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Editorial on the Research Topic

Body composition assessment and future disease risk

Body composition assessment is a fundamental element of chronic disease prevention,

diagnosis, and management in clinical practice. Body composition consists of various

components, including adipose tissue, musclemass, bonemass, height, and organ tissues. It

is widely used to examine the relationship between these components and health outcomes

such as mortality and disease risk. Understanding body composition provides valuable

insights into the structure and function of adiposity, the detection of obesity-associated

phenotypes, and the mechanisms of chronic disease development (1). Quantifying body

composition advances the impact of each component on disease development and

management. For instance, body mass index (BMI, kg/m2) is the most commonmethod to

identify obesity and its associated chronic diseases in practice.

Obesity is a critical attribute of many chronic diseases. Obesity is defined as abnormal

or excessive body fat associated with chronic disease risk (2). BMI is a rule of thumb

for estimating obesity in practice due to its simple and convenient nature. However,

although BMI is associated with chronic disease risks, the limitations of BMI have become

increasingly apparent in terms of accurately measuring body fat mass and regional fat

distribution (3, 4). Additionally, using BMI alone tomeasure body fat can lead to significant

misidentification of patient health risk classification.

A large body of literature has found that overweight or obese individuals defined

by BMI sometimes demonstrate better survival and outcomes than normal-weight

counterparts (5–7). These studies explain this relationship between BMI and survival

by highlighting the inaccuracy of BMI as a measurement of body fat mass. Specifically,

some evidence indicates that elevated BMI, an indirect measure of body fat, is not as

useful in predicting downstream mortality as a direct measure of body fat (8). Rather,

despite a higher BMI, individuals who have more muscle mass and lower lean mass tend

to show better outcomes (9, 10). On the other hand, the “skinny fat” or “metabolically

obese normal weight (MONW)” body type demonstrates detrimental outcomes among

the normal BMI population. However, these body types are neglected in preventive care

screening services due to BMI being the standard. Nevertheless, MONW is strongly

associated with metabolic syndrome, type 2 diabetes, and cardiovascular disease (CVD)

due to the increased workload of the heart and cytokine malfunction (4, 11, 12).
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These findings elucidate the need for more effective methods

of body composition measurement for better risk assessment of

chronic disease morbidity and mortality.

Body composition measurements and
chronic diseases

Body composition is strongly associated with chronic diseases.

Particularly, adipose tissue is a critical risk factor for obesity

associated with chronic diseases (13). As alternative measurements

of body composition to BMI have been proposed, such as

waist circumference (WC), waist-to-hip ratio (WHR), and direct

measures of body fat percentage (BF%) or lean body mass, the

relationship between body fat and chronic disease risk extends

beyond the conventional approach using BMI.

Visceral fat tissue is directly associated with chronic disease,

and the visceral fat index may be an effective measurement

to predict the risk of chronic diseases. Huang et al. used the

visceral adiposity index (VAI), an indirect measure of visceral

body fat combining information from WC, BMI, triglycerides,

and HDL cholesterol, to calculate sex-specific visceral fat function.

They categorized VAI into quartiles and found a non-linear

relationship between VAI and prediabetes and diabetes for both

sexes. Especially, they identified a significant threshold at 2.10

for VAI in the early detection of prediabetes and diabetes. If an

individual surpasses the 2.10 threshold, they may be at higher risk

for developing those conditions.

Utilizing various body compositionmeasurements can enhance

the prediction of chronic diseases and hospitalization outcomes

more effectively. A meta-analysis analyzed 22 studies on the

relationship between WHR and myocardial infarction (MI) over

the past 20 years (Zhang et al.). The results demonstrated that

a higher WHR is positively associated with MI compared to

a lower WHR. Interestingly, gender-specific analysis confirmed

this association more specifically, showing that WHR had a

stronger association with MI among females. Yan and Chen

proved a strong association of four different body composition

assessments, including BMI, body fat percentage, WC, and

hip circumference, as risk factors for non-suppurative otitis

media (NSOM) while the study did not specify the types of

NSOM. Of those, hip circumference had the highest association

with NSOM. Canonico et al. used calf circumference (CC) to

evaluate the risk of in-hospital complication risk and in-hospital

mortality. As a result, lower CC was associated with a higher

risk of in-hospital complication development and death during

hospitalization or within 90 days of discharge in frail older patients

(Canonico et al.).

Nutritional intake patterns in children and adolescents

show complex relationships with different obesity phenotypes,

contributing to our understanding of early risk factors for pediatric

chronic diseases. Dietary habits showed a higher association

with abdominal obesity measurements such as WC or waist-to-

height ratio (WHtR) rather than BMI in children and adolescents

aged 6 to 18 years old (Yun et al.). More specifically, those

with unhealthy nutritional intake reported three times higher

abdominal obesity prevalence compared to those with healthy

nutrition intake.

Body composition and adverse
outcomes

Reports about an “obesity paradox” exist where higher BMI

ranges are protective (14). For example, Li et al. showed a significant

association between BMI increments and 29-day mortality in

patients with sepsis, indicating that higher BMI is significantly

associated with lower mortality. Despite such reports, studies also

show that lean mass is a mediator between BMI, adiposity, and

patient mortality (9, 15). Therefore, directly measuring body fat

may have better utility for measuring outcomes in certain cases. In

this regard, Fang et al. found that patients undergoing small cell

lung cancer immunotherapy with a higher visceral to subcutaneous

fat ratio (VSR) reported a worse response to the therapy than those

with a lower VSR. Although unadjusted regression models showed

significantly worse overall survival and progression-free survival

among patients with sarcopenia or lower skeletal muscle mass

compared to those with higher muscle mass, the adjusted models

did not show significant outcomes (Fang et al.).

More accurate body composition assessment is particularly

important when evaluating older adults experiencing sarcopenia

with preserved fat mass. Calf circumference (CC), which serves

as a valuable muscle mass marker, was the only significant

body composition measurement for all in-hospital mortality,

complications, and 90-day mortality compared to hand grip

strength and existing clinical frailty among older hospitalized

patients (Canonico et al.). Since CC is highly associated

with mobility and falls (16), it can provide more valuable

insights, demonstrating that age-associated changes in body

composition predict adverse outcomes more accurately than

static measurements.

Lastly, despite the widespread clinical use of BMI as a

cardiovascular disease (CVD) risk factor, there may be limitations

when using it with the triglyceride-glucose (TyG) index to capture

metabolic risk. More specifically, even though BMI and TyG

independently proved to have a significant association with CVD,

TyG did not play a role as a mediator of CVD when combined with

BMI (Gan et al.).

Body composition assessment
evolution

As measurement technology has evolved, more specific body

compositions can be measured with a home-based digital scale.

However, concerns have been raised about measurement accuracy

and usability in practice. Dual-energy X-ray absorptiometry (DXA)

scans are the most accurate measurement tool, but they are

not easily used in practice and are expensive to use solely for

body composition measurement purposes. Bioelectrical impedance

analysis (BIA) is an alternative tool that can be used in practice

and at home relatively easily. Despite the lower accuracy of BIA

compared to DXA scan, its performance is sufficient compared to

DXA scan to reliably be used in clinical practice (17–19).

As technology has advanced, new technologies and

methodologies have emerged to measure and utilize body

composition in predicting health risks. Machine learning is
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used to measure comprehensive body composition effectively

(20, 21). BF% was generated with a smartphone that uses a

three-dimensional scanning application, and the results were

reliable compared to DXA scans (Tinsley et al.). It can contribute

to assessing multi-dimensional aspects of body composition, from

appearance to internal body composition, by utilizing advanced

measurement with a smartphone in clinical settings. Furthermore,

it may be a more effective, cost-effective way to measure whole

body composition for patients.

Clinical implications and conclusion

The growing evidence connecting body composition to chronic

disease risk and outcomes has significant implications for clinical

practice. Moving beyond the conventional BMI-centric approaches

to health assessment allows more precise risk stratification and

personalized intervention and care planning. Clinicians can use

direct measures of body composition, such as DXA scan or the

more clinically utilizable BIA, to identify high-risk patients, such as

those with skinny fat or sarcopenic obesity, which might otherwise

be missed by using BMI alone.

As body composition and chronic disease research advance,

tools and methods directly measuring body composition will

become more accurate and reliable. Such tools should be clinically

relevant, like BIA, to be valuable in primary care settings

where they can enhance early detection of unfavorable body

composition and guide preventive intervention before disease

develops, ultimately leading to improved patient outcomes and

more effective preventive care.
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Obesity and adiposity promote 
the development of 
non-suppurative otitis media: a 
Mendelian randomization study
Xin Yan 1 and Suhua Chen 2*
1 Department of Otolaryngology, Shaoxing People's Hospital, Shaoxing, China, 2 Department of 
Pharmacy, Shaoxing People's Hospital, Shaoxing, China

Background: Observational studies have found that obesity is associated with 
the development of non-suppurative otitis media (NSOM), but the causality 
and pathogenesis are unclear. This study aimed to investigate the association 
between obesity, lipid metabolism, and NSOM at the genetic level.

Methods: We performed a bidirectional two-sample Mendelian randomization 
(MR) study to examine the causal relationship between obesity, lipid metabolism-
related factors, and NSOM by using the datasets obtained from the IEU Open 
genome-wide association studies (GWAS) Project. Furthermore, a multivariate 
MR (MVMR) analysis on lipid indicators was conducted to validate the results. 
We then used obesity or body mass index (BMI) as the exposure and NSOM as 
the outcome to search for possible mediators in lipids and adipokines.

Results: Using NSOM as the outcome, we found nine positive exposure results 
related to obesity and lipid metabolism. Among them, obesity, BMI, body fat 
percentage, waist circumference, hip circumference, and resistin were risk 
factors, while apolipoprotein A1 (apoA1), high-density lipoprotein cholesterol 
(HDL-C), and nerve growth factor (NGF) were protective factors. Then, we used 
the obesity and lipid metabolism-related factors as outcomes and NSOM as 
the exposure to perform the MR analysis, which failed to obtain positive results. 
In the MVMR analysis, we  found that HDL cholesterol and apoA1 remained 
causally associated with NSOM after correction for other potential confounders. 
Simultaneously, when obesity or BMI was used as the exposure and NSOM as 
the outcome, HDL cholesterol or apoA1 served as mediators through a two-
step MR analysis. The MR analysis for mediation, obesity, and BMI reduced the 
production of HDL or apoA1, which served as protective factors affecting the 
development of NSOM.

Conclusion: At the genetic level, obesity and adiposity may promote the 
development of NSOM, while NSOM has no effect on obesity and adiposity. 
Obesity can also encourage the progress of NSOM by reducing HDL cholesterol/
apoA1. Resistin may be a potential risk factor for NSOM, whereas NGF may be a 
potential protective factor.
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Introduction

Non-suppurative otitis media (NSOM), also known as secretory 
otitis media, exudative otitis media, serous otitis media, catarrhal otitis 
media, and tympanic cavity effusion, is a common inflammatory 
disease of the middle ear. It is usually caused by poor Eustachian tube 
function and is characterized by otitis media effusion and hearing loss. 
NSOM is most common in children, and its incidence rate is very 
high. It usually develops between 6 months and 4 years old (1). In 
total, 50–90% of children under the age of 5 have a history of NSOM 
(2). It is also one of the leading causes of hearing loss in children and 
even has an impact on their intelligence and language development.

Obesity is a global issue of great concern, and it is becoming more 
serious as living standards rise (3). Obesity has been shown to cause a 
variety of diseases, including cardiovascular (4) and cerebrovascular 
disease (5), diabetes (6), obstructive sleep apnea syndrome (7), and 
metabolic disorders (8). Observational studies have shown that 
NSOM may be associated with obesity, most of which is concentrated 
in the pediatric population (9, 10). In addition, observational studies 
have also found that a high-fat diet rather than obesity is associated 
with NSOM, and a high-fat diet is a confounding factor between 
obesity and NSOM (11). At present, the relationship between the two 
is still not very precise, the mechanism of action and the causal 
relationship are not clear, and the observational research is easily 
influenced by confounding factors.

Mendelian randomization (MR) can use genetic instrumental 
variables to test the potential causal relationship between exposures 
and outcomes. Because genetic variation occurs randomly and is not 
influenced by external environmental factors, MR analysis minimizes 
potential unpredictable confounding factors and compensates for the 

shortcomings of observational research (12). Cao et al. (13) used MR 
methods to demonstrate that childhood body mass index is a risk 
factor for the development of NSOM in children. Considering the 
correlation between lipid metabolism-related factors and obesity, 
we also included them in the study and used MR methods to analyze 
the relationship between obesity, obesity indicators, lipids, adipokines, 
and NSOM, to gain a preliminary understanding of the 
disease pathogenesis.

Methods

The exposure and outcome data for MR analysis were collected 
from the datasets of the IEU Open GWAS Project, and the data on 
obesity and lipid metabolism were divided into four categories: obesity 
(phenotype of obesity), obesity indicators, lipids, and adipokines. 
Obesity indicators include body mass index (BMI), body fat 
percentage, waist circumference, and hip circumference; lipids include 
total cholesterol, low-density lipoprotein cholesterol (LDL cholesterol, 
LDL-C), high-density lipoprotein cholesterol (HDL cholesterol, 
HDL-C), triglycerides, apolipoprotein A1 (apoA1), and apolipoprotein 
B (apoB); adipokines include adiponectin, resistin, leptin, agouti-
related protein, and nerve growth factor (NGF). There were a total of 
16 obesity and lipid metabolism-related GWAS datasets as exposure 
data. The outcome data were NSOM. The details of the GWAS datasets 
from the IEU website are shown in Table 1.

To meet the three hypotheses of the MR analysis and minimize the 
influence of confounding factors, we  extracted single nucleotide 
polymorphisms (SNPs) as instrumental variables that met the following 
conditions: a clustering window of 10 MB and an r2 cutoff of 0.001. SNPs 

TABLE 1 Detailed information on the dataset used in this article from the IEU website.

Category Traits PMID Year Sample Size Number of 
SNPs

Gender Population

Exposures (obesity) Obesity 22,484,627 2012 13,848 2,430,514 NA European

Exposures (obesity 

indicators) Body mass index 25,673,413 2015 236,781 2,529,499 NA European

Body fat percentage / 2017 331,117 10,894,596 Males and Females European

Waist circumference 34,017,140 2021 407,661 10,783,687 NA European

Hip circumference 25,673,412 2015 127,997 2,444,355 Females European

Exposures (lipids) Total cholesterol 34,226,706 2021 437,878 4,232,052 NA European

LDL cholesterol 34,594,039 2021 343,621 19,037,976 NA European

HDL cholesterol 24,097,068 2013 94,595 2,418,527 NA European

Triglycerides 32,203,549 2020 441,016 12,321,875 Males and Females European

Apolipoprotein A1 35,213,538 2022 115,082 11,590,399 NA European

Apolipoprotein B 34,226,706 2021 435,744 4,231,412 NA European

Exposures 

(adipokines)

Adiponectin 22,479,202 2012 39,883 2,675,209 Males and Females Mixed

Resistin 33,067,605 2020 21,758 13,138,697 NA European

Leptin 32,917,775 2020 56,802 231,001 NA Mixed

Agouti-related protein 33,067,605 2020 21,758 13,102,571 NA European

Nerve growth factor 28,369,058 2018 3,394 5,270,646 Males and Females European

Outcome NSOM / 2021 / 16,380,433 Males and Females European

GWAS, genome-wide association study; SNP, single nucleotide polymorphisms; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NSOM: non-suppurative otitis media.
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associated with every trait were extracted at a significance threshold of 
p < 5 e- 8, but if there were few SNPs extracted for Mendelian 
randomization, we would reanalyze them at p < 5e-6 or P<5e-5.

In total, 16 datasets related to obesity and lipid metabolism were 
used as exposures, with NSOM as the outcome. A two-sample MR 
analysis was performed using MR Egger, weighted media, inverse 
variance weighted (IVW), simple mode, and weighted mode, in which 
IVW was used as the main analysis method (referred to as forward 
MR analysis). If the IVW method produced a p-value less than 0.05, a 
statistically significant causal relationship between exposure and 
outcome was considered. Additionally, if the odds ratio (OR) >1, risk 
factors for the development of outcomes were considered; if OR < 1, 
protective factors were considered. To measure the heterogeneity 
among SNPs, Cochran’s Q test was employed with the MR Egger and 
IVW methods, and the MR Egger intercept method was used for 
pleiotropy testing. If the p-value of the IVW method was between 0.04 
and 0.05, further validation of the sensitivity of the results would 
be conducted using the “Leave-one-out” analysis, which can remove 
each SNP one at a time and track how each SNP affects the 
combined results.

Then, we used NSOM as the exposure and 16 obesity and lipid 
metabolism-related datasets as the outcomes for a reverse two-sample 
MR analysis using the MR Egger and IVW methods. There was a 
statistically significant causal relationship between the outcome and 
exposure when using the IVW method, with a p-value of <0.05. The 
subsequent validation methods were the same as the forward MR 
analysis described above.

Due to the interaction between many lipid indicators, 
we  selectively conducted a multivariate MR (MVMR) analysis on 
lipids to further verify the reliability of the results.

Finally, we  employed a two-step MR analysis using the five 
methods mentioned above, with IVW as the main method. We used 
obesity and BMI as exposures and NSOM as the outcome to identify 
potential mediating variables in lipids and adipokines with a causal 
relationship to NSOM. Both steps used the method of two-sample MR 
to avoid confounding factors, and SNPs duplicated in the first step 
were deleted during the second step of the MR analysis. A mediating 
effect was considered to exist if the p-value of both steps in the MR 
analysis using the IVW method was less than 0.05. We called the total 
effect value of exposure to outcome “beta all,” the effect value of the 
first step of MR analysis of exposure to the mediator “beta1,” the effect 
value of the second step of MR analysis of mediator to outcome 
“beta2,” the mediator effect value “beta12”(beta1*beta2), the direct 
effect value of exposure to outcome “beta_dir”(beta all-beta1*beta2), 
and the ratio of mediator effect “beta_per”(beta1*beta2/beta all).

All data analyses were processed using R 4.3.2 and related 
extension packages.

Results

Two-sample MR

Forward MR analysis
In total, 16 datasets related to obesity and lipid metabolism were 

used as exposures, with NSOM as the outcome. SNPs associated with 
all traits were extracted at a significance threshold of p < 5 e- 8. There 
were a total of nine positive factors, namely, obesity, BMI, body fat 

percentage, waist circumference, hip circumference, HDL 
cholesterol, apoA1, resistin, and NGF. Among all positive factors, the 
direction of action in the results using the five methods was 
also consistent.

Obesity (phenotype of obesity)
The IVW analysis revealed a causal relationship between obesity 

and NSOM (p = 0.02); the OR value greater than 1 indicated that 
obesity was a risk factor for NSOM. The Cochran’s Q p-value and the 
MR Egger intercept p-value were both greater than 0.05, indicating 
that there was no heterogeneity and pleiotropy in the result.

Obesity indicators
All four obesity indicators were positive exposures, including 

BMI, body fat percentage, waist circumference, and hip 
circumference. The OR values for the obesity indicators were all 
greater than 1, specifically 1.37, 1.30, 1.32, and 2.30, showing that 
these four indicators were risk factors for the development of 
NSOM. In the heterogeneity test, all Cochran’s Q p-values were 
greater than 0.05, indicating that there was no heterogeneity in the 
results. The MR Egger intercept for all dataset results had p-values 
greater than 0.05, indicating that there was no pleiotropy in the data 
results (Figure 1).

Lipids
Among the six indicators, HDL-C and apoA1 had a causal 

relationship with the outcome of NSOM, and their OR values were all 
less than 1, indicating that they were protective factors against the 
progression of the disease. In the heterogeneity test, all Cochran’s Q 
p-values were greater than 0.05, indicating that there was no 
heterogeneity in the results. The p-values of MR Egger intercept for all 
results were all greater than 0.05, indicating that there was no 
horizontal pleiotropy (Figure 2).

Adipokines
Among the five indicators of adiponectin, the p-values of resistin 

and NGF using the IVW analysis method were less than 0.05, 
indicating that the two were positive exposures. Resistin, with an OR 
greater than 1, was identified as a pathogenic factor for the progression 
of the disease, while NGF, with an OR lower than 1, was considered a 
protective factor against disease progression. According to the data in 
Figure 3, heterogeneity and horizontal pleiotropy of the two positive 
exposures can be  excluded. The “Leave-one-out” analysis of 
susceptibility shows that the MR test was reliable (Figure 4).

Reverse Mendelian randomization analysis
Using the 16 obesity- and lipid metabolism-related factors as 

outcomes and NSOM as the exposure, the MR analysis was performed 
using the IVW and MR Egger methods, and it was found that all 
datasets had no positive results. The p-values of all IVW analysis 
results were greater than 0.05. To obtain sufficient instrumental 
variables, we  set the threshold for extracting significant SNPs to 
p < 5e-6, except for acting leptin as the outcome to p < 5e-5. Although 
the p-value of Cochran’s Q test for several data was less than 0.05, it 
may be  because the data came from different analysis platforms, 
experiments, and populations. There was no pleiotropy in the data 
results, as indicated by p-values larger than 0.05 for the MR Egger 
intercept for all dataset outcomes (Supplementary Table S1).
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MVMR
Combining the positive results obtained in the two-sample MR 

analysis, we grouped HDL-C, LDL-C, and triglycerides into one group 
and apoA1 and apoB into another group. By correcting for the effects 
of LDL-C and triglycerides on NSOM, the causal effect of HDL-C on 
NSOM remained significant. By correcting for the effects of apoB on 
NSOM, the causal effect of apoA1 on NSOM also remained significant 
(Figure 5).

Two-step MR
In the two-sample MR analysis, we  obtained four lipid 

metabolism-related factors causally associated with NSOM: HDL-C, 
apoA1, resistin, and NGF. In the two-step MR analysis, we used these 
four datasets as a suspected mediator and set the threshold for 
extracting significant SNPs to p < 5e-8. The analysis revealed that HDL 
and apoA1 could serve as mediators when using obesity as an 
exposure (Figure  6). The mediation effects were 0.016 and 0.01, 
respectively, and the percentage of the mediation effects was 0.099 and 
0.063, respectively. HDL and apoA1 can also be used as mediators 
when using the BMI as the exposure (Figure 7); the mediation effects 
were 0.05 and 0.041, respectively, and the percentage of the mediation 
effects was 0.158 and 0.13, respectively. The direction of action with 
the MR Egger method was different from the other four methods 
when using obesity as the exposure and apoA1 as the outcome; except 
for the above, the direction of the results using the five methods used 
for MR was consistent. The p-value of the MR Egger intercept was 
greater than 0.05 for all analyzed procedures, indicating that there was 
no pleiotropy (Supplementary Table S2) (Table 2).

Discussion

In this study, we used an MR method of multi-factors to explore 
the genetic impact of obesity, obesity indicators, lipids, and adipokines 
on the risk of NSOM. We aimed to explore the potential factors and 
pathogenesis of NSOM related to obesity and lipid metabolism and 
strived to find new treatments, thereby reducing the incidence rate of 
NSOM and improving its prognosis. We used five methods in MR 
analysis, namely MR Egger, weighted media, IVW, simple mode, and 
weighted mode. Although many results showed inconsistent MR 
estimates, considering the advantage of IVW in maintaining higher 
estimation accuracy (14), if the p-value of IVW was less than 0.05, 
we believed that there was a statistically significant causal relationship 
between exposure and outcome. In this MR analysis, a total of nine 
factors of obesity and lipid metabolism were found to have a causal 
relationship with the risk of NSOM, which is consistent with the 
conclusion drawn from observational studies that obesity may affect 
the development of NSOM and provides a theoretical basis for its 
related pathogenesis.

This study found that obesity and four obesity-related indicators, 
namely obesity, BMI, body fat percentage, waist circumference, and 
hip circumference, all increase the risk of NSOM, indicating that 
obesity and increased body fat were risk factors for NSOM. In 
observational studies, the BMI of children with NSOM was 
significantly higher than that of normal children (9, 10, 15). Kim et al. 
found that 21.4% of children with NSOM were overweight and 17.8% 
were obese, with a higher prevalence of obesity in the study group 
than in the control group (10.5%) (16). Interestingly, a study from 

FIGURE 1

Forward Mendelian randomization analysis data on obesity, obesity indicator, and NSOM. The red text denotes the p-value for this trait is less than 0.05. 
nsnp, number of single nucleotide polymorphisms used as instrumental variables for Mendelian randomization; OR, odds ratio; CI, confidence interval; 
NSOM, non-suppurative otitis media.
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Korea showed that fat intake, but not BMI, was associated with NSOM 
(11). Specifically, in the healthy weight group, higher fat intake was 
associated with a higher risk of NSOM. Unfortunately, our study did 
not determine whether BMI or fat contributed more to NSOM. More 
research may be needed to confirm this.

It is well known that adenoid hypertrophy leads to NSOM. One 
study (17) has shown that children with chronic NSOM have a higher 
incidence of overweight or obesity, and the presence and degree of 
adenoid or tonsil hypertrophy are not related to overweight or 
obesity, which indirectly suggests that tonsil and adenoid hypertrophy 
are not confounders between obesity and NSOM. Normal Eustachian 
tube function is the foundation for maintaining the normal function 
of the middle ear. Obese patients may alter the structure of the fat 
tissue around the Eustachian tube by altering its accumulation, 
thereby affecting Eustachian tube function and making NSOM more 
likely to occur (18). In addition, obesity is often associated with 
obstructive sleep apnea–hypopnea syndrome, which can lead to 
increased intra-abdominal pressure, decreased intrathoracic pressure, 
and exacerbation of gastroesophageal reflux (19). Reflux can cause 
damage to the mucosa of the Eustachian tube and tympanic cavity, 
thereby exacerbating the occurrence of NSOM. Therefore, changes in 
tube function and gastroesophageal reflux may be  intermediate 
variables between obesity and NSOM.

For children, there is no gender difference in the incidence of 
NSOM, although NSOM is most common under the age of 2 and 
reaches another peak at the age of 5 (20). Gender and age are key 

factors for BMI (21, 22), which can be used to assess the greatest 
association between overweight and body fat and is widely used to 
measure obesity (23). To date, there is insufficient evidence for gender 
and age distribution differences in the higher BMI of NSOM patients 
than healthy children. Mehmet et al. (10) found that after grouping by 
gender, BMI remained statistically significantly higher in NSOM 
patients against controls in both boys and girls. They also found no 
difference in BMI between the NSOM and control groups at age (6, 8 
for boys and 6, 9, 10, 11 for girls); however, the percentile range of 
BMI was higher in the NSOM group.

There are few reports about lipids related to NSOM. It has 
been reported that serum total cholesterol in the NSOM group is 
significantly higher than that in the controls, while triglycerides 
are not (15). However, another research has demonstrated that 
there is no difference in serum total cholesterol or triglycerides 
between the NSOM and control groups (16), which is consistent 
with our results. HDL-C and apoA1 were positive results for 
NSOM in this study. As HDL-C, LDL-C, and triglyceride have 
interaction relations, we put these three in a group for further 
MVMR analysis. ApoA1 is a major protein component of HDL 
(24), and apoB is a major protein component of LDL (25), and 
we  put them in another group for MVMR. According to the 
MVMR analysis, the causal relationship between HDL-C and 
apoA1 on NSOM remained significant even after adjusting for the 
influence of other potential confounding factors on NSOM. We did 
not perform the MVMR analysis for obesity factors due to 

FIGURE 2

Forward Mendelian randomization analysis data on lipids and NSOM. The red text denotes that the p-value for this trait is less than 0.05.nsnp, number 
of single nucleotide polymorphisms used as instrumental variables for NSOM, non-suppurative otitis media.
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collinearity, nor did we perform the MVMR analysis of adipokines 
factors due to their independence.

In the two-step MR analysis for mediation, we used both BMI and 
obesity as exposures. Based on the analysis results, it was known that 
HDL-C and apoA can be used as mediating factors between obesity and 
NSOM. Combined with the direction of action indicated by the OR value, 
obesity/BMI may downregulate the production of HDL-C/apoA, and 
HDL-C/apoA1 plays a protective role in the development of 
NSOM. Therefore, obesity promotes NSOM by downregulating HDL-C/
apoA1. Although the MR Egger method did not show consistent results 
with the other four methods when obesity was analyzed as an exposure 
and apoA1 as an outcome in MR analysis, the p-value of the MR Egger 
method, which was greater than 0.05, was considered not statistically 
significant. In addition to the IVW method, the p-value of the weighted 
median method was also less than 0.05, which enhanced the reliability of 
the results. Although there is no direct evidence that HDL-C/apoA1 is 
associated with NSOM, previous studies have found that HDL-C/apoA 
is associated with inflammation. The low levels of HDL-C are strongly 
associated with, and an independent predictor of, inflammation and 
endothelial cell activation (26). ApoA1 can play an anti-inflammatory role 
by inducing M2 macrophage differentiation (27) and inhibiting 
neutrophil hyperactivation (28). Obesity affects HDL-C in two ways. First, 
it accelerates HDL-C degradation, cholesteryl ester transfer protein 
(CETP) and hepatic lipase activity are elevated in obese patients. Increased 
hepatic lipase activity promotes HDL-C catabolism to produce apoA1 
and HDL-C particles, with apoA1 being recycled or degraded by the 
kidneys. Second, it blocks HDL-C synthesis, which is also affected by 
CETP. CETP inhibitors block the exchange of triglycerides and 
cholesterol, reduce HDL-C esterification, and improve HDL-C 
function (29).

