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Editorial on the Research Topic
 Body composition assessment and future disease risk




Body composition assessment is a fundamental element of chronic disease prevention, diagnosis, and management in clinical practice. Body composition consists of various components, including adipose tissue, muscle mass, bone mass, height, and organ tissues. It is widely used to examine the relationship between these components and health outcomes such as mortality and disease risk. Understanding body composition provides valuable insights into the structure and function of adiposity, the detection of obesity-associated phenotypes, and the mechanisms of chronic disease development (1). Quantifying body composition advances the impact of each component on disease development and management. For instance, body mass index (BMI, kg/m2) is the most common method to identify obesity and its associated chronic diseases in practice.

Obesity is a critical attribute of many chronic diseases. Obesity is defined as abnormal or excessive body fat associated with chronic disease risk (2). BMI is a rule of thumb for estimating obesity in practice due to its simple and convenient nature. However, although BMI is associated with chronic disease risks, the limitations of BMI have become increasingly apparent in terms of accurately measuring body fat mass and regional fat distribution (3, 4). Additionally, using BMI alone to measure body fat can lead to significant misidentification of patient health risk classification.

A large body of literature has found that overweight or obese individuals defined by BMI sometimes demonstrate better survival and outcomes than normal-weight counterparts (5–7). These studies explain this relationship between BMI and survival by highlighting the inaccuracy of BMI as a measurement of body fat mass. Specifically, some evidence indicates that elevated BMI, an indirect measure of body fat, is not as useful in predicting downstream mortality as a direct measure of body fat (8). Rather, despite a higher BMI, individuals who have more muscle mass and lower lean mass tend to show better outcomes (9, 10). On the other hand, the “skinny fat” or “metabolically obese normal weight (MONW)” body type demonstrates detrimental outcomes among the normal BMI population. However, these body types are neglected in preventive care screening services due to BMI being the standard. Nevertheless, MONW is strongly associated with metabolic syndrome, type 2 diabetes, and cardiovascular disease (CVD) due to the increased workload of the heart and cytokine malfunction (4, 11, 12). These findings elucidate the need for more effective methods of body composition measurement for better risk assessment of chronic disease morbidity and mortality.


Body composition measurements and chronic diseases

Body composition is strongly associated with chronic diseases. Particularly, adipose tissue is a critical risk factor for obesity associated with chronic diseases (13). As alternative measurements of body composition to BMI have been proposed, such as waist circumference (WC), waist-to-hip ratio (WHR), and direct measures of body fat percentage (BF%) or lean body mass, the relationship between body fat and chronic disease risk extends beyond the conventional approach using BMI.

Visceral fat tissue is directly associated with chronic disease, and the visceral fat index may be an effective measurement to predict the risk of chronic diseases. Huang et al. used the visceral adiposity index (VAI), an indirect measure of visceral body fat combining information from WC, BMI, triglycerides, and HDL cholesterol, to calculate sex-specific visceral fat function. They categorized VAI into quartiles and found a non-linear relationship between VAI and prediabetes and diabetes for both sexes. Especially, they identified a significant threshold at 2.10 for VAI in the early detection of prediabetes and diabetes. If an individual surpasses the 2.10 threshold, they may be at higher risk for developing those conditions.

Utilizing various body composition measurements can enhance the prediction of chronic diseases and hospitalization outcomes more effectively. A meta-analysis analyzed 22 studies on the relationship between WHR and myocardial infarction (MI) over the past 20 years (Zhang et al.). The results demonstrated that a higher WHR is positively associated with MI compared to a lower WHR. Interestingly, gender-specific analysis confirmed this association more specifically, showing that WHR had a stronger association with MI among females. Yan and Chen proved a strong association of four different body composition assessments, including BMI, body fat percentage, WC, and hip circumference, as risk factors for non-suppurative otitis media (NSOM) while the study did not specify the types of NSOM. Of those, hip circumference had the highest association with NSOM. Canonico et al. used calf circumference (CC) to evaluate the risk of in-hospital complication risk and in-hospital mortality. As a result, lower CC was associated with a higher risk of in-hospital complication development and death during hospitalization or within 90 days of discharge in frail older patients (Canonico et al.).

Nutritional intake patterns in children and adolescents show complex relationships with different obesity phenotypes, contributing to our understanding of early risk factors for pediatric chronic diseases. Dietary habits showed a higher association with abdominal obesity measurements such as WC or waist-to-height ratio (WHtR) rather than BMI in children and adolescents aged 6 to 18 years old (Yun et al.). More specifically, those with unhealthy nutritional intake reported three times higher abdominal obesity prevalence compared to those with healthy nutrition intake.



Body composition and adverse outcomes

Reports about an “obesity paradox” exist where higher BMI ranges are protective (14). For example, Li et al. showed a significant association between BMI increments and 29-day mortality in patients with sepsis, indicating that higher BMI is significantly associated with lower mortality. Despite such reports, studies also show that lean mass is a mediator between BMI, adiposity, and patient mortality (9, 15). Therefore, directly measuring body fat may have better utility for measuring outcomes in certain cases. In this regard, Fang et al. found that patients undergoing small cell lung cancer immunotherapy with a higher visceral to subcutaneous fat ratio (VSR) reported a worse response to the therapy than those with a lower VSR. Although unadjusted regression models showed significantly worse overall survival and progression-free survival among patients with sarcopenia or lower skeletal muscle mass compared to those with higher muscle mass, the adjusted models did not show significant outcomes (Fang et al.).

More accurate body composition assessment is particularly important when evaluating older adults experiencing sarcopenia with preserved fat mass. Calf circumference (CC), which serves as a valuable muscle mass marker, was the only significant body composition measurement for all in-hospital mortality, complications, and 90-day mortality compared to hand grip strength and existing clinical frailty among older hospitalized patients (Canonico et al.). Since CC is highly associated with mobility and falls (16), it can provide more valuable insights, demonstrating that age-associated changes in body composition predict adverse outcomes more accurately than static measurements.

Lastly, despite the widespread clinical use of BMI as a cardiovascular disease (CVD) risk factor, there may be limitations when using it with the triglyceride-glucose (TyG) index to capture metabolic risk. More specifically, even though BMI and TyG independently proved to have a significant association with CVD, TyG did not play a role as a mediator of CVD when combined with BMI (Gan et al.).



Body composition assessment evolution

As measurement technology has evolved, more specific body compositions can be measured with a home-based digital scale. However, concerns have been raised about measurement accuracy and usability in practice. Dual-energy X-ray absorptiometry (DXA) scans are the most accurate measurement tool, but they are not easily used in practice and are expensive to use solely for body composition measurement purposes. Bioelectrical impedance analysis (BIA) is an alternative tool that can be used in practice and at home relatively easily. Despite the lower accuracy of BIA compared to DXA scan, its performance is sufficient compared to DXA scan to reliably be used in clinical practice (17–19).

As technology has advanced, new technologies and methodologies have emerged to measure and utilize body composition in predicting health risks. Machine learning is used to measure comprehensive body composition effectively (20, 21). BF% was generated with a smartphone that uses a three-dimensional scanning application, and the results were reliable compared to DXA scans (Tinsley et al.). It can contribute to assessing multi-dimensional aspects of body composition, from appearance to internal body composition, by utilizing advanced measurement with a smartphone in clinical settings. Furthermore, it may be a more effective, cost-effective way to measure whole body composition for patients.



Clinical implications and conclusion

The growing evidence connecting body composition to chronic disease risk and outcomes has significant implications for clinical practice. Moving beyond the conventional BMI-centric approaches to health assessment allows more precise risk stratification and personalized intervention and care planning. Clinicians can use direct measures of body composition, such as DXA scan or the more clinically utilizable BIA, to identify high-risk patients, such as those with skinny fat or sarcopenic obesity, which might otherwise be missed by using BMI alone.

As body composition and chronic disease research advance, tools and methods directly measuring body composition will become more accurate and reliable. Such tools should be clinically relevant, like BIA, to be valuable in primary care settings where they can enhance early detection of unfavorable body composition and guide preventive intervention before disease develops, ultimately leading to improved patient outcomes and more effective preventive care.
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Background: Observational studies have found that obesity is associated with the development of non-suppurative otitis media (NSOM), but the causality and pathogenesis are unclear. This study aimed to investigate the association between obesity, lipid metabolism, and NSOM at the genetic level.

Methods: We performed a bidirectional two-sample Mendelian randomization (MR) study to examine the causal relationship between obesity, lipid metabolism-related factors, and NSOM by using the datasets obtained from the IEU Open genome-wide association studies (GWAS) Project. Furthermore, a multivariate MR (MVMR) analysis on lipid indicators was conducted to validate the results. We then used obesity or body mass index (BMI) as the exposure and NSOM as the outcome to search for possible mediators in lipids and adipokines.

Results: Using NSOM as the outcome, we found nine positive exposure results related to obesity and lipid metabolism. Among them, obesity, BMI, body fat percentage, waist circumference, hip circumference, and resistin were risk factors, while apolipoprotein A1 (apoA1), high-density lipoprotein cholesterol (HDL-C), and nerve growth factor (NGF) were protective factors. Then, we used the obesity and lipid metabolism-related factors as outcomes and NSOM as the exposure to perform the MR analysis, which failed to obtain positive results. In the MVMR analysis, we found that HDL cholesterol and apoA1 remained causally associated with NSOM after correction for other potential confounders. Simultaneously, when obesity or BMI was used as the exposure and NSOM as the outcome, HDL cholesterol or apoA1 served as mediators through a two-step MR analysis. The MR analysis for mediation, obesity, and BMI reduced the production of HDL or apoA1, which served as protective factors affecting the development of NSOM.

Conclusion: At the genetic level, obesity and adiposity may promote the development of NSOM, while NSOM has no effect on obesity and adiposity. Obesity can also encourage the progress of NSOM by reducing HDL cholesterol/apoA1. Resistin may be a potential risk factor for NSOM, whereas NGF may be a potential protective factor.

Keywords
 obesity; lipid; Mendelian randomization; high-density lipoprotein; apolipoprotein A1


Introduction

Non-suppurative otitis media (NSOM), also known as secretory otitis media, exudative otitis media, serous otitis media, catarrhal otitis media, and tympanic cavity effusion, is a common inflammatory disease of the middle ear. It is usually caused by poor Eustachian tube function and is characterized by otitis media effusion and hearing loss. NSOM is most common in children, and its incidence rate is very high. It usually develops between 6 months and 4 years old (1). In total, 50–90% of children under the age of 5 have a history of NSOM (2). It is also one of the leading causes of hearing loss in children and even has an impact on their intelligence and language development.

Obesity is a global issue of great concern, and it is becoming more serious as living standards rise (3). Obesity has been shown to cause a variety of diseases, including cardiovascular (4) and cerebrovascular disease (5), diabetes (6), obstructive sleep apnea syndrome (7), and metabolic disorders (8). Observational studies have shown that NSOM may be associated with obesity, most of which is concentrated in the pediatric population (9, 10). In addition, observational studies have also found that a high-fat diet rather than obesity is associated with NSOM, and a high-fat diet is a confounding factor between obesity and NSOM (11). At present, the relationship between the two is still not very precise, the mechanism of action and the causal relationship are not clear, and the observational research is easily influenced by confounding factors.

Mendelian randomization (MR) can use genetic instrumental variables to test the potential causal relationship between exposures and outcomes. Because genetic variation occurs randomly and is not influenced by external environmental factors, MR analysis minimizes potential unpredictable confounding factors and compensates for the shortcomings of observational research (12). Cao et al. (13) used MR methods to demonstrate that childhood body mass index is a risk factor for the development of NSOM in children. Considering the correlation between lipid metabolism-related factors and obesity, we also included them in the study and used MR methods to analyze the relationship between obesity, obesity indicators, lipids, adipokines, and NSOM, to gain a preliminary understanding of the disease pathogenesis.



Methods

The exposure and outcome data for MR analysis were collected from the datasets of the IEU Open GWAS Project, and the data on obesity and lipid metabolism were divided into four categories: obesity (phenotype of obesity), obesity indicators, lipids, and adipokines. Obesity indicators include body mass index (BMI), body fat percentage, waist circumference, and hip circumference; lipids include total cholesterol, low-density lipoprotein cholesterol (LDL cholesterol, LDL-C), high-density lipoprotein cholesterol (HDL cholesterol, HDL-C), triglycerides, apolipoprotein A1 (apoA1), and apolipoprotein B (apoB); adipokines include adiponectin, resistin, leptin, agouti-related protein, and nerve growth factor (NGF). There were a total of 16 obesity and lipid metabolism-related GWAS datasets as exposure data. The outcome data were NSOM. The details of the GWAS datasets from the IEU website are shown in Table 1.



TABLE 1 Detailed information on the dataset used in this article from the IEU website.
[image: Table1]

To meet the three hypotheses of the MR analysis and minimize the influence of confounding factors, we extracted single nucleotide polymorphisms (SNPs) as instrumental variables that met the following conditions: a clustering window of 10 MB and an r2 cutoff of 0.001. SNPs associated with every trait were extracted at a significance threshold of p < 5 e- 8, but if there were few SNPs extracted for Mendelian randomization, we would reanalyze them at p < 5e-6 or P<5e-5.

In total, 16 datasets related to obesity and lipid metabolism were used as exposures, with NSOM as the outcome. A two-sample MR analysis was performed using MR Egger, weighted media, inverse variance weighted (IVW), simple mode, and weighted mode, in which IVW was used as the main analysis method (referred to as forward MR analysis). If the IVW method produced a p-value less than 0.05, a statistically significant causal relationship between exposure and outcome was considered. Additionally, if the odds ratio (OR) >1, risk factors for the development of outcomes were considered; if OR < 1, protective factors were considered. To measure the heterogeneity among SNPs, Cochran’s Q test was employed with the MR Egger and IVW methods, and the MR Egger intercept method was used for pleiotropy testing. If the p-value of the IVW method was between 0.04 and 0.05, further validation of the sensitivity of the results would be conducted using the “Leave-one-out” analysis, which can remove each SNP one at a time and track how each SNP affects the combined results.

Then, we used NSOM as the exposure and 16 obesity and lipid metabolism-related datasets as the outcomes for a reverse two-sample MR analysis using the MR Egger and IVW methods. There was a statistically significant causal relationship between the outcome and exposure when using the IVW method, with a p-value of <0.05. The subsequent validation methods were the same as the forward MR analysis described above.

Due to the interaction between many lipid indicators, we selectively conducted a multivariate MR (MVMR) analysis on lipids to further verify the reliability of the results.

Finally, we employed a two-step MR analysis using the five methods mentioned above, with IVW as the main method. We used obesity and BMI as exposures and NSOM as the outcome to identify potential mediating variables in lipids and adipokines with a causal relationship to NSOM. Both steps used the method of two-sample MR to avoid confounding factors, and SNPs duplicated in the first step were deleted during the second step of the MR analysis. A mediating effect was considered to exist if the p-value of both steps in the MR analysis using the IVW method was less than 0.05. We called the total effect value of exposure to outcome “beta all,” the effect value of the first step of MR analysis of exposure to the mediator “beta1,” the effect value of the second step of MR analysis of mediator to outcome “beta2,” the mediator effect value “beta12”(beta1*beta2), the direct effect value of exposure to outcome “beta_dir”(beta all-beta1*beta2), and the ratio of mediator effect “beta_per”(beta1*beta2/beta all).

All data analyses were processed using R 4.3.2 and related extension packages.



Results


Two-sample MR


Forward MR analysis

In total, 16 datasets related to obesity and lipid metabolism were used as exposures, with NSOM as the outcome. SNPs associated with all traits were extracted at a significance threshold of p < 5 e- 8. There were a total of nine positive factors, namely, obesity, BMI, body fat percentage, waist circumference, hip circumference, HDL cholesterol, apoA1, resistin, and NGF. Among all positive factors, the direction of action in the results using the five methods was also consistent.



Obesity (phenotype of obesity)

The IVW analysis revealed a causal relationship between obesity and NSOM (p = 0.02); the OR value greater than 1 indicated that obesity was a risk factor for NSOM. The Cochran’s Q p-value and the MR Egger intercept p-value were both greater than 0.05, indicating that there was no heterogeneity and pleiotropy in the result.



Obesity indicators

All four obesity indicators were positive exposures, including BMI, body fat percentage, waist circumference, and hip circumference. The OR values for the obesity indicators were all greater than 1, specifically 1.37, 1.30, 1.32, and 2.30, showing that these four indicators were risk factors for the development of NSOM. In the heterogeneity test, all Cochran’s Q p-values were greater than 0.05, indicating that there was no heterogeneity in the results. The MR Egger intercept for all dataset results had p-values greater than 0.05, indicating that there was no pleiotropy in the data results (Figure 1).

[image: Figure 1]

FIGURE 1
 Forward Mendelian randomization analysis data on obesity, obesity indicator, and NSOM. The red text denotes the p-value for this trait is less than 0.05. nsnp, number of single nucleotide polymorphisms used as instrumental variables for Mendelian randomization; OR, odds ratio; CI, confidence interval; NSOM, non-suppurative otitis media.




Lipids

Among the six indicators, HDL-C and apoA1 had a causal relationship with the outcome of NSOM, and their OR values were all less than 1, indicating that they were protective factors against the progression of the disease. In the heterogeneity test, all Cochran’s Q p-values were greater than 0.05, indicating that there was no heterogeneity in the results. The p-values of MR Egger intercept for all results were all greater than 0.05, indicating that there was no horizontal pleiotropy (Figure 2).
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FIGURE 2
 Forward Mendelian randomization analysis data on lipids and NSOM. The red text denotes that the p-value for this trait is less than 0.05.nsnp, number of single nucleotide polymorphisms used as instrumental variables for NSOM, non-suppurative otitis media.




Adipokines

Among the five indicators of adiponectin, the p-values of resistin and NGF using the IVW analysis method were less than 0.05, indicating that the two were positive exposures. Resistin, with an OR greater than 1, was identified as a pathogenic factor for the progression of the disease, while NGF, with an OR lower than 1, was considered a protective factor against disease progression. According to the data in Figure 3, heterogeneity and horizontal pleiotropy of the two positive exposures can be excluded. The “Leave-one-out” analysis of susceptibility shows that the MR test was reliable (Figure 4).
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FIGURE 3
 Forward Mendelian randomization analysis data on adipokines and NSOM. The red text denotes the p-value for this trait is less than 0.05. nsnp, number of single nucleotide polymorphisms used as instrumental variables for Mendelian randomization; OR, odds ratio; CI, confidence interval; NSOM, non-suppurative otitis media.
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FIGURE 4
 “Leave-one-out” analysis of the causal association of resisitin levels, nerve growth factor and Nonsuppurative otitis media. The 95% CI and causal estimate when each SNP was eliminated individually are shown by the black bars and dots. The fixed-effect IVW method‘s overall estimate and 95% confidence interval are shown by the red dot and bar. CI, confidence interval; SNP, single nucleotide polymorphism; IVW, inverse-variance weighted.




Reverse Mendelian randomization analysis

Using the 16 obesity- and lipid metabolism-related factors as outcomes and NSOM as the exposure, the MR analysis was performed using the IVW and MR Egger methods, and it was found that all datasets had no positive results. The p-values of all IVW analysis results were greater than 0.05. To obtain sufficient instrumental variables, we set the threshold for extracting significant SNPs to p < 5e-6, except for acting leptin as the outcome to p < 5e-5. Although the p-value of Cochran’s Q test for several data was less than 0.05, it may be because the data came from different analysis platforms, experiments, and populations. There was no pleiotropy in the data results, as indicated by p-values larger than 0.05 for the MR Egger intercept for all dataset outcomes (Supplementary Table S1).



MVMR

Combining the positive results obtained in the two-sample MR analysis, we grouped HDL-C, LDL-C, and triglycerides into one group and apoA1 and apoB into another group. By correcting for the effects of LDL-C and triglycerides on NSOM, the causal effect of HDL-C on NSOM remained significant. By correcting for the effects of apoB on NSOM, the causal effect of apoA1 on NSOM also remained significant (Figure 5).
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FIGURE 5
 Multivariate Mendelian randomization analysis, (A) the group of HDL cholesterol, LDL cholesterol, and triglycerides; (B) the group of apolipoprotein Al and apolipoprotein B. The red text denotes that the p-value for this trait is less than 0.05. nsnp, the number of single nucleotide polymorphisms used as instrumental variables for NSOM, non-suppurative otitis media.




Two-step MR

In the two-sample MR analysis, we obtained four lipid metabolism-related factors causally associated with NSOM: HDL-C, apoA1, resistin, and NGF. In the two-step MR analysis, we used these four datasets as a suspected mediator and set the threshold for extracting significant SNPs to p < 5e-8. The analysis revealed that HDL and apoA1 could serve as mediators when using obesity as an exposure (Figure 6). The mediation effects were 0.016 and 0.01, respectively, and the percentage of the mediation effects was 0.099 and 0.063, respectively. HDL and apoA1 can also be used as mediators when using the BMI as the exposure (Figure 7); the mediation effects were 0.05 and 0.041, respectively, and the percentage of the mediation effects was 0.158 and 0.13, respectively. The direction of action with the MR Egger method was different from the other four methods when using obesity as the exposure and apoA1 as the outcome; except for the above, the direction of the results using the five methods used for MR was consistent. The p-value of the MR Egger intercept was greater than 0.05 for all analyzed procedures, indicating that there was no pleiotropy (Supplementary Table S2) (Table 2).
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FIGURE 6
 Two-step MR for mediation analysis of obesity as the exposure and NSOM as the outcome. The bold text denotes the p-value for this trait is less than 0.05. (A) The mediation is HDL cholesterol. (B) The mediation is apolipoprotein Al. nsnp: number of single nucleotide polymorphisms used as instrumental variables for Mendelian randomization; OR, odds ratio; CI, confidence interval; NSOM, non-suppurative otitis media.
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FIGURE 7
 Two-step MR for mediation analysis of body mass index as the exposure and NSOM as the outcome. The bold text denotes that the p-value for this trait is less than 0.05. (A) The mediation is HDL cholesterol. (B) The mediation is apolipoprotein Al. nsnp: number of single nucleotide polymorphisms used as instrumental variables for Mendelian randomization; OR, odds ratio; CI, confidence interval; NSOM, non-suppurative otitis media.




TABLE 2 The mediating effect of two-step MR mediation analysis.
[image: Table2]





Discussion

In this study, we used an MR method of multi-factors to explore the genetic impact of obesity, obesity indicators, lipids, and adipokines on the risk of NSOM. We aimed to explore the potential factors and pathogenesis of NSOM related to obesity and lipid metabolism and strived to find new treatments, thereby reducing the incidence rate of NSOM and improving its prognosis. We used five methods in MR analysis, namely MR Egger, weighted media, IVW, simple mode, and weighted mode. Although many results showed inconsistent MR estimates, considering the advantage of IVW in maintaining higher estimation accuracy (14), if the p-value of IVW was less than 0.05, we believed that there was a statistically significant causal relationship between exposure and outcome. In this MR analysis, a total of nine factors of obesity and lipid metabolism were found to have a causal relationship with the risk of NSOM, which is consistent with the conclusion drawn from observational studies that obesity may affect the development of NSOM and provides a theoretical basis for its related pathogenesis.

This study found that obesity and four obesity-related indicators, namely obesity, BMI, body fat percentage, waist circumference, and hip circumference, all increase the risk of NSOM, indicating that obesity and increased body fat were risk factors for NSOM. In observational studies, the BMI of children with NSOM was significantly higher than that of normal children (9, 10, 15). Kim et al. found that 21.4% of children with NSOM were overweight and 17.8% were obese, with a higher prevalence of obesity in the study group than in the control group (10.5%) (16). Interestingly, a study from Korea showed that fat intake, but not BMI, was associated with NSOM (11). Specifically, in the healthy weight group, higher fat intake was associated with a higher risk of NSOM. Unfortunately, our study did not determine whether BMI or fat contributed more to NSOM. More research may be needed to confirm this.

It is well known that adenoid hypertrophy leads to NSOM. One study (17) has shown that children with chronic NSOM have a higher incidence of overweight or obesity, and the presence and degree of adenoid or tonsil hypertrophy are not related to overweight or obesity, which indirectly suggests that tonsil and adenoid hypertrophy are not confounders between obesity and NSOM. Normal Eustachian tube function is the foundation for maintaining the normal function of the middle ear. Obese patients may alter the structure of the fat tissue around the Eustachian tube by altering its accumulation, thereby affecting Eustachian tube function and making NSOM more likely to occur (18). In addition, obesity is often associated with obstructive sleep apnea–hypopnea syndrome, which can lead to increased intra-abdominal pressure, decreased intrathoracic pressure, and exacerbation of gastroesophageal reflux (19). Reflux can cause damage to the mucosa of the Eustachian tube and tympanic cavity, thereby exacerbating the occurrence of NSOM. Therefore, changes in tube function and gastroesophageal reflux may be intermediate variables between obesity and NSOM.

For children, there is no gender difference in the incidence of NSOM, although NSOM is most common under the age of 2 and reaches another peak at the age of 5 (20). Gender and age are key factors for BMI (21, 22), which can be used to assess the greatest association between overweight and body fat and is widely used to measure obesity (23). To date, there is insufficient evidence for gender and age distribution differences in the higher BMI of NSOM patients than healthy children. Mehmet et al. (10) found that after grouping by gender, BMI remained statistically significantly higher in NSOM patients against controls in both boys and girls. They also found no difference in BMI between the NSOM and control groups at age (6, 8 for boys and 6, 9, 10, 11 for girls); however, the percentile range of BMI was higher in the NSOM group.

There are few reports about lipids related to NSOM. It has been reported that serum total cholesterol in the NSOM group is significantly higher than that in the controls, while triglycerides are not (15). However, another research has demonstrated that there is no difference in serum total cholesterol or triglycerides between the NSOM and control groups (16), which is consistent with our results. HDL-C and apoA1 were positive results for NSOM in this study. As HDL-C, LDL-C, and triglyceride have interaction relations, we put these three in a group for further MVMR analysis. ApoA1 is a major protein component of HDL (24), and apoB is a major protein component of LDL (25), and we put them in another group for MVMR. According to the MVMR analysis, the causal relationship between HDL-C and apoA1 on NSOM remained significant even after adjusting for the influence of other potential confounding factors on NSOM. We did not perform the MVMR analysis for obesity factors due to collinearity, nor did we perform the MVMR analysis of adipokines factors due to their independence.

In the two-step MR analysis for mediation, we used both BMI and obesity as exposures. Based on the analysis results, it was known that HDL-C and apoA can be used as mediating factors between obesity and NSOM. Combined with the direction of action indicated by the OR value, obesity/BMI may downregulate the production of HDL-C/apoA, and HDL-C/apoA1 plays a protective role in the development of NSOM. Therefore, obesity promotes NSOM by downregulating HDL-C/apoA1. Although the MR Egger method did not show consistent results with the other four methods when obesity was analyzed as an exposure and apoA1 as an outcome in MR analysis, the p-value of the MR Egger method, which was greater than 0.05, was considered not statistically significant. In addition to the IVW method, the p-value of the weighted median method was also less than 0.05, which enhanced the reliability of the results. Although there is no direct evidence that HDL-C/apoA1 is associated with NSOM, previous studies have found that HDL-C/apoA is associated with inflammation. The low levels of HDL-C are strongly associated with, and an independent predictor of, inflammation and endothelial cell activation (26). ApoA1 can play an anti-inflammatory role by inducing M2 macrophage differentiation (27) and inhibiting neutrophil hyperactivation (28). Obesity affects HDL-C in two ways. First, it accelerates HDL-C degradation, cholesteryl ester transfer protein (CETP) and hepatic lipase activity are elevated in obese patients. Increased hepatic lipase activity promotes HDL-C catabolism to produce apoA1 and HDL-C particles, with apoA1 being recycled or degraded by the kidneys. Second, it blocks HDL-C synthesis, which is also affected by CETP. CETP inhibitors block the exchange of triglycerides and cholesterol, reduce HDL-C esterification, and improve HDL-C function (29).

Among the adipokines, resistin and NGF showed a causal relationship with NSOM. We have not found any reports about resistin or NGF related to NSOM. Resistin was a risk factor for disease, and NGF was a protective factor. The MR analysis results had p-values only slightly lower than 0.05 and ORs close to 1, indicating that their significance was not high. We can only consider them as factors in a potential causal relationship with NSOM. Although the sensitivity analysis of “Leave-one-out” increased the reliability of the results, further validation is still needed.

There is also a view that NSOM may lead to obesity by affecting the chorda tympani nerve, leading to changes in taste function and preference for a high-fat diet (30). In our MR analysis using NSOM as exposure and 16 factors of obesity and lipid metabolism as outcomes, no positive results were obtained, suggesting that NSOM does not directly lead to obesity and does not affect lipid metabolism.

Finally, we recommend that weight loss is a good option for NSOM patients associated with obesity, especially in children. Even for NSOM patients with normal BMI, it is necessary to avoid a high-fat diet. However, it may be a new way to treat NSOM by regulating HDL-C, apoA1, resistin, and NGF. This article reveals the relationship between obesity, lipid metabolism-related factors, and NSOM at the genetic level. Compared to observational studies, the MR analysis excluded environmental factors and clarified their causal relationships, resulting in relatively reliable results. However, this article still has certain limitations. For example, we selected GWAS datasets for adiponectin and leptin levels from a mixed population, while other GWAS datasets came from European populations, which may have potential heterogeneity. To obtain causal factors related to NSOM as much as possible to facilitate the screening of mediators, we did not correct the p-value of the MR analysis results, which resulted in an increased false-positive rate of the results. Second, it was not possible to group datasets and obtain information on age and gender differences; however, previous studies have mostly focused on children. Additionally, a reverse MR analysis only provided insufficient lateral evidence and did not directly validate the viewpoint in the observational study that NSOM exacerbates obesity by affecting the sense of smell. Further prospective clinical trials are needed for us to remedy these limitations and validate our results.



Conclusion

This study proposed several protective and risk factors related to obesity and lipid metabolism causality associated with NSOM. Through comprehensive analysis, we conclude that obesity and adiposity may increase the risk of developing NSOM while NSOM does not affect obesity, adiposity, or lipid metabolism. HDL-C and apoA may inhibit the progress of NSOM. In the adipokines, resistin may be a potential risk factor for NSOM, whereas NGF may be a potential protective factor. In addition, obesity may promote the development of NSOM by lowering HDL-C and apoA.
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Measuring calf circumference in frail hospitalized older adults and prediction of in-hospital complications and post-discharge mortality
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Background: Sarcopenia, characterized by muscle mass, strength, and performance decline, significantly impacts outcomes in older adults. This study aims to assess the predictive value of calf circumference (CC), in conjunction with SARC-F and hand grip, concerning in-hospital complications and post-discharge mortality among hospitalized frail older adults.

