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Editorial on the Research Topic

Large Language Models for medical applications

1 Introduction

The advent of Large Language Models (LLMs) marks a transformative moment in

the evolution of Artificial Intelligence (AI), particularly in their capacity to process

and generate human language with remarkable fluency and contextual awareness.

These models, trained on vast and diverse corpora, have demonstrated state-of-the-art

performance across a range of Natural Language Processing (NLP) tasks. In the medical

domain, their potential is especially compelling: from synthesizing complex biomedical

literature and supporting clinical decision-making to enhancing patient communication

and enabling more equitable access to health information.

This Research Topic was launched to explore the multifaceted role of LLMs in

transforming healthcare delivery and medical research. The objective was to gather

interdisciplinary contributions that investigate both the capabilities and the limitations

of LLMs when applied to clinical decision support, patient engagement, precision

medicine, and beyond. We aimed to foster a comprehensive dialogue that includes

technical innovations, ethical reflections, and practical case studies. The collection features

fifteen published articles, reflecting a diverse range of perspectives and methodological

approaches. This Research Topic aspires to illuminate the pathways for integrating

LLMs into medical practice while addressing the critical questions that accompany their

adoption.

2 Clinical decision support and diagnostics

One of the most promising applications of LLMs in medicine lies in their potential

to support clinical decision-making and diagnostic reasoning. Ríos-Hoyo et al. assessed

GPT-3.5 and GPT-4 on 75 complex diagnostic cases and found that GPT-4 included the

correct diagnosis in 68% of cases and ranked it among the top three in 42%. The study

highlighted GPT-4’s superior accuracy and consistency compared to GPT-3.5, though both

models showed limitations. Notably, diagnostic success was more strongly associated with

literature prevalence than disease incidence, reinforcing that LLMs should currently be

viewed as decision support tools rather than standalone diagnostic systems.
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Yin et al. conducted a comparative assessment of four language

models, including GPT-4.0, in answering pediatric asthma-related

questions. GPT-4.0 showed the highest scores across dimensions

such as accuracy and completeness, although all models had

limitations in addressing treatment-specific questions. Lee et

al. explored the use of GPT-4 as a simulated digital twin for

neurological history-taking in cases of headache, stroke, and

neurodegenerative disease. Their tripartite model demonstrated

81% overall accuracy in retrieving history of present illness details,

supporting the potential of LLMs in structured pre-consultation

workflows. Liu et al. presented MED-ChatGPT CoPilot, an AI-

assisted system that leverages prompt engineering and GPT-4 to

extract structured medical case data from scientific literature, build

a vector-based local knowledge base, and deliver diagnostic and

therapeutic suggestions through a chatbot interface.

In the oncology domain, Peng et al. developed an interpretable

machine learning model for predicting survival in aggressive

prostate cancer using SHAP-based explanations. Among

nine algorithms tested, LightGBM offered the best prognostic

performance, with 1-, 3-, and 5-year AUCs exceeding 0.77. The

use of SHAP allowed the identification and ranking of key clinical

features influencing survival predictions. Zhang et al. proposed

PMPred-AE, a deep learning model based on EfficientNetV2-L

with an attention mechanism, for the automatic detection of

pathological myopia. The model achieved high accuracy across

training, validation, and test sets, and incorporated Grad-CAM

for visual interpretability, allowing clinicians to see which retinal

regions influenced the model’s decisions, making it both an

effective and explainable diagnostic tool.

3 Patient-facing applications

Studies have showcased how generative AI can directly support

patients in managing their health (i.e., a patient-facing LLM

application), particularly through accessible and personalized tools.

Jin et al. evaluated a GPT-based recipe generation tool designed

to improve the nutritional management of individuals undergoing

peritoneal dialysis. The pilot study found significant improvements

in serum prealbumin levels, suggesting that personalized dietary

plans generated via LLMs can be both clinically effective and

user-friendly. In another clinical application, Aydin et al. (a)

offered a critical perspective on the use of LLMs for patient-

centered medication guidance and self-decision support. While

highlighting the promise of these tools in enhancing health literacy

and supporting patients in remote or resource-limited settings, the

authors caution against over-reliance on AI-generated information,

particularly in high-stakes scenarios involving drug interactions or

complex conditions.

4 Education and training

The integration of generative AI into health profession

education is prompting both enthusiasm and caution, as emerging

research examines its impact on learners’ preparedness, skills, and

ethical sensibilities. In a reflective opinion article, Sharifi Kelarijani

et al. argue that, while tools like ChatGPT offer new opportunities

for nursing education (e.g., rapid access to information and

assistance with assignments), they also risk diminishing students’

critical thinking, communication, and clinical reasoning skills if

used without proper pedagogical oversight. Echoing these concerns

from a student-centered perspective, Gualda-Gea et al. surveyed

senior medical students and found limited prior exposure to AI

tools but strong recognition of their future importance. Most

students supported integrating AI into the curriculum, though

many also expressed concern about ethical implications, potential

biases, and over-reliance on chatbot-generated information.

Beyond student attitudes, the practical application of LLMs

in health education is beginning to take shape. Aydin et al.

(b) conducted a scoping review that selected 201 articles and

mapped out how LLMs are currently being used to support patient

education, identifying six key themes ranging from generating

patient-friendly educational materials to enhancing doctor-patient

communication. LLMs were found to demonstrate the ability to

deliver accurate answers to patient questions, improve the quality

of existing educational content, and rephrase medical information

in a way that is easier for patients to understand. Nonetheless,

issues related to readability, accuracy, and potential biases remain a

concern.

5 Medical documentation and
synthetic text creation

Two contributions to this Research Topic explored distinct

applications of generative AI within the clinical domain. Lu et al.

evaluated the use of GPT-4o for generating medical history records

and found that its outputs were comparable in quality to those

written by resident physicians. This points to a promising role for

LLMs in supporting clinical documentation workflows. Differently,

Ren et al. addressed challenges related to data access and privacy by

proposing a method for generating synthetic clinical letters using

pre-trained language models. Their framework enables the creation

of de-identified, yet semantically rich, clinical texts that can be used

for training and evaluating downstream NLP tasks such as named

entity recognition.

6 Implications and future directions

LLMs demonstrate promise across varied healthcare

contexts but require rigorous evaluation and safeguards.

Their integration into medical and healthcare practice by

clinicians, nurses, and pharmacists offers the potential to

streamline clinical decision support, diagnostics, management,

patient-facing applications, education/training, medical

documentation, and synthetic text creation. However, realizing

this potential demands more than technical advancement; it

requires a concerted effort to ensure ethical, transparent, and

accountable implementation.

Wang et al. reinforced these considerations through a

comprehensive bibliometric analysis of ChatGPT’s application in

nursing. Their study highlights growing international interest,

particularly in domains such as nursing education and clinical

decision-making, while also pointing to the fragmented and
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early-stage nature of the research landscape. Despite increasing

publication volume and global engagement, collaboration across

author groups remains limited, and ethical concerns, including

misinformation, over-reliance, and data security, are insufficiently

addressed. These findings underscore the need for interdisciplinary

cooperation, empirical evaluation, and a stronger emphasis on

responsible innovation as LLMs become more integrated into

healthcare practice.

Importantly, as Bélisle-Pipon cautions, we must also reevaluate

how we conceptualize the shortcomings of LLMs. Framing

their inaccuracies as mere “hallucinations” may obscure the

deeper epistemic issue: that these models generate plausible

text without any concern for truth. Recasting such failures as

“bullshit”, in the philosophical sense of conveying information

without regard to accuracy, underscores the serious risks of

over-reliance on LLMs in high-stakes clinical settings. This

critique invites the medical and healthcare AI community to

adopt a more skeptical and reflective posture, one that resists

hype and prioritizes verification, contextual understanding, and

human oversight.

This Research Topic highlights both the extraordinary

potential, ethical aspects, and the current limitations of LLMs in

healthcare applications by physicians, nurses, and pharmacists.

It offers a foundation for critical inquiry as the field matures.

Going forward, the responsible deployment of LLMs in healthcare

must be guided not only by innovation but also by ethical

foresight, transparency, and a deep commitment to patient

well-being.
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Evaluation of large language 
models as a diagnostic aid for 
complex medical cases
Alejandro Ríos-Hoyo 1†, Naing Lin Shan 1†, Anran Li 2, 
Alexander T. Pearson 2, Lajos Pusztai 1* and 
Frederick M. Howard 2*
1 Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States, 2 Department of 
Medicine, University of Chicago, Chicago, IL, United States

Background: The use of large language models (LLM) has recently gained 
popularity in diverse areas, including answering questions posted by patients as 
well as medical professionals.

Objective: To evaluate the performance and limitations of LLMs in providing the 
correct diagnosis for a complex clinical case.

Design: Seventy-five consecutive clinical cases were selected from the 
Massachusetts General Hospital Case Records, and differential diagnoses were 
generated by OpenAI’s GPT3.5 and 4 models.

Results: The mean number of diagnoses provided by the Massachusetts 
General Hospital case discussants was 16.77, by GPT3.5 30 and by GPT4 15.45 
(p  <  0.0001). GPT4 was more frequently able to list the correct diagnosis as first 
(22% versus 20% with GPT3.5, p  =  0.86), provide the correct diagnosis among 
the top three generated diagnoses (42% versus 24%, p  =  0.075). GPT4 was better 
at providing the correct diagnosis, when the different diagnoses were classified 
into groups according to the medical specialty and include the correct diagnosis 
at any point in the differential list (68% versus 48%, p  =  0.0063). GPT4 provided a 
differential list that was more similar to the list provided by the case discussants 
than GPT3.5 (Jaccard Similarity Index 0.22 versus 0.12, p  =  0.001). Inclusion of 
the correct diagnosis in the generated differential was correlated with PubMed 
articles matching the diagnosis (OR 1.40, 95% CI 1.25–1.56 for GPT3.5, OR 1.25, 
95% CI 1.13–1.40 for GPT4), but not with disease incidence.

Conclusions and relevance: The GPT4 model was able to generate a differential 
diagnosis list with the correct diagnosis in approximately two thirds of cases, 
but the most likely diagnosis was often incorrect for both models. In its current 
state, this tool can at most be used as an aid to expand on potential diagnostic 
considerations for a case, and future LLMs should be trained which account for 
the discrepancy between disease incidence and availability in the literature.

KEYWORDS

large language model (LLM), ChatGPT, complex clinical cases, diagnosis, clinical case 
solving
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1 Introduction

Large language models (LLMs) are complex, neural network-
based models trained on vast amounts of text to accurately interpret 
human language. LLMs have been applied to a wide range of tasks 
within medical science, including simplifying radiology reports, 
accurately responding to questions posted by patients on an internet 
forum, generating realistic medical abstracts, and predicting 
in-hospital mortality (1–4). Although LLMs have shown passable 
accuracy in answering medical licensing exam questions in numerous 
studies (1–5), it is unclear if this performance can be leveraged to 
serve as a decision aid in real clinical practice, where cases have 
nuance beyond that of standardized testing. Given the widespread 
uptake of LLMs, they have been proposed as a diagnostic decision aid 
for students, and are likely in use despite the limited knowledge about 
specific model performance (6). Chat GPT (Generative Pre-trained 
Transformer) is a natural language processing model that became 
publicly available in November 2022, it provides outputs in response 
to inputs or prompts, learning its skills from internet data.

Different versions of GPT are currently available, GPT3.5 is a 
Chatbot based on the GPT3.5 model, whereas the GPT4 foundation 
features an approximately 1,000-fold increase in model parameters 
and an expanded context window length, resulting in an enhanced 
capability of solving complex tasks (7–9). GPT can be used to write 
computer code, analyze text, draft documents, create conversational 
agents, and has been shown to proficiently answer different 
standardized tests (7, 10) it has a considerable semantic medical 
knowledge and has been shown to be capable of medical reasoning 
(10). This has been reflected by its capabilities in answering medical 
questions (11), simplifying radiology reports, performing well at 
medical licensing exams, among others (1–4). It is currently 
considered an attractive tool in diverse settings of medicine, however 
these LLMs could potentially contribute to misinformation and 
exacerbate scientific misconduct in the setting of a lack of 
accountability and transparency.

This study aimed to characterize the performance and consistency 
of LLMs in diagnosing a series of challenging case records published 
from a single institution. In this study, we evaluated OpenAI’s GPT-3.5 
and GPT-4 models to establish a baseline for models trained on 
general (as opposed to medical-specific literature), as well as to 
identify patterns in misdiagnosis to inform fine-tuning of diagnostic 
decision aids. In this study we used cases from the Massachusetts 
General Hospital Case Records which have been published since 
1923 in the New England Journal of Medicine. These cases have been 
used as teaching tools illustrating different clinical cases, and the 
workup of the differential diagnosis of frequently uncommon diseases 
or uncommon disease presentations (12). We introduced the case 
presentation of these clinical cases and asked GPT to provide a list of 
the most likely differential diagnosis.

2 Methods

Seventy-five sequential clinical cases were retrieved from the case 
records of the Massachusetts General Hospital, published in the New 
England Journal of Medicine, from January 2022 to November 2023 
(12). This period was selected to ensure cases did not overlap with the 
training data for the LLMs. The case presentation was truncated prior 

to the discussant’s review of the differential diagnosis, and text 
referencing figures or tables was removed. A uniform prompt 
requesting a differential diagnosis for the case presentation text was 
provided to OpenAI’s GPT-3.5 (gpt-3.5-turbo) and GPT-4 (gpt-4) 
models. First, three prompts were tested on a subset of 10 cases for 
four replicates each. The prompts included (1) ‘please read the 
following case, and provide a differential diagnosis for the underlying 
cause of this presentation’; (2) as per (1) with the modification 
‘…provide a thorough and specific list of differential diagnosis…’; and 
(3) as per (2) with the additional sentence ‘please list the diagnosis that 
most explains all the features of the presentation first, and include rare 
diagnoses if they are the best explanation for the presentation.’ All 
prompts yielded similar lists, but the prompt (3) yielded diagnosis lists 
that most frequently listed the correct diagnosis first, and was chosen 
for all subsequent analysis. All clinical cases were queried with this 
prompt, with four replicates performed for each model 
(Supplementary Table 1).

The rank order of the correct diagnosis within the differential 
diagnosis list was established by consensus of study authors. The 
overlap between the full list of differential diagnoses provided by GPT 
and by the case discussant was similarly compared. Finally, accuracy 
of LLMs was correlated with disease incidence (estimated from 
literature review of PubMed as well as cdc.gov with references listed 
in Supplementary Table 1, as indexed by Google both with the search 
term ‘diagnosis’ incidence), with rare diseases without estimable 
incidence such as those only described in case reports assigned an 
incidence of 0.1 per 100,000, as well as representation of the diagnosis 
in medical literature as assessed by article count returned when 
searching for the diagnosis (or simplified surrogate term, as listed in 
Supplementary Table 1) in PubMed (conducted with an article cutoff 
of April 21st, 2023).

2.1 Statistical analysis

A Mann–Whitney U test was used to compare the number of 
diagnoses provided by case discussants and GPT models. A Fisher’s 
exact test was used to compare whether the first diagnosis was the 
correct diagnosis, whether among the top three diagnosis was the 
correct diagnosis, whether the correct diagnosis was in the list of 
differential diagnosis from GPT3.5 and 4. To assess whether GPT was 
able to provide the correct diagnosis among different medical 
specialties, five groups were designated [Group 1: neurology and 
psychiatry; group 2: oncology and hematology; group 3: infectious 
diseases, internal medicine, endocrinology and toxicology; group 4 
rheumatology, allergy and autoimmune diseases; group  5: others 
(cardiology, gastroenterology, genetic diseases, dermatology, 
nephrology and pediatrics)], A Fisher’s exact test was used to 
compare results between GPT 3.5 and 4. A multivariable logistic 
regression model was used to determine the association between 
disease incidence and PubMed article count with these same three 
performance metrics. To assess the similarity between the differential 
diagnosis lists, the Jaccard similarity index was used (ranging from 0 
to 1, 0 reflects no similarity, whereas 1 reflects a complete similarity 
between the analyzed sets), utilizing each case entry repeat, to test 
differences between GPT 3.5 and 4, a Mann–Whitney test was 
performed. To assess reproducibility across iterations of each model, 
intraclass correlation coefficients (ICC) were calculated using the 
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two-way mixed effects, absolute agreement, multiple raters/
measurements formulation (13), values of <0.5 and > 0.9 reflect poor 
and excellent reliability, respectively. Statistical analyses and graphs 
were performed using GraphPad Prism 9.0 (GraphPad Software, Inc., 
San Diego, CA) and Python version 3.7.5 (Python Software 
Foundation) using statsmodels 0.13.2.

3 Results

3.1 Accuracy of GPT models in complex 
diagnostic challenges

Seventy-five cases from the Massachusetts General Hospital Case 
Records were introduced to the two GPT models. Compared to the 
case discussants, who provided a mean of 16.77 [interquartile range 
(IQR) (representing the distance between the first and the third 
quartile) 12] diagnoses, GPT4 produced a similar number (mean 
15.45, IQR 11, p = 0.302) of unique diagnoses over four replicates, 
whereas GPT3.5 listed significantly more diagnoses (mean 30, IQR 
10, p = <0.0001). GPT4 included the correct diagnosis in its 
differential list in two thirds (68%) of cases, with the correct diagnosis 
included in the top 3 items in the differential in 42% of cases, in 
contrast GPT3.5 included the correct diagnosis in its differential list 
in half (48%, p = 0.006) of the cases, and the correct diagnosis 
included in the top three differential diagnoses in 29% (p = 0.075) of 
the cases, thus observing that GPT4 outperforming GPT3.5 in both 
metrics (Figure 1). GPT4 was able to formulate more specific answers 
that better depicted the true diagnosis in many cases. For example, in 
Case 6–2022 (Immune checkpoint inhibitor-induced diabetes), 

GPT3.5 was only able to vaguely link the presentation to 
immunotherapy  - “Side effects of cancer treatment: The patient’s 
symptoms could be  side effects of cancer treatment such as 
pembrolizumab…”  - whereas GPT4 concisely answered 
“Pembrolizumab-induced diabetes mellitus.”

3.2 Consistency of GPT model diagnostic 
lists

As the results of GPT models may differ across repetitions, it is 
important to understand how the prioritization of diagnoses might 
change if these tools are clinically implemented. Ranking of the 
correct diagnosis within a differential was more consistent across 
repetitions for GPT4 (ICC 0.65, 95% CI 0.42–0.80) than with GPT3.5 
(ICC 0.37, 95% CI–0.25 – 0.71). The differential diagnosis list 
generated by GPT4 also had greater overlap with the discussant’s list 
(Jaccard Similarity Index 0.22, IQR 0.12) than GPT3.5 (0.13, IQR 
0.076, p = <0.0001, Figure 2) – although overlap was fair at best.

3.3 Associations of model accuracy with 
medical specialty and disease incidence

Each case was classified into medical specialties groups (n = 5), 
among these groups, GPT4 was numerically and statistically 
superior to GPT3.5 in all categories except in the Rheumatology, 
Allergy, and Autoimmune Diseases category (Table  1). We  also 
assessed whether model accuracy was dependent on disease 
incidence or representation in the literature. PubMed article count 

FIGURE 1

Performance of GPT3.5 and GPT4 in providing (A) the first diagnosis as the correct diagnosis, (B) the correct diagnosis among the top three diagnoses, 
and (C) the correct diagnosis among the entire list of diagnoses.
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for the correct diagnosis was associated with a greater likelihood that 
the diagnosis would be  included in the differential generated by 
GPT3.5 (Odds Ratio (OR) 1.40, 95% CI 1.25–1.56, p < 0.001) and 
GPT4 (OR 1.25, 95% CI 1.13–1.40, p < 0.001). Similar trends were 

seen for likelihood of a diagnosis being listed first or within the top 3 
generated diagnoses (Table 2). Conversely, disease incidence was 
either a neutral or negative effect on the likelihood of a diagnosis 
being listed by either model.

4 Discussion

We have demonstrated here a comprehensive characterization 
of the accuracy and reproducibility of two GPT models in solving 
complex clinical case scenarios. Whereas high accuracy was seen 
when evaluating GPT-3 in diagnosing common presentations such 
as upper respiratory tract infections (14), we  found that in 
approximately one third of cases the best model failed to identify 
the correct diagnosis in complex cases. Thus, although current 
GPT models are insufficient to replace physician expertise, they 
may have some clinical utility as a diagnostic checklist (15) to 
reduce error when physicians are presented with a puzzling 
clinical scenario.

It is worth noting that although GPT3.5 was able to provide a 
longer list of differential diagnoses, these did not present a better 
concordance with the Massachusetts General Hospital case 
discussants diagnoses. Furthermore, GPT4 was not only better at 
providing the first diagnosis as the correct diagnosis, but it 
outperformed GPT3.5 in providing the correct diagnosis among the 
differential diagnosis lists.

A similar study by Zahir and collogues (16) used GPT and 
cases from the Massachusetts General Hospital case records to 

FIGURE 2

Jaccard Similarity Index indicating the overlap between GPT3.53/
GPT4 and the differential provided by the case discussant.

TABLE 1 Performance of GPT 3.5 and 4 in providing the correct diagnosis, according to medical specialty.

GPT 3.5 (%) GPT 4 (%) OR (95% CI) p-value

Group 1 (n = 9) 41 72 5.2 (1.94–14.23) 0.0019

Group 2 (n = 24) 60 83 5.6 (2.95–10.73) <0.0001

Group 3 (n = 19) 23 53 4.92 (2.39–9.77) <0.0001

Group 4 (n = 13) 64 60 1.36 (0.62–3.04) 0.55

Group 5 (n = 10) 50 65 2.78 (1.10–6.86) 0.043

Odds ratios [OR] comparing GPT 4 vs. 3.5. Group 1: Neurology and Psychiatry, Group 2: Oncology and Hematology, Group 3: Infectious Diseases, Internal Medicine, Toxicology, Group 4: 
Rheumatology, Autoimmune Diseases, Group 5: Others (Cardiology, Genetic Diseases, Gastroenterology, Dermatology, Nephrology and Pediatrics).

TABLE 2 Performance of GPT 3.5 and 4 in providing the correct diagnosis, according to disease incidence and PubMed articles covering the disease.

Top diagnosis correct Correct diagnosis in top 3 Correct diagnosis in 
differential

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

GPT 3.5

Incidence

(per 10-fold increase)

0.80 (0.67–0.95) 0.01 0.74 (0.64–0.87) < 0.001 0.82 (0.74–0.92) < 0.001

PubMed Articles

(per 10-fold increase)

1.32 (1.12–1.56) 0.001 1.42 (1.23–1.64) < 0.001 1.40 (1.25–1.56) < 0.001

GPT 4

Incidence

(per 10-fold increase)

0.90 (0.80–1.02) 0.108 0.90 (0.81–0.99) 0.036 0.90 (0.82–0.99) 0.033

PubMed Articles

(per 10-fold increase)

1.15 (1.01–1.30) 0.03 1.16 (1.04–1.28) 0.005 1.26 (1.13–1.40) < 0.001

Odds ratios [OR] listed for a multivariate logistic regression including both incidence and article count.
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assess whether the model’s diagnoses matched the final case 
diagnosis, their results found an agreement between GPT4’s top 
diagnosis and the final diagnosis in 39% of the cases, and in 64% 
of the cases the final diagnosis was included in the differential 
diagnosis list. These results contrast with ours, since we found 
that GPT4 was able to provide the correct diagnosis as the first 
answer in 22% of the cases, whereas it provided the correct 
diagnosis within the differential diagnosis list in 68% of the cases. 
In addition, Zhair’s study found that GPT4 provided a mean of 9 
differential diagnoses, similarly our study found a mean of 
9.23 diagnoses.

Another study using a different, medicine-specific large language 
model called Med-PaLM, was able to provide accurate answers to 
different questions posted in a multiple-choice and long-form 
setting. Med-PaLM was superior in solving medical questions when 
compared to MultiMedQA (6 sets of open data that include similar 
questions to the United  States Medical Licensing Examination 
(USMLE)), and HealthSearchQA (related to common consumer 
health related questions). MedPaLM was able to answer accurately 
different formats of questions, such as multiple choice and long 
form. In a second part of the study, clinicians from different 
countries were asked to solve 140 medical questions in long-form 
answers, the same task was performed by MedPaLM. The answers 
were assessed by clinicians with specialties in different medical 
fields, the answers provided by the LLM overall presented 
outstanding results, however MedPaLM’s answers presented higher 
numbers of incorrect information, which most of the times was 
clinically significant (11).

When formulating a differential diagnosis, disease incidence as 
well as the severity/consequences of missed diagnosis are often 
considered (17). However, some common diseases are 
underrepresented in the literature, whereas some rare conditions are 
given particular emphasis in medical literature and educational 
materials. In an attempt to refine medical-domain performance, 
several models have been trained specifically on PubMed, which may 
be subject to this same bias (18). As LLMs are refined as diagnostic 
decision aids, strategies to align output with true disease prevalence 
are needed.

5 Limitations

One of the limitations of this study was the lack of publicly 
available diagnostic challenges with curated differential diagnosis 
lists, resulting in our use of a single source of cases which was only 
modest in size. The small sample size may lead to lower accuracy in 
precisely quantifying the difference in performance between the 
GPT models tested. Additionally, the Massachusetts General 
Hospital Case Records present complex cases that may not 
represent the most frequent case presentations – which may 
be  more straightforward with higher diagnostic accuracy from 
AI models.

As the GPT models evaluated were trained on data collected on 
or before September 2021, and thus performance for certain 
diagnoses with changing epidemiology [such as monkeypox (19)] 
may be underestimated. We chose to evaluate OpenAI’s GPT models 
in this study rather other LLMs due to their widespread uptake (20), 

as it is most likely to be in current use by physicians and trainees, and 
as such characterization of performance is most urgent. Furthermore, 
we  used a single prompt to evaluate model performance in our 
primary analysis. Although preliminary analysis suggested that 
performance was similar across prompts, it is possible that 
modifications of the prompt may change the relative accuracy of 
GPT3.5 and 4 models.

Finally, although we found that disease incidence was either not 
associated or negatively associated with model accuracy, incidence is 
difficult to establish and these estimates represent our best efforts to 
define incidence through literature review. Incidence can vary widely 
depending on the population studied and across geographic regions, 
and these results may differ with alternate approaches to 
estimate incidence.

6 Conclusion

In this study we  demonstrated that OpenAI’s GPT-4 model 
outperformed GPT-3.5 in correctly diagnosing challenging clinical 
cases, but misdiagnosis was common, and at best such models might 
be used as decision aids in their current state. In training LLMs 
specifically as diagnostic aids, steps should be taken to account for 
the overrepresentation of some diagnoses in the medical literature. 
It is important to take into consideration certain aspect of using 
LLM in medicine, such as a negative impact in critical thinking, 
ethical considerations, as well as potentially detrimental 
consequences for the patient, thus the use of LLM in clinical 
medicine might not be  ready for a global integration into 
clinical workflows.
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One recent example of artificial intelligence is the generative pre-trained transformer

(ChatGPT) perceived as a conversational chatbot launched by the artificial intelligence

company OpenAI R© in 2022 and quickly gained widespread popularity (1). Recently, we

have seen more research focusing on developing artificial intelligence technologies in

nursing. However, most existing studies focus on the capabilities and functionalities of this

robot, while due to the novelty of this technology application, there are extensive unknown

dimensions associated with it. Therefore, identifying all dimensions of it requires time.

These sensitivities are particularly more relevant in the education of nursing students.

As nursing care continues to evolve, nursing education must also evolve. Today, the

development of artificial intelligence technologies and technological advancements herald

significant changes in the future of nursing (2).

Nurses constitute a vital part of the healthcare workforce worldwide and play a key

role in promoting the health of communities. Therefore, health professionals’ education

are more important than other fields, Because the students of these fields are the future

workforce and are supposed to protect human lives as their most valuable asset. Part

of this importance can be attributed to the close connection between nurses’ activities

and patients’ health and well-being. In many definitions of nursing, emphasis has been

placed not only on its scientific aspect but also on its artistic aspect (3). Nursing as an

art involves creatively using knowledge and science based on skill and expertise to convey

emotions and concepts to others. Using chatGPT requires interpretation, sensitivity, and

active participation. Skillful use of empirical knowledge to tailor to the unique needs of

patients and cautious use of creativity is essential (4). Emphasizing ethical principles is

another aspect of this concept.

Among the capabilities of ChatGPT in nursing education are providing nearly instant,

comprehensive, and logical textual responses to instructors’ academic questions, solving

university assignments, and conducting research projects. Offering quick, accurate, and

convincing responses can lead students to excessively trust ChatGPT as an information

source and become dependent on it. Over-reliance on artificial intelligence technologies

like ChatGPT may decrease direct interactions between nursing students and instructors.

The experiences of specialized instructors and experienced nurses can be invaluable and

help students better understand the course material. Personal experiences usually carry a

higher value than pure scientific information, and ChatGPT does not provide this added

value. This issue can lead to problems in developing essential skills in nursing students.

These skills include critical thinking, clinical reasoning, the ability to design a nursing care

plan, and problem-solving skills (5).

Furthermore, despite the ease of access to chatbots like ChatGPT, nursing students may

be less inclined to find personal solutions and engage in critical thinking. This ultimately
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leads to the training of nurses who may need a greater

understanding of patient care situations. Communication is

essential in nursing, and nursing students, by developing

their communication skills, enable better patient care. Suppose

nursing students are constantly engaged with digital tools and

artificial intelligence. In that case, their communication abilities

may decrease in real-life situations, leading to insufficient and

inappropriate communication with patients in clinical settings.

Technological addiction, defined as excessive use of technology,

is another potential threat posed by these robots to students,

which can lead to psychological, social, and physical problems

(6). Therefore, creating and maintaining a balance between

artificial intelligence and human capabilities in nursing education

seems essential.

While the features and capabilities of these chatbots can

potentially revolutionize nursing education, if not used properly,

they can be a double-edged sword! Certainly, the complete

replacement of artificial intelligence for human intelligence is

not possible, at least in nursing. We need nurses in clinical

settings who, in addition to practical skills, possess clinical

reasoning abilities, analytical power, and high problem-solving

skills. Artificial intelligence technologies can threaten this and

be perceived as a death knell for traditional learning. Therefore,

preventing their potentially dangerous threats in nursing education

is recommended, especially considering regulations and guidelines

before their use becomes as uncontrollable as the COVID-19

pandemic. The presence of unknown issues surrounding artificial

intelligence, like the dark side of the moon, emphasizes the need

for further studies on artificial intelligence threats (beyond the dark

side of artificial intelligence) concurrently with the development of

existing knowledge about its capabilities.
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Background: The large-scale language model, GPT-4-1106-preview, supports 
text of up to 128  k characters, which has enhanced the capability of processing 
vast quantities of text. This model can perform efficient and accurate text data 
mining without the need for retraining, aided by prompt engineering.

Method: The research approach includes prompt engineering and text 
vectorization processing. In this study, prompt engineering is applied to assist 
ChatGPT in text mining. Subsequently, the mined results are vectorized and 
incorporated into a local knowledge base. After cleansing 306 medical papers, 
data extraction was performed using ChatGPT. Following a validation and 
filtering process, 241 medical case data entries were obtained, leading to the 
construction of a local medical knowledge base. Additionally, drawing upon the 
Langchain framework and utilizing the local knowledge base in conjunction with 
ChatGPT, we successfully developed a fast and reliable chatbot. This chatbot is 
capable of providing recommended diagnostic and treatment information for 
various diseases.

Results: The performance of the designed ChatGPT model, which was enhanced 
by data from the local knowledge base, exceeded that of the original model by 
7.90% on a set of medical questions.

Conclusion: ChatGPT, assisted by prompt engineering, demonstrates effective 
data mining capabilities for large-scale medical texts. In the future, we  plan 
to incorporate a richer array of medical case data, expand the scale of the 
knowledge base, and enhance ChatGPT’s performance in the medical field.

KEYWORDS

ChatGPT, large language model, data mining, prompt engineering, local knowledge 
base

1 Introduction

In November 2022, OpenAI released ChatGPT, a GPT-3.5 Turbo-powered intelligent 
chatbot, marking a significant advancement in knowledge management and artificial 
intelligence content creation (1). This technology has significantly enhanced the ability to 
comprehend and generate text, assisting researchers and medical experts in writing literature 
reviews and abstracts, as well as suggesting structures and references, and it can even be used 
to write draft papers (2). Leveraging its efficient semantic comprehension, language generation, 
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and logical reasoning capabilities, ChatGPT has been widely applied 
in various fields such as media, education, healthcare, customer 
service, law, and data processing, garnering considerable 
attention (3, 4).

In the medical field, various studies (5–8) have explored the 
potential of ChatGPT, indicating that it can alleviate the burden on 
physicians without disrupting existing workflows. These studies 
emphasize the role of ChatGPT in enhancing the humane aspect of 
caregiving, including empathy and sensitivity to patients’ emotional 
needs, which current large language models (LLMs) struggle to fully 
achieve. Faced with the unequal distribution of global medical 
resources, where developed countries have access to advanced medical 
technology and well-trained healthcare professionals while developing 
countries often struggle with limited medical infrastructure and 
insufficient healthcare providers (9, 10), it becomes necessary to 
develop tools that can efficiently address common health issues. LLMs 
possess the capability to utilize knowledge from various disciplines to 
efficiently handle labor-intensive and time-consuming tasks, such as 
literature search, medical entity recognition, and data analysis (11–
13). Recent studies have shown that trained models are capable of 
reformulating texts to convey empathy more effectively, which can 
enhance mental health treatments (14). For example, these models can 
rephrase clinical advice or supportive messages to make them more 
comforting and understanding for patients. Additionally, LLMs have 
demonstrated potential in various medical fields such as radiology, 
ophthalmology, medical insurance, and urology (15–18).

Despite this, extracting medical information from the plethora of 
literature and storing it in a local knowledge base remains a challenge. 
Traditional methods are labor-intensive, weak in generalization 
capabilities, and often require familiarity with specific software tools 
or computer programming skills (19). Additionally, the high 
complexity of medical information (20, 21) and issues such as 
bottlenecks in data annotation (22) represent significant challenges 
that cannot be overlooked. However, with the emergence of high-
performance, LLMs that support up to 128 k context, such as GPT-4-
1106-preview (23), this process is expected to be revolutionized. As a 
data processing assistant, ChatGPT can work collaboratively with 
human researchers to advance text mining and data analysis (24, 25). 
ChatGPT’s capabilities stem from its vast pre-trained text corpus, 
which is a large collection of diverse texts used during the model’s 
training (26). This enables ChatGPT to naturally excel in language 
comprehension and named-entity recognition, identifying 
professional terms such as disease and drug names without additional 
training (27). Moreover, ChatGPT is adept at identifying and 
associating abbreviations with their full forms in medical data mining, 
such as “RA” (Rheumatoid Arthritis), “LFTs” (Liver Function Tests), 
and “PTT” (Partial Thromboplastin Time). This ability is crucial for 
reducing the quantity of duplicate “unique entities” in datasets that 
arise due to the use of various abbreviations, helping to avoid 
redundant data without new information. In contrast, traditional 

natural language processing methods often fail to recognize 
abbreviations and full names without a manually compiled medical 
abbreviation dictionary (28).

With the continuous advancement of artificial intelligence 
technology, AI has played a key role in various subfields of medicine, 
such as pancreatic cancer, liver cancer, digestive system diseases, and 
retinal pathologies (29–32). Deep learning and advanced algorithms 
aid physicians in more accurate diagnosis and prediction of diseases 
(33, 34). Research has also explored the use of AI in radiopathomics 
(the integration of radiology and pathology data to improve diagnostic 
accuracy) and diabetology (35, 36).

Although LLMs such as ChatGPT have made significant 
advancements in the medical field, enhancing the efficiency and 
accuracy of healthcare services, current research often focuses on the 
intelligent diagnosis of specific diseases. This leaves a gap in the 
development of comprehensive intelligent systems that are broadly 
applicable to multiple conditions. Additionally, the complexity, 
diversity, and challenges associated with data annotation in medical 
information processing remain significant hurdles. Studies indicate 
that well-designed prompts and contextual settings can substantially 
reduce the likelihood of ChatGPT generating erroneous information 
(24, 37). This insight has guided our approach in designing text data 
mining strategies, ensuring maximum efficiency and accuracy in GPT 
outputs. To address these issues, our research aims to utilize the latest 
ChatGPT model, which supports extensive context, to deeply mine 
medical information and assist in data annotation. Subsequently, 
we will construct a medical knowledge base derived from the deeply 
mined data, enhancing the application performance of LLMs in the 
medical domain. Finally, we propose a system named “MED-ChatGPT 
CoPilot,” which integrates case mining with auxiliary treatment 
suggestions. This system is designed to provide medical professionals 
with an efficient and rapid method for case mining and data 
annotation, while also serving as a convenient medical knowledge 
advisor for patients.

2 Methods and experimental design

The workflow of this study is divided into five steps: (1) Data 
preprocessing; (2) Design of text mining using ChatGPT; (3) Building 
a local knowledge base and calculating similarity vectors; (4) 
Developing an auxiliary inquiry system based on the ChatGPT API; 
and (5) Utilizing ChatGPT to write script codes for assistance with 
tasks (Figure 1).

2.1 Data preprocessing

In the data preprocessing stage of this study, special attention was 
given to the security and reliability of the selected medical data. 
We conducted an extensive literature search using academic literature 
platforms such as ScienceDirect, Web of Science, and PubMed, with 
keywords including “clinical guidelines,” “treatment guidelines,” and 
“treatment strategies.” Building upon this, we  established a set of 
stringent screening criteria. Initially, we  excluded all non-English 
literature, case reports, reviews, forum articles, brief communications, 
and expert opinion pieces, as well as studies that were not peer-
reviewed or had a sample size of less than 100, to ensure the scientific 

Abbreviations: GPT-4-1106-preview, Generative Pre-trained Transformer 4-1106-

preview version; API, Application Programming Interface; LLMs, Large Language 

Models; RA, Rheumatoid Arthritis; LFTs, Liver Function Tests; PTT, Partial 

Thromboplastin Time; AI, Artificial Intelligence; RESTful, Representational State 

Transfer; gRPC, gRPC Remote Procedure Calls; HERs, Electronic Health Records; 

GDPR, General Data Protection Regulation.
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quality and statistical power of the selected papers. Furthermore, 
we  eliminated studies that lacked a clear mechanism of disease 
treatment or verification of treatment efficacy. The literature that 
passed this meticulous screening process needed to provide detailed 
descriptions of treatment strategies for specific diseases, be based on 
large clinical trials or multicenter studies and have clear data collection 
and analysis methodologies, which ensures both the quality of data 
and the broad applicability of the research.

To further ensure the high quality of the selected studies, 
we  conducted an additional quality assessment by evaluating the 
average citation count of each paper. Only those papers with an 
average citation count of five or more were included, indicating that 
these studies have been recognized and validated by the scientific 
community. After this two-round screening process, we ultimately 
selected 306 high-quality medical research papers published within 
the past 5 years that covered various disease domains. Through this 
rigorous selection process, we  ensured the scientific validity and 
practical utility of the chosen papers, providing a solid data foundation 
for this study.

To address the issue of text length limitations inherent in LLMs 
for text processing, we have devised an innovative technical approach. 
This approach involves filtering paragraphs directly related to disease 
diagnosis and treatment from the complexities of the literature. 
We utilize meticulously crafted regular expressions to identify and 

automatically exclude non-essential information, such as reference 
citations and acknowledgments, based on their formatting patterns. 
To ensure the accuracy and relevance of the filtering process, a 
professional doctor reviewed the criteria and results to confirm that 
only non-essential information was removed. This step was crucial to 
maintain the integrity and context of the medical information in the 
filtered data. Additionally, the detailed process and specific 
implementation methods have been compiled in the supplementary 
materials, available in the Data Availability section along with the 
corresponding code and datasets. Considering that excessive text 
length can impact the efficiency and effectiveness of the model (38), 
we  have eliminated overly verbose and medically irrelevant text 
segments post-filtering. By retaining only the essential medical 
content, we  aim to enhance the model’s performance without 
compromising data reliability. Through this series of preprocessing 
steps, we have ensured that each selected medical literature includes 
at least one disease and its corresponding treatment method and that 
the token size and format comply with the input requirements of the 
ChatGPT-4-1106-preview model, namely, keeping the context length 
under 128 thousand tokens.

Considering both the context length limitations of ChatGPT and 
the need to maintain the text’s quality and relevance, we adopted a 
balanced approach to preprocessing. While we  acknowledge that 
extensive preprocessing could potentially limit the generalizability of 

FIGURE 1

Schematic diagram of the MED-ChatGPT CoPilot workflow. The diagram illustrates a MED-ChatGPT CoPilot-assisted workflow that begins with 
“Published medical papers” being preprocessed using a Python script generated with ChatGPT’s assistance. The preprocessing step removes 
extraneous information, such as references, acknowledgments, and other non-essential sections, resulting in “Pure medical papers.” These pure 
medical papers focus solely on relevant medical content and are then converted into text files to ensure compatibility and ease of processing by 
ChatGPT. Subsequently, through collaborative efforts between ChatGPT and Prompt Engineering, “Medical records” are generated. These records 
undergo professional medical review, and 241 cases are vectorized and indexed to construct the “Medical Case Database,” a local repository of medical 
knowledge. Finally, the integration of this local vector knowledge database with ChatGPT fulfills the objective of this study: to create a medical 
assistant for case mining and aiding diagnosis and treatment. It is important to note that the fifth step of the workflow involves using ChatGPT to 
compose script code to assist with tasks, a process which is interwoven throughout the entire workflow and elaborated on in Section 2.5. The reason 
for converting the papers into text files is that ChatGPT processes text more efficiently and accurately than PDFs. Text files are easier to parse and 
manipulate programmatically, ensuring that the relevant medical information is seamlessly integrated into the workflow.
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our findings, we  also recognize the critical need for ChatGPT to 
process information that is accurate and dense, enabling more 
effective case mining and support for diagnosis and treatment. Thus, 
our preprocessing was carefully calibrated to eliminate clearly 
non-essential content while preserving the vital details essential for 
understanding disease diagnostics and therapeutic strategies. By doing 
so, we achieved a compromise between the need for preprocessing and 
preserving the integrity and wide applicability of our study to diverse 
medical literature.

2.2 Text data mining design based on 
ChatGPT

Through repeated experimentation and fine-tuning, 
we determined the optimal prompt design and background setting 
(also known as task description) and appended cues after each 
question to enhance the efficiency and accuracy of GPT outputs and 
ensure the content’s standardization. Within the prompts, we required 
the large model to divide each disease-related information into six 
parts: (1) Disease name; (2) Clinical manifestations; (3) Recommended 
treatment protocols; (4) Recommended medications; (5) Precautions 
and side effects; and (6) Additional recommendations (such as lifestyle 
advice). The workflow diagram for this study’s ChatGPT-assisted 
medical text mining task using prompt engineering is presented in 
Figure 2. Specific prompts, background information, as well as input 
and output examples, can be found in Table 1.

Moreover, OpenAI’s API allows researchers to precisely control 
key parameters of the GPT model, including “temperature” and 
“history.” The “temperature” parameter dictates the degree of 
conservatism or innovation in the model’s output, with values ranging 
from 0 (very conservative) to 1 (highly innovative). In this study, 
we set eleven different “temperature” values at intervals of 0.1, from 0 
to 1, to test their effect on data mining efficacy. To ensure consistent 
experimental conditions, we conducted three independent rounds of 
ChatGPT tests for each “temperature” setting and recorded the 
outputs. Moreover, to eliminate the influence of “history” on the 

model’s outputs, we reset ChatGPT’s “history” parameter after each 
interaction, ensuring that each invocation started from a state with no 
memory, to avoid any impact from previous interactions on 
subsequent outputs. By comparing model performance under various 
settings, we found that the GPT-4-1106-preview model performed 
best with the “temperature” set to 0.1. Hence, we  selected this 
parameter configuration as the standard setup for extracting medical 
text information.

2.3 Building a local knowledge base and 
vectorized similarity computation

Since the advent of ChatGPT, Large LLMs have been warmly 
received globally, and tool frameworks like LangChain (39) have been 
developed. LangChain is a framework designed specifically for 
developing applications based on LLMs, offering developers a range 
of modules and tools to simplify the integration process with LLMs. 
Using LangChain, developers can easily leverage language models to 
perform complex tasks, including text-to-image conversion, 
document question answering, and chatbot construction. In this 
research, we  adopt the LangChain framework to deeply integrate 
pre-trained language models with a local knowledge base. Using 
“disease names” and “clinical manifestations” from medical case 
information to build an index, we then employ the text2vec-large-
Chinese vectorization model (40) to vectorize the medical case data. 
This model not only demonstrates excellent vectorization capabilities 
for Chinese and English texts but is also fully open-source and free, 
aligning with our future plans to incorporate Chinese medical cases 
into the database.

While exploring different retrieval enhancement methods, we also 
considered other forms, such as the direct embedding of source files 
(41). However, we opted for vectorized similarity calculation and the 
construction of a local knowledge base because this approach provides 
different benefits for researchers and patients. For researchers, it offers 
a scalable and interpretable representation of medical case 
information, enabling complex semantic retrieval and deeper insights, 

FIGURE 2

An overview of the workflow for medical text mining with ChatGPT assisted by prompt engineering. After the large model extracts preliminary data, the 
data undergo cleansing and verification by professional physicians before proceeding to the next step of building a local knowledge base, which will 
be detailed in Section 2.3.
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which surpass simple text matching. On the other hand, for patients, 
our method emphasizes an intuitive and easy-to-manage user 
interface that makes medical information more accessible and 
understandable. Compared to file embedding, our approach focuses 
on the specific needs of each user group, ensuring that researchers can 
access detailed and nuanced data while patients receive clear and 
straightforward information. Furthermore, given the sensitivity and 
complexity of medical information, we believe that providing a clear, 
interpretable knowledge representation is more important than 
relying solely on automated, potentially difficult-to-explain 
embedding vectors.

After vectorizing the medical case data, the storage and retrieval 
of vector content rely on the Qdrant vector search database (42). 
Vector databases are an emerging means of data interaction that 
combine with abstract data representations produced by machine 
learning models, such as deep learning. Vector databases exhibit 
exceptional performance in applications such as semantic search and 
recommendation systems (43). Qdrant is an open-source vector 
database designed for the new generation of AI applications, using a 
cloud-native architecture and offering RESTful and gRPC APIs for 

embedding vector management. It supports search functions for 
images, voice, and video and can be  integrated with AI engines, 
enhancing the breadth and depth of its applications. Additionally, 
Qdrant uses the Cosine Similarity algorithm to improve retrieval 
accuracy, the formula of which is as follows:
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2.4 Establishing a ChatGPT-based auxiliary 
diagnostic chatbot

After completing the vectorization embedding of medical case 
texts and constructing a corresponding local medical case vector 
database, this research utilized Python’s Streamlit package to build a 
front-end interface, enabling auxiliary diagnostic dialogues with 

TABLE 1 Detailed prompt and example documentation for study.

Task 

description

“context”: “You are a medical assistant specializing in answering common disease questions, answering questions based on the papers you have read. Use the 

provided context to answer the question. If the question is irrelevant in the context, or the context does not mention anything related to the disease, answer 

‘Based on the information in the medical literature I have read so far, I cannot provide a reliable answer to this question. Please modify your question.”

Prompt

Please extract the following information from the provided text: Disease name, Clinical manifestations, Recommended treatment plan, Recommended 

medication, Precautions and side effects, Other suggestions (such as lifestyle advice). If the text contains information regarding other diseases, please also 

present it in the required format. If certain attributes of the disease are not mentioned, then there is no need to provide me with information about that disease. 

Then, refine the extracted information in the following format:

Disease name:\n

Clinical manifestations:\n

Recommended treatment plan:\n

Recommended medication:\n

Precautions and side effects:\n

Other suggestions:\n

Please note that the recommended medication and its corresponding precautions and side effects should be matched correctly。If the requested information is 

not extracted, let me know so. Below is the text context to be extracted:

Input

“158. INFECTIONS DUE TO CAMPYLOBACTER AND RELATED SPECIES – Martin J. Blaser

DEFINITION Bacteria of the genus Campylobacter and of the related genera Arcobacter and Helicobacter (Chap. 154) cause a variety of pyogenic infections. 

Although acute diarrheal illnesses are most common, these organisms may cause infections in virtually all parts of the body, especially in compromised hosts, 

and these infections may have late nonsuppurative sequelae. The designation Campylobacter comes from the Greek for “curved rod” and refers to the 

organism’s vibrio-like morphology.” … omission of the following text, which in total contains 2,276 words.

Output

Disease name: Campylobacter and related species infections

Clinical manifestations: Diarrhea, abdominal pain, fever, Diarrheal illness may be grossly bloody, Cramping, pseudoappendicitis, Convulsions in febrile young 

children, Intermittent diarrhea or nonspecific abdominal pain without localizing signs (C. fetus),Prolonged relapsing systemic illness with fever, chills, and 

myalgias (C. fetus),Recurrent cellulitis with fever and bacteremia in immunocompromised hosts (H. cinaedi)

Recommended treatment plan: Fluid and electrolyte replacement for diarrheal illnesses, Antimicrobial therapy for high fever, bloody diarrhea, severe diarrhea, 

persistence for more than 1 week, and worsening of symptoms, For systemic infections, empirical treatment with gentamicin, imipenem, or chloramphenicol, 

followed by susceptibility testing, Prolonged therapy for immunocompromised patients or endovascular infections

Recommended medication: Erythromycin (250 mg orally four times daily or 30 to 50 mg/kg per day for children),Clarithromycin and azithromycin as 

alternatives, Ciprofloxacin (500 mg orally twice daily) or another fluoroquinolone for adults, Tetracycline and furazolidone as other alternatives, Gentamicin, 

imipenem, or chloramphenicol for systemic infections, Ciprofloxacin and amoxicillin/clavulanate for susceptible strains

Precautions and side effects: Resistance to fluoroquinolones is increasing, Antimotility agents may prolong symptoms and are not recommended, Side effects 

specific to each medication should be considered and monitored

Other suggestions: Cook poultry sufficiently to prevent infection, Avoid raw (unpasteurized) milk or untreated water, Practice good hygiene when in contact 

with household pets, Seek medical attention if symptoms persist or worsen

This table documents the specific prompts, background information, and examples of input and output used in detail in this study.
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FIGURE 3

The integrated workflow of the medical chatbot. The integrated workflow of the medical chatbot. This workflow begins with the user initiating a query, 
which is then vectorized using a pre-trained language model. The system calculates the cosine similarity between the user’s query vector and vectors 
in the local medical case database. The top three matching medical cases are retrieved, and further matched with the user’s dialogue context to select 
the most relevant case. This selected case, combined with prompt engineering, is then input into the ChatGPT model. The ChatGPT model generates 
a response that is presented to the user through the interface.

users. When a user initiates a query, the system first processes the 
content of the query into a vectorized form. By calculating the cosine 
similarity between the user’s query vector and each vector in the 
medical case vector database, the system can precisely retrieve the 
text units that best match the user’s needs. After the optimal matching 
text unit is selected, it is applied in conjunction with the prompt 
engineering to the ChatGPT model. Benefiting from ChatGPT’s 
powerful capabilities in text generation and logical reasoning, this 
method combines the data-driven characteristics of the vector 
database, effectively enhancing the accuracy of the consultation and 
significantly reducing the tendency for “hallucination” phenomena 
that large-scale language models are prone to (44, 45). Ultimately, the 
system presents the processed results on the user interface. A 
schematic of the integrated workflow for the medical dialogue robot 
is presented in Figure 3.