Among the adipokines, resistin and NGF showed a causal 
relationship with NSOM. We  have not found any reports about 
resistin or NGF related to NSOM. Resistin was a risk factor for disease, 
and NGF was a protective factor. The MR analysis results had p-values 
only slightly lower than 0.05 and ORs close to 1, indicating that their 
significance was not high. We can only consider them as factors in a 
potential causal relationship with NSOM. Although the sensitivity 
analysis of “Leave-one-out” increased the reliability of the results, 
further validation is still needed.

There is also a view that NSOM may lead to obesity by affecting 
the chorda tympani nerve, leading to changes in taste function and 
preference for a high-fat diet (30). In our MR analysis using NSOM as 
exposure and 16 factors of obesity and lipid metabolism as outcomes, 
no positive results were obtained, suggesting that NSOM does not 
directly lead to obesity and does not affect lipid metabolism.

Finally, we recommend that weight loss is a good option for NSOM 
patients associated with obesity, especially in children. Even for NSOM 
patients with normal BMI, it is necessary to avoid a high-fat diet. 
However, it may be a new way to treat NSOM by regulating HDL-C, 
apoA1, resistin, and NGF. This article reveals the relationship between 
obesity, lipid metabolism-related factors, and NSOM at the genetic level. 
Compared to observational studies, the MR analysis excluded 
environmental factors and clarified their causal relationships, resulting 
in relatively reliable results. However, this article still has certain 
limitations. For example, we selected GWAS datasets for adiponectin 
and leptin levels from a mixed population, while other GWAS datasets 
came from European populations, which may have potential 
heterogeneity. To obtain causal factors related to NSOM as much as 
possible to facilitate the screening of mediators, we did not correct the 
p-value of the MR analysis results, which resulted in an increased 

FIGURE 3

Forward Mendelian randomization analysis data on adipokines and NSOM. The red text denotes the p-value for this trait is less than 0.05. nsnp, number 
of single nucleotide polymorphisms used as instrumental variables for Mendelian randomization; OR, odds ratio; CI, confidence interval; NSOM, non-
suppurative otitis media.
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FIGURE 4

“Leave-one-out” analysis of the causal association of resisitin levels, nerve growth factor and Nonsuppurative otitis media. The 95% CI and causal 
estimate when each SNP was eliminated individually are shown by the black bars and dots. The fixed-effect IVW method‘s overall estimate and 95% 
confidence interval are shown by the red dot and bar. CI, confidence interval; SNP, single nucleotide polymorphism; IVW, inverse-variance weighted.

FIGURE 5

Multivariate Mendelian randomization analysis, (A) the group of HDL cholesterol, LDL cholesterol, and triglycerides; (B) the group of apolipoprotein Al 
and apolipoprotein B. The red text denotes that the p-value for this trait is less than 0.05. nsnp, the number of single nucleotide polymorphisms used 
as instrumental variables for NSOM, non-suppurative otitis media.
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FIGURE 7

Two-step MR for mediation analysis of body mass index as the exposure and NSOM as the outcome. The bold text denotes that the p-value for this 
trait is less than 0.05. (A) The mediation is HDL cholesterol. (B) The mediation is apolipoprotein Al. nsnp: number of single nucleotide polymorphisms 
used as instrumental variables for Mendelian randomization; OR, odds ratio; CI, confidence interval; NSOM, non-suppurative otitis media.

FIGURE 6

Two-step MR for mediation analysis of obesity as the exposure and NSOM as the outcome. The bold text denotes the p-value for this trait is less than 
0.05. (A) The mediation is HDL cholesterol. (B) The mediation is apolipoprotein Al. nsnp: number of single nucleotide polymorphisms used as 
instrumental variables for Mendelian randomization; OR, odds ratio; CI, confidence interval; NSOM, non-suppurative otitis media.
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false-positive rate of the results. Second, it was not possible to group 
datasets and obtain information on age and gender differences; however, 
previous studies have mostly focused on children. Additionally, a 
reverse MR analysis only provided insufficient lateral evidence and did 
not directly validate the viewpoint in the observational study that 
NSOM exacerbates obesity by affecting the sense of smell. Further 
prospective clinical trials are needed for us to remedy these limitations 
and validate our results.

Conclusion

This study proposed several protective and risk factors related to 
obesity and lipid metabolism causality associated with 
NSOM. Through comprehensive analysis, we conclude that obesity 
and adiposity may increase the risk of developing NSOM while 
NSOM does not affect obesity, adiposity, or lipid metabolism. HDL-C 
and apoA may inhibit the progress of NSOM. In the adipokines, 
resistin may be a potential risk factor for NSOM, whereas NGF may 
be a potential protective factor. In addition, obesity may promote the 
development of NSOM by lowering HDL-C and apoA.
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Background: Sarcopenia, characterized by muscle mass, strength, and 
performance decline, significantly impacts outcomes in older adults. This study 
aims to assess the predictive value of calf circumference (CC), in conjunction 
with SARC-F and hand grip, concerning in-hospital complications and post-
discharge mortality among hospitalized frail older adults.

Methods: A cohort of 158 hospitalized patients aged over 65  years underwent 
Comprehensive Geriatric Assessment and sarcopenia screening, including CC 
measurement. Multivariable regression analyses, adjusted for confounders, 
were conducted to assess predictive associations.

Results: The study cohort, comprising 53% males with a median age of 86  years, 
exhibited significant sarcopenia prevalence based on SARC-F (85% indicating 
sarcopenia), hand grip strength (probable sarcopenia in 77% of males and 72% 
of females), and CC (sarcopenia in 83%). Multivariate analysis, adjusting for 
age, sex, Clinical Frailty Scale (CFS), and Mini Nutritional Assessment-Short 
Form (MNA-SF), demonstrated associations of CC and SARC-F with in-hospital 
complications, while CC also showed a significant association with reduced 
risks of in-hospital mortality (OR 0.441, 95% CI 0.257 to 0.754, p  =  0.003) and 
90-day mortality (OR 0.714, 95% CI 0.516 to 0.988, p  =  0.043).

Conclusion: This study provides insights into the predictive accuracy of 
sarcopenia screening tools on mortality in real-world hospitalized older 
adults with frailty. Notably, CC emerges as a robust predictor of mortality 
outcomes. Further research is warranted to validate and elucidate the respective 
contributions of CC and frailty to mortality in vulnerable populations.
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Introduction

Sarcopenia is a progressive and generalized skeletal muscle 
disorder characterized by reduced muscle mass, strength, and 
performance, associated with an increased likelihood of experiencing 
adverse outcomes including falls, fractures, physical disability, and 
mortality (1, 2).

Its prevalence ranges from 7.5% in community-dwelling older 
adults to 77.6% in patients undergoing rehabilitation or post-acute 
care (3). Up to 15% of hospitalized older adults may develop 
sarcopenia at discharge (4). Sarcopenia is secondary to reduced 
physical activity (bed rest, and physical deconditioning), 
multimorbidity, nutritional factors (malnutrition with or without 
malabsorption, gastroenteric diseases), and polypharmacy. Notably, 
sarcopenia is also strongly associated with frailty, a geriatric syndrome 
characterized by an extreme vulnerability to endogenous and 
exogenous stressors, resulting from age-related depletion of the body’s 
homeostatic reserves (5). Frailty and sarcopenia share commonalities 
such as muscle atrophy, dynapenia, and impaired physical function; 
malnutrition may be  considered a harbinger between the two, 
ultimately leading to an acceleration of the frailty trajectory (6).

In 2019 a revised diagnostic algorithm for sarcopenia (2nd edition 
of the European Working Group on Sarcopenia in Older People, 
EWGSOP2) (7) was proposed and the SARC-F questionnaire was 
recommended for screening (8). SARC-F is a questionnaire consisting 
of five questions concerning Strength (S), Assistance with walking (A), 
Rising from a chair (R), Climbing stairs (C), and Falls (F). Growing 
evidence has underscored the role of sarcopenia screening in 
predicting in-hospital immediate mortality in older adults. Namely, in 
a Japanese retrospective study conducted on over 2.400 hospitalized 
over-65 patients, SARC-F score was associated with increased 
in-hospital mortality within 30 days (9). Similarly, a recent meta-
analysis found a significant association between SARC-F and long-
term mortality (<5 years) in very old age patients (10). However, 
Volker et al., observed high heterogeneity in the clinometric properties 
of SARC-F, with a wider range of sensitivity (29–55%) and specificity 
(69–89%) in different settings, suggesting that the addition of calf 
circumference (CC) could improve sensitivity, especially in 
community-dwellings (11). Indeed, combining calf and thigh 
circumferences with SARC-F is reported to enhance the diagnostic 
accuracy for sarcopenia in individuals aged 60 and above, providing 
a resource-efficient diagnostic tool (2).

CC nowadays is included in all major international consensus (7, 
12, 13) and it is considered a reliable screening tool for sarcopenia and 
a promising prognostic indicator in older adults. Indeed, calf 
measurements are associated with higher readmissions and mortality 
rates in hospitalized older adults (14–17). In addition, measurement 
of the stability of CC over 4 years was associated with decreased 
mortality risk in a cohort of 904 community-dwelling older adults 
(mean age 83.8 ± 12.2) (18). Moreover, Wu and Chen demonstrated 
that the addition of CC to traditional measures of sarcopenia (hand 
grip strength, speed of gait, muscle mass) correlated with higher 
all-cause and CV mortality risks after a follow-up of 3 years in 
community-dwelling people aged 50 years or more (19).

In Japan, Ishii et al. developed a formula based on age, CC, and 
hand grip strength that predicts the probability of developing 
sarcopenia (20), which also demonstrated high sensitivity and 
specificity when diagnosing sarcopenia in community-dwelling adults 

and inpatients (21–23) or predicting long-term all-cause mortality in 
hospitalized older adults (24, 25).

Based on this background, the present study aims to assess the 
predictive accuracy of three sarcopenia evaluation tools (SARC-F, CC, 
and hand grip) on intra-hospital complication rate, in-hospital 
mortality, and mortality within 90 days post-hospital discharge in a 
cohort of hospitalized older adults.

Method

This is a prospective observational study conducted on 
hospitalized older adults (aged over 65 years old) referred to two units 
(Geriatric Clinic and Transitional Care Unit) of IRCCS Hospital 
Polyclinic San Martino in Genoa, Italy, from January to May 2023. 
Patients admitted to the Geriatric Clinic ward came from the 
Emergency Room, while those admitted to the Transitional Care ward 
came from other wards of the Polyclinic and were awaiting discharge 
to nursing homes.

Inclusion criteria were: age 65 or older, acceptance of informed 
consent by the patient or patient’s legal representative. Exclusion 
criteria included: age under 65, lack of acceptance or withdrawal of 
informed consent, and patients diagnosed with end-stage diseases in 
need of palliative care (eg. dementia CDR 5, heart failure NYHA IV, 
COPD with acute respiratory failure).

Upon admission, demographic data were collected. All patients 
received a Comprehensive Geriatric Assessment (CGA) (26) within 
72 h from admission, including Clinical Frailty Scale (CFS) (27) to 
assess frailty status; number of medications and ABC score to 
assess polypharmacy and anticholinergic burden; basic and 
instrumental activities of daily living (ADL and IADL) (28) to 
assess functional status; Short Portable Mental Status Questionnaire 
(SPMSQ) (29) to evaluate cognitive performance; Cumulative 
Illness Rating Scale (CIRS) (30) to assess multimorbidity, and 
Clinical Dementia Rating Scale (CDR) (31) to stratify the severity 
of dementia. We used the Mini Nutritional Assessment – Short 
Form (MNA-SF) (32) to screen for malnutrition. SARC-F (33), 
measurement of CC, and hand grip (HG, using a GIMA 28791 
Smedley dynamometer) were used to evaluate sarcopenia. The 
standardized Asian Working Group for Sarcopenia (AWGS19) 
protocol (12) was adopted for evaluating CC, measuring the 
maximum value of both calves using a non-elastic tape, applying 
AWGS19 cut-offs: males <34 cm; females <33 cm. As for HG, 
we  employed cut-offs from EWGSOP2 (7): males <27 kg, 
females <16 kg.

Hospital complication rate was documented, including incident 
delirium (defined as a score of 4 or higher on the 4AT test) (34), 
pressure ulcers, acute anemia (hemoglobin <9 g/dL), hospital-acquired 
infections, sepsis, catheterization during hospital stay, urinary tract 
infections, respiratory distress, acute heart failure, immobilization 
syndrome, and in-hospital mortality. In-hospital stay and discharge 
destination were also collected. 90-day mortality rate after post-
hospital discharge was recorded through the ASL3 Genoa (Italy) 
county electronic database. A Complication Index was derived as the 
pooled rate of incidence of any of the examined complications.

The protocol was approved by the IRB (CERA N 2024-54 
12/06/2024, University of Genoa, Italy) and met the guidelines of the 
local Governmental Agency. Patients or their proxies provided written 
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informed consent before study inclusion. The study was performed in 
adherence to the Declaration of Helsinki.

Statistical analysis

Descriptive data were reported as mean with standard deviation 
or median with IQR. Multivariable logistic regression was used to 
assess the association between sarcopenia screening tests and clinical 
variables. Logistic regression for dichotomic outcomes (in-hospital 
mortality and 90-day mortality), and linear regression for continuous 
outcomes (Complication Index) were used. Multivariate regression 
models were built using the three sarcopenia assessment methods 
(SARCF, CC, hand grip) and adjusted for possible confounders: sex, 
age, nutritional status (MNA-SF), and frailty status (CFS). An 
advanced statistical imputation method was applied to avoid biases 
from the absence of data in hand grip measurement. All reported 

analyses were run by RStudio (Version 2022.07) and a two-sided α less 
than 0.05 was considered statistically significant.

Results

158 consecutive patients (53% male) were enrolled. As shown in 
Table 1, age ranged from 65 years to 101 years, with a median of 86 years 
(IQR 9). Upon admission, the clinical phenotype of patients was frail 
(median CFS 6, IQR 2) with functional decline (median ADL 2, IQR 
4; median IADL 1, IQR 3), and 61% had a diagnosis of dementia (CDR 
>1). The most frequent complications were hospital-acquired infections 
(90 cases, 57%), delirium (89 cases, 56%), occurrence of pressure ulcers 
(51 cases, 32%); immobilization syndrome occurred in more than one 
third of the cases (33 patients, 34%).

Regarding nutritional assessment, MNA-SF median score was 8 
(IQR 5), indicating that the majority of the population was at risk of 
malnutrition; only 8% of the population had a normal nutritional 
status. As for sarcopenia screening, SARC-F median score was 5 (IQR 
4); most of the analyzed subjects (85%) were suggestive of sarcopenia. 
At the HG test, the median value was 14 kg (IQR 9); according to 
EWGSOP2 criteria, 77% of male subjects and 72% of female subjects 
were found to have probable sarcopenia. Measuring CC, the mean 
value was 29.5 cm (IQR 5), meaning that sarcopenia was present in 
83% of patients according to AWGS19 criteria.

By matching the data of HG and CC, a diagnosis of sarcopenia 
was made in 63% of our population (n = 99); stratifying by sex, 
sarcopenia was found in 66% of males (n = 55) and 59% of females 
(n = 44).

Hand grip strength could not be  assessed in 26 out of 158 
patients (including 12 men and 14 women). The multivariate 
statistical analysis (Table  2), adjusted for possible confounding 
variables showed that CC (β −0.329, 95% CI -0.477 to −0.182, 
p-value <0.001) and MNA-SF (β −0.380, 95% CI -0.564 to −0.196, 
p-value <0.001) were associated with the in-hospital complication 
rate. This result was confirmed in a sub-analysis showing that CC 
was the major clinical variable associated with all major in-hospital 
complications (see Supplementary materials); in particular, the 
lower the CC, the higher the risk of developing in-hospital 
complications and dying during hospitalization or within 90 days 
of discharge.

On the other hand, SARC-F (OR 2.268, 95% CI 1.191–4.317, 
p-value 0.013) and CC (OR 0.440, 95% CI 0.257 to 0.754, p-value 
0.003) were associated with in-hospital mortality. Eventually, CC 
was associated with 90-day mortality (OR 0.714, 95% CI 0.516 to 
0.988, p-value 0.043). Adding CIRS as an additional covariate to the 
multivariate model did not significantly impact the results.

Discussion

The alarming prevalence of sarcopenia in hospitalized older adults 
with multimorbidity and frailty, and its association with adverse 
clinical outcomes, underscores the need for systematic routine 
screenings to overcome underdiagnosis and undertreatment. So far, 
there is a lack of standardization and implementation of hospital 
screening for sarcopenia, and a paucity of studies have investigated the 
association between screening tools and clinical outcomes in 

TABLE 1 Clinical phenotype of the population.

Total (N  =  158)

Sex (n[%])

  Male 83 (53%)

  Female 75 (47%)

Age (median[IQR]) 86 (9)

Origin

  Home 141 (89%)

  Residential care home 17 (11%)

CFS (median[IQR]) 6 (2)

CIRS (median[IQR])

  Severity index 1.53 (0.41)

  Comorbidity index 3 (2)

Polypharmacy (average[sd]) 5.62 (3.33)

ACB score (average[sd]) 1.35 (1.38)

ADL (median[IQR]) 2 (4)

IADL (median[IQR]) 1 (3)

SPMSQ (median[IQR]) 5 (7)

CDR (median[IQR]) 1 (2)

MNA-SF (median[IQR]) 8 (5)

  At risk (8–11 ppt) 87 (55%)

  Malnourished (≤7 ppt) 59 (37%)

SARC-F (median[IQR]) 5 (4)

  ≥4 ppt 135 (85%)

Hand grip (median[IQR]) 14 (9)

  Male* (<27 kg) 64 (77%)

  Female* (<16 kg) 54 (72%)

Calf circumference (median[IQR]) 29.5 (5)

  Male** (<34 cm) 69 (83%)

  Female** (<33 cm) 62 (83%)

CFS: clinical frailty scale; MNA-SF: mini nutritional assessment-short form; CC: calf 
circumference; HG: hand grip; IQR: interquartile range; sd: standard deviation. *EWGSOP2 
criteria; **AWGS 19 criteria.

19

https://doi.org/10.3389/fmed.2024.1439353
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Canonico et al. 10.3389/fmed.2024.1439353

Frontiers in Medicine 04 frontiersin.org

hospitalized older patients, with a wide heterogeneity in study designs 
and clinical findings (35).

To the best of our knowledge, this is the first study to assess 
the predictive accuracy of a series of screening tools for sarcopenia 
on mortality in a real-world hospitalized old population with 
frailty. Notably, in our hands, CC was the main determinant of 
90-day mortality, while also being associated with the in-hospital 
complication rate and intra-hospital mortality. Similarly, also a 
higher SARC-F score was associated with intra-hospital mortality 
and a higher MNA-SF score with the in-hospital complication rate.

In line with that, Marchasson et  al. showed that CC is an 
independent prognostic score for 1-year mortality in oncogeriatric 
patients submitted to chemotherapy (36). Rodrigues et  al. 
demonstrated that CC was an accurate predictor for 36-month 
mortality in a cohort of 173 patients older than 60 years, undergoing 
maintenance hemodialysis (37). Moreover, Aliberti et al. evaluated 
1-year survival of 665 acutely ill older adults and CC was the main 
determinant for mortality after adjustment for age, sex, race, 
income, Charlson comorbidity index, depressive symptoms, 
cognitive impairment, and unintentional weight loss (38). Recently, 
Li et al. observed that a 1 cm increase in CC is associated with a 
decrease in overall mortality in different healthcare settings (39). 
The recent systematic review and meta-analysis by Wei et  al. 
confirmed the association between low CC and mortality in 
hospitalized adults (pooled HR = 2.63, 95% CI 1.93–3.58) (15).

A major strength of our findings is the systematic assessment 
of frailty and its incorporation as a covariate. Although frailty is 
recognized as a critical factor in predicting adverse outcomes in 
older adults, including mortality, CFS was not predictive of 
mortality. This contrasts with the study of Liao et al. (40), which 
showed that mortality in older adults visiting the emergency room 
was associated with gender, possible sarcopenia (defined by both 
low handgrip strength and CC), living in residential institutions 
and frailty based on Fried’s phenotype (41). On one hand, our 
study focused on advanced age groups, and the incorporation of 
frailty based on an accumulation model (42), although in the 
screening format, may have a higher likelihood to capture a 
broader range of frailty-related variables and their interaction 
with CC (43). On the other hand, the inability of the CFS to 
predict mortality may also be due to a ‘ceiling effect,’ as the great 
majority of patients had an advanced frailty status that may limit 
the generalization of the findings.

Furthermore, our study design is marked by the inclusion of a 
90-day follow-up period, representing a clinical advancement over 
short-term mortality assessment (44).

Additionally, by adjusting our results for MNA-SF data, we aimed 
to account for the potential influence of nutritional status on the 
association between CC and mortality outcomes. This allows us to 
better understand the independent prognostic value of CC in our 
study population.

A relevant future development would be  implementing 
adjustment for BMI, as suggested by Gonzalez et al. (45), or, otherwise, 
the adoption of normative values of CC across ages. In line with that, 
Martone et al. (46), through the Lookup 7+ project, showed that calf 
circumference decreases with advancing age in both sex. Based on 
these findings, a simple and practical medical device—a calf 
circumference measuring tape—has been developed, enabling a quick 
and cost-effective assessment of muscle mass. Integrating normative 
values for calf circumference across age groups holds promise for 
enhancing sarcopenia assessment and for providing a better 
understanding of age-related variations in muscle mass, in order to 
identify individuals at risk of adverse outcomes.

While CC has significant evidence as a practical tool for providing 
an estimate of muscle mass, there’s a gap in defining cut-off points. 
We used the AWGS19 threshold, higher than EWGSOP2 (31 cm), 
supported by Fernandes et al., who found mortality risk rising below 
34.5 cm in people aged over 60.

The study has limitations, such as the limited sample size, the 
single hospital enrollment, and the possible inclusion of patients 
with specific conditions affecting CC (e.g., heart disease, venous 
insufficiency, or declivous edema). While patients admitted to the 
Transitional Care ward suffered from the most diverse diagnoses, 
those coming to the Geriatric Clinic ward directly from the 
Emergency Room usually had a chronic disease exacerbation (e.g., 
COPD, heart failure) or complications related to advanced frailty 
(ab ingestis pneumonia, pressure ulcers infections, urosepsis), and 
we  did not systematically collect the causes for hospitalization. 
Hand grip strength assessment faced challenges, with some data 
missing due to poor compliance, altered consciousness, and 
cognitive impairment in certain patients. The presence of several 
missing data within the hand grip variable is undoubtedly a 
significant limitation of the study; excluded patients are highly 
likely to overlap with those most affected by sarcopenia, potentially 
leading to biased results and limiting the ability to accurately assess 

TABLE 2 Multivariate models adjusted for sex, age and frailty status.

In-hospital mortality Complication Index 90-day mortality

OR (95%CI) p β (95%CI) p OR (95%CI) p

Age 1.083 (0.978–1.199) 0.127 −0.001 (−0.047–0.044) 0.959 1.064 (0.970–1.166) 0.186

Sex 10.692 (0.800–142.939) 0.073 0.322 (−0.630–1.273) 0.504 1.111 (0.118–10.439) 0.926

CFS 0.511 (0.164–1.593) 0.247 −0.028 (−0.425–0.368) 0.888 1.266 (0.526–3.045) 0.598

MNA-SF 0.657 (0.396–1.092) 0.105 −0.380 (−0.564- -0.196) <0.001 1.131 (0.782–1.635) 0.514

SARC-F 2.268 (1.192–4.317) 0.013 0.133 (−0.059–0.325) 0.174 1.500 (0.983–2.288) 0.060

CC 0.441 (0.257–0.755) 0.003 −0.330 (−0.477- -0.182) <0.001 0.714 (0.516–0.989) 0.043

HG 1.288 (0.922–1.798) 0.135 0.037 (−0.067–0.140) 0.482 1.147 (0.876–1.501) 0.313

CFS: clinical frailty scale; MNA-SF: mini nutritional assessment-short form; CC: calf circumference; HG: hand grip. 
Bold values mean statistically significant results (p < 0.05).

20

https://doi.org/10.3389/fmed.2024.1439353
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Canonico et al. 10.3389/fmed.2024.1439353

Frontiers in Medicine 05 frontiersin.org

the relationship between hand grip strength and sarcopenia. Even 
among those tested, conditions like bed rest and acute illness may 
underestimate prehensile strength on admission. It cannot be ruled 
out that these factors contributed to the worse predictive 
performance of the hand grip test, which still remains the 
international gold standard for the assessment of sarcopenia.

CC could indeed represent a parameter as simple and time-saving 
as versatile in the hospital setting, where the performance of 
articulated test batteries or complex physical performance tests is 
prevented by the often precarious and acute condition of patients. Its 
easy reproducibility, even by caregivers, and, at the same time, 
prognostic efficacy for both short- and long-term health outcomes, 
makes it an useful indicator for the correct assessment of geriatric 
patients in multiple settings, transcending the simple evaluation of 
sarcopenia or nutritional status.

In conclusion, based on our findings, CC emerges as a single 
variable capable of being associated with three important health 
outcomes, bearing independent prognostic value compared to 
nutritional and physical performance data. Due to its ease of use, 
we anticipate its increasing integration into routine assessments. Its 
predictive value for mortality outcomes in hospitalized older adults 
potentially surpasses frailty in this regard. However, further research 
is needed to confirm and better understand the relative contributions 
of CC and frailty to mortality in such vulnerable populations.
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Unraveling the obesity paradox
in small cell lung cancer
immunotherapy: unveiling
prognostic insights through
body composition analysis
Ruoxin Fang1†, Ling Yan2†, Sha Xu1, Yuchen Xu1, Tian Gan3,
Jun Gong1, Junhong Zhang1,
Conghua Xie1* and Zhengkai Liao1*

1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key
Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, China,
2Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic
and Chronic Diseases, Wuhan, Hubei, China, 3Department of Radiology, Zhongnan Hospital of Wuhan
University, Wuhan, Hubei, China
Background: The advent of immunotherapy has changed the landscape of SCLC

treatment, although the identification of reliable prognostic biomarkers remains

a formidable challenge. Our objective was to investigate the prognostic

implications of obesity and body composition in SCLC immunotherapy while

seeking a straightforward anthropometric measure.

Methods: This retrospective study analyzed data from patients with SCLC who

underwent immunotherapy between 2019 and 2023. Body composition and

waist circumference (WC) were analyzed using 3D slicer software on baseline CT

images. Quantitative measures, including skeletal muscle index (SMI), total

adipose tissue index (TATI), and other indicators at the L3 level, along with

body shape index (BSI) and additional indicators based on WC, were obtained.

The relationships between these indicators, response, PFS, OS, and their

interconnections were examined.

Results: A total of 145 SCLC patients who received immunotherapy were

identified, of whom 133 met the inclusion criteria. In univariate analysis, a

BMI≥28 kg/m2 was associated with a PFS advantage (HR 0.42, p=0.04), but this

trend vanished in multivariate analysis. Body measurements exhibited stronger

correlations with adipose tissue content, with BSI showing the highest

correlation with muscle. In multivariate analysis, lower BSI was associated with

poorer OS (HR 1.79, p=0.02). The association between muscle composition and

prognosis was robust in univariate analysis but dissipated in multivariate analysis.

However, accounting for a high TATI background significantly heightened the

adverse effect of SMI on prognosis in the multivariate model.
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Conclusion: No clear association between BMI and SCLC immunotherapy

prognosis was observed. However, high adiposity exacerbated the adverse

effects of sarcopenia in SCLC immunotherapy, and BSI demonstrated potential

as a straightforward prognostic measure.
KEYWORDS

small cell lung cancer, immunotherapy, body mass index, sarcopenia, obesity
1 Introduction

Small cell lung cancer (SCLC) represents a neuroendocrine tumor,

comprising approximately 13%-15% of all lung cancers, and remains

one of the most lethal malignancies. It is highly aggressive with a poor

prognosis, and over 60% of patients are diagnosed in the extensive stage

(1). Etoposide plus platinum is the standard treatment for SCLC. In the

chemotherapy era, the median survival for SCLC was a mere 7months,

with a 2-year survival rate of 7-8% (2). Since 2019, immune checkpoint

inhibitors (ICIs) have gained approval as the first-line treatment for

extensive-stage small cell lung cancer (ES-SCLC). Although the

addition of ICIs has significantly extended survival in SCLC patients,

these improvements are underwhelming compared to those seen in

non-small cell lung cancer (NSCLC), with ICIs extending median

overall survival (OS) in SCLC by only 2-4.5 months (3). Nevertheless,

there has been a notable increase in the number of patients surviving

beyond 3 years compared to the chemotherapy (4). Identifying

potential beneficiaries of ICIs in SCLC and intervening to enhance

their benefits remain pressing challenges.

