA stability, splicing, translation, and
localization (2, 3). RNA modification related genes (RMGs),
including writers, erasers, and readers, orchestrate these processes,
crucial for cellular function (1, 4). Dysregulation of RMGs may lead
to aberrant cell growth and survival, particularly in cancer (5). RMGs
impact tumor development by disrupting gene expression, presenting
potential therapeutic targets (6, 7). Understanding RNA modification
mechanisms is pivotal for comprehending cancer pathogenesis and
devising novel therapeutic strategies.

Head and neck squamous cell carcinoma (HNSC) is a highly lethal
malignancy with significant mortality rates despite treatment
advancements (8-10). Extensive studies on mRNAs, IncRNAs, and
EVs have identified numerous biomarkers and therapeutic targets;
however, precise prognostic markers remain critically lacking (11-14).
Genetic aberrations drive HNSC pathogenesis, influencing tumor
initiation, progression, and therapy resistance (15, 16). Research has
unveiled mutations in oncogenes and tumor suppressor genes,
disrupting signaling pathways and fostering uncontrolled cell growth
(17, 18). Yet, the comprehensive genetic landscape, notably in RNA
modification regulators, and their impact on HNSC progression
remain incompletely elucidated. Bridging this gap is imperative for
tailored therapeutics and enhanced patient outcomes in HNSC.

This study endeavored to (i) characterize genetic variations and
identify prognostic RMGs, (ii) investigate their functional roles in
HNSC biology and treatment responses, and (iii) delineate novel
molecular subtypes to refine HNSC classification and assess
clinicopathological features.

Methods and materials

Cell culture

SCC7 and CAL27 cell lines were obtained from the Fujian
Cancer Hospital Cell Bank and cultured under optimal conditions
to ensure robust growth and viability. The cells were grown in
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Dulbecco’s Modified Eagle Medium (DMEM), which was
supplemented with 10% fetal bovine serum (FBS). 1% penicillin-
streptomycin was included in the medium. The cells were
maintained in an incubator set to 37°C with a humidified
atmosphere of 5% CO,, closely mimicking physiological
conditions. Transfections used siNC and silGF2BP1 RNA
sequences (19, 20).

Collection of clinical samples

This study included two cohorts. The first cohort comprised 3
cases of HNSC tumor tissue and 3 cases of normal tissue for meRIP-
seq analysis. The second cohort was utilized for RNA-seq analysis.
Fresh tumor biopsy specimens were obtained from 193 head and
neck cancer patients at Fujian Cancer Hospital (January 2015 -
January 2018, Table 1). Tumor classification and staging followed
the TNM system. The research was approved by the Ethics
Committee of Fujian Cancer Hospital (Fujian Branch of Fudan
University Shanghai Cancer Center, approval number K2022-084-
01). The written consent of all participants was obtained in advance.
External validation data from The Cancer Genome Atlas (TCGA)
included 504 tumor samples and 44 normal samples.

Total RNA isolation, construction, and
sequencing of mRNA library

Total RNA was extracted from the tumor tissues using the TRIzol
reagent kit, following the manufacturer protocol to ensure optimal
yield and purity. To enrich the mRNA, oligo(dT)-attached magnetic
beads were employed, selectively binding to the poly(A) tails of
mRNA molecules. The enriched mRNA was then fragmented using
the Optimal Dual-mode mRNA Library Prep Kit (BGI-Shenzhen,
China) to facilitate subsequent cDNA synthesis. Reverse transcription
of the fragmented mRNA into complementary DNA (cDNA) was
performed, creating a double-stranded ¢cDNA library. In addition to
repairing the ends, these purified double-stranded cDNA fragments
had their 3’ ends modified by adding an adenine nucleotide.
This A-tailing step is crucial for the subsequent adapter ligation.
Adapters, containing sequences necessary for amplification and
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TABLE 1 Clinical features profile of in-house cohort patients.

Characteristics Male Female
N 136 (70.5%) 57 (29.5%)
Age, Mean + SD 48.824 + 10.827 47.421 + 9.8488
T, n (%)

1 24 (12.4%) 16 (8.3%)
2 31 (16.1%) 12 (6.2%)
3 44 (22.8%) 18 (9.3%)
4 37 (19.2%) 11 (5.7%)
N, n (%)

0 13 (6.7%) 2 (1%)

1 45 (23.3%) 22 (11.4%)
2 53 (27.5%) 25 (13%)
3 25 (13%) 8 (4.1%)
M, n (%)

0 128 (66.3%) 54 (28%)
1 8 (4.1%) 3 (1.6%)
stage, n (%)

I 4 (2.1%) 0 (0%)

I 24 (12.4%) 15 (7.8%)
111 50 (25.9%) 23 (11.9%)
v 58 (30.1%) 19 (9.8%)

sequencing, were ligated to the cDNA. The adapter-ligated cDNA was
then amplified through PCR to ensure sufficient quantities for
sequencing. Afterwards, BGI Technology Services Co. Ltd.
sequenced the cDNA library, utilizing advanced sequencing
platforms to generate high-quality data for further analysis. Detailed
experimental procedures are available in the Supplementary Materials.

MeRIP-seq and bioinformatic analysis

Total RNA was isolated and fragmented into ~100 nt pieces
using a fragmentation buffer. The RNA was split into two parts: one
for input and the other enriched with an m6A-specific antibody.
Enriched RNA was transcribed into cDNA using random primers,
end-repaired, and ligated to Illumina adaptors, creating a library
sequenced on an Illumina NovaSeqTM 6000. Fastp (v0.20.0) filtered
the sequencing data to obtain high-quality reads by eliminating
adaptor-containing, high-N content, poly-A, and low-quality reads.
ExomePeak2 (v1.0.0) was used for peak calling, identifying read-
enriched regions (p < 0.05) as peaks. Peak-associated genes were
validated using genomic position and gene annotation data. Peak
distribution in 3’UTR, 5UTR, and CDS regions was assessed.
MEME suite and DREME were used for motif analysis in peak-
associated transcript sequences.
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Transwell assay for cell migration
and invasion

For the invasion assay, transwell inserts were coated with 50 uL
of Matrigel diluted 1:8 in serum-free medium (SFM) and incubated
at 37°C for 30 minutes to solidify. After solidification, 1 x 10°
cells suspended in 200 pL of SFM were seeded into the upper
chamber of each insert. The lower chamber was filled with 600 pL of
complete medium containing 10% fetal bovine serum (FBS) as
a chemoattractant.

For the migration assay, Matrigel was not applied, but all other
procedures remained consistent. Cells were incubated at 37°C in a
humidified atmosphere with 5% CO, for 24 hours for migration and
48 hours for invasion assays. After incubation, non-migratory cells
on the upper surface of the membrane were removed with a cotton
swab. Migratory cells on the lower surface were fixed with 4%
paraformaldehyde for 15 minutes, stained with 0.1% crystal violet
for 10 minutes, and washed with PBS. Cells were counted under a
microscope in three randomly selected fields per insert.

Cell counting kit 8 assay

After seeding 1000 cells per well in 96-well plates for uniform
growth, overnight incubation was followed by addition of 10 uL
CCKS8 reagent to each well to evaluate cell viability and proliferation
via colorimetric changes. Cells were then cultured for specified
durations (3h, 6h, 9h, and 12h), and absorbance was measured at
450 nm using a multifunctional microplate reader at these intervals.
This methodology provides a quantitative assessment of cell
proliferation and viability over time.

5-ethynyl-2-deoxyuridine assay

EdU cell proliferation assays were conducted using the
BeyoClickTM EdU Cell Proliferation Assay Kit. All subsequent
procedures were conducted according to the manufacturer
instructions. For each experimental group, cells were subjected to
treatment with EAU at a concentration of 10 umol/L for 2 hours.
Fluorescence microscopy was employed for visualizing and
recording fluorescent signals.

Single-cell data acquisition and processing

Single-cell RNA sequencing data were obtained from the Gene
Expression Omnibus (GEO) database under the accession number
GSE103322. For data processing, we employed the Seurat R
package to perform quality control, normalization, and scaling
of the single-cell data. We conducted dimensionality reduction
using principal component analysis (PCA) and Uniform Manifold
Approximation and Projection (UMAP) to visualize the data in
lower-dimensional space. Subsequently, cell clustering was
performed to identify distinct cell populations, and cell types
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were annotated based on canonical marker genes using the
SingleR algorithm and manual validation against known cell
type signatures. To investigate the intercellular communication
dynamics between immune cells and RNA-modified tumor cells,
we employed the CellChat R package. This analysis was performed
to identify and visualize the ligand-receptor interactions among
different cell population.

Identification and analysis of
prognostic RMG

To identify RMGs with significant prognostic value for PFS, we
employed the least absolute shrinkage and selection operator
(LASSO) Cox regression model. Differentially expressed genes
(DEGs) from sequencing data of tumor samples in the in-house
cohort were visualized using the R package “ggplot2”. DEGs were
selected based on a fold-change >1.3 and a p-value < 0.05. The
mutational landscape of these RMGs and signatures from TCGA
genomic data were analyzed using the “maftools” package.

Predictive power assessment of IGF2BP1
and identified classification pattern

To evaluate the predictive power of IGF2BP1 and identified
classification pattern, receiver operating characteristic (ROC)
curves for 3-, 4-, and 5-year survival were plotted using the
“timeROC” package in the internal cohort. High- and low-
IGF2BP1 groups were stratified based on the optimal cut-off value
determined by the “survival” package. Survival curves were
compared using Kaplan-Meier analysis and log-rank test.
Univariate Cox regression models determined the prognostic
value of the IGF2BP1 expression.

Chemotherapy sensitivity assessment

The NCI-60 is a well-characterized panel of 60 human cancer
cell lines developed by the National Cancer Institute (NCI, https://
dtp.cancer.gov/discovery_development/nci-60/cell_list.htm). This
panel includes cell lines derived from nine different types of
cancer: leukemia, melanoma, and cancers of the lung, colon,
brain, ovary, breast, prostate, and kidney. The NCI-60 panel is
widely used for drug discovery and cancer research because it
provides a comprehensive representation of cancer diversity. By
analyzing the NCI-60 tumor cell line panel, we explored the
involvement of IGF2BP1 in drug sensitivity. Drug sensitivity data,
quantified by half-maximal inhibitory concentration (IC50) values,
were retrieved from the CellMiner database (https://
discover.ncinih.gov/cellminer/), a publicly accessible resource that
integrates data on the molecular profiles and drug responses of the
NCI-60 cell lines. Further analysis involved 218 FDA approved
drugs and 574 drugs or compounds from clinical trials. The R
packages “impute” and “limma” were utilized to evaluate the impact
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of IGF2BP1 on drug sensitivity. The impute knn function was
employed to estimate missing data for certain medications.

Immune cell type fractions analysis

The TIMER, CIBERSORT, and MCP-counter algorithms were
utilized to calculate the infiltration levels of various immune cell
types residing within each HNSC sample. These immune cell type
fractions analyses employ deconvolution algorithms to test the
presence of immune cells and their percentage. The ESTIMATE
algorithm infers tumor cellularity and purity from transcriptional
profiles. Using ESTIMATE, we calculated immune scores to assess
infiltrating immune cells, finding that higher immune cell
infiltration correlates with higher immune scores.

Quantification of immune response
predictors using IPS, and TIDE

The Immunophenoscore (IPS) predicts response to anti-CTLA-
4 and anti-PD-1 therapies by measuring tumor immune proximity
and intratumoral immune profile (21). This study assesses
differences in CTLA-4-negative and PD-1-negative percentages
across different subgroups. The Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm, which mimics the mechanisms of
tumor immune evasion, predicts response to immunotherapy (22);
higher TIDE scores indicate more severe immune evasion and lower
response rates to immune checkpoint inhibitors.

Consensus clustering

Consensus clustering was performed using the “Consensus
ClusterPlus” tool in R to identify molecular subtypes. The optimal
number of clusters (k) was evaluated by evaluating values between 2
and 10, with the clustering process repeated 1000 times to ensure
reproducibility and robustness.

Gene set variation analysis

Gene Set Variation Analysis (GSVA) was conducted on HNSC
samples using the “GSVA” package in R. Enrichment scores,
representing gene set activity, were calculated from transcriptome
data. The Kyoto Encyclopedia of Genes and Genomes (KEGG) gene
sets were utilized to determine the variations in functional
signatures across samples.

Statistical analysis

Statistical analyses were performed using GraphPad Prism
8.4.1. Student’s t-test or Wilcoxon rank sum test was used for
continuous variables and chi-square test for categorical variables.
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For more than two groups, the Kruskal-Wallis test was used. *p <
0.05; **p < 0.01; **p < 0.001; ***p < 0.0001.

Results

Identification of key prognostic genes
IGF2BP1 in 59 RMGs and predictive ability

In total, 59 RMGs for RNA modifications (m1A, m6A, m6Am,
m5C, m7G, ac4C, m3C, and ¥) were obtained from a
comprehensive review of previously published studies
(Supplementary Table S1) (1, 2, 23-25). A chromosomal
localization map of the 59 genes is displayed in Supplementary
Figure SIA. The 59 aforementioned genes exhibited significant
differential expression between tumor and normal tissues in the
TCGA-HNSC dataset (Supplementary Figure S1B). We
subsequently determined the prevalence of somatic mutations in
20 m6A and 16 m5C regulatory genes in HNSC. Among the 20
m6A regulators, WTAP and YTHDC2 exhibited the highest

10.3389/fimmu.2024.1469435

mutation frequency at 10.9%, followed by YTHDCI1 at 9.4%
(Supplementary Figure S1C). Within the 16 m5C regulators,
TET1, DNMT3B, and DNMT3BA showed the highest mutation
frequency at 13.8%, followed by TET3 at 12.1%, and NSUN2 and
DNMT1 both at 10.3% (Supplementary Figure S1D). Further
analysis of the 59 RMGs revealed a high prevalence of CNV
mutations. RBM15B, ZC3H13, YTHDF2, and PUS3 exhibited
widespread CNV amplifications. Conversely, KIAA1429,
IGF2BP2, YTHDF3, DNMT3BA, NSUN2, NSUN3, TRMT10C,
and NUDTI16 predominantly showed CNV deletions
(Supplementary Figure S1E).

Given the ubiquity, abundance, and conservation of m6A as an
endogenous modification in eukaryotic RNA, we conducted meRIP-
seq analysis targeting m6A RNA methylation. Methylation of m6A in
mammalian mRNAs predominantly occurs in the coding sequences
(CDS) and 3’ untranslated regions (3> UTR). Here, the m6A peaks
were observed to be enriched in the CDS and 3" UTR regions
(Figure 1A), and only the consensus GGAC motif was detected
(Figure 1B), indicating the successful enrichment of m6A-modified
mRNAs. Considering that a gene may possess multiple m6A binding
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sites, we enumerated genes with varying numbers of peaks
(Figure 1C). To elucidate the functions of genes with differential
m6A methylation modifications, a Gene Ontology enrichment
analysis was conducted, revealing that these genes were significantly
enriched in various immune-related pathways, including Immune
system process, Immune response, B cell activation, and T cell
activation (Figure 1D). These findings suggest a potential correlation
between m6A methylation modification and immune function.

To identify the genes most predictive of progression-free
survival (PFS) in HNSC patients, we conducted LASSO regression
and multivariate Cox regression analyses on 59 RMGs. This analysis
identified IGF2BP1 as having the highest prognostic value for
HNSC patients (Supplementary Figures S2A, B), and it also
exhibited differential expression between tumor and normal
tissues in meRIP-seq analysis (Figure 1E). In our in-house cohort,
which comprised fresh tumor biopsy specimens obtained from 193
head and neck cancer patients at Fujian Cancer Hospital (from
January 2015 to January 2018), a comparison of DEGs between
cancer and paraneoplastic tissues revealed a significant upregulation
of IGF2BP1 in cancer tissues (Figure 2A). Data from the TCGA-
HNSC cohort supported this observation (Figure 2B). The best
threshold value derived from the PFS analysis distinguished high-
and low-IGF2BP1 expression levels. Chemokine families showed
increased expression in the low-IGF2BP1 group in both the internal
dataset and the external validation cohort. This upregulation was
associated with a lower incidence of disease progression (Figure 2C;
Supplementary Figure S2C). Patients in the high-IGF2BP1 group
exhibited poorer tumor progression and worse PFS and OS
prognosis (Figures 2D, E; Supplementary Figure S2D). The area
under the ROC curve (AUC) demonstrated high predictive value,
with scores of 0.69 at 3 years, 0.75 at 4 years, and 0.77 at 5 years
(Figure 2F), and reached 0.930 in the TCGA-HNSC dataset
(Supplementary Figure S2E). From the results of the univariate
Cox analysis (Figure 2G), IGF2BP1 and age demonstrated strong
survival predictive ability compared with other clinical features.
Furthermore, IGF2BP1 expression was elevated in HPV-negative
patients (Supplementary Figure S2F), those with lymphovascular
invasion (Supplementary Figure S2G), and individuals with higher
clinical T classifications (Supplementary Figure S2H). Additionally,
IGF2BP1 expression exhibited a negative correlation with PD-L1
expression (Supplementary Figure S2I). Collectively, these findings
suggest that high IGF2BP1 expression is associated with poorer
prognosis and suboptimal treatment outcomes.

High IGF2BP1 expression correlates with
active cancer-related pathways and
chemotherapy insensitivity

Next, to further elucidate the role of IGF2BP1 in cancer
progression, we examined its association with cancer-related
pathways and its impact on the sensitivity to common
chemotherapeutic agents. We found that IGF2BP1 expression was
positively correlated with scores in common cancer-related
pathways, including the Hippo signaling pathway (Figure 3A) and
the Wnt signaling pathway (Figure 3B). In our cohort, low levels of
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IGF2BP1 expression were associated with a high enrichment of
cytokine-related HALLMARK pathways, such as complement
signaling, IL2_STAT5_signaling, and inflammatory response
signaling (Figure 3C). Additionally, chemotherapeutic agents used
to treat HNSC, including 5-fluorodeoxyuridine, carboplatin,
gefitinib, and gemcitabine, face resistance issues in patients with
high IGF2BP1 expression, rendering these treatments less effective
(Figures 3D, E).

Evaluation of the TME and
immunotherapeutic response

Given the insensitivity to chemotherapy, we shifted our focus to the
immunotherapy response in patients with high IGF2BP1 expression.
We analyzed immune microenvironment differences between high- and
low-IGF2BP1 expression groups, assessing immune scores and cell
infiltration. The low-IGF2BP1 group had higher immune scores
(Figure 4A). The immune cell occupancy of each sample in the
HNSC-TCGA cohort is illustrated in Supplementary Figure S3A,
providing a visual representation of the infiltration of various
immune cell types within each sample. From a quantitative point of
view, TIMER algorithm revealed significant differences in six immune
cell types between groups (Figure 4B), with T cells, CD8+ cells, B cells,
and NK cells more active in the low IGF2BP1 group (Figure 4C). At the
single-cell level, IGF2BP1 was predominantly expressed in malignant
cells (cluster 0), with negligible expression observed in other cell types
(Figures 4D-F); consequently, we designated cluster 0 as RNA-modified
tumor cells. Notably, the immune cell type exhibiting the most
significant interaction was CD8 Tex cells (Figure 4G), with the most
active ligand-receptor pair identified as MIF - (CD74+CXCR4). The
composition of the immune microenvironment critically modulates the
efficacy of immunotherapy. We found that IGF2BP1 expression was
negatively correlated with immune checkpoint expression validated in
our in-house cohort (Figure 4I). Notably, PDCDI showed significant
differences between the high- and low- IGF2BP1 subgroups (Figure 4J).
The low-IGF2BP1 group had a lower TIDE score, indicating a stronger
immune response (Figure 4K). Patients in the low-IGF2BP1 group
exhibited higher immune responses in the HNSC patient cohort at
Fujian Cancer Hospital (Figure 4L).

IGF2BP1 promotes malignant biological
behavior of HNSC cells

To further validate the function of IGF2BP1 as an oncogene,
we constructed IGF2BP1 knockdown cell lines in the human-derived
CAL27 and murine-derived SCC7 cell lines. High IGF2BP1
expression enhanced the proliferative capacity of HNSC cells, with
more cells in the proliferative phase (Figures 5A, B). Additionally,
high IGF2BPI1 levels correlated with increased self-cloning ability
(Figure 5C). IGF2BP1 downregulation reduced both migratory
(Figures 5D, E) and invasive abilities (Figure 5F). Overall, these
results indicated that IGF2BP1 plays a significant part in promoting
the malignant biological behavior of HNSC tumor cells.
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Screening of prognostically critical genes and the association with clinical features and prognostic predictive ability. (A) The volcano plot illustrates
the differential gene expression between tumor and normal samples in the in-house cohort, highlighting the upregulation of IGF2BP1 in tumors
(n=193). (B) The boxplot demonstrated that IGF2BP1 expression was significantly upregulated in the tumor samples of the TCGA-HNSC cohort.

(C) Correlation of IGF2BP1 expression with that of the chemokine family. (D, E) In both the internal cohort (D) and the TCGA-HNSC cohort

(E), patients with high IGF2BP1 expression had shorter progression-free survival (PFS) and a worse prognosis. (F) ROC curve showing the predictive
value of IGF2BP1 expression for 3-, 4-, and 5-year survival rates. (G) Univariate Cox analysis evaluate the prognostic value of IGF2BP1 expression in

terms of PFS. ***p < 0.001.

HNSC patients were clustered into
two subtypes with distinct
clinical characteristics

Although HNSC patients were categorized into two groups
based on PFS prognosis-related IGF2BP1 expression levels, the

Frontiers in Immunology

underlying genetic changes remain unknown. To address this, we
investigated the potential transcriptional expression changes of
IGF2BP1 alteration in RNA modification patterns. Using the
limma method, we identified 15 DEGs associated with high- and
low-IGF2BP1 expression, which are considered characteristic genes
related to RNA modification (Figure 6A). The expression of these
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Assessment of the correlation between IGF2BP1 expression and cancer-related pathways, along with the prediction of chemotherapeutic drug
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in patients with high and low IGF2BP1 expression. (D) The relationship between IGF2BP1 expression and chemotherapy drug sensitivity was
evaluated. (E) The correlation between IGF2BP1 expression and the activity of carboplatin and gemcitabine compounds was assessed.

genes and their correlation with clinical features are shown in
Figure 6B. These genes are enriched in several immune-related
pathways, including immune response-regulating signaling, B cell
activation, and T cell activation regulation (Figure 6C).

Precise and detailed clinical typing is essential for individualized
treatment and the optimization of medical resources. To achieve this,
we mapped the pathway characteristics of HNSC samples using the
KEGG database. Through consensus clustering with the k-means
technique, we identified two distinct clusters, each characterized by
unique pathway activity patterns (Figure 6D). Specifically, cluster Cl1
actively participated in the biosynthetic pathways like glycerolipid
metabolism, arachidonic metabolism, and fatty acid metabolism. In
contrast, cluster C2 showed low metabolic pathway activity but high
oncogenic activation, including MAPK signaling, ERBB signaling, cell
cycle, mTOR signaling, and WNT signaling pathways. Thus, C1 was
defined as the biosynthetical intense type (BIT), and C2 as the
oncogenical active type (OAT) (Figure 6E). PCA revealed distinct
transcriptional profiles and heterogeneity, showing strong separation
between samples from the two clusters (Figure 6F). Similarly, in
TCGA-HNSC samples, two distinct groups were identified based on
the aforementioned clustering (Supplementary Figures S4A, B).
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The role of identified classification in
clinical relevance and
immunotherapeutic benefits

To evaluate the clinical application value of this classification, we
assessed its prognostic significance and predictive efficacy for
immunotherapy outcomes. In both the in-house cohort and TCGA-
HNSC dataset, patients with BIT had longer progression-free survival
and a significantly better prognosis (Figures 7A, B). Univariate Cox
analysis indicated that patients in the OAT group had a hazard ratio of
2.28, predicting worse PFS (Figure 7C). Moreover, the chemokine
family was significantly enriched in the BIT subtype, indicating more
active cytokine chemotactic activity (Figure 7D). Consequently, we
explored the infiltration of immune cells in the TME. In the in-house
cohort, B cells and CD4+ T cells were significantly elevated in the BIT
subtype (Figure 7E), consistent with findings from the TCGA-HNSC
cohort (Supplementary Figure S5A). Overall, the BIT subtype exhibited
higher levels of immune cell infiltration, suggesting a more active
immune cytotoxic function (Figure 7E; Supplementary Figure S5A, B).

Given the observed immune cell infiltration patterns, it is
unsurprising that the BIT subtype exhibited a higher immune
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FIGURE 4

IGF2BP1 expression patterns correlate with the immune microenvironment and predict immunotherapy response. (A) immune score significantly
differed between high and low IGF2BP1 expression subgroups. (B, C) Significant differences in immune cell infiltration were observed between high
and low IGF2BP1 subgroups using TIMER (B) and MCP counter (C) algorithms. (D, E) Standard single-cell analysis process of HNSC samples,
including dimensionality reduction (D) and annotation of cell types (E). (F) Expression levels of IGF2BP1 across various cell subpopulations. (G) A
circular plot illustrating the intensity of intercellular communication between malignant cluster O and other subpopulations, where line thickness
indicates the strength of communication and the size of the bubbles reflects the number of interactions. (H) A bubble plot demonstrating the activity
of ligand-receptor pairs during communication between malignant cluster O and other subpopulations. (I) IGF2BP1 expression correlated with
immune checkpoint expression. (J) PDCD1 expression varied between high and low IGF2BP1 subgroups. (K) High IGF2BP1 expression was
associated with higher TIDE scores. (L) More patients with low IGF2BP1 expression responded to immunotherapy. *p < 0.05; ***p < 0.001.
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score compared to the OAT subtype in the in-house cohort
(Figure 7F). Moreover, the IPS score for CTLA4-neg PD1-neg in
TCGA-HNSC was higher in the OAT subtype compared to the BIT
subtype, suggesting that the OAT subtype has lower immune
checkpoint expression and, consequently, a reduced likelihood of
response to checkpoint inhibitor therapy (Figure 7G). Further
analysis revealed that the OAT subtype had a significantly higher
TIDE score than the BIT subtype in both the internal cohort
(Figure 7H) and TCGA-HNSC (Supplementary Figure S5C),
reinforcing the notion of a poorer immunotherapy response in
the OAT subtype. Additionally, IFN-gamma expression was
markedly lower in the OAT subtype compared to the BIT
subtype (Supplementary Figure S5D). The response rate to
immunotherapy decreased in the OAT subtype, as illustrated in
Figure 71. Collectively, these findings indicate that patients with the
OAT subtype are less likely to derive benefit from immunotherapy.

Discussion

In cancer biology, RMGs are pivotal due to their influence on tumor
development (26). This study analyzed genetic variations among RMGs
in HNSC, identifying prognostic genes like IGF2BP1, strongly linked to
tumor progression. Elevated IGF2BP1 expression correlated with
aggressive tumor behavior, chemotherapy resistance, and immune
microenvironment alterations, indicating its central role in HNSC

Frontiers in Immunology

50

malignancy. We also introduced a new molecular classification, BIT
and OAT, revealing unique clinical characteristics. BIT subtype
exhibited better prognosis, heightened immune activity, and enhanced
response to immunotherapy, promising for HNSC management.
RNA modifications and their regulatory mechanisms are closely
intertwined with the TME in HNSC and other tumor types, impacting
immune molecules, cells, and signal pathways (27, 28). Recent studies
highlight the role of RNA modifications in regulating immune cell
activation, infiltration, and subsequent immunotherapy outcomes,
making them valuable targets for tumor immunotherapy (29-31).
For instance, ALKBH5, an m6A demethylase, impacts T cell function
and tumor growth (32). METTL3-mediated m6A modification
influences NK cell homeostasis and function, affecting tumor growth
and survival (33). Additionally, circIGF2BP3 overexpression in non-
small cell lung cancer suppresses CD8+ T cell infiltration,
compromising antitumor immunity (34). In this study, identification
of key prognostic genes like IGF2BP1 enables its potential as a valuable
biomarker, aiding in stratifying HNSC patients according to their risk
of disease progression. The current study demonstrated that the MIF -
(CD74+CXCR4) ligand-receptor pair is significantly active in tumor
cells with elevated IGF2BP1 expression. MIF (Macrophage Migration
Inhibitory Factor), a pivotal pro-inflammatory cytokine, orchestrates
various immune responses and promotes the recruitment of
immunosuppressive cells via its interaction with CD74 and CXCR4
receptors (35). This interaction is crucial for enhancing tumor immune
evasion mechanisms within the TME (36). The activation of the MIF -
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FIGURE 6
Consensus clustering identified two molecular subtypes in patients with HNSC. (A) Identification of DEGs between IGF2BP1 high- and low-expression
groups in 193 HNSC samples; (B) Expression patterns of these DEGs; (C) Enriched pathways associated with identified DEGs; (D) Heatmap illustrating
consensus clustering (k = 2) in 193 HNSC samples. (E) Heatmap depicting pathway scores for BIT and OAT molecular subtypes. (F) Principal component
analysis plot demonstrating distinct expression patterns between BIT and OAT subtypes, with orange dots representing BIT and purple dots
representing OAT.

(CD74+CXCR4) axis indicates that IGF2BP1-overexpressing tumor
cells may facilitate immune evasion through this pathway,
consequently undermining anti-tumor immune responses and
adversely impacting patient prognosis in immunotherapy contexts.
HNSC exhibits diverse treatment responses and prognoses
despite similar histologic types or TNM stages (37-39). The rapid
advancements in precision medicine have significantly augmented
our comprehension of tumor heterogeneity, offering deeper insights
into the complex nature of cancer. Molecular subtyping of HNSC is
advancing, with genomic studies identifying genetic alterations,
including PI3KCA mutations, Kras activation, SMAD4 mutations,
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and activation of PI3K/Akt/mTOR and Wnt pathways (40-44). An
HPV-related classification has been established, correlating subtypes
with smoking behavior and tumor immune response, though
immune cell components in the TME are overlooked (45). HNSC
subtypes, like atypical, basal, classical, and mesenchymal, feature
distinct characteristics, with the mesenchymal subtype displaying
heightened epithelial-mesenchymal transition (EMT) and inferior
survival outcomes, yet the unique role of immunotherapy in HNSC
remains unexplored (46). Our study compiled 193 RNA expression
profiles, categorizing samples into BIT or OAT subtypes based on
pathway activity. The system demonstrated reproducibility,
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The two subtypes exhibited distinct prognostic outcomes, tumor microenvironment characteristics, and responses to immunotherapy. (A, B) Kaplan—Meier
disease-free survival curve for all patients with HNSC assigned to BIT and OAT subtypes in the in-house cohort (A) and TCGA-HNSC cohort (B). (C) Univariate
Cox analysis evaluated the PFS prognostic value of our classification. (D) Heatmap displays the expression of chemokine families across the two subtypes. (E)
Box plot illustrates the distribution of six immune cell populations scores between the subtypes. The upper, middle, and lower horizontal lines in the box

represent the upper quartile, median, and lower quartile, respectively. (F) Violin

plots highlight variations in immune scores between subtypes. (G) The IPS

scoring system in the OAT subtype exhibits a higher percentage of CTLA-4 negative and PD1 negative. (H) TIDE scores of the two subtypes show significant
differences. (I) A higher proportion of patients with the BIT subtype showed a positive response to immunotherapy. **p < 0.01; ***p < 0.001; ****p < 0.0001.

predictability, and substantial prognostic value, although internal
cohort validation is warranted.

In recent years, the evaluation of immunotherapy efficacy and
prognosis in specific tumor types has gained considerable attention in
modern medical practice (47). Tumor-microenvironment
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interactions classify tumors into hot spots (abundant immune cells,
responsive to immunotherapy) and cold spots (limited immune cells,
less responsive) (48). Our study developed a predictive model for
immune cell infiltration, also estimating chemotherapeutic drug
sensitivity and immune checkpoint treatment response. Patients
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with high immune scores and immune cell infiltration, indicative of
hot-spot tumors and robust immune responses, are likely to benefit
from immunotherapy with improved prognosis.

While our study provides valuable insights, several limitations
need to be acknowledged. The sample size, although substantial, may
still limit the generalizability of our findings. Moreover, potential
biases in the TCGA-HNSC dataset and our in-house cohort could
influence the results. Further validation in larger, independent cohorts
is necessary to confirm the prognostic value of the identified subtypes.

In conclusion, our study enhances comprehension of RNA
modification regulators in HNSC by identifying key prognostic
genes and elucidating the functional roles in cancer progression and
treatment responses. We also introduce a novel HNSC classification
based on transcriptomics, demonstrating significant predictive
value for patient survival. These findings promise to advance
personalized medicine in HNSC management through novel
prognostic biomarkers and targeted therapies.
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N1-methyladenosine (m1A) modification is an epigenetic change that occurs on
RNA molecules, regulated by a suite of enzymes including methyltransferases
(writers), demethylases (erasers), and m1A-recognizing proteins (readers). This
modification significantly impacts the function of RNA and various biological
processes by affecting the structure, stability, translation, metabolism, and gene
expression of RNA. Thereby, m1A modification is closely associated with the
occurrence and progression of cancer. This review aims to explore the role of
m1A modification in tumor immunity. m1A affects tumor immune responses by
directly regulating immune cells and indirectly modulating tumor
microenvironment. Besides, we also discuss the implications of m1A-mediated
metabolic reprogramming and its nexus with immune checkpoint inhibitors,
unveiling promising avenues for immunotherapeutic intervention. Additionally,
the m1AScore, established based on the expression patterns of mlA
modification, can be used to predict tumor prognosis and guide personalized
therapy. Our review underscores the significance of m1A modification as a
burgeoning frontier in cancer biology and immuno-oncology, with the
potential to revolutionize cancer treatment strategies.

KEYWORDS

m1A modification, cancer immunotherapy, tumor microenvironment, m1AScore,
immune checkpoint inhibitor
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1 Introduction

Epigenetic modifications of RNA refer to chemical
modifications that occur on RNA molecules without altering their
basic sequence, yet they significantly affect the stability, localization,
translation efficiency, and other biological functions of RNA (1, 2).
Since the first discovery of RNA modification as a gene expression
control mechanism beyond DNA sequence in the 1950s (3), it has
become a prominent focus in life science. Researchers have
gradually elucidated its regulatory mechanisms and its crucial role
in regulating gene expression, cellular differentiation, tissue
development, and the onset and progression of diseases. Up to
now, more than 170 chemical modifications of RNA have been
identified (4).

Common RNA modifications encompass N6-methyladenosine
(m6A), N5-methylcytosine (m5C), N1-methyladenosine (m1A), N7-
methylguanine (m7G), N4-acetylcytosine (ac4C), pseudouridine (\P),
uridylation, and adenosine-to-inosine editing (A-to-I), among which
m6A is the cutting-edge research domain (5). These modifications are
added to RNA by specific “writers” enzymes, removed by “erasers”
enzymes, and can be recognized by “readers” proteins, thereby
participating in diverse biological processes of RNA (6). In recent
years, among the myriad of RNA modifications, the ml1A
modification has attracted increasing attention. It is a methylation

10.3389/fimmu.2024.1517604

modification of the first nitrogen atom of adenosine. Apart from m6A
methylation, m1A methylation is the most prevalent, abundant, and
evolutionarily conserved internal post-transcriptional modifications
in eukaryotic RNA (7). Furthermore, m1A and m6A have a close
relationship—m1A can not only be converted into m6A under
alkaline conditions through the Dimroth rearrangement, but also
they share some common regulatory factors, like YTHDFI-3 and
FTO (8).

First discovered in the 1960s (9), m1A modification has been
the subject of research for over half a century (Figure 1). With the
recent advancements in high-throughput sequencing technology, it
has been revealed that m1A modification is ubiquitously present in
various types of RNA, such as tRNA, rRNA, IncRNA, and mRNA
(10). The detection technologies for m1A modification have been
continuously evolving over time, providing critical insights into its
biological functions in transcription and translation (11). Especially,
single-base resolution detection methods, referring to technologies
that precisely identify and quantify specific methylation
modifications in RNA molecules at the base level, provides
detailed information on gene expression regulation, epigenetics,
and disease-related variations (12-14). The Yi research group,
leveraging the mismatch caused by ml1A during reverse
transcription, has developed a high-resolution “ml1A-MAP”
single-base resolution technology. This technique first enriches

The identification of

The first purification of

free m1A bases was tRNA m1AS8 . 5
achieved for the was achieved from muﬁ;';’mi:‘i'z;::a
first time. rat liver. g

mlAS7 is the

The m1A sites in
mRNA are recognized
and bound by
YTHDF1-3 and YTHD!

for installing m1A9

TRMTI0C and
TRMTG61B are responsible,
and m1A58 in mt-tRNA.

m1A58 maintains the
thermostability of
tRNA in thermophilic

bacterium.

The m1A58 The tRNA-m1A e In ocular melanoma
modification of tRNA odification serves as a involves histone
denosines enhances novel "translation cetylation increasing
in hematopoietic translation efficiency checkpoint” for the ALKBH3 expression,
stem cells post-T cell activation, regulation of CD4+ T. reducing m14 Jevel.

FIGURE 1

The timeline summarizes key m1A RNA research milestones from 1960 to 2024. It uses different colored boxes to represent key research milestones
and discoveries. The timeline provides a detailed account of the evolution of m1A RNA from its initial discovery to a more profound comprehension
of its functions. Additionally, it illustrates recent research advancements concerning the functions, regulatory mechanisms, and roles of miRNA

in diseases.
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RNA containing m1A modifications using m1A antibodies, then
employs reverse transcriptase to generate an A-C mismatch when
encountering m1A, resulting in a G-A to A-C transition in cDNA.
By comparing the mismatch rates of demethylated and untreated
samples, mlA modification sites can be precisely located, thus
revealing the distribution and abundance of m1A in the
transcriptome (15). The Yi group has also developed “m1A-ID-
seq,” a novel m1A RNA methylation sequencing technology that
combines antibody enrichment with specific enzymatic reactions
(7). Both technologies hold significant positions in the detection of
mlA modifications. For example, the most commonly used
technique is MeRIP-seq/m1A-seq, a methylated RNA
immunoprecipitation sequencing method based on antibody
enrichment (16). It employs mlA-specific antibodies to enrich
RNA fragments with ml1A modifications, followed by a high-
throughput sequencing to map the precise location and quantify
the abundance information of mIlA modifications on RNA
(17).Recently, Xie et al. has developed m'A demethylation editing
tool (termed AI-dm'A) as well as an m'A methylation editing tool
(termed AI-m'A) by combining the CRISPR/dCas13b system with
Chemically Induced Proximity (CIP) technology, enabling the
precise and reversible regulation of m1A modification. This tool
offers a real-time controllable and reversible means to study m1A
dynamics, offering invaluable insights into m1A’s biological
functions (18).

Previous reviews on m1A modification have mainly focused on
the role of m1A modification in cancer (19), understanding the
function of mI1A modification in different RNAs and its role in
diverse spectrum of malignancies (20). Researches focusing on m1A
in the field of cancer immunotherapy are relatively scarce. Cancer
immunotherapy has been a significant breakthrough in the context
of cancer treatment. It works by activating or enhancing the
patient’s own immune system to attack cancer cells and has
achieved certain clinical results. However, due to differences in
the immune systems and tumor characteristics of different patients,
Some patients may not respond or develop tolerance (21).
Moreover, the current clinical research evaluation system lacks
corresponding methods to assess the durability and special
clinical course of immunotherapy (22). Therefore, it is necessary
to searching for new targets for cancer immunotherapy
continuously (23). The modification of RNA has emerged as a
promising direction due to its significant influence on multiple
facets of immunotherapy.

This review delves into the significant role and potential of m1A
modification in cancer immunotherapy. By revealing how mlA
modification affects immune cell function, the tumor
microenvironment (TME), and responses to immune checkpoint
inhibitor therapy, we provide a scientific basis for developing novel
cancer treatment strategies. Furthermore, the concept of m1AScore
elaborated in this review may help predict the prognosis of tumor
patients and guide clinical treatment decisions, auspiciously
improving patients’ treatment outcomes and quality of life.
Overall, we emphasize m1A modification as a cutting-edge
frontier in the field of cancer biology and immuno-oncology, with
the potential to improve approaches to cancer treatment.
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2 mla regulators and their
biological roles

The modification of m1A is typically enriched in the 5 UTR region
of mRNAs (7), particularly at the first and second positions of the
transcripts, as well as near the translation initiation site (17).
Additionally, m1A modification is present within the coding
sequences, where it is positively correlated with protein synthesis. In
some organisms, such as dinoflagellates, ml1A modification is
predominantly enriched in the 3> UTR region, where it is negatively
correlated with translation efficiency (24). Besides, m1A is also
commonly found at conserved sites in tRNA (especially at positions
9, 14, 16, 22, 57, and 58 of tRNA), rRNA and IncRNA (20). Thereby,
mlA modification plays an important role in maintaining RNA
stability, promoting protein synthesis, and regulating gene expression
(1,2,25). m1A carries a positive charge under physiological conditions,
which may alter the charge distribution of the RNA molecule, thereby
affecting its interactions with proteins (10). Additionally, m1A
modification disrupts the normal Watson-Crick base pairing, leading
to unstable mismatches with other nucleotides. These alterations could
potentially impact the secondary structure of RNA and RNA-protein
interactions, thereby affecting RNA metabolism processes, including
splicing, transport, degradation, and translation (26, 27). The process of
mlA methylation involves three types of molecules: “writer”, “eraser”
and “reader”, collectively referred to as RNA modification proteins
(Figure 2). "Writers" are responsible for the methylation of RNA,
"erasers" play a role in removing the m1A from RNA, and "readers" can
recognize and bind to the m1A-modified transcript and participate in
the regulation of downstream biological processes (15, 28).

2.1 Writers

Thus far, human cells have been identified six m1A
methyltransferases: TRMT6/TRMT61A, TRMT61B, TRMT10C,
NML (including RRP8 and RRAM-1 homologues), BMT2, and
MTRI1 (27, 29). Both TRMT61B and TRMT10C function within the
mitochondria (30). TRMT61B is essential for sustaining mitochondrial
function and cellular responses to stress, by regulating the methylation
of mitochondrial tRNA, thus influencing mitochondrial protein
synthesis and overall mitochondrial activity. A reduction in
TRMT61B levels can diminish expression of various mitochondrial-
encoded proteins, thereby constraining mitochondrial capability,
leading to decrease in ATP production, and disruption in oxidative
phosphorylation and energy metabolism (31). Additionally, the
absence of TRMT61B can lead to senescence in melanoma cell with
low levels of aneuploidy, while in melanoma cell with high levels of
aneuploidy, it can lead to apoptosis. This may serve as a potential
biomarker and therapeutic target for highly aneuploid tumors (32).
TRMTI10C primarily functions in the methylation of adenosine and
guanosine nucleotides at the 9th position of tRNA. Due to the lower
GC content of mitochondrial tRNA compared to cytoplasmic tRNA,
and the fact that their D-, T-, and variable loops are either absent or of
different lengths in supporting the folding of cytoplasmic tRNA,
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methylation and demethylation. During the methylation process, enzymes known as “writers,” including TRMT6, TRMT61A, TRMT10C, TRMT61B,
BMT2, MTR1, and NML, aim to add the m6A modification to RNA molecules. In contrast, “eraser” enzymes such as ALKBH1, ALKBH3, ALKBH7, and
FTO are responsible for removing the m1A modification from RNA, thereby achieving demethylation. The modified RNA can be recognized by
“reader” proteins, which include YTHDF1, YTHDF2, YTHDF3, and YTHDCL. These proteins participate in the regulation of RNA stability, translation

efficiency, and degradation by recognizing the m1A modification.

TRMT61C is crucial for ensuring the functional folding and stability of
these structurally distinct tRNAs (33).

TRMT61A works together with TRMT6 to form a complex
responsible for the m1A modification of mRNA and mitochondrial
tRNA, thereby regulating multiple biological processes. Research by
He HQ et al. has shown that overexpression of the TRMT6-
TRMT61A complex promotes astrocyte senescence through
tRNA-m1A58 modification. This modification also induces
necroptosis in hematopoietic stem cells (HSCs) by generating 3’-
tiRNA-Leu-CAG and activating the RIPK1-RIPK3-MLKL cascade
(34), a programmed cell death process mediated by TNF-stimulated
signaling (35). Tumor cell-induced necroptosis in endothelial cells
facilitates tumor cell extravasation and metastasis (36). Moreover,
the specific deletion of TRMT6 in HSCs leads to abnormal
expansion and significantly reduced self-renewal capacity in the
short term. The tRNA-m1A58 modification also regulates
mTORCI signaling in HSCs to meet their rapid translational
demands (37). The overactivation of the mTORC1 pathway in
various cancers is widely recognized and is closely associated with
cancer cell proliferation, survival, and metabolism (38, 39). Given
the critical roles of TRMT6 and tRNA-m1A modification in HSC
function, they may serve as potential therapeutic targets for certain
hematological malignancies, especially those related to abnormal
HSC functions, such as leukemia (40).

2.2 Erasers
The erasers of m1A include ALKBH1, ALKBH3, ALKBH7 from

the AIkB family, as well as FTO. Among these, ALKBH3 and FTO
are the most prominent mlA erasers, making this modification
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reversible (41). ALKBH3 removes methyl groups from m1A and
other alkylated bases (42, 43), modulating key cellular processes like
cell cycle regulation and key factors (vascular endothelial growth
factor (VEGF), tRNA-derived small RNAs (tDRs) etc.) in the TME.
By knocking down ALKBH3, the expression of p21WAF1/Cipl and
p27Kipl, leading to cellcycle arrest at the G1 phase, cellular
senescence, and a robust inhibition of cell growth in vitro (44).
Furthermore, in human urothelial carcinoma cells, ALKBH3
enhances tumor survival, invasiveness, and angiogenesis by
modulating the production of reactive oxygen species and the
expression of several critical factors like VEGF (45). Additionally,
ALKBH3 elevates the sensitivity of tRNA to angiogenin-mediated
cleavage, leading to the formation of tDRs. This triggers ribosome
assembly and interacts with cytochrome ¢ to prevent apoptosis,
thereby promoting cancer progression (46). As for FTO, it can
directly inhibit translation by catalyzing m1A tRNA demethylation
in both the nucleus and the cytoplasm, thereby suppressing the
survival and proliferation of tumor cells (47). This will be further
discussed in the following text.

2.3 Readers

m1lA readers include YTHDF1, YTHDF2, YTHDE3, YTHDCI1,
all of which belong to YTH family. These proteins can directly
interact with m1A-modified RNA molecules through their
characteristic YTH domains (48). Compared to the researches on
mlA’s “writers” and “erasers”, the study of “readers” has been
relatively scarce. Currently, YTHDF3 has been recognized as being
able to negatively regulate the invasion and migration of cells. By
binding to IGFIR mRNA with ml1A modification, YTHDF3
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enhances the degradation of IGFIR mRNA, and subsequently
reducing the expression of matrix metalloproteinase 9, an enzyme
involved in extracellular matrix remodeling and tumor cell invasion
(49). With respect toYTHDC1, in addition to its known binding to
m6A-RNA, it also binds to m1A-containing RNA after alkylation.
YTHDCI, together with the THO complex, prevents DNA breaks
induced by nuclear RNA ml1A methyltransferases (43). YTHDEF2
facilitates the transport of the modified RNA to the P-body via its
N-terminal domain, thereby hastening the degradation of the m1A-
modified RNA (50). YTHDF1 primarily participates in the
metabolism of ATP5D to regulate glycolysis (51).

3 Application of m1A RNA
modification in tumor immunity

Over the past decade or so, cancer treatment has undergone
revolutionary changes. It is no longer limited to traditional
therapies that target tumors, such as chemotherapy and
radiotherapy (52). With the rapid development and continuous
innovation of cancer immunotherapy, more precise and
personalized treatments have provided patients with novel
therapeutic options and better survival prognoses (53). The main
driving force behind this shift is a deeper understanding of the
TME. The TME is a complex ecosystem composed of cancer cells,
non-cancer cells (including fibroblasts, immune cells, endothelial
cells, and vascular cells), as well as extracellular matrix, blood
vessels, and nerve fibers, among other non-cellular components
(54, 55). The TME not only provides physical support and nutrients
for tumor cells but also participates in regulating tumor growth,
invasion, metastasis, and response to treatment (56). Additionally,
the development of new immunotherapeutic drugs has made a
significant contribution to cancer treatment. In particular, the first
generation of immune checkpoint inhibitors (ICIs), such as anti-
programmed death-1(PD-1)/programmed cell death 1 ligand 1
(PD-L1) and anti-cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) antibodies, can restore the antitumor activity of T cells
by blocking immune-inhibitory signaling pathways (57, 58).