To ensure the safety and accuracy of medical advice, this system’s 
chatbot processes queries solely from the database, thereby reducing 
the production of misleading information. Furthermore, the chatbot 
is capable of “remembering” previous conversations, including 
recognized contexts and pertinent medical case information, to 
maintain the coherence and data-driven nature of the responses.

2.5 ChatGPT-assisted script code 
generation work

In this study, we have fully leveraged the automation capabilities 
of ChatGPT to generate Python scripts that are used for parsing 
medical literature, generating prompts, processing text, and 
conducting data mining, with the results being output in a predefined 
format. Traditionally, this process required complex programming 
skills and a significant investment of time; however, with the efficient 
code generation capabilities of ChatGPT, this process has been 
significantly simplified and accelerated. For instance, in less than a 
second, the GPT model is capable of generating a data preprocessing 
script, which can automatically convert PDF-formatted papers into 
clean medical text files devoid of irrelevant information, markedly 
reducing the workload and time costs. Researchers simply need to 
describe their requirements and the desired output format in natural 
language, and ChatGPT rapidly generates the corresponding Python 
code. This code can be directly copied, pasted, modified, and executed, 
greatly enhancing research efficiency. Should any errors arise during 
the execution of the code, this large-scale model also provides instant 
assistance to help researchers quickly identify and correct these errors. 
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We  have thoroughly validated and tested the generated scripts to 
ensure their accuracy and reliability in parsing and processing medical 
texts. Furthermore, to promote reusability, transparency, and 
assessment of this study, these scripts (including pdf_to_pool.py, 
remove_ref.py, txt_to_csv.py, etc.) have been shared in the 
supplementary materials. This section has been expressly added to 
highlight the possibility that even non-programmers, with the 
assistance of GPT, can complete and fine-tune automated workflows.

2.6 Evaluation of experimental design

In order to investigate the impact of the MED-ChatGPT medical 
assistant on the time efficiency of medical case mining and its quality 
of responding to a specific set of medical questions after being 
augmented with a medical knowledge base, this study designed a 
series of evaluative experiments.

To assess the efficiency of ChatGPT in mining medical texts, 
we devised a repeated comparative validation experiment. Initially, 
we  compiled a pool of 306 high-quality medical research papers 
published within the last 5 years. From this pool, we randomly selected 
100 papers to ensure a representative sample for our study. The 
random selection was performed using Python’s `random` module, 
specifically the `sample` function, which ensures each paper has an 
equal probability of being chosen. For each experimental round, 20 
papers were chosen for comparative validation, with a total of five 
rounds conducted. In each round, we  maintained constant other 
variables (such as API interface parameters, prompts, and 
temperature) and assigned both the ChatGPT-4-1106-preview model 
and three Chinese medical professionals with master’s degrees and 
over 5 years of clinical experience to process these papers. We recorded 
the time taken by each to complete the tasks in order to calculate the 
average time. To account for potential fatigue phenomena human 
participants might experience when processing large volumes of text, 
we spaced the experiment over 5 days, with 1 day between each round.

Subsequently, to evaluate the performance of MED-ChatGPT 
CoPilot in medical question-answering tasks, we designed a series of 
experiments aimed at comparing the question-answering quality of 
the ChatGPT model, enhanced with a medical knowledge base, 
against the original baseline model when addressing a specific set of 
medical questions. The experiments utilized the MultiMedQA medical 
benchmark dataset (46), which comprises questions that include 
multiple-choice and long-form responses. From its subset, the MedQA 
dataset (47), we randomly selected 300 questions as our test samples, 
ensuring the generalizability and randomness of the test results. The 
reason for using only a subset of the MedQA dataset, rather than the 
complete benchmark dataset, is that these questions all followed the 
style guidelines of the United States Medical Licensing Examination, 
consisting solely of single-choice questions. This approach was chosen 
to reduce subjectivity in the evaluation and ensure the definitiveness 
of the answers. We compared the performance of the original baseline 
model (ChatGPT-4-1106-preview) with that of the model enhanced 
with a medical knowledge base, using the same set of questions for 
both models, and recorded all question-answer pairs (see 
Supplementary Data). The evaluation criterion was based on the 
proportion of questions correctly answered by the models relative to 
the total number of test questions, thereby measuring and comparing 
the performance of the two models.

3 Results

3.1 Text mining time performance 
evaluation

In the domain of medical text mining efficiency, experimental 
results (Figure  4) demonstrate that the efficiency of information 
extraction from medical cases by large-scale models significantly 
surpasses that of a human with substantial medical knowledge. In the 
comparative study of medical text mining efficiency, we calculated the 
mean, standard deviation, and 95% confidence interval for the time 
taken by the GPT model and a human with a master’s degree in 
medicine to process literature. The GPT model requires an average of 
only 11.89 s per document (with a standard deviation of 1.76 s and a 
95% confidence interval ranging from 10.96 to 12.82 s), totaling less 
than 4 min to process 20 documents. In contrast, the average time 
taken by the medical master’s degree holder to process the same 
number of documents ranges from 157.8 to 379.2 s per document 
(with standard deviations of 21.58 s and 46.28 s, and 95% confidence 
intervals of 150.34–165.26 s and 359.14–399.26 s, respectively), and 
this duration already takes into account the assistance of English 
translation software. This further highlights the advantages of GPT in 
multilingual processing.

3.2 Evaluation of the ChatGPT model 
enhanced with a local knowledge base for 
medical knowledge performance

In the assessment of medical knowledge performance, this study 
compared two models utilizing identical internal interface parameters: 

FIGURE 4

The timeline comparison chart for medical text information mining 
in this study. It records the average time required for three medical 
masters and the medical assistant from this study to extract 
information from the same medical case, clearly demonstrating their 
relative efficiency in completing this task.
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the original ChatGPT-4-1106-preview base model and MED-ChatGPT 
CoPilot, the model developed in this study augmented with a medical 
knowledge base. The evaluation results are presented in Table 2.

After analyzing 300 randomly selected sample questions, the 
initial ChatGPT-4-1106-preview baseline model exhibited an accuracy 
rate of 71.67%, whereas MED-ChatGPT CoPilot demonstrated an 
accuracy rate of 77.33%. This comparative result clearly indicates that, 
on a specific set of medical questions, MED-ChatGPT CoPilot 
surpassed the original baseline model, with an increased accuracy 
of 7.90%.

However, it must be noted that the performance improvement is, 
to some extent, constrained by the current scale of the knowledge 
base. Given that the knowledge base presently contains only 241 
medical case entries, the observed enhancement in performance is 
already significant. It is reasonable to anticipate that with further 
expansion of the knowledge base, the model’s performance could see 
even greater improvements.

3.3 Consulting diagnostic and therapeutic 
recommendations and medication 
suggestions through an auxiliary robotic 
system

The developed system maximizes interactivity and user experience 
by converting database information into a conversational format, as 
detailed in Figure  3. This medical dialogue bot facilitates the 
acceleration of research findings to clinical application. Built upon 
ChatGPT’s medical assistant architecture, it supports medical case 
mining and diagnostic support. All conversational data are derived 
from detailed analyses of medical papers, ensuring safety and reliability. 
Figure 5 presents a schematic representation of the MED-ChatGPT 
copilot interacting with a user for medical consultation. In this dialogue 
display, the user can inquire about detailed information regarding a 
disease, encompassing key information such as clinical manifestations 
and medication recommendations.

In summary, the results indicate that the MED-ChatGPT CoPilot 
model, enhanced with a specifically curated local medical knowledge 
base, shows notable improvements in medical text mining and 
diagnostic assistance. This model provides high-quality, peer-reviewed 
medical recommendations, ensuring higher relevance and accuracy 
in the medical field. The MED-ChatGPT CoPilot-supported workflow 
excels in mining time efficiency and annotation efficiency, significantly 
simplifying medical research, case mining, and text annotation tasks.

4 Discussion

4.1 Background of existing research

Medical text mining aims to extract valuable information from 
complex medical data to aid in diagnosis, treatment, and disease 

prediction. Previous studies have applied various machine learning 
algorithms, including k-nearest neighbors, decision trees, logistic 
regression, naive Bayes, and support vector machines, to this task 
(48–50). However, these efforts face significant challenges. 
International variations in medical information and the scarcity of 
annotated databases hinder the effectiveness of medical data mining.

Traditional methods rely heavily on keyword matching, which 
often leads to suboptimal outcomes. The advent of Electronic Health 
Records (EHRs) has improved data standardization, yet it introduces 
new concerns regarding patient privacy and the legal acquisition of 
EHR data (51, 52). Despite advancements, these systems still grapple 
with non-standardized terminology and fragmented information 
distribution (53).

Additionally, the COVID-19 pandemic has sparked interest in 
integrating artificial intelligence into medical assistance systems. 
Numerous projects have attempted to incorporate AI into disease 
diagnosis and treatment (54–57), but they mostly still rely on 
traditional methods, such as keyword matching approaches. Recent 
innovations include multimodal approaches, such as combining 
neuroimaging and voice analysis to diagnose Parkinson’s disease (58), 
highlighting the potential for more complex systems. However, these 
advancements are still in progress, and there is an urgent need for 
more comprehensive, accurate, and personalized AI-driven 
medical tools.

4.2 Key findings and innovations

Our study demonstrates that ChatGPT can significantly enhance 
efficiency and accuracy in medical text mining and diagnostic 
support. By integrating a local medical knowledge base with vectorized 
similarity computations, we  improved the precision of retrieving 
relevant medical cases and ensured user-friendly data presentation. 
The MED-ChatGPT CoPilot model, combining ChatGPT with 
curated medical data, notably increased accuracy in medical question-
answering tasks from 71.67 to 77.33%. Additionally, the use of 
ChatGPT for automated script generation streamlined the research 
process, making advanced medical text processing more accessible. 
These innovations collectively advance the field of medical text mining 
and diagnostic assistance.

4.3 Identified limitations and challenges

Despite the significant advantages demonstrated by the 
MED-ChatGPT CoPilot model in medical text mining and diagnostic 
assistance, several limitations and challenges were identified in this 
study. One major challenge is the inherent dependency on the quality 
and comprehensiveness of the local medical knowledge base. 
Although the curated database of 241 medical cases provided a solid 
foundation for enhancing the model’s accuracy, its relatively limited 
scope means it may not cover all possible medical conditions or the 

TABLE 2 Performance statistics of MED-ChatGPT CoPilot versus the original model on a medical knowledge question set.

Model name Correct answers Incorrect answers Total accuracy (%) Improvement ratio (%)

ChatGPT-4-1106-preview 215 85 71.67
7.90

MED-ChatGPT CoPilot 232 68 77.33
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latest research developments comprehensively. This constraint could 
lead to gaps in the model’s diagnostic capabilities, especially for rare 
or newly emerging diseases.

Another area warranting careful consideration is the model’s 
ability to provide medical advice. Although MED-ChatGPT CoPilot 
has shown to outperform standard search engines such as Google by 
providing more structured and comprehensive diagnostic suggestions, 
there are instances where the recommendations from the model 
appear similar to those generated by general search engines. For 
example, while a Google search for symptoms of enteritis might list 
potential causes such as bacterial, viral, or parasitic infections, our 
model goes further by suggesting specific tests based on patient 
symptoms and history to differentiate these causes. However, this 
enhancement is sometimes subtle, and the perceived similarity in the 
output can undermine the perceived value of using our specialized 
system over a general search engine.

The model’s performance enhancement observed in this study 
is also influenced by the specific configuration and tuning 
parameters, such as the temperature setting, which were determined 
through iterative experimentation. While these settings provided 
optimal results for our dataset, they might not be  universally 
applicable across different medical domains or datasets, 
necessitating further fine-tuning and validation for 
broader applicability.

Moreover, while this study did not utilize any personal or private 
patient data, incorporating detailed individual patient data could 
further enhance the system’s capability in assisting medical diagnoses 
and treatments. In the future, we aim to integrate legally compliant 
and secure patient records to enrich the system. Ensuring the 
reliability and legality of data handling will be paramount throughout 
this process to safeguard patient privacy and comply with data 
protection regulations.

FIGURE 5

Demonstrative sample of the medical chatbot interaction. Users are able to inquire about detailed information regarding diseases, which encompasses 
an introduction to the disease, clinical manifestations, as well as recommendations for medication.
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4.4 Future research directions and 
hypotheses

In light of the findings and challenges identified in this study, 
several future research directions and hypotheses have emerged. One 
critical area for future work is the expansion and enrichment of the 
local medical knowledge base. Increasing the number of medical cases 
and integrating the latest research developments will likely enhance 
the model’s diagnostic capabilities, particularly for rare and emerging 
diseases. This expansion could be  achieved through continuous 
updates and collaboration with medical institutions to incorporate 
new clinical data and treatment protocols.

Another promising direction is the incorporation of personalized 
patient data into the system, which could significantly improve the 
relevance and accuracy of diagnostic and therapeutic 
recommendations. However, this approach necessitates stringent 
measures to ensure data privacy and compliance with legal regulations, 
such as the General Data Protection Regulation (GDPR). Developing 
robust data anonymization techniques and secure data handling 
protocols will be crucial in this endeavor.

The integration of multimodal data sources, such as imaging and 
genomic data, with text-based information presents another exciting 
prospect. Combining these diverse data types could provide a more 
comprehensive understanding of complex diseases, leading to more 
accurate diagnoses and personalized treatment plans. Exploring 
advanced machine learning techniques, such as multimodal learning, 
could facilitate this integration.

By pursuing these research directions, we aim to further refine 
and expand the capabilities of our MED-ChatGPT CoPilot, ultimately 
contributing to more effective and personalized medical care.

5 Conclusion

The MED-ChatGPT copilot effectively utilizes prompt engineering 
techniques and a local knowledge base to construct a high-precision, 
reliable medical assistant, providing an innovative and efficient 
solution for medical text mining and adjunctive diagnosis.
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Introduction: Large Language Models (LLMs) are sophisticated algorithms 
that analyze and generate vast amounts of textual data, mimicking human 
communication. Notable LLMs include GPT-4o by Open AI, Claude 3.5 Sonnet 
by Anthropic, and Gemini by Google. This scoping review aims to synthesize 
the current applications and potential uses of LLMs in patient education and 
engagement.

Materials and methods: Following the PRISMA-ScR checklist and methodologies 
by Arksey, O’Malley, and Levac, we conducted a scoping review. We searched 
PubMed in June 2024, using keywords and MeSH terms related to LLMs 
and patient education. Two authors conducted the initial screening, and 
discrepancies were resolved by consensus. We employed thematic analysis to 
address our primary research question.

Results: The review identified 201 studies, predominantly from the United States 
(58.2%). Six themes emerged: generating patient education materials, 
interpreting medical information, providing lifestyle recommendations, 
supporting customized medication use, offering perioperative care 
instructions, and optimizing doctor-patient interaction. LLMs were found to 
provide accurate responses to patient queries, enhance existing educational 
materials, and translate medical information into patient-friendly language. 
However, challenges such as readability, accuracy, and potential biases were 
noted.

Discussion: LLMs demonstrate significant potential in patient education 
and engagement by creating accessible educational materials, interpreting 
complex medical information, and enhancing communication between 
patients and healthcare providers. Nonetheless, issues related to the 
accuracy and readability of LLM-generated content, as well as ethical 
concerns, require further research and development. Future studies should 
focus on improving LLMs and ensuring content reliability while addressing 
ethical considerations.
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1 Introduction

Large Language Models (LLMs) are sophisticated algorithms 
that analyze and generate extensive textual data (1). These models 
leverage vast corpora of unlabeled text and incorporate 
reinforcement learning from human feedback to discern syntactical 
patterns and contextual nuances within languages. Consequently, 
LLMs can produce responses that closely mimic human 
communication when presented with diverse, open-ended queries 
(2–4). Several notable LLMs have emerged recently, including 
GPT-4o by Open AI (5), Claude 3.5 Sonnet by Anthropic (6), and 
Gemini by Google (7).

LLMs have demonstrated significant potential in medicine, 
with transformative applications across various domains, 
including clinical settings. These AI-powered systems can 
streamline clinical workflows, help with clinical decision-making, 
and ultimately improve patient outcomes. Recent studies highlight 
the utility of LLMs in clinical decision support, providing valuable 
insights that enable healthcare teams to make more informed 
treatment decisions (8–10). LLMs also show promise as 
educational tools by enhancing the quality and accessibility of 
materials. However, from a patient’s perspective, they present both 
opportunities and risks. The varying levels of medical knowledge 
among patients may impede their ability to critically assess the 
information provided by LLMs, unlike clinicians who are trained 
to do so.

As of July 2024, there was limited synthesis of knowledge 
regarding the evidence base, applications, and evaluation 
methods of LLMs in patient education and engagement. This 
scoping review aims to address this gap by mapping the available 
literature on potential applications of LLMs in patient education 
and identifying future research directions. Our primary research 
question is: “What are the current and potential uses of LLMs in 
patient education and engagement as described in the literature?” 
This review seeks to enhance future discussions on using LLMs 
for patient care, including education, engagement, workload 
reduction, patient-centered health customization, 
and communication.

2 Materials and methods

This study employed a scoping review methodology, adhering to 
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses Extension for Scoping Reviews (PRISMA-ScR) checklist 
(11). The review process was based on the methodological framework 
developed by Arksey and O’Malley (12), with further refinements as 
proposed by Levac et al. (13).

2.1 Literature search

A literature search was conducted in June 2024 using the 
PubMed database. The search strategy, detailed in 
Supplementary Methods S1, combined relevant keywords and 
Medical Subject Headings (MeSH) terms related to LLMs and 
patient education.

2.2 Study selection

Citation management was facilitated by Covidence software 
(Veritas Health Innovation). The inclusion criteria encompassed 
studies addressing the use, accuracy, relevance, or effectiveness of 
LLMs in patient education, patient engagement, answering 
patient-specific questions, or generating patient education 
materials. Studies were excluded if they did not primarily focus 
on LLMs for patient education, engagement, or answering patient 
questions; did not assess LLMs in healthcare settings or had only 
indirect relations to patients; or focused solely on technical 
aspects or architecture of LLMs without considering their 
application in patient education or engagement. A detailed 
description of the inclusion and exclusion criteria is provided in 
Supplementary Methods S2.

The selection process involved two stages. In the initial 
screening, two authors (SA and VV) independently reviewed the 
titles and abstracts of retrieved articles. Studies passing the initial 
screening were then read in full by both authors. Studies deemed 
eligible by both reviewers were included in the analysis. In cases 
of disagreement, a third author (MK) was consulted to 
resolve discrepancies.

2.3 Thematic analysis

We employed thematic analysis, following the methodology 
proposed by Braun and Clarke (14), to address our primary 
research question. The process began with an author (SA) reading 
and coding 25 randomly selected articles, focusing on content 
related to the potential uses of LLMs in patient education and 
engagement. Subsequently, two authors (SA and MK) examined the 
remaining manuscripts, seeking additional themes or data that 
could either reinforce or challenge the established themes. This 
iterative process facilitated further refinement of the themes 
through group discussions centered on patient education 
and engagement.

3 Results

3.1 Literature search

The initial search strategy yielded 661 papers. After removing one 
duplicate, 660 papers remained for screening. Based on title and 
abstract screening, 365 papers (55.3%) were excluded. Full-text review 
was conducted for 295 papers (44.7% of the initial pool), resulting in 
201 papers (30% of the initial pool) meeting the study inclusion 
criteria (Supplementary Figure S1). Supplementary Data S1 presents 
all of the included papers.

3.2 Descriptive analysis

The geographical distribution of the studies revealed a 
predominance from the United  States, accounting for 58.2% 
(117/201) of the articles. Turkey and China followed, each 
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contributing 6.4% (13/201) of the articles (Figure 1A). The studies 
spanned 35 medical specialties, with general medicine representing 
the largest proportion at 12.9% (26/201), closely followed by 
orthopedic surgery at 12.4% (25/201), and otolaryngology at 9.4% 
(19/201) (Figure 1B).

3.3 Thematic analysis

Our analysis identified six main themes with associated 
subthemes regarding the use of LLMs in patient education 
and engagement:

FIGURE 1

(A) Geographical distribution of studies on large language models (LLMs) in patient education. (B) Specialty distribution of studies on large language 
models (LLMs) in patient education.
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 1 Generating Patient Education Materials
 a Answering Patient Questions
 b Enhancing Existing Patient Education Materials
 c Translation of Patient Education Materials

 2 Interpreting Medical Information from a Patient Perspective
 3 Providing Lifestyle Recommendations and Improving 

Health Literacy
 4 Customized Medication Use and Self-Decision
 5 Providing Pre-, Peri-, and Post-Operative Care Instructions
 6 Optimizing Doctor-Patient Interaction

 a Facilitating Understanding of Consent Forms
 b Enhancing Communication Establishment

Table  1 presents these six themes as represented across the 
analyzed articles, along with illustrative quotes. Supplementary Data S2 
indicates the theme to which each paper belongs.

The theme “Generating Patient Education Materials” was 
predominant, encompassing 80.5% (162/201) of the articles across 
its three subthemes. Within this theme, “Answering Patient 
Questions” was the most prevalent subtheme, representing 71.6% 
(144/201) of all articles. The remaining themes were distributed as 
follows: “Interpreting Medical Information from a Patient 
Perspective” and “Providing Lifestyle Recommendations and 
Improving Health Literacy” each accounted for 4.5% (9/201) of the 
articles. “Providing Pre-, Peri-, and Post-Operative Care 
Instructions” was represented in 6.9% (14/201) of the articles, while 
“Optimizing Doctor-Patient Interaction” appeared in 2.5% (5/201) 
of the articles. The least represented theme was “Customized 
Medication Use and Self-Decision,” accounting for 1% (2/201) of 
the articles.

3.3.1 Theme 1: generating patient education 
materials

The generation of patient education materials emerged as a 
prominent theme, with three key subthemes: answering patient 
questions, enhancing existing materials, and translating medical 
content. Answering patient questions was the most significant 
subtheme, representing 71.6% of the articles (8, 15–157). In these 
studies, LLMs created educational content by responding to common 
questions, direct patient inquiries, and expert-formulated queries, 
demonstrating their potential to address diverse patient 
information needs.

Most studies found LLMs provided accurate responses to patient 
queries. Almagazzachi et al. reported 92.5% accuracy for ChatGPT’s 
answers to hypertension questions (18). However, accuracy varied by 
specialty. In a study on pediatric in-toeing, Amaral et al. found 46% 
of responses were excellent, and 44% were satisfactory with minimal 
clarification needed (19). These findings suggest LLMs’ potential in 
patient education, while highlighting performance differences across 
medical fields.

The readability of LLM-generated content varied considerably 
across studies. ChatGPT’s responses often required a higher reading 
level, potentially limiting accessibility for some patients. Campbell 
et  al. demonstrated that ChatGPT’s unprompted answers on 
obstructive sleep apnea had a mean Flesch–Kincaid grade level of 
14.15, which decreased to 12.45 when prompted (32). This indicates 
that even with specific instructions, the content remained at a college 

reading level. In contrast, other LLMs showed better readability in 
some cases. Chervonski et al. reported that Google BARD produced 
more accessible content, with responses on vascular surgery diseases 
achieving a mean Flesch Reading Ease score of 58.9, indicating 
improved readability (40). When compared to traditional search 
engines, LLMs revealed a trade-off between comprehensiveness and 
readability. Cohen et al. found that while ChatGPT provided more 
detailed and higher-quality responses to cataract surgery FAQs 
compared to Google, these responses were at a higher reading level 
(42). These findings suggest that while LLMs may offer more 
comprehensive information, they do not always improve accessibility 
for the average patient.

LLMs show promise in transforming existing materials into more 
readable, patient-centered formats (158–174). Numerous studies 
demonstrate their ability to enhance readability across various medical 
education materials (158–161, 163–165, 168, 170–172, 174). Fanning 
et  al. found comparable performance between ChatGPT-3.5 and 
ChatGPT-4 in improving plastic surgery material readability (166). 
Moons et al. reported Google BARD surpassed GPT in readability 
improvement but tended to omit information (169). Some studies, 
however, found no improvement or decreased readability (162, 167), 
indicating variability in LLM effectiveness. Interestingly, Sudharshan 
et al. noted LLMs were more accurate in creating readable Spanish 
materials (173), suggesting potential for addressing language-
specific challenges.

Research on LLMs for translating patient education materials 
remains limited. However, a significant study by Grimm et al. showed 
ChatGPT-4’s ability to produce accurate, understandable, and 
actionable translations of otorhinolaryngology content in English, 
Spanish, and Mandarin (175). This finding suggests LLMs’ potential 
in overcoming language barriers in patient education.

3.3.2 Theme 2: interpreting medical information 
from a patient perspective

Nine studies investigated LLMs’ capacity to interpret complex 
medical information, evaluating their feasibility, accuracy, readability, 
and effectiveness in translating medical jargon. He  et al. found 
ChatGPT-4 outperformed other LLMs and human responses from 
Q&A websites in accuracy, helpfulness, relevance, and safety when 
answering laboratory test result questions (176). However, Meyer et al. 
reported that ChatGPT, Gemini, and Le Chat were less accurate and 
more generalized than certified physicians in interpreting laboratory 
results (177), highlighting the variability in LLM performance across 
different contexts.

LLMs demonstrate potential in improving radiological 
information interpretation and communication. Kuckelman et  al. 
found ChatGPT-4 produced generally accurate summaries of 
musculoskeletal radiology reports, noting some variability in human 
interpretation (82). Lyu et al. showed ChatGPT-4 enhanced translated 
radiology report quality and accessibility, despite occasional 
oversimplifications (178). Sarangi et  al. reported ChatGPT-3.5 
effectively simplified radiological reports while maintaining essential 
diagnostic information, though performance varied across conditions 
and imaging modalities (179). Several other studies support these 
findings, suggesting LLMs’ promising role in radiology 
communication (180–182).

Zaretsky et al. evaluated ChatGPT-4’s ability to convert discharge 
summaries into patient-friendly formats. The transformed summaries 
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TABLE 1 Representative quotes illustrating key themes identified in studies on the use of large language models (LLMs) in patient education.

Theme Representative quotes

 1. Generating Patient 

Education Materials

 a. Answering 

Patient Questions

 b. Enhancing Existing 

Patient 

Education Materials

 c. Translation of Patient 

Education Materials

New Frontiers in Health Literacy: Using ChatGPT to Simplify Health Information for People in the Community [Ayre et al. (159)]

Ayre et al. evaluated ChatGPT-3.5’s ability to simplify health information for individuals with low literacy. The study found that ChatGPT effectively reduced text complexity by lowering the reading level, using simpler 

language, and decreasing passive voice usage. It retained about 80% of key messages, with more complex texts seeing greater improvements. However, most simplified texts still did not meet recommended health literacy 

targets. The researchers concluded that ChatGPT could provide a useful “first draft” of plain language health information, which could then be refined through human review.

Enhancing Readability of Online Patient-Facing Content: The Role of AI Chatbots in Improving Cancer Information Accessibility [Abreu et al. (158)]

Abreu et al. assessed ChatGPT-4’s effectiveness in improving the readability of cancer-related content from NCCN Member Institutions. The AI-generated outputs significantly reduced the reading level from university 

freshman to high school freshman level. This improvement in accessibility did not compromise content accuracy or quality. The simplified text featured shorter sentences and simpler words, earning a “good” quality rating on 

the DISCERN instrument. This study demonstrates AI’s potential to make complex medical information more accessible to patients.

Leveraging large language models for generating responses to patient messages – a subjective analysis [Liu et al. (94)]

Liu et al. compared fine-tuned LLaMA-based models (CLAIR-Short and CLAIR-Long) with ChatGPT in generating responses to patient messages. CLAIR-Long, fine-tuned with a mix of local patient messages and open-

source data, performed comparably to ChatGPT-4 in empathy, responsiveness, and accuracy. CLAIR-Short, fine-tuned only with local data, produced concise responses similar to healthcare providers but less detailed. While 

ChatGPT-4 generally ranked highest, the study showed that fine-tuned models, especially CLAIR-Long, could be effective for patient education and empathetic communication.

Assessing the Accuracy and Reliability of AI-Generated Responses to Patient Questions Regarding Spine Surgery [Kasthuri et al. (76)]

Kasthuri et al. evaluated the GPT-4-enhanced Bing search engine’s responses to common spine surgery questions. Spine surgeons found the responses generally accurate and complete, with re-querying improving initially inaccurate 

answers. The study highlighted GPT-4-based models’ ability to provide useful summaries from web sources, but noted concerns about response quality variability. Most information came from commercial websites, with no significant 

correlation between response accuracy and source type. This research underscores the need for ongoing evaluation and refinement of LLMs for clinical use.

Easing the Burden on Caregivers-Applications of Artificial Intelligence for Physicians and Caregivers of Children with Cleft Lip and Palate [Chaker et al. (199)]

Chaker et al. tested ChatGPT-3.5’s ability to assist caregivers of children with cleft lip and palate. The AI achieved a 69% accuracy rate compared to senior pediatric plastic surgeons when answering common postoperative 

questions. While information-related errors were the AI’s main weakness, the study emphasized AI’s potential to ease caregiver burden by generating educational materials and offering perioperative support. This research 

highlights both the promise and current limitations of AI in specialized medical fields.

The utility of ChatGPT as a generative medical translator [Grimm et al. (175)]

Grimm et al. explored GPT-4’s utility in translating otolaryngology-related medical content into English, Spanish, and Mandarin. Using the Patient Education Materials Assessment Tool (PEMAT), they found that GPT-4 

produced translations with comparable accuracy, understandability, and actionability across all three languages. This study suggests that LLMs like GPT-4 could play a valuable role in bridging language barriers in healthcare, 

potentially improving access to medical information for diverse patient populations.

 2. Interpreting Medical 

Information from a 

Patient Perspective

Quality of Answers of Generative Large Language Models Versus Peer Users for Interpreting Laboratory Test Results for Lay Patients: Evaluation Study [He et al. (176)]

He et al. conducted a comprehensive evaluation of several LLMs in interpreting laboratory test results for lay patients. The study compared GPT-4, GPT-3.5, LLaMA 2, MedAlpaca, and ORCA_mini across multiple metrics 

including accuracy, relevance, helpfulness, and safety. GPT-4 emerged as the top performer in all categories, followed closely by GPT-3.5. LLaMA 2, while providing detailed explanations, ranked third. MedAlpaca and 

ORCA_mini were less effective, with MedAlpaca showing the poorest performance. This study highlights the current superiority of GPT-4 and GPT-3.5 in translating complex medical information for patient understanding, 

suggesting their potential utility in healthcare communication.

Translating musculoskeletal radiology reports into patient-friendly summaries using ChatGPT-4 [Kuckelman et al. (82)]

Kuckelman et al. explored GPT-4’s capability in simplifying musculoskeletal radiology reports for patients. The AI successfully generated summaries that were both readable and concise, with independent readers generally 

rating them as accurate and complete. GPT-4 demonstrated proficiency in simplifying medical jargon, making reports more accessible to patients. While there was some variation in accuracy and completeness ratings among 

readers, indicating a degree of subjectivity, the overall results were positive. The study suggests that GPT-4 could be a valuable tool in enhancing patient comprehension of radiology results, potentially reducing the immediate 

need for physician explanation.

Generative Artificial Intelligence to Transform Inpatient Discharge Summaries to Patient-Friendly Language and Format [Zaretsky et al. (183)]

Zaretsky et al. investigated GPT-4’s ability to transform complex inpatient discharge summaries into more patient-friendly formats. The AI-transformed summaries showed marked improvements in readability, with the 

Flesch–Kincaid Grade Level decreasing from 11.0 to 6.2. Understandability scores, measured by PEMAT, increased significantly from 13 to 81%. However, the study revealed mixed results in terms of accuracy and 

completeness. While 54% of reviews gave the highest accuracy rating, 18% identified safety concerns due to omissions or incorrect information (hallucinations). These findings indicate that while GPT-4 can greatly enhance 

the accessibility of discharge information, further refinement is necessary to ensure consistent accuracy and safety for practical use in healthcare settings.

(Continued)
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TABLE 1 (Continued)

Theme Representative quotes

 3. Providing Lifestyle 

Recommendations 

and Improving 

Health Literacy

Examining the role of ChatGPT in promoting health behaviors and lifestyle changes among cancer patients [Alanezi et al. (184)]

Alanezi et al. explored ChatGPT-3.5’s potential in promoting health behavior changes among cancer patients. The study found that the AI significantly improved health literacy, enhanced self-management practices, and 

provided valuable emotional and motivational support. Patients appreciated the AI’s ability to address their concerns, offer personalized suggestions, and connect them with relevant resources. However, the research also 

identified challenges, including privacy concerns, limitations in deep personalization, and occasional reliability issues. Despite these drawbacks, ChatGPT-3.5 proved effective in facilitating positive health behaviors and 

lifestyle changes, particularly in helping patients better understand and manage their conditions.

Assessing the Accuracy of Generative Conversational Artificial Intelligence in Debunking Sleep Health Myths: Mixed Methods Comparative Study With Expert Analysis [Bragazzi et al. (185)]

Bragazzi et al. assessed GPT-4’s accuracy in debunking common sleep-related myths. The AI correctly identified 85% of the presented myths as either “false” or “generally false,” demonstrating a sensitivity of 85% and a 

positive predictive value of 100%. GPT-4’s performance in identifying false statements was comparable to that of sleep experts, with high interrater agreement (ICC = 0.83). However, the AI sometimes struggled with nuanced 

scenarios, particularly myths containing partial truths or complex scientific concepts. The study concluded that while GPT-4 is a reliable tool for addressing sleep-related misinformation, it should not replace expert opinion 

in more nuanced areas.

Is ChatGPT an Effective Tool for Providing Dietary Advice? [Ponzo et al. (190)]

Ponzo et al. evaluated ChatGPT-3.5’s ability to provide accurate and appropriate dietary advice for various non-communicable diseases (NCDs). The AI’s advice was generally appropriate, with correctness rates ranging from 

55.5% for sarcopenia to 73.3% for non-alcoholic fatty liver disease (NAFLD). However, the study revealed limitations in complex scenarios involving multiple overlapping conditions, where ChatGPT-3.5 sometimes provided 

contradictory or inappropriate recommendations. The researchers concluded that while ChatGPT-3.5 shows promise as a supplementary tool for dietary advice, it cannot yet replace personalized guidance from healthcare 

professionals, especially in managing complex cases.

 4. Customized 

Medication Use and 

Self-Decision

Snakebite Advice and Counseling From Artificial Intelligence: An Acute Venomous Snakebite Consultation With ChatGPT [Altamimi et al. (192)]

Altamimi et al. evaluated ChatGPT-3.5’s performance in providing information for managing venomous snakebites. The AI offered clear, evidence-based advice on initial first aid, the importance of seeking urgent medical 

attention, potential symptoms, and the role of antivenom. However, the study identified several limitations in the AI’s capabilities. These included a lack of personalization, outdated information, and an inability to account for 

regional variations in snake species and venom characteristics. While ChatGPT-3.5 proved effective in delivering general advice and preliminary guidance, the researchers emphasized that it should not replace professional 

medical consultations, especially in critical situations like snakebites. The study concluded by recommending future developments focus on addressing these limitations to enhance the AI’s utility in such scenarios.

Automating untruths: ChatGPT, self-managed medication abortion, and the threat of misinformation in a post-Roe world [McMahon et al. (193)]

McMahon et al. investigated the accuracy of ChatGPT-3.5’s responses regarding self-managed medication abortion (SMMA). The study revealed a concerning discrepancy in the AI’s information provision. While 

ChatGPT-3.5 correctly described clinician-managed medication abortion as safe and effective, it inaccurately portrayed SMMA as significantly more dangerous, exaggerating the risks of complications. This misrepresentation 

contradicts substantial evidence supporting SMMA’s safety and effectiveness. The researchers highlighted the potential dangers of such misinformation, noting it could increase stigma and deter individuals from seeking safe 

abortion methods, thereby posing a threat to public health. These findings emphasize the critical need for improving AI models to ensure they provide accurate and reliable health information, particularly on sensitive topics 

with significant public health implications.

(Continued)
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TABLE 1 (Continued)

Theme Representative quotes

 5. Providing Pre-, Peri-, 

and Post-Operative 

Care Instructions

Enhancing Postoperative Cochlear Implant Care With ChatGPT-4: A Study on Artificial Intelligence (AI)-Assisted Patient Education and Support [Aliyeva et al. (194)]

Aliyeva et al. evaluated ChatGPT-4’s effectiveness in providing postoperative care information for cochlear implant patients. The AI demonstrated high accuracy, clarity, and relevance in answering common postoperative 

questions. Its responses aligned well with current medical guidelines, ensuring patients received accurate and comprehensible information. The study found ChatGPT-4 to be a valuable supplementary resource, especially 

when access to healthcare professionals is limited. While emphasizing that ChatGPT-4 cannot replace professional medical advice, the researchers noted its potential to support patient education and reduce anxiety by 

providing timely information in resource-constrained settings.

Evaluation of large language model responses to Mohs surgery preoperative questions [Breneman et al. (206)]

Breneman et al. compared the performance of three large language models (ChatGPT-3.5, Google Bard, and Microsoft CoPilot) in answering preoperative questions about Mohs surgery. ChatGPT-3.5 outperformed the other 

models in accuracy (80%) and completeness (100%) of responses. However, its higher reading level (12.7) potentially made the information less accessible to some patients. Google Bard and Microsoft CoPilot, while less 

accurate and complete, provided more readable responses. The study highlighted the potential of LLMs like ChatGPT-3.5 in offering valuable preoperative information but cautioned about possible inaccuracies or irrelevant 

details, emphasizing the need for careful implementation in patient education.

Feasibility of GPT-3 and GPT-4 for in-Depth Patient Education Prior to Interventional Radiological Procedures: A Comparative Analysis [Scheschenja et al. (195)]

Scheschenja et al. conducted a comparative analysis of GPT-3 and GPT-4 in providing patient education for interventional radiology procedures. GPT-4 showed superior performance, with 35.3% of its responses rated as 

“completely correct” compared to GPT-3’s 30.8%. GPT-4 also had fewer “mostly incorrect” responses (2.3% vs. GPT-3’s 5.3%). Despite these differences, both models were considered safe and effective for patient education, 

with GPT-4 having a slight edge. The researchers concluded that while these AI tools can enhance patient understanding of complex procedures, they should be used cautiously due to the potential for inaccuracies or 

incomplete information.

 6. Optimizing Doctor-

Patient Interaction

 a. Facilitating 

Understanding of 

Consent Forms

 b. Enhancing 

Communication 

Establishment

Bridging the literacy gap for surgical consents: an AI-human expert collaborative approach [Ali et al. (208)]

Ali et al. investigated the use of GPT-4 to simplify surgical consent forms, aiming to make them more accessible to patients with varying health literacy levels. The study found that GPT-4 significantly improved the readability 

of consent forms from 15 academic medical centers, reducing the average reading level from college freshman to 8th-grade level. Moreover, GPT-4 generated procedure-specific consent forms that maintained medical and 

legal sufficiency, scoring perfectly on a validated rubric and passing expert review without changes. This research demonstrates the potential of AI-human collaboration in enhancing the clarity and comprehensibility of 

consent forms, ensuring patients receive clear, detailed information about their surgical procedures.

Generating Informed Consent Documents Related to Blepharoplasty Using ChatGPT [Shiraishi et al. (209)]

Shiraishi et al. evaluated ChatGPT’s performance in generating informed consent (IC) documents for blepharoplasty. While the study showed promise for LLMs in enhancing patient communication, it also highlighted areas 

needing improvement. Board-certified plastic surgeons rated AI-generated documents lower than original IC documents in accuracy, informativeness, and accessibility. Even after revisions, the AI-generated documents still 

scored lower in accuracy and accessibility. Interestingly, nonmedical staff found no significant difference between AI-generated and original documents. The study concluded that while ChatGPT has potential, it currently 

cannot replace human-generated IC documents due to issues with professional terminology and content accuracy, emphasizing the need for further refinement.

Putting ChatGPT’s Medical Advice to the (Turing) Test: Survey Study [Nov et al. (110)]

Nov et al. assessed laypeople’s ability to distinguish between medical advice from ChatGPT-3.5 and human healthcare providers. Participants could only weakly differentiate between the sources, correctly identifying them 

about 65% of the time. Trust in ChatGPT-3.5’s responses decreased with increasing medical complexity of the questions, with higher trust in logistical responses and lower trust in diagnostic and treatment-related responses. 

The study concluded that while ChatGPT-3.5 can provide credible advice for low-risk queries, it may not be reliable for more complex health issues, suggesting the need for further research to optimize its use in patient-

provider communications.

Can Large Language Models Generate Outpatient Clinic Letters at First Consultation That Incorporate Complication Profiles From UK and USA Aesthetic Plastic Surgery Associations? [Roberts et al. (211)]

Roberts et al. compared ChatGPT-4, ChatGPT-3.5, and Google Bard in generating outpatient clinic letters incorporating complication profiles from aesthetic plastic surgery associations. ChatGPT-4 showed the highest 

overall compliance, scoring 0.92 for BAAPS and 0.99 for ASPS compliance. However, its performance dropped to 0.52 for ASPS gold-standard profiles, indicating challenges with paywalled content. ChatGPT-3.5 and Google 

Bard demonstrated lower compliance overall. This study highlights the potential of advanced LLMs in generating compliant medical documentation, while also revealing limitations in accessing and integrating specialized, 

restricted information.
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showed significant improvements in readability and understandability. 
However, the study raised concerns about accuracy and completeness, 
noting instances of omissions and hallucinations (183).

3.3.3 Theme 3: providing lifestyle 
recommendations and improving health literacy

Nine studies explored LLMs’ potential in offering lifestyle 
recommendations and enhancing health literacy. Alanezi et al. found 
ChatGPT effective in promoting health behavior changes among 
cancer patients, boosting health literacy and self-management (184). 
Bragazzi et al. showed ChatGPT’s capability to debunk sleep-related 
myths and provide accessible advice (185). In a follow-up study, they 
found Google BARD slightly outperformed ChatGPT-4 in identifying 
false statements and offering practical sleep-related advice (186). 
These findings suggest LLMs’ promising role in health education and 
lifestyle guidance.

Gray et al. demonstrated ChatGPT’s ability to generate realistic 
prenatal counseling dialogues (187). Minutolo et  al. proposed a 
conversational agent to enhance health literacy by making Patient 
Information Leaflets queryable (188). Mondal et al. found ChatGPT 
provided reasonably accurate responses to lifestyle-related disease 
queries (189). Ponzo et al. reported ChatGPT offered general dietary 
guidance for NCDs but struggled with complex, multi-condition cases 
(190). Willms et al. explored ChatGPT’s potential in creating physical 
activity app content, emphasizing the need for expert review (1). 
Zaleski et al. found AI-generated exercise recommendations generally 
accurate but lacking comprehensiveness and at a college reading level 
(191). These studies highlight LLMs’ diverse applications in health 
education while noting their limitations.

3.3.4 Theme 4: customized medication use and 
self-decision

Two studies explored LLMs’ potential in medication guidance and 
self-decision support. Altamimi et  al. found ChatGPT provided 
accurate advice on acute venomous snakebite management, while 
emphasizing the importance of professional care (192). In contrast, 
McMahon et al. observed ChatGPT accurately described clinician-
managed abortion as safe but incorrectly portrayed self-managed 
abortion as dangerous, highlighting potential misinformation risks 
(193). These findings underscore both the promise and pitfalls of 
using LLMs for sensitive medical information.

3.3.5 Theme 5: providing pre-/peri-/
post-operative care instructions

Studies investigated LLMs’ use in surgical patient education. 
Aliyeva et al. found ChatGPT-4 excelled in providing postoperative 
care instructions for cochlear implant patients, especially in remote 
settings (194). LLMs showed proficiency in offering postoperative 
guidance across various surgical specialties (180, 195–202). Dhar et al. 
noted ChatGPT’s accuracy in answering tonsillectomy questions, with 
some pain management inaccuracies (203). Patil et  al. reported 
ChatGPT provided quality preoperative information for ophthalmic 
surgeries, though occasionally overlooking adverse events (204). 
Meyer et al. found ChatGPT reliable for postoperative gynecological 
surgery instructions (205). Breneman et al. and Kienzle et al. evaluated 
ChatGPT for preoperative counseling in Mohs surgery and knee 
arthroplasty, finding it potentially useful but cautioning about 
non-existing references (206, 207).

3.3.6 Theme 6: optimizing doctor-patient 
interaction

This theme explores LLMs’ potential to enhance doctor-patient 
communication, particularly in simplifying consent forms and 
improving general medical communication. Ali et  al. found 
ChatGPT-4 successfully simplified surgical consent forms to an 
8th-grade reading level while maintaining accuracy (208). Shiraishi 
et  al. reported that revised ChatGPT-prepared informed consent 
documents for blepharoplasty were more desirable than 
originals (209).

LLMs also showed promise in broader doctor-patient 
communication. An et al. introduced an LLM-based education model 
that improved patients’ understanding of their conditions and 
treatments (210). Roberts et al. demonstrated LLMs could generate 
comprehensible outpatient clinic letters for cosmetic surgery, 
potentially saving clinicians’ time (211). Xue et al. found ChatGPT 
performed well in logical reasoning and medical knowledge education 
during remote orthopedic consultations (212). These studies highlight 
LLMs’ potential to enhance various aspects of medical communication.

4 Discussion

This scoping review synthesizes current applications and potential 
uses of LLMs in patient education and engagement, offering insights 
into their transformative potential and integration challenges in 
healthcare settings. LLMs demonstrate significant promise in creating 
patient education materials, with studies reporting that health-related 
questions were accurately answered over 90% of the time by systems 
like ChatGPT, covering a broad range of topics from hypertension to 
pediatric conditions (18, 31). The depth of these responses potentially 
offers substantial value to patients seeking detailed understanding of 
their ailments. However, readability remains a notable concern, 
potentially limiting accessibility for some patient populations.

LLMs have demonstrated competence in interpreting complex 
medical information from laboratory reports, radiology results, and 
discharge summaries. ChatGPT-4, for instance, generated informative 
summaries of radiology reports, making them more accessible to 
non-medical professionals (82, 178). However, concerns about the 
quality and comprehensiveness of LLM-generated information persist. 
Issues such as hallucinations, omissions, or plausible but incorrect 
information have been noted. Zaretsky et  al. observed that while 
ChatGPT-4 could transform discharge summaries into more patient-
friendly formats, occasional inaccuracies, and omissions could 
potentially mislead patients (183). These findings underscore the 
necessity for professional oversight in deploying LLMs in healthcare 
settings to ensure the reliability and accuracy of AI-generated content.

LLMs show promise as lifestyle recommendations and health 
literacy tools, effectively encouraging healthy behaviors and dispelling 
health myths. Alanezi et al. found that ChatGPT provided significant 
support in developing health literacy among cancer patients, 
motivating self-management through emotional, informational, and 
motivational assistance (184). Bragazzi and Garbarino demonstrated 
ChatGPT’s effectiveness in debunking sleep-related misconceptions, 
accurately distinguishing between false and genuine health 
information (185). However, personalization and accuracy remain 
challenging. While AI can offer useful preliminary advice, it requires 
further development to provide relevant, situation-specific suggestions 
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tailored to individual patients. This customization is crucial for 
ensuring that patients can trust and adhere to the 
recommendations provided.

LLMs play a significant role in providing information on self-
medication and personalized drug utilization, offering detailed 
insights on drug interactions, correct usage, and potential side effects. 
Altamimi et al. found ChatGPT’s information helpful and accurate in 
guiding acute venomous snakebite management, though it 
appropriately emphasized the need for professional medical care 
(192). LLMs also show potential in patient triage, quickly analyzing 
symptoms and medical history to prioritize cases based on severity 
(10). However, the quality of LLM-provided information varies 
considerably. McMahon et al. reported that ChatGPT gave inaccurate 
and misleading information about self-managed medication abortion, 
incorrectly portraying it as dangerous despite evidence of its safety 
and efficacy (193). This inconsistency highlights the risks of relying on 
AI without professional oversight and underscores the need for LLMs 
to provide accurate, up-to-date, and context-sensitive information to 
support safe self-medication practices.

4.1 Implications and future research

The integration of LLMs into patient education and engagement 
shows significant potential for improving health literacy and 
healthcare delivery efficiency. However, this review highlights the 
need for continued improvement in the accuracy and personalization 
of AI-generated content. Future research should focus on developing 
more accurate LLM algorithms to enhance reliability as medical 
information sources, exploring multimodal LLMs, and establishing 
robust validation frameworks for their ethical use. Ensuring AI-based 
information aligns with the latest medical guidelines and is tailored 
for diverse patient populations is crucial. Conducting longitudinal 
studies to assess the long-term effects of LLMs on patient outcomes 
and satisfaction will provide valuable insights. Additionally, addressing 
ethical concerns, including data privacy and potential biases in 
LLM-generated content, is essential. These research directions are 
crucial for the responsible and effective integration of LLMs in 
healthcare settings. Finally, LLMs may carry biases from their training 
data, potentially propagating misinformation or reinforcing healthcare 
disparities. Future research should address these limitations by 
ensuring LLM tools are accurate, reliable, and equitable across diverse 
patient populations, while also exploring their long-term effects and 
ethical implications.

4.2 Limitations

This scoping review has several limitations. The quality of 
included studies varied, with some using small sample sizes or 
subjective assessments, potentially limiting result generalizability. 
Most studies were conducted in high-income countries, raising 
questions about their relevance to low-and middle-income settings 
with different healthcare needs and infrastructure. The evaluation of 
various LLMs and versions complicates drawing overarching 
conclusions. Inconsistent evaluation metrics across studies hindered 
result comparison and synthesis.