Methods: A cohort of 158 hospitalized patients aged over 65 years underwent Comprehensive Geriatric Assessment and sarcopenia screening, including CC measurement. Multivariable regression analyses, adjusted for confounders, were conducted to assess predictive associations.

Results: The study cohort, comprising 53% males with a median age of 86 years, exhibited significant sarcopenia prevalence based on SARC-F (85% indicating sarcopenia), hand grip strength (probable sarcopenia in 77% of males and 72% of females), and CC (sarcopenia in 83%). Multivariate analysis, adjusting for age, sex, Clinical Frailty Scale (CFS), and Mini Nutritional Assessment-Short Form (MNA-SF), demonstrated associations of CC and SARC-F with in-hospital complications, while CC also showed a significant association with reduced risks of in-hospital mortality (OR 0.441, 95% CI 0.257 to 0.754, p = 0.003) and 90-day mortality (OR 0.714, 95% CI 0.516 to 0.988, p = 0.043).

Conclusion: This study provides insights into the predictive accuracy of sarcopenia screening tools on mortality in real-world hospitalized older adults with frailty. Notably, CC emerges as a robust predictor of mortality outcomes. Further research is warranted to validate and elucidate the respective contributions of CC and frailty to mortality in vulnerable populations.
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Introduction

Sarcopenia is a progressive and generalized skeletal muscle disorder characterized by reduced muscle mass, strength, and performance, associated with an increased likelihood of experiencing adverse outcomes including falls, fractures, physical disability, and mortality (1, 2).

Its prevalence ranges from 7.5% in community-dwelling older adults to 77.6% in patients undergoing rehabilitation or post-acute care (3). Up to 15% of hospitalized older adults may develop sarcopenia at discharge (4). Sarcopenia is secondary to reduced physical activity (bed rest, and physical deconditioning), multimorbidity, nutritional factors (malnutrition with or without malabsorption, gastroenteric diseases), and polypharmacy. Notably, sarcopenia is also strongly associated with frailty, a geriatric syndrome characterized by an extreme vulnerability to endogenous and exogenous stressors, resulting from age-related depletion of the body’s homeostatic reserves (5). Frailty and sarcopenia share commonalities such as muscle atrophy, dynapenia, and impaired physical function; malnutrition may be considered a harbinger between the two, ultimately leading to an acceleration of the frailty trajectory (6).

In 2019 a revised diagnostic algorithm for sarcopenia (2nd edition of the European Working Group on Sarcopenia in Older People, EWGSOP2) (7) was proposed and the SARC-F questionnaire was recommended for screening (8). SARC-F is a questionnaire consisting of five questions concerning Strength (S), Assistance with walking (A), Rising from a chair (R), Climbing stairs (C), and Falls (F). Growing evidence has underscored the role of sarcopenia screening in predicting in-hospital immediate mortality in older adults. Namely, in a Japanese retrospective study conducted on over 2.400 hospitalized over-65 patients, SARC-F score was associated with increased in-hospital mortality within 30 days (9). Similarly, a recent meta-analysis found a significant association between SARC-F and long-term mortality (<5 years) in very old age patients (10). However, Volker et al., observed high heterogeneity in the clinometric properties of SARC-F, with a wider range of sensitivity (29–55%) and specificity (69–89%) in different settings, suggesting that the addition of calf circumference (CC) could improve sensitivity, especially in community-dwellings (11). Indeed, combining calf and thigh circumferences with SARC-F is reported to enhance the diagnostic accuracy for sarcopenia in individuals aged 60 and above, providing a resource-efficient diagnostic tool (2).

CC nowadays is included in all major international consensus (7, 12, 13) and it is considered a reliable screening tool for sarcopenia and a promising prognostic indicator in older adults. Indeed, calf measurements are associated with higher readmissions and mortality rates in hospitalized older adults (14–17). In addition, measurement of the stability of CC over 4 years was associated with decreased mortality risk in a cohort of 904 community-dwelling older adults (mean age 83.8 ± 12.2) (18). Moreover, Wu and Chen demonstrated that the addition of CC to traditional measures of sarcopenia (hand grip strength, speed of gait, muscle mass) correlated with higher all-cause and CV mortality risks after a follow-up of 3 years in community-dwelling people aged 50 years or more (19).

In Japan, Ishii et al. developed a formula based on age, CC, and hand grip strength that predicts the probability of developing sarcopenia (20), which also demonstrated high sensitivity and specificity when diagnosing sarcopenia in community-dwelling adults and inpatients (21–23) or predicting long-term all-cause mortality in hospitalized older adults (24, 25).

Based on this background, the present study aims to assess the predictive accuracy of three sarcopenia evaluation tools (SARC-F, CC, and hand grip) on intra-hospital complication rate, in-hospital mortality, and mortality within 90 days post-hospital discharge in a cohort of hospitalized older adults.



Method

This is a prospective observational study conducted on hospitalized older adults (aged over 65 years old) referred to two units (Geriatric Clinic and Transitional Care Unit) of IRCCS Hospital Polyclinic San Martino in Genoa, Italy, from January to May 2023. Patients admitted to the Geriatric Clinic ward came from the Emergency Room, while those admitted to the Transitional Care ward came from other wards of the Polyclinic and were awaiting discharge to nursing homes.

Inclusion criteria were: age 65 or older, acceptance of informed consent by the patient or patient’s legal representative. Exclusion criteria included: age under 65, lack of acceptance or withdrawal of informed consent, and patients diagnosed with end-stage diseases in need of palliative care (eg. dementia CDR 5, heart failure NYHA IV, COPD with acute respiratory failure).

Upon admission, demographic data were collected. All patients received a Comprehensive Geriatric Assessment (CGA) (26) within 72 h from admission, including Clinical Frailty Scale (CFS) (27) to assess frailty status; number of medications and ABC score to assess polypharmacy and anticholinergic burden; basic and instrumental activities of daily living (ADL and IADL) (28) to assess functional status; Short Portable Mental Status Questionnaire (SPMSQ) (29) to evaluate cognitive performance; Cumulative Illness Rating Scale (CIRS) (30) to assess multimorbidity, and Clinical Dementia Rating Scale (CDR) (31) to stratify the severity of dementia. We used the Mini Nutritional Assessment – Short Form (MNA-SF) (32) to screen for malnutrition. SARC-F (33), measurement of CC, and hand grip (HG, using a GIMA 28791 Smedley dynamometer) were used to evaluate sarcopenia. The standardized Asian Working Group for Sarcopenia (AWGS19) protocol (12) was adopted for evaluating CC, measuring the maximum value of both calves using a non-elastic tape, applying AWGS19 cut-offs: males <34 cm; females <33 cm. As for HG, we employed cut-offs from EWGSOP2 (7): males <27 kg, females <16 kg.

Hospital complication rate was documented, including incident delirium (defined as a score of 4 or higher on the 4AT test) (34), pressure ulcers, acute anemia (hemoglobin <9 g/dL), hospital-acquired infections, sepsis, catheterization during hospital stay, urinary tract infections, respiratory distress, acute heart failure, immobilization syndrome, and in-hospital mortality. In-hospital stay and discharge destination were also collected. 90-day mortality rate after post-hospital discharge was recorded through the ASL3 Genoa (Italy) county electronic database. A Complication Index was derived as the pooled rate of incidence of any of the examined complications.

The protocol was approved by the IRB (CERA N 2024-54 12/06/2024, University of Genoa, Italy) and met the guidelines of the local Governmental Agency. Patients or their proxies provided written informed consent before study inclusion. The study was performed in adherence to the Declaration of Helsinki.



Statistical analysis

Descriptive data were reported as mean with standard deviation or median with IQR. Multivariable logistic regression was used to assess the association between sarcopenia screening tests and clinical variables. Logistic regression for dichotomic outcomes (in-hospital mortality and 90-day mortality), and linear regression for continuous outcomes (Complication Index) were used. Multivariate regression models were built using the three sarcopenia assessment methods (SARCF, CC, hand grip) and adjusted for possible confounders: sex, age, nutritional status (MNA-SF), and frailty status (CFS). An advanced statistical imputation method was applied to avoid biases from the absence of data in hand grip measurement. All reported analyses were run by RStudio (Version 2022.07) and a two-sided α less than 0.05 was considered statistically significant.



Results

158 consecutive patients (53% male) were enrolled. As shown in Table 1, age ranged from 65 years to 101 years, with a median of 86 years (IQR 9). Upon admission, the clinical phenotype of patients was frail (median CFS 6, IQR 2) with functional decline (median ADL 2, IQR 4; median IADL 1, IQR 3), and 61% had a diagnosis of dementia (CDR >1). The most frequent complications were hospital-acquired infections (90 cases, 57%), delirium (89 cases, 56%), occurrence of pressure ulcers (51 cases, 32%); immobilization syndrome occurred in more than one third of the cases (33 patients, 34%).



TABLE 1 Clinical phenotype of the population.
[image: Table1]

Regarding nutritional assessment, MNA-SF median score was 8 (IQR 5), indicating that the majority of the population was at risk of malnutrition; only 8% of the population had a normal nutritional status. As for sarcopenia screening, SARC-F median score was 5 (IQR 4); most of the analyzed subjects (85%) were suggestive of sarcopenia. At the HG test, the median value was 14 kg (IQR 9); according to EWGSOP2 criteria, 77% of male subjects and 72% of female subjects were found to have probable sarcopenia. Measuring CC, the mean value was 29.5 cm (IQR 5), meaning that sarcopenia was present in 83% of patients according to AWGS19 criteria.

By matching the data of HG and CC, a diagnosis of sarcopenia was made in 63% of our population (n = 99); stratifying by sex, sarcopenia was found in 66% of males (n = 55) and 59% of females (n = 44).

Hand grip strength could not be assessed in 26 out of 158 patients (including 12 men and 14 women). The multivariate statistical analysis (Table 2), adjusted for possible confounding variables showed that CC (β −0.329, 95% CI -0.477 to −0.182, p-value <0.001) and MNA-SF (β −0.380, 95% CI -0.564 to −0.196, p-value <0.001) were associated with the in-hospital complication rate. This result was confirmed in a sub-analysis showing that CC was the major clinical variable associated with all major in-hospital complications (see Supplementary materials); in particular, the lower the CC, the higher the risk of developing in-hospital complications and dying during hospitalization or within 90 days of discharge.



TABLE 2 Multivariate models adjusted for sex, age and frailty status.
[image: Table2]

On the other hand, SARC-F (OR 2.268, 95% CI 1.191–4.317, p-value 0.013) and CC (OR 0.440, 95% CI 0.257 to 0.754, p-value 0.003) were associated with in-hospital mortality. Eventually, CC was associated with 90-day mortality (OR 0.714, 95% CI 0.516 to 0.988, p-value 0.043). Adding CIRS as an additional covariate to the multivariate model did not significantly impact the results.



Discussion

The alarming prevalence of sarcopenia in hospitalized older adults with multimorbidity and frailty, and its association with adverse clinical outcomes, underscores the need for systematic routine screenings to overcome underdiagnosis and undertreatment. So far, there is a lack of standardization and implementation of hospital screening for sarcopenia, and a paucity of studies have investigated the association between screening tools and clinical outcomes in hospitalized older patients, with a wide heterogeneity in study designs and clinical findings (35).

To the best of our knowledge, this is the first study to assess the predictive accuracy of a series of screening tools for sarcopenia on mortality in a real-world hospitalized old population with frailty. Notably, in our hands, CC was the main determinant of 90-day mortality, while also being associated with the in-hospital complication rate and intra-hospital mortality. Similarly, also a higher SARC-F score was associated with intra-hospital mortality and a higher MNA-SF score with the in-hospital complication rate.

In line with that, Marchasson et al. showed that CC is an independent prognostic score for 1-year mortality in oncogeriatric patients submitted to chemotherapy (36). Rodrigues et al. demonstrated that CC was an accurate predictor for 36-month mortality in a cohort of 173 patients older than 60 years, undergoing maintenance hemodialysis (37). Moreover, Aliberti et al. evaluated 1-year survival of 665 acutely ill older adults and CC was the main determinant for mortality after adjustment for age, sex, race, income, Charlson comorbidity index, depressive symptoms, cognitive impairment, and unintentional weight loss (38). Recently, Li et al. observed that a 1 cm increase in CC is associated with a decrease in overall mortality in different healthcare settings (39). The recent systematic review and meta-analysis by Wei et al. confirmed the association between low CC and mortality in hospitalized adults (pooled HR = 2.63, 95% CI 1.93–3.58) (15).

A major strength of our findings is the systematic assessment of frailty and its incorporation as a covariate. Although frailty is recognized as a critical factor in predicting adverse outcomes in older adults, including mortality, CFS was not predictive of mortality. This contrasts with the study of Liao et al. (40), which showed that mortality in older adults visiting the emergency room was associated with gender, possible sarcopenia (defined by both low handgrip strength and CC), living in residential institutions and frailty based on Fried’s phenotype (41). On one hand, our study focused on advanced age groups, and the incorporation of frailty based on an accumulation model (42), although in the screening format, may have a higher likelihood to capture a broader range of frailty-related variables and their interaction with CC (43). On the other hand, the inability of the CFS to predict mortality may also be due to a ‘ceiling effect,’ as the great majority of patients had an advanced frailty status that may limit the generalization of the findings.

Furthermore, our study design is marked by the inclusion of a 90-day follow-up period, representing a clinical advancement over short-term mortality assessment (44).

Additionally, by adjusting our results for MNA-SF data, we aimed to account for the potential influence of nutritional status on the association between CC and mortality outcomes. This allows us to better understand the independent prognostic value of CC in our study population.

A relevant future development would be implementing adjustment for BMI, as suggested by Gonzalez et al. (45), or, otherwise, the adoption of normative values of CC across ages. In line with that, Martone et al. (46), through the Lookup 7+ project, showed that calf circumference decreases with advancing age in both sex. Based on these findings, a simple and practical medical device—a calf circumference measuring tape—has been developed, enabling a quick and cost-effective assessment of muscle mass. Integrating normative values for calf circumference across age groups holds promise for enhancing sarcopenia assessment and for providing a better understanding of age-related variations in muscle mass, in order to identify individuals at risk of adverse outcomes.

While CC has significant evidence as a practical tool for providing an estimate of muscle mass, there’s a gap in defining cut-off points. We used the AWGS19 threshold, higher than EWGSOP2 (31 cm), supported by Fernandes et al., who found mortality risk rising below 34.5 cm in people aged over 60.

The study has limitations, such as the limited sample size, the single hospital enrollment, and the possible inclusion of patients with specific conditions affecting CC (e.g., heart disease, venous insufficiency, or declivous edema). While patients admitted to the Transitional Care ward suffered from the most diverse diagnoses, those coming to the Geriatric Clinic ward directly from the Emergency Room usually had a chronic disease exacerbation (e.g., COPD, heart failure) or complications related to advanced frailty (ab ingestis pneumonia, pressure ulcers infections, urosepsis), and we did not systematically collect the causes for hospitalization. Hand grip strength assessment faced challenges, with some data missing due to poor compliance, altered consciousness, and cognitive impairment in certain patients. The presence of several missing data within the hand grip variable is undoubtedly a significant limitation of the study; excluded patients are highly likely to overlap with those most affected by sarcopenia, potentially leading to biased results and limiting the ability to accurately assess the relationship between hand grip strength and sarcopenia. Even among those tested, conditions like bed rest and acute illness may underestimate prehensile strength on admission. It cannot be ruled out that these factors contributed to the worse predictive performance of the hand grip test, which still remains the international gold standard for the assessment of sarcopenia.

CC could indeed represent a parameter as simple and time-saving as versatile in the hospital setting, where the performance of articulated test batteries or complex physical performance tests is prevented by the often precarious and acute condition of patients. Its easy reproducibility, even by caregivers, and, at the same time, prognostic efficacy for both short- and long-term health outcomes, makes it an useful indicator for the correct assessment of geriatric patients in multiple settings, transcending the simple evaluation of sarcopenia or nutritional status.

In conclusion, based on our findings, CC emerges as a single variable capable of being associated with three important health outcomes, bearing independent prognostic value compared to nutritional and physical performance data. Due to its ease of use, we anticipate its increasing integration into routine assessments. Its predictive value for mortality outcomes in hospitalized older adults potentially surpasses frailty in this regard. However, further research is needed to confirm and better understand the relative contributions of CC and frailty to mortality in such vulnerable populations.
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Background

The advent of immunotherapy has changed the landscape of SCLC treatment, although the identification of reliable prognostic biomarkers remains a formidable challenge. Our objective was to investigate the prognostic implications of obesity and body composition in SCLC immunotherapy while seeking a straightforward anthropometric measure.





Methods

This retrospective study analyzed data from patients with SCLC who underwent immunotherapy between 2019 and 2023. Body composition and waist circumference (WC) were analyzed using 3D slicer software on baseline CT images. Quantitative measures, including skeletal muscle index (SMI), total adipose tissue index (TATI), and other indicators at the L3 level, along with body shape index (BSI) and additional indicators based on WC, were obtained. The relationships between these indicators, response, PFS, OS, and their interconnections were examined.





Results

A total of 145 SCLC patients who received immunotherapy were identified, of whom 133 met the inclusion criteria. In univariate analysis, a BMI≥28 kg/m2 was associated with a PFS advantage (HR 0.42, p=0.04), but this trend vanished in multivariate analysis. Body measurements exhibited stronger correlations with adipose tissue content, with BSI showing the highest correlation with muscle. In multivariate analysis, lower BSI was associated with poorer OS (HR 1.79, p=0.02). The association between muscle composition and prognosis was robust in univariate analysis but dissipated in multivariate analysis. However, accounting for a high TATI background significantly heightened the adverse effect of SMI on prognosis in the multivariate model.





Conclusion

No clear association between BMI and SCLC immunotherapy prognosis was observed. However, high adiposity exacerbated the adverse effects of sarcopenia in SCLC immunotherapy, and BSI demonstrated potential as a straightforward prognostic measure.
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1 Introduction

Small cell lung cancer (SCLC) represents a neuroendocrine tumor, comprising approximately 13%-15% of all lung cancers, and remains one of the most lethal malignancies. It is highly aggressive with a poor prognosis, and over 60% of patients are diagnosed in the extensive stage (1). Etoposide plus platinum is the standard treatment for SCLC. In the chemotherapy era, the median survival for SCLC was a mere 7 months, with a 2-year survival rate of 7-8% (2). Since 2019, immune checkpoint inhibitors (ICIs) have gained approval as the first-line treatment for extensive-stage small cell lung cancer (ES-SCLC). Although the addition of ICIs has significantly extended survival in SCLC patients, these improvements are underwhelming compared to those seen in non-small cell lung cancer (NSCLC), with ICIs extending median overall survival (OS) in SCLC by only 2-4.5 months (3). Nevertheless, there has been a notable increase in the number of patients surviving beyond 3 years compared to the chemotherapy (4). Identifying potential beneficiaries of ICIs in SCLC and intervening to enhance their benefits remain pressing challenges.

Recently, contrary to the adverse effects of obesity on tumor progression in many preclinical studies, several studies have suggested that obese or high body mass index (BMI) cancer patients may derive greater benefits from ICIs, which is called the “obesity paradox” (5). Research indicates that overweight and obese NSCLC patients undergoing ICIs exhibit better progression-free survival (PFS) and OS than their non-obese counterparts, with a more pronounced trend in patients expressing positive programmed cell death ligand-1 (PD-L1) (6). Similar trends have been observed in malignant melanoma (7, 8). However, some studies have failed to establish a link between BMI and the prognosis of immunotherapy (9, 10), highlighting BMI’s limitations as a measure that doesn’t capture specific body composition. Moreover, whether BMI is associated with the prognosis of immunotherapy for SCLC remains unexplored.

In recent years, there has been significant interest in obtaining specific body composition through computed tomography (CT) images. Multiple studies have highlighted the association between subcutaneous or visceral adipose tissue and the prognosis of immunotherapy (11, 12). Additionally, the evaluation of skeletal muscle at the L3 level is a well-established method for assessing sarcopenia (13). Chaunzwa et al. studied the impact of L3 level skeletal muscle and adipose tissue composition on the prognosis of advanced NSCLC immunotherapy using CT imaging, and found that a reduction in skeletal muscle content and an increase in the density of subcutaneous adipose tissue (SAT) were associated with worse prognosis (14). There are also some small-sample studies that have shown that CT-measured reductions in skeletal muscle are detrimental to the prognosis of immunotherapy for advanced NSCLC (15, 16). However, research into immunotherapy for SCLC is still quite scarce in this field. This study aims to investigate the correlation between body composition, as determined through CT imaging, and immunotherapy prognosis in ES-SCLC. In consideration of practical applicability, we have also incorporated new anthropometric indicators based on waist circumference (WC) with the hope of identifying a more suitable indicator than BMI to guide the management of ES-SCLC patients.




2 Methods



2.1 Patient population

We conducted a retrospective analysis of 145 patients with SCLC who underwent immune checkpoint inhibitor (ICI) therapy at Zhongnan Hospital of Wuhan University from April 2019 to April 2023. Inclusion criteria comprised pathologically confirmed SCLC, CT-confirmed extensive-stage disease, receipt of at least one anti-programmed cell death protein 1 (PD-1) or anti-PD-L1 treatment, and the availability of abdominal CT or positron emission tomography/computed tomography (PET/CT) within two months before or after the first immunotherapy. Exclusion criteria included lung adenocarcinoma transformation into small cell lung cancer (n=3), unknown baseline time of immunotherapy (n=7), and loss of follow-up (n=2). Ultimately, 133 patients were included in the study.

Clinical information, including gender, age, height, weight, Eastern Cooperative Oncology Group performance status (ECOG PS), stage, metastatic organs, ICI types, and previous treatment, was collected from electronic medical records. Response, PFS, and OS were obtained through electronic medical records and telephone follow-up. Response was evaluated based on RECIST V.1.1, with a patient considered to have achieved a response if they attained complete response (CR) or partial response (PR). Our study included 4 patients who achieved CR, while efficacy evaluation was not available for 11 patients. PFS was defined as the time from the treatment start to progression or death. OS was defined as the time from the treatment start to death or last follow-up.




2.2 Measurement of WC and body composition

Analysis of non-contrasted PET-CT or CT images was performed using 3D slicer (USA, Version 5.0.2) (17). The entire image file was uploaded to the software, and the L3-L4 level of the CT image was determined (Figure 1). Muscle tissue was defined with a threshold of -29 to +150 HU, SAT with a threshold of -190 to -30 HU, and visceral adipose tissue (VAT) with a threshold of -150 to -50 HU. Two researchers, trained in imaging, independently mapped each patient’s body composition at the L3 level and WC at the L3-L4 disc level. The area of each section and skeletal muscle density (SMD) were computed using the Segment Geometry plugin (18). Every image is verified by professional radiologist.




Figure 1 | Representative imaging contour results. Yellow = SAT, Red = VAT, Blue = muscle. (A) Waist circumference measurement, the red line represents the waist circumference. (B) Representative low SMI + high TATI. (C) Representative high SMI + low TATI. SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue; SMI, skeletal muscle index; TATI, total adipose tissue index.






2.3 Determination of the cut-off value

BMI is calculated as weight (kg)/height (m)². To address variations in body shape specific to Asians and Caucasians (19), we adopted Chinese adult classifications: Normal < 24 kg/m², 24 kg/m² ≤ Overweight < 28 kg/m², and Obese ≥ 28 kg/m². WC is considered a superior indicator of central obesity, with high WC defined as ≥ 0.9m for males and ≥ 0.8m for females (20). Waist-to-Height Ratio (WHtR), representing the ratio of WC to height, is considered high when WHtR > 0.5. Other novel anthropometric indicators, namely Relative Fat Mass Index (RFM), Body Shape Index (BSI), Body Roundness Index (BRI), and Weight-Adjusted-Waist Index (WWI), provide a more nuanced reflection of body fat and total fat mass distribution (21). As there are no established reference boundaries for Asians presently, we classified them into quartiles (refer to Supplementary Table S1 for formulas and boundary values).

Skeletal Muscle Index (SMI) is computed as muscle area (cm²)/height (m)². According to the international consensus on sarcopenia diagnosis (13), SMI<55 cm²/m² for males and SMI<39 cm²/m² for females defines sarcopenia. SMD, a measure of muscle attenuation associated with myosteatosis, was classified using quartiles. Skeletal Muscle Gauge (SMG), a composite index integrating SMI and SMD, is calculated as SMI multiplied by SMD and considered low when SMG<1475, as per Shachar et al.’s study (22, 23), Lean Body Mass (LBM) is estimated using the L3 muscle area (24), while VAT Index (VATi) and SAT Index (SATi) are standardized VAT and SAT areas, respectively, and Total Adipose Tissue Index (TATI) is the sum of VAT Index and SAT Index, all classified by quartiles.




2.4 Statistical analysis

Continuous variables were compared between groups using the student-t test or Mann-Whitney U test, and categorical variables were compared using the χ² test. PFS and OS were assessed using the Kaplan-Meier (KM) method, with group comparisons performed using the log-rank test. Univariate and multivariate Cox regression models were employed to estimate associations between BMI, anthropometric measures, and body composition with survival, adjusting for covariates such as age, gender, stage, ICI line, and ICI types. Logistic regression models were established to evaluate the association between each index and response incidence. Spearman correlation analysis was used to assess the correlation between various indicators. Interactions between TATI with SMI and SMG were calculated following Källberg et al.’s method (25). The main criterion for determining whether there is an interaction is based on the p-value and confidence interval (CI) of the interaction term (SMG×TATI or SMI×TATI), and stratified analysis was conducted in the multivariate model to control for variables. Statistical analyses were carried out using R V.4.2.2.





3 Results



3.1 Patient characteristics

A total of 133 patients were included in the analysis (Table 1), with the last follow-up date on October 1, 2023, and a median follow-up time of 552 days. At the last follow-up, 48 patients were still alive. The median PFS was 169 days, and the median OS was 331 days. Of the total, 62 patients achieved CR or PR, resulting in an Overall Response Rate (ORR) of 50.82%. The median time from baseline CT to immunotherapy initiation was 8 (IQR 4-24) days.


Table 1 | Patient baseline characters.



Patients had a median age of 64, with a majority being male (85.7%). The majority of patients were classified as stage IV (84.2%) based on TNM staging, and overall health was generally favorable. Chemo-immunotherapy was the predominant first-line treatment (69.9%), with a similar distribution between anti-PD-1 and anti-PD-L1 treatments. Sarcopenia was prevalent at baseline, affecting 70.7% of patients, with higher incidence observed in those with normal and overweight BMI compared to obese individuals.




3.2 Associations with BMI

We utilized the KM method to analyze survival differences among BMI subgroups (Supplementary Figure S1). Overall, no significant differences were observed in PFS and OS among the subgroups. However, in pairwise comparisons, PFS was significantly better in the obese group compared to the overweight group (p-value=0.04). In univariate analysis, the response in the overweight group was significantly worse than the normal group (OR 0.43, 95% CI 0.18 to 0.95, p-value=0.04), and the PFS in the obese group was significantly better than the overweight group (HR 0.42, 95% CI 0.19 to 0.96, p-value=0.04). However, these differences were not significant in multivariate analysis (Supplementary Table S2).




3.3 Correlation between each indicator

Given the inclusion of numerous anthropometric indicators, in addition to commonly used BMI, in this study, other indicators also show potential for clinical application. We aimed to explore the correlation between these indicators and body composition (Figure 2). After excluding indicators with direct calculation relations, we observed that all anthropometric measures, including BMI, were strongly associated with adipose composition and weakly associated with muscle composition. The anthropometric indicator with the strongest correlation with muscle tissue is BSI, with a correlation coefficient of 0.50 with SMI and 0.65 with LBM. Additionally, BSI maintains a strong correlation with TATI (correlation coefficient 0.71).




Figure 2 | The heatmap showing the correlation between various anthropometric indicators and body composition. The numbers in the chart represent the correlation coefficient. A correlation coefficient>0.7 is considered a strong correlation, while 0.3<correlation coefficient ≤ 0.7 is considered a moderate correlation, and correlation coefficient<0.3 is considered a weak correlation. BMI, body mass index; WC, waist circumference; WHtR, waist-to-height ratio; RFM, relative fat mass index; BSI, body shape index; BRI, body roundness index; WWI, weight-adjusted-waist index; SMI, skeletal muscle index; SMD, skeletal muscle density; SMG, skeletal muscle gauge; TATI, total adipose tissue index; VATi, visceral adipose tissue index; SATi, subcutaneous adipose tissue index; VSR, visceral to subcutaneous adipose tissue area ratio; LBM, lean body mass.






3.4 Associations with anthropometric measures

As the clinical significance of new anthropometric indicators in cancer prognosis remains unclear, univariate and multivariate analyses were conducted with high quartile and low quartile as cut-off values, in addition to WC and WHtR. In univariate analysis, no significant associations were found between anthropometric measures and response, PFS, or OS. However, after adjusting for covariates, a poorer response was observed in patients with a lower WWI (OR 0.34, 95% CI 0.11 to 0.97, p-value=0.047), and a poorer OS was observed in patients with a lower BSI (HR 1.79, 95% CI 1.09 to 2.94, p-value=0.02) (Supplementary Table S3).




3.5 Associations with body composition measures

In univariate analysis, lower SMI and SMG were associated with worse response (SMI: OR 0.35, 95% CI 0.15 to 0.76, p-value=0.01; SMG: OR 0.4, 95% CI 0.18 to 0.84, p-value=0.02) and OS (SMI: HR 2.00, 95% CI 1.20 to 3.34, p-value=0.01; SMG: HR 1.63, 95% CI 1.06 to 2.51, p-value=0.03), and lower SMG was also associated with worse PFS (HR 1.73, 95% CI 1.18 to 2.55, p-value=0.01). Higher LBM was associated with better response (OR 2.95, 95% CI 1.29 to 7.17, p-value=0.01) and OS (HR 0.58, 95% CI 0.34 to 0.98, p-value=0.04). However, in multivariate analysis, none of these associations remained significant. Both higher (OR 0.29, 95% CI 0.10 to 0.80, p-value=0.02) and lower visceral to subcutaneous adipose tissue area ratio (VSR) (OR 0.20, 95% CI 0.05 to 0.70, p-value=0.01) were associated with poorer responses, suggesting that a moderate range of VSR may be more beneficial to treatment. Similar to new anthropometric indicators, univariate and multivariate analyses were conducted with high quartile and low quartile as cut-off values for VSR and LBM (Table 2).


