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Editorial on the Research Topic

Environmental Catalysis and the Corresponding Catalytic Mechanism

The ever growing environmental pollution has stimulated the rapid development of environmental
catalysis in recent years. Environmental catalysis is a multidisciplinary research field for which
more andmore chemists, materials scientists, as well as environmentalists have devoted their efforts
working in this field because of the bright potentials in improving human health and life quality.
With the progresses in controllable materials synthesis, advanced characterizations (electron
microscopy, spectroscopy, etc.), high-level analytical chemistry, together with the computational
studies, catalysis continues to be the driving force for generation of clean energy, abatement of
major pollutants in air and water, and meantime the theories behind the catalytic reactions are
illustrated. In the current Research Topic, an elegant collection of original research and review
articles reporting the synthesis of high-performance catalysts, their applications in various catalytic
technologies for environment remediation, and relevant theoretical calculations for understanding
the catalytic mechanisms is presented.

Photocatalysis remains to be a research focus for the environmental catalysis community due
to the wide applications in carbon dioxide reduction, oxidation of volatile organic compounds
(VOCs), elimination of aqueous organic pollutants and disinfection, water splitting (Chen et al.,
2011; Zheng et al., 2016; Wang et al., 2017). Particularly, the synthesis of visible light and
near-infrared (NIR) light responsive semiconductor photocatalysts is of immense interests to
scientists because visible light and NIR light occupy around 90% of the solar light energy,
in comparison to the no more than 5% for ultraviolet light (UV). To enhance the visible
light absorption of the most popularly used TiO2, several routes including creating defects
and element doping are developed Qin and Lin et al., introduced carbon and nitrogen
elementals into TiO2 simultaneously and demonstrated the improved catalytic property of
such C, N-TiO2 catalyst compared to anatase TiO2 under simulated sunlight irradiation for
degradation of 4-nitrophenol. Moreover, they also evaluated the embryonic toxicity of intermediate
degradation compounds (Osin et al.). Silva et al., synthesized Pd-Cu loaded over hybrid
materials of carbon nanotubes and TiO2 for nitrate reduction. It reported that the Pd-Cu
loaded on the hybrid materials have high photocatalytic performance for NO−

3 conversion
(Silva et al.). Other than TiO2, the bismuth compounds as a new class of photocatalytic
materials have been paid much attention in recently. Among them, bismuth oxychloxide
(BiOCl) exhibits excellent photocatalysis behaviors driven by UV light. To expand its light
absorption to visible light spectrum, efforts to fabricate graphene oxide/BiOCl nanocomposite
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film and BiOI/BiOCl film are reported by Zhu and Zhang
et al., respectively (Lin et al.; Zhong et al.). BiVO4 is found to
be a visible light-activated photocatalyst due to the narrower
band gap than TiO2, the involvement of graphene oxide or
BiOI can further improve the photocatalytic performance for
RhB degradation. However, the poor specific surface area
limits its catalytic performance. To this end, Channei et al.
utilized a co-precipitation method to coat SiO2 onto BiVO4

and obtained SiO2/BiVO4 composites with larger surface area
and higher photocatalytic activity and degradation efficiency
towards methylene blue dye with respect to monoclinic BiVO4

(Channei et al.). Furthermore, a comprehensive overview on
semiconductors loaded with carbon cocatalysts as photocatalysts
for water splitting and pollutant degradation was provided
by Peng et al., aiming to give a clue to the rational design
of low-cost photocatalysts with more efficient solar light
utilization. The synthesis methods of various types of carbon-
semiconductor composite photocatalysts were summarized, the
contribution of different carbon allotropes like C60, carbon
nanotubes, graphene to the enhanced photocatalytic activity
were compared and the cocatalytic effect mechanisms were
discussed (Han et al.).

Catalytic conversion of biomass to biofuels is another
emerging topic in the environmental catalysis field out of the
urge to transform the agricultural wastes into resources and to
reduce the carbon dioxide emission from fossil fuels combustion
(Wang and Xiao, 2015; Xiong et al., 2015). Heterogeneous
acidic catalysts and enzyme biocatalysts are among the leading
candidates for the conversion of lignocellulosic biomass to
fuels and value-added chemicals. One relevant paper presented
the good catalytic performance of bifunctional catalysts which
were synthesized by decorating propyl/phenyl-sulfonic acid
group functionalized mesoporous silica materials SBA-15
with Pt particles in the reaction of hydrodeoxygenation
of bio-derived phenol to produce cyclohexane
fuel (Mo et al.).

Pharmaceutical and personal care products (PPCPs)
are emerging contaminants, which are widely present in

pharmaceutical and hospital wastewater, even natural water. In

this Research Topic, Fe-MCM-41s were fabricated at different
conditions to adsorb widely used antibiotics ciprofloxacin
hydrochloride (CPX) for its removal from waste water (Wu
et al.). Owing to the rise of supercomputers, computational
studies become important complementary tools for elucidation
of the inherent mechanisms of catalytic reactions. Currently
Ab initio techniques like Density Functional Theory (DFT)
are popularly adopted for theoretical calculations. Here in
this Research Topic, two examples of DFT studies on the
mechanisms of CO oxidation catalyzed by Mn-embedded
divacancy graphene and boosted oxygen reduction reaction
performance catalyzed by two-dimensional metal–organic
frameworks TM3(hexaiminotriphenylene)2 monolayer (where
TM = Ni, Co, Fe, Pd, Rh, Ru, Pt, Ir, and Os) were shown (Jiang
et al.; Xiao et al.).

We believe that this collection, Environmental Catalysis
and the Corresponding Catalytic Mechanism, illustrates the
advancements of catalysis for environment remediation and
innovations in clean energy with diminished production of
undesired by-products. At the same time, challenges and
perspectives for this field are also addressed with the hope that
future interests will be focused to help establish a world with clean
air and water, as well as sustainable and green energy for human
to live in.
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The Promoting Role of Different
Carbon Allotropes Cocatalysts for
Semiconductors in Photocatalytic
Energy Generation and Pollutants
Degradation

Weiwei Han, Zhen Li, Yang Li, Xiaobin Fan, Fengbao Zhang*, Guoliang Zhang and

Wenchao Peng*

School of Chemical Engineering and Technology, Tianjin University, Tianjin, China

Semiconductor based photocatalytic process is of great potential for solving the fossil

fuels depletion and environmental pollution. Loading cocatalysts for the modification

of semiconductors could increase the separation efficiency of the photogenerated

hole-electron pairs, enhance the light absorption ability of semiconductors, and thus

obtain new composite photocatalysts with high activities. Kinds of carbon allotropes,

such as activated carbon, carbon nanotubes, graphene, and carbon quantum dots

have been used as effective cocatalysts to enhance the photocatalytic activities of

semiconductors, making them widely used for photocatalytic energy generation, and

pollutants degradation. This review focuses on the loading of different carbon allotropes

as cocatalysts in photocatalysis, and summarizes the recent progress of carbonmaterials

based photocatalysts, including their synthesis methods, the typical applications, and

the activity enhancement mechanism. Moreover, the cocatalytic effect among these

carbon cocatalysts is also compared for different applications. We believe that our

work can provide enriched information to harvest the excellent special properties of

carbon materials as a platform to develop more efficient photocatalysts for solar energy

utilization.

Keywords: carbon allotropes, semiconductor, photocatalysis, cocatalysts, energy generation, pollutants

degradation

INTRODUCTION

Environmental pollution and fossil fuels depletion are the most serious social problems nowadays.
Since the discovery of the photocatalytic splitting of water on TiO2 electrodes by Fujishima and
Honda in 1972, photocatalysis technology has become one of the most promising technologies
for energy generation and environment remediation (Fujishima and Honda, 1972). Moreover,
solar energy is clean, sustainable, and inexhaustible, which is therefore the most hopeful resource
to solve the energy and environment problems (Chen et al., 2010a). Mostly, photocatalysis is a
semiconductor-mediated process (Chen et al., 2010b; Wang et al., 2014; Zhang et al., 2016b). So
far, kinds of semiconductor materials, including metal oxides, metal sulfides and metal containing
salts have been used as photocatalysts. Some metal free materials, such as silicon, sulfur, graphic
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carbon nitride (g–C3N4), have also been developed as
photocatalysts for the utilization of sunlight (Peng et al.,
2013; Cao and Yu, 2014; Devi and ArunaKumari, 2014; He et al.,
2015). However, some fundamental problems must be resolved
before their real application, which are (1) low utilization
efficiency of solar energy; (2) poor quantum efficiency; (3)
severe photo corrosion (Zhang and Guo, 2013; Chowdhury
and Balasubramanian, 2014; Han et al., 2015; Xie et al., 2015;
Liu Y. et al., 2017b). To address these obstacles, modification
of semiconductors with suitable cocatalysts is a frequent and
effective solution (Yang J. H. et al., 2013). Metal nanoparticles
and their compounds, especially noble metal based materials, are
always used as cocatalysts (Bai et al., 2014; Zhang et al., 2015a;
Zhong et al., 2016). Although they are effective to enhance the
photocatalytic activity, the high cost and rare storage on earth
limit their practical application (Ran et al., 2014). To develop
cheap, highly efficient alternatives to replace noble metal based
cocatalysts is still a great challenge in the photocatalysis filed.

Recently, carbon materials, including activated carbon (AC),
fullerenes (C60), carbon nanotubes (CNTs), graphene (GR),
and other carbon allotropes, have been widely investigated as
cocatalysts for semiconductors in photocatalysis (Xiang et al.,
2012; Ouzzine et al., 2014; Cao and Yu, 2016; Paulo et al.,
2016; Yu et al., 2016). Specially, CNTs and GR have large
specific surface areas (SSAs), excellent electric conductivity, high
mechanical strength, and good thermal, and chemical stability,
making them ideal substitute for noble metal cocatalysts (Zhang
et al., 2012; Wang et al., 2013, 2017; Di et al., 2015; Han
et al., 2016). Figure 1 shows the structure models of the carbon
materials and their photocatalytic applications as cocatalysts
simply. Many kinds of carbon cocatalysts based composites have
been reported for photocatalytic reactions, and the cocatalytic
mechanisms have also been discussed (Woan et al., 2009; Chen
et al., 2011; Lee W. J. et al., 2012; Xie et al., 2013; Shearer
et al., 2014; Li et al., 2015). For example, a graphene–TiO2

NPs hybrid was successfully synthesized by wrapping amorphous
TiO2 NPs with GO using a one-step hydrothermal method by
Lee and coworkers (Lee J. S. et al., 2012). The hybrid exhibited
superior photocatalytic activity for the photodegradation of
MB under the visible light irradiation. Fan et al. prepared
a novel 3D AgX/graphene aerogels (X = Br, Cl) structured
composite, which exhibited excellent photocatalytic and cycling
performance for the degradation of MO and reduction of CrVI

(Fan Y. et al., 2015). They also investigated photocatalytic
enhancement mechanism of the graphene aerogels in the
composite, which could effectively suppress the recombination
of photogenerated holes, and electrons as a capable substrate for
the photocatalyst. Tian et al. reported a new CQDs/hydrogenated
TiO2 (H-TiO2) photocatalyst by assembling CQDs on the surface
of H-TiO2 (Tian et al., 2015). The photocatalytic activity of
CQDs/H-TiO2 was superior to P25, TiO2 nanobelts, and H-
TiO2 nanobelts for the degradation ofMO under UV-visible-NIR
irradiation. The CQDs have excellent photo-induced electron
transfer and reservoir properties, which could convert NIR light
to visible light to be in full used by H-TiO2 and effectively
suppress the recombination of electron-hole pairs. Generally,
loading carbon materials as cocatalysts for semiconductors, the

FIGURE 1 | Schematic illustration of the photocatalytic applications of carbon

materials based semiconductor composites.

synergistic effect between them can increase the active sites,
widen the absorption range of the solar light, facilitate the
separation of the electron-hole pairs, and thus enhancing the
photocatalytic activity.

To develop carbon materials based composite has attracted
great attention for low cost and highly active photocatalysts.
Lots of researches have been done on this subject, but
a systematic summary about the key roles of different
carbon allotropes as cocatalysts is still lacking. Herein, we
aim to provide an overview on recent advances in the
synthesis, multiple applications and mechanism of different
carbon allotropes based composite photocatalysts. On behalf
of this review, we wish more carbon based photocatalysts
could be synthesized for environment remediation and energy
generation.

PHOTOCATALYSTS SYNTHESIS

The synthesis process will affect the morphologies,
properties and activities of the composite photocatalyts
greatly. As shown in Table 1, we summarized the typical
synthesis methods of the recently reported carbon based
photocatalysts. The semiconductors could be loaded on carbon
materials by one-step grinding, stirring, ultrasonic assisted
dispersing or by some complicated multi-step synthesis
methods. It can be concluded that mechanical mixing,
hydrothermal/solvothemal, and sol-gel process are more
frequently used. In addition, photocatalytic reduction and
microwave-assisted method are also reported, and they may
have a great potential due to the green and sustainable synthetic
processes.
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Hydrothermal/Solvothemal Methods
Hydrothermal or solvothermal methods are the most frequently
used ways due to their mild reaction conditions, high product
purity, controllable morphology, good crystallinity, and uniform
distribution of obtained products (Li Q. et al., 2011). For example,
Liu et al. synthesized GR–CdS nanocomposites by an one-step
solvothermal method using DMSO as reductant and sulfure
source (Liu et al., 2014). In the preparation procedure, GO
was dispersed in DMSO to obtain the GO–DMSO dispersion,
Cd(CH3COO)2·2H2O was then added. The mixture was then
treated at 453K for 12 h to obtain the final composites. The
photocatalytic activity of GR–CdS nanocomposites for selective
reduction of aromatic nitro compounds was dramatically
enhanced compared to the pure CdS. This can be ascribed to the
synergistic effect with graphene addition, the increased visible
light absorption range and intensity, the improved lifetime and
charge transfer ability, and the enhanced adsorption capacity of
this nanocomposite toward the nitro compounds.

Han et al. synthesized 2D hexagonal α-Fe2O3/graphene
nanoplate composites by a simple one-step hydrothermalmethod
with no template (Han et al., 2014). Using hydrothermal
method, not only the effective reduction of the GO to
graphene was achieved, but intimate contact was also formed
between the α-Fe2O3 nanoplates and graphene. A significant
enhancement for photocatalytic degradation of RhB could
be observed after the combination with graphene cocatalyst.
An et al. fabricated MWCNT–TiO2 sphere composites by a
facile one-step hydrothermal method using TiF4 as titanium
source and CNTs as structure regulator (An et al., 2012). The
effects of hydrothermal temperature and hydrothermal time on
the structural characteristics of MWCNT–TiO2 photocatalysts
were investigated. Decreasing hydrothermal temperature or
prolonging the hydrothermal time could lead to the enhancement
of the photocatalytic degradation efficiency of both gaseous
(i.e., styrene) and aqueous (i.e., MO) phase. Decreasing the
hydrothermal temperature could lead to the crystallite size
decrease of TiO2 (Table 2), while prolonging the hydrothermal
time will increase the synergistic effects between TiO2 and
MWCNTs, thus promoting the photocatalytic performance.

As reported by Murcia-López et al. the calcination could be
applied after hydrothermal process to prepare the AC/Bi2WO6

and AC/TiO2/Bi2WO6 photocatalysts (Murcia-Lopez et al.,
2013). The introduction of optimized percentage of AC (2
wt%) could form 3D-hierarchical structures of both AC/Bi2WO6

and AC/TiO2/Bi2WO6, which exhibited improved photocatalytic
activities for the RhB degradation under both UV-vis and visible
illumination compared to pure Bi2WO6. Here, the presence of
AC could stimulate the 3D-hierarchical structure formation, and
will increase the surface area and absorption ability of the catalyst
at the same time.

Mechanical Mixing Method
The loading of carbon cocatalysts can also be performed
by simple mechanical mixing processes, such as magnetic
stirring, ball milling, and ultrasonication (Xu et al., 2014;
Guo et al., 2017). Ali et al. used C60 as cocatalysts for
the modification of TiO2 using a simple sonication assisted
mixing method (Mukthar Ali and Sandhya, 2014). The C60

TABLE 2 | Crystallite size of TiO2 in Pure TiO2 and MWCNT–TiO2 photocatalysts.

Samples prepared under different conditions Crystallite size (nm)

Pure TiO2 44.7

7.2 wt % MWCNTs 33.1

18.9 wt % MWCNTs 30.1

31.7 wt % MWCNTs 29.9

48.2wt % MWCNTs 30.6

51.6 wt % TiO2 23.2

68.4 wt % TiO2 26.7

81.1 wt % TiO2 30.1

89.6 wt % TiO2 35.2

120◦C 24.2

150◦C 26.7

180◦C 27.3

210◦C 28.4

24 h 25.5

48 h 26.5

72 h 26.7

Reprinted from An et al. (2012), Copyright 2012, with permission from American Chemical

Society.

molecules were first dispersed in β-cyclodextrin (CD), and
then mixed with the suspension of TiO2 with the assistance
of sonication under sunlight. According to the HRTEM
images of the composites, C60 cocatalysts are dispersed in the
composite without aggregation. They believed that the non-
aggregated C60 cocatylysts played a key role in increasing
the amount of reactive oxygen species (ROS) and suppressing
photogenerated charge recombination, thus leading to the
enhanced photocatalytic activity. The photocatalytic activity of
the composite shows 2 and 5 times higher than the bare TiO2

for the degradation of MB and 4-CP, respectively. Gao and his
coworkers successfully synthesized GO–CdS composites by a
novel two-phase mixing method (Gao et al., 2013). By simply
stirring for 24 h, the two phases are mixed into a homogeneous
solution, and CdS nanoparticles are then uniformly deposited
on GO sheets (see Scheme 1 in the original paper, Gao et al.,
2013). The obtained composites show higher photocatalytic
degradation and disinfection activities than CdS under visible
light irradiation.

However, using the mechanical mixing method, the
interaction force between semiconductors and carbon materials
is a little weak without the formation of chemical bonds, resulting
in a relatively lower activity enhancement compared to that from
hydrothermal/solvothemal methods. For example, Hong and his
coworkers reported that CdS/GO photocatalysts synthesized by
in situ solvothermal method showed much higher H2 evolution
activity than that synthesized by mechanical loading (Hong et al.,
2015).

Sol-Gel Method
The sol-gel method is another widely applied method to get a
close chemical interaction between semiconductors and carbon
cocatalysts (Zarezade et al., 2011; Morales-Torres et al., 2012;
Ng et al., 2012). Generally, this method need to prepare the sol
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first, which is then mixed with the carbon materials uniformly.
Subsequently, the gel is formed by aging followed with high
temperature calcination to obtain the final composites. This
method can control the crystal structure and uniformity of the
supported nanoparticles, thus can fabricate photocatalysts with
high activities. Li et al. used surfactant wrapping sol-gel method
for the synthesis of CNT/TiO2 core-shell nanocomposites (Li
Z. et al., 2011). Using this method, they prepared uniform and
distinct nanoscale anatase TiO2 layer on the CNTs with tailored
TiO2 layer thickness with different Ti precursors (TEOTi,
TTIP, and TBT). The CNT/TiO2 composite prepared from
TBT has thinner TiO2 layer that provides shorter traveling
distance for electron transferring to the CNT core, the activity
for the degradation of MB was therefore higher than those
prepared from TEOTi and TTIP. Kim et al. prepared GO–TiO2

nanofibers (NFs) by using a sol-gel method and an electro-
spinning technique (Kim et al., 2014). They also compared the
activity of GO–TiO2 NF with GO(s)–TiO2 NF (prepared by
covering GO sheets on external surface of TiO2 NF). Due to the
stronger electronic coupling between GO and TiO2 matrix and
the reduced light shielding effect by hiding GO inside of TiO2

NF, the photocatalytic H2 production of GO–TiO2 NFwas higher
than GO(s)–TiO2 NF.

Although the materials prepared by sol-gel method have high
purity and uniform particle size, some problems still exist, such as
relatively long reaction time, large shrinkage during drying, and
easy sintering with high temperature calcination. For example,
Ren et al. prepared nanostructured LaFeO3 nanoparticles (NPs)
with rGO as a 2D template using a high temperature sol-gel
method (Ren et al., 2016). Although the addition of C-support or
rGO reduces the sintering degree of LaFeO3, it remains difficult
to avoid sintering during the high temperature calcination for a
long time.

Other Methods
Microwave-assisted method is a green synthesis method based
on the characteristics of microwave heating with tremendous
advantages (Tian et al., 2016). Preparation of catalysts with
special structure and high yield would be finished in a very
short time using microwave heating. Thangavel et al. prepared
the ZnS–rGO nanohybrids via microwave irradiation for 20 s
over two cycles (Thangavel et al., 2016). Interestingly, Raman
spectrum of the hybrids indicates the complete reduction of GO
into rGO via the microwave treatment. After 2 h of irradiation,
the ZnS–rGO showed higher degradation efficiency for MB
(about 55.23%) and RhB (about 90.37%) than that of bare
ZnS (about 40.79% for MB and 56.56% for RhB), respectively.
They attributed the high activity to tight intermolecular binding,
good interfacial contact between ZnS and rGO in the hybrid,
and enhanced charge-transfer properties of rGO in nanohybrid.
Zhang et al. successfully synthesized the graphene/Cu2O
composites by a CVD (chemical vapor deposition) method. They
also investigated the effects of the CVD growth parameters on
the graphene flakes. The obtained composites were effective
for the photocatalytic methyl orange degradation (Zhang et al.,
2016a).

PHOTOCATALYTIC APPLICATIONS

The photocatalytic activity of pure semiconductors can be
enhanced by the addition of carbon materials as cocatalysts.
The obtained composites are mainly used for the photocatalytic
pollutants degradation, water splitting, CO2 reduction, organic
synthesis and so on (Abou Asi et al., 2013; Zhang et al., 2013a;
Colmenares et al., 2016; Li K. et al., 2016; Zeng et al., 2017).
In the following sections, we will focus their applications for
photocatalytic hydrogen evolution and pollutants degradation.

Photocatalytic Hydrogen Evolution
Hydrogen is considered as one of the most potential alternative
energy in the twenty-first century (Zhang et al., 2015b; Zou and
Zhang, 2015). Among the present hydrogen productionmethods,
photocatalytic water splitting driven by sustainable solar energy
is an ideal way to achieve clean hydrogen production (Matsuoka
et al., 2007; Wang et al., 2009; Hisatomi et al., 2014). Figure 2
describes the photocatalytic water splitting process with the
presence of cocatalysts. Under the light irradiation, the electrons
are photoexcited from the valence band (VB) to the conduction
band (CB), while the holes are left in the VB, resulting in the
separation of electrons and holes. Generally, for photocatalytic
water splitting, the CB potential of semiconductor has to be
more negative than hydrogen electrode potential EH+/H2, while
the VB potential should be more positive than oxygen electrode
potential EO2/H2O (Xu et al., 2016). Moreover, due to the
impact of semiconductor band bending and presence of surface
overpotential, the band gap of semiconductor should be larger
than 1.23 eV to split water into H2 and O2 (Matsuoka et al., 2007;
Moniz et al., 2015).

Carbon materials are effective H2 evolution cocatalysts for
the semiconductors mainly due to their large surface area and
good charge mobility on their surface. Martha et al. synthesized
RGO/InGaZn nanocomposites using a one-pot hydrothermal
method (Martha et al., 2014). They also evaluated the effects of

FIGURE 2 | Fundamentals of semiconductor photocatalytic water splitting for

hydrogen evolution.
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FIGURE 3 | (A) Photocatalytic H2 evolution over IGZ, 1RGO/IGZ, 3RGO/IGZ, 5RGO/IGZ, and 7RGO/IGZ under visible-light irradiation; (B) Time course of H2

evolution over 3RGO/IGZ; (C) Mechanism of photocatalytic H2 composites; (D) TEM image of 3RGO/IGZ (Reprinted from Martha et al., 2014, Copyright 2014, with

permission from Wiley-VCH).

RGO percentage on the H2 evolution activity under visible-light
irradiation (λ > 400 nm) (Figure 3). Three wt% rGO was proved
to be the best loading percentage, and the H2 generation rate can
be as high as 435 µmol/h (Figure 3A). As shown in Figure 3D,
InGaZn was uniformly dispersed on the surface of RGO, which
was beneficial for the electrons moving from InGaZn to RGO.
Moreover, the RGO could also provide more active adsorption
sites and photocatalytic reaction centers. The stability test of
RGO/InGaZn composite was also tested, and no deactivation
could be found after four recycles (Figure 3B).

Silva et al. combined TiO2 and CNTs using two different
methods: hydration-dehydration labeled as (CNTox-TiO2) and
one-pot oxidation (labeled as (CNT–TiO2)ox) (Silva et al., 2015).
One wt% Pt was then loaded followed by calcination at 473K and
673K, respectively. The optimized catalyst Pt/(CNT–TiO2)ox-
473 could obtain a H2 evolution rate of 485 µmol/h, 2.4
times compared to the Pt/TiO2-473. According to the infrared
attenuated total reflectance (ATR) spectra (see Figure 1 in the
original paper, Silva et al., 2015), the bands from C = C and C–
H are weaker in (CNT–TiO2)ox than in CNTox-TiO2, indicating
a better dispersion of the TiO2 particles at the surface of CNT
in (CNT–TiO2)ox. This conclusion can be further confirmed by
SEM and TEM images in. The better photocatalysis performance
of (CNT–TiO2)ox might be related to the stronger interface

interaction between TiO2 and CNT, which is promoted by the
oxidative treatment according to the ATR analysis.

Loading carbon materials as cocatayst, the bandgap of
semiconductors could be narrowed to utilize the visible light
with longer wavelength. Yu et al. prepared the CQDs/P25
composites with a “dyade”-like structure and applied them for
photocatalytic hydrogen evolution under both UV-vis and visible
light irradiation (Figure 4) (Yu H. et al., 2014). With methanol
as the sacrificial agent, CQDs/P25–1.5 wt% showed the best
photocatalytic performance under UV-vis light irradiation, and
the evolution rate could reach 9.1µmol/h, 4 times higher than
that of pure P25 (2.3µmol/h). While CQDs/P25–2.0 wt% was
the optimized one under visible light with a H2 evolution rate
of 0.5µmol/h. The photocurrent response of these composites
are shown in Figures 4A,B, which are consistent with the
photocatalytic results. They believed that CQDs played dual
roles to improve the photocatalytic activity of P25. CQDs could
act as electron acceptors to improve the charge separation
under UV-vis light irradiation. Meanwhile, they also served as
a photosensitizer to sensitize P25 into a visible light response
“dyade” structure for H2 evolution under visible light irradiation.

Heteroatom doped carbon materials, such as nitrogen
doped graphene, are proved to be better cocatalysts for
semiconductor photocatalysts in recent years (Putri et al.,
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FIGURE 4 | (A) Schematic illustration for the photocatalytic H2 production mechanism over the CQDs/P25 under UV-Vis and visible light (λ > 450 nm) irradiation;

(B,C) The transient photocurrent response of P25 and the CQDs/P25 composites with different amount of CQDs in 1M Na2SO4 aqueous solution under UV-Vis light

and visible light (λ > 450 nm) irradiation (Reprinted from Yu H. et al., 2014, Copyright 2014, with permission from Royal Society of Chemistry).

2015). Yue et al. synthesized a ternary visible-light-driven
photocatalyst for hydrogen evolution reaction. After decorating
the CdS/Nb2O5 heterojunction structure with N-doped graphene
(NGR) nanosheets (Yue et al., 2017), the hybrid photocatalyst
(2 wt% NGR) exhibited a high H2 evolution rate of 100µmol
h−1 g−1, which was about 7.7 times than the pure CdS. Doping
with nitrogen atom could change the electron density of the
GR surface, thus can separation the photogenerated charges
more efficiently. Jia et al. synthesized a series of nanocomposites
by coupling CdS nanoparticles with NGR through calculation
(Jia et al., 2011). The N-graphene/CdS was proved to be more
efficient photocatalysts for hydrogen evolution compared to
the CdS supported on undoped graphene. Significantly, the
photocatalytic H2 evolution rate of the N-graphene (2 wt %)/CdS
reached 210µmol h−1 without the addition of metal cocatalyst,
which was much higher than graphene/CdS (99µmol h−1) and
GO/CdS (95µmol h−1) with the same percentage of cocatalysts.

Photocatalytic Degradation of Pollutants
Photocatalytic degradation of pollutants is another important
application of photocatalysts. Photocatalysts can adsorb and
degrade pollutants in water and toxic gas in air under illustration,
which thus has great potential for environmental remediation.
Previous studies have shown that photocatalysis technology
can not only degrade organic pollutants into CO2, H2O, and
inorganic salt, but also eliminate the heavy metal ions (Akpan
and Hameed, 2009; Peng et al., 2014; Murgolo et al., 2015; Jing
et al., 2017).

Ming et al. synthesized dandelion-like ZnS/CQDs hybrid
materials using hydrothermal method with CTAB as surfactant
(Ming et al., 2016). As shown in Figures 5A–D, some dark
dots are distributed on the ZnS nanowires uniformly. Coating
the optimal content of 2 wt% CQDs, the photocatalyst showed
the highest degradation rate, which was about 1.67 and 2.11
times higher than bare ZnS for MB and RhB, respectively. As
illustrated in Figure 5E, the intensity of the PL emission band
decreased obviously after the loading of CQDs on ZnS. The
2 wt% CQDs/ZnS possessed the lowest intensity, suggesting
the lowest recombination possibility of photoexcited holes and
electrons. They also proposed the photocatalytic mechanisms on
the CQDs/ZnS hybrid:

ZnS+ hv → eZnS
−

+ hZnS
+ (1)

e−ZnS → e−CQDs (2)

e−CQDs +O2 →
∗O−

2 (3)

h+ZnS +H2O →
∗OH− (4)

2
∗

OH → H2O2 (5)

H2O2 +
∗O−

2 → OH−

+
∗OH+O2 (6)

∗OH+ dye → H2O+ CO2 + intermediates (7)

Qi and his co-workers prepared a series of fullerene-modified
anatase TiO2 (C60@a-TiO2) nanocomposites by a simple solution
phase method (Qi et al., 2016). By the introduction of C60, the
activity of C60@a-TiO2 for photocatalytic degradation of MB
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FIGURE 5 | (A,B) TEM images of CQDs/ZnS hybrid materials; (C) HRTEM image of the CQDs/ZnS hybrid materials; (D) SAED of the dandelion-like ZnS; (E) PL

spectra of pure ZnS and CQDs/ZnS hybrid materials (Reprinted from Ming et al., 2016, Copyright 2016, with permission from Royal Society of Chemistry).

could be enhanced greatly under UV-A light irradiation. In order
to confirm the electronic structures of C60@a-TiO2, the density
functional theory (DFT) was used for a theoretical calculation
toward the C60-COOH@a-TiO2 (101) surface. The adsorption
energy and the projected density of states (PDOS) for the C60-
COOH@a-TiO2 (101) surface were calculated. Strong covalent
interaction between C60 and the a-TiO2 (101) surface was present
with the calculated adsorption energy of 3.61 eV. Moreover, the
introduction of C60 narrows the band gap to 0.8 eV, resulting
in the red shift of light absorption edge of the C60-COOH@a-
TiO2 heterojunctions. According to the DFT results, there is an
additional doping state present between the valance band and
conduction band by the incorporation of C60 on the a-TiO2 (101)
surface. The activity of C60@a-TiO2 is therefore enhanced with
more efficient charge separation efficiency and increased light
absorption range.

Sampaio et al. used both GO–TiO2 and CNT–TiO2 materials
for the photocatalytic degradation of the cyanobacterial toxin,
microcystin-LA (MC-LA) under simulated solar light and
visible light irradiation (Sampaio et al., 2015). The GO–TiO2

composite containing 4 wt% of GO exhibited the highest
photocatalytic activity under both simulated solar light and
visible light irradiation. The enhanced activity of GO–TiO2

was attributed to the optimal assembly and interfacial coupling
between TiO2 nanoparticles and GO sheets, which can effectively
inhibit electron-hole recombination. While the activity of CNT–
TiO2 for the MC-LA removal under visible light irradiation
was mostly due to adsorption instead of photocatalytic
degradation.

Murgolo et al. fabricated a composite photocatalyst by
combining SWCNTs with nano-sized TiO2 NRs (Murgolo

et al., 2015). The composite showed tailored photocatalytic
properties for the photocatalytic degradation of a mixture of
22 organic pollutants under both UV and simulated solar light.
The experiment results showed that this composite displayed
comparable degradation rates over Degussa P25 under UV
irradiation. While the SWCNTs/TiO2 showed slightly lower
efficiency than Degussa P25 under simulated solar irradiation.
The SWCNTs/TiO2 can be reused easily by a mild centrifugation
or a filtration. This photocatalyst has proved to be a promising
candidate in photocatalytic pollutants degradation, which can
also be integrated with a biological step for the enhanced removal
of emerging organic pollutants.

Heteroatoms doped carbon materials are also effective
cocatalysts for photocatalytic degradation reaction. Liu et al.
synthesized N-CNT/mpg-C3N4 composites via thermal
polycondensation (Liu J. et al., 2017). N-CNT has better
electronic conductivity and more defective structure than
undoped CNT, which could therefore accept electrons more
easily. Benefiting from the synergistic effect between N-CNT and
mpg-C3N4, the composites show enhanced photo-degradation
activity for rhodamine B, methyl orange and tetracycline
hydrochloride under visible light irradiation. Due to the
special 2D structure of graphene, which can also be combined
with other layered materials to fabricate hybrid cocatalysts
(Chen et al., 2017; Peng et al., 2017). Our group have used the
MoS2/graphene hybrids for themodification of CdS andAg3PO4,
and the obtained composites showed improved photocatalytic
activity for phenols degradation and nitroaromatic compounds
detoxification (Peng et al., 2014, 2016). The photo-activity of the
final composite could also be adjusted by changing the ratio of
MoS2 and graphene.
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COMPARISON OF CARBON ALLOTROPES

AS COCATALYSTS

There have been some other relevant reviews on this subject,
but as far as we are concerned, a horizontal comparison
of these carbon cocatalysts in photocatalysis field is still
lack. In this section, we summarized some examples which
compared different carbon cocatalysts for the modification of
semiconductors. Zarezade et al. used sol-gel method to synthesize
TiO2/AC and TiO2/MWCNT hybrid materials (Zarezade et al.,
2011). Although the surface area of TiO2/MWCNTs was smaller
than that of TiO2/ACs, the activity of TiO2/MWCNTs was even
higher for photocatalytic degradation of AB92. The defects of
MWCNTs could be used as anchor sites for the growth of TiO2

crystallites, which can lead to the uniform distribution of TiO2 on
theMWCNT surface. After calcination of the composite at 500◦C
(Figure 6A), a remarkable photocatalytic performance could be
achieved with a maximum degradation percentage of 86% in 2 h
(Figure 6B).

Ye’s group compared the photocatalytic behaviors of CdS–
graphene (CdS–GR) and CdS–carbon nanotube (CdS–CNT)

nanocomposites as photocatalysts for the hydrogen evolution
and the degradation of methyl orange (MO) under visible-
light irradiation (Ye et al., 2012). Figure 7A reveals that
both the CdS–GR and the CdS–CNT composites display
enhanced photocatalytic H2 evolution activities. Furthermore,
the CdS–GR composite is more efficient than the CdS–
CNT composite under their optimized mass ratios. The H2

evolution rate over the CdS–GR composite could reach 70µmol
h−1, which is 1.3 times higher than that of the CdS–CNT
(52µmol h−1). Similarly, Figure 7B shows that GR is more
efficient to enhance the photocatalytic performance of CdS
for the degradation of MO. The degradation percentage of
MO over the optimized CdS–GR (1: 0.01) is as large as
95%, 1.8 times higher than that of the optimized CdS–CNT
(1: 0.03) after 60min irradiation (Figure 7C). The stronger
interaction and larger contact interface between CdS and GR
facilitate the transfer of photogenerated electrons from CdS
to GR, leading to a higher efficiency in the separation of
photogenerated electron-hole pairs and a higher photocatalytic
performance of the CdS–GR composite than the CdS–CNT
composite.