Recently, contrary to the adverse effects of obesity on tumor

progression in many preclinical studies, several studies have

suggested that obese or high body mass index (BMI) cancer patients

may derive greater benefits from ICIs, which is called the “obesity

paradox” (5). Research indicates that overweight and obese NSCLC

patients undergoing ICIs exhibit better progression-free survival (PFS)

and OS than their non-obese counterparts, with a more pronounced

trend in patients expressing positive programmed cell death ligand-1

(PD-L1) (6). Similar trends have been observed in malignant

melanoma (7, 8). However, some studies have failed to establish a

link between BMI and the prognosis of immunotherapy (9, 10),

highlighting BMI’s limitations as a measure that doesn’t capture

specific body composition. Moreover, whether BMI is associated

with the prognosis of immunotherapy for SCLC remains unexplored.

In recent years, there has been significant interest in obtaining

specific body composition through computed tomography (CT)

images. Multiple studies have highlighted the association between

subcutaneous or visceral adipose tissue and the prognosis of

immunotherapy (11, 12). Additionally, the evaluation of skeletal

muscle at the L3 level is a well-established method for assessing

sarcopenia (13). Chaunzwa et al. studied the impact of L3 level

skeletal muscle and adipose tissue composition on the prognosis of
0224
advanced NSCLC immunotherapy using CT imaging, and found

that a reduction in skeletal muscle content and an increase in the

density of subcutaneous adipose tissue (SAT) were associated with

worse prognosis (14). There are also some small-sample studies that

have shown that CT-measured reductions in skeletal muscle are

detrimental to the prognosis of immunotherapy for advanced

NSCLC (15, 16). However, research into immunotherapy for

SCLC is still quite scarce in this field. This study aims to

investigate the correlation between body composition, as

determined through CT imaging, and immunotherapy prognosis

in ES-SCLC. In consideration of practical applicability, we have also

incorporated new anthropometric indicators based on waist

circumference (WC) with the hope of identifying a more suitable

indicator than BMI to guide the management of ES-SCLC patients.
2 Methods

2.1 Patient population

We conducted a retrospective analysis of 145 patients with

SCLC who underwent immune checkpoint inhibitor (ICI) therapy

at Zhongnan Hospital of Wuhan University from April 2019 to

April 2023. Inclusion criteria comprised pathologically confirmed

SCLC, CT-confirmed extensive-stage disease, receipt of at least one

anti-programmed cell death protein 1 (PD-1) or anti-PD-L1

treatment, and the availability of abdominal CT or positron

emission tomography/computed tomography (PET/CT) within

two months before or after the first immunotherapy. Exclusion

criteria included lung adenocarcinoma transformation into small

cell lung cancer (n=3), unknown baseline time of immunotherapy

(n=7), and loss of follow-up (n=2). Ultimately, 133 patients were

included in the study.

Clinical information, including gender, age, height, weight,

Eastern Cooperative Oncology Group performance status (ECOG

PS), stage, metastatic organs, ICI types, and previous treatment, was

collected from electronic medical records. Response, PFS, and OS

were obtained through electronic medical records and telephone

follow-up. Response was evaluated based on RECIST V.1.1, with a

patient considered to have achieved a response if they attained

complete response (CR) or partial response (PR). Our study
frontiersin.org
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included 4 patients who achieved CR, while efficacy evaluation was

not available for 11 patients. PFS was defined as the time from the

treatment start to progression or death. OS was defined as the time

from the treatment start to death or last follow-up.
2.2 Measurement of WC and
body composition

Analysis of non-contrasted PET-CT or CT images was

performed using 3D slicer (USA, Version 5.0.2) (17). The entire

image file was uploaded to the software, and the L3-L4 level of the

CT image was determined (Figure 1). Muscle tissue was defined

with a threshold of -29 to +150 HU, SAT with a threshold of -190

to -30 HU, and visceral adipose tissue (VAT) with a threshold of -

150 to -50 HU. Two researchers, trained in imaging, independently

mapped each patient’s body composition at the L3 level and WC at

the L3-L4 disc level. The area of each section and skeletal muscle

density (SMD) were computed using the Segment Geometry plugin

(18). Every image is verified by professional radiologist.
2.3 Determination of the cut-off value

BMI is calculated as weight (kg)/height (m)². To address variations

in body shape specific to Asians and Caucasians (19), we adopted

Chinese adult classifications: Normal < 24 kg/m², 24 kg/m² ≤

Overweight < 28 kg/m², and Obese ≥ 28 kg/m². WC is considered a

superior indicator of central obesity, with high WC defined as ≥ 0.9m

for males and ≥ 0.8m for females (20). Waist-to-Height Ratio (WHtR),

representing the ratio of WC to height, is considered high when

WHtR > 0.5. Other novel anthropometric indicators, namely Relative

Fat Mass Index (RFM), Body Shape Index (BSI), Body Roundness

Index (BRI), and Weight-Adjusted-Waist Index (WWI), provide a

more nuanced reflection of body fat and total fat mass distribution (21).

As there are no established reference boundaries for Asians presently,

we classified them into quartiles (refer to Supplementary Table S1 for

formulas and boundary values).

Skeletal Muscle Index (SMI) is computed as muscle area (cm²)/

height (m)². According to the international consensus on

sarcopenia diagnosis (13), SMI<55 cm²/m² for males and SMI<39
Frontiers in Immunology 0325
cm²/m² for females defines sarcopenia. SMD, a measure of muscle

attenuation associated with myosteatosis, was classified using

quartiles. Skeletal Muscle Gauge (SMG), a composite index

integrating SMI and SMD, is calculated as SMI multiplied by

SMD and considered low when SMG<1475, as per Shachar et al.’s

study (22, 23), Lean Body Mass (LBM) is estimated using the L3

muscle area (24), while VAT Index (VATi) and SAT Index (SATi)

are standardized VAT and SAT areas, respectively, and Total

Adipose Tissue Index (TATI) is the sum of VAT Index and SAT

Index, all classified by quartiles.
2.4 Statistical analysis

Continuous variables were compared between groups using the

student-t test or Mann-Whitney U test, and categorical variables

were compared using the c² test. PFS and OS were assessed using

the Kaplan-Meier (KM) method, with group comparisons

performed using the log-rank test. Univariate and multivariate

Cox regression models were employed to estimate associations

between BMI, anthropometric measures, and body composition

with survival, adjusting for covariates such as age, gender, stage, ICI

line, and ICI types. Logistic regression models were established to

evaluate the association between each index and response incidence.

Spearman correlation analysis was used to assess the correlation

between various indicators. Interactions between TATI with SMI

and SMG were calculated following Källberg et al.’s method (25).

The main criterion for determining whether there is an interaction

is based on the p-value and confidence interval (CI) of the

interaction term (SMG×TATI or SMI×TATI), and stratified

analysis was conducted in the multivariate model to control for

variables. Statistical analyses were carried out using R V.4.2.2.
3 Results

3.1 Patient characteristics

A total of 133 patients were included in the analysis (Table 1),

with the last follow-up date on October 1, 2023, and a median

follow-up time of 552 days. At the last follow-up, 48 patients were
FIGURE 1

Representative imaging contour results. Yellow = SAT, Red = VAT, Blue = muscle. (A) Waist circumference measurement, the red line represents the
waist circumference. (B) Representative low SMI + high TATI. (C) Representative high SMI + low TATI. SAT, subcutaneous adipose tissue; VAT,
visceral adipose tissue; SMI, skeletal muscle index; TATI, total adipose tissue index.
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still alive. The median PFS was 169 days, and the median OS was

331 days. Of the total, 62 patients achieved CR or PR, resulting in an

Overall Response Rate (ORR) of 50.82%. The median time from

baseline CT to immunotherapy initiation was 8 (IQR 4-24) days.

Patients had a median age of 64, with a majority being male

(85.7%). The majority of patients were classified as stage IV (84.2%)

based on TNM staging, and overall health was generally favorable.

Chemo-immunotherapy was the predominant first-line treatment

(69.9%), with a similar distribution between anti-PD-1 and anti-

PD-L1 treatments. Sarcopenia was prevalent at baseline, affecting

70.7% of patients, with higher incidence observed in those with

normal and overweight BMI compared to obese individuals.
3.2 Associations with BMI

We utilized the KM method to analyze survival differences

among BMI subgroups (Supplementary Figure S1). Overall, no
Frontiers in Immunology 0426
significant differences were observed in PFS and OS among the

subgroups. However, in pairwise comparisons, PFS was

significantly better in the obese group compared to the overweight

group (p-value=0.04). In univariate analysis, the response in the

overweight group was significantly worse than the normal group (OR

0.43, 95% CI 0.18 to 0.95, p-value=0.04), and the PFS in the obese

group was significantly better than the overweight group (HR 0.42,

95% CI 0.19 to 0.96, p-value=0.04). However, these differences were

not significant in multivariate analysis (Supplementary Table S2).
3.3 Correlation between each indicator

Given the inclusion of numerous anthropometric indicators, in

addition to commonly used BMI, in this study, other indicators also

show potential for clinical application. We aimed to explore the

correlation between these indicators and body composition

(Figure 2). After excluding indicators with direct calculation
TABLE 1 Patient baseline characters.

Overall (N=133) Normal (N=82) Overweight (N=40) Obese (N=11) P value

Age, Mean (SD) 63.1 (9.49) 63.0 (8.81) 64.4 (9.40) 59.4 (13.9) 0.288

Gender, n (%) 0.465

Male 114 (85.7%) 70 (85.4%) 33 (82.5%) 11 (100%)

Female 19 (14.3%) 12 (14.6%) 7 (17.5%) 0 (0.00%)

PS Score, n (%) 0.218

0-1 104 (78.2%) 60 (73.2%) 35 (87.5%) 9 (81.8%)

≥2 29 (21.8%) 22 (26.8%) 5 (12.5%) 2 (18.2%)

Clinical Stage, n (%) 0.873

III 21 (15.8%) 13 (15.9%) 7 (17.5%) 1 (9.09%)

IV 112 (84.2%) 69 (84.1%) 33 (82.5%) 10 (90.9%)

Metastatic Organs, n (%) 0.763

0 21 (15.8%) 13 (15.9%) 7 (17.5%) 1 (9.09%)

1-2 65 (48.9%) 38 (46.3%) 22 (55.0%) 5 (45.5%)

≥3 47 (35.3%) 31 (37.8%) 11 (27.5%) 5 (45.5%)

ICI Line, n (%) 0.070

First line 93 (69.9%) 60 (73.2%) 23 (57.5%) 10 (90.9%)

Second and posterior line 40 (30.1%) 22 (26.8%) 17 (42.5%) 1 (9.09%)

ICI type, n (%) 0.419

PD-L1 61 (45.9%) 40 (48.8%) 15 (37.5%) 6 (54.5%)

PD-1 72 (54.1%) 42 (51.2%) 25 (62.5%) 5 (45.5%)

Waist Circumference,
Mean (SD) 84.9 (11.2) 79.5 (9.30) 91.6 (6.86) 100 (8.57) <0.001

BMI, Mean (SD) 23.0 (3.43) 20.8 (2.02) 25.7 (1.11) 29.4 (1.15) <0.001

Sarcopenic, n (%) <0.01

No 39 (29.3%) 18 (22.0%) 13 (32.5%) 8 (72.7%)

Yes 94 (70.7%) 64 (78.0%) 27 (67.5%) 3 (27.3%)
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relations, we observed that all anthropometric measures, including

BMI, were strongly associated with adipose composition and weakly

associated with muscle composition. The anthropometric indicator

with the strongest correlation with muscle tissue is BSI, with a

correlation coefficient of 0.50 with SMI and 0.65 with LBM.

Additionally, BSI maintains a strong correlation with TATI

(correlation coefficient 0.71).

3.4 Associations with
anthropometric measures

As the clinical significance of new anthropometric indicators in

cancer prognosis remains unclear, univariate and multivariate

analyses were conducted with high quartile and low quartile as

cut-off values, in addition to WC and WHtR. In univariate analysis,

no significant associations were found between anthropometric

measures and response, PFS, or OS. However, after adjusting for

covariates, a poorer response was observed in patients with a lower

WWI (OR 0.34, 95% CI 0.11 to 0.97, p-value=0.047), and a poorer

OS was observed in patients with a lower BSI (HR 1.79, 95% CI 1.09

to 2.94, p-value=0.02) (Supplementary Table S3).
Frontiers in Immunology 0527
3.5 Associations with body
composition measures

In univariate analysis, lower SMI and SMG were associated

with worse response (SMI: OR 0.35, 95% CI 0.15 to 0.76, p-

value=0.01; SMG: OR 0.4, 95% CI 0.18 to 0.84, p-value=0.02) and

OS (SMI: HR 2.00, 95% CI 1.20 to 3.34, p-value=0.01; SMG: HR

1.63, 95% CI 1.06 to 2.51, p-value=0.03), and lower SMG was also

associated with worse PFS (HR 1.73, 95% CI 1.18 to 2.55, p-

value=0.01). Higher LBM was associated with better response

(OR 2.95, 95% CI 1.29 to 7.17, p-value=0.01) and OS (HR 0.58,

95% CI 0.34 to 0.98, p-value=0.04). However, in multivariate

analysis, none of these associations remained significant. Both

higher (OR 0.29, 95% CI 0.10 to 0.80, p-value=0.02) and lower

visceral to subcutaneous adipose tissue area ratio (VSR) (OR 0.20,

95% CI 0.05 to 0.70, p-value=0.01) were associated with poorer

responses, suggesting that a moderate range of VSR may be more

beneficial to treatment. Similar to new anthropometric indicators,

univariate and multivariate analyses were conducted with high

quartile and low quartile as cut-off values for VSR and

LBM (Table 2).
FIGURE 2

The heatmap showing the correlation between various anthropometric indicators and body composition. The numbers in the chart represent the
correlation coefficient. A correlation coefficient>0.7 is considered a strong correlation, while 0.3<correlation coefficient ≤ 0.7 is considered a
moderate correlation, and correlation coefficient<0.3 is considered a weak correlation. BMI, body mass index; WC, waist circumference; WHtR,
waist-to-height ratio; RFM, relative fat mass index; BSI, body shape index; BRI, body roundness index; WWI, weight-adjusted-waist index; SMI,
skeletal muscle index; SMD, skeletal muscle density; SMG, skeletal muscle gauge; TATI, total adipose tissue index; VATi, visceral adipose tissue index;
SATi, subcutaneous adipose tissue index; VSR, visceral to subcutaneous adipose tissue area ratio; LBM, lean body mass.
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3.6 Interaction between SMI and TATI

Examining potential interactions between muscle composition

and adipose composition, we first explored the interaction between

SMG and TATI, but no significant interaction was found

(Supplementary Tables S4, S5). Despite the significant p-value,

when combined with the CI and stratified analysis results, we do

not find an interaction between SMG and TATI in our cohort.

Subsequently, we examined the interaction between SMI and TATI,
TABLE 2 Univariate and multivariate analyses assess the association
between body composition measures with response, PFS, and OS.

Univariate analysis

Response (n=122) OR 95% CI P value

SMI (Sarcopenic VS Non-sarcopenic) 0.35 0.15 to 0.76 0.01*

SMD (Low VS High) 0.80 0.35 to 1.83 0.60

SMG (Low VS High) 0.40 0.18 to 0.84 0.02*

TATI (High VS Low) 0.96 0.42 to 2.17 0.92

VATi (High VS Low) 0.81 0.36 to 1.81 0.60

SATi (High VS Low) 1.24 0.55 to 2.84 0.61

VSR (Low VS High) 0.57 0.19 to 1.55 0.28

VSR (High VS Low) 0.52 0.22 to 1.18 0.12

LBM (Low VS High) 0.56 0.24 to 1.28 0.18

LBM (High VS Low) 2.95 1.29 to 7.17 0.01*

PFS (n=133) HR 95% CI P value

SMI (Sarcopenic VS Non-sarcopenic) 1.51 0.99 to 2.31 0.06

SMD (Low VS High) 1.46 0.96 to 2.21 0.08

SMG (Low VS High) 1.73 1.18 to 2.55 0.01*

TATI (High VS Low) 1.10 0.45 to 2.68 0.84

VATi (High VS Low) 0.71 0.45 to 1.13 0.15

SATi (High VS Low) 0.89 0.58 to 1.39 0.62

VSR (Low VS High) 1.07 0.64 to 1.79 0.81

VSR (High VS Low) 1.26 0.82 to 1.92 0.29

LBM (Low VS High) 1.16 0.75 to 1.80 0.50

LBM (High VS Low) 0.67 0.43 to 1.05 0.08

OS (n=133) HR 95% CI P value

SMI (Sarcopenic VS Non-sarcopenic) 2.00 1.20 to 3.34 0.01*

SMD (Low VS High) 1.47 0.93 to 2.32 0.10

SMG (Low VS High) 1.63 1.06 to 2.51 0.03*

TATI (High VS Low) 0.87 0.46 to 1.67 0.69

VATi (High VS Low) 0.68 0.40 to 1.14 0.14

SATi (High VS Low) 0.84 0.51 to 1.40 0.51

VSR (Low VS High) 0.99 0.55 to 1.78 0.97

VSR (High VS Low) 1.26 0.79 to 2.01 0.34

LBM (Low VS High) 1.55 0.97 to 2.48 0.07

LBM (High VS Low) 0.58 0.34 to 0.98 0.04*

Multivariable analysis

Response (n=122) OR 95% CI P value

SMI (Sarcopenic VS Non-sarcopenic) 0.72 0.23 to 2.13 0.55

SMD (Low VS High) 1.14 0.39 to 3.47 0.81

SMG (Low VS High) 0.52 0.18 to 1.44 0.21

(Continued)
TABLE 2 Continued

Multivariable analysis

Response (n=122) OR 95% CI P value
OS (n=133) HR 95% CI P value

TATI (High VS Low) 1.08 0.37 to 3.13 0.88

VATi (High VS Low) 0.56 0.19 to 1.58 0.28

SATi (High VS Low) 1.32 0.46 to 3.98 0.62

VSR (Low VS High) 0.20 0.05 to 0.70 0.01*

VSR (High VS Low) 0.29 0.10 to 0.80 0.02*

LBM (Low VS High) 0.57 0.19 to 1.67 0.30

LBM (High VS Low) 1.25 0.43 to 3.73 0.69

PFS (n=133) HR 95% CI P value

SMI (Sarcopenic VS Non-sarcopenic) 1.11 0.68 to 1.81 0.67

SMD (Low VS High) 1.49 0.93 to 2.39 0.10

SMG (Low VS High) 1.54 0.99 to 2.41 0.06

TATI (High VS Low) 0.78 0.25 to 2.45 0.68

VATi (High VS Low) 0.70 0.44 to 1.12 0.14

SATi (High VS Low) 0.83 0.52 to 1.33 0.44

VSR (Low VS High) 1.14 0.67 to 1.96 0.63

VSR (High VS Low) 1.23 0.80 to 1.90 0.35

LBM (Low VS High) 1.17 0.74 to 1.84 0.50

LBM (High VS Low) 0.92 0.58 to 1.46 0.72

OS (n=133) HR 95% CI P value

SMI (Sarcopenic VS Non-sarcopenic) 1.40 0.77 to 2.54 0.27

SMD (Low VS High) 1.54 0.93 to 2.55 0.09

SMG (Low VS High) 1.55 0.97 to 2.49 0.07

TATI (High VS Low) 0.75 0.38 to 1.47 0.40

VATi (High VS Low) 0.69 0.41 to 1.18 0.18

SATi (High VS Low) 0.74 0.44 to 1.24 0.26

VSR (Low VS High) 1.21 0.66 to 2.22 0.54

VSR (High VS Low) 1.37 0.85 to 2.20 0.20

LBM (Low VS High) 1.36 0.83 to 2.23 0.22

LBM (High VS Low) 0.87 0.49 to 1.56 0.64

Multivariable analysis

Response (n=122) 95% CIOR P value
fro
#Adjusted for age, gender, stage, ICI line and ICI types. *P ≤ 0.05.
OS, overall survival; PFS, progression free survival.
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finding that the interaction term SMI × TATI was significant for

PFS (HR 0.93, 95% CI 0.89 to 0.98, p-value=0.0034) but not for

response and OS (Supplementary Table S6). Additionally, we

explored whether there was an additive interaction between these

variables, but no statistically significant additive interaction effect

was found. Subsequently, we controlled SMI and TATI respectively

in the multivariate analysis to assess whether the relationship

between another indicator and response, PFS, and OS changed

(Table 3). We observed that when high SMI was controlled, PFS

significantly improved with high TATI (HR 0.39, 95% CI 0.16 to

0.99, p-value=0.046). Conversely, when high TATI was controlled,

the negative impact of low SMI on PFS (HR 4.21, 95% CI 1.01 to

17.57, p-value=0.049) and OS (HR 10.96, 95% CI 2.36 to 50.90, p-

value=0.0022) became significantly greater. Finally, we employed

the KM method to examine survival differences among subgroups
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with different SMI and TATI combinations. Among all subgroups,

the Low SMI + High TATI group exhibited the worst PFS and OS,

with the largest difference observed when compared to the High

SMI + Medium TATI group (Figure 3).
4 Discussion

To the best of our knowledge, this is the first study providing a

comprehensive analysis of the association between body

composition, anthropometric indexes, and the prognosis of

immunotherapy in patients with ES-SCLC. In the era of

chemotherapy, prior studies investigated the relationship between

body composition, BMI, and the efficacy and prognosis of small-cell

lung cancer (SCLC). While sarcopenia, diagnosed at the L3 levels on

CT, has been linked to a poorer prognosis for SCLC (26, 27), the

association with BMI remains uncertain. Some studies suggested a

negative impact of low BMI on SCLC prognosis (28), while others

reported complex and inconclusive associations, with trends toward

better prognosis in patients with BMI >28kg/m² and weight loss

(WL) ≤5% (29). There is a lack of evidence to suggest a link between

WC and its newer variants and the prognosis of SCLC. In the era of

immunotherapy, there is limited research, with only one pan-cancer

study incorporating three SCLC patients receiving immunotherapy,

yielding no conclusive results on BMI (30). Generally, SCLC has

received less attention in anthropometric studies. As such the

disease is lacking anthropometric biomarkers and presenting a

significant clinical challenge.

In numerous preclinical studies, obesity has been correlated

with tumor progression, attributed to its role in fostering a chronic

inflammatory state and an immunosuppressive tumor immune

microenvironment (31). Notably, obesity induces T-cell depletion,

as evidenced by increased expression of PD-1, T cell

immunoglobulin and mucin domain-3 (TIM-3), and lymphocyte

activation gene-3 (LAG-3) in tumor-bearing mice with diet-

induced obesity (DIO) (8, 32). However, the advent of

immunotherapy has altered this scenario. ICIs counteract T-cell

dysfunction by targeting PD-1 or PD-L1. Anti-PD-1 treatment for

DIO mice in preclinical studies reversed immunosuppression in the

tumor microenvironment (TME), with DIO mice exhibiting

enhanced efficacy compared to the control group (33). Some

clinical studies also indicated that patients with higher BMI

derive more benefits from immunotherapy, termed the “obesity

paradox” (6, 8). The debate around the “obesity paradox” centers on

the evaluation index of BMI (5). Despite its clinical ubiquity, BMI is

a relatively crude measure that inadequately reflects specific body

composition. In our study, BMI demonstrated a weak correlation

with muscle composition, while skeletal muscle has been established

as a prognostic factor in various cancers (34). Recent studies have

sought to elucidate the “obesity paradox” using imaging

measurements. Young et al. (9), investigating the prognosis of

immunotherapy for malignant melanoma, found no association

between BMI and clinical outcomes, suggesting that the link

between body composition and improved clinical outcomes is

modest. Lee et al. (11), on the other hand, proposed that visceral

fat might explain the “obesity paradox,” with its prognostic impact
TABLE 3 Stratified analysis of the association between SMI and TATI
with response, PFS, and OS.

Response (n=122) OR 95% CI P value

High SMI

TATI (High VS Low) 1.04 0.76 to 1.44 0.79

Low SMI

TATI (High VS Low) 0.92 0.70 to 1.19 0.51

High TATI

SMI (Low VS High) 0.76 0.45 to 1.28 0.31

Low TATI

SMI (Low VS High) 0.92 0.73 to 1.17 0.50

PFS (n=133) HR 95% CI P value

High SMI

TATI (High VS Low) 0.39 0.16 to 0.99 0.049*

Low SMI

TATI (High VS Low) 1.28 0.67 to 2.47 0.46

High TATI

SMI (Low VS High) 4.21 1.01 to 17.57 0.05*

Low TATI

SMI (Low VS High) 0.87 0.47 to 1.60 0.65

OS (n=133) HR 95% CI P value

High SMI

TATI (High VS Low) 0.48 0.16 to 1.40 0.18

Low SMI

TATI (High VS Low) 1.12 0.57 to 2.21 0.73

High TATI

SMI (Low VS High) 10.96 2.36 to 50.90 <0.01**

Low TATI

SMI (Low VS High) 1.16 0.55 to 2.42 0.70
Adjusted for age, gender, stage, ICI line and ICI types. *P ≤ 0.05; **P<0.01.
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dependent on the systemic inflammatory state. Discrepancies

between these studies may be attributed to differences in race and

cut-off points. Although combining body composition and systemic

immune-inflammation index (SII) is popular, establishing a causal

relationship between the two remains debatable.

While our study focused on different populations and diseases,

our findings generally align with those of Young et al. In univariate

analysis and KM curves, the obese group exhibited advantages in

terms of PFS and OS, but these advantages did not persist in

multivariate analysis. Objectively, we did not identify a clear

relationship between high BMI and the prognostic benefits of

immunotherapy. Existing anthropometric measures, primarily

based on height, weight, and waist circumference, are more

closely tied to adipose content and less indicative of skeletal

muscle. Among the examined anthropometric measures, BSI

emerged as the most promising indicator, reflecting both skeletal

muscle and adipose content. BSI was also associated with OS in

multivariate analysis, though its efficacy as a biomarker requires

further validation. Additionally, our study identified intriguing

indicators, such as the association of WWI and LBM with

response , po ten t i a l l y l inked to the d i s t r ibu t ion o f

chemotherapeutic drugs (24). Both higher and lower VSRs were

associated with worse responses, suggesting that a moderate VSR

may confer better therapeutic benefits. Crucially, our data

underscore the significance of the skeletal muscle-adipose tissue

interaction. The detrimental effects of sarcopenia are significantly

exacerbated in the presence of high adipose, consistent with the

understanding that sarcopenic obesity portends worse outcomes

(24, 35).This effect was more pronounced in SCLC than what

Young et al. observed in malignant melanoma. Given SCLC’s

neuroendocrine nature and diverse tumor syndromes, the

interaction and crosstalk between tumor and non-tumor tissues

merit consideration. Leptin concentration and the leptin/VAT ratio,
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indicative of adipokine influence, were associated with prolonged

PFS in ES-SCLC patients (36). What’s more, anti-growth

differentiation factor 15 (GDF-15) combined with anti-PD-1

therapy enhanced anti-PD-1 efficacy (37), as GDF-15 is closely

tied to cachexia (38). Skeletal muscle and adipose, functioning as

endocrine organs, engage in rich crosstalk in the body (39).

Therapies targeting this interaction may not only address

metabolic diseases but also enhance immunotherapy efficacy.

Several limitations must be acknowledged in our study. Primarily,

being a single-center study introduces potential bias in population

characteristics. Notably, our cohort exhibits a significant gender

proportion bias, with over 80% of patients being male. The

insufficient number of female patients precluded gender-stratified

analysis. Moreover, many indicators lack clear-cut criteria, and

employing quartiles to establish critical values may be inappropriate.

Additional patient characteristics that could impact efficacy, such as

immunotherapy-related adverse events and pretreatment weight loss,

were not included. The relatively small sample size may affect statistical

power, especially during further subgroup analyses. Findings regarding

BMI require validation in a larger cohort.
5 Conclusion

In conclusion, our study did not reveal a clear association

between BMI and the prognosis of SCLC immunotherapy.

However, it reinforced the notion that a high-adipose background

amplifies the adverse effects of sarcopenia in the context of SCLC

immunotherapy. Notably, BSI emerged as a potential proxy for

simple body composition assessment. Given the challenges in

visually diagnosing sarcopenic obesity, our study underscores the

importance of comprehensive nutritional assessment for

cancer patients.
FIGURE 3

The Kaplan-Meier curves of PFS and OS were compared among different SMI and TATI combinations. SMI, skeletal muscle index; TATI, total adipose
tissue index; PFS, progression free survival; OS, overall survival.
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Introduction: Childhood obesity is a growing global health concern, but few

studies have investigated dietary factors specifically related to obesity and

abdominal obesity in children and adolescents. Herein, we aimed to identify

the dietary factors affecting childhood obesity in Korean children

and adolescents.

Methods: Data from the Korea National Health and Nutrition Survey (KNHANES)

VIII were analyzed using K-means clustering analysis to identify distinct clusters

based on nine variables related to dietary habit, nutritional status, and nutritional

education. Multiple logistic regression analysis was used to examine the

association between incident obesity risk and the different clusters. We

enrolled 2,290 participants aged 6-18 years, and separated them into two

distinct clusters; Healthy and Unhealthy Dietary Habit Groups, clusters 1 and

2, respectively.