Table 2 | Univariate and multivariate analyses assess the association between body composition measures with response, PFS, and OS.







3.6 Interaction between SMI and TATI

Examining potential interactions between muscle composition and adipose composition, we first explored the interaction between SMG and TATI, but no significant interaction was found (Supplementary Tables S4, S5). Despite the significant p-value, when combined with the CI and stratified analysis results, we do not find an interaction between SMG and TATI in our cohort. Subsequently, we examined the interaction between SMI and TATI, finding that the interaction term SMI × TATI was significant for PFS (HR 0.93, 95% CI 0.89 to 0.98, p-value=0.0034) but not for response and OS (Supplementary Table S6). Additionally, we explored whether there was an additive interaction between these variables, but no statistically significant additive interaction effect was found. Subsequently, we controlled SMI and TATI respectively in the multivariate analysis to assess whether the relationship between another indicator and response, PFS, and OS changed (Table 3). We observed that when high SMI was controlled, PFS significantly improved with high TATI (HR 0.39, 95% CI 0.16 to 0.99, p-value=0.046). Conversely, when high TATI was controlled, the negative impact of low SMI on PFS (HR 4.21, 95% CI 1.01 to 17.57, p-value=0.049) and OS (HR 10.96, 95% CI 2.36 to 50.90, p-value=0.0022) became significantly greater. Finally, we employed the KM method to examine survival differences among subgroups with different SMI and TATI combinations. Among all subgroups, the Low SMI + High TATI group exhibited the worst PFS and OS, with the largest difference observed when compared to the High SMI + Medium TATI group (Figure 3).


Table 3 | Stratified analysis of the association between SMI and TATI with response, PFS, and OS.






Figure 3 | The Kaplan-Meier curves of PFS and OS were compared among different SMI and TATI combinations. SMI, skeletal muscle index; TATI, total adipose tissue index; PFS, progression free survival; OS, overall survival.







4 Discussion

To the best of our knowledge, this is the first study providing a comprehensive analysis of the association between body composition, anthropometric indexes, and the prognosis of immunotherapy in patients with ES-SCLC. In the era of chemotherapy, prior studies investigated the relationship between body composition, BMI, and the efficacy and prognosis of small-cell lung cancer (SCLC). While sarcopenia, diagnosed at the L3 levels on CT, has been linked to a poorer prognosis for SCLC (26, 27), the association with BMI remains uncertain. Some studies suggested a negative impact of low BMI on SCLC prognosis (28), while others reported complex and inconclusive associations, with trends toward better prognosis in patients with BMI >28kg/m² and weight loss (WL) ≤5% (29). There is a lack of evidence to suggest a link between WC and its newer variants and the prognosis of SCLC. In the era of immunotherapy, there is limited research, with only one pan-cancer study incorporating three SCLC patients receiving immunotherapy, yielding no conclusive results on BMI (30). Generally, SCLC has received less attention in anthropometric studies. As such the disease is lacking anthropometric biomarkers and presenting a significant clinical challenge.

In numerous preclinical studies, obesity has been correlated with tumor progression, attributed to its role in fostering a chronic inflammatory state and an immunosuppressive tumor immune microenvironment (31). Notably, obesity induces T-cell depletion, as evidenced by increased expression of PD-1, T cell immunoglobulin and mucin domain-3 (TIM-3), and lymphocyte activation gene-3 (LAG-3) in tumor-bearing mice with diet-induced obesity (DIO) (8, 32). However, the advent of immunotherapy has altered this scenario. ICIs counteract T-cell dysfunction by targeting PD-1 or PD-L1. Anti-PD-1 treatment for DIO mice in preclinical studies reversed immunosuppression in the tumor microenvironment (TME), with DIO mice exhibiting enhanced efficacy compared to the control group (33). Some clinical studies also indicated that patients with higher BMI derive more benefits from immunotherapy, termed the “obesity paradox” (6, 8). The debate around the “obesity paradox” centers on the evaluation index of BMI (5). Despite its clinical ubiquity, BMI is a relatively crude measure that inadequately reflects specific body composition. In our study, BMI demonstrated a weak correlation with muscle composition, while skeletal muscle has been established as a prognostic factor in various cancers (34). Recent studies have sought to elucidate the “obesity paradox” using imaging measurements. Young et al. (9), investigating the prognosis of immunotherapy for malignant melanoma, found no association between BMI and clinical outcomes, suggesting that the link between body composition and improved clinical outcomes is modest. Lee et al. (11), on the other hand, proposed that visceral fat might explain the “obesity paradox,” with its prognostic impact dependent on the systemic inflammatory state. Discrepancies between these studies may be attributed to differences in race and cut-off points. Although combining body composition and systemic immune-inflammation index (SII) is popular, establishing a causal relationship between the two remains debatable.

While our study focused on different populations and diseases, our findings generally align with those of Young et al. In univariate analysis and KM curves, the obese group exhibited advantages in terms of PFS and OS, but these advantages did not persist in multivariate analysis. Objectively, we did not identify a clear relationship between high BMI and the prognostic benefits of immunotherapy. Existing anthropometric measures, primarily based on height, weight, and waist circumference, are more closely tied to adipose content and less indicative of skeletal muscle. Among the examined anthropometric measures, BSI emerged as the most promising indicator, reflecting both skeletal muscle and adipose content. BSI was also associated with OS in multivariate analysis, though its efficacy as a biomarker requires further validation. Additionally, our study identified intriguing indicators, such as the association of WWI and LBM with response, potentially linked to the distribution of chemotherapeutic drugs (24). Both higher and lower VSRs were associated with worse responses, suggesting that a moderate VSR may confer better therapeutic benefits. Crucially, our data underscore the significance of the skeletal muscle-adipose tissue interaction. The detrimental effects of sarcopenia are significantly exacerbated in the presence of high adipose, consistent with the understanding that sarcopenic obesity portends worse outcomes (24, 35).This effect was more pronounced in SCLC than what Young et al. observed in malignant melanoma. Given SCLC’s neuroendocrine nature and diverse tumor syndromes, the interaction and crosstalk between tumor and non-tumor tissues merit consideration. Leptin concentration and the leptin/VAT ratio, indicative of adipokine influence, were associated with prolonged PFS in ES-SCLC patients (36). What’s more, anti-growth differentiation factor 15 (GDF-15) combined with anti-PD-1 therapy enhanced anti-PD-1 efficacy (37), as GDF-15 is closely tied to cachexia (38). Skeletal muscle and adipose, functioning as endocrine organs, engage in rich crosstalk in the body (39). Therapies targeting this interaction may not only address metabolic diseases but also enhance immunotherapy efficacy.

Several limitations must be acknowledged in our study. Primarily, being a single-center study introduces potential bias in population characteristics. Notably, our cohort exhibits a significant gender proportion bias, with over 80% of patients being male. The insufficient number of female patients precluded gender-stratified analysis. Moreover, many indicators lack clear-cut criteria, and employing quartiles to establish critical values may be inappropriate. Additional patient characteristics that could impact efficacy, such as immunotherapy-related adverse events and pretreatment weight loss, were not included. The relatively small sample size may affect statistical power, especially during further subgroup analyses. Findings regarding BMI require validation in a larger cohort.




5 Conclusion

In conclusion, our study did not reveal a clear association between BMI and the prognosis of SCLC immunotherapy. However, it reinforced the notion that a high-adipose background amplifies the adverse effects of sarcopenia in the context of SCLC immunotherapy. Notably, BSI emerged as a potential proxy for simple body composition assessment. Given the challenges in visually diagnosing sarcopenic obesity, our study underscores the importance of comprehensive nutritional assessment for cancer patients.
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Introduction

Childhood obesity is a growing global health concern, but few studies have investigated dietary factors specifically related to obesity and abdominal obesity in children and adolescents. Herein, we aimed to identify the dietary factors affecting childhood obesity in Korean children and adolescents.





Methods

Data from the Korea National Health and Nutrition Survey (KNHANES) VIII were analyzed using K-means clustering analysis to identify distinct clusters based on nine variables related to dietary habit, nutritional status, and nutritional education. Multiple logistic regression analysis was used to examine the association between incident obesity risk and the different clusters. We enrolled 2,290 participants aged 6-18 years, and separated them into two distinct clusters; Healthy and Unhealthy Dietary Habit Groups, clusters 1 and 2, respectively.





Results

Cluster 1 was characterized by a lower obesity prevalence, healthier dietary habits (regular breakfast consumption; fruit and vegetable, reduced total energy, and lower protein and fat intakes), and greater nutritional education than Cluster 2. After adjusting for confounders, compared with Cluster 1, Cluster 2 demonstrated a significantly higher prevalence (OR [95% CI]) of both general and abdominal obesity (1.49 [1.05–2.13], p=0.027 and 1.43 [1.09–1.88], p=0.009).





Discussion

Maintaining optimal dietary quality and patterns are crucial to prevent childhood obesity. Further research is warranted to explore specific dietary interventions tailored to different clusters to effectively address childhood obesity.





Keywords: child obesity, diet, lifestyle, nutritional education, clustering analysis




1 Introduction

The World Obesity Atlas 2023 (1) shows a significant increase in the prevalence of obesity, particularly among children and adolescents worldwide; among boys, prevalence is estimated to double from 10% in 2020 to 20% in 2035 whereas, for girls, the prevalence is expected to similarly increase from 8% to 18% (1). This highlights the need for strategies to address the escalating burden of obesity, especially among younger populations, to mitigate long-term health consequences and the associated socioeconomic impacts.

Pediatric obesity not only poses a higher risk of sustained obesity, but also carries future health risks in adulthood that have been well-documented (2). The severity of obesity in children and adolescents is closely linked to a higher risk of metabolic syndrome (MetS) (3). Compared to normal-weight individuals, those who are overweight or obese have a 5 and 23 fold higher risk of MetS, respectively (4). Furthermore, childhood BMI has been associated with risks of diabetes, cancer, and cardiovascular diseases, even independent of adult BMI (5).

The treatment of obesity includes behavioral changes in diet, physical activity, sedentary behaviors, and sleep habits (6). The World Health Organization (WHO) recently suggested that limiting energy intake from total fats and sugars by increasing the consumption of fruits, vegetables, whole grains, and nuts, as well as engaging in regular physical activity, are highly recommended at the individual level for obesity prevention (7). It has further been well-documented that healthy dietary patterns are beneficial for children’s health (8, 9). Additionally, unlike in adults, children’s dietary habits are highly influenced by familial (parental) (10) and socioeconomic factors (11). As dietary habits are important for the prevention and treatment of childhood obesity, dietary factors that can predict obesity and MetS in Korean children and adolescents need to be identified.

Park et al. (12) previously investigated the association of dietary quality with body mass index (BMI) in obese children, but found no significant associations of dietary patterns and quality with BMI in obese children. However, the authors observed an association of high fat intake with weight gain in this population. Kim et al. (13) observed that children who participated in the school lunch program consumed more appropriate nutrients than those in the non-school lunch and skipping lunch groups. Moreover, they found that the school lunch group was less likely to become obese than the skipping lunch group.

Nonetheless, few studies have investigated dietary factors specifically related to obesity and abdominal obesity in children and adolescents. Therefore, in this study, using the K-means clustering algorithm, we aimed to identify dietary factors that increase the risk of obesity in children and adolescents in the Republic of Korea. Unlike in previous studies, we included various dietary habits, such as breakfast eating, frequency of fruit or vegetable consumption, eating out, proportion of macronutrients, nutritional education, and other demographic factors in order to create a comprehensive background for personalized prediction and management of childhood obesity in the Republic of Korea.




2 Materials and methods

The Korea National Health and Nutrition Examination Survey (KNHANES) is a cross-sectional survey that has been conducted annually by the Korea Centers for Disease Control and Prevention (KCDC) since 1998 to derive a comprehensive understanding of the health and nutritional status of the South Korean population. The KNHANES targets non-institutionalized Korean citizens residing in Korea, and follows a multistage, clustered probability design for sampling; detailed information on the KNHANES is available at: https://knhanes.cdc.go.kr/knhanes/eng. In this study, we used data from the KNHANES VIII (2019–2021). Of the 2,928 KNHANES VIII participants aged 6–18 years, those without anthropometric and dietary behavior data (n = 638) were excluded, and a total of 2,290 participants were included in the final analysis, as shown in the study flowchart in Figure 1. All participants provided written informed consent for the use of their data for research purposes. The study protocol was approved by the institutional review board of the Severance Hospital (approval no. 4-2022-0796).




Figure 1 | Flow chart of the study population.





2.1 Anthropometry and the adiposity index

In the KNHANES VIII, anthropometric measurements, including blood pressure (BP), height, weight, BMI, and waist circumference (WC), were measured by well-trained medical staff. BP was measured three times in the sitting position, and the average of the secondary and tertiary measurements was used in the analysis. Height was measured using a portable stadiometer, with accuracy to the nearest 0.1 cm, while weight was determined using a digital scale, accurate to the nearest 0.1 kg. During measurement, participants were advised to wear light attire and no shoes. WC was measured using a standard measuring tape at the narrowest point of the body, located between the lowest rib and the iliac crest. BMI was calculated by the dividing weight (in kilograms) by the square of height (in meters). The waist-to-height ratio (WHtR) was subsequently determined by dividing each individual’s waist circumference (WC) by height. For comparisons, the standard scores (z-scores) for BMI, WC, and WHtR were derived from the KNHANES VIII (2019-2021) using the method described by Kim et el (14), taking into account age and sex. Obesity was defined as BMI values above the 95th percentile, corresponding to age and sex categories following the Korea Centers for Disease Control and Prevention (KCDC) criteria (14). Abdominal obesity was defined as a WC that exceeded the 90th percentile according to age- and sex-specific criteria (15). Abdominal obesity based on WHtR was defined as WHtR ≥0.5 (16).




2.2 Dietary behaviors and nutritional education assessment

According to a standardized protocol, the dietary behaviors of children and adolescents were assessed by well-trained nutritionists through questionnaires that assessed the following items: breakfast frequency per week in the last year (almost every day, 1-4 times a week, or rarely); frequency of eating out (almost every day, more than once a week, or rarely); experience of nutritional education in the past year (yes/no); frequency of consuming vegetables (excluding kimchi and pickled vegetables), mushrooms, and seaweed in the past year (more than three times a day, once or twice a day, or less than once a day); and frequency of consuming fruits in the past year (>7, 2–6, or <1 time(s) per week). The total calorie intake and grams of carbohydrate, fat, and protein were calculated from the 24-hour dietary recall. The total consumption of carbohydrates, protein, and fat was subsequently converted to energy intake in calories (1 g carbohydrates = 4 kcal; 1 g protein = 4 kcal; and 1 g fat = 9 kcal). The proportion of carbohydrates, protein, and fat intake was calculated as follows: carbohydrate, protein, and fat intake calories/total calorie intake × 100.




2.3 Clustering analysis

K-means was used to form clusters using the nine variables related to dietary habit, nutritional status, and nutritional education (frequency of breakfast consumption, frequency of dining out, experience of nutritional education, frequency of consuming vegetables on average, frequency of consuming fruits on average, total calorie intake, proportion of carbohydrate intake, proportion of protein intake, and proportion of fat intake). The frequency of dietary behaviors was clustered by considering the categorical variables as continuous variables. K-means clustering was then performed on the standardized values to have zero mean and unit variance. Using the silhouette method 18, we determined the optimal number of clusters for dietary habits.




2.4 Statistical analysis

All data are reported as the mean ± standard deviation (SD) for continuous variables, or as frequency (proportion) for categorical variables. To compare the differences between clusters, we conducted independent t-tests for continuous variables and the Fisher’s exact test for categorical variables. Linear and logistic regression were applied to determine association between clusters of dietary habits and adiposity for Korean children and adolescents. In the regression analysis, age and sex were adjusted to reduce the confounding effects. Subgroup analysis was performed for age groups (6–12 and 13–18 years) and sex. All statistical analyses were conducted using R version 4.1.1 (R Foundation for Statistical Computing, Vienna, Austria). Statistical significance was set at a p-value of less than 0.05.





3 Results



3.1 Clinical characteristics of the two clusters

Using the K-means clustering algorithm, we produced two clusters from the overall participants (N = 2,290). Each cluster comprised participants with characteristics similar to the nine variables within the cluster. The distribution of the participants and characteristics of the two clusters are shown in Figure 2, Table 1. In total, 706 boys and 694 girls were grouped into Cluster 1 (N = 1,400), whereas 500 boys and 390 girls were grouped into Cluster 2 (N = 890).




Figure 2 | Characteristics of the two patient clusters. Data are presented as percentages or box plot (median, IQR). (A) Frequency of breakfast consumption, (B) Frequency of dining out, (C) Experience of nutrition education, (D) Average frequency of consuming vegetables, (E) Average frequency of consuming fruits, (F) Total calorie intake from 24-hour dietary recall, (G) Proportion of carbohydrate intake, (H) Proportion of protein intake, (I) Proportion of fat intake.




Table 1 | Clinicodemographic characteristics of the entire cohort and the two clusters.



Compared with Cluster 2, Cluster 1 was characterized by a higher frequency of breakfast consumption, higher experience of nutritional education, higher consumption of vegetables, higher consumption of fruits, lower intake of total energy, higher intake of carbohydrate proportion, lower intake of protein proportion, and lower intake of fat proportion. Accordingly, Clusters 1 and 2 were designated as the healthy dietary habit group (HDG) and unhealthy dietary habit group (UDG), respectively. Table 1 shows the clinical characteristics of Clusters 1 and 2. Participants in Cluster 1 were younger, more likely to be female, less likely to be obese, and had a lower WC.




3.2 Association of adiposity with clusters

Based on the linear regression analysis, Table 2 shows the independent association of BMI, WC, BMI Z-score, and WHtR Z-score with the clusters. Compared with Cluster 1, Cluster 2 had a significantly higher BMI (β-coefficient and 95% confidence interval [CI], 1.06 [0.70–1.42], p<0.001), WC (β and 95% CI, 3.41 [2.38–4.44], p<0.001), BMI Z-score (β-coefficient and 95% confidence interval [CI], 0.15 [0.06–0.23], p<0.001), and WHtR Z-score (β and 95% CI, 1.15 [0.07–0.23], p<0.001). Table 3 shows the cluster-stratified odds ratio (OR) and 95% CI for general obesity and abdominal obesity. Compared with Cluster 1, Cluster 2 had a higher prevalence (OR [95% CI]) of general obesity (1.54 [1.09–2.19], p=0.015), abdominal obesity (1.49 [1.14–1.94], p=0.003), and abdominal obesity by WHtR (1.35 [1.09-1.66], p=0.005). After adjusting for age and sex, Cluster 2 had a significantly higher prevalence (OR [95% CI]) of general obesity (1.49 [1.05–2.13], p=0.027), abdominal obesity (1.43 [1.09–1.88], p=0.009), and abdominal obesity by WHtR (1.30 [1.05-1.60], p=0.018).


Table 2 | Results of the cluster-stratified linear regression analysis of BMI, WC, BMI Z-score, and WHtR Z-score.




Table 3 | Results of the cluster-stratified logistic regression analysis for general and abdominal obesity.



Figure 3 presents the results of the age- and sex-stratified subgroup analysis. In both the 6–12 and 13–18 years age groups, Cluster 2 exhibited higher BMI and WC levels than Cluster 1, although the WHtR levels were only significant in the 13-18 years age group. Among boys, compared with Cluster 1, Cluster 2 had higher BMI, WC, and WHtR levels; however, among girls, no significant associations between BMI, WC, WHtR and clusters was observed. Although no significant association was found between general obesity or abdominal obesity and clusters in the 6–12 years age group, in the 13–18 years age group, Cluster 2 exhibited significant trends with a higher prevalence (OR [95% CI]) of general obesity (1.73 [0.99–3.08], p=0.057), a significantly higher prevalence of abdominal obesity (1.61 [1.04–2.53], p=0.034), and abdominal obesity by WHtR (1.55 [1.09-2.22], p=0.015). Among boys, compared with Cluster 1, Cluster 2 had significantly higher prevalence (OR [95% CI]) of general obesity (1.94 [1.24–3.09], p=0.004), abdominal obesity (1.49 [1.08–2.06], p=0.015), and abdominal obesity by WHtR (1.32 [1.01-1.73], p=0.039).




Figure 3 | Results of subgroup analysis of anthropometric parameters and obesity indices between Clusters 1 and 2. (A) BMI, (B) Obesity, (C) Waist circumference, (D) Abdominal obesity, (E) WHtR, (F) Abdominal obesity by WHtR).







4 Discussion

The present study investigated the association between dietary habits and adiposity indices, while particularly focusing on general and abdominal obesity, among Korean children and adolescents. Overall, our findings indicate that individuals exhibiting HDG, such as increased breakfast consumption, greater exposure to nutritional education, and higher fruit and vegetable intake, demonstrated a lower prevalence of childhood obesity.

It is worth noting that 73.6% of children and adolescents in Cluster 1 had breakfast “almost every day,” compared with 59.1% in Cluster 2. A meta-analysis comprising 45 observational studies reported an association between breakfast skipping with overweight/obesity and an increased risk of overweight/obesity (17). Another study demonstrated that frequent breakfast skipping was associated with higher odds of MetS in Korean young adults (18). Mengzi et al. (19) Also found that skipping breakfast was positively associated with both the dietary inflammatory index and obesity, and that the association between eating breakfast and BMI was mediated by the dietary inflammatory index. Our findings align with those of these previous studies. Several possible mechanisms may mediate the association of breakfast consumption with metabolic disturbances. Firstly, owing to increased sleep demand, the overnight fasting periods are longer during childhood and adolescence, leading to the overnight depletion of glycogen stores (20). Consequently, given their higher metabolic rates, breakfast consumption becomes crucial for glucose metabolism in children. Furthermore, skipping breakfast can impair insulin function, resulting in higher postprandial plasma glucose levels (21), which potentially explains why a decreased weekly breakfast frequency is associated with a higher risk of insulin resistance in Korean adults without diabetes or prediabetes (22). Secondly, consistent meal patterns can support better appetite control and satiety, thereby reducing the likelihood of overeating or snacking on less nutritious foods (23, 24). Compared with individuals who regularly consume breakfast, young adults who frequently skip breakfast tend to report higher levels of appetite and hunger, decreased feelings of fullness, and increased ghrelin levels (23, 24). Additionally, breakfast skippers often tend to consume larger amounts of food in one sitting during the remainder of the day (25).

In Cluster 1, 52% of individuals ate vegetables more than twice a day, and 41% ate fruit more than six times a week; compared with Cluster 2, these proportions were significantly higher. It has been well-known that fruits and vegetables reduce the risk of chronic health conditions, including obesity (25–27). One systematic review of cohort studies revealed that higher vegetable intake was associated with the lowest risk of weight gain (28), which is consistent with our findings. Thus, we inferred that fruit and vegetable intake aids weight management because these foods are low in energy, but have high fiber and water content, which induces satiety (29). For children aged 6–11 years, the Dietary Reference Intakes for Koreans (2020) suggested the ideal frequency of fruit and vegetable consumption as once a day (total 300 g/day) and 6–7 cups per day (70 g per cup, total 350 g/day), respectively; for teenagers (12–18 years), vegetables and fruit consumption recommendations were 7–8 cups per day (total 500–550 g/day) and 2–4 times a day (total 200–400 g/day), respectively (30). Although the highest frequency of fruits and vegetables intake were significantly more prevalent in Cluster 1 than in Cluster 2, these were nonetheless actually lower than the abovementioned recommended intake standards. Therefore, we infer that, even if Korean children and adolescents do not meet the intake standards, it is still important to frequently consume fruits and vegetables to prevent obesity, and this can be suggested as a bridging step before aiming to meet the recommended intake standards.

Regarding energy intake, compared with Cluster 2, Cluster 1 consumed less calories, with a higher proportion of carbohydrate and lower proportions of protein and fat. Specifically, compared to the average total energy intake of 1,845 ( ± 694.1) kcal/day in Cluster 1, Cluster 2 had a significantly higher intake of 2,236 ( ± 928.5) kcal/day. In Cluster 1, the proportions of carbohydrates, protein, and fat were 63.9%, 13.8%, and 21.6%, respectively, which are all within the recommended Korean nutrient intake standards (carbohydrates, 55–65%; protein, 7–20%; and fat, 15–30%) for those aged 6–18 years (30, 31). In contrast, Cluster 2 had lower carbohydrate (48.6%) and higher fat (33.1%) intake proportions compared to the national standards. These findings may be associated with the higher consumption of fruits and vegetables in Cluster 1. Foods high in fat, such as meat or fried fast food, are also commonly associated with childhood obesity (31).

Furthermore, we observed that, compared with Cluster 2, Cluster 1 comprised a greater number of children and adolescents who received nutritional education. School-based interventions can effectively reduce the BMI of children (32) and, when implemented in the home, can even improve the BMI of the parents (33). Moreover, this intervention was conducted with only preschool children and favored the prevention of overweight/obesity (34). Nutritional education can be an effective intervention among children as it increases awareness about the importance of food and its impact on overall well-being, which thereby affects overall dietary behaviors. A study found that adolescents who received nutritional education consumed more vegetables and fruits and skipped breakfast less often (35).

In the subgroup analysis, the difference in the prevalence of obesity between the two clusters was markedly evident in a specific age group (13-18 years) and sex (boys). The 13–18 years age group is notable as it is the timepoint at which Korean girls (12.7 years) and boys (13.8 years) reach puberty (36). Obesity occurs during this transitional period at a higher rate (37) because of metabolic changes, including hormonal impact, lifestyle changes, and pubertal stressors (38). Therefore, it seems important to dedicate adequate care to pubertal diet for obesity prevention.

In addition, compared with Korean female adolescents, Korean male adolescents tend to have higher obesity prevalence (39, 40), which aligns with our study results, as well as global statistical trends in high income countries (41). Some studies consider dietary preference as one of the reasons for this difference, thereby indicating that girls, especially in wealthier nations, might favor foods with lower energy content and higher nutrient density, such as fruits and vegetables, whereas boys tend to opt for more calorie-dense foods, such as meat (42, 43). Moreover, compared to boys, girls often express greater weight-related concerns, including the desire to lose weight, feeling of guilt on overeating, and lower self-esteem (44). Parents also typically exhibit more apprehension regarding their daughters’ weight status than that of their sons’, with sons often being encouraged to consume more food (45). These social influences on dietary habits may also explain the sex difference.

Our study has several limitations. Firstly, it is important to consider the impact of the COVID-19 pandemic on the collected data, as our data from the KNHANES VIII (2019-2021) coincided with this period. During the pandemic, South Korea experienced lockdowns and school closures, which contributed to changes in physical activity and dietary habits and a rise in childhood obesity rates (46). Indeed, several studies reported an increase in childhood obesity in Korea during the pandemic, particularly among male students, among whom the prevalence of obesity increased more sharply compared to before the pandemic (47, 48). Additionally, fast food and fruit consumption both decreased (48, 49). These findings partially align with our study results, and suggest that the COVID-19 pandemic likely influenced our data. As such, it is essential to consider the complex effects of the pandemic when interpreting our results. Secondly, the frequency of dietary habits was not assessed with regard to specific intake frequencies, but was rather categorized into sections. Thirdly, the specific foods from which nutrients were obtained could not be determined. Finally, it is important to note that the majority of meals consumed by children are provided by families and educational institutions, rather than being based on their own choices. As such, the evaluation of parental eating habits or the quality of school meals could be beneficial additions to future research endeavors. Despite these limitations, our study has noteworthy strengths. This is the first study to utilize a clustering algorithm to identify dietary behaviors that affect childhood obesity within a large, representative Korean population. By examining nine key dietary variables across distinct clusters, we paved the way for the development of personalized interventional strategies.

In conclusion, distinct clusters that represent different childhood obesity-associated dietary habits were identified. Individuals with healthier dietary behaviors, including increased breakfast consumption, greater exposure to nutritional education, and higher fruit and vegetable intake, exhibited a lower prevalence of childhood obesity. It is also imperative to maintain optimal dietary quality and patterns to effectively prevent childhood obesity. This study underscores the significant role of school and family-based nutritional education and dietary interventions for promoting healthier eating habits among children.
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Smartphone three-dimensional imaging for body composition assessment using non-rigid avatar reconstruction

Grant M. Tinsley1*, Christian Rodriguez1, Christine M. Florez1, Madelin R. Siedler1, Ethan Tinoco1, Cassidy McCarthy2 and Steven B. Heymsfield2


1Energy Balance & Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States

2Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States

Edited by
 Arch Mainous, University of Florida, United States

Reviewed by
 Velyn Wu, University of Florida, United States
 Pooja Sharma, University of Florida, United States

*Correspondence
 Grant M. Tinsley, grant.tinsley@ttu.edu 

Received 23 August 2024
 Accepted 25 September 2024
 Published 07 October 2024

Citation
 Tinsley GM, Rodriguez C, Florez CM, Siedler MR, Tinoco E, McCarthy C and Heymsfield SB (2024) Smartphone three-dimensional imaging for body composition assessment using non-rigid avatar reconstruction. Front. Med. 11:1485450. doi: 10.3389/fmed.2024.1485450
 

Background: Modern digital anthropometry applications utilize smartphone cameras to rapidly construct three-dimensional humanoid avatars, quantify relevant anthropometric variables, and estimate body composition.

Methods: In the present study, 131 participants ([73 M, 58 F] age 33.7 ± 16.0 y; BMI 27.3 ± 5.9 kg/m2, body fat 29.9 ± 9.9%) had their body composition assessed using dual-energy X-ray absorptiometry (DXA) and a smartphone 3D scanning application using non-rigid avatar reconstruction. The performance of two new body fat % estimation equations was evaluated through reliability and validity statistics, Bland–Altman analysis, and equivalence testing.

Results: In the reliability analysis, the technical error of the measurement and intraclass correlation coefficient were 0.5–0.7% and 0.996–0.997, respectively. Both estimation equations demonstrated statistical equivalence with DXA based on ±2% equivalence regions and strong linear relationships (Pearson’s r 0.90; concordance correlation coefficient 0.89–0.90). Across equations, mean absolute error and standard error of the estimate values were ~ 3.5% and ~ 4.2%, respectively. No proportional bias was observed.