As cancer immunotherapy has become a frontier in oncology,
understanding how m1A contributes to immune modulation offers
new possibilities for treatment strategies. Currently, m1A
modification has be recognized as a crucial player in directly
affection the behavior of immune cells, and indirectly regulating
TME. Additionally, evaluating the expression patterns of multiple
m1A regulators in tumor samples can predict tumor prognosis and
the state of the TME.

3.1 m1A modification and immune cells

3.1.1 m1A modification and T cell

T lymphocytes are the primary effector cells in cellular
immunity, producing cytokines to mediate inflammation and
regulate other types of immune cells in immune responses (59).

Frontiers in Immunology

10.3389/fimmu.2024.1517604

Among them, CD4+T cells primarily recognize foreign antigens
presented by antigen-presenting cells and mount a response. This
response can modulate the activity of other immune cells, such as B
cells or CD8+ T cells, and can also initiate new immune responses
(60). Upon encountering specific antigens, CD4+T cells rapidly
transition from a resting state to an active state, and begin to
proliferate and differentiate rapidly (61). This process requires the
promptsynthesis of a large amount of functional proteins to meet
the demands of bioenergetics and biosynthesis (62, 63).
Furthermore, Liu et al. have discovered that the catalytic action of
the TRMT6/61 A complex at the 58th site of cytoplasmic tRNA can
enhance translation initiation and elongation (64).

On this established foundation, Li Huabing’s team has
uncovered that the mlA modification on tRNA increases
translation efficiency, leading to rapid synthesis of key functional
proteins such as MYC (65). MYC can regulate the clonal expansion
of CD4+T cells by affecting metabolic reprogramming and cell cycle
control (66). Consequently, the MYC protein directs naive T cells to
transition from a quiescent state to a proliferative one and promotes
the swift expansion of activated T cells. Li et al. first observed that
during T cell activation, protein translation-related pathways are
upregulated, and various tRNAs also exhibit dynamic expression
patterns that are upregulated. The tRNA-m1A58 modification
enzymes TRMT6 and TRMT61A are also upregulated during the
activation process (65). Then they used TRMT6A conditionally
knockout mice and found in both in vivo and in vitro experiments
that T cell activation and immune function were impaired, and their
proliferative capacity was reduced. It was also discovered that after
T cell activation, the translation of various key proteins was
hindered, particularly the transcription factor MYC (67). This
study suggests that TRMT61A-mediated tRNA-m1A58
modification could serve as a novel “translational checkpoint” for
the regulation of CD4+T cell proliferation (Figure 3), offering a new
RNA epigenetic regulatory strategy for the clinical modification of
CD4+T cell functions to treat cancer (67).

3.1.2 m1A modification and macrophages

The impact of m1A modification on immune cells is primarily
focused on T cells, with relatively fewer studies on other immune
cells. While, still some progress has been made in macrophages.
Macrophages can produce a range of cytokines that are crucial for
modulating immune reactions, both promoting inflammatory
responses and maintaining anti-inflammatory balance. They can
also polarize into different phenotypes based on the changing
signals from the surrounding microenvironment, adapting to
diverse immune demands (68). Besides, macrophages recognize
specific molecular patterns of pathogens through their pattern
recognition receptors, thereby activating immune responses (69).
The following discusses the association between m1A modification
and macrophages from two perspectives: cytokines and
macrophage polarization.

Research by Woo & Chambers has found that ALKBH3 can
enhance the stability of Colony-Stimulating Factor 1 (CSF-1)
mRNA. CSF-1 is a cytokine mainly responsible for regulating the
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The m1A58 modification in tRNA enhances the efficiency of translation, accelerates the synthesis of the key protein MYC, and promotes the
activation of T cells. Created by Figdraw. The left side of the figure shows an initial T cell in an unactivated state. The right side shows an activated T
cell, which is the state of T cell activation after receiving specific signals. Myc protein- a transcription factor that plays a key role in cell proliferation,
differentiation, and apoptosis is involved in the activation process of T cells. The encoding information of its protein is carried by Myc mRNA. On the
MRNA, codons are sequences of three nucleotides that encode specific amino acids. The figure shows ribosomes reading codons on Myc mRNA.
Specific tRNA molecules carry the m1A58 modification. This modification is a type of methylation that occurs on tRNA and can affect the stability
and translation efficiency of tRNA. TRMT6/61A is a protein complex responsible for adding the m1A58 modification to tRNA. Myc protein affects T
cell activation by regulating the translation of mRNA. In initial T cells, Myc protein may regulate translation efficiency by affecting the m1A58

modification of tRNA, thereby influencing the activation process of T cells.

generation, survival, differentiation, and function of macrophages
(70, 71). Then, CSF-1 activates its receptor CSF-1R to affect the
survival, proliferation, migration and invasiveness of cancer cells
like breast and ovarian cancer cells. Moreover, increased expression
of CSF-1 in breast and ovarian cancer cells has been associated with
poor prognosis (72). Therefore, it is possible to explore inhibitors
targeting ALKBH3, block the CSF-1/CSF-1R signaling pathway,
and develop epigenetic therapies targeting m1A modification to
control tumor progression (70). However, further research and
clinical trials are needed to translate these findings into
clinical applications.

The study of m1A involved in macrophage has also been applied
in abdominal aortic aneurysms (AAA). AAA is characterized by the
pathological dilation of the abdominal aorta and the continuous
weakening of the aortic wall (73). Currently, effective drug treatments
are scarce, and surgical repairs pose risks and limitations (74).
Infiltration of inflammatory immune cells in the adventitia of the
artery is a key characteristic of AAA (75). Strikingly, the
transformation of M0 macrophages into pro-inflammatory M1
type or anti-inflammatory M2 type macrophages has a regulatory
effect on the vascular inflammation process in AAA (76-78).
Moreover, various epigenetic mechanisms are associated with
macrophage polarization inspires the exploration and utilization of
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mlA to modulate macrophage polarization in AAA (79, 80).
Research by Wu et al. has provided new insights into the
pathogenesis of AAA from the perspective of mlA epigenetic
regulation and macrophage polarization (74). The varying
expression levels of YITHDEF3 acting as “readers” are associated
with the infiltration of different immune cells in AAA (80). Using
IF double staining analysis, co-expression of YTHDF3 and the
macrophage surface marker CD68 was observed in a cell from the
adventitia of AAA. Further experiments showed that knockdown of
YTHDE3 in M0 macrophages inhibits macrophage M1 polarization
but promotes macrophage M2 polarization. Specifically, knockdown
of YTHDFS3 significantly impaired LPS/IFN-y-induced macrophage
M1 polarization and attenuated the secretion of the inflammatory
cytokine IL12, significantly reversing the MO to M1 polarization of
macrophages. Besides, the specific inhibitor of YTHDF3 expression
may act as a modulator of macrophage M2 polarization adaptation,
which would reduce the secretion of matrix metalloproteinases,
promote the repair process of the aortic wall, and alleviate vascular
inflammation by downregulating the expression levels of pro-
inflammatory cytokines such as IL1B and TNF, and upregulating
the secretion of anti-inflammatory cytokines and chemokines such as
IL10 and TGF, suggesting that YTHDES3 is a potential therapeutic
target for AAA (74, 81).
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3.2 ml1AScore in tumor prognosis
and immunotherapy

More application of ml1A modification in cancer research
focuses on analyzing the expression patterns of mlA-related
genes to establish m1AScore, which is used to assess prognosis
and risk, and guide personalized treatment. Specifically, high-
throughput sequencing technologies, such as RNA-seq, are
typically employed to collect gene expression data from tumor
samples. Genes associated with m1A, including “writers”, “erasers”,
and “readers”, are then identified from this data. Subsequent
analysis focuses on the expression patterns of these related genes,
examining their levels of expression and variations. Statistical
methods, such as linear and logistic regression, are utilized to
construct a scoring model that predicts the prognosis of cancer
patients based on the expression patterns of m1lA-related genes.
This scoring model is then validated and optimized using
independent datasets. Next, by inputting a patient’s gene
expression data into the scoring model, an mlAScore is
calculated for each individual. Notably, the specific calculation
method for the m1AScore may vary across studies, with different
research potentially employing distinct sets of genes, statistical
approaches, and model-building strategies (82-86). Different
scoring systems are employed in various tumor models, which are
often also related to immunity, such as the function of immune
cells, the response to immunotherapy, and the characteristics of
immune cell infiltration in the TME. Therefore, m1A is an
indicative biomarker to predict the effectiveness of immunotherapy.

3.2.1 Ovarian cancer (OC)

In the study of ovarian cancer, by comprehensively assessing the
mlA modification patterns in 474 OC patients based on 10 mI1A
regulators and linked them to the immune infiltration
characteristics of the TME, Liu et al. found a high m1A score is
usually associated with better survival benefits and a lower
mutational burden. Moreover, m1A modification affects the TME
of ovarian cancer, including the infiltration and composition of
immune cells. Researchers identify three distinct m1A modification
patterns corresponding to three tumor immune phenotypes:
immune desert, immune-inflammatory, and immune-exclusion
phenotypes. Tumor patients with an immune-inflammatory
phenotype may have a good response to ICIs, while those with an
immune-desert phenotype may require other treatment methods to
enhance their sensitivity to immunotherapy (85, 87).

3.2.2 Colon cancer

Gao et al. employed m1AScore, which is generated by using
profile of expression of the 71 m'A-related genes to further
demonstrate the m1A patterns in colon cancer They found a low
mlAScore is accompanied by enhanced proliferative capacity of
CD8+ T cells, increasing the tumor-killing ability of immune cells.
Additionally, a low m1AScore is correlated with high microsatellite
instability (86), rendering patients have a better response to
immune checkpoint inhibitor therapy (88). Moreover, it is also
associated with a higher tumor neoantigen burden, which can be
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recognized by the immune system and elicit an immune response
(89). Furthermore, it is related to the expression levels of PD-L1.
Therefore, it can be predicted that patients with a low m1AScore
will exhibit longer survival times and better treatment responses
when undergoing antitumor immunotherapy (86).

3.2.3 Head and neck squamous cell
carcinoma (HNSCC)

Wang et al. shed light on the correlation between IncRNAs that
harbor modifications of m6A, m5C, and m1A with the survival
outcomes, immune contexture, and tumor mutational burden in
patients with HNSCC (90). They found mlA modification may
affect the stability and function of IncRNAs, which may be involved
in the regulation of immune-related gene expression, such as
immune checkpoint molecules (91). Moreover, modified RNA
influences the composition of immune cells in the TME. The
high-risk subgroup may contain a higher number of
immunosuppressive cells, such as Regulatory T cells (Tregs) and
M2 macrophages, while the low-risk subgroup may have a higher
number of immunoactivating cells, such as NK cells and Th1 cells.
Thus, by modulating the expression or function of these IncRNAs, it
might be possible to enhance the antitumor immune response,
thereby improving therapeutic outcomes (90).

3.2.4 Lung cancer

Zhou et al. established a Writer-Score system based on the
expression levels of RNA modification writers, such as enzymes
related to m1A, m6A, A-to-I, and APA modifications to quantify
RNA modification patterns and predict the clinical outcomes of
patients with non-small cell lung cancer (NSCLC). These groups of
RNA modification patterns show a strong association with various
TME characteristics and biological processes. The Writer-Score is
also used to predict the prognosis of NSCLC patients receiving
neoadjuvant immunotherapy. The study found that patients with a
low Writer-Score had a better disease-free survival (p=0,021) and
were associated with a better pathological response. Different RNA
modification patterns are related to different levels of immune cell
infiltration. For example, certain RNA modification patterns are
associated with a high level of T helper cells, Tregs, or other
immune cells, and the presence of these cells may affect the
effectiveness of immunotherapy (92).

3.2.5 Oral squamous cell carcinoma (OSCC)

Three distinct m1A modification patterns were identified in
OSCC based on the expression levels of 10 m1A regulators from 502
patients’ samples. These patterns were found to be significantly
associated with patient prognosis and the TME characteristics. The
cluster with high expression of m1A regulators correlated with
lower immune cell infiltration, lower single-sample gene set
enrichment analysis (ssGSEA) scores, and higher tumor purity,
indicating that m1A modification may influence the formation of
TME in OSCC. The expression levels of immune checkpoint
molecules such as CTLA-4, PD-1, T cell immunoglobulin and so
on, were positively associated with the expression of mlA
regulators, immune cell infiltration, and ssGSEA scores (93).
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mlAscore also contributes substantially to pancreatic cancer
(94), hepatocellular carcinoma (83), low-grade glioma (84)and
other types of cancers. In summary, it shows potential in
prognostic research across different cancers and has a certain
correlation with immune responses. By combining other clinical
parameters, such as tumor mutational burden, m1lAscore can
provide more accurate information for personalized treatment

and prognostic assessment of cancer patients.

3.3 m1A and metabolism regulation

Emerging researches highlight the role of metabolite regulation
in enhancing tumor immunotherapy, particularly through
modifications like m6A. For example, inhibiting RNA
demethylase ALKBHS5, has been shown to boost tumor sensitivity
to immunotherapy, by downregulating the expression of MCT4/
SLC16A3, alactate transporter, thereby reducing lactate levels in the
TME. This metabolic change reduces the presence of
immunosuppressive cells like myeloid-derived suppressor cells
(MDSCs) and Tregs, ultimately enhancing the tumor’s response
to immunotherapy. This discovery highlights ALKBH5 as a
potential target for new immunotherapies (95). Although research
on the impact of mlA modification on the TME and immune
responses is still limited, the findings regarding m6A may provide
insights into the effects of m1A modification on metabolic
reprogramming and its influence on immune responses (8).

Wu et al. found that the m1A demethylase ALKBH3 can
regulate cancer cell glycolysis through modulating ATP5D, a key
subunit of adenosine 5’-triphosphate synthase in two manners (51).

ATP5D Translation T

FIGURE 4
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On the one hand, the m1A modification at A71 in exon 1 of ATP5D
negatively regulates its translation elongation by increasing its
binding to the YTHDF1/eRF1 complex, thereby promoting the
release of mRNA from the ribosome complex. On the other hand,
mlA also regulates the mRNA stability of E2F1, which directly
binds to the ATP5D promoter to initiate transcription (96). Overall,
ALKBH3 enhances transcriptional and translational efficiency of
ATP5D. Targeted demethylation of ATP5D mlA via the
dm1ACRISPR system has been shown significantly increase the
expression of ATP5D and the glycolysis of cancer cells (Figure 4).
Other regulatory factors of RNA modification, such as ALKBH5,
YTHDEF2, and FTO, are also involved in the regulation of glucose
metabolism (97).

Wang et al. found that m1A modification mediated by the
TRMT6/TRMT61A complex enhances the translation of
peroxisome proliferator-activated receptor delta (PPARS) protein.
The activation of PPARS can promote the expression of genes
related to fatty acid oxidation, such as ATP citrate lyase (ACLY) and
stearoyl-CoA desaturase 1 (SCD1). It also activates the enzyme 3-
hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) in the
cholesterol synthesis pathway to increase cholesterol production.
Additionally, PPARS can affect the uptake and excretion of
cholesterol, thereby regulating the levels of cholesterol within the
cell (98).

Key enzymes in glycolysis and fatty acid synthesis, such as
hexokinase and enolase, as well as fatty acid synthase and acetyl-
CoA carboxylase, are targets of m1A modification (97). Tumor
cells, by enhancing glycolysis and cholesterol synthesis, may deprive
immune cells of the metabolic materials they need, thereby
suppressing the function of immune cells. It also alters the

ALKBH3

ATPSD Transtn‘ptionT

ALKBH3 regulates ATP5D transcription and translation mechanism. Created with BioRender.com. ALKBH3, as a demethylase, specifically targets the
m1A modification on mRNA. The arrow pointing to the m1A mark on the mRNA indicates the demethylation process. By removing the m1A, ALKBH3
can affect the stability and translation of mMRNA. When the m1A mark is removed, the stability of mRNA increases, as shown by the upward arrow
next to "E2F1 mRNA stability,” which may consequently increase the levels of the corresponding protein. The diagram also illustrates the impact of
ALKBH3 on translation efficiency. When the m1A mark is bound by the writerYTHDF1 and eRF1 complex, it inhibits translation, as indicated by the
negative sign (-). In contrast, after ALKBH3 removes the m1A mark, it allows for more efficient translation, as shown by the positive sign (+) and the
upward arrow next to "“ATP5D Translation.” In summary, this diagram provides a visual representation of how ALKBH3, through its demethylation
activity, can regulate mRNA stability and translation, ultimately influencing protein synthesis.
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metabolic state of the TME, leading to the accumulation of
immune-suppressive cells, thus promoting tumor immune
evasion. In addition, changes in cholesterol levels affect the
expression of immune checkpoint molecules (such as PD-L1) (16,
99, 100).

4 mlA modification and
ICls treatments

ICIs are a class of cancer immunotherapies that enhance anti-
tumor immune responses by targeting immune checkpoint
molecules on the surface of T cells. By blocking the PD-1/PD-L1
and CTLA-4/CD80/86 signaling pathways, they enhance effective
immune responses against cancer cells, restore tumor antigen
recognition, and ultimately lead to the death of cancer cells (101-
103). Although ICIs have achieved significant therapeutic effects in
some patients, most patients still experience disease progression
after initial treatment. To improve the effectiveness of ICIs, it is
crucial to search for new, effective targets and to address issues of
resistance (104). A growing number of research highlights the
connection between mlA modification and the efficacy of IClIs,
such as anti-PD-1 and anti-CTLA-4 therapies.

4.1 ml1A and PD-L1

Overexpression of MYC protein is closely associated with the
occurrence and development of various tumors. However, due to the
lack of an enzyme active site pocket suitable for direct action by small
molecule drugs, MYC protein is considered an “undruggable” target
(105). Recently, Wang et al. reported TRMT61A-mediated tRNA-
mlA modification provides a new mechanism and potential
therapeutic strategy for the regulation of MYC protein in two ways.
First, inhibition of TRMT61A can directly inhibit the proliferation of
tumor cells by reducing the synthesis of MYC protein. Furthermore,
in tumors treated with oncolytic herpes simplex virus (0HSV), the
level of m1A modification increases, leading to reactive upregulation
of PD-L1 (106, 107). Therapeutic TRMT61A inhibitors reduce m1A
modification, thereby decreasing the de novo synthesis of PD-L1,
which weakens the immune escape ability of tumor cells and makes
them more susceptible to immune system attacks (107). In summary,
inhibition of TRMT61A, as a new therapeutic strategy, may improve
the sensitivity of tumors to immunotherapy and OV therapy by
simultaneously affecting MYC and PD-L1, making it a promising
therapeutic target. Future research needs to evaluate the mechanism,
efficacy, and safety of TRMT61A inhibitors, in order to provide more
effective treatment options for cancer patients.

Moreover, it has been discovered that METTL3, a dual regulator
of ml1A and m6A, has a close relationship with PD-L1. Ai et al.
found that METTL3 can regulate the m6A modification level of PD-
L1 in the model of OSCC (108). METTL3 may regulate the
transcription or mRNA stability of PD-L1 through m6A
modification, thereby affecting the protein level of PD-LI.
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Knocking down METTL3 reduces the invasion, migration, and
proliferation abilities of OSCC cells, and weakens the activation of
CD8+ T cells. METTLS3 intensifies the metastasis and proliferation
of OSCC by regulating the m6A amount of PD-L1, indicating that
METTL3 may be a therapeutic target for OSCC patients.

4.2 mlA and PD-1

Bao et al. reported that targeting m6A reader YTHDF1
promotes the translation of p65 to upregulate CXCLI, thereby
facilitating the migration of MDSCs through the CXCL1-CXCR2
axis (109). The increased MDSCs, in turn, antagonize functional
CD8+ T cells in the tumor TME (110). Additionally, depletion of
YTHDF1 can reduce tumor growth and enhance anti-colorectal
cancer immunity by restoring the infiltration of CD8+ T cells and
synergizes with PD-1 blockade to better control tumors (109). Since
research has indicated that proteins within the YTH domain family
could interact with RNAs that have m1A modifications, possibly
serving the role of an m1A reader (48). This opens up research
directions for understanding the relationship between mlA
modification and the binding of PD-1.

FTO, another regulatory factor shared between m1A and m6A,
has been also shown to have a close relationship with PD-1. Yang
et al. (111) found that FTO gene expression is upregulated in
response to metabolic stress, particularly through the activation of
autophagy and the NF-kB signaling pathway. When FTO is
knocked down, the methylation level of m6A in key genes that
promotes melanoma development, such as PD-1, is increased. This
elevated m6A methylation enhances RNA degradation through the
action of the m6A reader protein YTHDF2. The reduction of FTO
also makes melanoma cells more responsive to interferon gamma
(IFNy) and improves the effectiveness of anti-PD-1 therapy in mice.
These findings highlighted the significant role of FTO as an m6A
demethylase in the development of melanoma and its resistance to
anti-PD-1 treatment. They also suggest that combining FTO
inhibitors with anti-PD-1 therapy could potentially overcome
resistance to immunotherapy in melanoma patients. Although
there is no clear literature showing a connection between mlA
modification and PD-1, there are studies have shown that FTO can
directly inhibit translation by catalyzing the demethylation of m1A
in tRNA (47), therefore, providing a direction for future research.

ICIs therapy has achieved certain successes in cancer treatment.
However, primary and acquired resistance limit its clinical
application, making it particularly important to explore new
treatment strategies to enhance the antitumor effects of
immunotherapy (112-114). ml1A modification, as a potential
mechanism for regulating the expression of immune checkpoints,
may become a new target to improve the efficacy of ICI therapy.
Currently, the combined application of m1A modification and ICI
therapy is still in the research phase. Future research needs to
further explore the specific mechanisms of RNA methylation in
tumor immunity and develop more RNA methylation regulators,
with the hope of achieving breakthroughs in clinical applications.
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5 Conclusions and prospects

This review initially elucidates the regulatory mechanisms of
mlA modification, involving three categories of key enzymes:
methyltransferases (writers), demethylases (erasers), and
recognition proteins (readers) (15, 28). These enzymes add,
remove, or recognize mlA modifications on RNA molecules,
participating in the regulation of RNA metabolism and
translation processes (24, 25). m1A modification is closely related
to the occurrence and development of tumors (Figure 5). ml1A
regulates specific molecules and signaling pathways in various types
of cancer, affecting cellular behaviors such as proliferation,
migration, invasion, apoptosis, and senescence. Among them,
ALKBH3 primarily influences various signaling pathways to
regulate the cell cycle and invasiveness of tumor cells (42, 44-46,
70). METTL3 mainly affects RNA stability and regulates the
transcription process (108, 115, 116). TRMT6/TRMT61A affects
all RNAs, influencing the proliferation and apoptosis processes in
tumor cells (31, 32, 34). In the context of tumor immunotherapy,
the article emphasizes m1A modification can directly impact
immune cell functions (65), such as the proliferation of T cells
(60, 65, 67) and the maturation of macrophages (68, 76, 117, 118),
and can also indirectly affect immune responses by altering the
TME. Furthermore, m1A modification is associated with the
responsiveness of tumor cells to immune checkpoint inhibitors
(ICIs) (65, 95, 104, 111), such as regulating PD-L1 expression to
influence tumor cell immune evasion. This review further
introduces the concept of m1AScore, a scoring system based on
the expression patterns of ml1A modification regulators, used to
predict tumor patient prognosis and guide personalized therapy.

10.3389/fimmu.2024.1517604

The m1AScore reflects the overall level of mIA modification in
tumor tissues and is closely related to the TME, immune cell
infiltration, and patient responsiveness to immunotherapy (83, 85,
86, 94). Additionally, we conclude the role of m1A modification in
tumor metabolic reprogramming, indicating that m1A modification
may affect immune cell function and tumor microenvironmental
metabolic competition by influencing metabolic pathways in tumor
cells, such as glucose metabolism and lipid metabolism (51, 98).

Compared with m6A modification, m1A modification still has
many areas that have not been fully explored. First, this review has
briefly summarized the effects on T cells and macrophages, but
there are currently no research results on the role of m1A
modification in other immune cells. There is already clear
literature explaining the role and mechanism of m6A in immune
cells such as NK cells (116), dendritic cells (119), CD8+T cell (115).
Therefore, the exploration of its application in immune cells has a
certain level of feasibility. In addition, the role of m1A modification
in tumor immune escape has not been as specifically reported in
dedicated articles as m6A (120).

Although some roles of ml1A modification in tumor
immunotherapy have been revealed, there are still many potential
research directions worth further exploration. With further research
and based on the successful cases of m6A, m1A modification may
provide new strategies and targets for tumor immunotherapy.
Further research is needed to clarify the functions of regulatory
factors m1A in gene and protein regulation, especially shared with
mo6A, and to confirm the clinical utility of m1A modification.

In the research on m6A, it has been reported that there are two
main challenges: the scarcity of novel modifications and the
promiscuous substrate specificity of many mRNA modifiers.
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The effect of tumor occurrence and progression by m1A regulators. In different types of cancer, distinct m1A modifications regulate the behavior of
tumor cells by affecting specific molecules and signaling pathways. For instance, in breast and ovarian cancers, m1A modifications exert their effects
through the CSF-1 signaling pathway; whereas in oral squamous cell carcinoma, m1A modifications influence tumor immune evasion through the
expression of PD-L1 protein. The role of ALKBH3 modifications in cancer progression involves multiple levels, including cell cycle regulation,
oxidative stress response, and apoptotic pathways, demonstrating the complexity of cancer progression. This figure provides an overview of the role
of m1A modifications in different types of cancer and emphasizes its diversity and complexity in tumor biology.
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Research is hindered by high error rates, low specificity, and low
reproducibility, leading to overestimation or underestimation of
modification occurrence (121). There is currently no specific
research on drug formulations for m1A modification, but it is
likely to face similar challenges. These could all lead to off-target
phenomena, such as modifications on tRNA becoming
modifications on mRNA. Additionally, the specificity of m1A
agents may face other challenges—the selectivity of modification
enzymes, as well as subcellular localization. Off-target effects may
also lead to some toxic side effects. For example, Zhang et al.
explored m1A modifications in mRNA, IncRNA, and circRNA in
normal and oxygen-glucose deprivation/reoxygenation-treated
mouse neurons, and analyzed the impact of mIA on different
RNAs. It was found that ml1A may affect the regulatory
mechanisms of non-coding RNAs, such as the interaction
between IncRNA and RNA-binding proteins, and the translation
of circRNA. m1A modification also mediates the competing
endogenous RNA (ceRNA) mechanism of circRNA/IncRNA-
miRNA-mRNA, and modification in the 3’UTR of mRNA can
hinder the binding of miRNA to mRNA. As a result, mI1A
modification affects the formation and function of synapses,
thereby affecting neural transmission and communication
between neurons, and subsequently altering neuronal survival,
apoptosis, and autophagy (122, 123). Fortunately, the application
of computer-aided design and gene editing technologies may help
improve this issue. For example, studies have shown that using
genome editing technologies such as CRISPR/Cas9 (124) or
CRISPR-Casl2a (125) can precisely knock out or knock in
specific ml1A modification sites to study their function and the
specificity of drugs.

With a deeper understanding of the role of m1A modification in
cancer immunotherapy, it is anticipated to become a new target for
cancer treatment, providing a scientific basis for the development of
new immunotherapeutic strategies. Future research will continue to
explore the mechanisms and clinical applications of ml1A
modification, aiming to achieve more precise and effective
cancer treatments.
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mM6A methylation profiling
as a prognostic marker in
nasopharyngeal carcinoma:
insights from MeRIP-Seq
and RNA-Seq
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Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital,
Fuzhou, China

Background: Nasopharyngeal carcinoma (NPC) is a type of malignant tumors
commonly found in Southeast Asia and China, with insidious onset and clinical
symptoms. N6-methyladenosine (m6A) modification significantly contributes to
tumorigenesis and progression by altering RNA secondary structure and
influencing RNA-protein binding at the transcriptome level. However, the
mechanism and role of abnormal m6A modification in nasopharyngeal
carcinoma remain unclear.

Methods: Nasopharyngeal Carcinoma tissues from 3 patients and non-
cancerous nasopharyngeal tissues from 3 individuals, all from Fujian Cancer
Hospital, were sequenced for m6A methylation. These were combined with
transcriptome sequencing data from 192 nasopharyngeal cancer tissues. Genes
linked to prognosis were discovered using differential analysis and univariate Cox
regression. Subsequently, a prognostic model associated with m6A was
developed through the application of LASSO regression analysis. The model's
accuracy was verified using both internal transcriptome databases and external
databases. An extensive evaluation of the tumor’'s immune microenvironment
and signaling pathways was performed, analyzing both transcriptomic and
single-cell data.

Results: The m6A methylation sequencing analysis revealed 194 genes with
varying expression levels, many of which are predominantly associated with
immune pathways. By integrating transcriptome sequencing data, 19 m6A-
modified genes were found to be upregulated in tumor tissues, leading to the
development of a three-gene (EME1, WNT4, SHISA2) risk prognosis model. The
group with lower risk exhibited notable enrichment in pathways related to
immunity, displaying traits like enhanced survival rates, stronger immune
profiles, and increased responsiveness to immunotherapy when compared to
the higher-risk group. Single-cell analysis revealed that malignant cells exhibited
the highest risk score levels compared to immune cells, with a high-risk score
indicating worse biological behavior. The three hub genes demonstrated
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significant correlation with m6A modification regulators, and MeRIP-RT-PCR
confirmed the occurrence of m6A methylation in these genes within
nasopharyngeal carcinoma cells.

Conclusions: A prognostic model for nasopharyngeal carcinoma risk based on
m6A modification genes was developed, and its prognostic value was confirmed
through self-assessment data. The study highlighted the crucial impact of m6A
modification on the immune landscape of nhasopharyngeal cancer.

nasopharyngeal carcinoma, m6A modification, tumor immune microenvironment,
prognosis, transcriptome sequencing

1 Introduction

Nasopharyngeal carcinoma is a malignant tumor originating
from the mucosa of the nasopharynx, with a notably high
occurrence in specific areas, especially in Southeast Asia and
South China. The causes of nasopharyngeal cancer are not
completely known, but they are linked to multiple elements such
as genetics, environmental influences, and viral infections. Due to
its insidious early symptoms, it is often detected at a middle to late
stage, posing a great challenge to treatment (1). Thus, identifying
the new marker is crucial for the early diagnosis and treatment of
NPC. Over the past few years, advancements in genomics and
transcriptomics have led scientists to increasingly recognize the
significant impact of epigenetic changes on cancer progression. N6-
methyladenosine (m6A) modification, a prevalent RNA alteration,
significantly influences gene expression, RNA processing, and
protein synthesis by modifying RNA structure and function (2).

m6A modifications are added to RNA by m6A
methyltransferase (“Writer”) and removed by m6A demethylase
(“Eraser”) removal, and recognition and decoding by m6A
recognition proteins (“Readers”). This modification system forms
a dynamic equilibrium that regulates multiple biological processes
such as RNA stability, transcription, translation, splicing, etc (3).
Growing amounts of evidence suggest that m6A modification plays
a crucial role in controlling tumor development, resistance to
chemotherapy, response to immunotherapy, and prognosis (4-7).
It has been demonstrated that m6A modification is significantly
linked to the onset, spread, and progression of tumors (8, 9).
Additionally, m6A modification is essential in the complexity and
diversity of the tumor microenvironment (TME) (10, 11). The
interaction between m6A modification and the TME influences the
biological activities of cancer cells, immune cells, and stromal cells,
affecting tumor initiation, progression, and treatment responses
(12-14). Grasping the relationship between m6A modification and
the tumor microenvironment is crucial for creating effective
treatments and predicting outcomes. While certain studies have
highlighted the involvement of m6A modifications in cancer
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development, advancement, and therapy response, the majority of
contemporary research is mainly centered on m6A regulatory
proteins. The comprehensive study of how m6A-modified genes
interact in nasopharyngeal carcinoma (NPC) and their effects on
prognosis and the immune environment is still not well understood.

This research sought to combine m6A methylation histology
with transcriptome data to pinpoint genes experiencing m6A
methylation changes in nasopharyngeal carcinoma. The aim was
to develop a predictive risk model utilizing m6A modification-
associated genes to support treatment decisions for nasopharyngeal
carcinoma patients and to investigate the model’s influence on the
immune microenvironment.

2 Materials and methods
2.1 Patient samples

For transcriptome sequencing, tumor tissues from 192
nasopharyngeal cancer patients and normal tissues from 19
healthy individuals were collected from those diagnosed and
treated at Fujian Provincial Cancer Hospital between January 9,
2015, and June 2, 2016 (in-house cohort). Additionally, tumor
tissues from 3 nasopharyngeal cancer patients and non-tumor
tissues from 3 healthy individuals were collected in 2023 for m6A
methylation modification sequencing. Eligible participants included
those newly diagnosed with nasopharyngeal carcinoma, undergoing
standard radiotherapy, aged 18 or older, possessing normal blood,
kidney, and liver functions, and free from other malignancies. Every
patient gave their written consent after being informed. The Ethics
Committees of both Fujian Cancer Hospital and Fujian Medical
University Cancer Hospital granted approval for the research
(approval code SQ2019-035-01). For future RNA extraction,
tissue specimens were preserved in liquid nitrogen.

To confirm the reliability and relevance of the data in this study,
NPC RNA-seq data from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/, GSE102349) were chosen as an
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external validation cohort. To assess the predictive effect of the risk
model on immunotherapy efficacy, we downloaded the NSCLC-
GSE126044 immunotherapy dataset from the GEO database.
The model’s precision at the single-cell level was confirmed
using the GSE150430 dataset, which also facilitated the
investigation of cell-ligand receptor interactions within the NPC

immune microenvironment.

2.2 m6A sequencing and processing of
sequencing results

Hangzhou Lianchuan Biological Information Technology Co.
handled the RNA extraction and the creation of sequencing libraries.
The broken RNA was split into two sections. Initially, the sample was
incubated for two hours at 4°C with an m6A-specific antibody.202003,
Synaptic Systems, Germany) in immunoprecipitation buffer (50 mM
Tris-HCl, 750 mM NaCl, and 0.5% isobaric acid). Tris-HCl, 750 mM
sodium chloride, and 0.5% IGEPAL CA-630. The latter section
functioned as a control to directly build a standard transcriptome
sequencing library. The m6A-seq Library (IP) and RNA-seq Library
(input) were individually processed for high-throughput sequencing on
the Illumina NovaSeqTM 6000 platform in 150 PE mode. For superior
read quality, the sequences underwent additional filtering with fastp
(version fastp-0.19.4, available at https://github.com/OpenGene/fastp).
To align the reads of all samples with the reference genome, we used
the HISAT2 software package (https://daehwankimlab.github.io/
hisat2/, version: hisat2-2.2.1). To analyze m6A and transcriptome
samples, peak detection software along with the R package
exomePeak 1.8 were employed, identifying peak positions on the
genome, measuring peak lengths, and calculating differences
between groups. ChIPseeker 1.0 was employed for further analysis.

2.3 Prognosis-related model construction
and validation

Screening for differential méA modifier genes between healthy
population and nasopharyngeal carcinoma tissues by exomepeak2
analysis (15).The threshold criteria met these two conditions: a fold-
change greater than 2 and a p-value less than 0.05.To delve deeper
into the pathways enriched by DEGs, we utilized Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses. A false discovery rate of <0.05 was set as a critical
value. Subsequently, these genes were compared with those showing
variations between healthy individuals and nasopharyngeal
carcinoma patients in the in-house cohort. This comparison was
used to develop a prognostic model for m6A risk through univariate
Cox analysis and LASSO Cox regression. The R package ‘glmnet’
was employed to pinpoint genes with the most valuable prognostic
biomarkers. A predictive risk score was formulated by linearly
integrating the equation: Risk score = Eﬁl(exp*coef ), where ‘exp’
represents the gene expression value and ‘coef denotes the gene’s
coefficient in the LASSO analysis.

To assess the predictive accuracy of our risk prediction model,
we categorized the sample into high-risk and low-risk groups based
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on the median risk score. Survival analysis was conducted using the
R package ‘survival. This approach facilitates a comprehensive
understanding of the complex regulatory network associated with
m6A modifications and provides valuable insights for identifying
promising targets in the development of novel immunotherapeutic
strategies. Survival curves were compared using the Kaplan-Meier
technique. Later, the R package ‘timeROC’ was utilized to analyze
the receiver operating characteristic (ROC) for individuals who
survived 1, 3, and 5 years in both the self-assessment data cohort
and the validation cohort GSE102349.

2.4 Multidimensional immunity- and
carcinogenesis-related estimates

To assess immune cell infiltration in various ways, we used
several immunoscoring methods, such as TIMER and ssGSEA
algorithms (16, 17). The Immunophenotyping score was
estimated by the IOBR-R package (18). From earlier studies, we
retrieved a set of 10 suppressive immune checkpoints with
immunotherapeutic efficacy (19). A set of genes for tertiary
lymphoid structure (TLS) was also obtained (20, 21).

2.5 Single-cell RNA-seq analysis

Additionally, this research employed Seurat (version 4.0.4) for
the purposes of quality assurance, data reduction, and grouping of
single-cell RNA sequencing data (22). The data were quality
controlled, downscaled and clustered using Seurat (v4.0.4). To
maintain data integrity, genes identified in less than three cells
and cells with under 250 detected genes were omitted, and the
proportion of mitochondrial genes was restricted to below 35%.
Data were normalized using the logNormalize method. TISCH
(http://tisch.comp-genomics.org/) offers comprehensive single-cell
level cell type annotations. Subsequently, the ‘FindAllMarkers’
function was employed to detect marker genes within each
cluster, utilizing a threshold of absolute log2-fold change (FC) >
0.3 and requiring a minimum cluster fraction of 0.25.

2.6 Calculation of risk scores and analysis
of intercellular communication in single-
cell samples

For each individual cell sample from GSE150430, risk scores
were determined using the Single Sample Gene Set Enrichment
Analysis (ssGSEA) technique, utilizing the ‘GSVA” and ‘GSEABase’
libraries in R. Similarly, the risk scores for each tumor in the GEO
validation group were computed with the same ‘GSVA’ and
‘GSEABase’ packages. Leveraging single-cell data as a benchmark,
we utilized a novel deconvolution method (CIBERSORTx) on bulk
transcriptome datasets to quantitatively determine the cell type
proportions within tumors in both the self-assessment and GEO
validation cohorts. CellChat version 1.1.3 software was employed to
deduce communication between cells through ligand-receptor
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interactions. Cell groups containing fewer than 10 cells were
excluded from the intercellular communication analysis. Pairwise
tests of communication probability values were performed to assess
statistical significance.

2.7 Statistical analyses

Data analysis was conducted with R (version 3.6.1) and SPSS
(version 25.0) software. For continuous variables, the Wilcoxon rank-
sum test was utilized, while the chi-square test was applied to
categorical variables.In every analysis, pairs of two-by-two reveal
significant statistical differences. Symbols *, **, ***, and **** denote
significance levels of less than 0.05, 0.01, 0.001, and 0.0001, respectively.

3 Results

3.1 m6A modifier genes are differentiated
in nasopharyngeal carcinomas

Analysis of m6A modification in three nasopharyngeal
carcinoma samples and three normal nasopharyngeal tissue
samples from Fujian Cancer Hospital revealed that m6A
methylation predominantly took place in the coding sequences
(CDS) and the 3h untranslated regions (3gionsl of both cancerous
and non-cancerous tissues (Figures 1A-C). Compared with normal
nasopharyngeal tissues, the levels of m6A methylation modification
genes were higher in tumor patients (Figure 1D). Motif analysis
revealed that RRACH methylation modification sites were present
in both normal nasopharyngeal tissues and nasopharyngeal
carcinoma tissues (Figures 1E, F). A total of 194 differential m6A
methylation modification sites were identified in tumor and non-
tumor tissues (Figure 1G), and the quadrant plot indicated that 65
differential m6A methylation modification genes were upregulated
in nasopharyngeal carcinoma (Figure 1H). GO enrichment analysis
indicated that the molecular roles of m6A modification genes were
predominantly concentrated in signaling and immune response
pathways, including B cell activation, T cell activation, and the
inhibition of calcium-mediated signaling. Pathway analysis
enriched by KEGG indicated that m6A modifier genes were
predominantly involved in homologous recombination, cell
adhesion molecules, and the B cell receptor signaling pathway
(Figures 11, J). The results indicate that m6A modification levels
vary between cancerous and normal tissues and are intimately
connected to the tumor immune microenvironment.

3.2 Risk modeling and validation

Differential genes in normal nasopharyngeal epithelial tissues
and nasopharyngeal carcinoma tissues in the in-house cohort were
further intersected with upregulated m6A methylation modifier
genes in tumor tissues to identify 19 differential genes (Figure 2A); a
one-way Cox analysis of progression-free survival (PFS) was
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performed using the survival R package to identify m6A modifier
genes with prognostic significance (p-value < 0.05). This study
identified 19 m6A modifier genes, including TFAP2A, TMEM178B,
JPH1, EME1, POU6F2, DST, CSAG3, KCTD1, TCERGIL, INSM1,
WNT4, GLS2, ICAMS5, CNTNAP2, IQGAP3, BEX3, SYNPO2,
SHISA2, and FZD7. Among these, three genes (EME1, WNT4,
and SHISA2) had high prognostic significance (Figure 2B).

Based on these three central genes, the prognostic risk model
(MRS) was established using the LASSO Cox regression model
(Figure 2C). The dataset was split into high-risk and low-risk
categories according to the median risk score. The in-house
cohort confirmed that the high-risk category had a worse
prognosis (Figure 2D). The high-risk group suggested a poorer
prognosis, as was the case in the GEO validation cohort (Figure 2E).
The MRS demonstrated strong predictive accuracy, achieving a 3-
year ROC AUC of 0.77 (Figure 2F). Although the 3-year AUC of the
validation cohort was only 0.63, it suggested the model’s stability
(Figure 2G). Additionally, in comparison to gender, age, stage, and
EBV-DNA, the model demonstrated a superior AUC (Figure 2H),
suggesting that MRS serves as an independent prognostic indicator
for predicting the survival of nasopharyngeal carcinoma patients
and tailoring individualized treatment plans.

3.3 Enrichment pathways for risk model

The pathways of gene enrichment suggested that the genes played
roles in physiological processes. Gene Ontology (GO) enrichment
analysis indicated that the genes in the low-risk category were
predominantly associated with pathways related to cell growth,
immune complex removal, and the modulation of T-cell co-
stimulation, all of which play roles in B cell immune responses
(Figure 3A). The heat map of the hallmark pathway and the KEGG
enrichment analysis revealed that the high-risk group was
predominantly enriched in pathways like homologous
recombination, P53 signaling, glycolysis, and others. The low-risk
category predominantly featured primary immunodeficiency, natural
killer cell cytotoxicity, B-cell receptor signaling, and T-cell receptor
signaling pathways (Figures 3B-D). To sum up, the immune
microenvironment could be influenced by the low-risk group.

3.4 Assessment of the
immune microenvironment

We assessed the variations in immune cell infiltration levels
between groups at high and low risk. Using the ssGSEA technique,
the makeup of the 28 immune cell types showed notable differences
between the high- and low-risk groups. Nearly all immune cell
infiltration levels were elevated in the low-risk group compared to
the high-risk group, particularly for B cells and CD8+ T cells
(Figure 4A). TIME analysis similarly validated these results
(Figure 4B). Further analysis of marker genes for B cells and
CD8+ T cells indicated a notable increase in their expression
within the low-risk group (Figures 4C, D).
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FIGURE 1

Analysis of m6a modifier profiles and identification of differentially expressed genes in nasopharyngeal carcinoma. (A, B) We use pie charts to count
the distribution of peaks on gene functional elements between non-cancerous (A) and cancerous tissues (B). (C) Density of differential m6A peaks
along transcripts. Each transcript is divided into three sections: 5SUTR, CDS, and 3UTR. (D) Levels of m6A methylation modification in tumor and non-
tumor tissues. (E, F) Differential of the most conserved sequence motif in the m6A peak region. (G) Venn diagram showing differentially expressed
genes undergoing m6a methylation modification between non-cancerous and cancerous tissues. (H) The four-quadrant diagram shows the changes
in differentially methylated peaks. (I, J) The KEGG and GO enrichment pathway analysis of differential m6a methylated genes.

3.5 Predictive power of
immunotherapy efficacy

Moreover, a notable statistical disparity was observed in immune
checkpoint inhibitors (CD86, PDCDI, TIGIT, CTLA-4, LAIR1, and

Frontiers in Immunology

HAVCR?2) between the high-risk and low-risk categories (Figure 5A).
Research indicates that B cells infiltrating tumors and tertiary
lymphoid structures associated with tumors enhance the
effectiveness of immunotherapy. We subsequently evaluated TLS
scores and found that low-risk patients had higher TLS scores
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FIGURE 2
Construction and validation of a risk prognosis model for m6A related genes. (A) The intersection of m6A sequencing genes and 192 transcriptome
data was used to screen for 19 19 m6A methylated genes upregulated in tumors. (B) Univariate Cox analysis was performed on these 19 genes with
PFS. (C) Establishing prognostic biomarkers for three features (EME1, WNT4, SHISA2) identified in the in-house dataset using LASSO regression
model. (D, E) In the in-house and GEO cohorts, low-risk group patients had a favorable PFS rate as opposed to those in the high-risk group formula.
(F, G) The Receiver Operating Characteristic (ROC) curve for the 1-year and 3-year survival rates of in-house and GEO cohorts. (H) The ROC curve
of clinical factors such as gender, age, stage, and risk score suggests that risk score has higher accuracy.

(Figure 5B), similar results were observed in many immune-related
indices. In the low-risk patient group, the tumor enhanced immune
cell activation and robust ligand-receptor interactions, providing the
biological foundation for their favorable response to immunotherapy.
There were notable differences in chemokine receptors and MHC
molecules between the high- and low-risk groups. Specifically,
receptors like CCR9, CCR3, and CXCR6 showed increased
expression in the low-risk group, while the majority of MHC class
II molecules exhibited decreased expression in the high-risk group,
indicating a diminished capacity for antigen presentation and
processing (Figures 5C, D). Figure 5E illustrates that, using the
TIDE algorithm to evaluate nasopharyngeal cancer patients’
responsiveness to immunotherapy, the low-risk group experienced
greater benefits from the treatment. Likewise, a uniform trend was
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seen in the group of patients undergoing immunotherapy for non-
small cell lung cancer, with those in the low-risk category showing a
stronger immune response (Figure 5F). The ips score also suggests this
result (Figure 5G). To sum up, individuals classified as high-risk
showed fewer advantages from immunotherapy and faced a poorer
prognosis than those categorized as low-risk.

3.6 Single-cell analysis of immune
environment and cell interactions

In order to clarify the function of MRS within the immune
microenvironment, we employed the single-sample gene set
enrichment analysis (ssGSEA) technique to determine the risk
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FIGURE 3

Signaling pathway enrichment analysis of risk models. (A) GO enrichment analysis of the low-risk group. (B) Heatmap showing HALLMARK pathway
differences between high-risk and low-risk groups. (C, D) KEGG enrichment analysis in the low-risk group and high-risk group. * p < 0.05, ** p <

0.01, *** p < 0.001.

score for each cell from GSE150430 (23). The findings indicated
that in cancerous tissues, cells with greater malignancy exhibited
elevated risk scores (Figure 6A). Based on median risk values, the
samples were divided into high and low-risk categories. Low-risk
samples exhibited a notably higher proportion of B cells and CD8 T
cells compared to high-risk samples, which had a significantly
greater percentage of malignant cells (Figure 6B). We then
mapped the cell types of the single-cell dataset to in-house cohort
and the GSE102349 cohort by the CIBERSORTX method.
Predictably, cancerous cells showed elevated scores in the high-
risk category in both the GEO database and transcriptome
sequencing results, whereas CD8+ T cells and B cells were more
abundant in the low-risk category (Figures 6C, D). These findings
are consistent with previous studies indicating that higher risk
scores predict poorer biological behaviors, and that low-risk
scores correlate with a greater abundance of immune cells.
Subsequently, we conducted a functional analysis. The primary
routes enriched with differential genes in both high-risk and low-
risk categories were associated with cell adhesion and immune cell
activation, indicating variations in response and immune resistance
to distant metastasis between these groups (Figure 6E).
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Furthermore, the cellular signaling varied between the high-risk
and low-risk groups. In the high-risk group, pathways such as
CD70, SEMA3, EGF, KIT, BAG, and SPP1 were active, whereas in
the low-risk group, pathways like LT, TNF, GRN, CSF, ncWNT,
CHEMERIN, and CALCR were active (Figures 6F, G). Figure 6H
illustrated the SPP1 in the high-risk category and the LT pathways
in the low-risk category.