Results: Cluster 1 was characterized by a lower obesity prevalence, healthier

dietary habits (regular breakfast consumption; fruit and vegetable, reduced total

energy, and lower protein and fat intakes), and greater nutritional education than

Cluster 2. After adjusting for confounders, compared with Cluster 1, Cluster 2

demonstrated a significantly higher prevalence (OR [95% CI]) of both general and

abdominal obesity (1.49 [1.05–2.13], p=0.027 and 1.43 [1.09–1.88], p=0.009).

Discussion: Maintaining optimal dietary quality and patterns are crucial to

prevent childhood obesity. Further research is warranted to explore specific

dietary interventions tailored to different clusters to effectively address

childhood obesity.
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child obesity, diet, lifestyle, nutritional education, clustering analysis
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1 Introduction

The World Obesity Atlas 2023 (1) shows a significant increase in

the prevalence of obesity, particularly among children and

adolescents worldwide; among boys, prevalence is estimated to

double from 10% in 2020 to 20% in 2035 whereas, for girls, the

prevalence is expected to similarly increase from 8% to 18% (1). This

highlights the need for strategies to address the escalating burden of

obesity, especially among younger populations, to mitigate long-term

health consequences and the associated socioeconomic impacts.

Pediatric obesity not only poses a higher risk of sustained

obesity, but also carries future health risks in adulthood that have

been well-documented (2). The severity of obesity in children and

adolescents is closely linked to a higher risk of metabolic syndrome

(MetS) (3). Compared to normal-weight individuals, those who are

overweight or obese have a 5 and 23 fold higher risk of MetS,

respectively (4). Furthermore, childhood BMI has been associated

with risks of diabetes, cancer, and cardiovascular diseases, even

independent of adult BMI (5).

The treatment of obesity includes behavioral changes in diet,

physical activity, sedentary behaviors, and sleep habits (6). TheWorld

Health Organization (WHO) recently suggested that limiting energy

intake from total fats and sugars by increasing the consumption of

fruits, vegetables, whole grains, and nuts, as well as engaging in

regular physical activity, are highly recommended at the individual

level for obesity prevention (7). It has further been well-documented

that healthy dietary patterns are beneficial for children’s health (8, 9).

Additionally, unlike in adults, children’s dietary habits are highly

influenced by familial (parental) (10) and socioeconomic factors (11).

As dietary habits are important for the prevention and treatment of

childhood obesity, dietary factors that can predict obesity andMetS in

Korean children and adolescents need to be identified.

Park et al. (12) previously investigated the association of dietary

quality with body mass index (BMI) in obese children, but found no

significant associations of dietary patterns and quality with BMI in

obese children. However, the authors observed an association of

high fat intake with weight gain in this population. Kim et al. (13)
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observed that children who participated in the school lunch

program consumed more appropriate nutrients than those in the

non-school lunch and skipping lunch groups. Moreover, they found

that the school lunch group was less likely to become obese than the

skipping lunch group.

Nonetheless, few studies have investigated dietary factors

specifically related to obesity and abdominal obesity in children

and adolescents. Therefore, in this study, using the K-means

clustering algorithm, we aimed to identify dietary factors that

increase the risk of obesity in children and adolescents in the

Republic of Korea. Unlike in previous studies, we included various

dietary habits, such as breakfast eating, frequency of fruit or vegetable

consumption, eating out, proportion of macronutrients, nutritional

education, and other demographic factors in order to create a

comprehensive background for personalized prediction and

management of childhood obesity in the Republic of Korea.
2 Materials and methods

The Korea National Health and Nutrition Examination Survey

(KNHANES) is a cross-sectional survey that has been conducted

annually by the Korea Centers for Disease Control and Prevention

(KCDC) since 1998 to derive a comprehensive understanding of the

health and nutritional status of the South Korean population. The

KNHANES targets non-institutionalized Korean citizens residing in

Korea, and follows a multistage, clustered probability design for

sampling; detailed information on the KNHANES is available at:

https://knhanes.cdc.go.kr/knhanes/eng. In this study, we used data

from the KNHANES VIII (2019–2021). Of the 2,928 KNHANES

VIII participants aged 6–18 years, those without anthropometric

and dietary behavior data (n = 638) were excluded, and a total of

2,290 participants were included in the final analysis, as shown in

the study flowchart in Figure 1. All participants provided written

informed consent for the use of their data for research purposes.

The study protocol was approved by the institutional review board

of the Severance Hospital (approval no. 4-2022-0796).
FIGURE 1

Flow chart of the study population.
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2.1 Anthropometry and the adiposity index

In the KNHANES VIII, anthropometric measurements,

including blood pressure (BP), height, weight, BMI, and waist

circumference (WC), were measured by well-trained medical staff.

BP was measured three times in the sitting position, and the average

of the secondary and tertiary measurements was used in the analysis.

Height was measured using a portable stadiometer, with accuracy to

the nearest 0.1 cm, while weight was determined using a digital scale,

accurate to the nearest 0.1 kg. During measurement, participants

were advised to wear light attire and no shoes. WC was measured

using a standard measuring tape at the narrowest point of the body,

located between the lowest rib and the iliac crest. BMI was calculated

by the dividing weight (in kilograms) by the square of height (in

meters). The waist-to-height ratio (WHtR) was subsequently

determined by dividing each individual’s waist circumference (WC)

by height. For comparisons, the standard scores (z-scores) for BMI,

WC, and WHtR were derived from the KNHANES VIII (2019-2021)

using the method described by Kim et el (14), taking into account age

and sex. Obesity was defined as BMI values above the 95th percentile,

corresponding to age and sex categories following the Korea Centers

for Disease Control and Prevention (KCDC) criteria (14). Abdominal

obesity was defined as a WC that exceeded the 90th percentile

according to age- and sex-specific criteria (15). Abdominal obesity

based on WHtR was defined as WHtR ≥0.5 (16).
2.2 Dietary behaviors and nutritional
education assessment

According to a standardized protocol, the dietary behaviors of

children and adolescents were assessed by well-trained nutritionists

through questionnaires that assessed the following items: breakfast

frequency per week in the last year (almost every day, 1-4 times a week,

or rarely); frequency of eating out (almost every day, more than once a

week, or rarely); experience of nutritional education in the past year

(yes/no); frequency of consuming vegetables (excluding kimchi and

pickled vegetables), mushrooms, and seaweed in the past year (more

than three times a day, once or twice a day, or less than once a day); and

frequency of consuming fruits in the past year (>7, 2–6, or <1 time(s)

per week). The total calorie intake and grams of carbohydrate, fat, and

protein were calculated from the 24-hour dietary recall. The total

consumption of carbohydrates, protein, and fat was subsequently

converted to energy intake in calories (1 g carbohydrates = 4 kcal;

1 g protein = 4 kcal; and 1 g fat = 9 kcal). The proportion of

carbohydrates, protein, and fat intake was calculated as follows:

carbohydrate, protein, and fat intake calories/total calorie intake × 100.
2.3 Clustering analysis

K-means was used to form clusters using the nine variables

related to dietary habit, nutritional status, and nutritional education

(frequency of breakfast consumption, frequency of dining out,

experience of nutritional education, frequency of consuming

vegetables on average, frequency of consuming fruits on average,
Frontiers in Endocrinology 0335
total calorie intake, proportion of carbohydrate intake, proportion

of protein intake, and proportion of fat intake). The frequency of

dietary behaviors was clustered by considering the categorical

variables as continuous variables. K-means clustering was then

performed on the standardized values to have zero mean and unit

variance. Using the silhouette method 18, we determined the

optimal number of clusters for dietary habits.
2.4 Statistical analysis

All data are reported as the mean ± standard deviation (SD) for

continuous variables, or as frequency (proportion) for categorical

variables. To compare the differences between clusters, we

conducted independent t-tests for continuous variables and the

Fisher’s exact test for categorical variables. Linear and logistic

regression were applied to determine association between clusters

of dietary habits and adiposity for Korean children and adolescents.

In the regression analysis, age and sex were adjusted to reduce the

confounding effects. Subgroup analysis was performed for age

groups (6–12 and 13–18 years) and sex. All statistical analyses

were conducted using R version 4.1.1 (R Foundation for Statistical

Computing, Vienna, Austria). Statistical significance was set at a p-

value of less than 0.05.
3 Results

3.1 Clinical characteristics of the
two clusters

Using the K-means clustering algorithm, we produced two

clusters from the overall participants (N = 2,290). Each cluster

comprised participants with characteristics similar to the nine

variables within the cluster. The distribution of the participants

and characteristics of the two clusters are shown in Figure 2,

Table 1. In total, 706 boys and 694 girls were grouped into

Cluster 1 (N = 1,400), whereas 500 boys and 390 girls were

grouped into Cluster 2 (N = 890).

Compared with Cluster 2, Cluster 1 was characterized by a higher

frequency of breakfast consumption, higher experience of nutritional

education, higher consumption of vegetables, higher consumption of

fruits, lower intake of total energy, higher intake of carbohydrate

proportion, lower intake of protein proportion, and lower intake of

fat proportion. Accordingly, Clusters 1 and 2 were designated as the

healthy dietary habit group (HDG) and unhealthy dietary habit group

(UDG), respectively. Table 1 shows the clinical characteristics of

Clusters 1 and 2. Participants in Cluster 1 were younger, more likely

to be female, less likely to be obese, and had a lower WC.
3.2 Association of adiposity with clusters

Based on the linear regression analysis, Table 2 shows the

independent association of BMI, WC, BMI Z-score, and WHtR

Z-score with the clusters. Compared with Cluster 1, Cluster 2 had a
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significantly higher BMI (b-coefficient and 95% confidence interval

[CI], 1.06 [0.70–1.42], p<0.001), WC (b and 95% CI, 3.41 [2.38–

4.44], p<0.001), BMI Z-score (b-coefficient and 95% confidence

interval [CI], 0.15 [0.06–0.23], p<0.001), and WHtR Z-score (b and

95% CI, 1.15 [0.07–0.23], p<0.001). Table 3 shows the cluster-

stratified odds ratio (OR) and 95% CI for general obesity and

abdominal obesity. Compared with Cluster 1, Cluster 2 had a higher

prevalence (OR [95% CI]) of general obesity (1.54 [1.09–2.19],

p=0.015), abdominal obesity (1.49 [1.14–1.94], p=0.003), and

abdominal obesity by WHtR (1.35 [1.09-1.66], p=0.005). After

adjusting for age and sex, Cluster 2 had a significantly higher

prevalence (OR [95% CI]) of general obesity (1.49 [1.05–2.13],

p=0.027), abdominal obesity (1.43 [1.09–1.88], p=0.009), and

abdominal obesity by WHtR (1.30 [1.05-1.60], p=0.018).

Figure 3 presents the results of the age- and sex-stratified

subgroup analysis. In both the 6–12 and 13–18 years age groups,

Cluster 2 exhibited higher BMI and WC levels than Cluster 1,

although the WHtR levels were only significant in the 13-18 years

age group. Among boys, compared with Cluster 1, Cluster 2 had

higher BMI, WC, and WHtR levels; however, among girls, no

significant associations between BMI, WC, WHtR and clusters

was observed. Although no significant association was found
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between general obesity or abdominal obesity and clusters in the

6–12 years age group, in the 13–18 years age group, Cluster 2

exhibited significant trends with a higher prevalence (OR [95%

CI]) of general obesity (1.73 [0.99–3.08], p=0.057), a significantly

higher prevalence of abdominal obesity (1.61 [1.04–2.53],

p=0.034), and abdominal obesity by WHtR (1.55 [1.09-2.22],

p=0.015). Among boys, compared with Cluster 1, Cluster 2 had

significantly higher prevalence (OR [95% CI]) of general obesity

(1.94 [1.24–3.09], p=0.004), abdominal obesity (1.49 [1.08–2.06],

p=0.015), and abdominal obesity by WHtR (1.32 [1.01-

1.73], p=0.039).
4 Discussion

The present study investigated the association between dietary

habits and adiposity indices, while particularly focusing on general

and abdominal obesity, among Korean children and adolescents.

Overall, our findings indicate that individuals exhibiting HDG, such

as increased breakfast consumption, greater exposure to nutritional

education, and higher fruit and vegetable intake, demonstrated a

lower prevalence of childhood obesity.
FIGURE 2

Characteristics of the two patient clusters. Data are presented as percentages or box plot (median, IQR). (A) Frequency of breakfast consumption,
(B) Frequency of dining out, (C) Experience of nutrition education, (D) Average frequency of consuming vegetables, (E) Average frequency of consuming
fruits, (F) Total calorie intake from 24-hour dietary recall, (G) Proportion of carbohydrate intake, (H) Proportion of protein intake, (I) Proportion of fat intake.
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It is worth noting that 73.6% of children and adolescents in

Cluster 1 had breakfast “almost every day,” compared with 59.1% in

Cluster 2. A meta-analysis comprising 45 observational studies

reported an association between breakfast skipping with

overweight/obesity and an increased risk of overweight/obesity

(17). Another study demonstrated that frequent breakfast skipping

was associated with higher odds of MetS in Korean young adults (18).

Mengzi et al. (19) Also found that skipping breakfast was positively

associated with both the dietary inflammatory index and obesity, and

that the association between eating breakfast and BMI was mediated

by the dietary inflammatory index. Our findings align with those of

these previous studies. Several possible mechanisms may mediate the

association of breakfast consumption with metabolic disturbances.

Firstly, owing to increased sleep demand, the overnight fasting

periods are longer during childhood and adolescence, leading to

the overnight depletion of glycogen stores (20). Consequently, given

their higher metabolic rates, breakfast consumption becomes crucial

for glucose metabolism in children. Furthermore, skipping breakfast

can impair insulin function, resulting in higher postprandial plasma

glucose levels (21), which potentially explains why a decreased weekly
Frontiers in Endocrinology 0537
breakfast frequency is associated with a higher risk of insulin

resistance in Korean adults without diabetes or prediabetes (22).

Secondly, consistent meal patterns can support better appetite control

and satiety, thereby reducing the likelihood of overeating or snacking

on less nutritious foods (23, 24). Compared with individuals who

regularly consume breakfast, young adults who frequently skip

breakfast tend to report higher levels of appetite and hunger,

decreased feelings of fullness, and increased ghrelin levels (23, 24).

Additionally, breakfast skippers often tend to consume larger

amounts of food in one sitting during the remainder of the day (25).

In Cluster 1, 52% of individuals ate vegetables more than twice a

day, and 41% ate fruit more than six times a week; compared with

Cluster 2, these proportions were significantly higher. It has been well-

known that fruits and vegetables reduce the risk of chronic health

conditions, including obesity (25–27). One systematic review of cohort

studies revealed that higher vegetable intake was associated with the

lowest risk of weight gain (28), which is consistent with our findings.

Thus, we inferred that fruit and vegetable intake aids weight

management because these foods are low in energy, but have high

fiber and water content, which induces satiety (29). For children aged
TABLE 1 Clinicodemographic characteristics of the entire cohort and the two clusters.

Characteristic Overall Cluster 1 Cluster 2 p-value

N 2290 1400 890

Age, years 11.3 ± 3.6 11.0 ± 3.6 11.9 ± 3.6 <0.001

Sex, n (%) 0.008

Male 1,206 (53%) 706 (50%) 500 (56%)

Female 1,084 (47%) 694 (50%) 390 (44%)

Body mass index, kg/m2 19.9 ± 4.3 19.4 ± 4.2 20.5 ± 4.5 <0.001

BMI Z-score 0.00 ± 1.00 -0.05 ± 0.97 0.09 ± 1.05 <0.001

Waist circumference, cm 66.8 ± 12.4 65.5 ± 11.8 68.9 ± 12.9 <0.001

WHtR 0.45 ± 0.06 0.45 ± 0.06 0.45 ± 0.06 0.001

WHtR Z-score 0.00 ± 1.00 -0.06 ± 0.97 0.09 ± 1.03 <0.001

General obesity, n (%) 133 (5.8%) 68 (4.9%) 65 (7.3%) 0.019

Abdominal obesity, n (%) 246 (11%) 129 (9.2%) 117 (13%) 0.004

Abdominal obesity by WHtR, n (%) 443 (19.3%) 245 (17.5%) 198 (22.2%) 0.006
Data are presented as the weighted % (standard error) or weighted mean ± standard error.
General obesity, abdominal obesity and abdominal obesity by WHtR were defined as BMI >95th percentile, WC >90th percentile and WHtR ≥0.5, respectively, using the Korean reference data.
WHtR, waist-to-height ratio.
TABLE 2 Results of the cluster-stratified linear regression analysis of BMI, WC, BMI Z-score, and WHtR Z-score.

BMI, Coefficient (95% CI) p-value WC, Coefficient (95% CI) p-value

Cluster 1 Ref Ref

Cluster 2 1.06 (0.70, 1.42) <0.001 3.41 (2.38, 4.44) <0.001

BMI Z-score, Coefficient
(95% CI)

p-value WHtR Z-score, Coefficient
(95% CI)

p-value

Cluster 1 Ref Ref

Cluster 2 0.15 (0.06, 0.23) <0.001 1.15 (0.07, 0.23) <0.001
BMI, body mass index; WC, waist circumference; WHtR, waist-to-height ratio.
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6–11 years, the Dietary Reference Intakes for Koreans (2020) suggested

the ideal frequency of fruit and vegetable consumption as once a day

(total 300 g/day) and 6–7 cups per day (70 g per cup, total 350 g/day),

respectively; for teenagers (12–18 years), vegetables and fruit

consumption recommendations were 7–8 cups per day (total 500–

550 g/day) and 2–4 times a day (total 200–400 g/day), respectively (30).

Although the highest frequency of fruits and vegetables intake were

significantly more prevalent in Cluster 1 than in Cluster 2, these were

nonetheless actually lower than the abovementioned recommended

intake standards. Therefore, we infer that, even if Korean children and

adolescents do not meet the intake standards, it is still important to
Frontiers in Endocrinology 0638
frequently consume fruits and vegetables to prevent obesity, and this

can be suggested as a bridging step before aiming to meet the

recommended intake standards.

Regarding energy intake, compared with Cluster 2, Cluster 1

consumed less calories, with a higher proportion of carbohydrate

and lower proportions of protein and fat. Specifically, compared to

the average total energy intake of 1,845 ( ± 694.1) kcal/day in Cluster 1,

Cluster 2 had a significantly higher intake of 2,236 ( ± 928.5) kcal/day.

In Cluster 1, the proportions of carbohydrates, protein, and fat

were 63.9%, 13.8%, and 21.6%, respectively, which are all within

the recommended Korean nutrient intake standards (carbohydrates,
TABLE 3 Results of the cluster-stratified logistic regression analysis for general and abdominal obesity.

General obesity,
OR (95% CI)

p-value Abdominal obesity,
OR (95% CI)

p-value Abdominal obesity by
WHtR, OR (95% CI)

p-value

Unadjusted

Cluster 1 Ref Ref Ref

Cluster 2 1.54 (1.09-2.19) 0.015 1.49 (1.14-1.94) 0.003 1.35 (1.09-1.66) 0.005

Age-and sex-adjusted

Cluster 1 Ref Ref Ref

Cluster 2 1.49 (1.05-2.13) 0.027 1.43 (1.09-1.88) 0.009 1.30 (1.05-1.60) 0.018
General obesity, abdominal obesity and abdominal obesity by WHtR were defined as BMI >95th percentile, WC> 90th percentile and WHtR ≥0.5, respectively, using the Korean reference data.
Ref, Reference; WHtR, waist-to-height ratio.
FIGURE 3

Results of subgroup analysis of anthropometric parameters and obesity indices between Clusters 1 and 2. (A) BMI, (B) Obesity, (C) Waist
circumference, (D) Abdominal obesity, (E) WHtR, (F) Abdominal obesity by WHtR).
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55–65%; protein, 7–20%; and fat, 15–30%) for those aged 6–18 years

(30, 31). In contrast, Cluster 2 had lower carbohydrate (48.6%) and

higher fat (33.1%) intake proportions compared to the national

standards. These findings may be associated with the higher

consumption of fruits and vegetables in Cluster 1. Foods high in fat,

such as meat or fried fast food, are also commonly associated with

childhood obesity (31).

Furthermore, we observed that, compared with Cluster 2,

Cluster 1 comprised a greater number of children and adolescents

who received nutritional education. School-based interventions can

effectively reduce the BMI of children (32) and, when implemented

in the home, can even improve the BMI of the parents (33).

Moreover, this intervention was conducted with only preschool

children and favored the prevention of overweight/obesity (34).

Nutritional education can be an effective intervention among

children as it increases awareness about the importance of food

and its impact on overall well-being, which thereby affects overall

dietary behaviors. A study found that adolescents who received

nutritional education consumed more vegetables and fruits and

skipped breakfast less often (35).

In the subgroup analysis, the difference in the prevalence of

obesity between the two clusters was markedly evident in a specific

age group (13-18 years) and sex (boys). The 13–18 years age group

is notable as it is the timepoint at which Korean girls (12.7 years)

and boys (13.8 years) reach puberty (36). Obesity occurs during this

transitional period at a higher rate (37) because of metabolic

changes, including hormonal impact, lifestyle changes, and

pubertal stressors (38). Therefore, it seems important to dedicate

adequate care to pubertal diet for obesity prevention.

In addition, compared with Korean female adolescents, Korean

male adolescents tend to have higher obesity prevalence (39, 40),

which aligns with our study results, as well as global statistical

trends in high income countries (41). Some studies consider dietary

preference as one of the reasons for this difference, thereby

indicating that girls, especially in wealthier nations, might favor

foods with lower energy content and higher nutrient density, such

as fruits and vegetables, whereas boys tend to opt for more calorie-

dense foods, such as meat (42, 43). Moreover, compared to boys,

girls often express greater weight-related concerns, including the

desire to lose weight, feeling of guilt on overeating, and lower self-

esteem (44). Parents also typically exhibit more apprehension

regarding their daughters’ weight status than that of their sons’,

with sons often being encouraged to consume more food (45).

These social influences on dietary habits may also explain the

sex difference.

Our study has several limitations. Firstly, it is important to

consider the impact of the COVID-19 pandemic on the collected

data, as our data from the KNHANES VIII (2019-2021) coincided

with this period. During the pandemic, South Korea experienced

lockdowns and school closures, which contributed to changes in

physical activity and dietary habits and a rise in childhood obesity

rates (46). Indeed, several studies reported an increase in childhood

obesity in Korea during the pandemic, particularly among male

students, among whom the prevalence of obesity increased more
Frontiers in Endocrinology 0739
sharply compared to before the pandemic (47, 48). Additionally,

fast food and fruit consumption both decreased (48, 49). These

findings partially align with our study results, and suggest that the

COVID-19 pandemic likely influenced our data. As such, it is

essential to consider the complex effects of the pandemic when

interpreting our results. Secondly, the frequency of dietary habits

was not assessed with regard to specific intake frequencies, but was

rather categorized into sections. Thirdly, the specific foods from

which nutrients were obtained could not be determined. Finally, it is

important to note that the majority of meals consumed by children

are provided by families and educational institutions, rather than

being based on their own choices. As such, the evaluation of

parental eating habits or the quality of school meals could be

beneficial additions to future research endeavors. Despite these

limitations, our study has noteworthy strengths. This is the first

study to utilize a clustering algorithm to identify dietary behaviors

that affect childhood obesity within a large, representative Korean

population. By examining nine key dietary variables across distinct

clusters, we paved the way for the development of personalized

interventional strategies.

In conclusion, distinct clusters that represent different

childhood obesity-associated dietary habits were identified.

Individuals with healthier dietary behaviors, including increased

breakfast consumption, greater exposure to nutritional education,

and higher fruit and vegetable intake, exhibited a lower prevalence

of childhood obesity. It is also imperative to maintain optimal

dietary quality and patterns to effectively prevent childhood obesity.

This study underscores the significant role of school and family-

based nutritional education and dietary interventions for promoting

healthier eating habits among children.
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Smartphone three-dimensional 
imaging for body composition 
assessment using non-rigid avatar 
reconstruction
Grant M. Tinsley 1*, Christian Rodriguez 1, Christine M. Florez 1, 
Madelin R. Siedler 1, Ethan Tinoco 1, Cassidy McCarthy 2 and 
Steven B. Heymsfield 2

1 Energy Balance & Body Composition Laboratory, Department of Kinesiology and Sport Management, 
Texas Tech University, Lubbock, TX, United States, 2 Pennington Biomedical Research Center, 
Louisiana State University System, Baton Rouge, LA, United States

Background: Modern digital anthropometry applications utilize smartphone 
cameras to rapidly construct three-dimensional humanoid avatars, quantify 
relevant anthropometric variables, and estimate body composition.

Methods: In the present study, 131 participants ([73  M, 58  F] age 33.7  ±  16.0  y; 
BMI 27.3  ±  5.9  kg/m2, body fat 29.9  ±  9.9%) had their body composition assessed 
using dual-energy X-ray absorptiometry (DXA) and a smartphone 3D scanning 
application using non-rigid avatar reconstruction. The performance of two new 
body fat % estimation equations was evaluated through reliability and validity 
statistics, Bland–Altman analysis, and equivalence testing.

Results: In the reliability analysis, the technical error of the measurement and 
intraclass correlation coefficient were 0.5–0.7% and 0.996–0.997, respectively. 
Both estimation equations demonstrated statistical equivalence with DXA 
based on ±2% equivalence regions and strong linear relationships (Pearson’s r 
0.90; concordance correlation coefficient 0.89–0.90). Across equations, mean 
absolute error and standard error of the estimate values were  ~  3.5% and  ~  4.2%, 
respectively. No proportional bias was observed.

Conclusion: While continual advances are likely, smartphone-based 3D 
scanning may now be suitable for implementation for rapid and accessible body 
measurement in a variety of applications.

KEYWORDS

3D scanning, body fat, smartphone, optical imaging, digital anthropometry

1 Introduction

Recent advances in digital anthropometry have highlighted the use of smartphone cameras 
to obtain visual information that can be used to produce 3-dimensional (3D) humanoid 
avatars. Several reports have supported the reliability of anthropometric and body composition 
parameters estimated by such procedures (1–4). While mobile digital anthropometry 
applications have typically constructed rigid humanoid avatars using two photographic images 
of static subjects—either from anterior and lateral (2–7) or anterior and posterior views 
(6, 8)—we recently reported the high reliability of new methods capturing serial images (~150) 
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during complete rotation of subjects in front of a smartphone camera, 
followed by non-rigid avatar reconstruction (7). Specifically, the 
observed technical error of measurement (TEM) across common 
body circumferences averaged 0.5 cm or 0.9%, slightly lower than 
errors observed for two large, non-portable 3-dimensional scanning 
measurement booths that employ rigid avatar reconstruction and are 
commonly used in research and practice (TEMs of 0.6–0.8 cm or 
1.1—1.5%). The combination of greater quantities of visual data and 
improved data processing pipelines may have contributed to these 
low errors.

In addition to establishing the reliability of body circumferences 
from smartphone 3D scanning, considering the validity of 
subsequent body composition estimation from humanoid avatars is 
warranted based on the importance of body composition in health, 
disease, and athletic settings (9–11). Trials to date have evaluated 
the validity of mobile applications estimating body composition 
variables from rigid avatars arising from two photographic images, 
with mixed results (2–6). These methods involve the assessment of 
a rigid, non-moving human body, which leads to relatively simple 
avatar reconstruction. Non-smartphone methods, such as 
traditional scanning booths or sensors positioned in front of 
turntables, have also employed rigid avatar reconstruction due to 
the lack of body movement during assessments. In contrast, 
emerging smartphone methods require participants to complete 
360° of rotation in place by taking small, rocking steps while 
attempting to maintain an A-pose (i.e., standing upright with feet 
apart and legs straightened, arms straightened and lifted away from 
the sides of the body). Due to complex body motions generated 
during this rotation and the resultant body deformations, the 3D 
avatar must be produced using non-rigid reconstruction, potentially 
introducing additional error. Following both rigid and non-rigid 
avatar reconstruction, anthropometric variables from the avatars are 
used to predict body composition. However, no prior investigations 
have evaluated the validity of body composition estimates arising 
from smartphone-based scanning followed by non-rigid avatar 
reconstruction. Therefore, the purpose of the present study was to 
examine the validity of body fat percentage (BF%) prediction 
equations employed by such a smartphone-based 3D scanning 
application. It was hypothesized that BF% estimates obtained by the 
smartphone would exhibit strong linear relationships and statistical 
equivalence as compared to dual-energy X-ray absorptiometry 
(DXA), an accepted laboratory method of body 
composition assessment.

2 Method

2.1 Overview

Across two laboratories, adult participants were assessed using a 
smartphone 3D scanning application and dual-energy X-ray 
absorptiometry (DXA) at a single research visit. Serial images were 
collected by the smartphone 3D scanning application during a 
subject’s complete rotation in place, with data subsequently processed 
using non-rigid avatar reconstruction. The reliability of BF% from 
duplicate 3D scans was examined, and the validity of BF% values 
obtained by the 3D scanning application was established through 
comparison with DXA values.