5 Conclusion

LLMs demonstrate transformative potential in patient education 
and engagement across various levels of medical care. Their ability to 
provide accurate, detailed, and timely information can significantly 
enhance patients’ understanding of their healthcare and promote 
active involvement. However, current limitations in accuracy and 
readability highlight the need for further refinement to ensure reliable 
integration with healthcare systems. Extensive research and 
development of AI tools are necessary to fully harness their potential 
for improving patient outcomes and healthcare efficiency. A critical 
priority for medical applications is to ensure the ethical and 
responsible use of these tools, necessitating robust supervision and 
validation processes.
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Enhancing nutritional 
management in peritoneal 
dialysis patients through a 
generative pre-trained 
transformers-based recipe 
generation tool: a pilot study
Haijiao Jin 1,2,3,4,5†, Lulu Huang 2†, Jinling Ye 2, Jinkun Wang 2, 
Xinghui Lin 1,2,3,4,5, Shaun Wu 6, Weiguo Hu 7*, Qisheng Lin 1,3,4,5* 
and Xiaoyang Li 7*
1 Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 
Shanghai, China, 2 Department of Nephrology, Ningbo Hangzhou Bay Hospital, Zhejiang, China, 
3 Molecular Cell Lab for Kidney Disease, Shanghai, China, 4 Shanghai Peritoneal Dialysis Research 
Center, Shanghai, China, 5 Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University 
School of Medicine, Shanghai, China, 6 WORK Medical Technology Group LTD., Hangzhou, China, 
7 Department of Medical Education, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School 
of Medicine, Shanghai, China

Background: Patients undergoing peritoneal dialysis (PD) often face nutritional 
deficiencies due to inadequate intake, nutrient loss, insufficient dialysis, and a 
state of micro-inflammatory. Traditional nutritional management methods have 
not fully met personalized needs. Therefore, this study aimed to develop and 
evaluate an application for generating recipes based on Generative Pre-trained 
Transformers to improve the nutritional status of these patients.

Methods: This self-controlled prospective study included 35 patients undergoing 
PD from January to February 2024. The study was divided into two phases: the 
initial phase involved conventional dietary education under PD management, 
followed by a second phase where a new GPT-based dietary guidance tool was 
introduced. Patients adhered to the diets recommended by the tool. Nutritional 
intervention effects were assessed by comparing serum prealbumin, albumin, 
and phosphate levels before and after the intervention.

Results: After the intervention, the mean prealbumin levels significantly improved 
from 289.04  ±  74.60  mg/L to 326.72  ±  78.89  mg/L (p  =  0.001). Although there 
was no statistical significance, the serum albumin levels in patients increased 
from 34.70  ±  5.94  g/L to 35.66  ±  5.14  g/L (p  =  0.153). Serum phosphate levels 
remained stable and within safe limits (p  =  0.241).

Conclusion: The AI-based recipe generation application significantly improved 
serum prealbumin levels in PD patients without causing adverse changes in 
phosphate levels, confirming its efficacy and safety in nutritional management 
for these patients. This study highlights the potential and practical value of 
AI technology in nutritional management for patients with chronic disease, 
providing important evidence for future clinical applications.

KEYWORDS

artificial intelligence, peritoneal dialysis, nutritional management, generative 
pre-trained transformers system, recipe generation
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Introduction

Chronic kidney disease (CKD), characterized by high prevalence, 
low awareness, low treatment rates, poor control, adverse outcomes, 
and high medical costs, has become a significant public health issue 
severely impacting human health and quality of life (1). Due to the 
insidious onset of CKD and lack of patient awareness, many patients 
were late referral to until the disease has advanced to end-stage renal 
disease (ESRD). In recent years, the incidence of ESRD in China has 
been increasing annually (2). Peritoneal dialysis (PD), with its 
simplicity, safety, effectiveness, and suitability for home treatment, has 
gained widespread use globally, especially in developing countries, 
including China (3).

However, a considerable proportion of PD patients suffer from 
malnutrition, exacerbating various metabolic disorders and significantly 
increasing the risk of death and hospitalization (4). The prevalence of 
malnutrition among PD patients ranges from 11.7 to 47.8% (5, 6).

Nutritional therapy is essential for improving complications such 
as the micro-inflammatory state, anemia, and bone mineral 
metabolism abnormalities in dialysis patients. Thus, addressing the 
nutritional issues of PD patients and integrating nutritional therapy 
throughout the treatment process is crucial for enhancing overall 
diagnostic and treatment levels, delaying disease progression, 
improving patient outcomes, and reducing healthcare costs (7, 8).

The 2020 Kidney Disease Outcomes Quality Initiative (KDOQI) 
Clinical Practice Guidelines for Nutrition in Chronic Kidney Disease 
(Updated Version) recommend a daily dietary protein intake of 
1.0–1.2 g/kg body weight for metabolically stable adult PD patients to 
maintain stable nutritional status (9, 10). The “Chinese Clinical Practice 
Guidelines for Nutritional Therapy of Chronic Kidney Disease 2021” 
recommends a protein intake of 1.0–1.2 g·kg−1·d−1 for patients without 
residual renal function and 0.8–1.0 g·kg−1·d−1 for those with residual 
renal function, with over 50% of the protein intake consisting of high 
biological value proteins (11). However, traditional dietary 
management focuses on controlling intake, which, although crucial for 
maintaining patient health, often lacks personalization and is difficult 
to implement, making it challenging to accommodate specific lifestyle 
habits and preferences, resulting in poor patient compliance.

In recent years, artificial intelligence (AI) technology has 
demonstrated tremendous potential in medical education, patient 
management, particularly in providing personalized medical care (12–
15). The advent of AI-driven tools such as ChatGPT presents an 
innovative method for managing diets in patients with ESRD who are 
undergoing dialysis (16). Previous research showed that using the GPTs 
feature of ChatGPT to assist patients in dietary management effectively 
controlled the blood potassium levels of dialysis patients (17). To 
further expand the application of AI in the management of PD, we aim 
to develop a smart recipe generation tool that precisely controls protein 
intake while considering individual tastes and dietary preferences, 
offering customized dietary management plans. This tool, based on 
GPT technology, can learn from a vast array of CKD dietary guidelines 
to generate personalized recipes tailored to the needs of PD patients.

In this study, we  used a self-controlled design to evaluate the 
impact of an AI-based recipe generation tool on the nutritional status 
of PD patients. This study not only aim to provide a new solution for 
the daily management of PD patients but also opens new pathways for 
using technology to improve overall health management in patients 
with chronic diseases, having significant clinical implications.

Methods

Development of the GPT-based recipe 
generation tool

This study utilized a customized version of the GPT-4 model 
(https://chat.openai.com/g/g-3ljI7scae-fu-tou-huan-zhe-yin-shi-
zhi-nan),whichwas fine-tuned based on the Chinese Kidney Diet 
Guidelines (11), the 2020 KDOQI Nutrition Guidelines (9, 10), 
and the Mayo Clinic’s Kidney Diet Handbook. This ensured that 
the generated recipes met the specific nutritional needs of PD 
patients. During the inference process, we used these resources as 
a Retrieval-Augmented Generation (RAG) knowledge base. 
The model’s hyperparameters, such as temperature (set to 0.7) 
and top-p (set to 0.9), were adjusted, and the prompt 
incorporated patients’ dietary habits and individual characteristics 
as inputs.

The tool analyzes patients’ food preferences and nutritional 
requirements (especially regarding protein and phosphorus control), 
using GPT technology to generate personalized meal plans that meet 
individual needs. Additionally, the tool can adjust recommendations 
based on patient feedback to optimize nutritional intake balance.

Patient recruitment and data collection

This study recruited 35 ESRD patients undergoing PD at our 
center between January and February 2024. Inclusion criteria 
encompassed patients aged ≥18 years who had been receiving PD 
treatment for at least 3 months. Exclusion criteria included 
patients with severe, life-threatening complications such as 
myocardial infarction, severe infections, or advanced 
malignancies, as well as those with eating disorders. The sample 
size was determined based on an assumed medium effect size 
(Cohen’s d = 0.5). We set the significance level α at 0.05 and the 
statistical power (1-β) at 0.8, resulting in a calculated minimum 
sample size of 32 participants. To ensure the representativeness of 
the study and the reliability of the results, we expanded the sample 
size to 35 participants.

Intervention procedure

The study involved a two-phase dietary intervention. In the 
initial phase, patients received standard dietary education provided 
by professional renal dietitians. The educational content was based 
on the KDOQI Nutrition Guidelines and Chinese Clinical Practice 
Guidelines for Kidney Disease, covering topics such as protein 
intake, phosphate management, and fluid-electrolyte balance. 
Patients were also given detailed dietary materials to help them 
understand how to adjust their diet according to their individual 
dialysis needs. Following this, their serum prealbumin, serum 
albumin, and blood phosphorus levels were measured. In the second 
phase, doctors generated personalized weekly meal plans for the 
patients based on their weight, residual kidney function, and dietary 
preferences. All patients received training on how to provide their 
dietary preferences to the doctors and how to interpret the feedback. 
During weekly doctor visits, meal plans were adjusted according to 
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patient feedback. All menus created by the doctors were reviewed 
by nutrition experts to ensure they met the patients’ clinical needs. 
After 4 weeks of using this tool, their serum prealbumin, serum 
albumin, and blood phosphorus levels were reassessed. During the 
follow-up period, no new medications affecting appetite were added 
or discontinued.

Case presentation

The image illustrates an example of us utilizing ChatGPT to guide 
patients’ dietary choices (Figure 1). Based on the patient’s weight, 
residual kidney function, and dietary preferences, the tool generates 
recommended weekly meal plans.

Statistical analysis

The statistical analysis was performed using SPSS 26.0 software. 
In the analysis, all continuous data are presented as mean ± standard 
deviation (for normally distributed data) or median and interquartile 
range (for non-normally distributed data). Categorical data are 
described using frequencies and percentages. To evaluate the impact 
of different dietary guidance strategies on patients’ laboratory 
indicators, we employed a mixed-effects linear regression model. This 
model was carefully selected to adequately account for both fixed 
effects (representing the dietary advice) and random effects 
(explaining inter-individual variability among patients). The 
“statsmodels” library in Python served as our primary tool for 
conducting the statistical analysis. For comparing categorical data 
between groups, we utilized the chi-square test. A significance level 
of p < 0.05 was established for all statistical tests to ensure the rigor 
and reliability of our research findings.

Results

Overall participant characteristics

This study included a total of 35 patients undergoing PD. All 
participants utilized the recipe generation tool during the study period 
and had their laboratory indicators assessed before and after the 
intervention (Table 1).

Changes in serum prealbumin levels

After receiving conventional dietary advice adhering to standard 
guidelines, patients exhibited a mean serum prealbumin level of 
289.04 ± 74.60 mg/L. Moreover, following dietary guidance based on 
GPT recommendations, patients exhibited a significant higher mean 
serum prealbumin level of 326.72 ± 78.89 mmol/L. In this study, by 
applying a mixed-effects linear regression model analysis, it was found 
that the dietary intervention method had a significant impact on 
patients’ prealbumin levels (p = 0.001), with an average increase of 
37.69 ± 11.48 mg/L.

Patients adhering to conventional dietary recommendations 
exhibited normal serum prealbumin levels—defined as serum 
albumin exceeding 300 mg/L—in 42.86% of instances. In contrast, 

following dietary guidance derived from GPT recommendations led 
to a significant increase in the proportion of patients with normal 
serum prealbumin levels, reaching 71.43% (p = 0.03) (Figure 2).

Changes in serum albumin levels

After adhering to conventional dietary advice that aligns with 
standard guidelines, patients displayed an average serum albumin level 
of 34.70 ± 5.94 g/L. However, after implementing dietary guidance 
informed by GPT recommendations, the average serum albumin level 
in patients increased slightly to 35.66 ± 5.14 g/L. In this study, 
we employed a mixed-effects linear regression model to evaluate the 
impact of an intervention on patients’ albumin levels. The model 
results indicated that, after accounting for individual differences, the 
mean change in albumin concentration before and after the 
intervention had a coefficient of 0.97, with a standard error of 0.68. 
Although there was an increasing trend in albumin levels following 
the intervention, this change was not statistically significant (p = 0.153).

Changes in serum phosphate levels

We compared the blood phosphorus levels of PD patients before 
and after a dietary intervention. The analysis showed that the average 
blood phosphorus level before the intervention was 1.45 ± 0.33 mmol/L; 
after the intervention, the average level was 1.52 ± 0.36 mmol/L. Using 
a mixed effects linear regression model, the results showed that the 
GPT-based dietary intervention led to an average increase in 
phosphate levels of 0.07 mmol/L, with a standard error of 
0.06 mmol/L. No statistical difference was observed (p = 0.241).

Discussion

In this study, it was found that the implementation of a 
GPT-based recipe generation tool notably enhanced serum 
prealbumin levels. It also moderately improved serum albumin levels 
while ensuring the stability of serum phosphate levels among PD 
patients. These results emphasize the potential and efficacy of 
technological interventions in optimizing nutritional management 
for patients with chronic conditions.

The improvement in serum prealbumin level and serum albumin 
level are important indicators of enhanced nutritional status (18, 19). 
In our study, patients showed a significant increase in serum 
prealbumin levels after using personalized meal plans. This outcome 
can be attributed to several factors: firstly, the AI-based recipe tool 
calculates the daily protein requirements precisely according to 
Chinese guidelines for the nutritional management of PD patients, 
ensuring patients receive adequate high-quality protein, which is 
crucial for PD patients; secondly, the personalized design of the meal 
plans considers patients’ dietary habits and food accessibility, 
enhancing patient adherence and making it easier for them to 
maintain healthy eating habits.

PD patients have strict protein management requirements, and 
improper management of protein intake can cause fluctuations in serum 
phosphate levels (20–22). Therefore, when developing dietary plans, it 
is important to choose foods with a low phosphate-to-protein ratio and 
low phosphate absorption rates, while limiting intake of foods high in 
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FIGURE 1

An example of the dialogue used in our study to illustrate the specific content.
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phosphate additives (23). Previous research has also demonstrated the 
capability of AI tools in managing related indicators. In the recipe 
generation process, the GPT-4 tool paid particular attention to 
controlling phosphorus intake. By selecting foods with low phosphorus-
to-protein ratios and low phosphorus absorption rates, such as fish and 
eggs, the tool avoided excessive phosphorus intake. The recipe 
generation tool successfully avoided electrolyte imbalances that could 
arise from excessive intake while ensuring adequate nutrient intake, 
which is especially critical for PD patients.

This study highlights the potential applications of AI 
technology in chronic disease management. Utilizing big data, 
pre-trained models, and machine learning algorithms, the recipe 
tool is able to provide precise nutritional recommendations, a feat 
often challenging to achieve with traditional nutritional guidance. 
At the end of the study, we  collected patient feedback on their 
experience using the GPT-4 tool. Most patients reported that the 
tool generated meal plans that aligned with their tastes and cultural 
backgrounds, while also providing nutritional advice that was easy 
to follow. The personalized recommendations of the tool may also 
enhance patient satisfaction and adherence, aspects often lacking 
in traditional methods.

Despite the encouraging results, this study still has some 
limitations. A significant limitation of this study is the lack of a 
comprehensive assessment of patients’ actual nutrient intake and 
adherence to the GPT-generated meal plans. As a result, while 
we  observed improvements in prealbumin levels, it cannot 
be conclusively attributed solely to the intervention, as actual nutrient 
intake was not systematically recorded. Another limitation of this 
study is the absence of a control group. While the self-controlled 
design allowed us to compare pre- and post-intervention data within 
the same patients, it limits our ability to draw definitive conclusions 
about the intervention’s effectiveness. Without a parallel control 
group, it is difficult to rule out the influence of external factors on the 
observed outcomes. Future studies should include a randomized 
controlled trial design to more accurately assess the efficacy of the 
intervention. Additionally, as a pilot study, the relatively small sample 
size and short study duration may limit the generalizability and 
sustainability of the observed effects. The intervention period of only 
1 month may also be insufficient to capture long-term nutritional 
improvements. Due to the restrictions on using ChatGPT in China, 
which may cause inconvenience in practical applications, we have 
further developed the software by calling APIs to ensure that more 
patients can use it conveniently.

Future research could consider applying this smart recipe 
generation tool to other types of chronic disease patients, such as 
those with diabetes or cardiovascular diseases, to assess its applicability 
and effectiveness in broader chronic disease management. 
Additionally, exploring the integration of this technology with other 
health management tools, such as AI-based exercise plan generators 
and wearable devices for symptom monitoring, could provide a more 
comprehensive health management solution.

TABLE 1 Baseline characteristics.

Feature N  =  35

Age (years) 54.0 (39.5–67.5)

Dialysis age (months) 26.0 (15.0–40.0)

White blood cell count (10^9/L) 6.06 (5.00–7.23)

Hemoglobin (g/L) 113.60 ± 19.81

Platelet count (10^9/L) 199.86 ± 64.97

Prealbumin (mg/L) 289.04 ± 74.60

Albumin (g/L) 34.70 ± 5.94

Phosphorus (mmol/L) 1.45 ± 0.33

Calcium (mmol/L) 2.20 (2.04–2.32)

PTH (pg/mL) 333.16 ± 212.37

Low-density lipoprotein (mmol/L) 2.09 ± 0.63

High-density lipoprotein (mmol/L) 1.05 (0.92–1.35)

Total cholesterol (mmol/L) 4.11 (3.61–4.46)

ALT (U/L) 12.60 (9.40–18.45)

Alkaline phosphatase (U/L) 89.00 (74.50–127.00)

Ferritin (μg/L) 137.10 (58.40–191.15)

Transferrin saturation (%) 30.00 (22.16–41.51)

CRP (mg/L) 2.82 (1.15–9.54)

BNP (pg/mL) 104.10 (55.10–196.30)

Cardiothoracic ratio 0.57 ± 0.07

kt/v 1.96 (1.77–2.30)

Ccr 58.63 (49.00–88.42)

PTH, parathyroid hormone; ALT, alanine transaminase; CRP, C-reactive protein; BNP, brain 
natriuretic peptide; Ccr, creatinine clearance.

FIGURE 2

Comparison of three indicators (Serum Prealbumin levels, Serum Albumin levels, and Serum Phosphate) before and after dietary intervention based on 
conventional advice and GPT-guided recommendations.
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Conclusion

Overall, the GPTs system offers a significant advancement in the 
dietary management of PD patients by enhancing their nutritional 
status. Its precise menu generation, tailored to both nutritional needs 
and patient preferences, along with demonstrated clinical improvements, 
underscores its value as a supplementary resource to conventional 
dietary counseling. With additional enhancements and full integration, 
AI-powered tools like the GPTs system could transform dietary 
management in PD and possibly other conditions sensitive to diet.

Practical application

By leveraging pre-learned relevant knowledge and employing 
advanced content generation capabilities of large language models, 
our designed ChatGPT tool can generate menus tailored to the 
nutritional status of PD patients based on their dietary preferences. 
This innovative feature supports patients by calculating the required 
daily protein intake based on their provided weight and residual 
kidney function, and generating corresponding menus. This is crucial 
for patients managing their diet during PD. The tool has significant 
potential in the dietary management of ESRD patients, effectively 
improving their nutritional status.
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Introduction

Large language models (LLMs), the core of many generative AI (genAI) tools, are

gaining attention for their potential applications in healthcare. These applications are wide-

ranging, including tasks such as assisting with diagnostic processes, streamlining patient

communication, and providing decision support to healthcare professionals. Their ability

to process and generate large volumes of text makes them promising tools for managing

medical documentation and enhancing the efficiency of clinical workflows (1). LLMs offer

a distinct advantage in that they are relatively straightforward to use, particularly since the

introduction of ChatGPT-3.5, and they exhibit a notable alignment with human language

and communication patterns, facilitating more natural interactions (2) and acceptance

of the LLMs’ conclusions (3). LLMs operate by predicting the next word in a sequence

based on statistical correlations identified in large datasets (4, 5). However, while these

models are effective at producing text that appears coherent and contextually appropriate,

they do so without a genuine understanding of meaning or context. This limitation is

particularly significant in healthcare, where accuracy is critical. Unlike human cognition,

which is driven by a complex array of goals and behaviors, LLMs are narrowly focused

on text generation. This focus can lead to the production of plausible sounding but

inaccurate information, a phenomenon referred to as “AI hallucination” (6). In high-

stakes environments like prediction, triaging, diagnosis, monitoring, or patient care, these

inaccuracies can have serious consequences.

While numerous articles across various Frontiers journals discuss LLMs, relatively

few focus on AI hallucinations as a central issue. For example, Jin et al. (35) in

Frontiers in Medicine note that “While LLMs like ChatGPT offer tremendous potential

in ophthalmology, addressing the challenges of AI hallucination and misinformation is

paramount.” Similarly, Giorgino et al. (34) in Frontiers in Surgery emphasize that “The

responsible use of this tool must be based on an awareness of its limitations and biases.

Foremost among these is the dangerous concept of AI hallucination.” Beyond the realm

of healthcare, Williams (38) in Frontiers in Education observes that “The concept of AI

hallucination gained widespread attention around 2022, coinciding with the rise of LLMs

such as ChatGPT. Users noticed these chatbots often generated random falsehoods in

their responses, seemingly indifferent to relevance or accuracy.” Williams (38) continues

by stressing that the “term AI hallucination has been criticized for its anthropomorphic

connotations, as it likens human perception to the behavior of language models.” Despite

these critical discussions, they remain sparse compared to the many articles praising

LLMs in medicine, highlighting the need for greater engagement in addressing the

limitations of these technologies. This imbalance highlights the need for greater emphasis

on mitigating the risks posed by these models. Building on this concern, Hicks et al. (10)

challenge conventional thinking in their paper “ChatGPT is Bullshit.” They assert that the

inaccuracies produced by LLMs should not simply be labeled as “hallucinations,” but as
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“bullshit,” a term based on philosopher Frankfurt’s (7) work.

According to this perspective, “bullshit” reflects a disregard

for accuracy, which poses serious challenges for the use of

genAI in healthcare. By reconceptualizing LLMs in healthcare as

“bullshiting” instead of “hallucinating,” this paper aims to provide

a perspective on the risks these tools pose in critical applications.

It explores practical solutions such as layered LLM architectures

and improved XAI methods, and emphasizes the urgency of

implementing tailored oversightmechanisms to counterbalance the

political and industry push for AI deregulation in sensitive domains

like medicine.

Understanding AI’s “bullshit”

LLMs generate text by predicting the next word based on

large datasets. While they produce human-like text, they don’t

inherently understand or verify its accuracy, acting as “prop-

oriented make-believe tools” (8). Their errors are not the result

of technical glitches that can be resolved with better data or

refined algorithms but stem from their fundamental nature—

they do not evaluate evidence or reason in the human sense.

This critical distinction between LLMs’ statistical processing and

human reasoning can lead to misconceptions, particularly when

LLMs are portrayed or perceived as capable of human-like

cognition. While LLMs can generate accurate and contextually

relevant text, their outputs are based on statistical correlations, not

genuine comprehension. As Bender et al. (32) famously argued,

LLMs, which generate word sequences based on learned patterns,

function as “stochastic parrots.” In contrast, human reasoning

involves deeper cognitive processes such as understanding, critical

thinking, and interpretation. While some, like Downes et al.

(33), challenge this view, suggesting that LLMs can produce

sensible answers by leveraging higher-level structural information

inherent in their design, the fact remains that LLMs remain

fundamentally agnostic to empirical reality. Recognizing this

distinction is crucial, as the statistical predictions made by AI

models—no matter how convincing—should not be equated with

deliberate, evidence-based reasoning of the human mind. As Hicks

et al. (10) point out: “ChatGPT is not trying to communicate

something they believe or perceive. Their inaccuracy is not due to

misperception or hallucination. As we have pointed out, they are

not trying to convey information at all. They are bullshitting.” This

indifference to evidence is especially concerning inmedicine, where

accuracy, interpretability, and liability are paramount. Consider the

implications of using genAI to provide medical advice or assist in

diagnosing patients—if the nature of its outputs is misunderstood,

it poses significant risks. Trusting and acting on potentially flawed

information could result in misdiagnoses and improper treatments,

with serious consequences for patient care. As stated by Harrer (1):

“Health buyers beware: generative AI is an experimental technology

not yet ready for primetime.”

Recognizing that these AI systems produce “bullshit”

rather than “hallucinations” calls for a more cautious and

skeptical approach, according to Hicks and colleagues. Titus (23)

convincingly stated that “Attributing semantic understanding

to these systems when we are not warranted in doing so

could have serious social and ethical implications related to

anthropormorphizing (sic) these systems or over-trusting their

ability to produce meaningful or truthful responses.” In the

health sector, this implies that, medical professionals should be

wary about them and avoid using LLMs as standalone sources of

information or advice (9). If AI systems are inherently indifferent

to the truth, there is a heightened responsibility on developers and

users to ensure these tools do not cause harm. This involves not

only improving the technical accuracy of AI models but also clearly

communicating their limitations to users. As Hicks et al. (10) note,

“Calling chatbot inaccuracies ‘hallucinations’ feeds into overblown

hype about their abilities among technology cheerleaders, and

could lead to unnecessary consternation among the general public.

It also suggests solutions to the inaccuracy problems which might

not work, and could lead to misguided efforts at AI alignment

amongst specialists.” Given the significant ethical implications of

AI in medicine, LLMs should be used as supplementary tools with

expert validation of both medical AI design and outputs prior to

clinical applications (9, 11).

Ensuring AI trustworthiness in healthcare requires shared

responsibility, with developers creating transparent systems and

medical professionals critically assessing AI outputs and their

limitations (12–15). Medical professionals must be trained to

understand that AI-generated content that may sound convincing,

is not always reliable. Developers should prioritize creating

interfaces that highlight these limitations and encourage critical

evaluation of AI outputs. For example, including disclaimers or

confidence scores can help users better assess the reliability of

the information provided (16). This is basically what the Notice

and Explanation section of the White House’s AI Bill of Rights

(17) requires: “Medical professionals should not use AI as a

standalone source of information or advice. Instead, AI should

serve as a supplementary tool, with all outputs rigorously validated

by human experts before being applied in any clinical setting.”

However, disclosure is not enough in itself as it is also conducive

to problems, particularly by shifting the burden onto users. Such

disclosure should be accessible and understandable in a way that

does not reproduce the problems of consumer products’ Terms and

Conditions, which are made ridiculously long to ensure that nobody

reads them (18).

Could more LLMs be the solutions?

Employing multiple layers of LLMs to mitigate the limitations

inherent in individual models could be a way to solve the

previously raised issues. Work is currently underway in this area

(19). Usually this entails enabling one model to cross-validate the

outputs of another to identify and correct inaccuracies, thereby

reducing the incidence of AI hallucination. This layered approach,

wherein different models are assigned specialized tasks such as fact-

checking or contextual validation, has the potential to enhance the

robustness and reliability of AI-generated content (20). However,

this methodology introduces significant complexity, including

the risk of error propagation and the challenges associated

with the coordination of multiple models. Furthermore, while

this strategy, which Verspoor (36) calls “fighting fire with fire,”

may incrementally improve the accuracy of outputs, it fails to

address the foundational issue of LLMs’ lack of true semantic
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understanding. An over-reliance on layered LLMs could result in

diminishing returns, where the added complexity and potential for

novel errors negate the anticipated benefits of enhanced accuracy.

Additionally, this approach risks fostering an overdependence

on AI systems (21), potentially undermining the role of human

expertise in domains requiring nuanced understanding and

ethical decision-making.

LLMs can still offer valuable contributions to medical practice

if used wisely. LLMs can assist in administrative tasks, generate

patient documentation, or provide preliminary information

on medical topics. They can even be useful in defending

patients’ interests in health insurance claims (22). However, these

applications must be designed with safeguards to prevent over-

reliance on potentially inaccurate outputs (9). One way to enhance

LLMs’ utility in medicine is not to rely solely on them, but also

to implement verification systems based on reliable databases (not

just web-scrapping). Even Hicks et al. (10) emphasize that there

are practical solutions to address the concerns of AI “bullshit.”

For example, connecting a LLM to a trusted medical database

can help ensure the information it provides is cross-referenced

with reliable sources. Such a system would also incorporate a

mechanism for arbitrating evidence, further enhancing accuracy

and providing a certain level of trustworthiness. However, this

integration must be implemented carefully to avoid introducing

new forms of misinformation or inadvertently embedding values

that are inconsistent with the context in which the tool is being

deployed (11).

Could explainable AI and regulatory
frameworks solve the problem?

Explainable AI (XAI) aims to increase transparency in AI

decision-making, including in LLMs. Techniques like attention

mechanisms and post-hoc explanations help users understand

how AI generates outputs, especially in high-stakes fields like

healthcare. However, XAI does not address the core limitation:

LLMs depend on statistical patterns, not genuine reasoning or

evidence evaluation (23). Moreover, while these techniques are

valuable for tracing outputs back to their underlying processes,

they often fail to expose the deeper epistemic limitations of

LLMs, such as their inability to reason or evaluate evidence.

Their explanations, therefore, reflect these patterns rather than

any meaningful understanding. Regulatory frameworks, such as

the European Union’s AI Regulation (24) and the US AI Bill of

Rights Blueprint (17), establish critical standards for transparency,

safety, and accountability. However, adapting LLMs to meet these

standards may not overcome their fundamental limitations in

reasoning and evidence-based decision-making. Experts argue for

shifting focus from refining LLMs to developing new AI paradigms,

such as neurosymbolic AI, which combines neural networks with

logical reasoning to address these gaps.

Neurosymbolic AI offers a promising alternative, integrating

neural adaptability with logical precision to enable more robust

reasoning and contextual understanding (25, 26). These models

can potentially overcome key limitations of LLMs, offering greater

efficiency and interpretability. As Wadhwa (37) suggests, LLMs

are nearing their developmental ceiling, and further investment in

them risks diminishing returns. Instead, regulators and investors

may explore advancing neurosymbolic AI to drive the next

generation of innovation, while ensuring AI systems are both

transparent and capable of increased trustworthy reasoning.

Despite its promise, neurosymbolic AI is not a panacea. It

faces challenges in scalability, interpretability, and handling the

complexity of real-world medical data (27). Moreover, its reliance

on logical structures may not fully capture the nuances of

probabilistic and ambiguous information common in medicine.

Thus, while neurosymbolic AI represents an incremental advance,

robust oversight, multidisciplinary collaboration, and continued

innovation remain essential for addressing AI’s limitations in

critical domains like healthcare.

Discussion

A deep, critical examination of the inherent limitations of

LLMs is crucial for advancing medical AI in ways that prioritize

patient safety and ethical integrity. While LLMs like ChatGPT

can generate fluent, coherent text, this proficiency often conceals

a more troubling reality: their responses are not necessarily

grounded in verified facts or consistent logic. In the medical field,

where evidence-based decision-making is paramount, relying on

these models without addressing their fundamental flaws presents

significant risks. LLMs, at their core, are probabilistic models

designed to predict the next word in a sequence based on patterns

in training data. This mechanism, though powerful for generating

human-like text, is fundamentally indifferent to truth. If the goal of

the model is to generate the most statistically likely response rather

than the correct or most appropriate one, there is a significant risk

of misinformation infiltrating clinical workflows.

As Jin et al. (35) underscore, “Responsible AI implementation

and continuous monitoring are essential to harness the benefits of

AI while minimizing potential risks.” A key concern with LLMs

in medical applications is their lack of reproducibility. Unlike

traditional software systems, where identical inputs yield consistent

outputs, LLMs can generate different answers to the same question

on different occasions. This unpredictability undermines the

reliability needed in medical settings, where consistency is essential

for delivering safe and effective care. Medicine, as a discipline,

cannot afford to embrace tools that exhibit epistemic insouciance—

a disregard for the reliability and validity of knowledge. This

is especially problematic given that LLMs, in many cases, are

not anchored in factual reality but are designed to produce text

that merely sounds plausible. The use of the term “hallucination”

to describe when LLMs generate factually incorrect statements

trivializes the severity of the issue. In truth, this behavior reflects

a deeper problem: LLMs are trained to predict patterns, not to

produce factual outputs. In medicine—an evidence-based practice

since the 1990s—this fundamental flaw can lead to the adoption of

unreliable tools that compromise the integrity of patient care.

The standard disclaimers provided by models like ChatGPT,

which warn that “ChatGPT can make mistakes. Check important

info,” are insufficient safeguards in clinical settings. While Harrer

(1) points out that “In defense of OpenAI, it never advertised

ChatGPT as trustworthy advisor but rather as a crowdsourced

technology evaluation and refinement experiment”; Harrer also
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acknowledged that there is insufficient riskmitigation across genAI,

including ChatGPT, which has sparked growing caution amid

internet-level hype. The implications for the health sector are

significant, most users (especially healthcare professionals) lack the

time or expertise to verify every piece of AI-generated information,

especially in high-stake environments where the margin for error

is slim, but the consequences significant. Entrusting users with

the responsibility of fact-checking AI outputs without giving

them the resources or assurances of accuracy exposes the field to

potentially dangerous mistakes, as well as to arguably lead to AI

ethics dumping, so to offload such responsibility to downstream

users (28). The casual acceptance of these limitations in AI use—

particularly in medicine, where errors can have life-threatening

consequences—reflects a dangerous complacency. Transparency,

interpretability, and trustworthiness in medical AI are not a luxury

but a necessity. Healthcare professionals need to understand not

only what the AI recommends but also how and why it arrived at

its conclusions. Explainability in AI systems is critical for building

trust and enabling professionals to make informed decisions based

on AI output. Without this transparency, the tools are “black

boxes,” offering answers without accountability or justification—an

untenable situation in clinical decision-making.

The challenges of ensuring ethical and trustworthy AI are

further amplified by the current political climate, especially in the

United States. The incoming Trump administration is expected

to prioritize the removal of “unnecessary” AI regulations to

accelerate innovation (29). The lobbying efforts of influential

tech organizations like BSA | The Software Alliance (30)—which

represents companies such as OpenAI and Microsoft—advocate

for policies that reduce regulatory constraints to promote AI

adoption. While the group acknowledges the importance of

international governance and standards, its focus on removing

barriers to innovation risks deprioritizing critical safeguards

(such as government-imposed ethical AI standards and oversight

mechanisms). Furthermore, President-elect Trump’s plans to undo

AI regulatory efforts by the previous administration—including a

risk management framework designed to foster AI transparency

and accountability—signal a potential shift toward AI deregulation

(31), and perhaps an AI regulation winter. Such a move could

weaken efforts to mitigate the inherent risks of deploying LLMs and

flawed AI systems in high-stakes domains like healthcare.

Given this context, it is crucial to emphasize shared

responsibility for trustworthy AI systems. Developers,

policymakers, and healthcare institutions must collaborate to

uphold ethical standards, transparency, and accountability in AI

deployment, regardless of the regulatory environment. Without

such efforts, the drive for deregulation may exacerbate the risks

posed by LLMs, particularly their tendency to produce plausible

yet inaccurate or misleading outputs. Trustworthy AI cannot be

treated as a secondary consideration, especially in healthcare,

where patient outcomes and lives are directly at stake.

Reframing AI errors from being seen as harmless

“hallucinations” to recognizing them as dangerous “bullshit”

is more than just a shift in terminology—it is a critical reframing

of how to approach the integration of AI into healthcare. These

are not small, occasional mistakes but fundamental flaws in how

these systems operate. Policymakers, healthcare providers, and

AI developers must recognize that the stakes are high, and that

without rigorous safeguards, LLMs and genAI could erode trust

and the quality of care.
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Objective: With the development of ChatGPT, the number of studies within

the nursing field has increased. The sophisticated language capabilities of

ChatGPT, coupled with its exceptional precision, o�er significant support

within the nursing field, which includes clinical nursing, nursing education,

and the clinical decision-making process. Preliminary findings suggest positive

outcomes, underscoring its potential as a valuable resource for enhancing

clinical care. However, a comprehensive analysis of this domain is lacking, and

the application of bibliometric methods remains rare. This study aims to describe

and predict the developmental trajectory of the discipline, identify research

hotspots and trends, and provide a comprehensive framework for the integration

of ChatGPT in nursing.

Methods: Following the development of a search strategy in collaboration

with librarians, the implementation of this strategy occurred in the Web

of Science Core Collection (WoSCC) on June 30, 2024. For bibliometric

and visual analyses—including evaluations of sources, institutions, countries,

author collaboration networks, and keywords—Bibliometrix (version 4.4.2) and

CiteSpace (version 6.2.R2 Basic) were employed.

Results: A total of 81 articles published by 67 authors were retrieved from

the Web of Science Core Collection database, covering the period of June 30,

2024. The number of published studies has exhibited an increasing trend. The

“European Journal of Cardiovascular Nursing” emerged as the most productive

journals, while the USA, the UK, and China were identified as the leading

countries in terms of publication output. The top 10 keywords identified in this

study include artificial intelligence, nursing education, large language models,

ChatGPT, natural language processing, generative artificial intelligence, care,

nursing practice, clinical decision-making, and deep learning.

Conclusion: ChatGPT is an emerging tool in the nursing field, currently

in the foundational research phase. While there is significant international

collaboration, cooperation among author groups remains somewhat limited.

Studies focusing on ChatGPT in nursing primarily concentrate on two key

themes: (1) the deep learning of ChatGPT in nursing and (2) the feasibility of

its application. It is essential for nurses across various specialties to collaborate

in exploring the diverse applications of ChatGPT within their domains, thereby

fostering the ongoing development and enhancement of this technology.
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ChatGPT, nursing, knowledge hotspots, visualized analysis, CiteSpace
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Introduction

On November 30, 2022, OpenAI launched ChatGPT, a text-

based chatbot powered by a large language model (1). As ChatGPT

continues to evolve, its significance and application within the

healthcare industry are becoming increasingly apparent (2). The

advanced language capabilities of ChatGPT, combined with its

impressive accuracy, offer essential support in nursing (3), which

includes domains such as clinical nursing (4–6), nursing education

(6–10), and clinical decision-making (11, 12). Preliminary findings

have shown promising results, suggesting its potential as a tool

for clinical care assistance (1, 13). ChatGPT could transform the

nursing profession and positively impact the health of both patients

and healthcare providers (9).

Despite the increasing interest in this technology, significant

knowledge gaps remain regarding its usage patterns in nursing,

particularly concerning its advantages and potential drawbacks

(14). Issues such as misinformation (8), digital dependence (15),

and ethical dilemmas (16, 17) have also been raised by nursing

professionals. Despite the increasing body of research in this area,

there remains a lack of comprehensive analysis within the nursing

field, and the application of bibliometric methods in this domain is

still relatively uncommon. This research contributes to the nursing

literature by providing a detailed examination of ChatGPT’s role in

nursing, a topic that has not been adequately explored.

This study aims to demonstrate, evaluate, and predict the

developmental trajectory of nursing’s evolution and advancement

influenced by the integration of ChatGPT. It seeks to explore

new roles, applications, and potential future directions, while

also identifying existing hotspots and trends in the utilization of

ChatGPT within the nursing discipline. Additionally, the study

endeavors to establish a comprehensive framework that addresses

the various applications and implications of ChatGPT in the

nursing sector.

Methods

This bibliometric and visual analysis was conducted via the

R bibliometric package and CiteSpace to examine publications

concerning the use of ChatGPT in nursing research.

Search strategy

To ensure a high level of quality and a stringent selection

process for the literature, we collaborated with a librarian to

develop our search strategy (18), which we executed within

the Web of Science Core Collection (WoSCC). Recognized

globally as one of the oldest and most reputable sources of

research publications and citations, the WoSCC database provides

comprehensive and reliable information (19). It is widely regarded

as the primary database utilized for bibliometric studies (20).

Given the interdisciplinary applications of ChatGPT in nursing,

the extensive coverage offered by WoSCC enables us to effectively

gather relevant literature (21). The search strategy was formulated

as follows: TS = (“ChatGPT” OR “Chat-GPT” OR “Chat GPT”

OR “GPT-3.5” OR “GPT-4”) and TS = (“nurs∗” OR “care”) from

the Web of Science Core Collection. The search was executed on

June 30, 2024, and focused on publications related to ChatGPT

in nursing research, which served as the inclusion criterion. The

criteria established for the inclusion of studies in this research

were as follows: (1) only articles published in English, and (2)

research relevant to the domain of generative artificial intelligence

in nursing. No exclusion criteria were defined for this investigation.

The literature screening was conducted independently by the first

and second authors, who began by reviewing the titles and abstracts

of each paper according to the predetermined inclusion standards

to identify works requiring full-text evaluation. The final phase

of the screening process involved a comprehensive review of the

complete texts to ensure compliance with all established criteria.

Any disagreements that arose during the literature review were

resolved through group discussions. The search process yielded 99

studies from the database. After assessing for duplicate publications

and applying the inclusion criteria, a total of 81 publications were

selected for bibliometric and visual analysis.

Bibliometric analysis methodology

We utilized the Biblioshiny web interface within RStudio,

along with the bibliometric package, to perform the bibliometric

analysis (22, 23). For the data analysis in this study, we employed

Bibliometrix version 4.1.4 software. Following the installation

of the Bibliometrix R package, the Bibliometrix web interface

was launched via the command “bibliometrix::biblioshiny().” We

analyzed influential factors, including sources, articles, authors,

affiliations, institutions, and countries, that significantly impacted

the application of ChatGPT in nursing research within the

selected timeframe.

Visualized analysis methodology

CiteSpace was utilized to conduct a visual analysis. This

free Java application, which is based on network analysis and

visualization (24), is specifically designed to address inquiries

regarding the field of knowledge, a concept that broadly

encompasses scientific fields, research domains, or scientific

disciplines (25). For data processing, the selected timeframe spans

from 2023 to 2024, with a time slice of 1 year. All relevant items,

such as titles, abstracts, supplementary keywords (ID), author

keywords (DE), and various other identifiers for nodes, were

included, while default values were applied to the remaining items.

The critical path method was employed to analyze data collection

elements, construct a knowledge map, utilize co-occurrence maps

to investigate research hotspots over the years, and apply time-zone

views to elucidate the developmental relationships among these

research hotspots.

Results

Publication characteristics

Since the release of ChatGPT in November 2022, the

publication distributions by month, as depicted in Figure 1,

encompassed publications from December 2022 to June 2024. A
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total of 81 publications were included in the analysis, comprising

46 articles, 16 editorial materials, nine letters, eight reviews, and two

proceedings. The growth rate of published studies has exhibited an

increasing trend, as indicated in Figure 1. The number of papers

published in 2023 (n = 35) was lower than that published in the

first half of 2024 (n= 46).

FIGURE 1

Number of articles published per month.

FIGURE 2

The top 20 most published sources.

FIGURE 3

Core sources by Bradford’s Law.

Analysis of sources

The source analysis involved identifying the most relevant

sources, applying Bradford’s law, and examining the local impact

of these sources. The results revealed the top 20 most relevant

sources that have published works related to ChatGPT in nursing.

The “European Journal of Cardiovascular Nursing” and the

“International Journal of Nursing Studies” ranked highest, each

producing six documents. They were followed by “Nurse Education

Today” and “Nurse Educator,” which each published five works,

along with the others detailed in Figure 2.

Bradford’s Law suggests that the most significant sources can

be identified among the first 50 articles (26). It categorizes sources

into different zones. The first zone is considered the core source,

encompassing the majority of relevant articles from the initial 50

selected. Among the top 20 sources, the “European Journal of

Cardiovascular Nursing” and the “Journal of Clinical Nursing” are

classified in Zone 1, indicating that these are the primary sources

for relevant searches (see Figure 3 and Table 1).

TABLE 1 A list of core sources by Bradford’s law.

Source Rank Freq cumFreq Zone

European Journal of

Cardiovascular Nursing

1 6 6 Zone 1

International Journal of

Nursing Studies

2 6 12 Zone 1

Nurse Education Today 3 5 17 Zone 1

Nurse Educator 4 5 22 Zone 1

Cureus Journal of Medical

Science

5 3 25 Zone 1

Journal of Clinical Nursing 6 3 28 Zone 1

Nurse Education in Practice 7 3 31 Zone 2

Teaching and Learning in

Nursing

8 3 34 Zone 2

Annals of Biomedical

Engineering

9 2 36 Zone 2

JMIR Formative Research 10 2 38 Zone 2

Journal of Multidisciplinary

Healthcare

11 2 40 Zone 2

Journal of Nursing Education 12 2 42 Zone 2

Journal of Perianesthesia

Nursing

13 2 44 Zone 2

Journal of Psychiatric and

Mental Health Nursing

14 2 46 Zone 2

Nursing Inquiry 15 2 48 Zone 2

American Journal of

Emergency Medicine

16 1 49 Zone 2

Applied Sciences-Basel 17 1 50 Zone 2

Belitung Nursing Journal 18 1 51 Zone 2

BMC Nursing 20 1 53 Zone 2

Clinical Simulation in

Nursing

21 1 54 Zone 2

Diagnostics 22 1 55 Zone 2
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An analysis of the impact of sources, which is based on the

weighting of their h-index, g-index, andm-index (27, 28), indicated

that the journals with the highest impact are “Nurse Education

Today,” “European Journal of Cardiovascular Nursing,” and

“International Journal of Nursing Studies,” as evidenced by their

respective h-index, g-index, andm-index (see Table 2). Notably, the

two journals with the highest citation counts are “Nurse Education

Today” and “European Journal of Cardiovascular Nursing.” The

majority of journals with over 30 total citations are related to the

field of education.

A�liation and country analysis

We identified the top 20 most relevant affiliations, which

represent the contributions of prominent institutions in producing

TABLE 2 A list of source local impact.

Source h_index g_index m_index TC

Nurse Education

Today

5 5 2.5 94

European Journal of

Cardiovascular

Nursing

4 6 2 94

International Journal

of Nursing Studies

3 3 1.5 13

Annals of Biomedical

Engineering

2 2 1 28

Journal of Clinical

Nursing

2 3 1 33

Journal of Nursing

Education

2 2 1 7

Nurse Education in

Practice

2 3 1 40

Nurse Educator 2 5 1 70

Teaching and Learning

in Nursing

2 2 1 7

American Journal of

Emergency Medicine

1 1 1 1

Applied Sciences-Basel 1 1 0.5 5

Belitung Nursing

Journal

1 1 0.5 24

BMCMedical

Education

1 1 1 3

Clinical Simulation in

Nursing

1 1 1 1

Cureus Journal of

Medical Science

1 3 0.5 12

Diagnostics 1 1 1 10

Educational

Technology and

Society

1 1 1 6

Electronics 1 1 0.5 17

Family Medicine and

Community Health

1 1 1 5

articles on the selected topic. The State University System of Florida

leads with nine articles, followed by King Saud University and

Sichuan University, each with seven articles, along with the others

mentioned in Figure 4. This underscores these institutions as key

players in ChatGPT in nursing research.

The top 20 countries with the most relevant corresponding

authors have been identified on the basis of their simple

publications (SCP) and multiple publications with other countries

(MCP) (23). China (13 SCPs, 3 MCPs) and the USA (12 SCPs, 4

MCPs) led, with a total of 16 articles each. Additional countries

are detailed in Figure 5. The global scientific contributions of these

top 20 countries have been assessed, with the USA at the forefront,

exhibiting a frequency of scientific production of 62, followed by

China with 53, and the UK with 33 (see Figure 6). These statistics

highlight the dominant roles of the USA and China in the research

surrounding ChatGPT in nursing.

The collaboration world map illustrates the affiliations of

authors based on their countries (Figure 7). The results indicate

that the continents exhibit varying levels of strong collaboration.

Upon evaluating the connections between countries, we find

that the USA leads with 32 links, closely followed by the

United Kingdom with 33 links and China with 24 links. The USA,

FIGURE 4

The top 20 most published a�liations.

FIGURE 5

The top 20 most productive corresponding authors’ countries.
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recognized as one of the most active countries, maintains two or

more partnerships with China, Denmark, Singapore, Switzerland,

and the UK. The proximity of the nodes or circles on themap, along

with the thickness of the connecting lines, suggests that the number

of national publications is directly proportional to the degree of

cooperative association.

Author cooperation network

Through the analysis of the number of papers published by the

authors and their cooperation network, we identified 67 authors

who are engaged in the study of CiteSpace within nursing research.

On the basis of the frequency measure of the number of documents

FIGURE 6

Top 10 most frequency of scientific production.

authored, Moons and Van Bulck lead their peers, each having

produced four articles. All other relevant authors are presented in

Figure 8.

By analyzing author cooperative relationships, we observed a

decentralized distribution among scholars (Figure 9). The analysis

encompasses the 67 most cited contributors and 150 co-citation

links. Evidence of collaborative teams among scholars is apparent,

as mutual interactions occur among team members; however,

each team experiences weak external collaboration. This suggests

that although the research topics are multidisciplinary, they

are primarily studied independently by various teams across

different disciplines.

FIGURE 8

The top 20 most productive authors.

FIGURE 7

Collaboration world map.
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FIGURE 9

Author cooperative relationship.

Analysis of keywords

To explore research hotspots and cutting-edge topics, we

analyzed the co-occurrence network of keywords. As illustrated

in Figure 10, the connecting lines between various keywords

are intricate, indicating complex interconnections. The top 10

keywords include artificial intelligence, nursing education, large

language model, ChatGPT, natural language processing, generative

artificial intelligence, care, nursing practice, clinical decision-

making, and deep learning. In the figure, “artificial intelligence”

and “nursing education” are represented by larger nodes, signifying

their substantial presence in the topic.

The hierarchical arrangement of articles is organized through

a clustering network (Figure 11). Co-occurring keywords are

categorized into seven subclusters: #0 artificial intelligence, #1 deep

learning, #2 dental, #3 large language models, #4 Benner’s theory,

#5 clinical decision making, and #6 care. The center node in

Figure 8 represents the highest occurrence of the term “artificial

intelligence” within the co-occurrence network. Key intermediaries

such as “generative AI,” “nursing education,” and “decisionmaking”

serve to connect the clusters. The silhouette value for each cluster

exceeded 0.8, indicating that the results are both reliable and

significant (Table 3).

The term “burst vocabulary” refers to a set of words that are

frequently cited over a specific period (Figure 12). The top 10

keywords associated with this duration include nursing practice

(0.55), student (0.36), dental nurse (0.36), nursing student (0.36),

language model (0.36), artificial intelligence (AI) (0.36), deep

learning (0.36), conversational agent (0.18), GPT-4 (0.18), and

calculator (0.18). These keywords indicate a significant increase

in scholarly attention to various aspects of ChatGPT in nursing,

highlighting the research trends within this domain. It is evident

that disciplines such as nursing practices, students, dental nurses,

and nursing students are increasingly focused on the application

of new technologies, demonstrating heightened sensitivity and

innovation in response to advancements in science and technology.