3.7 m6A methylation gene-related
regulatory proteins

Correlation analysis of the three hub genes with m6A regulatory
proteins in the GEO database and 192 cases of transcriptome
sequencing revealed that EMEl, WNT4, and SHISA2 were
strongly correlated with most of the m6A modification regulators
(Figures 7A, B). Subsequently, to verify whether the hub genes were
methylated in nasopharyngeal carcinoma, we performed m6A
methylation PCR on the three genes, and the results suggested
that all three hub genes had high methylation levels in HK1
nasopharyngeal carcinoma cells (Figure 7C).
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(D) in high-risk and low risk groups. * p < 0.05, ** p < 0.01, *** p < 0.001.

4 Discussion

This research underscores the crucial influence of m6A
modifications on NPC tumor outcomes and the immune
microenvironment, laying the groundwork for possible treatment
approaches. Utilizing m6A and transcriptome sequencing, we
identified three key prognostic genes (EME1, WNT4, SHISA2)
with notable correlations, and developed an immune-related risk
model for NPC. This model effectively forecasted progression-free
survival in NPC and showed a strong connection with immune
infiltration at both the transcriptome and single-cell levels.

In recent years, the exploration of methylation changes and the
tumor immune microenvironment has become a prominent
research area. RNA methylation is essential for maintaining
internal balance and altering the metabolic landscape of the
tumor microenvironment (TME), thereby influencing immune
cell activity. One of the most prevalent RNA modifications is
m6A methylation.m6A RNA methylation has been found to have
multiple biological regulatory functions in cancer development and
progression by regulating tumor immunity (7, 24, 25). Our research
revealed that the m6A-based prognostic model for nasopharyngeal
carcinoma risk showed a notable disparity in the immune
microenvironment between high-risk and low-risk categories. The
low-risk group exhibited a significant enrichment in various
immune-regulatory pathways and demonstrated greater immune
cell infiltration, particularly with B-cells and CD8+ T-cells,
compared to the high-risk group. This indicates that individuals
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with low-risk ratings exhibit a heightened immune activity within
the tumor’s surroundings, potentially leading to improved
prognosis and therapeutic results.

Drugs that focus on PD-L1 and CTLA-4 are becoming more
crucial in cancer therapy. The therapeutic impact of immune
checkpoint inhibitors is directly influenced by the expression levels
of PD-L1 or other immune checkpoints, thereby informing their
clinical use. TLS is a lymphoid-like formation that typically develops
in inflamed tissues. Recent research has indicated that tumor-
infiltrating B cells and tumor-associated tertiary lymphoid structures
are strongly linked to the effectiveness of immune checkpoint inhibitor
treatments, offering new biomarkers for clinical decisions in
immunotherapy. Our findings revealed that the low-risk group
exhibited a higher count of memory B lymphocytes and elevated
immune checkpoint expression, suggesting a higher likelihood of
benefiting from immunotherapy. The precision of risk model
forecasts was likewise confirmed across various immunotherapy
groups. Beyond the topics covered here, further research is needed
to explore the role of m6A methylation in various immune and
immune-related cells, as well as its regulation in diverse biological
processes and functions, such as metabolism, within immune cells,
cancer cells, other stromal cells, and non-cellular components of the
tumor microenvironment. This will help to fully understand the
intricate regulatory network of m6A modifications and offer valuable
insights for developing new immunotherapy approaches (26).

Three hub genes (EME1, WNT4, SHISA2) show strong
correlation with m6A regulators and elevated levels of
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methylation modifications in nasopharyngeal carcinoma tissues.
These genes play important roles in a variety of cancers, such as
EME] interacts with Mus81 to form a structure-specific nucleic acid
endonuclease that maintains genome stability in mammalian cells
(27) and is involved in regulating the development of cancers such
as gastric cancer and breast cancer (28, 29), Wnt family member 4
(WNT4) is involved in regulating the progression of cancers such as
gastric cancer and germline tumors (30, 31), SHISA2 is highly
expressed in high-grade prostate (32). Nonetheless, the potential of
these three genes with m6A modifications and their regulatory
elements as biomarkers for diagnosing and predicting
nasopharyngeal carcinoma, along with their specificity and
sensitivity, still requires investigation (33).
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Although we constructed a prognostic model for MRGs and
provided novel insights to improve nasopharyngeal carcinoma
management, this study has several limitations. Initially,
additional research is required to confirm these results in broader
and more varied patient groups, as well as to investigate the
interplay between m6A modifications and other epigenetic
elements. Understanding how m6A modifications interact with
genetic, environmental, and viral factors in NPC could provide a
more comprehensive picture of the disease and inform more
effective prevention and treatment strategies. Moreover,
additional immunological studies are required to investigate the
possible mechanisms of the three key genes within the immune
microenvironment of NPC.

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1492648
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

c

Beell 08
Treg

CD8T

bc 06

T memory cell

Malignant

CD8Tex 04

Torol

PC oy e

Plasma —

max ! Q
0.0

[EEEEEE NN N

8

10.3389/fimmu.2024.1492648

il

i
i

3+
i
H

Chen et al.
—
o low:
% 05
2
g H
8 3
3
Eoo
high{
O —= 5 T35 — 0,00 025 geo 075
= == = Y]
AR ERE
§ 28 T
5 = F SPP1
€ AG
D . FoF
o SEMA3
08 CD70
BAFF
FLT3
COMPLEMENT
06 IL1
EGF
v
044 " s o MIF
- cCL
GALECTIN
02 FASLG
’ ** MK
7 VISFATIN
0.0 <LL =24 “ ChS
Beell Treg CD8T  DC Malignant Tprolif Plasma mac ANNEXIN
CXCL
IFN=II
PTN
E " N CALCR
barplot for Biological process HEMERIN
T cell activation{~ IR | "</ T
regulation of cell-cell adhesion { - G S
leukocyte cell-cell adnesion | - | TNF
positive regulation of cell adhesion | - G LT
regulation of T cell activation { |G
regulation of leukocyte cell~cell adhesion{ ~ [ EEEGEG_—
positive regulation of cell~cell adhesion{ - NG
lymphocyte proiferation -
leukocyte proliferation { -
positive regulation of leukocyte cell-cell adhesion{ | N
1 50 00 H
barplot for Cellular component
cell-substrate junction {~ R |
focal adhesion{
cell leading edge | - —
cell-celljunction | -
immunological synapse { [N
membrane raft
membrane microdomain { - GG
MHC protein complex{ [
external side of plasma membrane { -
membrane region{ _ GG
5 5 70
barplot for Molecular function
integrin binding { -
cell adhesion mediator activity{ |
actin binding { -
cell-cell adhesion mediator activity{ [N
cadherin binding { -
cadherin binding involved in cell-cell adhesion{ [N
actin filament binding | G
MHC class Il protein complex binding{ [
immune receptor activity|  EEGEG—
SH3 domain binding| I
0 0 0 0
FIGURE 6

7 high
. low

0.000.280.500.751.00
Relative information flow

SPP1 signaling pathway network

MK
TWEAK
VISFATIN
GAS
PARs 1!
ANNEXIN
CXCL
IFN-II
PTN
CALCR
CHEMERIN
ncWNT

e
0 50 100 150
Information flow

LT signaling pathway network

Risk model differences in immune landscapes and cellular communication at the single-cell level. (A) Risk scores for 11 different cell subgroup
samples in the GSE150430 dataset. (B) The proportion of immune cell composition between high-risk and low-risk groups. (C, D) Detect immune
cell infiltration in high-risk and low-risk groups in inhouse (C) and GEO (D) cohorts by CIBERSORTx tool. (E) The main pathways for accumulating
differentially expressed genes between high-risk and low-risk populations. (F, G) Observing differences in active pathways between high-risk and
low-risk groups. (H) SPP1 and LT signaling pathways in high-risk and low-risk groups. * p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001.

A

\er2p2 WFTFT T TFI*[*T*T* ¥ T*** )
LRPBRC |* * = ALKBHS merip-M6A PCR
HNRNPABT | * *lw HNRNPC |
1o - - IGF2BP1 8
NRNPG i IGF2BP3
1", IGF2BP2 “p<005
YTHDF1 [* %[ * ¥ | "pe00s RBM158 Gor 6 —_—
ALKBHS [*|* * [*] cory g LRPPRC | 1.0 =
IGF2BP1 [ * * *FEEW YTHDC2 05 3
YTHDC2 [* L ELAVL1 00 £ 4
RBM15B |* * x| ) KIAA1429) . ~05 &
\GF28P3 [% *[* il | “1’-: HNRNPA2B1 —10 =
L. =
METTLS [* 0 YTHDF1 |
ELAvLT [B - el METTL3 2 v -
1 WNT4
B .. 0 oG
R e s V1
SHISA2 0 T T T
SHISA2 ‘ ‘ x| x BEEE * ‘* Ny
T Ty e X O(,K\{% q:‘&&v’l’ EME1 SHISA2 WTN4
X0, N> Q&
\o%q;\ SRR NS
B

FIGURE 7

m6A modification levels of hub genes and their relationship with m6A regulatory proteins in nasopharyngeal carcinoma. (A, B) Three hub genes have
strong correlation with m6A modification regulatory factors in the in-house (A) and GEO (B) cohorts. (C) MeRIP-PCR results of three hub genes in

HK1 cell.

Frontiers in Immunology

78

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1492648
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

5 Conclusions

In summary, this research underscores the crucial impact of m6A
alterations on the prognosis of nasopharyngeal carcinoma and the
immune environment. By establishing a risk-based prognostic model
based on m6A modification genes, the study provides a valuable tool
for predicting patient prognosis and tailoring therapeutic strategies.
The distinct immune landscapes and pathway enrichments between
high- and low-risk groups underscore the critical role of m6A
modifications in NPC progression and treatment efficacy. These
insights enhance our comprehension of NPC and open avenues for
future studies and innovative therapies.
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Alternative splicing (AS) is a mechanism that generates translational diversity
within a genome. Equally important is the dynamic adaptability of the splicing
machinery, which can give preference to one isoform over others encoded by a
single gene. These isoform preferences change in response to the cell’s state and
function. Particularly significant is the impact of physiological alternative splicing
in T lymphocytes, where specific isoforms can enhance or reduce the cells’
reactivity to stimuli. This process makes splicing isoforms defining features of cell
states, exemplified by CD45 splice isoforms, which characterize the transition
from naive to memory states. Two developments have accelerated the use of AS
dynamics for therapeutic interventions: advancements in long-read RNA
sequencing and progress in nucleic acid chemical modifications. Improved
oligonucleotide stability has enabled their use in directing splicing to specific
sites or modifying sequences to enhance or silence particular splicing events.
This review highlights immune regulatory splicing patterns with potential
significance for enhancing anticancer immunotherapy.
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Introduction

Biologists have long been puzzling how the human genome,
which bears considerable similarity to lower eukaryotes, is
responsible for the complex, sophisticated organisms it creates.
Following Sharp and Roberts’ description of RNA splicing, Gilbert,
in 1978, hypothesized that alternative splicing (AS) might be the
missing layer that leads to the immense protein diversity despite the
only 23000-gene human genome.

RNA splicing is a “cut and paste” process, removing introns and
rejoining exons from the primary gene transcript, the pre-mRNA.
The process relies on the biochemical uniqueness of RNA, which
DNA lacks, of extensive flexibility and intrinsic catalytic activity.
Small nuclear RNAs that assemble sequentially are directed to
conserved sequences in the 5(GT) and 3’(AG) splice sites on the
primary transcript in an orderly manner. Together, the small RNAs
and numerous proteins form the spliceosome. An adenosine in the
intronic segment performs a nucleophilic attack on the 5" end,
cleaving the 5’ nucleotide (generally the “G” in a GT); a loop is then
formed and removed. Following, the exon upstream of the removed
intron is ligated to the 5" end catalyzed by the spliceosomal RNAs
and the ribonuclear proteins (RNPs).

Exon skipping

Alternative 5'ss

¥

10.3389/fimmu.2024.1490035

Alternative splicing produces variants that differ from the
constitutive RNA transcript. It occurs parallel to the transcription
process and produces several isoforms from one gene. Each isoform
may lack an exon or part of an exon from either side of the
constitutive exon. This pattern, called ‘cassette-type alternative
exon’ or ‘exon skipping’, is the most common. Intron retention,
uncommon in humans, occurs mainly in untranslated regions. See
Figure 1 for common splicing patterns.

AS involves 95% of the genes (1). With deep RNA sequencing
becoming a more common read-out in experimental systems and
longer RNA reads being produced, it is now clear that the pattern of
RNA splicing is dynamically regulated and constantly changes (2).

The ratio between a constitutive transcript and its alternatively
spliced isoforms depends on splice site recognition, its occupancy
by spliceosomal RNPs, and regulatory RNA binding proteins
(RBPs) (3). These RBPs bind or complement cis-sequences on the
premature transcript on the intron or the exon. Sequences that
promote spliceosome assembly at a splice site are called enhancers,
and their RBPs are usually serine arginine-rich proteins. Sequences
that reduce splice site recognition (silencers) attract heterologous
nuclear RNPs (hnRNPs) (4). It is thought that enhancers usually act
to generate constitutive mRNA, while the silencers yield AS

Alternative 3'ss

Intron retention

Mutually
exclusive exons

Alternative
promoters

Alternative
polyadenylation

FIGURE 1
Alternative splicing patterns.
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isoforms. However, how the basic mechanism of AS varies from cell
to cell and what determines it remains to be further elucidated.

Here, we focus on the role of AS in the T-cell immune response,
particularly on anticancer immunity. This review aims to draw
attention to new therapeutic opportunities in the functional
distinctions between a constitutive protein/receptor and its splice
isoforms. The motivation to unveil the intriguing mechanisms by
which AS amplifies and regulates immune functions relies on
reports from our group and others that RNA transcripts of the
same immune gene can act in different directions or magnitudes in
the immune context (5, 6). Thus, AS is an essential layer of immune
regulation and a potential therapeutic target.

Alternative splicing is a mechanism of
dynamic adaptability

Splicing event regulation

Although the prime outcome of AS is the fold increase in
functionally distinct proteins compared to the number of genes, AS
also plays a significant role in the most fundamental biological
processes: evolution, differentiation, and adaptation. AS is a source
of evolutionary development, a determinant of organ, tissue, and
cell characteristics, and part of cellular adaptation to a changing
environment (2).

The concerted manner by which protein production is shifted
from one isoform to another yields the regulatory characteristics of
AS. Tts preferences differ among tissues and developmental states and
respond to extracellular signals in a dynamic manner that precedes or
synchronizes with gene transcription. In parallel to the dependency
of intracellular processes on transcriptional activation, cellular events
emerge from the shift in protein isoform ratios. How splicing events
are concerted and what network cascades occur is a field of active
research emphasizing health disorders and malignancies (7). The
regulation of splicing events depends on both cis-acting regulatory
sequences, located in introns or exons, and trans-acting splicing
factor proteins that can strengthen or weaken the spliceosome’s
recognition of the splice sites (8). These regulatory proteins belong to
families of RNA-binding proteins, such as arginine-serine-rich (SR),
heterogeneous nuclear ribonucleoprotein (hnRNP), and RNA-
binding motif (RBM) proteins (9). They recognize specific
regulatory sequences and enhance or inhibit the recognition of
neighboring splice sites by the core splicing machinery (7). The
expression level of the regulatory proteins is tissue- and state-specific
(10), and they are subjected to regulatory splicing themselves (11).

From the evolutionary point of view, alternative splicing varies
significantly among species. The insertion of multiple introns that
separate exons has derived from ancestral genes and predated AS in
eukaryote development. The option to skip exons was enabled by
DNA mutations that may have resulted in splice sites with weaker
binding affinity for spliceosomal components such as Ul small
nuclear ribonucleoprotein (snRNP) (12). While the emergence of
alternative splice sites contributed to protein diversity and is partly
unique to a species, particularly when changing the reading frame,
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comparative genomics indicates that sequences that regulate RNA
binding proteins are conserved and shared (13, 14).

Over 200,000 identified isoforms are reported in genome
databases, and the majority of them lack functional annotation.
Some well-studied examples show how events of retention or
exclusion of specific domains may change protein cell
localization, membrane anchorage, shedding of ectodomains,
mRNA stability, and translational efficiency. The molecular
alterations that emerge from AS may occur without any change
in the level of the general gene’s transcript or before a change (15).
Furthermore, the translational changes in reading frames may
produce diverse translation outputs (13) and even insert poison
exons, resulting in nonsense-mediated mRNA decay (NMD) and
diminished protein levels (16). We can conclude that alternative
splicing is timed and regulated in a manner that is not necessarily
dependent on active simultaneous gene transcription.

Alternative splicing in T lymphocytes

T-cell states are associated with preferential expression of
specific splicing isoforms. A unique characteristic of T
lymphocytes is that they transform within minutes from a
stationary naive or inactive state to intense activity. In their
effector state, T cells must adapt to synthesize large amounts of
cytokines, migrate, proliferate, lyse target cells, and address
accelerated metabolic needs. Already in 2006, it was found that
memory T-cells respond to antigenic stimuli faster than naive cells
by omitting exons 4, 5, and 6 from the extracellular part of the
membrane phosphatase CD45. CD45 is expressed in T and B cells
and, in its constitutive, full-exon inclusive state, is referred to as
CD45RA. The CD45RO variant shows variable exclusion of exons 4,
5, and 6. CD45 dephosphorylates both inhibitory and costimulatory
tyrosines of the Src-family kinases (17). Oberdoerffer et al. showed
that the transition from the RA to the RO form depends on the
activity of the splicing factor hnRNPLL (heterogeneous
ribonucleoprotein L-like) (18). HnRNAPLL was suggested to be a
master regulator in activated T cells, affecting not only CD45.

Before and in parallel to CD45, specific gene isoforms impacting
T-cell function were discovered. Interesting events recorded in
activated T-cells included the short isoform of CD28, which
induces faster activation (19), splice variants of CD44 and
CTLA4, which correlated with a higher risk of autoimmune
disease (20, 21), and MALTI1A, a paraprotease that integrates
TCR activation with the downstream IKK/NF-kB pathway.
Reminiscent of CD45, naive T-cells express MALTI1B, a splice
isoform missing exon 7, while activated T-cells express MALT1A,
which includes exon 7 and is associated with rapid NF-kB signaling
and improved lymphocyte function (22, 23).

A landscape view of AS in immune cells was offered by Lynch
et al. in 2004, preceding a complete landscape of the comprehensive
gene involvement in this phenomenon (22). Although the list of
spliced genes described to regulate lymphocyte activation was
restricted, the diverse array of functions governed by splicing
suggested the substantial ubiquity of this process (23).
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In the last few years, analyses have focused on gene families and
activation cascades as it becomes clear that AS affects most genes.
An example is the production of anti-apoptotic splice isoforms of
members of the BCL2 gene family in activated T-cells. Adding
costimulation via CD28 increased the ratio of anti-apoptotic splice
variants and augmented T-cell proliferation. Interestingly, the genes
that displayed significant changes in their splice isoform ratios did
not have the highest expression levels (24).

The concept of AS-induced effector transition is not limited to
activated T lymphocytes but also plays a critical role in B cell affinity
maturation. In these processes, poly-pyrimidine tract binding
proteins PTBP1 and PTB3 are splicing factors that drive the
appropriate expression of gene sets required to adapt B
lymphocytes to antibody-producing cells (25).

Splicing events that generate soluble
isoforms of immune receptors

A prevalent splicing pattern observed in immune receptors
gives rise to soluble isoforms that lack membrane anchorage and
are secreted into the extracellular space. These soluble receptors
may regulate signaling cascades, which differ from those initiated by
their parental receptor (Table 1). Most prominently, the soluble
receptors can function as a decoy of their corresponding ligands and

TABLE 1 Soluble T-cell immune receptors due to alternative splicing.

10.3389/fimmu.2024.1490035

compete with their constitutive, membrane-bound forms (26-35).
The ratio between the membranal and the soluble isoforms of a
receptor can remain fixed (26, 36). However, it might change
depending on the cell’s metabolic, functional, or differentiation
state (37, 38). Diverting the pre-mRNA splicing towards the soluble
isoforms results in reduced expression of the membrane-bound
receptor and can even negate its cellular effect. In a different context,
the soluble receptors may have agonistic effects (28, 39) and initiate
reverse signaling by binding to other receptors (40-42). For
example, glucocorticoid-induced tumor necrosis factor receptor
(GITR) ligand that is expressed on plasmacytoid dendritic cells
prompts a reverse signal that initiates noncanonical NF-kappaB-
dependent induction of indoleamine 2,3-dioxygenase upon binding
to soluble GITR. This leads to the tryptophan catabolism
immunoregulatory pathway (43). In addition, soluble isoforms
have been documented to bind with their ligand to distinct
membranal partners, activating trans-signaling pathways (44, 45).
Furthermore, some soluble receptors stabilize their ligand
configuration or alter their biodistribution (31, 45-47). Another
typical example of important alternative splicing of immune cells is
the removal of the hydrophobic transmembranal segment of the B-
cell receptor to form a secreted immunoglobulin (48). Interestingly,
soluble receptors may exert different functions (i.e., agonistic and
antagonistic) depending on their concentration (45, 46,
49) (Figure 2).

Superfamily Splicing event Suggested mechanism Function References
Increases
BTLA TMD skippi kn 95, 96
SKipping Unknown cellular proliferation ( )
Inhibits T-cell
L proliferation
TMD sk d
CD28 SKIpping an Unknown induced by anti- (97, 98)
premature stop codon . .
CD3 antibodies or
by mitogens
Inhibits DC-
mediated T-cell
CD83 TMD skipping Binds MD2 on monocytes stimulation, (40, 42, 50, 99)
proliferation, and
IL-2 secretion
Immunoglobulin L. CTLA-4 agonist,
TMD ski d
superfamily CTLA-4 SKIpping an Binds B7 on APCs inhibits the (28, 39, 58)
premature stop codon .
immune response
Inhibits T-
I ICD skippi Bi I L 2!
€os CD skipping inds 1COS cell proliferation 29)
Alternative 5 splice site
LAG-3 and premature Unknown Controversial (47, 100, 101)
stop codon
Enhances immune
cell response:
Block PD-1/PD-
PD-1 TMD skipping Binds PD-L1 and/or PDL2 (@) Block PD-1/ (26, 41, 69)
L1 interaction.
(b) Reverse signaling
into DC.
(Continued)
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TABLE 1 Continued

Superfamily

Splicing event

Suggested mechanism

10.3389/fimmu.2024.1490035

Function

References

TMD skipping and

Antagonizes IL-2

C hai Binds IL-2R| d IL-7R¢ 27
ommon y chain premature stop codon s pan ¢ and IL-7 signaling @)
IL-1RACcP Exon skipping and Binds IL-1RII and increases its affinity for Negative regulation (2, 38, 102)
(co-receptor) premature stop codon IL-1o and IL-1B of IL-1 signaling T
[L-4Ro! Exon inclusion and Binds 1L-4 Both neL.lt'ra'lizing 1, 57, 103)
premature stop codon and stabilizing IL-4
(a) Stabilizes IL-6
b) sIL-6Ro/IL-6 44, 47, 54, 94,
IL-6Rat TMD skipping Binds IL-6 (b) sIL-6Ro/IL-6 (
trans-signaling via 104, 105)
Interleukin membranal IL-6ST
receptors IL-6ST, gp130 E kippi d P IL-6Rat/
- s t -6R0L
&P xon sKIpping an Bind sIL-6R0/IL-6 revents siLbRO (106)
(co-receptor) premature stop codon IL-6 trans-signaling
(a) Competes with
membranal IL7R.
(b) Decreases IL-7
early consumption
IL-7Ro TMD skipping Binds IL-7 and results in (33, 45)
prolonged
availability and
increased IL-
7 bioactivity
High concentrations
inhibit TNF
TMD skippi d ignaling.
TNER2 SKIPPINg an Binds TNF sgnating. (46, 49, 59)
premature stop codon Low concentrations
stabilize TNF
trimeric form
TNFRSF6, FAS TMD skipping Competes with mFAS for FASL binding Prevents cell death (30, 52, 53)
TNFR S
TMD sk ,
superfamily y 'lpplflg L . Reduced T-cell
alternative 3’ splice site, Competes with mCD137 for i X
TNFRSF9, 4-1BB o proliferation and IL- (34, 35)
and premature CD137L binding )
2 secretion
stop codon
Reverses signaling
E Kippi d via membranal
xon skipping an
TNERSF18, GITR Pping Binds GITRL GITRL and (56, 107)
premature stop codon .
proinflammatory
effect
TGE Alternative 3’ and 5’ Inhibits the
TGF-f Type II Receptor splice site - premature Binds TGF-B canonical TGF-f (93, 108)

beta receptors

stop codon

signaling pathways

The common splicing patterns that lead to the generation of
soluble isoforms of membranal receptors include (1)
Transmembrane domain (TMD) skipping: In the process of
alternative splicing, skipping of the transmembrane encoding
exon results in the creation of a soluble product encompassing
both the intracellular and extracellular domains (26, 33, 50-55); (2)
Alternative terminator: a shortened soluble isoform is encoded by a
sequence that includes a mutually exclusive exon containing an
alternative polyadenylation site, or by alternative splicing that
results in frameshift and premature stop codon (48, 56, 57). As a
result, the translated proteins include only the extracellular domain,
lose their membrane anchorage and become soluble (27, 58, 59).

It should be noted that alternative splicing is not the sole
mechanism that creates soluble receptors. These segments can also
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be made by proteolytic cleavage of extracellular domains by
proteases in the extracellular matrix (Figure 3). However, unlike
AS, the intracellular domain (ICD) of a cleaved receptor remains
anchored and theoretically may retain its effect. The impact of a
truncated signaling domain is diverse or unknown. Typical
examples of receptors that utilize both mechanisms to produce
their soluble formats are cytokine receptors, including the TNF
and TNFR superfamily (59, 60). In addition, some immune
receptor genes lack the transmembrane domain and are,
therefore, constitutively expressed as soluble receptors with
linked intracellular and extracellular domains. They mainly
function as decoy receptors (61). For example, decoy receptor 3
(DcR3, TNFRSF6B) is a secreted TNFR superfamily member that
lacks a transmembrane domain. DcR3 can interrupt FAS-FASL
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interaction by binding FASL and inhibiting FASL-induced
apoptosis (62).

Alternative splicing of the
immunoglobulin superfamily

The immunoglobulin (Ig) superfamily is a large group of
proteins with a common Ig domain. The Ig superfamily is critical
in the immune response networks (63). Some Ig superfamily
receptors can be translated to a soluble form by an alternative
splicing process (64, 65). Among these are CTLA4 (39, 58), CD83
(42, 66), and LAG3 (66). Here, we will focus on two specific
examples: The programmed cell death receptor PD-1 and the B
cell receptors (BCRs) that convert, after splicing, into
immunoglobulins (antibodies).

PD-1

Following stimulation, PD-1 is expressed on T-cells in a
membrane-bound form (mPD-1). When it binds to its ligand (PD-
L1), mPD-1 inhibits the effector functions of T- cells, promotes
apoptosis, and restricts proliferation (67, 68). PD-1 exon 3, which
encodes the transmembrane domain, can be skipped by alternative
splicing, generating a soluble receptor form (sPD-1). The ratio
between the two isoforms is consistent during T-cell activation
(36). sPD-1 can act as a decoy receptor and compete with the PD-
1 receptor on the interaction with the ligands PD-L1 and PD-L2, and
block the interaction of PD-L1 with B7-1 (69). The shedded PD-1
ectodomain exerts a similar effect, suppressing the PD-1 inhibitory
function (70, 71). It has been speculated that sPD-1 has a reverse
signaling effect when binding to PD-L1 on dendritic cells (41).

Immunoglobulins can be membrane-bound or secreted as
antibodies. Naive B cells express membrane-bound receptors,
usually from the IgM class. Following stimulation, the B cell
receptors undergo alternative splicing via an alternative
terminator mechanism. As a result, the carboxy terminus no
longer contains the hydrophobic transmembrane domain but,
instead, has a hydrophilic secretory tail. The secreted antibodies
play a crucial independent role during the immune response (48).

Alternative splicing of the TNF-
receptor superfamily

The TNFRSF comprises trimeric receptors made of three
homologous molecules that initiate signaling pathways involved in
inflammation, proliferation, differentiation, cell migration, and
induction of cell death (72). Like the Ig superfamily, TNFRSF
members share similar splicing patterns that result in soluble isoforms.

FAS (CD95, TNFRSF6) is one of the best-known members of
the TNF receptors superfamily. It is abundantly expressed in many
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tissues, including the gastrointestinal tract, the respiratory system,
and lymphoid tissues (73-75). FAS is mainly known for its pro-
apoptotic pathway activation following FAS ligand (FASL) binding
(76). However, it also has other functions, e.g., it takes part in the
differentiation of naive T cells to memory cells (77). FAS is robustly
expressed on T-cells and has an apoptosis-inducing role during T-
cell development (78) and activation (79-81). A specific alternative
splicing event is the skipping of exon 6, which encodes the
transmembrane domain of FAS, resulting in a soluble form of the
FAS receptor (52, 53). The FAS exon 6 skipping mechanism has
been studied extensively. It has been shown that many splicing
factors can regulate this event, among them TIA-1 (82), PTB (82),
HuR (83), hnRNP A1 (84), SRSF4 (85), SRSF7 (86), and SRSF6 (87).
Similarly to PD-1, the soluble FAS receptor competes with
membrane-bound FAS for FASL ligation, thereby limiting FAS
signaling (30, 52). Bajgain et al. described the ability of secreted FAS
extracellular domain to enhance CAR T-cell antitumor activity
against a FAS-ligand-expressing tumor (88).

TGEFp (transforming growth factor beta receptor) TGFp is of
special interest because it controls immunity via a rich network of
cells and mediators, with the end result being immune evasion of
the cancer tissue. The biological functions of TGFfB are mostly
mediated by the monomeric, soluble form of the protein. The
monomer is cleaved by proteases in the Golgi complex and later
released from glycoproteins that ligate it in a non-covalent manner
(89). TGFP enhances the expansion of regulatory T cells (Tregs), the
inhibition of NK and effector T cells, and the induction of immune
suppressive cytokines including IL-4 and IL-10. Active TGFp exerts
its effect via receptors that activate SMAD transcription factors, a
family with hundreds of regulatory elements. Tumors exploit TGF8
to induce a supportive stroma that weakens the immune response
by acting as a mechanical barrier and expressing inhibitory
membranal ligands, such as PD-L1 (90, 91). In a series of patients
with gynecological cancers who received immune checkpoint
inhibitors, a high TGFP expression score correlated with
treatment failure and reduced survival (92). The type II receptor
for TGFP has a splicing variant which lacks the transmembrane
domain, and exert a higher binding affinity to the three sub-types of
TGE. By doing so, it competes with the natural ligands and reduces
fibrotic pathology (93).

Type | cytokine receptors

In addition to the Ig and TNFR superfamilies, members of other
immune receptor families can generate soluble forms through
alternative splicing, including type I cytokine receptors IL6Row (54,
94), IL-4Rat (57), and IL-7Ra (33). Another example is the common 7y
chain IL-2, 7, and 15 cytokine receptors, for which skipping exon 6
encoding the transmembrane domain results in a frameshift and a
premature stop codon. The resultant proteins contain only the
extracellular domain. The soluble IL-2 and IL-7 receptors were
reported to impair T-cell signaling and function (27).
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Pathology of splicing and
alternative splicing

Splicing is an imperative regulator of most cellular functions.
Therefore, disrupted splicing regulation can lead to different
pathologies, depending on the involved tissue and the protein
products of the aberrant transcript. The most investigated
pathologies that result from erroneous splicing events include
neurodegenerative disorders and cancers. The first arise from
germline mutations, while the latter arise from somatic genome
aberrations. However, splicing-related mutations can cause many
other disorders, such as dilated cardiomyopathy and Marfan
syndrome (109, 110).

It remains a mystery why germline splicing-related mutations
primarily affect the brain. One theory holds that alternative splicing is
crucial in determining the neural cell state (19) and that neural tissue
is rich in tissue-specific splicing events. However, not all splicing-
related mutations in neural cells lead to a change in alternative
splicing. An example of this is Duchenne muscular dystrophy
(DMD), where a deletion of an exon leads to the production of a
truncated protein via the process of nonsense-mediated decay
(NMD) rather than a new isoform of the original protein (111).

Some argue that 15-50% of pathological mutations affect gene
splicing (9-11). Nevertheless, these diseases are not regarded as
splicing-related disorders since mutations that do not change the
coding sequence are typically misclassified as allelic variations (112-
114). In addition, the wide use of exome sequencing, which filters
out most intronic parts, introduces an inherent bias underscoring
splicing mutations (115-118).

Dis-regulated splicing leading to
neurodegenerative disorders

Neurodegenerative diseases are a group of disorders caused by
the gradual loss of neuronal cell function or structure. Strikingly,
splicing-related mutations are one of the leading causes of many
neurodegenerative diseases (119). The most investigated neuronal
disorder instigated by splicing is spinal muscular atrophy (SMA).
Nonetheless, most neural pathologies, such as early-onset
Parkinson’s (119-121), Alzheimer’s disease (122), familial
dysautonomia (123), and Amyotrophic Lateral Sclerosis (ALS),
could evolve from splicing mutations (124, 125).

Given the significant number of neurodegenerative disorders
caused by mutations impacting RNA splicing, it is not surprising
that there have been numerous efforts to investigate the use of
splicing-editing techniques as a treatment option for these
conditions. For example, antisense oligonucleotides (ASOs) are
being widely researched for their potential use in treating SMA,
DMD, and ALS (126). The use of ASOs to manipulate alternative
splicing is further discussed elsewhere in this review. The use of
CRISPR-Cas9 to affect alternative splicing has been suggested for
Duchenne muscular dystrophy (127), and spliceosome-mediated
RNA trans-splicing (SMaRT) (128) has been tested in Huntington’s
disease (129), DMD (130), and Alzheimer’s disease (131).
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Dis-regulated splicing causing cancer and
immune evasion

Splicing-related mutations in cancer can be grouped into three
categories: 1-those affecting the core spliceosome complex, resulting
in new isoforms; 2-those impacting splicing factors, affecting the
expression levels of multiple isoforms; and 3-those affecting splicing
recognition sites, altering the expression level of a single gene or
creating new isoforms (Table 2; Figure 4).

Splicing factors mutations are particularly prevalent in myeloid
neoplasms; for example, SF3BI, that increases anti-apoptotic
isoforms, enhances tumor proliferation and progression, and is
associated with poor survival of patients (134, 140, 141, 180, 181).
U2AF1 is another splicing factor mutated in myeloid malignancies
that drives altered splicing preferences. Intronic mutations are more
frequent than exonic, and a third of somatic mutations in the exon-
intron boundary are associated with splicing changes. If a mutation
occurs ina 5’ or 3’ splicing site, there is a greater than 50% chance of
it leading to a splicing shift (182).

Splicing can be employed as a cancer treatment approach in
various forms: using single-stranded oligonucleotides to change the
splicing of specific genes and switch between oncogenic and tumor-
suppressing forms, as has been demonstrated for the BCL gene (67);
regulating specific splicing factors through drugs that directly
impact them, such as blocking SF3B1 (68); or by attacking the
pathway which the mutant splicing factor exploits. Thus, tumors
with driver mutations in SF3B1 or U2AF1 may be vulnerable to
NMD inhibition (68-72). Some widely used therapies, such as
camptothecin and cisplatin, have been found to impact RNA
splicing, potentially contributing to their efficacy (73-75).

As discussed in the following paragraph, recent attention has
focused on the generation of neo-antigens by including erroneous
transcripts. However, altered splicing and the emergence of usually
unexpressed isoforms independently impact tumor immunogenicity.
These effects often hinder the anticancer immune response. For
example, HLA tumor-enriched alternative splicing events occur in
10-30% of lung and breast cancers, affecting MHC expression. When
HLA expression is inconsistent, the ability of tumor epitopes to be
presented and recognized is diminished or completely lost (183). In
ovarian cancer, certain splicing factors, such as BUD31, SF3B4, and
CTNNBLI, may indirectly support immune evasion (184). This
immune escape may involve increased PD-L1 expression and
primary resistance to PD-1 inhibitors. Such mechanisms are seen
in clear renal cell carcinoma, where an exon-including splicing event
in the chromatin remodeling gene PBRM1 contributes to immune
evasion (185).

Generation of cancer neo-antigens by
mutations in splicing factors

While reports indicate that altered splicing isoforms contribute
to tumor immune evasion, splicing alterations are now attracting
significant interest as a source of cancer antigenicity. This interest
stems from the potential of AS to drive isoforms that include
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TABLE 2 Specific mutations associated with splicing dis-regulation in human cancers.

Ml,:;:téon Mutation Description Cancer References
Characterized by different Over 30 types of malignancies, (132, 133)
u1 binding to the 5’ splicing site including hepatocellular
Mutation in carcinoma, chronic lymphocytic
the core of leukemia, medulloblastoma
spliceosome
complex Leads mostly to exon skipping Hematological, pancreatic (134-139)
U2AF1 and 3’ alternative splicing in cancer, and
specific genes. lung adenocarcinoma
Alternative branch point selection = The most common splicing (140-147)
leads to aberrant/cryptic 3’ factor mutation in cancer.
SF3B1 splicing sites. Common in hematological
malignancies, uveal melanoma,
breast cancer
Overexpression of hnRNP Al Many types of cancers, (148-152)
hnRNP A1l leads to miss-regulated splicing including lung, breast, and
and increases oncogenic isoforms. | gastric cancers.
Changes in
splicing Overexpression of SRSF1 in Breast, lung, colon, and (153-159)
factors tumor cells increases a wide other tumors.
SRSF1 range of genes. Overexpression
can be caused by copy number
variation or changes in the
mRNA level.
SRSF6 is a proto-oncogene that, Skin, colon, lung, and (160-162)
SRSF6 .when ovf-erexpressed, leads to an other cancers.
increase in tumor-
promoting isoforms.
Exon 14 skipping mutations in Non-small cell lung (163-168)
the gene MET leads to a protein cancer (NSCLC)
MET missing the phosphorylation site,
which impairs
protein degradation.
Some of the mutations associated | Colorectal cancer (CRC) (169-174)
o with HNPCC are missense/
Mutation in MLH1 .
splicing nonsense sphf:mg-
L related mutations.
recognition
sites 2-4% of the mutations in TP53 All tumors bearing (175-179)
are mutations in intronic splicing = TP53 mutations
sites, which can lead to a
P53 truncated protein' or a'shift
towards oncogenic splice
isoforms. In addition, many other
mutations in the gene can effect
specific isoforms of TP53.

retained intronic sequences. These intronic transcripts, in turn, may
form neoantigens—peptide sequences that have not had the
opportunity to tolerize the immune system. Such newly
transcribed sequences hold the potential for generating protective
immunity and improving clinical responses to immune checkpoint
inhibitors (61-64).

Several pharmacological compounds have been used that either
degrade splicing factors, disrupt spliceosome assembly, or inhibit
nonsense-mediated decay (186, 187). One example is indisulam, an
anticancer sulfonamide that generates aberrant transcripts.
Interestingly, indisulam does not directly inhibit cancer growth;
instead, it triggers a T-cell response against cryptic sequences from
abnormal RNA, which impedes tumor progression. Other splicing-
disruptive compounds, such as pladienolide B and H3B-8800, are
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currently being evaluated in experimental systems and clinical trials
for myeloid neoplasms. Predicting the effect of splice manipulation on
the tumor microenvironment is challenging, but as will be discussed,
induction of soluble ectodomains from immune-modulatory receptors
may interfere with immune checkpoint inhibitors. Soluble PD1, for
instance, may saturate PD-1 blocking antibodies and reduce their
availability to rescue exhausted antitumor T cells (188).

RNA sequencing for splicing analysis

The technology developed to sequence RNA and obtain long
transcript reads that capture added or missing nucleotides was
crucial to assessing AS in health and disease.
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Mechanisms of splicing disruption by mutations affecting the core spliceosome complex; splicing factors, or splicing recognition sites, altering the

expression level of a single gene or creating new isoforms.

Bulk RNA sequencing (RNA-seq) is mainly performed using
two methodologies (Figure 5). The first is short-read sequencing,
which can sequence RNA molecules in reads of up to 301 base pairs
(bp), for which the Illumina platform is commonly used. The
second is long-read sequencing, known as “third-generation
sequencing.” This method can sequence up to 26,000 bp RNA
molecules in the NanoporeTM platform (189). Long-read
sequencing has the advantage of identifying full-length transcripts
derived from each gene. However, this sequencing method had an
accuracy of only 90% and is, therefore, error-prone. Erroneous
sequencing interferes with the alignment of the reads to a reference
genome and thus can miss sutured exons and their splice junction,
an important feature required to determine the splicing pattern
(190). However, recently, Nanopore announced that its sequencing
accuracy has increased to 99.9%.

Since Illumina sequencing is well-established and widely used,
most splicing analysis tools are designed for short reads. Analyzing
bulk RNA-seq from Illumina data can be done in three ways. The
first is determining the exon expression level and comparing its
expression in varying biological settings or states. This method is
called “exon-based”. The second method aims to deduce isoform
expression from the short reads sequencing. This method is called
“isoform-based”. The third approach, called “event-based,”
computes the relative inclusion of an exon between two exons.
This approach utilizes reads of splice junctions that overlap at least
two exons.

A comparison of the main computational tools based on these
three methods concluded that the event-based and exon-based tools
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The principle of RNA splicing analysis using Nanopore long-reads or
Illumina short-reads, representing methods based on exon, isoform,
or event.
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while having a relatively low overlap, seem to work the best. It is
suggested that concurrent use of the two methods yields the optimal
splicing map of a given cellular population (191).

Another critical parameter to consider when performing
splicing analysis is the quality of the RNA-seq data. In this
regard, two features need to be accounted for: the depth of the
sequencing and the length of the reads. Mehmood et al. (191) have
noted that a depth between 40-60 million reads per sample will be
sufficient for a robust splicing analysis. When considering reading
length, 100 bp reads were the threshold for thoroughly detecting
splicing junctions (192). It is also advised to sequence the data using
paired-end sequencing to increase the read length.

Extracting splicing data from single-cell RNA-seq is even more
complex. In general, to apply splicing analysis tools, the samples must
be produced to capture the full transcript. However, most single-cell
RNA-seq technologies are based on a 3’ or 5’ capturing of the RNA
molecule. As a result, while preparing the sequencing libraries, only
the transcript’s end is included; thus, there are limited options for
splicing analysis (193). The main exception to these technologies is
Smart-seq sequencing, which captures reads from all over the
transcript. This technology enables splicing analysis with the
limitation of read depth and length. This was demonstrated with
the single-cell splicing analysis tool ‘Expedition.” In their study, Yan
Song et al. (194) used Smart-seq2 sequencing with a mean of 25
million reads per cell and a 100 bp read length. In comparison,
10XGenomics " recommends a sequencing depth of 20,000-50,000
reads per cell and a read length of 28 bp (195); this is shallow
sequencing compared to Yan Song’s analysis. To overcome these
problems, a new single-cell long-read RNA sequencing technology
based on Pacific Bioscience’s sequencing, called MAS-ISO-seq, was
recently introduced. This technology is still new and needs further
investigation. Furthermore, a joint project of Nanopore and 10x
Genomics produced long-reads in single-cell RNA sequencing (196).

Splicing modification using
antisense oligonucleotides

During the 70s, evidence accumulated for the promising ability
of small RNA molecules to control translation processes (197-199).
Paterson et al. were the first to generate a translation-inhibiting
system based on a complementary mRNA-DNA hybrid, resulting
in reversibly arrested [ globin translation (199). In 1978, Paul
Zamecnik and Mary Stephenson used synthetic DNA against RSV
(200). Their 13-nucleotide product hybridized with the viral mRNA
and prevented viral replication (201). Later, it was shown that the
mechanism of action of the short, single-stranded oligonucleotides
included RNase-H1 assembly to the DNA-mRNA hybrid, cleavage,
and mRNA degradation (202). Despite the promising results, the
research in this field was paused for a decade, mainly due to
technical issues related to nucleotide synthesis (203, 204),
skepticism about the ability of nucleic acids to enter target cells,
and restricted knowledge of the human genome (205). The progress
in these aspects re-ignited the research in nucleic acids-based
manipulation. The chemically modified, short, single-stranded
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antisense oligonucleotides (ASOs) improved durability, cellular
uptake, delivery, and post-transcriptional effects.

Chemical modifications

The advancement of chemical modifications of nucleic acids
marked a significant milestone in the clinical application of this
compound class. A key outcome was the development of splice-
switching antisense oligonucleotides (SSOs), designed to modify
alternative splicing patterns and enhance exon skipping.
Specifically, chemical modifications that reduce RNaseH activity
form a stable DNA-mRNA hybrid, preventing subsequent RNA
degradation (206). These SSOs can be directed towards splice-site
sequences, hindering and redirecting the spliceosome to an
alternative splice site in the subsequent exon (207, 208) (Figure 6).

In addition to splicing alterations via complementation to splice
sites, SSO can modify splicing by targeting splicing enhancers (ESE,
ISE) or silencers (ESS, ISS) (209, 210). These interventions may
interrupt splicing by inhibiting linkage to splicing factors, leading to
exon exclusion or inclusion. In addition to whole exon skipping, the
pre-mRNA splicing modulation can result in intron retention,
alternative 5 and 3’ splice sites, alternative promoter, or
alternative polyadenylation sites (209).

Finding SSO-targetable splicing motifs is not trivial. A
systematic scan of the exon of interest is necessary to spot the
precise sequence, which the SSO should complement to alter the
wild-type splicing pattern.

Two types of chemical modification are currently used for FDA-
approved drugs: 2'-O-methoxyethyl (2’-MOE) nucleosides with
phosphorothioate (PS) backbone and phosphorodiamidate
morpholino oligomers (PMO) with a N, N-dimethylamino
phosphorodiamidate backbone (Figure 7).

2’-MOE belongs to a group of modifications in the 2°O of the
furanose ring of the nucleic acid. Other prevalent modifications are
2’-O-methyl (2'-OMe), locked nucleic acid (LNA), and SSOs
containing 2’-constrained ethyl (2'-cEt). Alongside the RNaseH1
resistance, the 2’0 modifications increase the SSO affinity (211).
High affinity is attributed to higher potency, longer half-life, and
less immune-provoking properties (212, 213). 22MOE modifications
are usually accompanied by switching Oxygen in the backbone to
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FIGURE 6

Splice-switching oligonucleotide that enhances exon skipping and
increases the expression of an alternative isoform.
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Sulfur (PS). This switch decreases the SSO affinity but improves the
resistance to nuclease activity (214, 215) and molecular binding to
proteins — resulting in reduced kidney clearing (216) and improved
uptake by target cells (217-219).

In PMO (220), a morpholino ring replaces the furanose ring. In
addition, the negatively charged backbone is replaced by a N, N-
dimethylamino phosphorodiamidate backbone. As a result of these
changes, the SSOs have higher in vivo tolerance but faster kidney
clearance, which requires a higher dosage (221, 222).

Although these are the main modifications currently used for
SSO drugs, recent publications have shown how additional
chemical modifications can further improve splicing modulation.
For example, Langner et al. synthesized a hybrid that combines
PMO modification with a PS backbone, which exhibits higher
efficiency than 2’-MOE modification with the same backbone (223).

SSO-based drugs and clinical trials

Eighteen RNA-targeted oligonucleotide drugs have been
approved, including five SSOs (206). The most advanced
examples of clinical use of SSOs are in the field of genetic
neuromuscular diseases.

The first SSO that the FDA approved is used for spinal muscular
atrophy (SMA) treatment. The drug nusinersen, approved by the
FDA in 2016, is an SSO with a 2’-MOE modification and a PS
backbone. Nusinersen targets the splicing silencer located in SMN2
intron 7 pre-mRNA, and by blocking the binding of hnRNPA1 and
A2, it promotes higher exon 7 inclusion, increasing the SMN2
protein synthesis (224, 225). The treatment results in prolonged
survival and a dramatic improvement in motor development.