Conclusion: While continual advances are likely, smartphone-based 3D scanning may now be suitable for implementation for rapid and accessible body measurement in a variety of applications.
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1 Introduction

Recent advances in digital anthropometry have highlighted the use of smartphone cameras to obtain visual information that can be used to produce 3-dimensional (3D) humanoid avatars. Several reports have supported the reliability of anthropometric and body composition parameters estimated by such procedures (1–4). While mobile digital anthropometry applications have typically constructed rigid humanoid avatars using two photographic images of static subjects—either from anterior and lateral (2–7) or anterior and posterior views (6, 8)—we recently reported the high reliability of new methods capturing serial images (~150) during complete rotation of subjects in front of a smartphone camera, followed by non-rigid avatar reconstruction (7). Specifically, the observed technical error of measurement (TEM) across common body circumferences averaged 0.5 cm or 0.9%, slightly lower than errors observed for two large, non-portable 3-dimensional scanning measurement booths that employ rigid avatar reconstruction and are commonly used in research and practice (TEMs of 0.6–0.8 cm or 1.1—1.5%). The combination of greater quantities of visual data and improved data processing pipelines may have contributed to these low errors.

In addition to establishing the reliability of body circumferences from smartphone 3D scanning, considering the validity of subsequent body composition estimation from humanoid avatars is warranted based on the importance of body composition in health, disease, and athletic settings (9–11). Trials to date have evaluated the validity of mobile applications estimating body composition variables from rigid avatars arising from two photographic images, with mixed results (2–6). These methods involve the assessment of a rigid, non-moving human body, which leads to relatively simple avatar reconstruction. Non-smartphone methods, such as traditional scanning booths or sensors positioned in front of turntables, have also employed rigid avatar reconstruction due to the lack of body movement during assessments. In contrast, emerging smartphone methods require participants to complete 360° of rotation in place by taking small, rocking steps while attempting to maintain an A-pose (i.e., standing upright with feet apart and legs straightened, arms straightened and lifted away from the sides of the body). Due to complex body motions generated during this rotation and the resultant body deformations, the 3D avatar must be produced using non-rigid reconstruction, potentially introducing additional error. Following both rigid and non-rigid avatar reconstruction, anthropometric variables from the avatars are used to predict body composition. However, no prior investigations have evaluated the validity of body composition estimates arising from smartphone-based scanning followed by non-rigid avatar reconstruction. Therefore, the purpose of the present study was to examine the validity of body fat percentage (BF%) prediction equations employed by such a smartphone-based 3D scanning application. It was hypothesized that BF% estimates obtained by the smartphone would exhibit strong linear relationships and statistical equivalence as compared to dual-energy X-ray absorptiometry (DXA), an accepted laboratory method of body composition assessment.



2 Method


2.1 Overview

Across two laboratories, adult participants were assessed using a smartphone 3D scanning application and dual-energy X-ray absorptiometry (DXA) at a single research visit. Serial images were collected by the smartphone 3D scanning application during a subject’s complete rotation in place, with data subsequently processed using non-rigid avatar reconstruction. The reliability of BF% from duplicate 3D scans was examined, and the validity of BF% values obtained by the 3D scanning application was established through comparison with DXA values.



2.2 Participants

Generally healthy adults (≥18 years of age) were recruited for participation in Lubbock, TX, USA and Baton Rouge, LA, USA. Prospective participants were ineligible if they had a diagnosis of a disease or any medical condition that is known to influence body composition (e.g., Cushing’s Syndrome, cancer, type 2 diabetes, chronic kidney disease, and heart failure), a history of major body altering surgery, implanted electrical devices, or were currently pregnant or breastfeeding. All participants provided written informed consent prior to participation, and this study was approved by the Texas Tech University Institutional Review Board (IRB2022-610; date of first approval: 07/23/2022) and the Pennington Biomedical Research Center Institutional Review Board (IRB 2022–002; date of first approval: 2/26/2022). All research was performed in accordance with relevant guidelines and regulations, including the Declaration of Helsinki.



2.3 Laboratory visit

Participants reported to the research laboratory at Texas Tech University (Lubbock, TX, USA) or Pennington Biomedical Research Center (Baton Rouge, LA, USA) after an overnight (≥8 h) period of fasting from foods, fluids, and other substances, and a ≥ 24-h abstention from exercise and other moderate- or vigorous-intensity physical activity. For assessments, each participant wore minimal form-fitting clothing.



2.4 Smartphone 3D scanning application

The smartphone 3D scanning application required participants to rotate in place on the laboratory flooring, using their own feet to perform the rotation and maintaining an A-pose, approximately 1.7 meters in front of a smartphone. During the rotation, multiple images were captured by the smartphone’s built-in camera. Scans were performed using an iPhone 13 Pro Max (model number MLKR3LL/A) with iOS v. 16.5 (Apple, Cupertino, CA, USA) or an iPhone 14 Pro (model number MQ2T3LL/A) with iOS v. 16.6. Each phone was mounted on a tripod for image acquisition. Each scan was automatically processed using the procedures of the manufacturer (Prism Labs, Los Angeles, CA, USA), which include machine learning for data pre-processing through binary segmentation and obtaining frame-to-frame correspondences (7). Humanoid avatars were produced by fully non-rigid reconstruction, and a parameterized body model was fitted to each avatar to normalize the avatar’s pose to a canonical pose and promote consistent measurement locations (1). Three scans were performed for each participant, and one scan was randomly selected for each participant, such that the present analysis is based on a single scan per participant to mimic typical use. For these scans, two proprietary BF% algorithms developed by the manufacturer were used: COmpound Circumferences Only (COCO) and Automatic Detection of Athlete Mode (ADAM). The COCO equation employs measurement ratios, such as waist:height, to estimate BF% using coefficients derived from linear regression on the manufacturer’s proprietary training data. The ADAM equation computes a weighted average between the COCO BF% and a variant of the Navy method designed to target individuals with lower BF%.



2.5 Dual-energy X-ray absorptiometry

A DXA scan was performed for each participant using a scanner that was calibrated daily according to manufacturer procedures (iDXA, General Electric, Boston, MA, USA with enCORE software versions 13.60.033 and 16.10.151, 16 [SP 1]). For each scan, the participant was positioned supine on the DXA table with hands neutral at their sides and feet together. Consistent positioning of hands and feet was achieved using foam blocks and straps. The region BF% values for the entire body were used in the present analysis.



2.6 Statistical analysis

The reliability of the ADAM and COCO 3D scanning equations was determined by calculating the TEM (i.e., precision error), least significant change (i.e., 2.77 × TEM), and the intraclass correlation coefficient (model 2.1) from duplicate scans, using previously described procedures (12, 13).

The validity of the ADAM and COCO 3D scanning equations were compared to reference DXA values. The linear relationships between 3DO and criterion estimates were established using ordinary least squares regression, with DXA specified as the x variable and the 3D scanning equation specified as the y variable. To determine if 3DO values demonstrated group-level statistical equivalence with DXA values, equivalence testing (14) was performed using equivalence regions of ±2.0% for BF%, as in a prior investigation (15). The mean difference (i.e., constant error) was calculated, along with the standard error of the estimate (SEE), root mean square error (RMSE), mean absolute error (MAE), Pearson’s r and R2, and Lin’s concordance correlation coefficient (CCC). Bland–Altman analysis was performed to establish the 95% limits of agreement, alongside linear regression to check for proportional bias (16). Statistical significance was accepted at p < 0.05. All statistical analyses were conducted in R (version 4.3.1) (17).




3 Results


3.1 Participants

One hundred and thirty-one participants (73 M, 58 F) with at least one valid scan were included in the validity analysis (Table 1), and a subset of 121 participants with two valid scans were included in the reliability analysis due to the need for duplicate scans to assess reliability. Sample avatars in differing body mass index categories are displayed in Figure 1. Based on self-report, 86 participants were non-Hispanic Caucasian, 21 were Hispanic Caucasian, 13 were Black or African American, 8 were Asian, 2 were Native American or Alaskan, and 1 was Native Hawaiian or other Pacific Islander.



TABLE 1 Participant characteristics.
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FIGURE 1
 Humanoid avatars from 3-dimensional optical imaging scans. Sample female (left column) and male (right column) avatars are displayed for participants categorized as being underweight (i.e., BMI < 18.5 kg/m2; top row), healthy weight (i.e., 18.5 kg/m2 < BMI < 24.9 kg/m2; second row from top), overweight (i.e., 25.0 kg/m2 < BMI < 29.9 kg/m2; middle row), or obese (i.e., BMI > 30.0 kg/m2; bottom two rows).




3.2 Reliability

For BF% from the ADAM equation, the TEM, least significant change, and ICC were 0.66%, 1.82%, and 0.996 (95% CI: 0.994–0.997), respectively. For BF% from the COCO equation, the TEM, least significant change, and ICC were 0.50%, 1.39%, and 0.997 (95% CI: 0.996–0.998).



3.3 Validity

Based on the prespecified equivalence regions of ±2.0%, both 3DO BF% equations (ADAM and COCO) demonstrated statistical equivalence DXA BF% (Table 2). Both equations also demonstrated strong, significant correlations with DXA (r 0.90; CCC 0.89–0.90; Figures 2A,C). MAE and RMSE values were 3.4–3.5 and 4.5%, respectively. From Bland–Altman analysis, no proportional bias was observed for either equation (ADAM equation: slope −0.01, 95% CI −0.09, –0.07, Figure 2B; COCO equation: slope −0.07, 95% CI −0.15, 0.01, Figure 2D). Limits of agreement ranged from 8.6 to 8.8%.



TABLE 2 Validity results.
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FIGURE 2
 Body fat percentage estimates from smartphone-based 3-dimensional optical imaging. Two prediction equations, ADAM and COCO, were evaluated as compared to DXA. Relationships between 3DO-based values and DXA values are displayed in panels (A,C), with the dotted line indicating the perfect linear relationship (line of identity) and the solid black line with shading representing the observed linear relationship and 95% confidence bands. Data points indicate individual participants. Bland–Altman plots are displayed in panels (B,D), with dashed lines indicated the 95% limits of agreement, the horizontal solid black line indicating the mean difference (i.e., constant error), and the diagonal black line with shading indicating the observed linear relationship and 95% confidence bands.





4 Discussion

Smartphone-based 3D scanning increases the accessibility of digital anthropometry and body composition estimation. While such mobile scanning methods have typically relied on the generation of rigid avatars from two photographic images, new methods employ the acquisition of numerous images to capture more body shape data for use in non-rigid avatar reconstruction. With recent data indicating the precision of anthropometric and body composition estimates from this method compares favorably to traditional, non-portable 3D scanners (7), a consideration of the validity of resultant body composition estimates was warranted. In the present analysis, we found that two prediction equations demonstrated high reliability and generally strong agreement with DXA for estimation of BF%.

For both BF% equations, very high reliability was observed, with TEM values of 0.50–0.66% from duplicate assessments. Corresponding least significant change values, reflecting the degree of change that would be considered statistically significant, were 1.39–1.82%. Additionally, strong group-level agreement was observed, as supported by statistical equivalence with DXA and strong linear relationships (r 0.90; CCC 0.89–0.90). Several additional metrics (SEE, RMSE, and MAE) described the typical individual errors of the equations, with values ranging from 3.4 to 4.5% across metrics and equations. Bland–Altman analysis did not indicate proportional bias in either equation, which is an encouraging indicator due to the common occurrence of large negative proportional bias when applying body composition prediction equations, particularly in consumer-facing assessment methods (15, 18). For example, we previously found notable proportional bias, with slopes of −0.27 to −0.35, when evaluating anthropometric BF% prediction equations developed using the NHANES dataset (15). Additionally, in an evaluation of numerous consumer-grade bioimpedance scales, we found that approximately half exhibited notable proportional bias for BF%, with slopes as large as −0.50 (18). Despite the minimal proportional bias in the present study, the limits of agreement were approximately ±8.6% for both equations, indicating a relatively wide range of individual-level differences between DXA and the prediction equations are possible. However, typical errors—as indicated by the SEE—may be closer to ≤ ±4% in two-thirds of cases. Collectively, these results support high reliability and group-level performance of the prediction equations and provide information regarding the individual-level errors that can be expected with this technology.

A small number of previous investigations have reported the validity of smartphone-based 3D scanning applications, typically using two photographic images, as compared to reference methods (2, 6, 8). Graybeal et al. (2) demonstrated a similar high reliability of BF% estimates (TEM of 0.3–0.4%) and good group-level performance as compared to a rapid 4-compartment model (r 0.85; statistical equivalence between methods based on a ± 2% equivalence region). However, RMSE values (5.0–5.1%) were slightly higher than in the present investigation (4.5%), and a larger magnitude of proportional bias was observed (slope of −0.25 vs. −0.01 to −0.07 in the present study). In a separate investigation using different 3D scanning applications, Graybeal et al. (6) observed TEM values of 0.3–0.6% for BF%, RMSE values of 3.9–6.2%, and statistical equivalence for some, but not all, scanning applications. As in other studies, negative proportional bias was observed, with slopes of −0.17 to −0.53 across applications. Collectively, some aspects of the performance of the 3D scanning applications evaluated in the present study are similar to prior investigations, with the reduction in the magnitude of proportional bias being a potentially notable difference.

The participants in the present investigation comprised a wide range of adiposity, with DXA BF% values of 10.6–54.7% and BMIs of 16.9–48.5 kg/m2, as well as expected natural variation in overall body size and shape. An approximately even distribution between sexes (73 M, 58 F) and some representation of racial or ethnic minorities (35% of the sample) were also features of the sample. Collectively, these features contributed to a relatively diverse sample in terms of body size and composition, race and ethnicity, and sex. However, a limitation is the relatively young average age (33.7 ± 16.0 years). As such, the present results provide an important step in evaluating the smartphone-based 3D scanning procedures, but continued investigation is warranted in a variety of groups, including diverse racial and ethnic groups and middle-aged or older adults.

Smartphones are ubiquitous worldwide, with 2022 estimates indicating a median adult smartphone ownership rate of 85% across 18 advanced economies—an increase from 76% in 2018 (19, 20). As such, numerous promising applications of smartphone-based health technologies can be considered. The accessibility of smartphone-based 3D scanning allows for precise anthropometric evaluation and subsequent body composition estimation, providing new opportunities for individual users to track relevant body changes over time. For example, a simple implementation of this technology is the ability for smartphone-based 3D scanning to provide a precise estimate of waist circumference, thereby allowing one important component of cardiometabolic risk (21) to be easily assessed without the need for a trained assessor. Additionally, there are opportunities for anthropometric and body composition estimates to be integrated into weight management mobile applications to provide customized feedback and progress tracking. While the ability of 3D scanning to aid in the success of such weight management programs will be a topic for future investigation, the automated nature of such procedures reduces barriers to physical evaluations as compared to decades past. The ability to rapidly obtain automated measurements at home, using smartphone capabilities, could eliminate the need for in-person anthropometric assessment by health providers. Beyond using simple metrics like waist circumference and BF%, there are also opportunities to employ various machine learning and artificial intelligence procedures to characterize unique body phenotypes and their relationship to health and disease parameters (22, 23). Pairing smartphone-based 3D scans with relevant clinical data—such as blood lipids, glucose, and blood pressure—may allow for better understanding of the influence of body shape and size on relevant cardiometabolic risk factors, both at the group and individual level. Future investigations including a greater proportion of participants with obesity and related comorbidities will provide further clarity regarding the utility of this technology. Due to the lack of risk and non-invasive nature of 3D scanning assessments, other medical applications—such as the monitoring of pregnant and breastfeeding individuals—should also be considered in subsequent work. While future research and development will be needed to realize the potential of 3D scanning as a component of health assessment, emerging findings indicate notable potential of smartphone-based methods.

In summary, the present study demonstrates the validity of body composition estimation from smartphone-based 3D scanning. Unlike previous trials of smartphone technologies, the humanoid avatars constructed by the 3D scanning application were based on large amounts of visual data collected during complete subject rotation. With the reliability (7) and validity of these procedures established, new applications of this technology can be investigated. Additionally, continued refinement of body composition prediction in diverse populations can promote the lowest errors achievable and maximize the ability to accurately track changes over time. While continual advances are likely, smartphone-based 3D scanning may now be suitable for implementation for rapid and accessible body measurement in a variety of applications.
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Objective: To investigate the potential correlation between body mass index (BMI) and the 28-day mortality rate among sepsis patients and the gender difference in this association.

Design: The current research was a retrospective cohort study.

Participants: A total of 14,883 male and female cohorts of sepsis patients were included in the Medical Information Mart for Intensive Care IV (MIMIC-IV V2.2) database. Patients in each gender cohort were further classified as underweight, normal weight, overweight, or obese according to BMI and the World Health Organization (WHO) BMI categories.

Outcomes: The 28-day mortality from the date of ICU hospitalization was the primary outcome measure.

Results: The BMI and 28-day mortality exhibited an L-shaped relationship (p for nonlinearity <0.001) with significant gender-specific differences. Subgroup analysis revealed different association patterns between the male and female cohorts. Specifically, BMI and mortality exhibited a U-shaped curve relationship among the males (p for nonlinearity <0.001) and an L-shaped relationship among the females (p for nonlinearity = 0.045).

Conclusion: This study proposes a link between extreme BMI and 28-day mortality in patients with sepsis. Underweight patients have an increased risk of mortality; however, this risk decreases in overweight and obese patients. Upon stratifying by sex, a U-shaped pattern was observed, indicating an association between BMI and 28-day mortality in males, while an L-shaped pattern emerged in females.
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Introduction

In the last 3 years, there has been a significant rise in the worldwide occurrence of overweight and obese individuals. The overall incidence has risen from 28.8 to 36.9% among males, and among women, it has increased from 29.8 to 38.0% (1). Obesity traits are linked to the leading global causes of death (2), with discernible gender differences in the risk impact of certain diseases. For instance, research indicates that overweight women have a higher risk of type 2 diabetes than men. In comparison, overweight men have a higher risk of chronic diseases like chronic kidney disease and chronic obstructive pulmonary disease (COPD) (3).

The yearly global incidence of sepsis is approximately 30 million, resulting in 6 million deaths (4). However, obesity unexpectedly appears to protect against death from all causes in individuals with sepsis (5). This was called “reverse epidemiology” or the “obesity paradox” (6, 7). Previous studies found that overweight and obese individuals had much lower mortality rates associated with sepsis than normal-weight individuals (5, 8, 9). Research has provided insights into the link between body mass index (BMI), sepsis-associated death, and age (10); however, a specific gender-based impact of BMI on sepsis-related mortality and the gender-specific link between BMI and sepsis-associated mortality in individuals has not been explicitly addressed.

A critical analysis of existing research reveals methodological and sample characteristic differences, which brings the reliability of these studies to question. To address this knowledge gap, the current study explored the relationship between BMI, gender, and sepsis mortality, overcoming previously identified limitations. This offers a new insight into the intricate interplay of obesity, gender, and sepsis mortality.

In addition, previous research frequently regards BMI as either a continuous or categorical factor, which fails to fully capture the intricate dose–response correlation between BMI and sepsis-associated mortality. The present research work deviated from traditional methods by utilizing restricted cubic splines (RCSs) to elucidate the dose–response relationship. After comprehensively evaluating for the obesity paradox in a cohort of patients with sepsis, the main objective was to get a detailed comprehension of a possible obesity paradox in sepsis prognosis. Investigate for differences in the association between BMI and mortality in men versus women.



Methods


Study design

The current work adhered to the standards outlined in the STROBE statement. This retrospective investigation of patients with sepsis was longitudinal and single-center.



Patient and public involvement

The study did not include active participation from patients or the general public.



Data source

The Medical Information Mart for Intensive Care IV (MIMIC-IV V2.2) database is a carefully curated and identifiable collection of medical records from patients hospitalized in the intensive care unit (ICU) between 2008 and 2019. The authorization to utilize MIMIC-IV data for research (Certification Number: 38807989) was secured, having satisfactorily concluded the National Institutes of Health Protecting Human Research Participants training course. The Ethics Committee of Kunshan First People’s Hospital approved the study (Ethics Number 2023–04-001-K02).



Study population

The study comprised 14,883 individuals diagnosed with sepsis who had BMI information. Participants were recruited from the MIMIC-IV database (11). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) guidelines were used to describe sepsis. The initial screening included patients with a sepsis diagnosis, including those with sepsis, severe sepsis, and septic shock (ICD9 codes: 99591, 99,592, 78,552, respectively). Exclusion criteria included patients who were under 18 years old and had ICU stays of less than 24 h. For multiple admissions, only the first ICU admission records were considered.



Data retrieval

The extraction of data was executed with Structured Query Language (SQL). Patients’ age, sex, race, BMI, and Charlson comorbidity index were recorded. Records about the administration of vasopressors, mechanical ventilation, and sedatives within the first 24 h after admission to the ICU were also collected. Comorbidity data, such as diabetes mellitus, congestive heart failure (CHF), coronary artery disease (CAD), hypertension, stroke, renal disease, atrial fibrillation (AFIB), liver disease, chronic pulmonary disease, and malignant tumor, were gathered using the International Classification of Diseases coding systems. The initial data collected at the onset of sepsis included vital signs (heart rate and minimum arterial pressure), the severity of illness [Simplified Acute Physiologic Score (SAPS), laboratory tests partial pressure of oxygen (PO2), hemoglobin concentration, white blood cell count, lactate, creatinine, glucose and pH levels] and sequential organ failure assessment (SOFA), were retrieved.



Exposure and outcomes

The exposure was BMI, calculated as weight (kg)/height2 (m2). The primary outcome assessed was the mortality due to any cause within 28 days. Secondary outcomes examined were the mortality after 1 year and the duration of stay in the ICU.



Statistical analysis

This retrospective study did not use a priori statistical analysis strategy and statistical power calculation. Based on the data that was already present in the database, the sample size was selected. The primary indicator for the research was BMI. All missing values, entries with recording errors, and other potential confounding factors with missing values exceeding 10% were excluded.

Supplementary Table S1 shows the variable missing rates. Missing values for each variable were estimated using multiple imputations (9). Multicollinearity among variables was detected using the variance inflation factor. The absence of multicollinearity for each variable was indicated by a variance inflation factor of <5 (Supplementary Table S2).

BMI was categorized into underweight (less than 18.5 kg/m2), normal weight (18.5–24.9 kg/m2), overweight (25–29.9 kg/m2), and obese (more than 30 kg/m2) using the World Health Organization (WHO) standards. Fifteen patients were excluded due to presumed erroneous data defined as BMI > 100 kg/m2. The patients were also grouped according to age as <60, 60–80, and ⩾ 80. Categorical variables were represented using numbers and percentages, and between-group differences were found using chi-squared and Fisher’s exact tests. Continuous variables were expressed using medians and interquartile-range values, and between-group differences were identified using the Mann–Whitney U test. Multivariable logistic regression models were used to evaluate the association between different BMI categories and 28-day mortality in sepsis patients. We constructed two regression models to control for confounding biases by adjusting for covariates. The selection of covariates was driven both theoretically and statistically. Some covariates, theoretically associated with mortality, were fixed in the model, such as age, gender, race, SAPS, SOFA, and Charlson Comorbidity Index. Other variables were selected using statistical methods. First, variables with variance inflation factors greater than 5 were excluded to avoid multicollinearity. We constructed both unadjusted and adjusted models. The adjusted model included age, gender, race, SAPS, SOFA, Charlson comorbidity index, diabetes, hypertension, coronary artery disease, congestive heart failure, atrial fibrillation, malignancy, stroke, chronic obstructive pulmonary disease, renal disease, liver disease and glucose. The nonlinear relationship between BMI and 28-day all-cause mortality was assessed using RCSs Nonlinear model knots were used to distribute BMI into quartiles. The nonlinear association between BMI and patient all-cause mortality was analyzed, and its p-value was calculated.

A subgroup analysis of sex and age was also performed to explore potential relationships within specific subgroups.

The statistical analyses were conducted using R software (version 4.2.3; R Foundation for Statistical Computing, Vienna, Austria) and Empowerstats.1 Statistical significance was determined at a two-tailed p-value of less than 0.05.




Results


Patient selection

Supplementary Figure S1 outlines the patient selection process identifying 25,599 records. The cohort consisted of 14,883 patients after excluding unqualified records.



Demographic and hospitalization characteristics by BMI

Table 1 summarizes the demographic and hospitalization characteristics of male patients with sepsis (n = 9,022). A significant age difference exists among the BMI categories (p < 0.001). Older age showed a significant association with lower BMI and vice versa. Remarkably, BMI significantly impacts disease severity, as evidenced by SAPS (p < 0.001) and the Charlson comorbidity index (p < 0.001). This demonstrates an inverse relationship between lower BMI and higher scores on SAPS and the Charlson comorbidity index. Significant differences in comorbidities (p < 0.001) were observed, including atrial fibrillation, diabetes, renal disease, COPD, hypertension, liver disease, and metastatic cancer. Key vital signs and laboratory parameters exhibited significant differences among BMI categories. Clinical interventions, such as mechanical ventilation and vasopressor use, displayed BMI-related variations (p < 0.001).



TABLE 1 Demographic information and hospitalization characteristics of male sepsis patients.
[image: Table1]

Table 2 presents the demographic and hospitalization characteristics of female patients with sepsis (n = 5,861). Similar to males, older age was significantly associated with lower BMI (p < 0.001). Both SOFA scores (p = 0.047) and the Charlson comorbidity index (p = 0.044) showed significant differences across BMI groups. Although the median Charlson comorbidity index was consistent at 5.0 across BMI groups, further analysis suggested that females with lower BMI tended to have a higher burden of comorbidities, which is reflected in the significant differences observed across the BMI categories. Significant differences in comorbidities (p < 0.001) were observed, including diabetes, renal disease, COPD, and hypertension. BMI-related differences were noted in the vital signs and laboratory parameters. Clinical interventions, such as mechanical ventilation, exhibited BMI-related variations (p < 0.001).



TABLE 2 Demographic information and hospitalization characteristics of female sepsis patients.
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Comparison of outcomes in different genders

Table 3 and Supplementary Table S3 presents the patient outcomes stratified by BMI and age categories. There were significant differences in the duration of ICU stay and the rates of death at 28 days and 1 year among male patients, depending on their BMI categories (p < 0.001), with obese patients having the longest mean ICU stay of 3.4 (1.7, 8.0) days. Underweight male patients experienced the highest 28-day (22%) and 1-year (53.2%) mortality. Obese males had the lowest risk of death, with a 28-day and 1-year mortality of 12.5 and 22.3%, respectively.



TABLE 3 Mortality in different BMI patients with sepsis.
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In female patients, ICU stay did not differ between BMI groups (p = 0.108). However, 28-day and 1-year mortality varied substantially by BMI (p < 0.001). Underweight females had markedly elevated mortality, with 28-day and 1-year rates of 28.2 and 44.1%, respectively. Obese females experienced relatively lower mortality of 15.7% at 28 days and 28.6% at 1 year.



Gender differences in the correlation between BMI and mortality

Supplementary Table S4 presents the multivariable logistic regression analysis results showing the relationship between mortality and BMI. After accounting for potential confounders that might influence the results (Supplementary Table S5), each unit rise in BMI was linked to 2% lower odds of 28-day mortality [adjusted odds ratio (OR) = 0.98, 95% confidence interval (CI) = 0.98, 0.99, p < 0.001]. When stratified by gender, the outcomes showed a significant correlation (p for interaction = 0.014). For females, being underweight was linked to 80% higher odds of 28-day mortality in comparison to having a normal weight (adjusted OR = 1.80, 95% CI = 1.28, 2.53, p = 0.001). No significant relationships were seen in the overweight and obese categories. In males, both overweight and obesity were linked to 33% lower odds of 28-day mortality relative to normal weight. The adjusted OR were 0.67 (95% CI = 0.57, 0.79, p < 0.001) for overweight and 0.67 (95% CI = 0.57, 0.80, p < 0.001) for obesity (Supplementary Table S6).



RCS analyses of nonlinear relationships

RCS models were developed to evaluate the link between BMI and mortality. Figure 1 depicts the dose–response curves demonstrating the correlation between BMI and 28-day all-cause mortality. The curves were obtained after performing logistic analysis and adjusting for significant covariates. The dose–response analysis demonstrated a L-shaped curve depicting the relationship between BMI and the risk of 28-day all-cause mortality (p for nonlinearity <0.001) (Figure 1A).

[image: Figure 1]

FIGURE 1
 Restricted spline curves for the association between BMI and 28-day mortality. The graphs present odds ratios (ORs) for 28-day mortality, adjusting for age, gender, race, SAPS, SOFA, and the Charlson comorbidity index. It also adjusts for various comorbidities, including hypertension, stroke, congestive heart failure, renal disease, diabetes, chronic obstructive pulmonary disease, atrial fibrillation, malignancy cancer, coronary artery disease, and liver disease. Additionally, the analysis was adjusted for blood glucose levels to account for its potential impact on the outcomes. Logistic regression modeling facilitated data fitting. Solid lines on the graphs denote ORs, with shaded areas representing 95% confidence intervals (CIs). OR, odds ratio; CI, confidence interval.


According to subgroup analysis, there was significant variation in the link between BMI and 28-day mortality in males versus females. RCS models were constructed for sex-stratified analysis. Figure 1B shows a U-shaped curve relationship between BMI and 28-day all-cause mortality in male patients with sepsis (p for nonlinearity <0.001). However, it reveals an L-shaped correlation between these two factors in the female patients (p for nonlinearity = 0.045) (Figure 1C). In our cohort, there were 3,418 patients with late-stage cancer. The results of a secondary analysis excluding these patients were consistent with the original findings, indicating that the inclusion of late-stage cancer patients did not significantly alter the overall results. Analyses were also conducted of the results in different age groups and Charlson comorbidity index score groups (Supplementary Figures S2, S3). This study produced curve-fitting graphs for BMI and 28-day mortality, considering various factors such as gender, age, and Charlson comorbidity index scores (Supplementary Figure S4).