Discussion

Hobensack et al. suggested that nurses across various

domains—such as practice, research, education, and policy—are

expected to be influenced by the use and application of large

language models, with nearly all (93%) of the reviewed articles

identifying ChatGPT as a prominent example (29). Although there

are some limitations in this article, it effectively underscores the

significance of ChatGPT within the nursing field. Furthermore,

bibliometric trends suggest that this field is actively evolving

and characterized by early exploration and significant growth.

This gradual increase reflects increasing interest, likely driven

by advancements in ChatGPT and a growing awareness of its

potential applications within the nursing profession (30). The

dynamic nature of this field emphasizes the potential for further

advancements and discoveries, indicating that we are still in the

process of comprehensively understanding its full impact and

possibilities (31).
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FIGURE 10

Co-occurrence network of keywords.

The findings of the most relevant sources indicate that

similar results are achieved when sources are analyzed from

different perspectives. The leading sources encompass a variety

of topics, including nursing education (32), cardiovascular care

(33), emergency care (34), perianesthesia nursing (35), psychiatric

health (36), and family and community care (37, 38), thereby

highlighting the extensive applicability of the ChatGPT within

the nursing profession. Nine of the top 20 journals focus on

education, reflecting ChatGPT’s current areas of emphasis in

conjunction with nursing. Among these educational articles,

the majority conclude that ChatGPT is feasible for nursing

education; however, they also acknowledge limitations and ethical

dilemmas that could inform updates to the ChatGPT version

(7, 9, 39). In our bibliometric study, we employed Bradford’s

Law to categorize the sources into distinct zones, which aids in

identifying the principal journals within a specific subject area

(40). White (66) noted that Bradford’s Law could lead to the

misconception that articles published in the primary journals

of a field are generally of higher quality than those distributed

across peripheral journals (41). To mitigate the inaccuracies

arising from this bias, we concurrently assessed the h-index, g-

index, and m-index. The results indicated that sources in Zone

1 exhibited a significant impact, thereby enabling us to further

identify high-quality sources within the domain of ChatGPT

in nursing.

The literature on the measurement of affiliation and country

indicates that the high volume of articles not only reflects a

strong institutional emphasis on this area of research but also

suggests access to essential resources, such as funding, talent,

and data, which are crucial for sustained academic productivity

(42, 43). The presence of institutions from the United States,

China, and Saudi Arabia further underscores that the exploration of

ChatGPT in nursing research is a global phenomenon characterized

by geographical diversification. These institutions possess robust

interdisciplinary collaborations that integrate expertise from both

nursing and computer science, fostering innovation and the

exchange of ideas (43). The SCP highlights the strong national

research capabilities and initiatives of the USA and China in this

interdisciplinary field. Additionally, the MCP highlights the role

of these two countries in international collaboration, facilitating

the global exchange of knowledge and expertise in this domain

(38). For example, China and the United States have collaborated

on a multidisciplinary approach to address the opportunities and

challenges posed by artificial intelligence (44), as well as the

applications of ChatGPT in nursing education (45). Academic

collaboration among various countries or regions can significantly
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FIGURE 11

Clustering network of keywords.

TABLE 3 A list of the clustering network.

Cluster ID Size Silhouette Year Cluster label Top terms (LSI)

#0 17 0.846 2023 Artificial intelligence Artificial intelligence; the-art language processing; nursing students; college

student; nursing education; nursing education research; health knowledge; social

responsibility; nursing informatics

#1 13 0.966 2024 Deep learning Deep learning; image processing; machine learning; dental nurse; image

segmentation; gender bias; machine translation; language models;

human-centered design

#2 11 0.976 2023 Dental Nursing education; artificial intelligence; narrative review; pedagogical approach;

student assessment; proximal development; vygotskys zone; skin symptoms

#3 9 0.976 2023 Large language models Large language models; generative artificial intelligence; conversational agent;

nursing informatics; bibliometric analysis; scoping review

#4 8 0.816 2023 Benners theory Skill acquisition; nursing education; benners theory; artificial intelligence; clinical

decision-making

#5 6 0.954 2023 Clinical decision making LLMS feasibility; AI routine integration; methodology; clinical decision making;

healthcare innovation; nursing informatics; safety; multidisciplinary approach;

multi-parametric analysis

#7 4 0.973 2023 Care Burnout; burden; care; nurse

enhance the dissemination of knowledge and foster academic

exchange (46). Although ChatGPT is an emerging technology,

collaboration among nations across all continents underscores

the globalization and significance of ChatGPT research in the

field of nursing. Advancements in technology and the deepening

of research efforts suggest that such cooperation will become

increasingly essential in the future.

The development of large AI models necessitates closer and

more intense collaboration among domain experts, as well as

the gradual establishment of regulations (47). In the author

collaboration network analyzed by Citespace, the collaboration

density is measured at 0.0678, indicating that the authors’

cooperative efforts are dispersed (48), which may stem from

differing valuations of the subject matter by each team. The

group comprising Moons and Van Bulck primarily focuses on the

trustworthiness and value of ChatGPT (6, 49). Tam et al.’s group

focused on nursing education in the age of artificial intelligence

(7), whereas Allen group collaborated on mental health (50).

This suggests that, despite the multidisciplinary nature of the

research topics, they are predominantly investigated independently
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FIGURE 12

The top 10 keywords with the strongest citation bursts.

by various teams across different disciplines. It is plausible that

the extensive scope of nursing as a subject area has prompted

these teams to explore specific nursing specialties in divergent

directions. Although there appears to be limited collaboration

among the teams, this does not necessarily imply a deficiency of

teamwork in the research concerning ChatGPT in nursing. As

research on ChatGPT intensifies and the volume of studies within

the same specialty increases, the focus may gradually shift from

assessing the feasibility of ChatGPT in nursing to deep learning

itself. Consequently, the trend of collaboration among different

teams may increase in the future.

The analysis of hotspot evolution revealed that ChatGPT has

been extensively studied within the realms of nursing education,

clinical decision-making, and management, highlighting its

significant application in the nursing field. As an emerging artificial

intelligence technology, ChatGPT has spurred advancements in

both nursing education and clinical decision-making (51, 52).

The interconnectedness of nursing and ChatGPT is evident,

as both domains appear to support each other’s progression.

By utilizing the keyword clustering knowledge graph and

collinear network clustering table, it becomes clear that most

clusters exhibit overlap. Among the seven identified clusters,

the clusters pertaining to artificial intelligence, dental, large

language models, and Benner’s theory are closely interconnected,

whereas the clusters related to deep learning, clinical decision-

making, and care are more peripheral due to their looser

connections. This observation indicates that current research

is still in the early stages of foundational data research and

technological development. ChatGPT is still in its preliminary

stages, and the theoretical foundations and data models of the

four interconnected clusters are expected to maintain a dominant

position in future research. The dental cluster is closely linked

to other clusters, primarily emphasizing nursing education. This

alignment indicates that nursing education is consistent with

current research hotspots and focal points. Additionally, topics

such as deep learning, clinical decision-making, and patient care

reflect the continuous emergence of new areas of inquiry. ChatGPT

is anticipated to engage in more comprehensive collaborative

research grounded in the theoretical frameworks of clinical

decision-making and patient care. Currently, the application of

ChatGPT in nursing primarily revolves around nursing education,

clinical decision-making, clinical nursing practice, automated

writing, and addressing common nursing inquiries. In the realm

of nursing education, ChatGPT applications include vocational

examinations, application attitude surveys, educational practices,

and teaching design, among others. ChatGPT as a representative

product, its application and research results also show the main

advantages of “Anthropic Claude,” “Google Gemini” and other

generative AI in the field of nursing, as well as their usability

and research prospects. The results and discussion indicate

that ChatGPT offers significant advantages in the nursing field,

including user-friendliness, rapid response capabilities, data-driven

content generation, and enhanced efficiency. A representative

example is the applications and research findings related to

ChatGPT, which also emphasize the relevance of other generative

AI models, such as “Anthropic Claude” and “Google Gemini,”

within the nursing domain, thereby highlighting their usability and

research potential.

Nearly all the articles evaluated the risks associated with

the ChatGPT. Perspectives on this issue vary; some scholars

adopt a negative stance, indicating that further research is

necessary (53–55), whereas the majority advocate embracing
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the challenge and seizing the opportunities presented (13, 39,

56). Ethical considerations are a crucial element that must not

be overlooked. Issues related to reliance on technology (57),

misdiagnosis and treatment errors (58), data security breaches (59),

and the trustworthiness of patients (60) must be addressed when

utilizing ChatGPT. Future studies should continue to examine the

ethical ramifications of artificial intelligence concerning patient

confidentiality and data protection (2), the accuracy and credibility

of information (61), autonomy in decision-making (62), and

transparency (63), to enhance the integration of ChatGPT within

the nursing field.

We acknowledge the limitations of our study. (i) CiteSpace’s

dependence on specific data sources is primarily evident in its

connection to particular databases, notably the Web of Science

(WoS) and others. This dependence constrains the scope and

comprehensiveness of CiteSpace’s data collection and analysis,

potentially omitting relevant literature that is not included in these

databases (21, 64). Our investigation is confined to publications

included in the Web of Science Core Collection (WoSCC), which

does not encompass all journals; this may lead to the oversight

of articles in other databases, such as Scopus and PubMed.

Nevertheless, the WoSCC is a comprehensive and well-organized

database that is extensively utilized across various scientific

disciplines, and the quality of papers within this source is widely

recognized and employed in most scientometric studies. (ii) While

CiteSpace is capable of identifying significant patterns and trends

within scientific literature, it does not function at its full potential

for conducting in-depth analyses of specific fields or subjects (65).

Therefore, it may be necessary to employ additional tools or

techniques to gain more comprehensive insights. To complement

these limitations, the bibliometric package was applied to conduct

more in-depth statistical analysis of the data, such as the top 20

most relevant affiliations, Bradford’s Law, the impact of sources,

SCP, MCP, etc. So as to dig out deeper academic information. (iii)

Our analysis was limited to English-language articles published in

reputable peer-reviewed scientific journals, which may introduce

potential publication bias.

Conclusions

ChatGPT is an emerging tool in the field of nursing and is

currently in the basic research stage. To our knowledge, the present

study represents the first bibliometric analysis of the application of

the ChatGPT in nursing, identifying key contributors, including

countries, authors, and journals. Our findings indicate that the

United States and China are the leading countries in terms of

publication volume and that international collaboration is robust.

However, there is limited cooperation among author groups,

which can be attributed to differences in specialties. Therefore, it

is essential for nurses from various specialties to collaborate in

exploring the diverse applications of ChatGPT within their fields,

thereby facilitating the further development and enhancement of

this technology. Our hotspot analysis revealed that publications

on ChatGPT in nursing have focused on two main themes: (1)

the deep learning of ChatGPT in nursing and (2) the feasibility

of its application. In addition to discussing the use of ChatGPT

in nursing, we provide several suggestions for academics to

conduct empirical studies in this area: (1) The literature currently

lacks randomized controlled trials and qualitative studies; thus,

the effects of ChatGPT could be evaluated via a variety of

research designs. (2) By integrating different artificial intelligence

tools (such as DeepL, especially AI, and Resemble AI) and

technologies (including virtual reality, augmented reality, and

mobile applications) with ChatGPT, we can investigate the effects

of these combinations on nursing practice. (3) The literature on

the application of ChatGPT in nursing tends to be fragmented,

particularly concerning foundational data studies. It is feasible

to enhance the application of ChatGPT across various practice

areas and identify commonalities through collaborative efforts. By

addressing these research priorities, we can substantially advance

our understanding of the potential of ChatGPT as a tool in nursing

and develop a diverse range of strategies.
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Background and objectives: We propose the use of GPT-4 to facilitate initial 
history-taking in neurology and other medical specialties. A large language 
model (LLM) could be utilized as a digital twin which could enhance queryable 
electronic medical record (EMR) systems and provide healthcare conversational 
agents (HCAs) to replace waiting-room questionnaires.

Methods: In this observational pilot study, we  presented verbatim history 
of present illness (HPI) narratives from published case reports of headache, 
stroke, and neurodegenerative diseases. Three standard GPT-4 models were 
designated Models P: patient digital twin; N: neurologist to query Model P; and 
S: supervisor to synthesize the N-P dialogue into a derived HPI and formulate 
the differential diagnosis. Given the random variability of GPT-4 output, each 
case was presented five separate times to check consistency and reliability.

Results: The study achieved an overall HPI content retrieval accuracy of 81%, with 
accuracies of 84% for headache, 82% for stroke, and 77% for neurodegenerative 
diseases. Retrieval accuracies for individual HPI components were as follows: 
93% for chief complaints, 47% for associated symptoms and review of systems, 
76% for relevant symptom details, and 94% for histories of past medical, 
surgical, allergies, social, and family factors. The ranking of case diagnoses in 
the differential diagnosis list averaged in the 89th percentile.

Discussion: Our tripartite LLM model demonstrated accuracy in extracting 
essential information from published case reports. Further validation with 
EMR HPIs, and then with direct patient care will be  needed to move toward 
adaptation of enhanced diagnostic digital twins that incorporate real-time data 
from health-monitoring devices and self-monitoring assessments.
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neurology–clinical, stroke, headache, neurodegenerative disease, large language 
model (LLM), history taking
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Introduction

Contrasting with the gradual drift of many medical specialties 
toward laboratory-dependent diagnosis, neurology, psychiatry, and 
primary care remain heavily dependent on careful history-taking. In 
the case of neurology, history guides the focused exam—a dementia 
history triggers an exam that’s entirely different from that for a 
motorcycle accident (1). This history-dependence extends to the 
choice of labs and imaging as well. The complexities of neurological 
history reflect the wide variety in presentation across (1) multiple 
neural systems: CNS, PNS, ANS; (2) multiple structures within the 
brain, brainstem, cord, etc.; and (3) multiple etiologies: vascular, 
inflammatory, traumatic, infectious, etc. Neurologists are extensively 
trained to follow the logic of localization and etiology when taking a 
history. Non-neurologist practitioners, on the other hand, may feel 
overwhelmed or uncertain when managing a neurological patient (2).

Although questionnaires play a role in neurological subspecialties, 
a general neurology questionnaire is not feasible due to the breadth of 
possible problems to be considered. Compared to either close-ended 
(multiple choice) or open-ended (fill in the blanks) static health 
questionnaires, computer-based digital questionnaires can give more 
flexibility by following a sequence of flow-charted questions 
comparable to what is provided in board exams. These have shown 
some degree of utility in primary care settings (3–5). Large language 
models (LLMs) such as generative pre-trained transformers (GPTs) 
can add further flexibility in questioning when used as healthcare 
conversational agents (HCAs) (6–8).

To evaluate GPT-4 proficiency in general neurology history-taking, 
we considered several alternatives for finding our historian patients. 
Since this was a pilot study and associated AI safety and monitoring 
were not secured, clinic patients were not used. Therefore, as in our 
previous study, we started with published cases from the literature (9). 
Using ourselves as intermediaries to answer questions risked allowing 
too much additional medical knowledge to creep into the responses. 
Simple transcribing of case reports into the AI model would not allow 
the desired interactivity of actual patient communication. After trialing 
these approaches, we decided to utilize GPT-4 as the patient partner 
and as a digital twin that would provide the patient part. Evaluation of 
the GPT-4 output showed that the responses were reasonable utterances 
comparable to those expected from a patient. We also decided to use a 
limited set of neurological diagnoses where history plays a major role 
in determining a provisional diagnosis.

We found that GPT-4 could provide adequate initial history-taking 
that could potentially aid in history-taking by healthcare workers. This 
would provide efficiency in workflow, especially in busy hospitals or 
clinics where patients wait long, elongated periods of time to get initial 
evaluations. AI tools could provide better use of time for both the 
patient and the physician. Additionally, utilizing LLM to create digital 
twins could provide a possible future of queryable electronic medical 
record (EMR) systems or be utilized further to train HCAs.

Method

Study design

We chose cases of common neurological disorders, including 
headache, stroke, and neurodegenerative diseases, from PubMed 

Central search for (“BMC Neurology”[Journal] OR “J Med Case 
Rep”[Journal] OR “Medicine (Baltimore)”[Journal]) AND “case 
report”[Title] AND [CASE]. As in our previous study, these journals 
were chosen since they provided relatively detailed case report 
descriptions rather than abbreviated, diagnosis-targeted descriptions 
(9). The [CASE] search used MeSH (Medical Subject Headings) terms: 
“Stroke”[MeSH Terms]; “Headache”[MeSH Terms]; 
“Dementia”[MeSH Terms] OR “Parkinson Disease”[MeSH Terms] for 
neurodegenerative diseases. The excluded articles were those 
describing treatment failures, complications, unclear clinical 
descriptions, non-neurological conditions, coexisting neurological 
conditions, and duplicate diagnoses. For each disease category, 
we randomly selected five case reports.

We utilized three identical, non-pretrained GPT-4 (version 
4-0125-preview) models for Model N (neurologist), Model P (patient), 
and Model S (supervisor). Model N was limited to 30 questions to 
form a diagnostic impression. Subsequently, Model S synthesized a 
summarized History of Present Illness (HPI) and established a list of 
differential diagnoses based on the Model N and Model P dialogue.

To assess data consistency, the simulated patient-doctor 
interactions were replicated five times per case. The quality evaluation 
involved comparing the HPI generated by GPT-4 with a rubric that 
summarized the key elements from the original case report. To further 
assess the quality of history-taking, the original case report’s diagnosis 
was compared against the GPT-4’s list of differential diagnoses, noting 
its percentile ranking when applicable. Our grading permitted the 
acceptance of broader diagnostic terminology where GPT-4 could not 
clinically identify the exact diagnosis within the differential list.

Prompt engineering

Zero-shot instruction prompt was used to configure the N and P 
models (Figure 1), with the prompt providing: ‘role’ to distinguish the 
expected behaviors; ‘setting’ to provide the context in which the 
models would operate; ‘task’ to set the objectives; ‘detailed instructions’ 
for additional behavioral guidance.

Model N was required to provide questions about symptom onset, 
characteristics, evolution, and associated symptoms, along with 
complete medical, surgical, medication, social, allergy, and family 
histories. The model was instructed to probe further into any reported 
symptoms by requesting detailed descriptions. The goal was to gather 
a focused history rather than a full history, limiting the maximum 
number of queries to 30 for efficient history collection. After reaching 
a provisional diagnosis, the conversation ended by stating ‘terminate’ 
by Model N.

Model P was required to adhere strictly to the case document and 
instructed to use the keyword “Negative” if queried information was 
unavailable, which later in the summarization process by Model S 
would be interpreted as either unavailable information or negative 
pertinent. Model P was prompted to use a simple, conversational 
communication style; to avoid medical terminology and repetition; 
and to give an initial chief complaint of up to two symptoms.

The Model S started with a zero-shot instruction prompt to obtain 
the generation of an HPI summary. Subsequently, Chain-of-Thought 
(CoT) prompting was used to obtain a step-by-step process of clinical 
reasoning with a discussion of potential diagnoses leading to a 
diagnosis list; followed by Tree-of-Thought (ToT) to require 
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exploration of various orderings, culminating in the prioritized 
differential diagnosis. The internal process of clinical reasoning was 
not utilized (10, 11).

Analysis

To evaluate history taking, we assessed: (1) the overall retrieval 
accuracy of GPT-4 from the original HPI, (2) the retrieval rates of 
individual HPI components, and (3) the ranking percentile of the case 
diagnosis in the differential diagnosis. In order to accurately assess 
Model N, we eliminated any trials that contained errors by Model P 
or Model S that could potentially affect Model N’s history-taking 
capability directly or indirectly.

Retrieval accuracy was determined by comparing the HPI 
generated by Model S to the original HPI, using an evaluation rubric 
based on a systematic scoring rubric for OSCE (12). We also analyzed 
the tool’s performance in identifying chief complaints, associated 

symptoms, details of these symptoms (onset, character, duration, etc.), 
and known medical history (past medical history, surgical history, 
allergies, social history, and family history). The ranking accuracy of 
the correct diagnosis in the differential diagnosis list and the average 
number of interactions required were also measured to observe the 
relevancy and efficiency of history taking. The ranking accuracy was 
calculated as follows: if N number of differential diagnoses generated 
by Model S, and the case diagnosis is ranked X, ranking 
accuracy = (N-X)/N*100. The number of differential diagnoses was 
counted, and ranking accuracy was calculated for each trial, which 
was later averaged by disease category. If the diagnosis from the case 
report ranks high on the differential diagnosis list generated by GPT-4, 
this would suggest that GPT-4 could accurately identify the 
characteristic features of the case report’s diagnosis. On the other 
hand, if the diagnosis appears low on the list, it could indicate that 
GPT-4 failed to recognize essential aspects typical of the case report’s 
diagnosis. Consistency across paired trials was measured by the mean 
Jaccard index.

Model N System Prompt
Imagine you are a neurologist taking care of patients with neurological diseases or disorders.
Do not mention you are an AI.
You can always ask for collateraal information from another person such as the EMT, family 
member, or friend. 
Your role is to ask the patient detailed questions to yield essential information for diagnosis.
Obtain complete history including symptom onset, character, progression, associated symptoms 
relevant to the chief complaints. Do not omit any of these details.
Obtain complete 'past medical history', 'past surgical history', 'medications', 'social history', 
'allergies', 'family history'. Do not omit any of these details.
Investigate further into the details of symptoms provided by the patient by saying "Can you tell 
me more about ...". Try to obtain detail as much as possible.
You can only ask one question at a time.
Do not ask duplicate questions.
Try to yield as much tailored history within the 30 questions as possible.
Do not explain anything as you proceed.
If you determine your history taking is complete and have a tentative diagnosis and differential 
terminate conversation by saying 'terminate'.

Model P System Prompt
Imagine you are a patient or the patient’s family member or friend or EMT to provide information 
about the patient. Below is the 'History' of that patient.
Do not make up information that is not provided in the 'History’ 
If the information is not provided within the 'History', say "Negative".
Answer like a human.
When asked 'What brings you here today?', give only the chief complaint, this should be less 
than 3 symptoms from the initial sentence of 'History'.
Answer to the questions that the neurologist asks you based on the 'History” below in layman 
terms. 
Do not give additional information not provided in the question.
Do not use professional terms describing the symptoms.
Do not give information you already provided based on conversation history.

History: (case report HPI input) 

Role

Setting
Task

Instructions

Role, Setting, Task 

Instructions

Case HPI

Model S Prompt
Conversation: (patient-neurologist script)
Summarize the above conversation as following format: [HPI: ], [Past medical history: ], [Past 
surgical history: ], [Allergies: ], [Medications: ], [Social history: ], [Family history: ]
Do not omit any detail.

Let's do it step-by-step.
Internally two neurologists discuss about the differential, but do not print it out here.
Two neurologist develop a final differential diagnoses list from highest possibility to lowest 
possibility.
Finally, provide a python list of the differential diagnoses in order of the priority in the format: 
differential_diagnoses = []

HPI
Summarization

Generate
Differential 
Diagnoses

Zero-shot
instruction
prompt 

CoT and ToT

FIGURE 1

The system prompts for Model N (neurologist), Model P (patient), and Model S (Supervisor).
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Patient and public involvement

Patients and the public were not involved in the design, conduct, 
reporting, or dissemination plans of this research study. Dissemination 
to Participants and Related Patient and Public Communities: The 
results of this study have not been disseminated to research 
participants as no participants were involved.

Results

Bibliographic search for case reports

Initial PubMed Central search in March 2024 identified multiple 
candidate articles: headache: 102, stroke: 283, neurodegenerative 
disease: 86, of which only 6, 24, and 5, respectively, contained 
substantial HPI information (Supplementary Figure 1). Five of each 
category were randomly selected: headache cases were migraine, 
tension headache, cluster headache, post-traumatic headache, and 
intracranial hypotension; stroke cases included two cases of posterior 
circulation and three of anterior circulation stroke; neurodegenerative 
cases were Alzheimer’s, Parkinson’s, Lewy body dementia, 
frontotemporal dementia, and Creutzfeldt-Jakob disease. Because of 
drawing from the literature, the cases were biased toward the “zebras,” 
i.e., rare diseases, not a major drawback since initial history will 
be  geared toward the chief complaint regardless of the 
underlying cause.

Technical limitations

The full patient-doctor-supervisor script for each case was 
independently generated five times. Out of 75 trials of the patient-
doctor simulation scripts, 7 trials were excluded from further analysis 
due to GPT-4 errors: 7 trials with omissions with Model P (patient) 
responses deviating from the case report.

Example Model N<-> Model P dialog

Original HPI from a ‘tension headache’ case (ID: PMC10617078) 
and a sample script of patient-doctor simulation based on it are 
demonstrated along with generated HPI and top  3 differential 
diagnoses by Model S.

Comments on the script
We note again that these 3 models generated text independently—

the only interaction between N and S was through the words seen here 
(Table 1).

Model N followed a logical history-taking sequence, asking about 
symptoms to distinguish the different possible causes of headaches. 
We did not prompt any specific questions appropriate for headache or 
any other disorder type, prompting only for general symptom 
queries—onset, character, progression. Model N then used its 
underlying language database to identify specific headache-related 
questions such as photophobia (this is a generic GPT-4 model with no 
additional training or prompting on neurological disease). Model N 
similarly followed a reasonable sequence in the other case types.

In most places, Model P expressed itself in the first-person: “I have 
a history of bronchial asthma …,” but sometimes changed to a third 
person, simply quoting the original case: “He has a habit of drinking 
…” This reflected the prompt option of replying as a family member 
or EMT. Despite being instructed to act like a patient without medical 
jargon, Model P seemed excessively sophisticated at times: “bronchial 
asthma” instead of “asthma”; “allergic rhinitis.” All of the cases 
necessarily featured a large number of “Negative” responses, reflecting 
the limited amount of information available in published case reports.

Model S generates an HPI that is quite similar to the input despite 
working with a highly filtered version of that history that only 
included a few sentences that were copied directly from the original. 
The generated differential diagnosis was largely reasonable. Additional 
diagnoses might have been considered higher in the differential—(1) 
Depression: Model P twice mentions stress, depression, and parent 
death, so depression is likely to be a major factor here; (2) cervicalgia 
or fibromyalgia is suggested by the associated shoulder pain, but this 
could all be due to depression, as suggested by the patient himself.

Statistical analysis across trials

Model N (neurologist) achieved an overall HPI content retrieval 
accuracy of 81% from the original HPI, with specific accuracies of 
84% for headache, 82% for stroke, and 77% for neurodegenerative 
disease (Supplementary Table 1). The overall average patient-doctor 
number of interactions was 37.6 (41, 42, 33.3, respectively) 
Consistency (average Jaccard index) was 0.86 overall (0.80, 0.88, 0.89). 
HPI retrieval accuracy was: 93% for chief complaints, 47% for 
associated symptoms and review of systems, 76% for relevant 
symptom details, and 94% for histories for past medical, surgical, 
allergies, social, and family factors. Retrieval of the chief complaint 
was reduced because Model P was instructed to only provide no more 
than two symptoms at a time, but the HPI sometimes included three 
or more symptoms for the chief complaint. The lack of retrieval for 
associated symptoms and review of systems was largely attributed to 
the absence of these details in the original case and sometimes due to 
early termination when Model N had already reached its provisional 
diagnosis, concluding further query is unnecessary, which was 
indicated within Model N’s prompt. The pattern of accuracy was 
consistent across disorders (Figure 2). Differential diagnosis ranking 
percentile of the case diagnosis averaged in the 89th percentile overall, 
with specific rankings percentiles of 84th for headache, 92nd for 
stroke, and 90th for neurodegenerative disease.

Overall appropriateness of Model N 
questions and Model P responses

Model N was able to provide a targeted history with some outlier 
“zebra-targeting” queries, but there were a few questions that could not 
be tracked to a differential diagnosis candidate (Supplementary Table 2). 
In headache cases, Model N inquired about visual and auditory 
disturbances, coordination issues, nausea, vomiting, vertigo, weakness, 
numbness, paresthesia, speech or swallowing impairments, changes in 
olfactory or gustatory senses, infectious history, mood alterations, sleep 
patterns, and appetite. For stroke, Model N probed for headaches and 
focal deficits including vision changes, weakness, numbness, difficulty 
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TABLE 1 Original HPI from a ‘tension headache’ case (ID: PMC10617078) and a sample script of patient-doctor simulation based on it are demonstrated 
along with generated HPI and top 3 differential diagnoses by Model S.

Case Report 

HPI 

(verbatim)

A patient in 40s reported headache for 20 years prior to his visit to our hospital. His headache symptoms came in waves, but the symptoms were essentially 
continuous. He had a habit of drinking 1 L of beer three times a week, and he had smoked 15 cigarettes per day since the age of 20, but quit smoking at 
40 years old. He had a history of bronchial asthma and allergic rhinitis. He had not used headache medication frequently, there were no particular problems 
with his psychosocial history, but his family history included a grandfather and an uncle who also suffered from bronchial asthma. His occupation consisted 
mainly of desk work. During and after the coronavirus disease 2019 (COVID-19) pandemic, he worked remotely, and at the time of his visit to our hospital, 
he was engaged in work on a personal computer most days. From around March of the year that he visited our hospital, he went to a local clinic because his 
headache had worsened. Around this time, his symptoms of neck and shoulder heaviness worsened, likely due to stress from his child’s upcoming entrance 
examination and the death of his parents. In addition, he rarely went out since beginning working at home due to the COVID-19 pandemic. He felt a 
squeezing pain all over his head and heaviness in both of his shoulders. In addition, he had severe headache symptoms that kept him in bed in the morning 
several times a month. He began to fall asleep when he went to events such as graduations, entrance ceremonies, and funeral services.

Patient (P) – 

Doctor (N) 

Simulation

Model N: What is your age and gender? What brings you here today?
Model P: I’m here because my headaches have gotten worse, and I’ve been feeling a squeezing pain in my head and heaviness in my shoulders.
Model N: Can you tell me more about your headaches, such as when they started and how they have progressed over time?
Model P: I’ve been having headaches for 20 years. They come and go, but I pretty much always feel some level of headache. Recently, they have gotten worse, 
especially from around March of this year.
Model N: Can you describe the character of your headaches? Are they throbbing, stabbing, or constant? And where exactly is the pain located?
Model P: The headaches feel like a squeezing pain all over my head.
Model N: Can you tell me if there are any specific triggers that seem to bring on these headaches or make them worse, such as certain activities, foods, or stress?
Model P: The headaches got worse around March of this year, which seemed to be related to stress from my child’s upcoming entrance examination and the 
death of my parents.
Model N: Have you noticed any other symptoms associated with your headaches, such as nausea, vomiting, sensitivity to light or sound, or changes in your vision?
Model P: Negative.
Model N: Do you experience any other symptoms not related to your headaches, such as weakness, numbness, or difficulties with speech, vision, or 
coordination?
Model P: Negative.
Model N: Can you tell me about any past medical history you have, including chronic illnesses, previous significant illnesses, or hospitalizations?
Model P: I have a history of bronchial asthma and allergic rhinitis.
Model N: Have you had any surgeries in the past? If so, can you please describe them?
Model P: Negative.
Model N: What medications are you currently taking, including over-the-counter drugs and supplements?
Model P: Negative.
Model N: Can you tell me about your social history, including your occupation, smoking and alcohol use, and recreational drug use?
Model P: He has a habit of drinking 1 liter of beer three times a week and smoked 15 cigarettes per day from the age of 20 but quit at 40. There’s no mention of 
recreational drug use.
Model N: Can you tell me more about your alcohol consumption? Have there been any recent changes in the amount or frequency of your drinking?
Model P: Negative.
Model N: Do you have any known allergies to medications, foods, or other substances?
Model P: Yes, I have allergies to pollen which cause allergic rhinitis.
Model N: Have any of your family members had similar headaches or been diagnosed with neurological conditions?
Model P: My grandfather and my uncle also suffered from bronchial asthma.
Model N: Can you tell me more about the heaviness in your shoulders that you mentioned earlier? When did it start and how would you describe it?
Model P: The heaviness in my shoulders started around March of the year I visited the hospital. It got worse, likely because of the stress from my child’s 
upcoming entrance examination and the death of my parents. It feels like a heavy weight on both of my shoulders.
Model N: Do you have any difficulty with movement or sensation in your arms or legs?
Model P: Negative.
Model N: Do you experience any neck pain or stiffness, or does the pain from your shoulders extend to any other part of your body?
Model P: The heaviness in my shoulders started around March of the year I visited the hospital. It got worse, probably because of stress from my child’s 
upcoming entrance exam and the death of my parents. It feels like a heavy weight on both of my shoulders.
Model N: Have you noticed any changes in your sleep patterns or the quality of your sleep since your headaches and shoulder heaviness have worsened?
Model P: Negative.
Model N: Can you tell me if you have tried any treatments or taken any measures to relieve your headaches and shoulder heaviness? If so, what were they and 
did they provide any relief?
Model P: Negative.
Model N: Have you experienced any changes in your mood, memory, or concentration since the onset of your headaches and shoulder heaviness?
Model P: Negative.
Model N: Have you experienced any recent changes in your weight, appetite, or overall energy levels?
Model P: Negative.
Model N: terminate
Session terminated by the neurologist.
Total number of interactions: 38

(Continued)
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in speaking with further queries including changes in memory, attention 
or cognition, mood, sleep patterns, energy levels, muscle weakness, 
wasting, or twitching, recent trauma, illness, or stress. For 
neurodegenerative diseases, Model N sought information on changes 
in speech, swallowing, balance, and sensory disturbances, facial 
expression, walking, alterations in smell or taste, sleep disturbances, 
cognitive, mood, or behavioral changes, bowel or bladder issues, 
memory, or concentration difficulties, fine motor skills, syncopal/
presyncope symptoms, traumatic injuries with additional clarifications 
(e.g., verifying whether the patient was passenger or driver for a motor 
vehicle accident) and chemical exposure.

Model P produced 7 omissions and no confabulations out of 1,411 
total responses: omitting hypertension history in 2 stroke trials of one 
case, omitting visual disturbances in 4 trials of one case, and omitting 
medication for 1 trial of one case. These Model P errors led to further 
information retrieval errors (e.g., when Model P had omitted 
information such as visual symptoms or medical history, these led to 
falsely decreased retrieval rates) and, therefore, these trials were 
eliminated. No omissions or confabulations were observed in Model 
S. Model N limitations were seen where it failed to seek further history 
clarification to establish symptom characteristics or timelines, leading 
to repetitive questioning (e.g., trying to clarify trouble speaking, 
whether it is dysarthria or aphasia; figuring the timeline between 
symptoms where the patient had trouble hearing then developed 
unsteady gait) seeking clarification until session termination. 
Confabulations were not observed from any of the 3 models.

Discussion

Model N (neurologist) was able to capture historical information 
relevant to each type of neurological condition tested by making 
appropriate queries to the case report’s digital twin (model P—the 
patient), which reframed the case appropriately. The system achieved 
an overall retrieval accuracy of 80% from the original HPI across 12 
neurological diseases drawn from three disease categories (stroke, 
headache, and neurodegenerative disease). Model N took a structured 
history with high accuracy in identifying the chief complaint, 
demonstrating the ability to capture the essential patient information 
for clinical assessment. Lower accuracy was found in obtaining 
associated symptoms and review-of-systems along with symptom 
details. The overall ranking of the case diagnosis was in the 89th 

percentile, suggesting that GPT-4 could accurately identify the key 
clinical findings of the case report’s diagnosis and demonstrate 
potential value as supporting guidance for history taking.

The classical general practitioner continues to exist in various 
guises—family practice, nurse practitioners, physician assistants—
particularly in rural areas in the US and other countries. In addition 
to neurology, other specialties that have a broad remit that requires 
considering a large variety of diseases and disorders include psychiatry, 
internal medicine, and pediatrics. All of these generalists must take a 
history that takes into account not only the variety of clinical problems 
that they were trained in but also the many changes in diagnosis and 
disease classification that have occurred since their training was 
complete. Additionally, increased subspecialization narrows a 
clinician’s perspective, leading to histories that miss symptoms outside 
of this subspecialty. We propose the AI generalist as a support tool (13, 
14), offering a broad, largely unbiased approach to initial encounters, 
and reducing the chance of diagnostic oversight due either to limited 
knowledge, or due to tunnel vision with too much focus (15, 16).

Other AI-based history-taking tools have focused on general 
medicine or have used structured pre-consultation questionnaires, 
which lacked the flexibility available with the LLM conversational 
approach. The conversational agents discussed by Tudor Car et al. (6) 
did offer this flexibility for general health inquiries, or for general 
practice (8). By focusing on neurology, our study shows the potential 
to go further into detail with precise differential diagnosis synthesis in 
a subspecialty context.

An important aspect of our study is the role of Model P, the 
simulated patient, as a digital twin of the patient described in the 
published case report. In the current study, this twin has been 
instructed not to stray from the narrow path of what was described 
and to answer in the negative for any query that exceeds those bounds. 
However, a future digital twin historian could be augmented through 
connectivity to a large variety of automated gathering systems: 
actinographs would be  useful in PD, epilepsy, post-stroke 
rehabilitation, and ALS; pulse and blood pressure monitoring in 
patients with atrial fibrillation; hypertension, stroke or stroke risk; 
glucose monitoring in stroke or peripheral neuropathy. Many other 
examples could be  given, expanding as wearable and implantable 
sensors become more sophisticated. Additionally, patients would 
be encouraged to enter diary information verbally on their phone or 
watch as they are now asked to do in written diaries: headache diaries, 
seizure diaries, fall diaries, etc. An advantage of this consolidated LLM 

HPI 

Summary 

by Model S

[HPI: A patient in 40s presents with a chief complaint of worsening headaches, described as a squeezing pain all over his head, which he has experienced for 

20 years. These headaches have been present consistently but have recently intensified from around March of this year, correlating with periods of increased 

stress due to his child’s entrance examination and the recent death of his parents. The patient also reports a sensation of heaviness on both shoulders starting 

around the same time in March. He denies any nausea, vomiting, sensitivity to light or sound, changes in vision, weakness, numbness, difficulties with speech, 

vision, or coordination, neck pain or stiffness, and pain extending to other body parts. There has been no change in sleep patterns, mood, memory, 

concentration, weight, appetite or overall energy levels. The patient has not tried any treatments or measures to relieve his headaches and shoulder heaviness. 

No exacerbating factors such as specific activities, foods, or other stressors were identified, and there are no alleviating factors reported.]

[… correct summary of past medical, social, family history followed here]

Top 3 

Differential 

Diagnosis 

by Model S

 1. Tension-type headache

 2. Chronic daily headache

 3. Migraine without aura

Patient identifiers (age, sex) has been anonymized (24).

TABLE 1 (Continued)
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digital twin would be that it will consolidate all of these measures as 
well as any additional patient notes in a readily queryable system. 
Further combination of Models N, P, and S in a single system group 
would then provide a digital twin that identifies relevant clinical 
correlations and takes us all the way from basic data to diagnosis.

Limitations of our study and of AI

In contrast to a previous study of AI history-taking (8), we focused 
on a confined usage targeting pre-encounter questioning as an 
alternative to questionnaires, seeking to augment rather than replace 
the clinician. We propose the supportive role of conversational LLMs 
in medical history taking as another potential diagnostic tool 
alongside laboratory tests and other technical modalities.

Our study was based on case reports. Case reports are usually of 
an atypical presentation of a disease and lack comprehensiveness. We, 
therefore, would expect better AI performance from EMR HPI or in 
direct interaction with a patient. However, direct patient interviewing 
will add additional confusion and may also include symptom 
magnification due to the patient’s understandable focus on his or her 
problems. These are areas where clinician judgment is important in 
deciphering human psychology (17–19).

We propose the use of AI as an adjunct to history-taking which 
parallels current practice of using medical students, residents, or 
physician assistants to take initial histories. This is then used as a 
starting point by the physician of record who then will repeat some of 
the same questions and re-evaluate the patient’s responses. 
Understanding human behavior in general and of the person who is 

acutely ill, chronically ill, or in pain is indispensable and is one reason 
why years of patient exposure during training are required to obtain 
advanced clinical skills. We emphasize the need to use AI as a support 
tool rather than as a freestanding diagnostician.

Another limitation of this study is that it was text-based and did 
not consider presentation diversity, including dialects and speech 
impairments and cultural variability of response to pain and to 
neurological impairment, all of which cause further difficulties in 
history representation and in history-taking. Testing of the models in 
realistic clinical settings is essential to address these challenges. 
Further enhancement using voice recognition and training rather 
than transcripts would provide still greater indication of flexibility 
and future utility.

This study did not assess human or clinician acceptance of the 
proposed AI-based tools, as the pilot was conducted outside a clinical 
setting. AI tools are gradually being integrated into clinical practice 
through automated reading and interpretation of radiographs and 
other test results. We anticipate that our history-augmentation and 
history-identification tools will find enhanced adoption in clinical 
settings where direct neurologist advice is not available. Usability 
studies will be  needed to improve and then confirm acceptance, 
systematically collecting and analyzing feedback from healthcare 
providers on usability, trust, and workflow integration. Additionally, 
education and training initiatives designed to familiarize clinicians 
with these tools could reduce resistance and facilitate adoption.

There are multiple other limitations inherent in human-
machine interactions. Despite, and in some cases because of, the 
existence of various robotic interfaces meant to provide a more 
human look, the patient will not relate to a machine in the way 

FIGURE 2

Retrieval accuracy (%) for HPI components for neurological disorder types. ROS, Review of systems; Known medical history includes past medical 
history, past surgical history, allergies, social history, and family history.
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that they relate to a person—many may refuse to deal with it 
entirely. Even if the LLM itself is largely unbiased, the prompt 
introduces additional bias. For example, our prompt introduced 
a bias of focus on the chief complaint; in some histories, the chief 
complaint is misleading, and the major medical problem only 
arises with further queries.

Additional risks for utilizing conversational LLMs in healthcare 
include human rights—discrimination, stereotyping, and exclusion; 
data-related risks—privacy, data governance, and stigma; and 
technical risks—error tolerance, excessive reliance on chatbot advice, 
and reduced trust in health professionals (20–22). These issues 
underscore the need for a judicious and selective integration of 
conversational LLMs in the healthcare setting (23).
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Perceptions and future 
perspectives of medical students 
on the use of artificial intelligence 
based chatbots: an exploratory 
analysis
Juan José Gualda-Gea 1,2,3*, Lourdes Estefanía Barón-Miras 1,2,3, 
Maria Jesús Bertran 1,2, Anna Vilella 1,2,3, Isabel Torá-Rocamora 1,2,3† 
and Andres Prat 1,2,3†

1 Department of Preventive Medicine and Epidemiology, Hospital Clínic of Barcelona, Barcelona, 
Spain, 2 Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain, 3 Department of Medicine, 
Faculty of Medicine, University of Barcelona, Barcelona, Spain

Background: Artificial Intelligence (AI) has made a strong entrance into different 
fields such as healthcare, but currently, medical degree curricula are not adapted 
to the changes that adopting these types of tools entitles. It is important to 
understand the future needs of students to provide the most comprehensive 
education possible.

Objective: The aim of this teaching improvement project is to describe the 
knowledge, attitudes, and perspectives of medical students regarding the 
application of AI and chatbots with patients, also considering their ethical 
perceptions.

Methods: Descriptive cross-sectional analysis in which the participants were 
students enrolled in the subject “Preventive Medicine, Public Health and 
Applied Statistics” during the second semester of the 2023/24 academic year, 
corresponding to the fifth year of the Degree in Medicine at the University of 
Barcelona. The students were invited to complete a specific questionnaire 
anonymously and voluntarily, which they could respond to using their mobile 
devices by scanning a QR code projected on the classroom screen, we used 
Microsoft Forms to perform the survey.

Results: Out of the 61 students enrolled in the subject, 34 (56%) attended the 
seminar, of whom 29 (85%) completed the questionnaire correctly. Of those 
completing the questionnaire, 20 (69%) had never used chatbots for medical 
information, 19 (66%) expressed a strong interest in the practical applications of 
AI in medicine, 14 (48%) indicated elevated concern about the ethical aspects, 
17 (59%) acknowledged potential biases in these tools, and 17 (59%) expressed 
at least moderate confidence in chatbot-provided information. Notably, 24 
(83%) agreed that acquiring AI-related knowledge will be essential to effectively 
perform their future professional roles.

Conclusion: Surveyed medical students demonstrated limited exposure to AI-
based tools and showed a mid-level of awareness about ethical concerns, but 
they recognized the importance of AI knowledge for their careers, emphasizing 
the need for AI integration in medical education.
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1 Introduction

Digital transformation in the healthcare sector is driving a deep 
reconfiguration of medical practice, with Artificial Intelligence (AI) 
emerging as a key factor in addressing current and future healthcare 
challenges (1). AI-based tools, such as machine learning algorithms 
and large-scale data analysis, have already demonstrated their capacity 
to improve diagnostic accuracy and accelerate the early identification 
of diseases, resulting in more timely interventions and more favorable 
patient outcomes (2, 3). Additionally, the increasing digitization of 
information and the incorporation of decision support systems 
optimize workflows, reduce administrative burdens, and facilitate 
access to care, even in resource-limited settings (4).

Within this technological ecosystem, chatbots AI-driven 
conversational assistants have positioned themselves as promising 
tools to enhance interaction between healthcare professionals and 
patients (5, 6). These systems can provide immediate responses to 
basic inquiries, offer reliable information on symptoms and 
treatments, and promote health education, thereby expanding access 
to healthcare services beyond geographical and temporal limitations 
(7, 8). However, the implementation of these technologies is not 
without challenges, particularly concerning ethical issues and the 
quality of information provided (9).

AI in healthcare presents ethical dilemmas that encompass 
information integrity, data privacy, and accountability in algorithm-
mediated clinical scenarios (10–12). Furthermore, the potential for 
biases, informational “hallucinations” (responses that appear valid but 
are unfounded), and the possible erosion of the doctor-patient 
relationship underscore the need to address these technologies with 
prudence and rigor (13–15). In this regard, medical education plays a 
central role: preparing future healthcare professionals to understand, 
adopt, and critically evaluate AI tools is essential to ensure their 
ethical, effective, and patient-centered integration into clinical practice 
(16, 17).

Although various studies have explored the general perceptions 
of students and healthcare professionals regarding AI, there remains 
a gap in the literature concerning the specific understanding that 
advanced medical students have about the use of chatbots in clinical 
settings (18). This population is at a critical juncture: on the brink of 
entering professional practice, their perceptions, concerns, and 
expectations provide valuable insights into how curricula and training 
strategies should be shaped to meet the demands of an imminent 
future marked by the gradual inclusion of AI in healthcare delivery 
(11, 14, 18, 19). Understanding their attitudes, knowledge levels, and 
ethical concerns offers a solid foundation for designing curricula that 
balance technical training with ethical reflection, promoting 
responsible and informed use of AI.

In this context, the present teaching improvement project aims 
to describe the knowledge, attitudes, and perspectives of medical 
students regarding the application of AI and the use of chatbots in 
the healthcare field, with particular attention to their ethical 
perceptions. This approach seeks to generate an initial framework to 
guide the future inclusion of AI-related content in medical 

education, ensuring that tomorrow’s physicians are better prepared 
to integrate these tools into their clinical practice competently 
and ethically.

2 Materials and methods

2.1 Study design

A descriptive cross-sectional study was conducted with the aim of 
obtaining an initial understanding of medical students’ perceptions 
and attitudes regarding the integration of AI-based chatbots in the 
healthcare sector.

2.2 Population and sampling

The target population comprised students enrolled in the course 
“Preventive Medicine, Public Health, and Applied Statistics,” 
corresponding to the fifth year of the Medicine Degree at the 
University of Barcelona, during the second semester of the 2023/24 
academic year. A non-probabilistic sampling method was employed, 
selecting participants who attended a theoretical seminar on the use 
of chatbots in the medical field and who voluntarily agreed to 
complete the questionnaire.

2.3 Sample size

The sample size was determined by seminar attendance and 
voluntary participation in the survey. Given the exploratory and 
preliminary nature of the study, an ideal sample size was not 
calculated using specific statistical formulas. The sample included 
students who, prior to the seminar, scanned a QR code and 
completed the online questionnaire using the Microsoft 
Forms application.

2.4 Instrument development

A quantitative questionnaire was designed, structured into three 
main sections with a total of 14 items. The questionnaire was intended 
to be  simple, providing an initial approximation of students’ 
perceptions. Each question featured a closed-response format 
(predefined options or Likert scales ranging from 1 to 5). The three 
dimensions investigated were:

 • Attitudes and Prior Knowledge (3 items): Assesses previous 
familiarity with AI tools and chatbots in medicine.

 • Ethical Perceptions (3 items): Explores ethical concerns and the 
level of trust in information provided by chatbots.

 • Future Perspectives (8 items): Investigates the future 
relevance of AI knowledge for medical practice and 
professional training.
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This instrument was applied in its second iteration, following a 
pilot test conducted with 14 students in a workshop. This pilot allowed 
for the adjustment and consensus of questions with expert faculty 
members to enhance clarity and relevance.

2.5 Reliability and validity

Given the preliminary and exploratory nature of the study, 
comprehensive psychometric analyses (e.g., formal internal reliability 
tests or construct validity assessments) were not performed. However, 
the questionnaire underwent review by expert faculty in the fields of 
preventive medicine and public health, as well as medical education, 
to ensure clarity, internal consistency, and item relevance. Future 
research is recommended to formally validate the instrument, 
including conducting more extensive pilot tests and appropriate 
psychometric analyses to strengthen the questionnaire’s reliability 
and validity.

2.6 Data collection procedure

Prior to the commencement of the theoretical seminar, students 
were invited to complete the questionnaire anonymously and voluntarily. 
Participation involved scanning a QR code projected in the classroom 
and responding to the questionnaire on their personal mobile devices via 
Microsoft Forms. To prevent duplicate responses, a time limit was set for 
completing the questionnaire. No personal, health-related, or sensitive 
data were collected. Participants were informed about the confidentiality 
of their responses and their right to abstain from answering or to 
withdraw from the survey at any time without any consequences.

2.7 Data analysis plan

Data analysis was structured according to the three sections of the 
questionnaire: Attitudes and Prior Knowledge, Ethical Perceptions, 
and Future Perspectives. The following techniques were employed:

2.7.1 Descriptive statistics
Relative frequency calculations were utilized to characterize 

responses within each section of the questionnaire. This provided a 
quantitative overview of participants’ knowledge and opinions on AI 
and chatbots prior to their exposure to the theoretical seminar.

2.7.2 Visual analysis using horizontal bar charts
Horizontal bar charts were employed to graphically represent the 

results, facilitating visual comparison of response distributions on a 
scale of 1 to 5. This type of visualization aids in quickly identifying 
trends and patterns within the collected data.