FIGURE 6 | (A) SEM images of the (A) acid treated MWCNTs (1mm), and TiO2/MWCNTs calcined at various temperatures; (B) Effect of calcination temperatures on

photocatalytic activity of TiO2/MWCNTs (Reprinted from Zarezade et al., 2011, Copyright 2011, with permission from Royal Society of Chemistry).

FIGURE 7 | (A) Comparison of photocatalytic H2 evolution rate of different photocatalysts; (B) Photocatalytic degradation of MO over the CdS–GR and (C) CdS–CNT

composites with different mass ratios of CdS: carbon material under visible-light irradiation (Reprinted from Ye et al., 2012, Copyright 2012, with permission from

Royal Society of Chemistry).
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Cherevan and coworkers hybridized both multi-walled CNTs
and graphene oxide (GO) with Ta2O5 semiconductor via
a in situ hydrothermally assisted sol-gel method (Cherevan
et al., 2014). Surprisingly, CNT–Ta2O5 hybrid exhibited superior
performance over GO–Ta2O5 hybrid, and a maximum H2

evolution rate of 1,600µmol h−1 could be obtained for CNT–
Ta2O5. This result is opposite to many other studies, which could
be attributed to two reasons: (1) the amount of Ta2O5 in the
GO hybrid is much lower than in the CNT hybrid; (2) annealed
CNTs are expected to possess better charge transfer properties
than highly defective GO.

Jing et al. compared the degradation efficiencies of
methylene blue (MB) over AgSiOx@CNT and AgSiOx@RGO
nanocomposites under visible light (Jing et al., 2017).
Interestingly, AgSiOx@CNT has a better photodegradation
performance than AgSiOx@RGO at a small amount of CNTs,
while the removal rate with AgSiOx@RGO is faster than
AgSiOx@CNT at high carbon contents. This is probably
because the different functional mechanism of these two carbon
materials. The low content of CNT could boost the synergistic
effect of the nanocomposite by reducing the electron transfer
resistances and prolonging the lifetime of electron-hole pairs.
However, as for AgSiOx@RGO, adsorption effect is dominant
rather than photodegradation as RGO contains residual
oxygen-containing groups.

Yang et al. presented a comparative study of photocatalytic
selective oxidation on several carbon based photocatalysts (Yang
M. Q. et al., 2013). They synthesized a series of TiO2-GR, –CNT,
and –C60 photocatalysts by combining sol-gel with hydrothermal
methods. These three different carbon allotropes affected slightly
in the morphology, crystal phase, particle size, pore volume
and surface area the of the supported TiO2 nanocrystals. The
TiO2-carbon (GR, CNT, and C60) have similar photocatalytic
activities and analogous reaction mechanisms toward selective
oxidation of benzyl alcohol. Different preparation methods
could obtain different structural composition and synergetic
interaction between TiO2 and carbon, which therefore have
a greater impact on the photocatalytic performance of TiO2-
carbon composites. The comparison shows that GR fails to
prove its unique advantage compared to the other two carbon
allotropes. Similarly, Zhang et al. investigated TiO2-Graphene as
high-performance photocatalyst for the gas-phase degradation of
benzene (Zhang et al., 2010). They concluded that GR was in
essence the same as other carbon materials (carbon nanotube,
activated carbon, and fullerene) as cocatalysts on enhancement
of photocatalytic activity of TiO2, although GR has unique
structural and electronic properties in comparison with other
carbon allotropes.

Due to the special 2D structure and excellent
physical/chemical properties, we expected the graphene will
show better performance compared to other carbon allotropes
(An and Yu, 2011; Zhang et al., 2011). However, it didn’t show
superior cocatalytic properties compared to the CNT or carbon
quantum for the modification of some semiconductors (Ma et al.,
2016). Researchers has tried to modify the graphene further by
heteroatoms doping or activation method, which could increase

its electric conductivity or surface area. The performance of
the modified graphene could be then enhanced further as
photocatalytic cocatalysts, thus increasing its real application
potential.

MECHANISM OF CARBON COCATALYSTS

FOR PHOTOCATALYTIC ACTIVITY

IMPROVEMENT

It has been proposed that the photocatalytic activity
enhancement is due to the synergistic effect between
semiconductor and carbon materials. Generally, carbon
materials play four primary roles as cocatalysts for the activity
enhancement of the semiconductors (Tan et al., 2012; Bai et al.,
2016). (1) They provide a structure with larger specific surface
area over which the active component can be well-dispersed,
thus increasing the active sites. Activated carbon is amorphous
carbon with a specific surface up to 3,000 m2 g−1 (Strobel
et al., 2006). Graphene, the 2-dimensional nanosheets composed
of sp2-hybridized carbon atoms, possesses an extremely high
specific surface area (theory value of 2,630 m2 g−1) (Fan X. et al.,
2015). While the CQDs can distribute uniformly on the surface
of semiconductor materials because of its small size. (2) During
the photocatalytic degradation of organic pollutants, carbon
materials can be used as adsorbent to improve the adsorption
capacity of semiconductors (Matos et al., 2001; Ai et al., 2015).
(3) Carbon materials can be doped as a photosensitizer for
bandgap narrowing, which is favorable for expanding the
visible light absorption region of semiconductors. (4) By the
formation of carbon materials–semiconductor heterojunction,
the excellent electron transfer could be achieved, leading to
the enhanced charge separation efficiency and photocatalytic
activity (Guldi et al., 2006; Li X. et al., 2016; Shi et al.,
2017).

CONCLUSIONS AND FUTURE

PROSPECTS

Carbon materials are important photocatalytic cocatalysts
due to their low cost and high efficient. In this review, we
summarized the recent development of the carbon materials
based semiconductor photocatalysts, including their synthesis
methods and the applications for H2 evolution and pollutants
degradation. Zero-dimensional C60, CQDs, one-dimensional
CNTs, two-dimensional GR, and activated carbon are all
involved to provide valuable information for metal free
cocatalysts selection. Although much progress has been
achieved, some essential issues are still unaddressed, especially
for the activity and stability enhancement mechanisms.
Studies about the interface between the semiconductors and
the cocatalysts should be helpful for new carbon materials
based photocatalysts development. Computational chemistry
using DFT could also provide valuable information for the
photocatalysts design. Although more in-depth studies are
still needed, carbon materials based photocatalysts have great
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potential to address various environmental and energy-related
problems.
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HIGHLIGHTS

• A facial method was used to fabricate BiOI/BiOCl film at room temperature.

• 30% BiOI/BiOCl showed an excellent photocatalytic activity and stability.

• Improvement of photocatalytic activity was owed to expanded visible light absorption

and high separation efficiency of charge.

Photocatalysis has been considered to be one of the most promising ways to

photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO

were fabricated through a simple method at room temperature. The photocatalytic

efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and

MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed

12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl

showed 5 and 6 times higher efficiency when degrading RhB andMB, respectively. These

obvious enhancements were attributed to expanded visible light absorption and high

separation performance of photoinduced charge. Moreover, the photocatalytic activity

of 30%BiOI/BiOCl had no obvious decrease after five recycles, suggesting that it was a

promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible

growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were

investigated in details. This work would provide insight to the reasonable construction of

BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

Keywords: BiOI/BiOCl film, visible light, heterojunction, photodegradation, recycle

INTRODUCTION

Recently, semiconductor photocatalysts have been potential materials in energy storage, organic
pollutants degradation and so on Kisch (2013). Since TiO2 had been reported to produce H2

under UV light (Fujishima and Honda, 1972), transitional mental oxides have been applied
as photocatalysts, such as ZnO (Soci et al., 2007), SnO2 (Law et al., 2002), and WO3 (Baeck
et al., 2003). However, many of them have wide bandgap and are activated by UV-light (4% of
solar light). To utilize more solar light, searchers pay a lot of efforts to find new photocatalysts
which could maximize the utilization of solar light. Among those photocatalysts, BiOCl is
considered as a new kind of promising layered material for photocatalysis due to its unique layered
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structure, high chemical and optical stability, corrosion resistance
and nontoxicity (Li J. et al., 2014; Ding et al., 2015; Li et al., 2017).
BiOCl has layered structure consisting of [Bi2O2]

2+ sandwiched
between two slabs of Cl−, which produces internal static electric
fields to separate photogenerated electrons and holes (Cheng
et al., 2014; Mi et al., 2016). However, the practical application of
BiOCl has been hindered owing to its wide bandgap and relatively
high recombination rate of photoinduced carriers (Dong et al.,
2012; Xiao et al., 2012).

Aiming at solving these shortcomings, many strategies have
been reported to enhance the photocatalytic efficiency of BiOCl,
including: (i) impurity element doping, such as BiOClxBryIz
(Sun X. et al., 2015) and BiOClxI1−x (Kim et al., 2014), (ii)
surface functionalization, like inducing oxygen vacancies in
BiOCl (Jiang et al., 2013), (iii) construction of the plasmonic
photocatalysis system, such as Ag/BiOCl (Liu H. et al., 2012)
and Ag-AgX-BiOX (X = Cl, Br, I) (Cheng et al., 2011;
Xiong et al., 2011; Cao et al., 2013), (iv) construction of
semiconductor heterojunctions (Jiang et al., 2011; Wang et al.,
2015). Construction of semiconductor heterojunctions has been
widely explored in recent years because of two advantages.
First, materials with wide bandgap could match with lots of
semiconductors at the energy level. In that way, it is propitious
to electron and hole separation by building an interfacial electric
field between different semiconductors. Cui’s work showed that
photodegradation efficiency of Ag3PO4/BiOI was nearly 10 times
that of BiOI (Cui et al., 2013). And Cui’s group found that
photodegradation efficiency of BiOI/Bi2WO6 was about 6.1
times higher than that of pure Bi2WO6 under visible light
irradiation (Li et al., 2013). Ao’s work showed that Ag2MoO4/g-
C3N4 highly improved photocatalytic degradation performance
for different organic pollutants under sunlight irradiation
(Wu et al., in press). Secondly, coupled with narrow band
semiconductors, BiOCl could expand visible light absorption
and utilize more solar energy. Narrow bandgap materials act
as the light absorber and generate photoinduced carriers with
proper energy, indicating that it is a very efficient visible-
light-activated photocatalyst (Wang et al., 2017). Therefore,
many BiOCl/narrow bandgap materials, such as BiOCl-C3N4

(Wang et al., 2013), BiOCl/Bi24O31Cl10 (Li F. et al., 2014),
BiOCl/Bi2S3 (Cheng et al., 2012), BiOCl/BiOI (Sun L. et al.,
2015), BiOCl/BiOBr (Zhang et al., 2013), and NaBiO3/BiOCl
(Chang et al., 2010), have been successfully prepared.

SCHEME 1 | Illustration of the preparation of BiOI/BiOCl composites on FTO.

Based on the advantages mentioned above, BiOI is a great
candidate to couple with BiOCl, which is a narrow bandgap
semiconductor (1.72 eV) and has a similar layered structure
(Jiang et al., 2011; Huang et al., 2015; Ning et al., 2016).
Once coupled with BiOI, BiOI/BiOCl is expected to achieve
the aims as followed: (i) to enhance visible light absorption,
(ii) to accelerate separation efficiency of photoinduced electrons
and holes (Cao et al., 2011; Xiao et al., 2012; Wang et al.,
2016). Although there are a few reports about BiOI/BiOCl,
most of them are powder synthesized through hydrothermal
and solvothermal methods, which needs high temperature
and pressure. Additionally, powder catalysts are hard to be
separated and recovered because they are easily dispersed into
solution when used in pollutants degradation (Zhao et al., 2015).
Unlike powder catalysts, immobilized photocatalysts become
more promising in practical application for easy separation and
high reusability (Liu X. et al., 2012). Therefore, BiOI/BiOCl
film is of great advantage in practical organic pollutants
degradation.

In this work, a facial method was used to fabricate a series
of BiOI/BiOCl immobilized films at room temperature. The
possible growth process of BiOI/BiOCl film was investigated
in detail. All BiOI/BiOCl films showed better photocatalytic
performance than pristine BiOCl film. UV-vis diffusion
reflectance spectra, photocurrent, fluorescence spectra (PL) and
trapping experiment were used to gain insights into the reasons
for remarkable enhancement of photocatalytic activity and the
possible photocatalysis mechanism of BiOI/BiOCl film. Besides,
recycle experiments were used to measure the stability and
duration of BiOI/BiOCl film.

EXPERIMENTAL

Synthesis of xBiOI/BiOCl Film
In a typical procedure, 3.0 g BiCl3 wasmixed with 100mL ethanol

and 1 mL HCl, and stirred for 1 h to form BiCl3 solution.

Similarly, BiI3 solution was prepared using BiI3, HI and ethanol

in the same way. After that, BiCl3 solution and BiI3 solution

were mixed with different molar ratio.1 mL of mixture solution
was dropped onto FTO glass. After being dried at 100◦C for 1
h, the films were dipped into distilled water for 30 min to form
BiOI/BiOCl (as shown in Scheme 1). Finally, the samples dried at
60◦C for 2 h. The xBiOI/BiOCl composites with molar ratios of
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BiOI to BiOCl at 10, 30, and 60%were named as 10%BiOI/BiOCl,
30%BiOI/BiOCl, 60%BiOI/BiOCl, respectively.

Characterization of Photocatalysts
The morphologies and phase structures of xBiOI/BiOCl
films were observed by Field emission scanning electron
microscopy (FE-SEM, Zeiss ULTRA 55), transmission electron
microscopy (JEOL 2010F) and high-resolution transmission
electron microscopy (JEOL 2100 F) and X-ray diffractometry
(XRD, equipped with a Cu Ka X-ray source). The optical
properties of as-synthesized catalysts were tested by UV–vis
spectrophotometer (DRS, Hitachi- UV-3010, using BaSO4

for the baseline measurement) and photoluminescence
spectroscopy (PL, RF-5301PC). FT-IR spectra were recorded on
an Aipha-Centuart FT-IR spectrometer.

The visible-light-driven photocatalytic efficiencies of
xBiOI/BiOCl films were evaluated the degradation of Rhodamine
B (RhB, 2.5mg L−1) and methylene blue (MB, 2.5mg L−1) in a
reactor equipped with a 350 W Xe lamp with >420 nm filter as
the light source. The as-obtained BiOI/BiOCl film was putting
into a reactor, in which 100mL dye solution were poured.
Before irradiation, the solution was continuously stirring in
the dark for 30 min to ensure establish adsorption-desorption
equilibrium. At certain time interval, 4 mL of the suspension
were sampled; the concentration of dye solution was measured
by recording the absorption band maximum in the absorption
spectra. For comparison, the photocatalytic activities of BiOCl
and BiOI were characterized under same condition. In addition,
30%BiOI/BiOCl photocatalyst was examined by 5-cycle to
characterize its stability. Before entering next cycle, samples were
washed by deionized water and alcohol three times. Dried at
100◦C for 1 h and reuse in fresh dye solution.

Electrochemical Measurements
Photocurrent of samples was studied by there-electrode system
in a quartz cell, which was using Pt plate as counter
electrode, Ag/AgCl as reference electrode, and the as-prepared
samples as working electrode on electrochmical workstation
(CHI660C.Shang-hai.). 0.1 M Na2SO4 solution was used as the
electrolyte. The surface area of the working electrode was 4 ×

5 cm2. A 350 W Xe lamp with an filter (λ > 420 nm) was used as
the visible-light source.

RESULTS AND DISCUSSION

XRD Patterns
Figure 1 showed XRD patterns of the as-prepared xBiOI/BiOCl
films. It could be seen that all the diffraction peaks of BiOI
and BiOCl were in good agreement with the standard cards
(JCPDS No. 73-2062) and (JCPDS No. 06-0249) without any
impurity peaks, which indicated that they exhibited tetragonal
structure and corresponded to the FT-IR results (Figure S2). The
characteristic peaks of BiOI and BiOCl coexisted in the XRD
patterns, demonstrating the formation of BiOI/BiOCl composite
without the present of BiOClxI1−x solid solutions (Huang et al.,
2015). With the increase of percentage of BiOI in the composites,
the strength of diffraction peaks of BiOI gradually increased, on

FIGURE 1 | XRD patterns of the as-prepared films.

the contrary, the intensity of BiOCl simultaneously decreased.
Additional, it could see that FTO peaks in Figure 1, it might be
due to the uneven film on glass of the sample.

SEM, TEM, HRTEM, and EDS Images
All the samples were systematically analyzed by SEM. From
Figure 2A, it could be observed that pristine BiOCl was
composed of numerous nanosheets and its surface was very
smooth. Differently, under similar preparation conditions,
pristine BiOI presented hierarchical microspheres consisting
of a series nanosheet in Figure 2B. As for xBiOI/BiOCl
(Figures 2C–E), it could be observed that xBiOI/BiOCl showed
hierarchical structure with BiOCl nanosheets adhering tightly on
BiOI and the particle sizes of xBiOI/BiOCl obviously increased
in comparison with pristine BiOCl. Additionally, color of
sample gradually deepened compared with pristine BiOCl when
percentage of BiOI increased in Figure 2F.

The morphology and structure of as-obtained samples
were further characterized by TEM and HRTEM images.
The microstructures of pristine BiOCl, pristine BiOI and
30%BiOI/BiOCl were shown in Figure 3. The interactions
between BiOCl and BiOI were so strong that ultrasonication did
not separate them during the sample preparation procedure for
TEM characterization (Xiao and Zhang, 2010). Figures 3B,D,F
indicated that the samples were highly crystallized. In Figure 3B,
the lattice fringe with a d-spacing of 0.735 nm matched well
with (001) lattice plane of BiOCl, while in Figure 3F, the
interlayer distance of 0.280 nm responsed to the (280) plane of
BiOI. Figure 3D showed the HRTEM of 30%BiOI/BiOCl, clear
fringes with the lattice spacing of 0.264 and 0.280 nm could
be indexed to (102) lattice plane of BiOCl and (110) lattice
plane of BiOI, respectively. TEM results were in good consistent
with XRD patterns in Figure 1. The results clearly confirmed
the formation of heterostructure between BiOCl and BiOI. In
addition, the elemental distributions of 30%BiOI/BiOCl were
studied through EDS elemental mapping. The corresponding
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FIGURE 2 | SEM images of BiOCl, BiOI and BiOI/BiOCl film: (A) BiOCl;(B) BiOI; (C) 10%BiOI/BiOCl; (D) 30%BiOI/BiOCl; (E) 60%BiOI/BiOCl; (F) Picture of

as-synthesized samples.

results for 30%BiOI/BiOCl were shown in Figures 4A–E. It
could be obviously seen that the sample consist of only I, Bi,
Cl, O, elements. The results of EDS mapping confirmed the
composition, structure and the high purity of 30% BiOI/BiOCl
composite.

Growth Process of xBiOI/BiOCl Film
In order to understand the growth process of BiOI/BiOCl film
in this work, SEM images and XRD patterns of 30%BiOI/BiOCl
film at different time stage were shown in Figure 5. The whole
process was divided into three stages. In the first stage (0 min),
as shown in Figure 5I, the peaks collected from 0 min sample
could be indexed as a composition of BiOCl and BiI3. After
the mix solution consisting of BiI3 and BiCl3 was dropped
on FTO, there was a hydrolyzation competition between them.
BiCl3 was hydrolyzed to form BiOCl prior to the hydrolyzation

of BiI3 when ethanol volatilized, because the Ksp (BiOCl) was
smaller than Ksp (BiOI). As shown in Figure 5B, BiI3 broke
down on the nanosheets structure of BiOCl to form into
hierarchical structure. Besides, the diffraction peak at around
11.9◦ corresponding to the (001) plane shifted to smaller 2θ
in Figure 5I. That might be because the ionic radius of I−

(220 pm) was larger than that of Cl− (181 pm). In the second
stage (1–15 min), BiI3 was hydrolyzed to BiOI. In Figure 5I,
with the increase of reaction time, diffraction peak of BiI3
disappeared and the intensity of BiOI became stronger. In the
meantime, the extent of hydrolyzation caused the shifting of
the diffraction peak of (001) to bigger 2θ. Figures 5C–E showed
that hierarchical BiOI and nanosheets-structure BiOCl formed
a tidily hierarchical structure in the second stage. In the third
stage (30 min), BiI3 was hydrolyzed totally, and BiOI/BiOCl was
formed.
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FIGURE 3 | (A) TEM and (B) HRTEM images of BiOCl, (C) TEM and (D) HRTEM of 30%BiOI/BiOCl, (E) TEM and (F) HRTEM of BiOI.

FIGURE 4 | EDS images of 30%BiOI/BiOCl (A) and Bi (B), O (C), Cl (D), I (E) elemental maps.
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FIGURE 5 | SEM images of (A) BiOCl and 30%BiOI/BiOCl after different hydrolysis times (B) 0 min, (C) 1 min, (D) 3 min, (E) 5 min, (F) 10 min, (G) 15 min, (H) 30 min,

(I) XRD patterns of 30%BiOI/BiOCl after different hydrolysis time.

FIGURE 6 | UV-vis diffuse reflectance spectrum (DRS) of xBiOI/BiOCl films.

Optical Properties
The UV-vis diffuse reflectance spectra (DRS) of xBiOI/BiOCl
films were shown in Figure 6. BiOCl had a strong absorption

edge around 360 nm, meanwhile, BiOI had a strong absorption
edge around 700 nm. Compared to BiOCl, xBiOI/BiOCl showed
an absorption edge shifting to larger wavelength with the increase
of BiOI percentage. This shifting was in accordance with the
color change of as-prepared samples (Figure 2F) caused by the
addition of BiOI. The band gap energy of a semiconductor could
be calculated from the following equation:

αhν = A(hν − Eg)n/2 (1)

where α, ν, Eg, and A were the absorption coefficient, light
frequency, band gap energy, and a constant, respectively (Ning
et al., 2016). Among them, n depended on the characteristics of
the transition in a semiconductor. For example, n = 1 (direct
transition) or n = 4 (indirect transition). BiOX belonged to
indirection transition, thus n was estimated to be 4. The band
gap of BiOI and BiOCl were 1.74 and 3.34 eV, respectively. With
narrowing of band gap, xBiOI/BiOCl could exhibit enhanced
visible light absorption, subsequently resulting in improved
photocatalytic activity.

Besides optical absorption property, separation efficiency
of photogenerated carriers played an important role in
photodegradation. Photocurrent could directly indicate the
capability of charge separation. The higher photocurrent density
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FIGURE 7 | Visible light photocurrent of xBiOI/BiOCl films.

corresponded to the greater capability of charge separation.
Figure 7 showed the photocurrent responses of the as-prepared
photocatalysts under several on/off visible light irradiation cycles.
BiOCl and BiOI showed a poor photocurrent response while the
response of xBiOI/BiOCl increased. The photocurrent density
of 30%BiOI/BiOCl was almost 6 times as high as that of
pristine BiOCl and 3 times as high as that of pristine BiOI,
revealing that 30%BiOI/BiOCl had superior separation efficiency
of photogenerated carriers.

Photoluminescence spectra were used to characterize the
photogenerated carriers’ recombination rate of as-prepared
samples, since the PL emission originated from free carrier’s
recombination. The higher PL intensity meaned the higher
recombination rate in the photocatalytic procedure (Cao et al.,
2011). As shown in Figure 8, BiOCl showed a strong emission
peak with high intensity at approximate 420 and 440 nm,
meanwhile, BiOI exhibited a low intensity. Decline of the PL
intensity implied that adding BiOI could successful suppress
recombination process during photocatalysis. In addition,
30%BiOI/BiOCl shown the lower intensity indicated the lower
recombination rate, thus could promote photocatalytic activity.

Photocatalytic Properties
The photodegradation efficiency of the xBiOI/BiOCl films were
evaluated by degradating RhB and MB under visible-light
irradiation. As shown in Figure 9A, the degradation percentage
of RhB by pristine BiOCl was 48% in 90 min. It was about 70% by
pristine BiOI in 90min. Compared with pristine BiOCl and BiOI,
xBiOI/BiOCl film showed a great degradation: 30% BiOI/BiOCl
could degrade more than 99% of RhB in 90 min. To further
illustrate the photocatalytic reaction, pseudo-first-order kinetics
were fitted from the degradation process (Ning et al., 2016),

ln(C0/C) = kt (2)

where the value of rate constant kwas equal to the corresponding
slope of the fitting line as shown in Figure 9C. The rate constant

FIGURE 8 | Fluorescence spectra of xBiOI/BiOCl films.

value for 30%BiOI/BiOCl was 0.07315 min−1, which was 12
times higher than BiOCl (0.00575min−1) and 5 times higher
than BiOI (0.01303 min−1), respectively. Figure 9B showed the
photocatalytic performance of the xBiOI/BiOCl evaluated by
degradating MB under visible-light irradiation. 48% of MB was
self-degraded under visible light irradiation. Compared with self-
degradation of MB, the photocatalytic performance of BiOCl
was negligible and BiOI could only degrade 60% MB. The
photocatalytic performance of xBiOI/BiOCl filmwasmuch better
than pristine BiOCl and BiOI. More than 99% of MB was
degraded using 30%BiOI/BiOCl film in 120 min. According
to Figure 9D, the rate constant value of 30%BiOI/BiOCl
was 0.05218 min−1, which was 6 times higher than BiOI
(0.00772min−1). This better photocatalytic performance might
be due to the enhanced visible light absorption and improved
separation efficiency of photoinduced carriers.

Reusability of 30%BiOI/BiOCl Film
Efforts were made in this work to identify the stability and
practicality of as prepared catalysts for dye degradation, which
was a significant factor to be considered in real application.
30%BiOI/BiOCl film was reused for RhB and MB degradation in
five cycles under the same condition and the result was shown
in Figures 9E,F. It was remarkable that the efficiencies had no
obvious decrease after 5 cycles, revealing its great reusability. In
term of XRD patterns in Figure S1, there was no obvious change
in phase and structure of 30%BiOI/BiOCl film after 5 cycles,
demonstrating its excellent stability. The excellent reusability and
stability indicated its great potential in practical application.

Photocatalytic Mechanism
The energy band structures of BiOX were evaluated using the
following equation (Xiao et al., 2016):

EVB = X− Ee + 0.5Eg (3)

ECB = EVB − Eg (4)

Frontiers in Chemistry | www.frontiersin.org March 2018 | Volume 6 | Article 5829

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zhong et al. BiOI/BiOCl With Improved Photocatalytic Performance

FIGURE 9 | Photodegradation of dyes using xBiOI/BiOCl films: (A) RhB; (B) MB; pseudo-first-order reaction kinetics of 30%BiOI/BiOCl film: (C) RhB; (D) MB; and

repeated degradation of dyes with 30%BiOI/BiOCl film under visible light irradiation: (E) RhB; (F) MB.

Where EVB was the valence band edge potentials, X was the
electronegativity of BiOX, which was the geometric mean of the
electronegativity of constituent atoms, Ee was the energy of free
electrons on the hydrogen scale (about 4.5 eV), Eg was the band
gap energy, ECB was the conductance band edge potentials (Xiao
et al., 2016). The EVB of BiOCl and BiOI were 3.60 eV and 2.11
eV, respectively. And the ECB of BiOCl and BiOI were 0.26 and
0.37 eV, respectively.

Active species of 30%BiOI/BiOCl film was detected by
typical trapping experiments. Benzoquinone (BQ) was
used as superoxide radical species (•O−

2 ) scavenger, while
dimethylcarbinol (IPA) was used as quencher of •OH and

EDTA-2Na was used as hole scavenger (h+). In Figures 10A,B,
IPA could significantly decrease the photocatalytic efficiency;
otherwise, BQ and EDTA-2Na had less effect on it. Figure 10
indicated that •OH, •O−

2 and h+ were active species during
the degradation of RhB and MB. A possible mechanism of
BiOI/BiOCl film was proposed based on the above discussion.
In Figure 11, BiOI could utilize visible-light with energy <2.95
eV (λ > 420 nm). Photoinduced electrons could be excited to
a higher potential edge of BiOI (−0.84 eV) which was negative
than that of BiOCl (0.26 eV). Then, photogenerated electrons
could transfer to the CB of BiOCl, leaving the holes on the
VB of BiOI. Thus, photogenerated carriers could be effectively
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FIGURE 10 | Trapping experiments of active species during visible light photodegradation: (A) RhB and (B) MB.

FIGURE 11 | The proposed photodegradation mechanism of RhB and MB by

BiOI/BiOCl films.

separated. The EVB of BiOI (2.11 eV) was negative than the
potential of ·OH/H2O (2.27 eV), so •OH was generated by OH−

(E
•OH/OH− = 1.99 eV) rather than H2O (Zeng et al., 2016).

Compared to the potentials of O2/•O
−

2 (−0.046 eV), electrons
in the BiOI/BiOCl could reduce O2 to •O−

2 , followed by the
generation of •OH (Wang et al., 2013; Zeng et al., 2016). In this
way, h+, •O−

2 and •OH oxidized the organic compounds. which
played an important role in the degradation process.

CONCLUSIONS

In conclusion, BiOI/BiOCl films were successfully prepared using
a facile method at room temperature. The growth process studies
indicated that there was a hydrolyzation competition between
BiOCl and BiOI in synthesis protocol. 30%BiOI/BiOCl could
eliminate more than 99% of RhB within 90 min, which was 12

times higher than that of BiOCl. Besides RhB, 30% BiOI/BiOCl
also showed a great photocatalytic performance toward MB.
When degrading RhB, the efficiency of 30% BiOI/BiOCl was
5 and 12 times higher than that of pristine BiOI and BiOCl
respectively. While degrading MB, 30%BiOI/BiOCl showed 6
times higher efficiency than that of pristine BiOI. These excellent
enhancements were attributed to extended visible light region
and high separation efficiency of charge. Five recycles indicated
the as-prepared film exhibited a great reusability. In general,
this work provided not only an easy and facial method to gain
BiOI/BiOCl film but also insights for preparing photocatalysts
which effectively utilized visible light with excellent reusability.
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The photocatalytic activity of TiO2 based photocatalysts can be improved by

structural modification and elemental doping. In this study, through rational design,

one type of carbon and nitrogen co-doped TiO2 (C, N-TiO2) photocatalyst with

mesoporous structure was synthesized with improved photocatalytic activity in

degrading 4-nitrophenol under simulated sunlight irradiation. The photocatalytic

degradation efficiency of the C, N-TiO2 was much higher than the anatase TiO2 (A-TiO2)

based on absorbance and HPLC analyses. Moreover, using zebrafish embryos, we

showed that the intermediate degradation compounds generated by photocatalytic

degradation of 4-nitrophenol had higher toxicity than the parent compound. A repeated

degradation process was necessary to render complete degradation and non-toxicity

to the zebrafish embryos. Our results demonstrated the importance of evaluating the

photocatalytic degradation efficiency in conjunction with the toxicity assessment of the

degradation compounds.

Keywords: 4-nitrophenol, mesoporous C, N-TiO2, photocatalytic degradation, intermediate compounds,

embryonic toxicity

INTRODUCTION

Photocatalytic degradation of organic pollutants is considered as an efficient, clean, and
cost-effective alternative for contaminated water treatment (Wang et al., 1999; Kiros et al., 2013;
Osin et al., 2017). Among various types of nano-photocatalysts, titanium dioxide (TiO2) based
photocatalysts are the most popular ones owing to their low cost, simple but reliable synthesis
methods, resistance to photo-corrosion, and chemical stability (Carp et al., 2004; Herrmann
et al., 2007; Rajeshwar et al., 2008; Akpan and Hameed, 2009). TiO2 has been used to perform
photocatalytic oxidation of contaminants in both aqueous and air media (Fox and Dulay, 1993;
Hoffmann et al., 1995; Linsebigler et al., 1995). However, due to their large bandgap (3.2 eV), TiO2

requires UV light activation (<387 nm), which means only a small portion of the solar spectrum
could be used for photocatalytic applications (Wen et al., 2011).
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To increase the utility of the visible light spectrum, one
common strategy to improve the efficiency of TiO2 based
photocatalysts is to dope or co-dopemetal or non-metal elements
into the crystalline structure (Asahi et al., 2001). Doping with
non-metals, such as nitrogen (Asahi et al., 2001; Burda et al.,
2003; Diwald et al., 2004; Cheng et al., 2012), carbon (Lettmann
et al., 2001; Sakthivel and Kisch, 2003; Dong et al., 2011), fluorine
(Li et al., 2005a,b), and sulfur (Ohno et al., 2004; Yu et al., 2005)
has proven to be effective to narrow the bandgap. Among them,
nitrogen-doped TiO2 (N-TiO2) resulted a considerable increase
of the photocatalytic activity in the visible light spectrum. Carbon
doping can make TiO2 sensitive to visible light with improved
adsorption capacity for organic pollutant molecules (Park et al.,
2006; Dong et al., 2011). Moreover, the simultaneous doping of
two types of atoms into TiO2, such as N–F (Li et al., 2005a,b;
Giannakas et al., 2013; Wang et al., 2014), N–S (Yu et al.,
2006), and C–N (Wang and Lim, 2010, 2011; Hassan et al.,
2014; Trevisan et al., 2014), has recently attracted considerable
interests, for the possible integrated or synergistic effects by the
co-doped elements.

Meanwhile, it is important to note that a complete degradation
of organic pollutants by photocatalysts was difficult to achieve
(Dong et al., 2015). And the intermediate compounds generated
during photocatalytic degradation might render higher toxicity
than their parent compound (Dong et al., 2015; Li et al.,
2016). Li et al. previously reported that transformation products
(TPs) of acesulfame generated by the photocatalytic processes
using TiO2 photocatalyst were even more toxic than the parent
compound (Li et al., 2016). These results were similar to
a study carried out by Sang et al. reporting the successful
and substantial photocatalytic degradation of acesulfame and
sucralose under simulated natural UV conditions. However,
real-time observation revealed that the transformation of
acesulfame led to a collection of more persistent by-products
that were 500 times more toxic than the parent compound
inducing significantly elevated toxicity in both marine bacteria
and zebrafish embryos (Sang et al., 2014). Therefore, while
evaluating the effectiveness of photocatalytic degradation, it is
also important to consider the potential hazardous effects exerted
by the intermediate degradation compounds (Li et al., 2017; Osin
et al., 2017).

Against this background, we set out to explore the use of
C and N co-doping to create a TiO2 based photocatalyst with
higher catalytic and degradation efficiency toward 4-nitrophenol,
a representative organic pollutant. Under simulated sunlight
irradiation, the as-synthesized C, N-TiO2 showed much higher
catalytic activity in comparison with the anatase TiO2 (A-
TiO2) Using model organism zebrafish embryos, we showed the
intermediate compounds of 4-nitrophenol were more toxic than
the parent compound. And repeated photocatalytic degradation
process could render non-toxicity as a result of a complete
degradation of 4-nitrophenol.

MATERIALS AND METHODS

Materials and Reagents
In this study, different concentrations of reagents (Table 1) were
used to obtain the best doping element ratios and concentrations,

TABLE 1 | Concentration variations of reagents.

Parameters Concentration

Ammonia (ml) 60 90* 120

Citric Acid (g) 1.15 2.30* 3.45 4.61 9.22

Perchloric Acid (ml) 0.7* 0.9 1.2

*Optimum concentrations which produced the best activity and selectivity of the catalyst.

which determined the catalytic activity of the as-synthesized
particles. 4-nitrophenol of 98% purity was used as a representing
pollutant in this study. In the preparation of the modified TiO2,

titanium tetrachloride (TiCl4, 99.9%), ammonia (NH3.H2O, 28–
30%) and citric acid (C6H8O7, 95.5%) were used as titanium (Ti),
nitrogen (N) and carbon (C) source. Perchloric acid (HClO4,
70–72%) was added to serve as a pore-making agent during the
synthesis process based on Equation 1:

4HClO4 → 2H2O + 7O2
∼300◦C

↑

+ 2Cl2
∼300◦C

↑

(1)

All reagents were purchased from Aladdin Reagent Co.,
Shanghai, China and were of analytical (AR) grade, used without
further purification.

Synthesis and Physicochemical
Characterizations of C, N-TiO2
The C, N-TiO2 was synthesized by adding TiCl4 carefully into
citric acid solution and stirred for 30min. A white suspension
was obtained after ammonia (NH3) solution was added into the
solution dropwise. The mixed solution was stirred for another
30min in an ice bath. After HClO4 was added, the reaction
temperature was increased to 100◦C while stirring. The slurry
obtained was dried in a vacuum oven for 5 h. Thereafter, the light
yellow powder was collected and then annealed at 450◦C for 2 h
with a ramp of 5◦C /min in air. The powder obtained was grinded
and used for the further analyses.