2.2 Participants

Generally healthy adults (≥18 years of age) were recruited for 
participation in Lubbock, TX, USA and Baton Rouge, LA, 
USA. Prospective participants were ineligible if they had a 
diagnosis of a disease or any medical condition that is known to 
influence body composition (e.g., Cushing’s Syndrome, cancer, 
type 2 diabetes, chronic kidney disease, and heart failure), a 
history of major body altering surgery, implanted electrical 
devices, or were currently pregnant or breastfeeding. All 
participants provided written informed consent prior to 
participation, and this study was approved by the Texas Tech 
University Institutional Review Board (IRB2022-610; date of first 
approval: 07/23/2022) and the Pennington Biomedical Research 
Center Institutional Review Board (IRB 2022–002; date of first 
approval: 2/26/2022). All research was performed in accordance 
with relevant guidelines and regulations, including the Declaration 
of Helsinki.

2.3 Laboratory visit

Participants reported to the research laboratory at Texas Tech 
University (Lubbock, TX, USA) or Pennington Biomedical Research 
Center (Baton Rouge, LA, USA) after an overnight (≥8 h) period of 
fasting from foods, fluids, and other substances, and a ≥ 24-h abstention 
from exercise and other moderate- or vigorous-intensity physical activity. 
For assessments, each participant wore minimal form-fitting clothing.

2.4 Smartphone 3D scanning application

The smartphone 3D scanning application required participants to 
rotate in place on the laboratory flooring, using their own feet to perform 
the rotation and maintaining an A-pose, approximately 1.7 meters in 
front of a smartphone. During the rotation, multiple images were 
captured by the smartphone’s built-in camera. Scans were performed 
using an iPhone 13 Pro Max (model number MLKR3LL/A) with iOS v. 
16.5 (Apple, Cupertino, CA, USA) or an iPhone 14 Pro (model number 
MQ2T3LL/A) with iOS v. 16.6. Each phone was mounted on a tripod 
for image acquisition. Each scan was automatically processed using the 
procedures of the manufacturer (Prism Labs, Los Angeles, CA, USA), 
which include machine learning for data pre-processing through binary 
segmentation and obtaining frame-to-frame correspondences (7). 
Humanoid avatars were produced by fully non-rigid reconstruction, and 
a parameterized body model was fitted to each avatar to normalize the 
avatar’s pose to a canonical pose and promote consistent measurement 
locations (1). Three scans were performed for each participant, and one 
scan was randomly selected for each participant, such that the present 
analysis is based on a single scan per participant to mimic typical use. 
For these scans, two proprietary BF% algorithms developed by the 
manufacturer were used: COmpound Circumferences Only (COCO) 
and Automatic Detection of Athlete Mode (ADAM). The COCO 
equation employs measurement ratios, such as waist:height, to estimate 
BF% using coefficients derived from linear regression on the 
manufacturer’s proprietary training data. The ADAM equation 
computes a weighted average between the COCO BF% and a variant of 
the Navy method designed to target individuals with lower BF%.
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2.5 Dual-energy X-ray absorptiometry

A DXA scan was performed for each participant using a scanner 
that was calibrated daily according to manufacturer procedures 
(iDXA, General Electric, Boston, MA, USA with enCORE software 
versions 13.60.033 and 16.10.151, 16 [SP  1]). For each scan, the 
participant was positioned supine on the DXA table with hands 
neutral at their sides and feet together. Consistent positioning of 
hands and feet was achieved using foam blocks and straps. The region 
BF% values for the entire body were used in the present analysis.

2.6 Statistical analysis

The reliability of the ADAM and COCO 3D scanning equations 
was determined by calculating the TEM (i.e., precision error), least 
significant change (i.e., 2.77 × TEM), and the intraclass correlation 
coefficient (model 2.1) from duplicate scans, using previously 
described procedures (12, 13).

The validity of the ADAM and COCO 3D scanning equations were 
compared to reference DXA values. The linear relationships between 
3DO and criterion estimates were established using ordinary least 
squares regression, with DXA specified as the x variable and the 3D 
scanning equation specified as the y variable. To determine if 3DO 
values demonstrated group-level statistical equivalence with DXA 
values, equivalence testing (14) was performed using equivalence 
regions of ±2.0% for BF%, as in a prior investigation (15). The mean 
difference (i.e., constant error) was calculated, along with the standard 
error of the estimate (SEE), root mean square error (RMSE), mean 
absolute error (MAE), Pearson’s r and R2, and Lin’s concordance 
correlation coefficient (CCC). Bland–Altman analysis was performed 
to establish the 95% limits of agreement, alongside linear regression to 
check for proportional bias (16). Statistical significance was accepted at 
p < 0.05. All statistical analyses were conducted in R (version 4.3.1) (17).

3 Results

3.1 Participants

One hundred and thirty-one participants (73 M, 58 F) with at least 
one valid scan were included in the validity analysis (Table 1), and a 
subset of 121 participants with two valid scans were included in the 
reliability analysis due to the need for duplicate scans to assess 
reliability. Sample avatars in differing body mass index categories are 
displayed in Figure  1. Based on self-report, 86 participants were 
non-Hispanic Caucasian, 21 were Hispanic Caucasian, 13 were Black 
or African American, 8 were Asian, 2 were Native American or 
Alaskan, and 1 was Native Hawaiian or other Pacific Islander.

3.2 Reliability

For BF% from the ADAM equation, the TEM, least significant 
change, and ICC were 0.66%, 1.82%, and 0.996 (95% CI: 0.994–0.997), 
respectively. For BF% from the COCO equation, the TEM, least 
significant change, and ICC were 0.50%, 1.39%, and 0.997 (95% CI: 
0.996–0.998).

3.3 Validity

Based on the prespecified equivalence regions of ±2.0%, both 
3DO BF% equations (ADAM and COCO) demonstrated statistical 
equivalence DXA BF% (Table 2). Both equations also demonstrated 
strong, significant correlations with DXA (r 0.90; CCC 0.89–0.90; 
Figures  2A,C). MAE and RMSE values were 3.4–3.5 and 4.5%, 
respectively. From Bland–Altman analysis, no proportional bias was 
observed for either equation (ADAM equation: slope −0.01, 95% CI 
−0.09, –0.07, Figure 2B; COCO equation: slope −0.07, 95% CI −0.15, 
0.01, Figure 2D). Limits of agreement ranged from 8.6 to 8.8%.

4 Discussion

Smartphone-based 3D scanning increases the accessibility of 
digital anthropometry and body composition estimation. While such 
mobile scanning methods have typically relied on the generation of 
rigid avatars from two photographic images, new methods employ the 
acquisition of numerous images to capture more body shape data for 
use in non-rigid avatar reconstruction. With recent data indicating the 
precision of anthropometric and body composition estimates from 
this method compares favorably to traditional, non-portable  3D 
scanners (7), a consideration of the validity of resultant body 
composition estimates was warranted. In the present analysis, 
we found that two prediction equations demonstrated high reliability 
and generally strong agreement with DXA for estimation of BF%.

For both BF% equations, very high reliability was observed, with 
TEM values of 0.50–0.66% from duplicate assessments. Corresponding 
least significant change values, reflecting the degree of change that 
would be  considered statistically significant, were 1.39–1.82%. 
Additionally, strong group-level agreement was observed, as 
supported by statistical equivalence with DXA and strong linear 
relationships (r 0.90; CCC 0.89–0.90). Several additional metrics (SEE, 
RMSE, and MAE) described the typical individual errors of the 
equations, with values ranging from 3.4 to 4.5% across metrics and 
equations. Bland–Altman analysis did not indicate proportional bias 
in either equation, which is an encouraging indicator due to the 
common occurrence of large negative proportional bias when 
applying body composition prediction equations, particularly in 
consumer-facing assessment methods (15, 18). For example, 
we previously found notable proportional bias, with slopes of −0.27 
to −0.35, when evaluating anthropometric BF% prediction equations 
developed using the NHANES dataset (15). Additionally, in an 
evaluation of numerous consumer-grade bioimpedance scales, 
we found that approximately half exhibited notable proportional bias 
for BF%, with slopes as large as −0.50 (18). Despite the minimal 
proportional bias in the present study, the limits of agreement were 
approximately ±8.6% for both equations, indicating a relatively wide 
range of individual-level differences between DXA and the prediction 
equations are possible. However, typical errors—as indicated by the 
SEE—may be closer to ≤ ±4% in two-thirds of cases. Collectively, 
these results support high reliability and group-level performance of 
the prediction equations and provide information regarding the 
individual-level errors that can be expected with this technology.

A small number of previous investigations have reported the 
validity of smartphone-based 3D scanning applications, typically 
using two photographic images, as compared to reference methods (2, 
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6, 8). Graybeal et al. (2) demonstrated a similar high reliability of BF% 
estimates (TEM of 0.3–0.4%) and good group-level performance as 
compared to a rapid 4-compartment model (r 0.85; statistical 

equivalence between methods based on a ± 2% equivalence region). 
However, RMSE values (5.0–5.1%) were slightly higher than in the 
present investigation (4.5%), and a larger magnitude of proportional 
bias was observed (slope of −0.25 vs. −0.01 to −0.07 in the present 
study). In a separate investigation using different 3D scanning 
applications, Graybeal et al. (6) observed TEM values of 0.3–0.6% for 
BF%, RMSE values of 3.9–6.2%, and statistical equivalence for some, 
but not all, scanning applications. As in other studies, negative 
proportional bias was observed, with slopes of −0.17 to −0.53 across 
applications. Collectively, some aspects of the performance of the 3D 
scanning applications evaluated in the present study are similar to 
prior investigations, with the reduction in the magnitude of 
proportional bias being a potentially notable difference.

The participants in the present investigation comprised a wide 
range of adiposity, with DXA BF% values of 10.6–54.7% and BMIs of 
16.9–48.5 kg/m2, as well as expected natural variation in overall body 
size and shape. An approximately even distribution between sexes 
(73 M, 58 F) and some representation of racial or ethnic minorities 
(35% of the sample) were also features of the sample. Collectively, 
these features contributed to a relatively diverse sample in terms of 
body size and composition, race and ethnicity, and sex. However, a 
limitation is the relatively young average age (33.7 ± 16.0 years). As 
such, the present results provide an important step in evaluating the 
smartphone-based 3D scanning procedures, but continued 
investigation is warranted in a variety of groups, including diverse 
racial and ethnic groups and middle-aged or older adults.

Smartphones are ubiquitous worldwide, with 2022 estimates 
indicating a median adult smartphone ownership rate of 85% across 
18 advanced economies—an increase from 76% in 2018 (19, 20). As 
such, numerous promising applications of smartphone-based health 
technologies can be considered. The accessibility of smartphone-
based 3D scanning allows for precise anthropometric evaluation and 
subsequent body composition estimation, providing new 
opportunities for individual users to track relevant body changes over 
time. For example, a simple implementation of this technology is the 
ability for smartphone-based 3D scanning to provide a precise 
estimate of waist circumference, thereby allowing one important 
component of cardiometabolic risk (21) to be easily assessed without 
the need for a trained assessor. Additionally, there are opportunities 
for anthropometric and body composition estimates to be integrated 
into weight management mobile applications to provide customized 
feedback and progress tracking. While the ability of 3D scanning to 
aid in the success of such weight management programs will be a 
topic for future investigation, the automated nature of such 
procedures reduces barriers to physical evaluations as compared to 
decades past. The ability to rapidly obtain automated measurements 
at home, using smartphone capabilities, could eliminate the need for 
in-person anthropometric assessment by health providers. Beyond 

TABLE 1 Participant characteristics.

All (n  =  131) M (n  =  73) F (n  =  58)

Mean SD Min Max Mean SD Min Max Mean SD Min Max

Age (y) 33.7 16.0 18.0 76.0 36.2 16.8 18.0 76.0 30.5 14.5 18.0 72.0

Height (cm) 172.2 10.0 151.5 194.9 178.4 7.7 163.4 194.9 164.5 6.9 151.5 183.3

Weight (kg) 81.5 21.4 42.0 168.9 90.9 21.3 54.4 168.9 69.8 14.9 42.0 105.4

BMI (kg/m2) 27.3 5.9 16.9 48.5 28.5 6.0 17.8 48.5 25.8 5.5 16.9 41.9

DXA BF% 29.9 9.9 10.6 54.7 26.7 9.8 10.6 49.4 33.9 8.6 16.9 54.7

FIGURE 1

Humanoid avatars from 3-dimensional optical imaging scans. 
Sample female (left column) and male (right column) avatars are 
displayed for participants categorized as being underweight (i.e., 
BMI  <  18.5  kg/m2; top row), healthy weight (i.e., 18.5  kg/
m2  <  BMI  <  24.9  kg/m2; second row from top), overweight (i.e., 
25.0  kg/m2  <  BMI  <  29.9  kg/m2; middle row), or obese (i.e., 
BMI  >  30.0  kg/m2; bottom two rows).
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using simple metrics like waist circumference and BF%, there are also 
opportunities to employ various machine learning and artificial 
intelligence procedures to characterize unique body phenotypes and 
their relationship to health and disease parameters (22, 23). Pairing 
smartphone-based 3D scans with relevant clinical data—such as 
blood lipids, glucose, and blood pressure—may allow for better 
understanding of the influence of body shape and size on relevant 

cardiometabolic risk factors, both at the group and individual level. 
Future investigations including a greater proportion of participants 
with obesity and related comorbidities will provide further clarity 
regarding the utility of this technology. Due to the lack of risk and 
non-invasive nature of 3D scanning assessments, other medical 
applications—such as the monitoring of pregnant and breastfeeding 
individuals—should also be considered in subsequent work. While 

TABLE 2 Validity results.

DXA 3D scanning Validity analysis

Mean SD Min Max
BF% 

estimate
Mean SD Min Max MD

SD 
of 

MD
SEE RMSE r CCC Equivalence?

29.9 9.9 10.6 54.7
ADAM 29.7 9.8 11.0 55.6 −0.2 4.5 4.3 4.5 0.90* 0.90* Y (p < 0.01)

COCO 31.1 9.3 14.4 56.0 1.3 4.4 4.1 4.5 0.90* 0.89* Y (p = 0.03)

MD, mean difference; SEE, standard error of the estimate; RMSE, root mean square error; r, Pearson’s correlation coefficient; CCC, Lin’s concordance correlation coefficient; Y, yes (statistically 
equivalent); BF%, body fat %; ADAM, Automatic Detection of Athlete Mode 3D scanning equation; COCO, COmpound Circumferences Only 3D scanning equation.
*p < 0.001.

FIGURE 2

Body fat percentage estimates from smartphone-based 3-dimensional optical imaging. Two prediction equations, ADAM and COCO, were evaluated 
as compared to DXA. Relationships between 3DO-based values and DXA values are displayed in panels (A,C), with the dotted line indicating the perfect 
linear relationship (line of identity) and the solid black line with shading representing the observed linear relationship and 95% confidence bands. Data 
points indicate individual participants. Bland–Altman plots are displayed in panels (B,D), with dashed lines indicated the 95% limits of agreement, the 
horizontal solid black line indicating the mean difference (i.e., constant error), and the diagonal black line with shading indicating the observed linear 
relationship and 95% confidence bands.

46

https://doi.org/10.3389/fmed.2024.1485450
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Tinsley et al. 10.3389/fmed.2024.1485450

Frontiers in Medicine 06 frontiersin.org

future research and development will be  needed to realize the 
potential of 3D scanning as a component of health assessment, 
emerging findings indicate notable potential of smartphone-
based methods.

In summary, the present study demonstrates the validity of body 
composition estimation from smartphone-based 3D scanning. Unlike 
previous trials of smartphone technologies, the humanoid avatars 
constructed by the 3D scanning application were based on large 
amounts of visual data collected during complete subject rotation. 
With the reliability (7) and validity of these procedures established, 
new applications of this technology can be investigated. Additionally, 
continued refinement of body composition prediction in diverse 
populations can promote the lowest errors achievable and maximize 
the ability to accurately track changes over time. While continual 
advances are likely, smartphone-based 3D scanning may now 
be  suitable for implementation for rapid and accessible body 
measurement in a variety of applications.
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Correlation between body mass 
index and gender-specific 28-day 
mortality in patients with sepsis: a 
retrospective cohort study
Chong Li 1†, Huaping Huang 2†, Qingjie Xia 3 and Li Zhang 3*
1 Department of Osteoporosis, The First People’s Hospital of Kunshan Affiliated with Jiangsu 
University, Kunshan, China, 2 Department of Graduate Office, The First People’s Hospital of Kunshan 
Affiliated with Jiangsu University, Kunshan, China, 3 Department of Anesthesiology, The First People’s 
Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, China

Objective: To investigate the potential correlation between body mass index 
(BMI) and the 28-day mortality rate among sepsis patients and the gender 
difference in this association.

Design: The current research was a retrospective cohort study.

Participants: A total of 14,883 male and female cohorts of sepsis patients were 
included in the Medical Information Mart for Intensive Care IV (MIMIC-IV V2.2) 
database. Patients in each gender cohort were further classified as underweight, 
normal weight, overweight, or obese according to BMI and the World Health 
Organization (WHO) BMI categories.

Outcomes: The 28-day mortality from the date of ICU hospitalization was the 
primary outcome measure.

Results: The BMI and 28-day mortality exhibited an L-shaped relationship (p 
for nonlinearity <0.001) with significant gender-specific differences. Subgroup 
analysis revealed different association patterns between the male and female 
cohorts. Specifically, BMI and mortality exhibited a U-shaped curve relationship 
among the males (p for nonlinearity <0.001) and an L-shaped relationship 
among the females (p for nonlinearity  =  0.045).

Conclusion: This study proposes a link between extreme BMI and 28-day 
mortality in patients with sepsis. Underweight patients have an increased risk of 
mortality; however, this risk decreases in overweight and obese patients. Upon 
stratifying by sex, a U-shaped pattern was observed, indicating an association 
between BMI and 28-day mortality in males, while an L-shaped pattern emerged 
in females.

KEYWORDS

sepsis, obesity, mortality, body mass index, gender

Introduction

In the last 3 years, there has been a significant rise in the worldwide occurrence of 
overweight and obese individuals. The overall incidence has risen from 28.8 to 36.9% among 
males, and among women, it has increased from 29.8 to 38.0% (1). Obesity traits are linked to 
the leading global causes of death (2), with discernible gender differences in the risk impact 
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of certain diseases. For instance, research indicates that overweight 
women have a higher risk of type 2 diabetes than men. In comparison, 
overweight men have a higher risk of chronic diseases like chronic 
kidney disease and chronic obstructive pulmonary disease 
(COPD) (3).

The yearly global incidence of sepsis is approximately 30 million, 
resulting in 6 million deaths (4). However, obesity unexpectedly 
appears to protect against death from all causes in individuals with 
sepsis (5). This was called “reverse epidemiology” or the “obesity 
paradox” (6, 7). Previous studies found that overweight and obese 
individuals had much lower mortality rates associated with sepsis than 
normal-weight individuals (5, 8, 9). Research has provided insights 
into the link between body mass index (BMI), sepsis-associated death, 
and age (10); however, a specific gender-based impact of BMI on 
sepsis-related mortality and the gender-specific link between BMI and 
sepsis-associated mortality in individuals has not been 
explicitly addressed.

A critical analysis of existing research reveals methodological and 
sample characteristic differences, which brings the reliability of these 
studies to question. To address this knowledge gap, the current study 
explored the relationship between BMI, gender, and sepsis mortality, 
overcoming previously identified limitations. This offers a new insight 
into the intricate interplay of obesity, gender, and sepsis mortality.

In addition, previous research frequently regards BMI as either a 
continuous or categorical factor, which fails to fully capture the 
intricate dose–response correlation between BMI and sepsis-
associated mortality. The present research work deviated from 
traditional methods by utilizing restricted cubic splines (RCSs) to 
elucidate the dose–response relationship. After comprehensively 
evaluating for the obesity paradox in a cohort of patients with sepsis, 
the main objective was to get a detailed comprehension of a possible 
obesity paradox in sepsis prognosis. Investigate for differences in the 
association between BMI and mortality in men versus women.

Methods

Study design

The current work adhered to the standards outlined in the 
STROBE statement. This retrospective investigation of patients with 
sepsis was longitudinal and single-center.

Patient and public involvement

The study did not include active participation from patients or the 
general public.

Data source

The Medical Information Mart for Intensive Care IV (MIMIC-IV 
V2.2) database is a carefully curated and identifiable collection of 
medical records from patients hospitalized in the intensive care unit 
(ICU) between 2008 and 2019. The authorization to utilize MIMIC-IV 
data for research (Certification Number: 38807989) was secured, 
having satisfactorily concluded the National Institutes of Health 

Protecting Human Research Participants training course. The Ethics 
Committee of Kunshan First People’s Hospital approved the study 
(Ethics Number 2023–04-001-K02).

Study population

The study comprised 14,883 individuals diagnosed with sepsis 
who had BMI information. Participants were recruited from the 
MIMIC-IV database (11). The Third International Consensus 
Definitions for Sepsis and Septic Shock (Sepsis-3) guidelines were 
used to describe sepsis. The initial screening included patients with a 
sepsis diagnosis, including those with sepsis, severe sepsis, and septic 
shock (ICD9 codes: 99591, 99,592, 78,552, respectively). Exclusion 
criteria included patients who were under 18 years old and had ICU 
stays of less than 24 h. For multiple admissions, only the first ICU 
admission records were considered.

Data retrieval

The extraction of data was executed with Structured Query 
Language (SQL). Patients’ age, sex, race, BMI, and Charlson 
comorbidity index were recorded. Records about the administration 
of vasopressors, mechanical ventilation, and sedatives within the first 
24 h after admission to the ICU were also collected. Comorbidity data, 
such as diabetes mellitus, congestive heart failure (CHF), coronary 
artery disease (CAD), hypertension, stroke, renal disease, atrial 
fibrillation (AFIB), liver disease, chronic pulmonary disease, and 
malignant tumor, were gathered using the International Classification 
of Diseases coding systems. The initial data collected at the onset of 
sepsis included vital signs (heart rate and minimum arterial pressure), 
the severity of illness [Simplified Acute Physiologic Score (SAPS), 
laboratory tests partial pressure of oxygen (PO2), hemoglobin 
concentration, white blood cell count, lactate, creatinine, glucose and 
pH levels] and sequential organ failure assessment (SOFA), 
were retrieved.

Exposure and outcomes

The exposure was BMI, calculated as weight (kg)/height2 (m2). The 
primary outcome assessed was the mortality due to any cause within 
28 days. Secondary outcomes examined were the mortality after 1 year 
and the duration of stay in the ICU.

Statistical analysis

This retrospective study did not use a priori statistical analysis 
strategy and statistical power calculation. Based on the data that was 
already present in the database, the sample size was selected. The 
primary indicator for the research was BMI. All missing values, entries 
with recording errors, and other potential confounding factors with 
missing values exceeding 10% were excluded.

Supplementary Table S1 shows the variable missing rates. Missing 
values for each variable were estimated using multiple imputations (9). 
Multicollinearity among variables was detected using the variance 
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inflation factor. The absence of multicollinearity for each variable was 
indicated by a variance inflation factor of <5 (Supplementary Table S2).

BMI was categorized into underweight (less than 18.5 kg/m2), 
normal weight (18.5–24.9 kg/m2), overweight (25–29.9 kg/m2), and 
obese (more than 30 kg/m2) using the World Health Organization 
(WHO) standards. Fifteen patients were excluded due to presumed 
erroneous data defined as BMI > 100 kg/m2. The patients were also 
grouped according to age as <60, 60–80, and ⩾ 80. Categorical 
variables were represented using numbers and percentages, and 
between-group differences were found using chi-squared and Fisher’s 
exact tests. Continuous variables were expressed using medians and 
interquartile-range values, and between-group differences were 
identified using the Mann–Whitney U test. Multivariable logistic 
regression models were used to evaluate the association between 
different BMI categories and 28-day mortality in sepsis patients. 
We constructed two regression models to control for confounding 
biases by adjusting for covariates. The selection of covariates was 
driven both theoretically and statistically. Some covariates, 
theoretically associated with mortality, were fixed in the model, such 
as age, gender, race, SAPS, SOFA, and Charlson Comorbidity Index. 
Other variables were selected using statistical methods. First, variables 
with variance inflation factors greater than 5 were excluded to avoid 
multicollinearity. We  constructed both unadjusted and adjusted 
models. The adjusted model included age, gender, race, SAPS, SOFA, 
Charlson comorbidity index, diabetes, hypertension, coronary artery 
disease, congestive heart failure, atrial fibrillation, malignancy, stroke, 
chronic obstructive pulmonary disease, renal disease, liver disease and 
glucose. The nonlinear relationship between BMI and 28-day all-cause 
mortality was assessed using RCSs Nonlinear model knots were used 
to distribute BMI into quartiles. The nonlinear association between 
BMI and patient all-cause mortality was analyzed, and its p-value 
was calculated.

A subgroup analysis of sex and age was also performed to explore 
potential relationships within specific subgroups.

The statistical analyses were conducted using R software (version 
4.2.3; R Foundation for Statistical Computing, Vienna, Austria) and 
Empowerstats.1 Statistical significance was determined at a two-tailed 
p-value of less than 0.05.

Results

Patient selection

Supplementary Figure S1 outlines the patient selection process 
identifying 25,599 records. The cohort consisted of 14,883 patients 
after excluding unqualified records.

Demographic and hospitalization 
characteristics by BMI

Table  1 summarizes the demographic and hospitalization 
characteristics of male patients with sepsis (n = 9,022). A significant 

1 http://www.empowerstats.com

age difference exists among the BMI categories (p < 0.001). Older age 
showed a significant association with lower BMI and vice versa. 
Remarkably, BMI significantly impacts disease severity, as evidenced 
by SAPS (p < 0.001) and the Charlson comorbidity index (p < 0.001). 
This demonstrates an inverse relationship between lower BMI and 
higher scores on SAPS and the Charlson comorbidity index. 
Significant differences in comorbidities (p < 0.001) were observed, 
including atrial fibrillation, diabetes, renal disease, COPD, 
hypertension, liver disease, and metastatic cancer. Key vital signs and 
laboratory parameters exhibited significant differences among BMI 
categories. Clinical interventions, such as mechanical ventilation and 
vasopressor use, displayed BMI-related variations (p < 0.001).

Table  2 presents the demographic and hospitalization 
characteristics of female patients with sepsis (n = 5,861). Similar to 
males, older age was significantly associated with lower BMI 
(p < 0.001). Both SOFA scores (p = 0.047) and the Charlson 
comorbidity index (p = 0.044) showed significant differences across 
BMI groups. Although the median Charlson comorbidity index was 
consistent at 5.0 across BMI groups, further analysis suggested that 
females with lower BMI tended to have a higher burden of 
comorbidities, which is reflected in the significant differences observed 
across the BMI categories. Significant differences in comorbidities 
(p < 0.001) were observed, including diabetes, renal disease, COPD, 
and hypertension. BMI-related differences were noted in the vital 
signs and laboratory parameters. Clinical interventions, such as 
mechanical ventilation, exhibited BMI-related variations (p < 0.001).

Comparison of outcomes in different 
genders

Table 3 and Supplementary Table S3 presents the patient outcomes 
stratified by BMI and age categories. There were significant differences 
in the duration of ICU stay and the rates of death at 28 days and 1 year 
among male patients, depending on their BMI categories (p < 0.001), 
with obese patients having the longest mean ICU stay of 3.4 (1.7, 8.0) 
days. Underweight male patients experienced the highest 28-day (22%) 
and 1-year (53.2%) mortality. Obese males had the lowest risk of death, 
with a 28-day and 1-year mortality of 12.5 and 22.3%, respectively.

In female patients, ICU stay did not differ between BMI groups 
(p = 0.108). However, 28-day and 1-year mortality varied substantially 
by BMI (p < 0.001). Underweight females had markedly elevated 
mortality, with 28-day and 1-year rates of 28.2 and 44.1%, respectively. 
Obese females experienced relatively lower mortality of 15.7% at 
28 days and 28.6% at 1 year.

Gender differences in the correlation 
between BMI and mortality

Supplementary Table S4 presents the multivariable logistic 
regression analysis results showing the relationship between 
mortality and BMI. After accounting for potential confounders 
that might influence the results (Supplementary Table S5), each 
unit rise in BMI was linked to 2% lower odds of 28-day mortality 
[adjusted odds ratio (OR) = 0.98, 95% confidence interval 
(CI) = 0.98, 0.99, p < 0.001]. When stratified by gender, the 
outcomes showed a significant correlation (p for 
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TABLE 1 Demographic information and hospitalization characteristics of male sepsis patients.