2.7.3 Integrated findings summary
Results from each section were synthesized to present a 

comprehensive conclusion, analysing medical students’ perspectives 
on the integration of AI-based chatbots in healthcare. This approach 
prioritized quantitative aspects, allowing for a deeper exploration of 
participants’ views beyond numerical data.

As an exploratory study, complex inferential methods or 
systematic evidence synthesis were not employed, limiting the analysis 
to basic quantitative description and the identification of general 
patterns in students’ perceptions.

3 Results

A total of 61 students were enrolled in the course “Preventive 
Medicine, Public Health, and Applied Statistics” during the second 
semester of the 2023/24 academic year. Of these, 34 (56%) students 
attended the theoretical seminar on the use of chatbots in the medical 
field, and 29 (85%) of them fully completed the questionnaire. The 
results are organized according to the three dimensions outlined in the 
study’s objective: initial knowledge and attitudes, ethical perceptions, 
and future perspectives on the integration of AI in clinical practice.

3.1 Attitudes and prior knowledge

This dimension aimed to describe the initial level of familiarity with 
AI tools and chatbots, as well as the interest in their application. The 
results indicated a low degree of prior exposure to these technologies:

Q1.  Have you ever used chatbots to obtain medical information? 1-Never, 
5-Frequently.

Q2.  Are you  familiar with current artificial intelligence tools applied to 
medicine, such as AI-assisted diagnosis or therapeutic recommendations? 
1 - not at all, 5 - very much.

Q11.  I am interested in the practical aspects of AI in medicine. 1-very little, 
5-a lot.

Q3.  The use of AI in healthcare can positively change medicine. 1-Strongly 
disagree, 5-Strongly agree.

Q4.  The use of AI can negatively affect the doctor-patient 
relationship. 1-Strongly disagree, 5-Strongly agree.

Q5.  Doctors will need to know about AI-based tools to perform their jobs in 
the near future. 1-Strongly disagree, 5-Strongly agree.

Q6.  AI should be  part of medical education. 1-Strongly disagree, 
5-Strongly agree.

Q7.  Practical content on the use of AI-based tools in medicine should 
be  introduced in medical degree programs. 1-Strongly disagree, 
5-Strongly agree.

Q12.  The use of such tools will lead to a dehumanization of medicine. 
1-Strongly disagree, 5-Strongly agree.

Q13.  The use of such tools will create dependency among medical staff. 
1-Strongly disagree, 5-Strongly agree.

Q14.  The imposition of these new technologies may influence the choice of 
specialization for medical personnel. 1-Strongly disagree, 
5-Strongly agree.

Q8.  Are you concerned about the ethics of using chatbots in medicine? 1 “not 
very concerned” and 5 “very concerned.”

Q9.  On a scale from 1 to 5, where 1 is “not very confident” and 5 is “very 
confident,” how much trust do you have in the information provided by 
chatbots on medical topics?

Q10.  Are you concerned about potential biases in such tools? 1-very little, 
5-a lot.

76

https://doi.org/10.3389/fmed.2025.1529305
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Gualda-Gea et al. 10.3389/fmed.2025.1529305

Frontiers in Medicine 04 frontiersin.org

Previous Use of Chatbots: 20 (69%) responses scored below 3 on 
a scale of 1 to 5, reflecting little to no experience in using chatbots to 
obtain medical information.

Knowledge of AI Tools in Clinical Settings: 23 (79%) responses 
also scored below 3, suggesting limited knowledge of specific AI 
applications in medicine.

Despite this lack of familiarity, a notable interest in the 
practical applications of AI in the medical field emerged, with 19 
(66%) scores exceeding 3. This indicates a positive attitude 
towards acquiring knowledge and skills related to these tools 
(Figure 1).

3.2 Ethical perceptions

This section explored concerns regarding the reliability, biases, 
and ethical implications of using AI-based chatbots in healthcare 
settings. The results revealed a significant level of concern:

Ethics of Using Chatbots: 14 (48%) participants rated above 3, 
indicating concerns about the moral and deontological implications 
of integrating these tools into medical practice.

Potential Biases: 17 (59%) expressed concern (scores >3) about the 
existence of biases, suggesting that students are aware of the risk of 
partiality in the recommendations or information provided by AI tools.

Trust in Information Provided by Chatbots: Regarding the 
accuracy of the content supplied by chatbots, 17 (59%) scored ≥3, 
revealing moderate trust that is nevertheless tempered by the 
previously mentioned ethical doubts (Figure 2).

3.3 Future perspectives

The final section focused on opinions about the long-term impact 
of AI in medicine, including its effect on clinical practice, the training of 
future doctors, and the doctor-patient relationship. The findings suggest 
that students anticipate a significant change in their professional practice:

Positive Impact on Medicine: 100% of respondents rated ≥3, 
believing that AI can favourably transform medicine.

Educational Needs: 24 (83%) believe that doctors will require 
knowledge of AI to perform their duties effectively (≥3), and 26 (90%) 
consider that the medical curriculum should include AI (≥3), as well 
as practical content on its use (≥3).

FIGURE 1

Graphic representation of the answers obtained for the questions on “Attitudes and Prior knowledge” through relative frequencies (1, 2, 11).

FIGURE 2

Graphic representation of the answers obtained for the questions on “Ethical concern” through relative frequencies (8–10).
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Concerns about the Doctor-Patient Relationship: 25 (86%) 
perceive that the use of AI could negatively affect this relationship 
(≥3), and 19 (65%) believe it could contribute to the dehumanization 
of healthcare (≥3). Additionally, 22 (76%) fear the development of 
dependence on these tools (≥3).

Influence on Specialty Choice: 24 (83%) consider that the 
imposition of new technologies, such as AI, could influence their 
future decisions regarding medical specialization (≥3).

Overall, these results demonstrate that while students have 
limited prior contact with AI tools, they show a growing interest in 
learning and integrating them. They recognize the potential of AI to 
transform medicine and medical education but remain cautious 
about the ethical and human implications of its implementation. 
These perceptions, aligned with the study’s objective, provide an 
initial perspective on the educational needs, ethical concerns, and 
expectations of future healthcare professionals in the face of the 
increasing presence of AI in the health sector (Figure 3).

4 Discussion

The results obtained are consistent with the academic 
characteristics and formative stage of our sample of 29 medical 

students. These students, who have already completed Medical Ethics 
coursework and are concurrently engaging in clinical practices 
alongside theoretical subjects, represent an ideal profile for capturing 
how future healthcare professionals perceive the integration of 
Artificial Intelligence (AI) tools into their medical activities. 
Additionally, the non-mandatory nature of theoretical seminar 
attendance at this stage, combined with the documented absenteeism 
phenomenon in health sciences (20), reinforces the relevance of this 
sample as a study group.

This teaching improvement project aimed to explore the level of 
knowledge, ethical perceptions, and future perspectives of medical 
students regarding the use of AI tools in the healthcare field, 
specifically the employment of chatbots. Despite their limited direct 
experience with AI, the findings indicate that students are aware of the 
inherent ethical challenges of these technologies while recognizing the 
importance of acquiring competencies in this area for their future 
professional practice.

4.1 Attitudes and prior knowledge

The limited prior use of chatbots to obtain medical information 
aligns with trends described in the literature (21), indicating that 

FIGURE 3

Graphic representation of the answers obtained for the questions on “Future perspectives” through relative frequencies (3–7, 12–14).
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these tools have not yet been widely incorporated into students’ 
routine information-seeking practices. This lack of familiarity 
suggests the need for specific educational interventions that 
increase exposure to AI and enhance understanding of its 
applications (22). Nevertheless, the positive disposition towards 
learning these technologies reflects an open field for 
curricular development.

4.2 Ethical challenges

The identification of ethical concerns by the students constitutes 
one of the most significant findings of this study, highlighting an area 
that warrants deeper attention. Participants expressed concerns about 
the accuracy of information, the presence of biases, data 
confidentiality, and the moral implications of using chatbots in clinical 
practice. This sensitivity to ethical dilemmas aligns with literature that 
underscores the importance of addressing these issues in the 
integration of AI in healthcare (17, 23, 24).

Although students showed a certain degree of trust in the 
responses provided by chatbots, this trust is tempered by the 
previously mentioned ethical reservations. It is clear that the mere 
incorporation of AI tools is insufficient: it is imperative to establish 
solid ethical frameworks, well-defined guidelines, and training that 
goes beyond technical competencies. Including ethics modules 
focused on AI, case-based discussions, and dialogues with ethics 
and technology experts could foster a critical and responsible view 
of the use of these tools. In this way, future doctors can adopt 
balanced approaches, ensuring safe, equitable, and patient-
centered applications.

4.3 Future perspectives

The students’ perspectives suggest that AI could facilitate 
collaboration between healthcare professionals and chatbots, potentially 
optimizing care in an increasingly complex clinical environment (1). 
The nearly unanimous conviction that knowledge of these tools will 
be essential in their careers underscores the need to reform medical 
curricula, incorporating technological skills that prepare future 
professionals for a rapidly transforming care scenario (7, 25).

Furthermore, concerns about the risk of dehumanizing care, 
potential technological dependence, or the influence of AI on specialty 
choice should not be  overlooked. These warnings highlight the 
importance of balancing technological literacy with the development 
of humanistic, ethical, and communication competencies. Extending 
these training strategies to other health science degrees will promote 
teamwork and a comprehensive approach to AI usage.

4.4 Limitations

Although this project provides valuable preliminary findings, 
it is important to acknowledge several limitations that affect the 
generalizability and robustness of the results. Firstly, the sample 
size was small, and participation was not mandatory, which not 
only impedes the representativeness of the general population of 
medical students but also introduces a non-response bias: those 

students who chose not to participate might hold different 
perceptions or attitudes regarding AI in education. Secondly, the 
study was conducted within the specific context of a seminar 
focused on AI, so the perceptions gathered could be influenced by 
the educational intervention itself, generating a potential 
acquiescence bias toward the presented environment.

Additionally, although the questionnaire used underwent a 
second iteration following a pilot with 14 participants and was agreed 
upon with expert educators, it lacks a formal psychometric validation 
process. The absence of objective questions that assess the actual level 
of knowledge limits the ability to contrast subjective perceptions with 
more direct indicators, and the simplicity of the instrument may not 
capture the real complexity of the perceptions, attitudes, and 
contextual factors that influence the use of AI in medical 
training environments.

To address these limitations, future research should consider using 
larger, more diverse samples with higher response rates to enhance 
representativeness and statistical power. It would also be advisable to 
evaluate the effectiveness of AI educational initiatives in different 
training contexts and over longer periods, as well as to refine and 
validate the questionnaire through rigorous psychometric analyses, 
incorporate objective questions, and encompass broader contextual 
factors. In this way, the conclusions drawn would be  more robust, 
applicable, and generalizable to a wider range of medical 
education settings.

5 Conclusion

This teaching improvement project, aimed at describing the 
knowledge, attitudes, and perspectives of medical students regarding 
the application of AI and the use of chatbots in the healthcare field, 
revealed that participants are not significantly exposed to these tools 
nor are they a regular part of their academic or clinical routines. 
Despite this limited familiarity, they demonstrated a moderate 
awareness of the ethical challenges involved in incorporating AI into 
medical practice, reflecting an emerging sensitivity to the moral and 
deontological implications of these technologies.

At the same time, a marked optimism regarding the future 
adoption of AI-based tools was evident, as all students recognized the 
need to acquire knowledge in this area to perform effectively as 
healthcare professionals. This combination of ethical concerns and 
positive expectations underscores the importance of integrating 
specific AI-related educational content into medical education, 
enabling future doctors to use these tools effectively, thoughtfully, 
and responsibly.

Ultimately, the need to strengthen AI training within the medical 
curriculum not only responds to the growing presence of these 
technologies in healthcare delivery but also addresses the urgency of 
preparing tomorrow’s physicians to leverage the opportunities offered 
by AI while resolving the complex ethical implications associated with 
its implementation.
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Large Language Models (LLMs) are transforming patient education in medication

management by providing accessible information to support healthcare

decision-making. Building on our recent scoping review of LLMs in patient

education, this perspective examines their specific role in medication guidance.

These artificial intelligence (AI)-driven tools can generate comprehensive

responses about drug interactions, side effects, and emergency care protocols,

potentially enhancing patient autonomy in medication decisions. However,

significant challenges exist, including the risk of misinformation and the

complexity of providing accurate drug information without access to individual

patient data. Safety concerns are particularly acute when patients rely solely

on AI-generated advice for self-medication decisions. This perspective analyzes

current capabilities, examines critical limitations, and raises questions regarding

the possible integration of LLMs in medication guidance. We emphasize the

need for regulatory oversight to ensure these tools serve as supplements to,

rather than replacements for, professional healthcare guidance.

KEYWORDS

Large Language Models, ChatGPT, patient education, self-medication, artificial
intelligence, machine learning, deep learning

KEY ASPECTS

• LLMs are transforming patient education by offering easily accessible and user-friendly
guidance on medication use, improving patient understanding and self-management.

• These models may empower patients in remote or underserved areas by providing
immediate, reliable information on health conditions and self-care, especially where
healthcare access is limited.

• However, challenges remain in ensuring accuracy, particularly in complex cases due to
the current limitations in accessing real-time data and personalized patient information.

• There are ethical concerns regarding the use of LLMs for self-medication guidance
without healthcare oversight, which may lead to unintended health risks.

• To improve safety, future efforts should focus on integrating real-time medical
databases and establishing clear regulations for the use of LLMs in healthcare contexts.
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1 Introduction

The Large Language Models (LLMs) represent a significant
advancement in patient education, particularly in personalized
health and medication counseling. Leading examples such as
OpenAI’s ChatGPT (1), and Google’s Gemini (2) can process
extensive datasets and engage in conversational interactions.
These artificial intelligence (AI) applications are increasingly being
explored in healthcare to provide drug information, help patients
navigate complex medication regimens, and guide initial responses
to medical situations. By generating information of variable
reliability, the extent to which LLMs can effectively influence
patient autonomy in self-medication decisions and healthcare
choices remains an open question.

The appeal of LLMs in healthcare stems from their accessibility
and ease of use. Patients can readily access information about
medication dosages, interactions, side effects, and alternatives
without waiting to consult a healthcare provider. These models
can enhance health literacy by translating medical jargon into
plain language, helping patients make informed decisions about
over-the-counter medications and some prescribed treatments.
For example, studies show that LLMs can provide basic guidance
for immediate-response situations, such as initial management of
snakebites or other common conditions requiring urgent attention
(3).

However, significant challenges exist in safely integrating LLMs
into patient self-care decisions. A primary concern is the reliability
of LLM-generated information, particularly regarding complex
drug interactions or rare conditions. Cases of AI systems providing
incorrect or misleading information have been documented,
notably in sensitive areas with significant health and ethical
implications, such as self-managed medication abortion (4).

Building upon our recent scoping review that identified six
major themes in LLM applications for patient education (5), this
article examines one critical theme: the role of LLMs in patient-
centered medication guidance and self-decision support. We assess
both the potential of LLMs to enhance autonomous medication use
and the risks associated with their misuse or misunderstanding.
This perspective article reviews recent advances, identifies key
challenges, and proposes future directions for LLM implementation
that balance patient autonomy with healthcare safety and ethical
standards. By examining this specific theme in detail, we aim to
contribute targeted insights into the responsible integration of
LLM technology in medication guidance while addressing critical
questions about patient safety and ethical implementation.

2 Current advances in LLMs for
customized medication use and
self-decision

2.1 LLMs as informational aids for drug
interactions and side effects

LLMs show promise as informational resources for medication
guidance, particularly in explaining drug interactions, potential
side effects, and usage instructions. These models can translate

complex pharmacological information into accessible language for
patients with limited medical knowledge. This capability helps
patients better understand their medication regimens and may
reduce drug-drug interactions caused by misunderstandings (6, 7).

A recent study by Iqbal et al. examined ChatGPT’s reliability
as a secondary opinion source for dermatological treatments
(8). While dermatologists approved 98.87% of the model’s
medication suggestions, they identified limitations such as
incorrect Anatomical Therapeutic Chemical codes and errors
in drug route specifications. These findings suggest that while
ChatGPT shows promise for general treatment guidance, it requires
further refinement for precise clinical applications.

LLMs also demonstrate potential in helping patients
manage complex medication regimens, particularly in cases
of polypharmacy where drug-drug interactions pose significant
risks. Research shows that these models can effectively identify
and explain risks associated with specific drug combinations,
including interactions between over-the-counter medications and
treatments for chronic conditions (9). This capability could help
prevent medication errors and resulting hospitalizations from
adverse drug reactions.

Recent research also explores LLMs’ potential in helping
healthcare professionals screen for drug interactions.
A comparative analysis of ChatGPT, Google Bard, and Bing
AI found that while these tools do not yet match the accuracy of
specialized clinical software, they can effectively identify relevant
drug interactions in real-time. Among the tested models, Bing AI
demonstrated the highest accuracy and specificity, while ChatGPT-
4 showed improvements over its predecessor (6). These findings
highlight the need for further development of LLM capabilities,
indicating that while they show potential, they are not yet ready for
reliable use in clinical settings but may be in the future.

2.2 Facilitating self-decision in
self-administered treatments

LLMs show potential in guiding patients through self-
administered treatments, particularly in situations requiring
immediate action. For example, studies have evaluated ChatGPT’s
ability to provide first-aid advice for venomous snakebites while
emphasizing the need for urgent medical care (3). This capability
could be particularly valuable in remote areas with limited
healthcare access, offering patients guidance to take appropriate
immediate actions while awaiting professional care. Infrastructural
challenges, such as unreliable internet connectivity, may hinder
its implementation in such settings, though its potential remains
promising. However, researchers found that while ChatGPT-
3.5 provided reliable general guidance, it should not replace
professional medical consultation, especially in critical situations.
The study emphasized the need for continued improvements to
enhance AI’s reliability in high-stakes medical scenarios.

Roosan et al. evaluated ChatGPT’s effectiveness in Medication
Therapy Management, focusing on drug interaction identification
and therapeutic adjustments (10). While ChatGPT-4 demonstrated
high accuracy with simple and moderately complex cases, it showed
limitations when handling complex scenarios requiring patient-
specific considerations. The model proved capable of identifying
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common drug-drug interactions but struggled with personalized
dosage adjustments, highlighting the continued need for human
oversight in clinical decision-making.

3 Challenges and limitations in LLMs
for medication guidance and
self-decision

3.1 Inaccuracy and misleading
information

A critical challenge in using LLMs for medication guidance is
their potential to generate inaccurate or misleading information.
While these models can process large datasets, they lack access
to real-time, continuously updated medical databases, potentially
leading to outdated or incorrect advice. For example, studies
have found that ChatGPT-3.5 provided inaccurate information
about self-managed medication abortion, exaggerating risks despite
evidence supporting its safety when properly administered (4).
Such misinformation can increase patient anxiety, perpetuate
stigma, and discourage evidence-based healthcare decisions.

Research by Sheikh et al. compared ChatGPT-3.5 and
ChatGPT-4’s ability to assess the safety of non-prescription
medications and supplements for patients with kidney disease
(11). While ChatGPT-4 showed improvement over its predecessor
(81.4% vs 64.5% concordance with Micromedex), neither
matched the reliability of established drug information resources.
Both models particularly struggled with supplement safety
assessments, often defaulting to "unknown toxicity" classifications
due to limited data.

Rao et al. (9) assessed ChatGPT-3.5’s role in managing
polypharmacy in geriatric patients, finding its deprescribing
recommendations aligned with guidelines for patients without
cardiovascular disease but lacked accuracy when factoring in
functional impairments and cardiovascular history. Notably, it
often recommended deprescribing pain medications without
considering older adults’ pain management needs. Similarly, in
cases of renal dysfunction, ChatGPT achieved only 16.7% accuracy
in dose adjustments incorporating patient-specific variables such as
renal markers and comorbidities (12). These findings highlight the
limitations of LLMs in complex scenarios requiring personalized
clinical expertise, emphasizing their role as supplementary tools
rather than replacements for professional judgment. This low
accuracy poses significant risks in clinical settings where precise
dosing is crucial, demonstrating that while LLMs may support
preliminary decision-making, they cannot reliably replace clinical
expertise in complex medical situations.

3.2 Ethical and safety concerns in
self-decision support

The use of LLMs for self-medication guidance raises significant
ethical concerns, particularly when patients use these tools without
healthcare professional oversight. A primary risk is that LLMs may
provide seemingly authoritative advice that lacks clinical nuance,

potentially encouraging unsafe medical decisions. This risk is
heightened in regions with limited healthcare access, where patients
might rely on AI as their primary medical information source.

Hsu et al. examined ChatGPT’s ability to handle medication
consultations and drug-herb interaction questions (13). While the
model effectively addressed basic public inquiries, it performed
poorly on complex questions from healthcare providers. The study
revealed particular limitations in analyzing interactions between
traditional Chinese and Western medicines, often providing vague
or incomplete information. These findings indicate that while
ChatGPT can help with basic medication questions, it currently
lacks the sophistication needed for reliable guidance in specialized
clinical contexts.

Ethical concerns also emerge in managing sensitive
medical conditions, such as cancer. When evaluated for cancer
symptom management guidance, ChatGPT’s recommendations
showed notable discrepancies from National Comprehensive
Cancer Network (NCCN) guidelines. The model tended to
provide generalized advice that failed to address the complex
symptom burdens typical of cancer patients (14). This gap
between AI-generated recommendations and evidence-based
guidelines underscores the risks of relying on LLMs for critical
health decisions.

Privacy constraints prevent LLMs from accessing individual
medical records, limiting their ability to provide personalized
recommendations. This limitation is particularly problematic
for high-risk populations, including elderly patients and those
with chronic illnesses, who require carefully tailored treatment
plans. Without access to patient-specific data, LLMs default
to generalized advice that may be inappropriate or unsafe
for complex medical conditions. As demonstrated in previous
research, ChatGPT’s inability to consider specific renal function
metrics led to incorrect dosing recommendations for patients
with kidney disease, illustrating the potential safety risks of such
limitations (12).

These limitations highlight the critical need for a structured
ethical framework governing LLM deployment in healthcare. The
integration of AI into patient self-decision support requires a
balanced approach that positions these tools as supplements to, not
replacements for, professional medical expertise. A collaborative
model combining AI capabilities with clinical oversight could
optimize the benefits of LLMs while minimizing risks. The
development of robust regulatory guidelines will be essential
to harness LLM potential while maintaining patient safety and
ethical standards.

4 Future directions and
recommendations

4.1 Improving accuracy and reliability of
LLMs for medication-related information

Enhancing LLM reliability for medication guidance
requires integration with real-time medical databases and
continuous content updates. Connecting these models to current
pharmacological databases would enable access to the latest
drug interaction guidelines, side effect profiles, and dosage
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recommendations. Such integration could help align AI systems
with evolving healthcare information while improving response
accuracy for patient inquiries. Development of frameworks
allowing LLMs to access validated sources such as PubMed, FDA
databases, and regional repositories would strengthen the clinical
relevance of their recommendations.

Specialized training protocols represent another key avenue
for improvement, particularly in enhancing LLMs’ contextual
understanding of patient inquiries. Targeted training in medical
ethics and patient safety could reduce risks in high-stakes
areas such as mental health, reproductive health, and complex
medication management. Collaboration between healthcare
professionals and AI developers is crucial for ensuring these
models meet clinical standards. By involving medical experts
in model refinement, especially for context-specific information
and decision-making guidance, developers can better align
AI outputs with the nuanced requirements of personalized
medicine. Strategic partnerships between AI companies and
medical institutions could facilitate ongoing model validation
and improvement.

4.2 Balancing autonomy with safety:
ethical and regulatory perspectives

The growing role of LLMs in medication guidance necessitates
an ethical framework balancing patient autonomy with safety.
Our previous scoping review highlighted that while LLMs
effectively simplify medical terminology, they often lack
reliability in critical, high-stakes scenarios (5). This finding
underscores the need for comprehensive regulatory standards
ensuring transparency in AI recommendations, including
clear disclaimers about the importance of professional medical
consultation. Such guidelines would help users understand
that AI-generated advice supplements, rather than replaces,
clinical expertise.

Looking forward, establishing medical AI ethical review boards,
similar to institutional review boards for clinical research, could
provide structured oversight of LLM implementation. These boards
could evaluate training data, assess response biases, and monitor
AI applications in patient education and self-care. This framework
would ensure AI development aligns with patient safety priorities
and evolving healthcare policies.

5 Discussion

LLMs show promise in supporting patient self-decision
making for medication use, providing accessible, on-demand
resources for drug-related information. These tools help
patients explore questions about drug interactions, side
effects, and medication schedules, potentially enhancing
health literacy and informed decision-making. However,
significant limitations and risks exist. The inability of LLMs
to incorporate individual patient data, including medical
histories and current medications, creates a fundamental
barrier to personalized advice. this limitation, combined
with potential inaccuracies in AI-generated responses,

necessitates careful integration of LLMs into healthcare,
particularly in sensitive areas such as reproductive and mental
health.

In environments where access to healthcare professionals is
limited or communication systems are disrupted, such as remote
areas or disaster zones, LLMs can provide support for patient
self-care. These AI tools can deliver immediate, situation-specific
advice for managing medical concerns when professional help is
unavailable. This immediate guidance can be life-saving in cases
where there are no healthcare facilities nearby, offering a sense of
empowerment and structured steps for non-professionals facing
medical emergencies. Nevertheless, while LLMs can provide a
valuable bridge until medical assistance is available, they cannot
replace the expertise of healthcare professionals in complex or
high-stakes situations. As such, their recommendations should
emphasize the provisional nature of AI guidance in austere
environments, ideally directing individuals to seek professional
care as soon as circumstances allow.

In addition to emergencies, LLMs can be used to support
patients in everyday medication decisions, particularly with
over-the-counter (OTC) drugs. Many individuals may not fully
understand the risks of combining OTC medications with
prescription drugs or specific medical conditions, often due to the
complex and lengthy drug information provided on packaging.
Patients may also assume OTC medications are inherently safe or
may avoid consulting healthcare professionals for minor issues.
In such cases, LLMs can assist by analyzing drug information
and identifying potential interactions or contraindications based
on a patient’s reported medications and medical conditions. This
guidance can help patients make safer choices, promoting informed
self-care in routine health decisions. However, the accuracy
and safety of these recommendations depend on LLMs being
continuously updated with the latest clinical data. The potential
for adverse outcomes highlights the need for rigorous oversight,
ensuring that LLM-driven advice is a safe, supplementary resource
in patient-centered healthcare.

While LLMs can empower patients with information, the
risks of misinformation or oversimplified guidance are substantial,
especially if patients bypass professional medical consultation in
favor of AI recommendations. Future developments must address
both accuracy and ethical considerations. Key improvements
should include integrating validated medical databases and
increased collaboration with healthcare professionals. Additionally,
regulatory oversight must establish clear boundaries for LLM use,
ensuring these tools serve as supportive rather than standalone
resources. Clear disclaimers and transparent communication
about AI limitations can help position LLMs as supplements to
professional healthcare guidance.

LLMs represent a transformative development in patient
education, potentially reshaping how patients approach self-
medication and health decisions. Their successful implementation
depends on addressing current limitations in probabilistic data
synthesis, personalization capabilities, and ethical considerations in
sensitive healthcare areas. The path forward requires balancing AI’s
informational capabilities with professional medical guidance while
maintaining focus on patient safety and autonomy. This balanced
approach will be crucial for realizing the full potential of LLMs in
patient-centered healthcare.
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Introduction: Pathological myopia (PM) is a serious visual impairment that 
may lead to irreversible visual damage or even blindness. Timely diagnosis and 
effective management of PM are of great significance. Given the increasing 
number of myopia cases worldwide, there is an urgent need to develop an 
automated, accurate, and highly interpretable PM diagnostic technology.

Methods: We proposed a computational model called PMPred-AE based on 
EfficientNetV2-L with attention mechanism optimization. In addition, Gradient-
weighted class activation mapping (Grad-CAM) technology was used to provide 
an intuitive and visual interpretation for the model’s decision-making process.

Results: The experimental results demonstrated that PMPred-AE achieved 
excellent performance in automatically detecting PM, with accuracies of 98.50, 
98.25, and 97.25% in the training, validation, and test datasets, respectively. In 
addition, PMPred-AE can focus on specific areas of PM image when making 
detection decisions.

Discussion: The developed PMPred-AE model is capable of reliably providing 
accurate PM detection. In addition, the Grad-CAM technology was also used 
to provide an intuitive and visual interpretation for the decision-making process 
of the model. This approach provides healthcare professionals with an effective 
tool for interpretable AI decision-making process.
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1 Introduction

Pathological myopia (PM) is a serious visual disease that can lead 
to irreversible visual damage or even blindness (1–3). In recent years, 
PM has become one of the main causes of visual impairment and 
permanent blindness worldwide, especially in Asian countries. 
According to the research by Holden et al. (4), by 2050, nearly half of 
the global population will be affected by myopia, with approximately 
10% suffering from high myopia, which will also become the leading 
cause of permanent blindness. In addition, retinopathy and 
complications related to myopia may also increase the risk of visual 
damage (5–7). Therefore, timely diagnosis and early detection of PM 
are crucial. Currently, develop an automated, accurate, and 
non-invasive method PM diagnosis method is an urgent task.

With the development of artificial intelligence (AI) and the 
accumulation of myopia data, a variety of computational methods 
have been developed (8–10). For example, Liu et al. (10) introduced a 
method using texture features and Support Vector Machine (SVM) 
(11–13) to automatically detect PM. This method processed retinal 
fundus images by extracting region of interest (ROI) and detecting the 
optic nerve head. Subsequently, texture-based metrics were generated, 
categorized and grouped into zones for context-based generation of 
features. Finally, SVM was used to detect PM based on these features, 
achieving an accuracy (ACC) of 87.5% (14). Zhang et al. (15) proposed 
an automatic detection method for PM based on max-relevance and 
min-redundancy (mRMR). This method built a feature space from 
information extracted from fundus images and medical screening 
data, created a ranked feature library using mRMR, searched for the 
most compact feature set with a forward selection wrapper, and then 
used SVM for detection. As a result, they achieved an ACC of 89.3% 
for the right eye and 88.5% for the left eye (15). Xu et al. (16) developed 
a detection method for PM based on bag-of-feature and sparse 
learning. During the training phase, the codebook for the bag-of-
feature model and the classification model were learned, and the top 
related visual features were discovered through sparse learning.

In the detection phase, local features were first extracted from a 
given retinal fundus image, quantified using the learned codebook to 
obtain global features. Finally, the classification model was used to 
determine the presence of PM, achieving an ACC of 90.6% (16). 
Zhang et al. (17) also developed an automatic diagnostic method for 
PM based on heterogeneous biomedical data, integrating data from 
various sources including imaging data, demographic/clinical data, 
and genotyping data, and ultimately using a multiple kernel learning 
(MKL) approach to accurately detect PM, achieving an average Area 
Under Curve (AUC) of 0.888. Chen et al. (18) introduced a deep 
learning architecture for automating the diagnosis of glaucoma. This 
method used a convolutional neural networks (CNN) (19, 20) model 
with four convolutional layers and two fully connected layers, 
combined with dropout and data augmentation strategies to enhance 
diagnostic performance. The method achieved AUC values of 0.831 
and 0.887 on the ORIGA and SCES datasets, respectively (18). Xu 
et al. (21) proposed an automated detection method for tessellated 
fundus based on texture features, color features and SVM. The method 
could achieve an ACC of 98%. Xu et al. (22) proposed a method for 
detecting ocular disease based on multiple informatics domains. This 
method combined pre-learned SVM classifiers effectively merging 
personal demographic data, genome information, and visual 
information from retinal fundus images. The final model obtained an 

AUCs of 0.935 for glaucoma, 0.822 for age-related macular 
degeneration (AMD), and 0.946 for PM (22). Septiarini et al. (23) 
introduced a method based on statistical features to automatically 
detect peripapillary atrophy in retinal fundus images. This method 
involved four steps: optic nerve head (ONH) localization, ONH 
segmentation, preprocessing, and features extraction. Through these 
steps, three key features were extracted: standard deviation (σ), 
smoothness (S), and third moment (μ3). By using a backpropagation 
neural network (BPNN), they achieved an ACC of 95% (23). Rauf 
et  al. (24) proposed a CNN-based method for PM detection and 
obtained an ACC of 95%. Although these studies have achieved 
positive results, there are still several challenges: (1) Many advanced 
deep learning methods are emerging, but in the field of PM detection, 
these advanced technologies have not yet been applied. (2) Due to the 
uniqueness of the medical industry and the high requirements for 
model accuracy, model performance still needs to be improved. (3) 
Due to the differences in actual medical facilities, the efficiency of 
these models in poorly equipment medical environments is an 
important problem that needs to be overcome. (4) As an auxiliary 
diagnosis method, the interpretability of models was an important 
task, but current research in this area is still insufficient (25–28).

To address the aforementioned challenges, this study designed an 
improved model named PMPred-AE based on EfficientNetV2-L to 
automatically identify and diagnose PM. This study further enhanced 
the model’s ability to identify key features in the retina images by 
introducing the attention mechanism, thereby improving the accuracy 
of the diagnosis of PM. In order to provide visual explanations for the 
decision-making process of the model, we also adopted the Gradient-
weighted class activation mapping (Grad-CAM) technique. Our study 
provides an efficient, accurate, and explainable model for the 
detection of PM.

2 Materials and methods

2.1 Dataset construction

The study utilized the PALM Challenge dataset, comprising 
training images, verification images and test images. The training 
dataset contains 187 non-PM and 213 PM. Similarity, the verification 
set consists of 400 images, with 189 labeled as non-PM and 211 as 
PM. Additionally, test set includes 400 images with corresponding 
labels: 187 categorized as non-PM and 213 as PM (29). This dataset 
configuration enabled rigorous evaluation and validation of the 
proposed methodologies.

2.2 Model design

The PMPred-AE architecture consists of two core components: a 
feature extractor and a classifier. In the feature extraction stage, 
we  chose EfficientNetV2-L, an advanced CNN model aimed at 
accelerating image processing and improving its performance. As an 
upgraded version of the EfficientNet series, EfficientNetV2-L 
underwent pre-trained on a massive ImageNet dataset that covers 
millions of images and thousands of categories. Through its scalable 
architecture, EfficientNetV2-L cleverly balances the network depth, 
width, and resolution to achieve optimal performance and efficiency. 
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EfficientNetV2-L is an upgraded version of the EfficientNet series. It 
optimizes the balance of network depth, width, and resolution to 
achieve high efficiency and accuracy in image processing tasks. 
Compared to advanced vision transformer (ViT) series’ ViT-L/16, 
EfficientNetV2-L achieves higher accuracy. Meanwhile, the training 
speed could increase by 7 times (30). In particular, the model utilizes 
lightweight depthwise separable convolution techniques, significantly 
reducing computational burden and model size while maintaining 
efficient feature extraction capabilities. Therefore, in the context of 
PM-detection, EfficientNetV2-L could efficiently identify key features 
in images and provide accurate data input for classifiers, significantly 
improving the performance of the model. Moreover, its superior 
computing speed and efficiency made it very suitable for application 
in medical environments with rudimentary equipment, providing 
strong technical support for early diagnosis and treatment. In the 
classification stage, we  used an improved fully-connected neural 
network based on the attention mechanism. The core function of this 
improvement is to enhance the model’s attention to the most 
important parts of the input features. By assigning different weights 
to the input features, the attention mechanism allows the model to 
prioritize the features that contribute the most to the final 
classification decision, rather than treating all input features equally. 
This dynamic weight allocation method not only improves the 
model’s understanding of the data, but also increases the adaptability 
and flexibility of the model, enabling it to automatically focus on the 
most critical information. Specifically, we  used a linear layer to 
transform all the features into a one-dimensional space, and then 
map them to a value between 0 and 1 using the Softmax function. 
Finally, this weight is multiplied by the original input features to 
emphasize the features that contribute the most to the classification 
result. This improvement was particularly important for the detection 
of PM. It allows the model to pay special attention to the areas that 
revealed the pathological features of myopia. Through this 
mechanism, our model provided an efficient tool for the early 
diagnosis and treatment of PM.

2.3 Grad-CAM

In order to visually explain the decision-making process of CNN 
in PM detection tasks, we used Grad-CAM technique to generate a 
heatmap. Through Grad-CAM, we can clearly see which areas are 
given more attention when the model makes detection. This approach 
relies on the gradient information of the model, particularly focusing 
on the gradients of the feature layers from the last convolutional layer, 
to highlight the regions that contribute most to the model predictions. 
The working principle of Grad-CAM can be briefly described by the 
following mathematical expression.

First, for each channel in the feature layer A, the global average 
pooling of these slopes is calculated to obtain the weight coefficient 
(Equation 1):
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where, cy  is the output score of the model for category c, ijA  is the 
activation value of the feature layer at position ( ),i j , k is the k-th 

channel in the feature layer A, and Z  is the total number of units in 
the feature layer.

Then, the weight coefficient is multiplied by the activation value 
of the feature layer and then accumulated. The final heatmap is 
generated by filtering through the ReLU function (Equation 2):
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This process ensures that only features that have positive impact 
on l prediction category c of the mode were visualized, thereby 
enhancing the clarity and interpretability of the model’s decision. 
By applying Grad-CAM to the PMPred-AE model, the heatmap 
clearly reveals that the model focuses on the location of key 
pathological changes in the retina image when identifying PM. The 
heatmap provided by Grad-CAM not only demonstrates the reason 
behind the model’s high performance, but also proves its focusing 
ability, which is crucial to improve the reliability and trust of the 
model in practical medical applications. Through this way, 
Grad-CAM provides healthcare professionals with an intuitive tool 
to better understand and explain the decision-making process of 
the PMPred-AE, especially in medical diagnosis and 
treatment planning.

2.4 Parameter setting

The learning rate is set to 0.0001, the batch size is 8, the number 
of epochs is 50, and the optimizer is AdamW.

2.5 Evaluation index

Several widely used evaluation indicators (31–37), including 
precision (Pre) (Equation 3), recall (Rec) (Equation 4), accuracy 
(ACC) (Equation 5), F1-score (F1) (Equation 6), and Matthew’s 
coefficient of association (MCC) (Equation 7), were utilized to 
evaluate model’s performance, defined as follows:
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where TP, TN, FP, and FN represented the true positive, true 
negative, false positive, and false negative of the sample, respectively. 
We also drew the receiver operating characteristic curve (ROC) and 
precise recall curve (PRC), and obtained the area under the curve 
(AUC, AUPRC) (27, 38–41).

3 Results

3.1 Overview of experiment

In our experiment, we first adopted data augmentation techniques 
to enrich and expand the original data set, and created more diverse 
training samples. Data enhancement included operations such as 
image rotation, resizing, and cropping. It was designed to simulate 
different shooting conditions and perspectives to improve the model’s 
generalization and robustness. The data-enhanced dataset was used to 
train our PMPred-AE model, which was based on the EfficientNetV2-L 
architecture and optimized to meet the specific requirements of 
PM-detection. EfficientNetV2-L is the foundation of our model. It has 
been pre-trained on the ImageNet data set, and therefore has strong 
feature extraction capabilities (42, 43). In order to further improve the 
performance of the model, we introduced an attention mechanism in 
the fully connected layer of the model. This mechanism enables the 
model to focus more on the key areas related to PM diagnosis in the 
image, thereby improving the accuracy of diagnosis. During the 
model training process, the model parameters were adjusted based on 
the performance on the verification set to achieve the optimal 
configuration. After training, we visualized the output of the model at 
different levels (shallow, middle, and deep). This step helped us 
understand how the model gradually extracted and utilized image 
features. In addition, we also used Grad-CAM technology to generate 
a heatmap that highlight the areas that the model focuses on when 
making predictions. In this way, we can not only verify the decision-
making process of the model, but also provide intuitive visual 
explanations for doctors to help them better understand the basis of 
the model. Overall, our experiment combined data augmentation, 
attention mechanisms, and advanced model architecture and 
explanatory techniques to develop an efficient, accurate, and 
explainable model for the detection of PM (Figure 1).

3.2 Data augmentation

Due to the difficulty of collecting and annotating pathological 
images, only a small number of data samples could be collected 
under normal circumstances. Therefore, data augmentation was a 
very necessary task. It can effectively reduce the over-fitting degree 
of the model, and allow the model to learn more general knowledge 
instead of focusing too much on noise and some unique features, 
thereby improve the generalization and robustness of the model 
(44–46). In this study, we employed a combination approach for 
sample augmentation. The detailed procedure included initially 
resizing the images to 256×256 pixels. Subsequently, they are 
randomly cropped to 224×224 pixels. Then anti-aliasing techniques 
were applied to ensure image quality. In addition, to increase visual 
variety, the probability of horizontal and vertical flipping was set to 
50%. This method also incorporated subtle random affine 

transformations, including rotations between −10 to 10 degrees, 
translations of 10% of the image width or height, and scaling 
between 90 to 110%. Furthermore, random erasure is applied with 
a 50% probability, randomly covering a small portion of the image, 
enhancing the model’s ability to handle image occlusion (Figure 2). 
Finally, the images were converted into tensors and normalized 
according to a specific mean and standard deviation to suit the needs 
of model training. We mainly used these methods to address the 
following issues: by randomly cropping and resizing, we simulated 
the scene where doctors observe the eyes from different distances 
and angles, and random rotation and affine transformation helped 
the model identify pathological features from multiple angles. 
Random erasure simulates potential occlusions during actual 
medical image acquisition. Normalization ensures consistency of 
image data during training, while anti-aliasing maintains the clarity 
of image details, which is crucial for identifying pathological 
features. By introducing various visual perturbations, this 
comprehensive data augmentation strategy facilitates the model in 
extracting valuable features from diverse image transformations, 
thereby enhancing performance and robustness in real-world 
application scenarios.

3.3 Model validation

A series of experiments have shown that the PMPred-AE model 
exhibits excellent performance in PM classification tasks. Firstly, the 
model is trained on the training set to ensure that it has sufficient 
learning foundation and can capture the key features and patterns in 
the data (47–50). Then, the validation set was used to adjust the 
parameters of the model, which further improved its performance 
and ensured its generalization ability on unseen data (51, 52). The 
experimental results showed that PMPred-AE performed well on the 
test set, and all evaluation indicators reached a very high level, such 
as ACC, F1, Pre, Rec and MCC with values of 0.9725, 0.9744, 0.9676, 
0.9812 and 0.9448, respectively. This indicates that PMPred-AE has 
excellent ability to effectively distinguish PM from non-PM 
(Figure  3A, Table  1). In addition, by plotting ROC and PRC, 
we observed that the PMPred-AE model had good AUC and AUPRC 
under both conditions, with values of 0.9955 and 0.9962, respectively. 
This further demonstrated the efficiency of PMPred-AE model in 
feature extraction and capability in recognizing PM (Figures 3B,C). 
Finally, we  used t-SNE technology to visualize the output of the 
model (Figure 3D) (53). The results showed that PM and non-PM 
can be clearly distinguished in a low-dimensional space, indicating 
that the model can effectively represent their features in a 
low-dimensional space and capture the complex patterns and 
structural differences between them. This further suggests that the 
PMPred-AE model has broad application prospect in clinical practice.

3.4 Model explanations

To further confirm that PMPred-AE could effectively extract 
features, we visualized the output of the model’s shallow, middle, 
and deep layers. It can be clearly observed that as the depth of the 
model increases, the model can extract more abstract and higher-
level features. This proves that the hierarchical structure of 
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PMPred-AE model effectively promoted the gradual extraction and 
refinement of features (Figure  4A). Later, in order to further 
investigate why PMPred-AE could efficiently distinguish PM and 
non-PM, we used the Grad-CAM technology to generate a heatmap 
that could reveal the areas that the model focused on when making 
predictions, thus providing an explanation for the model’s 

decision-making process (Figure 4B). The heatmap revealed that the 
PMPred-AE model could effectively focus on the location of the key 
pathological changes in the image when identifying PM. These 
positions were often the key for distinguishing between PM and 
non-PM, which explained why the model could achieve high 
accuracy. This focusing ability not only improved the prediction 

FIGURE 1

Experimental workflow overview diagram.

90

https://doi.org/10.3389/fmed.2025.1529335
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2025.1529335

Frontiers in Medicine 06 frontiersin.org

performance of the model, but also increased its reliability and 
credibility in practical applications, especially in medical diagnosis 
and treatment planning.

3.5 Comparisons with existed works

To further demonstrate the performance of PMPred-AE in 
detecting PM, we should compare the proposed model with existed 
studies. However, those studies we mentioned earlier did not share 
their source code and used different datasets, making it impossible for 
use to make a fair comparison. Fortunately, we could use the PALM’s 
benchmark data from 2023 (Base-2023) (29). The experiment results 
showed that among all evaluation metrics, PMPred-AE is superior to 
Base-2023 (Figure  5, Table  2). By comparing with Base-2023, 
we further consolidated the validation of the PMPred-AE model and 
provided more reliable support for its application in clinical practice.

4 Discussion

In this study, we designed an improved EfficientNetV2-L model 
based on the attention mechanism (PMPred-AE) for the automatic 
detection of PM. By using EfficientNetV2-L as the basic architecture for 
feature extraction and introducing improvements based on the attention-
based mechanism in the classification stage, the PMPred-AE model 
could efficiently identify key features in eye image and significantly 
improve the prediction performance of the model. In the research, data 

augmentation techniques were used to expand the training samples, 
including image rotation, resizing, and cropping to improve the model’s 
generalization ability and reliability. In addition, Grad-CAM technology 
was introduced during the model training process to generate heatmaps, 
which provided a visual means to explain the decision process of the 
PMPred-AE in the identification of PM. The heatmap generated by 
Grad-CAM can clearly show the areas that the model focused on when 
making predictions, thereby enhancing the clarity and interpretability of 
the model’s decisions. Compared with existing work, PMPred-AE had a 
significant improvement in ACC, Rec, ROC, and F1. This confirmed its 
leading position in the field of PM-detection and provided strong 
support for its application in clinical practice.

The PMPred-AE model demonstrates significant potential and 
scalability in the field of medical image analysis. In addition to 
effectively detecting PM, PMPred-AE is also applicable to various 
medical imaging tasks, including the analysis of tumors, brain 
diseases, and lung diseases. Despite the unique characteristics of 
different medical images, PMPred-AE offers an efficient and 
interpretable framework that can be applied across diverse medical 
scenarios, showcasing substantial clinical application potential. The 
clinical value of PMPred-AE lies not only in its high accuracy and 
efficiency but also in its seamless integration with existing healthcare 
systems. The model can directly process images generated by standard 
medical devices without requiring additional workflows. Furthermore, 
PMPred-AE uses Grad-CAM technology to generate heatmaps that 
visualize the regions the model focuses on, helping physicians make 
more precise clinical decisions. The model’s lightweight design ensures 
efficient operation even in resource-constrained environments, 

FIGURE 2

Data augmentation result diagram.
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making it particularly suitable for regions with limited healthcare 
resources. However, there are several challenges to be addressed in the 
deployment of PMPred-AE in practice. First, the quality and diversity 
of fundus images may vary due to differences in imaging devices and 
conditions, potentially affecting model performance. To address this, 
we can enhance the model’s generalization ability by expanding the 
training dataset and incorporating data augmentation techniques. 
Second, although the model employs an efficient network architecture, 
inference speed and computational resource requirements could 
become limiting factors in resource-constrained environments. To 
mitigate this, we plan to deploy the model on the cloud, leveraging 
cloud computing resources for inference to reduce the local 

computational burden. In summary, while the deployment of 
PMPred-AE faces several challenges, improvements in data quality, 
optimization of computational resources, and enhanced model 
robustness can effectively address these issues, ensuring the successful 
application of the model in clinical practice.

In summary, this research successfully developed an efficient, 
accurate, and explainable model for the detection of PM by combining 
advanced model architecture, attention mechanism, and explanatory 
techniques. This comprehensive method not only improved the 
performance of the model, but also provided a valuable reference for 
clinical diagnosis, demonstrating the great potential of deep learning 
in the field of medical image analysis. In the future, with the 

FIGURE 3

Model validation result diagram. (A) Evaluation results of the model. (B) ROC results of the model. (C) PRC results of the model. (D) t-SNE visualization 
the model.

TABLE 1 The performance evaluation of model.

Method ACC Pre Rec F1 ROC MCC

Train 0.9850 0.9814 0.9906 0.9860 0.9974 0.9699

Val 0.9825 0.9857 0.9810 0.9834 0.9986 0.9649

Test 0.9725 0.9676 0.9812 0.9744 0.9955 0.9448
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FIGURE 4

Model explanation display diagram. (A) Visualize the output results of shallow, middle, and deep layers of the model. (B) Visualization results of Grad-
CAM.
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continuous advancement of algorithms and technology, such models 
are expected to play a greater role in improving the efficiency and 
accuracy of PM diagnosis. The source code has been uploaded to 
GitHub and can be accessed at: https://github.com/ZhangHongqi215/
PMPred-AE.
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FIGURE 5

Comparison diagram of Base-2023.

TABLE 2 Comparison with published results.

Method ACC Pre Rec F1 ROC MCC

Base-2023 0.968 / 0.962 0.969 0.994 /

PMPred-AE 0.9725 0.9676 0.9812 0.9744 0.9955 0.9448

The bold font indicates the classifiers that work best.
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Objective: This study aims to evaluate and compare the performance of four
major large language models (GPT-3.5, GPT-4.0, YouChat, and Perplexity) in
answering 32 common asthma-related questions.
Materials and methods: Seventy-five clinicians from various tertiary hospitals
participated in this study. Each clinician was tasked with evaluating the
responses generated by the four large language models (LLMs) to 32 common
clinical questions related to pediatric asthma. Based on predefined criteria,
participants subjectively assessed the accuracy, correctness, completeness,
and practicality of the LLMs’ answers. The participants provided precise scores
to determine the performance of each language model in answering pediatric
asthma-related questions.
Results: GPT-4.0 performed the best across all dimensions, while YouChat
performed the worst in all dimensions. Both GPT-3.5 and GPT-4.0
outperformed the other two models, but there was no significant difference in
performance between GPT-3.5 and GPT-4.0 or between YouChat and
Perplexity.
Conclusion: GPT and other large language models can answer medical
questions with a certain degree of completeness and accuracy. However,
clinical physicians should critically assess internet information, distinguishing
between true and false data, and should not blindly accept the outputs of
these models. With advancements in key technologies, LLMs may one day
become a safe option for doctors seeking information.
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1 Introduction

Asthma is a major chronic respiratory disease worldwide,

affecting the health and quality of life of millions of people. In a

multinational, multicenter study involving 453,473 subjects, it was

found that 6.3% of children, 7.9% of adolescents, and 3.4% of

adults were diagnosed with asthma by a doctor. Moreover, in

middle-to-low-income countries, many individuals with severe

asthma symptoms were not using inhaled corticosteroids (1). In

China, 15.5% of asthma patients reported at least one emergency

room visit, and 7.2% of patients reported at least one hospitalization

due to worsening respiratory symptoms (2). Despite receiving high-

intensity treatment, most children with poorly controlled symptoms

can achieve improved asthma control when they adhere to the basic

principles of asthma management (3). Frequent and severe asthma

attacks can be fatal, and effective asthma management and

treatment require close cooperation between patients, doctors, and

caregivers. Therefore, improving the provision of accurate health

information and personalized counseling is crucial for the self-

management of asthma patients.