The size and crystallinity of the as-synthesized C, N-TiO2

were determined by transmission electron microscope (JEM-
2100, JEOL Ltd., Japan) and X-ray diffractometer (Bruker
D8 Advanced XRD, Bruker Co., Germany), respectively.
Chemical compositions and oxidation states of the sample were
analyzed using X-ray photoelectron spectroscopy (XPS) with
monochromated Al Kα radiation (hν = 1486.6 eV). Binding
energies were calibrated using C 1s peak of C-C bond set at
284.8 eV. The fitting and analysis of the spectra was performed in
XPS PEAK version 4.1. N2 adsorption-desorption isotherms were
measured on Micromeritics ASAP 2,460 device at 77K. Before
detection, the sample was degassed at 373K.

Photocatalytic Degradation
The photocatalytic activities of the C, N-TiO2 and commercial
anatase-TiO2 (A-TiO2) were carried out in a photoreactor
coupled with a simulated sunlight source (Shanghai
Deyangyibang Instruments CO., LTD, DY-D type, also shown
in Figure S1). Amount of 20mL of 4-nitrophenol at 7.0 × 10−2

mM was transferred into glass tubes and placed orderly in the
photo-reactor. Amount of 10mg of the C, N-TiO2 and A-TiO2
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were added, and the adsorption process of all experiments
was done in the dark for 2 h. A magnetic stirrer was used to
achieve a satisfactory suspension of the photocatalyst and the
homogeneity of the reacting mixture. Samples at 30min intervals
were withdrawn, centrifuged at 8,000 rpm for 10min, and used
for further analysis. The percent of 4-nitrophenol removal was
analyzed using a UV-vis spectroscopy, measuring the absorbance
at 317nm, while observed first-order rate constants (k, min−1)
were measured from Equations (2) and (3), respectively.

4− nitrophenol removal (%) =

co− ct

co
× 100 (2)

ln
( co

ct

)

= kt (3)

Where, Co and Ct are the initial and remaining 4-nitrophenol
concentrations at a given time of the reaction; k is the observed
first-order rate constants.

The degradation efficiency of 4-nitrophenol were also
measured by high performance liquid chromatography (HPLC).
HPLC analysis was performed on an Agilent 1,100 Series LC
system (Agilent technologies, Santa Clara, CA) equipped with a
binary pump and an ultraviolet-visible diode array detector to
quantify the degradation. Samples were separated on an Eclipse
Plus C18 reversed phase HPLC column (2.1 × 150mm, 100Å,
3.5µm, Agilent technologies, Santa Clara, CA) with an isocratic
gradient of methanol and 5mM phosphoric acid solution (35:65,
v/v) over 15min at a flow rate of 200 µL/min. Injection volumes
were 5 µL and the detection wavelength was 254 nm. The
mineralization efficiency was measured by a total organic carbon
analyzer (TOC-L-CPH Shimadzu, Japan).

Zebrafish Embryo Toxicity Testing
The AB wild-type adult zebrafish (Danio rerio) were maintained
at 28 ± 0.5◦C on a 14 h:10 h light/dark cycle in a fish breeding
circulatory system (Haisheng, Shanghai, China) and were fed
twice daily with live brine shrimps (Artemia salina). Two pairs

of male/female fish were placed in a single mating box separated
by a divider 1 day prior to spawning. Spawning was triggered
by removing the divider in the morning and the embryos were
collected 2 h afterwards. Using a stereomicroscope (Olympus-
SZ61, Olympus Ltd., Japan), healthy and fertilized embryos
at 4 h post fertilization (hpf) were selected and placed in U-
bottom 96-well plates (Costar-3599, Corning, US), with one
embryo per well. Each well was then filled with 200 µL of
each concentration series of the test-sample suspension (4-
nitrophenol, C, N-TiO2, A-TiO2 and the degradation products)
as well as H-buffer as negative controls. Three replicates were
carried out for each treatment, each using 12 embryos. The
developmental status of the zebrafish embryos was observed at
24, 48, and 72 hpf. The toxicological endpoints included hatching
interference, phenotypic abnormalities andmortality (necrosis of
the embryos). All experiments were carried out in accordance
with the Animal Ethics Committee at Tongji University, with
protocol approved by the Animal Center of Tongji University
(Protocol #TJLAC-018-020).

Statistical Analysis
All treatments were performed with at least three replicates.
Data were reported as average ± standard deviations. Statistical
analysis was carried out by Student’s t-test to evaluate the
statistical significant differences of the hatching success rate and
mortality rate between the treatment groups and the negative
control group. P < 0.01 was considered statistically significant
between experimental and control groups.

RESULTS AND DISCUSSION

Composition and Chemical State Analysis
of C, N-TiO2
Figure 1A shows the XPS survey spectrum of C, N-TiO2. It was
clear that only It, O, N and C elements were detected and the
corresponding atomic proportions were 29.8, 53.88, 1.25, and

FIGURE 1 | (A) XPS survey spectrum of C, N-TiO2. High resolution XPS spectra of C, N-TiO2: (B) N1s (C) C1s (D) Ti2p.
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15.07%, respectively. N and Cwere assigned to the doping species
and adventitious carbon of the apparatus, respectively. The high-
resolution XPS spectra of Ti2p, C1s, N1s, and O1s region were
shown in Figures 1B–D and Figure S2.

Figure 1B shows the nitrogen region of the XPS measured
spectrum for the C, N-doped TiO2. The N1s binding energy
peaks were broad and asymmetric in the range of 396–403 eV and
centered around 400eV (further divided into two peaks centered
at 400.1 and 400.5 eV) which can be attributed to the 1 s electron
binding energy of the N atom in the environment of O-Ti-N and
N-O-Ti (Chen and Burda, 2004; Cong et al., 2007; Xu et al., 2008;
Bellardita et al., 2009). Therefore, the nitrogen doped into TiO2

mainly existed in the form of substitutional N which resulted
in the formation of new energy levels in the forbidden band of
TiO2 and led to the enhancement of photocatalytic activity in the
visible range (Cheng et al., 2012).

Deconvolution of C1s region showed a main peak at 284.6 eV
corresponding to C-H and can be assigned to the adventitious
carbon contamination adsorbed from the ambient (Wu and
Wang, 2013) (Figure 1C). In addition, the peak observed at
284.6 eV refer to the formation of C–OH and C–N bonds.
Consequently, the overlap of the peaks corresponding to both
C–OH and C–N bonds allows no distinction between the two
ones. However, the peak at 288.6 eV indicates the formation of
C = O bond that corresponds to a carbonate species present in
C-doped titanium systems and that carbon may substitute some
of the lattice titanium atoms forming a Ti–O–C structure (Ren
et al., 2007). It has been reported that high amount of carbon led
to an increased absorption in the visible region, however, it also
enhanced the recombination of the charge carriers. This problem
was solved by the synergistic effect from the presence of two (or
more) complementary dopants (Ren et al., 2007; Li et al., 2010),
leading to an improved photoactivity of TiO2 in the visible light
region, compared to either pure or single-doped TiO2.

In the high resolution spectra of Ti2p spectra shown in
Figure 1D, peaks at 459.2 and 465 eV corresponds to the spin
orbit coupling of Ti2P3/2 and Ti2P1/2, respectively. It also shows

that only the signals corresponding to Ti4+ were detected and
can be attributed to the binding energy separation between
the 2p1/2 and 2p3/2 peaks of ∼5.8 eV (Abdullah et al., 2016).
Furthermore, the Ti2p XPS peak of un-doped TiO2 has been
reported to appear normally at 459.5 eV (Saha and Tomkins,
1992). Therefore, the nitrogen incorporation shifted the XPS
spectrum to a lower binding energy (459.2 instead of 459.5 eV).
In correspondence with that of N 1s, the O 1s XPS spectra
(shown in Figure S2) also shows a broadening at 531.5 eV which
confirms the presence of another type of oxygen due to the
more covalent nature of N-TiO2 (Chi et al., 2007). This might
be related to the presence of oxygen and nitrogen from the same
lattice units in TiO2, which confirmed the interstitial doped form
(Cong et al., 2007; Pelaez et al., 2010).

Phase Structure, Crystal Structure and
Morphologies of C, N-TiO2
The representative TEM images in Figure 2 illustrate the crystal
phase as well as the size distribution of C, N-TiO2. The
product showed an obvious mesoporous structure caused by the
aggregation of C, N-TiO2 nanograins of 10–20 nm in size, which
were also shown in the SEM image of Figure S3. HClO4 was
a novel pore-making agent in our recipe of preparing C, N-
TiO2. As shown in Figure S4, without the addition of HClO4, the
product looks amorphous with very few pores.

As expected, the porous structure showed a large surface
area of 159.903 m2/g and an average pore diameter of 3.64 nm
(Figure 3B). As previously mentioned, since the specific surface
area (SSA) is one of the key factors determining the catalytic
efficiency of catalysts, it is reasonable to expect that the as-
synthesized porous C, N-TiO2 would achieve enhanced catalytic
performance in the following degradation of 4-nitrophenol
compared to A-TiO2, with the grain size of 20 nm and surface
area of 50 m2/g.

The crystal structures and particle size of the C, N-TiO2

were shown in Figure 3A. Only the anatase phase was detected

FIGURE 2 | (A) Representative TEM image (low magnification) for as-prepared C, N-TiO2. (B) Representative TEM image (high magnification) for as-prepared C,

N-TiO2. The distance between the lattice fringes (red parallel lines) pointed by the red arrows is 0.22 nm.
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FIGURE 3 | (A) X-ray diffraction (XRD) patterns of C, N-TiO2. (B) Nitrogen adsorption-desorption isotherms and the corresponding pore-size distributions (the inset)

of C, N-TiO2.

FIGURE 4 | (A) Photocatalytic degradation of 4-nitrophenol. (B) First order kinetic analysis for the 4-nitrophenol degradation over C, N-TiO2 and A-TiO2. (C)

Degradation of 4-nitrophenol over A-TiO2 and C, N- TiO2 after multiple runs.

from the diffraction peaks of the as-synthesized C, N-TiO2. This
could be attributed to the alkaline reaction conditions during the
synthesis process and the N-doping as well. It has been reported
that carbon introduction does not modify the crystal of the TiO2

(Trevisan et al., 2014).

Photocatalytic Activity of C, N-TiO2
The photocatalytic activity of C, N-TiO2 and A-TiO2 in the
degradation of 4-nitrophenol from an initial concentration of 7.0
× 10−2 mM under simulated sunlight is shown in Figure 4A.
The reactivity of the photocatalysts was represented by the
ratio of residual concentration to initial concentration of 4-
nitrophenol, C/Co, as a function of irradiation time. C, N-
TiO2 and A-TiO2 degraded 87 and 65% of 4-nitrophenol in
420min under simulated sunlight irradiation, respectively. The
semi-logarithmic plots of concentration data gave a straight line
(Figure 4B), indicating that the photocatalytic degradation of 4-
nitrophenol can be described by the first-order kinetic model, ln
C = –kt + ln Co, with a k constant of 4.87 × 10−3 min−1 and
2.53× 10−3 for C, N-TiO2 and A-TiO2, respectively.

However, a complete degradation was not achieved under
420min irradiation: a challenge reported in several other studies
(San et al., 2002; Hassan et al., 2014; Dong et al., 2015; Rezaei-
Vahidian et al., 2017). To achieve a complete degradation,
we repeated the photocatalytic degradation for multiple runs,

under the same condition with freshly prepared catalysts at
each repetition. A-TiO2 was able to achieve almost 100%
degradation after 7 times of multiple treatments, while the C,
N-TiO2 demonstrated a higher efficiency and achieved almost
complete degradation on the 5th treatment (as shown in
Figure 4C). Furthermore, according to the total organic carbon
quantification, the photocatalytic degradation using C, N-TiO2

was able to mineralize the 4-nitrophenol to about 40% after 7 h
(Figure 5A). And after 7 repeated treatments, 4-nitrophenol was
mineralized to about 60% (Figure 5B).

Zebrafish Embryo Toxicity Test
To assess the toxic effects of 4-nitrophenol on zebrafish, embryos
were treated with different concentrations (1, 5, 10, 15, and 20
mg/L) for 72 h. The hatching and mortality rates were assessed
during the exposure period, at 24, 48, 72 hpf. Figure S5 shows
that 4-nitrophenol exhibited a concentration-dependent toxicity,
exerting a decreased hatching rates and increased mortality. To
assess and compare the possible effects of C, N-TiO2 and A-TiO2,
embryos were treated with different concentrations (1, 5, 10, 50,
100, 250, and 500mg/L) of these samples for 72 h. Figure 6 shows
that no obvious toxicity were found for both C, N-TiO2, and A-
TiO2 at all concentrations tested. These results coincided well
with Zhu et al. who found both nano and bulk forms of TiO2

were non-toxic to zebrafish (Zhu et al., 2008).
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FIGURE 5 | (A) TOC after 7 h degradation (B) TOC after multiple degradation.

FIGURE 6 | (A,B) Mortality rate and (C,D) Hatching rate of zebrafish treated with C, N-TiO2 and A-TiO2. (Values are expressed as means ± S.D).

FIGURE 7 | Degradation time-dependent toxicity of zebrafish treated after 72hpf. (A) Mortality rate, (B) Hatching rate. (Values are expressed as means ± S.D,

*P < 0.01).

Frontiers in Chemistry | www.frontiersin.org June 2018 | Volume 6 | Article 19239

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Osin et al. Photocatalytic Degradation of 4-Nitrophenol by C, N-TiO2

FIGURE 8 | Multiple degradation time-dependent toxicity of zebrafish embryos after 24, 48, and 72 hpf. (A) Mortality rate (B) Hatching rate. (Values are expressed as

means ± S.D, *P < 0.01).

Interestingly, the analysis on the intermediate compounds
produced by photocatalytic degradation showed much higher
toxicity than the parent compound. Embryos treated with
intermediate compounds obtained within 1 h of degradation
showed a decrease in toxicity as compared to 4-nitrophenol,
exhibiting a decrease in mortality rates and an increase in
hatching rates of zebrafish embryos. This effect could be
attributed to a decrease in concentration of 4-nitrophenol during
the photocatalytic process. However, highly significant effects
were observed when embryos were exposed to products obtained
after 3 h of degradation, possibly due to the formation of
more toxic intermediate compounds. Results showed an increase
in mortality rate and decrease in hatching rate in embryos
treated with degradation products obtained after 3 h irradiation
time at all developmental stages (Figure 7 and Figure S6). In
particular, exposure to all intermediate products obtained after
3 h degradation led to 0% hatching rate and 100% mortality rate,
respectively (as shown in Figure 7).

Comparative experiments showed that the hatching rate and
mortality rate of embryos exposed to degradation products
by A-TiO2 was significantly lower than that C, N-TiO2,
suggesting that higher degradation efficiency led to the formation
of more toxic intermediate compounds, thus causing more
severe inhibition of hatch and a higher mortality rate. Figure
S7 shows embryos treated with the degradation by-products
obtained at 1, 3, and 7 h irradiation time after 72 hpf. We
observed five types of malformations: pericardial edema (PE),
tail malfunction (TM), bent spine (BS), unhatched dead embryo
(UDE) and disintegrated embryo (DE). All samples induced
high percentages of these abnormalities and malformations.
However, malfunctions including unhatched dead embryo and
disintegrated embryo were induced by byproducts obtained at 3
and 7 h irradiation time respectively.

The mortality rates and hatching rates of zebrafish embryos
exposed to intermediate products obtained after multiple
degradation at 24, 48, and 72 hpf are shown in Figures 8A,B.
There was a significant decrease in toxicity after the first run
of degradation. Exposure to products obtained after multiple
degradation had no significant effect on the mortality rate and

FIGURE 9 | HPLC spectrum showing the degradation of 4-nitrophenol by C,

N-TiO2, the intermediate compounds formation after 3 h irradiation and the

complete degradation after 5 repeated process.

hatching rate of embryos, suggesting that all toxic intermediate
compounds had been successfully degraded. HPLC analyses
were consistent with this statement. As Figure 9 showed, before
degradation, 4-nitrophenol showed a distinct peak at the mark
of 12-min elution time. After 3 h irradiation, a decreased of the
peak at 12-min mark indicated a decrease in the concentration
of 4-nitrophenol while the appearance of two small peaks at the
marks of 3 and 5-min indicated the formation of intermediate
compounds. With 5 repeated treatment, all peaks disappeared
indicated a complete degradation of 4-nitrophenol therefore no
toxicity was observed.

According to our HPLC study shown in Figure S8 as well as
the analysis result reported by Luo et al. (2013), the intermediate
compounds (represented by the peaks appear in the 3-min
and 5-min elution time) are likely 4-nitrobenzene-1,2-diol and
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4-nitrobenzene-1,3-diol. The compounds were likely the same
composition but different concentrations when using A-TiO2

and C, N-TiO2 as the catalyst respectively.

CONCLUSION

In summary, through C and N co-doping, we have synthesized
a type of mesoporous C, N-TiO2 photocatalyst by a simple sol-
gel method combined with calcination process. The modified
photocatalyst exhibited a large surface area, pore volume
and simple crystal structure of anatase. C, N-TiO2 showed
higher photocatalytic efficiency during the degradation of 4-
nitrophenol than pure A-TiO2 under simulated light irradiation
due to the synergistic effect of carbon and nitrogen co-
doping. However, a complete degradation was not achieved
under 420min and intermediate degradation products of 4-
nitrophenol displayed a much higher toxicity in zebrafish
embryos. A repeated degradation process was necessary to
achieve complete degradation and render the compound
non-toxic to the zebrafish embryos. Our results further
emphasized the necessity of paying close attention to the
toxicity potentials of degradation compounds while performing
photocatalytic degradation to ensure comprehensive assessment
of the threats and significance of these chemicals to the natural
environment.
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A novel graphene oxide/BiOCl (GO/BiOCl) nanocomposite film was prepared via a

spread coating method. In visible-light photocatalytically degrading Rhodamine B (RhB)

experiments, 2 wt% GO/BiOCl could degrade 99% of RhB within 1.5 h and the rate

constant was 12.2 times higher than that of pure BiOCl. The degradation efficiency

still kept at 80% even after 4 recycles, evidencing the relatively good recyclability. The

enhancement was attributed to the improvement of visible light adsorption and charge

separation. Holes and superoxide radicals·O−

2 played a major role as reactive species.

The values of conduction band and valence band for GO and BiOCl were calculated and

a new photocatalytic mechanism of GO/BiOCl nanocomposite was proposed.

Keywords: graphene, BiOCl, film, visible-light, photocatalytic activity

INTRODUCTION

The problems of environmental pollution have been becoming a major concern with industrial
development, especially water pollution, which severely impacts our lives (Maeda et al., 2006;
Zhao et al., 2015; Nie et al., 2018). The photocatalysis technique is often used in dealing with
water pollution because of its low cost, chemical stability, and non-toxicity (Dong et al., 2015;
Meng and Zhang, 2016; Yang G. et al., 2017; Jing et al., 2018; Wu et al., 2018). The conventional
UV-light-driven photocatalytic semiconducting materials, such as TiO2 and ZnO, can only be
inspired by UV light accounting for <5% of sunlight (Liu et al., 2009; Yang et al., 2013; Chen
et al., 2014a,b). Therefore, there is a need to exploit new visible-light photocatalysts with excellent
photocatalytic performance. Among various photocatalytic materials, the bismuth compounds
have attracted considerable attention for its relatively high photocatalytic activity (Li et al., 2014;
Chen et al., 2018). As a V-VI-VII ternary semiconductor, bismuth oxychloxide (BiOCl) with a
tetragonal crystal structure, consists of a tetragonal [Bi2O2]

2+ positive slabs interleaved by double
negative slabs of Cl atoms, which provides the space large enough to polarize the related atoms
and orbits (Long et al., 2015; Li M. et al., 2017) and leads to its relatively high photocatalytic
activity (Cheng et al., 2014). Nevertheless, BiOCl has been prevented by low separation of the
photogenerated electron–hole pairs and UV-light-driving, which make it difficult for practical
applications. So it is urgent to further improve electron–hole pairs separation and its visible light
adsorption to achieve a high photocatalytic activity. Methods have been applied to change this
situation, such as morphology control (Zhu et al., 2010), crystal facet exposure (Wang D. H. et al.,
2012), noble metal doping (Jiang et al., 2013), and so on. Among them, fabricating nanocomposites
by hybridizing BiOCl with other materials is a practical way. Li et al. showed that novel BiOI/BiOCl
nanocomposite demonstrated notably high photocatalytic activities over methyl orange (MO)
and RhB in aqueous solution. The enhanced photocatalytic activities for BiOI/BiOCl composites
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were ascribed to the matched conduction band and valence band
level and effective separation of electron-hole pairs (Li et al.,
2011). Wang et al. prepared the BiOCl-C3N4 heterojunction
photocatalyst with high specific surface areas in a solvent-thermal
way, which displayed notably high photocatalytic activity in
decomposing MO under visible-light (Wang X. J. et al., 2013).
Zhu and his coworkers reported N-doped carbon nanotube-
BiOCl using a facile solvothermal method, exhibiting enhanced
photocatalytic performance compared with pristine BiOCl for
decomposition of RhB under UV-light (Zhu L. et al., 2016).Wang
et al. successfully fabricated polyaniline/BiOCl photocatalysts
with excellent visible-light photocatalytic activity toward MO.
The enhancement of photocatalytic properties could be ascribed
to the synergistic effect between BiOCl and polyaniline (Wang Q.
et al., 2013).

Graphene, a new type of carbon material with monolayer
of sp2-hybridized carbon atoms in honeycomb structure, has
aroused great attention in electronic, optical, and catalytic fields
due to its good conductivity, optical and electrical properties
(Berger et al., 2006; Geim, 2009; Xie et al., 2015; Xiong et al., 2015;
Zhu S. et al., 2016). Recently, graphene exhibits wide applications
in photocatalysis including photocatalytic water-splitting to
produce hydrogen and photo-degradation for organic pollutants
because of its outstanding mobility of charge carriers and much
higher theoretical specific surface area (Xiang et al., 2012a,b;
Cao et al., 2014; Feng J. et al., 2017). Many studies have been
focused on fabricating GO/semiconductor composites to achieve
enhanced visible light photocatalytic activities (Yang et al., 2015).
For example, Xu et al. reported an efficient graphene hybridized
with ZnO photocatalyst for the improved UV light photocatalytic
activity (Xu et al., 2011). Ai and her partners fabricated BiOBr-
graphene nanocomposites and investigated the excellent visible-
light photodegradation on gaseous nitrogen monoxide (Ai et al.,
2011). Zhang et al. synthesized a P25-graphene nanocomposite
using a facile one-step hydrothermal method and observed
significant enhancement photocatalytic activities in degradation
of MO (Zhang et al., 2010). Better photocatalytic performances
may be obtained by combining remarkable properties of GO
and BiOCl to form GO/BiOCl nanocomposites. Up to now,

SCHEME 1 | Schematic procedure for fabricating GO/BiOCl film.

there have been only few investigations on graphene oxides
(GO) or reduced graphene oxides (rGO)/BiOCl nanocomposites.
Tian et al. prepared rGO-BiOCl hybrid materials via a facile
solvothermal method. The 0.73% rGO-BiOCl hybrid showed
the best photocatalytic degradation performance for RhB
(Tian L. et al., 2013). Gao et al. reported chemically bonded
graphene/BiOCl composites by a facile chemical-bath method,
which exhibited the degradation rate twice as much as that of
pure BiOCl over methylbenzene removal under UV-light (Gao
et al., 2012). Kang et al. prepared size-controlled rGO-BiOCl
with PVP using a hydrothermal method at low temperatures,
which showed much higher visible-light photocatalytic activity
toward RhB degradation, compared with pure BiOCl (Kang
et al., 2015). But only GO/BiOCl nanocomposite powders were
reported, which were hard to be separated and recycled. Synthesis
of composite films is the most effective way to deal with these
problems (Mu et al., 2012). However, there is no report on
GO/BiOCl films, which are easy to be separated and recycled.

In our work, GO/BiOCl films were successfully fabricated
by a spread coating method at room temperature. The
prepared samples were characterized, and the photocatalytic
properties were studied by degrading RhB under visible light
irradiation. Accordingly, a new photocatalytic mechanism was
also presented.

EXPERIMENTAL

Synthesis of GO/BiOCl
The GO/BiOCl was synthesized on a FTO in a facile process.
1.5 g BiCl3 and 0.25mL HCl were dissolved in 50mL ethanol
by ultrasonication for 30min. After that, GO was added
into the mixture, which was magnetically stirred at room
temperature. Few milliliter of mixture was sucked and smeared
homogeneously on FTO, and then dried at 80◦C for 30min.
Finally, the FTO was immerged in distilled water, and then dried
at 60◦C. The approach of fabricating GO/BiOCl film was shown
in Scheme 1. Different amounts (0.8, 2, 4, and 5 wt%) of GOwere
added. For comparison, BiOCl without GO was prepared in the
similar way.
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FIGURE 1 | XRD patterns of (A) GO, (B) pure BiOCl and GO/BiOCl with different GO contents.

FIGURE 2 | FT-IR spectra of (a) BiOCl; (b) 0.8 wt% GO/BiOCl; (c) 2 wt%

GO/BiOCl, (d) 4 wt% GO/BiOCl; (e) 5 wt% GO/BiOCl; (f) GO.

Characterization
The structure and phase characterization of the as-prepared
samples were recorded on an X-ray diffractometer (XD-2)
at the scanning rate of 8◦min−1. The morphologies of the
samples were characterized by FE-SEM (Zeiss ULTRA 55)
and FE-TEM (JEOL 2010F). EDS spectra were obtained using
Bruker/Quanta 200 instrument. The ESCALab250 instrument
was utilized to record the XPS spectra, which could be used
to analyze the surface properties and chemical statement. The
BET surface areas and N2 adsorption-desorption isotherms of
the samples were investigated on a TriSTRA 3000 at 77.3 K.
The light absorption of the samples was investigated with
a UV-Vis diffuse reflectance spectrum (DRS, Hitachi UV-
3010) with BaSO4 take for a reference. The photoluminescence
(PL) spectra were performed by a RF-5301PC fluorescence
spectrophotometer.

FIGURE 3 | Raman spectra of GO and GO/BiOCl composites.

Photocatalytic Activity Tests
The photocatalytic properties of the as-fabricated GO/BiOCl
were assessed by visible-light degradation of RhB under room
temperature (a 350-W Xe lamp with a cut-off filter, λ>420 nm).
In the photocatalytic test, the GO/BiOCl photocatalyst was added
into a breaker with 100mL 2.5 mg/L RhB aqueous solution.
In order to establish the adsorption-desorption equilibrium,
the mixture was stirred for 30min in dark before the start of
photocatalytic experiment. At given intervals, 5mL suspension
was collected and examined by the UV-vis spectrophotometer.

Photoelectrochemical Measurements
The transient photocurrent responses and electrochemical
impedance spectroscopy (EIS) measurements were measured in
an electrochemical workstation (SP-150, France). The platinum
wire was used as the counter electrode and the saturated
Ag/AgCl electrode used as the reference electrode. The photo
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FIGURE 4 | XPS spectra of BiOCl and 2 wt% GO/BiOCl: (A) Bi 4f; (B) Cl 2p; (C) C 1s of GO; (D) C 1s of 2 wt% GO/BiOCl; (E) O 1s of BiOCl; (F) O 1s of 2 wt%

GO/BiOCl.

electrochemical experiments were conducted in 0.1M Na2SO4

electrolyte solution.

RESULTS AND DISCUSSION

Characterization of the GO/BiOCl
XRD patterns of GO, pure BiOCl and the as-prepared GO/BiOCl
with different GO contents was shown in Figure 1. In Figure 1A,
the peak at 10.6◦ belonged to GO, which was agreed with
the reported results (Shin et al., 2009). The diffraction peaks
of BiOCl were identical to those of tetragonal BiOCl, which
suggested the high purity (Figure 1B). However, peaks of GO
in the GO/BiOCl samples could not be observed, which owes

to the low GO content in GO/BiOCl (Du et al., 2011). It was
noticed that the peaks of BiOCl for GO/BiOCl samples obviously
increased, suggesting that BiOCl grown on GO adopted a better
crystallinity. The similar phenomenon was also observed in the
previous report (Gao et al., 2012).

The FT-IR spectra of BiOCl, GO and GO/BiOCl with different
GO contents were shown in Figure 2. The characteristic peaks
of oxygen-containing functional groups of GO were observed,
such as C=O stretching vibration at 1,727 cm−1 from carboxyl or
carbonyl groups, C=C skeletal vibration at 1,624 cm−1 from un-
oxidized graphitic domains, epoxide C—O—C, or phenolic C—
O—H stretching at 1,226 cm−1, and C—O stretching vibration at
1,047 cm−1 from epoxy groups (Szabó et al., 2006; Fu andWang,
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FIGURE 5 | (a,b) FE-SEM image of BiOCl and 2 wt% GO/BiOCl; (c) TEM image of 2 wt% GO/BiOCl; (d) HRTEM image of BiOCl; (e,f) FE-SEM and HRTEM images

of GO; (g–j) chemical element mapping data of 2 wt% GO/BiOCl.

2011; Chen et al., 2012; Wang P. et al., 2013). The peak at 3,420
cm−1 was ascribed to the absorption of water or O—H groups
(Liu et al., 2013). The GO/BiOCl samples had similar spectrum

of GO but with lower peak intensity, which indicated the partial
reduction of GO (Chen et al., 2012). In all the GO/BiOCl
samples, the prominent peaks at about 530 cm−1 corresponded
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to Bi—O vibration (Chou et al., 2013). The appearance
of the broad absorption at 1,150 cm−1 referring to Bi—C
vibration, suggested a chemical bonding between GO and BiOCl
(Tu et al., 2012).

Raman spectroscopy was an important technique to study the
structural properties of crystal and carbon materials. Figure 3

FIGURE 6 | Nitrogen adsorption-desorption isotherm plot and corresponding

pore-size distributions (inset) of BiOCl and 2 wt% GO/BiOCl.

TABLE 1 | Summarized BET surface areas and catalytic properties of the

photocatalysts.

Sample SBET (m2 g−1) k (h−1)

BiOCl 3.49 0.24

GO 21.68 0.52

0.8 wt% GO/BiOCl 7.22 0.41

2 wt% GO/BiOCl 11.16 2.93

4 wt% GO/BiOCl 11.29 1.92

5 wt% GO/BiOCl 12.73 1.84

showed the Raman spectra of GO and GO/BiOCl composites. As
shown, GO displayed two characteristic peaks at around 1,340
and 1,600 cm−1, which were ascribed to the D band and G band
of graphite structures. However, in the GO/BiOCl composites,
the D band shifted to around 1,334 cm−1 and G band moved to
around 1,602 cm−1, which could be attributed to the chemical
interaction between GO and BiOCl (Hu et al., 2014). ID/IG ratio
was used to represent the degree of graphitization. The ID/IG
intensity of GO was 0.97, but the ID/IG intensity ratio increased
with the increase of GO content, which suggested the reduction
of GO during the procedure (Liu et al., 2014).

The XPS spectra provided the information for chemical state
and surface properties of the 2 wt% GO/BiOCl film. According
to Figure 4A, two strong peaks centered at 159.7 eV and 165.0 eV
in 2 wt% GO/BiOCl were ascribed to Bi 4f7/2 and Bi 4f5/2,
suggesting Bi3+ in the GO/BiOCl (Ai et al., 2011). The peaks
of Bi 4f in the 2 wt% GO/BiOCl shifted slightly toward higher
binding energies compared with pristine BiOCl, due to the strong
interaction between BiOCl and GO (Tian L. et al., 2013). The
Cl 2p of XPS spectra were displayed in Figure 4B. The peaks
located at 198.4 eV and 199.9 eV, corresponded to Cl 2p3/2 and
Cl 2p1/2, which were characteristics of Cl−in GO/BiOCl (Cheng
et al., 2013). The XPS spectrum of C1s on GO was shown in
Figure 4C. The peak at 284.7 eV was ascribed to C-C bond
with sp2 orbital. The peaks located at 286.5 eV and 288.4 eV
were attributed to the C-O and C=O suggesting the existence
of oxygen-containing functional groups in the GO (Liu et al.,
2014). In the spectrum of 2 wt% GO/BiOCl (Figure 4D), the
peak of C-O and C=O showed lower intensities than those of
GO, suggesting the partial reduction of GO, which corresponded
to the FTIR spectra (Liu et al., 2014). Besides, a new peak at
281.7 eV appeared, which was related to carburetion, and referred
to the existence of Bi-C in 2 wt% GO/BiOCl. The result was
in accordance with the FTIR spectrum (Akhavan and Ghaderi,
2009). The O 1s region of XPS spectra for BiOCl and 2 wt%
GO/BiOCl were depicted in Figures 4E,F. The peak at 532 eV
could be ascribed to the Bi-O bond in [Bi2O2] slabs of BiOX
layered structure. The peak centered at 530.3 eV was related to

FIGURE 7 | (A) UV-visdiffuse reflectance of the as-prepared samples; (B) the band gaps energies (Eg) of pure BiOCl and 2 wt% GO/BiOCl.
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FIGURE 8 | (A) Comparison of photocatalytic activities of the as-prepared samples on the degradation of RhB under visible-light irradiation (λ>420 nm); (B) Reaction

kinetics of RhB degradation under visible light irradiation by pure BiOCl, GO and GO/BiOCl composites.

TABLE 2 | Photocatalytic activities of various filmphotocatalysts on the

degradation of RhB.

Photocataltsts Dye

concentration

(mg/L)

Photocatalytic

activity

References

Films

TiO2 10 50% degraded within

5 h (UV-light)

Wang C. et al.,

2012

BiOCl 1.0 52.5% degraded within

8 h (visible-light)

Liang et al.,

2013

BiOBr 5.0 80% degraded within

8 h (visible-light)

Cuellar et al.,

2015

ZnO:I/TiO2 2.4 97% degraded within

6 h (visible-light)

Wang et al.,

2015

Bi2WO6 5.0 53% degraded within

12 h (visible-light)

Zhao et al.,

2007

Bi2O(OH)2SO4 1.0 92% degraded within

7 h (visible-light)

Zhang et al.,

2015

GO/BiOCl 2.5 99% degraded within

1.5 h (visible-light)

This work

the hydroxyl groups or water molecules absorbed on the surface
of the sample (Liu et al., 2012). The peak of hydroxyl in the 2
wt% GO/BiOCl showed higher intensities than that of BiOCl,
indicating more oxygen-containing groups on the GO/BiOCl.

The morphology and structure of 2 wt% GO/BiOCl
were evaluated by SEM and TEM. Figure 5a showed the
nanosheet-like morphology of the BiOCl with the size of 400–
600 nm. Figure 5b showed that nanosheet-like BiOCl distribute
uniformly onto the framework of GO in GO/BiOCl. Figure 5c
depicted the TEM image of 2 wt% GO/BiOCl. As shown, the GO
sheets were not very flat but displayed wrinkles. The structure
of GO was shown in Figures 5e,f. A high-resolution TEM
(HRTEM) image of BiOCl nanosheet (Figure 5d) exhibited the
lattice spacing of 0.24 nm corresponding to (003) plane. As shown
in Figures 5g–j, the signals of element Bi, Cl, O and C were

FIGURE 9 | Recycling tests of 2 wt% GO/BiOCl for the degradation of RhB

under visible light irradiation.

clearly observed respectively, evidencing that the samples was
GO/BiOCl.

Nitrogen Adsorption-Desorption Analysis
Figure 6 presented the N2 adsorption-desorption isotherm and
corresponding pore size distribution (PSD) cures of BiOCl and
2 wt% GO/BiOCl. Both of them were of type IV isotherms
with a hysteresis loop within the range from 0.4 to 0.9 (P/P0),
confirming the mesoporous structure. The BET surface areas
of the composites were exhibited in Table 1. The SBET of
the GO/BiOCl composites were much larger than the pure
BiOCl, indicating GO could improve the surface area of the
GO/BiOCl composites, which was a significant factor leading to
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the enhanced photocatalytic activity. As shown in the inset of
Figure 6, the pore sizes of the samples were found to be at about
2–11 nm.