Demographic or 
hospitalization 
characteristic

Overall
n  =  9,022

Healthy weight
(18.5–24.9  kg/m2);

n  =  2,441

Underweight
(<18.5  kg/m2); n  =  186

Overweight
(25.0–29.9  kg/m2); 

n  =  3,276

Obese (≥30.0  kg/m2); 
n  =  3,119

P-value

Age (years) 63.6 ± 15.1 65.3 ± 16.8 65.4 ± 17.1 64.7 ± 15.0 61.1 ± 13.4 < 0.001

Age, n (%) < 0.001

<60 3,207 (35.5) 791 (32.4) 60 (32.3) 1,084 (33.1) 1,272 (40.8)

60–80 4,442 (49.2) 1,093 (44.8) 80 (43) 1,638 (50) 1,631 (52.3)

≥80 1,373 (15.2) 557 (22.8) 46 (24.7) 554 (16.9) 216 (6.9)

Race and ethnicity, n (%) < 0.001

Asian 239 (2.7) 130 (5.3) 4 (2.2) 76 (2.3) 29 (0.9)

Black 563 (6.2) 188 (7.7) 28 (15.1) 159 (4.9) 188 (6)

Hispanic 307 (3.4) 98 (4) 8 (4.3) 105 (3.2) 96 (3.1)

White 6,191 (68.7) 1,569 (64.3) 109 (58.6) 2,320 (70.9) 2,193 (70.3)

Unknown/Other 1716 (19.0) 454 (18.6) 37 (19.9) 612 (18.7) 613 (19.7)

SAPS score 37.0 (29.0, 47.0) 37.0 (30.0, 47.0) 40.0 (32.2, 48.0) 36.0 (29.0, 46.0) 37.0 (29.0, 47.0) < 0.001

SOFA 2.0 (0.0, 4.0) 2.0 (0.0, 4.0) 1.0 (0.0, 3.0) 2.0 (0.0, 4.0) 2.0 (0.0, 4.0) 0.01

Charlson comorbidity index 5.0 (3.0, 7.0) 5.0 (3.0, 7.0) 6.0 (4.0, 8.0) 4.0 (3.0, 7.0) 4.0 (3.0, 6.0) < 0.001

Comorbidity

AFIB, n (%) 3,110 (34.5) 818 (33.5) 46 (24.7) 1,161 (35.4) 1,085 (34.8) 0.016

Diabetes, n (%) 2,847 (31.6) 565 (23.1) 46 (24.7) 922 (28.1) 1,314 (42.1) < 0.001

CHF, n (%) 1,461 (16.2) 390 (16) 29 (15.6) 513 (15.7) 529 (17) 0.537

Renal disease, n (%) 7,445 (82.5) 1864 (76.4) 143 (76.9) 2,656 (81.1) 2,782 (89.2) < 0.001

COPD, n (%) < 0.001

543 (6.0) 146 (6) 23 (12.4) 165 (5) 209 (6.7)

Hypertension, n (%) 4,075 (45.2) 933 (38.2) 55 (29.6) 1,550 (47.3) 1,537 (49.3) < 0.001

CAD, n (%) 1,186 (13.1) 304 (12.5) 20 (10.8) 416 (12.7) 446 (14.3) 0.104

Stroke, n (%) 874 (9.7) 252 (10.3) 16 (8.6) 325 (9.9) 281 (9) 0.359

Liver disease, n (%) 2,123 (23.5) 581 (23.8) 64 (34.4) 706 (21.6) 772 (24.8) < 0.001

(Continued)
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Demographic or 
hospitalization 
characteristic

Overall
n  =  9,022

Healthy weight
(18.5–24.9  kg/m2);

n  =  2,441

Underweight
(<18.5  kg/m2); n  =  186

Overweight
(25.0–29.9  kg/m2); 

n  =  3,276

Obese (≥30.0  kg/m2); 
n  =  3,119

P-value

Metastatic cancer, n (%) 2036 (22.6) 611 (25) 62 (33.3) 794 (24.2) 569 (18.2) < 0.001

Vital signs

MAP (mm Hg) 53.7 ± 11.3 53.0 ± 11.5 51.6 ± 12.5 54.4 ± 10.9 53.8 ± 11.5 < 0.001

Heart rate (beats/min) 116.3 ± 24.4 116.7 ± 23.8 121.6 ± 30.8 115.0 ± 24.5 117.1 ± 24.3 < 0.001

Laboratory tests

PO2 (mmHg) 67.0 (42.0, 95.0) 67.0 (41.0, 104.0) 48.0 (36.0, 90.8) 71.0 (44.0, 99.0) 64.0 (42.0, 87.0) < 0.001

Lactate (mmol/L) 2.4 (1.7, 3.7) 2.5 (1.7, 3.8) 2.1 (1.6, 3.4) 2.4 (1.8, 3.6) 2.4 (1.7, 3.7) 0.08

Hemoglobin (g/dL) 8.7 ± 1.9 8.5 ± 1.8 8.2 ± 1.8 8.7 ± 1.9 8.9 ± 2.0 < 0.001

pH 7.3 ± 0.1 7.3 ± 0.1 7.3 ± 0.1 7.3 ± 0.1 7.3 ± 0.1 < 0.001

Creatinine (mg/dL) 1.1 (0.9, 1.7) 1.0 (0.8, 1.6) 1.0 (0.8, 2.0) 1.1 (0.9, 1.6) 1.2 (0.9, 1.9) < 0.001

White blood cell counts (×109/L) 16.0 (12.0, 21.2) 15.5 (11.6, 20.6) 16.0 (11.5, 21.5) 15.7 (11.9, 20.5) 16.7 (12.5, 21.9) < 0.001

Glucose, (mg/dL) 131.0 (108.0, 166.0) 124.0 (103.0, 156.0) 123.0 (103.0, 152.8) 131.0 (108.0, 164.0) 138.0 (112.0, 177.0) < 0.001

Interventions

Mechanical ventilation use, n (%) 8,459 (93.8) 2,233 (91.5) 170 (91.4) 3,089 (94.3) 2,967 (95.1) < 0.001

Vasopressor use, n (%) 5,552 (61.5) 1,464 (60) 100 (53.8) 2038 (62.2) 1950 (62.5) 0.027

Sedative use, n (%) 635 (7.0) 156 (6.4) 8 (4.3) 225 (6.9) 246 (7.9) 0.064

Continuous Variables: Normally distributed variables are shown as mean (± SD), and non-normally distributed variables as median (IQR). Categorical Variables: Categorical variables are presented as counts and percentages (%). BMI, Body Mass Index; MAP, Mean 
Arterial Pressure; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure Assessment; COPD, Chronic obstructive pulmonary disease; CAD, Coronary artery disease; CHF, Congestive heart failure; AFIB, Atrial fibrillation.

TABLE 1 (Continued)
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TABLE 2 Demographic information and hospitalization characteristics of female sepsis patients.

Demographic or 
hospitalization 
characteristic

Overall
n  =  5,861

Healthy weight
(18.5–24.9  kg/m2); 

n  =  1,767

Underweight
(<18.5  kg/m2); n  =  245

Overweight
(25.0–29.9  kg/m2); 

n  =  1,632

Obese (≥30.0  kg/m2); 
n  =  2,217

P-value

Age (years) 66.2 ± 16.0 67.6 ± 17.1 68.9 ± 16.8 67.3 ± 16.5 64.1 ± 14.4 < 0.001

Age, n (%) < 0.001

<60 1775 (30.3) 511 (28.9) 57 (23.3) 470 (28.8) 737 (33.2)

60–80 2,771 (47.3) 751 (42.5) 113 (46.1) 726 (44.5) 1,181 (53.3)

≥80 1,315 (22.4) 505 (28.6) 75 (30.6) 436 (26.7) 299 (13.5)

Race and ethnicity, n (%) < 0.001

Asian 124 (2.1) 68 (3.9) 7 (2.9) 35 (2.1) 14 (0.6)

Black 568 (9.7) 143 (8.1) 25 (10.2) 150 (9.2) 250 (11.3)

Hispanic 173 (3.0) 33 (1.9) 1 (0.4) 54 (3.3) 85 (3.8)

White 3,992 (68.2) 1,208 (68.4) 171 (69.8) 1,127 (69.2) 1,486 (67.1)

Unknown/Other 997 (17.0) 313 (17.7) 41 (16.7) 263 (16.1) 380 (17.2)

SAPS score 38.0 (30.0, 48.0) 38.0 (30.0, 48.0) 40.0 (31.0, 52.0) 38.0 (30.0, 48.0) 38.0 (30.0, 48.0) 0.135

SOFA 1.0 (0.0, 3.0) 1.0 (0.0, 3.0) 1.0 (0.0, 3.0) 1.0 (0.0, 3.0) 1.0 (0.0, 4.0) 0.047

Charlson comorbidity index 5.0 (3.0, 7.0) 5.0 (3.0, 7.0) 5.0 (4.0, 7.0) 5.0 (3.0, 7.0) 5.0 (3.0, 7.0) 0.044

Comorbidity

AFIB, n (%) 1890 (32.2) 588 (33.3) 69 (28.2) 530 (32.5) 703 (31.7) 0.382

Diabetes, n (%) 1739 (29.7) 341 (19.3) 32 (13.1) 443 (27.1) 923 (41.6) < 0.001

CHF, n (%) 1,085 (18.5) 331 (18.7) 36 (14.7) 321 (19.7) 397 (17.9) 0.22

Renal disease, n (%) 4,748 (81.0) 1,294 (73.2) 171 (69.8) 1,293 (79.2) 1990 (89.8) < 0.001

COPD, n (%) 491 (8.4) 137 (7.8) 30 (12.2) 118 (7.2) 206 (9.3) 0.012

Hypertension, n (%) 2,672 (45.6) 728 (41.2) 90 (36.7) 761 (46.6) 1,093 (49.3) < 0.001

CAD, n (%) 482 (8.2) 132 (7.5) 16 (6.5) 134 (8.2) 200 (9) 0.248

Stroke, n (%) 668 (11.4) 224 (12.7) 26 (10.6) 193 (11.8) 225 (10.1) 0.081

Liver disease, n (%) 1,302 (22.2) 370 (20.9) 62 (25.3) 364 (22.3) 506 (22.8) 0.321

Metastatic cancer, n (%) 1,382 (23.6) 475 (26.9) 76 (31) 357 (21.9) 474 (21.4) < 0.001

(Continued)
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Demographic or 
hospitalization 
characteristic

Overall
n  =  5,861

Healthy weight
(18.5–24.9  kg/m2); 

n  =  1,767

Underweight
(<18.5  kg/m2); n  =  245

Overweight
(25.0–29.9  kg/m2); 

n  =  1,632

Obese (≥30.0  kg/m2); 
n  =  2,217

P-value

Vital signs

MAP (mm Hg) 51.3 ± 11.0 51.7 ± 11.3 51.2 ± 11.7 51.3 ± 10.9 50.9 ± 10.9 0.132

Heart rate (beats/min) 118.7 ± 24.4 119.6 ± 24.6 120.5 ± 24.4 117.5 ± 24.3 118.6 ± 24.2 0.044

Laboratory tests

PO2 (mmHg) 62.0 (39.0, 90.0) 63.0 (40.0, 94.0) 51.5 (36.8, 86.5) 64.0 (39.0, 92.0) 61.0 (39.0, 85.0) 0.003

Lactate (mmol/L) 2.5 (1.6, 3.9) 2.4 (1.6, 3.9) 2.1 (1.5, 3.5) 2.5 (1.6, 3.9) 2.6 (1.6, 4.0) 0.045

Hemoglobin (g/dL) 8.1 ± 1.7 8.0 ± 1.7 8.2 ± 1.7 8.1 ± 1.7 8.2 ± 1.8 0.145

pH 7.3 ± 0.1 7.3 ± 0.1 7.3 ± 0.1 7.3 ± 0.1 7.3 ± 0.1 < 0.001

Creatinine (mg/dL) 0.9 (0.7, 1.5) 0.8 (0.6, 1.3) 0.9 (0.6, 1.4) 0.9 (0.7, 1.4) 1.0 (0.7, 1.6) < 0.001

White blood cell counts (×109/L) 16.2 (12.1, 21.7) 16.0 (11.9, 21.7) 15.2 (11.1, 20.2) 15.8 (11.8, 21.3) 16.7 (12.6, 22.1) <0.001

Glucose (mg/dL) 133.0 (108.0, 170.0) 126.0 (103.0, 157.0) 127.0 (104.0, 160.0) 131.0 (107.0, 166.0) 141.0 (113.0, 181.0) < 0.001

Interventions

Mechanical ventilation use, n 

(%)
5,390 (92.0) 1,583 (89.6) 222 (90.6) 1,499 (91.9) 2086 (94.1) < 0.001

Vasopressor use, n (%) 3,354 (57.2) 977 (55.3) 128 (52.2) 952 (58.3) 1,297 (58.5) 0.058

Sedative use, n (%) 422 (7.2) 118 (6.7) 18 (7.3) 115 (7) 171 (7.7) 0.646

Continuous Variables: Normally distributed variables are shown as mean (± SD), and non-normally distributed variables as median (IQR). Categorical Variables: Categorical variables are presented as counts and percentages (%). BMI, Body Mass Index; MAP, Mean 
Arterial Pressure; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure Assessment; COPD, Chronic obstructive pulmonary disease; CAD, Coronary artery disease; CHF, Congestive heart failure; AFIB, Atrial fibrillation.

TABLE 2 (Continued)
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interaction = 0.014). For females, being underweight was linked 
to 80% higher odds of 28-day mortality in comparison to having 
a normal weight (adjusted OR = 1.80, 95% CI = 1.28, 2.53, 
p = 0.001). No significant relationships were seen in the 
overweight and obese categories. In males, both overweight and 
obesity were linked to 33% lower odds of 28-day mortality 
relative to normal weight. The adjusted OR were 0.67 (95% 
CI = 0.57, 0.79, p < 0.001) for overweight and 0.67 (95% CI = 0.57, 
0.80, p < 0.001) for obesity (Supplementary Table S6).

RCS analyses of nonlinear relationships

RCS models were developed to evaluate the link between BMI 
and mortality. Figure  1 depicts the dose–response curves 
demonstrating the correlation between BMI and 28-day all-cause 
mortality. The curves were obtained after performing logistic 
analysis and adjusting for significant covariates. The dose–response 
analysis demonstrated a L-shaped curve depicting the relationship 

between BMI and the risk of 28-day all-cause mortality (p for 
nonlinearity <0.001) (Figure 1A).

According to subgroup analysis, there was significant variation in 
the link between BMI and 28-day mortality in males versus females. 
RCS models were constructed for sex-stratified analysis. Figure 1B 
shows a U-shaped curve relationship between BMI and 28-day 
all-cause mortality in male patients with sepsis (p for nonlinearity 
<0.001). However, it reveals an L-shaped correlation between these 
two factors in the female patients (p for nonlinearity = 0.045) 
(Figure 1C). In our cohort, there were 3,418 patients with late-stage 
cancer. The results of a secondary analysis excluding these patients 
were consistent with the original findings, indicating that the inclusion 
of late-stage cancer patients did not significantly alter the overall 
results. Analyses were also conducted of the results in different age 
groups and Charlson comorbidity index score groups 
(Supplementary Figures S2, S3). This study produced curve-fitting 
graphs for BMI and 28-day mortality, considering various factors such 
as gender, age, and Charlson comorbidity index scores 
(Supplementary Figure S4).

TABLE 3 Mortality in different BMI patients with sepsis.

Outcome Overall Healthy weight 
(18.5–24.9  kg/m2)

Underweight 
(<18.5  kg/m2)

Overweight (25.0–
29.9  kg/m2)

Obese 
(≥30.0  kg/m2)

P-value

Male n = 9,022 n = 2,441 n = 186 n = 3,276 n = 3,119

Time in ICU (days) 3.2 (1.5,7.1) 3.3 (1.7, 7.0) 3.3 (2.0, 7.7) 3.1 (1.4, 6.5) 3.4 (1.7, 8.0) < 0.001

28-day mortality, n (%) 1,279 (14.2) 436 (17.9) 41 (22) 413 (12.6) 389 (12.5) < 0.001

1-year mortality, n (%) 2,403 (26.6) 838 (34.3) 99 (53.2) 770 (23.5) 696 (22.3) < 0.001

Female n = 5,861 n = 1767 n = 245 n = 1,632 n = 2,217

Time in ICU (days) 3.7 (1.9,7.8) 3.7 (1.9, 7.8) 3.9 (1.9, 7.3) 3.6 (1.7, 7.6) 3.8 (2.0, 8.1) 0.108

28-day mortality, n (%) 1,000 (17.1) 304 (17.2) 69 (28.2) 279 (17.1) 348 (15.7) < 0.001

1-year mortality, n (%) 1,842 (31.4) 609 (34.5) 108 (44.1) 490 (30) 635 (28.6) < 0.001

FIGURE 1

Restricted spline curves for the association between BMI and 28-day mortality. The graphs present odds ratios (ORs) for 28-day mortality, adjusting for 
age, gender, race, SAPS, SOFA, and the Charlson comorbidity index. It also adjusts for various comorbidities, including hypertension, stroke, congestive 
heart failure, renal disease, diabetes, chronic obstructive pulmonary disease, atrial fibrillation, malignancy cancer, coronary artery disease, and liver 
disease. Additionally, the analysis was adjusted for blood glucose levels to account for its potential impact on the outcomes. Logistic regression 
modeling facilitated data fitting. Solid lines on the graphs denote ORs, with shaded areas representing 95% confidence intervals (CIs). OR, odds ratio; 
CI, confidence interval.
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Change points and associations in the 
BMI-mortality relationship

Table 4 presents the estimated change points associated with BMI 
and 28-day mortality. For the entire cohort, a BMI change point was 
identified at 27.89 kg/m2. Below this change point, each 1 kg/m2 
increment in the BMI was linked with an OR of 0.94 (95% CI = 0.92, 
0.96, p < 0.001) for mortality, indicating a protective effect. Above this 
BMI threshold, the OR per 1 kg/m2 increase was neutral at 1.01 (95% 
CI = 1.00, 1.02, p = 0.283), suggesting no additional risk. Gender-
specific analyses revealed a higher BMI change point for males 
(29.22 kg/m2) than females (20.67 kg/m2). The protective association 
below the change point was more pronounced in the males (OR = 0.93, 
95% CI = 0.91, 0.95, p < 0.001) than in the overall cohort, with a slight 
increase in mortality risk above the change point (OR = 1.02, 95% 
CI = 1.00, 1.03, p = 0.030). Females exhibited a more substantial 
protective effect below their lower change point (OR = 0.86, 95% 
CI = 0.80, 0.93, p < 0.001), with a neutral effect above it (OR = 0.99, 95% 
CI = 0.98, 1.00, p = 0.129). Stratifying by age and Charlson comorbidity 
index revealed variability in change points and effect sizes but 
consistently showed a relation between lower BMI and higher 
mortality risk.

Discussion

Our study data indicate a correlation between BMI and mortality 
in sepsis patients. The findings suggest that low BMI may have adverse 
consequences, as underweight individuals exhibited higher mortality 
rates. Conversely, obese patients showed lower mortality rates, 

suggesting a potential protective effect of higher BMI. The relationship 
between 28-day mortality and BMI demonstrated an L-shaped curve, 
with significant gender-specific differences. Specifically, females 
exhibited an L-shaped relationship, while males exhibited a U-shaped 
relationship. The BMI-mortality relationship in sepsis patients was 
analyzed using piecewise two-line models to estimate change points 
and mortality associations on either side of these points. The results 
emphasize an intricate relationship that relies on BMI thresholds, 
which differ according to gender, age, and comorbidity burden, as 
assessed by the Charlson comorbidity index. These results emphasize 
the need to consider individual patient characteristics in the 
BMI-mortality assessment for sepsis patients. The identified BMI 
change points and their differential effects reinforce the concept of an 
“obesity paradox,” suggesting a survival benefit for higher BMI up to 
a certain point.

The present study underscores that the correlation between BMI 
and 28-day mortality varies markedly between sexes—higher risk in 
underweight females and a protective effect in overweight and obese 
males. Consistent with another study, which showed that male 
participants with higher BMI exhibited a lower risk of mortality than 
female participants (12). In sepsis patients, a significant sex and BMI 
relationship was found in the current investigation. RCS analysis 
indicated a pronounced nonlinear relationship in males, characterized 
by a U-shaped curve. On the other hand, females exhibited an 
L-shaped curve, requiring a deeper understanding of the physiological 
mechanisms involved. The U-shaped curve in males may relate to the 
combined effects of visceral fat and inflammatory responses, 
potentially leading to increased mortality. In contrast, the L-shaped 
curve in females might reflect the protective role of subcutaneous fat 
on cardiovascular health and immunity. Hormones like estrogen and 

TABLE 4 Estimated change points from piecewise two-line models in the relationship between BMI and mortality and the associations with mortality 
below and above the change point.

BMI change point, 
kg/m2 (95% CI)

OR per 1  kg/m2 BMI 
increase below change 

point (95% CI)

P-value OR per 1  kg/m2 BMI 
increase above change 

point (95% CI)

P-value

All sepsis patients 27.89 0.94 (0.92, 0.96) <0.001 1.01(1.00, 1.02) 0.283

Male (n = 9,022) 29.22 0.93 (0.91, 0.95) <0.001 1.02 (1.00, 1.03) 0.030

Age

<60 (3,207) 29.14 0.95 (0.91, 0.99) 0.014 1.02 (1.00, 1.04) 0.070

60–80 (4,442) 26.68 0.90 (0.87, 0.94) <0.001 1.00 (0.98, 1.02) 0.936

⩾80 (1,373) 29.22 0.9 (0.88, 0.96) <0.001 1.03 (0.96, 1.10) 0.389

Charlson comorbidity index

<6 27.85 0.92 (0.88, 0.95) <0.001 1.02 (1.00, 1.04) 0.063

⩾6 29.80 0.93 (0.91, 0.96) <0.001 1.01 (0.99, 1.03) 0.317

Female (n = 5,861) 20.67 0.86 (0.80, 0.93) <0.001 0.99 (0.98, 1.00) 0.129

Age

<60 (1,775) NA 1.00 (0.98, 1.02) 0.749

60–80 (2,771) 20.76 0.85 (0.77, 0.95) 0.004 0.99 (0.97, 1.00) 0.127

⩾80 (1,315) 20.53 0.74 (0.63, 0.86) <0.001 0.99 (0.97, 1.02) 0.696

Charlson comorbidity index

<6 22.31 0.82 (0.76, 0.89) <0.001 0.99 (0.97, 1.01) 0.276

⩾6 NA 0.99 (0.98, 1.01) 0.458

OR, odds ratio; NA, not available.
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testosterone, which differ between genders, could influence these 
patterns. Specifically, estrogen’s anti-inflammatory properties might 
contribute to better outcomes in females (13). The present results align 
with growing evidence of gender-specific health responses (14, 15), 
highlighting the distinct impacts of different fat types on metabolic 
health in males and females. One study indicated that gender 
differences significantly impact the critical points of BMI based on 
body fat percentage (16). This suggests that gender differences should 
be considered in weight and BMI studies.

The relationship between BMI and mortality associated with 
sepsis in patients has been the subject of several investigations. An 
inverse relationship between BMI and sepsis-related mortality was 
shown in a meta-analysis of observational data (17), and a higher BMI 
has been associated with improved survival rates among older 
individuals with sepsis (12) but not younger individuals with sepsis 
(18). An analysis of a group of Japanese patients with severe sepsis 
revealed a higher rate of death within 28 days among individuals with 
lower BMI (< 18.5 kg/m2) (19). Another meta-analysis reported 
decreased mortality in obese and overweight patients and increased 
mortality in patients who were underweight (20). Retrospective 
cohort research involving 55,038 adult patients diagnosed with sepsis 
revealed a correlation between obesity (BMI ≥ 30 kg/m2) and survival 
rates in sepsis, resulting in an absolute mortality reduction (21). Mica 
et al. proposed that fatty tissue associated with higher BMI exerts a 
protective effect against inflammatory reactions like sepsis, and 
elevations in leptin and inflammatory biomarkers like C-reactive 
protein within the obese population have been considered as having 
a mechanistic role in the obesity paradox (22–24).

However, the inverse relationship between BMI and sepsis-related 
mortality has been challenged by some studies indicating the opposite. 
In a retrospective cohort research involving 834 individuals with 
sepsis admitted to the ICU, obese patients had higher mortality rates 
than non-obese patients (23). Impaired immune function in the obese 
population causes a significant increase in mortality rates (25). 
Population-based cohort research conducted on 0.5 million Chinese 
adults found that compared with a reference BMI of 22.5 to <25.0 kg/
m2, the multivariable-adjusted hazard ratios for sepsis-related 
mortality were 2.42 for BMI < 18.5, 1.59 for 18.5 to <20.0, 1.21 for 20.0 
to <22.5, 0.97 for 25.0 to <27.5, 0.98 for 27.5 to <30.0, and 1.22 for 
≥30.0 kg/m2. The study also found increased sepsis-related mortality 
risk even in participants with low-and mid-normal weight (26). A 
two-sample Mendelian randomization study found that sepsis 
mortality at 28 days increased with increasing BMI; however, the effect 
disappeared at 90 days (27, 28). Confounders in causal inference in 
observational studies can lead to opposite conclusions. The correlation 
between BMI and mortality in sepsis patients is intricate, and the 
results from different research are inconclusive. Hence, the influence 
of BMI on sepsis-associated mortality may be contingent upon several 
elements and necessitates more investigation to achieve a 
thorough comprehension.

Although our data suggest that the overweight and obese groups 
had better survival chances compared to those with lower BMI, 
caution is warranted in interpreting these findings. Our analysis 
revealed that lower BMI groups had higher comorbidity scores, 
indicating that individuals with lower BMI may have more severe 
underlying health conditions, such as cachexia, which could negatively 
impact their prognosis. Therefore, the protective effect of a higher 
BMI may be partially attributable to the relatively better health status 

of these individuals. Although high BMI can predispose individuals 
to severe conditions, our findings indicate that individuals with higher 
BMI generally have better outcomes compared to those with severe 
comorbidities and lower BMI. This aligns with studies on acute 
respiratory distress syndrome (ARDS), where higher BMI was linked 
to better outcomes. Other pathophysiological mechanisms described 
in recent literature (29) may also explain these associations.

The study partially supports the existence of an obesity paradox 
in sepsis patients (30). Employing RCS, more precise ORs were 
derived. A lower OR was identified for BMI values of 27.7–42 kg/m2, 
which correlates with an increased survival rate. Multifactorial 
analysis revealed a lower mortality rate in the obese population. In 
contrast, curve-fitting results indicated that males with higher BMI 
had a higher mortality rate. The lower mortality rate in the obese 
population may be attributed to the higher prevalence of mild obesity. 
However, severe obesity was linked to a higher mortality rate. The 
curve-fitting results suggest that a more significant proportion of 
people with moderate obesity was responsible for the overall decrease 
in the death rate.

A significant association was found between elevated BMI and 
decreased death rates in comparison to the healthy BMI range 
recommended by the WHO, and given the age of the present study 
population was 64.66 ± 15.55 years, this fits with previous study 
results (12, 18). Aging leads to a redistribution of body 
composition, including a decrease in lean body mass and bone 
density, particularly with an increase in abdominal fat mass. A 
study revealed that the association between BMI and mortality is 
influenced, to some extent, by the associations of lean body mass 
and fat mass with mortality (31). Body composition markers, such 
as waist circumference, might reveal varying impacts on specific 
and overall mortality causes, offering a new understanding of the 
negative relationship between BMI and mortality (31–33). Our 
dataset lacked certain reliable indicators of mortality such as lean 
body mass and central obesity, and future studies on mortality and 
sepsis should include such markers of body composition. However, 
analyses from a study also indicated that a higher BMI correlates 
with lower mortality rates in older individuals, suggesting an 
increased demand for nutritional reserves in older age (34). These 
findings underscore the consideration of age in healthy weight 
recommendations, emphasizing the need for further research to 
determine the benefits of weight gain in the elderly.

Limitations

The present study provides insights into the link between BMI and 
gender-specific 28-day sepsis-associated mortality in patients. 
However, the current research has several limitations. First, as a 
retrospective analysis, the study is subject to information bias, which 
could result in inaccuracies or incomplete data. In particular, lipid 
variables such as Low-Density Lipoprotein cholesterol and 
triglycerides, which may be  strongly associated with BMI, were 
excluded from the primary analysis due to a high rate of missing data. 
The omission of these variables may limit our ability to fully adjust for 
metabolic factors that influence the relationship between BMI and 
sepsis mortality. Second, BMI was employed to measure overall 
obesity instead of waist circumference, which assesses central obesity. 
Observational studies indicate that there is a correlation between 
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abdominal obesity and a higher likelihood of death linked to sepsis 
(35). Despite using RCS to obtain more precise ORs, unmeasured 
confounders may still influence the BMI-mortality relationship. 
Moreover, this study failed to include variables such as muscle mass, 
fat distribution, and other aspects of body composition. These factors 
could impact the prognosis of sepsis patients. Other potential 
influencers such as lifestyle, diet, socioeconomic status, and baseline 
health conditions were also not examined, which could also impact 
the observed BMI-mortality relationship. The identification of sepsis-3 
patients was primarily based on ICD-9 codes, which, although 
operationally convenient and readily available, may not be as precise 
as incorporating the SOFA score. The use of ICD-9 codes could 
potentially include patients with milder symptoms, which might 
influence the assessment of the severity of sepsis. However, to enhance 
the accuracy of our study’s findings, our primary analysis outcomes 
were adjusted for the SOFA score to control for potential biases. 
Finally, as an observational study, causality cannot be inferred. The 
mechanism of the obesity paradox in sepsis is still being studied and 
could include inflammation (36–38), which was not controlled for in 
this study using inflammatory biomarkers. Despite these limitations, 
the study offers valuable insights into the complex link between BMI 
and mortality in sepsis patients. Future research should overcome 
these limitations with prospective designs, broader populations, and 
more comprehensive health metrics to further explore the role of BMI 
in the clinical management of sepsis.