A survey of online health behaviors of Americans revealed that

more than one-third of Americans turn to the Internet to diagnose

health problems (4). Large Language Models (LLMs), such as GPT,

are AI tools designed to process and generate text. They have been

widely applied to various tasks and have demonstrated excellent

performance in the medical field (5). LLMs will increasingly be

used for information retrieval, automated summarization of

literature notes, answering medical questions, and even as

interactive tools in medical education (6, 7). This not only helps

patients access important disease-related information more

quickly but also supports the decision-making process of

healthcare professional (8). However, Information errors, privacy

issues, and ethical challenges and potential harm to patient care

remain significant challenges (9). Ethical issues, including data

privacy and breaches, must be addressed. In both medical and

non-medical education, students are vulnerable to

misinformation, hindering the development of critical thinking

skills. The lack of mechanisms to ensure the accuracy of LLM

outputs limits their use in clinical settings, where misinformation

can have fatal consequences (7).

In this study, we aim to evaluate and compare the performance

of four selected Large Language Models (GPT-3.5, GPT-4.0,

YouChat, and Perplexity) in answering clinical questions related

to pediatric asthma. The evaluation includes four dimensions:

accuracy, precision, completeness, and practicality, combined

with insights from professionals for a comprehensive assessment.

Our findings may provide valuable insights into the clinical

application of LLMs as medical auxiliary tools and promote

clinical decision-making.
2 Article type

This study is an Original Research Article that evaluates and

compares the performance of four major large language models
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(GPT-3.5, GPT-4.0, YouChat, and Perplexity) in answering 32

common asthma-related questions.
3 Material and methods

3.1 Model selection

Based on previous research, user volume, and training

methodologies, this study selected four models for investigation:

ChatGPT 3.5, ChatGPT 4.0, YouChat, and Perplexity. ChatGPT 3.5

and ChatGPT 4.0 were trained on predefined datasets and did not

connect to the internet after their launch. ChatGPT 4.0 utilizes a

more extensive and diverse pre-training dataset compared to

ChatGPT 3.5, along with advanced training techniques such as

more effective model optimization algorithms and smarter

parameter initialization methods. The version of YouChat used in

this study is the basic version, which extends ChatGPT 3.5 by

integrating an internet search function. Similarly, the Perplexity

version used is the basic one, functioning as an AI-powered search

engine that combines proprietary language models with real-time

web retrieval to generate responses.
3.2 Question selection and answering with
large language models

The equations should be inserted in editable format from the

equation editor. We selected 32 common asthma-related questions

from the article “One hundred key issues on Chinese Children’s

Asthma Action Plan” published in the Chinese Journal of Practical

Pediatrics to test the model (10). On the one hand, these questions

were selected after consultation with three pediatric respiratory

asthma experts and reflected the main aspects of asthma

management, such as diagnosis, treatment, prevention and follow-

up. On the other hand, the selection process was designed to cover

essential topics related to the concerns of clinicians and patients

and their families in the clinical setting. All questions were posed

and recorded in Chinese, and we translated them into English for

presentation (see Table 1). The prompt for all models was set as:

“Assume you are an expert in the field of pediatrics, and the

following questions are all related to pediatrics. Please answer the

following questions in less than 500 words.” The questions were

inputted in the exact same order and content for all models. To

ensure consistency and eliminate potential influence on clinician

ratings, we manually removed all hyperlinks, quotation marks, and

web-related formatting from all model responses. All answers were

presented in a uniform plain text format and model identities were

anonymized. This standardization ensured that assessments were

based solely on the accuracy, correctness, completeness, and utility

of the content, and not on the presence or absence of supporting

links or reference formats. To evaluate the internal stability of the

models, we created five dialogues using the same input method.

The project team members jointly assessed the stability of the five

responses, and the results were recorded on a ten-point scale, with

a minimum of 1 and a maximum of 10.
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TABLE 1 Questions used to test the performance of LLMs.

32 Questions Related to Childhood Asthma
Question 1 What is asthma?

Question 2 Is asthma hereditary?

Question 3 What are the differences and similarities between asthma in
children and adult asthma?

Question 4 What are the clinical features of asthma in children?

Question 5 How is bronchial asthma in children diagnosed?

Question 6 Can recurrent wheezing in infancy develop into asthma?

Question 7 What are the comorbid conditions of asthma?

Question 8 What impact does allergic rhinitis (AR) have on asthma?

Question 9 What are the common tests for childhood asthma?

Question 10 Can childhood asthma be cured?

Question 11 Does long-term ICS treatment affect the growth and development
of children?

Question 12 Which children with asthma are eligible for allergen specific
immune therapy (AIT)?

Question 13 Which children with asthma are eligible for biological treatments
such as monoclonal antibodies?

Question 14 Why is it important to manage asthma in children?

Question 15 Why should children with asthma have regular follow-up visits to
the hospital? How often should these visits occur?

Question 16 What are the main components of follow-up visits for children
with asthma?

Question 17 What are the early preventive measures for asthma?

Question 18 What are common allergens? Why do children with asthma need
allergen testing?

Question 19 What are dust mites? How can dust mite allergies be prevented?

Question 20 Which pet dander is likely to cause allergies?

Question 21 How can pollen allergies be managed?

Question 22 Can children with asthma receive vaccinations?

Question 23 What is the relationship between asthma attacks and upper
respiratory infections?

Question 24 Can children with asthma exercise? How should they exercise?

Question 25 Can exercise induce asthma attacks? How can exercise-induced
asthma attacks be prevented?

Question 26 What climate changes are likely to trigger asthma attacks? How
can these be prevented?

Question 27 What are the adverse effects of cigarette smoke exposure on
children with asthma? How can this be prevented?

Question 28 What factors are likely to cause acute asthma attacks during
outdoor activities or travel?

Question 29 What signs can predict an acute attack of asthma in children?

Question 30 How can the severity of an acute asthma attack in children be
assessed?

Question 31 How can severe acute asthma attacks be prevented?

Question 32 What emergency medications should be readily available at home
or nearby for children with asthma?
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3.3 Model evaluation dimensions

This study designed the questionnaire from the perspective of

doctors. The questionnaire evaluates the responses of different

models based on four dimensions: “accuracy,” “correctness,”

“completeness,” and “practicality.” “Accuracy” is defined as the

degree to which the model’s answer is relevant to the question,

reflecting the model’s ability to understand the user’s query.

“Correctness” refers to the extent to which the model’s answer

aligns with the clinical experience and guidelines of the

respondents. “Completeness” is defined as the thoroughness of

the model’s answer compared to clinical experience and
Frontiers in Pediatrics 0399
guidelines. “Practicality” refers to the extent to which the model’s

answer is applicable in daily clinical practice, reflecting the

model’s ability to solve real-world problems. The results are

recorded on a ten-point scale, with “unable to answer” responses

scored as 0 and other answers scored between 1 and 10. The

definitions of the four evaluation dimensions are placed on the

first page of the questionnaire to clearly inform the respondents

and facilitate accurate evaluation.
3.4 Questionnaire design

Each questionnaire contained thirty-two questions, arranged in

the same order, with answers generated by different large language

models. Participants were instructed to provide clear and

unambiguous answers based on existing clinical guidelines. The

four model-generated answers for each question were presented

in random order, and participants were not informed which

model corresponded to each answer. To improve the quality of

questionnaire completion, we set a time limit for answering the

questions. The questionnaires were then distributed in paper

form to 75 clinicians and collected uniformly. This study was

conducted from January to May 2024.
3.5 Participant inclusion

The evaluators in this study met the following criteria: (1) Hold

a Master’s degree in medicine or higher; (2) be under 60 years of

age; (3) Have worked in the pediatric department of a

tertiary hospital.
3.6 Questionnaire quality control

We implemented quality control for the questionnaires based

on the following criteria: (1) Assigning a high score to responses

with obvious errors/deficiencies was considered one quality

control anomaly; (2) Completing the questionnaire in less than

2 h was counted as one quality control anomaly; (3) Having

three responses with clearly outlier scores was counted as one

quality control anomaly. If there were fewer than three such

scores, it was counted as three instances. A sample was deemed

to have failed quality control if it exhibited five instances of

quality control anomalies. Only samples that passed quality

control were included in the analysis.
3.7 Inter-rater reliability analysis

To assess the consistency of raters in rating different models,

we conducted an inter-rater reliability analysis using the

Intraclass Correlation Coefficient (ICC). The ICC is a widely

used metric to measure the level of agreement between raters

when rating continuous data. In this study, ICC values were

calculated for four rating aspects—accuracy, completeness,
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correctness and practicality—using different models. Higher ICC

values indicate better agreement between raters. The final results

are shown in Supplementary Figure S1, where it can be observed

that Perplexity and YouChat provided the most consistent

ratings, with ICC values ranging from 0.85–0.91 across all

aspects, indicating a high level of inter-rater agreement. In

contrast, GPT-4.0 showed the greatest variation in raters’ scores,

particularly for Correctness and Practicality.
3.8 Statistical analysis

All data analysis was conducted using R 4.3.3. To

comprehensively understand the responses of the four major

language models to asthma-related clinical questions, we

calculated the average score for each question answered by each

model and presented the results through bar charts. Next, we

calculated the average score for each model across all evaluative

dimensions per question to examine the distinct responses

provided by each model. Sankey diagrams were used to describe

the commonalities and differences in cumulative scores for the

top five and bottom five questions among the four models. To

assess differences between the models, we first determined the

average score for each question across different models and then

performed hypothesis testing using Tukey’s post hoc test. We

then used Tukey’s post hoc test to compare the performance of

the four models across various dimensions. Finally, we utilized

Tukey’s post hoc test to evaluate the significance of differences

within each model across different dimensions.
4 Results

4.1 Questionnaire distribution and recall

The research distributed a total of 75 questionnaires, all of

which were returned and passed quality control, yielding a

qualification rate of 100%.
4.2 Evaluation of LLMs’ performance

Table 1 lists all the questions included in the 32 questionnaires.

Figure 1 shows the flowchart of the study. Figure 2 shows the

responses of the large language models (LLMs) to all questions.

In the questionnaires, the median score for all questions

answered by the LLMs was 7.9, with the highest scores for
FIGURE 1

Flowchart.
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questions 26, 14, 2, 16, and 18, and the lowest scores for

questions 6, 12, 22, 13, and 4. This indicates that the LLMs

performed excellently in addressing the genetic causes,

management strategies, and prevention of childhood asthma, but

showed some weaknesses in addressing the clinical

characteristics, early diagnosis, and specific treatments (such as

allergen-specific immunotherapy and monoclonal antibody

treatments) for childhood asthma.

Figure 3 displays the scores of different models on each

question. ChatGPT 3.5 and ChatGPT 4.0 had higher median

scores, both at 8.1, while Perplexity and YouChat had lower

median scores, at 7.7 and 7.6, respectively.

Figure 4 illustrates the differences and similarities between the

top five and bottom five questions answered by the various models.

Our findings indicate that multiple models demonstrated

proficiency in answering questions 2, 14, 18, and 26, suggesting

that LLMs are more adept at addressing questions related to

genetic causes, management measures, and the prevention of

childhood asthma. The GPT 4.0 demonstrated particular

proficiency in responding to the questions with the highest

scores. However, in the case of the questions with the lowest

scores, multiple models exhibited less impressive performance on

questions 6, 12, 22, and 32. This indicates that the LLMs (even

with GPT 4.0) were less adept at answering questions pertaining

to early identification and prevention of childhood asthma,

personalized treatment, prevention, and emergency

care management.
4.3 Comparison in different dimensions of
each model

Figure 5 illustrates the average scores of different models across

all questions. GPT 3.5 and GPT 4.0 significantly outperformed

Perplexity and You Chat, exhibiting more stable and higher

scores. There was no significant difference in performance

between GPT 3.5 and GPT 4.0, with their median scores being

nearly identical. Similarly, there was no significant difference

between Perplexity and You Chat, with their median scores being

close to each other.

Figure 6 shows that the GPT-4.0 performed better on all four

assessment dimensions, although statistical analyses showed no

significant difference between the GPT-4.0 and GPT-3.5.

Conversely, YouChat had the lowest performance in all aspects,

putting it at a disadvantage compared to the other three models.
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FIGURE 2

The average score of each question for all models.
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5 Discussions

Artificial intelligence is increasingly being applied in various

medical projects, including radiological image analysis (11),

aiding diagnosis in complex cases (12), personalized treatment

(13), anesthesia depth monitoring and control (14), and drug

development and utilization (15). A study evaluated ChatGPT’s

performance on the United States Medical Licensing

Examination (USMLE), and the results showed that ChatGPT

met or nearly met the passing threshold without any specialized

training or reinforcement (16). The LLM demonstrated strong

performance in making final diagnoses across 36 clinical cases,

achieving an accuracy rate of 76.9% (17). Importantly, compared

to other decision support tools, LLMs not only incorporate more

patient-specific information to generate more targeted

recommendations but also encourage brainstorming, prompting

doctors to consider diagnoses and treatments they might

otherwise overlook. These results suggest that large language

models may have the potential to aid in medical education and

assist in clinical decision-making.

In this study, all the major language models performed well in

answering a range of clinically relevant questions, with particular

excellence in the areas of asthma causes, treatment and

prevention. This is probably because these topics are of greater

public interest and there are more sources of information

available, resulting in more training data and consequently

higher scores. For asthma diagnosis and new treatments, the
Frontiers in Pediatrics 05101
LLMs showed less stable performance, indicating a need for

more recent data training in these areas.

GPT and other large language models can answer medical

questions with a certain degree of completeness and accuracy. Our

results indicate that while GPT-4.0 demonstrated the highest scores

across all dimensions, the statistical analysis revealed no significant

difference between GPT-4.0 and GPT-3.5. This suggests that both

models perform comparably in medical question answering, and the

choice between them may depend on factors beyond numerical

scores. Despite this, we still recommend GPT-4.0 due to its

qualitative advantages over GPT-3.5, including a larger database,

more advanced training data, improved model architecture, and

better integration with clinical guidelines. These factors enable GPT-

4.0 to understand and generate more accurate and effective

information. Additionally, qualitative feedback from clinicians

suggests that GPT-4.0 provides smoother and more contextually

relevant responses, making it more reliable in real-world medical

scenarios. In the top five questions (Question 5: Is asthma

hereditary? Question 8: What is the impact of allergic rhinitis (AR)

on asthma? Question 25: Can exercise induce asthma attacks? How

to prevent exercise-induced asthma attacks? Question 26: What

climate changes can trigger asthma attacks? How to prevent them?

Question 27: What adverse effects does cigarette exposure have on

children with asthma? How to prevent them?), GPT-4.0 did an

excellent job of answering questions about asthma heredity, triggers,

and preventive measures. However, GPT-4.0 showed weaker

capabilities in handling questions related to asthma management
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FIGURE 4

Sankey diagram of the questionnaire.

FIGURE 3

The average score of each question for different models.
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(vaccination) and treatment strategies (including emergency,

immunotherapy, or biologic treatments). For some new asthma

treatments, such as desensitization therapy and monoclonal antibody

therapies, future model training should emphasize updating the

database in these areas. If LLMs could be trained by reliable experts,
FIGURE 5

Comparison of average scores across all dimensions between models.

FIGURE 6

Comparison of average scores across different dimensions between model
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it could rapidly improve and transform the dissemination of medical

knowledge. Providing more and more disease information through

LLMs could help address the growing prevalence of asthma.

Although YouChat performed the worst of all models, it

significantly outperformed the other three models in answering

questions about accurately diagnosing asthma (Question 9: What

are common tests for childhood asthma?) and identifying and

managing allergens (Question 18: What are common allergens?

Why do children with asthma need allergen testing?). These

interventions are complementary and form a systematic approach to

comprehensive asthma management, demonstrating that each

model has strengths in different aspects of disease management.

However, there are several limitations to this study. First, the

sample size is relatively small (75 doctors), which may affect

the generalizability of the results. Second, there may be biases in the

questionnaire design, as the selection and phrasing of questions could

influence the models’ responses. Additionally, this study focuses

solely on pediatric asthma questions, different medical domains

might yield different results. Future research could expand the

sample size and diversity of questions to improve the generalizability

and reliability of the findings. It may also consider evaluating the

models’ performance in various medical fields (e.g., hypertension,
s.
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diabetes) to gain a comprehensive understanding of their potential

applications in medicine. Furthermore, research could explore ways

to further enhance the training data and model architecture to

improve their performance in specialized fields. Although the models

performed well in this study, in practice, LLMs may give incorrect

responses when faced with prompts that do not have a single correct

answer, and if they present these responses in a convincing manner,

users might believe their accuracy (18). Therefore, in practical use,

doctors should use LLMs as supplementary and enhanced support

rather than relying solely on their responses (19).

While our findings suggest that large languagemodels (LLMs) such

as GPT-4.0 have great potential as tools for clinical decision support, it

is important to recognize the ethical risks and challenges they pose—

particularly the risk of misinformation. For example, if an LLM

suggests the use of an outdated or contraindicated asthma

medication without considering the clinical context, this could lead

to harmful outcomes-especially if the recommendation is followed

without expert review. From an ethical perspective, the use of LLMs

also raises questions about responsibility and accountability. Unlike

human clinicians, LLMs do not have intent, awareness, or

professional responsibility, making it difficult to determine who is

liable if AI-generated content causes harm. In addition, LLMs

responses may reflect biases in their training data or generate

information that sounds accurate but not to. To mitigate these risks,

several strategies should be implemented: (1) Human oversight: All

LLM-generated content should be reviewed by qualified healthcare

professionals before being used in clinical practice. (2) Transparency

and interpretability: Developers should improve how LLMs explain

their answers and ensure that the system can flag low-confidence or

uncertain answers. (3) User training: Clinicians and other users

should be trained to understand the limitations of LLMs and to use

their results critically. (4) Ongoing monitoring: The performance of

LLMs should be regularly reviewed in real-world settings to ensure

continued safety and accuracy.

Based on the above, doctors still need to receive proper education

and continuously update their knowledge through various traditional

evidence-based educational methods. It is crucial to apply critical

thinking to the information provided by LLMs and regard it as a

supplement to their clinical knowledge and experience. Otherwise,

clinicians can be easily misled. Currently, whether in terms of data

or training, large language models do not seem capable of replacing

the unique intellectual abilities of humans. Clinicians need to be

very vigilant and apply all evaluative and critical measures to the

information provided before establishing such tools as support for

clinical decision-making. In the future, with advancements in key

technologies and the resolution of diagnostic blind spots and data

privacy issues, large language models have the potential to become

important tools for improving human healthcare.
6 Conclusion

GPT and other large language models can answer medical

questions with a certain degree of completeness and accuracy.

However, clinical physicians should critically assess internet

information, distinguishing between true and false data, and
Frontiers in Pediatrics 08104
should not blindly accept the outputs of these models. With

advancements in key technologies, LLMs may one day become a

safe option for doctors seeking information.
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A prognostic model for highly 
aggressive prostate cancer using 
interpretable machine learning 
techniques
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Medicine, Nanjing, Jiangsu, China

Background: Extremely aggressive prostate cancer, including subtypes like 
small cell carcinoma and neuroendocrine carcinoma, is associated with poor 
prognosis and limited treatment options. This study sought to create a robust, 
interpretable machine learning-based model that predicts 1-, 3-, and 5-year 
survival in patients with extremely aggressive prostate cancer. Additionally, 
we  sought to pinpoint key prognostic factors and their clinical implications 
through an innovative method.

Materials and methods: This study retrospectively analyzed data from 1,620 
patients with extremely aggressive prostate cancer in the SEER database (2000–
2020). Feature selection was performed using the Boruta algorithm, and survival 
predictions were made using nine machine learning algorithms, including 
XGBoost, logistic regression (LR), support vector machine (SVM), random 
forest (RF), k-nearest neighbor (KNN), decision tree (DT), elastic network (Enet), 
multilayer perceptron (MLP) and lightGBM. Model performance was evaluated 
using metrics such as AUC, accuracy (F1 score), confusion matrix, and decision 
curve analysis. Additionally, Shapley Additive Explanations (SHAP) were applied 
to interpret feature importance within the model, revealing the clinical factors 
that influence survival predictions.

Results: Among the nine models, the lightGBM model exhibited the best 
performance, with an AUC and F1 score of (0.8, 0.809) for 1-year survival 
prediction, (0.809, 0.751) for 3-year survival prediction, and (0.773, 0.611) for 
5-year survival prediction. SHAP analysis revealed that M stage was the most 
important feature for predicting 1- and 3-year survival, while PSA level had 
the greatest impact on 5-year survival predictions. The model demonstrated 
good clinical utility and predictive accuracy through decision curve analysis and 
confusion matrix.

Conclusion: The lightGBM model has good predictive power for survival in 
patients with extremely aggressive prostate cancer. By identifying key clinical 
factors and providing actionable predictions, the model has the potential to 
enhance prognostic accuracy and improve patient outcomes.
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Introduction

According to the Cancer Statistics 2024 published by the 
American Cancer Society, the United States is expected to diagnose 
approximately 299,010 new cases of prostate cancer in 2024, 
accounting for 14.9 percent of all new cancer cases. In addition, about 
35,250 men are expected to die from prostate cancer in 2024, making 
it the second leading cause of cancer deaths among men in the 
United States (1). Extremely aggressive prostate adenocarcinoma, a 
rare subtype of prostate cancer, represents 5 to 10% of all prostate 
cancer cases (2). This category includes subtypes such as small cell 
carcinoma, squamous cell carcinoma, and neuroendocrine carcinoma, 
which are associated with higher metastatic rates and a worse 
prognosis (3, 4). In contrast to typical prostate adenocarcinomas, these 
aggressive forms are often resistant to standard hormonal therapies 
and present with widespread metastases at the time of diagnosis, 
leading to significantly reduced survival times (5, 6). Once metastasis 
occurs, the median survival for these patients is typically reported to 
be less than one year, and current treatment options show limited 
effectiveness (7, 8).

In recent years, machine learning, a burgeoning tool within the 
realm of artificial intelligence, has found extensive application in the 
medical field (9–11). By leveraging large-scale clinical datasets, 
machine learning can automatically detect and learn complex patterns, 
thereby enhancing the accuracy of disease prognosis predictions (9, 
12). The latest review highlights how machine learning models are 
redefining the diagnosis and management of prostate cancer (13, 14).

Several previous studies have focused on developing machine-
learning-based risk prediction models for prostate cancer. For example, 
Changhee et  al. used machine learning to predict cancer-specific 
mortality in patients with non-metastatic prostate cancer. While Peng 
et  al. developed a machine-learning-based prognostic model for 
patients with lymph node-positive prostate cancer. However, there is a 
lack of clinical tools for prognostic assessment of extremely aggressive 
prostate cancer patients with poor prognosis. Although traditional 
statistical models can provide some prognostic prediction, their ability 
to mine high-dimensional nonlinear data is limited and cannot fully 
reveal the relationship between complex biological features and 
prognostic outcomes (15, 16). Therefore, a novel predictive tool is 
needed to improve model performance and provide guidance for 
individualized treatment decisions. The innovation of this study is to 
combine Shap (Shapley Additive Explanations) with traditional 
machine learning, which breaks through the limitation of “black-
boxing” of traditional machine learning models, and provides the 
importance scores of clinical variables for each prediction. This enables 
the model to not only provide highly accurate predictions but also 
quantify the specific impact of clinical variables on patient prognosis. 
This feature significantly improves the clinical usability of the model, 
and our study provides innovative ideas for the prognostic management 
of patients with extremely aggressive subtypes of prostate cancer.

Methods

Data source and patient selection

Patient information on extremely aggressive prostate cancer was 
obtained from the Surveillance, Epidemiology, and End Results 

(SEER) database, which covers approximately 30% of the 
U.S. population and is publicly accessible. We  selected patients 
diagnosed between 2000 and 2020 with prostate cancer (ICD-O-3 
code C61.9) who had pathological subtypes such as small cell 
carcinoma, large cell carcinoma, neuroendocrine carcinoma, 
squamous cell carcinoma, and aggressive ductal adenocarcinoma. 
Data extraction was performed using SEER*Stat software.

The exclusion criteria were as follows: (1) mismatched 
pathological type; (2) patients with multiple primary tumors; and (3) 
patients with incomplete clinical information, such as missing data on 
race, survival, TNM stage, PSA level, Gleason score, or other key 
clinical variables. The inclusion and exclusion process are depicted in 
Figure 1.

Study variables and feature selection

Data pertaining to demographics and clinical characteristics of 
prostate cancer patients were meticulously extracted from the 
SEER database. This encompassed variables such as age at 
diagnosis, race, gender, TNM stage as per the American Joint 
Committee on Cancer (AJCC) 7th edition, marital status, prostate-
specific antigen (PSA) levels, Gleason score (GS), median 
household income, and various treatment modalities including 
surgery, radiotherapy, and chemotherapy. Following the 
categorization in previous studies (17, 18), age was divided into 
three groups: ≤60, 61–69, and ≥70 years. PSA levels were recorded 
as continuous variables, with values ≤0.1 ng/mL recorded as 
0.1 ng/mL and values ≥98 ng/mL capped at 98 ng/mL, ranging 
from 0.1 to 98 ng/mL. Gleason scores were grouped into categories 
of ≤3 + 4, 4 + 3, 8, and ≥9. Missing data were addressed using the 
following strategies: for variables with missing rates below 20%, 
Random Forest Imputation was employed to estimate and fill in the 
missing values (19). Variables with more than 20% missing data 
were excluded from the analysis. In this study, all variables 
included in the analysis had missing rates below 20%. Among the 
variables included in the analysis, missing rates were as follows: 
Chemotherapy (4.2%), Marital status (6.8%), Income (3.1%), T 
stage (8.7%), N stage (7.3%) and M stage (4.1%). Random Forest 
Imputation (using the missForest package in R) was applied to 
ensure data completeness and consistency. For feature selection, 
we utilized the Boruta algorithm (20), which is a robust method 
for identifying the most significant features within a dataset. It 
determines feature importance by comparing the Z-scores of each 
actual feature against those of corresponding “shadow features.” In 
this process, all genuine features are duplicated and shuffled to 
create shadow features, which are then evaluated using a Random 
Forest model to obtain their respective Z-scores. Additionally, the 
Z-scores of the shadow features are generated by randomly 
permuting the original features (21). A true feature is deemed 
“important” (indicated in green) and classified as an acceptable 
variable if its Z-score consistently surpasses the maximum Z-score 
of the shadow features across multiple independent tests. 
Conversely, if a true feature’s Z-score does not significantly exceed 
that of the shadow features, it is labeled as “unimportant” 
(indicated in red) and classified as an unacceptable variable. 
Acceptable variables are retained during the feature selection 
process as they are considered to contribute positively to the 
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model’s performance. In contrast, unacceptable variables are 
excluded from the final feature set because they do not demonstrate 
sufficient predictive capability for the target variable during the 
feature selection process.

Model development

Prognostic models were constructed using nine machine learning 
algorithms: XGBoost, logistic regression (LR), support vector machine 
(SVM), random forest (RF), k-nearest neighbor (KNN), decision tree 
(DT), elastic network (Enet), multilayer perceptron (MLP), and 
lightGBM. To ensure model stability, the dataset was split into a 70:30 
ratio for training and testing. Cross-validation was performed with 
10-fold testing, and hyperparameters were tuned in the training set. 
Final validation was conducted on the test set. The objective was to 
develop models that could predict the overall survival of patients with 
extremely aggressive prostate cancer at 1, 3, and 5 years.

Statistical analysis

Categorical variables were analyzed using the χ2 test and expressed 
as numbers (n) and percentages (%). Non-normally distributed 

continuous variables were assessed with the Kruskal-Wallis test and 
reported as medians with interquartile ranges (IQR). All statistical 
analyses and model development were conducted using R (version 
4.0.5). A p-value of <0.05 was considered statistically significant.

Model performance evaluation

The performance of the nine machine learning models was 
evaluated using receiver operating characteristic (ROC) curve analysis 
and confusion matrices. The area under the curve (AUC) of the ROC 
curve measures the performance of the model, and F1 scores 
combining sensitivity and specificity are used to assess the robustness 
of the model (22). Additionally, calibration curves based on Bier 
scores and decision curve analysis (DCA) were applied to assess the 
models’ prediction accuracy and clinical utility.

Model interpretation

SHAP (Shapley Additive Explanations) values were used to interpret 
the machine learning models. SHAP values, derived from game theory, 
provide insights into which features most significantly influence the 
model’s predictions and how each feature affects the model’s output.

FIGURE 1

Study design and patient selection flowchart. PSA, prostate-specific antigen; GS, Gleason score; SEER, Surveillance, Epidemiology, and End Results; 
TNM, tumor lymph node metastasis; ROC, curve receiver operating characteristic curve; AUC, area under the curve.
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Results

Patient characteristics

1,620 patients were included in this study, and the baseline 
characteristics of the training set and test set are shown in Table 1. 

There was no difference between the training set and validation set 
in the baseline data. There were 1,133 columns of patients assigned 
to the training set and 487 columns of patients assigned to the 
validation set. In the training set 631 patients died and 502 patients 
survived. In the validation set 277 patients died and 210 
patients survived.

TABLE 1 Baseline characteristics of extremely aggressive prostate cancer patients.

Characteristics Training cohort (n = 1,133) Validation cohort (n = 487) P value

Age, yr. n (%) 0.53

≤60 197 (17.39) 96 (19.71)

61–69 363 (32.04) 153 (31.42)

≥70 573 (50.57) 238 (48.87)

Race, n (%) 0.09

White 915 (80.76) 386 (79.26)

Black 114 (10.06) 65 (13.35)

Othera 104 (9.18) 36 (7.39)

Clinical T stage, n (%) 0.36

T1 426 (37.6) 211 (43.33)

T2 312 (27.54) 125 (25.67)

T3 204 (18.01) 82 (16.84)

T4 191 (16.86) 69 (14.17)

N, n (%) 0.86

N0 931 (82.17) 398 (81.72)

N1 202 (17.83) 89 (18.28)

M, n (%) 0.46

M0 761 (67.17) 337 (69.20)

M1 372 (32.83) 150 (30.80)

Surgery, n (%) 0.69

No/Unknown 549 (48.46) 230 (47.23)

Yes 584 (51.54) 257 (52.77)

Radiation, n (%) 0.56

Yes 353 (31.16) 144 (29.57)

No/Unknown 780 (68.84) 343 (70.43)

Chemotherapy, n (%) 0.70

Yes 284 (25.07) 117 (24.02)

No/Unknown 849 (74.93) 370 (75.98)

Survival status, n (%) 0.69

Dead 631 (55.69) 277 (56.88)

Alive 502 (44.31) 210 (43.12)

Marital status, n (%) 0.66

Married 791 (69.81) 334 (68.58)

Unmarriedb 342 (30.19) 153 (31.42)

Income, n (%) 0.35

≤100,000 947 (83.58) 397 (81.52)

>100,000 186 (16.42) 90 (18.48)

PSA level (ng/ml) 0.86

Median [IQR] 8.900 [4.700, 19.582] 9.000 [4.300, 20.499]

PSA, prostate specific antigen; IQR, interquartile range; Othera: Asian/Pacific Islander, American Indian/Alaska Native. Unmarriedb: Widowed, Divorced, Separated, Single (never married).
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Feature predictor selection

We use the same feature sets for our 1-, 3-, and 5-year prediction 
models. The Boruta algorithm identified unique feature sets for the 1-, 
3-, and 5-year prediction models (Figure 2). The results showed that 
the feature variables included in the 1-year prognostic model were age, 
radiotherapy, N stage, surgery, PSA level, chemotherapy, and M stage 
(Figure 2A). Characteristic variables included in the 3-year prognostic 
model were T stage, radiotherapy, income level, N stage, age, PSA 
level, M stage and chemotherapy (Figure 2B). Characteristic variables 
included in the 5-year prognostic model were age, survival status, 
surgery, income, PSA level, chemotherapy, and M stage (Figure 2C).

Construction of machine learning 
predictive models

Considering survival months as the prognostic state, we integrate 
the features selected by the appeal-based Boruta algorithm into the 
variable training model. In the training set species, we used 10-fold 
cross-validation for iteration and optimization and finally determined 

that the lightGBM model performs best. We adjusted the parameter 
balance to avoid data overfitting and finally identified the key 
hyperparameters. The key parameters of lightGBM are as follows: 
tree_depth = 1, trees = 458, learn_rate = 0.0059, mtry = 5, min_n = 10, 
loss_reduction = 0.291. See Supplementary material 1 for 
hyperparameters of the nine machine learning models.

Evaluating machine learning prognostic 
models

Our analysis revealed that lightGBM demonstrated consistent 
efficacy in forecasting highly aggressive prostate cancer at 1, 3, and 
5 years, as evidenced by the AUC values derived from the ROC curves 
of both the training and test sets. Data for 1 year (0.777 for the training 
set, 0.8 for the test set), 3 years (0.881 for the training set, 0.809 for the 
test set), and 5 years (0.888 for the training set, 0.773 for the test set) 
are presented in Figure 3 and Table 2.

See Table  2 for the best and most stable performance of 
lightGBM compared to the other 8 machine learning models. In 
addition, we evaluated the accuracy of the lightGBM model using 

FIGURE 2

Importance of each feature in the predictive model based on Boruta’s algorithm. (A) Importance of each feature in the 1-year prognostic model. 
(B) Importance of each feature in the 3-year prognostic model. (C) Importance of each feature in the 5-year prognostic model. The Boruta algorithm 
determines the importance of a feature by comparing the Z-score of each actual feature with the corresponding “shadow feature.” A real feature is 
considered “important” (shown in green), whereas, if the Z-score of a real feature does not significantly exceed the Z-score of the shadow feature, it is 
marked as “not important” (shown in red) and classified as an unacceptable variable.
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a confusion matrix (Supplementary Figure 1). For 1-year, 3-year 
and 5-year survival predictions, F1 scores of lightGBM model 
validation set are 0.809, 0.751 and 0.611, respectively 
(Supplementary Table 1). Therefore, lightGBM model has the best 
predictive performance in 3-year and 5-year models. Although the 
one-year survival prediction is slightly lower than that of Logistic, 
MLP and RF models, the stability of LightGBM model is superior 
to these three models. In summary, we choose LightGBM model as 
the best model.

Finally, we used calibration curves based on Bier scores showing 
that the predictions of 1-, 3-, and 5-year survival probabilities in the 
train and test sets were also more consistent with the actual 
observations (Supplementary Figures 2, 3). Also, DCA decision curve 
analysis showed good clinical utility and positive net benefit of 
lightGBM in 1, 3, 5-year survival prediction (Figure 4).

Interpretation of models

These key features were ranked using a SHAP plot (Figure 5) 
showing the level of influence of the machine learning model for each 
feature. The SHAP plot showed that the largest factor influencing 

patient survival at 1 and 3 years was M stage and the largest factor 
influencing patient survival at 5 years was PSA level.

Application of model

To facilitate clinical adoption, we  have uploaded the R code, 
dataset, and the completed model to Supplementary material 3. 
Additionally, we  propose integrating this model into hospital 
electronic health records (EHRs) and clinical decision support systems 
(CDSS) to assist oncologists in real-time prognostic estimation.

Discussion

Patients with extremely aggressive prostate cancer, including small 
cell carcinoma, large cell carcinoma, squamous cell carcinoma, 
neuroendocrine carcinoma, undifferentiated carcinoma, aggressive 
ductal carcinoma, and ductal adenocarcinoma, often exhibit more 
aggressive biological behavior and have a poorer prognosis compared 
to other forms of prostate cancer (23–25). Accurate survival prediction 
for these patients is therefore clinically significant. However, current 

FIGURE 3

Nine machine learning models evaluated. (A) ROC curves of 1-year prognostic models in the test set. (B) ROC curves of 3-year prognostic models in 
the test set. (C) ROC curves of 5-year prognostic models in the test set. The plot presents the ROC curves for nine different machine learning models 
in a prediction task. The x-axis represents the false positive rate (FPR), and the y-axis represents the true positive rate (TPR). The area under the curve 
(AUC) reflects the overall performance of each model, with a larger AUC indicating better predictive ability.
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clinical tools for prognostic prediction in extremely aggressive prostate 
cancer have substantial limitations, particularly the absence of reliable 
models that leverage artificial intelligence and machine learning.

This research involved the creation of nine models grounded in 
machine learning to forecast survival rates at 1, 3, and 5 years for the 
patient cohort in question. Among these, the lightGBM model showed 
the highest predictive performance, with AUCs of 0.77, 0.80, 0.88, and 
0.81 for the training and test sets at 1, 3, and 5 years, respectively, 
demonstrating strong predictive ability. An AUC value of ≥0.7 is 
considered indicative of a model with sufficient predictive power (26).

In recent years, artificial intelligence has garnered increasing 
attention in the medical field, including in prostate cancer research 
(27–30). In contrast to conventional algorithms, machine learning 
models operate without the limitations imposed by 
non-proportionality, multicollinearity, or nonlinearity challenges (30). 
Thereby minimizing biases that can arise from conventional modeling. 
For example, Peng et al. used machine learning algorithms to develop 
a survival prognostic model for patients with lymph node-positive 
prostate cancer, achieving better predictive performance than 
traditional Cox regression models (31). Similarly, Dai et  al. (32) 
demonstrated that machine learning models outperformed traditional 
algorithms in predicting survival for patients with confined 
prostate cancer.

In this study, we incorporated 12 key clinical characteristics of 
patients with extremely aggressive prostate cancer and used the Boruta 

algorithm, a feature selection method based on random forest 
classifiers, to select the most relevant features for survival prediction. 
The Boruta algorithm is designed to identify all variables that are 
important to the dependent variable, rather than the smallest set of 
features relevant to a particular model (33, 34). In contrast to the 
objective of a typical feature selection algorithm, the Boruta feature 
selection algorithm aims to identify the features that hold the greatest 
relevance to the dependent variable, rather than merely seeking the 
most compact set of features pertinent to a specific model (34). Our 
results identified factors such as age, PSA level, surgery, and 
radiotherapy as key risk factors for prognosis, with tumor metastasis 
(M stage) emerging as the most significant predictor of survival at 1 
and 3 years, and PSA level as the strongest predictor at 5 years. These 
findings have important clinical implications. For example, the model 
highlights surgery and radiotherapy as influential factors, suggesting 
that multimodal treatment approaches may provide survival benefits 
in certain subgroups of patients with highly aggressive prostate cancer. 
This underscores the need for personalized treatment selection based 
on a patient’s predicted prognosis and treatment response patterns.

A systematic review identified high Gleason scores as independent 
risk factors for early tumor progression, and multiple organ metastases 
were associated with reduced survival (35). In a separate investigation, 
the median overall survival for patients newly diagnosed with 
neuroendocrine prostate cancer was recorded at 16.8 months, 
significantly less than the 53.5 months noted in cases associated with 
treatment (36). Regarding treatment, platinum-based chemotherapy 
is commonly used for patients with small cell carcinoma. Combination 
regimens including cisplatin, etoposide, and doxorubicin have shown 
partial benefit, though they are not recommended for neuroendocrine 
prostate cancer patients due to the risk of severe neutropenia. For 
neuroendocrine prostate cancer, immune checkpoint inhibitors, such 
as atezolizumab combined with platinum-based chemotherapy (36) 
or second-line treatments such as natalizumab with ibritumomab may 
be considered (37).

Early detection of prostate cancer is critical. Various 
non-invasive imaging techniques have been studied for predicting 
metastasis (38–40). Multiparametric MRI (mpMRI) has shown 
enhanced sensitivity and specificity relative to conventional MRI in 
the identification of tumors and lymph nodes; however, it may 
experience signal loss or image distortion in DWI sequences (39). 
Similarly, PSMA PET/CT is extensively utilized for the detection of 
prostate cancer in both soft tissue and bone, yet its detection rate 
for lymph node metastases measuring 2–5 mm hovers around 60% 
(40, 41). Emerging imaging techniques, such as MR lymphography 
and targeted PET using superparamagnetic iron oxide (SPIO) 
nanoparticles, are under investigation, though their effectiveness in 
predicting lymph node metastasis remains uncertain (41–43). 
Furthermore, fluid-based diagnostics, exemplified by the 
FDA-approved Prostate Cancer Antigen 3 (PCA3), which is a urine-
based, non-coding RNA biomarker, have demonstrated promise in 
informing decisions regarding repeat biopsies, with reported AUCs 
varying from 0.64 to 0.762 (43, 44). Other urine-based genomic 
assays, including multigene panels (e.g., PUR), exosome-based 
assays (e.g., ExoDx), DNA methylation markers (e.g., epiCaPture), 
and mRNA-based assays (e.g., SelectMDx), have also demonstrated 
prognostic value (44, 45). Lih et  al. (46) identified urinary 
glycopeptides, such as ACPP, CLU, ORM1, and CD97, that may 
help differentiate between low- and high-risk prostate cancer, 

TABLE 2 Performance of predictive models built by 9 machine learning 
algorithms in training and test sets (area under the ROC curve).

1-year 
survival

3-year 
survival

5-year 
survival

Train set

LightGBM 0.777 0.881 0.888

DT 0.856 0.782 0.853

ENET 0.768 0.782 0.853

KNN 0.909 0.788 0.805

Logistic 0.776 0.805 0.824

MLP 0.777 0.869 0.862

RF 0.852 0.796 0.819

SVM 0.779 0.802 0.807

XGBoost 0.763 0.799 0.808

Test set

LightGBM 0.800 0.809 0.773

DT 0.761 0.751 0.75

ENET 0.798 0.795 0.771

KNN 0.769 0.767 0.722

Logistic 0.810 0.799 0.769

MLP 0.808 0.797 0.771

RF 0.804 0.798 0.759

SVM 0.796 0.786 0.758

XGBoost 0.783 0.800 0.764

DT, decision tree; ENET, Elastic Net; KNN, K-Nearest Neighbors; LightGBM, Light Gradient 
Boosting Machine; RF, Random Forest; XGBoost, Extreme Gradient Boosting; SVM, 
Support Vector Machine; MLP, Multi-Layer Perceptron.
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showing potential for early identification of aggressive forms of 
the disease.

This study is the first to develop multiple machines learning 
prognostic models specifically for extremely aggressive prostate 
cancer. We  incorporated 13 significant prognostic features and 

employed SHAP values to assess the contribution of each feature, 
revealing that metastasis, surgery, and PSA level were the most 
impactful variables.

However, this study has several limitations that should 
be acknowledged. First, as a retrospective study utilizing SEER data, 

FIGURE 4

Decision curve analysis curves for the LightGBM model for the training and test sets. (A) 1-year train set. (B) 1-year test set. (C) 3-year train set. 
(D) 3-year test set. (E) 5-year train set. (F) 5-year test set. LightGBM: Light Gradient Boosting Machine. In the figure, the red curve represents the 
predicted performance of the GBM model, respectively. In addition, there are two lines, which represent two extreme cases. The gray vertical line 
indicates the assumption of survival for all patients. The black horizontal line indicates that there is no survival assumption. For example, in the 1-year 
training set, the survival probability is between 0.3 and 0.93. When using this GBM predictive model to make clinical decisions, survival probabilities can 
be distinguished.

113

https://doi.org/10.3389/fmed.2025.1512870
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Peng et al. 10.3389/fmed.2025.1512870

Frontiers in Medicine 09 frontiersin.org

it may be subject to selection bias and incomplete case reporting, 
potentially affecting the generalizability of our findings. Second, the 
SEER database does not provide detailed molecular markers, genetic 
data, or treatment response information, which are critical for a more 
comprehensive prognostic assessment. The absence of these key 
clinical variables may limit the ability of our model to fully capture the 
biological heterogeneity of extremely aggressive prostate cancer. 
Future studies should aim to incorporate multi-omics data and real-
world patient responses to further refine predictive accuracy. 
Additionally, while our model has demonstrated strong internal 
validation, external validation on independent datasets and 
prospective clinical trials are needed to ensure its applicability across 
diverse populations.

Overall, this study highlights the potential of machine learning 
models to guide clinical decisions and optimize treatment strategies 
for extremely aggressive prostate cancer. Specifically, our model can 
be used for risk stratification and treatment planning of patients, as 
well as monitoring and follow-up adjustments for patients at different 
risks, and finally, by integrating the model into EHRs and CDSS, can 
provide real-time survival predictions to help physicians make 
evidence-based treatment recommendations. With the accumulation 
of more clinical data and further optimization of algorithms, AI-based 

prognostic models could significantly improve treatment outcomes 
and survival for patients with extremely aggressive prostate cancer in 
the future.

Conclusion

In conclusion, we developed and evaluated nine machine learning 
models, incorporating SHAP values to enhance interpretability, for 
predicting survival in patients with extremely aggressive prostate cancer. 
Among them, the lightGBM model demonstrated the best predictive 
performance, offering a valuable clinical tool for personalized prognosis 
estimation. Future research should focus on external validation using 
independent cohorts, integrating molecular biomarkers, and exploring 
the incorporation of real-time patient data to further enhance the 
model’s robustness and clinical utility.
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Background: As medical technology advances, physicians’ responsibilities in

clinical practice continue to increase, with medical history documentation

becoming an essential component. Artificial Intelligence (AI) technologies,

particularly advances in Natural Language Processing (NLP), have introduced

new possibilities for medical documentation. This study aims to evaluate

the e�ciency and quality of medical history documentation by ChatGPT-4o

compared to resident physicians and explore the potential applications of AI in

clinical documentation.

Methods: Using a non-inferiority design, this study compared the

documentation time and quality scores between 5 resident physicians from the

hematology department (with an average of 2.4 years of clinical experience)

and ChatGPT-4o based on identical case materials. Medical history quality was

evaluated by two attending physicians with over 10 years of clinical experience

using ten case content criteria. Data were analyzed using paired t-tests and

Wilcoxon signed-rank tests, with Kappa coe�cients used to assess scoring

consistency. Detailed scoring criteria included completeness (coverage of

history elements), accuracy (correctness of information), logic (organization

and coherence of content), and professionalism (appropriate use of medical

terminology and format), each rated on a 10-point scale.

Results: In terms of medical history quality, ChatGPT-4o achieved an average

score of 88.9, while resident physicians scored 89.6, with no statistically

significant di�erence between the two (p = 0.25). The Kappa coe�cient

between the two evaluators was 0.82, indicating good consistency in scoring.

Non-inferiority testing showed that ChatGPT-4o’s quality scores fell within

the preset non-inferiority margin (5 points), indicating that its documentation

quality was not inferior to that of resident physicians. ChatGPT-4o’s average

documentation timewas 40.1 s, significantly shorter than the resident physicians’

average of 14.9min (p < 0.001).

Conclusion: While maintaining quality comparable to resident physicians,

ChatGPT-4o significantly reduced the time required for medical history

documentation. Despite these positive results, practical considerations such as
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data preprocessing, data security, and privacy protection must be addressed

in real-world applications. Future research should further explore ChatGPT-

4o’s capabilities in handling complex cases and its applicability across di�erent

clinical settings.

KEYWORDS

artificial intelligence, GPT-4o, medical history documentation, quality, e�ciency

Introduction

With the continuous advancement of medical technology,

physicians are shouldering increasingly greater responsibilities in

clinical practice (1). The collection and documentation of medical

history has become an indispensable part of daily work, particularly

in the management of hospitalized patients. Medical history serves

not only as a crucial basis for diagnosis and treatment but also as

a key document for legal and insurance purposes (2). Therefore,

accurate and comprehensive documentation is vital for patient

outcomes and the quality of healthcare services (3).

However, in busy hospital environments, resident physicians

often face tremendous time pressure (4). Particularly in China,

they are required to complete high-quality medical history

documentation within limited time frames, which undoubtedly

presents a significant challenge. This situationmay affect the quality

of documentation, leading to reduced work efficiency and increased

professional burnout among physicians.

In recent years, the application of Artificial Intelligence

(AI) technology in healthcare has been expanding, bringing

new possibilities for improving the quality and efficiency of

healthcare delivery (5–7). Among these technologies, Natural

Language Processing (NLP) has demonstrated remarkable potential

in medical text generation and analysis (8). The emergence of

large language models like GPT-4o, in particular, has made AI-

assisted medical documentation possible, potentially transforming

traditional documentation methods (9).

GPT-4o (10), through its analysis of vast amounts of language

data, can generate structured and coherent text, establishing a

solid foundation for its application in medical documentation

(11). However, despite AI’s promising prospects in healthcare, its

effectiveness and reliability in actual clinical settings still require

further validation (12). Particularly in generating critical medical

documents such as medical histories, AI’s performance needs

thorough investigation.

This study hypothesizes that when provided with identical

case materials, ChatGPT-4o can complete medical history

documentation in less time while maintaining quality comparable

to that of resident physicians. Through systematic comparison

of documentation time and quality between the two, we aim to

evaluate ChatGPT-4o’s potential applications in actual clinical work

and provide reference for AI’s further development in healthcare.

The research findings may offer new insights into current

medical documentation practices and provide novel solutions for

optimizing resource allocation and improving work efficiency

in healthcare institutions. Furthermore, this study will explore

the limitations of AI applications in healthcare, providing

direction for subsequent technological improvements and

practical applications.

Methods

Study design

This study adopts a non-inferiority comparative design to

evaluate the performance of ChatGPT-4o and residents in terms

of medical record quality and efficiency. The study participants

include five residents (3 males, 2 females) from the hematology

department, a computer system equipped with ChatGPT-4o, and

two attending physicians with more than 10 years of clinical

experience, who will independently score the quality of medical

records. Each resident and ChatGPT-4o will generate medical

records based on the same case materials, and the attending

physicians will score the quality of these records. The evaluation

criteria include completeness, accuracy, logic, and professionalism,

with clear and standardized scoring criteria to ensure consistency

and objectivity in the assessment.

Participants

- Residents: five residents currently undergoing standardized

training in hematology, each with at least 1 year of clinical

experience (average experience 2.4 ± 0.9 years, ensuring

they possess sufficient skills in medical record collection and

documentation. The residents’ abilities in record-keeping will

be pre-assessed to minimize individual differences that may

influence the results. Selection criteria for residents included: (1)

currently undergoing standardized training; (2) having at least 1

year of clinical experience; and (3) having recorded at least 30

hematology cases in the past 2 months.