Other approved SSO drugs are used for the treatment of
Duchenne muscular dystrophy (DMD). This severe, progressive
muscle-wasting disease causes difficulty in movement and breathing
and, eventually, early death. It is caused by mutations in the DMD
gene, leading to impaired dystrophin protein production (226). In
recent years, the FDA has approved four drugs based on a
mechanism of SSO with PMO modification. The first drug
approved, eteplirsen, was approved in 2016 and causes mutated
exon 51 skipping (227). Three additional drugs that work in a
similar mechanism have been approved in recent years for different
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mutations that lead to DMD: golodirsen, which causes exon 53
skipping, was approved in 2019 (228); viltolarsen, approved in 2020,
also causes exon 53 skipping (229); and casimersen, approved in
2021, induces exon 45 skipping (230). To date, DMD is the only
disease for which even modest, consistent clinical benefit has been
shown using PMOs. Thus, PMO SSOs have demonstrated minimal
and doubtful applicability in mammalian systems (227, 231).

Considering the achievements of SSOs in DMD and SMA,
several groups have recently published promising data
demonstrating the potential of ASO in other diseases. For
example, Yang et al. (232) show the use of SSO to prevent a
splicing pattern that arises from an alternative 3’ splice site
between SYNGAPI exon 10 and exon 11. This splicing pattern
leads to nonsense-mediated decay (NMD). Mutations in this gene
are a common cause of autism and intellectual disability. Using SSO
with 2’-MOE modification increased the expression of the active
protein in an in vitro system. Promising results for the use of SSO
can also be seen in the treatment of Dravet syndrome (233),
Huntington’s disease (234), and fragile X syndrome (235).
Similarly, in cystic fibrosis, Oren et al. (236) and Michaels et al.
(237) demonstrate the use of SSO that leads to mutated exon 23
skipping, increasing the expression of the CFTR protein.

SSO and cancer treatment

The use of SSO in cancer treatment is still in its early stages. There
is currently no approved drug, but there are ongoing research studies.
The primary approach for anticancer SSO is modulating the
alternative splicing of oncogenes toward NMD, nonfunctional
dominant negative isoforms, or isoforms with the opposite function.

For example, Dewaele et al. (238) used PMO-modified SSO for
MDM4 exon 6 skipping, resulting in nonsense-mediated decay and
rescue of MDM4’s target - the tumor suppressor protein p53. The
SSO administration reduces diffuse large B cell lymphoma growth
both in vitro and in vivo.

Using SSOs for translatable alternative splicing isoforms was
shown in the human epidermal growth factor receptor 2 (HER2) case.
HER2 is an oncogene and established therapeutic target in a large
subset of women with breast cancer (239). Wan et al. (240) and
Pankratova et al. (241) used SSOs to skip HER2 exons 15 and 19,
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Frontiers in Immunology

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1490035
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Tzaban et al.

respectively. The manipulations resulted in the upregulation of
A15HER2, a HER2 inhibitor isoform, and A19HER2, a dominant
negative isoform, leading to apoptosis and inhibition of proliferation.

Khurshid et al. (242) recently proposed using SSO for patients
with rhabdomyosarcoma (RMS). In their article, the group
describes the modification of the insulin receptor splicing pattern
by targeting the binding site of the splicing factor CELF1. This
prevents the skipping of exon 11, leading to an increase in the
expression of the receptor in its full form (IR-B). The use of SSO in
an RMS cell line system led to a decrease in proliferation, migration,
and angiogenesis.

Manipulating cancer-associated metabolic programs using SSO
was demonstrated by Wang et al. (243). The group found that
elements in exon 10 of the pyruvate kinase M (PKM) gene
influence the choice between the inclusion of exon 10 and exon 9.
Exon 10 inclusion, the M2 isoform, is common in cancer tumors and
is associated with their ability to switch to aerobic glycolysis
(Warburg effect). The group demonstrated the possibility of using
SSO for splicing modulation in favor of exon 9 inclusion and showed
that the manipulation could lead to apoptosis of glioblastoma cell
lines. Recently, the group showed a similar effect in a hepatocellular
carcinoma mouse system (244). In summary, the use of SSOs to
manipulate the immune system is still in its early stages. While there
is significant progress in understanding the immune system at the
molecular landscape, many complexities regarding the manipulation
of T cells are yet to be unraveled.
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RNA 5-methylcytosine (m5C) modification is a crucial epitranscriptomic mark
that regulates RNA stability, processing, and translation. Emerging evidence
highlights its essential role in various physiological processes, including cellular
differentiation, stem cell maintenance, and immune responses. Dysregulation of
m5C modification has been implicated in multiple pathological conditions,
particularly in cancer, neurodegenerative disorders, and metabolic diseases.
This review provides a comprehensive overview of the molecular mechanisms
governing m5C deposition, its functional consequences in normal physiology,
and its contributions to disease pathogenesis. Furthermore, we discuss the
potential of m5C as a biomarker and therapeutic target, offering new insights
into its biological significance and clinical relevance.

KEYWORDS

5-methylcytosine, methods, physiology, pathology, biological significance,
cancer immunotherapy

1 Introduction

To date, over 170 types of methylation modifications have been identified in RNA,
including N6-methyladenosine (m6A) (1), 5-methylcytosine (m5C) (2), and 7-
methylguanylate (m7G) (3). These modifications increase RNA complexity by affecting
RNA tertiary structure, biogenesis, localization, and function, which are critical for cellular
biological processes and cancer development. m5C methylation refers to the addition of a
methyl group to the 5th carbon of the cytosine ring in DNA or RNA, which is a highly
concentrated and reversible epigenetic modification (4). This modification was first
discovered in DNA and later in RNA. RNA m5C modifications have widespread target
sites, including messenger RNA (mRNA) and non-coding RNA (ncRNA), such as transfer
RNA (tRNA), ribosomal RNA (rRNA), micro RNA (miRNA), small nuclear RNA
(snRNA), and enhancer RNA (eRNA) (5).
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With the continuous improvement of methylated RNA
immunoprecipitation sequencing and liquid chromatography-
mass spectrometry techniques, m5C modifications in mRNA have
been found to affect various biological processes, such as mRNA
stability, translation, splicing, and nucleocytoplasmic transport;
DNA damage repair; cell proliferation and migration; and stem
cell development, differentiation, and reprogramming (6-8).
Previous research primarily focused on DNA, while studies on
the function and regulatory mechanisms of m5C modifications in
RNA are still in the early stages. In recent years, the development of
methylation sequencing technologies has confirmed the presence of
m5C methylation modifications in both coding and non-coding
RNAs. RNA m5C methylation modifications rely mainly on
methyltransferases (writers), demethylases (erasers), and binding
proteins (readers) (9). Aberrant mRNA m5C modifications are
associated with cancer, autoimmune diseases, and atherosclerosis (10).

In summary, 5-methylcytosine modification plays a crucial role
in regulating gene expression, maintaining genomic stability, and
influencing cellular differentiation. Its dynamic regulation,
mediated by DNA methyltransferases and demethylases, ensures
proper cellular function under physiological conditions. However,
aberrant 5mC patterns are frequently associated with various
pathological states, including cancer, neurological disorders, and
autoimmune diseases. Understanding the mechanisms governing
5mC modification and its biological significance not only provides
fundamental insights into epigenetic regulation but also offers
potential therapeutic strategies for disease intervention. Future
research should focus on deciphering the context-specific roles of
5mC and developing targeted approaches to modulate its function
in disease treatment.

2 Regulatory mechanisms of RNA
m5C methylation

RNA m5C methylation is a dynamic and reversible process,
primarily regulated by three factors: m5C methyltransferases,
demethylases, and m5C methylation binding proteins. RNA m5C
methyltransferases mainly include NOL1/NOP2/sun (NSUN)
methyltransferases and DNA methyltransferase-like DNMT2,
which catalyze the formation of 5-methylcytosine (11). m5C
methylation binding proteins function by recognizing and
binding to m5C methylation sites, while demethylases catalyze the
demethylation of RNA m5C.

2.1 m5C methyltransferases

m5C methyltransferases use S-adenosyl-L-methionine (SAM) as
the methyl donor to transfer the methyl group to cytosine, forming 5-
methylcytosine. Over ten RNA m5C methyltransferases have been
identified, including the NSUN family, DNMT2, and the tRNA-
specific methyltransferase TRDMT family (12, 13). The NSUN family
proteins contain a Rossmann fold catalytic domain and a SAM
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binding site. Members of the NSUN family include NSUNI-
NSUN7 (14). NSUN1 directly binds to the 60-80S ribosomal
precursor and catalyzes the m5C modification of human 28S
rRNA. NSUN2 is the most extensively studied NSUN family
member (15). It can catalyze the m5C methylation modification of
various RNAs, including rRNA, tRNA, mRNA, mitochondrial RNA,
and viral RNA. NSUN2-mediated m5C mRNA is widely distributed
across all coding regions. NSUN2 performs various biological
functions, such as regulating epithelial cell differentiation, HIV-1
transcription, and EB virus degradation (16). NSUN2 is highly
expressed in several tumors, mediating tumorigenesis and
progression. For instance, in gallbladder cancer, silencing NSUN2
inhibits the proliferation and tumor formation of gallbladder cancer
cells (17). In liver cancer, the long non-coding RNA (IncRNA) H19 is
a specific target of NSUN2. m5C-modified H19 promotes liver cancer
development by recruiting Ras-GTPase-activating protein SH3
domain-binding protein 1 (G3BP1) (18). NSUN3 is mainly
localized to the mitochondria, catalyzing the methylation of the
anticodon loop C34 site of mitochondrially encoded tRNA
methionine (mt-tRNAMet) (19). NSUN4 is an rRNA-specific
methyltransferase transported to the mitochondria in an N-
terminal 26 amino acid motif-dependent manner (20). NSUN4
interacts with mitochondrial regulatory factor MTERF4, recruiting
the mitochondrial large ribosomal subunit to promote mitochondrial
ribosome assembly by methylating the 12S rRNA C911 site. NSUN5
is localized to the nucleolus and is also an rRNA-specific
methyltransferase, catalyzing the methylation of the C2278 site in
the IV domain of 25S rRNA (21). In colorectal cancer, highly
expressed NSUN5 promotes tumor cell proliferation by regulating
the cell cycle (22). NSUNG is partially localized to the Golgi apparatus
and centrosome and is a tRNA methylation regulator, catalyzing the
methylation of C72 site tRNACys and tRNAThr, affecting tRNA
biogenesis (23). NSUNG6 expression is downregulated in tumors, and
high NSUNG6 expression is associated with better prognosis in some
cancers (24). NSUN7 mediates the m5C methylation modification of
enhancer RNA (eRNA) (25). DNMT2 possesses the sequence and
structural characteristics of DNA methyltransferases and can catalyze
cytosine DNA methylation (26). Additionally, DNMT?2 catalyzes the
methylation of C38 site tRNAAsp. DNMT2-catalyzed tRNA
methylation plays important roles in tRNA processing, maintaining
translation accuracy, stability, and differentiation, and protects
against ribonuclease cleavage (27). Two other methyltransferases,
TRM4A and TRM4B, specifically catalyze tRNA m5C methylation.
In summary, methyltransferases are key regulatory factors of RNA
m5C methylation, catalyzing the methylation of various RNAs (28).
Although some studies have confirmed the crucial roles of
methyltransferases in certain tumors, their roles and mechanisms
in different tumor types remain to be elucidated.

2.2 m5C demethylases

The ten-eleven translocation (TET) family of demethylases is Fe
(II) and o-ketoglutaric acid (0KG)-dependent dioxygenases,
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including TET1, TET2, and TET3 (29, 30). TET3 is distributed in
both the nucleus and cytoplasm, while TET1 and TET2 are mainly
localized to the nucleus (31). The TET enzyme family can catalyze the
oxidation of DNA 5-methyl-2’-deoxycytidine (5mdC) to form 5-
hydroxymethyl-2’-deoxycytidine (5hmdC), 5-formyl-2’-
deoxycytidine (5fdC), and 5-carboxyl-2’-deoxycytidine (5cadC)
(32). TET enzymes also act as RNA demethylases, exhibiting
activity on 5-methylcytidine (5mrC) and its oxidative derivatives in
coding and non-coding RNAs, including 5-hydroxymethylcytidine
(5hmrC), 5-formylcytidine (5frC), and 5-carboxycytidine (5carC)
(33, 34). The TET family can catalyze various nucleic acid
substrates, including dsDNA, ssDNA, ssRNA, and DNA-RNA
hybrids (35). However, further research is needed to understand
the structure and biological functions of TET enzymes and how to
enhance the specificity and selectivity of TET-mediated oxidation.

2.3 m5C methylation binding proteins

The biological functions of RNA modifications are primarily
associated with their binding proteins. The main m5C methylation
binding proteins are ALYREF (Aly/REF export factor) and YBX1
(Y-box binding protein 1). ALYREF is a key component of the
mRNA transport protein complex TREX (36). During mRNA
nuclear export, ALYREEF is first recruited to bind to the 5 end of
mRNA mediated by CBP80 and to the 3° end mediated by PABPN1
(37). ALYREEF further strengthens its binding to mRNA through
direct interaction with the 3’ end processing factor CstF64. In
human HeLa cells and mouse tissues, ALYREF directly binds to
mRNA m5C sites, promoting mRNA nucleocytoplasmic shuttling,
with the binding affinity and nuclear export process mediated by
NSUN2 (38). YBXI is a newly discovered m5C binding protein that
regulates mRNA stability in the cytoplasm. In bladder cancer, YBX1
recognizes and binds to m5C-modified mRNA through the indole
ring of W65 in its cold-shock domain (CDS), stabilizing m5C-
modified mRNA, thereby regulating mRNA metabolism (39-41). In
lung cancer, YBX1 promotes tumor cell invasion, migration, and
angiogenesis by directly binding to IncRNA LINC00312 (42).
Recently, a notable study identified another novel RNA m5C
methylation binding protein, SRSF2, and revealed its association
with leukemia development. Further research found that the
SRSF2P95H mutation in leukemia inhibits SRSF2 recognition of
m5C, affecting mRNA alternative splicing mediated by SRSF2, and
leukemia patients with impaired SRSF2-m5C binding have poor
prognosis (43). YBX2 has recently been reported as a novel
mammalian m5C-binding protein capable of undergoing liquid-
liquid phase separation (LLPS) both in vivo and in vitro (44, 45).
Other methylation binding proteins remain to be discovered and
validated, and their regulatory mechanisms on RNA m5C
modifications require further investigation.
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3 The impact of m5C methylation on
RNA

3.1 Impact of m5C methylation on mRNA

Extensive m5C methylation is present in mRNA, and its
influence on mRNA function has become a research focus in
recent years (46, 47). (1) Impact on mRNA translation: recent
studies have shown a functional interdependence between m5C
modifications and mRNA translation. However, m5C appears to
have different effects depending on its location - specifically, it
generally has negative effects in coding regions but can have
positive effects in untranslated regions like the 3’-UTR. For
example, in HeLa cells, m5C sites within coding regions are
negatively correlated with translation efficiency (48). Another study
demonstrated that NSUN2-induced m5C methylation, in
collaboration with METTL3/METTL14-induced m6A methylation,
mediates the methylation of the 3’ -UTR of p21 mRNA, enhancing its
translation efficiency (49). (2)Impact on mRNA Transport: Research
has shown that m5C modifications are enriched in CG-rich regions
and downstream of the start codon, playing a critical role in mRNA
nuclear export (50). (3)Impact on mRNA Stability: In bladder cancer,
YBX1 enhances the stability of m5C-modified mRNA by recruiting
ELAVLI1 (2). However, other studies have found no correlation or a
negative correlation between m5C modification levels and mRNA
stability (Figure 1). Thus, the effect of m5C methylation on mRNA
stability remains to be further investigated.

3.2 Impact of m5C methylation on tRNA

m5C methylation regulates tRNA stability, cellular metabolism,
and stress response. Studies have shown that m5C modifications
mediated by NSUN2 and DNMT2 maintain tRNA stability and
regulate cellular metabolism (14). In humans and mice, TRM4/
NSUN2-mediated m5C methylation prevents tRNA degradation
due to oxidative stress. DNMT2-mediated tRNA methylation
protects tRNA from nucleases and regulates the stability of
tRNAAsp-GTC and tRNAGly-GCC (51, 52) (Figure 1).

3.3 Impact of m5C methylation on rRNA

m5C methylation regulates rRNA stability and ribosome
synthesis. In the small subunit 12S rRNA, the m5C
methyltransferase NSUN4 methylates cytosine 911 (m5C911) and
forms a complex with MTERF4, ensuring the assembly of mature
large and small subunit complexes (53). Loss of m5C2278 and
G2288 methylation results in structural changes in 25S rRNA.
When cells are exposed to hydrogen peroxide, the absence of
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FIGURE 1

various biological processes.

RNA m5C modification is a dynamic process. RNA m5C modification (5-methylcytosine modification) refers to the chemical modification where the
cytosine residues in RNA molecules are methylated at the carbon 5 position. This modification is widely present in various types of RNA, including
messenger RNA (mMRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and non-coding RNA (ncRNA). RNA m5C modification plays a crucial role in

A stability

Rem1/NSUNS leads to a more relaxed folding of sequences near 25S
rRNA C2278, indicating that Rem1/NSUNS5 is crucial for
maintaining rRNA stability under oxidative stress conditions
(54) (Figure 1).

3.4 Impact of m5C methylation on other
RNAs

m5C methylation also plays significant roles in viral RNA and
IncRNA. For example, Recent studies have found that RNA
cytosine-C(5)-methyltransferase (NSUN2) is upregulated in
gastric cancer. NSUN2 enhances the expression of the long non-
coding RNA NR_033928 through methylation modification.
NR_033928, in turn, interacts with the IGF2BP3/HUR complex
to upregulate the expression of glutaminase (GLS), thereby
increasing the stability of GLS mRNA and promoting the
progression of gastric cancer (55). m5C methylation in the
interaction regions of IncRNA HOTAIR and XIST with
chromatin-modifying complexes can affect XIST function by
influencing its binding to the PRC2 complex (56). Viral RNAs
exhibit extensive m5C methylation. Studies have shown that
nucleolar protein NOP2/NSUNI has been identified as an HIV-1
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restriction factor. Functional studies confirm that NOP2 restricts
HIV-1 replication. Depletion of NOP2 promotes the reactivation of
latent HIV-1 proviruses in various cell lines and primary CD4+ T
cells. Mechanistic studies show that NOP2 binds to the HIV-1 5’
LTR and competes with HIV-1 Tat protein for interaction with
HIV-1 TAR RNA, facilitating the m5C methylation of TAR (57)
(Figure 1). In summary, m5C methylation is widespread across
various RNA types and may play crucial roles in their function.
Current research on the impact of m5C methylation on RNA is still
limited and contentious, necessitating further investigation.

4 Methods for detecting RNA m5C
methylation

Current methods for detecting RNA m5C modification
primarily include the following: (1) physicochemical methods,
such as chromatography, mass spectrometry (MS), high-
performance liquid chromatography (HPLC), and liquid
chromatography-tandem mass spectrometry (LC-MS/MS); (2)
chemical conversion methods combined with next-generation
sequencing (NGS) technologies, such as RNA bisulfite sequencing
(RNA-BisSeq) and Tet-assisted oxidation sequencing using
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tungsten acid (Tawo-seq); (3) immunoprecipitation combined with
NGS technologies, such as 5-aza-seq (miCLIP) with m5C-specific
single-nucleotide crosslinking and immunoprecipitation; and (4)
third-generation sequencing (TGS) based on differential electric
signal, such as Nanopore-seq (58). In practice, the most commonly
used methods in research are the three described below, which we
will primarily focus on, discussing their advantages, disadvantages,
and other relevant aspects.

4.1 m5C MeRIP-seq

This method allows the examination of gene m5C methylation
levels across the entire transcriptome, as well as at the tRNA level.
The technical principle is as follows: m5C-specific antibodies are
incubated with randomly fragmented RNA, capturing the
methylated fragments for sequencing. A parallel sequencing of a
control (Input) sample is also performed. The control sample
consists of RNA fragments that have not undergone
immunoprecipitation (IP). This control helps eliminate
background noise from non-specific binding of methylated
fragments. By comparing the sequencing fragments from the
immunoprecipitation (IP) sample and the Input sample, m5C
RNA methylation sites can be mapped to the transcriptome,
allowing the calculation of m5C methylation levels in the sample.

4.2 m5C BS-seq

Earlier RNA m5C modification detection primarily relied on
bisulfite sequencing (BS-seq). In BS-seq, unmodified cytosine (C) is
converted into uracil (U), whereas m5C remains unchanged.
Therefore, m5C modifications can be identified by detecting the
unconverted C. Although BS-seq is straightforward and convenient,
and can achieve single-base resolution of m5C modification
quantification, there are three main drawbacks: 1) It detects m5C
indirectly, relying on efficient conversion of unmodified C.
Incomplete conversion can lead to false positives; 2) Harsh
reaction conditions may cause RNA degradation, limiting
detection in samples with low starting amounts or low-abundance
RNA; 3) The conversion of C to U reduces sequence complexity,
which affects alignment accuracy and limits m5C detection in low-
complexity RNA sequences (59).

4.3 m5C-TAC-seq (m5C detection strategy
enabled by TET-assisted chemical labeling)

The core principle of this technique is to combine enzymatic
reactions with chemical labeling. The optimized TET enzyme
reaction oxidizes RNA m5C to f5C, which is then specifically
labeled using azidophenylfluorone (AI). This labeling product not
only results in a C-to-T transition but also allows for enrichment
through click chemistry, enabling direct detection of m5C
modification at single-base resolution. m5C-TAC-seq can be
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applied to various types of RNA, including low-abundance, low-
sequence complexity, and low-modification m5C sites.
Additionally, it allows for the dynamic detection of m5C
modifications in multiple biological processes, thus contributing
to the understanding and exploration of the biological functions of
RNA m5C modifications (60).

These methods each have distinct advantages and limitations,
with m5C MeRIP-seq being widely used for its comprehensiveness,
BS-seq providing straightforward quantification, and m5C-TAC-seq
enabling high sensitivity for low-abundance RNA modifications.

5 The role of m5C in normal
physiological processes

5-methylcytosine (m5C) plays a crucial role in normal
physiological processes by regulating various aspects of RNA
metabolism and gene expression. Here, we summarize the current
understanding of the functions of m5C modification in
neurodevelopment, autoimmune diseases, spermatogenesis, and
embryonic development.

5.1 The role of m5C in neurodevelopment

Mutations in the m5C methyltransferase NSUN2 result in
microcephaly and other neurological abnormalities in mice and
humans, such as behavioral defects, speech delay, gait
abnormalities, growth retardation, unusual appearance, and skin
anomalies (61). In mice, the absence of NSUN2 leads to impaired
neurodevelopment, inhibition of neuronal migration, and disrupted
neural stem cell differentiation, causing the accumulation of
intermediate progenitors and the loss of upper-layer neurons in
the developing cortex (62). In Drosophila, loss of the NSUN2
homolog results in severe short-term memory deficits. Studies
have found that angiogenin binds with higher affinity to tRNA
lacking site-specific NSUN2-mediated methylation. The loss of
m5C methylation increases angiogenin-mediated tRNA nuclear
cleavage, leading to the accumulation of 5tRNA-derived
fragments, reducing protein translation rates, activating stress
pathways, and causing reduced cell volume and increased
apoptosis in cortical, hippocampal, and striatal neurons (63). In
addition, inhibition of angiopoietin during embryogenesis can
rescue the increased sensitivity of NSun2-deficient brains to
oxidative stress (63). Studies have shown that loss of NSun2
function caused by autosomal recessive mutations is associated
with human neurological abnormalities. Specifically, reduced
NSun2 protein expression and an increased pTau/NSun2 ratio
have been observed in the brains of Alzheimer’s disease (AD)
patients (64). Conditional knockout of NSun2 in mouse brains
promotes a decrease in m6A levels of miR-125b and excessive
phosphorylation of tau. Moreover, neuronal NSun2 levels are
reduced by amyloid-f oligomers (ABO). Interestingly, ABO-
induced tau phosphorylation and cytotoxicity in human neurons
can be rescued by NSun2 overexpression (64).
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5.2 The roles of m5C methylation in
spermatogenesis

The m5C modifications mediated by the NSUN family play a
significant role in various aspects of testicular differentiation and
embryonic development (65, 66). For example, the absence of
NSUN2 can lead to multiple mitotic disorders and multipolar
spindles, resulting in cell death (67). Studies have shown that
NSUN2 deficiency leads to reduced testis size, decreased
spermatogonia count, and lack of mature sperm in mice (68).
Further research has revealed that NSUN2 deficiency blocks the
first meiotic division and induces apoptosis in pachytene
spermatocytes (69). Another member of the NSUN family,
NSUNY7, is also highly expressed in the testes. Its absence results
in decreased sperm motility and abnormal movement, ultimately
causing infertility in mice (70). Additionally, mutations in NSUN7
have been found in patients with asthenozoospermia, leading to
infertility (71). The m5C modification can be inherited by offspring
and is crucial for mediating acquired traits (72). Research indicates
that elevated levels of m5C and m2G modifications in tRNA-
derived small RNAs (tsRNAs) in sperm from high-fat diet-fed
male mice affect the formation of these tsRNAs, enabling the
offspring to inherit the paternal high-fat phenotype. However, the
mechanism by which m5C modifications regulate tsSRNA formation
in sperm from high-fat diet-fed male mice remains unclear (72).
Studies have demonstrated that m5C modifications mediated by
DNMT?2 are involved in regulating the acquired high-fat phenotype
in the offspring of high-fat diet-fed mice (73). These findings
suggest that abnormal m5C modifications can be inherited by
offspring, leading to phenotypic changes. However, the exact
mechanism of this inheritance is not yet understood, necessitating
further experiments to elucidate the role of m5C in spermatogenesis
regulation and epigenetics.

5.3 The roles of m5C methylation in
embryonic development

The m5C methylation modifications mediated by NSUN family
proteins have been extensively studied in the regulation of embryonic
formation. Initially, researchers demonstrated the presence of NSUN2
to NSUN7 in early mouse embryos and analyzed their roles and
expression patterns in embryonic development (65). They found that
the m5C levels in six different animals (mice, humans, zebrafish, fruit
flies, Xenopus tropicalis, and Xenopus laevis) were high during the early
embryonic stages but sharply declined after the maternal-to-zygotic
transition (MZT), remaining at low levels during subsequent
developmental stages (74). The absence of m5C methylation
modifications in early embryos leads to delayed cell cycles, preventing
the timely initiation of the MZT process (74). DNMT2, another
methyltransferase for m5C modifications, when singly deficient,
results in neonatal mice phenotypes similar to those with dual
deficiencies in NSUN2 and DNMT2, exhibiting immature
hematopoietic systems, reduced numbers of hematopoietic stem cells
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and progenitor cells, and defects in cell-autonomous differentiation (75).
However, its regulatory role in other animal embryonic developments
has not yet been reported. The loss of the m5C recognition protein
YBXI1 disrupts zebrafish embryo cleavage and MZT processes, resulting
in zygotic death post-fertilization (76). Further studies revealed that
YBXI influences normal embryonic development by inhibiting
maternal mRNA translation (77). During the MZT process in
zebrafish, YBX1 preferentially recognizes m5C-modified mRNA,
maintaining its stability and inhibiting the translation of the maternal
mRNA pool (76). The loss of YBXI affects transcriptional activity
during zygotic genome activation (ZGA) in goats and mice, with
abnormal expression of splicing factors and mRNA decay genes in
embryos, indicating that YBX1 impacts maternal mRNA decay,
selective splicing, and transcriptional activity necessary for early
embryonic development (78). This, in turn, affects early embryonic
development. In Drosophila melanogaster, the Drosophila Tet homolog
gene cg43444 (dtet) is positively correlated with hm5C levels. Dtet-
deficient flies survive the larval stage but die during pupation, suggesting
that dtet-mediated hm5C plays a regulatory role in embryonic
development (79). This also indirectly highlights the importance of
m5C methylation modifications in embryonic development.

6 The role of m5C in cancer

Studies have shown that RNA m5C modification plays an
important role in cancer progression and remodeling of the
tumor immune microenvironment by influencing RNA stability
and translation efficiency. Therefore, in this manuscript, we
systematically summarized the expression and function of RNA
m5C modification in tumors, which will help us understand the
occurrence and development of tumors and provide new potential
targets for cancer therapy (Tables 1, 2).

6.1 Nervous system tumors

In gliomas, the expression of m5C methyltransferases varies
with different clinical and pathological tumor characteristics. A risk
prediction model constructed using five m5C methyltransferase
genes can predict patient survival and clinical features in gliomas.
Cox regression analysis has shown that the model’s risk score is an
independent prognostic factor for gliomas (80). Additionally, in
glioblastoma multiforme (GBM), most miRNAs exhibit m5C
modification, with methylation of miRNA-181a-5p correlating
with poor prognosis in GBM patients. Mechanistically, the m5C
modification of miR-181a-5p, mediated by a complex containing
DNMT3a and AGO4, inhibits the formation of miRNA-181a-5p/
mRNA duplexes, resulting in the loss of its tumor-suppressive
effects (81). In the U87 human glioma cell line, NSUN2 regulates
tumor cell migration by modulating the autocrine chemokine
(ATX)-lysophosphatidic acid (LPA) axis. NSUN2 methylates the
cytosine at position 2756 in the 3’-UTR of ATX mRNA, enhancing
ATX mRNA translation. The ATX-LPA pathway mediates cancer
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TABLE 1 The functional roles and mechanisms of m5C modification regulators in different cancer types: a systematic summary.

Cancer m5C expression Target  Molecular functions Potential mechanisms
type regulators genes
Glioma NSUN2 up ATX Enhances glioma cells proliferation Enhancing ATX mRNA translation (82)
LC NSUN6 up NH23-H1 Inhibits cell proliferation, migration and Controls NM23-H1 expression by modifying the (89)
EMT in LC 3’-UTR of NM23-H1 mRNA using m5C.
LC NSUN2 up NRF2 Governs NRF2-induced ferroptosis Maintains the expression of NRF2 via YBX1 in (87)
resistance in NSCLC NSCLC cells
LC NSUN2 up QSOX1 Causes gefitinib resistance and cancer Regulates YBX1 and QSOXI1 in NSCLC (2)
recurrence in NSCLC
LC ALYREF up YAP1 Enhances tumor progression in NSCLC Interacts with LINC02159; increase the stability (37)
of YAP1 mRNA; activates Hippo and
beta-catenin
ESCC NSUN2 up GBR2 Enhances oncogenesis and progression Enhances m5C modification of GRB2 mRNA (90)
in ESCC and its stability; activates ERK/MAPK,
PI3K/AKT
GC NSUN2 up LINC00324  Facilitates tumor angiogenesis in GEC Induces LINC00324 stability through m5C (134)
modification; decreases CBX3 mRNA
degradation; increases VEGFR2 transcription
GC NSUN2 up ERK1/2 Promotes chemosensitivity in GC Increases ERK1/2 phosphorylation; regulates Bcl- | (135)
2 and Bax
GC NSUN2 up FOXC2 Promotes proliferation, migration, and FOXC2-ASI facilitates NSUN2 recruitment to (96)
invasion of GC cells FOXC2 mRNA, enhancing its m5C modification
and interaction with YBX1
GC NSUN2 up NTN1 Promotes neural invasion in GC DIAPH2-ASI stabilizes NSUN2 and enhances (94)
the m5C modification of NTN1
CRC NSUN2 up SKIL Promotes tumorigenesis and progression Increases SKIL mRNA stability (136)
of CRC
HCC NSUN5 up ZEED3 Promotes proliferation of HCC cells Activates Wnt/B-catenin signaling pathway (137)
HCC ALYREF up EGFR Facilitates cell proliferation, invasion, and | Induces m5C modification and increases the (138)
EMT in HCC stabilization of EGFR mRNA and
pSTATS3 activation.
HCC NSUN2 up SARS2 promotes the proliferation, colony Mediates m5C of the SARS2 and activates the (105)
formation, migration, and invasion of Wnt signaling pathway
HCC cells
AML NSUN2 up SRSF2 Increases the development of leukemia Reduces NSUN2 expression lowers mRNA m5C (43)
levels, diminishes SRSF2 binding, and affects
RNA splicing.
AML YBX1 up MYC Sustains the function of leukemia cells Enhancing the stability of MYC and BCL2 (39)
and BCL2
AML TET2 TSPAN13 Promotes leukemia development, Increases the stability and expression of (110)
leukemia stem cell migration/homing, and = TSPAN13 transcripts
leukemia stem cell self-renewal
BLCA NSUN2 up HDGF Promotes the proliferation and invasion Stabilizes HDGF mRNA (139)
of BLCA cells
EC NSUN2 SLC7A11 Promotes EC cell proliferation Increased mRNA stability of SLC7A11 (113)
HNSC NSUN2 up TEAD1 Enhancing tumor cell proliferation and Increased mRNA stability of TEAD1 (117)

invasion of HNSC

Up, up-regulated in cancer.

cell migration. Moreover, ALYREF interacts with methylated ATX
mRNA, facilitating its export from the nucleus to the cytoplasm.
NSUN2 knockout inhibits U87 cell migration, which can be
restored by the addition of LPA (82). In in vivo glioma models,
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NSUNS5 exhibits high methylation in CpG island promoter regions,
leading to reduced transcript levels and epigenetic silencing.
Silencing of NSUN5 induces a loss of methylation at the C3782
site of 28S rRNA. Under stress conditions, the unmethylated state
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TABLE 2 A summary of abbreviations and full names of different cancer types.

Abbreviation Full Name

Abbreviation Full Name

ACC Adrenocortical Carcinoma LUAD Lung Adenocarcinoma
BLCA Bladder Urothelial Carcinoma LUSC Lung Squamous Cell Carcinoma
BRCA Breast Invasive Carcinoma MESO Malignant Mesothelioma
CESC Cervical Squamous Cell Carcinoma ov Ovarian Serous Cystadenocarcinoma
CHOL Cholangiocarcinoma PAAD Pancreatic Adenocarcinoma
COAD Colon Adenocarcinoma PCPG Pheochromocytoma

and Paraganglioma

ESCA Esophageal Carcinoma PRAD Prostate Adenocarcinoma
GBM Glioblastoma Multiforme READ Rectum Adenocarcinoma
HNSC Head and Neck Squamous SARC Sarcoma

Cell Carcinoma

KICH Kidney Chromophobe SKCM Skin Cutaneous Melanoma
KIRC Kidney Renal Clear Cell Carcinoma STAD Stomach Adenocarcinoma
KIRP Kidney Renal Papillary Cell Carcinoma TGCT Testicular Germ Cell Tumors
LAML Acute Myeloid Leukemia THCA Thyroid Carcinoma

LGG Lower Grade Glioma THYM Thymoma
LIHC Liver Hepatocellular Carcinoma UCEC Uterine Corpus

results in a global depletion of protein synthesis while activating
specific mRNA translation programs, leading to upregulation of
NAD(P)H-quinone oxidoreductase 1 (NQO1) (83). NQO1
overexpression enhances sensitivity to NQO1-targeted drugs.
Therefore, NSUN5 epigenetic silencing is considered a protective
factor in gliomas and is associated with better prognosis.

6.2 Respiratory system tumors

6.2.1 Lung cancer

In lung adenocarcinoma, two distinct m5C methylation
modification patterns based on 11 m5C regulatory factors have
been identified, each characterized by different tumor
microenvironment immune cell infiltration profiles. A scoring
system for m5C methylation modifications indicates that patients
in the high-score group have better prognosis compared to those in
the low-score group. A prognostic model constructed from 14
m5C-related IncRNAs shows that high-risk patients have poorer
outcomes than low-risk patients, with high sensitivity and
specificity. In lung squamous cell carcinoma (LUSC), the m5C
regulatory factors NSUN3 and NSUN4 are highly expressed
compared to normal lung tissue and are associated with poor
prognosis (84). NSUN3 and NSUN4 expression is upregulated
and correlates with adverse outcomes, and these factors are used
to construct prognostic risk signatures. Additionally, NSUN3 and
NSUN4 are related to the infiltration of six major immune cell
types. In lung adenocarcinoma, in vitro experiments show that high
expression of NOP2 or heterogeneous nuclear ribonucleoproteins
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(hnRNP) is more likely associated with poor differentiation.
NSUN3 genomic deletions are common in non-smokers with
lung adenocarcinoma, occurring at a rate of 15% (85). Research
indicates that high expression of NSUN2 leads to resistance to
gefitinib and promotes recurrence of lung cancer tumors.
Knockdown of NSUN2 can overcome the intrinsic resistance of
lung cancer cells to gefitinib. Mechanistic studies show that NSUN2
regulates the m5C modification of QSOXI1, and YBX1 enhances
QSOX1 translation in an m5C-dependent manner, thereby
promoting resistance to EGFR-mutant lung cancer (2). THOCS3 is
highly expressed in lung squamous cell carcinoma (LUSC) and
significantly promotes the growth, migration, and glycolysis of
LUSC cells. Mechanistic studies have shown that THOC3 can
form a complex with YBX1 to promote the transcription of
PFKFB4. Additionally, THOC3 facilitates the export of PFKFB4
mRNA to the cytoplasm, while YBX1 maintains the stability of
PFKFB4 mRNA (86). NSUN2 upregulates the m5C modification of
NREF2, with YBX1 binding to the m5C-modified NRF2 to maintain
its transcript stability, thereby promoting the proliferation,
migration, and ferroptosis resistance of NSCLC cells (87).The
expression level of NOP2 is abnormally elevated in lung cancer,
and its increased expression enhances the migratory and invasive
abilities of lung cancer cells, as well as the growth and metastasis of
transplanted tumors. This effect is achieved by regulating the m5C
modification level of EZH2 mRNA, which in turn stabilizes EZH2
mRNA through ALYREF mediation (88).Conversely, NSUNG6 is
downregulated in lung cancer, and overexpression of NSUN6
inhibits the proliferation, migration, and EMT of lung cancer
cells. This is attributed to NSUN6 regulating the expression of
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NM23-H1 by m5C modification of NM23-H1 mRNA’s 3’-UTR
(89). NC02159 is reported to be upregulated in the tumor tissues
and serum of NSCLC patients, and knocking down LINC02159
significantly inhibits the proliferation, migration, and invasion of
NSCLC cells, induces apoptosis and cell cycle arrest, and slows
tumor growth in vivo. The primary mechanism involves interaction
with Aly/REF export factor (ALYREF), thereby upregulating the
stability of YAP1 mRNA in an m5C-dependent manner, activating
the Hippo and PB-catenin signaling pathways, and promoting
NSCLC progression (37).

6.3 Digestive system tumors

6.3.1 Esophageal cancer

‘Esophageal cancer is highly aggressive with early metastatic
potential and poor prognosis. Its two major histological subtypes
are squamous cell carcinoma and adenocarcinoma. NSUN2-
methylated IncRNA (NMR) is significantly upregulated in
esophageal cancer tissues and is associated with reduced overall
survival (90). Screening for genes with reduced m5C levels and
sequencing analysis reveal that the m5C levels of migration and
invasion-related genes PLOD3, COL4A5, LAMBI, and HSPG2
decrease following NMR overexpression. This reduction may be
due to the competitive inhibition of mRNA m5C levels by the
upregulated NSUN2 IncRNA. NSUN2 expression is positively
regulated by E2F transcription factor 1 (E2F1), which enhances
NSUN?2 expression by binding to its promoter (91). This, in turn,
increases the m5C levels of growth factor receptor-bound protein 2
(GRB2). The RNA-binding protein lin-28 homolog B (LIN28B)
preferentially binds to m5C-modified GRB2 mRNA, stabilizing it.
Subsequently, increased GRB2 levels activate phosphoinositide 3-
kinase (PI3K)/protein kinase B (AKT) and extracellular regulated
protein kinases (ERK)/mitogen-activated protein kinases (MAPK)
signaling pathways, promoting the progression of esophageal
squamous cell carcinoma (90). In esophageal cancer, RNA m5C
methylation is primarily mediated by NSUN2 and participates in
the disease process by affecting cancer-related genes and pathways.
Recent studies have found that YBX1 is aberrantly overexpressed in
esophageal squamous cell carcinoma (ESCC), with a significant
correlation between high YBXI levels and poor patient survival.
YBX1 enhances the stability of spermine oxidase (SMOX) mRNA
through an m5C-dependent mechanism mediated by NSUN2,
promoting ESCC cell proliferation and metastasis (92).

6.3.2 Gastric cancer

Studies indicate that NSUN2 expression is upregulated in
gastric cancer compared to adjacent non-cancerous tissues. In
vitro and in vivo experiments confirm that NSUN2 promotes
gastric cancer cell proliferation and tumor development. RNA
sequencing has identified p57KIP2 as a downstream target of
NSUN?2 regulation. Mechanistically, the methyltransferase activity
of NSUN2 and m5C modification in the 3’-UTR region of p57Kip2
mRNA disrupts its stability, thereby facilitating gastric cancer
progression (93). Research indicates that NSUN2 is upregulated
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in gastric cancer and is significantly associated with lower survival
rates in patients. Functional studies reveal that NSUN2 methylates
IncRNA-NR_033928, resulting in the upregulation of NR_033928.
This IncRNA promotes the formation of the IGF2BP3/HUR
complex, which subsequently maintains the stability of the
downstream target gene GLS mRNA, leading to increased
expression of glutaminase (GLS). This upregulation promotes
gastric cancer (GC) cell proliferation and progression. NSUN2
has been reported to interact with IncRNAs to regulate the
stability of target genes. In gastric cancer (GC) tissues, IncRNA-
DIAPH2-AS1 is abnormally upregulated and is associated with
poor prognosis in GC patients. Overexpression of DIAPH2-AS1
enhances the migration, invasion, and neural invasion potential of
GC cells. Mechanistic studies have confirmed that DIAPH2-AS1
interacts with NSUN2, protecting NSUN2 from ubiquitin-
proteasome degradation. This interaction further increases the
stability of the downstream target gene NTN1 mRNA through
m5C modification, ultimately inducing neural invasion in GC (94).
Upregulation of m5C methyltransferases and binding proteins is
observed in gastrointestinal cancers, and their high expression is
significantly associated with poor patient survival (95).
Bioinformatics analysis reveals that m5C regulatory proteins are
closely related to the ErbB/PI3K-Akt signaling pathway, with
GSK3B being a crucial target. FOXC2 antisense RNA 1 (FOXC2-
AS1), a newly identified functional IncRNA, is highly expressed in
gastric cancer tissues and cells, promoting cell proliferation,
migration, and invasion, and correlates with poor prognosis.
FOXC2-AS1 recruits NSUN2 to FOXC2 mRNA, increasing its
m5C levels, and subsequently enhances FOXC2 mRNA stability
through binding with m5C-binding protein YBX1 (96). Previous
studies have shown that YBX1 is highly expressed in advanced
gastric cancer tissues and is associated with shorter disease-free
survival, though the exact mechanisms by which YBX1 promotes
cancer progression through binding to RNA m5C methylation
regions remain to be elucidated (96).

6.3.3 Gallbladder cancer

In gallbladder carcinoma (GBC), NSUN2 expression is
upregulated in both cells and tissues. Silencing of NSUN2 inhibits
GBC cell proliferation and tumorigenesis, whereas overexpression
of NSUN2 promotes gallbladder cancer cell growth. RPL6
contributes to carcinogenesis by regulating the translation of
NSUN2 mRNA. In RPL6-silenced cells, NSUN2 protein levels are
reduced, leading to the accumulation of NSUN2 mRNA (17).

6.3.4 Colorectal cancer

Detecting tumor prognostic markers is crucial for identifying
colorectal cancer patients with low survival rates and high mortality.
Research has shown that in colorectal cancer patients and mouse
models, the mRNA levels of NSUN5 and YBXI1, as well as the total
RNA m5C levels, are elevated (97). Co-culture experiments indicate
that colorectal cancer cells promote the expression of NSUN5 and
YBX1 in immune cells, leading to increased m5C levels in these
cells. This suggests that m5C levels in peripheral blood immune
cells may serve as potential biomarkers for distinguishing colorectal
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cancer patients. In colorectal cancer, NSUN2 suppresses miR-125b
expression and enhances the expression of Grb-associated binding
protein 2 (Gab2), thereby promoting cell migration (98).
Additionally, NSUNS5 is upregulated in colorectal cancer tissues
and cells, and NSUN5 knockout mice exhibit significantly reduced
cell proliferation and cell cycle arrest. NSUN5 may regulate
colorectal cancer cell proliferation through the Retinoblastoma
(Rb)-cyclin-dependent kinase (CDK) pathway (22).
Bioinformatics analysis of differentially expressed genes between
colon cancer and adjacent tissues has identified DNMT2, NSUNG,
and ALKBHI as prognostic genes for colorectal cancer, with all
three involved in MAPK and P53 signaling pathways, suggesting
their potential oncogenic roles (99). Elevated NSUN2 levels in
colorectal cancer are associated with poor patient survival.
Silencing NSUN2 inhibits tumorigenesis and progression in
NSUN2 knockout mouse models, with mechanistic studies
showing that NSUN2 induces m5C modification of SKIL and
mediates SKIL mRNA stability through YBXI. Increased SKIL
levels activate transcriptional coactivators with PDZ-binding
motifs (TAZ), promoting colorectal cancer progression (100).

6.3.5 Liver cancer

Comparative studies between hepatocellular carcinoma (HCC)
and adjacent non-cancerous tissues have revealed that HCC
exhibits significantly higher levels of m5C peaks in mRNA, with a
broader distribution (101). In addition to coding RNAs, the
frequency of m5C methylation and the number of methylated
genes are also significantly higher in circRNA and IncRNA within
HCC tissues compared to adjacent non-cancerous tissues (101).
The presence of RNA m5C modifications promotes HCC
progression, with elevated levels of m5C regulators NSUN4 and
ALYREF correlating negatively with poor prognosis in HCC
patients (102). Recent studies have shown that NSUN2 deficiency
suppresses proliferation and migration in HepG2 liver cancer cells.
Transcriptomic sequencing and bisulfite sequencing (Bis-Seq) have
demonstrated a significant reduction in m5C methylation and gene
expression of IncRNA H19 following NSUN2 loss. Mechanistically,
IncRNA HI19 is a specific target of the NSUN2 RNA
methyltransferase, with m5C modification affecting H19 half-life
and stability. The m5C-modified H19 can promote tumorigenesis
through specific binding to the tumor protein G3BP1 (18). Elevated
expression of NSUNS5 is associated with reduced relapse-free and
overall survival rates and predicts poor prognosis in hepatocellular
carcinoma. NSUN5 mRNA and protein levels are upregulated in
HCC tissues, and NSUNS5 overexpression promotes HCC cell
proliferation and migration. Bioinformatics analysis indicates a
positive correlation between NSUNS5 and ribosomal and
translation-related genes in HCC (103). However, research on
whether NSUN5 acts as a methyltransferase affecting RNA m5C
levels in liver cancer remains unexplored. ALYREF is highly
expressed in HCC cell lines, and its loss inhibits HCC cell
proliferation. Gene knockout studies reveal that genes with
differential methylation following ALYREF knockout bind to
ALYREF protein, with their biological functions enriched in cell
cycle and HCC pathways, suggesting that ALYREF may regulate
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HCC development through influencing target gene methylation
levels (104). A recent significant study found that NSUN2 is
significantly upregulated in hepatocellular carcinoma (HCC), and
its high expression is closely associated with poor prognosis in HCC
patients (105). Functional studies showed that knockdown of
NSUN?2 significantly inhibited the proliferation, colony formation,
migration, and invasion of HCC cells. Further molecular
mechanism analysis revealed that NSUN2 mediates m5C RNA
modification of the SARS2 gene, which in turn activates the Wnt
signaling pathway, promoting liver cancer progression (105). These
findings provide new insights into the role of NSUN2 in HCC and
highlight its potential as a therapeutic target.

6.3.6 Pancreatic cancer

Pancreatic cancer is highly malignant, with an incidence rate
nearly equal to its mortality rate and a poor prognosis. NSUN2 plays
an enzymatic role in mediating m5C methylation enrichment in RNA
within pancreatic cancer cells. Knockdown of NSUN2 in pancreatic
cancer cells significantly downregulates m5C methylation levels (106,
107). In pancreatic cancer mouse models, NSUN2 expression is
upregulated in cancer cells, and its knockdown slows the growth of
pancreatic cancer spheroids. In contrast to normal pancreatic tissues,
the protein level of NSUNG6 is reduced in pancreatic cancer tissues
(108). Overexpression of NSUNG6 in pancreatic cancer cells inhibits
cell proliferation, and low NSUNG6 expression is associated with poor
patient survival, indicating its potential as an independent prognostic
factor for predicting recurrence and survival in pancreatic cancer (24).
Contrary to findings in other cancers where m5C methyltransferases
are often overexpressed, the reduced expression of NSUNG6 in
pancreatic cancer suggests it may act as a protective factor, though
the role of NSUN6 in mediating RNA m5C modifications warrants
further investigation.