Clinical considerations and implications

The discovery of gender-specific patterns has significant clinical 
implications. It underscores the importance of personalized treatment 
to account for gender-related physiological differences in sepsis 
management. Future studies should investigate the roles of 
inflammatory biomarkers, hormones and fat distribution in sepsis 
outcomes to refine gender-specific treatment approaches. The current 
study highlights the importance of considering gender-specific BMI 
and mortality relationships, reinforcing the need for personalized 
interventions in the management of sepsis.

Conclusion

This study uncovers the correlation between BMI and gender-
specific mortality in a cohort of patients with sepsis in whom the 
presence of the obesity paradox was confirmed. The RCS analysis 
revealed a distinct L-shaped correlation between BMI and 28-day 
mortality. Regarding sex stratification, a U-shaped correlation was 
observed between BMI and 28-day mortality in male patients, 
whereas an L-shaped correlation was seen in females. It is necessary 
to conduct further studies, including many centers and large 
samples, in order to examine the disparities between sexes in the 
obesity paradox.
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Association between waist-to-hip
ratio and risk of myocardial
infarction: a systematic
evaluation and meta-analysis
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and Linfeng Li2*
1Medical College of Nanchang University, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi,
China, 2Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of
Nanchang Medical College, Nanchang, Jiangxi, China
Background: Myocardial infarction(MI) is one of the most serious health threats.
Despite the increasing number of clinical methods used to predict the onset of
MI, the prediction of MI is still unsatisfactory and necessitates new methods.
Objective: To systematically review observational studies from the past two
decades on the association between waist-to-hip ratio (WHR) and MI risk.
Methods: Original literature on the correlation between WHR and MI was
searched in PubMed, Embase, Web of Science, Cochrane Library, Science
Direct, CNKI, and Wanfang up to January 31, 2024. Two researchers
independently screened, extracted data, and assessed quality using the
Newcastle-Ottawa Scale (NOS) and Revman5.3. Meta-analysis with Stata 16.0
calculated the combined Odd ratio (OR) for WHR and MI risk. Heterogeneity
was assessed with the I2 statistic to select the appropriate effects model.
Subgroup analysis, meta-regression, sensitivity analysis, and funnel plots tested
for heterogeneity and publication bias.
Results: A total of 22 observational studies were included, involving 709,093
participants. The meta-analysis showed that an elevated WHR was significantly
associated with an increased risk of MI, with a pooled odds ratio (OR) of 1.98
[95% Confidence interval (CI): 1.75–2.24] and high heterogeneity (I2 = 91.5%,
P < 0.0001). Subgroup analysis revealed a stronger association between WHR
and MI in women (OR: 1.99, 95% CI: 1.43–2.77) compared to men (OR: 1.74,
95% CI: 1.36–2.22). Regional analysis indicated that the association between
WHR and MI risk was highest in Asian populations (OR: 2.93 95% CI:
1.61–5.33), followed by American (OR: 1.73, 95% CI: 1.45–2.08) and European
populations (OR: 2.19, 95% CI: 1.49–3.22). Sensitivity analysis demonstrated
that the results remained stable after excluding one study.
Conclusion: In the general adult population, a higher WHR is a potentially
significant association for MI and has predictive value for MI.

KEYWORDS

waist-to-hip ratio, myocardial infarction, central obesity, meta-analysis, incidence rate

1 Background

MI is a serious cardiovascular disease, with symptoms including severe chest pain,

tightness, and difficulty breathing (1, 2). If not treated promptly, it often leads to

serious complications or even death (2). Therefore, identifying valuable risk factors to

help predict MI would promote healthcare. There is a large body of research indicating
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that obesity-related cardiometabolic diseases are risk factors for

atherosclerotic cardiovascular disease (3). Per the WHO and

numerous other internationally recognized organizations like the

CDC, obesity is defned by body mass index(BMI), an indirect

measure of body composition. However, patients can be at an

increased risk of cardiometabolic diseases if they have a normal

BMI but an elevated body fat percentage (i.e., “normal weight

obesity”) (4). It is therefore important to consider other measures

of body composition besides BMI as a measure of body fat and

predict cardiometabolic risk. Dual-energy x-ray absorptiometry

(DEXA) (5), bioimpedence analysis (BIA) (5), computed

tomography (CT) and magnetic resonance imaging (MRI) are

direct measures of body fat,while WHR, waist-to-height ratio

(WHtR) and waist circumference (WC) are other indirect

measures of body fat besides BMI. DEXA is a technique for

measuring bone density and body fat content using the principle

that different energy x-rays are absorbed to different degrees in

human tissues (5). BIA is used to predict body composition

based, on the electrical conductive properties of the body (5).

Among these, DEXA, CT, and MRI are expensive and not

readily available.BMI cannot distinguish between local and

peripheral fat and does not accurately reflect the impact of WC

and height (6, 7). Additionally,WC has been found in some

studies to not predict the prognosis of MI well (7).

The WHR is an indicator of central obesity to predict the

incidence and prognosis of cardiovascular disease. Overall, WHR

as an indicator of central obesity is superior to other indicators. It

not only predicts the incidence of MI but also has reference value

for predicting myocardial injury before MI (8), the prognosis of

MI (9, 10), and the severity of MI in patients (11, 12). The WHR

is usually used as an indicator of central obesity to predict the

incidence and prognosis of cardiovascular diseases. The waist

circumference divided by the hip circumference defines the WHR,

and the World Health Organization recommends a WHR≥ 0.9

for men and≥ 0.85 for women as the standard diagnostic criteria

for abdominal obesity (13).

To clarify the association between WHR and MI, this paper

reviews the research on the association between WHR and the risk

of MI over the past two decades, summarizes the results of these

studies in a meta-analysis, and aims to elucidate the relationship

between WHR and MI in the general adult population. In

particular, this study adds the latest data to previous studies

(14, 15) and conducts a more detailed subgroup analysis, which

further enriches the existing literature, especially in terms of

gender, regional differences, and long-term risk assessment.
2 Materials and method

2.1 Search strategy

Computerized searches were conducted in databases such as

PubMed, Embase, Web of Science, Cochrane Library, Science

Direct, CNKI, and Wanfang. The English search terms included:

Ratio, Waist-Hip; Ratios, Waist-Hip; Waist Hip Ratio; Waist-Hip

Ratios; Waist-to-Hip Ratio; Ratio, Waist-to-Hip; Ratios,
Frontiers in Cardiovascular Medicine 0262
Waist-to-Hip; Waist to Hip Ratio; Waist-to-Hip Ratios;

Myocardial Infarction; Cardiovascular Stroke; Cardiovascular

Strokes; Stroke, Cardiovascular; Strokes, Cardiovascular;

Myocardial Infarct; Myocardial Infarcts; Heart Attack; Heart

Attacks. The Chinese search terms included: myocardial infarction,

acute myocardial infarction, inferior wall myocardial infarction,

anterior wall myocardial infarction, anteroseptal myocardial

infarction, ST-segment elevation myocardial infarction, non-ST-

segment elevation myocardial infarction, coronary atherosclerotic

heart disease, angina, acute coronary syndrome. Two scholars

from the team independently searched the above databases, with

the search time up to January 31, 2024.10.21.
2.2 Inclusion and exclusion criteria for
the literature

Criteria for Literature Inclusion: (1) The study subjects were

the general population aged over 18 years; (2) The studies were

reported in Chinese or English; (3) The studies explored

the correlation between WHR and the incidence rate of MI; (4)

The studies adjusted for various potential influencing factors

on the association between WHR and the incidence rate of MI.

The exclusion criteria were as follows: (1) Non-clinical human

trials; (2) Studies with questionable data or data that could not be

extracted; (3) Literature that did not explore the WHR and the

incidence rate of MI.
2.3 Literature screening

According to the specified time limit (up to January 31, 2024),

two scholars independently screened the retrieved original studies.

First, using Endnote to compare the titles, publication years, first

authors’ names, etc., to exclude duplicate literature. Then, by

reading the titles and abstracts, literature unrelated to the research

purpose was eliminated. Next, the remaining literature was fully

searched and read, and the original studies to be finally included

were confirmed according to the inclusion and exclusion criteria.

In case of disagreement between the two researchers, a third

researcher was involved for verification and assessment.
2.4 Data extraction

Two researchers read the papers and extracted relevant data,

including the main authors’ surnames, publication years, study

regions, methods, sample sizes, subjects’ ages, WHR, types of MI,

WHR cut-off values, OR/RR/HR (95%CI), gender grouping, and

adjustment factors in multivariate analysis.
2.5 Quality assessment

The final included studies covered case-control studies and

cohort studies. Two methods were used for the quality
frontiersin.org
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assessment of the literature: firstly, the NOS was used to assess

multiple aspects of case-control studies and cohort studies,

mainly including the representativeness of the studies,

comparability between groups, and measurement of exposure

factors, with a total score of 9 points, and studies scoring above

6 points were considered high-quality research. Subsequently,

Revman5.3 software was used for assessment, focusing on

random sequence generation, allocation concealment, blinding,

outcome assessment blinding, completeness of outcome data,

selective reporting, and other potential biases.
FIGURE 1

Flow diagram of search and study selection.
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2.6 Data analysis

This study utilized Stata 16.0 software to perform meta-analysis

and statistical analysis. The analyzed data were categorical variables,

presented as OR and 95% CI to demonstrate the association between

WHR and MI in the general adult population. Heterogeneity among

studies was assessed using Cochrane’s Q test and the I2 statistic.

A fixed-effect model was adopted if I2 < 50%; a random-effect

model was used if I2 > 50%. Significant heterogeneity was considered

present if the P-value of the Q test was <0.05 and I2 > 50%, in
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which case subgroup analysis and multivariate meta-regression

analysis were conducted to explore the sources of heterogeneity.

Subgroup analyses included gender (male, female), study region

(Asia, Europe, America), type of study (case-control study, cohort

study), and WHR cut-off value (<0.93, ≥0.93). The chi-square test

was used to compare results within subgroups. If one subgroup had

I2 < 50% and P > 0.05, while another had I2 > 50% and P < 0.05, it

indicated that this subgroup might be the source of heterogeneity.

Multivariate meta-regression analysis was also used, incorporating

factors such as NOS score, average age, publication year, etc., that

might affect the results into the model to investigate their potential

impact on the study outcomes. If P < 0.05, it suggested that these

factors might be sources of heterogeneity. Sensitivity analysis was

conducted by excluding studies one by one to verify the stability of

the results. If the OR values were stably distributed on both sides of

the median line, it indicated that the results of the meta-analysis

were stable. Potential publication bias was checked by visually

inspecting the symmetry of the funnel plot. If the funnel plot was

symmetrical, it suggested a lower risk of publication bias; if the

results clustered on one side of the plot, it might indicate the

presence of publication bias.
3 Results

3.1 Literature search results

We searched for English keywords in databases such as

PubMed, Embase, Web of Science, Cochrane Library, Science

Direct, and for Chinese keywords in CNKI and Wanfang

Database, retrieving a total of 7,622 related articles. Among

them, there were 521 from PubMed, 1,281 from Embase, 1,352

from Web of Science, 86 from Cochrane Library, 5,546 from

Science Direct, 4 from CNKI, and 72 from Wanfang Database.

After selection using Endnote and removing 3,316 duplicate

articles, 4,306 remained. By reviewing titles and abstracts, and
FIGURE 2

Quality assessment 1.
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applying inclusion and exclusion criteria, 4,198 articles were

screened out, including 4,170 unrelated to the study (not

discussing the association between WHR and MI) and 28 unable

to obtain complete data (no online access to full text, incomplete

data, or obviously abnormal data). After full-text reading of the

remaining 108 articles and another round of screening with

inclusion and exclusion criteria, 85 articles were excluded, among

which 84 had inconsistent research indicators (did not report the

OR/HR/RR values of WHR and MI risk), and 1 involved a non-

general population. Finally, 22 articles met the criteria (16–37).

For the specific screening process, please refer to Figures 1, 2.
3.2 Literature inclusion and quality
assessment

This study included 22 observational studies, comprising 7

cohort studies and 15 case-control studies, spanning from 1996 to

2023. These studies encompassed multiple countries and regions,

such as Europe, Asia, and South America, with a total of 709,093

participants. The age range of the subjects was from 31.1 to 69.7

years, with WHR cut-off values ranging from 0.78 to 0.95, and the

OR values indicating the association between an increase in WHR

and the risk of MI ranged from 1.049 to 10.9. Among these, 8

studies also included gender subgroup analyses. When exploring

the association between WHR and MI, studies typically adjusted

for various factors, such as age, gender, body mass index, smoking,

drinking, systolic blood pressure, total cholesterol, high-density

lipoprotein, triglycerides, glycated hemoglobin, and other potential

confounding factors, please refer to Table 1. The included studies

encompassed seven cohort studies, which furnished data regarding

the incidence of MI, methods of follow-up, and duration of follow-

up. Please refer to Table 2.

To assess the quality of the literature, the NOS was used for

scoring, with scores ranging from 7 to 9, indicating good overall

quality of the studies. For specific assessment results, please refer
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TABLE 1 Specific characteristics of the included studies2.

Study Gender WHR cutt-
of value

OR or RR or
HR (95%CI)

Variable adjustment NOS

Pais P16 Total 0.92 3.12 (1.80–5.40) Smoking, hypertension, income, non-vegetarianism and fasting blood sugar 7

Hertzel C17 Total 0.89 2.41 (1.75–3.31) Age and gender 8

Azevedo A18 Male – 2.50 (1.30–4.90) Age, education level, family history of acute myocardial infarction and smoking 8

Female – 3.00 (0.60–14.60)

Leopoldo S19 Total – 1.52 (1.06–2.18) Smoking, blood sugar, family history of coronary heart disease, low-density lipoprotein-
cholesterol, hypertension, diabetes and drinking

8

Kumar P20 Total – 5.20 (1.40–21.10) History of acute myocardial infarction, smoking, BMI, hypertension, total cholesterol, serum
triglyceride, LDL, HDL, blood lipid and history of apolipoprotein E4 genotyping

9

Male 0.95

Female 0.80

Yusuf S21 Total – 1.77 (1.67–1.88) Age, gender, regiom and smoking 8

Male 0.90

Avezum A22 Female 0.83

Total – 3.07 (1.66–5.66) Age and gender 7

Lanas F23 Total – 2.49 (1.97–3.14) Age, gender and smoking 7

Male 0.90

Female 0.83

Kumar A24 Total 0.95 3.90 (2.10–6.30) Age, gender and hospital 8

Oliveira A25 Total – Age, educational attainment, drinking, smoking, physical activity, family history of cerebral
infarction and the impact of menopause and hormone replacement therapy on women

8

Male 0.90 10.90 (6.10–19.4)

Female 0.85 5.84 (3.37–10.10)

Carević V26 Total – 1.96 (1.21–3.18) Age and gender 7

Male 0.90

Female 0.83

Kaur R27 Total – 4.80 (3.20–7.30) Confounding effects of traditional coronary risk factors 9

Male 0.80

Female 0.95

Horvei LD28 Male 0.95 2.50 (1.30–4.90) Age, smoking, systolic blood pressure, total cholestrol, density lipoprotein, triglyceride,
glycated hemoglobin and diabetes

8

Female 0.85 1.09 (0.60–14.60)

Egeland GM29 Male 0.91 1.22 (1.07–1.40) Age, smoking, bmi, systolic blood pressure, diabetes and total cholesterol-hdl cholesterol
ratio

9

Male 0.91 1.09 (0.97–1.23)

Female 0.80 1.76 (1.37–2.25)

Female 0.80 1.05 (0.90–1.24）

Rådholm K30 Total – 1.08 (1.00–1.18) Age, gender, smoking, region and randomized antihypertensive and hypoglycemic
interventions

8

Peters SAE31 Male – 1.36 (1.30–1.43) Age, townshend deprivation index and smoking 9

Female – 1.40 (1.39–1.59）

Hermansson
J32

Male 1.00 1.47 (0.97–2.24) Age and work system 7

Female 0.88 4.17 (2.19–7.92)

Calling S33 Total 0.78 1.80 (1.34–2.42) Postmenopausal treatment,age at menopause, drinking and family history of cardiovascular
disease

9

Upadhyay R34 Total – 1.74 (1.02–2.94） Age, gender and types of residential areas 8

Male 0.95

Female 0.85

Li Y35 Total – 1.34 (0.46–3.85) Gender, age, bmi, diabetes, drinking, fasting blood sugar, heart rate, hdl, hypertension, ldl,
physical activity, salt consumption, systolic blood pressure and smoking

9

Male 0.92

Female 0.89

Wienbergen
H36

– 0.87 1.57 (0.82–2.99) Age, gender, nation, level of education, smoking, drinking, bmi, hypertension and diabetes 8

– 0.93 6.27 (3.40–11.54)

Zhong P37 Total – 1.43 (1.15–1.78) Age, gender, racist, income, level of education, lifestyle and history of current drug use 9

Male 0.90

Female 0.85
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to Table 1. Furthermore, Revman 5.3 software was used for further

quality assessment of the included studies, examining random

sequence generation (selection bias), allocation concealment

(selection bias), blinding among participants and personnel

(performance bias), blinding in outcome assessment (detection
Frontiers in Cardiovascular Medicine 0565
bias), completeness of outcome data (attrition bias), selective

reporting (reporting bias), and other bias factors. Given that

most of the included studies were case-control studies, the

quality assessment was relatively low in terms of random

selection and blinding of study subjects, while other aspects
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TABLE 2 Specific characteristics of the Cohort studies.

Study Incidence of
MI

Gender and
year

For follow-up methods Follow-up
time(year)

Horvei LD28 1.13% – Access to medical records 15

Egeland GM29 2.90% Male, year < 60 Every Norwegian resident has a unique personal identification number, which is used to
identify individuals through linkage with records from the Norwegian Cause of Death
Registry and the National Hospital Discharge Diagnosis Data. In clinical drug trial studies

7

11.80% Male, year ≥ 60

0.70% Female, year < 60

7.40% Female, year ≥ 60

Rådholm K30 7.00% – Follow-up includes regular blood draws, among other procedures 9

Peters SAE31 1.20% In the UK Biobank cohort study, follow-up includes regular blood draws, among other
procedures.

7

Calling S33 3.10% – Access to medical records 17

Li Y35 0.46% – In the Kailuan prospective cohort study, questionnaires and laboratory tests are repeated
every two years as part of the follow-up process.

6

Zhong P37 3.70% – In the UK Biobank cohort study, participants are followed up with regular blood draws and
other procedures.

12
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including performance bias, detection bias, attrition bias, reporting

bias, and other biases were rated as excellent. For specific results,

please see Figures 2, 3.
3.2 Publication bias

Publication Bias To assess publication bias, we conducted a

funnel plot test. The funnel plot (Figure 4) shows that the studies

included are relatively symmetrically distributed on the funnel

plot, suggesting a lower risk of publication bias in this meta-

analysis. However, caution is needed in interpretation, as the

assessment of symmetry in funnel plots is somewhat subjective.

For details, see Figure 4.
3.3 Data analysis results

3.3.1 Relationship between WHR and Mi
Relationship between WHR and MI The relationship between

waist-hip ratio (WHR) and the risk of MI was assessed based on

22 studies of the general population. Considering the

heterogeneity of the studies, a random effects model was used for

analysis. Some studies were stratified by gender, age, and WHR

cut-off values, with numbers 1 to 4 used to differentiate these

groups within the same study. The combined results of the

random effects model indicated that subjects with a higher WHR

are more prone to MI compared to those with a lower WHR.

The Cochrane Q test showed significant heterogeneity

(P < 0.0001, I2 = 91.8%), and the adjusted OR was 1.98 with a

95% CI of 1.75–2.24. Detailed data can be seen in Figure 5.

(Note: In the studies by Azevedo A1999, Oliveira A2010, Horvei

LD2014, Peters SAE 2018, Hermansson J 2019, “1” represents the

male group in the study,“2”represents the female group in the

study; In the Wienbergen H 2022 study, “1”represents the group

with WHR between 0.87–0.93, “2”represents the group with

WHR≥ 0.93; In Egeland GM2016, “1”represents the male group

under 60 years of age,“2”represents the male group over 60 years
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of age, “3” represents the female group under 60 years of age,

“4” represents the female group over 60 years of age.).
3.3.2 Subgroup analyses
3.3.2.1 Gender subgroup analysis
Subgroup analyses according to gender showed significant

associations in both the male (OR: 1.74, 95% CI: 1.36–2.22,

P < 0.05) and female groups (OR: 1.99, 95% CI: 1.43–2.77,

P < 0.05), with within-group Cochrane’s Q test P-values were less

than 0.05 and I2 was greater than 50%, suggesting that gender

group heterogeneity did not significantly affect outcomes. The

combined OR of the female group was greater than that of the

male group, indicating that the association between WHR and

MI was more significant in females, and thus it can be inferred

that WHR is more significant in predicting MI in females. The

details are shown in Figure 6. (Note: P-value <0.0001 is

considered 0).

3.3.2.2 Regional subgroup analyses
According to the results of regional subgroup analysis showed that

region 1 = Asia (OR: 2.93, 95% CI: 1.61–5.33, P < 0.05), 2 = Europe

(OR: 1.73, 95% CI: 1.45–2.08, P < 0.05) and 3 = America (OR: 2.19,

95% CI: 1.49–3.22., P < 0.05), the Cochrane’s Q-test P-values for

within-groups were all less than 0.05, and the I2 within-groups

were all greater than 50%, suggesting that regional subgroup

heterogeneity did not have a significant effect on outcomes. As

shown in Figure 6. (Note: P-value <0.0001 is considered 0).

3.3.2.3 Research methods subgroup analyses
The results of the subgroup analysis according to the research

methodology showed that area 1 = case-control study (OR: 2.57,

95% CI: 2.04–3.24, P < 0.05), 2 = cohort study (OR: 1.34, 95% CI:

1.17–1.54, P < 0.05), and the intragroup Cochrane’s Q-test

P-values were all less than 0.05 and I2 within group was greater

than 50%, indicating that heterogeneity in study method

grouping did not have a significant effect on outcome. As shown

in Figure 6. (Note: P-value <0.0001 is considered 0).
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1438817
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 3

Quality assessment 2. (The green, yellow, and red colors in the fgure
represent “low risk,” “unclear,” and “high risk,” respectively.).
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3.3.2.4 Subgroup analysis of WHR cut-off value
According to the results of subgroup analysis of WHR critical value

showed that region 1 =WHR cut-off value <0.93 (OR: 2.05, 95%

CI: 1.65–2.54, P < 0.01), 2 =WHR cut-off value ≥0.93 (OR: 2.69,

95% CI: 2.06–3.52, P = 0.035), within-group Cochrane’s Q-test

P-values were all less than 0.05, and within-group I2 was greater

than 50%, suggesting that heterogeneity of study WHR critical

value subgroups did not have a significant effect on outcome.

The combined ORs of subgroups with higher WHR critical

values were greater than those of subgroups with lower WHR

critical values, suggesting that higher WHRs may be more

strongly associated with MI. As shown in Figure 6.

3.3.3 Multifactorial meta-regression analysis
To explore the sources of heterogeneity among studies, we

further conducted a multifactorial meta-regression analysis. The

results of the multifactorial meta-regression analysis showed that

the P-values for all factors were above 0.05, indicating that

factors such as publication year, NOS score, and age did not

have a significant impact on the study results. Specific data can

be referred to in Table 3. Table 3 shows that the effect size for

publication year was −0.18 (P = 0.858), with a 95% CI ranging

from −0.0551 to 0.0466, indicating that the publication year had

no significant effect on the results; the effect size for the NOS

score was −1.04 (P = 0.321), with a 95% CI ranging from

−0.8493 to 0.3022, indicating that the NOS score had no

significant effect on the results; the effect size for age was 0.33

(P = 0.746), with a 95% CI ranging from −0.0340 to 0.0461,

indicating that age had no significant effect on the results. please

refer to Table 3.

3.3.4 Sensitivity analysis
By sequentially excluding each study and observing the changes

in the combined OR value, the results show that the combined OR

values are stably distributed between 1.75 and 2.24, indicating that

the meta-analysis results are relatively stable. Figure 7 shows that

after the exclusion of individual studies, the CI of the combined

effect size (OR) did not significantly expand or shift, suggesting

that individual studies have limited impact on the overall meta-

analysis results. This stability indicates that the meta-analysis

results are robust and reliable. For specific results, see Figure 7.
4 Discussion

This systematic review and meta-analysis evaluated and

summarized the existing evidence on the predictive value of WHR

for MI over the past 20 years. We included 22 observational studies

from various regions including Europe, Asia, and South America,

with a total of 709,093 subjects. The quality of the studies was

assessed using the NOS and Revman5.3 software, and the results

indicated that the overall quality of the studies was good. The

meta-analysis showed that subjects with a higher WHR had a
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FIGURE 4

Funnel plot of publication bias among the included studies.
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greater likelihood of suffering from MI compared to those with a

lower WHR, with an adjusted odds ratio (OR) of 1.98, 95% CI:

1.75–2.24, I2 = 91.5%, P < 0.0001. This suggests that WHR is a

promising factor for predicting the risk of MI and has strong

predictive power. This indicates that WHR may have significant

clinical relevance in identifying high-risk individuals and predicting

the burden of MI in the general adult population. Furthermore,

these results align with the growing literature (14, 15), supporting

WHR as an important indicator in the assessment of MI risk.

In this meta-analysis, by summarizing the existing evidence on

the relationship between WHR and MI over the past two decades,

we found that WHR has a certain predictive role for the risk of

MI. This association may be related to the following mechanisms.

Firstly, central obesity refers to a relative abundance of abdominal

fat compared to hip fat. A reduction in gluteal region fat is

associated with a higher incidence of cardiovascular diseases (38),

and abdominal fat is closely related to hypertriglyceridemia and

the release of pro-inflammatory cytokines from adipose tissue,

implying a higher risk of cardiovascular diseases (39, 40).

Secondly, an increase in abdominal fat means an increase in

visceral adipose tissue (VAT) (41), which is positively correlated

with coronary atherosclerosis (42). Excessive VAT can directly or

indirectly cause overactivity of the sympathetic nervous system, as

well as abnormal secretion of adiponectin, leptin, and other pro-

inflammatory factors, leading to dyslipidemia, a prothrombotic

state, insulin resistance, and chronic inflammation, all of which are

independent risk factors for cardiovascular diseases (43–47).

To explore the differences in the risk of MI associated with

WHR between men and women, we conducted a subgroup

analysis by gender. The results showed that an increased WHR is
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a stronger predictor of MI in women, although the difference is

small. This result is consistent with several previous studies

(14, 31, 48). In a genome-wide association study of adiposity

markers by Peters SAE et al. (31), it was found that visceral fat

in women had a stronger correlation with cardiac metabolic risk

factors; Ramezankhani A et al. (48) found that WHR increased

the risk of cardiovascular events in women more than in men;

Qinqin Cao et al (14) found that the OR value of WHR for MI

was higher in women in their meta-analysis. Given this result, we

should pay more attention to the predictive role of WHR in

women for MI, which can help medical institutions and

policymakers better tailor prevention and intervention measures

for different groups, such as different appropriate cut-off values

for WHR in predicting MI in men and women. Researching

gender differences can also promote the medical community’s

attention to women’s cardiovascular health issues, improve the

diagnosis and treatment level of women’s cardiovascular diseases,

and optimize the allocation of medical resources and public

health policies. However, some studies have reached different

conclusions (49). In the study by Hanieh Mohammadi et al.

(49)], it was found that the ability of abdominal obesity to be

associated with MI was lower in women than in men. Hanieh

Mohammadi et al (49) believe this may be related to different fat

distributions between genders. Abdominal fat is composed of VAT

and subcutaneous adipose tissue (SAT), and generally, men have

higher VAT than women, while women have higher SAT.

Therefore, compared to women, abdominal obesity is a more

direct marker of visceral fat in men, and visceral fat has a stronger

correlation with cardiac metabolic risk factors. Therefore, from

this mechanism, WHR should have a higher predictive value in
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FIGURE 5

Forest plot of the meta-analysis of the association between waist-to-hip ratio and MI in the general population.
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men. In summary, no studies have yet clearly explained the

mechanisms related to gender differences, so conclusions related

to gender need to be interpreted with caution, and further

experiments need to be expanded to control more confounding

factors, such as age, underlying diseases and medication, lifestyle,

hormone levels, etc., to explore gender differences.

To explore whether there are regional differences in the

association between WHR and the risk of MI, we conducted

subgroup analyses by region. The results suggest that the

association between WHR and the risk of MI may be stronger in

Asian populations than in American and European populations.

This could be related to a combination of factors such as racial

differences, local dietary habits, socioeconomic status, medical

conditions, lifestyle, and genetic factors (50–52). Particularly, the
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difference in body fat distribution between regions, with Asian

populations tending to accumulate more visceral fat compared to

Western populations (53), is closely related to the accumulation of

visceral fat, WHR, and the occurrence of cardiovascular diseases.

However, the study by Alenaini W et al. (54) found that the

differences in visceral fat between populations across states were

confounded by differences between rural and urban populations.