Optical Absorption Properties
Figure 7 revealed the UV-vis DRS of pure BiOCl and GO/BiOCl
composites. It was noticed that pure BiOCl showed absorption
only in UV region. With the introduction of GO, the absorption
intensity in the visible-light region of the GO/BiOCl samples
was improved. This result indicated that GO played a major
role in utilizing sunlight and worked as an electron reservoir to
trap the electrons under irradiation (Wei et al., 2014), leading to
better photocatalytic performance consequently. The Eg of the
GO/BiOCl could be figured out according to previous report (Xie
et al., 2013). As can be seen in Figure 7B, the band gap energy of
pure BiOCl and 2 wt% GO/BiOCl were estimated to be 3.2 and
2.9 eV. It could be seen that the estimated band gap energy of
the 2 wt% GO/BiOCl film was lower than that of pristine BiOCl,
suggesting that hybridizing BiOCl with GO could enhance the
optical absorption property of BiOCl in visible-light region.

Photocatalytic Properties
The photocatalytic performance of the as-fabricated GO/BiOCl
was studied by visible-light degradation toward RhB in an
aqueous solution. As can be seen in Figure 8A, GO/BiOCl
displayed higher photodegradation efficiency compared to
pure BiOCl. Along with the increase of GO content, the
degradation efficiency of GO/BiOCl increased at first, but
then decreased while the GO content was larger than 2
wt%. So the highest photocatalytic activity of GO/BiOCl was
gained with the optimum content of GO located at 2 wt%,
which led to 99% visible-light degradation of RhB within
1.5 h. The degradation rate constants (k, h−1) were calculated
to be 0.24, 0.41, 2.93, 1.92, 1.84 and 0.52 h−1 for pure
BiOCl, 0.8, 2, 4 wt%, 5 wt% GO/BiOCl and GO respectively
(Figure 8B). It could be seen that all GO/BiOCl showed
much higher k-values compared to pristine BiOCl, and 2 wt%
GO/BiOCl was about 12 times that of pristine BiOCl. As
GO content further increased, the photocatalytic activity of
RhB degradation obviously decreased, suggesting that suitable
content of the GO was important to improve the photocatalytic
activity.

The photocatalytic activity was also compared with other film
photocatalysts (Table 2). The as-prepared 2 wt% GO/BiOCl film
had a higher photocatalytic activity than those photocatalysts,
which indicated that it had great prospect for practical
applications in degrading pollutants.

The stability and regeneration of the photocatalyst are
important to the practical applications. Due to immobilization,
the GO/BiOCl samples could be directly separated from
the aqueous solution for next recycle. Figure 9 depicted the
photocatalytic activities of 2 wt% GO/BiOCl for degradation
of RhB within four cycles. It could be seen that the visible-
light photodegradation efficiencies of RhB can reach 80%. These
results suggested that the GO/BiOCl had excellent stability and
regeneration and could be used as an effective photocatalyst in
practical application.

Possible Photocatalytic Mechanism of
GO/BiOCl
PL emission spectra have also been regarded as an efficient
way to discuss the charge transportation and separation of
photocatalysts. As we know, a lower PL intensity correlated
with a higher separation efficiency of electron-hole pairs (Tian
G. et al., 2013). As was depicted in Figure 10A, the emission
spectra of pristine BiOCl and 2 wt% GO/BiOCl were similar, but
the intensity for 2 wt% GO/BiOCl was lower than pure BiOCl,
which implied that 2 wt% GO/BiOCl had a lower recombination
rate of photogenerated charge carriers resulting in enhanced
photocatalytic activities.

The transient photocurrent responses of BiOCl, GO and 2
wt% GO/BiOCl under visible light irradiation in on-off cycles
were investigated. In Figure 10B, 2 wt% GO/BiOCl exhibited a
significantly increased photocurrent density, which was about
much stronger than that of BiOCl and GO, implying that the
recombination of photogenerated carriers in 2 wt% GO/BiOCl
composite was suppressed (Fan et al., 2016; Feng Y. et al., 2017).
Figure 10C depicted the corresponding EIS of pure BiOCl, GO
and 2 wt% GO/BiOCl. 2 wt% GO/BiOCl exhibited the smallest
diameter of the Nyquist circle, demonstrating that the transfer
efficiency of photoinduced carriers was improved in 2 wt%
GO/BiOCl (Hao et al., 2017). All the PL, transient photocurrent
response and EIS results suggested that the separation and
transfer efficiency of electron-hole pairs were substantially
improved by the addition of GO.

In order to further reveal the photocatalytic mechanism of 2
wt% GO/BiOCl in the photocatalytic degradation process, the
trapping experiments of 2 wt% GO/BiOCl were conducted using
different scavengers. As shown in Figure 10D, isopropanol (IPA),
benzoquinone (BQ), and triethanolamine (TEOA) were used
as the scavenger for hydroxyl radicals, superoxide radicals and
holes (Li et al., 2017a,b,c). On one hand, the photodegradation
efficiency of RhB was slightly decreased by adding IPA, which
indicated that ·OH was not a major active species. On the other
hand, with the addition of benzoquinone or triethanolamine into
the system, the photodegradation of RhB decreased obviously
suggesting that ·O−

2 radicals and h+ played a dominant part in
the visible-light degradation process. This was different from the
conclusions that e− was the main active species for GO/BiOX
composites in other relative reports.

Figure 11 showed the Mott-Schottlyplots for BiOCl and GO.
The positive slope of the C−2-E indicated the expected n-type
BiOCl and GO of the film (Kong, 2008; Weng et al., 2013).
The extrapolations of the Mott-Schottly plots provided a good
approximation of the flat band potential, the value of which
were about −0.26 and −0.27 eV for BiOCl and GO respectively.
The measured potentials could be converted to the reversible
hydrogen electrode scale via the Nernst equation (Yang G.
et al., 2017; Yang J. et al., 2017), so the conduction band edges
were calculated to be 0.36 and 0.34 eV. Based on the values of
conduction band and the band gap, the valence band positions
could be calculated to be 3.56 eV and 1.80 eV via ECB = EVB − Eg
(Duo et al., 2015), in which Eg was about 3.2 eV (Figure 7B) and
1.46 eV (Figure 11A) for BiOCl and GO.
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FIGURE 10 | (A) PL spectra of pure BiOCl and 2 wt% GO/BiOCl; (B) transient photocurrent response of pure BiOCl, GO and 2 wt% GO/BiOCl; (C) electrochemical

impedance spectra of pure BiOCl, GO and 2 wt% GO/BiOCl; (D) the effect of reactive species in the photogradation process of RhB over 2 wt% GO/BiOCl.

FIGURE 11 | (A) Mott-Schottky plots of BiOCl; (B) Mott-Schottky plots of GO; (C) band gaps energies (Eg) of GO.
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FIGURE 12 | Schematic illustration of the proposed photocatalytic mechanism for GO/BiOCl composites degrading RhB under visible light irradiation:

photodegradation (A) and photosensitization (B).

According to the above results, a new photocatalytic
mechanism of GO/BiOCl nanocomposite including
photodegradation and photosensitization at the same time,
which was totally different from relevant reports, could
be proposed as follows. (1) Holes played a dominant part
in the visible-light degrading RhB process, suggesting that
photodegradation was an important mechanism. Under visible
light irradiation, GO was inspired and gave photo-generated
electrons and holes. Electrons flew into the CB of BiOCl,
which reacted with O2 to generate ·O−

2 . ·O
−

2 and the holes on
the VB of GO degraded the contaminant (Figure 12A). (2)
Salicylic acid was slightly degraded under visible light irradiation
(Figure S1), indicating photosensitization was another important
mechanism. Under visible light irradiation, RhB was excited to
produce electrons, which flew into the CB of GO, leaving the
activated RhB molecules (RhB∗). And the electrons on the CB of

GO would further transfer to BiOCl, which reacted with O2 to
generate ·O−

2 , and degraded RhB
∗

directly (Figure 12B). During
the photosensitization process, holes are not detected to be a
major active species.

CONCLUSION

In summary, GO/BiOCl composite films were successfully
prepared via a facile spread coating method. The GO/BiOCl
films especially 2 wt% GO/BiOCl exhibited a much higher
photocatalytic activity compared with pristine BiOCl and
many other film photocatalysts, which could be mainly
ascribed to the improved light adsorption and separation of
photoinduced electrons and holes both resulting fromGO. A new
photocatalytic mechanism totally different from relevant reports,
was revealed to include photodegradation and photosensitization
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at the same time. In addition, their recycle was much easier and
realizable owing to the immobilization of GO/BiOCl on FTO,
and excellent recyclability under visible light was obtained. This
work could provide a new way to developing novel composite
film photocatalysts and studying new photocatalytic mechanisms
for similar GO/BiOX nanocomposites.
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The silicon dioxide (SiO2)–coated bismuth vanadate (BiVO4) composites as

visible–driven–photocatalysts were successfully synthesized by the co–precipitation

method. The effects of SiO2 coating on the structure, optical property, morphology

and surface properties of the composites were investigated by X–ray diffraction (XRD),

UV–visible diffuse reflectance spectroscopy (DRS), transmission electron microscopy

(TEM) and Brunauer–Emmette–Teller (BET) measurements. The photocatalytic activity

of monoclinic BiVO4 and BiVO4/SiO2 composites were evaluated according to the

degradation of methylene blue (MB) dye aqueous solution under visible light irradiation.

The SiO2−coated BiVO4 composites showed the enhancing photocatalytic activity

approximately threefold in comparison with the single phase BiVO4.

Keywords: composite materials, photocatalysis, BiVO4, BET isotherms, SiO2

INTRODUCTION

Nowadays, the advanced oxidation process is known as an effective method for water purification
and wastewater treatment. One of the most famous advanced oxidation process is heterogeneous
photocatalysis; the contaminant (i.e., organic compounds) containing in the water and wastewater
is finally degraded to carbon dioxide (Legrini et al., 1993; Mukherjee and Ray, 1999). This process
can remove the organic contaminant perfectly and does not generate the second contaminant
(i.e., sludge and other organic compounds) which are required the further treatment and disposal.
According to the heterogeneous photocatalysis, the titanium dioxide (TiO2) has been played a role
as the important catalyst to promote the photocatalytic activity. Due to its wide band gap of 3.2 eV,
the photocatalyst of TiO2 is typically activated under the UV light (the wavelength <390 nm is
required), which accounts for 45–50% of solar radiation (Linsebigler et al., 1995; Bahnemann et al.,
2007; Devipriya et al., 2012). This theoretical fact becomes the limitation and non-cost-effectiveness
of actual photocatalytic system for purifying the water at the site.

Another catalyst of monoclinic bismuth vanadate (BiVO4) has been proposed to overcome the
drawback of photocatalytic system using TiO2 and together with enhance the photocatalytic activity
during implementation. Since BiVO4 has narrow band gaps of 2.4 to 2.8 eV (Kudo et al., 2001; Xie
et al., 2006; Li et al., 2008), this photocatalyst can be activated by the visible light and consequences
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the effective use of solar energy. However, the low specific
surface area and poor surface textural property are the significant
disadvantages of using BiVO4 as the catalyst. Its low surface area
and adsorption capacity cause the low efficiency of photocatalytic
system for organic contaminant removal and also the long
treatment period required. Therefore, the increase in specific
surface area of BiVO4 catalyst is necessary prior to imply the
photocatalytic system to the actual wastewater.

Recently, alternative composite materials have been
synthesized by combining metal oxide and porous materials
(i.e., alumina, silica, zeolites, carbon black, charcoal) (Belessi
et al., 2007; Wang et al., 2012; Xing et al., 2016) with the aim
of improving the specific surface area, pore structure, and
photocatalytic activity of catalysts (Gan et al., 2003; Kimura
et al., 2003). For example, the enhancement of Ag–doped TiO2

photocatalytic activity was suggested by adding the mesoporous
SiO2; the excellent efficiency of methyl orange (MO) removal
was achieved by 2.5 h (Roldan et al., 2015). The increasing
adsorption capacity of TiO2 catalyst was observed when the
catalyst was combined with SiO2; the adsorption capacity was
increased (Hu et al., 2012). The SiO2 addition also enhance
the separation rate of electron–hole pairs under UV excitation.
Further, the deposition of gold nanoparticles (Au) on the porous
SiO2-WO3 composite can enhance the methylene blue (MB)
adsorption capacity; the adsorption capacity of Au–SiO2-WO3

was greater than SiO2-WO3 and WO3 respectively (DePuccio
et al., 2015). The complete MB removal was achieved by 300min
under visible light, and the fast kinetic of MB removal was found
in Au–SiO2-WO3 catalyst, following by Au–WO3 and WO3

catalysts.
As all the above mentions, this study aimed to improve the

surface morphology and photocatalytic activity of BiVO4 catalyst
by coating SiO2. Various analytical techniques including X–
ray diffraction (XRD), transmission electron microscopy (TEM),
Brunauer–Emmett–Teller (BET) and UV–vis diffuse reflectance
spectra (DRS) were used to clarify the better property of
BiVO4/SiO2 composite rather than BiVO4 and SiO2. Further,
the performance of BiVO4/SiO2 composites on wastewater

FIGURE 1 | XRD patterns of as–prepared BiVO4, SiO2, and BiVO4/SiO2.

treatment was preliminary studied in the batch test under visible
light irradiation, and its performance was compared to the other
two materials of BiVO4 and SiO2.

EXPERIMENTAL PROCEDURE

All chemicals used were of analytical grade and were used
as received without any further purification. The chemicals
including tetraethyl orthosilicate (TEOS), bismuth (III) nitrate
pentahydrate [Bi(NO3)3·5H2O], ammonium metavanadate
(NH4VO3), methylene blue powder, sodium hydroxide pellet
(NaOH), ammonia solution (28%) and nitric acid (37% HNO3)
were obtained from Sigma-Aldrich. All solutions were prepared
with deionized water.

Preparation of SiO2 Particles
SiO2 particles were prepared by the sol–gel method. Ammonia
solution (28%) was added in 100mL of a mixed solution
of absolute ethanol/DI water (80: 20 v/v) and stirred under
ultrasonic dispersion for 60min. Then, 20mL of tetraethyl

FIGURE 2 | (A) Diffuse reflectance UV–visible spectra and (B) the plot of

adsorption function vs. photon energy for determination of band gap (Eg).
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orthosilicate (TEOS) was added drop by drop to the mixed
solution and stirred for 120min at room temperature. After
the reaction was homogenized, the fine particles were separated
by centrifugation with typical rotating speed of 6,000 rpm
for 15min, washed by DI water and dried at 80◦C for 24 h
in a hot air oven. Fine particles of SiO2 were obtained as a
white powder following heat treatment at 500◦C for 1 h in
ambient.

Preparation of Monoclinic BiVO4 and
SiO2-Coated BiVO4 Composites
Monoclinic BiVO4 were obtained by the co–precipitation
method. Firstly, 12 mmol of bismuth (III) nitrate pentahydrate
[Bi(NO3)3·5H2O] and the same volume of ammonium
metavanadate (NH4VO3) were dissolved in 100mL of 2M
nitric acid (HNO3) under vigorous stirring. The pH of the
mixed solution was adjusted to 9 by adding 3M sodium
hydroxide (NaOH). The yellow precipitate was then separated by
centrifugation at 6,000 rpm for 15min, washed thoroughly with
distilled water and ethanol and finally dried in a hot air oven at
80◦C for 24 h. Crystalline monoclinic BiVO4 was formed after
calcination at 550◦C for 4 h.

BiVO4-coated SiO2 composites were also prepared by the
same method for comparison with an additional step of adding
SiO2 powder to 100mL of 2M HNO3.

Photocatalytic Reaction
Photocatalytic activities of the BiVO4, SiO2 and BiVO4/SiO2

composites were evaluated through degradation of methylene
blue (MB) dye as a model organic pollutant under visible light.

A total of 0.20 g of photocatalyst was added to 100mL MB
aqueous solution (initial concentration C0 = 20 ppm) under
magnetic stirring in darkness for 60min to achieve adsorption–
desorption equilibrium. The system was irradiated by three 18W
halogen lamps (Essential MR, Philips, Thailand) to investigate
photocatalytic degradation. Reduction of MB concentration
over time (Ct) was recorded every 15min by measuring
the intensity change of the characteristic absorption peak at
664 nm using UV–vis double beam spectroscopy (UV−6100,
Mapada).

Characterisation
Crystal phase and structure of the prepared samples were
characterized by powder X–ray diffraction (XRD, Philips X’Pert
MPD) using Cu Kα (λ = 1.54056 Å) radiation. Morphological
changes in the composite materials were monitored by
transmission electron microscopy (TEM, JSM−2010, JEOL).
Brunauer–Emmett–Teller (BET) measurements (Adtosorb 1 MP,
Quantachrome) were performed to compare the specific surface
area of the BiVO4 and BiVO4/SiO2 composites. Measurement of
UV–vis diffuse reflectance spectroscopy (DRS UV–vis, Shimadzu
UV−3101PC) was carried out at room temperature to detect
reflectance and absorbance spectra.

RESULTS AND DISCUSSION

In Figure 1, the broad XRD peak at 2θ = 22–23◦ corresponded
to the amorphous SiO2. The XRD pattern of BiVO4 without
SiO2 was assigned to the standard monoclinic BiVO4 (JCPDS
no. 14–0688) (Gotić et al., 2005). After coating BiVO4 with

FIGURE 3 | TEM images of (a) SiO2, (b) BiVO4, and (c) SiO2-coated BiVO4.
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SiO2, the diffraction peaks matched well with the pure phase
monoclinic BiVO4 and no peaks of any other phases or
impurities were recorded. However, the diffraction intensity of
BiVO4 decreased after coating SiO2, because the amorphous
substance had the negative effect on crystallinity. Alternatively,
self–doped Si4+ ions in the BiVO4 crystal structure might
cause the decreasing crystallinity of BiVO4/SiO2 composites, and
resulted in the broader peaks of the composite samples, which
are similar to those reported by Phanichphant et al. (2016) for
the binary composite CeO2/SiO2 photocatalyts and Kumar et al.
for TiO2/SiO2 nanocomposites in solar cell applications (Arun
Kumar et al., 2012).

FIGURE 4 | (A), (B) N2 adsorption-desorption isotherms, and (C) BET linear

plot of relative pressure.

As shown in Figure 2a, the BiVO4 demonstrated the
absorption edge of the visible region at 450 nm, corresponding
to the optical band gap (Eg) of 2.60 eV which was calculated
by the Kubelka–Munk function (see Figure 2b) (Sirita et al.,
2007). Compared to BiVO4/SiO2 composites, the value of the
graph intercept was estimated at 2.30 eV, corresponding to the
strong absorption edge in the visible region at 523 nm. The band
gap energy of BiVO4 decreased from 2.60 to 2.30 eV in the
composite materials, due to the influence of Si4+ ions doping
into the lattice of BiVO4 which created the abundant doping
energy levels. The estimated band gap values in this study was
similar to those of BiVO4 reported by Jiang et al. (2012), who
prepared the BiVO4 photocatalysts with different morphologies
using the hydrothermal method. Liu et al. (2015) observed that
the band gap energy of BiVO4/SiO2 catalyst estimated to be
2.32 eV, which was almost the same as that of calculate by this
study.

The TEM images of SiO2, BiVO4 and BiVO4/SiO2 composites
are presented in Figure 3. The SiO2 image shows the aggregation
of spherical–shaped particles with diameters ranging of
20–30 nm (Figure 3a), while Figure 3b shows the rod–like
nanostructures of monoclinic BiVO4 with the diameter
of 10 nm and the length of 60 nm. Typical TEM images
are used for characterizing the composite materials and
proving the heterojunction formation between BiVO4 and
SiO2, which demonstrated that the rod–like BiVO4 core
was covered by the SiO2 particles growing on the surface
(Figure 3c).

The N2 adsorption-desorption isotherms (Figure 4a) show
that the N2 adsorption of BiVO4/SiO2 composites were relatively
higher than that of the pure BiVO4, however the value was
much lower than that of the SiO2. The specific surface areas
of SiO2, BiVO4/SiO2 composites, and BiVO4 were found to
be 106.9959, 37.6851, and 19.4964 m2/g, respectively. In the
meanwhile, the pore size was calculated by using the BJH
method, and the results were 9.0316, 11.0776, and 11.8111 nm
for SiO2, BiVO4/SiO2, and BiVO4 respectively (as summarized
in Table 1). The surface area and pore size are positively
related to the photocatalytic activity, therefore the photocatalytic
activity of BiVO4/SiO2 composites were higher than that
of pure BiVO4. Even though the surface area of SiO2 was
higher than the BiVO4/SiO2 composite, the adsorption of
pollutant by SiO2 with high specific surface area have only
the ability to transfer pollutants to alternative phases, but
not completely get rid of them. Therefore, the photocatalytic
process based on using the hydroxyl radicals is required in this
study.

TABLE 1 | Surface properties of the prepared samples.

Sample Specific surface

area (m2/g)

Average pore size

diameter (nm)

SiO2 106.9959 9.0316

BiVO4/SiO2 37.6851 11.0776

BiVO4 19.4964 11.8111
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Figure 4b shows the N2 adsorption-desorption isotherms of
BiVO4/SiO2 composites in the relative pressure (P/P0) range
0.00–1.00. The curve exhibited Type IV isotherm characteristic

FIGURE 5 | MB concentration changes with irradiation time (A) Ct/C0 and (B)

–ln Ct/C0.

with a small hysteresis loop at the relative pressure of 0.80–1.00.
This indicated the existence of mesopores in the sample with the
pore diameter ranging of 2–50 nm (Brunauer et al., 1940; Bae
et al., 2010).

The information from the isotherm can be used to determine
the specific surface area from the mathematical relations in
Equation (1) and Equation (2) below (Itodo et al., 2010;
Thommes et al., 2015)

P/P0

V(1− P/P0)
=

1

VmC
+

(C− 1)

VmC

P

P0
(1)

where,
P0, Initial pressure of N2; P, Equilibrium pressure of N2

adsorption; Vm, Monolayer capacity; V, Amount of N2 adsorbed
at standard temperature and pressure (STP).

Specific Surface area =
VmNa × A

m× 22400
(2)

where,
A, Cross-sectional area of the adsorbed N2; m, Adsorbate

molecular weight; Na, Avogadro’s number.
The intercept and slope of the plot in Figure 4c were used to

calculate the maximum volume of gas adsorbed at the monolayer
(Vm), it was 8.6569 cm3/g. The specific surface area was also
calculated via the Vm value (see Equation 2). The result showed
that the surface area of BiVO4/SiO2 composites was 37.6851
m2/g.

Figure 5a presents the degradation efficiency of MB as a
function of Ct/C0 and visible irradiation time. The C0 was
the initial concentration of MB before irradiation and Ct was
the MB concentration at the interval irradiation time (t, min).
For using the SiO2 as catalyst, the MB was removed of 83%
under the dark adsorption, and only 5% of MB was further
degraded under the visible light. For using the single phase
monoclinic BiVO4, the MB was removed around 10% under the
dark adsorption, and 40% of MB was further degreased under
the visible light irradiation. When the BiVO4/SiO2 composites
was used, the MB removal efficiency reached 35 and 86% under

FIGURE 6 | The proposed mechanism of photogenerated charge carriers of BiVO4 in BiVO4/SiO2 heterojunction.

Frontiers in Chemistry | www.frontiersin.org September 2018 | Volume 6 | Article 41560

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Channei et al. Mesoporous SiO2–Coated Monoclinic BiVO4

the dark adsorption and visible light irradiation. As above
explanation, the specific surface area of BiVO4/SiO2 composites
were increased from BiVO4, due to the SiO2 coating. The
increasing specific surface area resulted in the high adsorption
of MB molecules during 60min of the darkness, and then
the adsorbed MB was continuously degraded by photocatalytic
activity during visible light. These results illustrated that the
photocatalytic activity of BiVO4 was enhanced by coating the
SiO2 particles.

The kinetics of MB degradation was analyzed using the
pseudo–first order model, which was given in Equation (3)
(Yetim and Tekin, 2017). In Figure 5b, the correlation of–ln
Ct/C0 and t were positive with linear equation; the kinetic
constant (k) were 0.0073 min−1 for BiVO4 and 0.0207 min−1 for
BiVO4/SiO2 composites. The kinetic constant of MB degradation
using BiVO4/SiO2 composites was approximately threefold
higher than that using the single phase BiVO4.

− ln(Ct/C0) = kt (3)

where k is the apparent rate constant of the pseudo–first order
reaction (min−1).

Since the photocatalytic degradation of dyes is associated with

dye adsorption onto the surface of BiVO4/SiO2. Furthermore,

photocatalytic degradation occurs at or near the surface of
the catalyst rather than in the bulk solution. Thus the higher

photocatalytic activity of BiVO4/SiO2 is consistent with the

higher adsorption of MB on the surface of BiVO4/SiO2

photocatalyst. Mesoporous SiO2 adsorbent enriches the MB
molecules around the BiVO4 surface as shown in Figure 6 and
the visible–light photocatalytic activity of the BiVO4 interface
in the composite materials is then excited to generate electrons
(e–) and holes (h+). Subsequently, photoexcited electrons in
the valance band and hole in the conduction band of BiVO4

react with oxygen, water and hydroxide ions to produce free
superoxide radicals (O−•

2 ) and hydroxyl radicals (OH•) as
the main active oxidizing species, which then react with MB
molecules during the photocatalytic process (Lin et al., 2014;
Zhou et al., 2014). The final products of MB aqueous solution
photocatalytic degradation are oxidized to CO2, H2O, CO2,
NH+

4 , NO
−

3 , and SO2−
4 (Houas et al., 2001; Luan and Hu, 2012).

CONCLUSIONS

BiVO4/SiO2 composites consisting of spherical SiO2 particles
coated on BiVO4 nanorods were successfully prepared by co–
precipitation. The composites exhibited higher photocatalytic
activity compared to single monoclinic BiVO4 by degrading MB
under visible–light irradiation due to the greater surface area of
mesoporous SiO2. Fabrication of heterogeneous semiconductors
using mesoporous materials can produce promising alternative
photocatalysts for wastewater treatment under light irradiation
by combining adsorption and photocatalytic processes.
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Catalytic and Photocatalytic Nitrate
Reduction Over Pd-Cu Loaded Over
Hybrid Materials of Multi-Walled
Carbon Nanotubes and TiO2

Cláudia G. Silva*, Manuel F. R. Pereira, José J. M. Órfão, Joaquim L. Faria and
Olívia S. G. P. Soares

Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de

Engenharia, Universidade do Porto, Porto, Portugal

TiO2 and carbon nanotube-TiO2 hybrid materials synthesized by sol-gel and loaded

with 1%Pd−1%Cu (%wt.) were tested in the catalytic and photocatalytic reduction of

nitrate in water in the presence of CO2 (buffer) and H2 (reducing agent). Characterization

of the catalysts was performed by UV-Vis and fluorescence spectroscopy, X-ray

diffraction, temperature programed reduction, N2 adsorption, and electron microscopy.

The presence of light produced a positive effect in the kinetics of nitrate removal. Higher

selectivity toward nitrogen formation was observed under dark condition, while the

photo-activated reactions showed higher selectivity for the production of ammonium.

The hybrid catalyst containing 20%wt. of carbon nanotubes shows the best compromise

between activity and selectivity. A mechanism for the photocatalytic abatement of nitrate

in water in the presence of the hybrid materials was proposed, based in the action of

carbon nanotubes as light harvesters, dispersing media for TiO2 particles and as charge

carrier facilitators.

Keywords: photocatalysis, catalytic reduction, nitrate, titanium dioxide, carbon nanotubes, palladium, copper

INTRODUCTION

Nitrate is a naturally occurring ion that is part of the nitrogen cycle, in which nitrogen species are
switched between organisms and the environment. The increasing use of inorganic nitrogenous
fertilizers, the disposal of wastes (mainly from oxidation of nitrogenous waste products in human
and animal excreta) and changes in land use are the main causes accounting for the progressively
increasing levels of this pollutant in groundwater supplies. Nitrate ion (NO3

−) is the stable form
of combined nitrogen for oxygenated systems and is potentially hazardous for humans, since it can
be transformed into nitrite in the human body, which may cause the blue baby syndrome, being
also a precursor of carcinogenic nitrosamines (Kapoor and Viraraghavan, 1997). Moreover, it may
cause the eutrophication of rivers and lakes. The maximum contaminant level in drinking water of
nitrogen species as nitrate, nitrite, and ammonium is 50, 0.5, and 0.5 mg/L, respectively (EUWater
Framework Directive1).

1EU Water Framework Directive (2000). Available online at: http://ec.europa.eu/environment/water/water-framework/

index_en.html (Accessed 2018).
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The removal of nitrate fromwater constitutes a great challenge
to safeguarding drinking water resources of suitable quality. In
this context, a great effort has been put in the development of
water technologies capable to address the environmental and
health concerns. Conventional methods are based in physical-
chemical treatment processes (reverse osmosis, ion exchange, and
electrodialysis) and biological denitrification.

Heterogeneous catalytic systems like catalytic and
photocatalytic reduction of nitrate have been shown to be
promising processes compared to conventional treatments (Sá
et al., 2009; Soares et al., 2011a, 2014; Luiz et al., 2012; Shand
and Anderson, 2013). Catalytic nitrate reduction occurs by
consecutive and parallel reactions where nitrate is reduced
to nitrite, which is converted to ammonium, as undesired
by-product, and to nitrogen, as desired product. The main issue
of this process is the selectivity toward nitrogen, which is often
compromised. Bimetallic catalysts composed by a noble metal
(Pd, Pt, or Rh) and a promoter metal (Cu, Sn, or In) supported on
different materials are the most used for catalytic hydrogenation
of nitrate (Soares et al., 2009; Calvo et al., 2010; Marchesini
et al., 2010; Wada et al., 2012), although monometallic catalysts
also present some activity depending on the support (Barrabés
et al., 2010; Anderson, 2011; Devadas et al., 2011). Pd-Cu
catalysts are normally the most efficient, Pd-Sn and Pd-In also
presenting good performances (Martínez et al., 2017). In the case
of photocatalytic reduction, besides the type of metal catalysts,
several other conditions such as the catalyst support, the pH of
the solution, the irradiation source, nature of the reducing agent
or electron donor (hole scavenger) also affect the performance of
the process. H2 and CO2 are usually used in catalytic reduction
reactions, in which H2 serves as reductant and CO2 as buffer
(Prusse et al., 2000). In the case of the photo-assisted catalytic
process, oxalic acid, formic acid, or methanol are the most used
hole scavengers (Zhang et al., 2005; Doudrick et al., 2013).

Titanium dioxide-based materials are the most widely used
catalysts for the photocatalytic reduction of nitrate, the bimetallic
Pd-Cu/TiO2 and Pt-Cu/TiO2 being the ones showing most
promising results. On the other hand, Pd-Cu catalysts supported
on carbon materials and also in metal oxides are the most used
for nitrate catalytic reduction. TiO2-based catalysts are normally
highly active for nitrate removal, yet, due to their capacity to
drive hydrogenation, low nitrogen selectivity is reached (Sá et al.,
2005). It has been reported that the activity of Pd-Cu bimetallic
catalysts supported on carbonmaterials was higher than the same
Pd-Cu catalyst supported on a metal oxide, such as TiO2, Al2O3,
SiO2, or ZrO2, at the same operating conditions, due to their
surface chemistry and higher metals dispersion (Sakamoto et al.,
2006; Soares et al., 2011a). Moreover, the coupling of carbon
nanotubes with TiO2 has proved to induce a positive effect in
the activity and selectivity of Pd-Cu catalysts for the catalytic
reduction of nitrate into N2 (Soares et al., 2011a).

Following the previous findings, in the present work we
explored the synergies between carbon nanotubes (CNT) and
titanium dioxide in both catalytic and photocatalytic reduction
of nitrate in water. For that purpose, hybrid materials of TiO2

with different CNT contents, and loaded with 1%Pd and 1%Cu
(wt.%) were evaluated as catalysts. Hydrogen and carbon dioxide
were used as reducing and pH buffer agents, respectively. The

materials were tested under the same experimental conditions,
the only difference between the two processes being the
introduction of a near-UV to visible light source in the case of
the photocatalytic reactions.

EXPERIMENTAL

Catalysts Preparation
Multi-walled carbon nanotubes synthesized by catalytic
decomposition of CH4 were purchased from Shenzhen Nanoport
Co. Ltd (purity > 95%, diameter < 10 nm; length = 5–15µm).
TiO2 and CNT–TiO2 composite catalysts were prepared through
an acid-catalyzed sol–gel procedure, as described elsewhere
(Silva and Faria, 2010). Briefly, TiO2 was prepared by dissolving
Ti(OC3H7)4 (Aldrich 97%) in ethanol. The solution was
magnetically stirred for 30min, and then nitric acid (Fluka 65%)
was added.

For the composite catalysts preparation, a certain amount of
CNTwas added to the Ti(OC3H7)4 ethanol solution. Themixture
was kept stirring until a homogenous gel was formed. The gel
was left aging in air for 5 days. The resulting material was then
crushed into a fine powder (particle size< 100µm). The powders
were calcined at 400◦C under a flow of N2 for 2 h to obtain TiO2

or CNT–TiO2 hybrid materials. Catalysts were labeled as XCNT–
TiO2, where X (5, 10, 20, 50, 70, and 90) corresponds to the
weight percentage of CNT in the material.

The monometallic (Pd) and bimetallic (Pd-Cu) catalysts
were prepared by incipient wetness impregnation and co-
impregnation, respectively. Briefly, aqueous solutions containing
the proper mass of the corresponding salts [PdCl2, Alfa
Aesar 99.9%; Cu(NO3)2, Riedel-de Haen 99%] were added
dropwise to TiO2 and CNT-TiO2 materials. In the case of the
bimetallic catalyst, the materials were co-impregnated with a
solution containing both precursor salts. The palladium and
copper contents were fixed at 1%Pd-1%Cu and 1%Pd (weight
percentages). After impregnation, the metal-loaded materials
were dried in an oven at 100◦C for 24 h. Then, the catalysts were
heat treated under a nitrogen flow at 200◦C for 1 h. At the end
of this period, the gas stream was switched to hydrogen for 3 h to
promote metals reduction. Finally, the materials were left to cool
down to room temperature under a nitrogen flow.

Catalysts Characterization
Powder X-ray Diffraction (XRD) analysis was performed on
a Philips X’PertMPD diffractometer (Cu-Ka = 0.15406 nm).
The Brunauer-Emmett-Teller (BET) specific surface area (SBET)
was determined from N2 adsorption-desorption isotherms at
196◦C, in a Quantachrome Nova 4200e apparatus. Temperature
programmed reduction (TPR) was carried out in an AMI-
200 (Altamira Instruments) system. The H2 consumption
was followed by a thermal conductivity detector (TCD)
and by a mass spectrometer (Dymaxion 200 amu, Ametek).
Transmission electron microscopy (TEM) micrographs were
obtained using a LEO 906E microscope operating with an
accelerating voltage of 120 kV. Diffuse reflectance (DR)
UV-Vis spectra of the powder samples were recorded on
a JASCO V-560 UV-Vis spectrophotometer, equipped with
an integrating sphere attachment (JASCO ISV-469). The
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reflectance spectra were converted by the instrument software
(JASCO) to equivalent absorption Kubelka–Munk units. Steady-
state photoluminescence (PL) spectra were recorded at room
temperature on a JASCO FP-8300 spectrofluorometer equipped
with a 150W Xe lamp. The morphology and elemental mapping
of the materials was obtained by SEM/EDXS analysis using a FEI
Quanta 400FEG ESEM/EDAX Genesis X4M instrument.

Catalytic and Photocatalytic Nitrate

Reduction Experiments
The catalytic and photocatalytic experiments were carried out in
a glass cylindrical reactor. Initially, 190mL of deionised water
and 100mg of catalyst were fed into the reactor. When used,
a gas mixture of H2 and CO2 [1:1 flow rate = 200 cm3 (STP)
min−1] was passed through the reactor to remove the dissolved
oxygen; CO2 acts as pH buffer (pH = 5.5). A Heraeus TQ 150
medium pressure mercury vapor lamp (λexc = 254, 313, 365,
436, and 546 nm) was used as radiation source. The lamp was
located axially in the reactor and held in a quartz immersion
tube. A DURAN R© glass jacket was used as water circulating
cooling system (temperature maintained at 25◦C) and as a filter
for cutting-off low wavelength UV lines and letting pass radiation
in the near-UV to visible light range (λexc ≥ 365 nm). Before
turning illumination on, the solution was magnetically stirred
in the dark for 15min. After that period, 10mL of a nitrate
solution, prepared fromNaNO3 (Sigma-Aldrich 99%), was added
to the reactor, in order to obtain an initial NO−

3 concentration
of 100mg L−1. The first sample was taken out just before the
light was turned on, in order to determine the initial nitrate
concentration in solution. The catalytic (dark) experiments were
carried out under the same experimental conditions, but in the
absence of light.