6.4 Hematologic tumors

6.4.1 Leukemia

In leukemia, NSUNI specifically interacts with BRD4 and
directly binds to the CTD-S2P of RNA polymerase II (RNA-pol
). In 5-azacytidine (5-AZA)-resistant leukemia cells, a unique
NSUN1/BRD4/RNA-pol II CTD-S2P complex is formed, mediating
the development of 5-AZA-resistant chromatin structures and
contributing to 5-AZA resistance in leukemia. Conversely,
NSUN3 and DNMT2 exhibit opposing effects on 5-AZA-sensitive
leukemia cells. Mechanistically, the RNA-binding protein hnRNPK
directly interacts with m5C methyltransferases NSUN3 and
DNMT?2, lineage-determining transcription factors GATAI and
SPI1/PU.1, and CDK9/PTEFb, forming a unique complex at
nascent RNA sites, which ultimately results in a 5-AZA-sensitive
chromatin structure (109). Comparative analysis of bone marrow
samples from 5-AZA-resistant and -sensitive leukemia patients
reveals significantly higher levels of m5C mRNA in the 5-AZA-
resistant samples. The expression levels of hnRNPK, NSUN1, and
BRD4 are associated with leukemia progression and contribute to 5-
AZA resistance and tumor development (109). Research reports
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indicate that YBX1 maintains the survival of myeloid leukemia cells
in an m6A-dependent manner, while having no effect on normal
hematopoiesis. YBX1 interacts with m6A readers IGF2BPs through
its conserved Cold Shock Domain (CSD) to indirectly bind m6A-
modified mRNA, thereby enhancing the stability of apoptosis-
related genes MYC and BCL2, which in turn sustains the function
of leukemia cells (39). Recent research indicates that TET2 regulates
the accumulation of 5-methylcytosine (m5C) modifications in
TSPAN13 mRNA. These m5C modifications are specifically
recognized by YBX1, which increases the stability and expression
of TSPAN13 transcripts. This process promotes leukemia
development, leukemia stem cell migration/homing, and leukemia
stem cell self-renewal (110).

6.5 Genitourinary system tumors

6.5.1 Bladder cancer

In bladder cancer, RNA bisulfite sequencing (Bis-Seq) has
identified frequent m5C methylation in cancerous tissues
compared to adjacent non-cancerous tissues. Most m5C
methylation sites are located in mRNA, with high-methylation
mRNA significantly enriched in carcinogenic pathways (111).
Further research shows that NSUN2 and YBXI are aberrantly
elevated in bladder cancer tissues. The proto-oncogene heparin-
binding growth factor (HDGF) mRNA is methylated by NSUN2,
and YBX1 stabilizes HDGF mRNA by binding to m5C methylation
sites and recruiting ELAVLI1, thereby promoting tumor
development (112). Results demonstrate that ALYREF regulates
the splicing and stabilization of hypermethylated RABL6 and TK1
mRNAs in an m5C-dependent manner to enhance the proliferation
and invasion of UCB cells (112).

6.5.2 Endometrial cancer

Epigenetic enhancement mediated by H3K4me3 levels leads to
significant upregulation of NSUN2 in endometrial cancer (EC).
Upregulation of NSUN2 promotes EC cell proliferation, while
NSUN2 knockdown significantly increases lipid peroxides and
lipid ROS levels in EC cells, thereby enhancing sensitivity to
ferroptosis. Mechanistically, NSUN2 enhances m5C modification
of SLC7A11 mRNA and directly binds to m5C sites on SLC7A11
mRNA through YBXI, leading to increased mRNA stability and
elevated SLC7A11 levels. Targeting the NSUN2/SLC7A11 axis can
inhibit in vivo and in vitro tumor growth in EC cells by promoting
lipid peroxidation and ferroptosis (113).

6.6 Breast cancer

In triple-negative breast cancer, overexpression of NSUN2
promotes cancer cell proliferation, migration, and invasion through
Myc. NSUNG6 regulates the mammalian sterile 20-like kinase 1
(MST1) target gene of Yes-associated protein 1 (YAPI), leading to
osteoclast differentiation and breast cancer bone metastasis (114). In
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breast cancer cells and tissues, hypomethylation of NSUN2 DNA
results in overexpression of NSUN2 mRNA and protein. Upregulation
of NSUN2 promotes proliferation, migration, and invasion of breast
cancer cells, while NSUN2 knockout inhibits these processes. In triple-
negative breast cancer (TNBC), upregulated NSUN2 acts as an
oncogenic factor, while downregulated NSUN6 functions as a tumor
suppressor. NSUN2 and NSUNG6 influence tumorigenesis and the
tumor immune microenvironment (TIM) in breast cancer. NSUN2/
YBX1 synergistically upregulate HGH1 mRNA stability and promote
breast cancer progression (115).

6.7 Neck squamous cell carcinoma

In head and neck squamous cell carcinoma (HNSCC), NSUN2
expression is significantly upregulated, which may be associated
with mitochondrial function and cell cycle checkpoint-related
genes. Additionally, DNA cytosine-5-methyltransferase 1
(DNMT1) is downregulated in HNSCC, potentially related to
peptide cross-linking and humoral immunity. There is a negative
correlation between NSUN2 expression and T cell activation scores
(116). Furthermore, in hypopharyngeal squamous cell carcinoma
(HPSCC), increased levels of NSUN3 enhance tumor proliferation
and invasion. In HPSCC, both NSUN2 mRNA and protein levels
are elevated. NSUN2 modifies the 3’-UTR of TEA domain
transcription factor 1 (TEAD1) mRNA through m5C, promoting
TEADI expression and thereby enhancing tumor cell proliferation
and invasion (117). TEADI coordinates and integrates multiple
signaling pathways, and its downregulation affects the expression of
various oncogenes involved in tumor cell progression, metastasis,
and resistance to chemotherapy.

7 The role of m5C in the tumor
immune microenvironment and
cancer immunotherapy

7.1 The role of m5C in the tumor immune
microenvironment

The tumor immune microenvironment (TME) is closely
associated with tumor progression and responses to
immunotherapy. Recent studies have revealed that m5C
modification regulates immune cell infiltration within tumors.
TET2 and ten-eleven translocation 3 (TET3) play crucial roles in
Treg cell immune homeostasis (118). Additionally, several m5C
regulatory proteins within TME can serve as prognostic and
diagnostic biomarkers for cancer. In lung adenocarcinoma,
patients with high m5C scores have better prognoses, and
different m5C modification patterns indicate varying immune
infiltration profiles (119). Research indicates that m5C risk scores
positively correlate with neutrophils, resting CD4+ memory T cells,
and M2 macrophages in lung squamous cell carcinoma, while
negatively correlating with follicular helper T cells, CD8+ T cells,
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and activated NK cells (120). The impact of m5C on TME is also
increasingly recognized in other cancers. Multiple studies have
demonstrated that m5C modifications are involved in regulating
TME in HNSCC (121). Knockdown of NSUN3 has been shown to
regulate M1/M2 polarization of macrophages in HNSCC,
increasing M1 macrophage infiltration and inhibiting HNSCC
growth both in vitro and in vivo. Moreover, 28S rRNA
methyltransferase NSUN5 downregulates B-catenin by promoting
CTNNBI1 mRNA degradation, thereby enhancing the phagocytic
activity of tumor-associated macrophages (TAMs). Interestingly,
NSUNS directly interacts with CTNNB1 chromatin-associated
RNA (caRNA) and deposits m5C (21). Findings reveal that the
content of resting NK cells, M2 macrophages, and neutrophils in
the low-risk group is significantly lower than in the high-
risk group. Additionally, m6A/m5C/m1A-related IncRNAs
are associated with the immune microenvironment and tumor
mutation burden in HNSCC, providing potential prognostic
markers for immunotherapy in this cancer (116).

7.2 The role of m5C in cancer
immunotherapy

Significant advancements have been made in the basic and
clinical research of m5C-related cancer immunotherapy. On one
hand, study successfully induced apoptosis and immunogenic cell
death in cancer cells by combining m5C inhibitors with immune
checkpoint inhibitors (122). These effects are associated with
endogenous antitumor immune responses and the conversion of
cold immune tumors to hot ones. On the other hand, mechanisms
of m5C methylation modification have been employed to enhance
the efficacy of mRNA-based immunotherapy. Research has shown
that m5C methylation reduces RNA antigenicity and suppresses
immune responses. Following methylation modification, the
immunogenicity of RNA diminishes or disappears, thus avoiding
activation of the innate immune system. This represents a novel
breakthrough in RNA-based immunotherapy. Accordingly, m5C/
m1C combinatorial modifications have been utilized to enhance the
ability of exogenous mRNA to evade Toll-like receptor activation
and downstream innate immune signaling, thereby improving
protein expression from mRNA. Biotechnological teams have
designed materials to deliver m5C-modified mRNA for
reprogramming tumor-associated macrophages or anticancer T
cells, thereby inducing antitumor immunity and promoting
tumor regression.

In head and neck squamous cell carcinoma (HNSCC), NSUN2
is negatively correlated with M2 macrophage polarization and T cell
activation. Consequently, NSUN2 is considered a potential target
for immune checkpoint blockade in HNSCC (123). Furthermore,
NSUN2 negatively regulates immune cell infiltration in the
nasopharyngeal carcinoma (NPC) tumor microenvironment,
suggesting that NSUN2 may be inversely related to sensitivity to
immunotherapy and chemotherapy. NSUN2 could be a significant
oncogene involved in NPC progression. Recent research indicates
that glucose, acting as a signaling molecule, directly binds to
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NSUN2 at its amino acid residues 1-28, causing NSUN2
oligomerization and activation, and sustaining m5C RNA
methylation independent of glucose metabolism (16). Glucose, as
a standalone signaling molecule, can directly bind and activate
NSUN?2, leading to tumorigenesis and immune therapy resistance
by inhibiting the cGAS/STING pathway (12). The glucose/NSUN2/
TREX2 axis drives tumorigenesis and resistance to PD-L1 immune
therapy in immune-competent syngeneic tumor mouse models by
suppressing the cGAS/STING pathway, apoptosis, and CD8+ T cell
infiltration. Notably, gene targeting of the glucose/NSUN2/TREX2
axis reduces tumorigenesis and overcomes resistance to PD-L1
immune therapy by promoting the cGAS/STING pathway,
apoptosis, and CD8+ T cell infiltration (Figure 2). This research
provides foundational evidence that targeting the glucose/NSUN2/
TREX2 axis is a promising strategy for overcoming resistance to
PD-1/PD-L1 immune therapies in cold tumors, offering a basis for
converting prostate cancer and other cold tumors into hot tumors
that respond to PD-1/PD-L1 immune therapy (16).

Luo et al. discovered that NSUN2 enhances the expression of
ICAM-1 by upregulating m5C methylation in ICAM-1 mRNA,
which improves the adhesion between leukocytes and endothelial
cells, and inhibits M2 macrophage polarization and suppresses
tumor metastasis (124) (Figure 2). Additionally, the absence of
donor NSUN2 impedes the development of atherosclerosis in a rat
model of allogeneic aortic transplantation, suggesting that the
NSUN2-ICAM-1 regulatory axis is involved in endothelial cell
inflammation. Beyond ICAM-1 mRNA, NSUN2 can also catalyze
the methylation of other mRNAs and non-coding RNAs. Therefore,
further research is needed to elucidate the mechanisms by which
NSUN2 regulates vascular inflammation and the development of
atherosclerosis (124) (Figure 2). Studies indicate that chemotherapy
induces an immunosuppressive microenvironment within tumors
and promotes immune evasion through YBXI1-mediated
upregulation of PD-L1 (programmed death-ligand 1) (125).
Knocking out YBX1 reverses chemotherapy resistance by blocking
PD-L1 expression and activating T cells in the tumor
microenvironment. The upregulation of functional cytotoxic CD8
+ T cells, and the downregulation of myeloid-derived suppressor
cells and regulatory T cells, are associated with overcoming tumor
immunosuppressive environments and immune evasion (126).
Additionally, YBX1 knockout can reverse hepatocellular
carcinoma (HCC) resistance by blocking PD-L1 expression and
activating T cells in the tumor microenvironment (127). CDKLLI is
highly expressed in lung cancer and promotes the growth and
proliferation of lung cancer cells, while also enhancing their
radiosensitivity. Further studies have discovered that CDKLI
interacts with YBXI1, thereby inhibiting YBX1-mediated
transcription of the PD-L1 gene and suppressing PD-L1
expression. This ultimately leads to the activation of CD8+ T cells
and the inhibition of lung cancer immune evasion. Increased
expression of CDKLI, combined with radiotherapy and anti-PD-
L1 antibody therapy, can significantly improve the therapeutic
outcomes for lung cancer (128) (Figure 2).

The development of m5C regulatory protein and IncRNA-
related risk models also provides new insights for cancer
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The role and mechanisms of RNA m5C modification in the regulation of the tumor microenvironment. NUSUN2 mediates m5C modifications of
various downstream target genes, recruits the YBX1 reader protein, and subsequently regulates the RNA stability of these target genes, upregulating
their expression. This plays a key role in tumor immune microenvironment remodeling, including M2 macrophage polarization, the formation of an

immunosuppressive microenvironment, and CD8+ cell activation.

treatment and efficacy prediction, enabling more accurate and
personalized immunotherapy regimens. The m5C risk score
serves as an independent prognostic factor for colon cancer
patients, with lower scores indicating greater sensitivity to
immunotherapy and higher scores indicating greater sensitivity to
chemotherapy (129). This score can predict colon cancer prognosis,
immunotherapy response, and drug sensitivity. These
immunotherapy prediction methods are also applicable to other
cancers. In triple-negative breast cancer (TNBC), changes in the
expression of m5C RNA methylation regulators, with upregulation
of NSUN2 and downregulation of NSUNGS, can significantly predict
clinical prognosis risk in TNBC patients. Therefore, it may serve as
a new prognostic marker for TNBC and provide insights into RNA
epigenetic modifications in TNBC (130). Related studies have also
confirmed that NSUN3 and NSUN4 can predict the prognosis of
lung squamous cell carcinoma and regulate the immune
microenvironment. In lung adenocarcinoma patients, different
mb5C patterns correlate with variations in TME immune cell
infiltration, with high m5C scores associated with better
prognosis. Additionally, m5C-regulated IncRNAs can predict
overall survival in lung adenocarcinoma patients and impact the

tumor immune microenvironment (131). In pancreatic cancer
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patients, three m5C-related IncRNAs show prognostic value. The
TIDE (Tumor Immune Dysfunction and Exclusion) algorithm
indicates that patients with high m5C-IncRNA scores respond
better to immunotherapy. In another study on pancreatic ductal
adenocarcinoma (PDAC) (107), researchers evaluated the
relationship between m5C-related IncRNAs and PDAC-
infiltrating immune cells. Naive B cells, CD8+ T cells, Treg cells,
and resting NK cells were more highly expressed in the low-risk
group, while MO and M2 macrophage phenotypes were more highly
expressed in the high-risk group, suggesting that m5C-related
IncRNAs may regulate pancreatic cancer progression by
promoting M2 macrophage polarization or infiltration in
PDAC (107).

8 Summary and future directions

Current research has provided preliminary insights into the
distribution characteristics of m5C methylation across various
RNAs and the biological functions of m5C modifications. Future
research efforts should primarily focus on elucidating the roles of
specific m5C methylation sites, discovering new recognition
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proteins, and understanding the precise roles of m5C modifications
in diseases such as cancer. Significant progress has already been
made in elucidating the protein crystal structures of certain m5C
methylation enzymes and recognition proteins, as well as their
RNA-binding domains. The development of inhibitors targeting
m5C methylation-related enzymes has become a focal point of
research. Furthermore, several studies have suggested that m5C-
related modification enzymes could serve as diagnostic biomarkers
for cancer. However, the use of specific m5C modification sites as
cancer biomarkers still requires further investigation. Overall, the
regulatory role of m5C methylation in tumorigenesis is gradually
being uncovered, offering new perspectives for cancer diagnosis and
personalized treatment.

Notably, RNA m5C methylation modifications have shown
significant potential in cancer immunotherapy. Research indicates
that modulating m5C methylation levels can enhance antitumor
immune responses and improve the efficacy of immune checkpoint
inhibitors. For instance, inhibiting the function of m5C-related
proteins such as NSUN2 or ALYREF can restore T cell antitumor
activity and enhance the effects of immunotherapy (16, 36).
Therefore, in-depth studies on the mechanisms of RNA m5C
methylation modifications and their applications in cancer
immunotherapy are of substantial clinical significance. In
summary, the functions and mechanisms of RNA m5C
methylation modifications in neurodevelopment, autoimmune
diseases, and cancer progression hold significant research value
and application potential. Future research aiming to further
elucidate the mechanisms of m5C modifications and their
regulatory pathways is expected to reveal additional biological
processes and advance their application in disease diagnosis
and treatment.

To improve and develop techniques for detecting m5C (5-
methylcytosine) modifications in RNA, various innovative
sequencing technologies have been explored, such as Nanopore-
seq and single-molecule real-time (SMART) sequencing (132, 133).
These technologies aim to overcome limitations of traditional
methods, offering advantages in terms of sensitivity, real-time
analysis, and the ability to detect modifications at single-molecule
resolution. Nanopore sequencing is an emerging technology that
can directly sequence nucleic acids by passing them through a
protein nanopore, which detects changes in the ionic current as the
nucleotides translocate through the pore. However, challenges still
exist in the high error rates associated with Nanopore sequencing,
particularly for short sequences, and distinguishing between m5C
and other modifications or sequence-context effects can be difficult.
Efforts to improve base-calling algorithms and modify the
sequencing technology to improve its accuracy are ongoing.
SMART sequencing, pioneered by Pacific Biosciences (PacBio), is
another promising technique for detecting RNA modifications like
m5C (133). SMART sequencing relies on real-time observation of
the DNA polymerase activity during the sequencing process. In
summary, Nanopore-seq and SMART sequencing represent
exciting advances in the detection of RNA modifications like
m5C, offering significant advantages over traditional sequencing
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technologies. As these techniques continue to evolve, they hold the
potential to provide a more comprehensive, accurate, and real-time
understanding of RNA modification dynamics, furthering our
understanding of RNA biology and its implications in health
and disease.

The application of Nanopore-seq and single-molecule real-time
(SMART) sequencing in detecting m5C modifications holds
significant promise for advancing our understanding of RNA
epigenetics. These cutting-edge technologies offer unprecedented
sensitivity and resolution for identifying m5C modifications at a
single-base level, enabling researchers to explore m5C’s dynamic
role in gene regulation and disease processes. Future research
should focus on optimizing these sequencing techniques for high-
throughput, cost-effective detection of m5C across different cell
types and tissues, particularly in the context of cancer and other
diseases. Additionally, integrating Nanopore-seq and SMART with
other omics technologies, such as transcriptomics and proteomics,
could provide a comprehensive view of how m5C modifications
interact with other epigenetic marks to regulate cellular functions.
This integrated approach could pave the way for discovering novel
biomarkers and therapeutic targets, ultimately improving our
ability to diagnose and treat diseases driven by aberrant
m5C regulation.

The targeting of m5C modification in the tumor immune
microenvironment presents a promising avenue for future cancer
research. As recent studies have shown, m5C modifications play a
critical role in regulating gene expression and immune responses
within tumors, potentially influencing tumor progression and
immune evasion. Understanding the mechanisms by which m5C
modification regulates immune cells, such as T cells, macrophages,
and dendritic cells, could open up new strategies for enhancing anti-
tumor immunity. Future research should focus on identifying
specific m5C-modifying enzymes, exploring their interactions
with immune checkpoints, and investigating how m5C
modification can be harnessed to modulate the immune
microenvironment. Additionally, combining m5C-based therapies
with immune checkpoint inhibitors may offer synergistic effects,
improving therapeutic outcomes. This emerging field holds great
potential for developing novel cancer immunotherapies, offering
hope for more effective and personalized treatments.
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Introduction: Immune checkpoint blockade (ICB) therapy has shown promise in
treating advanced colorectal cancer, particularly in patients with microsatellite
instability-high (MSI-H) tumors. However, only a subset of these patients responds
favorably, highlighting the need for strategies to improve immunotherapy efficacy.

Methods: To identify potential regulators of immunotherapy response, we
conducted a comprehensive analysis of colorectal cancer datasets from The
Cancer Genome Atlas (TCGA). We performed multi-omics analyses and
functional assays in both human and murine colorectal cancer cell lines.
Additionally, we evaluated tumor growth and immune cell infiltration using
syngeneic mouse models.

Results: Our analysis revealed that RNA binding motif protein 15 (RBM15) is highly
expressed in colorectal cancer and correlates with poor patient prognosis.
Functional studies demonstrated that RBM15 loss led to increased expression
of fumarate hydratase (FH). This led to decreased levels of fumarate, a metabolite
known to suppress anti-tumor immune responses. In vivo, RBM15 depletion
significantly delayed tumor progression and enhanced CD8* T cell infiltration and
activation in the tumor microenvironment.

Discussion: These findings identify RBM15 as a negative regulator of anti-tumor
immunity in colorectal cancer. Targeting RBM15 may represent a novel strategy
to boost immune responsiveness and improve outcomes for patients
undergoing immunotherapy.
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Introduction

Colorectal cancer (CRC) poses a significant clinical challenge
worldwide, with a 5-year survival rate of less than 13% for patients
with advanced diseases (1, 2). While immunotherapies open up
therapeutic opportunities to advanced CRC, their effectiveness
remains limited (3). Only 10-15% patients with microsatellite
instability-high (MSI-H) tumors respond to immune checkpoint
inhibitors (ICIs) such as anti-PD-1 antibodies (4). Moreover,
clinical responses to immunotherapies are generally incomplete
and not durable, due in part to high tumor heterogeneity and an
immunosuppressive tumor microenvironment (3, 5). Therefore,
there is an urgent need to identify novel therapeutic strategies to
sensitize immunotherapy.

In recent years, the role of RBM15 in various cancers has
attracted significant attention. Studies have shown that inhibition
of RBM15 can promote macrophage infiltration and enhance its
phagocytic activity toward pancreatic cancer cells. Moreover,
RBMI15 collaborates with methyltransferase 3 (METTL3) to
upregulate N6-methyladenosine (m°®A) modification of long non-
coding RNAs, facilitating bladder cancer initiation and
progression2. Additionally, RBM15 regulates m°A methylation to
upregulate integrin subunit beta like 1 (ITGBL1) expression,
promoting the progression of colorectal adenocarcinoma. RBM15
also modulates procollagen-lysine,2-oxoglutarate 5-dioxygenase 3
(PLOD3), enhancing tumor-infiltrating CD4+ T cell abundance in
esophageal squamous cell carcinoma (ESCC), correlating with
favorable prognosis in ESCC4. Furthermore, RBM15 may
promote malignant progression and immune escape in breast
cancer cells by regulating the stability of karyopherin subunit
alpha 2 (KPNA2) mRNA5.

N6—Methyladen0sine (m®A) is the most abundant and
conserved modification of eukaryotic mRNAs, and its role in
tumor immunomodulation has become a focus of extensive
research (6, 7). For example, the mCA reader protein YTHDF1
drives immune evasion and resistance to immunotherapies by
promoting the degradation of major histocompatibility complex
class I (MHC-I) (8). RNA binding motif protein 15 (RBM15) is a
crucial regulator of mP®A modification (9). RBM15 interacts with the
m®A writer complex and positively regulates m°A levels, influencing
on alternative splicing and mRNA stability (10). While ample
evidence supports the role of RBM15 in oncogenesis, these
studies primarily focus on alterations in cancer cells within
immunocompromised environments (11-13). Little is known
about whether or how RBMI15 regulates tumor immune
surveillance in cancers.

Accumulating studies indicates that metabolic rewiring in
malignant cells impairs both innate and adaptive immune
functions, thus promoting tumor progression (14). Cancer cell-
intrinsic and cancer cell-extrinsic mechanisms both play crucial
roles in tumor immune evasion and responses. For example, cancer
cells compete with CD8+ cytotoxic T lymphocytes (CTLs) for
glucose uptake to meet their increased proliferative demands,
which compromises CTL function (15). In addition, the
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degradation of extracellular ATP by the ectonucleotidases CD39
and CD73 generates adenosine, which induces an
immunosuppressive tumor microenvironment by reducing
dendritic cell (DC) recruitment (16). However, whether RBM15
plays a role in metabolic reprogramming that could affect anti-
tumor immunomodulation remains poorly understood.

In this study, we reveal a cancer cell-intrinsic function of
RBMI5 in driving immune evasion in colorectal cancer. We
found that RBM15 is overexpressed in colorectal cancer and is
associated with poor prognosis. RBM15 deficiency restrains tumor
growth by enhancing immune cell infiltration. Mechanistically,
RBMI5 depletion increases the expression of fumarate hydratase
(FH), which in turn decreases the level of fumarate, a known
suppressor of anti-tumor immunity. Overall, our study identifies
RBM15 as a potent suppressor of anti-tumor immunity and
highlights RBM15 as a promising therapeutic target for restoring
immune surveillance in colorectal cancer.

Results

RBM15 overexpression correlates with
reduced immune cell infiltration in
colorectal cancer

To unravel the role of m°A modification in tumor
immunomodulation of colorectal cancer, we analyzed immune
scores based on the expression level of 141 genes reflecting
immune signatures using the ESTIMATE platform (17). We
selected a total of 19 m°A regulators, including writers, readers,
and erasers, to access the correlation between their expression levels
and immune scores (Figure la). In the Cancer Genome Atlas
(TCGA)-Colon adenocarcinoma (COAD) dataset, RBM15 RNA
showed the second strongest inverse correlation with immune cell
infiltration levels (Figures 1b, ¢). The immunomodulatory role of
the top-ranked gene, YTHDCI, has been extensively investigated in
other cancer types (18). Consistently, RBM15 expression was
negatively correlated with tumor purity, suggesting RBM15 may
suppress the recruitment of immune cells (Figures 1b, d).

We further explored whether RBM15 plays a role in
immunomodulation in other digestive system cancers. Strikingly,
RBM15 RNA did not show a negative correlation with immune cell
infiltration in liver hepatocellular carcinoma (LIHC), pancreatic
adenocarcinoma (PAAD), or stomach adenocarcinoma (STAD)
(Supplementary Figures S1A-F). Moreover, RBM15 expression
was not correlated with tumor purity in LIHC or PAAD, but was
negatively correlated with that in STAD (Supplementary Figures
S1G-I). These findings indicate a colon tissue-specific oncogenic
role of RBM15. Furthermore, RBM15 expression was significantly
higher in colorectal cancer compared to adjacent normal
tissues (Figure 1E).

Microsatellite instability (MSI) is a key predictor of responses to
immunotherapy, in part because high MSI (MSI-H) tumors present
foreign surface markers that are more easily recognized by immune
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RBM15 overexpression is negatively correlated with immune cell infiltration in colorectal cancer. (a) A conceptual diagram illustrating the strategy to
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the correlation between mCA regulators and tumor purity, as well as immune cell infiltration in the Cancer Genome Atlas (TCGA)-Colon
adenocarcinoma (COAD) dataset. (c, d) Scatter plot showing a negative correlation between RBM15 expression and the Immune Score (c) as well as
tumor purity (d). (e) Box plot representing RBM15 expression levels in adjacent normal and tumor colon tissues. (f) Comparison of MSI MANTIS
Scores between mutant RBM15 (Mutated) and Wild-Type (WT) colorectal cancer, showing a significant difference between the two groups. (g)
Kaplan-Meier survival curves displays the survival probability over time (months) for two groups of patients: high RBM15 expression (red curve) and
low RBM15 expression (black curve). The number of patients at risk at various time points is indicated below the plot. High RBM15 expression is
associated with worse survival outcomes compared to low RBM15 expression. (h) Kaplan-Meier survival analysis of overall survival (OS) for advanced
colorectal cancer patients treated with Bevacizumab, stratified by RBM15 expression into low (blue) and high (red) groups. The number of patients at

risk at various time points is indicated below the plot.
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cells (19). Indeed, colorectal cancer patients with MSI-H status tend
to have better outcomes and often achieve a strong response to ICIs
(5). We found that mutant RBM15 significantly linked to higher
MSI MANTIS scores in colorectal cancer, supporting the role of
RBM15 in regulating tumor immunomodulation (Figure 1f).
Furthermore, high expression of RBM15 was associated with poor
prognosis in colorectal cancer patients (Figure 1g). Notably, this
association was more pronounced in advanced colorectal cancer
patients receiving Bevacizumab treatment (Figure 1h). Overall,
these findings suggest that RBM15 overexpression is negatively
correlated with immune cell infiltration in colorectal cancer,
presenting an immunosuppressive function of RBMI15 in
colorectal tumor microenvironment.

RBM15 deficiency induces metabolic
alterations in colorectal cancer

Recent studies have highlighted the cancer cell-intrinsic
mechanisms involved in modulating tumor immunity (20, 21).
To reveal the tumor-intrinsic functional role of RBM15 in
colorectal cancer, we initially utilized the CRISPR/Cas9 gene
editing system to knock out (KO) RBMI15 in the human
colorectal cancer cell line HCT15. We designed two sgRNA
fragments targeting the RBMI5 gene to minimize potential off-
target effects. Western blotting analysis showed that RBM15 protein
was significantly depleted (Figure 2a). Consistent with previous
findings, we observed a marked reduction in m®A modification in
the mRNA of RBM15 KO cells, further suggesting the sufficient KO
efficiency and a shared functional consequence by the two distinct
sgRNAs (Figure 2b).

To unravel the gene expression alterations induced by RBM15,
we performed bulk RNA sequencing (RNA-seq) in RBM15 KO and
wild-type (WT) colorectal cancer HCT15 cells. RBM15 KO
significantly reduced alternative splicing events at both the 5" and
3" end of RNAs (Figures 2c, d). This was consistent with the
previous finding that m®A modification regulates the alternative
splicing of precursor RNAs (22, 23). Further analysis of differential
gene expression revealed that a total of 994 genes were significantly
altered (Figure 2e). Strikingly, genes associated with metabolic
pathways were among the top differentially expressed genes,
including the fucosyltransferase 1 (FUT1), the phosphoglycerate
dehydrogenase (PHGDH), and the cystine transporter solute carrier
family 7 member 11 (SLC7AI11) (Figure 2f). Indeed, gene set
enrichment analysis (GSEA) confirmed the enrichment of
multiple pathways associated with metabolism (Figure 2g).

We further performed cell mitochondrial test to establish the
mitochondrial function of the human and murine cells with and
without RMB15. RBM15 knockout significantly decreased the
maximal mitochondrial respiration in both human and murine
colorectal cancer cells (Supplementary Figure S2). These findings
suggest that RBM15 may regulate mitochondrial metabolism to
affect cellular energy supply. In addition, RBM15 knockdown
caused a slight reduction of cell proliferation in either human or
murine colorectal cancer cells (Supplementary Figure S3).
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RBM15 depletion alters carbon metabolism
and upregulates the expression of
fumarate hydratase

To identify the fundamental metabolic pathways interfered by
RBM15, we tracked the altered metabolites by RBM15 knockdown
using untargeted high-resolution metabolic profiling. Orthogonal
Partial Least Squares-Discriminant Analysis (OPLS-DA) revealed
good reproducibility and discrimination for RBM15 knockdown
and WT cells (Supplementary Figures S4A, B) (24). Through
combining differential metabolites from both positive and
negative ion modes, we identified a total of 860 significantly
altered metabolites by RBM15 knockdown. We then categorized
these altered metabolites based on their chemical taxonomy and
showed that organic acids, lipids, and organ heterocyclic
compounds accounted for the majority of the differentially
expressed metabolites (Supplementary Figures S4C, S5A-B).

We next sought to determine the enriched differential metabolic
pathway affected by RBM15 knockdown. Differential abundance
analysis showed that carbon metabolism presented as one of the top
downregulated metabolic pathways among all the enriched
pathways matched from Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Figure 3a). We further examined the specific
dysregulated metabolites associated with carbon metabolism by
RBM15 knockdown. Metabolites including fumarate, glutamic
acid, malic acid, alanine, citrate, and isocitric acid were
significantly downregulated (Figure 3b). Accordingly, the
expression levels of metabolic enzymes involved in carbon
metabolism were altered due to RBM15 knockout, indicating a
systematic reprogramming of cellular carbon metabolism caused by
RBM15 depletion (Figure 3c). Furthermore, we confirmed by
quantitative reverse transcriptase polymerase chain reaction
(qQRT-PCR) that the expression of key catalytic enzymes involved
in carbon metabolism was significantly changed (Figures 3d-f).

Fumarate is produced through the carbon metabolism, and its
accumulation in tumor interstitial fluid has been shown to suppress
CD8+ T cell activation and anti-tumor immune responses (20).
Conversely, fumarate depletion by increasing the expression of
fumarate hydratase (FH) in tumor cells dramatically enhances the
anti-tumor cytotoxicity of chimeric antigen receptor (CAR) T cells
(20). Strikingly, we found that FH expression was significantly
upregulated in human and murine colorectal cancer cells by
RBM15 KO, which in turn led to a reduction in fumarate levels
(Figures 3b, ¢, f, Supplementary Figures S6A-C). Collectively, these
findings suggest that RBM15 depletion significantly affects carbon
metabolism and upregulates the expression level of FH, which in
turn downregulates fumarate in colorectal cancer.

RBM15 deficiency delays tumor growth
through enhanced immune infiltration

Given that RBM15 depletion reduces fumarate levels, which

could potentially enhance CD8+ T cell activation and increase anti-
tumor immune responses, we next determine whether RBM15
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FIGURE 2

RBM15 deficiency induces metabolic alterations in colorectal cancer. (a) Western blot analysis showing RBM15 protein levels in the human colorectal
cancer cell line HCT15 treated with control sgRNA (sgCtrl) and two different sgRNAs targeting RBM15 (sgRBM15-1 and sgRBM15-2). (b) Dot blot
analysis showing m®A RNA methylation levels in HCT15 treated with control sgRNA (sgCtrl) and sgRNAs targeting RBM15 (sgRBM15-1 and sgRBM15-
2). The methylene blue staining ensures equal loading across the samples. (c, d) Quantification of alternative splicing (AS) events at the 5" and 3'
splice sites in control (sgCtrl) and RBM15 knockout (sgRBM15) of HCT15 cells. (e) Volcano plot illustrating differential gene expression between
RBM15 KO (sgRBM15) and control (sgCtrl) HCT15 cells. Upregulated genes are marked in red (215 genes), while downregulated genes are marked in
blue (779 genes). Non-significant genes are shown in black. (f) Heatmap representing top genes with differential expression between RBM15 KO
(sgRBM15) and control (sgCtrl) HCT15 cells. The expression levels of selected genes (listed on the right) are shown as log-transformed Fragments
Per Kilobase of transcript per Million mapped reads (FPKM) values. (g) Pathway enrichment analysis of differentially expressed genes, comparing the
RBM15 KO (sgRBM15) and control (sgCtrl) group. .

deficiency could inhibit tumorigenesis via enhanced immune  mice were subcutaneously injected with either Rbm15-KO cells or
surveillance. We utilized the CRISPR/Cas9 gene editing system to ~ W'T cells. Notably, Rbm15 knockout significantly prohibited
deplete RbmlI5 gene in a synergetic mouse cell line MC38  tumorigenesis in immunocompetent mice, as evidenced by
(Supplementary Figure S7A). Then, immunocompetent C57BL/6]  reductions in both tumor volume and weight, with no changes
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detected in body weights (Figures 4a, b, Supplementary Figures
S7B-C). In contrast, there were limited differences in tumor weight
between Rbm15-KO cells and WT cells in immunodeficient nude
mice, suggesting that the reduced tumor growth caused by Rbm15
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mainly attributed to the induction of anti-tumor
(Figures 4c, Supplementary Figure S8A).

To investigate the alterations in the tumor immune
microenvironment induced by RBM15, we performed multicolor
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RBM15 deficiency delays tumor growth through enhanced immune infiltration. (@) Schematic illustration of subcutaneous injection of mouse
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flow cytometry analysis along with multiplex immunofluorescence
(mIHC) to assess immune cell infiltration in mouse tumors
(Supplementary Figures S9, S10). The results showed that Rbm15
knockout did not significantly alter the proportion of M2
macrophages (F4/80+/CD206+), Treg cells (FOXP3+/CD4+), or
IFNYy production (Figures 4d, e, Supplementary Figures SI1A-B,
S12A-C). However, there were a significant increased proportion of
CD8" T cells, DCs (CD11C+), and TNF-0." production (Figures 4f,
Supplementary Figures S11E-F, S12D, S13). Consistently, the
infiltration levels of CD8+ T cells and DCs were markedly higher
in human colorectal cancer tumors with genetic alterations leading
to deep depletion of RBM15 (Figure 4g). Furthermore, analysis of
publicly available single-cell RNA datasets further demonstrated
that there was a negative correlation between RBM15 expression
and the CD8 T cell infiltration in tumors of colorectal cancer
patients (Supplementary Figure S14). In addition, Rbm15
knockout significantly exhibited enhanced FH expression in
MC38-derived xenograft tumors, demonstrating that RBM15 may
regulate anti-tumor immune responses via FH modulation
(Supplementary Figure S15). Overall, these findings suggest that
RBM15 deficiency prohibits tumorigenesis, potentially through
increased CD8+ T cell infiltration and activation.

Discussion

Here we identify a cancer cell-intrinsic mechanism by which
RBM15 suppresses the tumor immune response in colorectal
cancer. Specifically, RBM15 deficiency significantly delayed
colorectal tumor growth by enhancing immune cell infiltration,
potentially due to reduced fumarate levels within the tumor
microenvironment. This decrease in fumarate was linked to
increased expression of fumarate hydratase (FH) induced by
RBM15 depletion. Previous studies have highlighted the
oncogenic role of RBM15 in various cancer types, such as breast
and cervical cancer (12, 13). However, they did not address tumor
immunity by focusing on immunocompromised environments.
Our findings thus are significant because they connect the tumor-
intrinsic functional role of RBMI15 to the anti-tumor immune
responses. Furthermore, we demonstrate that the increased
infiltration of immune cells, such as CD8+ T cells, neutrophils,
and dendritic cells, contributed to the enhanced anti-tumor
immune responses. Nevertheless, whether CD8+ T cell infiltration
is the dominant contributor to this response or whether it is part of
a collective infiltration effect requires further investigation.

Tumor cells undergo metabolic rewiring to evade immune
surveillance (25-27). Inhibitors targeting the cancer cell-intrinsic
metabolic dysregulation have been shown to restore
immunosurveillance, with several currently under development in
clinical trials (21). However, increasing intrinsic fumarate levels
through FH inhibition suppresses CD8+ T cell anti-tumor
functions, making FH inhibitors unsuitable for exploring anti-
tumor efficacy (20). Our study identifies RBM15 as an upstream
regulator of FH, as RBM15 deficiency significantly increases FH
expression while decreasing associated fumarate levels. Therefore,
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our findings suggest that RBM15 is a promising therapeutic target
for enhancing anti-tumor immune responses through metabolic
reprogramming. Currently, no specific inhibitors for RBM15 have
been identified. However, with the recent elucidation of the crystal
structure for human RBM15, it offers great potential to design,
screen, or optimize inhibitors for future translational
applications (10).

Accumulating evidences have bridged RNA modification,
particularly m®A modification, to anti-tumor immunity (28-31).
RBMI15 is a key component of the m°A writer complex that
specifically interacts with WTAP and VIRMA, both of which
positively regulate m°A levels (10). Alteration in m°A levels of
mRNAs broadly influence post-transcriptional regulation, such as
mRNA stability and degradation (32). Beyond this, RBM15
contains phosphoserine binding modules that recognizes the C-
terminal domain (CTD) of RNA polymerase II (Pol II), thereby
synergizing with the m®A methyltransferase complex to mediate co-
transcription (10). In our study, we revealed that RBM15 negatively
regulated the expression of FH. However, further exploration is
needed to determine whether this regulation occurs at the
transcriptional level or through post-transcriptional mechanisms.
Nevertheless, the connection between RBM15 and FH adds another
layer to the understanding of anti-tumor immune responses, by
which the m°®A writer component suppresses the anti-tumor
immunity through regulating key enzymes in carbon metabolism,
leading to the release of immunosuppressive metabolites.

In summary, this study identifies a cancer cell-intrinsic
mechanism by which RBM15 acts as a suppressor of anti-tumor
immune responses through metabolic rewiring. This study also
provides a compelling rationale for establishing RBM15 as a
promising therapeutic target for colorectal cancer.

Materials and methods
Cell culture and reagents

The human colorectal cancer cell line HCT15 (Fuheng Bio,
FH0026) and the mouse colorectal cancer cell line MC38
(LYNJUNE, LYN-0573) were cultured in RPMI-1640 medium
(KGL1505-500) supplemented with 1% penicillin/streptomycin and
10% FBS (Gibco, A5669402) at 37°C in a 5% CO2 atmosphere. All cell
lines were authenticated using short tandem repeat DNA profiling.
Mycoplasma detection was performed monthly using a one-step
mycoplasma detection kit (Vazyme, D201-01). CRISPR plasmids
for inducing RBM15 knockout were purchased from Tsingke and
utilized the pLentiCRISPR V2-puro backbone (Addgene #98290) with
specific sgRNAs as insert fragments. The following sgRNAs were
designed: human sgRBM15-1 (CCAGCTTAGTGACGAAGCGG),
human sgRBM15-2 (GTGAAGGCCAAACGCTCCCG), and mouse
sgRBM15-1 (GCGGCGCCGGCTCACGTACA). Additionally,
lentiviral plasmids for RBM15 genetic knockdown were designed
as follows with pLKO-puro as vector: human shRBM15-1
(GACGCCTTAGAGTAGACTTTG) and human shRBM15-2
(ATTACCTGGTCATGATCATTG).
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Lentivirus infection and selection

Lentiviral particles were produced for CRISPR knockout and
genetic knockdown. Briefly, HEK293T cells (Fuheng, FH0244) were
co-transfected with lentiviral plasmids and packaging plasmids
pMD2.G and psPAX2 (Addgene #12260 and Addgene #12259)
using the cationic polymer polyethylenimine (PEI, MW25000) at a
ratio of 1:3. After 48 to 72 hours of transfection, the lentiviral
particles were harvested from the culture supernatant by filtering
through a 0.45 um filter (Sangon, F513144). The harvested
lentivirus was aliquoted and stored at —80°C until further use.
HCT15 and MC38 colorectal cancer cells were infected with the
lentivirus in the presence of 8 jig/ml polybrene (Biosharp, BL628A).
Following transduction, 2 pg/ml puromycin (Meilun, MA0318) was
used for 48 to 72 hours to select for knockout or knockdown
cell lines.

Western blot

Total protein was extracted from the indicated samples using RIPA
buffer (50 mmol/L Tris-HCI (pH 8.0), 150 mmol/L NaCl, 1% Triton X-
100, 0.5% sodium deoxycholate, 0.1% SDS, and 1 mmol/L
phenylmethylsulfonyl fluoride) on ice for 20 minutes. The total
protein concentration was measured using the BCA Protein
Quantification Kit (Beyotime, P0012). Equal amounts of protein
lysates were mixed with 1x loading buffer and heated at 95°C for 10
minutes. The samples were then loaded onto precast gels (GenScript,
MO00944) for electrophoresis. Following electrophoresis, proteins were
transferred to a PVDF membrane (Millipore, ISEQ00010). The
membrane was blocked with 5% bovine serum albumin (BSA) in
Tris-buffered saline containing 0.1% Tween 20 (TBST) for 1 hour at
room temperature, followed by overnight incubation at 4°C with the
following primary antibodies: m°A mAb (Proteintech, 68055-1-Ig,
1:1000), RBM15 polyclonal antibody (Proteintech, 10587-1-Ab,
1:1000), and B-actin mAb (STARTER, SOB0005-100ug, 1:2000).
After washing with TBST buffer, the membrane was incubated with
horseradish peroxidase (HRP)-coupled secondary antibodies (CST,
anti-rabbit #7074 and anti-mouse #7076, 1:3000) for 1 hour at room
temperature. After washing three times with TBST buffer for 8 minutes
each, protein bands were visualized using enhanced
chemiluminescence (ECL) detection reagents (Millipore,
WBKLS0500), and signals were detected using an Automatic
ChemiDoc Imaging System (Tanon 5200).

Quantitative real-time polymerase chain
reaction

Total RNA was isolated from the samples using the FastPure
Cell/Tissue Total RNA Isolation Kit (Vazyme, RC112-01) according
to the manufacturer’s protocol. RNA concentration and purity were
assessed using a NanoDrop One spectrophotometer (Thermo
Fisher Scientific). Complementary DNA (cDNA) was synthesized
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from 1 ug of total RNA using HiScript IT Q RT SuperMix for gPCR
(Vazyme, R223-01). Quantitative PCR (qPCR) was performed
using Taq Pro Universal SYBR qPCR Master Mix (Vazyme,
Q712) on an QuantStudio Real-Time PCR machine with specific
primers. The cycling conditions included an initial denaturation at
95°C for 5 minutes, followed by 40 cycles of denaturation at 95°C
for 10 seconds and annealing at 60°C for 40 seconds. The specificity
of the PCR products was confirmed by melting curve analysis. The
relative transcriptional expression of target genes was normalized to
the geometric mean of reference gene (B2M) and were evaluated by
the comparative Ct (AACt) method. Fold changes were calculated
using the 2"**“" method. The following primers were used: human
RBM15 For (ACGACCCGCAACAATGAAG), human RBM15 Rev
(GGAAGTCGAGTCCTCACCAC), human B2M For (GAGG
CTATCCAGCGTACTCCA), human B2M Rev (CGGCAGGCAT
ACTCATCTTTT), human SHMT1 For (CTGGCACAACCCCT
CAAAGA), human SHMT1 Rev (AGGCAATCAGCTCCAATC
CAA), human SHMT2 For (CCCTTCTGCAACCTCACGACQ),
human SHMT2 Rev (TGAGCTTATAGGGCATAGACTCG),
human FH For (GGAGGTGTGACAGAACGCAT), human FH
Rev (CATCTGCTGCCTTCATTATTGC).

Dot blot

Total RNA from the indicated samples was extracted using the
FastPure Cell/Tissue Total RNA Isolation Kit (Vazyme, RC112-01).
A final concentration of 1 pg/ul RNA was dotted onto a
nitrocellulose (NC) membrane (SIMUWU, SD0045). The
membrane was air-dried for 10 minutes and subsequently blocked
with a 1% BSA (in PBST) solution for one hour. Methylene blue
staining (0.2%, Yuanye Bio-Technology, R20768) was applied as a
loading control. The membrane was then incubated with primary
antibodies (m®A mAb, Proteintech, 68055-1-Ig, 1:1000) diluted in
1% BSA (in PBST) at room temperature for one hour. After washing
four times with PBST buffer for 5 minutes each, the membrane was
incubated with secondary antibodies (CST, #7076) diluted in 1%
BSA in PBST at room temperature for one hour. Following four
additional washes with PBST buffer for 5 minutes each, the
membrane was treated with enhanced chemiluminescence (ECL)
detection reagents (Millipore, WBKLS0500) and imaged using an
Automatic ChemiDoc Imaging System (Tanon 5200).