- ChatGPT-4o: The latest version of ChatGPT-4o will be used

to generate medical records. To ensure comparability, the

system configuration and usage will be standardized, including

the setting of prompts and generation parameters. Detailed

configuration is provided in Appendix A. The main prompt

template used was: “Based on the following transcribed doctor-

patient dialogue, please generate a standard hematology medical

history record, including chief complaint, present illness, past

medical history, personal history, family history, physical

examination, auxiliary examination, and diagnosis. Please ensure

the content is complete, accurate, logically clear, and meets

professional standards.”

- Attending Physicians: two experienced hematology attending

physicians were responsible for scoring the medical records. Both

had over 10 years of clinical experience and had been involved in

resident training for the past 3 years. The scoring process was

independent, with clear evaluation criteria to ensure consistency

in the results.
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Data collection

- Interview Transcription: the resident will record the entire

interview process while taking the patient’s medical history, and

the recorded content will be transcribed by specialized software

(iFlytek Medical Version 1.2.0) into text, which will serve as

the basis for the medical record. All transcriptions will undergo

quality checks to ensure accuracy. The transcription process

included: (1) audio collection (resident-patient dialogue); (2)

automatic transcription (using speech recognition software); (3)

manual correction (linguistic experts checking and correcting

errors in automatic transcription); and (4) quality review

(attending physicians confirming medical accuracy of the

transcription). Transcription quality was assessed by comparison

with the original audio, achieving an average accuracy rate of

over 95%.

- Medical Record Documentation: each resident will

independently document the medical record based on the

transcribed text, and the same materials will be input into

the ChatGPT-4o system to generate a medical record. The

time taken for each resident and ChatGPT-4o to complete the

medical record will be recorded to ensure comparability of

time differences.

- Quality Scoring: the two attending physicians will independently

score the medical records based on completeness, accuracy, logic,

and professionalism. The scoring used a 100-point scale, and the

final score will be the average of the two attending physicians’

scores. Detailed scoring criteria are presented in Table 1 and

Appendix B.

Sample size calculation

The sample size calculation was based on a non-inferiority

design. With an anticipated standard deviation of 10 points for

quality scores, a non-inferiority margin (1) of 5 points (5% of

the total score), a significance level (α) of 0.05, and a statistical

power (β) of 0.80, we determined that each group required 63

cases. This 5-point margin was established through consultation

with experienced attending physicians who considered a difference

of <5% in overall quality score to be clinically insignificant.

To account for potential issues such as transcription quality,

we included a final total of 65 cases to enhance the study’s

reliability. It is important to note that while only 5 residents

participated, the unit of analysis was the medical record, not

the number of participants, which aligns with the requirements

of non-inferiority study design (13–15). We acknowledge the

limitations of this sampling strategy and discuss them in detail in

the discussion section.

Evaluation indicators

- Medical Record Quality: scored by attending physicians,

evaluating the completeness, accuracy, logic, and

professionalism of the medical records.

- Documentation Time: the time taken by each resident

and ChatGPT-4o to complete the medical record, measured

in minutes.

- Medical Record Quality: scored by attending physicians,

evaluating different aspects of the medical records across three

main categories:

General Items (11 points): including chief complaint (6 points)

and overall requirements (5 points)

Core Content (55 points): including present illness (30 points),

past medical history (10 points), personal history (10 points),

and family history (5 points)

Examination and Diagnosis (34 points): including physical

examination (20 points), auxiliary examination (10 points), and

diagnosis (4 points).

Data preprocessing

To ensure that ChatGPT-4o could effectively process medical

dialogues, we performed the following preprocessing on the

transcribed text:

TABLE 1 Medical record quality scoring criteria.

Scoring
category

Scoring item Scoring criteria Maximum
points

General items Chief complaint Accurately extract main symptoms, concise and professional expression 6

General requirements Standardized format, complete content, clear structure 5

Core content Present illness Complete recording of onset time, triggers, clinical manifestations, medical visit process,

treatment effects, etc.

30

Past medical history Accurate recording of all past diseases, surgeries, blood transfusions, allergies, etc. 10

Personal history Comprehensive recording of lifestyle habits, occupational exposure, social psychological

factors, etc.

10

Family history Complete recording of family members’ relevant disease history 5

Examination and

diagnosis

Physical examination Systematic and comprehensive physical findings, accurate description of abnormalities 20

Auxiliary examination Accurate recording of all examination results with important results highlighted 10

Diagnosis Diagnosis consistent with clinical manifestations, reasonable logical reasoning 4

Total 100
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- Removal of filler words and repetitive content

- Standardization of medical terminology and abbreviations

- Organization of question-answer pairs in chronological order

- Addition of simple classification tags (such as “symptom

description,” “treatment experience”) to unstructured dialogues

Preprocessing was conducted by a linguist with medical

background and an information technology specialist,

and reviewed by the project’s supervising physician. These

preprocessing steps ensured that the content input into ChatGPT-

4o was structured clearly and contained the necessary medical

information while preserving the original dialogue content as

much as possible. The same preprocessed text was also provided

to the residents as the basis for their history recording to ensure

fair comparison.

Data analysis

Data analysis was performed using SPSS 26.0 statistical

software. First, paired t-tests was used to compare the time taken

by residents and ChatGPT-4o to complete the records, assessing

the statistical significance of any time differences.Wilcoxon signed-

rank tests will be used to evaluate the quality differences between

the two groups. Descriptive statistics will include means and

standard deviations, and Kappa coefficients was used to analyze the

consistency between the two attending physicians’ scores to ensure

the reliability and repeatability of the results. Additionally, in-depth

analysis was conducted on items with significant differences, such

as chief complaint and overall requirements, to identify specific

aspects where ChatGPT-4o might need improvement.

Ethical considerations

The study received IRB approval from Ruijin hospital’s

ethics committee (approval number: 2024-443). Written informed

consent was obtained from all participants prior to their

participation in this study, ensuring that participation is voluntary

and that participants are fully informed. All patient information

collected during the study was kept confidential and anonymized,

used solely for research purposes.

Results

Comparison of medical record quality
scores

Statistical analysis of the 65 cases was conducted to compare

the performance of the resident group and the ChatGPT-4o group

in each scoring category. The results showed in Table 2.

Overall, the quality scores revealed that the resident and

ChatGPT-4o groups performed similarly in several categories,

with no significant differences between the groups. Specifically,

no significant differences were found in the following categories:

present illness, past medical history, personal history, family

history, physical examination, auxiliary examination, and diagnosis

TABLE 2 Summary of comparative analysis across all evaluation metrics.

Scoring
category

Resident
group

Mean ± SD

ChatGPT-
4o group
Mean ± SD

p-value

Chief complaint 5.70± 0.27 5.50± 0.38 0.009∗

Overall

requirements

4.48± 0.33 4.31± 0.41 0.041∗

Present illness 28.64± 1.14 28.42± 1.55 0.42

Past medical history 9.52± 0.54 9.65± 0.48 0.22

Personal history 9.42± 0.63 9.53± 0.57 0.26

Family history 4.83± 0.23 4.87± 0.20 0.49

Physical

examination

19.25± 0.84 19.08± 0.93 0.27

Auxiliary

examination

9.78± 0.26 9.81± 0.24 0.49

Diagnosis 3.75± 0.27 3.75± 0.29 0.97

Total 89.57 ± 2.66 88.94 ± 3.13 0.25

∗Indicates p < 0.05, statistically significant difference. The Kappa coefficient between the two

evaluators was 0.82.

FIGURE 1

Comparison of medical history quality metrics (normalized).

(p-values: 0.42, 0.22, 0.26, 0.49, 0.27, 0.49, and 0.97, respectively)

(Figure 1).

However, in the “chief complaint” and “overall requirements”

categories, the resident group scored significantly higher than the

ChatGPT-4o group. In the “chief complaint” category, the resident

group’s mean score was 5.70± 0.27, while the ChatGPT-4o group’s

score was 5.50± 0.38, with a statistically significant difference (p=

0.009). In the “overall requirements” category, the resident group

scored 4.48± 0.33 on average, while the ChatGPT-4o group scored

4.31 ± 0.41, which also showed a statistically significant difference

(p= 0.041) (Figure 2).

In terms of total score across all categories, the resident group

scored 89.57 ± 2.66, while the ChatGPT-4o group scored 88.94

± 3.13. Paired t-test analysis showed no statistically significant

difference between the two groups’ total scores (p = 0.25),

indicating that the overall quality of medical record documentation

was comparable between the two groups.
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FIGURE 2

Comparison of mean scores (doctor vs. ChatGPT-4o).

Non-inferiority comparison of medical
record quality

To assess whether ChatGPT-4o’s performance in medical

record quality was not inferior to that of the resident group, a

non-inferiority analysis was conducted. The non-inferiority margin

(1) was set at 5 points, meaning a difference of <5 points would

indicate that ChatGPT-4o’s performance was not inferior to the

residents. The average total score for the resident group was 89.57,

while the ChatGPT-4o group’s average score was 88.94. The mean

difference between the groups was 0.63 points, well below the

non-inferiority margin (1 = 5). The non-inferiority test results

indicated that the quality score for ChatGPT-4o fell within the

pre-established non-inferiority margin (p > 0.05), confirming that

ChatGPT-4o’s performance in medical record quality was not

inferior to that of the residents.

Comparison of medical record
documentation time

The comparison of documentation time between the resident

group and the ChatGPT-4o group showed that the resident group

took an average of 893.2 seconds (∼14.9min) to complete the

medical records, with a standard deviation of 28.0 s. In contrast, the

ChatGPT-4o group completed the medical records in an average of

40.1 ± 4.4 s. Paired t-test analysis revealed that the time difference

between the two groups was statistically significant (p < 0.001),

indicating that ChatGPT-4o demonstrated significantly better

efficiency in medical record documentation compared to the

resident group.

Discussion

This study aims to assess the performance of ChatGPT-4o

and resident physicians in terms of medical record efficiency

and quality (16). The results indicate that while ChatGPT-4o

maintains a comparable quality of medical records to the residents,

it significantly reduces the time required for documentation.

Specifically, ChatGPT-4o required only 40 s on average, whereas the

resident physicians took ∼15min. This difference was statistically

significant, highlighting ChatGPT-4o’s clear advantage in time

efficiency. However, it is important to note that the time required

to process dialogue and correct transcription errors from speech

recognition before generating the final record should also be

considered. Improved speech recognition technology will be

crucial for directly transcribing consultation processes into medical

records through AI systems.

Although ChatGPT-4o demonstrated remarkable time

efficiency, its quality scores were comparable to those of the

residents. No significant differences were observed between the

two groups in present illness, past medical history, personal history,

family history, physical examination, auxiliary examinations, and

diagnosis. However, in the “chief complaint” and “overall

requirements” categories, the resident group scored significantly

higher than the ChatGPT-4o group (p = 0.009 and p = 0.041,

respectively). This suggests that, in these specific dimensions

of medical record documentation, the residents performed

better. These areas are more dependent on language proficiency

and writing skills, and it is expected that AI models, including

ChatGPT, may face some challenges in language generation,

especially in non-native languages like Chinese.

From the perspective of non-inferiority analysis, although the

residents scored slightly higher on certain items, ChatGPT-4o did

not perform worse overall in terms of medical record quality. There

was no statistically significant difference in total scores (p = 0.25),

and the average difference between the groups was much smaller

than the pre-set non-inferiority margin (1 = 5 points). This

suggests that ChatGPT-4o can achieve a level of record quality

similar to that of the resident physicians.

This finding holds significant clinical implications in the

context of healthcare settings with heavy physician workloads

(17). The high efficiency of ChatGPT-4o in record-keeping means

it can alleviate physicians’ burden while maintaining the quality

of medical records, offering considerable potential to improve

the overall efficiency of the healthcare system. ChatGPT-4o

could be widely applied in various clinical settings, especially
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in time-sensitive environments like emergency departments and

intensive care units, where quick and efficient record support

is critical. Additionally, in primary care settings, particularly in

areas lacking experienced physicians, ChatGPT-4o could assist

junior doctors in completing high-quality medical records, thus

improving the quality of medical services.

However, despite the excellent performance of ChatGPT-

4o, its clinical application faces several ethical challenges (18–

20). Medical records involve sensitive patient information, and

ensuring data security and privacy protection is a critical concern.

Furthermore, over-reliance on AI could potentially diminish

physicians’ clinical reasoning abilities, thus impacting overall

medical decision-making. Therefore, a balance must be struck

between the use of technology and physician involvement to

ensure clinical judgment is not compromised. Moreover, ethical

review in medical record-keeping should ensure patient informed

consent and clearly define the scope of data usage. Additionally,

maintaining the model’s focus and consistency remains a challenge

in practical applications.

The limitations of this study include a small sample size, the

focus on the hematology field, and the inability of the study design

to cover all potential clinical complexities (21). In terms of sample

selection, this study involved only five residents from a single

specialty (hematology), which may limit the generalizability of

the results. Future research should expand the sample size and

explore the performance of ChatGPT-4o in other specialties. Each

resident’s background and experience level may influence their

recording capabilities, and despite our attempt to minimize these

differences through pre-assessment, selection bias may still exist.

Additionally, there may be subjectivity in the standardization and

scoring process, and while we attempted to reduce this through

clear scoring criteria and independent scoring by two evaluators,

the subjectivity of scoring remains inevitable. All clinicians in

this study were from Ruijin Hospital, which may also limit the

geographical representativeness of the results. Moreover, it is

important to evaluate ChatGPT-4o’s ability to handle complex cases

and rare conditions, which would help comprehensively assess its

applicability in clinical practice.

One promising research direction could involve integrating

ChatGPT-4o with other AI systems, such as image recognition

and retrieval-augmented generation (RAG) technologies, to create

a multimodal clinical decision support system. This system

could not only optimize medical record documentation but also

provide real-time diagnostic suggestions and treatment plans.

Such an integrated system would be particularly effective in

assisting physicians with decision-making, especially in complex or

rare cases.

Conclusion

This study provides strong evidence for the application

of AI in medical history documentation, demonstrating the

potential of ChatGPT-4o to improve clinical efficiency while

maintaining medical history quality. As technology continues

to develop, ChatGPT-4o or similar AI systems are expected

to play a broader role in the healthcare field. However,

how to maintain medical ethics and doctors’ clinical abilities

while applying these technologies will remain an ongoing and

important issue.
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Clinical letters contain sensitive information, limiting their use in model training,

medical research, and education. This study aims to generate reliable, diverse,

and de-identified synthetic clinical letters to support these tasks. We

investigated multiple pre-trained language models for text masking and

generation, focusing on Bio_ClinicalBERT, and applied different masking

strategies. Evaluation included qualitative and quantitative assessments,

downstream named entity recognition (NER) tasks, and clinically focused

evaluations using BioGPT and GPT-3.5-turbo. The experiments show: (1)

encoder-only models perform better than encoder–decoder models; (2)

models trained on general corpora perform comparably to clinical-domain

models if clinical entities are preserved; (3) preserving clinical entities and

document structure aligns with the task objectives; (4) Masking strategies have

a noticeable impact on the quality of synthetic clinical letters: masking

stopwords has a positive impact, while masking nouns or verbs has a negative

effect; (5) The BERTScore should be the primary quantitative evaluation

metric, with other metrics serving as supplementary references; (6) Contextual

information has only a limited effect on the models’ understanding, suggesting

that synthetic letters can effectively substitute real ones in downstream NER

tasks; (7) Although the model occasionally generates hallucinated content, it

appears to have little effect on overall clinical performance. Unlike previous

research, which primarily focuses on reconstructing original letters by training

language models, this paper provides a foundational framework for generating

diverse, de-identified clinical letters. It offers a direction for utilizing the model

to process real-world clinical letters, thereby helping to expand datasets in the

clinical domain. Our codes and trained models are available at https://github.

com/HECTA-UoM/Synthetic4Health.

KEYWORDS

pre-trained language models (PLMs), encoder-only models, encoder–decoder models,
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1 Introduction

With the development of medical information systems, electronic clinical letters are

increasingly used in communication between healthcare departments. These clinical

letters typically contain detailed information about patients’ visits, including their

symptoms, medical history, medications, etc. (1). They also often include sensitive

personal information, such as patients’ names, phone numbers, and addresses (2, 3). As
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a result, these letters are difficult to share and nearly impossible to

use widely in clinical education and research.

In 2018, 325 severe breaches of protected health information

were reported by CynergisTek (4) placing nearly 3,620,000

patients’ records at risk (4). This data reflects just 1 year, and

similar privacy breaches are unfortunately common. The most

severe hacking incident affected up to 16,612,985 patients (4).

Therefore, generating synthetic letters and applying de-

identification techniques seem indispensable.

Additionally, due to privacy concerns and access controls,

insufficient data remains a major challenge in clinical education,

medical research, and healthcare system development (5). Some

shared datasets offer de-identified annotated data, with the MIMIC

series being a typical example. These datasets are accessible through

PhysioNet. MIMIC-IV (6–8), the latest version, contains clinical

data from 364,627 patients, collected from 2008 to 2019 at a

medical center in Boston. It contains details about hospitalizations,

demographics, and transfers. Numerous research studies have been

conducted using this shared dataset. Another public dataset series

in the clinical domain is i2b2/n2c2 (9), which is accessible through

the DBMI Data Portal. This series includes unstructured clinical

notes, such as process notes, radiology reports, and discharge

summaries and is published for clinical informatics sharing and

natural language processing (NLP) task challenges.

However, these shared datasets are often limited to specific

regions and institutions, making them not comprehensive.

Consequently, models and medical research outcomes derived

from these datasets cannot be widely applied (10). Therefore, to

address the lack of clinical datasets and reduce the workload for

clinicians, it is essential to explore available technologies that can

automatically generate de-identified clinical letters.

Existing systems generate clinical letters primarily by integrating

structured data; however, there are not many studies that explore the

use of natural language generation (NLG) models for this purpose

(11–13). NLG attempts to combine clinical knowledge with general

linguistic expressions to generate clinical letters that are both

readable and medically accurate. However, NLG technology is not

yet mature enough for widespread use in healthcare systems.

Additionally, it faces numerous challenges, including medical

accuracy, format normalization, and de-identification (12).

Therefore, this investigation focuses on how NLG technology can

be used to generate reliable and anonymous clinical letters, which

can benefit medical research, clinical education, and clinical

decision-making.

The main aim of our work is to generate de-identified clinical

letters that can preserve clinical information while differing from

the original letters. A brief example of our objective is shown in

Figure 1. Based on this objective, different generation models are

explored as a preliminary attempt. Then, the best models are

selected and various techniques are tested to improve the quality

of the synthetic letters. The synthetic letters are evaluated not

only with quantitative and qualitative methods but also in

downstream tasks, i.e., NER. We hope this work contributes to

addressing the challenge of insufficient data in the clinical domain.

In summary, this work is centered on the research question

(RQ): “How can we generate reliable and diverse clinical letters

without including sensitive information?” Specifically, it answers

the following related sub-questions (RQs)1:

FIGURE 1

An example of the objective: sentence/segment-level generations.

1We report our extended solid investigation and outcomes based on our

preliminary workshop paper findings (96).
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1. How do different models perform in masking and generating

clinical letters?

2. How should the text be segmented in clinical letter generation?

3. How do different masking strategies affect the quality of

synthetic letters?

4. How can we evaluate the quality of synthetic letters?

To answer these questions, we explored various large language

models (LLMs) for masking and generating clinical letters,

ultimately focusing on one that performed well. The overall

highlights of this work are summarized as follows:

1. Mask and generate clinical letters using different LLMs at the

sentence level.

2. Explore methods to improve synthetic clinical letters’

readability and clinical soundness.

3. Initially evaluate synthetic letters using both qualitative and

quantitative methods.

4. Apply synthetic letters in downstream tasks and further

evaluate them using clinically focused methods.

5. Explore post-processing methods to further enhance the quality

of de-identified letters.

2 Background and literature review

We first introduce general language models, followed by their

applications, especially within the clinical domain. We then

present the generative language models based on the transformer

architecture. These models serve as the technical foundation for

most modern text generation tasks. Afterward, we review related

works, discussing their relevance and connections to our work.

Finally, all quantitative evaluation metrics used in this paper

are introduced.

2.1 Development of language models (LMs)

The development of language models can be divided into three

stages: rule-based approach, supervised modeling, and

unsupervised modeling (14).

2.1.1 Rule-based approach
The rule-based approach, first used in the 1950s, marks the

beginning of NLP (15). This approach relies on a set of

predefined rules, which were written and maintained manually

by specialists (16, 17). Although it can generate standardized text

without being fed with extensive input data (17), it has

numerous limitations. Initially, manually crafted rules are often

ambiguous, and the dependencies between different rules

increase the cost of maintenance (15). Second, these stylized

models cannot perform well in understanding realistic oral

English and ungrammatical text, such as clinical discharge

records, although these texts are still readable to humans (15).

Third, they are not objective enough, as they are affected by the

editors of the rule library. Additionally, they are not flexible

enough to deal with special cases. Therefore, the rule-based

method is only suitable for analyzing and generating highly

standardized texts like prescriptions (17).

2.1.2 Supervised language models

To address the limitations of the rule-based approach,

supervised learning has been applied to NLP. The invention of

statistical machine translation (SMT) in 1990 marked the rise of

supervised NLP (14). It learns the correspondence rules between

different languages by analyzing the input of bilingual texts

(parallel corpora) (18). Supervised NLP models are trained on

annotated labels to learn rules automatically. The learned rules

will be used in word prediction or text classification. Hidden

Markov model (HMM) and conditional random field (CRF) are

two typical applications of this stage (19). Both of them work by

tagging features of the input texts. HMM generates data by

statistically analyzing word frequencies (20, 21). CRF, however,

searches globally and calculates joint probabilities to get an

optimal solution (22, 23). Long short-term memory (LSTM) is

another typical example of supervised language modeling (24). In

text generation tasks, the input consists of a set of labeled data

or word vector sequences. By minimizing the loss between the

predicted word vector and the actual word vector, LSTM can

capture the dependencies between words in long texts (25, 26).

Although supervised language models perform better than the

rule-based approach, domain experts still need to annotate the

training dataset (14). In addition, collecting data in some

domains is difficult due to privacy issues (such as medical and

legal domains). This became an ongoing challenge in applying

the supervised language models to specific tasks.

2.1.3 Unsupervised language models

To address the high cost and difficulty of obtaining labeled

data, unsupervised neural networks are applied to the language

modeling (27). The popularity of corpora such as Wikipedia and

social media provides enough data for training unsupervised

models (14). Word embedding is a significant technique in this

stage (28). For example, Word2Vec represents words using

vectors with hundreds of dimensions. The context can be

captured by training word vectors in a sliding window. By

adjusting hyperparameters to maximize the conditional

probability of the target word, the model can learn semantic

information accurately (29, 30) [e.g., “Beijing”-

“China”+“America” => “Washington” (31)]. After training, each

word usually has a fixed word vector regardless of the context in

which it appears (known as static word embedding) (26).

Unlike Word2Vec, BERT and GPT use contextual word

embeddings, meaning that their word vectors reflect the semantic

information and are affected by the context (32). BERT focuses

on contextual understanding (33) (e.g., in the sentence “The

bank is full of lush willows,” the word “bank” refers to a

riverside rather than a financial institution). In contrast, GPT

models focus on text generation within a specific context (34, 35)

(e.g., Prompt: “Do you know Big Ben?” Answer: “Yes, I know

Big Ben. It is the nickname for the Great Bell of the Clock

located in London.”). Although unsupervised language models

have been able to train and understand text proficiently, they still
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face challenges in practical applications, such as difficulty handling

ambiguity and high computing resource consumption. Therefore,

language modeling still has a long way to go.

2.2 Language models applications in clinical
domain

Based on the modeling methods mentioned above, a variety of

language models have been developed. They play an important role

in scientific research and daily life, especially in the field of

healthcare. In this section, we discuss the clinical language model

applications in detail from two aspects: NER and NLG.

2.2.1 Named entity recognition

NER was originally designed for text analysis and recognition

of named entities, such as dates, organizations, and proper nouns

(36). In the clinical domain, NER is used to identify clinical

events (e.g., symptoms, drugs, treatment plans, etc.) from

unstructured documents, along with their qualifiers (e.g., chronic,

acute, mild), classify them, and extract the relationship between

entities (37, 38). Earlier, NER systems relied on rule-based and

machine learning methods that required extensive manual feature

engineering. In 2011, Collobert et al. (39) used word embeddings

and neural networks in NER. Since then, research in NER has

shifted to automatic feature extraction.

spaCy2 is an open-source NLP library used for tasks like POS

tagging and text classification. Additionally, it offers a range of pre-

trained NER models. ScispaCy,3 a fine-tuned extension of spaCy on

medical science datasets, can recognize entities such as “DISEASE,”

“CHEMICAL,” and “CELL,” which are essential for medical

research. Although NER is useful in rapidly extracting clinical

terms, several challenges remain, such as non-standardization

(extensive use of abbreviated words in clinical texts), misspellings

(due to manual input by medical staff), and ambiguity (often

influenced by context, e.g., whether the word “back” refers to an

adverb or an anatomical entity) (37). Existing research mitigates

these problems using entity linking (mapping extracted clinical

entities to medical repositories such as UMLS and SNOMED).

More deep learning models and text analysis tools are being

developed to solve these issues.

2.2.2 De-identification

The unprocessed clinical text poses a risk of personal

information leakage. Additionally, manual de-identification is not

only error-prone but also costly. Therefore, research on de-

identification is indispensable for the secondary use of clinical

data. Typically, de-identification is based on NER models to

identify protected health information (PHI). Then, PHI is

processed by different strategies (such as synonym replacement,

removal, or masking) (40, 41).

Similar to NER, early de-identification approaches relied

heavily on rule-based systems, machine learning, or hybrid

models. PhysioNet DeID, the VHA best-of-breed (BoB), and

MITRE’s MIST are three typical examples (42). However, these

algorithms require extensive handcrafted feature engineering.

With the development of unsupervised learning, recurrent neural

networks (RNNs) and transformers are widely used in de-

identification tasks (43, 44).

Philter, a protected health information filter (45), is a

pioneering system that combines rule-based approaches with

state-of-the-art NLP models to identify and remove PHI.

Although Philter outperforms many existing tools like PhysioNet

and Scrubber, particularly in terms of recall and F2 score, it still

requires large amounts of annotated data for training (45).

Additionally, research has shown that while the impact of de-

identification on downstream tasks is minimal, it cannot be

completely ignored (46). Therefore, performing de-identification

without mistakenly removing semantic information is still a

challenge in this field.

2.2.3 Natural language generation
Both label-to-text and text-to-text generation are components

of NLG (47). NLG consists of six primary sub-tasks, covering

most of the NLG process. NLG architectures can generally be

divided into three categories (47):

• Modular architectures: This architecture consists of three

modules: the text planner (responsible for determining the

content for generation), the sentence planner (which

aggregates the synthetic text), and the realizer (which

generates grammatically correct sentences). These modules are

closely related to the six sub-tasks, and each module

operates independently.

• Planning perspectives: This architecture considers NLG as a

planning problem. It generates tokens dynamically based on

the objectives, with potential dependencies between

different steps.

• Integrated or global approaches: Currently the dominant

architecture for NLG, this approach relies on statistical

learning and deep learning. Common generative models, such

as transformers and conditional language models, are included

in this architecture.

In the field of healthcare, NLG applications include document

generation and question-answering. Document generation

involves discharge letters, diagnostic reports for patients,

decision-making suggestions for experts, and personalized patient

profiles for administrators (48). Some systems have already been

implemented in practice. For instance, PIGLIT generates

explanations of clinical terminology for diabetes patients (49),

while MAGIC can generate reports for intensive care unit (ICU)

patients (50). Question answering is another application of NLG.

Tools like chatbots can provide patients with answers to basic

healthcare questions (51).

2https://spacy.io/

3https://allenai.github.io/scispacy/

Ren et al. 10.3389/fdgth.2025.1497130

Frontiers in Digital Health 04 frontiersin.org127

https://spacy.io/
https://allenai.github.io/scispacy/
https://doi.org/10.3389/fdgth.2025.1497130
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Nowadays, NLG in the clinical field focuses on the

development and training of transformer-based LLMs; examples

of this work can be seen in (11, 52). These models perform well

in specific domains such as semantic query (53) and electronic

health record (EHR) generation (54). However, very few systems

can reliably produce concise, readable, and clinically sound

reports across multiple sub-domains (48).

2.3 Generative language models

2.3.1 Transformer and attention mechanism
Although RNNs and LSTM networks are effective at capturing

semantic understanding, their recursive structure not only prevents

parallel computation but also makes them prone to gradient

vanishing (55). The introduction of the transformer architecture

in 2017 addressed this issue by replacing the recurrent structure

with a multi-head attention mechanism (56). Since then, most

deep learning models have been based on the transformer

framework. Transformer architecture is based on an encoder–

decoder model (56). To understand this, we first need to

overview auto-regressive models and the multi-head

attention mechanism.

Auto-regressive models’ predictions for each auto-regressive

model token depend on the previous output. Therefore, it can

only access the preceding tokens and operate iteratively. When

the input sequence is X, the auto-regressive model aims to train

parameters u to maximize the log-likelihood of the conditional

probability P (Equation 1) (56)

L(X) ¼
X

i

log P(xi j xi�k, . . . , xi�1; Q) (1)

Multi-head attention mechanism: The attention mechanism

was initially proposed by Cho et al. (57). It can not only

focus on the element being processed but also capture the

context dependence (56). The scaled dot-product attention is

computed as shown in Equation 2. Multi-head attention

consists of several single-head attention (scaled dot-product

attention) layers (56). Each word in the input sequence is

converted into a high-dimensional vector representing

semantic information by word embedding. These vectors are

then passed through linear transformation layers to generate

vectors for queries (Q), keys (K), and values (V). For each

word, Q, K , and V are inputs to this single-head attention

layer. The importance score of this word is calculated, and V

corresponding to this word is multiplied to get the output of

this head (called attention). Finally, outputs from all layers are

concatenated to form a larger vector, which is the input to a

feed-forward neural network (also the output of the multi-

head attention layer) (56)

Attention(Q, K , V) ¼ softmax
QKT

ffiffiffiffiffi

dk
p

� �

V (2)

Transformer and pre-training language models (PLMs):

Transformer consists of an encoder and a decoder. The auto-

regressive model is the basis of the decoder. When the input

sequence is X ¼ (x1, . . . , xN ) and the output sequence is

YM ¼ (y1, . . . , yM), the model can learn a latent feature

representation Z ¼ (z1, . . . , zN ) from X to Y . The generation

of each new element YM relies on the generated sequence

YM�1 ¼ (y1, . . . , yM�1) and feature representation Z. Both the

encoder and the decoder use the multi-head attention

mechanism (55, 56).

Many modern models are based entirely or partially on the

transformer. They compute general feature representations for

the training set by unsupervised learning. This is the concept of

PLMs. They can be fine-tuned to adapt to the specific tasks on

particular datasets (34, 55).

2.3.2 Encoder-only models
Since the transformer’s encoder architecture can effectively

capture the semantic features, some models only use this part for

training. They are applied in text understanding tasks, such as

text classification and NER. Bidirectional encoder representations

from transformers (BERT) (58) is a representative model

among them.

Unlike the transformer decoder, which uses an auto-regressive

model, BERT is trained based on the masked language model

(MLM) (34). It masks the word in the input sequence and uses

the bidirectional encoder to understand the context semantically,

which will be used in predicting the masked word (58). It has

already been pre-trained on a 16 GB corpus. To deploy it, we

only need to replace the original fully connected layer with a

new output layer and then fine-tune the parameters on the

dataset for specific tasks (58). This approach consumes fewer

computing resources and less time than training a model from

scratch. In the clinical domain, Bio_ClinicalBERT (59) and

medicalai/ClinicalBERT (60) are fine-tuned in the clinical dataset

based on the BERT architecture. Initially, due to BERT’s

focus on semantic understanding, it was rarely used for text

generation (61).

Robustly optimized BERT pretraining approach (RoBERTa)

(62) improved some key hyperparameters based on BERT.

Instead of BERT’s static mask, it uses a dynamic mask strategy,

which helps it better adapt to multitasking. Additionally, it

gained a stronger semantic understanding after training on five

English datasets of 160 GB. However, it was trained with more

epochs and larger batch sizes compared to BERT, indicating

higher computational resource requirements and longer

training time (63).

To better handle long sequences, the Longformer introduces a

sparse attention mechanism to reduce computation (64). This

allows each token to focus only on nearby tokens rather than the

entire sequence. Unlike traditional models like BERT and

RoBERTa, which can only process no more than 512 tokens, the

Longformer can handle up to 4,096 tokens. It consistently

performs better than RoBERTa in downstream tasks involving

long documents (64). The Clinical-Longformer model (65) was

fine-tuned for the clinical domain.
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Supplementary Table S1 summarizes the encoder-only models

used in our work and their corresponding fine-tuning datasets.

2.3.3 Decoder-only models
In 2020, the performance of ChatGPT-3 (66) in question

answering task caught researchers’ attention to decoder-only

architectures. As mentioned earlier, the transformer decoder is

an auto-regressive model. It can only refer to the synthesized

words on the left side to generate the new word, without

considering the context (which is called masked self-attention).

This method made it more flexible in generating coherent text.

Compared with BERT, the GPT series performed well in zero-

sample and small-sample learning tasks by enlarging the size of

the model. Even without fine-tuning, a simple prompt can help

GPT generate a reasonable answer (67).

Unlike GPT, which improves models’ performance by

increasing dataset size and the number of parameters without

limitations, Meta AI published a series of Llama models. These

models aim to maximize the use of limited resources - in other

words, by extending training, they reduce the overall demand on

computing resources. The latest Llama3 model requires only 8–

70 billion parameters (68), significantly less than GPT-3’s 175

billion (67). Additionally, it outperforms GPT-3.5 Turbo in five-

shot learning (69).

2.3.4 Encoder–decoder models
T5 family (70) is a classic example of the encoder–decoder

model. This architecture is particularly suitable for text

generation tasks that require deep semantic understanding (71).

T5 transforms all kinds of NLP tasks into a text-to-text format

(72). Unlike BERT, which uses word-based masking and

prediction, T5 processes text at the fragment level using “span

corruption” to understand semantics (72). For the fill-in-the-

blank task, instead of replacing the specific words with <mask>

like BERT, T5 replaces the text fragments with an ordered set of

<extra_id_n> to reassemble the long sequence text. T5 needs

to pre-process the input text according to the task requirements.

A directive prefix should be added as a prompt.

Some language models fine-tuned with T5 on specific datasets,

such as SciFive (fine-tuned in some science literature) (73) and

ClinicalT5 (fine-tuned in clinical dataset MIMIC-III notes) (74),

have shown excellent performance in their respective fields. The

T5 family models used in this paper and their corresponding

fine-tuned datasets are summarized in Supplementary Table S2.

2.3.5 Comparison and limitations

According to Cai et al. (71), the encoder–decoder architecture

performs best with sufficient training data. However, challenges in

data collection can negatively affect its performance. Despite these

challenges, different architectures are well-suited to different tasks.

For example, for tasks requiring semantic understanding, such as

text summarization, the encoder–decoder architecture is the most

effective. In contrast, for tasks that involve minor word

modifications, the encoder-only structure works better. However,

the decoder-only structure is not suitable for tasks with

insufficient training data and long text processing, but performs

well in few-shot question answering tasks (71, 75).

Following these discussions, transformer-based PLMs have

demonstrated strong performance in NLP tasks, but many

challenges still remain.

2.4 Related works on clinical text
generation

2.4.1 LT3: label to text generation
LT3 (76) adopts an encoder–decoder architecture to generate

synthetic text from labels. As shown in Supplementary Figure S1,

labels such as medications are the input of the encoder, which

can generate corresponding feature representations. The decoder

generates prescription sequences based on these features. The

pre-trained BERT tokeniser is used to split the input sequence

into sub-words. LT3 is trained from scratch. Instead of using

traditional greedy decoding, which may miss the global

optimum, the authors proposed beam search decoding with

backtracking (B2SD). This approach broadens the search range

through a backtracking mechanism, preserving possible

candidates for the optimal solution. To reduce time complexity,

they used a probability difference function to avoid searching for

low-probability words. Additionally, the algorithm penalizes

repeated sub-sequences and employs a logarithmic heuristic to

guide the exploration of generation paths. The authors test

LT3 on the 2018-n2c2 dataset and evaluate the results using both

quantitative metrics and downstream tasks. It was demonstrated

that this model outperforms T5 in label-to-text generation.4

2.4.2 Seq2Seq generation for medical dataset

augmentation
Amin-Nejad et al. (75) compared the performance of the

Vanilla transformer and GPT-2 using the MIMIC-III dataset in

seq2seq tasks. Specifically, they fed as input a series of structured

patient information as conditions, as shown in Supplementary

Figure S2, to generate discharge summaries. They demonstrated

that the augmented data outperforms the original data in

downstream tasks (e.g., readmission prediction). Furthermore,

they proved that the Vanilla transformer performs better with

large samples, while GPT-2 excels in few-shot scenarios.

However, GPT-2 is not suitable for augmenting long texts.

Additionally, they used Bio_ClinicalBERT for the downstream

4LT3 achieved significant improvements over the best-performing T5 model

(T5 base) in label-to-text generation, achieving improvements of up to 6.5

BLEU points and 0.02 in the BERTScore. Unfortunately, when we tried

applying B2SD to generate clinical letters, the results were somehow

disappointing. This may be due to the length of clinical letters. B2SD

consumes a lot of time on long text generation. Despite this, it still shows

great potential in generating clinical data.
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tasks and discovered that Bio_ClinicalBERT outperformed the

baseline model (BERT) in almost all experiments. This suggests

that Bio_ClinicalBERT can potentially replace BERT in the

biomedical field. Interestingly, although the synthetic data have a

low score on internal metrics (such as ROUGE and BLEU), the

performance on downstream tasks is notably enhanced. This may

be because augmenting text can effectively introduce noise into

the original text, improving the model’s generalization to

unseen data.

According to their findings, decoder-only models like GPT-2

are not suitable for processing long texts. Bio_ClinicalBERT is

particularly effective for tasks in the clinical area, and the

Clinical transformer is promising in augmenting medical data.

This provides more possibilities for our task of generating

synthetic clinical letters.

2.4.3 Discharge summary generation using clinical
guidelines and human evaluation framework

Unlike the traditional supervised learning of fine-tuning

language models (which requires a large amount of annotated

data), Ellershaw et al. (77) generated 53 discharge summaries

using only a one-shot example and a clinical guideline. Their

research consists of two aspects: generating discharge summaries

and a manual evaluation framework.

As shown in Supplementary Figure S3, the authors used clinical

notes from MIMIC-III as input and incorporated a one-shot

summary along with clinical guidance as prompts to generate

discharge summaries by GPT-4-turbo. Initially, five sample

synthetic summaries were evaluated by a clinician. Based on the

feedback, the clinical guidance was revised to adapt to the

generation task. Through iterative optimization, the revised

guidance, combined with the original one-shot sample, became

the new prompt. Then, the authors generated 53 discharge

summaries using this method and invited 11 clinicians to do a

final manual quantitative evaluation. Clinicians were invited to

evaluate the error rate at the section level (e.g., diagnoses, social

context, etc.). It includes four dimensions:

• Minor omissions,

• Severe omissions,

• Unnecessary text, and

• Incorrect additional text.

Each discharge summary was evaluated by at least two clinicians,

and the authors calculated agreement scores to evaluate the

subjectivity during the human evaluation stage. Unfortunately,

the inter-rater agreement was only 59.72%, raising concerns that

the revised prompts based on such feedback might result in

subjective synthetic summaries. Although this study partially

addresses the issue of insufficient training data and provides

reliable human quantitative evaluation methods, it is still not

well-suited for our investigation. Specifically, it required 11

clinicians to evaluate 53 synthetic samples, demonstrating the

considerable time and manpower required. Therefore, there is

still a long way to go before this technique can be used for large-

scale text generation tasks.

2.4.4 Comparison of masked and causal language

modeling for text generation
Micheletti et al. (78) compared masked language modeling

(MLM, including BERT, RoBERTa, BiomedNLP-PubMedBERT)

and causal language modeling (CLM, including T5, BART,

SciFive-large-Pubmed_PMC) across various datasets for masking

and text generation tasks. They used qualitative and quantitative

evaluations, as well as downstream tasks, to assess the quality of

the synthetic texts. Their workflow is shown in Supplementary

Figure S4. Based on these evaluations, the study yielded the

following results:

• MLM models are better suited for text masking and generation

tasks than CLM.

• Introducing domain-specific knowledge does not consistently

improve model performance.

• Downstream tasks can adapt to the introduced noise. Although

some synthetic texts might not achieve highly quantitative

evaluation scores, they can still perform well in downstream

tasks. This matches the findings from Amin-Nejad et al. (75).

• A lower random masking ratio (i.e., masked tokens/total tokens)

can generate higher-quality synthetic texts.

These very recent findings provide insightful inspiration to our

investigation. Our work builds on their research, expanding on

masking strategies and focusing on the clinical domain.

3 Methodologies and experimental
design

Due to the sensitivity of clinical information, many clinical

datasets are not accessible. As mentioned in Section 2,

numerous studies use NLG techniques to generate clinical

letters and evaluate the feasibility of replacing the original raw

clinical letters with synthetic letters. Most existing research

involves fine-tuning PLMs or training transformer-based

models from scratch on their datasets through supervised

learning. These studies explore different ways to learn mapping

from the original raw text to synthetic text and work on

generating synthetic data that are similar (or even identical) to

the original ones. Our work, however, aims to find a method

that can generate clinical letters that can keep the original

clinical story, while not exactly being the same as the original

letters. To achieve this objective, we employed various models

and masking strategies to generate clinical letters. The

experiment follows these steps:

1. Data collection and pre-processing: We first accessed clinical

letter examples (6–8) for an overview. The texts were

segmented at the sentence level, and clinical entities and

structural templates were extracted to capture the clinical

narratives while maintaining clinical soundness.

2. Randomly masking: We randomly masked the context and

generated clinical letters by predicting masked tokens using

different LLMs.
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3. Model evaluation: We evaluated synthetic letters generated by

different language models. Based on their performance, we

selected Bio_ClinicalBERT and worked on it.

4. Masking strategy exploration: We explored multiple masking

strategies to retain clinical stories and diversity while

removing private information. After generating clinical letters

using these strategies, we evaluated their quality.

5. Post-processing: We applied post-processing techniques to

further enhance the readability of synthetic letters.

6. Downstream task evaluation: We compared the performance

of synthetic and original letters in a downstream NER task to

evaluate the usability of these synthetic letters.

An overall investigation workflow is shown in Figure 2.

3.1 Dataset

Based on the objective of this project, we need a dataset that

includes both clinical notes and some clinical entities. The

dataset we used was from the SNOMED CT Entity Linking

Challenge (6–8). It includes 204 clinical letters and 51,574

manually annotated clinical entities.

Clinical letters: The clinical letters were from a subset of

discharge summaries in MIMIC-IV-Note (6, 79). It uses

clinical notes obtained from a healthcare system in the United

States. These notes were de-identified by a hybrid method

involving the rule-based approach and neural networks. To

avoid releasing sensitive data, the organization also did a

manual review of PHI. In these letters, all PHI was replaced

with three underscores “___.” The letters record the patient’s

hospitalisation information (including the reason for visiting,

consultation process, allergy history, discharge instructions,

etc.). They are saved in a comma-separated value (CSV)

format file “mimic-iv_notes_training_set.csv.” Each row of

data represents an individual clinical letter. It consists of

two columns, where the “note_id” column is a unique

identifier for each patient’s clinical letter, and the “text”

column contains the contents of the clinical letter. Since most

language models have a limitation on the number of tokens to

process (80), we tokenized the clinical letters into words using

the “NLTK” library and found that all clinical letters contained

thousands of tokens. Therefore, it is necessary to split each

clinical letter into multiple chunks to process them. These

separated chunks must be merged in the end to generate the

whole letter.

Annotated clinical entities: The entities were manually

annotated based on SNOMED CT. A total of 51,574 annotations

cover 5,336 clinical concepts. They were saved in another CSV

document which includes four columns: “note_id,” “start,” “end,”

and “concept_id.” The “note_id” column corresponds to the

“note_id” in the “mimic-iv_notes_training_set.csv” file. The

“start” and “end” columns indicate the position of annotated

entities. The “concept_id” can be used for entity linking with

SNOMED CT. For example, for the “note_id” “10807423-DS-19,”

the annotated entity “No Known Allergies” has a corresponding

“concept_id”: “609328004.” This can be linked to SNOMED CT

under the concept of “Allergic disposition” (81).

FIGURE 2

Overall investigation workflow for SYNTHETIC4HEALTH.
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An example of text excerpted from the original letter is

shown in Supplementary Figure S5. It contains the document

structure and some free text. According to the dataset,

document structure often corresponds to capital letters and

colons “:.” Our primary goal is to mask the context that is

neither part of the document structure nor annotated

entities, and then generate a new letter, as both structure and

clinical entities are essential for understanding clinical

information (46).

3.2 Software and environment

All codes and experiments in this paper were carried out in the

integrated development environment (IDE) “Google Colab Pro+”

using a 52 GB system RAM and 225 GB disk space. The built-in

T4 GPU (16 GB VRAM) accelerates the inference process. The

primary tools used in the paper include:

• Programming language and environment: Python 3.10

serves as the main programming language.

• Deep learning framework: PyTorch 2.3.1 is the core

framework used for loading and applying pre-trained language

models (PLMs).

• Natural language pocessing libraries: This includes Hugging

Face Transformers 4.42.4, NLTK (version � 3.1), and

BERTScore 0.3.13, among others. These are popular tools

for text processing and evaluation in the NLP domain.

• Auxiliary tools: Libraries such as pandas (version � 1.0.1)

and mpmath (1.1.0 � version < 1.4) can support data

management, mathematical operations, and other

routine tasks.

3.3 Pre-processing

The collected dataset involves different files and comprises

entirely raw data. It is necessary to pre-process these files before

using them in generation tasks. The pre-processing of this system

contains five steps: “Merge dataset based on ‘note_id,’”

“Annotated Entity Recognition,” “Split Letters in Chunks,”

“Word Tokenization,” and “Feature Extraction.” The pre-

processing pipeline is shown in Figure 3.

3.3.1 Merging dataset and annotated entity
recognition

Initially, we merged the clinical letters file and annotations file

into a new DataFrame. After this, we extracted manually annotated

entities based on their index. An excerpt from an original letter is

shown in Supplementary Figure S6, and the manually annotated

entities are listed in Supplementary Table S3.

3.3.2 Splitting letters into variable-length chunks
Typically, PLMs such as BERT, RoBERTa, and T5 have a limit on

the number of input tokens, usually capped at 512 (82). When dealing

with text that exceeds this limit, common approaches include

discarding the excess tokens or splitting the text into fixed-length

chunks of 512 tokens. In addition, some studies evaluate the tokens’

importance to decide which parts should be discarded (83).

In this work, each clinical letter (“note_id”) contains thousands

of tokens, as mentioned in Section 3.1, to preserve as much critical

clinical information as possible; therefore, we avoided simply

discarding tokens. Instead, we adopted a splitting strategy based

on semantics. Each block is not a fixed length. Rather, they are

complete paragraphs that are as close as possible to the token

limit. This approach aims to help the model better capture the

FIGURE 3

Pre-processing pipeline.
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meaning and structure of clinical letters, thereby improving its

ability to retain essential clinical information while efficiently

processing the text. In fact, we initially generated letters at the

sentence level. However, it was found that processing at the

sentence level is not only time-consuming but also fails to

provide the model with enough information for inference and

prediction. This is why the letters were processed in chunks

rather than in sentences.

As shown in Figure 4, each raw letter is split into sentences

first. We used the pre-trained models provided by the “NLTK”

library, which combines statistical and machine-learning

approaches to identify sentence boundaries. Each clinical letter is

treated as a separate processing unit, with the first sentence

automatically assigned to the first text block (chunk). To control

the length of each chunk, we set a maximum line count

parameter (max_lines). If the first sentence already meets the

value of “max_lines,” the chunk will contain that single sentence

only. Otherwise, subsequent sentences will be added to the

chunk until the line count reaches the max_lines.

Extra care is needed when handling text with specific formats,

such as medication dosage descriptions, as shown in Supplementary

Figure S7. Because there is no clear sentence boundary, these

sentences may exceed the tokens limitation. To address this, we

first checked whether the sentence being processed exceeds the

token limit (max_tokens). If it does not, the sentence will be added

to the current chunk. Otherwise, the sentence should be split into

smaller chunks, each no longer than “max_tokens.” This operation

helps balance processing efficiency while maintaining semantic

integrity. In the example shown in Supplementary Figure S7,

although using line breaks to split the text seems to be more

flexible, considering time complexity and the requirement to index

the annotated entities, this method was not chosen.

3.3.3 Word tokenization
To prepare the text for model processing, we split each chunk

of text into smaller units: tokens. The tokenization methods can be

categorised into two types: one for feature extraction and the other

for masking and generation.

For the tokenization aimed at feature extraction, we used the

“word_tokenise” method from the “NLTK” library. It is helpful to

preserve the original features of the words, which is especially

important for retaining clinical entities. For instance, in the

sentence “Patient is a ___ yo male previously healthy presenting w/

fall from 6 ft, from ladder.” Word boundaries such as spaces can

be automatically detected for tokenization. The results of different

tokenization methods are shown in the Supplementary Table S4.

As for the tokenization used for masking and generating, we

retained the original models’ tokenization methods. The specific

tokenization approach varies by model, as shown in

Supplementary Table S4. For example, BERT family models use

word-piece tokenization, which initially splits text by spaces and

then further divides the words into sub-words (62). This

approach is particularly effective for handling words that are not

in the pre-training vocabulary and is especially useful for

predicting masked words. For complex clinical terms, however,

these models rely heavily on a predefined dictionary, which can

result in unsatisfactory tokenization and hinder the model’s

understanding. For instance, the word “COVID-19” is tokenized

by BERT into [“co,” “##vid,” “–,” “19”]. In contrast, the T5

family models use sentence-piece tokenization. It does not rely

on space to split the text. Instead, this method tokenises directly

from the raw text, making it better suited for handling

abbreviations and non-standard characters (e.g., “COVID-19”),

which are common in clinical letters.

It is important to note that although all BERT family models

use word-piece tokenization, the results can still differ. This is

because different models use different vocabularies during pre-

training, leading to variations in tokenization granularity. The

tokenization methods for each model are detailed in

Supplementary Table S4. Each tokenization approach has its own

advantages and disadvantages for processing clinical letters.

Therefore, exploring how these models impact the clinical letter

generation is also a requirement of our project.