Change points and associations in the BMI-mortality relationship

Table 4 presents the estimated change points associated with BMI and 28-day mortality. For the entire cohort, a BMI change point was identified at 27.89 kg/m2. Below this change point, each 1 kg/m2 increment in the BMI was linked with an OR of 0.94 (95% CI = 0.92, 0.96, p < 0.001) for mortality, indicating a protective effect. Above this BMI threshold, the OR per 1 kg/m2 increase was neutral at 1.01 (95% CI = 1.00, 1.02, p = 0.283), suggesting no additional risk. Gender-specific analyses revealed a higher BMI change point for males (29.22 kg/m2) than females (20.67 kg/m2). The protective association below the change point was more pronounced in the males (OR = 0.93, 95% CI = 0.91, 0.95, p < 0.001) than in the overall cohort, with a slight increase in mortality risk above the change point (OR = 1.02, 95% CI = 1.00, 1.03, p = 0.030). Females exhibited a more substantial protective effect below their lower change point (OR = 0.86, 95% CI = 0.80, 0.93, p < 0.001), with a neutral effect above it (OR = 0.99, 95% CI = 0.98, 1.00, p = 0.129). Stratifying by age and Charlson comorbidity index revealed variability in change points and effect sizes but consistently showed a relation between lower BMI and higher mortality risk.



TABLE 4 Estimated change points from piecewise two-line models in the relationship between BMI and mortality and the associations with mortality below and above the change point.
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Discussion

Our study data indicate a correlation between BMI and mortality in sepsis patients. The findings suggest that low BMI may have adverse consequences, as underweight individuals exhibited higher mortality rates. Conversely, obese patients showed lower mortality rates, suggesting a potential protective effect of higher BMI. The relationship between 28-day mortality and BMI demonstrated an L-shaped curve, with significant gender-specific differences. Specifically, females exhibited an L-shaped relationship, while males exhibited a U-shaped relationship. The BMI-mortality relationship in sepsis patients was analyzed using piecewise two-line models to estimate change points and mortality associations on either side of these points. The results emphasize an intricate relationship that relies on BMI thresholds, which differ according to gender, age, and comorbidity burden, as assessed by the Charlson comorbidity index. These results emphasize the need to consider individual patient characteristics in the BMI-mortality assessment for sepsis patients. The identified BMI change points and their differential effects reinforce the concept of an “obesity paradox,” suggesting a survival benefit for higher BMI up to a certain point.

The present study underscores that the correlation between BMI and 28-day mortality varies markedly between sexes—higher risk in underweight females and a protective effect in overweight and obese males. Consistent with another study, which showed that male participants with higher BMI exhibited a lower risk of mortality than female participants (12). In sepsis patients, a significant sex and BMI relationship was found in the current investigation. RCS analysis indicated a pronounced nonlinear relationship in males, characterized by a U-shaped curve. On the other hand, females exhibited an L-shaped curve, requiring a deeper understanding of the physiological mechanisms involved. The U-shaped curve in males may relate to the combined effects of visceral fat and inflammatory responses, potentially leading to increased mortality. In contrast, the L-shaped curve in females might reflect the protective role of subcutaneous fat on cardiovascular health and immunity. Hormones like estrogen and testosterone, which differ between genders, could influence these patterns. Specifically, estrogen’s anti-inflammatory properties might contribute to better outcomes in females (13). The present results align with growing evidence of gender-specific health responses (14, 15), highlighting the distinct impacts of different fat types on metabolic health in males and females. One study indicated that gender differences significantly impact the critical points of BMI based on body fat percentage (16). This suggests that gender differences should be considered in weight and BMI studies.

The relationship between BMI and mortality associated with sepsis in patients has been the subject of several investigations. An inverse relationship between BMI and sepsis-related mortality was shown in a meta-analysis of observational data (17), and a higher BMI has been associated with improved survival rates among older individuals with sepsis (12) but not younger individuals with sepsis (18). An analysis of a group of Japanese patients with severe sepsis revealed a higher rate of death within 28 days among individuals with lower BMI (< 18.5 kg/m2) (19). Another meta-analysis reported decreased mortality in obese and overweight patients and increased mortality in patients who were underweight (20). Retrospective cohort research involving 55,038 adult patients diagnosed with sepsis revealed a correlation between obesity (BMI ≥ 30 kg/m2) and survival rates in sepsis, resulting in an absolute mortality reduction (21). Mica et al. proposed that fatty tissue associated with higher BMI exerts a protective effect against inflammatory reactions like sepsis, and elevations in leptin and inflammatory biomarkers like C-reactive protein within the obese population have been considered as having a mechanistic role in the obesity paradox (22–24).

However, the inverse relationship between BMI and sepsis-related mortality has been challenged by some studies indicating the opposite. In a retrospective cohort research involving 834 individuals with sepsis admitted to the ICU, obese patients had higher mortality rates than non-obese patients (23). Impaired immune function in the obese population causes a significant increase in mortality rates (25). Population-based cohort research conducted on 0.5 million Chinese adults found that compared with a reference BMI of 22.5 to <25.0 kg/m2, the multivariable-adjusted hazard ratios for sepsis-related mortality were 2.42 for BMI < 18.5, 1.59 for 18.5 to <20.0, 1.21 for 20.0 to <22.5, 0.97 for 25.0 to <27.5, 0.98 for 27.5 to <30.0, and 1.22 for ≥30.0 kg/m2. The study also found increased sepsis-related mortality risk even in participants with low-and mid-normal weight (26). A two-sample Mendelian randomization study found that sepsis mortality at 28 days increased with increasing BMI; however, the effect disappeared at 90 days (27, 28). Confounders in causal inference in observational studies can lead to opposite conclusions. The correlation between BMI and mortality in sepsis patients is intricate, and the results from different research are inconclusive. Hence, the influence of BMI on sepsis-associated mortality may be contingent upon several elements and necessitates more investigation to achieve a thorough comprehension.

Although our data suggest that the overweight and obese groups had better survival chances compared to those with lower BMI, caution is warranted in interpreting these findings. Our analysis revealed that lower BMI groups had higher comorbidity scores, indicating that individuals with lower BMI may have more severe underlying health conditions, such as cachexia, which could negatively impact their prognosis. Therefore, the protective effect of a higher BMI may be partially attributable to the relatively better health status of these individuals. Although high BMI can predispose individuals to severe conditions, our findings indicate that individuals with higher BMI generally have better outcomes compared to those with severe comorbidities and lower BMI. This aligns with studies on acute respiratory distress syndrome (ARDS), where higher BMI was linked to better outcomes. Other pathophysiological mechanisms described in recent literature (29) may also explain these associations.

The study partially supports the existence of an obesity paradox in sepsis patients (30). Employing RCS, more precise ORs were derived. A lower OR was identified for BMI values of 27.7–42 kg/m2, which correlates with an increased survival rate. Multifactorial analysis revealed a lower mortality rate in the obese population. In contrast, curve-fitting results indicated that males with higher BMI had a higher mortality rate. The lower mortality rate in the obese population may be attributed to the higher prevalence of mild obesity. However, severe obesity was linked to a higher mortality rate. The curve-fitting results suggest that a more significant proportion of people with moderate obesity was responsible for the overall decrease in the death rate.

A significant association was found between elevated BMI and decreased death rates in comparison to the healthy BMI range recommended by the WHO, and given the age of the present study population was 64.66 ± 15.55 years, this fits with previous study results (12, 18). Aging leads to a redistribution of body composition, including a decrease in lean body mass and bone density, particularly with an increase in abdominal fat mass. A study revealed that the association between BMI and mortality is influenced, to some extent, by the associations of lean body mass and fat mass with mortality (31). Body composition markers, such as waist circumference, might reveal varying impacts on specific and overall mortality causes, offering a new understanding of the negative relationship between BMI and mortality (31–33). Our dataset lacked certain reliable indicators of mortality such as lean body mass and central obesity, and future studies on mortality and sepsis should include such markers of body composition. However, analyses from a study also indicated that a higher BMI correlates with lower mortality rates in older individuals, suggesting an increased demand for nutritional reserves in older age (34). These findings underscore the consideration of age in healthy weight recommendations, emphasizing the need for further research to determine the benefits of weight gain in the elderly.


Limitations

The present study provides insights into the link between BMI and gender-specific 28-day sepsis-associated mortality in patients. However, the current research has several limitations. First, as a retrospective analysis, the study is subject to information bias, which could result in inaccuracies or incomplete data. In particular, lipid variables such as Low-Density Lipoprotein cholesterol and triglycerides, which may be strongly associated with BMI, were excluded from the primary analysis due to a high rate of missing data. The omission of these variables may limit our ability to fully adjust for metabolic factors that influence the relationship between BMI and sepsis mortality. Second, BMI was employed to measure overall obesity instead of waist circumference, which assesses central obesity. Observational studies indicate that there is a correlation between abdominal obesity and a higher likelihood of death linked to sepsis (35). Despite using RCS to obtain more precise ORs, unmeasured confounders may still influence the BMI-mortality relationship. Moreover, this study failed to include variables such as muscle mass, fat distribution, and other aspects of body composition. These factors could impact the prognosis of sepsis patients. Other potential influencers such as lifestyle, diet, socioeconomic status, and baseline health conditions were also not examined, which could also impact the observed BMI-mortality relationship. The identification of sepsis-3 patients was primarily based on ICD-9 codes, which, although operationally convenient and readily available, may not be as precise as incorporating the SOFA score. The use of ICD-9 codes could potentially include patients with milder symptoms, which might influence the assessment of the severity of sepsis. However, to enhance the accuracy of our study’s findings, our primary analysis outcomes were adjusted for the SOFA score to control for potential biases. Finally, as an observational study, causality cannot be inferred. The mechanism of the obesity paradox in sepsis is still being studied and could include inflammation (36–38), which was not controlled for in this study using inflammatory biomarkers. Despite these limitations, the study offers valuable insights into the complex link between BMI and mortality in sepsis patients. Future research should overcome these limitations with prospective designs, broader populations, and more comprehensive health metrics to further explore the role of BMI in the clinical management of sepsis.



Clinical considerations and implications

The discovery of gender-specific patterns has significant clinical implications. It underscores the importance of personalized treatment to account for gender-related physiological differences in sepsis management. Future studies should investigate the roles of inflammatory biomarkers, hormones and fat distribution in sepsis outcomes to refine gender-specific treatment approaches. The current study highlights the importance of considering gender-specific BMI and mortality relationships, reinforcing the need for personalized interventions in the management of sepsis.




Conclusion

This study uncovers the correlation between BMI and gender-specific mortality in a cohort of patients with sepsis in whom the presence of the obesity paradox was confirmed. The RCS analysis revealed a distinct L-shaped correlation between BMI and 28-day mortality. Regarding sex stratification, a U-shaped correlation was observed between BMI and 28-day mortality in male patients, whereas an L-shaped correlation was seen in females. It is necessary to conduct further studies, including many centers and large samples, in order to examine the disparities between sexes in the obesity paradox.
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Background: Myocardial infarction(MI) is one of the most serious health threats. Despite the increasing number of clinical methods used to predict the onset of MI, the prediction of MI is still unsatisfactory and necessitates new methods.



Objective: To systematically review observational studies from the past two decades on the association between waist-to-hip ratio (WHR) and MI risk.



Methods: Original literature on the correlation between WHR and MI was searched in PubMed, Embase, Web of Science, Cochrane Library, Science Direct, CNKI, and Wanfang up to January 31, 2024. Two researchers independently screened, extracted data, and assessed quality using the Newcastle-Ottawa Scale (NOS) and Revman5.3. Meta-analysis with Stata 16.0 calculated the combined Odd ratio (OR) for WHR and MI risk. Heterogeneity was assessed with the I2 statistic to select the appropriate effects model. Subgroup analysis, meta-regression, sensitivity analysis, and funnel plots tested for heterogeneity and publication bias.



Results: A total of 22 observational studies were included, involving 709,093 participants. The meta-analysis showed that an elevated WHR was significantly associated with an increased risk of MI, with a pooled odds ratio (OR) of 1.98 [95% Confidence interval (CI): 1.75–2.24] and high heterogeneity (I2 = 91.5%, P < 0.0001). Subgroup analysis revealed a stronger association between WHR and MI in women (OR: 1.99, 95% CI: 1.43–2.77) compared to men (OR: 1.74, 95% CI: 1.36–2.22). Regional analysis indicated that the association between WHR and MI risk was highest in Asian populations (OR: 2.93 95% CI: 1.61–5.33), followed by American (OR: 1.73, 95% CI: 1.45–2.08) and European populations (OR: 2.19, 95% CI: 1.49–3.22). Sensitivity analysis demonstrated that the results remained stable after excluding one study.



Conclusion: In the general adult population, a higher WHR is a potentially significant association for MI and has predictive value for MI.
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1 Background

MI is a serious cardiovascular disease, with symptoms including severe chest pain, tightness, and difficulty breathing (1, 2). If not treated promptly, it often leads to serious complications or even death (2). Therefore, identifying valuable risk factors to help predict MI would promote healthcare. There is a large body of research indicating that obesity-related cardiometabolic diseases are risk factors for atherosclerotic cardiovascular disease (3). Per the WHO and numerous other internationally recognized organizations like the CDC, obesity is defned by body mass index(BMI), an indirect measure of body composition. However, patients can be at an increased risk of cardiometabolic diseases if they have a normal BMI but an elevated body fat percentage (i.e., “normal weight obesity”) (4). It is therefore important to consider other measures of body composition besides BMI as a measure of body fat and predict cardiometabolic risk. Dual-energy x-ray absorptiometry (DEXA) (5), bioimpedence analysis (BIA) (5), computed tomography (CT) and magnetic resonance imaging (MRI) are direct measures of body fat,while WHR, waist-to-height ratio (WHtR) and waist circumference (WC) are other indirect measures of body fat besides BMI. DEXA is a technique for measuring bone density and body fat content using the principle that different energy x-rays are absorbed to different degrees in human tissues (5). BIA is used to predict body composition based, on the electrical conductive properties of the body (5). Among these, DEXA, CT, and MRI are expensive and not readily available.BMI cannot distinguish between local and peripheral fat and does not accurately reflect the impact of WC and height (6, 7). Additionally,WC has been found in some studies to not predict the prognosis of MI well (7).

The WHR is an indicator of central obesity to predict the incidence and prognosis of cardiovascular disease. Overall, WHR as an indicator of central obesity is superior to other indicators. It not only predicts the incidence of MI but also has reference value for predicting myocardial injury before MI (8), the prognosis of MI (9, 10), and the severity of MI in patients (11, 12). The WHR is usually used as an indicator of central obesity to predict the incidence and prognosis of cardiovascular diseases. The waist circumference divided by the hip circumference defines the WHR, and the World Health Organization recommends a WHR ≥ 0.9 for men and ≥ 0.85 for women as the standard diagnostic criteria for abdominal obesity (13).

To clarify the association between WHR and MI, this paper reviews the research on the association between WHR and the risk of MI over the past two decades, summarizes the results of these studies in a meta-analysis, and aims to elucidate the relationship between WHR and MI in the general adult population. In particular, this study adds the latest data to previous studies (14, 15) and conducts a more detailed subgroup analysis, which further enriches the existing literature, especially in terms of gender, regional differences, and long-term risk assessment.



2 Materials and method


2.1 Search strategy

Computerized searches were conducted in databases such as PubMed, Embase, Web of Science, Cochrane Library, Science Direct, CNKI, and Wanfang. The English search terms included: Ratio, Waist-Hip; Ratios, Waist-Hip; Waist Hip Ratio; Waist-Hip Ratios; Waist-to-Hip Ratio; Ratio, Waist-to-Hip; Ratios, Waist-to-Hip; Waist to Hip Ratio; Waist-to-Hip Ratios; Myocardial Infarction; Cardiovascular Stroke; Cardiovascular Strokes; Stroke, Cardiovascular; Strokes, Cardiovascular; Myocardial Infarct; Myocardial Infarcts; Heart Attack; Heart Attacks. The Chinese search terms included: myocardial infarction, acute myocardial infarction, inferior wall myocardial infarction, anterior wall myocardial infarction, anteroseptal myocardial infarction, ST-segment elevation myocardial infarction, non-ST-segment elevation myocardial infarction, coronary atherosclerotic heart disease, angina, acute coronary syndrome. Two scholars from the team independently searched the above databases, with the search time up to January 31, 2024.10.21.



2.2 Inclusion and exclusion criteria for the literature

Criteria for Literature Inclusion: (1) The study subjects were the general population aged over 18 years; (2) The studies were reported in Chinese or English; (3) The studies explored the correlation between WHR and the incidence rate of MI; (4) The studies adjusted for various potential influencing factors on the association between WHR and the incidence rate of MI.

The exclusion criteria were as follows: (1) Non-clinical human trials; (2) Studies with questionable data or data that could not be extracted; (3) Literature that did not explore the WHR and the incidence rate of MI.



2.3 Literature screening

According to the specified time limit (up to January 31, 2024), two scholars independently screened the retrieved original studies. First, using Endnote to compare the titles, publication years, first authors' names, etc., to exclude duplicate literature. Then, by reading the titles and abstracts, literature unrelated to the research purpose was eliminated. Next, the remaining literature was fully searched and read, and the original studies to be finally included were confirmed according to the inclusion and exclusion criteria. In case of disagreement between the two researchers, a third researcher was involved for verification and assessment.



2.4 Data extraction

Two researchers read the papers and extracted relevant data, including the main authors' surnames, publication years, study regions, methods, sample sizes, subjects' ages, WHR, types of MI, WHR cut-off values, OR/RR/HR (95%CI), gender grouping, and adjustment factors in multivariate analysis.



2.5 Quality assessment

The final included studies covered case-control studies and cohort studies. Two methods were used for the quality assessment of the literature: firstly, the NOS was used to assess multiple aspects of case-control studies and cohort studies, mainly including the representativeness of the studies, comparability between groups, and measurement of exposure factors, with a total score of 9 points, and studies scoring above 6 points were considered high-quality research. Subsequently, Revman5.3 software was used for assessment, focusing on random sequence generation, allocation concealment, blinding, outcome assessment blinding, completeness of outcome data, selective reporting, and other potential biases.



2.6 Data analysis

This study utilized Stata 16.0 software to perform meta-analysis and statistical analysis. The analyzed data were categorical variables, presented as OR and 95% CI to demonstrate the association between WHR and MI in the general adult population. Heterogeneity among studies was assessed using Cochrane's Q test and the I2 statistic. A fixed-effect model was adopted if I2 < 50%; a random-effect model was used if I2 > 50%. Significant heterogeneity was considered present if the P-value of the Q test was <0.05 and I2 > 50%, in which case subgroup analysis and multivariate meta-regression analysis were conducted to explore the sources of heterogeneity. Subgroup analyses included gender (male, female), study region (Asia, Europe, America), type of study (case-control study, cohort study), and WHR cut-off value (<0.93, ≥0.93). The chi-square test was used to compare results within subgroups. If one subgroup had I2 < 50% and P > 0.05, while another had I2 > 50% and P < 0.05, it indicated that this subgroup might be the source of heterogeneity. Multivariate meta-regression analysis was also used, incorporating factors such as NOS score, average age, publication year, etc., that might affect the results into the model to investigate their potential impact on the study outcomes. If P < 0.05, it suggested that these factors might be sources of heterogeneity. Sensitivity analysis was conducted by excluding studies one by one to verify the stability of the results. If the OR values were stably distributed on both sides of the median line, it indicated that the results of the meta-analysis were stable. Potential publication bias was checked by visually inspecting the symmetry of the funnel plot. If the funnel plot was symmetrical, it suggested a lower risk of publication bias; if the results clustered on one side of the plot, it might indicate the presence of publication bias.




3 Results


3.1 Literature search results

We searched for English keywords in databases such as PubMed, Embase, Web of Science, Cochrane Library, Science Direct, and for Chinese keywords in CNKI and Wanfang Database, retrieving a total of 7,622 related articles. Among them, there were 521 from PubMed, 1,281 from Embase, 1,352 from Web of Science, 86 from Cochrane Library, 5,546 from Science Direct, 4 from CNKI, and 72 from Wanfang Database. After selection using Endnote and removing 3,316 duplicate articles, 4,306 remained. By reviewing titles and abstracts, and applying inclusion and exclusion criteria, 4,198 articles were screened out, including 4,170 unrelated to the study (not discussing the association between WHR and MI) and 28 unable to obtain complete data (no online access to full text, incomplete data, or obviously abnormal data). After full-text reading of the remaining 108 articles and another round of screening with inclusion and exclusion criteria, 85 articles were excluded, among which 84 had inconsistent research indicators (did not report the OR/HR/RR values of WHR and MI risk), and 1 involved a non-general population. Finally, 22 articles met the criteria (16–37). For the specific screening process, please refer to Figures 1, 2.


[image: Figure 1]
FIGURE 1
Flow diagram of search and study selection.
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FIGURE 2
Quality assessment 1.




3.2 Literature inclusion and quality assessment

This study included 22 observational studies, comprising 7 cohort studies and 15 case-control studies, spanning from 1996 to 2023. These studies encompassed multiple countries and regions, such as Europe, Asia, and South America, with a total of 709,093 participants. The age range of the subjects was from 31.1 to 69.7 years, with WHR cut-off values ranging from 0.78 to 0.95, and the OR values indicating the association between an increase in WHR and the risk of MI ranged from 1.049 to 10.9. Among these, 8 studies also included gender subgroup analyses. When exploring the association between WHR and MI, studies typically adjusted for various factors, such as age, gender, body mass index, smoking, drinking, systolic blood pressure, total cholesterol, high-density lipoprotein, triglycerides, glycated hemoglobin, and other potential confounding factors, please refer to Table 1. The included studies encompassed seven cohort studies, which furnished data regarding the incidence of MI, methods of follow-up, and duration of follow-up. Please refer to Table 2.


TABLE 1 Specific characteristics of the included studies2.

[image: Table 1]


TABLE 2 Specific characteristics of the Cohort studies.

[image: Table 2]

To assess the quality of the literature, the NOS was used for scoring, with scores ranging from 7 to 9, indicating good overall quality of the studies. For specific assessment results, please refer to Table 1. Furthermore, Revman 5.3 software was used for further quality assessment of the included studies, examining random sequence generation (selection bias), allocation concealment (selection bias), blinding among participants and personnel (performance bias), blinding in outcome assessment (detection bias), completeness of outcome data (attrition bias), selective reporting (reporting bias), and other bias factors. Given that most of the included studies were case-control studies, the quality assessment was relatively low in terms of random selection and blinding of study subjects, while other aspects including performance bias, detection bias, attrition bias, reporting bias, and other biases were rated as excellent. For specific results, please see Figures 2, 3.


[image: Figure 3]
FIGURE 3
Quality assessment 2. (The green, yellow, and red colors in the fgure represent “low risk,” “unclear,” and “high risk,” respectively.).




3.2 Publication bias

Publication Bias To assess publication bias, we conducted a funnel plot test. The funnel plot (Figure 4) shows that the studies included are relatively symmetrically distributed on the funnel plot, suggesting a lower risk of publication bias in this meta-analysis. However, caution is needed in interpretation, as the assessment of symmetry in funnel plots is somewhat subjective. For details, see Figure 4.


[image: Figure 4]
FIGURE 4
Funnel plot of publication bias among the included studies.




3.3 Data analysis results


3.3.1 Relationship between WHR and Mi

Relationship between WHR and MI The relationship between waist-hip ratio (WHR) and the risk of MI was assessed based on 22 studies of the general population. Considering the heterogeneity of the studies, a random effects model was used for analysis. Some studies were stratified by gender, age, and WHR cut-off values, with numbers 1 to 4 used to differentiate these groups within the same study. The combined results of the random effects model indicated that subjects with a higher WHR are more prone to MI compared to those with a lower WHR. The Cochrane Q test showed significant heterogeneity (P < 0.0001, I2 = 91.8%), and the adjusted OR was 1.98 with a 95% CI of 1.75–2.24. Detailed data can be seen in Figure 5. (Note: In the studies by Azevedo A1999, Oliveira A2010, Horvei LD2014, Peters SAE 2018, Hermansson J 2019, “1” represents the male group in the study,“2”represents the female group in the study; In the Wienbergen H 2022 study, “1”represents the group with WHR between 0.87–0.93, “2”represents the group with WHR ≥ 0.93; In Egeland GM2016, “1”represents the male group under 60 years of age,“2”represents the male group over 60 years of age, “3” represents the female group under 60 years of age, “4” represents the female group over 60 years of age.).


[image: Figure 5]
FIGURE 5
Forest plot of the meta-analysis of the association between waist-to-hip ratio and MI in the general population.




3.3.2 Subgroup analyses


3.3.2.1 Gender subgroup analysis

Subgroup analyses according to gender showed significant associations in both the male (OR: 1.74, 95% CI: 1.36–2.22, P < 0.05) and female groups (OR: 1.99, 95% CI: 1.43–2.77, P < 0.05), with within-group Cochrane's Q test P-values were less than 0.05 and I2 was greater than 50%, suggesting that gender group heterogeneity did not significantly affect outcomes. The combined OR of the female group was greater than that of the male group, indicating that the association between WHR and MI was more significant in females, and thus it can be inferred that WHR is more significant in predicting MI in females. The details are shown in Figure 6. (Note: P-value <0.0001 is considered 0).


[image: Figure 6]
FIGURE 6
Subgroup analysis.




3.3.2.2 Regional subgroup analyses

According to the results of regional subgroup analysis showed that region 1 = Asia (OR: 2.93, 95% CI: 1.61–5.33, P < 0.05), 2 = Europe (OR: 1.73, 95% CI: 1.45–2.08, P < 0.05) and 3 = America (OR: 2.19, 95% CI: 1.49–3.22., P < 0.05), the Cochrane's Q-test P-values for within-groups were all less than 0.05, and the I2 within-groups were all greater than 50%, suggesting that regional subgroup heterogeneity did not have a significant effect on outcomes. As shown in Figure 6. (Note: P-value <0.0001 is considered 0).



3.3.2.3 Research methods subgroup analyses

The results of the subgroup analysis according to the research methodology showed that area 1 = case-control study (OR: 2.57, 95% CI: 2.04–3.24, P < 0.05), 2 = cohort study (OR: 1.34, 95% CI: 1.17–1.54, P < 0.05), and the intragroup Cochrane's Q-test P-values were all less than 0.05 and I2 within group was greater than 50%, indicating that heterogeneity in study method grouping did not have a significant effect on outcome. As shown in Figure 6. (Note: P-value <0.0001 is considered 0).



3.3.2.4 Subgroup analysis of WHR cut-off value

According to the results of subgroup analysis of WHR critical value showed that region 1 = WHR cut-off value <0.93 (OR: 2.05, 95% CI: 1.65–2.54, P < 0.01), 2 = WHR cut-off value ≥0.93 (OR: 2.69, 95% CI: 2.06–3.52, P = 0.035), within-group Cochrane's Q-test P-values were all less than 0.05, and within-group I2 was greater than 50%, suggesting that heterogeneity of study WHR critical value subgroups did not have a significant effect on outcome. The combined ORs of subgroups with higher WHR critical values were greater than those of subgroups with lower WHR critical values, suggesting that higher WHRs may be more strongly associated with MI. As shown in Figure 6.




3.3.3 Multifactorial meta-regression analysis

To explore the sources of heterogeneity among studies, we further conducted a multifactorial meta-regression analysis. The results of the multifactorial meta-regression analysis showed that the P-values for all factors were above 0.05, indicating that factors such as publication year, NOS score, and age did not have a significant impact on the study results. Specific data can be referred to in Table 3. Table 3 shows that the effect size for publication year was −0.18 (P = 0.858), with a 95% CI ranging from −0.0551 to 0.0466, indicating that the publication year had no significant effect on the results; the effect size for the NOS score was −1.04 (P = 0.321), with a 95% CI ranging from −0.8493 to 0.3022, indicating that the NOS score had no significant effect on the results; the effect size for age was 0.33 (P = 0.746), with a 95% CI ranging from −0.0340 to 0.0461, indicating that age had no significant effect on the results. please refer to Table 3.


TABLE 3 Results of the multifactorial meta-regression analysis.

[image: Table 3]



3.3.4 Sensitivity analysis

By sequentially excluding each study and observing the changes in the combined OR value, the results show that the combined OR values are stably distributed between 1.75 and 2.24, indicating that the meta-analysis results are relatively stable. Figure 7 shows that after the exclusion of individual studies, the CI of the combined effect size (OR) did not significantly expand or shift, suggesting that individual studies have limited impact on the overall meta-analysis results. This stability indicates that the meta-analysis results are robust and reliable. For specific results, see Figure 7.


[image: Figure 7]
FIGURE 7
Assessment of meta-analysis stability after exclusion of individual studies. [The horizontal axis represents the exclusion of different studies, and the vertical axis represents the range of changes in the combined effect value (95% CI)].






4 Discussion

This systematic review and meta-analysis evaluated and summarized the existing evidence on the predictive value of WHR for MI over the past 20 years. We included 22 observational studies from various regions including Europe, Asia, and South America, with a total of 709,093 subjects. The quality of the studies was assessed using the NOS and Revman5.3 software, and the results indicated that the overall quality of the studies was good. The meta-analysis showed that subjects with a higher WHR had a greater likelihood of suffering from MI compared to those with a lower WHR, with an adjusted odds ratio (OR) of 1.98, 95% CI: 1.75–2.24, I2 = 91.5%, P < 0.0001. This suggests that WHR is a promising factor for predicting the risk of MI and has strong predictive power. This indicates that WHR may have significant clinical relevance in identifying high-risk individuals and predicting the burden of MI in the general adult population. Furthermore, these results align with the growing literature (14, 15), supporting WHR as an important indicator in the assessment of MI risk.

In this meta-analysis, by summarizing the existing evidence on the relationship between WHR and MI over the past two decades, we found that WHR has a certain predictive role for the risk of MI. This association may be related to the following mechanisms. Firstly, central obesity refers to a relative abundance of abdominal fat compared to hip fat. A reduction in gluteal region fat is associated with a higher incidence of cardiovascular diseases (38), and abdominal fat is closely related to hypertriglyceridemia and the release of pro-inflammatory cytokines from adipose tissue, implying a higher risk of cardiovascular diseases (39, 40). Secondly, an increase in abdominal fat means an increase in visceral adipose tissue (VAT) (41), which is positively correlated with coronary atherosclerosis (42). Excessive VAT can directly or indirectly cause overactivity of the sympathetic nervous system, as well as abnormal secretion of adiponectin, leptin, and other pro-inflammatory factors, leading to dyslipidemia, a prothrombotic state, insulin resistance, and chronic inflammation, all of which are independent risk factors for cardiovascular diseases (43–47).