Cell proliferation assay

Cell proliferation was measured using the CellTiter-Lumi Cell
Viability Assay (beyotime, #C0056). Cells were seeded in 96-well
plates for 72 hours at indicated conditions. CellTiter-Lumi reagent
was added to each well based on the manufacturers’ manual and
luminescence was measured on a white microplate (beyotime,
#FCP968) using a microplate reader (PerkinElmer).
Luminescence values presented as mean + SEM. Statistical
significance was determined using Student’s t-test.
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RNA-sequencing and analysis

Total RNA from control HCT15 and RBM15-knockout HCT15
cell lines was extracted using TRIzol according to the
manufacturer’s instructions (TSP401) across three independent
groups. RNA sequencing (RNA-seq) libraries were constructed
using the VAHTS Universal V6 RNA-seq Library Prep Kit for
Ilumina (NR604-02) and subjected to a paired-end 150 bp
sequencing run on the Illumina NovaSeq 6000. Raw data were
aligned using HISAT2 v2.2.1 against the hg38 version of the human
genome, and read counts and fragments per kilobase million
(FPKM) values for each sample were calculated using StringTie
v2.0.4. The R package DESeq2 v1.26.0 was utilized to assess the
significance of differential expression between group pairs and to
calculate normalized counts. Gene expression changes were
considered significant if they met the threshold of P < 0.05.
Enrichment analysis was conducted using Gene Set Enrichment
Analysis (GSEA v4.1.0), with results deemed significant at P < 0.05.
Alternative splicing events in RNA-seq data were analyzed using
ASprofile v1.0.4. Raw RNA-seq reads were aligned to the human
genome (hg38) using HISAT2 (v2.2.1). ASprofile was used to detect
and quantify alternative splicing events including 5 splice site
changes and 3’ splice site changes. Statistical analysis was
performed using the Chi-square test (x> test) with events
considered significant if P < 0.05.

Metabolic profiling

The cells were incubated and vortexed with a chilled extraction
solution (2:2:1 v/v methanol/acetonitrile/water) for a minimum of 20
minutes. Subsequently, each sample was centrifuged at maximum
speed at 4°C for 20 minutes, and the resulting supernatant was used
for untargeted metabolomics analysis. The analysis was conducted
using ultra-performance liquid chromatography coupled with a
tandem quadrupole time-of-flight mass spectrometer (UHPLC-Q-
TOF/MS). Chromatographic separation was achieved on an Agilent
1290 Infinity UHPLC system, with the column temperature
maintained at 25°C, a flow rate of 0.3 mL/min, and an injection
volume of 2 uL. The mobile phase consisted of solvent A: water + 25
mM ammonium acetate + 25 mM ammonia, and solvent B:
acetonitrile. The gradient elution program was as follows: 0-1.5
min, 98% B; 1.5-12 min, B linearly decreased from 98% to 2%; 12—
14 min, B was maintained at 2%; 14-14.1 min, B linearly increased
from 2% to 98%; 14.1-17 min, B was maintained at 98%. Throughout
the analysis, samples were kept in a 4°C autosampler. High-resolution
tandem mass spectrometry was performed using Triple TOF 6600
spectrometers (AB SCIEX) under the following conditions: nebulizer
gas (Gasl) at 60 psi, auxiliary gas (Gas2) at 60 psi, curtain gas (CUR)
at 30 psi, ion source temperature at 600°C, and spray voltage (ISVF)
at £5500 V (for both positive and negative modes). The mass-to-
charge ratio (m/z) range for the first stage was 80-1200 Da, with a
resolution of 60,000 and a scan accumulation time of 100 ms. The
second stage employed a segmented acquisition method, with a scan
range of 70-1200 Da, a resolution of 30,000, a scan accumulation
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time of 50 ms, and a dynamic exclusion time of 4 seconds. Raw data
were transformed into the “mzXML” format using ProteoWizard.
Finally, annotation and quantification of metabolites were performed
using XCMS software version 3.7.1.

Seahorse XF cell metabolism assay

To evaluate mitochondrial respiration, cells at indicated
conditions were seeded in Seahorse XF 96-well plates (5x10* cells
per well) and incubated overnight. After the incubation in XF
RPMI1640 base medium, the following metabolic modulators
were sequentially injected: oligomycin, trifluoromethoxy
carbonylcyanide phenylhydrazone (FCCP), and rotenone/
antimycin A using XF Cell Mito Stress Test Kit (#103015-100).
Oxygen consumption rate (OCR) was measured using the Seahorse
XF Analyzer (Agilent Technologies) and was used to calculate
maximal respiration. Each sample was normalized to protein
quantity and presented as mean + SEM.

Flow cytometry analysis

For immune infiltration analysis, subcutaneous tumors were
excised, minced into small pieces (1 to 2 mm), and digested using
digestion buffer (abs9482). The cells were then filtered through 40
pum cell strainers. Analysis of tumor-infiltrating immune cells
involved Live/Dead staining (BD, #564406), followed by Mouse
Fc-blocking (BD, #553141), and surface staining in FACS buffer
(BD, #554656) with fluorochrome-conjugated antibodies. The
antibodies used included mouse CD45 (BD, #557659), mouse
CD3 (BD, #553061), mouse CD8 (BD, #566985), mouse CD4
(BD, #550954), mouse CD11b (BD, #563015), and mouse F4/80
(BD, #565411), mouse FOXP3 (BD, #560408), mouse CD206 (BD,
#568809), mouse TNFo (BD, #563943), and mouse IFNy (BD,
#561040). All FACS analyses were performed on a BD FACSCelesta,
and the data were analyzed using Flow]Jo software.

Animal experiments

Animal studies were approved by the Animal Care and Use
Committee of Shanghai Jiao Tong University. Six- to eight-week-
old mice were purchased from Hangzhou Ziyuan Experimental
Animal Technology Co., Ltd. A total of 1 x 106 MC38 cells, with
or without Rbm15 knockout, were subcutaneously injected into the
right flank of male C57BL/6 or nude mice (n = 5 mice per group).
Tumor volume, tumor weight, and body weight of the mice were
measured at specified time points.

Data mining
The immune score was calculated using the ESTIMATE

platform, an approach that provides with scores for tumor purity,
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and the infiltration level of immune cells in tumor tissues based on
expression data from The Cancer Genome Atlas (TCGA) tumors
(17). Pearson correlation was used for calculating P and R values.
Differential gene expression analysis in colorectal tumor vs normal
tissues were performed by the TNMplot platform (33). MSI
MANTIS score was calculated using the cBioPortal platform (34).
The correlation between the expression of RBM15 and survival in
colorectal patients were performed using Kaplan-Meier Plotter with
probe datasets as1555760_a_at and cBioPortal (Colorectal
Adenocarcinoma, TCGA, PanCancer Atlas). The abundances of
six immune infiltrates (B cells, CD4+ T cells, CD8+ T cells,
Neutrophils, Macrophages, and Dendritic cells) are calculated
from the TIMER platform (35).

Statistics and reproducibility

For statistical analysis, experiments were conducted at least
three times, unless otherwise specified. Statistical analyses were
performed using GraphPad Prism 7 software. The significance of
differences between groups was assessed using a two-tailed unpaired
Student’s t-test. Quantitative data are presented as mean + SEM. A
significance threshold of P < 0.05 was used for all statistical analyses.
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Recent studies have identified that RNA epigenetic modifications, including m6A,
m1A, m5C, etc, play pivotal roles in tumor progression. These modifications
influence MRNA stability, RNA processing, translational efficiency, and decoding
precision. However, comprehensive reviews detailing the connection between
m6A RNA modifications and hormone-dependent cancers in both male and
female populations remain scarce(breast cancer, ovarian cancer, and
endometrial cancer, prostate cancer). In this article, we explore the cellular and
molecular roles of various RNA modifications alongside the key elements of the
tumor microenvironment. We examine how these RNA modifications influence
the development of hormone-dependent cancers through their impact on
immune mechanisms. By enhancing our understanding of the function of RNA
modifications within the immune systems of four specific tumors, we offer fresh
insights for their potential applications in diagnosis and treatment.

KEYWORDS

RNA modification, sex hormone-dependent cancer, tumor microenvironment, tumor-
immunology, epigenetics

1 Introduction

Tumor development is influenced by multiple factors, among which a subset closely
associated with hormones, known as hormone-dependent cancers, among the most typical
ones are breast cancer, ovarian cancer, endometrial cancer, and prostate cancer (BC, OC,
EC, and PC). Their development and treatment are intrinsically linked to hormones,
mainly including progesterone receptor (PR), estrogen receptor (ER), androgen receptor
(AR) and human epidermal growth factor receptor 2 (HER2). In women, BC is the first
malignant tumor with the highest incidence rates and is also the most typical hormone-
dependent intermediate utilized (1). In addition, complex molecular bidirectional
interactions between hormone receptors (HRs), including ER, PR, and HER2 are present
in BC (2, 3). Endocrine therapy (aromatase inhibitors and anti-estrogen therapy or anti-
estrogen therapy alone) is the standardized method and is the backbone of adjuvant
therapy that significantly reduces the risk of recurrence and mortality (4). Endometrial
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cancer, on the other hand, is the female malignant tumor with the
fastest growing mortality rate, which tends to show elevated ERo.
levels and promote PR expression (1, 5, 6). Patients are positive for
both ERa levels and PR expression tend to have well-differentiated
tumors and may be responsive to hormone therapy, resulting in a
relatively good prognosis (7). In addition, ovarian cancer is an
essential branch of female malignant tumors, and postoperative
hormone replacement therapy is necessary to achieve a better
quality of living for patients (8). Similar to women, the most
prevalent malignant tumor for men, prostate cancer, is
significantly affected by androgens. Hence, the basis of prostate
cancer treatment is anti-androgen therapy (9, 10). However, their
mechanisms of occurrence remain unspecified, and treatment
outcomes remain unsatisfactory. This review emphasizes the
importance of discovering alternative and targetable molecular
pathways that could provide novel therapeutic opportunities.

RNA modifications refer to chemical alterations of RNA
nucleobases or ribose molecules. Presently, over 150 distinct
modifications have been documented. Pseudouridine V¥ was
discovered in the 1950s as the first recognized RNA modification
(11). Among the most prevalent mRNA modifications, N6-
methyladenosine (m6A) was identified in 2011 (12-14). Other
RNA modifications, such as ml1A and m5C, have been identified
and extensively studied in recent decades (15, 16). RNA methylation
has an impact on almost the entire mRNA life cycle - starting from
mRNA transcription, mRNA splicing, specific structure, stability and
subsequent translation and finally degradation (17-21). Although
much of the research has focused on the role of m6A in hormone-
dependent cancers, this review also examines the impact of other
RNA modifications, such as m1A, m5C, m7G, mcm5s2U, A-to-I, and
Y. These modifications can be investigated using emerging
techniques like RNA immunoprecipitation (RIP), chromatin
immunoprecipitation (ChIP), and single-cell omics (22-25).

The role of the immune system in cancer development has
attracted increasing attention, particularly concerning the complex
immune components within the tumor microenvironment and the
adaptable mechanisms of immune evasion. Consequently,
immunotherapy has emerged as a novel approach in cancer
treatment, aimed at remodeling the immune system and
reactivate anti-tumor immune responses to avoid tumor escape
(26). Various immunotherapeutic strategies have shown substantial
promise in treating a wide range of cancers, predominantly
involving immune checkpoint inhibitors like PD1, PD-L1, and
CTLA4, antibody-drug couplings, and cancer vaccines (27).
However, fewer immunotherapeutic agents have been approved
for clinical use in hormone-dependent cancers (28-31). As a
distinct regulatory mechanism, RNA modifications, exemplified
by m6A, has garnered increasing attention. Tumor-derived
intrinsic signals and environmental stimuli can drive aberrant
expression and activity-modifying regulators of many RNAs,
leading to abnormal RNA modifications, which are essential for
shaping the tumor microenvironment and immune escape (32, 33).

Although a substantial body of literature has accumulated on
RNA modifications in cancer, the research focus has predominantly
centered on m6A modification and its associated enzymatic
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machinery, with relatively limited exploration of other RNA
modification types and a notable paucity of systematic reviews.
While tumor immunology remains a prominent research frontier,
investigations that integrate RNA modifications with tumor
immunity to elucidate their epigenetic regulatory mechanisms
remain relatively scarce. Notably, for hormone-dependent tumors,
there is a conspicuous lack of comprehensive discussion regarding
the potential shared immune regulatory mechanisms and epigenetic
modification patterns that may arise from their similar endocrine
microenvironment (34). This paper will focus on how RNA
modifications play an immunomodulatory role in hormone-
dependent cancers, including breast, ovarian, endometrial and
prostate cancers (BC, OC, EC, and PC). The mechanisms and
implications of prevalent RNA modifications will be explored.
Specifically, we aim to elucidate the effects of RNA modifications
in diverse immune cell types within hormone-dependent cancers.

2 RNA modification in sex hormone
synthesis

2.1 Concepts of different RNA
modifications

2.1.1 m6A

N6-methyladenosine (m6A) is defined as the methylation of
adenine at the N6 position within RNA molecules. It represents the
most prevalent modification in eukaryotic IncRNAs and mRNAs,
and has also been detected in rRNAs, snRNAs, and tRNAs
(Figure 1, 35). The m6A modification is conserved across yeast,
mouse, and human mRNA, and is enriched in the RRACH (R = G
or A; H = A, C, or U) consensus sequence (36-38). The m6A
modification is primarily facilitated by the methyltransferase
termed the “writer”, the demethylase known as the “eraser”, and
recognition proteins referred to as “reader”. The writer assembles
the m6A methyltransferase complex (MTC), which catalyzes site-
specific methylation that can be reversed by the eraser. The reader
proteins bind to methylated m6A sites and transmit downstream
signals, thereby acting as post-transcriptional gene regulators. M6A
writers mainly include METTL3, nephroblastoma I-associated
protein (WTAP), KIAA1429 (VIRMA), RBM15, METTLIS6,
METTL14, HAKAI and ZC3H13 (KIAA0853) (39). To date, only
two types of erasers, FTO and ALKBHS5, have been recognized (40).
The readers involve the YTH family, the HNRNP family, and the
IGF2BPs family (39). As an important component of epigenetics,
m6A modification and these regulatory proteins are involved in
various biological activities in which they play a regulatory role
(40-43).

As the predominant “writer,” METTL3 serves as the core
catalytic component of MTC, yet it remains inactive without
METTL14. Although METTL14 lacks intrinsic methyltransferase
activity due to the absence of an S-adenosylmethionine (SAM)
binding domain, it aids in substrate RNA recognition and forms
methyltransferase structural domains (MTDs) with METTL3 as a
heterodimer (44). The MTD structural domains in isolation do not

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1513037
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Jiang et al.

10.3389/fimmu.2025.1513037

N6-methyladenosine N1-methyladenosine
(m6A) (m1A)

" Hy
A~

ay

o

<0 o
o

i
;
<~ﬁ/)

5methylcytosine
(m5C)

H:C o
\.fk
N
/ w
<~ | ,/kw,
ST

o

JuEOe- -

Pseudouridylation
)

o
NN

A-to-l modification

n_] o
oH

7-methylguanosine
(m76)

W H
~n-

i
AP

tRNA

5-methoxycarbonylmethyl
-2-thiourea
(mem5s2U)

FIGURE 1

RNA modifications across different RNA types with chemical structures highlighted on the ribose moiety. Different RNA types undergo distinct
chemical modifications that influence their stability, processing, and function. mRNA is primarily modified by m®A, m*A, m*C, m’G, A-to-I, and P,
with mPA being the most prevalent. tRNA mainly carries m*'A, ¥, and mcm®s?U, while rRNA undergoes m®A, m*A, m°C, m’G, and ¥ modifications.
IncRNA is modified by m®A and m°C, snRNA by m®A and ¥, and miRNA by m’G and A-to-I. The chemical structures of these modifications are

marked on the ribose moiety.

possess methyltransferase activity and necessitate the zinc-finger
domain (ZFD) of METTLS3 to become enzymatically active (45, 46).
Wilms tumor 1-associating protein (WTAP), though not
enzymatically active, assists in mRNA methylation by interacting
with and recruiting the METTL3-METTL14 complex to target
mRNA sites (47, 48). Further studies have identified VIRMA (49),
ZC3H13 (50), RBM15/15B (51), and HAKAI (52) as additional
cofactors of the METTL3-METTL14 complex. Besides METTL3,
three distinct enzymes—METTL16, METTL5, and ZCCHC4—have
been recognized as eukaryotic m6A methyltransferases, each
responsible for incorporating m6A into U6 small nuclear RNAs
(snRNAs) (53), 18S ribosomal RNAs (rRNAs) (54), and 28S rRNAs
(55), respectively.
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FTO and ALKBHS5, known as m6A erasers, act as demethylases
that catalyze the conversion of m6A to adenosine. FTO was the first
mo6A eraser identified, exhibiting specific oxidative demethylation
activity against abundant m6A residues on RNA (13), while
ALKBH5 was the second eraser discovered (40). FTO
demethylates internal m6A residues on mRNAs and U6 RNA, as
well as N6,2-O-dimethyladenosine (m6Am) on mRNAs and
snRNAs, Nl-methyladenosine (ml1A) on tRNAs, 3-
methylthymine (m3T) on single-stranded DNA (ssDNA), and 3-
methyluracil (m3U) on single-stranded RNA (ssRNA) (56, 57).
ALKBHS5 localizes within nuclear speckles and aids in the assembly
of mRNA processing factors, primarily acting on substrates like
nuclear nascent RNAs (ssRNAs) (40).
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The primary readers of m6A are the YIH family proteins,
including YTHDF1, YTHDF2, YTHDF3, YTHDCI, and YTHDC2,
which contain an méA-binding pocket within their YTH structural
domains (58).YTHDEF2, the first to be identified, promotes the
degradation of cytoplasmic targets by recruiting CCR4-NOT
complexes, with its m6A-binding affinity significantly enhanced
by SUMOylation (19, 59). Additionally, YTHDF1 and YTHDEFS3,
both cytoplasmic m6A readers, enhance the translation efficiency of
target mRNAs and, in some instances, promote their degradation
(19, 60, 61). As for nuclear m6A readers, YTHDCI regulates mRNA
fate through multiple mechanisms, such as mRNA splicing (17),
nuclear body formation (62), and retrotransposon silencing (63).
YTHDC2,localized in both the nucleus and cytoplasm (64),
modulates deconjugase activity and influences mRNA decay and
translation during spermatogenesis (65-67). Apart from the YTH
family, IGF2BPs constitute a distinct group of m6A readers,
recognizing m6A through their KH structural domains (20). The
IGF2BP proteins (IGF2BP1/2/3) share similar structures, and their
binding affinities for various target RNAs may be governed by their
KH3 and KH4 structural domains (68).

2.12 mlA

The m1A modification, similar to m6A, entails the methylation of
the first nitrogen on adenosine and is governed by specialized writers,
erasers, and readers. This modification predominantly occurs in tRNAs
and rRNAs, particularly within GC-rich RNA sequences, impacting
ribosomal tertiary structure, RNA stability, and translation efficiency
(Figure 1, 69-71). tRNA methyltransferases 6 and 61A (TRMT6/61A)
form a complex that exerts MTC-like effects by catalyzing the addition
of mIA to t-loop-like RNA structures (72). tRNA methyltransferases
10C and 61B (TRMT10C/61B) respectively catalyze the mlA
modification at positions 9 and 58 in mitochondrial tRNAs (73).
Moreover, TRMT61B has a similar recognition mechanism for rRNA
and tRNA (74). Additionally, NML, also known as RRP8, localizes to
the nucleus where it methylates m1A on 28S rRNAs (75). AlkB
homologs 1, 3 and 7 act as erasers in charge of m1A demethylation
(76-78). YTHDF1, YTHDF2, YTHDF3, and YTHDCI act as m1A-
modified readers to fulfill their biological roles (79).

2.1.3 m5C

m5C is a methylation modification at the 5th carbon atom of
cytosine, found in mRNA and IncRNA, and enriched in
cytoplasmic and mitochondrial rRNAs and tRNAs (Figure 1, 80,
81). To date, NSUN2 and NSUNG6 are the only known m5C
methyltransferases within the NSUN family that facilitate mRNA
methylation by incorporating m5C, functioning as transcriptional
modifiers. NSUN2 regulates the nucleoplasmic transport and RNA-
binding affinity of the mRNA export adapter protein ALYREF,
which specifically recognizes m5C, thereby influencing mRNA
export (81). NSUN6 predominantly targets the 3 untranslated
regions (3 UTRs) on the hairpin-like structural loops conserved
sequence motif CTCCA, potentially participating in the quality
control of translation termination fidelity (82). Two mechanisms
for m5C “erasure” have been identified: first, oxidation by the TET
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family on RNA to produce 5-hydroxymethylcytosine (hm5C); and
second, the conversion of 5-formylcytosine (f5C) in mitochondrial
tRNA by o-ketoglutarate and iron(II)-dependent dioxygenases
ALKBHI and ABHI1 (83-85). BX-1 and the Aly-REF export
factor (ALYREF) act as m5C readers, affecting the stability,
translation, and transcription of the RNAs they target (81, 86).

2.1.4 m7G

The m7G modification involves the methylation of the 7th
nitrogen atom in guanosine and primarily occurs at internal sites of
rRNAs, tRNAs, miRNAs, as well as the 5 cap of mRNAs (Figure 1, 87,
88). Although no confirmed erasers or readers have been introduced
for m7G yet, the m7G cap can undergo hypermethylation by
trimethylguanosine synthase 1 (TGS1) to produce m2,2,7G or may
be recognized by the eukaryotic translation initiation factor eIF4E,
subsequently affecting RNA maturation, nuclear export, and
translation (89, 90).

2.1.5 mcm5s2U

The 5-methoxycarbonylmethyl-2-thiourea modification
(mem®s”U), initiated by cm®U and mem®U modifications on wobble
uridines, is facilitated by human tRNA methyltransferase 9-like
protein (TRM9L) and AlkB homologue 8 (ALKBHS) (Figure 1, 91).
Wobble uridines, located at the first nucleotide position of the
anticodon stem loop in tRNA, are essential for accurate mRNA
translation and efficient protein synthesis (92, 93).

2.1.6 A-to-I modification

The A-to-I modification involves the selective hydrolytic
deamination of adenosine to inosine (A-to-I editing), a process
primarily regulated by the family of double-stranded RNA-specific
adenosine deaminases, notably ADAR1, ADAR2, and ADAR3
(Figure 1, 94). ADAR1 and ADAR2 both mediate A-to-I editing in
cellular RNA (95).

2.1.7 Pseudouridylation ¥

The C5-glycosidic isoform of uridine, pseudouridine ¥, is the
most prevalent RNA modification, primarily found in tRNAs and
rRNAs (Figure 1, 70, 96). Pseudouridylation occurs via two distinct
pathways: RNA-independent pseudouridylation, catalyzed by
pseudouridine synthases (PUSs) without a template strand, and
RNA-dependent pseudouridylation, which requires the box H/ACA
small nuclear ribonucleoprotein RNA-protein complex (82, 97).

2.1.8 Crosstalk between different RNA
modification

Multiple RNA modifications are not isolated; rather, they are
often interlinked, collaboratively regulating physiological and
pathological states in the body. The vast majority of RNA
modifications share similar regulatory mechanism, especially
writers, allowing different modifications to be controlled by the
same class of writers (Table 1), thus forming an interconnected
regulatory network. Writers regulating m6A, mlA, and A-to-I
modifications are not independent but exhibit significant cross-
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TABLE 1 The various “writers”, “readers” and “erasers” associated with RNA modifications.

Key protein = m6A miA m5C
Writers METTL3 TRMT6 NSUN2
METTL14 METTL16 = TRMT61A NSUN6
WTAP TRMT10C
VIRMA TRMT61B
RBM15 RRP8
HAKAI
ZC3H13
Erasers FTO ALKBH1 TETs
ALKBHS5 ALKBH3 ALKBH1
ALKBH7 ABH1
Readers YTHs YTHDF1 YBX-1
HNRNPs YTHDEF2 ALYREF
IGF2BPs YTHDEF3 YTHDCI1

linking, which is closely associated with colorectal carcinogenesis,
the tumor microenvironment (TME), drug sensitivity, and
immunotherapy (98). Multiple RNA modifications can act on the
same signaling pathway or target RNA to exert either synergistic or
antagonistic effects. For example, m6A and m5C both modify
FOXC2 mRNA, promoting gastric cancer cell growth (99, 100).
Both m6A and A-to-I editing can alter c-MYC mRNA, contributing
to the progression of hepatocellular carcinoma (101, 102). Similarly,
m6A and W modifications within the RAS pathway have been
recognized for their oncogenic impact in colorectal cancer (103,
104). In pancreatic cancer, m6A stimulates the PI3K/Akt/mTOR
pathway, driving cancer cell proliferation (105, 106), whereas m1A
and m5C are linked with activation of the mTOR pathway and
unfavorable prognoses (107, 108). Additionally, interactions
between different RNA modifications have been observed. In
breast cancer, METTL3-mediated m6A modification is regulated
by ADARI, which subsequently promotes breast cancer progression
(109). Interactions among m6A, m5C, m1A, and m7G are also vital
for TME regulation, immune infiltration, and immunotherapy in
soft tissue sarcoma (STS) (110). The human body is a complex
system, where crosstalk among multiple RNA modifications plays
an essential role in disease development. Expanding research on
RNA modification interactions holds significant clinical promise.

2.2 RNA modification with hormone
receptors

Sex hormones in the human body, primarily estrogen,
progesterone, and androgens, are regulated by gonadotropins,
including gonadotropin-releasing hormone (GnRH), luteinizing
hormone (LH), and follicle-stimulating hormone (FSH).
Additionally, prolactin (PRL) can reflect the secretion levels of sex
hormones in the body. RNA modifications specifically regulate the
synthesis, secretion, and ligand-receptor interactions of sex
hormones in organisms, thereby influencing physiological and
pathological processes.

As the most common m6A methyltransferase, the specific
knockdown of METTL3 can alter various biological processes, with
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diverse and sometimes opposing effects in different cells and molecules.
In testicular mesenchymal cells, ambient PM2.5 promotes METTL3-
induced m6A modification of SIRT1 mRNA, leading to aberrant
cellular autophagy, which inhibits testosterone synthesis and results in
impaired spermatogenesis and infertility (111). Knockdown of METTL3
has been observed to significantly promote autophagic flow and increase
testosterone production in testicular mesenchymal cells (111). Specific
knockdown of the METTL3 gene in the endometrium stabilizes several
mRNAs of estrogen-responsive genes, such as Elf3 and Celsr2, while
significantly reducing the expression levels of the progesterone receptor
(PR) and its target gene Myc (112). Multiple m6A regulatory proteins
can act synergistically to regulate hormone levels.

METTL3 suppresses the expression of androgen receptors in
cardiac fibroblasts by introducing m6A modifications to AR mRNA,
which are subsequently recognized by YTHDEF2, leading to the
degradation of AR-associated mRNA. This m6A modification by
METTL3 enhances the binding of YIHDEF2 at the modified sites,
thereby reducing AR expression. This reduction rescues the inhibitory
effects exerted by AR on glycolysis and cardiomyocyte proliferation,
ultimately facilitating myocardial fibrogenesis (113). Researchers also
found that applying antisense oligonucleotides (ASOs) to target
METTL3 can restore Enzalutamide(an effective AR inhibitor)
resistance in vitro and in vivo (114). In endometrial cells, METTL3-
mediated m6A modification directly influences the mRNA of PR.
Specifically, m6A modification in the 5" untranslated region (5'-UTR)
of PR mRNA enhances the translational efficiency of PR proteins in a
YTHDF]1-dependent manner, a process that is conserved between mice
and humans (112). M6A-related proteins such as METTL3 and
METTL14 have been reported to increase follicle-stimulating
hormone (FSH) levels while decreasing luteinizing hormone (LH)
and testosterone (T) levels in PCOS rats, thereby reducing apoptosis
and autophagy in ovarian tissue and improving ovarian morphology
(115). Additionally, hormones can regulate biological processes by
influencing m6A modifications. For instance, FSH can enhance the
transcriptional activity of the METTL3 promoter in osteoclasts by
inducing the phosphorylation of cyclic AMP response element-binding
protein (CREB), which increases the m6A methylation of cathepsin K
(CTSK). This methylation enhances the stability of CTSK and
promotes osteoclast migration (116).
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Other RNA modifications are also associated with hormone
receptors, including A-to-I editing and m5C modification. In
prostate cancer cells, numerous nucleotide transitions within AR
gene transcripts have been identified as mutations that coincide
with potential A-to-I, U-to-C, C-to-U, and G-to-A RNA editing
sites (117). Furthermore, NSUN2 stabilizes AR mRNA through
m5C modification, creating a positive feedback loop that promotes
prostate carcinogenesis (118). Research has shown that inhibiting
AR leads to the rearrangement of the alternative polyadenylation
(APA) subcomplex and disrupts the interaction between the
cleavage stimulation factor (CSTF) complex and the cleavage and
polyadenylation specificity factor (CPSF) complex (119). In breast
cancer, the luminal androgen receptor influences APA subtypes in
patients with triple-negative breast cancer (120). In estrogen
receptor-positive (ER") breast cancer, estradiol (E2), a potent
proliferative agent, induces APA and 3’-UTR shortening,
subsequently activating proto-oncogenes (121).

3 RNA modification in hormone-
dependent cancer

3.1 Tumor microenvironment in hormone-
dependent cancer

Research indicates that the tumor microenvironment (TME),
which consists of infiltrating immune cells such as tumor-associated
macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs),
along with stromal cells like cancer-associated fibroblasts (CAFs) and
endothelial cells (122), plays a pivotal role in tumor development. It
fosters tumor progression through complex interactions between cells
and the extracellular matrix (ECM) (Figure 2) (123, 124).

Tumor-associated macrophages (TAMs) are the most prevalent
immune cells in the tumor microenvironment, crucially supporting
tumor progression and immune modulation (125). With their
phagocytic and cytotoxic capabilities, macrophages are recognized as
immunoreactive cells that can polarize into anti-tumor M1
macrophages or pro-tumor M2 macrophages in response to
microenvironmental signals. TAMs closely resemble M2
macrophages and are associated with the Th2 immune response,
characterized by high levels of IL-10 and TGF-f production, and
they secrete pro-tumorigenic cytokines that promote tumor
progression (126-128). Furthermore, TAMs influence angiogenesis
and enhance cell proliferation and metastasis by inhibiting CD8" T
cell activity (129, 130). Consequently, various factors can affect tumor
development and metastasis by modifying the polarization and
recruitment of TAMs (131). In EC, NLRP3 deficiency leads to
macrophage polarization into pro-inflammatory M2-type
macrophages (132). The tumor exosome cSERPINE2 (133), the
chemokines MCP-1 (134) and IL-1P (135), and the secreted protein
CTHRC1 (136) facilitate the progression of BC, EC, and pancreatic
cancer (PC) by recruiting TAMs. An in vitro study demonstrated that
the tumor extracellular matrix (ECM) can directly regulate
macrophage populations in ovarian cancer tissues (137). MDSCs are
also critical immunosuppressive components in the tumor
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microenvironment. Two main classes of MDSCs, granulocytic/
polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs
(M-MDSCs), can be identified in humans and mice based on their
origin, and both significantly suppress immune responses following
prolonged exposure to cytokines released during chronic infections,
inflammation, autoimmune diseases, and cancer (138). For instance,
chronic psychological stress can recruit splenic MDSCs via CXCR2,
promoting the formation of a metastatic pre-metastatic niche (PMN)
in BC (139). Due to their significant immunosuppressive properties,
TAMs and MDSCs are frequently studied as potential targets for tumor
therapy. Approaches such as gene knockdown (140), blockade of key
molecules (141-143), and remodeling of drug structure (144) aim to
inhibit TAMs and MDSCs to achieve clinical benefits.

In most cancers, stromal cells are major components of the TME,
playing critical roles in tumor metabolism, growth, and metastasis
(145). Cancer-associated fibroblasts (CAFs), key constituents of the
stroma, can be activated by various tumor-derived factors (146). CAFs
exhibit enhanced expression of several markers, including a-smooth
muscle actin (0.-SMA), fibroblast activation protein (FAP), fibroblast-
specific protein 1 (FSP1), platelet-derived growth factor receptor
(PDGFR)-0/p, and poikilodulin (147), and the vast majority display
pro-cancer effects (148). CAFs are highly heterogeneous, comprising
multiple influential subgroups. In breast cancer, CD26" and CD26-
normal fibroblast populations are transformed into inflammatory
CAFs (iCAFs) and myofibroblast CAFs (myCAFs), respectively
(149). CD26" normal fibroblasts (NFs) are converted into pro-
tumorigenic iCAFs, which recruit myeloid cells via a CXCL12-
dependent mechanism and promote tumor cell invasion through
matrix metalloproteinase (MMP) activity (149). MyCAFs, located
close to the tumor, are a subtype of CAFs. The molecular and
functional diversity of myCAFs arises from diverse sources and
activation mechanisms, among which TSPANS*SIRT6'" myCAFs
are linked to unfavorable outcomes in breast cancer patients (150).
Similarly, in prostate cancer, androgen deprivation therapy (ADT)
induces SPP1" myCAFs, which are critical stromal components driving
the progression of castration-resistant prostate cancer (CRPC) (151).
Other non-classical subgroups include CD146+ CAFs, which promote
endometrial cancer progression by inducing angiogenesis and
vasculogenic mimicry (152), and oSMA*VIM'PDGFRB"CAFs,
which are correlated with lower tumor immune infiltration and
shorter survival in ovarian cancer patients (153).

Additionally, recent studies have found that solid tumors are
hypoxic and acidic, with the physiochemical aspects of the TME
sustained by chaotic tumor perfusion, resulting in tumor
progression and resistance to immunotherapy (154). Apart from
recruiting immunosuppressive cells like MDSCs, tumor cells can
evade the immune system in various ways. For instance, they
modulate T cell responses by altering the levels of immune
checkpoint molecules, particularly through the upregulation of
PD-L1 (155). Moreover, tumor cells evade recognition and
destruction by cytotoxic T cells by reducing MHC-I expression
and impairing antigen presentation (156). They may also inhibit the
production of CXCL9 and CXCL10, obstructing the infiltration of
CXCR3+ effector cells into the tumor, thus facilitating immune
evasion and limiting T cell infiltration (157).
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Major components of the tumor microenvironment and their regulatory factors. Macrophages in the tumor microenvironment can be activated by
cytokines and various microenvironmental factors, leading to their polarization into M1-type or M2-type macrophages, influenced by multifaceted
factors involving the tumor extracellular matrix. In endometrial cancer (EC), NLRP3 promotes M1-type macrophage polarization while inhibiting M2-
type polarization. In ovarian cancer (OC), obesity exerts the opposite effect. In breast cancer (BC), pancreatic cancer (PC), and EC, cSERPINE2, MCP-
1, CXCR2, UBC9, and CTHRC1 contribute to the recruitment of M2-type macrophages. Additionally, CXCR2 in BC and IL-1f in EC play roles in

recruiting myeloid-derived suppressor cells (MDSCs).

3.2 RNA madification in immune system of
hormone-dependent cancers

A growing number of studies have demonstrated that human
malignancies are correlated with epigenetic alterations in RNA (158,
159). Previous studies have identified RNA modifications,
particularly m6A, as playing a pivotal role in hormone-dependent
cancers (160-163). These modifications are essential in regulating
tumor growth and metastasis (33, 164).In BC, m7G has been linked
to immune cell infiltration, including initial B cells, CD4* memory
resting and activated T cells, CD8" T cells, regulatory T cells, resting
and activated natural killer (NK) cells, M1 macrophages, and resting
mast cells, with NCBP1 mRNA identified as the most prominent
target of m7G (165).The related regulatory enzyme, RBM15B, along
with its associated genes TCP1 and ANKRD36, and the RNA
demethylase ALKBH family, particularly ALKBH7, are also
associated with immune infiltration in breast cancer and are
positively correlated with tumor development (166, 167).
Furthermore, both m6A and m5C can disrupt DNA replication
and affect the tumor immune microenvironment in PC (168, 169).
As more relevant studies emerge, the understanding of how RNA
modifications govern the immune system in hormone-dependent
cancers has been progressively refined at the cellular and molecular
levels (Table 2).
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3.2.1T cells

RNA modification promotes tumor immune escape by
regulating immune checkpoint molecule expression on T cells.
Researchers identified a 4-DERRG signature based on 59 RNA
modification-associated regulatory genes (ALYREF, ZC3H13,
WTAP, and METTL1) and accordingly categorized the OC
patients into two distinct groups, showing significant differences
in the immune checkpoint molecule CD276. The regulation of
immune checkpoint molecules by m6A is primarily mediated
through PD-L1. METTL3-mediated m6A modification occurs in
the 3-UTR of PD-L1 mRNA, and circATAD2 can bind to it,
enhancing the level of m6A modification (170, 171).The m6A
reader IGF2BP3 recognizes this modification, thereby increasing
PD-L1 mRNA stability and expression (171). In OC, IGF2BP1/2/3
also recognize m6A modifications, positively regulating circNFIX
expression, which activates downstream JAK/STATS3 signaling and
enhances PD-L1 expression (174).Thus, m6A-modified PD-L1 may
serve as a potential therapeutic target. In BC, ADARI synergizes
with DEAD-box RNA helicase 3X (DDX3X) to activate the
cytoplasmic dsRNA pathway, increasing tumor infiltration of
CD8" T cells and DC cells (181). In PC, the reader YTHDFI1
promotes the progression by regulating androgen function-related
gene TRIM68 (172). For enhanced photothermal immunotherapy
of PC, cyclodextrin-functionalized gold nanorods can deliver the
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TABLE 2 The molecules, cells and mechanisms associated with the immunomodulatory role of RNA modifications in hormone-dependent cancers.

RNA Related Immune cell Key mechanism References
modification molecule
m6A circATAD2 T cell Enhancing PD-L1 mRNA stability BC (170)
IGF2BP3 and expression
METTL3 T cell Upregulating PD-L1 expression and promoting | BC (171)
IGF2BP3 stabilization of PD-L1 mRNA
YTHDF1 T cell Enhancing PD-L1 transcriptional stability PC (172)
m6A RNA demethylase | T cell Decreasing the stability of PD-LI transcripts PC (173)
inhibitor
meclofenamic acid
cireNFIX T cell Activating IL-6R/JAK/STATS3 signaling and oC (174)
IGF2BP1/2/3 enhancing PD-L1 expression
HNRNPC Treg cell Characteristic m6A gene profiles were PC (175)
CD8'T cell associated with immune responses, in which
HNRNPC as a marker protein enhances treg
cell activation and suppresses effector
CD8'T cells.
CD4™T cell The levels of macrophages, mast cells and PC (176)
Macrophage CD4"T cells were significantly correlated with
Mast cell m6A-related genes.
KIAA1429 B cell Inhibition of memory B cell infiltration BC (177)
B cell Elevated m6A levels were accompanied by EC (178)
Dendritic elevated dendritic cell and B cell levels.
cell
ALKBHs (especially All tumor- Associated with immune infiltration and BC (167)
ALKBHS) related promotes tumor development
immune
cells
m7G NCBP1 mRNA All Associated with low immune status and BC (165)
Tumor poorer prognosis
-related
Immune
cells
METTLI1 CDS8™T cell The depletion of METTLI promotes the PC (179)
Macrophage biogenesis of 5’tRNA-derived small RNA,which
correlates with increased pro-inflammatory
immune cell polarization and CD8"T
cell inflation.
m5C TETs,NUSNs,etc CD8'T cell m5C regulatory genes were associated with PC (180)
Macrophage immune cell levels and tumor prognosis.
B cell
Atol ADARI1 CD8'T cell Activation of the cytoplasmic dsRNA pathway BC (181)
DDX3X Dendritic increases tumor infiltration by CD8"'T cell
cell and DC.
RNA RBM15B All tumor- Associated with low immune status and BC (166)
modification related poorer prognosis.
immune
cells
ALYREF CD4™T cell The risk scores based on the four-DERRG oC (182)
ZC3H13 Macrophage signature showed a positive correlation with
WTAP B cell CD4" memory resting T cells, while
METTL1 demonstrating a negative correlation with M1
macrophages and plasma cells
Related writers All tumor- Correlated with high expression of tumor oC (183)
related infiltration-associated cells and B-cell receptor
immune signaling pathways.
cells
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m6A RNA demethylase inhibitor meclofenamic acid, thereby
enhancing m6A methylation of mRNAs and decreasing the
stability of PD-L1 transcripts (173). Besides, investigators have
discovered that the m7G transferase METTLI is highly expressed
in both primary and advanced prostate tumors. Simultaneously,
upon METTLI deletion, the absence of m7G tRNA methylation
promotes the generation of a new class of non-coding small RNAs
originating from 5 tRNA fragments (179). These small RNAs
regulate translation and support the production of key regulators
essential for antitumor immune responses (179). These regulators
are crucial for promoting CD8" T cell infiltration and enhancing
antitumor effects (179). Similarly, after clustering according to the
regulatory genes of m5C (TET1, TET3, DNMT3B, YBX1, NSUN2,
NSUNG6, NOP2) in patients with PC, significant differences in CD8"
T cell infiltration were observed between the two clusters, with a
strong negative correlation to patient prognosis (180).

3.2.2 Macrophages

RNA modification regulates macrophages mainly by altering
the number or proportion of M1 and M2 type macrophages. For
instance, circITGB6 specifically interacts with the KH1-2 domain
of IGF2BP2, leading to increased mRNA stability of FGF9, leading
to increased mRNA stability of FGF9 (184). This interaction further
encourages the polarization of TAM towards the M2 phenotype,
thereby inducing cisplatin resistance in OC (184). In PC, the
removal of METTL1 results in the downregulation of anti-
inflammatory cytokines, such as macrophage colony-stimulating
factor (M-CSF), IL-10, and IL-13, which also promote M2
macrophage polarization (179, 185). In OC and BC, ALKBH3
enhances the half-life of CSF-1 mRNA by removing mlA from
the GC-rich region of the 5 UTR of CSF-1 mRNA, facilitating
macrophage recruitment and tumor invasion (186).

3.2.3 Other cells

In OC, based on the six IncRNA subgroups of RNA
modification-associated writers (m6A, ml1A, APA, and A-I),
tumor-infiltrating cells such as mast cells, neutrophils, and B-cell
receptor signaling pathways were highly expressed in the high-risk
group (14). Moreover, m6A writer KIAA1429 was positively
correlated with various advanced tumors such as BC, and
negatively correlated with memory B-cell infiltration (177). In
addition, in EC clusters classified by hypoxia genes, elevated m6A
levels were observed alongside increased infiltration of B cells and
dendritic cells (DCs) in the high-risk group (178).

3.3 Targeting regulators of RNA
modification to treat hormone-dependent
cancer

Despite being a relatively new field, drugs targeting RNA

modifications are gradually transitioning from the laboratory to the
public eye. However, fewer studies have been specifically conducted
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on the four hormone-dependent cancers, and the following is only a
list of drugs of general interest that can potentially be used on
hormone-dependent cancers. For m6A, Several inhibitors targeting
FTO and ALKBHS5 have been developed to impede the progression of
various cancers, such as R-2-hydroxyglutarate (R-2HG), FB23-2,
I0X1, I0X3, Rhein, Entacapone, and meclofenamic acid (80, 97).
Regarding m5C, NSUN?2 is upregulated in both BC and PC, and its
expression can be reduced by inhibiting sphingosine kinase (SPHK),
which maintains sphingolipid balance during cell growth (187-189).
Consequently, the SPHK1 inhibitor SK1 emerges as a potential agent
for cancer treatment by targeting NSUN2 expression (187-189).
Moreover, research on pseudouridine identifies pyrazoline and 5-
fluorouracil as common DKCI inhibitors, employed clinically as
anticancer agents (97, 190). In the context of A-to-I editing, 8-
azaadenosine and 8-chloroadenosine function as ADARI
inhibitors, but their limited specificity temporarily precludes clinical
application (191, 192).

Furthermore, while no clinical trials have been conducted to
date, emerging mechanistic studies suggest that specific RNA
modifications may exert dual therapeutic effects in hormone-
dependent tumors: either enhancing treatment efficacy or
paradoxically promoting drug resistance. In OC, RNA
modifications can remodel the tumor microenvironment by
upregulating immunogenic RNAs, thereby reversing tumor
immune evasion phenotypes and potentially restoring clinical
responsiveness to immunotherapy in previously non-responding
patients (193). For instance, Y-box binding protein 1 (YBX1) has
been shown to enhance homologous recombination proficiency and
resistance to platinum-induced stress in OC through m5C
modification (194). In breast cancer (BC), METTL3 knockdown
significantly increases chemosensitivity to doxorubicin via
modulation of the EGF/RADS51 signaling axis (195). Intriguingly,
METTL3 depletion has also been found to activate the CDKN1A/
EMT pathway and m6A-BAX/caspase-9/-3/-8 cascade, thereby
promoting proliferation, migration, and drug resistance in
hormone receptor-positive HER2-negative breast cancer (HR
+HER2-BC) (196). These findings underscore the complex
regulatory networks of RNA modifications in cancer therapeutics,
necessitating comprehensive mechanistic elucidation and
systematic clinical validation to delineate their therapeutic
potential versus risk profiles.

4 Conclusion and perspectives

This review underscores the crucial role of RNA modifications
in regulating the progression and immune landscape of hormone-
dependent cancers, including breast, ovarian, endometrial, and
prostate malignancies. These modifications facilitate tumor
growth and metastasis by modulating key immunoregulatory
pathways, such as PD-L1 expression, immune cell infiltration, and
cytokine signaling, revealing their potential to improve cancer
diagnosis and therapy.
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Despite increasing recognition of RNA modifications in cancer, the
precise molecular mechanisms—especially how these modifications
integrate with hormone receptor signaling and shape the immune
microenvironment—remain only partially understood. Future studies
should elucidate the specific pathways by which RNA modifications
influence immune regulation and hormone receptor activity. As RNA
modifications affect both hormone receptor function and
immunogenic pathways (e.g., PD-L1), there is a compelling rationale
for combining hormone therapies (e.g., anti-estrogen, anti-androgen)
with immunotherapies or RNA modification inhibitors. Such
combination strategies may enhance tumor susceptibility to
immune-mediated destruction and mitigate therapeutic resistance.

Although therapeutic applications remain challenging,
mounting evidence highlights the significant role of RNA
modifications in orchestrating immune regulation and driving
hormone-dependent tumor progression. Further investigation
into the detailed mechanisms underlying these modifications
holds promise for developing more effective and precisely
targeted interventions against hormone-dependent cancers.
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The m7G methyltransferase METTLL1 has been implicated in the occurrence and
progression of several cancers. However, its clinical significance in cutaneous
melanoma (SKCM) remains poorly understood. To address this gap, we conducted
comprehensive data mining using publicly available datasets and two single-cell
datasets. Additionally, we employed CCK8 assays, clone formation assays, and cell
migration and invasion experiments to validate our findings from the data mining.
Our results revealed that METTLL is significantly upregulated in SKCM and is
associated with a stem cell-like phenotype. Patients with high METTLL1 expression
exhibited worse prognosis. Furthermore, we identified that the high expression of
METTLL in SKCM is driven by copy number amplification and regulated by the
transcription factor MYC. In vitro cellular studies confirmed that METTL1 knockdown
significantly inhibited SKCM cell proliferation, clone formation, migration, and
invasion. Notably, we observed a strong negative correlation between METTL1
expression and CD8+ T-cell infiltration in SKCM tissues. Moreover, our analysis
revealed a significant negative correlation between METTLL expression levels and
the response to immunotherapy in SKCM patients, suggesting that METTL1 may
serve as a potential biomarker for predicting immunotherapy response in SKCM. In
summary, this study enhances our understanding of the role of m7G RNA
modification in tumor progression and highlights METTLL as a novel therapeutic
target and biomarker for SKCM immunotherapy.

METTL1, SKCM, biomarker, immunotherapy, prognosis

Introduction

METTL1 (Methyltransferase-like 1), located on chromosome 12ql3, is a protein-
coding gene that has methyltransferase activity in cells (1). Normally, METTLLI is expressed
in kidney, thyroid, skin, and 25 other tissues (2). METTLI functions primarily in the
nucleus and is involved in epigenetic modification of RNA. m7G tRNA modification
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mediated by METTL1/WDR4 is essential for common RNA
translation, regulation of cellular self-renewal, and differentiation
(3). m7G is one of the most common RNA epitope modifications,
often located in the 5 cap and internal positions of eukaryotic
mRNAs, or within rRNAs and tRNAs in all species (4). m7G This
modification helps to maintain the stability, proper folding, and
functioning of tRNAs, and affects the process of protein synthesis
(5). In addition, METTLI activity may also have some effect on
other RNA molecules, such as rRNAs and microRNAs (6).
However, the function and regulatory mechanisms of METTLI
still require further studies to fully understand its role in cell biology
and disease development.