Samples were withdrawn regularly from the reactor, and
centrifuged before determination of NO3

−, NO2
−, and

NH4
+ concentrations. NO3

− and NO2
− were simultaneously

determined by HPLC using a Hitachi Elite Lachrom system
equipped with a diode array detector. The stationary phase was
a Hamilton PRP-X100 column (150 × 4.1mm) working at room
temperature, under isocratic conditions. The mobile phase was
a solution of 0.1M NaCl:CH3OH (45:55). The concentration of
NH4

+ was determined by potentiometry.
Palladium and copper leaching was assessed after each

experiment by atomic absorption spectrometry (UNICAM
939/959), the absence of metals (within the experimental error)
being confirmed for all the cases.

Reproducibility tests were performed for selected
experiments, the results being in agreement with a maximum
error of about 2.5%. NO3

− conversion and the selectivity to
NO2

− and NH4
+ were calculated as described elsewhere (Soares

et al., 2014).

RESULTS AND DISCUSSION

Catalysts Characterization
XRD patterns of neat CNT, Pd-Cu/TiO2, and Pd-Cu/20CNT-
TiO2 are displayed in Figure 1. Typical (002) and (100)
diffraction lines are evident in the XRD pattern of CNT. XRD

FIGURE 1 | X-ray diffraction patterns of neat CNT (i), Pd-Cu/TiO2 (ii), and

Pd-Cu/20CNT-TiO2 (iii).

analysis of TiO2 and CNT-TiO2 composites revealed that only
anatase phase is present in neat TiO2 and composite catalysts.
The XRD patterns of the Pd-Cu loaded CNT–TiO2 materials
are very similar to the one of Pd-Cu/TiO2, with the CNT
contribution hardly been identified. The Cu and Pd phases
were not detected by XRD, which must be related to the low
metal percentages (1%wt.). Anatase crystallites of 8.5 nm average
size were found for neat TiO2, as determined by the Scherrer
equation and confirmed by TEM (Figure 2a). The sizes of the
anatase crystallites present at the composite catalysts decreased
with increasing carbon content, suggesting that CNT may act
as dispersing medium for TiO2 particle precursors during the
crystallization process (Table 1).

The BET surface areas (SBET) of TiO2 and CNT-TiO2

materials are listed in Table 1. Materials with lower carbon
content, namely 5CNT–TiO2 and 10CNT–TiO2 composites,
showed surface areas lower than the ones estimated through the
mass composition of the composites (SBET,calc) and even lower
than for neat TiO2. These results indicate that the presence
of low amounts of CNT induces the formation of big TiO2

crystallite agglomerates, therefore decreasing the surface area of
the composite catalyst (Figure 2b).

With the carbon content increasing up to 20% (20CNT–
TiO2), the presence of a larger amount of CNT seems to
prevent TiO2 particles from agglomerating, thus increasing
the surface area, which was even higher than the calculated
(SBET,calc). This was confirmed by TEM (Figure 2c), where TiO2

particles of very small dimensions can be observed surrounding
the sidewalls of CNT. In the case of the composite with
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FIGURE 2 | TEM micrographs of TiO2 (a), 5CNT-TiO2 (b), 20CNT-TiO2 (c), and 70CNT-TiO2 (d) loaded with 1% Cu and 1% Pd (wt. %). The arrows indicate the

presence of metal nanoparticles.

similar amounts of TiO2 and CNT phases (50CNT-TiO2), the
values for SBET and SBET,calc were similar. Nevertheless, a
further increase on the amount of CNT revealed to have a
detrimental effect on the surface area of the resulting composites.
A decrease in the SBET in relation to the calculated values
of 15 and 40% was observed for 70CNT-TiO2 and 90CNT-
TiO2 materials, respectively, which may be attributed to the
formation of CNT bundles decreasing the accessible surface area,
as could be visualized by TEM for 70CNT-TiO2 (Figure 2d).
Due to the low amount of metals used, the textural properties
of the metal-loaded catalysts remained practically unchanged
compared to the pristine supports. The presence of metal
particles of very small dimensions (lower than 10 nm) loaded
on the TiO2-based materials could be observed by TEM
(Figure 2).

SEM-EDXS analysis of Pd-Cu/TiO2 (Figure 3a) and
Pd-Cu/20CNT-TiO2 (Figure 3b) revealed that Pd and Cu
nanoparticles are well dispersed in the catalysts, with no
apparent prevalence of one of the metals.

The carbon content of the CNT-TiO2 composites determined
by TG analysis (CTG) agrees fairly well with the nominal
percentage, indicating negligible gasification of CNT during the
calcination step (Table 1).

TABLE 1 | Surface area, carbon content, and dimensions of the anatase

crystallites of TiO2 and CNT-TiO2 composites.

Catalyst SBET
(m2 g−1)

SBET,calc

(m2 g−1)

CTG

(%)

dA
(nm)

TiO2-SG 107 – – 8.5

CNT 185 – – -

5CNT-TiO2 70 110 3.5 11.2

10CNT-TiO2 94 113 7.6 9.4

20CNT-TiO2 131 120 17 8.3

50CNT-TiO2 147 143 46 7.2

70CNT-TiO2 111 130 71 6.5a

90CNT-TiO2 104 174 86 n.d.

aDetermined by TEM; n.d., not determined.

Figure 4 shows the TPR profiles for both TiO2 and
20CNT-TiO2 materials, which were obtained before heat-
treating the metal salt-loaded supports. Both materials
show a reduction peak centered at 150◦C, assigned to
the reduction of Cu oxides promoted by the presence of
Pd (Soares et al., 2011a). The thermal treatment under
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FIGURE 3 | SEM-EDX analysis of Pd-Cu/TiO2 (a) and Pd-Cu/20CNT-TiO2 (b) with the respective elemental mapping for Pd, Cu, Ti, and O in the selected regions

(dashed rectangle).

FIGURE 4 | TPR profiles of Pd-Cu loaded on TiO2 (A) and on 20CNT-TiO2 (B).

H2 should produce Pd and Cu particles in the reduced
form, i.e., Pd0 and Cu0 (Soares et al., 2010, 2011a). Similar
results were obtained for the remaining CNT-TiO2 composite
materials.

DR UV-Vis analysis of Pd-Cu/TiO2 (Figure 5A) shows the
TiO2 characteristic absorption band at wavelength below 400 nm,
a band peaking at c.a. 480 nm attributed to the presence of Pd
and a broad absorption band rising from 550 nm due to the
occurrence of Cu species (López et al., 2009; Wu et al., 2009;
Soares et al., 2014).

As expected, the presence of CNT led to a rise of light
absorption in the visible spectral region, increasing with the CNT
content on the composite catalysts up to a CNT load of 50 wt.%.
This behavior has been attributed not only to the capacity of
CNT to absorb visible light but also to an increment of surface
electronic species availability and mobility in the composite
catalysts due to the introduction of CNT, as already reported
in previous studies (Silva and Faria, 2010; Dai et al., 2014). A
further increase in the CNT content did not produce any effect
on the optical absorption of the composite materials. Moreover,
the absorption peaks of the metal species could not be identified
in the UV-Vis spectra of the composite materials, which may
be attributed to a higher dispersion of the metal particles when
supported on the composite materials.

The photoluminescence (PL) spectra were performed for
having an insight in the behavior of light-generated electronic
species in photocatalysts, since PL emission results from the
recombination of electrons and holes. The PL emission spectra
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FIGURE 5 | (A) Diffuse reflectance UV-Vis spectra of Pd-Cu-loaded TiO2 (i); 5CNT-TiO2 (ii); 10CNT-TiO2 (iii); 20CNT-TiO2 (iv); 50CNT-TiO2 (v); CNT (vi); (B) PL spectra

of neat TiO2 (i), Pd-Cu/TiO2 (ii) and Pd-Cu/20CN-TiO2 (iii).

of the pure neat TiO2 and Pd-Cu loaded TiO2 and 20CNT-TiO2

materials excited at 280 nm are shown in Figure 5B. The PL
signal observed for neat TiO2 can be attributed to the transition
of electrons from the oxygen vacancies to TiO2 valence band
(Tahir et al., 2017). After loading TiO2 with Pd and Cu, an
increase in the PL intensity was observed in the range from 330
to 400 nm, which may be attributed to the higher availability of
photoexcited electrons in the bimetallic catalyst. Yet, a decrease
in the PL signal intensity in the 400–525 nm range is observed,
meaning that electron-hole recombination was decreased by the
presence of the metal nanoparticles. Pd-Cu/20CNT-TiO2 shows
a very significant decrease in the PL intensity as compared with
bare and metal loaded TiO2, indicating highly efficient inhibition
of charge carriers recombination and suggesting the existence
of electronic synergies between the metals and the hybrid CNT-
TiO2 material (Zhang et al., 2012).

Catalytic and Photocatalytic Nitrate

Reduction
TiO2 and CNT-TiO2 composites loaded with 1%Pd and 1%Cu
(wt.%) were used for catalytic and photocatalytic reduction
of nitrate in aqueous suspensions. Monometallic Pd-TiO2 was
used for comparison purposes. H2 and CO2 were continuously
added to the reaction media, acting as reducing agent and pH
buffer, respectively. The materials were tested under the same
experimental conditions, the only difference between the two
processes being the introduction of a near-UV to visible light
source in the case of the photocatalytic reactions.

The performances of the different catalysts for the (dark)
catalytic reduction process are presented in Figure 6A. Very low
nitrate conversion (4%) was achieved using the monometallic
Pd-TiO2 catalyst, the presence of Cu being fundamental for the
reaction to occur. Moreover, as expected, it can be observed that
the support has a crucial influence on the performance of the
bimetallic catalysts.

In the case of the catalytic reduction process, Pd-Cu/TiO2

was the most efficient catalyst in terms of the kinetics of nitrate
removal, with total nitrate conversion being achieved at the end
of 90min of reaction. Similar kinetic behavior was observed for
nitrate reduction reactions using the composite materials with a
CNT load (Y) of 5, 10, and 20%, leading to total nitrate removal
at the end of 120min of reaction. For higher CNT loads, a
progressive detrimental effect in the kinetics of nitrate removal
has been observed. Nitrate conversions of 95, 79, and 27% have
been obtained at the end of 240min when using composites with
Y = 50, 70, and 90%, respectively. For the Pd-Cu/CNT catalyst
only 12% nitrate removal was achieved at the end of the catalytic
run.

In general, the presence of light promotes a positive effect in
nitrate removal (Figure 6B). As in the case of the (dark) catalytic
process, the simultaneous presence of Pd and Cu was a sine qua
non condition for nitrate conversion to occur. The composite
material with the lowest CNT content (Y = 5%) produced a
decrease in the efficiency of nitrate abatement compared to Pd-
Cu/TiO2. Yet, a further increase in the CNT load up to Y = 20%
lead to a rise in the rate of nitrate removal. For the composites
with higher CNT content (Y = 50, 70, and 90%) a progressive
loss in the efficiency toward NO3

− conversion was observed.
The conversion of nitrate at 60min of reaction was calculated

in order to get a better understanding of the effect of CNT
load in the kinetics of NO3

− removal by both catalytic and
photocatalytic routes (Figure 6C). It is notorious that the amount
of CNT plays a role in the efficiency of the composite materials.
As already mentioned, composite materials underperformed
TiO2 in catalytic nitrate reduction with a decrease in the nitrate
conversion with increasing CNT load. Yet, for the photocatalytic
process a positive effect was observed using 10CNT-TiO2 and,
in particular, 20CNT-TiO2 comparing with the experiments
using TiO2 as support. On the other hand, the bimetallic
catalyst supported on 20CNT-TiO2 promotes total conversion of
nitrate at 60min of reaction. Reutilization tests were performed
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FIGURE 6 | Nitrate concentration (CNO3
− ) during catalytic (A) and

photocatalytic (B) reactions. Pd/TiO2 refers to the monometallic catalyst while

all other results refer to Pd-Cu bimetallic catalysts. Nitrate conversion at 60min

(XNO3
−,60 min

) using Pd-Cu loaded materials (C).

using Pd-Cu/20CNT-TiO2 and Pd-Cu/TiO2 under catalytic and
photocatalytic conditions. In both cases the results indicate that
the performance of the catalysts was maintained within 5%
variation over 3 consecutive runs.

Figure 7 shows the nitrite and ammonium profiles during
catalytic and photocatalytic reactions using Pd-Cu loaded TiO2,
CNT, and 20CNT-TiO2 catalysts. Residual amounts of NO2

− and
NH4

+ were produced using Pd-Cu/CNT during both catalytic
and photocatalytic processes. When Pd-Cu/TiO2 was used as
catalyst, nitrite is partially transformed into ammonia during
the reaction, which is accumulated in the aqueous media. It was
found that for the catalytic process, the formation of nitrite and
conversion into ammonium is slower than for the photocatalytic
process. Also, lower amounts of ammonia were produced in the
presence of light, using Pd-Cu/TiO2 and Pd-Cu/CNT, meaning
a higher selectivity of the photocatalytic process toward N2

formation.
For the reactions using Pd-Cu/20CNT-TiO2 higher amounts

of NO2
− were found during the catalytic and photocatalytic

reactions, which were completely depleted at the end of 180 and
60min of reaction, respectively (Figure 7A). Yet, contrarious to
what was observed for the reactions using Pd-Cu/TiO2 and Pd-
Cu/CNT, the use of the metal-loaded 20CNT-TiO2 catalyst under
irradiation lead to the formation of higher amounts of ammonia
when compared to the catalytic process (Figure 7B).

Catalytic and Photocatalytic Nitrate

Reduction Mechanisms Using CNT-TiO2

Catalysts
As described above, nitrate reduction over CNT-TiO2 hybrid
materials behave very differently in dark conditions and under
irradiation. Although the photo-assisted process provide a
quicker depletion of NO3

−, the selectivity toward N2 is greatly
affected by the use of CNT-TiO2 hybrid materials as Pd-Cu
supports (Figure 8).

In the case of the catalytic reduction process, an increase
in N2 selectivity is observed with increasing CNT content up
to 20 wt.%. A further increase in the amount of CNT led to
a progressive decrease in the selectivity toward N2 formation
(Figure 8A). On the other hand, the photocatalytic reduction of
NO3

− using CNT-TiO2 catalysts appeared to be more selective
for the reduction of nitrate into ammonia (Figure 8B).

It is well accepted that during the (dark) catalytic reduction
over bimetallic catalysts, using hydrogen as reducing agent,
NO3

− is converted into NO2
− according to a redox reaction on

the promoter metal (Cu). The role of the noble metal is to activate
hydrogen, reducing the promoter metal, completing the catalytic
cycle (Epron et al., 2001; Soares et al., 2011b; Zhang et al., 2013),
being also active for the NO2

− reduction.
In the case of the photocatalytic process using metal-loaded

TiO2, the mechanism generally proposed is based on the role
of metal nanoparticles as electron sinks. Since the Fermi levels
of noble metals are lower than that of TiO2, the photo-excited
electrons can be transferred from the conduction band of
the semiconductor to the metal nanoparticles deposited on its
surface, being then available for NO3

− reduction (Kominami
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FIGURE 7 | (A) NO2
− and (B) NH4

+ concentrations as a function of time during nitrate reduction over Pd–Cu loaded TiO2 (l and ©), 20CNT-TiO2 (� and � ) and

CNT (s and △) under dark catalytic (solid symbols) and photocatalytic (open symbols) conditions.

FIGURE 8 | Nitrate conversion (XNO3
− ) and nitrite, ammonium and nitrogen selectivity (SNO2

− ,SNH4
+ ,SN2

) using Pd-Cu loaded TiO2 and CNT-TiO2 catalysts after

4 h of catalytic (A) and photocatalytic (B) reactions.

et al., 2005; Anderson, 2012; Soares et al., 2014). Hole scavengers
are generally used, acting as sacrificial electron donors, avoiding
electron-hole recombination. Yet, in the present work, no
scavengers were added to the reaction medium.

The role played by CNT in CNT-TiO2 hybrids has been
discussed in previous works reporting the use of this type of
materials as photocatalysts for environmental applications (Silva
and Faria, 2010; Silva et al., 2015; Zeng et al., 2015; Yang and
Park, 2017). CNT may act as adsorbent, as dispersing medium
for TiO2 nanoparticles, it may span light absorption into the
visible andmay retard electron hole recombination. Although the
surface area of the hybrid materials increased with CNT content,
the first is not likely to be the most important effect, since no
significant adsorption was observed whether the catalyst used.

TEM images of CNT-TiO2 hybrids show that CNT promote the
dispersion of TiO2 avoiding particle agglomeration (Figure 2).
Moreover, the introduction of CNT increased the absorption
of the resulting materials in the visible range, as shown by
the UV-Vis spectra (Figure 5A), and lead to a decrease in the
electron-hole recombination (Figure 5B).

Based in our findings, and considering the operation
conditions used in this study, the following photocatalytic
reaction mechanism is proposed. Since the irradiation source
emits in the near UV to visible range, it is expected that TiO2

and CNT could be photoexcited simultaneously (Figure 9, steps
1 and 1∗).

After charge separation, electrons are transferred to Pd and
Cu nanoparticles that are supported over TiO2 and also over
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FIGURE 9 | Schematic representation of the photocatalytic reduction of nitrate

over Pd–Cu/CNT-TiO2 catalysts in the presence of H2 and CO2, under near

UV to visible light irradiation.

CNTs (Figure 9, steps 2–4), as observed by TEM (Figure 2).
Photogenerated electrons may reduce both nitrate and nitrite
adsorbed on Cu and Pd, respectively (Figure 9, steps 5–7). On
the other hand, positively charged holes may migrate from TiO2

to the CNT phase, where, in the absence of sacrificial electron
donors, water can be oxidized to H+ and HO• (Figure 9, steps 8
and 9). Hydroxyl radicals may indirectly re-oxidize byproducts
to NO3

− (Tugaoen et al., 2017), while CO2
•−, which can be

generated from the reduction of CO2 (used as pH buffer)
by available electrons, may play a role as reducing mediator
(Zhang et al., 2005; Sá et al., 2009). The higher selectivity
toward NH4

+ production obtained using CNT-TiO2 catalysts
when irradiated may be rationalized by the excess of H+ in
the reaction medium, resulting from step 9 in Figure 9. Yet, no
direct correlation between the CNT load in the hybrid materials
and the selectivity toward NH4

+ could be found (Figure 8B),
which may derive from the complexity and simultaneity of
the reactions involved in the mechanism of the photocatalytic
process.

Although the photocatalytic process appears more
advantageous in terms of kinetics of nitrate removal, the
(dark) catalytic reactions using CNT-TiO2 hybrid materials
revealed to be more selective toward N2 formation. Nevertheless,
the possibility of using this type of materials may be envisioned
as a cleaner route for the production of ammonia, comparing
with the conventional fossil fuel based process (Yamauchi et al.,
2011; Hirakawa et al., 2017).

CONCLUSION

TiO2 and CNT-TiO2 loaded with 1%Pd−1%Cu show high
catalytic activity in the dark and under near UV to visible light
irradiation, in the presence of H2 and CO2. The presence of light
promotes faster NO3

− conversion, due to the higher availability
of reducing species. Carbon nanotubes induce to a positive effect
in the selectivity of the catalytic reduction process toward N2

formation. In the case of the photocatalytic process, the hybrid
materials lead to an increase in the yield of the reduction of NO3

−

to NH4
+, due to the high availability of H+. The efficiency of the

hybrid materials depends on the CNT load, the best performing
material being that composed by 20 wt.% of carbon nanotubes.
In the case of the dark catalytic process, the synergic effect
observed by the introduction of CNT in the TiO2 matrix ismainly
ascribed to the action of the carbon phase as dispersing medium
to metal oxide particles, while under irradiation, CNT produce
an increase in the efficiency of charge separation and mobility in
the composite material.
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In this work, mesoporous silica materials SBA-15 functionalized with propyl/

phenyl-sulfonic acid group were synthesized and loaded with Pt to form bifunctional

catalysts. SAXRD, WAXRD, N2 adsorption-desorption, TEM techniques were used to

characterize the above bifunctional catalysts. These bifunctional catalysts were applied

to the reaction of hydrodeoxygenation (HDO) of bio-derived phenol (PhOH) to produce

cyclohexane fuel and showed very good catalytic performances. There were strong

synergies between the metal sites and the acid sites on the bifunctional catalysts.

This reaction of phenol HDO provides a model system for the catalytic upgrading of

biomass-derived fuel.

Keywords: mesoporous silica, bifunctional catalyst, hydrodeoxygenation, bio-oil, phenol, cyclohexane

INTRODUCTION

Due to its abundance (15–30 wt % of wood-based biomass) and remarkably lower oxygen content
than polysaccharides, lignin is a favorable feedstock for the production of biofuel, which is regarded
as a promising energy alternative for fossil fuels (Huber et al., 2006). Currently, two-step processes
are typical strategies to utilize lignin for biofuel production. In the first step, lignin is hydrolyzed
(Kudsy and Kumazawa, 1999; Shabtai et al., 1999; Hepditch and Thring, 2000; Liu et al., 2008)
or fast pyrolyzed (Meier et al., 1994; Thring and Breau, 1996; Britt et al., 2000; Dobele et al.,
2007; Boateng et al., 2008; Ingram et al., 2008; French and Czernik, 2010) to depolymerize into
a mixture of simple aromatic compounds (mostly phenols). Unfortunately, large quantities of
reactive, unstable, and corrosive oxygenate compounds are contained in crude biofuel, which
cannot be used directly as a vehicle fuel (Garcia-Perez et al., 2007). Therefore, the crude mixture
from the first step must be upgraded into fuels in the second step. In order to simultaneously
stabilize two main kind of reactive components, aldehydes and organic acids, in the bio-oil,
we have newly developed a reaction system named one-step hydrogenation-esterification (OHE)
reaction as a possible approach for biofuel upgrading (Tang et al., 2008; Yu et al., 2011). However,
phenols with poor combustion performance could not be converted effectively during the OHE
process (Yu et al., 2011). Therefore, the conversion of phenolic compounds into hydrocarbon fuels
remains a challenge (Crossley et al., 2010). Hydrodeoxygenation (HDO) is regarded as a most
attractive and effective method to convert phenolic compounds to alkanes for bio-oil upgrading
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(Huber et al., 2006). Traditional catalysts for HDO reaction
were sulfide CoMo and NiMo/γ-Al2O3 catalysts, which are used
in the hydrodesulfurization or hydrodenitrogenation process in
petroleum refineries (Senol et al., 2005; Bui et al., 2009). However,
it is well known that the fuels produced by sulfide catalysts
will be contaminated as sulfur may be leached into the reaction
liquids, and the catalysts will suffer from deactivation by water
induction and coke accumulation (Yan et al., 2010). Lercher and
Kou groups have reported a new highly efficient one-pot route for
HDO of aqueous phenolic bio-oil to cycloalkanes over catalysts
combining the noble catalysts with mineral acids or Brønsted
acidic ionic liquids (Zhao et al., 2009, 2010; Yan et al., 2010). New
progresses have been made over noble metal and transition metal
catalysts combined with liquid acids or solid acids to upgrade
biofuels via HDO of bio-derived phenolic compounds (Luska
et al., 2015; Dongil et al., 2016; Lee et al., 2016). The good catalytic
performance of the catalysts using mesoporous acidic solid
materials as supports can be expected, as the bulky molecular of
bio-derived phenolic compounds can easily access the active sites
in the mesopores. Furthermore, the environmental benign solid
acids can be recovered simply by filtration. Bifunctional catalysts
of Pt/HY and Pt/HBeta were successfully used for phenolics
HDO to produce hydrocarbons in fixed-bed configurations
(Hong et al., 2010; Zhu et al., 2011). However, utilization of the
bifunctional catalysts using mesoporous solid acid materials as
supports for HDO of bio-derived phenolics was rarely reported.
More recently, Xiao group has developed mesoporous zeolite
ZSM-5 supported Ru to convert efficiently both small and bulky
phenolic biomolecules via HDO to the corresponding alkanes
owing to the open mesopores with abundant exposed acidic sites
in the catalysts (Wang L. et al., 2015).

This paper focuses on the conversion of bio-derived
phenol to cyclohexane via HDO reaction, a liquid fuel with
good combustion properties, under mild reaction conditions
over Pt bifunctional catalysts which possess functions of
both hydrogenation and dehydration. The support of SBA-
15 functionalized with organosulfonic acid was used, showing
strong acidity and accessibility for bulky bio-derived molecules,
may overcome the disadvantages both of the liquid acids and
microporous solid acids.

EXPERIMENTAL SECTION

Catalyst Preparation
The catalysts used in this work were organic-inorganic
hybrid SBA-15 materials, which were functionalized with
propylsulfonic (arenesulfonic) acid groups and loaded
with platinum. Organosulfonic acid-functionalized SBA-
15 materials were synthesized as described elsewhere
(Mbaraka and Shanks, 2006; Tang et al., 2010) with only
slight modifications. Tetraethoxysilane (TEOS, 98%, Aldrich)
and (3-mercaptopropyl)trimethoxysilane (MPTMS, 85 wt. %,
Acros) or 2-(4-chloro-sulfonyl-phenyl) ethyl trimethoxysilane
(CSPTMS, 50 wt. % in CH2Cl2, Acros) were adopted directly
without further purification as the silica and the organosulfonic
acid sources. Pluronic P123 (Aldrich), a triblock copolymer of
polyethylene oxide-polypropylene oxide-polyethylene oxide with

the molecular structure PEO20-PPO70-PEO20 (Mw = 5800),
was used as a structure template to synthesizethe SBA-15.
H2PtCl6 solution used as the platinum precursor was provided
by Hangzhou Kaiming Catalyst Co., Ltd. Formaldehyde (HCHO,
37 wt.%, aqueous solution, Sinopharm Chemical reagents Co.,
China) was used as reducing agents. The functionalized SBA-15
hybrids with propylsulfonic or arenesulfonic acid groups were
abbreviated as SBA-Pr and SBA-Ar, respectively. The nominal
loading of platinum on the catalysts was fixed at 1 wt%.

Synthesis of 1%Pt/SBA-Pr and 1%Pt/SBA-Ar
In a typical synthesis of SBA-Pr, Pluronic P123 (4.00 g, 0.69
mmol) was dissolved in HCl solution (1.9M, 125mL) at room
temperature. Then, keeping stirring the solution was heated to
40◦C before the addition of TEOS (8.23mL, 36.74 mmol). Before
the addition of MTPMS (3.674 mmol) and H2O2 (12.86 mmol),
∼45min was allowed for prehydrolysis of TEOS. The resulting
mixture was agitated for 24 h at 40◦C and then aged for another
24 h at 110◦C under static conditions. After that, the resulting
solids were separated by filteration, washed with D.I. water and
dried at 100◦C in an oven for 8 h. The template in the as-synthesis
samples was extracted by 10% v/v HCl in ethanol and refluxing
for 36 h. To ensure complete removal of the template, fresh
ethanol would be introduced after every 12 h.

Pt was loaded on SBA-Pr by reduction-deposition method.
1.00 g SBA-Pr was added into the aqueous solution containing
30.0mL of D.I. water and 0.021 g of H2PtCl6. The Formaldehyde
solution (10mL) was used as reducing agent and added dropwise
into the above aqueous suspension with vigorous stirring () at
60◦C. The suspension was stirred for 24 h at 60◦C to allow the
reduction of Pt4+ to Pt0. After that, the suspension was filtered at
room temperature and thoroughly washed with D.I. water until
free of Cl− in the filtrate (tested with silver nitrate solution).
The wet filter cake was re-suspended in 50mL of 1 wt% H2SO4

solution for 4 h for acidification. Finally, the solid was treated by
filtering, washing, and vacuum drying at 110◦C. The synthesis
procedures of SBA-Ar and 1%Pt/SBA-Ar were the same as the
synthesis of SBA-Pr and 1%Pt/SBA-Pr described above, besides
CSPTMS was used instead of MPTMS.

Catalyst Characterization
Small angle XRD (SAXRD) patterns were recorded for SBA-Pr,
SBA-Ar, 1%Pt/SBA-Pr, and 1%Pt/SBA-Ar powder in order to
confirm the hexagonal structure of samples. Wide angle XRD
(WAXRD) was used to analyze the 1%Pt/SBA-Pr and 1%Pt/SBA-
Ar. The above XRD measurements were performed on the
Rigaku D/MAX-RB.

A Philips-FEI transmission electron microscope (Tecnai G2
F30 S-Twin, The Netherlands), operating at 300- kV, was used to
obtain the HRTEM images of catalysts. Samples were mounted
on copper grid-supported carbon films by dropping a few
droplets of ultrasonically dispersed suspensions of samples in
ethanol on the grids, followed by drying at ambient conditions.

CO chemisorption measurements were carried out at 25◦C
on a CHEMBET-3000 pulse flow system. Prior to measurements,
the catalysts were tableted formed, crushed and sieved to 40–60
mesh. To remove any oxygen from the samples, pretreatments
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were done at 250◦C for 1 h with a ramp of 10◦C/min from room
temperature under 30 mL/min of 5 vol. % H2/He up to 250◦C.
After that, the adsorbed hydrogen on samples was removed by
purging with 30 mL/min helium gas for 2 h at 250◦C. Finally, the
catalysts were cooled down to 25◦C under He flow and 5 vol%
CO in helium were pulsed into the catalysts until the CO peak
areas appeared to be identical.

The real weight percentages of Pt on the supports of SBA-Pr
and SBA-Ar were determined by inductively coupled plasma-
mass spectroscopy (ICP-MS) on a PS1000 instrument from
American LEEMAN LABS INC.

The N2 adsorption/desorption method was adopted to
measure the textural properties of the catalytic materials on
an automated adsorption apparatus (OMNIISORP 100CX)
at−196◦C. Prior to the adsorption/desorption measurement,
all samples were degassed for 2 h at 195◦C in the pretreated
chamber of the adsorption apparatus. The surface area, pore
volume (Vp) were calculated by the Brunauer-Emmett-Teller
(BET) and Barret-Joyner-Hallenda (BJH) methods. The mean
pore diameter (MPD) of the samples was analyzed by the BJH
method based on the adsorption branch of the N2 adsorption-
desorption isotherms.

The decomposition of organicmoiety and the thermal stability
of the solids were examined by thermogravimetric analysis
(TGA) on a Perkin-Elmer TGA7 instrument. The samples were
heated under a stream of air (20 mL/min) from 50 to 700◦C with
a ramp rate of 10◦C/min.

The acidic properties (strength and amount of acid sites) of the
catalysts were determined by acid-base titration. The relative pKa
values of the samples were estimated using the Gran plot analysis.
Typically, 0.1 g of the sample was weighted and suspended in
10ml of D.I. water, and then was titrated potentiometrically by
continuous addition of 5mM KOH aqueous solution.

Catalytic Evaluation
All the HDO of phenol experiments were performed in a 100mL
stainless steel batch autoclave reactor. In a typical experiment,
a certain mass of phenol dissolved in a certain volume of
dichloromethane was added into the reactor with a certain
amount of catalysts. Before each run, the reactor was purged
with hydrogen for five times, 2.0 MPa at a time, to remove air
from the setup. Then hydrogen was introduced into the reactor
with a certain pressure ranged from 1.0 to 4.0 MPa. The reaction
system would be heated to reaction temperatures (80–200◦C)
within half an hour. The stirring speed and the granule size
were adopted at 800 rpm and smaller than 400 mesh to ensure
that the mass transfer on catalytic performances was excluded.
After reactions, the reactor was put into ice water and quickly
cooled down to room temperature. Subsequently, the gas in the
reactor was released very slowly to a sampling gas bag that was
purged in advance with H2 for five times. The products in gas
phase were analyzed using a gas chromatography (GC) equipped
with a Porapak Q packed column and a TCD. The products in
liquid phase were identified and quantified by a GC-MS and a GC
(equipped with an SE-30 nonpolar capillary column and a flame
ionization detector, FID), and the internal standard method was
applied.

Reproducibility of experiment results was carried out by
repeating each run for three times at least until the results were
within acceptable limits. The conversion of PhOH (X(PhOH)),
yield of i (Y(i)) and the selectivity to i (S(i)) were calculated based
on the following Equations. (1–3):

X(PhOH) =

m(PhOH, in)−m(PhOH, out)

m(PhOH, in)
× 100% (1)

Y(i) =

m(i)
M(i)

×M(PhOH)

m(PhOH, in)
× 100% (2)

S(i) =

Y(i)

X(PhOH)
× 100% (3)

RESULTS AND DISCUSSION

Characterization Results
XRD Results
Figure 1 is small-angle XRD spectra of freshly prepared SBA-Pr,
SBA-Ar, Pt/SBA-Pr, and Pt/SBA-Ar. Three well-resolved peaks
were observed in each sample, which were indexed to the (100),
(110), and (200) reflections of the hexagonal space group P6mm
(Zhao et al., 1998; Yue et al., 1999). All the diffraction patterns
suggested that the SBA-15 structure was well preserved in the
process of synthesis of SBA-Pr, SBA-Ar by co-condensation
method and in the process of introduction of Pt by reduction-
deposition method. The addition of precursors of MPTMS,
CSPTMS and H2PtCl6 did not destroy the structure of the
SBA-15. Figure S1 presents wide-angle XRD spectra of Pt/SBA-
Pr and Pt/SBA-Ar. Only the characteristic diffraction peaks of
metallic Pt, (111), (200), (220), were detected for the two samples,
demonstrating that the Pt species were primarily present in
metallic form after reduction by formaldehyde. According to
calculation based on the Scherrer equation, the average Pt particle
size of 1%Pt/SBA-Pr was 8.9 nm, while that of 1% Pt/SBA-Ar was
9.7 nm. This illustrated that Pt particles were highly dispersed on
these supports.

FIGURE 1 | SAXRD patterns of the catalyst samples.
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DTG Characterization
The differential thermogravimetric (DTG) analysis was used to
determine the thermal decomposition behaviors of the tethered
organic moieties in the catalyst samples, as determined by
differential thermogravimetric (DTG) analysis, (shown in Figure
S2). For SBA-Pr without extraction by ethanol, three peaks
centered at about 110, 250, and 460◦C were observed, which
were resulted from the desorption of water, the decomposition
of template and the decomposition of propylsulfonic acid,
respectively. No weight loss peak appears in the vicinity of
the 350◦C (which was attributed to the decomposition of the
propylthiol groups, MPTMS) (Tang et al., 2010), meaning the
effective oxidation ofMPTMS to propylsulfonic acid by hydrogen
peroxide added during the preparation of SBA-Pr. For SBA-
Pr after ethanol extraction, only weight loss peak of propyl
sulfonic acid (around 470◦C) was observed on DTG curves,
indicating complete removal of the template P123 by ethanol
extraction method. The results of DTGclearly showed that
the propylsulfonic acid groups in the catalysts did not occur
decomposition while using the catalyst under 350◦C owing to the
higher thermal stability of tethered propylsulfonic acid.

ICP-MS and CO Chemisorptions Results
The properties of the metal sites of two catalysts, including metal
loading, and dispersion, were characterized by ICP-MS and CO
chemisorption techniques. The results are listed in Table 1. ICP
results showed that the real loading of Pt was smaller than the

TABLE 1 | Metal sites properties of the catalysts.

Catalysts Metal content/wt.% DPt/% dPt/nm

Pt/SBA-Pr 0.84 53 2.1

Pt/SBA-Ar 0.60 41 2.7

theoretical loading of 1 wt.%, demonstrating loss of metal during
the preparation process. When Pt was loaded on SBA-Pr, the
highest load efficiency of 84% and the highest dispersion (DPt)
of 53% were obtained. The metal particle sizes (dPt) showed
in Table 1 were calculated from the CO chemisorptions results
according literature (Wang and Yeh, 2001). All themetal particles
of Pt were highly dispersed over the SBA-Pr and the SBA-Ar
with dPt < 3.0 nm. Noticeably, the dPt was as small as 2.1 nm
on the Pt/SBA-Pr. Evidently, the particle sizes calculated from
chemisorptions was quite smaller than the aforementioned data
derived from XRD. It is well known that the XRD can only be
sensitive the big crystallines but not the highly dispersed particles.