To explore the differences in the risk of MI associated with WHR between men and women, we conducted a subgroup analysis by gender. The results showed that an increased WHR is a stronger predictor of MI in women, although the difference is small. This result is consistent with several previous studies (14, 31, 48). In a genome-wide association study of adiposity markers by Peters SAE et al. (31), it was found that visceral fat in women had a stronger correlation with cardiac metabolic risk factors; Ramezankhani A et al. (48) found that WHR increased the risk of cardiovascular events in women more than in men; Qinqin Cao et al (14) found that the OR value of WHR for MI was higher in women in their meta-analysis. Given this result, we should pay more attention to the predictive role of WHR in women for MI, which can help medical institutions and policymakers better tailor prevention and intervention measures for different groups, such as different appropriate cut-off values for WHR in predicting MI in men and women. Researching gender differences can also promote the medical community's attention to women's cardiovascular health issues, improve the diagnosis and treatment level of women's cardiovascular diseases, and optimize the allocation of medical resources and public health policies. However, some studies have reached different conclusions (49). In the study by Hanieh Mohammadi et al. (49)], it was found that the ability of abdominal obesity to be associated with MI was lower in women than in men. Hanieh Mohammadi et al (49) believe this may be related to different fat distributions between genders. Abdominal fat is composed of VAT and subcutaneous adipose tissue (SAT), and generally, men have higher VAT than women, while women have higher SAT. Therefore, compared to women, abdominal obesity is a more direct marker of visceral fat in men, and visceral fat has a stronger correlation with cardiac metabolic risk factors. Therefore, from this mechanism, WHR should have a higher predictive value in men. In summary, no studies have yet clearly explained the mechanisms related to gender differences, so conclusions related to gender need to be interpreted with caution, and further experiments need to be expanded to control more confounding factors, such as age, underlying diseases and medication, lifestyle, hormone levels, etc., to explore gender differences.

To explore whether there are regional differences in the association between WHR and the risk of MI, we conducted subgroup analyses by region. The results suggest that the association between WHR and the risk of MI may be stronger in Asian populations than in American and European populations. This could be related to a combination of factors such as racial differences, local dietary habits, socioeconomic status, medical conditions, lifestyle, and genetic factors (50–52). Particularly, the difference in body fat distribution between regions, with Asian populations tending to accumulate more visceral fat compared to Western populations (53), is closely related to the accumulation of visceral fat, WHR, and the occurrence of cardiovascular diseases. However, the study by Alenaini W et al. (54) found that the differences in visceral fat between populations across states were confounded by differences between rural and urban populations. Therefore, future large-scale prospective cohort studies could be designed to further explore the association and mechanisms between WHR and MI, controlling for confounding factors such as race, living area, body fat distribution, age, and gender.

Given these results, first, the ability of WHR to predict the risk of MI is evident, and medical professionals should consider the key role of WHR in identifying high-risk groups for MI, especially in women. For medical rehabilitation professionals, more attention should be paid to patients' WHR rather than just BMI. Second, in our study, the combined OR value for subgroups with higher WHR cut-off values was greater than for those with lower WHR, suggesting that a higher WHR may be more strongly associated with MI. In the future, the association between different gradients of WHR and the incidence of MI could be further explored to verify whether there is a linear correlation between WHR and the incidence of MI, and to find the WHR cut-off value with the strongest association to establish best practice guidelines. Third, the risks of a high WHR should be explained in patient health education so that patients understand that a high WHR means central obesity, which is closely related to cardiovascular diseases. Normal BMI does not mean the exclusion of the possibility of central obesity, and in daily life, attention should be paid to central obesity indicators such as WHR in addition to weight and BMI. Finally, as an indicator of central obesity, WHR has clinical significance beyond BMI and should receive more attention, especially in the prediction of MI with routine monitoring and early intervention to reduce the risk of MI. Meanwhile, effective treatment optimization needs to be combined with long-term follow-up, which can help minimize the incidence of cardiovascular events (55).

Additionally, this study also assessed the robustness of the meta-analysis results and the risk of publication bias. Sensitivity analysis results (Figure 7) show that after excluding any single study, the combined OR value remains stably distributed between 1.75 and 2.24, suggesting that individual studies have limited impact on the overall meta-analysis results. This stability indicates that the meta-analysis results are highly reliable, further supporting the research conclusion that an increased WHR is significantly associated with an increased risk of MI. At the same time, funnel plot assessment (Figure 6) suggests that the included studies are relatively symmetrically distributed on the funnel plot, indicating a lower risk of publication bias. This somewhat excludes the influence of a positive result publication tendency on the meta-analysis results. However, the assessment of funnel plot symmetry still has a certain subjectivity, so the interpretation of the risk of publication bias should still be cautious.



5 Limitations

Firstly, although the combined OR values of subgroups with higher WHR critical values were found to be greater than those of subgroups with with lower WHR critical values in the subgroup analysis, suggesting that a higher WHR may be more strongly correlated with MI, this study only used categorical variable data and could not accurately explain whether there is a linear association between WHR and MI. Secondly, most of the included articles were case-control studies, and there were relatively few cohort studies with high-level evidence, so more cohort studies need to be conducted in the future to increase the credibility of the research results. Thirdly, although various sources of heterogeneity were investigated, no specific cause for heterogeneity was found. The heterogeneity of the studies reduced the reliability of this meta-analysis, and the results should be viewed with caution. Fourthly, different studies used different WHR cutoff values, and it is not possible to determine the effectiveness of a single WHR threshold for predicting MI risk. Fifthly, the sample population was limited. Most of the included studies were case-control studies often focused on a certain hospital or center, and all the studies included were published in English. Therefore, this meta-analysis does not fully represent the entire population, thus limiting the generalizability and extrapolation of the research results. Sixth, the timing of WHR data collection in case-control studies may limit the inference of causal relationships between WHR and MI. This design difference represents a limitation of the current study, potentially affecting the accuracy of event validation. Future research should prioritize prospective cohort designs to enhance the accuracy of causal inference and the assessment of the association between WHR and new incident cases of MI. Seventh, there are differences among researchers in measuring WHR, and it is recommended that future research adopt standardized techniques to objectively measure WHR.

Finally, it should be noted that there was considerable heterogeneity in this meta-analysis. Unfortunately, neither subgroup analysis nor multivariate regression analysis could find the source of heterogeneity. We believe that the reasons for this heterogeneity may include: (1) This meta-analysis combined 22 original studies, which is a large number, and there are differences in the design of each study, participant characteristics, implementation of intervention measures, and outcome measurement standards, leading to inevitable heterogeneity; (2) The heterogeneity may be related to the type of MI, differences in the standards for diagnosing MI between studies, inconsistencies in the measurement methods of WHR and covariates, and Comorbidities and and follow-up measures and different follow-up times, but since the original studies did not provide corresponding data, subgroup analysis could not be conducted; (3) Potential differences in event definitions and collection methods among different studies may lead to bias. Although heterogeneity reduces the reliability of the meta-analysis, the sensitivity analysis showed that by excluding studies one by one, regardless of which study was excluded, the combined results were stable on both sides of the median line. There was no reversal of results, and the meta-analysis therefore has stability. In summary, although there is heterogeneity in this study, it still has reference value. We should treat these results with caution, and more prospective cohort studies can be set up in the future to further verify this conclusion.



6 Conclusion

WHR is an important predictor of MI risk. Individuals with a high WHR have a signifcantly higher risk of MI than those with a low WHR, an association that is more signifcant in women.Furthermore, the higher the WHR critical value, the stronger the association with MI, suggesting apossible dose-response relationship.

Clinical medical staff should therefore pay attention to the measurement and monitoring of WHR, and use it as an important means of assessing and preventing MI risk, especially for women and individuals with a signifcantly increased WHR. Morehigh-quality prospective studies are needed to further verify thepredictive value of WHR and optimize its application in MI risk assessment.

Future research should combine WHR with other risk factors to better guide the prevention and management of MI.
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Background

Body mass index (BMI) consistently correlates with the triglyceride-glucose (TyG) index, a marker of insulin resistance, which in turn is linked to heightened cardiovascular disease (CVD) risk. Thus, insulin resistance could potentially mediate the association between BMI and CVD risk. However, few studies have explored this mechanism in the general population.





Methods

We used data from the China Health and Retirement Longitudinal Study, which is an ongoing prospective cohort study. It initially enrolled 7233 middle-aged and older Chinese adults who were free of heart disease and stroke at baseline. The exposure variable was BMI. Incident CVD, defined as self-reported physician-diagnosed heart disease and stroke combined, served as the main outcome.





Results

Of the 7 233 participants (mean [SD] age, 58.93 [9.33] years), 3 415 (47.2%) were men. During the 7 years of follow-up, 1 411 incident CVD cases were identified. Both BMI and TyG index were associated with CVD risk (HR per 1-SD increase: BMI, 1.23; 95% CI, 1.17–1.29; TyG, 1.13; 95% CI, 1.07–1.19). The 4-way decomposition analysis show that, overweight increased CVD risk by 28% (HR [total association], 1.28; 95% CI, 1.14–1.45), with 18.1% (95% CI, 2.2%–34.0%) mediated by TyG index (HR [pure indirect association], 1.05; 95% CI, 1.02–1.09); while obesity increased CVD risk by 91% (HR [total association], 1.91; 95% CI, 1.63–2.23), with 9.5% (95% CI, 2.2%–16.7%) mediated by TyG index (HR [pure indirect association], 1.09; 95% CI, 1.03–1.15). No evidence suggested TyG index modified BMI’s association with incident CVD.





Conclusions

The study revealed that the TyG index was associated to CVD risk and acted as a small partial mediator in the relationship between BMI and CVD among middle-aged and older Chinese adults. Consequently, solely addressing insulin resistance might not significantly mitigate the impact of body weight on CVD. Thus, exploring alternative pathways and potential mediators of CVD risk becomes imperative.





Keywords: cardiovascular disease, triglyceride-glucose index, body mass index, mediator, 4-way decomposition approach, CHARLS





Introduction

The ongoing challenge of cardiovascular disease (CVD) persists in its impact on global health, affecting both morbidity and mortality rates, and imposing a significant burden on healthcare systems and individual well-being (1, 2). In the last thirty years, the global burden of CVD has surged, with a 92.3% increase in total prevalent cases from 271 million to 523 million and a 53.7% rise in deaths from 12.1 million to 18.6 million between 1990 and 2019 (3). This upward trend is driven by factors such as an aging population and lifestyle changes, including a higher prevalence of obesity, hypertension, and diabetes (1, 4). Although recent studies suggest a potential slowdown in the rise of overweight and obesity in high-income countries (5, 6), there is mounting evidence indicating an acceleration of this epidemic in low- and middle-income countries (7, 8). Notably, obesity globally is associated to an elevated risk of CVD across the general population (9, 10).

Although hemodynamic and metabolic factors have been suggested as factors that influence the relationship between BMI and CVD, the exact mechanisms are not yet fully understood (9, 11). Reduced insulin sensitivity constitutes a potential constituent, as evidence suggests that oxidative stress and inflammation instigated by obesity are intricately associated with the emergence of both localized and systemic insulin resistance (12). Conversely, insulin resistance is implicated in endothelial dysfunction, fostering the development of atherosclerotic plaques through alteration of gene expression patterns related to the estrogen receptor, Hence, it could potentially play a substantial role in the pathogenesis of CVD (13). It is therefore possible that insulin resistance could exert an indirect influence on CVD through BMI. TyG (triglyceride-glucose) index has been verified as a straightforward indicator of insulin resistance based on the logarithmization of glucose levels and fasting triglyceride (14). There has been evidence of a correlation between this test and the euglycemic-hyperinsulinemic clamp test, as well as a similar validity to that of the insulin resistance index calculated from the homeostatic model assessment (15). Given its accessibility and reliable performance, it is convenient for epidemiological studies to use the TyG index to measure insulin resistance as a simple proxy.

Prior studies have combined TyG index and BMI as a TyG-BMI index to examine the association with CVD and outcomes (16–19). Yet, to our knowledge, only one study has formally investigated the TyG index’s role as a mediator in the connection between BMI and incident CVD within a community-based setting, with the majority of participants being coal miners (20). Limitations include population heterogeneity, absence of generalizable, or absence of interaction between BMI and TyG index.

Hence, the objective of this study was to examine whether TyG acts as a mediator or modifier in the relationship between BMI and incident CVD within the general population. Using a causal mediation approach, we disassembled the overall association of BMI with incident CVD into four components: (1) the association unaffected by mediation or interaction, (2) the association influenced solely by interaction, (3) the association driven solely by mediation, and (4) the association influenced by both mediation and interaction.





Methods




Study population

This cohort study represents a secondary analysis of the CHARLS dataset, which is an ongoing, nationally representative cohort study. Detailed information regarding the study design is available elsewhere (21, 22). In summary, the study recruited 17708 participants from June 2011 to March 2012. For the purpose of gathering information, participants underwent assessments using standardized questionnaires using a multistage stratified probability proportional-to-size sampling method. The baseline survey achieved an 80.5% response rate. Following the baseline assessment, participants underwent follow-up evaluations every 2 years.

All participants provided written informed consent to participate in the CHARLS study, which was approved by the institutional review board of Peking University. All study protocols were conducted in accordance with the principles outlined in the Declaration of Helsinki (23), and adherence to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline was ensured for this study (24).





Assessment of exposure and mediator

The exposure variable in this study was BMI, calculated from height and weight measurements as weight in kilograms divided by height in meters squared. BMI was categorized according to the Chinese BMI classification (25) as follows: underweight (BMI <18.5 kg/m2), normal weight (BMI 18.5–23.9 kg/m2), overweight (BMI 24.0–27.9 kg/m2), and obesity (BMI ≥28 kg/m2). Trained nurses conducted the measurements of height and weight.

The mediator was TyG index, which was calculated as ln [fasting blood glucose (milligrams per deciliter)  ×  triglycerides (milligrams per deciliter)/2) (14) and splitting into quartiles. A colorimetric enzyme assay was used at Capital Medical University’s Youanmen Clinical Laboratory to determine triglycerides and fasting blood glucose levels.





Ascertainment of outcome

The primary outcome was incident CVD, the secondary outcome were incident stroke events and incident heart disease events. Consistent with prior studies (21, 26, 27), the following standardized questions were used to assess CVD events: “Have you received a diagnosis from a doctor indicating that you have experienced a heart attack, coronary heart disease, angina, congestive heart failure, or any other heart-related conditions?” or “Have you been diagnosed by a doctor with having had a stroke?” Participants who reported either a stroke or heart disease during follow-up were categorized as having experienced a CVD event. The date of CVD diagnosis was recorded between the last interview and the one in which the CVD event was reported (21, 26, 27).





Covariates

At baseline, trained interviewers used a structured questionnaire to collect information included age, sex, living residence, marital status (categorized as married or other), and educational level (grouped into no formal education, primary school, middle or high school, and college or above), self-reported smoking and drinking status (classified as never, former, or current), self-reported physician-diagnosed medical conditions (including diabetes, hypertension, dyslipidemia, and kidney disease), and the use of medications for these conditions. Metabolic factors comprised fasting plasma glucose, total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), high-sensitivity C-reactive protein (hsCRP), and serum creatinine. The estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration’s 2009 creatinine equation (28).

Chronic kidney disease was defined as eGFR <60 mL/min/1.73 m2 or self-reported history of chronic kidney disease. Diabetes was defined as fasting plasma glucose ≥126 mg/dL, current use of antidiabetic medication, or self-reported history of diabetes. Dyslipidemia was defined as total cholesterol ≥240 mg/dL, triglycerides ≥150 mg/dL, LDL-C ≥160 mg/dL, HDL-C <40 mg/dL, current use of lipid-lowering medication, or self-reported history of dyslipidemia. Hypertension was defined as systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg, current use of the antihypertensive medication, or self-reported history of hypertension.





Statistical analysis

Descriptive statistics included mean ± standard deviation (SD) and median with interquartile range (IQR). Categorical variables were depicted as n(%). Baseline characteristics were stratified by TyG index quartiles and compared using appropriate tests: χ² test, analysis of variance, or Kruskal-Wallis rank sum test. Missing data were imputed using the multiple imputation of chained equations method.

We first evaluated the association of BMI (both as a linear term and classification) and TyG index (both linearly and in quartiles) with CVD using Cox proportional hazard models. Additionally, we explored linear trends through entering the median value of each BMI group or TyG index quartile to test association across the various BMI groups or TyG index quartiles. We then assessed the association of BMI with mediators using linear models. All models were adjusted for age, gender, marital status, residence, education level, smoking status, and drinking status. Subsequently, we applied 4-way decomposition causal mediation techniques to estimate the controlled direct association (CDA), reference interaction (INTref), mediated interaction (INTmed), and pure indirect association (PIA) individually (29). Utilizing the framework depicted in Figure 1 (30).




Figure 1 | Conceptual model for the analysis of TyG index mediating the association of body mass index with incident cardiovascular disease. (A) The figure shows how TyG index could serve as a mediator of the association of body mass index with cardiovascular disease. The direct association between BMI and CVD is also caused by other potential mechanisms, such as hypertension, hypercholesterolemia, and/or diabetes. All statistical models were based on this structure and were adjusted for age, gender, marital status, residence, education level, smoking status, and drinking status. Following the theory of causal graphs, variables such as blood pressure (hypertension, systolic blood pressure, and diastolic blood pressure), cholesterol (total cholesterol, HDL-C, LDL-C, and dyslipidemia), renal function (kidney disease and eGFR), diabetes, glycated hemoglobin, and hsCRP represent alternative pathways that could potentially mediate aspects of the association between BMI and CVD. As such, these variables were not included as covariates in our models. C denotes the potential exposure-mediator, exposure-outcome, and mediator-outcome confounders. U denotes unmeasured confounding, which remains unavoidable in observational research settings. (B) Illustration of the 4-way decomposition of total association. The CDA is due to neither mediation nor interaction. The INTref is only due to interaction. The mediated INTmed is due to both mediation and interaction. PIA is only due to mediation. CDA, controlled direct association; INTref, reference interaction; INTmed, mediated interaction; PIA, pure indirect association; BMI, body mass index; CVD, cardiovascular disease; eGFR, estimated glomerular filtration ratio; HDL-C, high-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein;IQR, interquartile range; LDL-C, low-density lipoprotein cholesterol; TyG, triglyceride-glucose.



To evaluate the indirect and direct association between BMI and CVD events, we utilized VanderWeele’s two-stage regression method for time-to-event data (29, 31). This approach involves fitting two regression models: one for the mediator (TyG index) and another for the outcome (CVD). The outcome (CVD) was modeled using a Cox model, while the mediator (TyG index) was modeled using a linear model. We also conducted similar mediation analyses using BMI categories, treating the TyG index as a linear indicator due to its confirmed linear association with CVD risk. All models were adjusted for age, gender, marital status, residence, education level, smoking status, and drinking status. Subsequently, we used the model parameters from these models to calculated the CDA, INTref, INTmed, and PIA, estimating the proportions of the total excess association attributable to each component according to VanderWeele’s derivations (29). The 95% CIs for estimates and proportion mediated were calculated by delta method (32).

We implemented several sensitivity analyses to assess the robustness. Initially, we conducted mediation analyses according to gender. Subsequently, we assessed our results using the complete dataset (6884 participants). Finally, we repeated the mediation analysis excluding participants with a BMI <18.5 kg/m² (6723 participants). We considered two-sided P < 0.05 as statistically significant. All analyses were carried out using R statistical software version 4.3.0 (R Foundation), and mediation analysis was performed using the CMAverse package developed by Baoyi Shi, Christine Choirat, and Linda Valeri (https://bs1125.github.io/CMAverse/index.html).






Results




Baseline characteristics

There were 17 708 participants at baseline, we excluded 777 participants below 45 years, 2 650 with baseline heart disease or stroke, 5 622 had no blood samples, 1 409 had incomplete TyG index or BMI, and 17 with extreme BMI values. Finally, 7 233 participants were included for analysis. Baseline characteristics between included and excluded participants is shown in Supplementary Table S1.

Of the 7 233 participants, the mean (SD) age at baseline was 58.93 (9.33) years; 3 415 (47.2%) were men. Participants’ characteristics are presented in Table 1. At baseline, 2 088 (28.9%) participants had overweight and 755 (10.4%) had obsity, the mean (SD) TyG index was 8.65 (0.65).


Table 1 | Baseline characteristics participants stratified by quartiles of the TyG index.







Risk of CVD by TyG index or BMI

Between 2011 and 2018, 1411 participants experienced CVD events, including 1 077 heart attacks and 464 strokes, a 19.5% incidence rate. In Table 2, we show how BMI and TyG index are related to CVD events after adjusting for potential confounders (model 2), by comparing to under and normal weight, obesity was associated with a 90.0% increased risk of incident CVD (CVD: adjusted HR, 1.90; 95% CI, 1.63–2.22; stroke: adjusted HR, 2.13; 95% CI, 1.63–2.78; heart disease: adjusted HR, 1.85; 95% CI, 1.55–2.20). When modeling the TyG index as quartiles, by comparing quartile 4 with quartile 1, the adjusted HRs were 1.35 (95% CI, 1.16–1.57) for incident CVD, 2.17 (95% CI, 1.63–2.88) for stroke, and 1.14 (95% CI, 0.96–1.35) for heart disease. BMI and CVD risk are linearly associated and positive (for trend, P <0.001 for CVD, stroke, and heart disease), as well as, the TyG indx (for trend, P <0.001 for CVD and stroke, P = 0.131 for heart disease).


Table 2 | Risk of cardiovascular disease by TyG index or body mass index.







Association of BMI and TyG index

Table 3 shows the associations of BMI with TyG index. After adjusting for potential confounders (in model 2), compared with participants with underweight and normal weight, participants with overweight and obesity had higher TyG index (overweight: adjusted β, 0.28; 95% CI, 0.25– 0.32; obesity: adjusted β, 0.47; 95% CI, 0.42–0.52).


Table 3 | Association between body mass index and TyG index.







Mediation and interaction analysis

Table 4 show the findings from 4-way decomposition model. Analysis by BMI categories yielded the adjusted HR for the total association of BMI with incident CVD was 1.28 for overweight vs the reference normal weight (CVD: adjusted HR, 1.28; 95% CI, 1.14–1.45; stroke: adjusted HR, 1.41; 95% CI, 1.15–1.74; heart disease: adjusted HR, 1.26; 95% CI, 1.10–1.45), which increased to 1.91 for the obesity group (CVD: adjusted HR, 1.91; 95% CI, 1.63–2.23; stroke: adjusted HR, 2.13; 95% CI, 1.63–2.78; heart disease: adjusted HR, 1.85; 95% CI, 1.55–2.21). The 4 components method show that when using TyG index as a mediator, There was no evidence that BMI interacted with TyG via INTref or INTmed, and the majority of the association was direct, with the remainder being purely indirect, the proportions mediated were 18.1% for overweight (CVD: 18.1%; 95% CI, 2.2%–34.0%; stroke: 30.3%; 95% CI, 4.1%–56.5%), and 9.5% for obesity (CVD: 9.5%; 95% CI, 2.2%–16.7%; stroke: 19.1%; 95% CI, 5.6%–32.7%). Notably, for heart disease, virtually all of the association was direct, no evidence of mediation and interaction.


Table 4 | Decomposition of the association of body mass index with incident cardiovascular disease including mediation and interaction associations by TyG index using causal mediation analysisa.







Subgroup and sensitivity analysis

Subgroup analysis among women (Supplementary Table S2), the proportions mediated of TyG index between BMI and CVD were increased (overweight, 37.5%; obesity, 12.3%), while the proportions mediated decreased (overweight, 6.2%; obesity, 4.6%) among men (Supplementary Table S3). Similar trends were observed in the complete data analysis (Supplementary Table S4). Moreover, the results remained consistent even after excluding participants with a BMI <18.5 kg/m2 (Supplementary Table S5).






Discussion

In this large cohort study, we found that the TyG index independently raised the risk of CVD. Additionally, a minor portion of the BMI-CVD association was mediated by the TyG index. Epidemiological studies consistently show a positive correlation between higher BMI and subsequent CVD risk (33–37). Our study findings align with these conclusions, revealing that an increase in BMI by per 1-SD increased the risk of CVD by 23%. Moreover, stratifying participants by BMI categories revealed a 28% increased CVD risk among overweight individuals and a nearly twofold elevation (HR, 1.90) among those with obesity compared to the baseline population of normal weight. Notably, individuals classified as overweight or obese exhibit a higher propensity for developing insulin resistance, signaling early signs of disrupted glucose metabolism (38, 39). Epidemiological study have showed a direct correlation between insulin resistance and CVD, which persists independently of diabetes and is aggravated when obesity (40). Thus, BMI and CVD risk may be mediated by insulin resistance.

Our study furnishes empirical evidence substantiating the biologically conceivable conjecture that insulin resistance serves as a pivotal intermediary in the linkage between obesity and CVD. We determined that the TyG index accounted for 18.1% of the mediating proportion in cases of overweight and 9.5% in instances of general obesity. Notably, insulin resistance frequently coexists with an array of traditional risk factors including dyslipidemia, glucose dysregulation, and hypertension, all of which have been corroborated in prior research as mediators in the causal pathway between obesity and CVD (41, 42). A retrospective cohort analysis including 6 078 participants aged 60 years and older elucidated that the TyG index served as a mediator in the relationship between BMI and CVD events. Previous studies have not firmly established insulin resistance’s role in BMI and CVD. However, a study involving 6078 participants aged ≥60 years showed that BMI and CVD events were the mediated by TyG index. But, the study did not furnish information regarding the proportion mediated (43). Another prospective cohort study of 94 136 participants in which most were coal miners revealed that TyG index was a mediator in the relationship between BMI and CVD events (proportion mediated: 47.81% for overweight, 37.94% for obesity) (20). Limitations include population heterogeneity, absence of generalizable, which results in a higher proportion of TyG mediation compared to our results. In contrast, our prospective analysis centered on the general population and employed a novel method to calculate the mediated proportion of TyG index. Collectively, our results, along with previous studies, suggest that controlling the TyG index may help mitigate the effects of BMI on CVD. However, this effect may not be pronounced in the Chinese general population.

The deleterious impact of BMI on CVD susceptibility is well-documented. The underlying pathophysiological mechanisms potentially involve several pathways. Adipose tissue expansion instigates heightened basal lipolysis, liberating free fatty acids (FFA), interleukins, and cytokines. These biochemical mediators contribute to cardiac dysfunction by expediting atherosclerotic progression and modulating factors implicated in inflammation, endothelial dysfunction, and coagulation abnormalities (44). Elevated FFA levels attributable to obesity precipitate insulin resistance, exacerbating impaired insulin signaling and attenuating insulin-mediated glucose uptake in skeletal muscle while augmenting hepatic glucose output (45). Moreover, a state of positive energy balance engenders adipocyte hypertrophy and ectopic fat deposition, fostering metabolic perturbations such as insulin resistance and beta-cell dysfunction (46). Additionally, the pro-inflammatory milieu associated with obesity potentiates lipolytic processes and hepatic triglyceride synthesis, exacerbating hyperlipidemia through heightened fatty acid esterification (13). Notably, insulin resistance constitutes a pivotal nexus in the interplay between obesity and CVD risk. Consequently, the TyG index emerges as a plausible intermediary linking obesity with heightened CVD susceptibility.

Our findings are notable as they stem from a comprehensive, representative cohort of the Chinese general population, with a prolonged follow-up period. This extended duration is crucial for meaningfully exploring longitudinal associations, especially those concerning obesity and CVD. Additionally, we applied a counterfactual framework to analyze mediation in an innovative way, our implementation of the 4-way decomposition approach enabled the simultaneous examination of the TyG index’s role as both modifiers and mediators.

However, our study also has limitations. First, we used BMI to ascertain overweight and obesity, while widely employed and easily calculable, offers a suboptimal estimate of fat mass proportion and distribution. There was a lack of alternative metrics, such as waist circumference (47), waist-to-hip ratio (47, 48), or body fat composition analysis (49), that could be used to quantify visceral fat more accurately. Second, the reliance on self-reporting for CVD diagnosis introduces a methodological challenge. While the CHARLS dataset lacks medical records, preventing the validation of self-reported CVD incidents, it’s important to acknowledge that other large-scale studies, like the English Longitudinal Study of Ageing, have demonstrated notable agreement between self-reported CVDs and medical records (50). Third, although we cannot definitively rule out the possibility of unmeasured confounding, the observed effect sizes’ magnitude makes it improbable for unmeasured confounding to entirely elucidate our observed associations. Four, the concurrent measurement of BMI and the TyG index at baseline does not guarantee temporality between exposure and mediator, introducing the potential for reverse causality. However, there exists sufficient biological rationale and explanation for BMI influencing insulin resistance (51–53). Last, due to the considerable sample size and associated costs, data on insulin resistance were not collected, preventing the use of homeostasis model assessment of insulin resistance (HOMA-IR) for reflecting insulin resistance, necessitating further investigations.





Conclusions

Our results indicate that the TyG index is valuable for identifying individuals prone to CVD development. Additionally, it acts as a minor mediator in the association between BMI and CVD within our general population cohort. Consequently, further exploration of the pathways connecting BMI to CVD is essential for comprehending disease origins and pinpointing populations that could gain the most from strategies aimed at reducing BMI.
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Background

The visceral adiposity index is a valuable tool for assessing visceral fat accumulation. However, its non-linear association with prediabetes and diabetes requires further elucidation. Therefore, we aim to clarify the intricate interplay between the visceral adiposity index and these dysglycemic conditions.





Methods

The National Health and Nutrition Examination Survey database from 1999 to 2018 was utilized to analyze health data from 24,072 participants. A multivariate logistic regression model was employed to evaluate the independent association between the visceral adiposity index and prediabetes and diabetes while considering potential confounding factors. Generalized additive models were used to identify any non-linear relationships by fitting smooth curves. Additionally, a stratified analysis based on different baseline characteristics was conducted, along with an interactive analysis.





Results

After accounting for all relevant variables, individuals in the lowest quartile of the visceral adiposity index had a notably diminished likelihood of progressing to prediabetes and diabetes when compared with those in the other three quartiles. The odds ratios and 95% confidence intervals were as follows: 1.37 (1.23, 1.53), 1.87 (1.65, 2.12), and 2.80 (2.33, 3.37). More importantly, a non-linear association was observed between the visceral adiposity index and prediabetes and diabetes, with a threshold identified at 2.10.