FIGURE 4

Text chunking workflow.
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3.3.4 Feature extraction

Since we aimed to generate de-identified clinical letters that can

preserve clinical narratives during masking and generation, it is

necessary to extract certain features beforehand. We extracted the

following features, with an example provided in Supplementary

Figure S8 and Supplementary Table S5.

• Document structure: This feature is identified by a rule-based

approach. As mentioned in Section 3.1, structural elements (or

templates) often correspond to the use of colons “:.” They

should not be masked to preserve the clinical context.

• Privacy information identification: In this part, we used a

hybrid approach. To identify sensitive information such as

“Name,” “Date,” and “Location (LOC),” we employed a NER

toolkit from Stanza (84). To handle privacy information like

phone numbers, postal codes, and e-mail addresses, we

implemented a rule-based approach. Specifically, we devised

several regular expressions to match the common formats of

these data types. These pieces of private information should

be masked.

• Medical terminology recognition: A NER toolkit pre-trained

on the i2b2 dataset is used here (85). It can identify terms like

“Test,” “Treatment,” and “Problem” in free text. Although our

dataset has already been manually annotated, these identified

terms can serve as a supplement to the pre-annotated terms.

• Special patterns observed in sample text: Some specific

patterns, like medication dosages (e.g., enoxaparin 40 mg/0.4

ml) or special notations (e.g., “b.i.d.”), may carry significant

meaning. We retained these terms unless they were identified

as private information to preserve the clinical background of

the raw letters.

• Part of speech (POS) tagging: Different parts of speech (POS)

play distinct roles in interpreting clinical texts. We aimed to

explore how these POS influence the model’s understanding of

clinical text. To achieve this, we used a toolkit (85) trained on

the MIMIC-III (86) dataset for POS tagging. It performs

better than SpaCy5 and NLTK in handling clinical letters.

3.4 Clinical letter generation

We discuss the models and masking strategies that are used in

generating synthetic clinical letters. It is important to clarify that

our key objective is to generate letters that differ from the

original ones, rather than being exact copies, as the same

statement may indirectly reveal the patients’ privacy. Although

fine-tuning the model can always improve precision and enhance

the model’s semantic comprehension ability, it tends to produce

letters that are too closely aligned with the originals. This also

causes the fine-tuned model to rely too heavily on the original

dataset, compromising its ability to generalize. Therefore, simply

fine-tuning the model is not ideal if the PLMs can already

generate the readable text. Instead, we should concentrate on

how to protect clinical terms and patient narratives as well as

avoid privacy breaches.

As discussed in Sections 2.3 and 2.4, decoder-only models

struggle with processing long texts that require contextual

understanding (75). Additionally, deploying them requires

substantial computing resources and time. Therefore, we explored

various PLMs, including both encoder-only and encoder–decoder

models, in this paper. After evaluating their ability to generate

synthetic letters from our dataset, we focused on

Bio_ClinicalBERT, a well-performed model in our task, to

experiment with different masking strategies. Additionally, from

the discussion in Section 3.3, we need to split the text into

various-length-chunks. So, the appropriate length of these chunks

is also experimented with Bio_ClinicalBERT.

3.4.1 Encoder-only models with random masking
As mentioned earlier, the primary method for this paper

involves masking and generation. We focused extensively on

encoder-only models because of their advantage in bi-directional

semantic comprehension. These encoder-only models, including

BERT, RoBERTa, and Longformer (detailed in Section 2.3) were

compared for their performance. Given the clinical focus of this

task, we particularly explored model variants that were fine-tuned

on clinical or biological datasets. However, as no clinically fine-

tuned RoBERTa (62) variant was available, the RoBERTa-base was

used for comparisons. Specifically, the encoder-only models we

explored include Bio_ClinicalBERT (59), medicalai/ClinicalBERT

(60), RoBERTa-base (62), and Clinical-Longformer (65).

We used the standard procedure for masked language

modeling (MLM). First, the tokens that need to be masked were

selected. They were then corrupted, resulting in masked text that

includes both masked and unmasked tokens. Next, the model

predicts the masked tokens and replaces them with the ones

having the highest probabilities.

3.4.2 Encoder–decoder models with random

masking
Although encoder–decoder models are not typically used for

masked language modeling, they are well-suited for text

generation. The architecture of T5, in particular, is designed to

maintain the coherence of the text (70). Therefore, we included

the T5 family models for comparisons.

The process of generating synthetic letters with encoder–decoder

models is very similar to that with encoder-only models. The

difference is that, unlike the BERT family, which automatically

masks tokens and replaces them with “<mask>,” the T5 family

models do not have any built-in masking function. As a result, we

identified the words that needed to be masked by index and

removed them, which are represented as “extra_id_x” in the T5

family models. The text, with these words removed, was then used

for generation, which we refer to as “text with blanks.” To

maintain consistency in the format, we later replaced “extra_id_x”

with “<mask>” when displaying the masked text. Additionally, the

T5 family models require a prompt as part of the input. For this

task, the complete input was structured as “Fill in the blanks in the5https://spacy.io/
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following sentence in the clinical background” + “text with blanks.”

In this paper, we used T5-base (70), Clinical-T5-Base (87, 88),

Clinical-T5-Sci (87, 88), and Clinical-T5-Scratch (87, 88) for

comparison. The comparison of encoder-only and encoder–

decoder model architectures is shown in Figure 5.

3.4.3 Different masking strategies with
Bio_ClinicalBERT

To make the synthetic letters more readable, clinically sound,

and privacy-protective, different masking strategies were tested

based on the following principles.

1. Preserve annotated entities: The manually annotated entities

should not be masked to retain the clinical knowledge and context.

2. Preserve extracted structures: Tokens that are part of the

document structure should be preserved as templates for

clinical letters.

3. Mask detected private information: This is helpful in de-

identification. Although the dataset we use is de-identified,

this approach may be useful when this system is deployed

with real-world data.

4. Preserve medical terminology: It still aims to retain clinical

knowledge, as some diseases and treatments were not

manually annotated.

5. Preserve non-private numbers: Certain numbers, such as drug

dosage or heart rates, are indispensable for clinical

diagnosis and treatment. However, only non-private numbers

should be retained, while private information (such as phone

numbers, ages, postal codes, dates, and email addresses) should

be masked.

6. Preserve punctuation: Punctuation marks such as periods (“.”)

and underscores (“___”) should not be masked, as they clarify

the sentence boundaries and make the synthetic letters more

coherent (89).

FIGURE 5

Comparison of encoder-only and encoder–decoder model architectures.
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7. Retain special patterns in samples: Tokens that match specific

patterns (e.g., “Vitamin C ˆ1,000 mg,” “Ibuprofen > 200 mg,”

etc.) should be retained, as they may contain important

clinical details. These patterns are summarized by analyzing

raw sample letters.

Based on the principles above, different masking strategies were

experimented with:

1. Mask randomly: Tokens that can be masked are selected

randomly from the text. We experimented with masking

ratios ranging from 0% to 100% in 10% increments. This

approach helps to understand how the number of masked

tokens influences the quality of synthetic letters and provides

a baseline for other masking strategies.

2. Mask based on POS tagging: We experimented with different

configurations in this section, such as masking only nouns, only

verbs, etc. It is helpful to understand how POS influences the

models’ context understanding. Similar to the random masking

approach, we selected the tokens based on their POS configuration

and masked them in 10% increments from 0% to 100%.

3. Mask stopwords: Stopwords generally contribute little to the

text’s main idea. Masking stopwords serves two purposes:

reducing the noise for model understanding and increasing

the variety of synthetic text by predicting these words.

Moreover, they do not influence crucial clinical information.

This approach is highly similar to the one used in “Mask

based on POS tagging.” The only difference is the criteria for

selecting tokens. Specifically, tokens are selected based on

whether they are stopwords rather than on their POS. The

“NLTK” library was used for detecting stopwords in the text.

4. Hybrid masking using different ratio settings: After

employing the aforementioned masking strategies, we

observed the influence of these elements. Additionally, we

experimented with their combinations at different masking

ratios based on the outcomes, such as masking 50% nouns

and 50% stopwords simultaneously.

3.4.4 Determining variable-length chunk size with
Bio_ClinicalBERT

As mentioned in Section 3.3, we utilize two parameters in our

chunk segment procedure: “max_lines” and “max_tokens.”

“max_lines” represents the desired length of each chunk, while

“max_tokens” is related to the computing resources and model

limitations. These two parameters determine the final length of

each chunk together. Although most models we used have a

limit of 512 tokens (except for the Longformer, which can

process up to 4,096 tokens), we set 256 as the value for

“max_tokens” due to computing resource constraints.

As for “max_lines,” we experimented with values starting from

10 lines, increasing by 10 lines each time, and calculated the

average tokens for each chunk. Once the token growth began to

slow, we refined the search by using finer increments. Finally, we

selected the number of lines at which the average tokens per

chunk stopped growing. This is because more lines in each

chunk provide more information for the model to predict

masked tokens. However, if the chunk length reaches a critical

threshold, it indicates that the primary limitation is

“max_tokens” not “max_lines.” Continuing to increase

“max_lines” would lead to additional computational overhead, as

the system would have to repeatedly check whether adding the

next sentence meets the required line count.

3.5 Evaluation methods

Both quantitative and qualitative methods will be used to

evaluate the performance. Additionally, a downstream task

(NER) is employed to assess whether the synthetic clinical letters

can replace the original raw data. The evaluation methods

pipeline is illustrated in Figure 6.

3.5.1 Quantitative evaluation
To comprehensively evaluate the quality of the synthetic letters,

we used quantitative evaluation from multiple dimensions,

including the model’s inference performance, the readability of

the synthetic letters, and their similarity to the raw data. The

specific metrics are listed in the following.

Standard NLG metrics: It covers standard NLG evaluation

methods such as ROUGE, BERTScore, and METEOR. ROUGE

measures literal similarity, the BERTScore evaluates semantic

similarity, and METEOR builds on ROUGE by taking synonyms

and word order into account. It provides a more comprehensive

evaluation of the synthetic text (90).

These evaluations are performed by comparing the synthetic

text with the original text. Moreover, a baseline is calculated by

comparing the masked text to the original text. The evaluation

score should exceed the baseline but remain below “1,” ensuring

that it does not exactly replicate the original text.

Readability metrics: To evaluate the readability, we calculated

SMOG, Flesch Reading Ease, and Flesch–Kincaid Grade Level.

Given our clinical focus, we prioritized SMOG as the primary

readability metric, with Flesch Reading Ease and Flesch–Kincaid

Grade Level as reference standards. In this analysis, we compared

the readability metrics of the synthetic text with those of the

original and masked texts. The evaluation results should closely

approximate the original text’s metrics. Significant differences

(91)6 may suggest that the model cannot preserve semantic

coherence and readability adequately.

Advanced text quality metrics: In this part, we calculated the

perplexity, subjectivity, and information entropy. We want the

synthetic letters to be useful in training clinical models.

Therefore, perplexity should not be far away from the value of

the original letters. As for subjectivity and information entropy,

we expect the synthetic letters to be both subjective

and informative.

6We define a significant difference as a change of 1 SMOG grade, 1 Flesch–

Kincaid Grade Level, or 10 points in Flesch Reading Ease, as these thresholds

approximately correspond to a shift of one grade level or readability tier.
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Invalid prediction rate: We calculated the invalid prediction

rate for each generation configuration. This ratio is determined by

dividing the number of invalid predictions (such as punctuation

marks or subwords) by the total number of masked words that

need to be predicted. We expect the model to generate more

meaningful words. Since punctuation marks are not masked, the

model should avoid generating too many non-words. This metric

can provide insights into the model’s inference capability.

Inference time: The inference time for each generation

configuration across the whole dataset (204 clinical letters)

was recorded. Shorter inference times indicate lower computational

resource consumption. When this system is deployed on

large datasets, it is expected to save both time and computing resources.

3.5.2 Qualitative evaluation
In the quantitative evaluation, we not only calculated the

evaluation metrics for the entire dataset but also recorded the

results for each individual synthetic clinical letter. Interestingly,

while some synthetic texts exhibited strong performance

according to most metrics, they did not always appear

satisfactory upon “visual” inspection. Conversely, some synthetic

letters with average metrics may appear more visually appealing.

Although human evaluation is the most reliable approach for

evaluating clinical letters, it is limited by availability and cost.

Therefore, combining qualitative and quantitative evaluations

helps in identifying suitable quantitative metrics for assessing the

performance of our model. Once identified, one of these metrics

can be used as the primary standard, while the others serve as

supporting indicators. As a workaround, we selected a small

sample of representative clinical letters based on the evaluation

results. Subsequently, we reviewed the outcomes to better

understand how different generation methods impacted these

results, while also evaluating their correspondence with the

quantitative metrics.

FIGURE 6

Evaluation pipeline.
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3.5.3 Downstream NER task

Beyond qualitative and quantitative evaluation, we can

also apply synthetic clinical letters in a downstream NER task.

This is helpful to further evaluate their quality and their

potential to replace original ones in clinical research and

model training.

ScispaCy7 and spaCy8 are used in this part. As shown in

Supplementary Figure S9, they extract features from the text

and learn the weights of each feature through neural networks.

These weights are updated by comparing the loss between the

predicted probabilities and actual labels. If a word does not

belong to any label, it is classified as “O” (outside any entity).

spaCy initializes these weights randomly. However, the

version of ScispaCy we used, “en_ner_bc5cdr_md,” is

specifically fine-tuned on the BC5CDR corpus. It focuses more

on “chemical” and “disease” entities while retaining the

original general features.

In this downstream NER task, as shown in Figure 7, we initially

extracted entities from letters using ScispaCy. Subsequently, these

entities were used to train a base spaCy model. The trained

model was then employed to extract entities from the testing set.

Finally, we compared these newly extracted entities with those

originally extracted by ScispaCy, and the evaluation scores were

calculated. These steps were performed on both original clinical

letters and synthetic letters, to assess whether the synthetic letters

can potentially replace the original ones.

3.5.4 Clinical evaluation
Clinical semantic preservation: To evaluate how much clinical

information is preserved, we used BioBERT (52) for a rough

estimate. Specifically, we tokenized both the original and

synthetic letters, obtained their embeddings using BioBERT, and

computed the cosine similarity between them. Since BioBERT is

trained on biomedical corpora, its embeddings are expected to

capture clinical semantic features. A high similarity score

indicates that clinical information is largely preserved. However,

it is important to note that this method only evaluates the

effectiveness of preserving clinical narratives at the semantic level

and does not guarantee medical factuality.

Expert-simulated evaluation of clinical quality: To further

evaluate the clinical usefulness of our synthetic letters, we

employed GPT-3.5-Turbo (92) through prompt-based evaluation.

Specifically, we evaluated the results from two perspectives:

clinical soundness and narrative coherence. Clinical soundness

measures whether the content aligns with medical factuality,

while narrative coherence evaluates whether the letter is

contextually consistent and resembles a real-world clinical letter.

The prompt we used is shown in Figure 8.

3.6 Post-processing

3.6.1 Filling in the blanks
As described in Section 3, the dataset we used has been de-

identified with all private information replaced by three

FIGURE 7

Workflow of the downstream NER task.

7https://allenai.github.io/scispacy/

8https://spacy.io/
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underscores “___.” We hope that the synthetic clinical letters can

maintain a certain degree of clinical integrity without disclosing

any private patient information. To address this, a post-

processing step was added to the synthetic results. This step

involves masking the three underscores (“___”) detected and

using PLMs to predict the masked part again. For example, if the

original text is “___ caught a cold,” the post-processing result

should ideally be “John caught a cold” or “patient caught a cold.”

Such synthetic clinical letters can better support clinical model

training and teaching.

In this part, we used Bio_ClinicalBERT and BERT-base

models. Although Bio_ClinicalBERT is better at clinical

information understanding, this issue is not directly related to

clinical practice, so we used BERT-base for comparison.

3.6.2 Spelling correction
Since our data come from real-world sources, it is inevitable

that some words may be misspelled by doctors. These spelling

errors can negatively impact the model’s training process or

hinder clinical practitioners’ understanding of the synthetic

clinical letters. Although some errors are masked and re-

generated, our masking ratio is not always 100%, so some

incorrect words may still exist. Toolkit “TextBlob” (93) was

added to correct these errors. Specifically, it uses a rule-based

approach that relies on a built-in vocabulary library to detect and

correct misspellings.

3.7 Summary

In this section, we present the experimental design and

subsequent implementation steps: these include defining project

requirements, data collection and environmental setup, pre-

processing, masking and generating the text, post-processing, the

downstream NER task, clinical evaluation, and both qualitative

and quantitative assessments. An example of the entire process

flow is shown in Supplementary Figure S10.

4 Experimental results and analysis

4.1 Chunk segmentation effects on
inference time

As mentioned in Section 3.4.4, we set “max_lines” as a variable

and “max_tokens” equal to 256. A series of increasing “max_lines”

were tested until the average tokens per chunk peaked. We initially

did this on a small sample (seven letters). The results are shown in

Supplementary Table S6 for the Bio_ClinicalBERT model.

We can see that the average tokens per chunk reaches a peak

as the “max_lines” parameter increases to 41. Similarly, inference

time decreases as “max_lines” increases to 41, but it increases

again once it exceeds this value. This experiment was also

conducted on slightly larger samples of 10 and 30 letters. All of

them showed the same trend. However, the inference time here

may only reflect an overall trend, not exact results, as it is

influenced by many factors, not only the chunk size but also

the internet speed.

4.2 Random masking: qualitative results

We employed both encoder-only and encoder–decoder models

to mask and generate the data, yielding numerous interesting

results for human evaluation. Given space constraints, only a

simple example is provided here. Following the masking

principles in Section 3.4, the eligible tokens were randomly

selected for masking. Although the initial intention was to mask

50% of tokens, the actual masking ratio was lower due to the

requirement to preserve certain entities and structures.

FIGURE 8

GPT-3.5-turbo prompt for clinical evaluation.
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4.2.1 Encoder-only models
The original sentence is displayed in Figure 9. After feature

extraction, the resulting structure is shown in Supplementary

Figure S11. As detailed in Supplementary Table S7, certain

manually annotated entities are excluded from masking. The

output of this masking process is shown in Figure 10.

The generated text using Bio_ClinicalBERT is displayed in

Figure 11. For “management of open fracture,” the model

produced “r,” which is commonly used to denote “right” in

clinical contexts, showing a relevant and logical prediction.

Furthermore, the model’s input “R ankle,” despite not being in

the figure due to space constraints, provided context for

predicting “r” instead of “left.” Interestingly, the term “admitted”

was generated, even though it was not in the input, indicating

the model’s understanding of clinical context. Although the

phrase “from 6 stairs, from home” is entirely different from the

original (“from 6 feet, from ladder”), it remains

contextually appropriate.

Overall, Bio_ClinicalBERT produced a clinically sound

sentence, even though no tokens matched the original. In other

examples, the predicted words may partially overlap with the

original text. Nonetheless, this model effectively retains clinical

information and introduces diversity without altering the

text’s meaning.

The results from medicalai/ClinicalBERT and Clinical-

Longformer are shown in Supplementary Figures S12 and S13.

All three clinical-related models correctly predicted “r” from the

input context. The medicalai/ClinicalBERT model performs

comparably to Bio_ClinicalBERT, despite adding an extra

comma, which did not affect the text’s clarity. However, Clinical-

Longformer’s predictions, while understandable, were repetitive

and less satisfactory. Importantly, none of these three models

altered the original meaning.

The result generated by RoBERTa-base is shown in

Supplementary Figure S14. While the generated text initially

seems reasonable, the predicted word “years” shifts the focus to a

temporal context, which was not intended. This is likely because

RoBERTa is pre-trained on a general corpus and lacks sufficient

clinical knowledge for accurate text generation, or it could simply

be a coincidence based on this specific sentence, where

RoBERTa-base inferred “years” from its training data.

4.2.2 Decoder-only GPT-4o

Additionally, GPT-4o was used for comparison, with the

prompt “Replace ‘<mask>’ with words in the following

sentence:.” The results, shown in Supplementary Figure S15, are

satisfactory. As discussed in Section 2.3, decoder-only models

excel in few-shot learning (67), which is confirmed by this

experiment. However, its performance may decline with long

clinical letters (75).

4.2.3 Encoder–decoder models
To further evaluate different PLMs in generating synthetic

letters, we tested the T5 family models. The generated results for

FIGURE 9

Original unprocessed example sentence (6–8) (“note_id”: “10807423-DS-19”) (the circled tokens will be masked).

FIGURE 10

An example of the masked sentence.
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the same sentence are shown in Figure 12 and Supplementary

Figures S16–S18.

T5-base performs the best among these tested models.

However, the results are still not fully rational, as it generated

“open is a ___ yo male.’. The other three models tend to use de-

identification (DEID) tags to replace the masked words, as these

tags are part of their corpora. Furthermore, the T5 family models

may predict multiple words for each token, aligning with

findings in Section 2.3.

All these four T5 family models perform worse than the

encoder-only models. This is consistent with the findings from

Micheletti et al. (78) that MLM models outperform CLM models

in medical datasets.

4.3 Random masking: quantitative results

4.3.1 Sentence-level quantitative results: encoder-
only models

We first calculated representative quantitative metrics at the

sentence level, matching the sample sentence used in Section 4.2.

This approach allows for a better integration of quantitative and

qualitative evaluations. Although SMOG is typically suited for

medical datasets, it is less appropriate for sentence-level analysis,

so the Flesch Reading Ease was used here. The results are

presented in Table 1.

Our objective is to generate letters that differ from the original

while maintaining clinical semantics and structure. Thus, high

ROUGE scores are not desired, as they indicate substantial word/

string overlap. The BERTScore is particularly useful for assessing

semantic similarity, while METEOR offers a comprehensive

evaluation considering word forms and synonyms theoretically.

Flesch Reading Ease, on the other hand, provides a direct

measure of textual readability.

We observed that clinical-related encoder-only models

generally outperform RoBERTa-base in qualitative evaluation

(see Section 4.2). However, from the quantitative perspective,

RoBERTa-base shows mediocre performance across most

metrics except for the BERTScore. In contrast,

Bio_ClinicalBERT, despite no word overlap in this sample

sentence, achieves a reasonable clinical context and the highest

BERTScore among the models. Both medicalai/Clinical BERT

and Bio_ClinicalBERT excel in Flesch Reading Ease, likely

because they tend to predict tokens with fewer syllables that

preserve the original meaning.

Surprisingly, while METEOR is designed to closely reflect

human evaluation, the BERTScore appears to be more

consistent with our evaluation criteria. This trend was

observed in other sample texts as well. Synthetic texts with

higher BERTScore and lower ROUGE scores are more

aligned with our objectives. It is likely because the

BERTScore is calculated using word embeddings, which can

capture deep semantic similarity more effectively. All

evaluation results meet or exceed the baseline, affirming the

effectiveness of these four encoder-only models in generating

clinical letters.

FIGURE 11

Example sentence generated by Bio_ClinicalBERT.

FIGURE 12

Example sentence generated by T5-base.
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4.3.2 Sentence-level quantitative results:

encoder–decoder models
The evaluations for the encoder–decoder models, as presented

in Table 2, generally underperform on most metrics compared to

encoder-only models, except for METEOR. Interestingly, while

the Flesch Reading Ease scores suggest a minimal impact on

readability, the BERTScores are at least 0.05 lower than the

baseline, indicating major deviations from the original meaning.

This is consistent with our qualitative observations that the

outputs from encoder–decoder models are largely unintelligible.

Collectively, the quantitative and qualitative results

demonstrate that encoder–decoder models are not well-suited for

generating clinical letters, as they fail to preserve the original

narratives. These results also support the validity of using

BERTScore as the primary evaluation metric, with other metrics

serving as supplementary references. We also tested this on the

entire dataset, which produced consistent results.

4.3.3 Quantitative results on the full dataset:
encoder-only models

Based on the findings above, we expect a higher BERTScore and

a lower ROUGE score. We used the 0.4 masking ratio to illustrate

the model comparison on the full dataset in Table 3. The other

masking ratios show similar trends. Surprisingly, all encoder-only

models this time showed comparable results, which contradicts

our hypothesis that “Clinical-related” models would outperform

base models. This suggests that training on the clinical dataset has

limited impact on the quality of synthetic letters. This may be

because most clinical-related tokens are preserved, with only the

TABLE 1 Encoder-only models comparison at the sentence level (the “Baseline”without annotations was calculated by comparing the masked text to the
original text).

Evaluation metric Model evaluation

RoBERTa-base medicalai/ClinicalBERT Clinical-Longformer Bio _ ClinicalBERT

ROUGE-1

Generation performance 86.54 88.46 89.52 84.91

baseline 84.91 84.91 84.91 84.91

ROUGE-2

Generation performance 74.51 78.43 79.61 73.08

baseline 73.08 73.08 73.08 73.08

ROUGE-L

Generation performance 86.54 88.46 89.52 84.91

baseline 84.91 84.91 84.91 84.91

BERTScore F1

Generation performance 0.81 0.83 0.84 0.85

baseline 0.79 0.65 0.79 0.65

METEOR

Generation performance 0.87 0.88 0.90 0.86

baseline 0.85 0.85 0.85 0.85

Flesch Reading Ease

Generation performance 10.24 18.70 9.22 16.67

baseline (original) 8.21 8.21 8.21 8.21

Baseline (mask) 16.67 16.67 16.67 16.67

TABLE 2 Encoder–decoder models comparison at the sentence level (the
baseline without annotations was calculated by comparing the masked
text to the original text).

Evaluation
metric

Model evaluation

T5-base Clinical-
T5-base

Clinical-
T5-scratch

Clinical-
T5-Sci

ROUGE-1

Generation

performance

86.79 85.19 87.38 80.36

baseline 73.77 73.77 73.77 73.77

ROUGE-2

Generation

performance

75.00 71.70 75.25 69.09

baseline 63.33 63.33 63.33 63.33

ROUGE-L

Generation

performance

84.91 83.33 87.38 80.36

baseline 73.77 73.77 73.77 73.77

BERTScore F1

Generation

performance

0.44 0.40 0.45 0.40

baseline 0.50 0.50 0.50 0.50

METEOR

Generation

performance

0.85 0.83 0.83 0.82

baseline 0.85 0.85 0.85 0.85

Flesch Reading Ease

Generation

performance

8.21 8.21 19.71 8.21

baseline

(original)

8.21 8.21 8.21 8.21

Baseline (mask) 8.21 8.21 8.21 8.21
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remaining tokens being eligible for masking. Consequently, the

normal encoder-only models can effectively understand the

context and predict appropriate words while preserving clinical

information. This differs slightly from the sentence-level

comparisons, likely because the evaluation of a single sentence

cannot fully represent the overall results. Despite this, the

BERTScore as a primary evaluation metric remains useful, as the

correspondence between qualitative and quantitative evaluation is

consistent, whether at the sentence or dataset level.

We now explore how different masking ratios affect the quality

of synthetic clinical letters. For each model, we generated data with

masking ratios from 0.0 to 1.0, in increments of 0.1 (the masking

ratios here refer only to the eligible tokens, as described in

Section 3.4.3, and do not represent the actual overall masking

ratio). Due to space limitations, we will present only the results

for Bio_ClinicalBERT with a 0.2 increment here.

Table 4 presents that the higher masking ratio, the lower the

similarity (metrics’ scores). As we expected, all evaluation values

are higher than the baseline, but still below “1.” This means the

model can understand the clinical context and generate

understandable text. It is surprising that with a masking ratio of

1.0, the BERTScore increased from the baseline (0.29) to 0.63.

Although this score is not very high, it still reflects that

Bio_ClinicalBERT can generate clinical text effectively.

In Supplementary Table S8, we calculated three readability

metrics, which are mentioned in Section 3.5. None of these

metrics showed significant differences from the original ones.

However, it is strange that the SMOG and Flesh–Kincaid

Grade are not always between the original baseline and

masking baseline. When the masking ratio is high, the

evaluation values even fall below both the masking and the

original baseline. This may be because a higher masking ratio

TABLE 3 Encoder-only models comparison on the full dataset with Masking Ratio 0.4 (the baseline was calculated by comparing the masked text to the
original text).

Evaluation metric Model evaluation

RoBERTa-base medicalai/ClinicalBERT Clinical-Longformer Bio_ ClinicalBERT

ROUGE-1

Generation performance 92.98 93.63 94.66 93.18

baseline 85.64 85.44 85.64 85.61

ROUGE-2

Generation performance 86.10 87.42 89.50 86.50

baseline 74.96 74.64 74.96 74.92

ROUGE-L

Generation performance 92.54 93.22 94.38 92.71

baseline 85.64 85.44 85.64 85.61

BERTScore F1

Generation performance 0.91 0.90 0.92 0.90

baseline 0.82 0.63 0.82 0.63

TABLE 4 Standard NLG metrics across different masking ratios using Bio_ClinicalBERT (the baseline was calculated by comparing the masked text to the
original text).

Bio_ClinicalBERT Masking ratio

1.0 0.8 0.6 0.4 0.2 0.0

ROUGE-1

Generation performance 76.28 83.75 88.91 93.18 96.76 99.51

baseline 64.05 71.56 78.56 85.61 92.63 99.22

ROUGE-2

Generation performance 62.60 70.77 78.81 86.50 93.42 99.02

baseline 51.72 57.88 65.38 74.92 86.27 98.61

ROUGE-L

Generation performance 74.33 81.69 87.71 92.71 96.65 99.50

baseline 64.05 71.56 78.56 85.61 92.63 99.22

BERTScore

Generation performance 0.63 0.75 0.83 0.90 0.95 0.99

baseline 0.29 0.39 0.50 0.63 0.79 0.98

METEOR

Generation performance 0.70 0.80 0.87 0.93 0.97 1.00

baseline 0.66 0.72 0.78 0.85 0.92 0.99
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leads to a lower valid prediction rate. If the predicted words

include many spaces or punctuation marks, the readability will

decrease obviously.

In Supplementary Table S9, considering the perplexity, the

masking baseline is very high, while the values for synthetic

letters are close to the original ones. This indicates that the

synthetic letters are useful for training clinical models. For

information entropy, regardless of the masking ratio, it can

effectively preserve the amount of information. As for subjectivity,

since all the values are similar, we do not need to worry that the

synthetic letters will be biased.

As shown in Table 5, inference time for the entire dataset

consistently ranges between 3 and 4 h. However, it decreases

with either very high or very low masking ratios. A mid-range

masking ratio of approximately 0.6 results in longer inference

times, likely because lower ratios reduce the number of masked

tokens to process, while higher ratios provide less context,

reducing the computational load. This lack of effective context

also increases the invalid prediction rate. Conversely, with a

masking ratio of “0,” even a small number of prediction errors

can substantially affect the overall accuracy, as only a few tokens

are masked.

4.4 Other masking strategies using
Bio_ClinicalBERT

There is a random selection when masking tokens at certain

ratios. Masking different types of tokens will lead to different

results, as shown in Figure 13 and Supplementary Figure S19.

This variability is understandable since the encoder-only models

use bidirectional attention, as mentioned in Section 2.3. These

models need to predict the masked tokens based on the context.

Therefore, it is necessary to experiment with different masking

strategies based on the types of tokens. We used POS tagging

and stopwords to observe how these strategies influence the

quality of synthetic letters.

As discussed in Section 4.3, the BERTScore should be the

primary evaluation metric for our objective. Additionally, the

invalid prediction rate is useful for assessing the model’s ability

to generate informative predictions, and ROUGE scores help

evaluate literal diversity. Therefore, these quantitative metrics,

calculated using different masking strategies, are shown in this

section. Similar to Section 4.3, we experimented with different

masking ratios calculated from the eligible tokens (masked

tokens divided by eligible tokens). The ratios are increased in

increments of 0.1, ranging from 0.0 to 1.0. Due to space

constraints, only metrics with increments of 0.2 are shown here.

A comparison with the same actual masking ratio (masked

tokens divided by total tokens in the text) are also presented in

this subsection.

4.4.1 Masking only nouns
Nouns often correspond to personally identifiable information

(PII), so masking nouns can serve as a verification step for de-

identification.

As shown in Supplementary Table S10, the fewer nouns we

mask, the better all these metrics perform. This trend is

consistent with random masking. When the noun masking ratio

is 1.0, meaning that all nouns are masked, the BERTScore

increases from a baseline of 0.70 to 0.89. This means that the

model predicted meaningful nouns. A similar trend is observed

for the ROUGE scores. All evaluations are higher than the

baseline but lower than “1.” However, ROUGE scores show a

TABLE 5 Inference time and invalid prediction rate across different
masking ratios using Bio_ClinicalBERT.

Masking ratio 1.0 0.8 0.6 0.4 0.2 0.0

Inference time 3:12:05 3:28:56 3:33:26 3:25:16 3:13:26 3:01:11

Invalid prediction rate 0.72 0.47 0.34 0.28 0.25 0.37

FIGURE 13

Example sentence 1 with different masked tokens.
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smaller improvement than BERTScore. This may be because the

model generates synonyms or paraphrases that retain the original

meaning. As the noun masking ratio increases from 0.0 to 1.0,

the BERTScore decrease from 0.99 to 0.89, indicating a

significant decrease.

Therefore, to generate synthetic clinical letters that are

distinguishable but still retain the original clinical information,

we can only partially mask nouns (around 0.8 masking ratio). It

helps maintain balanced evaluation scores. When all nouns are

masked, the quality of synthetic letters deteriorates, with the

BERTScore falling below 0.9 and the invalid prediction rate

increasing to 0.37.

4.4.2 Masking only verbs
Masking only verbs also helps identify which token types are

appropriate for masking to achieve our objective. While verbs are

essential to describing clinical events, some can still be inferred

from context. Therefore, masking verbs may have a slight effect

on the quality of synthetic clinical letters, but it can also introduce

some variation.

Supplementary Table S11 shows a similar trend for masking

verbs as observed with other masking strategies in standard NLG

metrics. However, it is surprising that as the masking ratio

increases, both the invalid prediction rate and NLG metrics

decrease. This phenomenon can be attributed to two main

reasons. First, the model seems to prioritize predicting

meaningful tokens (rather than punctuation, spaces, etc.) to

generate coherent sentences. Contextual relevance is only

considered after the sentence structure is complete. This may be

due to the important role of verbs in sentences. Second, the

original raw data may contain fewer verbs than nouns. Therefore,

the number of actual masked tokens changes slightly when verbs

are masked, making the model less sensitive to them. This is also

reflected in BERTScore. If all verbs are masked, the BERTScore

remains high at 0.95, whereas if all nouns are masked, the

BERTScore drops to 0.89.

4.4.3 Masking only stopwords
As mentioned in Section 3.4.3, masking stopwords aims to

reduce noise for model understanding while introducing

variation in synthetic clinical letters. Supplementary Table S12

shows that masking only stopwords follows a similar trend to

random masking, where a higher masking ratio leads to lower

ROUGE Score and BERTScore. Additionally, the invalid

prediction rate is at its lowest with a medium masking ratio. This

is because higher masking ratios always result in more

information loss. On the other hand, lower masking ratios lead

to fewer tokens being masked, which makes small prediction

errors more influential. The results show an overall low Invalid

Prediction Rate and high BERTScore, indicating that stopwords

have only a limited influence on the model’s understanding of

context. This is not because the original raw letters contain very

few stopwords. In fact, there are even more stopwords than

nouns and verbs, as seen in sample texts.

4.4.4 Comparison of identical actual masking
ratios

To further observe how different masking strategies influence

the generation of clinical letters, we compared the results using

the same actual masking ratios but with different strategies. In

other words, the number of masked tokens is fixed, so the only

variable is the type of tokens being masked. Supplementary

Table S13 shows the results with a 0.04 actual masking ratio, and

Table 6 shows the results with a 0.1 actual masking ratio.

As we can see, masking only stopwords achieved the highest

BERTScore and lowest invalid prediction rate. Therefore,

stopwords have little influence on the overall meaning of the

text, which is consistent with our earlier findings. Additionally,

masking nouns and verbs performed worse than random

masking. Therefore, if we want to preserve the original meaning,

we cannot mask too many nouns and verbs.

4.4.5 Hybrid masking

After comparing different strategies with the same actual

masking ratio, we explored hybrid masking strategies and

compared them with other strategies at the same actual ratio.

The results are presented in Supplementary Table S14. The first

three columns have the same actual masking ratio. Masking only

stopwords achieved the strongest performance among these

strategies. However, when nouns were also masked along with

stopwords, the performance decreased, as masking nouns

negatively affect the results. Despite this, it still performed better

than random masking, indicating that stopwords have a greater

influence than nouns. Next, we compared the last two columns.

If 0.5 of nouns and 0.5 of stopwords were masked, adding an

additional 0.5 of masked verbs led to worse performance,

showing that verbs also negatively influence the

model’s performance.

TABLE 6 Quantitative comparisons of 0.1 actual masking ratio (the
baseline was calculated by comparing the masked text to the original
text).

Bio_ClinicalBERT Nouns
masking
(1.0)

Stopwords
masking (0.6)

Random
masking
(0.3)

ROUGE-1

Generation performance 93.29 96.56 95.10

baseline 88.13 89.04 89.16

ROUGE-2

Generation performance 86.71 92.53 90.17

baseline 78.32 79.99 80.44

ROUGE-L

Generation performance 93.00 96.23 94.86

baseline 88.13 89.04 89.16

BERTScore

Generation performance 0.89 0.95 0.93

baseline 0.70 0.71 0.71

Invalid prediction rate

Generation performance 0.37 0.20 0.26
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4.4.6 Comparison with and without (w/o) entity
preservation

To further explore whether keeping entities is useful for our

task, we compared our results with a baseline that does not

retain any entities. The baseline was trained with four epochs of

fine-tuning on our dataset. Specifically, 0.4 of nouns from all

tokens were randomly masked during baseline training. In

contrast, in our experiments, only eligible tokens—excluding

clinical information—were selected for masking. The

comparisons are shown in Table 7.

As we can see, when 0.4 nouns were masked while preserving

entities, the models performed much better than those without any

entity preservation. Interestingly, when we randomly masked 0.3

while preserving entities, the model achieved lower ROUGE-1

and ROUGE-2 scores but higher ROUGE-L and BERTScores

compared to models without entity preservation. This trend is

consistent across different settings. This suggests that models

preserving entities show less overlap with the original text, while

they can retain the original narrative better. Additionally, the

higher ROUGE-L score suggests that the step of preserving

document structure is indeed effective.

These results also confirm our initial hypothesis that, for our

objective—generating clinical letters that can keep the original

meaning while adding some variety—retaining entities is much

more effective than just fine-tuning the model. Moreover, this

approach can effectively preserve useful information while

avoiding overfitting.

4.5 Downstream NER task

To further evaluate whether synthetic letters have the potential

to replace the original raw letters, particularly in the domains of

clinical research and model training, a downstream NER task

was implemented. Two spaCy NER models were trained

separately on original raw letters and synthetic letters.

Specifically, the synthetic letters were generated with 0.3 random

masking while preserving entities.

As shown in Table 8, spaCy models trained on original and

synthetic letters showed similar evaluation scores. They even

achieved F1 scores comparable to ScispaCy’s score of 0.843.

Therefore, the unmasked context appears to have minimal

influence on model understanding. Consequently, our synthetic

letters can be used in NER tasks to replace real-world clinical

letters, thereby further protecting sensitive information.

4.6 Clinical evaluation

4.6.1 Clinical semantic preservation

As mentioned in Section 3.5.4, we used BioGPT with a random

masking ratio of 0.3 to evaluate the integrity of clinical narrative

preservation. As shown in Table 9, the mean similarity score

reaches 0.98, which is slightly higher than the score obtained

using the BERTScore metric. This may be because BioGPT

evaluates semantic similarity from a clinical perspective.

Additionally, such a high score suggests that the synthetic clinical

letters can potentially serve as replacements for the original ones.

4.6.2 Expert-simulated evaluation of clinical
quality

As mentioned in Section 3.5.4, we prompted GPT-3.5-Turbo to

simulate a clinical expert and evaluate clinical soundness and

narrative coherence. The masked letters (with text replaced by

“<mask>”) continued to serve as a baseline. The results are

shown in Table 10

Clinical soundness: The average clinical soundness score of

the generated letters (0.604) is slightly lower than that of the

original letters (0.766). Surprisingly, it is even lower than the

score of the masked letters (0.611). We further identified all cases

where the generated letters scored lower than the masked ones in

clinical soundness. These cases account for 14% (29 out of 204)

of the processed letters. One possible explanation is that

Bio_ClinicalBERT occasionally produces hallucinatory content,

which may obscure or distort the original clinical semantics.

However, in the majority of cases, the generated letters achieve

clinical soundness scores comparable to the masked letters and

close to the original ones—demonstrating the overall potential of

our synthetic letters to replace real ones.

Narrative coherence: As expected, the narrative coherence

score of the generated letters (0.460) is slightly lower than that of

the original ones (0.664), but higher than that of the masked

letters (0.418). These results further support the feasibility of

using synthetic letters as substitutes for real clinical letters.

TABLE 7 Comparison with and without entity preservation using Bio_ClinicalBERT.

Bio_ClinicalBERT With entity preservation (0.4
nouns masking)

With entity preservation (0.3
random masking)

Without entity preservation (0.4
nouns masking)

ROUGE-1 97.62 95.10 97.31

ROUGE-2 95.12 90.17 94.46

ROUGE-L 97.56 94.86 93.71

BERTScore 0.96 0.93 0.91

TABLE 8 Comparisons on downstream NER task.

Metric spaCy trained
on original

letters

spaCy trained
on synthetic

letters

Performance
Delta (D)

F1 Score 0.855 0.853 �0.002

Precision 0.865 0.863 �0.002

Recall 0.846 0.843 �0.003
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4.7 Post-processing results

4.7.1 Filling in the blanks
One example text without post-processing is shown in

Supplementary Figure S20. After filling in the blanks, the results

with BERT-base and Bio_ClinicalBERT are shown in Figure 14

and Supplementary Figure S21, respectively. We can see that

both models can partially achieve the goal of making the text

more complete. However, neither of them created a coherent

story to fill in these blanks. They just used general terms like

“hospital” and “clinic.” Perhaps other decoder-only models, more

suitable for generating stories like GPT, could perform better and

should be explored in the future.

4.7.2 Spelling correction
Supplementary Figure S22 shows that if the incorrect words are

masked, the models may be able to correct the misspelled tokens by

predicting them. However, the masking process is random.

Additionally, sometimes the predicted words will be incorrect

because some models tokenise the sentence into word-pieces.

Therefore, a post-processing step is necessary for correcting spelling.

As shown in Supplementary Figure S23, tooltik “TextBlob” (93)

can successfully correct misspelled words (“healhty”) in our sample

text. However, if clinical entities are not preserved during the pre-

processing step, “TextBlob” (93) may misidentify some clinical

terms as spelling errors. This may be because “TextBlob” (93)

was developed on the general corpus rather than a clinical one.

Additionally, its corrections are limited to the word level and do

not consider any context. Therefore, if words are misspelled

deliberately, they could be processed incorrectly. Thus, developing

a clinical misspelling correction toolkit is a promising research

direction in the future.

4.8 Discussion

We found that different masking strategies result in notable

differences in model performance. To enhance the practical

applicability of our research, we provide a guideline for selecting

appropriate masking strategies for different scenarios, as

presented in Table 11.

As mentioned earlier, we observe that when most clinical

terms are preserved, fine-tuning the model may not be necessary.

In terms of clinical evaluation, hallucinated content was found

to negatively affect clinical soundness, suggesting that

retrieval-augmented generation (RAG) or integration with a clinical

knowledge graph may be beneficial for future improvements.

Further exploration is also needed—such as dynamic vocabulary

construction—to better handle clinical abbreviations and novel

terms. Our synthetic framework for clinical letters did not show

any notable negative effects on narrative coherence or semantic

preservation, and the high performance in downstream NER tasks

further supports the feasibility of using synthetic letters as

substitutes for original ones. Although filling in blanks and

correcting spelling errors are essential for improving text quality,

mitigating errors in processing rare clinical terms remains a major

challenge, as previously discussed.

5 Conclusions and future work

5.1 Key findings

These results provided some useful findings in generating

clinical letters, including

• Encoder-only models generally perform much better in

clinical-letter masking and generation tasks, which is

consistent with a very recent study by Micheletti et al. (78).

When clinical information is preserved, base encoder-only

models perform comparably to clinical-related models.

• To generate clinical letters that preserve clinical narrative while

adding variety, BERTScore should be the primary evaluation

metric, with other metrics serving as supporting references.

This is because BERTScore focuses more on semantic rather

than literal similarity, and it is consistent with qualitative

assessment results.

• Different types of masked tokens influence the quality of

synthetic clinical letters. Stopwords exert a positive impact,

while nouns and verbs exert negative impacts.

• For our objective, preserving useful tokens is more effective than

just fine-tuning the model without preserving any entities.

• The unmasked context has minimal influence on the models’

understanding. As a result, the synthetic letters can be

effectively used in the downstream NER task to replace

original real-world letters.

• The synthetic letters largely preserve the consistency and

coherence of clinical narratives from the original letters.

However, Bio_ClinicalBERT occasionally generates

hallucinated content, which may negatively impact clinical

soundness and factuality.

TABLE 10 Expert-simulated evaluation results.

Metric Avg. Max. Min. Std.

Clinical soundness

Baseline (original) 0.766 1.0 0.5 0.11

Baseline (masked) 0.611 1.0 0.5 0.147

Generation performance 0.604 1.0 0.5 0.145

Narrative coherence

Baseline (original) 0.664 0.8 0.3 0.082

Baseline (masked) 0.418 0.7 0.2 0.168

Generation performance 0.460 0.7 0.2 0.177

TABLE 9 Results of clinical semantic preservation evaluation using BioGPT.

Metric Max score Min score Mean score Std deviation Evaluation set size

Value 0.9996 0.9037 0.9896 0.0147 204
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5.2 Limitations

Although the strategies mentioned above help generate diverse,

de-identified synthetic clinical letters, there are still some

limitations in applying this method generally.

• Challenges in the dataset: Since these clinical letters are derived

from the real world, certain issues are inevitable. For example,

there may be spelling errors in the dataset. In note_id

“10807423-DS-19,” the word “healthy” is misspelled as

“healhty.” Such errors can negatively impact the usability of

the synthetic text. Additionally, some polysemous words may

cause contextual ambiguity. For instance, the word “back” can

refer to an anatomical entity (e.g., the back of the body), or be

used as an adverb.

• Data volume: Due to the difficulty in collecting annotated data,

only 204 clinical letters were included in our research. This

limited sample size may not be sufficiently representative,

which could restrict the generalizability of our findings to a

broader scenario. Moreover, the data we used were already de-

identified. Although we considered de-identification and took

steps to mask all private information, the effectiveness of these

approaches cannot be thoroughly evaluated, as we do not have

access to sensitive datasets.

• Evaluation metrics: In this paper, we primarily used BERTScore as

our main evaluation metric, while also incorporating other metrics

such as ROUGE and readability metrics. However, there is

currently no comprehensive evaluation framework that can

assess all aspects simultaneously, including maintaining the

original meaning, diversity, readability, clinical soundness, and

even privacy protection effectiveness.

• Clinical knowledge understanding: While the model can often

preserve clinical entities and generate contextually reasonable

tokens, it sometimes makes comprehension errors. For

example, in a context where “LLE” (“left lower extremity”) is

used, Bio_ClinicalBERT incorrectly predicts the nearby

masked token as “R ankle” (“right ankle”). In this case, the

model fails to accurately capture the side clinical knowledge.

Other challenges lie in handling long-tail phenomena and

understanding abbreviated expressions, which are common in

clinical language. Although spell correction techniques are

explored in our project, distinguishing between a genuinely

novel term and a simple misspelling remains difficult.

• Computing resources: Due to resource limitations, we explored

a limited range of language generation models. Alternative

architectures—such as enhanced decoder-only models—may

be more suitable for our task.

5.3 Future work

Based on the limitations mentioned above, we outlined some

potential directions to further explore:

• Test on more clinical datasets: To further evaluate the

effectiveness of these masking strategies, more annotated

clinical letters should be tested to assess system generalization.

• Assess de-identification performance: A quantitative metric for

de-identification evaluation should be included in the future.

Non-anonymous synthetic datasets can be used to evaluate the

de-identification process, so that this system can be applied

directly to real-world clinical letters in the future.

• GRPO-based reinforcement learning: The group relative policy

optimization (GRPO) algorithm, as proposed in DeepSeek (94),

has the potential to effectively balance multiple objectives,

including clinical soundness, semantic integrity, textual

diversity, and de-identification quality.

TABLE 11 Priority-based masking guidelines.

Priority Note Suggested
masking
strategy

Application
scenarios

Diversity

first

To improve the

model’s

generalisation

Random masking

(primarily), clinical

terms masking

(limited)

Basic clinical model

pre-training; data

augmentation

Clinical

soundness

first

The synthetic letters

should satisfy

clinical factuality

Keep clinical terms

(complete);

stopwords masking

(extensive); verbs/

nouns masking

Clinical education;

clinical QA model

training; clinical

model fine-tuning

Privacy first To prevent PHI

disclosure and

mitigate privacy

reconstruction

through adversarial

attacks

Private tokens

masking (complete);

nouns masking

(extensive); verbs/

stopwords masking

(medium)

Building open-source

datasets; commercial

deployment

FIGURE 14

Post-processing results with BERT-Base.
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• Evaluation benchmark: A new metric suitable for our task should

be developed. Specifically, this metric should consider both

similarity and diversity. Weighting parameters for each

dimension could be useful and can be obtained through neural

networks. For evaluating clinical soundness, it is necessary to

invite more clinicians to assess the synthetic letters based on

multiple dimensions (77). Furthermore, mapping from clinical

letters to their quality scores can be learned using deep learning.

• Balancing knowledge from both clinical and general domains:

Although there are numerous clinical-related encoder-only

models, only a few can effectively integrate clinical and general

knowledge. Xie et al. (95) demonstrated that mixing the clinical

dataset with the general dataset in a certain proportion can help

the model better understand clinical knowledge. Therefore, a

new BERT-based model should be trained from scratch using

both clinical and general domain datasets.

• Synonymous substitution: We focused on exploring the range

of eligible tokens for masking. Additionally, a masking strategy

similar to BERT’s can be integrated with our results (58).

Specifically, we can select certain tokens to mask, some to

retain, and replace others with synonyms. This approach can

further enhance the variety of synthetic clinical letters.

Moreover, the retained clinical entities can also be substituted

using entity linking to SNOMED CT.

• Spelling correction: As mentioned in Section 4.7, very few toolkits

are available for spelling correction in the clinical domain.

Standard spelling correction tools may misidentify clinical terms

as misspelled words. Therefore, it is necessary to develop a

specialized spell-checking tool adapted to the clinical domain.
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