TEM Characterization Results
TEM is a useful technique to characterize the structure of
mesoporous materials. From Figures 2, 3, it can be seen,
the organic sulfonic acid functionalized SBA-15 materials
have regular one-dimensional pore structure preserving the
characteristic pore structure of SBA-15. Figure 4 shows that
after loading of Pt the mesoporous structure of the carriers
were still well preserved and the Pt particles were dispersed
well on the supports. It could be observed that a lot
of Pt particles were as small as <2 nm located in the
mesopores.

N2 Adsorption–Desorption Characterization Results
The N2 adsorption-desorption isotherms of the samples of SBA-
Pr, SBA-Ar, Pt/SBA-Pr, and Pt/SBA-Ar are shown in Figure S3.
The observed isotherms of the four samples were obviously
classified as IV type isotherms, which was consistent with
the mesoporous structure directed by non–ionic surfactant
(Buchmeiser, 2003). All the isotherms had Type-H 1 hysteresis
loops, and the capillary condensation occured at higher relative
pressures (0.7–0.8). This illustrated the synthesized mesoporous
materials possessing regular pore arrangements and narrow
pore size distributions (Schmidt et al., 1995). The nitrogen

FIGURE 2 | TEM images of sample of SBA-Pr.
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FIGURE 3 | TEM images of sample of SBA-Ar.

FIGURE 4 | TEM images of 1%Pt/SBA-Pr (A) and 1%Pt/SBA-Ar (B).

sorption isotherms also revealed that no partial pore blocking has
occurred upon incorporation of platinum, as the adsorption and
desorption branches were almost parallel and exhibited narrow
hysteresis. After loading of platinum the pore diameter, pore
volume, and surface area of SBA-15 were waned showing in
Table S1. After functionalization with organosulfonic acid and
loading of Pt, the specific surface area and pore size of the
samples were decreased compared to SBA-15, but still remained
at a high level. These data also showed that the organic and
inorganic functional groups did not cause remarkable clogging
of pores. The structure of SBA-15 remained stable during the
functionalization.

Catalytic Testing Results
Pt Based Organic-Inorganic Hybrid Materials

Catalyzed HDO Reaction of Phenol
The catalytic results of phenol HDO catalyzed by bifunctional
Pt/SBA-Pr, as well as the relevant control experiment results are
presented in Table 2. From Entry 1, a good result of phenol HDO
reaction was achieved over the bifunctional catalyst of 1%Pt/SBA-
Pr with high conversion of phenol (X(PhOH)= 94.1%) and high
selectivity to target product of cyclohexane (S(C6H12) = 98.6%).
From Entry 3 and 5, it could be seen that when there is no
catalyst or SBA-Pr is used alone phenol did not convert at all.
Surprisingly, in Entry 2, over the catalysts of 1% Pt/SBA-15 the
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product of cyclohexane was also formed and the selectivity was
as high as 63.8%. In entry 4, 1%Pt/SBA-15 and SBA-Pr was
physically mixed to form bifunctional catalyst. It was found that
both of X(PhOH) and S(C6H12) were significantly improved
over the physically mixed catalyst compared to the 1%Pt/SBA-
15 catalyst (entry 2). From above results, it could be considered
that the metal sites of catalysts alone catalyze the HDO of phenol
with the aid of negligible acidity sites of silanol groups on SBA-
15 support, but the stronger acid sites would greatly enhance the
HDO reaction activity of the catalyst. Compared to the physical
mixed bifunctional catalyst (entry 4), the composite bifunctional
catalyst (entry 1) owed the highest conversion of phenol and the
best selectivity to cyclohexane. The above results exhibited that
there was a synergistic effect between metal sites and acid sites
for HDO reaction of phenol. Huang and Baiker group also found
that the proper acid sites properties could significantly enhance
the catalytic performance for the reaction of hydrogenation of
acetophenone on the Pt/[Al]MCM-41 (Wang Z. et al., 2015).

Effect of Supports on Catalyst Performances
Pt was supported on SBA-Pr and SBA-Ar to form bifunctional
catalysts of 1%Pt/SBA-Pr and 1%Pt/SBA-Ar. Their catalytic
results for HDO of phenol are listed in Table 3. 1%Pt/SBA-
Pr exhibited higher conversion of phenol (94.1%) and
higher selectivity to cyclohexane (98.6%), compared to
SBA-Ar supported Pt catalyst with X(PhOH) = 35.0% and
S(C6H12) = 67.4%. According to the characterization results
(Table 1), though the two catalysts had the same nominal Pt
loading, they actually had different Pt content. In order to
exclude the influence of the metal content on the results, the
TON calculated based on the target product of cyclohexane are
also shown in Table 3. Pt/SBA-Pr shows higher TON (103.3mol
cyclohexane/mol Pt) in comparison with Pt/SBA-Ar (14.5mol
cyclohexane/mol Pt). Since the impact of metal sites on HDO

TABLE 2 | Catalytic performance for HDO of phenol.

Entry Catalysts X(PhOH)/% Y(C6H12)/% S(C6H12)/%

1 1%Pt/SBA-Pr 94.1 92.8 98.6

2 1%Pt/SBA-15 44.8 28.6 63.8

3 SBA-Pr 0 0 –

4 1%Pt/SBA-15+SBA-Pr 74.5 63.3 84.9

5 Catalyst-free 0 0 –

Reaction conditions: TR, 200
◦C; PH2, 4.00 MPa; tR, 8 h, 800 rpm, 0.0125mol PhOH in

25.0mL CH2Cl2, 0.9756 g catalyst (0.05 mmol Pt, except for entry 3 and 5).

TABLE 3 | Pt supported on different carriers for HDO of phenol.

Support X(PhOH)/% Y(C6H12)/% S(C6H12)/% TON(480min)

SBA-Pr 94.1 92.8 98.6 103.3

SBA-Ar 35.0 23.6 67.4 14.5

Reaction conditions: TR, 200
◦C; PH2, 4.0 MPa; tR, b8 h, 800 rpm; tR, 4 h, 0.0125mol

PhOH in 25.0mL CH2Cl2, 0.9756 g catalyst (nPt:nPhOH = 1:250).

reaction was excluded, only the acidities of the supports affected
the HDO reaction.

The acidities of the catalysts, including the amount and
strength of the acid sites, were characterized by means of acid-
base titration. The results are shown in Table 4. In spite of the
same nominal loading, the real amount of acid sites of SBA-
Ar was smaller than that of SBA-15-Ar. This might be related
to the fact that the molecule of arenesulfonic acid had bigger
size and rigidity compared to propylsulfonic acid, which was not
conducive to effective loading of arenesulfonic acid. The data
also showed that the pKa value of SBA-Ar was smaller than that
of SBA-Ar, i.e., SBA-Ar exhibited stronger acid sites. According
to Shanks (Mbaraka and Shanks, 2006), the arenesulfonic acid-
functionalized samples had lower pKa values as the sulfonate ions
in the phenyl group were more stablethan that in aliphatic carbon
chain of propylsulfonic acid groups after deprotonation.

Pt/SBA-Pr had more acid sites but lower acid strength
compared to Pt/SBA-Ar (Table 4). The catalytic activity of
Pt/SBA-Pr was higher than that of Pt/SBA-Ar (Table 3).
Therefore, it was concluded that the acid sites amount of the
supports may be a dominant factor to affect the activity of a
bifunctional catalyst. The more the acid sites was, the higher
activity of the HDO reaction was. In addition, from Table S1, the
pore volume of Pt/SBA-Pr and Pt/SBA-Ar is 0.91 and 0.78 cm3/g,
respectively. Obviously, from perspective of mass diffusion the
former was in favor of the reaction.

Screening of Solvents
Solvent always plays an important role in a liquid phase reaction.
Table 5 presents the results of phenol hydrodeoxygenation in
different solvents. The catalytic activity of 1%Pt/SBA-Pr was
the lowest (X(PhOH)∼5.0%) as the solvent of water with high
polarity was used, while the solvent of dicloromethane with
low polarity was adopted both the X(PhOH) and the S(C6H12)
reaches a maximum with 63.0 and 95.9%, respectively. From

TABLE 4 | Acidities of the catalysts and the supports.

Catalysts Acid Sites/(µmol/g) pKa

SBA-Pr 810 3.72

Pt/SBA-Pr 790 3.61

SBA-Ar 560 3.26

Pt/SBA-Ar 470 3.18

TABLE 5 | HDO of phenol over 1%Pt/SBA-Pr in different solvents.

Solvent X(PhOH)/% Y(C6H12)/% S(C6H12)/%

H2O 5.0 3.7 74.0

EtOH 6.7 3.5 52.2

Dioxane 25.0 19.4 77.6

CH2Cl2 63.0 60.4 95.9

Reaction conditions: TR, 200
◦C; PH2, 3.0 MPa, 800 rpm; tR, 4 h, 0.0250mol PhOH in

50.0mL solvent, 0.4878 g 1%Pt/SBA-Pr (nPt:nPhOH = 1:1000).
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the above results, solvents had significant effects for HDO of
phenol, the catalytic activities increased as the polarity of a
solvent lowered. The solvent of dichloromethane with the lowest
polarity was the best reaction solvent among the solvents tested,
including H2O, EtOH, dioxane, and dicloromethane solvents.
So the optimization work was carried out in the solvent of
dichloromethane.

Optimization of Reaction Conditions
Figure 5 shows the effects of reaction temperature (TR) on the
HDO reaction of phenol over the 1%Pt/SBA-Pr catalyst. Both
conversion of phenol and selectivity to cyclohexane increased
with the TR increasing. In the evaluation range of temperature,
at 200◦C the X(PhOH) and the S(C6H12) reaches maximum, 63.0
and 95.5%, respectively. The main byproduct was cyclohexanol.

Figure 6 presents the effects of hydrogen pressure (PH2) on
the HDO reaction of phenol over the 1% Pt/SBA-Pr catalyst. In

FIGURE 5 | Effect of TR on the HDO of phenol over 1%Pt/SBA-Pr. Reaction

conditions: PH2, 3.00 MPa; 800 rpm; tR, 4 h, 0.0250mol PhOH in 50.0mL

CH2Cl2, 0.4878 g 1%Pt/SBA-Pr (nPt:nPhOH = 1:1,000).

FIGURE 6 | Effect of PH2 on the HDO of phenol over 1%Pt/SBA-Pr. Reaction

conditions: TR, 200
◦C, 800 rpm; tR, 4 h, 0.0250mol PhOH in 50.0mL

CH2Cl2, 0.4878 g 1%Pt/SBA-Pr (nPt:nPhOH) = 1:1000).

the evaluation range the initial hydrogen pressure had little effect
on the conversion of phenol, it mainly affected the selectivity to
the desired product cyclohexane. The X(PhOH) increased from
56.6 to 69.7% while increasing the PH2 from 1.0 MPa to 4.0
MPa. However, the S(C6H12) increased remarkably from 60.9 to
97.4%. The higher the initial hydrogen pressure was, the larger
the concentration of adsorbed active hydrogen on the catalyst
surface was, and thus the more conducive to the generation of
the target product of cyclohexane.

The effects of the catalyst amount on the HDO reaction of
phenol was also investigated over the 1% Pt/SBA-Pr catalyst
(Figure 7). At the certain reaction condition (PH2 = 4.00 MPa,
TR = 200◦C, 800 rpm, tR = 4 h), the conversion of phenol
increased with the nPt/nPhOH increasing from 1:1000 to 1:250,
while the selectivity to the target product of cyclohexane remains
almost unchanged, meaning that the selectivity to cyclohexane
was independent on the amount of Pt metal sites under this
reaction condition.

FIGURE 7 | Effect of nPt/nPhOH on the HDO of phenol over 1%Pt/SBA-Pr.

Reaction conditions: PH2, 4.00 MPa; TR, 200
◦C; 800 rpm, tR, 4 h.

FIGURE 8 | Effect of tR on the HDO of phenol over 1%Pt/SBA-Pr. Reaction

conditions: PH2, 4.0 MPa, TR, 200◦C; 800 rpm, 0.0125mol PhOH in 25.0mL

CH2Cl2, 0.9756 g 1%Pt/SBA-Pr (nPt:nPhOH = 1:250).
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SCHEME 1 | Proposed reaction mechanism for HDO of phenol.

The effect of reaction time on the catalytic performance of
1%Pt/SBA-Pr was also investigated. Most of the phenol was
converted within the first 2 h (Figure 8). When increasing the
reaction time from 4 h to 8 h, the conversion of phenol slightly
increased from 90.2 to 94.1%, with the selectivity to cyclohexane
almost unchanged.

By screening the reaction temperature, the initial hydrogen
pressure, reaction time and the relative content of the catalyst
and the reaction solvent, the optimal reaction condition was
obtained: TR = 200◦C, PH2 = 3.00 MPa, 800 rpm, tR = 4 h,
0.0125mol PhOH in 25.0mL CH2Cl2, 0.9756 g 1%Pt/SBA-Pr
(nPt:nPhOH) = 1:250. Under these conditions, the conversion
of phenol was 94.1%, and the selectivity to desired product of
cyclohexane reached to 98.6%.

Possible Reaction Mechanism
Based on the experimental results a possible reaction mechanism
for HDO of phenol was proposed as Scheme 1. Experimental
results of Kou et al (Yan et al., 2010; Zhao et al., 2010) showed that
cyclohexanol can exist stably under acid catalysts below 180◦C.
Once the temperature was above 180◦C under acid catalysts it
dehydrated rapidly to produce cyclohexene. But in our reaction
conditions, cyclohexene was never detected as, cyclohexene
might be easily hydrogenated to cyclohexane in the reaction
system. At lower reaction temperatures (below 180◦C), or when

there are no acidic sites on the catalyst, cyclohexanol cannot
dehydrate to form cyclohexene, so hydrogenation reaction
is conducted by path ¬ or ° to generate cyclohexanol,
hydrogenolysis of which takes place to form cyclohexane follow
the path of ±. Different from the literatures (Hong et al., 2010;
Zhu et al., 2011) performing with gas phase reactants in fixed
bed reactor, aromatic hydrocarbons, which were produced from
hydrogenolysis (direct deoxygenation), could not be found in
this work. The difference might result from the different reaction
conditions and catalyst systems. Therefore, the reaction pathways
might be proposed as the Scheme 1.

CONCLUSIONS

In this work, organic-inorganic hybrid materials of SBA-Pr
and SBA-Ar were synthesized and loaded with Pt to form
bifunctional catalysts. These bifunctional catalysts had good
catalytic activities for HDO of phenol to produce cyclohexane,
a model reaction of biofuel upgrading. Under optimal reaction
conditions, the conversion of phenol was 94.1%, with 98.6%
selectivity to the target product of cyclohexane. The metal
sites and the acid sites on bifunctional catalysts displayed
significant synergistic effect for the HDO of PhOH. The
bifunctional catalysts using in this work may be potentially
applied to the upgrading of bio-fuel derived from lignin or
biomass.
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HIGHLIGHTS

• Fe incorporation significantly accelerated the adsorption of CPX on MCM-41.

• Fe leaching can be ignored when pH was higher than 4.0.

• pH played an important role in CPX adsorption on Fe-MCM-41.

• Co-effect of CPX and metal cations on Fe-MCM-41 was investigated.

Fe-MCM-41s with various molar ratios of silicon to iron (20, 40, 80, and 160)

were prepared to investigate adsorption properties of ciprofloxacin hydrochloride

(CPX) in aqueous solutions. Fe-MCM-41s were characterized by transmission electron

microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS),

nitrogen adsorption/desorption isotherms, and infrared spectroscopy (FT-IR). Effects of

silicon-iron ratio, adsorbent dosage, pH, and temperature were conducted to explore the

adsorption mechanism of CPX on Fe-MCM-41. The results showed that the introduction

of iron facilitated the absorption quantity for CPX from 20.04 to 83.33mg g−1 at 120min

of reaction time, which was mainly attributed to surface complexation. The promotion

of hydrophobic effect, electrostatic interactions, and π-π electron donor-acceptor

interaction also played coordinate roles in the adsorption process. The experimental

kinetic data followed both the pseudo-second-order and intra-particle diffusion models,

while the adsorption isotherm data fit well to Freundlich model at high temperature.

Thermodynamic study showed that the adsorption was spontaneous. Under the effect

of electrostatic interaction, pH of the solution strongly affected CPX adsorption. Five

representative metal cations (Ca, Cu, Ni, Pb, and Cd) were chosen to study the effects

on CPX adsorption and their complexation. The inhibiting effect of metal cations on CPX

adsorption was sequenced in the order of Cu > Ni > Pb > Cd > Ca, which followed

the same order as the complexation stability constants between CPX and cations. The

Fe-MCM-41 adsorbent possessed excellent reusability for 4 cycles use, suggesting a

potential applicability of Fe-MCM-41 to remove CPX in water.

Keywords: ciprofloxacin hydrochloride, Fe-MCM-41, adsorption capacity, pH, complexation, metal cations
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Graphical Abstract | Schematic diagram of adsorption process of CPX by Fe-doped MCM-41 catalyst.

INTRODUCTION

During the last decades, pharmaceuticals and personal care
products (PPCPs) among the emerging contaminants have
caused more concern of environmental research than the
conventional priority pollutants (Arp, 2012; Liu and Wong,
2013; Hayat and Marty, 2014; Montes-Grajales et al., 2017).
With abusive use of various antibiotics, large quantity of
pharmaceutical wastewater (Cardoso et al., 2014), hospital
effluents (Ory et al., 2016; Verlicchi and Zambello, 2016), and
excreta-urine (Zheng et al., in press) containing antibiotics
have been discharged into environment and regarded as an
emerging issue around the world. As a high-use second
generation fluoroquinolone, ciprofloxacin hydrochloride (CPX)
has the strongest antimicrobial activity and has the highest
water concentration in Pearl River of Guangzhou (Bu et al.,
2013). Similar to other antibiotics, CPX can transfer in natural
environments either as the parent compound or its hydrolysis
products, conjugates, oxides when excrete from a target organism
(Sarmah et al., 2006) and bring great threats to the ecosystem
and human health by inducing proliferation of drug-resistance
bacteria (Johnson et al., 2015; Wang et al., 2017b). Therefore,
the removal of CPX from water has become a pressing problem.
Various methods have been attempted for the removal of
CPX from water, such as ultrasound decomposition (Xiao
et al., 2013), photocatalytic degradation (Bojer et al., 2017),
membrane bioreactor (Hamjinda et al., 2017), ozonation (Gomes
et al., 2017), and adsorption on bamboo-based activated carbon
(Carabineiro et al., 2012; Peng et al., 2015; Wang et al., 2015),
goethite (Gu et al., 2015), graphene oxide (Chen et al., 2015;
Fei et al., 2016), Aluminum and Iron hydrous oxides (Gu and
Karthikeyan, 2005), and palygorskite-montmorillonite (Berhane
et al., 2016). Adsorption technique is widely applied to remove
antibiotics from wastewater as a promising method due to its
simple theoretical design, ease of operability, relatively low costs
and lower amounts of toxic byproducts.

As a member of the M41S family, MCM-41 applied to
adsorption area has attracted more awareness because of its
hexagonal arrays of uniform channels, high surface area and pore
volume and hydrothermal stability (Lee et al., 2007; Jiang et al.,
2012). However, hydrophobicity of CPX limits the adsorption
capacity by highly hydrophilic MCM-41. Therefore, functional
modifications are desired to improve its performance. In the
former research, CPX adsorption process can be influenced
by metal cations which has been demonstrated that many
cations have complexation ability to CPX (Turel et al., 1996).
It has been reported that the environmental fate of CPX can
be affected by coexisting cations such as Ca and Cu (Pei
et al., 2010; Chen et al., 2013). Hence, on the one hand, the
introduction of metal ingredient to MCM-41 leads to cation
bridging and hydrophobic enhancement, which is beneficial to
material for better absorbability. On the other hand, there are few
investigations dealing with the different impacts of various free
heavy metals on CPX adsorption by comparison.

The main objectives of this paper are to prepare an
adsorbent which can enhance the adsorption capacity of CPX
by modifying the pure MCM-41 with Fe, to evaluate the effects
of various factors including silicon-iron ratio, adsorbent dosage,
pH, contact time, temperature, and to study the adsorption
mechanisms. Specifically, when CPX coexists with heavy metals
in the aqueous phase, the relationship of the formation of Metal
cations/CPX complex and the adsorption abilities of CPX is
presented to estimate the optimal condition of Fe-MCM-41
adsorbent in practical use.

EXPERIMENTAL SECTION

Materials
These reagents were used to synthesize and modify MCM-
41: cetyltrimethyl ammonium bromide (CTAB), sodium
silicate (NaSiO3·9H2O) and ferric nitrate (Fe(NO3)3·9H2O)
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were obtained from Sinopharm Chemical Reagent Co. Ltd.
(Shanghai, China). For the adsorption experiments, ciprofloxacin
hydrochloride (CPX) was obtained from Macklin Biochemical
Co. Ltd. (Shanghai, China). Acetonitrile was chromatography
grade and was purchased from Tianjin Kemiou Chemical
Reagent Co. Ltd. (Tianjin, China). All the other metals were
nitrate salt species and analytical grades. Deionized water was
used throughout the study. pH value of the solution was adjusted
with 0.1M hydrochloric acid (HCl) and sodium hydroxide
(NaOH).

Synthesis of Adsorbent
MCM-41 was prepared via a hydrothermal treatment using
Na2SiO3·9H2O as silicon source and CTAB as the structure-
directing group. Briefly, dissolved sodium silicate (0.1mol) was
stirred at 313K for 15min. H2SO4 (2M) was added dropwise to
form a gel. After adding CTAB (7.28 g dissolved in 25ml water at
338K) to the gel, the mixed solution was stirring for 30min, and
then aged at 418K for 48 h. The product gotten was filtered after
natural cooling, washed with deionized water and dried. Finally,
the sample was calcined for 6 h at 823K to obtain MCM-41.
Fe-MCM-41 was prepared from the same route besides adding
Fe(NO3)3·9H2O as iron modification to the solution before pH
adjustment. The samples were designated as Fe-MCM-41(x) (x
= 20, 40, 80, and 160), where x was denoted as different molar
ratios of Si to Fe for as-synthesized materials.

Analytical Procedures
The low-angle XRD measurements (D8 ADVANCE, BRUKER,
German) were carried out in the 2θ ranges of 1.0–8.0◦. The
N2 adsorption/desorption isotherms (ASAP2020, Micromeritics,
USA) was used to calculate the surface area. The pHpzc

value was measured by potentiometric titration. The leaching
iron content of the solution was determined by atomic
absorption Spectrophotometer (AA-7020, EWAI, China). The
FT-IR absorption spectra (6700, Nicolet, USA) was obtained over
the range 4,000–400 cm−1.

The concentration of CPX was quantified using HPLC
(LC10A, Shimadzu) consisting of a UV detector (SPD-10AV)
at 278 nm and a Diamonsil C18 column (250 × 4.6mm, 5µm,
Dikmate technologies). The mobile phase used for detection of
CPX was acetonitrile/0.01M potassium dihydrogen phosphate
(23:77, v/v) and the flow rate was 1.0mL min−1.

Batch Adsorption Experiments
For adsorption experiments, 0.04 g of adsorbent was mixed
with 200mL of CPX solution (20mg L−1, initial pH = 5.40)
in flasks and the mixture stirred at 303K up to beyond the
equilibrium time. The rotating speed was set to 175 rpm.
Additional experiments were also performed to study the effects
of equilibrium time, dosage, pH, temperature and metal cations
on the adsorption properties. To study the impact of various
metal cations on the adsorption behavior of CPX, predetermined
amounts of Ca(II), Cu(II), Ni(II), Pb(II), Cd(II) were introduced
to obtain 0.01M ionic strength solutions at 303K, respectively.
Controls without Fe-MCM-41 were considered to explain losses

from adsorption to flasks. All experiments were run in triplicate
under the same conditions.

A series of adsorbent doses from 30 to 60mg were selected
to discuss the effect of dosage. The pH effects experiments were
conducted by adjusting the pH between 3 and 11. To study the
impact of various metal cations on the adsorption behavior of
CPX, predetermined amounts of Ca(II), Cu(II), Ni(II), Pb(II),
Cd(II) were added to obtain 0.01M ionic strength solutions
at 303K, respectively. The isotherms were obtained by batch
experiments performed at 293 ± 0.5, 303 ± 0.5, 313 ± 0.5 K,
respectively. The initial concentrations of CPX (varying from 20
to 80mg L−1) were chosen based on preliminary experiments,
which controlled the adsorbed amount of CPX between 30 and
90% of the initial amounts. A study of reusability was carried out
by adsorption/desorption for four times.

RESULTS AND DISCUSSION

Characterization of Adsorbents Used in
This Work
Figure 1 showed the low angle XRD patterns of all absorbents
at different molar ratios of Si to Fe and pure sample. All
absorbents had three well-resolved peaks indexed to (100),
(110), and (200) diffraction planes, indicating a highly ordered
hexagonal mesostructure (Li et al., 2012). When the silicon-iron
ratio decreased, iron content became higher, the intensity of
the peaks diminished and the peak width increased. This meant
the introduction of excess iron could reduce ordering of the
structure. The result of the segment was consistent with the TEM
exhibited in Figure S1.

All isotherms in Figure 2 belonged to type IV isotherm
according to IUPAC classification. Compared with the other four
absorbents, the BET curve and the BJH pore size distribution
curve of Fe-MCM-41(20) exhibited obviously different. The
position closed to p/p0 = 0.9 showed a distinct region of steep
increase, which was corresponding to the capillary condensation
in the pristine silica gel pores (Kolesnikov et al., 2017). This

FIGURE 1 | The XRD pattern of Fe-MCM-41(x) (x = 20, 40, 80, and 160, x

was denoted as molar ratio of Si to Fe).
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FIGURE 2 | (A) The nitrogen adsorption/desorption isotherms, and (B) pore size distributions of Fe-MCM-41(x) (x = 20, 40, 80, and 160, x was denoted as molar

ratio of Si to Fe).

was similar to the above discussion of XRD that the pores
size increased after iron-doping during aging process gradually.
Except for tiny amounts of macroporous structures, the vast
majority of pore widths were below 5 nm. It could be seen
from the structural properties of all absorbents in Table S1. The
pore diameters increased from 3.15 to 4.33 nm and the BET
surface area decreased from 1002.1 to 625.6 m2 g−1. Note that
by replacing Si4+ (0.40 Å) with Fe3+ (0.63 Å) in the structure
of material, the extension of radius enlarged the pore sizes and
decreased surface area. Moreover, XPS was provided to clarify the
chemical phase of Fe species in the synthesized Fe-MCM-41. XPS
spectrum in Figure 3 gave a description that the peaks at 712 and
725 eV for the binding energies of Fe2p3/2 and Fe2p1/2, reflecting
iron species existed as Fe3+ in Fe-MCM-41 (Nie et al., 2015).

Effect of Silicon-Iron Ratio
In Figure 4, the removal efficiency for CPX decreased with the
increasing surface area of Fe-MCM-41. Hydrophobic compound
was difficult to be adsorbed on the surface of mesoporous
MCM-41 silica which contained large amounts of Si–OH
(Hu et al., 2014), and iron doping strengthened the surface
hydrophobicity. More importantly, CPX with the numerous
reactive functional groups like carboxyl, keto, and piperazine
could form complexes with majority of metal cations (Turel,
2002; Sun et al., 2014). As seen in Figure 5, the interactions
between CPX and Fe-MCM-41 were investigated by comparing
the FT-IR spectra of CPX, fresh and used Fe-MCM-41 in the
range of 1250–1800 cm−1, which included themain characteristic
peaks (Full scale FT-IR curve could be found in Figure S2
in Supplementary Information). The band positions and their
corresponding band assignments were listed in Table 1 (Gu and
Karthikeyan, 2005; Trivedi and Vasudevan, 2007; Wang et al.,
2011; Peng et al., 2012). The position of C=O stretching vibration
of pyridine-keto upshifted slightly to a higher frequency of
1631.4 cm−1 after adsorption and the 9.4 cm−1 shift indicated
reinforcement of the C=O bond. That was ascribed to the release

FIGURE 3 | XPS spectrum of Fe-MCM-41.

of intramolecular hydrogen bond between the ortho substituted
carboxylate group and Fe-MCM-41 which was an indirect
evidence for ferric-ciprofloxacin interactions. Meanwhile, the
intensity of this peak was much weaker, suggesting that the
fraction of pyridine-keto group interacted with Fe-MCM-41. The
most significant feature of CPX adsorbed on Fe-MCM-41 was
the complete disappearance of the peak at 1698.7 cm−1, which
indicated that all the carboxyl groups participated in the binding
reaction with Fe-MCM-41. The band shifting from 1382.8 to
1384.2 cm−1 demonstrated that electrostatic interactions were
occurred between the negative sites on the absorbent surface
and the protonated amine group. The shift exhibited by the
band between 1445.8 to 1474.6 cm−1 meant the C–N bond of
amine group also supported this assumption. Overall, it was
almost certain that iron doping added the sites of adsorption
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FIGURE 4 | Adsorption of CPX on Fe-MCM-41(x) (x = 20, 40, 80, and 160, x

was denoted as molar ratio of Si to Fe; volume of CPX solution: 200mL;

rotating speed: 175 rpm/min; initial pH value: 5.40; equilibrium time: 120min).

FIGURE 5 | FT-IR spectra of CPX, Fe-MCM-41 and CPX-adsorbed

Fe-MCM-41. The characteristic band positions of pure CPX were marked by

black lines. The distinctive band positions of CPX as a result of adsorption on

Fe-MCM-41 were denoted by dashed lines.

(see Graphical Abstract). The complex was present through the
cation bridging of Fe(III) with the adjacent carbonyl oxygen
and the oxygen from the deprotonated carboxylate group. The
other absent peaks after adsorption might show signs of other
adsorption affinity, for instance, hydrophobic effect and π-π
interaction (discussed later). Fe-MCM-41 (20) was chosen as the
adsorbent for the subsequent research.

Influence of Adsorbent Dose and Kinetics
of Adsorption
Figure 6 illustrated the influence of adsorbent dose on the
uptake of CPX. It was displayed that the removal efficiency

TABLE 1 | FT-IR band positions (cm−1) and suggested assignments for CPX and

CPX-adsorbed samples.

CPX CPX-adsorbed samples Band assignment

1621.85 1631.24 υ (pyridine-keto C=O)

1698.69 – υ (carboxylic acid C=O)

1445.81 1474.64 υ (Stretching of C–N)

1382.75 1384.16 Protonation of amine group in

the piperazine moiety

υ, stretching; δ, bending.

FIGURE 6 | Influence of adsorbent dosage (volume of CPX solution: 200mL;

initial concentration = 20mg L−1; rotating speed: 175 rpm/min; temperature:

303K; initial pH-value: 5.40).

increased with adsorbent dose. This behavior could be explained
by adsorptionmainly occurring at active sites when the adsorbent
dose was large. The high removal efficiency for CPX reflected the
satisfactory textural and structural properties of the adsorbent.
Therefore, 40mg adsorbent dose was chosen for the following
study.

The kinetics could be employed to evaluate the performance
of the adsorbent and give the underlying adsorptionmechanisms.
Three available kinetic models were examined as follows:

Pseudo-first-order kinetic equation:

1

qt
=

k1

qe
×

1

t
+

1

qe
(1)

Pseudo-second-order kinetic equation:

t

qt
=

t

qe
+

1

k2 × qe2
(2)

Where qe and qt were the adsorption amounts at equilibrium
and time t, respectively. k1 and k2 were defined as reaction rate
constants.

Intra-particle diffusion model:

qt = ki × t
1�2

+ ci (3)
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Where ki was defined as rate constant at stage i, ki could be
obtained by plotting qt vs. t

1/2.
The avidity of three kinetic models was analyzed by fitting

straight lines in Figures 7A–C. Table 2 listed the kinetics
parameters for three reaction orders. It was obvious that
the experimental data of CPX adsorbed by Fe-MCM-41 were
more accurately simulated by pseudo-second-order model with
higher correlation coefficients (R2) value. Also, based on the
second-order model, the calculated qe (qe,cal) was a good
agreement with the experimental qe (qe,exp) values, besides qe
(qe,exp) increased from 20.12 to 95.24mg g−1 with Fe content.
Compared the various adsorption capacities of CPX with those
reported adsorbents such as Graphene oxide/calcium alginate
(GO/CA) (Wu et al., 2013), Carbon nanofibers (Li et al.,
2015), Goethite (MacKay and Seremet, 2008) and Illite (Wang
et al., 2011), H2Ti2O5·H2O (Wu et al., 2014), and Fe3O4/C
(Shi et al., 2013) as showed in Table 3, Fe-MCM-41 showed
better adsorption property which required a shorter time to
reach adsorption equilibrium and possessed a higher adsorption
capacity.

The models discussed above were not able to describe the
phenomena of intraparticle or pore diffusion, which were often
the rate-limiting steps in an adsorption process. With the intra-
particle diffusion model, Figure 7C exhibited that the adsorption
plots of adsorbents were not linear and could be divided into
three linear regions, denoting that the multi stages of the
intraparticle adsorption (Ghaedi et al., 2012). The first-stage
portion was sharper and did not pass through zero point, which
was due to the diffusion of adsorbents through the bulk solution
to the external surface. It demonstrated that particle diffusion
was not only the sole rate-limiting step, but also controlled by
boundary layer in the initial phase of the adsorption. These
results could be validated by further analyzing data with Boyd’s
mode which was expressed as follows:

F = 1−
6

π2
exp(−Bt) (4)

F =

qt

qe
(5)

Bt = −0.4977− ln(1− F) (6)

FIGURE 7 | The adsorption Kinetics of CPX by MCM-41 and Fe-MCM-41 (A) pseudo-first-order model, (B) pseudo-second-order model, (C) intra-particle diffusion

model and (D) Boyd plots for CPX adsorption at different temperatures.
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TABLE 2 | Kinetic parameters for the adsorption of CPX on MCM-41 and

Fe-MCM-41.

Kinetic model Parameters Values

MCM-41 Fe-MCM-41

Pseudo-first-order qe,cal (mg g−1) 20.0361 83.3333

k1 (min−1) −0.0175 0.8417

R2 −0.0573 0.8950

Pseudo-second-order k2 (g mg−1 min−1 ) 0.2775 0.0043

R2 0.9996 0.9993

qe,exp (mg g−1) 20.8354 93.7965

qe,cal (mg g−1) 20.1207 95.2381

Intra-particle diffusion KI 11.9766 37.1644

CI 2.4231 3.3595

R2 0.7465 0.9408

KII −0.4644 5.9203

CII 21.8282 54.2310

R2 0.0572 0.9603

KIII 0.2410 1.6064

CIII 17.6776 76.6507

R2 −0.0625 0.9796

TABLE 3 | Adsorption capacities of CPX on various adsorbents.

Adsorbents Adsorption

amounts

(mg g−1)

Rate constant of

Pseudo second-order

kinetic equation

(g mg−1 min−1)

References

Illite 36.781 0.00449 Wang et al., 2011

Graphene

oxide/calcium

alginate (GO/CA)

12.1124 0.1604 Wu et al., 2013

Carbon nanofibers 639.602 0.00093 Li et al., 2015

Goethite 3.678 – MacKay and Seremet,

2008

H2Ti2O5·H2O 14.81 – Wu et al., 2014

Fe3O4/C 38.61 – Shi et al., 2013

Fe-MCM-41 93.7965 0.0043 This work

Where qt and qe were the adsorption amounts at any time t and
equilibrium, F given by Equation (5) was the fraction at time t, Bt
denoted a mathematical function of F.

The linearity of the plot was applied to differentiate the
controlled rates of adsorption between external transport and
intra-particle diffusion. The plot in Figure 7D were linear and
did not move toward the zero point, demonstrating that external
transfer governed adsorption process at the start and then the
intra-particle diffusion.