Conclusions

There exists a notable and positive association between the visceral adiposity index and prediabetes and diabetes, displaying non-linear attributes in this evaluation of the relationship. Risk assessment and early prevention strategies targeting the maintenance of low levels of visceral adiposity index may substantially diminish the likelihood of developing prediabetes and diabetes.
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1 Introduction

The incidence of diabetes, a chronic metabolic disease characterized by hyperglycemia, has been rising in recent decades. Moreover, it has become one of the principal contributors to global mortality and disability, imposing significant medical and economic burdens (1). In 2021 alone, approximately 529 million individuals were affected by diabetes globally, with projections indicating a staggering increase to 1,310 million by 2050 (2). The prediabetic condition signifies a substantial risk for progressing to diabetes, and its importance in public health must not be overlooked (3). Projections indicate that more than 470 million people are expected to be affected by prediabetes by 2030, exhibiting twice the incidence rate compared to diabetes itself (4).

Furthermore, an alarming statistic revealed that approximately 5% to 10% of those with prediabetes will progress to full-blown diabetes annually. This figure escalates to an astonishing 50% after 10 years (4, 5). A strong association was found between prediabetes and heightened risks for stroke, cardiovascular disease, kidney disease, and all-cause mortality (6–9). Additionally, several investigations have shown that individuals in the prediabetic state have the opportunity to reverse the condition and return to normal glucose metabolism before developing diabetes (10). Therefore, efficient management strategies necessitate the early detection of prediabetes along with individualized interventions aimed at reducing the burden imposed by diabetes while preventing associated complications.

Obesity, particularly the accumulation of visceral fat, has been firmly linked to a broad spectrum of metabolic disorders (11). Visceral fat accumulation can stimulate excessive secretion of pro-inflammatory factors and adipokines, exacerbating insulin resistance and abnormal blood glucose levels (12). While magnetic resonance imaging and computed tomography (CT) are the best methods for measuring visceral fat, their application in large-scale population screening is limited by cost, complexity, and potential radiation exposure (13). In 2010, Amato et al. introduced the visceral adiposity index (VAI), a novel way to quantify visceral adiposity using waist circumference (WC), body mass index (BMI), triglyceride (TG) levels, and high-density lipoprotein cholesterol (HDL-C) (14). Studies have shown a strong concordance between VAI and CT measurement of visceral fat, which can better predict the occurrence of glucose and lipid metabolism disorders. Furthermore, VAI exhibited an inverse correlation with insulin sensitivity (14). Compared to conventional indicators of adiposity, VAI exhibits superior predictive performance across diverse populations with chronic diseases, serving as a simple and efficacious tool for assessing visceral fat accumulation and dysfunction (15–17). Additionally, an association between VAI and diabetes has been reported, with VAI potentially acting as an independent predictor of diabetes (18).

However, limited research has considered the diabetic population collectively, leaving the complex associations between VAI and prediabetes and diabetes largely unexplored. Furthermore, few previous studies have involved U.S. populations. Therefore, our objective was to evaluate the connection between VAI and prediabetes and diabetes by analyzing data from the National Health and Nutrition Examination Survey (NHANES), while also exploring any potential non-linear associations.




2 Methods



2.1 Study population

Data from the NHANES, a nationally representative survey of American civilians, was used in this study. The database employs a comprehensive multi-stage complex sampling methodology and incorporates data obtained from questionnaires, physical examinations, and laboratory tests, all of which are publicly accessible. All the participants signed an informed consent form. Furthermore, the study protocol received prior approval from the Institutional Review Board of the National Center for Health Statistics (NCHS).

The study was a cross-sectional study that utilized NHANES data spanning from 1999 to 2018, encompassing a total of 101,316 initial participants across the 10 consecutive survey cycles. Exclusion criteria were patients who did not have a determined prediabetes and diabetes status (n=31,476), who were younger than 18 years (n=12,606), who did not have a calculated VAI (n=32,895), and who had an extreme VAI value (mean ± 3 standard deviations) (n=267). Finally, a total of 24,072 eligible participants were included in the analyses (Figure 1).




Figure 1 | Flowchart of the study. *Extreme outlier values were defined as those over 3 standard deviations from the mean.






2.2 Exposure and outcome variables

The exposure variable in this study was VAI, a trustworthy tool for evaluating visceral fat function (14). The computation formula for VAI is as follows: for men, VAI = [WC (cm)/(39.68 + 1.88 x BMI (kg/m2))] × (TG (mmol/L)/1.03) × (1.31/HDL-C (mmol/L)]; for women, VAI = [WC (cm)/(36.58 + 1.89 x BMI (kg/m2))]×(TG(mmol/L)/0.81)×(1.52/HDL-C (mmol/L)).

Prediabetes and diabetes were included as outcome variables in our study. Prediabetes was determined according to any of the following criteria: diagnosed by a physician or health professional, fasting plasma glucose (FPG) levels ranging from 5.6 to 7 mmol/L, glycosylated hemoglobin (HbA1c) levels ranging from 5.7% to 6.5%, or an FPG value during a 2-hour oral glucose tolerance test (OGTT) ranging from 7.8 mmol/L to 11.0 mmol/L. Diabetes was defined as a self-reported physician diagnosis, HBA1c level greater than 6.5%, FPG level greater than 7 mmol/L, or 2-hour OGTT plasma glucose level greater than 11.1 mmol/L. In this study, combined prediabetes and diabetes were analyzed as an outcome variable.




2.3 Covariates

Age, gender, race, education level, smoking, drinking, economic levels, physical activity, blood pressure, triglyceride, total cholesterol (TC), estimated glomerular filtration rate (eGFR), lipid-lowering medications, and antihypertensive medications were included as covariates of no interest into the analyses to correct for error correlations. Among these, race is categorized into non-Hispanic white, non-Hispanic Black, Mexican American, and others. Education level was divided into three groups based on the completion of high school as the distinguishing criterion. Using self-reported data, tobacco smoking status was categorized into three groups: never smokers (smoked <100 cigarettes), former smokers (smoked≥100 cigarettes but had currently quit smoking), and current smokers. We categorized current drinkers according to their alcohol intake as mild drinkers, moderate drinkers, and heavy drinkers. The economic levels were quantified as the poverty-income ratio (PIR), which represents the household income relative to the federal poverty line. These levels were categorized into three groups based on two thresholds: 1.3 and 3.5. The respondents’ weekly activity level was evaluated using metabolic equivalents of task (METs). Additionally, eGFR was estimated utilizing the creatinine equation developed by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) in 2009 (19). All variables were collected simultaneously with prediabetes and diabetes prevalence.




2.4 Statistical analysis

The baseline characteristics of the participants were described by VAI quartiles. Continuous variables were expressed as means ± standard deviation and categorical variables as percentages. One-way ANOVA and chi-square tests were used to compare the differences between the four groups. To elucidate the association between VAI and prediabetes and diabetes, we constructed three multiple logistic regression models while adjusting for various covariates. Additionally, a generalized additive model (GAM) was employed to fit the dose-response curve. The characteristics of the fitted smooth curve guided the application of a two-part logistic regression model to investigate potential non-linear associations. A comparison was made between standard and segmented logistic regression models using the log-likelihood ratio test to identify any turning points (considered significant at P<0.05). Moreover, we investigated whether the relationship between VAI and prediabetes and diabetes varied across different subgroups stratified by baseline characteristics such as gender, age, smoking status, alcohol consumption, and hypertension. All data were processed and analyzed using R 3.5.3 and EmpowerStats software, and statistical significance was defined as P < 0.05.





3 Results



3.1 Baseline characteristics of participants

The study enrolled a cohort of 24,072 individuals with an average age of 47.30 ± 19.08 years, among whom 51.43% were female. Table 1 displayed the baseline characteristics of the participants, described based on the quartile distribution of the VAI. Statistically significant differences were noted for all variables except METs/week among the four VAI groups. Compared with the group with lower VAI levels, participants in the highest VAI quartile (Q4) were characterized as older, more women, more non-Hispanic white, lower educational level, more current or former smokers, higher frequency of alcohol consumption, lower PIR, higher blood pressure levels, and lower eGFR. Most notably, the prevalence of prediabetes and diabetes was also higher in those with higher VAI levels.


Table 1 | Baseline characteristics of the participants.






3.2 Relationship between VAI and prediabetes and diabetes

A multivariate logistic regression analysis was conducted to assess the correlation between VAI and prediabetes and diabetes, as presented in Table 2. The results consistently demonstrated positive associations between continuous VAI values and prediabetes and diabetes across all models, regardless of adjustment for confounding factors. In addition, participants were stratified into quartiles based on their VAI levels, using the first quartile (Q1) as the reference category. We found that with a quarter increase in VAI, there was a significant elevation in the ORs for prediabetes and diabetes, indicating a notable contribution of elevated VAI levels to the prevalence of these conditions (P-value for trend <0.001).


Table 2 | Relationship between the VAI and prediabetes and diabetes in different models.



Furthermore, the results obtained by fitting a smooth curve and the two-part logistic regression model suggested that there is also a non-linear association between VAI and prediabetes and diabetes (Table 3, Figure 2). The inflection point was found to be 2.10 after the threshold effect analysis. When the VAI was <2.10, the OR (95% CI) was 2.47 (2.21,2.76); when the VAI> 2.10, the OR (95% CI) was 1.57 (1.46,1.70). This shows that before and after the inflection point, VAI was significantly positively correlated with prediabetes and diabetes. The log-likelihood ratio test showed statistical differences in the slopes between the standard logistic regression model and the piecewise logistic regression model (p<0.001).


Table 3 | Threshold effect analysis of the VAI on prediabetes and diabetes using a two-part logistic regression model.






Figure 2 | The non-linear association between the VAI and the prevalence of prediabetes and diabetes. Age, gender, race/ethnicity, education level, smoking, drinking, PIR, METs/week, SBP, TG, TC, eGFR, lipid-lowering medications, and antihypertensive medications were adjusted for. VAI, visceral adiposity index; PIR, poverty income ratio; MET, metabolic equivalent of task; SBP, systolic blood pressure; TG, triglyceride; TC, total cholesterol; eGFR, estimated glomerular filtration rate.






3.3 Subgroup analyses

In an effort to ascertain the robustness of the association between VAI and prediabetes and diabetes, we executed stratified subgroup analyses alongside interaction testing (Figure 3). Our findings indicated a maintained positive correlation between VAI and both prediabetes and diabetes across various strata defined by gender, age, smoking habits, alcohol intake, and hypertension. In addition, no significant interaction was reported in all subgroups, indicating that the positive correlation between VAI and prediabetes and diabetes was not related to the above stratification parameters (all p>0.05 for interactions). The stratified analyses revealed that the non-linear correlations of each subgroup were consistent with the overall trend, and there was no significant heterogeneity among different subgroups (Figure 4).




Figure 3 | Stratified analyses between the VAI and the prevalence of prediabetes and diabetes. *Each stratification adjusted for all the factors (age, gender, race/ethnicity, education level, smoking, drinking, PIR, METs/week, SBP, TG, TC, eGFR, lipid-lowering medications, and antihypertensive medications) except the stratification factor itself. OR, odd ratio; CI, confidence interval; VAI, visceral adiposity index; PIR, poverty income ratio; MET, metabolic equivalent of task; SBP, systolic blood pressure; TG, triglyceride; TC, total cholesterol; eGFR, estimated glomerular filtration rate.






Figure 4 | Stratified analyses (by (a) gender; (b) age; (c) smoking; (d) drinking; (e) hypertension) between VAI and the prevalence of prediabetes and diabetes using generalized additive model and smooth curve fittings. *Each generalized additive model and smooth curve fitting was adjusted for all factors, including age, gender, race/ethnicity, education level, smoking, drinking, PIR, METs/week, SBP, TG, TC, eGFR, lipid lowering medications, and antihypertensive medications, except for the stratification factor itself. VAI, visceral adiposity index; PIR, poverty income ratio; MET, metabolic equivalent of task; SBP, systolic blood pressure; TG, triglyceride; TC, total cholesterol; eGFR, estimated glomerular filtration rate.







4 Discussion

The purpose of this study was to assess the relationship between the VAI and prediabetes and diabetes among a sample of adult individuals sourced from NHANES data collected from 1999 to 2018. Our results demonstrated a notable positive association between the VAI and both prediabetes and diabetes, which persisted regardless of adjustments for confounding variables. In addition, we found a non-linear relationship between the VAI and both prediabetes and diabetes and determined an inflection point of 2.10 for the VAI level. When the population was stratified by gender, age, smoking, drinking, and hypertension, the results were consistent with the overall population, and no effect modifiers were detected that influenced the changes in the association of the VAI with prediabetes and diabetes. These findings supported the potential utility of VAI as a predictive tool for recognizing individuals susceptible to prediabetes and diabetes in an early stage.

The association of the VAI, as an index innovatively devised to gauge visceral adiposity function, with diabetes has been established in many previous studies (18, 20). A meta-analysis reported a significant positive correlation between the VAI and diabetes, which emphasizes the potential role of the VAI in the development of diabetes (18). Similarly, an aggregated examination of 216 longitudinal studies demonstrated that every unit increase in the VAI is associated with a 42% increase in the likelihood of developing diabetes (21). A study in the Chinese population showed that compared with TG, HDL-C, and other indicators, the VAI had obvious advantages in predicting diabetes in normoglycemic subjects (22).

There are a large number of people in the prediabetic state, and many patients may even be undetected. If not taken seriously, they may progress to diabetes and have an increased risk of developing many chronic diseases. Therefore, we included the prediabetic population in this study, together with diabetes as an outcome variable, to evaluate their association with the VAI. We found that subjects in the uppermost quarter of VAI had a 2.8 times increased likelihood of prediabetes and diabetes compared to those in the lowest quarter. A study of the Chinese population supports our findings (23). Similarly, a meta-analysis of 112,603 participants showed that VAI might increase the risk for prediabetes (24). In addition, in the German population study, VAI was also found to have high sensitivity for the identification of both prediabetes and diabetes, and its ability to distinguish abnormal blood glucose was comparable to that of HOMA-IR, an established marker for the diagnosis of insulin resistance (25). In addition, our subgroup analyses showed that the association of the VAI with prediabetes and diabetes was independent of factors such as age, gender, smoking, alcohol consumption, and hypertension. This suggests that the VAI may be a potential independent risk indicator for prediabetes and diabetes.

The presence of excessive abdominal fat is linked to an increased likelihood of insulin resistance and impaired β-cell function (26). The VAI, a proxy for cardiometabolic risk in healthy individuals, has shown a significant inverse correlation with insulin sensitivity (14). The biological pathways through which heightened VAI levels contribute to the augmented risk of prediabetes and diabetes potentially involve impacts on insulin resistance, pancreatic β-cell function, and adiponectin levels (27). Adipose tissue is known to release multiple pro-inflammatory factors and adipokines, fostering a chronic inflammatory state that can induce β-cell damage and exacerbate insulin resistance, eventually leading to diabetes (28, 29). Secondly, a high level of free fatty acids in individuals with obesity increases TG storage in the muscle and liver, reduces insulin sensitivity, and causes lipotoxic responses (30, 31). In addition, studies have shown that the VAI is the only determinant of adiponectin levels and can play an indirect role in impaired adiponectin levels and glucose metabolism (32, 33).

It is noteworthy that the relationship between the VAI and prediabetes and diabetes also exhibited a non-linear pattern. However, the results of previous studies are still controversial. A study was consistent with our results in patients with hypertension (34). Furthermore, a dose-response meta-analysis of longitudinal studies also revealed a monotonic positive association between the VAI and the risk of diabetes (21). In contrast, the study by Fang et al. stated that no non-linear relationship was detected between the VAI and diabetes (18). This disparity could stem from variations in participant selection criteria or might be ascribed to dissimilarities in the research methodologies and designs employed. In our study, we observed a significant non-linear relationship between the VAI and the prevalence of prediabetes and diabetes, which showed a parabolic curve trend. Specifically, the risk of prediabetes and diabetes increased significantly with increasing VAI values. However, after the VAI values exceeded a specific threshold of 2.10, the rate of increase plateaued, although the risk remained high. The explanations for these results may be as follows: first, excessive accumulation of visceral fat may adversely affect metabolic processes such as insulin sensitivity and inflammatory response, thereby increasing the risk of diabetes. However, when visceral fat accumulates to a certain extent, the increased risk may no longer follow a simple linear pattern due to limitations in biological mechanisms or individual metabolic differences. In addition, we need to consider possible biases in study design and data collection. A significant proportion of overweight individuals or individuals with obesity may have been excluded from the study due to death, serious illness, or other reasons that precluded participation in the interview. Nonetheless, the identification of the VAI inflection point provides a reference value for clinicians to assess an individual’s risk of developing prediabetes or diabetes more accurately. At the same time, this finding also highlights the need for further research on the VAI and its complex relationship with prediabetes and diabetes risk.

Nonetheless, the research has certain limitations. First, it should be noted that the study relies exclusively on a cross-sectional methodology, which ultimately obstructs the determination of a causal connection regarding the relationship between the VAI and prediabetes and diabetes. Consequently, further extensive prospective studies are required to validate these findings. Second, it is important to acknowledge that the dataset employed for this study originated from the NHANES database, which may restrict its generalizability across diverse ethnicities and populations. Moreover, a considerable number of participants who lacked essential data for VAI calculation were excluded from the analysis. Finally, despite our consideration of various potential effect modifiers, there remains a possibility of unidentified confounders leading to selection bias. Therefore, cautious interpretation is warranted when considering the outcomes derived from this investigation.




5 Conclusions

This cross-sectional study, utilizing the NHANES database, has substantiated a non-linear positive association between the VAI and prediabetes and diabetes. These findings suggest that the VAI has potential as a biomarker for predicting the onset of prediabetes and diabetes, offering novel perspectives for risk evaluation and preventive healthcare approaches. Nevertheless, further prospective cohort studies are warranted to validate these observations.
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BMI change point, OR per 1kg/m? BMI P-value OR per 1kg/m? BMI P-value

kg/m? (95% CI) increase below change increase above change
point (95% CI) point (95% CI)

All sepsis patients 2789 0.94(092,096) <0.001 1.01(1.00, 1.02) 0283
Male (1=9,022) 2922 093 (091,095) <0.001 102 (1,00, 1.03) 0030
Age

<60 (3,207) 29.14 095 (091,099) 0.014 102 (1,00, 1.04) 0070
60-80 (4,442) 2668 090 (0.87,094) <0.001 100 (0.98,1.02) 0936
>80 (1,373) 2922 0.9(0.88,096) <0.001 1.03(0.96,1.10) 0389

Charlson comorbidity index

<6 2785 092 (088,095) <0.001 1.02(1.00, 1.04) 0063
>6 2980 0.93(091,096) <0.001 1.01(0.99, 1.03) 0317
Female (n=5,3861) 2067 0.86(080,093) <0001 099 (0.98, 1.00) 0129
Age

<60 (1,775) NA 1,00 (098, 1.02) 0749

60-80 2771) 2076 0:85(077,095) 0.004 099 (0.97,1.00) 0127
>80 (1,315) 2053 0.74(063,086) <0001 099 (0.97,1.02) 069

Charlson comorbidity index
<6 231 0.82(076,089) <0001 099 (0,97, 101) 0276
26 NA 0.99 (0.98, 1.01) 0.458

OR, odds ratio; NA, not available.





OPS/images/fcvm-11-1438817/crossmark.jpg
(®) Check for updates.





OPS/images/fimmu.2024.1439877/fimmu-15-1439877-g002.jpg
000

1:

0.77

72| 087 | 093 | 0.82| 0.71






OPS/images/fimmu.2024.1439877/fimmu-15-1439877-g003.jpg
Progression—free Survival Probability

KM plot for PFS

1.00

«+ High SMI + Medium TATI

0.75 .
== Low SMI + High TATI

p = 0.00022

0.50

0.25

0.00

0 10 20 30 40
Time in months

Number at risk

High SMI + Medium TATI 4-18 6 3 1 0
Low SMI + High TATI 4 16 1 0 0 0
(I) 1'0 2.0 3.0 4.0

Time in months

KM plot for OS

1.004

0.754

Ovreall Survival Probility
|
|

0.254

0.004

Number at risk

~+ High SMI + Medium TATI
== Low SMI + High TATI

p = 0.00038

20 30 40
Time in months

High SMI + Medium TATI{- 48 13 5 3 0
Low SMI +High TATId 16 4 1 0 0
7 70 20 3 2

Time in months





OPS/images/back-cover.jpg
Frontiers in
Medicine

Translating medical research and innovation into.
improved patient care.

A multidisciplinary journal which advances our
medical knowledge. It supports the translation
of scientific advances into new therapies and
diagnostic tools that will improve patient care.

Discover the latest
Research Topics & rontors

o= Frontiersin
Medici

Averue du Trbunal-Fédéral 34
1005 Lausanne, Switzeriand
nontersinor.

Contactus
1021510
rontersin oro/about/contact

2 frontiers | Research Topics






OPS/images/fimmu.2024.1439877/table1.jpg
64 (78.0%)

Overall (N=133) Normal (N=82) Overweight (N=40) Obese (N=11) P value

Age, Mean (SD) 63.1 (9.49) 63.0 (8.81) 64.4 (9.40) ‘ 59.4 (13.9) ‘ 0.288

Gender, n (%) | 0.465

Male 114 (85.7%) 70 (85.4%) 33 (82.5%) 11 (100%)

Female 19 (14.3%) 12 (14.6%) 7 (17.5%) 0 (0.00%)

PS Score, n (%) 0.218

0-1 104 (78.2%) 60 (73.2%) 35 (87.5%) 9 (81.8%)

22 29 (21.8%) 22 (26.8%) 5(12.5%) 2 (18.2%)

Clinical Stage, n (%) 0.873
‘ I 21 (15.8%) 13 (15.9%) 7 (17.5%) 1 (9.09%)

v 112 (84.2%) 69 (84.1%) 33 (82.5%) 10 (90.9%)

Metastatic Organs, n (%) 0.763

0 21 (15.8%) 13 (15.9%) 7 (17.5%) 1(9.09%)

12 65 (48.9%) 38 (46.3%) 22 (55.0%) 5 (45.5%)

=3, 47 (35.3%) ‘ 31 (37.8%) 11 (27.5%) 5 (45.5%)

ICI Line, n (%) 0.070

First line 93 (69.9%) 60 (73.2%) 23 (57.5%) 10 (90.9%)

Second and posterior line 40 (30.1%) 22 (26.8%) 17 (42.5%) 1(9.09%)

ICI type, n (%) 0.419
‘ PD-L1 61 (45.9%) 40 (48.8%) 15 (37.5%) 6 (54.5%)

PD-1 72 (54.1%) 42 (51.2%) 25 (62.5%) 5 (45.5%)

Waist Circumference,

Mean (SD) 84.9 (11.2) 79.5 (9.30) 91.6 (6.86) 100 (8.57) <0.001

BMI, Mean (SD) 23.0 (3.43) | 208 (2.02) 25.7 (1.11) 29.4 (1.15) <0.001

Sarcopenic, n (%) <0.01

No 39 (29.3%) 18 (22.0%) 13 (32.5%) 8(72.7%)

Yes 94 (70.7%) 27 (67.5%) 3 (27.3%)
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Total (N =158)

Sex (n[%])
Male 83 (53%)
Female 75 (47%)
Age (median[IQR]) 86(9)
Origin
Home. 141 (89%)
Residential care home 17(11%)
CFS (median(IQR]) 602)

CIRS (median[IQR])

Severity index 153 (0.41)
Comorbidity index 3(2)
Polypharmacy (average[sd]) 5.62(3.33)
ACB score (average[sd]) 135(138)

ADL (median[IQR]) 2(4)
IADL (median(IQR]) 13
SPMSQ (median[IQR]) 5(7)
CDR (median{IQR]) 12
MNA-SF (median[IQR]) 8(5)
Atrisk (8-11ppt) 87 (55%)
Malnourished (<7 ppt) 59 (37%)
SARC-F (median(IQR]) 5(4)
>4ppt 135 (85%)
Hand grip (median[IQR]) 14(9)
Male* (<27kg) 64 (77%)
Female* (<16kg) 54 (72%)
Calf circumference (median[IQR]) 295(5)
Male** (<34cm) 69 (83%)
Female** (<33 cm) 62 (83%)

CF: clinical frailty scale; MNA-SF: mini nutritional assessment-short form; CC: calf
circumference; HG: hand grip; IQR: interquartile range; sd: standard deviation. *EWGSOP2
criteria; **AWGS 19 criteria.
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Model 12 Model 2 ®

Body mass index, kg/m? No. of total
B (95% CI) B (95% CI)
Under and normal (<24.0) 4390 0.00 [Reference] 0.00 [Reference]
Overweight (24.0-27.9) 2088 030 (0.26-0.33) <0.001 0.28 (0.25-0.32) <0.001
Obesity (>26.0) 755 0.48 (0.43-0.53) <0.001 047 (0.42-0.52) <0.001

CI, confidence interval.
“Adjusted for age and gender.
bAdjustzd for age, gender, marital status, residence, education level, smoking status, and drinking status.
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In-hospital mortality Complication Index 90-day mortality

OR (95%Cl) P P (95%Cl) P OR (95%Cl) P
Age 1.083 (0.978-1.199) 0127 —0.001 (=0.047-0.044) 0959 1.064 (0.970-1.166) 0.186
Sex 10.692 (0.800-142.939) 0073 0322 (=0.630-1.273) 0504 L111(0.118-10.439) 0926
CFS 0511 (0.164-1.593) 0247 —0.028 (—0.425-0.368) 0888 1.266 (0.526-3.045) 0598
MNA-SF 0657 (0.396-1.092) 0.105 ~0.380 (<0.564- -0.196) <0.001 1131 (0.782-1.635) 0514
SARC-F 2268 (1.192-4317) 0.013 0.133 (<0.059-0.325) 0.174 1500 (0.983-2.288) 0.060
cc 0.441 (0.257-0.755) 0.003 ~0.330 (~0.477- -0.182) <0.001 0714 (0.516-0.989) 0.043
HG 1.288 (0.922-1.798) 0135 0.037 (~0.067-0.140) 0.482 1.147 (0.876-1.501) 0313

CFS: clinical failty scale; MNA-SF: mini nutritional assessment-short form; CC: calf circumference; HG: hand grip.
Bold values mean statistically significant results (p<0.05).
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Overweight (Ref. Under and normal weight) Obesity (Ref. Under and normal weight)
Association
component HR (95% CI) Pivalue Percentage of excess

Pvalue  ssociation (95% CI)

Percentage of excess o,
association (95% Cl) HER )

Cardiovascular disease

Total association 128 (114 10 1.45) <0.001 1000 191 (163 10 2.23) <0001 1000
Controlled direct association | 128 (L13 to 1.45) <0.001 986 (277 t0 169.6) 0.006 176 (1.47 to 2.10) <0.001 834 (696 10 97.3) <0001
Reference interaction * 0.00 (0,10 to 0.10) 0.987 03 (7221072.8) 0.993 000 (020100.19) | 0992 0.1 (-183 10 18.1) 0.991
Mediated interaction ™ -0.05 (-0.11 to 0.01) 0.129 -17.0 (-40.8 to 6.8) 0.160 0.07 (-0.10 to 0.23) 0445 72 (-11.1 t0 25.5) 0.440
Pure indirect association 1.05 (102 to 1.09) 0.004 18.1 (2210 340) 0.025 1.09 (1.03 to 1.15) 0.004 95(2210167) o011
Stroke

Total association 141 (115 to 1.74) 0.001 1000 213 (163 0 2.78) <0.001 1000

Controlled direct association | 1.35 (108 to 1.69) 0.008 840 (237 10 144.4) 0.006 172 (12410 238) 0001 623 (463 10 78.3) <0001
Reference interaction -0.02 (-020 t0 0.17) 0861 4.0 (749 to 67.0) 0913 0.02(-031 t0 0.34) 0907 1.7 (-22.9 to 264) 0892
Mediated interaction * 0.04(0.15t0006) 0430 -104 (38310 175) 0.465 0.19 (-009 to 0.47) 0177 169 (-6.0 t0 39.7) 0.148
Pure indirect association 113 (107 to 1.19) <0.001 303 (41 10 56.5) 0.023 122 (11110 133) <0001 19.1 (56 t0 32.7) 0.006

Heart disease

Total association 126 (110 to 1.45) 0.001 1000 185 (1,55 to 2.21) <0001 1000

Controlled direct association | 127 (110 to 1.47) 0.001 1035 (102 to 196.8) 0.030 182 (1.49 t0 2.23) <0001 96.6 (785 to 1146) <0001
Reference interaction * 000 (-0.12 t0 0.12) 0948 15 (:90.7 10 93.7) 0.974 000 (024100.24) 0997 0.1 (-224 10 22.3) 099
Mediated interaction * -0.03(-0.1010004) 0428 “110 (-388 10 16.8) 0.439 0.00 (-0.20 to 0.21) 0971 0.4 (-23.4 10 24.3) 0971
Pure indirect association 1.02 (098 to 1.06) 0.440 60 (-981021.7) 0457 103 (0.96 to 1.10) 0440 31(-49 10 11.0) 0.450

HR, hazard ratio; Cl, confidence interval; TyG, triglyceride-glucose.
“Decomposition of total associations into controlled direct association (CDA), reference interaction (INTref), mediated interaction (INTmed), and pure indirect association (PIA) was done according o the 4-way decomposition causal mediation analysis method proposed
by VanderWeele. Cls were calculated according to the delta method procedure. All models were adjusted for age, gender, marital status, residence, education level, smoking status, and drinking status as depicted in the directed acyclic graph (DAG)

PINTref and INTmed are the estimation of additive excess relative risk due to interaction using HRs.
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Category Traits Year Sample Size  Number of  Gender Population

SNPs

Exposures (obesity) | Obesity 22,484,627 2012 13,848 2430514 NA European

Exposures (obesity

indicators) Body mass index 25,673,413 2015 236,781 2,520,499 NA European
Body fat percentage / 207 3117 10,894,596 Males and Females  European
‘Waist circumference 34,017,140 2021 407,661 10,783,687 NA European
Hip circumference 25,673,412 2015 127,997 2,444,355 Females European
Exposures (lipids)  Total cholesterol 34,226,706 2021 437,878 4232052 NA European
LDL cholesterol 34,594,039 2021 343,621 19,037,976 NA European
HDL cholesterol 24,097,068 2013 94,595 2418527 NA European
Triglycerides 32,203,549 2020 441016 12,321,875 Males and Females  European
Apolipoprotein Al 35,213,538 2022 115,082 11,590,399 NA European
Apolipoprotein B 34,226,706 2021 435,744 4231412 NA European
Exposures Adiponectin 22,479,202 2012 39,883 2,675,209 Males and Females |~ Mixed
(adipokines) Resistin 33,067,605 2020 21,758 13,138,697 NA European
Leptin 32917775 2020 56,802 231,001 NA Mixed
Agouti-related protein 33,067,605 2020 21,758 13,102,571 NA European
Nerve growth factor 28,369,058 2018 3394 5,270,646 Males and Females |~ European
Outcome NSOM / 2021 / 16,380,433 Males and Females  European

GWAS, genome-wide association study; SNP, single nucleotide polymorphisms; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NSOM: non-suppurative otitis medi
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Exposi Mediator Outcome Beta_all Betal Beta2 Betal2 Bet:

Obesity HDL cholesterol NSOM 0.162 ~0.074 ~0216 0016 0.146 0099
Obesity Apolipoprotein Al NSOM 0.162 ~0045 -0226 001 0.267 0.063
Body mass index  HDL cholesterol NSOM 0317 ~0233 ~0214 005 0.267 0.158
Body mass index  Apolipoprotein Al NSOM 0317 ~0.184 -0224 0.041 0.276 013

nsnp, number of single nucleotide polymorphisms used as instrumental variables for Mendelian randomization. NSOM, non-suppurative otitis media.
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TyG index ?