Previous studies have shown that aberrant expression of
METTLI is closely associated with tumor development and
patient survival. For example, METTLI is associated with poor
prognosis in bladder cancer, and it regulates the translation of
EGFR/EFEMP1 by modifying certain tRNAs to inhibit the
proliferation, migration and invasion of bladder cancer cells (7).
In prostate cancer, METTL1 promotes tumorigenesis through
tRNA-derived fragment biogenesis, and inhibition of METTLI
activity leads to favorable changes within the tumor, such as an
increase in anti-tumor cytokines and infiltration of cytotoxic
immune cells, including M1 macrophages and CD8+ T cells (8).
METTLI1 deficiency leads to reduced abundance and cell cycle
alterations of m7G-modified tRNAs, particularly Arg-TCT-4-1,
and inhibits oncogenicity (9). In addition, METTL1-mediated
tRNA m7G modifications promote the translation of mTOR
pathway components, thereby facilitating mTOR activation and
progression of esophageal squamous cell carcinoma (10). These
studies imply an important role for METTLI in cancer
development. However, its specific role and regulatory
mechanism in the progression of cutaneous melanoma have not
been clearly reported.

This study is based on public data mining in The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
databases, and systematically analyzes the expression, regulation,
and clinical value of METTLI in SKCM, providing reference for
prognosis judging and personalized therapy of SKCM.

Materials and methods
Databases and data mining and analysis

The databases used in this study include, Kaplan-Meier Plotter,
GEPIA2 database (http://gepia2.cancer-pku.cn/#index), BEST
database, The Human Protein Atlas database, ASSISTANT for
Clinical Bioinformatics tool, cBioportal database, TISCH database,
UCSC genomics, and two single-cell datasets (GSE72056 and
GSE174401). The Kaplan-Meier Plotter, GEPIA2 database, BEST
database, Human Protein Atlas database, ASSISTANT for Clinical

Abbreviations: SKCM, skin cutaneous melanoma; CNV, Copy number variation;
METTLI, Methyltransferase-like 1; TCGA, The Cancer Genome Atlas; GEO,

Gene Expression Omnibus.
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Bioinformatics tool, and the cBioportal database were used to
analyze the correlation between METTL1 expression and
clinicopathological characteristics of SKCM patients. Two single-
cell sequencing datasets, GSE72056 and GSE174401, were used to
analyze the relationship between METTL1 and tumor cell trajectory
by the algorithm of monocle, and the differentiation potential of
cells by the CytoTRACE algorithm. ASSISTANT for Clinical
Bioinformatics tool analyzed the correlation between METTLI
and stem cell-like phenotype of SKCM and with immune cells.
cBioportal database analyzed the correlation between METTLI
copy number amplification and clinical characteristics. The spatial
transcriptome data of formalin fixation and paraffin embedding
samples on 10x Genomics (https://www.10xgenomics.com/cn/
datasets/human-melanoma-if-stained-ffpe-2-standard) were used
to analyze the colocalization of METTL1 with SKCM stem cell
markers SOX10 and ABCB5. All analyses were conducted by simply
selecting the disease type (SKCM in this study) in the database,
followed by filtering and extracting relevant data according to the
default parameters of the database.

Cell culture and treatment

The cell lines A875 and A375 were gifts from the Department of
Dermatology, Xiangya Hospital, Central South University
(Changsha, China), and were cultured in 1640 complete medium
with 10% Fetal Bovine Serum (cat no. A2720801, Gibco, USA) at
37°C, 5% CO2 incubator.

siRNA transfection

To knock down METTLI, A875 and A375 cells were transfected
20 nM siRNA (siRNA sequences: METTLI #1: GATGACCCAAA
GGATAAGAAA; METTL1 #2: GGATGTGCACTCATTTCGA or
empty plasmids (control) that mixed with Lip3000 for 48 hours.
The transfected cells were used for further analysis.

Quantitative real time PCR

The transfected cells were collected and added TRIzol reagent to
extract the total RNA. Ultra Micro Nucleic Acid Analyzer
(NANODrop2000, Shimadzu, Japan) was used to determine the
concentration and purity of RNA to meet the requirement of A260/
A280 in the range of 1.8-2.0. The extracted RNA was used as the
template for reverse transcription to synthesize the cDNA. The real-
time fluorescent quantitative PCR (7300 plus, ABI, USA) was used
to perform real-time quantitative amplification. The reaction
conditions were as follows: 95°C for 30 s, 95°C for 5 s, 55°C for
30 s, 72°C for 30 s, 40 cycles; 95°C for 15 s, 60°C for 1 min, 95°C for
15 s. The specificity of the primers was analyzed according to the
melting curves, and the relative expression of the target genes was
calculated by using the 2**“* method with GAPDH as the internal
reference. The primer sequences were as follows:
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METTLI1-F: AAAGGGGACATGAAAGGGCAA,
METTL1-R: CACCAGACAGACCAAGATGGAA;
SOX10-F: GAGGCTGCTGAACGAAAGTG,
SOX10-R: GCTCTTGTAGTGGGCCTGGA;
CD4-F: GGGATACAGTGGAACTGACCTG,
CD4-R: CAGAGTTGGCAGTCAATCCGAA;
CD8A-F: ATGGCCTTACCAGTGACCG,
CD8A-R: AGGTTCCAGGTCCGATCCAG.
GAPDH-F: AATGGGCAGCCGTTAGGAAA,
GAPDH -R: GCGCCCAATACGACCAAATC.

Clone formation

A875 and A375 cells were inoculated in 35 mm cell culture
dishes (300 cells/dish) and incubated in an incubator for 2 weeks,
with medium changes every 2 day. The supernatant was washed 3
times with PBS and fixed with methanol for 15 min, incubated with
2 mL of crystal violet staining solution for 30 min, washed 3 times
with PBS, and air dried. When the diameter of cell clone was >0.75
mm, it was recognized as positive and manually counted.

RNA-seq data analysis

The METTL1 siRNA transfected A875 cells and control cells
were collected and used for sequencing in BGISEQ-500 platform
(Beijing Genomics institution, Shenzhen, China). mRNA was
enriched using oligo(dT) magnetic beads and denatured to open
its secondary structure. The mRNA was fragmented and used to
synthesize double-strand ¢cDNA to amplify. After denaturing the
PCR product into single-stranded, the cyclization reaction system
was performed to obtain the single-stranded cyclic product, and
digest the linear DNA molecules that have not been cyclized. The
single-stranded cyclic DNA molecules were used for rolling circle
replication to form a DNA nanoball (DNB) containing multiple
copies, which were sequenced by co-probe anchored
polymerization (cPAS). The raw data obtained from sequencing
was filtered using SOAPnuke (v1.5.6) and clean data was compared
to the reference gene set using Bowtie2 (v2.3.4.3). Gene expression
was quantified using RSEM (v1.3.1) software and differential gene
detection was performed using DESeq2 (v1.4.5), and the heatmap
was displayed. Gene function analysis was based on GO.

CCK8

METTLI1 siRNA and negative control were transfected into
A875 and A375 cells respectively for 24 h. After transfection, the
cells were seeded into 96-well plates at 5x10° cells per well, and 75
uM photosan was added into each well after the corresponding time
points (0, 1, 2, 3, 4 day), and the cells were subjected to a 630 nm
laser treatment for 4 h. 10 ul CCK8 was added into each well after
24 h. The OD value of CCK8 was determined using a 450 nm
wavelength and the growth curve was plotted.
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Cell migration and invasion

The transfected cells were removed from the complete culture
medium, replaced with serum-free medium for 24 h. The cells were
digested and collected into centrifuge tubes, washed twice with PBS,
and the cells were suspended in basal medium and precipitated.
5x10* cells were added to the upper chambers, and then
supplemented with serum-free medium, and fresh complete
medium was added to the lower chambers of the chambers. The
chambers with matrix gel were used to detect cell invasion, and the
chambers without matrix gel were used to detect cell migration. The
cells were put into the incubator for 48 h. The liquid in the
chambers was wiped out by cotton swabs and put into
paraformaldehyde solution for 30 min; the chambers were
clamped out, the liquid in the chambers was poured out, and the
chambers were stained with crystal violet staining solution for 20
min; the chambers were put into ultrapure water for rinsing, and the
liquid in the chambers was discarded, and the liquid was dried out
upside down; the chambers were photographed under a microscope
for cell counting and analyzing.

Cell cycle detection by flow cytometry

A875 cells were transfected with METTL1 siRNA and negative
control respectively, and then cultured for 72 h after transfection,
and then the cells were collected and counted. 1x10° cells were
obtained and washed by pre-cooled PBS, and then were
resuspended by adding 70% ethanol solution to the cell
precipitates, fixed for 30 min, added with PI staining solution,
and incubated for 30 min away from light, and then detected by
flow cytometry.

Statistical analysis

All experiments were repeated three times, and the data are
expressed as the mean + standard deviation. Statistical analysis was
performed using GraphPad Prism 8 software. A t test was used for
comparisons between two groups. For multiple comparisons
involving more than two groups, Tukey’s post hoc test and one-
way analysis of variance (ANOVA) were used. P < 0.05 was
regarded as statistically significant difference.

Results

Upregulated METTLL1 is an independent
prognostic indicator of SKCM

Using the GEPIA2 online database (11), we first analyzed the
expression of METTLI in the TCGA SKCM cohort and found that
METTL1 was significantly upregulated in SKCM (Figure 1A).
Differential analysis of SKCM genomic variants according to their
type into four subclasses, BRAF mutated, NF1 mutated, RAS
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mutated, and wild-type without any of the three mutations, revealed
that METTL1 was significantly upregulated in all four types of
SKCM samples (Figure 1B). However, there was no significant
difference in METTLI expression in these mutant types of SKCM
(Supplementary Figure S1A). METTL1 expression was also
similarly markedly upregulated metastasis and recurrence tumor
compared with primary and no-recurrence tumor in GSE46517,
another independent SKCM cohort dataset (Figure 1C). In another
independent SKCM dataset GSE98394, the expression of METTLI
increased with the increase of T grade, N grade, and clinical stage
(Figure 1D). Subsequently, we also validated that the mRNA level of
METTL1 was higher in SKCM tissues (N=19) compared with
normal tissues (N=7) by qRT-PCR (Figure 1E), and similar
results were observed in immunohistochemical staining from The
Human Protein Atlas similarly (Figure 1F).

Furthermore, we analyzed the correlation between METTLI
and the clinicopathological features of SKCM patients. Survival
analysis showed that patients with high METTLI expression in the
TCGA_SKCM cohort had shorter overall survival (Figure 1G), and
consistent results were also obtained in the data from the three
other SKCM cohorts, GSE46517, GSE98394, GSE190113, and
GSE19234 (Figures 1H-J, Supplementary Figure S1B). In the
following, we found that patients with high METTL1 expression
in the GSE133713 dataset had lower recurrence-free survival
(Supplementary Figure S1C). According to these survival curve
results, METTL] may function as an independent prognostic
indicator for SKCM patients. This evidence implies that METTLI
may play a critical role in the development and progression
of SKCM.

METTL1 is expressed in stem-like SKCM
cells at early stage of differentiation

To further determine the spatiotemporal expression pattern of
METTLI, we analyzed the relationship between METTLI and the
developmental chronology of tumor cells using monocle algorithm
with two sets of single-cell sequencing data, GSE72056 and
GSE174401. The analysis revealed that METTL1 was highly
expressed in cluster6 in GSE72056, cluster 6 was located at the
beginning of the trajectories (Figures 2A-C), and cluster 6 was
significantly enriched for stem cell-associated MYC, Hedgehog, and
WNT-B-catenin signaling pathways (Supplementary Figures S2A,
B). Similarly, METTL1 was highly expressed in cluster 0 in
GSE174401, which was also located at the beginning of the
trajectories (Figures 2D-F). In addition, the differentiation
potential of the cells was analyzed using the CytoTRACE
algorithm, and it was found that cluster 0 had the highest
differentiation potential and highly expressed ABCB5, an SKCM
stem cell marker (Figures 2G, H). Analysis of the relationship
between METTLI expression and cell stemness scores using the
ASSISTANT for Clinical Bioinformatics tool found that the
mRNAsi score was higher in the METTLI high expression group
(Figure 3A), and the SKCM stem cell marker genes SOX10 and
ABCB5 were highly expressed (Figures 3B, C), and METTLI1
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expression was significantly and positively correlated with these
two marker genes (Figure 3D). In addition, spatial transcriptome
data analysis revealed that METTLI expression co-localized with
stem cell marker genes SOX10 and ABCB5 (Figure 3E).

We further confirmed the function of METTLI by in vitro
cellular experiments. Knockdown of METTLI in SKCM cells A875
and A375 by siRNA transfection and siRNA1 was selected for
further analysis (Figure 3F). After METTL1 siRNA transfection, the
protein expression of METTL1 was significantly knocked down
(Figure 3G). Downregulation of METTLI significantly inhibited the
clone formation ability of SKCM cells (Figure 3H) and decreased
the expression of stem cell marker gene SOX10 (Figure 3I). These
results suggest that the function of METTL1 is closely related with
stem cell-like SKCM cells.

Knockdown of METTL1 inhibits migration
and invasion of SKCM cells

TISCH database analysis showed that METTLI expression was
higher in metastatic malignant tumor cells (Figure 4A). CCK8 assay
showed that knockdown of METTLI significantly inhibited the cell
viability of A875 and A375 cells (Figure 4B), and significantly
inhibited the migration (Figures 4C, D) and invasive ability of
A875 and A375 cells (Figures 4E, F), and also had slight alterations
on cell cycle (Supplementary Figure S3).

METTL1 functions as a marker of
immunotherapy response in SKCM

Further, we carried out RNA-seq analysis after silencing
METTLI. Principal component analysis showed that samples
after silencing METTLI and samples without silencing METTLI
could be significantly distinguished and were closer to each other in
the same group (Figure 5A). 103 genes were considerably
differentially expressed according to differential analysis, of which
32 had significant up-regulation and 71 had significant down-
regulation (Figure 5B). These differentially expressed genes were
mainly enriched in several immune-related signaling pathways,
such as T cell migration, epithelial-mesenchymal transition, and
inflammatory response (Figure 5C). We hypothesized that
METTLI might be related to immune cell infiltration and the
response to immunotherapy since T cell migration and the
inflammatory response are crucial for anti-tumor immunity.
Then, we analyzed the association of METTL1 with B-cell, CD4+
T-cell, and CD8+ T-cell infiltration based on the TCGA SKCM
cohort data. Interestingly, we found that the higher the METTLI
expression, the lower the degree of CD4+ T cell and CD8+ T cell
infiltration in SKCM patients (Figure 5D). To confirm this
phenomenon, we performed qRT-PCR experiments using SKCM
samples. We found that the expression of METTL1 was not
significantly correlated with the expression of CD4, while it was
significantly negatively correlated with the expression of CD8A, a
marker for CD8" T cells (Figure 5E). This evidence suggested that
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The association of high expression of METTL1 with clinicopathologic features of the SKCM patients. (A), the GEPIA2 online database analyzed the
expression of METTLL in the TCGA SKCM cohort. (B) Differential analysis of SKCM genomic variants according to their type into four subclasses,
BRAF mutated, NF1 mutated, RAS mutated, and wild-type without any of the three mutations. (C) METTL1 expression was analyzed in GSE46517,
another independent SKCM cohort dataset, including metastasis, recurrence tumor, primary, and no-recurrence tumor. (D) METTL1 expression was
analyzed in another independent SKCM dataset GSE98394 with T grade, N grade, and clinical stage. (E) the mRNA level of METTL1 was validated in
SKCM tissues (N=19) and normal tissues (N=7) by gRT-PCR. (F) Immunohistochemical staining of METTL1 in melanoma and normal tissues (N=>5)
from The Human Protein Atlas (METTLL antibody, 1:400, cat no. HPA020914, Sigma-Aldrich) and quantification. (G) Survival analysis showed the
overall survival of patients with high or low METTL1 expression in the TCGA_SKCM cohort. (H=3J) Survival analysis showed the overall survival of
patients with high or low METTL1 expression in the three other SKCM cohorts, GSE46517, GSE98394, GSE190113. *P < 0.05.
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FIGURE 2

The relationship between METTL1 and tumor cell trajectories. (A—F) using monocle algorithm, the relationship between METTL1 and tumor cell
trajectories was analyzed in two sets of single-cell sequencing data, GSE72056 (A—C) and GSE174401 (D—-F). (G) the CytoTRACE algorithm was used
to analyze the differentiation potential of the cells. (H) ABCBS5, an SKCM stem cell marker was highly expressed in Cluster 0.

METTLI1 might reduce the chance of cytotoxic T cells killing the
tumor by inhibiting the infiltration of CD8" T into the tumor,
thereby promoting tumor progression.

Current immune checkpoint therapies for antitumor
immunotherapy are precisely those targeting CD8" T cells, and
thus we hypothesized that the expression level of METTLI1 might be
correlated with patients’ response to immune checkpoint therapy.
Using the BEST data included a cohort analysis on immune
checkpoint therapy, we found that METTL1 expression serves as
a reliable predictor for response to anti-PD1 treatment (Figure 5F).
Furthermore, utilizing the Kaplan-Meier Plotter online analysis tool
to analyze data from a cohort of SKCM patients treated with anti-
PD1 revealed that those with high levels of METTL1 had
significantly worse prognosis (Figure 5G). These findings suggest
that METTL1 may be a pan-cancer immunotherapeutic response
marker, and marker studies targeting METTL1 with expanded
sample size and tumor type are important for monitoring the
clinical efficacy of anti-PD1 immunotherapy.
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High expression of METTL1 may be driven
by copy nhumber amplification

Copy number variation directly affects the expression level of
the genes it covers, and there are a large number of copy number
variation events in SKCM. Therefore, we conjectured that the high
expression of METTLI is probably driven by an increase in its
genomic copy number amplification. Based on this, we analyzed the
genome sequencing data of several SKCM cohorts included in the
cBioportal database. We found that METTL1 was amplified to
varying degrees in all five cohorts (Figure 6A), and the mRNA level
of METTLI increased with the increase in the degree of METTLI
genomic copy number amplification (Figure 6B), and the copy
number value of METTLI was also significantly and positively
correlated with the mRNA level of METTL1 (Figure 6C), which
strongly suggests that the copy number amplification of METTLI is
what drives its expression. In addition, more the copy number value
of METTL1 was altered in high SKCM stage (Figures 6D, E).
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FIGURE 3

the relationship between METTL1 expression and cell stemness. (A) The ASSISTANT for Clinical Bioinformatics tool was used to analyze the
relationship between METTL1 expression and cell stemness mRNAsi score. (B, C) The SKCM stem cell marker genes SOX10 and ABCB5 were highly
expressed in high METTL1 group. (D) METTL1 expression was significantly and positively correlated with SOX10 and ABCBS. (E) spatial transcriptome
data was used to analyze the co-localization of METTLL and stem cell marker genes SOX10 and ABCBS. (F, G) A875 and A375 SKCM cells were
transfected with METTL1 siRNA and qPCR and western blot were performed to detect METTL1 expression. (H) the clone formation assay was
performed to evaluate the functions of METTL1 on clone formation ability. (I) gPCR and western blot were performed to detect SOX10 expression

after METTL1 knockdown. **P < 0.01, ***P < 0.001, ns, no significant.

Previous work has identified elevated tumor aneuploidy as a marker
of low overall survival and can be used as a biomarker for clinical
outcomes of immunotherapy (12), and we found that the copy
number value of METTLI altered samples had higher aneuploidy

Frontiers in Immunology

149

score (Figure 6F). In addition, We found that patients with altered
METTLI copy numbers also had worse overall survival (Figure 6G),
suggesting that METTL1 be used as a prognostic indication
for SKCM.
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Knockdown of METTL1 inhibits migration and invasion of SKCM cells. (A) TISCH database was used to analyze the METTL1 expression in various cells
of primary and metastatic tumor. (B) CCK8 assay was performed to evaluate the cell viability of A875 and A375 cells after METTL1 knockdown. (C, D)
Transwell assay was performed to evaluate the cell migration of A875 and A375 cells after METTL1 knockdown. (E, F) Transwell assay was performed
to evaluate the cell invasion of A875 and A375 cells after METTL1 knockdown. *P < 0.05, **P < 0.01, ***P < 0.001.

MYC was a potential transcription factor of
METTL1 in SKCM

Disturbance in transcriptional regulatory networks is a
common feature of multiple tumors, and activation of oncogenic
transcription factors leads to a wide range of downstream effects.
We predicted that METTL1 should also be activated by some
specific transcription factors. To explore the transcriptional
regulatory mechanism of METTLI, we downloaded the single-cell
sequencing data of GSE72056, a group of SKCM, from the TISCH
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online database for analysis. After cell type annotation using this
tool (Figures 7A, B), transcriptional regulator analysis was
performed on the subpopulations that specifically highly
expressed METTLI1, and we found that MYC transcriptional
regulators were significantly enriched (Figure 7C), MYC
transcriptional regulators are also expressed at higher levels in
this cell subpopulation (Figure 7D, Supplementary Figure S4).
Therefore, we hypothesized that MYC may be the most
important transcription factor for METTL1. Further analysis of
the TCGA SKCM cohort data and SKCM spatial transcriptome data
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METTL1 as a marker of immunotherapy response in SKCM. (A) Principal component analysis of RNA-seq after silencing METTLL. (B) Heatmap
showed the 103 differentially expressed genes, including 32 up-regulated genes and 71 down-regulated genes. (C) GO enriched analysis for these
differentially expressed genes. (D) The association of METTL1 with B-cell, CD4+ T-cell, and CD8+ T-cell infiltration was analyzed based on the TCGA
SKCM cohort data. (E) gRT-PCR experiments was performed using SKCM samples to detect the expression of CD4 and CD8A, the relationship of the
expression of CD4 and CD8A, and METTL1 was analyzed. (F) the BEST data included a cohort analysis on immune checkpoint therapy was used to
analyze the association of METTL1 expression and response to anti-PD1 treatment. (G) the Kaplan-Meier Plotter online analysis tool was used to
analyze the survival of SKCM patients treated with anti-PD1 with high or low levels of METTLL.

revealed that the expression levels of MYC and METTL1 were
significantly positively correlated (Figures 7E, F), consistent with
the regulatory relationship between transcription factors and target
genes. Analysis of Chip-seq data from human epidermal
keratinocytes also showed that MYC peak was significantly
enriched near the METTLI promoter (Figure 7G). These data
suggest that MYC may be a potential transcription factor
of METTLI.
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Discussion

RNA modification is a type of epigenetic modification that can play
an important role in regulating biological processes and tumor
pathology by enhancing the stability and expression of oncogenic
transcripts (13). The RNA modifications include N6-methyladenosine
(m6A) modification, N1-methyladenosine (m1A) modification, 5-
methylcytosine (m5C) modification, 7-methylguanosine (m7G)
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FIGURE 6

Copy number amplification induces METTL1 expression. (A) The genome sequencing data of SKCM cohorts included in the cBioportal database was
used to analyze the copy number amplification of METTLL. (B) The association of genomic copy number amplification and the mRNA level of
METTLL. (C) The association of the copy number value of METTL1 and the mRNA level of METTLL. (D, E) The percentage of samples with various
stage in altered or unaltered METTL1 copy humber group. (F) The aneuploidy score in altered or unaltered METTL1 copy number group. (G) The
overall survival in altered or unaltered METTL1 copy numbers group. ****P < 0.00001.

modification, etc. (14) RNA modification can be mediated by
methyltransferases, such as METTL1, METTL3, METTL16, and
demethylating enzymes, such as FTO, ALKBH5. RNA modifications
can be catalyzed, erased and recognized by methyltransferases such as
METTL1, METTL3, METTLI16, and accurately regulate the process of
methylation, which plays an important role in the proliferation,
metastasis, invasion, apoptosis, autophagy, and drug-resistance of
tumor cells (15). m7G modification has been found firstly in the
initial site of mRNA, and then in rRNAs and tRNAs (16). The m7G
modification is a common 5’-modification of mRNAs and an internal
modification of various non-coding RNAs. m7G modification is
mediated in tRNAs by the METTL]I and WD repeat domain 4
(WDR4) complex, which is significantly involved in various
tumorigenesis (6).
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METTLI is often aberrantly expressed and catalyzes m7G
modification in tRNAs or miRNAs, which ultimately affects the
expression of target genes and regulates tumor-related biological
functions (17). It has been shown that the oncogenic function of
METTLI can promote tumor cell proliferation and migration by
inhibiting the PTEN-related signaling pathway, and that inhibition
of METTL1/WDR4 activity reduces m7G tRNA modification and
slows down the progression of hepatocellular carcinoma (18). In
lung adenocarcinoma and squamous carcinoma, the expression
levels of METTL]I and WDR4 were significantly elevated
compared with those in normal lung tissues, and were closely
associated with poor prognosis of lung cancer patients (19). In
this study, data mining of public databases revealed that METTLI
was abnormally highly expressed in SKCM and was a poor

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1575219
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xia and Yin

A B

SKCM_GSE72056 SKCM_GSE72056

10.3389/fimmu.2025.1575219

Malignant_C5 enriched regulators

ol =
& TFscore
PR . ¥
00 [ ® s
~ o1 ~ i [ Rl
Ji_ 5 * ; Maw"‘, Celltype (major-lineage) 2 ™
57 7 o8B - —
R . : & o “( ® CD4Teon g w2 Exp.
® CD8Tex 214 o 06
® 6 Fibroblasts * Tprolif Endothelial 2 =00 L 03
o i - o Farovans P o0
7 7 ® Mali it b= |
s M 9 MonoMacrg.  Endothelial pagent = 03
10 . 12 . -
' “ ﬁ ® Tprolf .
4 e 12 29
¢ i 2 N .
o »
0 10 20 30 40 50
Rank of TFs
D E I 0.68
HALLMARK_MYC_TARGETS_V1
101 & ol o 150
pers
level $ 100 "
~ o) . § g Identity
% : 4 = * anterior1
P 025
s . 5 50
g
104 1 colour =
L5 " 20
. . Spearman r=0.24
.
=1.15e-07
| P 0 0
.
20 : ; Y o e sk am sk ek 0 5 1o s
20 -10 UMAP_1 0 10 Log2 (METTLA expression) METTL1
G MYC Chip-seq
Scale 2kt {_hg38
chri2: 57,768,000 | 57,768,500 | 57,769,000 | 57,769,500 | 57,770,000 | 57,770,500 | 57,771,000 | 57,771,500 | 57,772,000 | 57,772,51
11.6065_ 8122_treatbw
NHEK
0 m— —
e GENCODE V44 (8 ftems fitered out) ummy M) er
T T — e — —— ENSGOC
FIGURE 7

MYC was a potential transcription factor of METTLL1 in SKCM. (A, B) The SKCM single-cell sequencing data of GSE72056 from the TISCH online
database was used to analyze the cell type annotation. (B) Transcriptional regulator analysis was performed on the subpopulations that specifically
highly expressed METTLL. (D) MYC transcriptional regulators are also expressed at higher levels in this cell subpopulation C5. (E, F) The association of
the expression levels of MYC and METTLL. (G) Analysis of Chip-seq data from human epidermal keratinocytes also showed that MYC peak was

significantly enriched near the METTL1 promoter.

prognostic factor. The high expression of METTL] may be
associated with abnormal copy number amplification and positive
MYC regulation.

We further analyzed and found that METTLI1 was co-expressed
with stem cell markers in SKCM with positive correlation;
knockdown of METTLI significantly inhibited the clone
formation ability of SKCM, suggesting that METTL1 has the
function of regulating SKCM stem cells. METTL1 has been
shown to have an important role in embryonic stem cell self-
differentiation and neural differentiation (20, 21). METTL1
silencing leads to alteration of the entire m7G profile in human
induced pluripotent stem cells (hiPSCs) and reduces the translation
efficiency of stem cell marker genes. hiPSCs with METTL1-
knockdown exhibited reduced totipotency and a slower cell cycle
(22). In addition, METTLI silencing accelerated the differentiation
of hiPSC to the embryoid body and promoted the expression of
mesoderm-related genes. Similarly, METTL1 knockdown enhanced
teratoma formation and mesodermal differentiation in vivo by
promoting cell proliferation and angiogenesis in nude mice (22).
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These results suggest that METTLI plays an important role in the
malignant phenotype of SKCM stem cell-like tumor cells.

By mining the RNA-sequencing data after interfering with
METTLI as well as public data, we found that METTLI functions as
a marker of immunotherapy response in SKCM. Polymorphonuclear
myeloid-derived suppressor cells (PMN-MDSCs) were enriched in
advanced intrahepatic cholangiocarcinoma and significantly correlated
with METTL1 (23). Zeng et al. found that liver-specific overexpression
or knockdown of METTLI significantly affected the accumulation of
PMN-MDSCs and subsequently affected CD8 + T cell infiltration (24).
It was found that the lower infiltrating levels of CD8+ T cells was found
in clinical adrenocortical carcinoma samples with high METTLI
expression (25). In this study, we found that the expression of
METTLI was significantly negatively correlated with the expression
of CD8A, a marker for CD8+ T cells. These findings suggested that
METTLI might reduce the chance of cytotoxic T cells killing the tumor
by inhibiting the infiltration of CD8+T into the tumor, thereby
promoting tumor progression. In addition, METTL1 expression
serves as a reliable predictor for response to anti-PD1 treatment. Gao
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et al. found that tumor cell lines with higher METTLI expression were
more sensitive to drugs targeting chromatin histone methylation, ERK-
MAPK and WNT signaling pathways (26). CXCL8 in human and
Cxcl5 in mouse are key translational targets of METTLI that facilitate
its function in promoting PMN-MDSC accumulation in tumor
immune microenvironment of intrahepatic cholangiocarcinoma. Co-
blockade of METTL1 and its downstream chemokine pathway
enhances the anti-PD-1 efficacy in ICC preclinical mouse models
(23). METTL1 mediates m7G methylation of PKM mRNA and
enhances the expression of its encoded PKM2, while increased
PKM2 dimer expression and nuclear translocation activated CD155
expression and induced colorectal cancer immune evasion (27). RNA
methylation contributes to revealing the underlying mechanisms of
many aspects of tumors, involving initiation, development, invasion,
infiltration, and so on. The excessive m’G modification of certain genes
leads to the acceleration of tumor development. METTLI-mediated
m’G acts on different RNA targets, affecting the processes of
tumorigenesis and immune response. These findings suggest that
METTLI1 may be a pan-cancer immunotherapeutic response marker,
and marker studies targeting METTLI with expanded sample size and
tumor type are important for monitoring the clinical efficacy of anti-
PD1 immunotherapy.

Our study relies heavily on data mining of publicly available
databases. Although we preliminarily confirmed the oncogenic
function of METTL1 in SKCM through cell biology experiments,
the results inevitably exhibit some bias due to the small sample size
and heterogeneity among samples. We hypothesized through public
databases that METTLI1 is positively regulated by MYC, but this
hypothesis has not been supported by experimental data and
requires further clarification. Additionally, we found that SKCM
patients with high METTLI expression had a worse prognosis after
anti-PD1 immunotherapy. In light of the existing report that co-
blockade of METTL1 and its downstream chemokine pathway
enhances the anti-PD-1 efficacy in ICC preclinical mouse models
(23). Thus, our inference is highly likely to be reliable, but still
requires further confirmation through in vivo experiments. The
specific mechanisms downstream of METTL1 also need to be
validated through single-cell multi-omics analysis of human tissue
samples and preclinical animal models.

In conclusion

The expression of METTL1 was markedly up-regulated in
SKCM, and high expression of METTL1 was linked to poor
prognosis for SKCM patients, which could serve as an independent
prognostic indicator of METTLI. In addition, METTLI1 promotes the
malignant phenotypes of proliferation, migration, and invasion in
SKCM, and may also impede the infiltration of CD8+ T cells into the
interior of the tumor by enhancing the communication between
tumor cells and fibroblasts and thus forming a physical barrier. Most
interestingly, SKCM patients with high METTL1 expression had a
worse prognosis after anti-PD1 immunotherapy; hence, it may be a
potential biomarker for anti-PD1 immunotherapy in SKCM patients.
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Background: Esophageal cancer (EC) remains a significant clinical challenge,
characterized by its aggressive nature and poor prognosis. Current therapeutic
strategies, including targeted therapies, have limitations due to the complex
interplay between tumor heterogeneity and the tumor microenvironment (TME).
However, the specific contributions of N6-methyladenosine (m®A) methylation
to the TME in EC are yet to be fully elucidated.

Methods: Through comprehensive bioinformatics analyses, a detailed
examination of m®A regulators were conducted in EC using datasets from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Single-cell
RNA sequencing (scRNA-seq) and a consensus clustering algorithm was
employed to classify m®A modification patterns and analyze their relationships
with immune cell infiltration and clinical outcomes. Additionally, an m®A scoring
system was developed based on principal component analysis to assess the
prognostic value of identified m®A modification patterns.

Results: The findings revealed two distinct m®A modification clusters associated
with divergent TME characteristics and immune infiltration profiles. Patients
exhibiting the immune-inflamed phenotype (m®A cluster B) demonstrated
significantly improved survival compared to those with the immune-excluded
phenotype (m®A cluster A). Notably, mCA scores correlated positively with
immune cell presence and related with adverse prognostic outcomes,
indicating their potential as predictive biomarkers for immunotherapy
responses. A low m°A score indicated a better response to immunotherapy.

Conclusion: This study highlights the critical role of m®A methylation in shaping
the TME and influencing immune dynamics in EC. The m°®A score developed
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herein provides a novel quantitative tool for predicting tumor behavior and
treatment efficacy, paving the way for more personalized immunotherapeutic
strategies in clinical practice. This scoring system illustrates a strong correlation
of EC with TME immune cell composition, suggesting potential as a biomarker for
targeted therapeutic strategies for EC.

esophagus cancer, m¢A, tumor microenvironment, immunotherapy, prognosis,

immune infiltration

1 Introduction

N6-methyladenosine (m°A) has been recognized as a crucial RNA
modification. m®A modifications are dynamically regulated by various
regulators, including methyltransferase complex writers such as
METTL3, METTL14, METTL16, RBM15, RBM15B, VIRMA,
WTAP and ZC3H13, and several binding proteins, such as FMRI,
HNRNPC, HNRNPA2BI1, IGFBP1/2/3, LRPPRC, RBMX, YTHDC1/
2, and YTHDF1/2/3, have been identified as readers, as well as
demethylases erasers such as FTO and ALKBH5. Numerous studies
have demonstrated that aberrant expression of m®A core modification
and reading proteins is implicated in diverse physiological and
pathological processes, including biological growth and
development, DNA damage repair, biological rhythms, angiogenesis,
and various types of tumors (1). In recent years, substantial progress
has been achieved in m°A epitranscriptomics, underscoring its pivotal
roles in cancer initiation and progression by modulating RNA
stability, mRNA splicing, microRNA processing, and mRNA
translation (2). Unlike genetic events, mC®A modifications are
reversible, making epigenetic regulation particularly interesting for
the development of new therapeutic technologies for cancer treatment.

Esophageal cancer has the sixth highest cancer-related mortality
rate, but research data on this disease are limited compared to other
cancers (3-5). Esophageal cancer is characterized by its aggressive
nature and dismal 5-year survival rate, which stands at only 18% (6).
Recent advances in the identification of molecular markers specific to

Abbreviations: m°A, N6-methyladenosine; TME, tumor microenvironment;
DCs, dendritic cells; MDSCs, myeloid-derived suppressor cells; MCs, mast
cells; CAR, chimeric antigen receptor; BMDMs, bone marrow-derived
macrophages; DNMTs, drugs targeting DNA methyltransferases; TCGA, The
Cancer Genome Atlas; GEO, Gene Expression Omnibus; ESCA, esophageal
cancer; TPM, transcripts per kilobase million; CNV, copy number variation;
ssGSEA, Single-sample gene set enrichment analysis; DEGs, differentially
expressed genes; MF, molecular function; BP, biological process; CC, cellular
component; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene
Ontology; PCA, principal component analysis; ROC, receiver operating
characteristic; TMB, tumor mutation burden; TIDE, Tumor Immune
Dysfunction and Exclusion; ICI, immune checkpoint inhibitor; mUC,

metastatic urothelial cancer; EMT, Epithelial-mesenchymal transition.
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esophageal cancer have led to the development of novel targeted therapy
approaches by targeting these markers (7-12). However, inhibitors have
the potential to cause primary or acquired resistance in patients who
receive these treatments (13-16). Furthermore, in esophageal cancer, a
diverse array soluble immunosuppressive factors and cells with
immunosuppressive properties can interfere with immune effector
cells, thereby creating a distinct immunosuppressive microenvironment.

Multiple factors influence the outcome of multi-modality
treatments. An individual tumor’s intrinsic features are crucial to
shaping its immune microenvironment and affecting the effectiveness
of immunotherapy in esophageal cancer (17). As our understanding
of the tumor microenvironment deepens, we increasingly recognize
the significance of immune cell subsets in tumor development and
the identification of potential therapeutic targets. The
microenvironment in esophageal cancer is complex, comprising of
various components such as NK cells, tumor-associated
macrophages, dendritic cells (DCs), myeloid-derived suppressor
cells (MDSCs), neutrophils, mast cells (MCs), eosinophils,
endothelial cells, tumor angiogenesis, and cancer-associated
fibroblasts (CAFs) (18, 19). Extensive exploration has been
conducted on the utilization of clinical immunotherapy approaches
that target innate immune cells as adjuvant therapies in conjunction
with surgical resection and chemoradiotherapy for the treatment of
diverse cancers. The strategies encompass the utilization of immune
checkpoint inhibitors and Chimeric Antigen Receptor T-Cell
Immunotherapy (20, 21). Analyzing the characteristics of cells
within the tumor microenvironment to predict immune infiltration
is crucial for exploring new immunization strategies and studying
responses to existing immune checkpoint inhibitors (22, 23). Recent
research has categorized the microenvironments of tumors in cancer
patients into three fundamental immune profiles: tumors that are
immune inflamed (“hot”), immune excluded, and immune desert
(“cold”). These profiles suggest different treatment options, excluding
esophageal cancer, and provide valuable insights for effective
therapeutic interventions (24, 25). To conclude, a meticulous and
all-encompassing examination of the esophageal cancer tumor
microenvironment, coupled with the determination of the
corresponding tumor immunophenotype, can prove to be a
valuable approach in directing immunotherapy and forecasting its
effectiveness (20, 21, 23).
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Several studies have substantiated the significant involvement of
m°A modification in the development of tumor microenvironment
(TME) diversity and complexity, a phenomenon that cannot be
entirely elucidated by the RNA degradation mechanism (26). m°A
modulators affected inflammation infiltrates and neovascularization
of tumor tissues in human abdominal aortic aneurysm samples,
where the markers METT14, FTO, and YTHDEF3 are strongly
colocalized with CD45+ leukocytes and CD3+ T cells, as well as
CD68+ macrophages (27). Similarly, a METTL3/FTO-m°A
methylation-mediated generation of M1/M2 macrophages from
murine bone marrow-derived macrophages (BMDMs) has been
described (28, 29). A new class of drugs targeting DNA
methyltransferases (DNMTSs) has been shown to successfully
restore coordinated immune responses in solid tumors by
triggering MHC 1 and interferon (IFN)-triggered immune-related
signaling (30, 31). However, most studies, which are constrained by
the state of technology, focus on just one or two m°A regulators,
which is insufficient to describe the intricate functions of regulators
in tumors. These research were made feasible by the ongoing
development and collection of transcriptomics and genomic data,
which offer a wealth of tools and resources for the study of m°A
regulators and immune modulation (32).

In current study, we conducted a comprehensive analysis of
mP®A modifications and identified two distinct patterns of
modifications, termed m®A clusters. These patterns were
associated with different survival advantages and exhibited
characteristics relevant to the TME, immune cell infiltration, and
transcriptome (33). The observation that the TME characteristics
linked with each m®A modification pattern closely corresponded
with the manifestations and features of immune exclusion and
immune inflammation, respectively, was of significant interest. This
indicates a significant influence of m°A modification on individual
tumor microenvironments (34, 35). Furthermore, a scoring system
was devised to evaluate singular m®A modifications, facilitating the
prediction of prognosis and the efficacy of immunosuppressive
therapy. The strong correlation between m°A modifications and
TME immune cell infiltration suggests that these modifications
could serve as important prognostic markers and guide
immunotherapy decisions in esophageal cancer.

2 Materials and methods

2.1 Esophageal cancer data acquisition and
preprocessing

The Supplementary Figure S1 depicts the workflow employed in
this study. The esophageal cancer samples’ transcriptional and clinical
feature data were obtained from Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) databases and The Cancer
Genome Atlas (TCGA, 2022.12.01, https://portal.gdc.cancer.gov/).
Two distinct cohorts of esophageal cancer (ESCA), namely TCGA-
ESCA and GSE13898, were used for further analysis. The RNA-Seq
data obtained from the TCGA cohort underwent additional
processing, resulting in the conversion of the data into transcripts
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per kilobase (TPM). Retrieve the normalization matrix file from the
GEO database and employ R’s SVA package to address batch effects
across distinct datasets. Obtain the survival duration and survival
outcome data of two cohorts, with the exclusion of samples with
survival periods less than 31 days and incomplete survival
information. The Cancer Genome Atlas database was utilized to
obtain somatic mutations, and copy number variation data for
esophageal cancer were obtained from the UCSC Xena database
(http://xena.ucsc.edu/) (36).

2.2 Classification according to 23 m°A
regulators

These regulators include eight writers (METTL3, METTL14,
METTL16, RBM15, RBM15B, VIRMA, WTAP and ZC3H13), 13
readers (FMR1, HNRNPC, HNRNPA2BI1, IGFBP1/2/3, LRPPRC,
RBMX, YTHDC1/2 and YTHDF1/2/3), and two erasers (FTO and
ALKBHS5). These modulators have been reported to affect or
modulate the performance of RNA (Supplementary Figure S2).
The expression levels of these 23 m®A regulators were utilized for
unsupervised clustering analysis to identify distinct subtypes of
m°A methylation modifications and classify patients for further
analysis. The consensus clustering technique, implemented with the
R package ConsensusClusterPlus, was utilized to calculate the
number of clusters and assess their stability (37, 38).

2.3 scRNA-seq data processing

We analyzed the dataset GSE196756 about Esophageal
Squamous Cell Carcinoma (ESCC) cells from the GEO repository
(39). The data were sourced from Homo sapiens, with the data
platform being GPL24676. We picked specific ESCC samples
(GSM5900215,GSM5900216,GSM5900217,GSM5900218,
GSM5900219,GSM5900220) for analysis. The R package: “Seurat”
was used to analyze the transcript count matrix for quality control
and preliminary data exploration (40). The filtering threshold was
set as follows: Excluding genes detected in less than 3 cells,
excluding cells with < 200 genes detected, Excluding cells with >
20% mitochondrial gene expression. We addressed batch
differences using LogNormalize, Harmony and Principal
Component analysis (PCA) helped us cluster cells based on
variable genes via Seurat’s “FindNeighbors” and “FindClusters”
functions. Uniform t-distributed Stochastic Neighbor Embedding
(t-SNE) helped visualize this.

2.4 Estimation of immune infiltrating cells
in TME

The R software package GSVA was utilized to conduct GSVA
enrichment analysis to look at variations in m°®A modification
patterns in biological processes. The GSVA technique is a

frontiersin.org


https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
http://xena.ucsc.edu/
https://doi.org/10.3389/fimmu.2025.1572810
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Song et al.

nonparametric and unsupervised approach that is predominantly
employed to assess alterations in the activity of biological processes
and pathways within samples (41). The gene sets from
“c2.cp.kegg.v7.2.symbols” were downloaded from the MSigDB
database for performing GSVA analysis. The present study
utilized Single Sample Gene Set Enrichment Analysis (ssGSEA) in
the R software package GSVA to assess the infiltration rates of 24
immune cells across various m°A regulator clusters. The differences
between different m®A regulator clusters were assessed using the
Wilcox test, and survival analysis was conducted to examine their
association with patient outcomes.

2.5 Gene expression differences among
phenotypes modified with m°®A

Using a consensus clustering algorithm, we were able to divide
esophageal cancer patients into two distinct subtypes according to
m°A regulator expression. We revealed that the relationship
between the two m®A clusters and immune landscape by
CIBERSORT, EPIC, MCPCOUNTER, QUANTISEQ, TIMER, and
XCELL algorithms (42). The differentially expressed genes (DEGs)
between these two m®A-modified clusters were subsequently
identified using the Limma package. The significance criterion for
determining differential genes was set at a p-value < 0.05.

2.6 Differentially expressed genes enriched
in functional pathways and functions

An important bioinformatics tool for gene annotation and
analysis is the Gene Ontology (GO). It encompasses three
categories: cellular component (CC), biological process (BP), and
molecular function (MF). The Kyoto Encyclopedia of Genes and
Genomes (KEGG) database serves as an integrative platform for
genomic, chemical, and system function data, enabling the
correlation of gene catalogs with higher-level system functions
across various levels, including the cell, species, and ecosystem.
To annotate the DEGs and gain insights into their biological
functions, we utilized the clusterProfiler package, a widely used R
package for functional enrichment analysis. The clusterProfiler
package offers convenient functions to perform GO and KEGG
enrichment analyses. For the study to be meaningful, the p-value
must be less than 0.05 and the g-value must be less than 0.05.

2.7 The construction of the m°®A score

We created a scoring system for m°A based on PCA to measure
the patterns of m°A change in specific esophageal cancer patients.
Genes demonstrating significant prognostic effects were selected
from the different m®A modification clusters, based on which
clustering of samples and construction of m®A scores were
performed using a univariate Cox regression model. We
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determined the number of gene clusters and ensured stability using
the consensus clustering algorithm. Marker scores for m°A-related
genes were generated using PCA, and the first and second principal
components were extracted as the marker scores. The method
emphasizes the scores based on the collective behavior of highly
correlated or inversely correlated genes within significant gene
clusters, while minimizing the impact of genes that do not align
with other members of the cluster. PCA is a dimensionality
reduction method typically used to reduce the dimensionality of a
dataset by transforming a large number of variables into fewer
variables that still contain most of the information in the set (43,
44). We used the following method to define m°A scores: m®Ascore
= X(PCAli + PCAZ2i), the variable “i” denotes the final gene
expression linked to the m®A phenotype (45, 46).

2.8 Evaluate the m®A scoring model

To evaluate the clinical applicability and reliability of the m°A
score, receiver operating characteristic (ROC) curves were utilized
to predict the outcomes at 1 year, 3 years, and 5 years. Initially, the
ROC curve was constructed using all samples, followed by a
separate analysis focusing on the TCGA-ESCA cohort to compare
the prognostic predictive performance of the m°A score against
other clinical variables. Correlations between the m®A score, clinical
variables, and prognosis were examined using both univariate and
multivariate Cox regression analyses. The purpose of the study was
to examine the potential of the m®A score as a standalone predictive
marker for esophageal cancer. Significance at the p < 0.05 level is
usually used to determine statistical significance in a forest plot
diagram. Furthermore, a nomogram was constructed using eight
indicators (age, gender, tumor grade, stage T, N, M, pathologic
stage, and m°A score) to anticipate the patient’s 1-, 3-, and 5-year
survival rates. The predictive performance of the nomogram was
evaluated using ROC curves. The R packages timeROC, rms,
survival and survminer were employed for the necessary
calculations and graphical representation.

2.9 Data research on genome mutations

The frequency of copy number variation (CNV) for the 23 m°A
regulators in the TCGA-ESCA cohort was computed to assess the
occurrence of copy number increases or losses. Copy number
variation plots were generated using the R package Circos to
visualize CN'V patterns of m°A regulators of human chromosomes.
The Tumor Mutation Burden (TMB) was computed by quantifying
the aggregate count of nonsynonymous mutations present in the
TCGA-ESCA cohort. The R package maftools was employed to
create an oncoprint, which visually represents the gene mutation
landscape. Using these approaches, the copy number variation map
and oncoprint provide insights into the copy number alterations and
mutation profiles of the m®A regulators in esophageal cancer based
on the TCGA-ESCA cohort.
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2.10 Tumor immune dysfunction and
exclusion prediction and IC50 estimation

The Tumor Immune Dysfunction and Exclusion (TIDE) model,
developed by researchers (47, 48), is used to evaluate the clinical
efficacy of immune checkpoint inhibition therapy. The TIDE model
provides prediction scores that reflect the likelihood of a patient’s
response to immune checkpoint inhibition. Higher TIDE prediction
scores are associated with a poorer response to immune checkpoint
inhibition therapy. This model helps clinicians and researchers
assess the potential effectiveness of immune checkpoint inhibition
in individual patients.