The second-stage portion became slower than first stage due
to the weak adsorption between CPX and the surface atoms
of the solid. The third-stage portion tended to ease up and
reached final equilibrium. It could be attributed to the smaller

pores, lower concentration of CPX and enhanced electrostatic
repulsion (between CPX and the adsorbents surface). What’s
more, comparisons of the values of ki also proved that the
adsorption rate became slower during the adsorption process. It
concluded that the intraparticle diffusion was present while some
other mechanisms might be involved.

Effect of the Temperature
The adsorption isotherm in Figure 8 described the equilibrium
relationships between the liquid-phase CPX concentration and
the amount of CPX on the Fe-MCM-41. The adsorption
capacities of the CPX increased with temperature, indicating
that adsorption process on Fe-MCM-41 was favored at higher
temperatures. The phenomenon could be ascribed to promote
mobility of the CPX molecules in solution and increased new
active sites on the Fe-MCM-41 for adsorption (Ghaedi et al.,
2012). The results also suggested that it was an endothermic
process in nature.

For further examining the impact of temperature on
adsorption process, thermodynamic parameters was determined
at three temperatures (Ao et al., 2009). As listed in Table 4, the
adsorption parameters were fitted by the most frequently utilized
adsorption isotherms models named Langmuir and Freundlich
models at 293, 303, and 313K. It was apparent that the Langmuir
isotherm better represented the experimental data with higher
value of the determination coefficient (R2

= 0.9459) at 293K
while Freundlich model yielded the best fit at temperatures 303K
(R2 = 0.9544) and 313K (R2

= 0.9675). This implied monolayer
adsorption with a value of 133.33mg g−1 obtained for qmax and
evenly distribution of the adsorption sites at low temperature.
However, as temperature rose, the Freundlich equation became
even more accurate to assess the adsorption process. It was
possible to deduce that the thermal treatments activated more
active sites for adsorption as described above. Molecules of CPX
retained two monolayer adsorptions when the pore diameter
of Fe-MCM-41 was greater than molecule diameter of CPX,
and despite reversible adsorption occurred meanwhile (Song
et al., 2013; Wang et al., 2017a). This non-linear adsorption
also demonstrated that the adsorption process was the result of
interaction of various forces. The increased values of KF with
temperature demonstrated the endothermic adsorption process.
The n-values were more than 1, revealing a beneficial adsorption
system and heterogeneity of Fe-MCM-41 adsorption sites (Wu
et al., 2017).

As listed in Table 5, the thermodynamic parameters, such
as enthalpy change (1H), entropy change (1S), and the Gibb’s
free energy (1G), were evaluated to obtain insights into the
changes of adsorption processes using the Van’t Hoff equation
(Jiang et al., 2013). The value of Kd, an equilibrium constant, was
obtained by dividing qe and Ce. The thermodynamic parameters
of adsorption could be determined by using Equations (7) and
(8):

1G = −R× T × lnKd (7)

lnKd =

1S

R
−

1H

R× T
(8)
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FIGURE 8 | The adsorption isotherm of CPX on Fe-MCM-41(20), solid lines

represent Langmuir model fits to the data, dotted lines represent Freundlich

model fits to the data (volume of CPX solution: 200mL; rotating speed: 175

rpm/min; initial pH-value: 5.40; equilibrium time: 120min).

TABLE 4 | Adsorption isotherms constants and correlation coefficients.

T (K) Langmuir
1
qe

=

1
qm×kL×Ce

+

1
qm

Freundlich

qe = KF ×Ce
1�n

KL

(L mg−1)

qm
(mg g−1)

R2 KF (mg g−1)

/(mg L−1)1/n)

n R2

293 0.701 133.333 0.9459 71.4140 7.513 0.9080

303 0.74 135.135 0.9497 70.8384 7.337 0.9544

313 1.177 136.986 0.9167 78.3907 8.071 0.9675

TABLE 5 | Thermodynamic parameters for the adsorption under different

temperature.

T (K) 1G (KJ mol−1) 1H (KJ mol−1) 1S (KJ mol−1 K−1)

293 −7.5041 9.926 59.2

303 −7.8718

313 −8.6888

The negative1G-values were obtained in the range of 293–313K,
revealing the feasible and spontaneous of adsorption process.
The positive 1H-value demonstrated an endothermic process
while the positive value of 1S indicated that the organization
of the CPX molecular at the solid- liquid interface became more
random than low temperature.

Effect of pH on the Adsorption of CPX
The pHpzc of Fe-MCM-41(20) was estimated to be around 5.4,
the surface charge of Fe-MCM-41(20) remained negative over
the range of pH (5.4 < pH < 11.0) in this study. Therefore,
the speciation of CPX molecules were regarded as the mainly
factor to this pH range (5.4 < pH < 11.0) influence on the
adsorption level. Figure 9 indicated the pH dependency of CPX
adsorption on Fe-MCM-41(20). As seen there, a bell-shaped

adsorption envelop was noticed. Initially, adsorption increased
with pH from 5 to 10 and reached to a maximum value. At pH
values >10, adsorption decreased sharply with increasing pH.
The acid dissociation constants pKa1 and pKa2 values of CPX
were 6.1 and 8.7, respectively. Most of CPX molecular were in
cationic form with protonated amine group in the piperazine
moiety when pH was less than 6.1. Cationic CPX generated
electrostatic attraction with negatively charged Fe-MCM-41(20)
on the surface, accordingly promoting the adsorption. As
displayed in Figure 9B, a great amount of Fe leached and the
structure of adsorbent collapsed at strong acidic environment
(pH < 4), which greatly reduced the adsorption ability. When
6.1 < pH < 8.7, CPX removal efficiency increased with its
zwitterion form. The zwitterionic CPX was least soluble at pH
7.5 in water for its neutral charge (Roca Jalil et al., 2015). In other
word, it could be assumed that hydrophobic effect had played
an important role in the adsorption process. When pH value
was above 8.7, the anionic form could induce the electrostatic
repulsion between CPX and Fe-MCM-41. When 8.7 < pH <

10, another force might exist to balance the hydrophobic effect
and electrostatic repulsionwhich suggested asπ-electron-donor–
acceptor (EDA) interaction between CPX and Fe-MCM-41(20).
The aromatic ring could serve as π-electron acceptors due to
the strong electron-withdrawing ability of fluorine group on the
benzene ring of CPX. In this, the hydroxyl groups on adsorbent
surface acting as electron-donors interacted strongly with the
π-acceptor compound. When pH > 10, a drastic decrease of
CPX adsorption amount was due to the strong electrostatic
repulsion effect. Therefore, strong chemical interactions were of
vital importance for CPX adsorption on Fe-MCM-41(20).

The Effect of Metal Cations
Metal cations with relatively high concentration could impact
CPX adsorption. The presence of Cu(II) facilitated the adsorption
of CPX on montmorillonite at pH > 6.0 (Pei et al., 2010). Similar
conclusion was also given on activated carbon at pH 3.4–6.5 (Sun
et al., 2014). As depicted in Figure 10, all metal cations suggested
a significantly decline to the adsorption property of CPX, whether
it be Ca represented alkaline earth element or those metals which
were common divalent metals (Cu, Ni, Pb, and Cd) in water.
The influence of five metal cations on removal efficiency followed
a decreasing order of Cu (52.3%) > Ni (49.0%) > Pb (28.3%)
>Cd (21.9%) >Ca (18.7%). This phenomenon could be assumed
that metal cations screened negative charged sites of adsorbent
surface. Metal cations had a relatively strong affinity to CPX.
In order to make a thorough exploration about the complexing
ability of five metal ions, the complexation stability constants
were listed in Table 6 (combined with the prior results). Some
conclusions can be drawn from the values. On the basis of the
liberation degrees of CPX, which complexed with metal cations
mainly in three forms: [M(AH)]2+, [M(AH)2]

2+, [M(AH)A]+.
Because of the solution under neutral conditions, [M(AH)]2+

was the main form. Compared to other divalent metals, the
complexation ability of CPX with Cu was much stronger, and
the result agreed with the heavy metals which exhibited different
removal efficiency.
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FIGURE 9 | (A) The relation of removal efficiency of CPX to the pH values of Fe-MCM-41 at 298K (The dotted lines represented the fraction of cationic, zwitterionic,

and anionic forms of CPX), (B) the leaching of Fe content at different pH-value.

FIGURE 10 | Influence of metal cations on removal efficiency of CPX (volume

of CPX solution: 200mL; rotating speed: 175 rpm/min; initial pH-value: 5.40;

equilibrium time: 120min).

Regeneration of the Adsorbent
It was important for an adsorbent with good reuse performance
in practical application. According to the investigation of
pH influence, the adsorption capacity of CPX on Fe-
MCM-41 was negligible when the pH was above 10. It
indicated that of CPX could desorbed from the absorbent
surface using 0.1M NaOH solution as the desorption agents
possibly, then the adsorbent was filtered, washed and dried
at 358K. The regenerated adsorbent was tested by four
cycles of adsorption/desorption process under the same
conditions. Figure 11 presented the removal efficiency of
CPX on the recycled Fe-MCM-41, exhibiting slightly decline
with a loss of 23.6% after four cycles, which might due

TABLE 6 | Complexation constants of CPX with metals found in the literature.

Equilibria Ca Cu Ni Cd Pb References

M2+
+HA±

= [M(AH)]2+ 2.75 6.19 4.39 Turel et al.,

1996

[M(AH)]2++HA±

= [M(AH)2 ]
2+ 5.26 4.3

[M(AH)2 ]
2+

= [M(AH)A]++H+

−6.6 −7.35

M2+
+HA±

= [M(AH)]2+ 2.75 6.14 3.14 3.86 Tan et al.,

2014

[M(AH)]2++HA±

= [M(AH)2 ]
2+ 10.49 5.01 7.51

[M(AH)2 ]
2+

= [M(AH)A]++H+ 3.32 −1.12 0.38

to the damage of adsorption sites. Therefore, Fe-MCM-
41 could be recycled as an efficient absorbent for practical
application.

CONCLUSIONS

Fe-MCM-41s prepared from a hydrothermal process were
used as adsorbents to adsorb the CPX in aqueous solutions.
Experimental results described that Fe-MCM-41 with Si/Fe =

20 exhibited the best CPX removal efficiency. The XRD and
TEM results confirmed that the hexagonal mesoporous structure
maintained after iron doping. A combination of multiple
effects including electrostatic interaction, surface complexation,
hydrophobic effect and π-π interaction on the adsorption
process were confirmed under different reaction conditions.
The experimental kinetic data showed that the adsorption
was a chemical-controlling and multi-step process, Fe-MCM-
41 showed the better adsorption property. Strong acidic/alkaline
environment was not conducive to the adsorption process. The
adsorption performed a higher adsorption affinity at higher
temperature was a spontaneous exothermic process. Moreover,

Frontiers in Chemistry | www.frontiersin.org February 2018 | Volume 6 | Article 1790

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Wu et al. The Correlation of Adsorption Behavior

FIGURE 11 | Regenerated use of Fe-MCM-41 adsorbent for removal of CPX

(volume of CPX solution: 200mL; rotating speed: 175 rpm/min; initial

pH-value: 5.40; equilibrium time: 120min).

due to the depression of Me-CPX complex, metal cations
decreased CPX adsorption on Fe-MCM-41 surface. As the
same order as the complexation stability constants of CPX,

Cu impacted CPX adsorption most. Fe-MCM-41 exhibited
stable performances for 4 cycles use without deterioration
which could possibly applied to wastewater treatment including
POPs.
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The CO oxidation mechanism on graphene with divacancy (DG) embedded with

transition metal from Sc to Zn has been studied by using first principles calculations.

The results indicate that O2 molecule is preferentially adsorbed on Sc, Ti, V, Cr,

Mn, and Fe-DG, which can avoid the CO poisoning problem that many catalysts

facing and is beneficial to the CO oxidation progress. Further study indicates that

Mn-DG shows the best catalytic properties for CO oxidation with consideration of both

Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) oxidation mechanisms. Along the ER

mechanism, the reaction energy barrier for the first step (CO free + O2 pre-adsorbed →

OOCO) is 0.96 eV. Along the LH mechanism, the energy barrier for the rate limiting step

(CO adsorbed + O2 adsorbed → OOCO) is only 0.41 eV, indicating that the CO oxidation

on Mn-DG will occur along LH mechanism. The Hirshfeld charge distributions of O2

and CO molecules is tuned by the embedded Mn atom, and the charge transfer from

the embedded Mn atom to the adsorbed molecules plays an important role for the CO

oxidation. The result shows that the Mn-embedded divacancy graphene is a noble-metal

free and efficient catalyst for CO oxidation at low temperature.

Keywords: graphene, divacancy, Mn-embedded, CO oxidation, first principles calculations

INTRODUCTION

Carbon monoxide (CO) is colorless, tasteless and toxic in air, while oxidation of CO is an efficient
way to eliminate of the air pollutant (Xie et al., 2009). CO oxidation has important applications in
atmosphere purification for hydrogen gas fuel in fuel cells as well (Qiao et al., 2015; Saavedra et al.,
2016). Noble metals(Bleakley and Hu, 1999; Zhang and Hu, 2001; Liu et al., 2002; Gong et al., 2004;
Dupont et al., 2006; Zhang et al., 2006; Liu, 2007) are common catalysts for the CO oxidation, where
the rate limiting energy barriers are 0.46 eV (Liu et al., 2002) for Au(221), 0.91 eV (Gong et al., 2004)
and 0.93 eV (Zhang and Hu, 2001) for Pd(111), 0.79 eV (Gong et al., 2004) and 0.82 eV (Dupont
et al., 2006) for Pt(111), 1.17 eV (Gong et al., 2004) and 1.01 eV (Zhang et al., 2006) for Rh(111),
1.00 eV (Liu, 2007) for Rh(100). Due to the high cost and high reaction temperature of these noble
metals, it is desirable to develop noble-metal-free catalysts for CO oxidation at low temperature.
Noble metal clusters on supports are further studied to decrease the reaction barriers for CO
oxidation (Tang et al., 2015; Ma et al., 2016; Wang et al., 2016; Ali et al., 2017; Chen et al., 2017).
Furthermore, single atom catalyst decorated on appropriate matrix is attracted a lot of interests
due to the excellent catalytic performance (Dvorák et al., 2016; Jones et al., 2016). The outstanding
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physical properties (Novoselov et al., 2005; Balandin et al., 2008;
Lee et al., 2008) and the large surface-to-volume ratio make
graphene (Novoselov et al., 2004) to be a promising substrate
to realize high performance single atom catalysis. However,
the inert nature of pristine graphene usually causes clustering
problems for the adsorbed metal atoms (Liu and Huang, 2017;
Liu et al., 2017). The interactions between the pristine graphene
and the adsorbed atoms can be enhanced by introducing different
carbon vacancies. Experimentally, single carbon vacancy (SV)
and double carbon vacancies (DV) are common point defects
on graphene. Vacancies can be introduced into graphene by
exposing it to the focussed electron beam, and the vacancy defects
in graphene can be tailored by controlling the exposing time,
where the DV is more often observed than SV due to the high
energy of the SV under electron beam irradiation (Robertson
et al., 2012). In addition, the concentration of DV changes from
0.1 to 0.5 nm2 by controlling the total electron beam dose
(Robertson et al., 2012). In addition, it is reported that the metal
atoms resident on the SV and DV positions in graphene surfaces
are stable in comparison to that on graphene edge (Robertson
et al., 2013). Hence, it is important to evaluate the catalytic
performance of a single atom supported on graphene with both
SV and DV defects.

Many works about the CO oxidation have been reported
for single atom decorated at the single carbon vacancy on
graphene. Theoretically, Au- (Lu et al., 2009), Fe- (Li et al.,
2010), Cu- (Song et al., 2011), Pt- (Tang et al., 2012), Si-
(Zhao et al., 2012), and Al-embedded (Jiang et al., 2014) SV
graphenes show high activity for the CO oxidation. Although
the SV graphene with decorating metal atoms has high catalytic
activity, decorating metal atom on the controllable carbon
vacancies in graphene to realize different single atom catalyst
is still highly desirable. The decorated metal atom is three-
bond coordinated on SV graphene, while it is four-bond
coordinated on DV graphene, indicating that the chemical
activity of the decorated metal atom on different carbon
vacancies should be different due to the different chemical
environment. Furthermore, as mentioned above divacancy is
commonly present in graphene obtained through chemical
synthesis. However, only the catalytic activity of Fe-decorated DV
graphene has been studied (Tang et al., 2016; Liu et al., 2017).
Therefore, further research about the catalytic performance of
DV graphene decorated with metal atom for CO oxidation is
needed.

For the CO oxidation, Langmuir-Hinshelwood (LH) and
Eley-Rideal (ER) are two mainly mechanisms. Along the ER
mechanism, the activated O2 molecule directly reacts with the
free CO molecule, where the activation of O2 is the rate-limiting
step (Lu et al., 2009). Alone the LH mechanism, the CO and O2

molecules are first coadsorbed, and then react to form OOCO
intermediate, which is the rate-limiting step for the oxidation
progress (Lu et al., 2009). In general, the reaction energy barriers
are proportional to the adsorption energy of adsorbed molecules
on supported catalyst (Gong et al., 2004), indicating that the
adsorption energy of adsorbed CO and O2 molecules could
be a benchmark for the catalytic performance of graphene for
CO oxidation. In addition, a larger adsorption energy for O2

molecule than that of CO is desired during the CO oxidation
progress, because the preferential adsorption of CO will block
the active sites and prevent the continuous oxidation reaction
(Jiang et al., 2014; Tang et al., 2016). Therefore, the adsorption
energy for O2 andCOon transitionmetals doped graphene is first
calculated and the alternative decorating atom is chosen based on
this rule.

In this work, by using first principles calculations, we will
systematically study the CO oxidation mechanism on DV
graphene decorated with transition metals from Sc to Zn,
which are non-noble metals and commonly used to decorate
two dimensional materials. The reaction barriers for each step
are analyzed and the corresponding reaction mechanisms are
discussed through analyzing the electronic property of the
graphene systems.

Calculation Methods
The density functional theory (DFT) calculations are carried out
by using Dmol3 package (Delley, 2000). Exchange-correlation
functions are taken as generalized gradient approximation
(GGA) with Perdew-Burke-Ernzerhof (PBE) (Perdew et al.,
1996). The selection of exchange–correlation functional has
evidential effect on the result of adsorption energies, while has
much smaller effect on the reaction energy barriers (Roldán et al.,
2009). DFT semicore pseudopotentials (DSPPs) core treatment
is implemented for relativistic effects. Double numerical plus
polarization (DNP) is employed as the basis set. The convergence
tolerance of energy of 10−5 Hartree is taken (1 Hartree =

27.21 eV), and the maximal allowed force and displacement are
0.002 Hartree/Å and 0.005 Å, respectively. Linear synchronous
transit/quadratic synchronous transit (LST/QST) (Halgren and
Lipscomb, 1977) and nudged elastic band (NEB) (Henkelman
and Jonsson, 2000) tools in Dmol3 module are used to investigate
the minimum energy pathway for CO oxidation on graphene,
which have been well validated to determine the transition
state. Three-dimensional periodic boundary conditions are taken
in the simulation. The simulation cell consists of a 4 × 4
graphene supercell with a vacuum width of 20 Å above the
graphene layer to minimize the interlayer interaction. The k-
point is set to 5 × 5 × 1, and all atoms are allowed to relax
according to previous reports (Jiang et al., 2014). After structure
relaxations, the density of states (DOS) are calculated with a finer
k-point grid of 15 × 15 × 1. The DFT+D method within the
Grimme scheme (Grimme, 2006) is used in all calculations to
consider the van der Waals forces. The electron orbits of the
free and adsorbed molecules are calculated with CASTEP code
(Segall et al., 2002), where the ultrasoft pseudopotentials, GGA-
PBE functional, an energy cutoff of 340 eV and 5 × 5× 1 k-
point meshes are used. We have compared the total energy of
the graphene system with different spin state, and choose the
proper spin state for the graphene system with the smallest total
energy.

The adsorption energy Ead of molecules on graphene is
determined by,

Ead = Emolecules/graphene − (Egraphene + Emolecules) (1)
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where Emolecules/graphene, Egraphene, and Emolecule are total energies
of the adsorbed graphene system, the isolate graphene and
molecules respectively.

RESULTS AND DISCUSSION

Adsorption of O2 and CO on TM-DG
Based on the literature results in the introduction section, it
is expected that transition-metal-embedded divacancy graphene
(TM-DG) could also exhibit excellent catalytic behaviors for CO
oxidation, similar to the cases of graphene with single vacancy
systems. Herein, we present systematic DFT calculations on the
adsorption energy of O2 and CO molecules on the divacancy
graphene embedded with transition metal (from Sc to Zn).
To comprehensively understanding the adsorption behaviors of
O2 and CO molecules on transition metal decorated divacancy
graphene, the adsorption energies of O2 and CO, as well as
the co-adsorption energy of O2 and CO molecules on TM-DG
are shown in Figure 1, where we can see that the adsorption
energy of O2 molecule is larger than that of CO molecule on
TM-DG (from Sc to Fe), while the adsorption energy of CO
molecule is larger than that of O2 molecule on TM-DG (from
Co to Zn). This result indicates that the O2 molecule has priority
during the adsorption progress and avoids the CO poisoning
at the active sites on TM-DG (from Sc to Fe) during the CO
oxidation. In addition, the co-adsorption energy of O2 and
CO molecules on TM-DG (from Sc to Fe) is also shown in
Figure 1, where a local adsorption energy minimum on Mn-
DG is found, which indicates that Mn-DG can facilitate the
CO oxidation better, due to the fact that the energy barrier
is proportional to the adsorption energy of molecules (Gong
et al., 2004). Therefore, CO oxidation on Mn-DG is mainly
studied in the following, and the CO oxidation on other TM-
DG (Sc, Ti, V, Cr and Fe) is also studied for comparison
purpose.

FIGURE 1 | The adsorption energies of O2 and CO as well as the

co-adsorption energy of O2 and CO on TM-DG, where the light and dark areas

indicate the preferential adsorption of O2 and CO molecules, respectively.

Electronic Properties and Stability of
Mn-DG
Before further study the catalytic properties of Mn-DG, the
electronic properties and structure stability of Mn-DG are
first studied in Figure 2. After embedding Mn atom into the
divancancy graphene through substituting two carbon atoms,
the reconstructed structure of graphene is shown in Figure 2A,
where four chemical Mn-C bonds are formed in graphene with
bond length lMn−C = 1.99 Å. Mn atom is out of the plane of
graphene with a distance of 0.68 Å due to the larger atomic radius
of 1.79 Å compared with that of C 0.91 Å. The adsorption energy
of the Mn atom on the divacancy graphene is −6.81 eV. The
Hirshfeld charge distributions near the dopant are also given in
Figure 2A, where the electron-deficiency position is formed for
the Mn atom with losing electrons of 0.284 e, which promotes
the adsorption of O2 and CO molecules. The differential charge
density along C-Mn-C bonds for Mn-DG is further studied
and is shown in Figure 2B, where the blue and red isosurfaces
correspond to the increase in the number of electrons and the
depletion zone, respectively. It shows that electrons accumulate
near the doped Mn atom, indicating the high chemical active
area.

The aggregation problems for the adsorbed metal atoms on
substrate are significant for the catalytic performance, especially
when the concentration of metal atom is high (Ao and Peeters,
2010a). To determine the possibility of aggregation for Mn
atoms on divacancy graphene, the diffusion pathway of Mn
atom to its neighboring positions is investigated based on DFT
calculations (see Figure 2C), where the corresponding diffusion
energy barrier for the decorated Mn atom is 5.91 eV. It is
claimed that a surface reaction will occur when the reaction
barrier is smaller than the critical value of Ecbar = 0.91 eV
(Young, 2001), the decorated Mn atom on divacancy graphene
is thus stable. In addition, the adsorption energy of Mn atom on
divacancy graphene is −6.81 eV and it is much larger than the
cohesive energy −2.92 eV/atom for Mn element (http://www.
knowledgedoor.com/). Therefore, the Mn decorated divacancy
graphene is quite stable without aggregation problems. Partial
density of states (PDOS) are further analyzed to confirm the
enhanced interactions between the Mn atom and graphene
(Figure 2D), where the energy bands between the decorated
Mn atom and carbon atoms overlap significantly. The electron-
deficiency character is confirmed by the Fermi level crossing
the valence band, and it is consistent with the Hirshfeld charge
distributions. As shown in the insert of Figure 2D, the positive
and negative spin density of Mn-DG is shown in green and red,
respectively. Therefore, the magnetic moment of Mn-DG is 3.053
µB, which is mainly contributed by the Mn atom. The remaining
unsaturated d orbital of Mn atom is reactive, which can adsorb
small molecules and promote the subsequent reactions.

Adsorption of Molecules on Mn-DG
To investigate the oxidation of CO on Mn-embedded divacancy
graphene, the adsorptions of O2 and CO on Mn-DG are studied
carefully. Figure 3A shows the most stable configuration for O2

molecule adsorbed on Mn-DG (Ead = −1.96 eV), where the
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FIGURE 2 | (A) The atomic structure of divacancy graphene embedded with Mn atom (Mn-DG), where the gray and pink atoms are C and Mn atoms, respectively, in

this and following figures. The atomic charge obtained by Hirshfeld analysis near the Mn dopant is also given. (B) The differential charge density along C-Mn-C bonds

for Mn-DG is shown, where the blue and red isosurfaces correspond to the increase in the number of electrons and the depletion zone, respectively. (C) The diffusion

pathway of the Mn atom on Mn-DG, where IS, TS, and FS represent initial, transition and final structures, respectively, in this and following figures. (D) PDOS of Mn

atom and C atom on the Mn-DG, where the vertical line indicates the Fermi level. Inset is the positive and negative spin density of Mn-DG shown in green and red,

respectively.

O-O bond is parallel to the graphene sheet, and ∼0.18 e is
transferred from Mn-DG to O2 molecule based on Hirshfeld
charge analysis. To assess the stability of the adsorbed O2

molecule, the dissociative adsorption of O2 molecule on Mn-
DG is then studied in Figure 3B. After NEB calculations, the
dissociation reaction barrier for an O2 molecule on the Mn-
DG is 1.18 eV > Ecbar = 0.91 eV (Young, 2001), which indicates
that the adsorbed O2 molecule prefers to stay on Mn-DG in
molecular state at room temperature. The PDOS of free O2

molecule is shown in Figure 3C, where the 2π∗ anti-bond
orbital is half filled (Honkala and Laasonen, 2000). Then, the
PDOS of Mn atom and the adsorbed O2 molecule is shown
in Figure 3D, where all orbitals of the adsorbed O2 molecule
are also labeled to understand the interaction between the

adsorbed O2 and Mn-DG. About 0.18 e is transferred from Mn-
DG to the adsorbed O2 molecule based on Hirshfeld method,
which occupies the O2-2π∗ orbital above the Fermi level (see
Figure 3C) and is confirmed by the new peaks for O2-2π∗
orbital below the Fermi level (see Figure 3D). This charge
transfer elongates the O-O bond from 1.23 Å in free O2 to
1.40 Å in adsorbed O2 molecule. The activated O2 molecule
with longer O-O bond will be beneficial for the subsequent
CO oxidation. The O2-2π∗ orbitals and Mn atom is strong
hybridized near the Fermi level (see Figure 3D), which mainly
responses for the chemical adsorption of O2 molecule on Mn-
DG.

The adsorption configuration of a CO molecule on Mn-DG
is shown in Figure 4A, where the CO molecule is vertically
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FIGURE 3 | (A) The most stable structure of O2 adsorbed on Mn-DG. (B) The reaction pathway for the dissociative adsorption of O2 molecule on Mn-DG. (C) PDOS

and orbitals of the free O2 molecule, where the number of electrons for each orbital is also shown by arrows. (D) PDOS of the adsorbed O2 molecule and Mn atom for

Mn-DG, inset is the charge density of 4s, 5s, 1p, and 2p* orbitals of the adsorbed O2 molecule. The vertical lines indicate the Fermi level.

adsorbed on the top of the decorated Mn atom. CO is chemically
adsorbed on Mn-DG, which is confirmed by the chemical bond
between Mn atom and the carbon atom of CO molecule. The

adsorption energy of a CO molecule on Mn-DG is Ead =

−1.70 eV, and CO molecule loses 0.006 e to the Mn-DG. The
binding energy Eb of C-O bond is 11.57 eV, which is much larger
than Eb = 6.36 eV for O-O bond based on DFT calculations.
Thus CO should be more difficult to be dissociated, which is

confirmed by the fact that the dissociative energy barrier for
CO molecule on Mn-DG is 5.55 eV based on DFT calculation
as shown in Figure 4B. The PDOS of free CO molecule is
shown in Figure 4C, where all orbitals are labeled. Figure 4D
shows the PDOS of the adsorbed COmolecule onMn-embedded
divacancy graphene, where the orbitals of adsorbed COmolecule

are labeled and displayed. The 5σ peak of the CO molecule
adsorbed on Mn-DG is significantly depressed than the free
CO molecule due to the charge transfer. Although the 2π∗
anti-bond orbital far above Fermi level for free CO molecule
is fully empty, Mn atom transfers some electrons to CO-2π∗
orbital due to the fact that CO-2π∗ is close to the Fermi
level at absorbed state, which slightly elongates the C-O bond
from 1.14 Å for free CO molecule to 1.16 Å for adsorbed
CO molecule. In addition, CO molecules will act as a donor
with the carbon atom near the graphene surface, dur to fact
that the CO-5σ orbital locates on the carbon atom (Leenaerts
et al., 2008). This agrees with the above Hirshfeld analysis result.
The above discussions indicate that O2 and CO have strong

interactions with Mn-DG (corresponding adsorption energies
are −1.96 and −1.70 eV, respectively), but the adsorption
of O2 is much stronger. The O2 molecule is activated on
Mn-DG, which will facilitate the CO oxidation progress on
graphene.

CO Oxidation on Mn-DG
Two reaction mechanisms have been established for the
oxidation of CO molecule: Langmuir-Hinshelwood (LH)
mechanism and Eley-Rideal (ER) mechanism (Molina and
Hammer, 2005; An et al., 2008; Lu et al., 2009; Li et al., 2010;
Song et al., 2011; Tang et al., 2012; Zhao et al., 2012; Jiang
et al., 2014). For the ER mechanism, the O2 molecule is first
adsorbed and activated by the Mn-DG, then a free CO molecule
approaches the substrate to form an intermediate product.
Along the LH mechanism, the O2 and CO molecules first
co-adsorb on the Mn-DG, and then form an intermediate
product. Since O2 has a larger adsorption energy (−1.96 eV)
on Mn-DG than that of CO (−1.70 eV), the adsorption of
O2 on Mn-DG has higher priority, thus the ER mechanism
for the CO oxidation seems to be favorable. However,
the lower co-adsorption energy for O2 and CO molecules
(−2.06 eV) indicates that O2 and CO may co-adsorb on
Mn atom as discussed in literatures (Lu et al., 2009; Song
et al., 2011; Tang et al., 2012; Jiang et al., 2014). Therefore,
both mechanisms for CO oxidation will be discussed in the
following.

Frontiers in Chemistry | www.frontiersin.org May 2018 | Volume 6 | Article 18797

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Jiang et al. CO Oxidation on Mn-Embedded Divacancy Graphene

FIGURE 4 | (A) The most stable structure of CO adsorbed on Mn-DG. (B) The reaction pathway for the dissociative adsorption of CO molecule on Mn-DG. (C) PDOS

and orbitals of the free CO molecule, where the number of electrons for each orbital is also shown by arrows. (D) PDOS of the adsorbed CO molecule and Mn atom

for the Mn-DG, inset is the charge density of 4σ, 1π, 5σ, and 2π* orbitals of the adsorbed CO molecule. The vertical lines indicate the Fermi level.

In order to search the preferred reaction path for CO
oxidation on Mn-DG, the first reaction step along both LH and
ER mechanisms is studied in Figure 5. If the LH mechanism
is more favorable, the free CO molecule will co-adsorb on Mn
atom with pre-adsorbed O2 molecule after overcoming a small
reaction barrier. If the ER mechanism is more favorable, the
free CO molecule will react with the O2 molecule to form
an intermediate (OOCO). The structure of physisorbed CO
molecule on the Mn-DG with pre-adsorbed O2 molecule was
selected as the IS after studying all adsorption configurations as
shown in Figure 5A. The reaction profile for the co-adsorption of
CO and O2 molecules on Mn atom is shown in Figure 5A, where
the CO and O2 are titled toward the graphene surface at TS state.
After overcoming an energy barrier of 0.19 eV, the CO andO2 co-
adsorb on Mn-DG with releasing energy of 0.02 eV, as shown in
Figure 5A.

Figure 5B shows the reaction profile for intermediate product
along the ER mechanism. When the free CO approaches the
Mn atom, the O-O bond is broken (see TS in Figure 5B). After
overcoming a relative large energy barrier of 0.96 eV, the C atom
from the CO binds with two O atoms from the dissociation of the
O2 molecule to form a OOCO complex over the Mn atom (see
FS in Figure 5B). This exothermic process releases an energy of
3.39 eV.

The effect of temperature on the energy barriers is considered.
The free energy change (1G) between the reactant and transition
state is considered as the temperature-dependent energy barrier
E′bar and 1G = 1H - T1S, where 1H is the enthalpy change,
1S is the entropy change, and T is the room temperature
(298.15K). In addition, 1H = (1U + P1V), 1U = (1Etot +
1Evib + 1Etrans + 1Erot) and 1S = 1Svib + 1Strans + 1Srot,
where 1U is the internal energy change, 1Etot is the change of
total electronic energy, the vib, trans and rot indicate vibration,
translation and rotation, respectively, which can be obtained
through calculations of vibrational frequency. The temperature-
dependent energy barriers at 298.15K in Figure 5 are: E′bar =
0.33 eV in Figure 5A and E′bar = 1.15 eV in Figure 5B. This
indicates that the free CO molecule will desorb from substrate
with increasing temperature, and the reaction is more difficult to
occur. The co-adsorption of CO and O2 onMn-DG in Figure 5A

will happen at 298.15K due to the lower reaction barrier than
the critical barrier of Ecbar = 0.91 eV (Young, 2001), thus the
LH mechanism is mainly studied for the CO oxidation in the
following.

For oxidation of CO on the Mn-DG along LH mechanism,
several steps and also intermediate products (MS) for the
oxidation procedure exist (Lu et al., 2009; Song et al., 2011; Tang
et al., 2012; Jiang et al., 2014). For each step, e.g., from initial
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FIGURE 5 | (A) The reaction pathway for the adsorption of CO molecule on Mn-embedded graphene with pre-adsorbed O2 molecule. (B) The primary reaction step

for the oxidation of CO molecule on Mn-embedded graphene for ER mechanism.

FIGURE 6 | The reaction pathway of CO oxidation on Mn-embedded graphene for LH mechanism: production of the first CO2 molecule (A), and the second CO2

moelcule (B). The energy profile for the formation of CO2 molecule is also shown. The unit of E is eV, where E is the energy barrier. The Hirshfeld charge near the

adsorbate is also shown.

state to intermediate state in Figure 6, a transition state also
exists. The configuration of co-adsorbed CO and O2 molecules
on Mn-DG is taken as the reactant (IS in Figure 6A) based
on the above discussions. At transition state, one O-Mn bond
changes from 1.93 to 2.10 Å and a C-O bond between CO and
O2 is formed. After overcoming an energy barrier of 0.41 eV,
an OOCO intermediate (MS in Figure 6A) is formed and the
elongated O-Mn bond is cleaved. Then the first CO2 molecule
(MS2) is formed on Mn-DG after overcoming an energy barrier

of 0.15 eV (see Figure 6A), where the CO2 is physically adsorbed
on Mn-DG and its adsorption energy is −0.20 eV. The reaction
for this step can release a heat of 3.81 eV, which can sufficiently
overcome the adsorption energy of CO2, and the first produced
CO2 molecule would desorb from the Mn-DG efficiently. The O-
O bond for OOCO configuration in MS is broken at TS2, and a
CO2 molecule with bond angle of 126.6◦ is formed. Figure 6B
shows the formation of the second CO2 molecule on Mn-
embedded divacancy graphene. The subsequent CO molecule
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TABLE 1 | The reaction energy barriers of each step for the CO oxidation on

divacancy graphene decorated with transition metal (from Sc to Fe) along the LH

mechanism, where Ebar1, Ebar2, and Ebar3 are the energy barriers for step 1, step

2, and step 3 during CO oxidation, respectively.