Characteristic Overall Quartile 1 Quartile 2 Quartile 3 Quartile 4 P value ®
[5.18, 8.20] (8.20, 8.57] (8.57, 9.00] (9.00, 13.00]
No. 7233 1810 1807 1808 1808
Age, years 5893 £933 5895 +9.66 58.86 £ 937 59.44 £ 939 5849 + 8.7 0020
Gender <0001
Male 3415 (47.2%) 1004 (55.5%) 872 (48.3%) 770 (42.6%) 769 (42.5%)
Female 3818 (52.8%) 806 (44.5%) 935 (51.7%) 1038 (57.4%) 1039 (57.5%)
Marital status 0.057
Marred 6045 (83.6%) 1509 (83.4%) 1522 (84.2%) 1478 (81.7%) 1536 (85.0%)
Other 1188 (16.4%) 301 (16.6%) 285 (15.8%) 330 (18.3%) 272 (15.0%)
Residence <0.001
Urban 2493 (34.5%) 514 (28.4%) 593 (32.8%) 637 (35.2%) 749 (41.4%)
Rural 4740 (65.5%) 1296 (71.6%) 1214 (67.2%) 1171 (64.8%) 1059 (58.6%)
Education level 0.003
No formal education 2200 (30.4%) 538 (29.7%) 534 (29.6%) 592 (32.7%) 536 (29.6%)
Primary school 2912 (40.3%) 754 (41.7%) | 751 (a1.6%) 701 (38.8%) 706 (39.0%)
Middle or high school 1915 (26.5%) 182 (26.6%) 466 (25.8%) 474 (262%) 1493 (27.3%)
College or above 206 (2.8%) 36 (2.0%) 56 (3.1%) 41 (23%) 73 (4.0%)
Smoking status © <0.001
Never 4381 (60.6%) 1001 (55.3%) 1080 (59.8%) 1131 (62.6%) 1169 (64.7%)
Former 589 (8.1%) 151 (8.3%) 143 (7.9%) 146 (8.1%) 149 (8.2%)
Current 2243 (31.0%) 652 (36.0%) 580 (32.1%) 523 (28.9%) 488 (27.0%)
Drinking status © <0.001
Never 4168 (57.6%) 963 (53.2%) 1022 (56.6%) 1113 (61.6%) 1070 (59.2%)
Former 583 (8.1%) 138 (7.6%) 157 (8.7%) 155 (8.6%) 133 (7.4%)
Current 2478 (343%) 709 (39.2%) 627 (34.7%) 538 (29.8%) 604 (33.4%)
Body mass index, kg/m” <0.001
Under and normal (<24.0) 4390 (60.7%) 1396 (77.1%) 1212 (67.1%) 1020 (56.4%) 762 (42.1%)
Overweight (24.0-27.9) 2088 (28.9%) 342 (18.9%) 463 (25.6%) 584 (323%) 699 (38.7%)
Obesity (>28.0) 755 (10.4%) 72 (4.0%) 132 (7.3%) 204 (11.3%) 347 (19.2%)

History of comorbidities

Hypertension © 1660 (23.0%) 281 (15.5%) 330 (18.3%) 464 (25.7%) 585 (32.4%) <0.001
Diabetes © 373 (5.2%) 23 (1.3%) 49 (2.7%) 83 (4.6%) 218 (12.1%) <0.001
Dyslipidemia © 557 (7.7%) 62 (3.4%) ‘i (6.1%) 143 (7.9%) 241 (13.3%) <0.001
Kidney disease © 362 (5.0%) 94 (5.2%) 100 (5.5%) 85 (4.7%) 83 (4.6%) 0530

History of medication use

Hypertension medications © 1198 (16.6%) 181 (10.0%) 231 (12.8%) 340 (18.8%) 446 (24.7%) <0.001

Diabetes medications © 231 (3.2%) 12 (0.7%) 28 (1.5%) 46 (2.5%) 145 (8.0%) <0.001

Dyslipidemia medications © 265 (3.7%) 25 (1.4%) 51 (2.8%) 67 (3.7%) 122 (6.7%) <0.001
Systole blood pressure, mmHg © 128.82 +21.02 125.04 +20.58 127.05 + 20.36 130.53 + 21.97 132,68 + 20.31 <0.001
Diastolic blood pressure, mmHg © | 75.02 + 12.05 7278 + 11.81 74.18 + 11.70 75.82 + 1241 7731 £ 11.81 <0.001
Total cholesterol, mg/dl 19431 + 38.43 179.44 + 3330 190.32 + 33.76 198.05 + 36.72 209.46 + 42.79 <0.001
HDL-C, mg/dl 51.82 + 15.26 60.74 £ 15.17 55.22 + 13.87 49.80 + 13.02 41.50 + 11.73 <0.001
LDL-C, mg/dl © 117.47 + 34.60 108.88 + 29.31 119.19 + 30.72 124.77 + 34.00 117.05 + 41.28 <0.001
Glycated hemoglobin, % © 5.28 + 0.81 5.08 +0.42 5.15 £ 0.50 5.21+0.58 5.67 + 1.28 <0.001
Median hsCRP (IQR), mg/l 1.01 (0.54, 2.14) 0.80 (046, 1.81) 0.89 (0.50, 1.91) 1.05 (0.59, 2.14) 1.30 (0.70, 2.59) <0.001
eGFR, ml/min/1.73m? © 76.79 + 43.61 75.14 + 39.49 75.79 + 57.26 76.42 + 35.20 79.81 + 38.99 0.002

Data are presented as mean + SD or n(%), unless otherwise specified.

eGFR, estimated glomerular filtration ratio; HDL-C, high-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; IQR, interquartile range; LDL-C, low-density lipoprotein
cholesterol; TyG, triglyceride-glucose.

*TyG index was calculated as In (triglycerides [milligrams per deciliter] x fasting blood glucose [milligrams per deciliter]/2).

P value was based on 2, analysis of variance test or Kruskal-Wallis rank sum test where appropriate.

“Missing data: 20 for smoking status, 4 for drinking status, 32 for hypertension, 62 for diabetes, 145 for dyslipidemia, 24 for kidney disease, 33 for history of medication use for hypertension, 63
for history of medication use for diabetes, 147 for history of medication use for dyslipidemia, 70 for systole blood pressure, 71 for diastolic blood pressure, 13 for LDL-C, 61 for HbAlc, and 2
for eGFR.
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No. of
event/total

HR (95% ClI)

Model 1 °

P value | P for trend ©

HR (95% CI)

Model 2 ®

Pvalue P fortrend©

Cardiovascular disease

Body mass index, kg/m* <0.001 <0.001
Under and normal (<24.0) 740/4390 1.00 [Reference] 1.00 [Reference]
Overweight (24.0-27.9) 448/2088 1.30 (1.15-1.46) <0.001 1.28 (1.14-1.44) <0.001
Obesity (228.0) 223/755 1.93 (1.66-2.25) <0.001 1.90 (1.63-2.22) <0.001

Body mass index continuous © 1411/7233 1.23 (1.17-1.29) <0.001 1.23 (1.17-1.29) <0.001
Quartiles of the TyG index ¢ <0.001 <0.001
Quartile 1 [5.18, 8.2.0] 289/1810 1.00 [Reference] 1.00 [Reference]
Quartile 2 (8.20, 8.57) 340/1807 1.16 (0.99-1.36) 0.065 1.14 (0.98-1.34) 0.100
Quartile 3 (8.57, 9.00] 385/1808 1.31 (1.12-1.53) 0.001 1.29 (1.10-1.50) 0.001
Quartile 4 (9.00, 13.00] 397/1808 1.38 (1.18-1.61) <0.001 1.35 (1.16-1.57) <0.001

TyG index continuous © 1411/7233 1.14 (1.08-1.20) <0.001 1.13 (1.07-1.19) <0.001

Stroke <0.001 <0.001

Body mass index, kg/m*
Under and normal (<24.0) 238/4390 1.00 [Reference] 1.00 [Reference]
Overweight (24.0-27.9) 150/2088 1.39 (1.13-1.71) 0.002 1.42 (1.15-1.75) 0.001
Obesity (>28.0) 761755 2.12 (1.63-2.76) <0.001 2.13 (1.63-2.78) <0.001

Body mass index continuous © 464/7233 1.29 (1.19-1.40) <0.001 1.29 (1.19-1.40) <0.001

Quartiles of the TyG index ¢ <0.001 <0.001
Quartile 1 [5.18, 8.2.0] 73/1810 1.00 [Reference] 1.00 [Reference]
Quartile 2 (8.20, 8.57) 101/1807 1.40 (1.04-1.90) 0.028 1.40 (1.03-1.89) 0.031
Quartile 3 (8.57, 9.00] 141/1808 1.99 (1.49-2.64) <0.001 1.96 (1.48-2.61) <0.001
Quartile 4 (9.00, 13.00] 149/1808 2.17 (1.64-2.88) <0.001 2.17 (1.63-2.88) <0.001

TyG index continuous e 464/7233 1.31 (1.21-1.42) <0.001 1.31 (121-1.42) <0.001

Heart disease

Body mass index, kg/m” <0.001 <0.001
Under and normal (<24.0) 559/4390 1.00 [Reference] 1.00 [Reference]
Overweight (24.0-27.9) 345/2088 1.29 (1.13-1.48) <0.001 1.26 (1.10-1.45) 0.001
Obesity (228.0) 173/755 1.90 (1.60-2.26) <0.001 1.85 (1.55-2.20) <0.001

Body mass index continuous © 1077/7233 1.22 (1.16-1.29) <0.001 1.21 (1.14-1.28) <0.001

Quartiles of the TyG index ¢ 0.059 0.131
Quartile 1 [5.18, 8.2.0] 239/1810 1.00 [Reference] 1.00 [Reference]
Quartile 2 (8.20, 8.57) 265/1807 1.08 (0.91-1.29) 0.396 1.06 (0.89-1.26) 0.525
Quartile 3 (8.57, 9.00] 282/1808 1.13 (0.95-1.34) 0.180 1.10 (0.93-1.31) 0.266
Quartile 4 (9.00, 13.00] 291/1808 1.18 (0.99-1.40) 0.063 1.14 (0.96-1.35) 0.143

TyG index continuous © 1077/7233 1.07 (1.01-1.14) 0.016 1.06 (1.00-1.13) 0.044

HR, hazard ratio; CI, confidence interval; TyG, triglyceride-glucose.

*Adjusted for age and gender.

®Adjusted for age, gender, marital status, residence, education level, smoking status, and drinking status.
“Tests for linear trend were done by modeling the median value of each group to test ordered relations across groups of body mass index or TyG index.
9TyG index was calculated as In (triglycerides [milligrams per deciliter] x fasting blood glucose [milligrams per deciliter]/2).

HRs given per 1-SD increase.
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Characteristic VAI quartiles

Q1 (0.09-0.88) Q2 (0.88-1.45) Q3 (1.45-2.45) Q4 (2.45-10.44)

N=6018 N=6018 N=6018 18
Age (years) 42.77 £ 19.29 46.51 + 19.35 49.47 + 18.86 50.45 + 17.86 <0.001
Gender (%) <0.001
Male 53.79 4792 46.46 46.10
Female 46.21 52.08 53.54 53.90
Race/ethnicity (%) <0.001
Non-Hispanic white 37.42 42.90 44.52 48.55
Non-Hispanic Black 3249 2293 16.45 1030
Mexican American 12.99 16.93 2099 24.13
Others 17.10 17.23 18.05 17.02
Educational level (%) <0.001
Less than high school 2291 25.89 29.63 33.63
High school 22.65 24.13 2371 24.58
More than high school 54.44 49.98 46.66 41.80
Smoking (%) <0.001
Never 60.09 56.38 53.32 49.15
Former 21.64 2388 26.16 27.59
Now 18.26 19.74 20.52 23.26
Drinking (%) <0.001
Never 13.24 1427 1431 16.59
Former 11.95 1549 19.37 21.96
Mild 37.20 33.80 32.85 29.94
Moderate 17.72 15.90 13.50 12.03
Heavy 19.88 20.54 19.96 19.48
PIR (%) <0.001
Low 28.91 29.99 3132 34.80
Medium 37.54 37.57 39.72 38.39
High 33.55 3244 28.96 26.81
METs/week (%) 0.097
Low 95.24 94.90 95.55 94.96
Moderate 2.37 3.02 2.62 3.15
Vigorous 239 2.09 1.83 1.89
BMI (kg/m?) 25.61 + 5.83 27.88 £ 6.37 29.83 £ 6.71 31.01 + 6.34 <0.001
SBP (mmHg) 119.76 = 17.98 121.79 + 18.62 123.84 £19.13 12593 £ 19.39 <0.001
DBP (mmHg) 67.99 + 11.57 69.06 + 11.92 69.69 + 12.24 70.84 + 12.48 <0.001
TG (mg/dl) 58.38 + 17.18 89.74 + 20.56 127.36 + 29.44 221.50 + 80.22 <0.001
TC (mg/dl) 179.72 + 37.10 188.33 +39.24 195.78 + 41.12 207.55 + 44.55 <0.001
eGFR (ml/min/1.73 m?) 102.28 + 23.58 97.60 + 24.12 94.90 + 24.61 93.22 + 25.25 <0.001
Lipid-lowering medications (%) = 11.06 14.87 19.03 2149 <0.001
Antihypertensive 19.02 2541 3173 36.51 <0.001
medications (%)
Glucose metabolism state (%) <0.001
Normal 61.25 52.18 4292 33.50
Prediabetes 30.13 3453 37.54 38.92
Diabetes 8.62 13.29 19.54 27.58

VAL visceral adiposity index; PIR, poverty income ratio; MET, metabolic equivalent of task; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, triglyceride; TC, total cholesterol;
eGFR, estimated glomerular filtration rate.
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VAI

Continuous

Model 1

1.32 (1.29, 1.34)

Model 2

1.30 (1.27, 1.32)

Model 3

1.71 (1.59, 1.85)

Quartiles

Q1(0.09-0.88)

Reference

Reference

Reference

Q2(0.88-1.45)
Q3(1.45-2.45)

Q4(2.45-10.44)

1.45 (1.35, 1.56)
2.10 (1.95, 2.26)

3.14 (2.91, 3.38)

1.37 (1.27, 1.49)
1.89 (1.74, 2.05)

2.93 (2.69, 3.19)

2.80 (2.33, 3.37)

137 (1.23, 1.53)

1.87 (1.65, 2.12)

P for trend

<0.001

<0.001

<0.001

Model 1: Non-adjusted.
Model 2: Adjusted for age, gender, race/ethnicity, and education level.

Model 3: Adjusted for age, gender, race/ethnicity, education level, smoking, drinking, PIR, METs/
week, SBP, TG, TC, eGFR, lipid-lowering medications, and antihypertensive medications.

VAL visceral adiposity index; PIR, poverty income ratio; MET, metabolic equivalent of task;
SBP, systolic blood pressure; TG, triglyceride; TC, total cholesterol; eGFR, estimated
glomerular filtration rate.
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Response (n=122) OR 95% Cl P value
High SMI

TATI (High VS Low) 1.04 076to 144 | 0.79
Low SMI

TATI (High VS Low) 0.92 070to 1.19 | 0.51
High TATI

SMI (Low VS High) 0.76 04510128 | 031
Low TATI

SMI (Low VS High) 0.92 073to 1.17 | 0.50
PFS (n=133) HR 95% CI P value
High SMI

TATI (High VS Low) | 0.39 01610099 | 0.049*
Low SMI

TATI (High VS Low) 1.28 067 to 247 | 046
High TATI

SMI (Low VS High) 421 101 to 17.57 | 0.05*
Low TATI

SMI (Low VS High) 0.87 047t0 160 | 065
OS (n=133) HR 95% Cl P value
High SMI

TATI (High VS Low) 0.48 0.16to 140 | 018
Low SMI

TATI (High VS Low) 112 057t0221 | 0.73
High TATI

SMI (Low VS High) 10.96 236 105090 | <0.01**
Low TATI

SMI (Low VS High) 1.16 055t0242 | 0.70

Adjusted for age, gender, stage, ICI line and ICI types. *P < 0.05; **P<0.01.
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VAI Adjusted OR* (95% CI) P-value
Model |

Fitting by the standard 1.71 (1.59, 1.85) <0.0001
linear model
Model Il
Inflection point 2.10
< Inflection point 2.47 (2.21, 2.76) <0.0001
> Inflection point 1.57 (1.46, 1.70) <0.0001
Log likelihood ratio / <0.001

*Adjusted for age, gender, race/ethnicity, education level, smoking, drinking, PIR, METs/
week, SBP, TG, TC, eGFR, lipid-lowering medications, and antihypertensive medications.
VAL visceral adiposity index; OR, odd ratio; CI, confidence interval; PIR, poverty income
ratio; MET, metabolic equivalent of task; SBP, systolic blood pressure; TG, triglyceride; TC,
total cholesterol; eGFR, estimated glomerular filtration rate.
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Characteristics
Gender
Male
Female
Age (years)
<45
45-60
=60
Smoking
Never
Former
Now
Drinking
Never
Former
Mild
Moderate
Heavy
Hypertension

Yes
No

OR (95% Cl)

1.69 (1.54, 1.85)
1.72 (1.59, 1.86)

1.69 (1.57, 1.83)
1.68 (1.53, 1.84)
1.78 (1.62, 1.96)

1.72 (1.58, 1.86)
1.81 (1.65, 1.99)
1.67 (1.53, 1.82)

1.67 (1.51, 1.84)
1.71 (1.56, 1.88)
1.71 (1.57, 1.87)
1.74 (1.58, 1.93)
1.76 (1.60, 1.93)

1.75 (1.60, 1.90)
1.71 (1.58, 1.85)

100

125

150

175

200

P-value

<0.05
<0.05

<0.05
<0.05
<0.05

<0.05
<0.05
<0.05

<0.05
<0.05
<0.05
<0.05
<0.05

<0.05
<0.05

P-interaction*

0.55

0.33

0.10

0.84

0.49
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Time in ICU (days)
28-day mortality, n (%)
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Female

Time in ICU (days)
28-day mortality, n (%)

L-year mortality, n (%)

32(157.1)
1,279 (14.2)
2,403 (26.6)
n=5861
37(19,7.8)
1,000 (17.1)

1842 (31.4)
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n=24a1
33(17,70)
436 (17.9)
838(34.3)
n=1767
37(19,7.8)
304(17.2)

609 (34.5)

Underweight
(<18.5kg/m?)

86
33(20,7.7) 31(14,65) 34(17,80)
41(22) 413 (12.6) 389 (12.5)
99(53.2) 770(23.5) 696 (22.3)
n=25 n=1632 n=2217
39(19,73) 36(17,76) 38(20,8.1)
69(282) 279(17.1) 348 (15.7)
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Demographic or Overall Healthy weight nderweight Overweigh Obese (>30.0 kg/m?); P-value

hospitalization n=9,022 (18.5-24.9kg/m?;  (<185kg/m?);n=186  (25.0-29.9 kg/m?); n=3119

characteristic n=2441 n=3.276

Age (years) 636£15.1 6535168 65.4217.1 647£150 6LIE134 <0001

Age,n (%) <0001

<60 3,207 (35.5) 791 (32.4) 60(323) 1,084 (33.1) 1,272 (40.8)

60-80 1442 (192) 1,093 (44.8) 80 (43) 1,638 (50) 1,631 (523)

280 1373 (15.2) 557 (22.8) 46 (24.7) 554(16.9) 216(69)

Race and ethnicity; n (%) <0001

Asian 23927) 130(53) 422) 76(23) 29(09)

Black 563 (62) 188 (7.7) 28(15.1) 159 (49) 188 (6)

Hispanic 307 (34) 98 (4) 8(43) 105 (3.2) 96 (3.1)

White 6191 (68.7) 1,569 (64.3) 109 (58.6) 2320 (70.9) 2,193(703)

Unknown/Other 1716 (19.0) 454 (18.6) 37(19.9) 612(18.7) 613(19)

SAPS score 37.0(29.0,47.0) 37.0(300,47.0) 400 (322,48.0) 360 (290, 46.0) 37.0(29.0,47.0) <0001

SOFA 20(0.0,40) 20(00,40) 10(00,3.0) 20(00,40) 20(0.0,40) 0.01

Charlson comorbidity index 50(30,7.0) 50(3.0,7.0) 60(4.0,80) 40(3.0,7.0) 40(30,60) <0001

Comorbidity

AFIB,n (%) 3,110(34.5) 818 (33.5) 46(247) 1,161 (35.4) 1,085 (34.8) 0016

Diabetes, n (%) 2847 (31.6) 565 (23.1) 46(24.7) 922 (28.1) 1314 (42.1) <0001

CHE n (%) 1,461 (16.2) 390 (16) 29(156) 513(15.7) 529(17) 0537

Renal disease, n (%) 7,445 (82.5) 1864 (76.4) 143 (769) 2656 (81.1) 2782 (89.2) <0001

COPD, n (%) <0001
543 (6.0) 146 (6) 23(124) 165 (5) 209 (6.7)

Hypertension, n (%) 4075 (45.2) 933 (38.2) 55(29.6) 1,550 (47.3) 1,537 (49.3) <0001

CAD, n (%) 1,186 (13.1) 304 (12.5) 20(108) 416 (12.7) 446 (14.3) 0.104

Stroke, n (%) 874(97) 252(10.3) 16(8.6) 325(99) 28109 0359

Liver disease, n (%) 2123(235) 581(23.8) 64(34.4) 706 (21.6) 772(24.8) <0001

Metastatic cancer, n (%) 2036 (226) 61125) 62(333) 794(24.2) 569 (18.2) <0.001

Vital signs

MAP (mm Hg) 537+113 53.0£115 51.6£125 544£109 5384115 <0001

Heart rate (beats/min) 1163244 1167238 1216308 1150245 1714243 <0.001

Laboratory tests

PO2 (mmHg) 67.0(42.0,95.0) 67.0(41.0,104.0) 48.0(36.0,90.8) 710 (4.0, 99.0) 64.0(42.0,87.0) <0001
Lactate (mmol/L) 24(17,37) 25(17,38) 21(16,34) 24(18,36) 24(17,37) 0.08

Hemoglobin (g/dL) 87519 85518 82418 87£19 89420 <0001
pH 73501 73£0.1 7320.1 73£0.1 730.1 <0001
Creatinine (mg/dL) 11(09,1.7) 10(05,1.6) 10(08,2.0) 11(09,1.6) 12(09,1.9) <0.001
White blood cell counts (x10°/L) 160 (12.0,21.2) 155 (11.6,20.6) 160 (115,21.5) 157 (119, 205) 16.7(125,219) <0001
Glucose, (mg/dL) 1310 (1080, 166.0) 124.0 (1030, 156.0) 123.0 (1030, 1528) 1310 (1080, 164.0) 138.0(1120,177.0) <0001

Interventions

Mechanical ventilation use, n (%) 8,459 (93.8) 2233(91.5) 170 (91.4) 3,089 (94.3) 2,967 (95.1) <0.001
Vasopressor use, n (%) 5,552 (61.5) 1,464 (60) 100 (53.8) 2038 (62.2) 1950 (62.5) 0.027
Sedative use, n (%) 635 (7.0) 156 (6.4) 8(43) 225(69) 246 (7.9) 0.064

Continuous Variables: Normally distributed variables are shown as mean ( SD), and non-normally distributed variables as median (IQR). Categorical Variables: Categorical variables are presented as counts and percentages (%). BMI, Body Mass Index; MAP, Mean
Arterial Pressure; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure Assessment; COPD, Chronic obstructive pulmonary disease; CAD, Coronary artery disease; CHF, Congestive heart failure; AFIB, Atrial fibrillation,
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Demographic or Overall Healthy weight Underweig| Overweight Obese (>30.0 kg/m?); P-value

hospitalization n=5,861 (18.5-24.9 kg/m?); (<18.5kg/m?); n = 245 (25.0-29.9 kg/m n=2217

characteristic n=1,767 n=1,632

Age (years) 662160 67.6417.1 6894168 6734165 6412144 <0001
Agen (%) <0.001
<60 1775.(30.3) 511(28.9) 57(23.3) 470 (28.8) 737 (33.2)

60-80 2,771 (47.3) 751 (42.5) 113 (46.1) 726 (44.5) 1,181 (53.3)

280 1,315 (22.4) 505 (28.6) 75 (30.6) 436 (267) 299(135)

Race and ethnicity, n (%) <0001
Asian 124(2.1) 68(39) 7(29) 35 (2.1) 14(06)

Black 568 (9.7) 143 (8.1) 25(10.2) 150(92) 250(11.3)

Hispanic 173(3.0) 33(1.9) 1(04) 54(3.3) 85(38)

White 3,992 (68.2) 1,208 (68.4) 171(69.8) 1,127 (692) 1,486 (67.1)

Unknown/Other 997 (17.0) 313017.7) 410167) 263 (16.1) 380 (17.2)

SAPS score 38.0 (300, 48.0) 380 (30.0,48.0) 400 (31.0,52.0) 380 (30.0,48.0) 380 (300, 48.0) 0135
SOFA 1.0(0.0,3.0) 10(0.0,3.0) 10(0.0,3.0) 1.0(0.0,3.0) 1.0(0.0,4.0) 0.047
Charlson comorbidity index 50(30,7.0) 50(30,7.0) 50(40,7.0) 50(30,7.0) 50(30,7.0) 0.044

Comorbidity

AFIB, n (%) 1890 (32.2) 588 (33.3) 69(282) 530 (32.5) 703 (31.7) 0382
Diabetes, n (%) 1739(29.7) 341(19.3) 32(13.1) 443 (27.1) 923 (41.6) <0.001
CHE n (%) 1,085 (18.5) 331 (18.7) 36 (14.7) 321 (19.7) 397(17.9) 0.22
Renal disease, n (%) 4,748 (81.0) 1,294 (732) 171(69.8) 1,293 (792) 1990 (89.8) <0.001
COPD, n (%) 491 (8.4) 137 (7.8) 30(12.2) 18(72) 206(9.3) 0012
Hypertension, n (%) 2,672(45.6) 728(41.2) 90 (367) 761 (46.6) 1,093 (49.3) <0.001
CAD, n (%) 482(8.2) 132(7.5) 16.(65) 134(82) 200 (9) 0248
Stroke, n (%) 668 (11.4) 224127) 26(10.6) 193.(11.8) 225(10.1) 0.081
Liver disease, n (%) 1,302 (22.2) 370(20.9) 62(253) 364 (22.3) 506 (22.8) 0321
Metastatic cancer, n (%) 1,382 (23.6) 475 (269) 76 (31) 357 (21.9) 474 (21.4) <0.001
Vital signs

MAP (mm Hg) 513£110 5174113 5124117 513109 509+109 0132
Heart rate (beats/min) 11874244 11964246 12054244 1755243 11864242 0044

Laboratory tests

PO2 (mmHg) 62.0(39.0,90.0) 63.0(40.0,94.0) 515 (36.8,86.5) 64.0(39.0,92.0) 61.0(39.0,85.0) 0.003
Lactate (mmol/L) 25(16,39) 24(16,39) 21(15,35) 25(16,39) 26(1.6,4.0) 0045
Hemoglobin (g/dL) 81517 80417 82£17 81217 82518 0.145
pH 7.3£0.1 73£0.1 7.3£0.1 73401 73£0.1 <0.001
Creatinine (mg/dL) 09(07,15) 0.8(0.6,13) 09(06,1.4) 0.9(07,1.4) 10(07,16) <0.001
White blood cell counts (x107/L) 162(12.1,21.7) 160(119,21.7) 152 (11.1,202) 158(1138,21.3) 167 (126,22.1) <0001
Glucose (mg/dL) 133.0 (1080, 170.0) 1260 (103.0,157.0) 127.0 (1040, 160.0) 1310 (107.0, 166.0) 1410 (113.0,181.0) <0.001
Interventions

Mechanical ventilation use, n

i 5,390 (92.0) 1,583 (89.6) 222(90.6) 1,499 (91.9) 2086 (94.1) <0.001
Vasopressor use, n (%) 3,354 (57.2) 977 (55.3) 128 (52.2) 952 (58.3) 1,297 (58.5) 0058
Sedative use, n (%) 422(7.2) 118 (6.7) 18(7.3) 115(7) 171(2.7) 0.646

Continuous Variables: Normally distributed variables are shown as mean (+ SD), and non-normally distributed variables as median (IQR). Categorical Variables: Categorical variables are presented as counts and percentages (%). BMI, Body Mass Index; MAP, Mean
Arterial Pressure; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure Assessment; COPD, Chronic obstructive pulmonary disease; CAD, Coronary artery disease; CHF, Congestive heart failure; AFIB, Atrial fibrillation.
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DXA 3D scanning Validity

o SD
Mean SD Min Max B Mean SD Min Max MD of SEE RMSE Equivalence?
estimate
ADAM 297 98 110 556 02 45 43 45 090%  0.90% Y (p<0.01)
299 99 106 547
coco 31 93 144 560 13 44 4l 45 090%  0.89* Y (p=0.03)

MD, mean difference; SEE, standard error of the estimate; RMSE, root mean square errors r, Pearson's correlation coefficient; CCC, Lin's concordance correlation coeficient; Y, yes (statistically
equivalent); BF%, body fat %; ADAM, Automatic Detection of Athlete Mode 3D scanning equation; COCO, COmpound Circumferences Only 3D scanning equation.
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