2.11 Collect critical information for ICI-
based cohorts

A systematic search was conducted to identify publicly available
gene expression profiles of patients undergoing immune checkpoint
inhibitor (ICI) therapy. The search aimed to identify datasets that
included detailed clinical and pathological information. Ultimately,
three immunotherapeutic cohorts were included in our study:
metastatic melanoma patients treated with nivolumab (anti-PD-1
monoclonal antibody) (49) or ipilimumab (anti-CTLA-4 monoclonal
antibody) (50), and patients who have been diagnosed with
metastatic urothelial carcinoma (mUC) and have received
treatment with the anti-PD-L1-targeting drug Atezolizumab (51).
The ESCA-specific immunotherapy-treated cohort GSE165252 was
found (n=45 ESCA patients treated with anti-PD-1 monoclonal
antibody Atezolizumab), which contains the binary information on
immune therapy response (response and non-response groups). We
curated gene expression profiles from pre-therapy biopsy samples
and transformed them into TPM (Transcripts Per Million) format.
These datasets provide valuable information for our study on the
response to ICI therapy and associated gene expression patterns.

2.12 Sensitivity analysis of anticancer drugs

For the study of molecular therapies for cancer and gene
mutations, relevant data from the Genomics of Cancer Drug
Sensitivity (GDSC) database were downloaded (52). This database
offers a valuable resource for studying drug sensitivity in various
cancer types. We utilized the pRRophetic package to obtain cell line
gene mutation data and IC50 values associated with various
anticancer drugs from GDSC, allowing us to analyze the
correlation between patients with high- and low-risk scores and
their sensitivity to different anticancer drugs. Through this analysis,
we were able to examine the correlation between patients exhibiting
high- and low-risk m®A scores and their responsiveness to a diverse
array of anticancer medications (53). By leveraging these resources,
we aimed to gain insights into the association between m°A
modification patterns and the response to specific anticancer
therapies, further enhancing our understanding of personalized
cancer treatment approaches.
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2.13 Cell transfection and cell line
establishment

Esophageal carcinoma cell lines KYSE510 and TE-1 were
cultured in RPMI 1640 medium supplemented with 10% fetal
bovine serum (FBS) at a temperature of 37 degrees Celsius and
under a 5% CO, atmosphere. In preparation for cell transfection,
these cell lines were seeded into 6-well culture plates and incubated
overnight to allow for attachment and initial growth. On the
subsequent day, once the cells had reached a confluence of 20%-
30%, transfection was performed with siRNAs at a final
concentration of 50 nmol/L using Lipofectamine 2000
(Invitrogen), following the protocol provided by the manufacturer.

2.14 Explore and validate potential
oncogenic functions of RBMX In ESCA

Supplemental Experimental Procedures include the following
information: Western blot for protein expression, Plate clone
formation assay, EAU assay for cell proliferation detection,
Wound healing assay for assessing cellular migration, Transwell
migration/invasion assay (Supplementary Data Sheet SI:
Supplemental Experimental Procedures).

2.15 Statistical analyses

Statistical analyses and graphical representations were conducted
using R version 4.3.1. The Wilcoxon rank sum test, a statistical method,
is useful for assessing and contrasting dissimilarities between two
groups. The correlation between m°A regulators and prognosis was
assessed with univariate Cox regression models and Kaplan-Meijer
survival analysis. The selection of cutoff points for the m®A score was
performed by repeatedly testing all possible cutoffs using the survminer
package in R, aiming to identify the maximum rank statistic. Partition
the samples into groups based on their m°®A scores, with one group
consisting of high scores and the other of low scores. Prognosis was
assessed using the Kaplan-Meier method, and the log-rank test was
assessed for both cohorts. At the same time, there are other statistical
methods for targeted analysis. Heatmaps were generated using the
pheatmap package in R. All statistical tests were two-tailed, and a p-
value less than 0.05 was considered statistically significant.

3 Results

3.1 Mutation of m°®A regulators, immune
infiltration, and construction of the
prognostic landscape

Our study included 23 m°A regulators. Firstly, we calculated the
frequency of mutations in the 23 regulators in ESCA. The 23 m°A
regulators exhibited low mutation frequencies, with only 23 (12.5%)
out of 184 ESCA samples from the TCGA database showing genetic
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alterations. Mutation information for each gene in each sample was
presented in the waterfall plot, with different colors and specific
annotations at the bottom representing the different mutation types.
Interestingly, the Oncoplot analysis revealed that ZC3H13
displayed the highest mutation rate, predominantly characterized
by nonsense mutations, while YTHDC2 had a mutation frequency
of 2% (Figure 1A).

Moreover, our analysis of copy number variations (CNVs) in
the 23 m°A regulators highlighted the prevalence of CNV mutations
in ESCA. Notably, YTHDCI1, FMR1, VIRMA, YTHDF1, METTL3,
WTAP, HNRNPA2B1, RBMX, HNRNPC, and IGFBP1 exhibited a
high frequency of CNV amplification, while HNRNPC, RBM15,
YTHDEF2, IGFBP2, and RBM15B displayed extensive CNV
deletions (Figure 1B). The chromosomal alterations associated
with these CNVs are visually depicted in Figure 1C. In order to
evaluate the influence of m°A regulators on patient prognosis, a
Kaplan-Meier survival analysis was conducted. The findings
demonstrated significant correlations between the prognosis of
ESCA patients and 8 m°A regulators (Supplementary Figure S3).
Additionally, seventeen modifiers with prognostic value in ESCA
patients were identified using univariate Cox regression analysis
(Supplementary Table S1). Furthermore, our analysis of the m®A
network revealed the intricate interactions, connectivity, and
prognostic significance of m°A regulators in ESCA (Figure 1D).
Our findings indicate noteworthy correlations between the
expression levels of m°A regulatory factors within the same
functional class, as well as significant associations among the
three distinct types of regulatory factors. This interplay is likely to
contribute to the generation of distinct m®A modification patterns,
which play a crucial role in the initiation and progression of cancer.

As well, we identified CNV alterations as a potential underlying
cause of disrupted expression of m°A regulatory factors. To further
investigate this, we compared the gene expression levels of the 23
mCA regulators between normal and tumor tissues (54). In ESCA
tissues, m°A regulatory factors’ expression exhibiting CNV
amplification (such as METTL3, WTAP, VIRMA, YTHDCI,
YTHDF1, HNRNPC, FMR1, and HNRNPA2BI1) was significantly
higher than in normal esophageal tissues, while the expression of
IGFBP2 was lower (Figure 1E). Collectively, these analyses
underscore the noteworthy diversity in the genetic and expression
profiles of m°A regulators detected between normal and ESCA
specimens. These findings emphasize the critical role of
dysregulated expression of m®A regulators in the development
and progression of ESCA.

3.2 scRNA-seq analysis

Single-cell RNA sequencing (scRNA-seq) of 25,796 immune
and 8,197 non - immune cells from three primary tumor and paired
normal samples in ESCA patients was generated by using 10x
Genomics platform. Before filtration, there were 33993 cells in the
6 ESCA samples. For GSE196756, counts were normalized and
technical covariates (mitochondrial percentage) were regressed out
using the LogNormalize method (default settings), and batch effects
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across samples (6 ESCA patients) were corrected for using
Harmony with theta = 2 to preserve biological variance (55). We
then performed data normalization and quality control, and finally
selected the top 2000 highly expressed and variable genes for further
analysis. PCA used to reduce the dimensionality of the data showed
no clear tendency for cells to separate. Nonlinear dimensionality
reduction was performed using the t-SNE algorithm, which
successfully clustered the cells into 13 clusters (Figure 2A). We
then annotated all clusters and identified 9 cell types (Figure 2B).
Furthermore, the expression levels of 23 m®A modulators were
most abundant in B cells and T cells (Figure 2C). WTAP, ZC3H13,
YTHDC1, HNRNPC, HNRNPA2B1 and RBMX are expressed in
most cell types.

3.3 Twenty-three regulator-mediated
isoforms of m®A methylation

Using the ConsensusClusterPlus R software package, we
performed patient classification based on the expression of the 23
m°A regulators to delineate distinct m°A-modified subtypes. Our
analysis revealed two subtypes: subtype A consisting of 111 cases
and subtype B consisting of 75 cases (Figures 3A-D and
Supplementary Table S2). Notably, patients belonging to m°A
regulator group B exhibited significantly longer survival
compared to those in m®A regulator group A (P = 0.019,
Figure 3E). We generated a heatmap to visualize the expression
patterns of the 23 m°A regulators in the two m°®A-modified
subtypes (Figure 3F).

3.4 TME cell infiltration characteristics in
distinct m®A modification patterns

To gain insights into the underlying biomolecular signatures
associated with the different m°A-modified phenotypes, we
integrated the expression profiling data of both TCGA-ESCA and
GSE13898 cohorts and performed differential expression analysis
using the Limma R software package. This analysis identified 2599
DEGs, which were subsequently annotated using the clusterProfiler
R package. The DEGs were found to be enriched in several
important biological processes, including T cell activation,
regulation of immune effector process, neutrophil-mediated
immunity, mesenchyme development, mesenchymal cell
differentiation, leukocyte transendothelial migration, chemokine
signaling pathway, and VEGF signaling pathway (Figures 4A, B,
Supplementary Tables S3, S4).

In order to examine the biological alterations linked to diverse
m®A modification patterns, a comparative analysis of immune cell
composition in the TME was performed. The findings indicate that
the A subcluster exhibited a higher degree of infiltration by memory
B cells, immature B cells, T helper 1 (Th1) cells, activated memory
CD4+ T cells, and regulatory T cells (Treg). On the other hand, m°A
cluster B exhibited significantly increased infiltration of natural
killer cells and neutrophils (Figure 4C).
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FIGURE 1

Landscape of genetic and expression variation of m°A regulators in esophagus cancer (A) Mutations of 23 m°®A regulators in the TCGA-ESCA cohort.
Each column represented individual patients. The upper barplot showed TMB, the number on the right indicated the mutation frequency in each
regulator. The right barplot showed the proportion of each variant type. The stacked barplot below showed fraction of conversions in each sample.
(B) In an TCGA-ESCA cohort, we looked at the CNV mutation rates of 23 m°A regulators. The findings were represented by red and green dots to
represent increased and absent frequencies, respectively. (C) The precise chromosomal locations of CNVs in m®A regulators across all 23
chromosomes. (D) Interactions and prognostic implications of 23 m°A regulators in ESCA. The three types of m°A regulatory modifiers are
represented by different colors: eraser in red, reader in orange, and writer in gray. The size of the circles corresponds to the prognostic relevance of
each m®A modulator. The lines connecting the regulators indicate their interactions, with positive correlations in pink and negative correlations in
blue. Prognostic risk factors are highlighted in purple, while prognostic protective factors are shown in green. (E) The expression of 23 m°eA
regulators between normal tissues and gastric tissues. Tumor, red; Normal, blue. The upper and lower ends of the boxes represented interquartile
range of values. The lines in the boxes represented median value, and red and blue dots showed outliers. The asterisks represented the statistical

p value (*P < 0.05; **P < 0.01; ***P < 0.001).
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FIGURE 2

scRNA-seq data analysis. (A) The t-SNE algorithm divided the cells into 13 clusters by principal components. (B) The tSNE plot revealing 13 clusters
was annotated into 9 different cell types. (C) The expression of 23 m®A regulators in 9 cell types.

We further employed GSVA enrichment analysis to gain insights
into the biological activity associated with these distinct m°A
modification patterns. The results of our observations indicate that
m°A cluster A exhibits noteworthy enrichment in pathways linked to
stroma and cancer metastasis, including ECM-receptor interaction,
focal adhesion, and others. On the other hand, m®A cluster B showed
enrichment in metabolic pathways such as histidine metabolism, fatty
acid metabolism, propanoate metabolism, glycolysis, fructose, and
mannose metabolism (Figure 4D).

Interestingly, GSVA enrichment analysis revealed that m°A
cluster A exhibited significant enrichment in adaptive immune
cell infiltration, encompassing memory B cells, activated memory
CD4+ T cells, immature B cells, Th1 cells, regulatory T cells (Treg),
and stromal activation (Figures 4C-G, 5E). Surprisingly, despite the
higher immune cell infiltration, patients with this m°A modification
pattern did not demonstrate a survival advantage (Figure 4F). Prior
research has detected an immune-excluded phenotype within
tumors, wherein immune cells exist in the stroma encircling nests
of tumor cells, yet are unable to penetrate the tumor parenchyma.
T-cell suppression is known to occur when the stroma in the TME is
activated. Hence, our speculation is that the stromal activation
observed in cluster A suppresses the antitumor effect of immune
cells in patients with ESCA. The aforementioned conjecture was
subsequently substantiated through analyses that demonstrated a
marked increase in stromal activity within cluster A, which
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encompassed the activation of epithelial-mesenchymal transition
(EMT), transforming growth factor beta (TGF-B), and WNT
pathways, all of which were found to be statistically
significant (Figure 4G).

We have integrated immune deconvolution tools such as
CIBERSORT, EPIC, MCP_COUNTER, QUANTISEQ, TIMER
and XCELL to distinct immune microenvironments characterize
two m°A clusters (Supplementary Figure $4). Comparative analysis
of immune infiltration patterns between the two m°®A clusters
revealed significant heterogeneity. Cluster A exhibited higher
infiltration of immunosuppressive regulatory T cells (Tregs, P <
0.01 by CIBERSORT/QUANTISEO) and exhausted CD8+ T cells
(PD-1+Tim-3+, P < 0.05), whereas cluster B showed elevated
cytotoxic CD8+ T cells (Granzyme B+, P < 0.001 by TIMER).
Pro-tumor M2 macrophages were enriched in cluster A (P < 0.001
across CIBERSORT/QUANTISEO/XCELL), while cluster B had
higher M1 macrophages (P <0.05), suggesting divergent
macrophage polarization states. CAFs were markedly increased in
cluster A (P < 0.001 by EPIC/MCP-counter), correlating with
elevated ECM remodeling scores (e.g., collagen cross-linking, P=
0.002). These findings were robust across multiple deconvolution
algorithms (CIBERSORT, EPIC, XCELL).

Based on the comprehensive analyses conducted, it is intriguing
to note that the two m°A modification patterns exhibit distinct
characteristics in terms of TME cell infiltration. Cluster A is
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FIGURE 3

Identification of m°A methylation modification subtypes. (A) Consensus clustering and generated a CDF with the number of subtypes ranging from k
= 2 t0 9. (B) The heat map of sample clustering under k = 2 in 2 independent ESCA cohorts. (C) The relative change in the area under the CDF curve
for values of k ranging from 2 to 9. (D) Principal component analysis of transcriptome profiles of two m°®A modification patterns (E) Survival analyses
for the two m®A modification patterns based on 186 patients with esophagus cancer from TCGA-ESCA and GEO cohorts (GSE13898) including 111
cases in mPAcluster-A, 75 cases in m°Acluster-B, Kaplan-Meier curves with Log-rank p value 0.019 showed a significant survival difference among
two m®A modification patterns. The overall survival rate of cluster B in m®A cluster A and B subclusters is better. (F) Unsupervised clustering of 23
m°®A regulators in two cohorts with heatmap analysis of m°®A cluster, tumor stage, survival status, and age. Red is high expression, blue is low

expression.
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FIGURE 4

Comparison of the enrichment analysis for immune cells and immune pathways between two m°A clusters. (A) Functional annotation of the genes
with different expressions between cluster A and cluster B using GO terms. (B) Pathway of KEGG enrichment of DEGs between two mC°A clusters.
(C) The abundance of each TME infiltrating cell in two m°®A modification patterns. The upper and lower ends of the boxes represented interquartile
range of values. The lines in the boxes represented median value, and the dots showed outliers. The asterisks represented the statistical p value
(*P < 0.05; **P < 0.01; ***P < 0.001). (D) The heatmap was used to visualize these KEGG enrichment pathways, and blue represented activated
pathways and yellow represented inhibited pathways. (E) The heatmap was used to visualize these immune cells. (F) The heatmap was used to
visualize these immune-related pathways. (G) The box plot figure demonstrates the enrichment scores for clusters A (red) and B (yellow) across
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several biological processes, highlighting statistically significant differences (*P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001).
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associated with an immune-excluded phenotype, characterized by
the infiltration of adaptive immune cells and stromal activation. On
the other hand, cluster B corresponds to an immune-inflamed
phenotype, characterized by the infiltration of innate immune
cells and metabolic reprogramming (Figures 4C-G). These
findings suggest that m°A methylation modifications may be
involved in tumor metabolism, EMT, immune regulation, and
have close associations with tumor initiation and progression.

3.5 Characteristics of clinical and
transcriptome traits in m®A-related
phenotypes

Despite the successful categorization of ESCA patients into two
subtypes through a consistent clustering algorithm utilizing m°A
regulator expression, the genetic alterations responsible for these
phenotypes and their prognostic implications remain inadequately
comprehended. To gain deeper insights, we conducted univariate

10.3389/fimmu.2025.1572810

Cox regression analysis on the 2599 DEGs identified between the
previously established m®A clusters. A total of 80 survival-related
genes were identified through this analysis, which we referred to as
the m°®A-related signature genes (Supplementary Table S5).
Through unsupervised clustering analysis using representative
mC®A-associated marker genes, we identified three stable
transcriptomic phenotypes, denoted as gene clusters A, B, and C
(Figures 6A-C; Supplementary Table S6). The predictive
importance of these gene subgroups was then investigated by
fusing transcriptome data with survival data. Based on Kaplan-
Meier analysis and log-rank test, it was observed that patients
assigned to gene cluster B displayed a favorable prognosis
(Figure 6D). A heat map was generated to visually depict the
clinical characteristics of 80 m°A -related signature genes and the
expression of m°A subgroups in the three gene clusters (Figure 6E).
Notably, the three m®A gene clusters exhibited significant
differential expression of m°A regulatory factors, which aligns
with the methylation modification process and supports the
predicted effects of m°A (Figure 6F).
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FIGURE 5
Construction of m®A score. (A) Differences in m®A scores between two m®A subclusters. (B) Differences in m°A scores between the three gene
clusters. (C) The Sankey diagram illustrates the association between m°A score, m°A clusters, gene clusters, and survival outcomes. (D) Correlations
between the m°A score and tumor-infiltrating immune cells using Spearman’s analysis. The positive and negative correlations are marked with red
and blue, respectively. (E) Correlations between m®A score and the known biological gene signatures using Spearman analysis. The negative
correlation was marked with blue and positive correlation with red. (F) Kaplan-Meier curve showing overall survival probability between high and low
m°®A score groups.
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k = 2 to 9. (D) Kaplan-Meier overall survival curves for patients in three m°CA-related gene clusters. (E) Heatmap showing the correlation between the
expression levels of the DEGs derived from 3 m°®A clusters and sex, age, m®A clusters, tumor stage, survival status and gene clusters. Red is high
expression, blue is low expression. (F) The expression of 23 m°eA regulators in three gene cluster. The upper and lower ends of the boxes

represented interquartile range of values (**P < 0.01; ***P < 0.001).

3.6 Establishment of m®A score and its
association with tumor
microenvironmental features

While previous analyzes have yielded valuable insights into the
impact of m°A methylation on immune cell infiltration status and
tumor prognosis, accurate prediction of m°®A methylation patterns
in individual patients remains a challenging task. To address this
challenge, the PCA score was employed to compute the m°A score,
which also provides a quantitative assessment of the modified m®A
landscape in patients with ESCA. Figure 5A illustrates that patients

Frontiers in Immunology

in m°A cluster B exhibit lower m®A scores compared to those in
m°A cluster A, and Figure 5B demonstrates that patients in gene
cluster B have lower m®A scores than those in gene clusters A and C.
We have depicted the process of m®A score construction in a
Sankey diagram (Figure 5C). In order to evaluate the association
between the m°A score and tumor-infiltrating immune cells, a
Spearman’s analysis was conducted and the outcomes were
presented in a heatmap (Figure 5D), revealing a positive
correlation between the m®A score and the presence of immune
cells within the tumor microenvironment. Additionally, we
examined the correlation between the m°A score and known
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signal pathway signatures. The resulting correlation matrix
heatmap demonstrated that the m®A score exhibited significant
positive associations with signatures related to EMT, stromal
activity, DNA repair, antigen processing machinery, and the
TGF-B pathway (Figure 5E). In addition, we conducted an
evaluation of the prognostic relevance of the m°A score. Through
implementation of the Kaplan-Meier survival analysis, it was
determined that patients exhibiting low m°A scores experienced a
more favorable prognosis in contrast to those with high m°®A scores
(Figure 5F). This indicates that the implementation of the mCA-
score-based computation proficiently delineates the prognosis
of patients.

In addition, we also found that in T0, T1-2, or T3-4 stage, NO,
N1-2, or N3 stage, MO or M1 stage, male or female, young or old
patients, and patients, lower m®A score showed more significant
survival advantage, which means that m®A score can also be used to
access various clinical features of patients, such as age, gender, or
clinical stage subgroup (Supplementary Figure S5).

3.7 Verification and clinical evaluation of
m©®A score

To validate the m°A score, we conducted ROC curve analysis
for 1-year, 3-year, and 5-year intervals and calculated the
corresponding area under the curve (AUC) values. The results
showed that all three ROC curves in the total sample cohort
(Figure 7A) and the separate TCGA-ESCA cohort (Figure 7B)
showed AUC values exceeding 0.67. Furthermore, when
comparing the m®A score with other clinical features, the AUC
value of the m°®A score was found to be the highest (Figure 7C).

The findings of the univariate Cox regression analysis indicate
that the stage, stage M, stage N, and m°A score possess prognostic
potential (Figure 7D). Additionally, the multivariate Cox regression
analysis reveals that both the stage and m®A score exhibit
independent prognostic value (Figure 7E). To quantitatively
assess individual risks in the clinical setting, the integration of
multiple clinical indicators can be achieved through a nomogram.
In this study, we developed a nomogram for predicting patients’
overall survival (OS) at 1-year, 3-year, and 5-year intervals
(Figure 7F). The predictive performance of the nomogram was
evaluated using ROC curve analysis. The present study determined
the AUC values of the ROC curves for 1-year, 3-year, and 5-year
intervals to be 0.784, 0.831, and 0.801, respectively (Figure 7G).
These results indicate that the m®A score may serve as a promising
clinical predictor and, when integrated with other clinical factors,
could potentially improve the prognostic precision and clinical
outcomes for patients diagnosed with ESCA.

3.8 Somatic variation correlates with m°®A
score

The potential of TMB as a tumor marker for immune
checkpoint therapy in patients has been demonstrated. Given the
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clinical significance of TMB, an analysis was conducted to
investigate the genetic characteristics within each subgroup, as
defined by the m®A score, and their association with TMB.
Patients were divided into two subgroups based on TMB.

Based on the results depicted in Figures 8A, B, it was observed
that both TP53 (86% vs. 71%) and TTN (44% vs. 32%) exhibited a
higher rate of somatic mutation in the group with a high m°A score,
suggesting a potential association with the poorer prognosis
observed in this group (Figure 8C). Subsequently, we assessed the
combined prognostic value of these scores in stratifying ESCA
patients. Survival analysis revealed that the TMB status did not
influence predictions based on the m°A score, consistently
demonstrating a survival advantage in the low m°A score group
(Figure 8D). The results of this study contribute to a more thorough
comprehension of the impact of the m°A score on genomic
variability, presenting innovative perspectives for investigating
potential associations between m°A methylation modification and
somatic mutations. These findings demonstrated that distinct m°A
modification patterns significantly influenced tumor immune
phenotypes and may serve as predictive biomarkers for anti-PD-
1/PD-L1 immunotherapy response efficacy. It has also been
revealed that the m®A score is indirectly used to predict the
success of immunotherapy.

3.9 M®A score predicts the possibility of
benefit from immunotherapy

Subsequently, the differences in the levels of other immune
checkpoints between the high and low m°A score groups were
compared. The high m°®A score group had higher expression of
CTLA4, CD70, TNFSF14, ICOS, CD80, TNFRSF9, HAVCR?2,
CD200, NRP1, TNESF15, TNFSF4, CD40, TNFRSF14, LGALS9,
CD86, ADORA2A, and CD28, while the low m°A score group had
higher expression of BTLA (Figure 8E).

The use of ICI therapy, specifically CTLA-4/PD-1 inhibitors, has
resulted in a significant advancement in antitumor treatment.
Alongside established predictors such as TMB, PD-L1, and MSI
(56, 57), newly discovered indicators such as TIDE are extensively
utilized and highly recommended for assessing immune response.
Our analysis further demonstrated a noteworthy reduction in TIDE
within the low m°A score group, as evidenced by the TIDE
distribution in TCGA-ESCA and GSE13898 (both P < 0.01)
(Figures 8F, G). As a result of these findings, it is inferred that
tumor m®A modification patterns play an important role in
mediating immune responses in tumors.

Based on the significant correlation between m®A scores and
immune responses, our subsequent investigation aimed to assess
whether m°A modification signatures could serve as predictive
markers for patient response to ICI therapy in three separate
immunotherapy cohorts. Firstly, a high m®A score exhibited
significantly shorter survival time (HR, 1.845 [95% CI, 1.254 to
2.714], P = 0.013, Figure 9A) and a markedly clinical response in an
anti-PD-L1 therapy in a cohort of metastatic urothelial carcinoma
(response rate, low vs. high mCA score, 53% vs. 19%, Figure 9B)
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(51). This result was also identified in both the anti-PD-1 cohort
(49) and anti-CTLA-4 cohort (50). Patients belonging to the high
mCA score group demonstrated noteworthy clinical drawbacks and
a considerably reduced lifespan (anti-PD-1, HR, 2.886 [95% CI,
1.002 to 8.314], P = 0.018. (Figure 9C) anti-CTLA-4, HR, 2.141
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[95% CI, 1.018 to 4.503], P = 0.035, Figure 9E). The significant
therapeutic benefits and immune response to ICI treatment were
confirmed in patients with a low m°®A score compared to those with
a high m®A score (anti-PD-1, response rate, low vs. high m°®A score,
33% vs. 18%, Figure 9D; anti-CTLA-4, response rate, low vs. high
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m®A score, 40% vs. 32%, Figure 9F). The m®A score of the
GSE165252 cohort was further validated, the significant
therapeutic benefits and immune response to anti-PD-1 treatment
were confirmed in patients with a low m°A score compared to those
with a high m°®A score (anti-PD-1, response rate, low vs. high m®A

10.3389/fimmu.2025.1572810

score, 39% vs. 18%) (Supplementary Figure S6). The m°A score is
also associated with patient response to immunotherapy and can be
used to predict patients” prognoses. In conclusion, the m®A score
serves as a promising prognostic indicator in ESCA and may also
provide guidance for ICI treatment in clinical practice.
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(D) TMB and m°®A scores were used in a stratified survival analysis. (E) Violin plot of differential expression of other immune checkpoints between
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3.10 Sensitivity analysis of patients with
ESCA to different small molecule drugs
based on m°®A risk score

We performed an estimation of IC50 values and assessed the
drug sensitivities of chemotherapeutic drugs for a cohort of 186
ESCA patients, utilizing data from the TCGA and GEO databases.
The estimation process employed the “pRRophetic” R package,
which utilized the expression profiles of the patients. Then, IC50
values were compared between the groups with high and low m°A
scores. The IC50 values are utilized to assess the cellular response of
various cell lines to a total of 138 distinct chemotherapeutic and
small molecule anticancer drugs. The research found statistically
significant differences (P < 0.05) between patients with high and low
m°A risk scores in the IC50 values of several chemotherapeutic
drugs and small molecule anticancer medicines. Notably,
Bortezomib, Camptothecin, Cytarabine, Erlotinib, Gefitinib,
Gemcitabine, Metformin, Methotrexate, and Paclitaxel exhibited
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particularly noteworthy differences (Figures 10A-I; Supplementary
Figure S7).

3.11 RBMX's impact on ESCC cell
proliferation and migration

To establish the mechanistic link between m°A modification and
malignant progression in ESCC, we prioritized RBMX for functional
interrogation based on its central position in the m°A regulatory
network. Bioinformatics analysis identified RBMX as a hub gene in
protein-protein-interaction network and co-expressed with key m°A
regulators (METTL3, FTO, YTHDF2). RBMX expression levels were
quantified in the ESCC cell lines KYSE510 and TE-1, revealing a
notable reduction in protein expression following RBMX knockdown
(Figure 11A). The clone formation assay demonstrated that the
knockdown of RBMX significantly impeded the proliferative
capacity of ESCC cells (Figure 11B). EDU staining corroborated
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Sensitivity of the m®A risk score to different chemotherapy drugs and small molecule anticancer drugs was analyzed based on the GDSC database.
(A) Bortezomib. (B) Camptothecin. (C) Cytarabine. (D) Erlotinib. (E) Gefitinib. (F) Gemcitabine. (G) Metformin. (H) Methotrexate. (I) Paclitaxel.

these findings, indicating a significant decrease in the proliferative
activity of si-RBMX-transfected KYSE510 and TE-1 cells
(Figures 11C, D). The wound healing assay further illustrated that,
after 48 hours, the wound closure ability of si-RBMX-transfected
KYSES510 and TE-1 cells was markedly diminished compared to the
Si-NC control group (Figure 11E). Additionally, migration and
invasion assays were conducted to evaluate the impact of RBMX on
ESCC cell motility. The knockdown of RBMX in KYSE510 and TE-1
cells led to a significant reduction in both the invasive and migratory
capabilities of the cells (Figures 11F, G).

4 Discussion

Accumulating evidence from various studies emphasizes the
important role of m°A methylation modification in the immune
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process of organisms. Further investigation is necessary to achieve a
thorough comprehension of the immune cell infiltration within the
TME in ESCA that is mediated by multiple m®A regulators.
Therefore, it is crucial to clarify the characteristics of immune cell
infiltration in relation to diverse m®A modification patterns. This
will enhance our understanding of the TME and antitumor immune
responses within it, and offer approaches for risk stratification and
clinical management of patients with esophageal cancer. This study
identified two distinct modification patterns with the assistance of
23 m°A regulators. The mRNA transcriptome differences observed
between these patterns were found to be significantly associated
with T cell activation, regulation of immune effector processes,
neutrophil-mediated immunity, mesenchyme development,
mesenchymal cell differentiation, leukocyte transendothelial
migration, the Chemokine signaling pathway, and the VEGF
signaling pathway (Figures 4A, B). The two patterns exhibited
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markedly different TME cell-infiltrating characteristics. Cluster A
was categorized as an immune-excluded phenotype, marked by the
infiltration of adaptive immune cells and stromal activation. On the
other hand, cluster B was classified as an immune-inflamed
phenotype, characterized by the infiltration of innate immune
cells and metabolic reprogramming. The immune-inflamed
phenotype, also known as “hot tumors,” is distinguished by
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substantial immune cell infiltration within the TME (24, 58, 59).
Despite the presence of a significant number of immune cells in the
immune-excluded phenotype, their distribution is limited to the
stromal compartment surrounding the tumor cell nests, rather than
infiltrating the tumor parenchyma. The stromal compartment may
be localized to the tumor periphery or may extend into the tumor,
potentially leading to the misinterpretation that immune cells are
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present within the tumor (60, 61). Consistent with the established
definitions, our findings revealed that cluster A exhibited a
pronounced stromal activation status, including elevated
expression of EMT and TGF-f pathways (Figures 4D, E, G),
which are associated with T-cell suppression. The observed TME
cell-infiltrating characteristics in each cluster reinforce the validity
of our immune phenotype classification based on distinct m°A
modification patterns. Consequently, after comprehensively
exploring the TME cell-infiltrating characteristics induced by
distinct m®A modification patterns, it is not surprising that
cluster A, despite having activated innate immunity, exhibited
poorer prognosis.

The stromal activation in cluster A (e.g., TGF-f3, EMT) and its
link to immune exclusion are supported by recent studies on CAF
subtypes (60-62). Cluster A exhibits an immunosuppressive
stromal microenvironment owing to the enrichment of TGF-3
and multiple EMT-related pathways and (Figures 4D, G). The
tumor stroma, particularly CAFs and their remodeled
extracellular matrix (ECM), plays a pivotal role in shaping the
immunosuppressive TME by regulating T cell infiltration and
function through both physical barrier and molecular
mechanisms (60). The physical barrier prevents cytotoxic T cells
from contacting cancer cells, creating an “immune-excluded”
microenvironment (60). In addition to structural constraints,
CAF heterogeneity further exacerbates immune evasion. Distinct
CAF subpopulations may drive divergent stromal remodeling
patterns: certain subsets promote the formation of rigid, cross-
linked stroma that impedes T cell migration, while others secrete
immunosuppressive factors (60, 61). Three functional subtypes of
CAFs have been identified in non-small cell lung cancer (NSCLC)
based on their heterogeneity (63). These functional disparities
among CAFs are driven by their intrinsic TGF- signaling. This
CAF functional classification correlates with patients’ clinical
responses to targeted therapies and is also associated with the
tumor immune microenvironment (63). Notably, RNA
modification “writers” (e.g., mA/m'A regulators) appear to
influence CAF activation states, as evidenced by the association
between high “Writers-Score”, poor prognosis, and suppressive
immune infiltration (e.g., M2 macrophages, EMT) (62). These
findings suggest that epigenetic reprogramming of CAFs may
reinforce immune exclusion by coupling matrix stiffness with
broader immunosuppressive signals, such as PD-L1 upregulation.
Thus, stromal activation drives CAF heterogeneity and immune
exclusion via coordinated ECM remodeling (e.g., collagen cross-
linking, fibronectin deposition) and epigenetic reprogramming
(e.g., m°A-mediated RNA stabilization of TGF-B signaling
components). Therapeutically targeting these matrix-driven
immunosuppressive mechanisms—such as through ECM-
degrading enzymes (e.g., collagenase) or epigenetic inhibitors—
could dismantle the stromal-T cell barrier, thereby enhancing the
efficacy of T cell-mediated antitumor immunity. The study by Du
et al. elucidates that RBMX stabilizes IL-33 mRNA through a liquid-
liquid phase separation mechanism, thereby activating the TGF-f3
signaling pathway. This process orchestrates the bidirectional
regulation of tumor plasticity and the immunosuppressive
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microenvironment, providing a theoretical foundation for
developing precision therapeutic strategies targeting the RBMX/
TGF-B axis (64). We hypothesize that RBMX, as an m°A reader,
regulates CAF crosstalk by enhancing RNA stability of the IL-33/
TGF-P axis and increasing stromal stiffness, while simultaneously
suppressing immune-activating signals (e.g., CXCL10-STAT1) to
impair T cell function (61). This dual mechanism aligns with
clinical observations in cluster A patients, where despite high
immune cell infiltration, T cells are predominantly confined to
stromal regions and exhibit significantly reduced survival rates.
Such an “immune-excluded” phenotype closely mirrors the stroma-
mediated immune privilege phenomenon proposed by Joyce
et al. (60).

The immune landscape analysis underscores how m®A
modification patterns shape tumor-immune interactions
(Supplementary Figure S4). M®A cluster A (immune-excluded):
Dominated by Tregs, M2 macrophages, and CAFs, this phenotype
aligns with TGF-B-driven stromal activation. The concomitant
suppression of cytotoxic lymphocytes (evidenced by low CD8+/NK
cell ratios, P < 0.001) may explain poorer immunotherapy responses
observed in this subgroup. M°A cluster B (immune-inflamed):
Enriched for cytotoxic T/NK cells and immunostimulatory
dendritic cells, this cluster demonstrates the potential of m°A
modulation to overcome immune desertification. Notably, the M1/
M2 macrophage balance (P < 0.001) mirrors metabolic
reprogramming linked to m°®A-regulated pathways.

The expression and function of m®A modulator genes in these
cells may play an important role in regulating the tumor
microenvironment. Especially in immune cells, the expression of
m°A modulator genes may affect the function and activity of
immune cells, thereby regulating tumor immune responses. Most
of the 23 m°A modulator genes are distributed in epithelial cells, B
cells, and T cells. As important components of the immune system,
B cells and T cells play an important role in the tumor
microenvironment. The expression level and functional status of
m°®A modulator genes may affect the activity, proliferation,
migration and cell fate decisions of these immune cells, thereby
affecting the efficacy of tumor immunotherapy. In addition, the
expression of m®A modulator genes in tumor cells and epithelial
cells may also directly affect tumor development and treatment
response. Epithelial cells are often the cells of origin of tumors, and
the expression of m°A modulator genes in these cells may regulate
the proliferation, invasion, and metastasis capabilities of tumor
cells. Recent advancements such as spatial transcriptomics and
proteomics, exemplified by works utilizing techniques like spatial
CITE-seq (65), multimodal tri-omics (66), and spatially resolved
CRISPR screens (67), offer powerful methodologies for dissecting
complex interactions within the tumor microenvironment. These
technologies could provide novel insights into the spatial and
functional dynamics of m°A methylation modifications and their
impact on immune infiltration and cancer progression, potentially
unveiling new therapeutic avenues.

MPCA related characteristic genes were identified as DEGs
associated with the prognosis of ESCA. By employing the m°A
signature genes, we have successfully categorized the samples into
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three distinct subtypes of m®A -related genes, which exhibit
significant associations with stromal and immune activations.
Therefore, it is imperative to conduct a comprehensive evaluation
of m°A modification patterns to enhance our understanding of
TME cell infiltration characterization. To mitigate inter-individual
variations, quantification of the m®A modification pattern among
m®A -modified tumors is necessary. To this end, we have devised a
set of scoring systems, referred to as the m°A gene signature, to
evaluate the m°A modification pattern. The m®A modification
pattern associated with the immune-excluded phenotype
demonstrated a higher m°A score, whereas the immune-inflamed
phenotype exhibited a lower m®A score.

Our findings align with previous studies on the TME, supporting
the notion that m°A methylation modifications play a vital role in
influencing distinct immune properties within the TME. Scoring
models constructed using specific biomarkers modified by m°A
have been successfully used in gastric cancer and colorectal cancer,
providing improved clinical treatment selection and prognosis
assessment for cancer patients (62, 68, 69). The findings suggest that
the m°A score possesses the capacity to serve as a comprehensive
metric for assessing the m®A modification pattern of individual
tumors, and may be employed in the investigation of tumor
immunophenotype and TME immune cell infiltration. Additionally,
the validation of the m°®A score through the TCGA-ESCA cohort
highlights its considerable potential as a prognostic indicator for
patients afflicted with ESCA. The nomogram, incorporating the
mCA score along with other clinical variables, demonstrated effective
predictive capabilities for patient prognosis.

Furthermore, our m°A score demonstrated a superior predictive
capability in the context of immunotherapy for esophageal cancer.
These findings were robustly corroborated in the IMvigor210
cohort, as well as in cohorts receiving anti-PD-1 and anti-CTLA-
4 treatments, where the immune phenotype had been established
(49, 50, 56). We could also predict the efficacy of adjuvant
chemotherapy and the patients’ clinical response to anti-PD-1/
PD-L1 immunotherapy through the m°A score.

The evaluation of genes that may drive mutations in tumors is
an essential method for exploring the fundamental mechanisms of
tumorigenesis and progression. Furthermore, it contributes to the
rational selection of cancer diagnosis and treatment strategies. In
our study, we observed a significant increase in the mutation rates of
TP53 and TTN in the high m®A score group. TP53 mutations are
prevalent in various cancer types and play a critical role in cancer
progression. Loss or mutation of TP53 in cancer cells can disrupt T
cell recruitment and impair T cell activity, aiding immune evasion
and accelerating cancer growth in the process. Research on
esophageal cancer has revealed that the absence of TP53, which
encodes the P53 protein, Consequently, there is an augmentation of
regulatory T cell (Treg) infiltration in both paracancerous and
intratumoral tissues (70). On the other hand, TTN mutations
have been associated with poor immune infiltration and worse
prognosis in liver hepatocellular carcinoma, colorectal cancer, and
ovarian serous cystadenocarcinoma (71-73). Notably, TTN
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mutations are frequently detected in solid tumors and have been
correlated with increased TMB. Moreover, TTN mutations have
been found to be associated with the objective response to immune
checkpoint blockade (ICB) therapy (74).These findings highlight
the potential impact of TP53 and TTN mutations in modulating the
immune response within the tumor microenvironment and their
relevance to clinical outcomes. Understanding the role of these
mutations in tumor biology can provide valuable insights for the
development of targeted therapies and immunotherapeutic
strategies in cancer treatment.

The study elucidates the role of RBMX in ESCC, focusing
specifically on its impact on cell proliferation and migration. The
findings suggest that the expression levels of RBMX are critical for
the malignant behavior of ESCC cells. In the KYSE510 and TE-1
ESCC cell lines, significant reductions in RBMX protein expression
were observed following knockdown. This indicates that RBMX
may play a crucial role in maintaining the cancerous state of these
cells. The plate colony formation assay revealed that RBMX
knockdown significantly impaired the proliferative capacity of
ESCC cells, highlighting its potential as a therapeutic target. EDU
staining, which assesses DNA synthesis during the S phase,
confirmed the reduced proliferative activity in cells with lower
RBMX expression. These findings support the hypothesis that
RBMX is a key regulator of cell cycle progression in ESCC. The
wound healing assay demonstrated that RBMX knockdown
significantly diminished the wound closure ability of ESCC cells,
underscoring its role in cell migration, which is crucial for cancer
invasion and metastasis. Migration and invasion assays further
indicated significant reductions in both the invasive and
migratory capabilities of ESCC cells following RBMX knockdown.
These observations suggest that RBMX is central to ESCC cell
motility, a key factor in the metastatic spread of cancer. In
summary, this study provides evidence that RBMX has multiple
influences on ESCC, impacting both cell proliferation and
migration. These findings indicate that RBMX may serve as a
promising target for therapeutic intervention in ESCC. Additional
research is needed to elucidate the molecular mechanisms through
which RBMX exerts its effects and to investigate the potential of
RBMX-targeted therapies for treating ESCC.

The role of RBMX in tumors is highly tissue-specific. In
hepatocellular carcinoma (HCC) and T-cell lymphoma, elevated
RBMX expression enhances tumor progression and
chemoresistance by stabilizing oncogenic long non-coding RNAs
(IncRNAs), such as BLACAT1, or modulating RNA metabolism (75,
76). In contrast, in bladder cancer, RBMX exhibits an oncogenic effect
by inhibiting hnRNP Al-mediated PKM splicing (77). This paradox
indicates that the function of RBMX may rely on the tissue-specific
expression of its interacting partners, such as hnRNP A1 and specific
IncRNAs. RBMX has been linked to chemoresistance in both T-cell
lymphoma and small-cell lung cancer (75, 78), suggesting that it may
affect treatment responses in esophageal cancer, particularly in
platinum-resistant ESCC, by modulating DNA damage repair and
apoptotic pathways, such as those involving the BCL2 family.
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Research by Tuersun and Bei has emphasized that RBMX is a
significant prognostic biomarker in various cancers, including
esophageal cancer, where its expression correlates with tumor
progression and poor clinical outcomes (79, 80). Investigating
how RBMX influences alternative splicing and m6A methylation,
particularly in relation to other RNA-binding proteins such as
TRA2A, may reveal new insights into the biology of esophageal
cancer and resistance to therapies like sorafenib (80). The
interaction of RBMX with splicing factors such as TRA2A and
hnRNP Al offers deeper insights into the regulatory networks
governing esophageal cancer progression. RBMX’s role in m°A
methylation may contribute to the dynamic regulation of
oncogenic IncRNAs, thereby influencing tumor biology. Future
investigations should examine the mechanistic pathways by
which RBMX influences alternative splicing and m°®A
modification across a broader range of cancers. Longitudinal
studies are needed to assess its prognostic value over
extended periods.

Our research has several limitations that should be
acknowledged. Firstly, although we included 23 well-known m°A
regulators reported in the literature, the significance of
incorporating recently identified regulators to enhance the
precision of m®A methylation pattern identification is
incontrovertible. Incorporating additional regulators into the
model can potentially improve the comprehensive understanding
of m°A modifications. Secondly, while immunotherapy has shown
significant benefits for some patients with low m°A scores, it is
important to recognize that not all patients with low scores derive
equal benefit. To enhance the predictive accuracy, it would be
valuable to integrate additional clinicopathological features into the
analysis. By incorporating these features, we can better identify
patients who are more likely to respond favorably to
immunotherapy. Thirdly, although we obtained a relatively large
sample size of 186 ESCA patients from various cohorts, it is
important to acknowledge that a larger and independent
prospective cohort of ESCA patients who have undergone
immunotherapy is required to validate our findings. Prospective
trials with a substantial patient cohort are required to provide a
more definitive demonstration of the prognostic value of the m°A
score in relation to the response to immunotherapy. Furthermore,
our study focused on a holistic analysis of the tumor
microenvironment without further distinguishing between tumor,
immune, and stromal components. This lack of component-specific
analysis may mask certain subtype-specific information, which is a
limitation of our study. Future investigations should consider
dissecting the tumor microenvironment into its individual
components to gain deeper insights into the interactions and
contributions of different cell types. Lastly, we primarily aimed to
propose molecular subtypes associated with m°A methylation
across the tumor microenvironment and subsequently develop a
scoring system. Furthermore, clinical analysis revealed that the m°A
score, when combined with other clinical indicators, can serve as a
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valuable adjunct to existing variables and effectively predict patient
prognosis. Addressing these limitations through further research
and validation will enhance the scientific significance and clinical
applicability of our findings.

This study offers novel insights into the clinical application of
immunotherapy, presenting potential implications for its use in the
field. One potential avenue for the development of novel
immunotherapy drugs or treatment strategies involves the
modulation of m°A modification patterns through the targeting of
m°A regulators or m°A -related marker genes. This approach may
serve to reverse unfavorable immune cell infiltration in the tumor
microenvironment, thereby converting immune cold tumors into hot
tumors (81). These findings aid in the identification of distinct
immune phenotypes, thereby enhancing our understanding of
patient response to immunotherapy. This information may help
with the clinical use of customized immunotherapy for the
treatment of cancer (82). We also demonstrated that patients with
high m°A scores had increased resistance to immunotherapy, which
may lead to different treatment effects of classical chemotherapeutics
in different patients.

5 Conclusions

We assessed the landscape of m°A methylation modifications
mediated by 23 regulators based on 186 ESCA samples. The variety
and complexity of immune infiltration in the TME are closely
connected to m®A methylation modifications. An m®A score has
been developed to offer a comprehensive evaluation of the m°A
modification pattern and immune infiltration features within a
singular tumor. This score also helps determine the tumor’s
immune phenotype, providing new insights and directions for
identifying potential therapeutic targets.
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SUPPLEMENTARY FIGURE 1
Integrated analysis and study design flowchart.

SUPPLEMENTARY FIGURE 2

The Metascape enrichment network is visually represented through a
visualization that highlights similarities both within and between clusters of
terms. The clustering of terms is indicated by consistent color coding

SUPPLEMENTARY FIGURE 3

Kaplan-Meier survival curves of overall survival in ESCA cohort according to
the expression value of YTHDF2, YTHDF1, RBMX, LRPPRC, IGFBP3, IGFBP1,
FMR1 or ALKBH5 mRNA level in each tumor sample, the optimal value in each
cohort was chosen as the cut-off point.

SUPPLEMENTARY FIGURE 4

Comparative immune landscape analysis of m®A modification clusters in
esophageal cancer. Heatmap depicting immune cell infiltration patterns
between mPA cluster A (left) and cluster B (right) as quantified by four
deconvolution algorithms (CIBERSORT, EPIC, MCP_COUNTER,
QUANTISEQ, TIMER and XCELL). Rows represent immune cell subsets
grouped by lineage (T cells, B cells, myeloid cells, stromal cells), while
columns represent individual samples. Color scale indicates relative
abundance (z-score normalized).

SUPPLEMENTARY FIGURE 5

Relationship between the m®A score and different clinical characteristics.
Kaplan-Meier curves showing the differences in survival depending on the
m°®A score and different clinical characteristics. (A) TO; (B) T1-2; (C) T 3-4;
(D) NO; (E) N1-2; (F) N3; (G) MO; (H) M1; (I) male; (J) female; (K) age less than
or equal to 65 years; (L) age above 65 years.

SUPPLEMENTARY FIGURE 6

The m°®A risk score predicts immunotherapeutic benefits in the GSE165252
cohort. The fraction of patients with clinical response to anti-PD-1
immunotherapy in low or high mCA risk score groups.

SUPPLEMENTARY FIGURE 7

Sensitivity of the mPA risk score to different chemotherapy drugs and small
molecule anticancer drugs was analyzed based on the GDSC database.
(A) Axitinib, (B) Bexarotene, (C) Bicalutamide, (D) Vinblastine, (E) Bosutinib,
(F) Bryostatin.1, (G) Lapatinib, (H) Imatinib, (I) Elesclomol.
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