Ebar1 (eV) Ebar2 (eV) Ebar3 (eV)

Sc-DG 1.15 0.38 0.15

Ti-DG 0.95 0.24 0.43

V-DG 0.65 0.25 0.85

Cr-DG 1.17 0.22 1.10

Mn-DG 0.41 0.15 0.17

Fe-DG 0.88 0.13 0.06

will react with the remaining O atom to produce CO2 after
surmounting an energy barrier of 0.17 eV (see Figure 6B), similar
to the Au-embedded graphene (Lu et al., 2009). The reaction for
this step releases a heat of 0.90 eV, which can also surmount the
adsorption energy of CO2 (−0.27 eV) in Mn-DG, and the second
CO2 molecule will desorb from Mn-DG efficiently. The reaction
profile for the production of the two CO2 molecules is shown in
Figure 6, where the rate limiting step is the formation of OOCO
intermediate and the energy barrier of 0.41 eV is quite small.

Therefore, the CO oxidation reaction along the LH mechanism
releases 0.21 eV, 3.81 eV, and 0.90 eV for step 1, step 2, and step
3, respectively, which indicates the favorable thermodynamics
for the CO oxidation on Mn-DG. In addition, the small energy
barrier of 0.41 eV for the rate limiting step indicates the favorable
kinetics for the CO oxidation on Mn-DG.

The energy barrier of each step for the CO oxidation along
LHmechanism on divacancy graphene decorated with transition
metals (from Sc to Fe) are also studied as shown in Table 1, where
the rate limiting energy barriers are 1.15, 0.95, 0.85, 1.17, 0.41,
and 0.88 eV for Sc-, Ti-, V-, Cr-, Mn-, and Fe-DG, respectively.
The reaction barrier is the smallest on Mn-DG, which confirms
the fact that the reaction barriers of molecules are proportional to
the adsorption energy on supported catalyst (Gong et al., 2004),
and the co-adsorption energy of adsorbed CO and O2 molecules
can be a benchmark for the catalytic performance of the graphene
for CO oxidation. Therefore, CO can be oxidized easily on Mn-
DG at low temperature, indicating that Mn-DG is an excellent
candidate during the catalysts for CO oxidation.

The energy barriers at 298.15K for each step of CO oxidation
on Mn-DG in Figure 6 are: E′bar = 0.49 eV for step 1, E′bar =
0.10 eV for step 2, and E′bar = 0.25 eV for step 3, where the
energy barriers for step 1 and step 3 slightly increase than those

FIGURE 7 | The atomic structure of graphene with two divacancies embedded with Mn atoms (A), and the corresponding reaction pathway of CO oxidation along LH

mechanism (B). The atomic structure of graphene with one divacancy and one single vacancy embedded with Mn atoms (C), and the corresponding reaction

pathway of CO oxidation along LH mechanism (D).
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FIGURE 8 | PDOS of adsorbed O2, CO, and Mn atom on Mn-DG for the IS (A), TS (B), and MS (C). PDOS of adsorbed O2, CO and Fe atom on Fe-DG for the TS

state is also shown in (D). Red, blue and black curves represent PDOS of adsorbed O2, CO, and Mn (or Fe) atom, respectively. The orbitals of the adsorbed O2 and

CO molecules are roughly labeled. Inset is the charge density of orbitals near the Fermi level. The vertical lines indicate the Fermi level.

at 0 K. The reaction time for each step in Figure 6 is calculated by
Arrhenius equation (Pauling, 1988)

τ =

1

ve

(

−Ebar
KBT

) (2)

where KB is the Boltzmann constant, ν is in order of 1012 Hz,
and T = 298.15K. τ1 = 1.9 × 10−4 s for step 1, τ2 = 4.9 ×

10−11 s for step 2, and τ3 = 1.7 × 10−8 s for step 3, respectively.
Therefore, the CO oxidation on Mn-DG along LH mechanism
has fast kinetics.

The possibility for the reversing reaction of CO oxidation, i.e.,
for the dissociation of the first and the second CO2 molecule
into COmolecule and O atom onMn-DG are further considered
as shown in Figure 6. The reversing energy barriers for the
step 1, step 2, and step 3 based on DFT calculations are 0.62,
3.96, and 1.07 eV, respectively. After considering the effect of
temperature, the reversing energy barriers at 298.15K are: E′bar
= 0.69 eV for step 1, E′bar = 4.05 eV for step 2, E′bar =

1.01 eV for step 3, while the corresponding reaction time is:
τ1 = 0.44 s for step 1, τ2 = 2.3 × 1056 s for step 2, and τ3
= 1.1 × 105 s for step 3. The long reaction time indicates

that the reversing reactions for the CO oxidation on Mn-DG
are hardly to occur and the CO oxidation can be finished
thoroughly.

To consider the effect of interactions between vacancies on
the oxidation of CO, the graphene with more vacancies in
the 4 × 4 supercell is studied as shown in Figure 7. The

atomic structure of graphene with two divacancies embedded
with Mn atoms is shown in Figure 7A, and the corresponding
reaction pathway of CO oxidation for LH mechanism is shown

in Figure 7B, where the rate limiting energy barrier is 0.65 eV

for the formation of OOCO complex. The atomic structure of

graphene with one divacancy and one single vacancy embedded
with Mn atoms is shown in Figure 7C, and the corresponding

reaction pathway of CO oxidation for LH mechanism is shown

in Figure 7D, where the rate limiting energy barrier is 0.88 eV

for the formation of OOCO complex. Therefore, the reaction
barriers on graphene with two double vacancies or one single
and one double vacancies in the supercell in Figure 7 are both
large than that on graphene with one double vacancy in Figure 6.
Considering that the distances between the nearest Mn dopants
in Figures 7A,B are 4.295 Å and 5.062 Å, while that in the
periodic supercell with one double vacancy in Figure 2A is
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9.908 Å with Ebar = 0.41 eV, thus the relative larger distance
between carbon vacancies is beneficial for the CO oxidation on
Mn-DG.

Origin of the High Activity of Mn-DG
To further understand the high activity of the Mn-DG for CO
oxidation, the Hirshfeld charge near the adsorbed molecules
along the LH reaction path is shown in Figure 6, and the
corresponding PDOS near the adsorbed molecules is shown in
Figure 8. O2 obtains 0.115 e while CO loses 0.076 e for the
initial state in Figure 6A. The empty component of the O2-
2π∗ and CO-2π∗ orbitals are partially filled (see Figure 8A)
due to the electron transformation during the adsorption, which
causes the elongation of the O-O bond and C-O bond to 1.34
Å and 1.15 Å, respectively. At transition state, the charge of
adsorbed O2 is−0.136 e while that of adsorbed CO is−0.006 e in
Figure 6A. This indicates that the O2-2π∗ and CO-2π∗ orbitals
are more filled as shown in Figure 8B, which is confirmed by the
elongation of the O-O bond and C-O bond to 1.46 and 1.17 Å,
respectively. After surmounting the energy barrier, more charge
transfers from graphene to the adsorbed O2 and CO, where the
charge of O2 is −0.154 e while that of CO is −0.058 e for MS in
Figure 6A. The O2-2p

∗ and CO-2π∗ orbitals are more filled as
shown in Figure 8C. Therefore, the Mn-DG can tune the charge
distributions of the adsorbed O2 and CO, and the charge transfer
from Mn-DG to O2 and CO molecules plays an important role
for the OOCO intermediate formation.

Due to the fact that Fe is a commonly used dopant and the
energy barrier for the first step on Fe-DG is 0.88 eV for CO
oxidation, which is larger than that of 0.41 eV on Mn-DG, the
PDOS of the TS configurations on Fe-DG is analyzed to further
understood the mechanism for depressing the formation energy
barrier of OOCO intermediate, as shown in Figure 8D. It can
be seen that the overlapping area between O2-2π∗ and Mn-3d
orbitals at Fermi level onMn-DG (see Figure 8B) becomes much
weaker compared with that on Fe-DG (see Figure 8D), indicating
that the interaction of Mn-O bond is significant weakened on
Mn-DG. It is reported that weaker interaction nearby the Fermi
level generally causes smaller reaction barrier (Arellano et al.,
2000; Ao and Peeters, 2010b; Jiang et al., 2016). In addition, the

interaction from −16 to −5 eV is strengthened on Mn-DG (see
Figures 8B,D). Therefore, the enhanced interactions in the low
energy range could lead to smaller reaction barrier for the CO
oxidation on Mn-DG.

CONCLUSION

The oxidation of CO molecule on transition metals decorated
graphene with divacancy (DG) has been studied by using DFT
calculations. We found that Mn-DG has the best performance
for the CO oxidation, while the LH mechanism is preferred,
where the rate limiting energy barrier is only 0.41 eV, indicating
the efficient oxidation process. The charge transfer from Mn-
DG to the O2-2p

∗ and CO-2π∗ orbitals through the Mn atom
along the LH mechanism plays a key role for depressing the
energy barrier of the CO oxidation. The results indicate that
Mn-DG can be a noble-metal-free and efficient catalyst for CO
oxidation.
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Polymer electrolyte membrane fuel cells (PEMFCs) are one of the most prominent clean

energy technologies designed to achieve hydrogen utilization and solve problems such as

low efficiency and high pollution associated with fossil fuel combustion. In order to bring

about PEMFC commercialization, especially for automobile applications, developing

high-activity and -selectivity catalysts for the oxygen reduction reaction (ORR) is of

critical importance. Based on the density functional theory, the catalytic activity of the

conductive, two-dimensional metal–organic frameworks TM3(HITP)2 monolayer (where

HITP = hexaiminotriphenylene; TM = Ni, Co, Fe, Pd, Rh, Ru, Pt, Ir, and Os) for ORR

has been investigated systematically. Furthermore, the classical volcano curves of the

ORR activity, as a function of the OH binding, are found where the Ni, Pd, and Pt

located at the weak binding side suffer from the sluggish ∗OOH formation and prefer

the inefficient 2e− mechanism, while for other elements belonging to the strong binding

side, the reactions are hindered by the poison due to ORR intermediates. Based on the

free energy profiles, the corresponding overpotentials µORR exhibit the inverted volcano

curve as a function of the atomic number of the 3d/4d/5d TM active center in the same

period. Based on the µORR data, ORR activity decreases in the order of Ir > Co ≈ Rh >

Ni≈ Pd > Pt≈ Fe > Ru > Os. Herein, the Co, Rh, and Ir central atoms exhibit enhanced

catalytic activity in combination with the desirable selectivity of the O2 reduction to H2O.

This systematic work may open new avenues for the development of high-performance

non-PGM catalysts for practical applications of ORR.

Keywords: oxygen reduction reaction, activity and selectivity, 2D materials, transition metal elements, DFT

calculation

INTRODUCTION

Hydrogen is a potential candidate for future energy provision, as stated in the concept of the
hydrogen economy, so as to solve the issues of the rising global energy demands, depletion of
fossil fuel reserves, and associated environmental pollution issues. Due to its high efficiency, ease
of operation, and low emission, the polymer electrolyte membrane fuel cell (PEMFCs) is the
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most prominent technology to derive benefit from the proposed
hydrogen cycle, which leads to the production of electricity
from the electrochemical oxidation of hydrogen, with water
as its endproduct (Colić and Bandarenka, 2016; Xia Z. et al.,
2016; Chen et al., 2017, 2018). However, a critical obstacle to
its commercialization is the dominant voltage loss associated
with the sluggish oxygen reduction reaction (ORR), even when
catalyzed by the noble Pt nanoparticle (Nørskov et al., 2004).
In this regard, a significant amount of Pt is required to
achieve the desirable power density, making the overall cost
prohibitively high (Debe, 2012). In order to overcome the
economic bottleneck, design, and application of earth-abundant
alternatives for ORR electrocatalysis are at the heart of PEMFC
research (Xia W. et al., 2016).

Inspired by the pioneering work on cobalt phthalocyanines
acting as cathode catalysts (Jasinski, 1964), a tremendous amount
of research is being performed on the TM–Nx carbon materials
for ORR (TM denotes transition metals), especially TM–N4

active motif. The intrinsic active characteristic of TM in Nx

carbonmaterials is experimentally supported, where the presence
of the TM atom would boost the ORR performance compared
with the metal-free counterpart (Peng et al., 2013; Yin et al.,
2016; Yang et al., 2017); the corresponding activity would be
suppressed by adding the SCN− ions and CO molecule (Zhang
et al., 2016; Yang et al., 2017). Linear correlations between the
content of TM–Nx and ORR activity have been observed (Yang
et al., 2017). Furthermore, ORR activity shows its dependence
on the TM center atom, and this is supported by the density
functional theory (DFT), a theoretical work of Rossmeisl et al.,
where the ORR activity of the TM–N4 embedded graphene has
been systematically investigated, and where the Fe, Ir, Mn, Ru,
and Rh doping is identified as boosting the ORR (Calle-Vallejo
et al., 2011). Additionally, the ORR mechanism is sensitive to
the TM–N4 active motif. Liu et al. have synthesized the Fe–Nx

and Co–Nx doped carbon nanofiber and realized that the Fe–
N4 promotes 4e− ORR in comparison with the 2e− pathway
of the Co–N4 one (Liu et al., 2016). The same conclusion has
been achieved by Kattel et al., where the O–O bond scission
is presented and the efficient 4e− reduction of O2 to 2H2O is
preferred on the Fe–N4 sites, but the reduction of O2 to H2O2

is found enhanced on the Co–N4 motif (Kattel et al., 2013, 2014).
Despite these encouraging research works, such TM–N4

carbon materials generally suffer from low activity caused by the
relatively few catalytic sites as well as the experimental challenge
of the well-controlled active motif (Liang et al., 2013; Peng et al.,
2013; Palaniselvam et al., 2016), reducing the competition with
the state-of-the-art Pt/C catalysts. Paying attention to the high
TM–N4 density in combination with the electronic conductivity,
Miner et al. have developed the attractive Ni3(HITP)2 as ORR
electrocatalyst (Miner et al., 2016). However, the performance is
far from satisfying expectations, with its incomplete oxidation
of O2 and the predominant production of H2O2 under the
working potential (Miner et al., 2016). In this regard, utilizing
the aforementioned information, the development of the efficient
TM3(HITP)2 catalysts can be achieved via the variation of metal
nodes (Choi et al., 2015; Zhang et al., 2015). It has naturally
raised the interest to search for the optimal combinations of

the TM3(HITP)2, possessing superior ORR activity as well as
selectivity.

In the manuscript, DFT calculations are used within an
electrochemical framework to analyze the ORR electrocatalysis
over the TM3(HITP)2monolayer. In particular, the stability of
the ORR intermediates is calculated, which allows to evaluate the
thermodynamic ORR free energy and its overpotentials. The data
provide the fundamental understanding of the mechanism of
Ni3(HITP)2 and further identify optimal candidates as catalysts.
According the d–partial density of states, an atomistic insight of
the activity origin has been provided by a thorough comparison
among the considered systems. Herein, for simplification, our
attention is mainly focused on the monolayer structure shown in
Figure 1 as a representative model due to the weak interaction
between the interlayers of the 2D-layered materials (Sheberla
et al., 2014; Chen et al., 2015; Miner et al., 2016).

METHODS

All calculations have been performed within the DFT framework,
as implemented in the DMol3 code (Delley, 1990, 2000). The
generalized gradient approximation with the Perdew–Burke–
Ernzerhof (PBE) functional is employed to describe exchange
and correlation effects (Perdew et al., 1996). The DFT semicore
pseudopotentials (DSPP) core treat method is implemented for
relativistic effects, which replaces core electrons by a single
effective potential and introduces some degree of relativistic
correction into the core (Delley, 2002). The double numerical
atomic orbital augmented by a polarization function (DNP) is
chosen as the basis set (Delley, 1990). A smearing of 0.005 Ha
(1 Ha = 27.21 eV) to the orbital occupation is applied to achieve
accurate electronic convergence. In order to ensure high-quality
results, the real-space global orbital cutoff radius is set as high as
5.2 Å. In order to accurately describe the long-range electrostatic
interactions of the ORR intermediates with catalysts, the PBE-D
methodwith the TS van derWaals (vdW) correction is employed.
In the geometry optimization of structures, the convergence
tolerances of energy, maximum force, and displacement are

FIGURE 1 | The schematic structure of the TM3(HITP)2 monolayer. Green,

blue, gray, and white denote the TM, N, C, and H atoms.
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1.0×10−5 Ha, 0.002 Ha/Å, and 0.005 Å, respectively. The spin-
unrestricted method is used for all calculations. A conductor-like
screening model (COSMO) was used to simulate a H2O solvent
environment for all calculations (Todorova and Delley, 2008),
which is a continuum model, where the solute molecule forms
a cavity within the dielectric continuum. The DMol3/COSMO
method has been generalized to periodic boundary cases. The
dielectric constant is set as 78.54 for H2O. Some previous results
have shown that this implicit solvation model is an effective
method to describe solvation (Sha et al., 2011; Zhang et al.,
2015). The 15 Å-thick vacuum is added to avoid the artificial
interactions between the TM3(HITP)2 monolayer and its images.
The proposed structure of the TM3(HITP)2 monolayer is shown
in Figure 1, where the atoms in the red square are fixed in all of
the structure-optimization calculations.

The adsorption energy (Eads) of the reactant O2 is calculated
by the following,

Eads(O2) = Esys − Esubstrate − EO2 (1)

The adsorption energy (Eads) of the ORR intermediates are
calculated relative to H2O and H2 (Calle-Vallejo et al., 2011),
through,

Eads(OOH) = Esys − Esubstrate − (2EH2O − 3/2EH2) (2)

Eads(O) = Esys − Esubstrate − (EH2O − EH2) (3)

Eads(OH) = Esys − Esubstrate − (EH2O − 1/2EH2) (4)

where Esys, Esubstrate, EH2O, and EH2 are the total energy of the
adsorption systems, the TM3(HITP)2 monolayer, H2Omolecule,
and H2 molecule, respectively. The Eads < 0 corresponds to an
exothermic adsorption process.

The Gibbs free energy changes (1G) of the ORR elemental
steps have been calculated according to the computational
hydrogen electrode (CHE) model developed by Nørskov et al.,
where the chemical potential of the proton/electron (H+

+

e−) in solution is equal to the half of the chemical potential
of a gas-phase H2 at the reference relative hydrogen electrode
(RHE) potential (Nørskov et al., 2004). Herein, G(H++e−) =

1/2G(H2). The variance of the proton–electron pair free energy
with potential is simply determined using the linear free energy
dependence of the electron energy on potential, shifting the
electron energy –eU, where e is the elementary positive charge
and U is the electrode potential of interest on the RHE scale
(Nørskov et al., 2004; Nie et al., 2014). The total chemical
potential of a proton–electron pair at the potential U is written
as follows:

G(U)(H++e−) = 1/2G(H2) − eU (5)

Therefore, for a general electrochemical reaction, the free energy
change 1G for every elemental step can be determined as
following:

1G = 1E+ 1ZPE− T1S+ 1GpH + 1GU (6)

where 1E is the electronic energy difference based on DFT
calculations, 1ZPE is the change in zero point energy, T is

the temperature (equal to 298.15K here), 1S is the change
in the entropy, and 1GpH and 1GU are the free energy
contributions due to variation in pH value and electrode potential
U, respectively. 1GU = –eU, in which U is the potential related
to the standard hydrogen electrode. 1GpH = –kTln10 x pH,
which is the corrected free energy of H+ ions depending on the
concentration. According to the previous works, pH is set as
0 in acid medium and 14 in alkaline medium. The zero-point
energies and entropies of the ORR intermediates are calculated
from the vibrational frequencies according to standard methods.
Following the suggestion ofWilcox et al. (Lim andWilcox, 2012),
in order to reduce the calculation, the TM3(HITP)2 monolayer
is fully constrained. The 1G < 0 corresponds to an exothermic
adsorption process. The free energy G of O2 is derived as
G(O2) = 4.92+2G(H2O)−2G(H2) by utilizing OER equilibrium
at the standard conditions; the G of H2O2 is derived similarly
considering that the H2O2/O2 standard equilibrium potential is
0.682V vs. SHE (Sun et al., 2014). The CHE model has been
successfully applied for developing the novel electrocatalysts with
prominent ORR performances, where the DFT calculations are in
line with the experimental results (Nørskov et al., 2004; Greeley
et al., 2009; Favaro et al., 2015; Lang et al., 2015; Jia et al., 2016;
Tang et al., 2016; Liu et al., 2017; Li et al., 2018; Xu et al., 2018).
Furthermore, the PBE/DNP method in Dmol3 code has been
widely employed for evaluating the potential of the TM-based
carbon electrocatalysts (Wang et al., 2015, 2016b; Hou et al.,
2016; Xiao et al., 2017). Therefore, the reliability of thementioned
approach is confirmed.

RESULTS AND DISCUSSION

Prior to the investigation of the activity, the essential step is to
determine the adsorption behavior of the ORR intermediates. For
Ni3(HITP)2, the energetics of the O2 adsorption is endothermic
with the value of 0.13 eV, caused by the structure deformation as
shown in the inset of Figure 2A, indicating no such adsorption
has occurred on the Ni center atom. Besides the reactant, the
corresponding Eads of ORR intermediates are 4.08, 3.57, and
1.17 eV for OOH, O, and OH, respectively. In comparison with
the Pt(111) (3.55 eV for OOH, 1.38 eV for O, and 0.64 eV for OH)
(Xiao et al., 2016), the obviously weak adsorption ability of the
center Ni atom has been observed.

Considering the low affinity of the ORR intermediates to
the Ni center, it is expected that the ORR activity would be
boosted by selecting suitable TMs. Indeed, the change of the
TM center definitely exhibits different adsorption behaviors,
as shown in Figure 2, where the corresponding Eads data are
given. From the figures, the Eads of the reactant O2 and the
corresponding ORR intermediates decrease monotonically in the
order of Ru ≈ Os > Fe > Co > Rh ≈ Ir > Ni > Pd ≈

Pt. It is obvious that the adsorption ability of the elements is
weakened from group 8 to group 10. Carefully reviewing the
O2 adsorption as shown in the inset of Figure 2A, similar to
Ni, no such adsorption behaviors have occurred at the Pd and
Pt active centers due to the endothermic adsorption energies.
The unfavorable adsorption behavior of group 10 implies the
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FIGURE 2 | The adsorption energies of the O2 molecules (A) and the ORR intermediates (B). Inset: the representative O2 adsorption structure on Ni, Co, and Fe

active centers.

underlying mechanism of the OOH formation, which originates
from the long-range electron transfer from the catalyst to O2

molecules at the outer Helmholtz plane (Choi et al., 2014). On
the contrary, group 9 binds to the reactant suitably with the
corresponding end-on structure and group 8 possesses a too
strong O2 adsorption with the side-on adsorption configuration.
Herein, the mentioned adsorption capability is in line with the
general prediction of the d-band model (Hammer and Nørskov,
2000). The corresponding evidences are provided by the d–
partial density of states (d–PDOS) of the central TM atom
plotted in Figure 3. As shown, the d band moves away from the
Fermi energy as the TM atom changes from group 8 to group
10. The TM atom with the higher d states possesses stronger
adsorption ability. Furthermore, due to the relationship between
the adsorption behavior and the d band, the linear scaling
relations between Eads(O2)/Eads(OOH)/Eads(O) and Eads(OH)
are observed, in accordance with the previous reports of other
functionalized carbon materials (Calle-Vallejo et al., 2011; Baran
et al., 2014). That is,

Eads(O2) = 0.93Eads(OH)− 1.11, (7)

Eads(OOH) = 0.90Eads(OH)+ 3.02, (8)

Eads(O) = 1.88Eads(OH)+ 1.02. (9)

To further evaluate the ORR activity of TM3(HITP)2, according
to the experimental condition (Miner et al., 2016), the OOH
associative mechanisms in the alkaline solution are taken into
consideration, with the elemental steps Ri listed as follows (Wang
et al., 2016a), where asterisks denote active TM sites. Due to the
small barrier of proton transfer, which can be ignored at high
applied voltages, our attention is only focused on the reaction
energies (Nørskov et al., 2004; Calle-Vallejo et al., 2011; Zhang
et al., 2015).

O2(g) +
∗

+H2O(l)+ e− → OOH∗

+OH−, (R1)

OOH∗

+ e− → O∗

+OH−, (R2a)

OOH∗

+ H2O(l)+ e− → H2O
∗

2 +OH−, (R2b)

O∗

+ H2O(l)+ e− → OH∗

+OH−, (R3)

OH∗

+ e− → OH−. (R4)

Analyzing the free energy plots of the complete 4e− ORRpathway
in Figure 4A, the endothermic processes of ∗OOH formation
(R1) and

∗O formation (R2a) are observed even at U = 0V. The
corresponding values of the free energy change 1Gi are 0.28
and 0.08 eV, respectively. The positive values indicate that the
mentioned steps are thermodynamically unfavorable (Nørskov
et al., 2004). When the ideal potential of 0.4 eV is applied, the
mentioned reaction steps are even unfavorable with the increased
1Gi of 0.68 and 0.48 eV, respectively. Based on the information,
R1 is determined as the rate-determining step (RDS), pointing to
the fact that the Ni3(HITP)2 monolayer suffers from insufficient
O2 activation (Greeley et al., 2009), in accordance with the
endothermic capture of the O2 molecule as shown in Figure 2A.
To clarify the selectivity of the 2/4e− mechanism, the comparison
between R2a and R2b is considered. In the alternative 2e−

pathway, the 1G2b of the H2O2 formation (R2b) is increased

from 0.01 to 0.41 eV as the U ranged from 0 to 0.4V, being
0.07 eV lower than 1G2a, indicating the slightly energy favorable

condition of R2b. Herein, the predominant production of H2O2

would be expected on the Ni3(HITP)2 monolayer, which is in
consistence with the experiment results of the 3D Ni3(HITP)2.
In summary, the Ni3(HITP)2 monolayer slightly prefers the 2e−

mechanism, with the RDS located at the ∗OOH formation.
Owing to the different adsorption abilities of TM3(HITP)2,

the suitable TM would boost the ORR activity as well as the
selectivity of the 4e− mechanism. In order to characterize the

relationship between the ORR activity and the TM center atom,
the reactive free energy change 1Gi of the elementary steps Ri

at U = 0.4V as a function of Eads(OH) is plotted in Figure 4B.
As the weakening of the Eads(OH) occurs with the values ranging
from−0.05 to 1.68 eV, 1G1 and 1G2a increase from the negative

to the positive values, while the opposite tendency is found for

1G3 and 1G4, which decrease from the positive to the negative
values. That is, the steps R1 and R2a change from the exothermic
to endothermic process, while the steps R3 and R4 become
more thermodynamically favorable. Obviously, the RDS steps are
identified as R4 for group 8 and group 9 with the exception of Os,
where the RDS step is R3, while the RDS step is located at R1 for
group 10.
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On the basis of the assumption that the activation barrier for
the RDS is equal to 1Gmax, the activity variation of TM3(HITP)2
referred to as Ni3(HITP)2 is estimated by the rate constant k via
the simple Arrhenius equation in the following,

k = Aexp(−1Gmax/kBT) (10)

In(kTM/kNi) = [1Gmax(Ni)− 1Gmax(TM)]/kBT) (11)

where A is the prefactor, kB is the Boltzmann constant, and
T is the temperature (298.15K). The classic volcano curve is
observed in Figure 5A, where the In(kTM/kNi) as a function of the
Eads(OH) is plotted. Based on our results, the adsorption ability
is weakened as the atomic number increases from group 8 to
group 10. The Ni/Pd/Pt active centers suffer from the too weak
binding strength, leading to the energetically unfavorable process
of the ∗OOH formation. Meanwhile, for the Fe/Ru/Os active
centers, the too strong interaction with the ORR intermediates
accounts for the poisoning of the O-containing intermediates.
The suitable binding strength of Co/Rh/Ir active centers indicates
the balance between the O2 activation and the catalyst recovery.

FIGURE 3 | The d-PDOS of the central TM atom.

As discussed by the previous reports (Calle-Vallejo et al., 2011;
Viswanathan et al., 2012a; Baran et al., 2014; Zhang et al., 2015),
the ORR activity depends on the adsorption of the intermediates.
Our results are in accordance with the previous reports in that
the bond strength should be compromised in the case of the
effective ORR catalysts on the basis of Sabatier principle (Greeley
et al., 2009; Gao et al., 2017, 2018); this is similar with the
previous studies on metal (Stephens et al., 2012), functional
graphene (Calle-Vallejo et al., 2011), metal porphyrine (Baran
et al., 2014) as well as the 2D MOF (Gao et al., 2017). Herein, in
comparison with the Ni3(HITP)2 monolayer (0.68 eV), group 9
possesses superior catalytic performance with the smaller 1Gmax

of 0.50, 0.52, and 0.22 eV for the Co, Rh, and Ir center atoms,
respectively. By contrast, inferior activities are observed for group
8 and group 10. The corresponding 1Gmax are 0.93, 1.23, and
1.34 eV for Fe, Ru, and Os atoms, and 0.72 and 0.90 eV for Pd
and Pt atoms, respectively. Furthermore, for clarification, the
data of the relative overpotentials µORR are summarized and
collected for the activity comparison, depicted in Figure 6. As
the atomic number of TM increased from Ni to Fe, the µORR

reduces and then increases, presenting further evidence to the
presence of the classical volcano-shaped activity (Nørskov et al.,
2004; Calle-Vallejo et al., 2011; Baran et al., 2014; Zheng et al.,
2017). Similar situations are found for the 4d/5d TM3(HITP)2
monolayer. Based on the µORR data, ORR activity decreases in
the order of Ir > Co ≈ Rh > Ni ≈ Pd > Pt ≈ Fe > Ru >

Os. Furthermore, compared with the data of the TM supported
on graphene and macrocyclic molecules (the minimum µORR =

0.4 eV) (Xu et al., 2018), the prominent improvement of the ORR
activity on the Ir3(HITP)2 monolayer is confirmed.

Besides the ORR activity, the ORR selectivity is characterized
by the ratio of the corresponding reaction rate k2a (k2b) for step
R2a (R2b), via the following equation,

In(k2a/k2b) = [1G2b − 1G2a]/kBT) (12)

The data are plotted in Figure 5B. As shown, In(k2a/k2b) shows a
linear relationship with Eads(OH). For the weak side, the values of
1G2a and 1G2b are 0.48 and 0.41 eV for Ni, 0.57 and 0.37 eV for
Pd, and 0.20 and 0.19 eV for Pt, respectively. The corresponding

FIGURE 4 | The free energy G diagrams of Ni3(HITP)2 in the alkaline medium (A) and the free energy change 1Gi of the elemental step Ri at the ideal potential of

0.4 eV (B).
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FIGURE 5 | The activity enhancement factor of TM3(HITP)2 referred to the Ni3(HITP)2 (A) and the selectivity of the 4e− reduction referred to the 2e− pathway (B).

FIGURE 6 | The overpotentials µORR of the TM3(HITP)2 monolayer for the

4e− mechanism.

In(k2a/k2b) are −2.72, −7.78, and −0.39, indicating the energy
favorability of R2b compared with that of R2a for group 10.
Furthermore, considering the In(k2a/k2b) data, the 2e

− reduction
of O2 to H2O2 is prevalent at the Ni and Pd centers, while the
mixing of 2/4e− ORR is reasonable for the Pt center. By contrast,
R2a is preferred for other elements indicated by the positive
In(k2a/k2b). That is, the 4e

− mechanism is dominant for group
8 and group 9. Obviously, as the Eads(OH) is strengthened, the
catalytic selectivity is changed from the 2e− to 4e− pathway.
The two sides of the catalytic activity profile shown in Figure 5A

essentially distinguish the 2e− catalysts (weak binding side)
from the 4e− catalysts (strong binding side) (Viswanathan
et al., 2012b; Zagal and Koper, 2016). That is, the former
suffering from the insufficient O2 activation favors the H2O2

formation; the latter poisoned by the O–containing intermediates
generally prefers the H2O formation. The formation of H2O2

not only decreases the ORR efficiency, but also degrades the
proton exchange membrane (Tsuneda et al., 2017). In short, the
dramatic enhancements in oxygen-reduction rates and product

TABLE 1 | The Eads and 1G of ORR intermediates at the potential U = 0.4V with

and without the vdW corrections.

Without vdW With vdW

Co Rh Ir Co Rh Ir

Eads (O2) −0.64 −0.41 −0.31 −0.67 −0.50 −0.39

Eads (OOH) 3.42 3.52 3.59 3.20 3.41 3.49

Eads (O) 2.53 2.59 2.16 2.54 2.55 2.11

Eads (OH) 0.46 0.61 0.68 0.28 0.54 0.61

1G1 −0.08 −0.12 −0.06 −0.31 −0.23 −0.16

1G2a 0.03 0.13 −0.29 0.26 0.20 −0.23

1G2b 1.18 1.21 1.15 1.40 1.32 1.26

1G3 −0.44 −0.53 0.12 −0.64 −0.56 0.09

1G4 0.50 0.52 0.22 0.68 0.59 0.30

1Gmax 0.50 0.52 0.22 0.68 0.59 0.30

selectivity are achieved by selecting TM centers in group 9, in
line with the previous works (Gao et al., 2017; Wannakao et al.,
2017).

To understand the influence of the long-term electrostatic
potential on the ORR performance, the vdW correction is further
applied for analyzing the optimum Ir/Co/Rh systems, where the
corresponding adsorption energy and the free energy changes
are listed in Table 1. Intuitively, the adsorption abilities of the
mentioned systems are enhanced due to the presence of the long-
term interaction, in consistence with our calculation data. For the
Ir3(HITP)2 monolayer, the Eads are slightly increased to −0.39,
3.49, 2.11, and 0.61 eV for O2, OOH, O, and OH, respectively,
in comparison with the uncorrected values of −0.31, 3.59, 2.16,
and 0.68 eV. The perturbation of the binding strength hinders the
OH removal from the Ir active site, leading to the uphill of
the 1Gmax from 0.22 to 0.30 eV. Despite the activity decrease,
the 4e− reduction pathway remains, supported by the values of
1G2a with −0.23 eV and 1G2b with 1.26 eV. Herein, the same
phenomenon is found for Co3(HITP)2 and Rh3(HITP)2 with
the 1Gmax of 0.68 and 0.59 eV, respectively. The corresponding
ORR activity with th 4e− reaction mechanism follows the order
of Ir > Rh ≈ Co. Despite the numerical variation, the trend
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is roughly consistent with the results without considering vdW
interaction.

Despite the presence of the Ni3(HITP)2 experimentally,
other 2D catalysts are only theoretical models, which need the
confirmation of their synthesis. It should be noted that changing
metal atoms would significantly modify the corresponding
structures. Thus, by replacing the Ni central atom, the
dimensionality of the Cr3(HITP)2 could be transferred from 2D
to 3D due to the energetic favorable insertion of the spacer linker
(Foster et al., 2016). Different structures inevitably lead to distinct
catalytic performances (Sun et al., 2014). In this regard, although
the theoretical candidates have been rationally predicted, the
ORR performance of the optimum TM3(HITP)2 with the
Co/Rh/Ir active sites crucially needs further experimentally
verification.

CONCLUSION

Based on the DFT, the ORR mechanisms on TM3(HITP)2
monolayer have been studied. It is found that the selection
of central metals affects the adsorption behaviors, tuning ORR
activity and its selectivity. It is realized that the adsorption
abilities are monotonously enhanced as the d band upshifts
from group 10 to group 8. A classical volcano relationship

for the predicted ORR activity as a function of calculated OH

adsorption energy is observed. From the calculated 1G data,
the ORR activity decreases in the order of Ir > Co ≈ Rh >

Ni ≈ Pd > Pt ≈ Fe > Ru > Os. That is, group 9 possesses
superior activity compared with other elements. Furthermore,
owing to the insufficient O2 activation, the 2e− mechanism is
prevalent in group 10, while the desirable 4e− mechanism is
dominant for others. These results would throw insights into the
nature of the ORR mechanisms of TM3(HITP)2. The materials
of the Co3(HITP)2, Rh3(HITP)2, and Ir3(HITP)2 have been
screened out and served as the potential candidates for the ORR
electrocatalysis.
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