Therefore, future large-scale prospective cohort studies could be

designed to further explore the association and mechanisms

between WHR and MI, controlling for confounding factors such

as race, living area, body fat distribution, age, and gender.

Given these results, first, the ability of WHR to predict the

risk of MI is evident, and medical professionals should consider

the key role of WHR in identifying high-risk groups for MI,
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FIGURE 6

Subgroup analysis.

TABLE 3 Results of the multifactorial meta-regression analysis.

Effect size p-value 95% confidence
interval

Year of publication −0.18 0.858 −0.0551273 0.0465668

NOS score −1.04 0.321 −0.8493396 0.3021809

Year 0.33 0.746 −0.0339729 0.0461412
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especially in women. For medical rehabilitation professionals,

more attention should be paid to patients’ WHR rather than

just BMI. Second, in our study, the combined OR value for

subgroups with higher WHR cut-off values was greater than for

those with lower WHR, suggesting that a higher WHR may be

more strongly associated with MI. In the future, the association

between different gradients of WHR and the incidence of MI

could be further explored to verify whether there is a linear

correlation between WHR and the incidence of MI, and to find

the WHR cut-off value with the strongest association to

establish best practice guidelines. Third, the risks of a high

WHR should be explained in patient health education so that
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patients understand that a high WHR means central obesity,

which is closely related to cardiovascular diseases. Normal BMI

does not mean the exclusion of the possibility of central

obesity, and in daily life, attention should be paid to central

obesity indicators such as WHR in addition to weight and BMI.

Finally, as an indicator of central obesity, WHR has clinical

significance beyond BMI and should receive more attention,

especially in the prediction of MI with routine monitoring and

early intervention to reduce the risk of MI. Meanwhile, effective

treatment optimization needs to be combined with long-term

follow-up, which can help minimize the incidence of

cardiovascular events (55).

Additionally, this study also assessed the robustness of the

meta-analysis results and the risk of publication bias. Sensitivity

analysis results (Figure 7) show that after excluding any single

study, the combined OR value remains stably distributed

between 1.75 and 2.24, suggesting that individual studies have

limited impact on the overall meta-analysis results. This

stability indicates that the meta-analysis results are highly

reliable, further supporting the research conclusion that an
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FIGURE 7

Assessment of meta-analysis stability after exclusion of individual studies. [The horizontal axis represents the exclusion of different studies, and the
vertical axis represents the range of changes in the combined effect value (95% CI)].
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increased WHR is significantly associated with an increased risk

of MI. At the same time, funnel plot assessment (Figure 6)

suggests that the included studies are relatively symmetrically

distributed on the funnel plot, indicating a lower risk of

publication bias. This somewhat excludes the influence of a

positive result publication tendency on the meta-analysis

results. However, the assessment of funnel plot symmetry still

has a certain subjectivity, so the interpretation of the risk of

publication bias should still be cautious.
5 Limitations

Firstly, although the combined OR values of subgroups with

higher WHR critical values were found to be greater than those

of subgroups with with lower WHR critical values in the

subgroup analysis, suggesting that a higher WHR may be more

strongly correlated with MI, this study only used categorical

variable data and could not accurately explain whether there is

a linear association between WHR and MI. Secondly, most of

the included articles were case-control studies, and there were

relatively few cohort studies with high-level evidence, so more

cohort studies need to be conducted in the future to increase

the credibility of the research results. Thirdly, although various

sources of heterogeneity were investigated, no specific cause

for heterogeneity was found. The heterogeneity of the studies
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reduced the reliability of this meta-analysis, and the results

should be viewed with caution. Fourthly, different studies used

different WHR cutoff values, and it is not possible to

determine the effectiveness of a single WHR threshold for

predicting MI risk. Fifthly, the sample population was limited.

Most of the included studies were case-control studies often

focused on a certain hospital or center, and all the studies

included were published in English. Therefore, this meta-

analysis does not fully represent the entire population, thus

limiting the generalizability and extrapolation of the research

results. Sixth, the timing of WHR data collection in case-

control studies may limit the inference of causal relationships

between WHR and MI. This design difference represents a

limitation of the current study, potentially affecting the

accuracy of event validation. Future research should prioritize

prospective cohort designs to enhance the accuracy of causal

inference and the assessment of the association between WHR

and new incident cases of MI. Seventh, there are differences

among researchers in measuring WHR, and it is recommended

that future research adopt standardized techniques to

objectively measure WHR.

Finally, it should be noted that there was considerable

heterogeneity in this meta-analysis. Unfortunately, neither

subgroup analysis nor multivariate regression analysis could find

the source of heterogeneity. We believe that the reasons for this

heterogeneity may include: (1) This meta-analysis combined 22
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original studies, which is a large number, and there are differences

in the design of each study, participant characteristics,

implementation of intervention measures, and outcome

measurement standards, leading to inevitable heterogeneity; (2)

The heterogeneity may be related to the type of MI, differences

in the standards for diagnosing MI between studies,

inconsistencies in the measurement methods of WHR and

covariates, and Comorbidities and and follow-up measures and

different follow-up times, but since the original studies did not

provide corresponding data, subgroup analysis could not be

conducted; (3) Potential differences in event definitions and

collection methods among different studies may lead to bias.

Although heterogeneity reduces the reliability of the meta-

analysis, the sensitivity analysis showed that by excluding studies

one by one, regardless of which study was excluded, the

combined results were stable on both sides of the median line.

There was no reversal of results, and the meta-analysis therefore

has stability. In summary, although there is heterogeneity in this

study, it still has reference value. We should treat these results

with caution, and more prospective cohort studies can be set up

in the future to further verify this conclusion.
6 Conclusion

WHR is an important predictor of MI risk. Individuals with a

high WHR have a signifcantly higher risk of MI than those with a

low WHR, an association that is more signifcant in

women.Furthermore, the higher the WHR critical value, the

stronger the association with MI, suggesting apossible dose-

response relationship.

Clinical medical staff should therefore pay attention to the

measurement and monitoring of WHR, and use it as an

important means of assessing and preventing MI risk, especially

for women and individuals with a signifcantly increased WHR.

Morehigh-quality prospective studies are needed to further verify

thepredictive value of WHR and optimize its application in MI

risk assessment.

Future research should combine WHR with other risk factors

to better guide the prevention and management of MI.
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Background: Bodymass index (BMI) consistently correlates with the triglyceride-

glucose (TyG) index, a marker of insulin resistance, which in turn is linked to

heightened cardiovascular disease (CVD) risk. Thus, insulin resistance could

potentially mediate the association between BMI and CVD risk. However, few

studies have explored this mechanism in the general population.

Methods: We used data from the China Health and Retirement Longitudinal

Study, which is an ongoing prospective cohort study. It initially enrolled 7233

middle-aged and older Chinese adults who were free of heart disease and stroke

at baseline. The exposure variable was BMI. Incident CVD, defined as self-

reported physician-diagnosed heart disease and stroke combined, served as

the main outcome.

Results: Of the 7 233 participants (mean [SD] age, 58.93 [9.33] years), 3 415

(47.2%) weremen. During the 7 years of follow-up, 1 411 incident CVD cases were

identified. Both BMI and TyG index were associated with CVD risk (HR per 1-SD

increase: BMI, 1.23; 95% CI, 1.17–1.29; TyG, 1.13; 95% CI, 1.07–1.19). The 4-way

decomposition analysis show that, overweight increased CVD risk by 28% (HR

[total association], 1.28; 95% CI, 1.14–1.45), with 18.1% (95% CI, 2.2%–34.0%)

mediated by TyG index (HR [pure indirect association], 1.05; 95% CI, 1.02–1.09);

while obesity increased CVD risk by 91% (HR [total association], 1.91; 95% CI,

1.63–2.23), with 9.5% (95% CI, 2.2%–16.7%) mediated by TyG index (HR [pure

indirect association], 1.09; 95% CI, 1.03–1.15). No evidence suggested TyG index

modified BMI’s association with incident CVD.
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Conclusions: The study revealed that the TyG index was associated to CVD risk

and acted as a small partial mediator in the relationship between BMI and CVD

among middle-aged and older Chinese adults. Consequently, solely addressing

insulin resistance might not significantly mitigate the impact of body weight on

CVD. Thus, exploring alternative pathways and potential mediators of CVD risk

becomes imperative.
KEYWORDS

cardiovascular disease, triglyceride-glucose index, body mass index, mediator, 4-way
decomposition approach, CHARLS
Introduction

The ongoing challenge of cardiovascular disease (CVD) persists

in its impact on global health, affecting both morbidity and

mortality rates, and imposing a significant burden on healthcare

systems and individual well-being (1, 2). In the last thirty years, the

global burden of CVD has surged, with a 92.3% increase in total

prevalent cases from 271 million to 523 million and a 53.7% rise in

deaths from 12.1 million to 18.6 million between 1990 and 2019 (3).

This upward trend is driven by factors such as an aging population

and lifestyle changes, including a higher prevalence of obesity,

hypertension, and diabetes (1, 4). Although recent studies suggest

a potential slowdown in the rise of overweight and obesity in high-

income countries (5, 6), there is mounting evidence indicating an

acceleration of this epidemic in low- and middle-income countries

(7, 8). Notably, obesity globally is associated to an elevated risk of

CVD across the general population (9, 10).

Although hemodynamic and metabolic factors have been

suggested as factors that influence the relationship between BMI and

CVD, the exact mechanisms are not yet fully understood (9, 11).

Reduced insulin sensitivity constitutes a potential constituent, as

evidence suggests that oxidative stress and inflammation instigated

by obesity are intricately associated with the emergence of both

localized and systemic insulin resistance (12). Conversely, insulin

resistance is implicated in endothelial dysfunction, fostering the

development of atherosclerotic plaques through alteration of gene

expression patterns related to the estrogen receptor, Hence, it could

potentially play a substantial role in the pathogenesis of CVD (13). It is

therefore possible that insulin resistance could exert an indirect

influence on CVD through BMI. TyG (triglyceride-glucose) index

has been verified as a straightforward indicator of insulin resistance

based on the logarithmization of glucose levels and fasting triglyceride

(14). There has been evidence of a correlation between this test and the

euglycemic-hyperinsulinemic clamp test, as well as a similar validity to

that of the insulin resistance index calculated from the homeostatic

model assessment (15). Given its accessibility and reliable performance,

it is convenient for epidemiological studies to use the TyG index to

measure insulin resistance as a simple proxy.
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Prior studies have combined TyG index and BMI as a TyG-BMI

index to examine the association with CVD and outcomes (16–19).

Yet, to our knowledge, only one study has formally investigated the

TyG index’s role as a mediator in the connection between BMI and

incident CVD within a community-based setting, with the majority

of participants being coal miners (20). Limitations include

population heterogeneity, absence of generalizable, or absence of

interaction between BMI and TyG index.

Hence, the objective of this study was to examine whether TyG

acts as a mediator or modifier in the relationship between BMI and

incident CVD within the general population. Using a causal

mediation approach, we disassembled the overall association of

BMI with incident CVD into four components: (1) the association

unaffected by mediation or interaction, (2) the association

influenced solely by interaction, (3) the association driven solely

by mediation, and (4) the association influenced by both mediation

and interaction.
Methods

Study population

This cohort study represents a secondary analysis of the

CHARLS dataset, which is an ongoing, nationally representative

cohort study. Detailed information regarding the study design is

available elsewhere (21, 22). In summary, the study recruited 17708

participants from June 2011 to March 2012. For the purpose of

gathering information, participants underwent assessments using

standardized questionnaires using a multistage stratified probability

proportional-to-size sampling method. The baseline survey

achieved an 80.5% response rate. Following the baseline

assessment, participants underwent follow-up evaluations every

2 years.

All participants provided written informed consent to

participate in the CHARLS study, which was approved by the

institutional review board of Peking University. All study

protocols were conducted in accordance with the principles
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outlined in the Declaration of Helsinki (23), and adherence to the

Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) reporting guideline was ensured for this

study (24).
Assessment of exposure and mediator

The exposure variable in this study was BMI, calculated from

height and weight measurements as weight in kilograms divided by

height in meters squared. BMI was categorized according to the

Chinese BMI classification (25) as follows: underweight (BMI <18.5

kg/m2), normal weight (BMI 18.5–23.9 kg/m2), overweight (BMI

24.0–27.9 kg/m2), and obesity (BMI ≥28 kg/m2). Trained nurses

conducted the measurements of height and weight.

The mediator was TyG index, which was calculated as ln

[fasting blood glucose (milligrams per deciliter) × triglycerides

(milligrams per deciliter)/2) (14) and splitting into quartiles. A

colorimetric enzyme assay was used at Capital Medical University’s

Youanmen Clinical Laboratory to determine triglycerides and

fasting blood glucose levels.
Ascertainment of outcome

The primary outcome was incident CVD, the secondary

outcome were incident stroke events and incident heart disease

events. Consistent with prior studies (21, 26, 27), the following

standardized questions were used to assess CVD events: “Have you

received a diagnosis from a doctor indicating that you have

experienced a heart attack, coronary heart disease, angina,

congestive heart failure, or any other heart-related conditions?” or

“Have you been diagnosed by a doctor with having had a stroke?”

Participants who reported either a stroke or heart disease during

follow-up were categorized as having experienced a CVD event. The

date of CVD diagnosis was recorded between the last interview and

the one in which the CVD event was reported (21, 26, 27).
Covariates

At baseline, trained interviewers used a structured questionnaire

to collect information included age, sex, living residence, marital

status (categorized as married or other), and educational level

(grouped into no formal education, primary school, middle or high

school, and college or above), self-reported smoking and drinking

status (classified as never, former, or current), self-reported

physician-diagnosed medical conditions (including diabetes,

hypertension, dyslipidemia, and kidney disease), and the use of

medications for these conditions. Metabolic factors comprised

fasting plasma glucose, total cholesterol, triglycerides, high-density

lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol

(LDL-C), high-sensitivity C-reactive protein (hsCRP), and serum

creatinine. The estimated glomerular filtration rate (eGFR) was

calculated using the Chronic Kidney Disease Epidemiology

Collaboration’s 2009 creatinine equation (28).
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Chronic kidney disease was defined as eGFR <60 mL/min/1.73 m2

or self-reported history of chronic kidney disease. Diabetes was defined

as fasting plasma glucose ≥126 mg/dL, current use of antidiabetic

medication, or self-reported history of diabetes. Dyslipidemia was

defined as total cholesterol ≥240 mg/dL, triglycerides ≥150 mg/dL,

LDL-C ≥160 mg/dL, HDL-C <40 mg/dL, current use of lipid-lowering

medication, or self-reported history of dyslipidemia. Hypertension was

defined as systolic blood pressure ≥140mmHg, diastolic blood pressure

≥90 mmHg, current use of the antihypertensive medication, or self-

reported history of hypertension.
Statistical analysis

Descriptive statistics included mean ± standard deviation (SD)

and median with interquartile range (IQR). Categorical variables

were depicted as n(%). Baseline characteristics were stratified by

TyG index quartiles and compared using appropriate tests: c² test,
analysis of variance, or Kruskal-Wallis rank sum test. Missing data

were imputed using the multiple imputation of chained

equations method.

We first evaluated the association of BMI (both as a linear term

and classification) and TyG index (both linearly and in quartiles)

with CVD using Cox proportional hazard models. Additionally, we

explored linear trends through entering the median value of each

BMI group or TyG index quartile to test association across the

various BMI groups or TyG index quartiles. We then assessed the

association of BMI with mediators using linear models. All models

were adjusted for age, gender, marital status, residence, education

level, smoking status, and drinking status. Subsequently, we applied

4-way decomposition causal mediation techniques to estimate the

controlled direct association (CDA), reference interaction (INTref),

mediated interaction (INTmed), and pure indirect association

(PIA) individually (29). Utilizing the framework depicted in

Figure 1 (30).

To evaluate the indirect and direct association between BMI and

CVD events, we utilized VanderWeele’s two-stage regression method

for time-to-event data (29, 31). This approach involves fitting two

regression models: one for the mediator (TyG index) and another for

the outcome (CVD). The outcome (CVD) was modeled using a Cox

model, while the mediator (TyG index) was modeled using a linear

model. We also conducted similar mediation analyses using BMI

categories, treating the TyG index as a linear indicator due to its

confirmed linear association with CVD risk. All models were adjusted

for age, gender, marital status, residence, education level, smoking

status, and drinking status. Subsequently, we used the model

parameters from these models to calculated the CDA, INTref,

INTmed, and PIA, estimating the proportions of the total excess

association attributable to each component according to

VanderWeele’s derivations (29). The 95% CIs for estimates and

proportion mediated were calculated by delta method (32).

We implemented several sensitivity analyses to assess the

robustness. Initially, we conducted mediation analyses according

to gender. Subsequently, we assessed our results using the complete

dataset (6884 participants). Finally, we repeated the mediation

analysis excluding participants with a BMI <18.5 kg/m² (6723
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participants). We considered two-sided P < 0.05 as statistically

significant. All analyses were carried out using R statistical

software version 4.3.0 (R Foundation), and mediation analysis

was performed using the CMAverse package developed by Baoyi

Shi, Christine Choirat, and Linda Valeri (https://bs1125.github.io/

CMAverse/index.html).
Results

Baseline characteristics

There were 17 708 participants at baseline, we excluded 777

participants below 45 years, 2 650 with baseline heart disease or

stroke, 5 622 had no blood samples, 1 409 had incomplete TyG

index or BMI, and 17 with extreme BMI values. Finally, 7 233

participants were included for analysis. Baseline characteristics

between included and excluded participants is shown in

Supplementary Table S1.
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Of the 7 233 participants, the mean (SD) age at baseline was

58.93 (9.33) years; 3 415 (47.2%) were men. Participants’

characteristics are presented in Table 1. At baseline, 2 088

(28.9%) participants had overweight and 755 (10.4%) had obsity,

the mean (SD) TyG index was 8.65 (0.65).
Risk of CVD by TyG index or BMI

Between 2011 and 2018, 1411 participants experienced CVD

events, including 1 077 heart attacks and 464 strokes, a 19.5%

incidence rate. In Table 2, we show how BMI and TyG index are

related to CVD events after adjusting for potential confounders

(model 2), by comparing to under and normal weight, obesity was

associated with a 90.0% increased risk of incident CVD (CVD:

adjusted HR, 1.90; 95% CI, 1.63–2.22; stroke: adjusted HR, 2.13;

95% CI, 1.63–2.78; heart disease: adjusted HR, 1.85; 95% CI, 1.55–

2.20). When modeling the TyG index as quartiles, by comparing

quartile 4 with quartile 1, the adjusted HRs were 1.35 (95% CI, 1.16–
FIGURE 1

Conceptual model for the analysis of TyG index mediating the association of body mass index with incident cardiovascular disease. (A) The figure
shows how TyG index could serve as a mediator of the association of body mass index with cardiovascular disease. The direct association between
BMI and CVD is also caused by other potential mechanisms, such as hypertension, hypercholesterolemia, and/or diabetes. All statistical models were
based on this structure and were adjusted for age, gender, marital status, residence, education level, smoking status, and drinking status. Following
the theory of causal graphs, variables such as blood pressure (hypertension, systolic blood pressure, and diastolic blood pressure), cholesterol (total
cholesterol, HDL-C, LDL-C, and dyslipidemia), renal function (kidney disease and eGFR), diabetes, glycated hemoglobin, and hsCRP represent
alternative pathways that could potentially mediate aspects of the association between BMI and CVD. As such, these variables were not included as
covariates in our models. C denotes the potential exposure-mediator, exposure-outcome, and mediator-outcome confounders. U denotes
unmeasured confounding, which remains unavoidable in observational research settings. (B) Illustration of the 4-way decomposition of total
association. The CDA is due to neither mediation nor interaction. The INTref is only due to interaction. The mediated INTmed is due to both
mediation and interaction. PIA is only due to mediation. CDA, controlled direct association; INTref, reference interaction; INTmed, mediated
interaction; PIA, pure indirect association; BMI, body mass index; CVD, cardiovascular disease; eGFR, estimated glomerular filtration ratio; HDL-C,
high-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein;IQR, interquartile range; LDL-C, low-density lipoprotein cholesterol;
TyG, triglyceride-glucose.
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TABLE 1 Baseline characteristics participants stratified by quartiles of the TyG index.

Characteristic Overall

TyG index a

P value b
Quartile 1
[5.18, 8.20]

Quartile 2
(8.20, 8.57]

Quartile 3
(8.57, 9.00]

Quartile 4
(9.00, 13.00]

No. 7233 1810 1807 1808 1808

Age, years 58.93 ± 9.33 58.95 ± 9.66 58.86 ± 9.37 59.44 ± 9.39 58.49 ± 8.87 0.020

Gender <0.001

Male 3415 (47.2%) 1004 (55.5%) 872 (48.3%) 770 (42.6%) 769 (42.5%)

Female 3818 (52.8%) 806 (44.5%) 935 (51.7%) 1038 (57.4%) 1039 (57.5%)

Marital status 0.057

Marred 6045 (83.6%) 1509 (83.4%) 1522 (84.2%) 1478 (81.7%) 1536 (85.0%)

Other 1188 (16.4%) 301 (16.6%) 285 (15.8%) 330 (18.3%) 272 (15.0%)

Residence <0.001

Urban 2493 (34.5%) 514 (28.4%) 593 (32.8%) 637 (35.2%) 749 (41.4%)

Rural 4740 (65.5%) 1296 (71.6%) 1214 (67.2%) 1171 (64.8%) 1059 (58.6%)

Education level 0.003

No formal education 2200 (30.4%) 538 (29.7%) 534 (29.6%) 592 (32.7%) 536 (29.6%)

Primary school 2912 (40.3%) 754 (41.7%) 751 (41.6%) 701 (38.8%) 706 (39.0%)

Middle or high school 1915 (26.5%) 482 (26.6%) 466 (25.8%) 474 (26.2%) 493 (27.3%)

College or above 206 (2.8%) 36 (2.0%) 56 (3.1%) 41 (2.3%) 73 (4.0%)

Smoking status c <0.001

Never 4381 (60.6%) 1001 (55.3%) 1080 (59.8%) 1131 (62.6%) 1169 (64.7%)

Former 589 (8.1%) 151 (8.3%) 143 (7.9%) 146 (8.1%) 149 (8.2%)

Current 2243 (31.0%) 652 (36.0%) 580 (32.1%) 523 (28.9%) 488 (27.0%)

Drinking status c <0.001

Never 4168 (57.6%) 963 (53.2%) 1022 (56.6%) 1113 (61.6%) 1070 (59.2%)

Former 583 (8.1%) 138 (7.6%) 157 (8.7%) 155 (8.6%) 133 (7.4%)

Current 2478 (34.3%) 709 (39.2%) 627 (34.7%) 538 (29.8%) 604 (33.4%)

Body mass index, kg/m2 <0.001

Under and normal (<24.0) 4390 (60.7%) 1396 (77.1%) 1212 (67.1%) 1020 (56.4%) 762 (42.1%)

Overweight (24.0-27.9) 2088 (28.9%) 342 (18.9%) 463 (25.6%) 584 (32.3%) 699 (38.7%)

Obesity (≥28.0) 755 (10.4%) 72 (4.0%) 132 (7.3%) 204 (11.3%) 347 (19.2%)

History of comorbidities

Hypertension c 1660 (23.0%) 281 (15.5%) 330 (18.3%) 464 (25.7%) 585 (32.4%) <0.001

Diabetes c 373 (5.2%) 23 (1.3%) 49 (2.7%) 83 (4.6%) 218 (12.1%) <0.001

Dyslipidemia c 557 (7.7%) 62 (3.4%) 111 (6.1%) 143 (7.9%) 241 (13.3%) <0.001

Kidney disease c 362 (5.0%) 94 (5.2%) 100 (5.5%) 85 (4.7%) 83 (4.6%) 0.530

History of medication use

Hypertension medications c 1198 (16.6%) 181 (10.0%) 231 (12.8%) 340 (18.8%) 446 (24.7%) <0.001

Diabetes medications c 231 (3.2%) 12 (0.7%) 28 (1.5%) 46 (2.5%) 145 (8.0%) <0.001

Dyslipidemia medications c 265 (3.7%) 25 (1.4%) 51 (2.8%) 67 (3.7%) 122 (6.7%) <0.001

(Continued)
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TABLE 1 Continued

Characteristic Overall

TyG index a

P value b
Quartile 1
[5.18, 8.20]

Quartile 2
(8.20, 8.57]

Quartile 3
(8.57, 9.00]

Quartile 4
(9.00, 13.00]

Systole blood pressure, mmHg c 128.82 ± 21.02 125.04 ± 20.58 127.05 ± 20.36 130.53 ± 21.97 132.68 ± 20.31 <0.001

Diastolic blood pressure, mmHg c 75.02 ± 12.05 72.78 ± 11.81 74.18 ± 11.70 75.82 ± 12.41 77.31 ± 11.81 <0.001

Total cholesterol, mg/dl 194.31 ± 38.43 179.44 ± 33.30 190.32 ± 33.76 198.05 ± 36.72 209.46 ± 42.79 <0.001

HDL-C, mg/dl 51.82 ± 15.26 60.74 ± 15.17 55.22 ± 13.87 49.80 ± 13.02 41.50 ± 11.73 <0.001

LDL-C, mg/dl c 117.47 ± 34.60 108.88 ± 29.31 119.19 ± 30.72 124.77 ± 34.00 117.05 ± 41.28 <0.001

Glycated hemoglobin, % c 5.28 ± 0.81 5.08 ± 0.42 5.15 ± 0.50 5.21 ± 0.58 5.67 ± 1.28 <0.001

Median hsCRP (IQR), mg/l 1.01 (0.54, 2.14) 0.80 (0.46, 1.81) 0.89 (0.50, 1.91) 1.05 (0.59, 2.14) 1.30 (0.70, 2.59) <0.001

eGFR, ml/min/1.73m2 c 76.79 ± 43.61 75.14 ± 39.49 75.79 ± 57.26 76.42 ± 35.20 79.81 ± 38.99 0.002
F
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Data are presented as mean ± SD or n(%), unless otherwise specified.
eGFR, estimated glomerular filtration ratio; HDL-C, high-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; IQR, interquartile range; LDL-C, low-density lipoprotein
cholesterol; TyG, triglyceride-glucose.
aTyG index was calculated as ln (triglycerides [milligrams per deciliter] × fasting blood glucose [milligrams per deciliter]/2).
bP value was based on c2, analysis of variance test or Kruskal-Wallis rank sum test where appropriate.
cMissing data: 20 for smoking status, 4 for drinking status, 32 for hypertension, 62 for diabetes, 145 for dyslipidemia, 24 for kidney disease, 33 for history of medication use for hypertension, 63
for history of medication use for diabetes, 147 for history of medication use for dyslipidemia, 70 for systole blood pressure, 71 for diastolic blood pressure, 13 for LDL-C, 61 for HbA1c, and 2
for eGFR.
TABLE 2 Risk of cardiovascular disease by TyG index or body mass index.

Outcome
No. of

event/total

Model 1 a Model 2 b

HR (95% CI) P value P for trend c HR (95% CI) P value P for trend c

Cardiovascular disease

Body mass index, kg/m2 <0.001 <0.001

Under and normal (<24.0) 740/4390 1.00 [Reference] 1.00 [Reference]

Overweight (24.0–27.9) 448/2088 1.30 (1.15–1.46) <0.001 1.28 (1.14–1.44) <0.001

Obesity (≥28.0) 223/755 1.93 (1.66–2.25) <0.001 1.90 (1.63–2.22) <0.001

Body mass index continuous e 1411/7233 1.23 (1.17–1.29) <0.001 1.23 (1.17–1.29) <0.001

Quartiles of the TyG index d <0.001 <0.001

Quartile 1 [5.18, 8.2.0] 289/1810 1.00 [Reference] 1.00 [Reference]

Quartile 2 (8.20, 8.57] 340/1807 1.16 (0.99–1.36) 0.065 1.14 (0.98–1.34) 0.100

Quartile 3 (8.57, 9.00] 385/1808 1.31 (1.12–1.53) 0.001 1.29 (1.10–1.50) 0.001

Quartile 4 (9.00, 13.00] 397/1808 1.38 (1.18–1.61) <0.001 1.35 (1.16–1.57) <0.001

TyG index continuous e 1411/7233 1.14 (1.08–1.20) <0.001 1.13 (1.07–1.19) <0.001

Stroke <0.001 <0.001

Body mass index, kg/m2

Under and normal (<24.0) 238/4390 1.00 [Reference] 1.00 [Reference]

Overweight (24.0–27.9) 150/2088 1.39 (1.13–1.71) 0.002 1.42 (1.15–1.75) 0.001

Obesity (≥28.0) 76/755 2.12 (1.63–2.76) <0.001 2.13 (1.63–2.78) <0.001

Body mass index continuous e 464/7233 1.29 (1.19–1.40) <0.001 1.29 (1.19–1.40) <0.001

Quartiles of the TyG index d <0.001 <0.001

(Continued)
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1.57) for incident CVD, 2.17 (95% CI, 1.63–2.88) for stroke, and

1.14 (95% CI, 0.96–1.35) for heart disease. BMI and CVD risk are

linearly associated and positive (for trend, P <0.001 for CVD,

stroke, and heart disease), as well as, the TyG indx (for trend,

P <0.001 for CVD and stroke, P = 0.131 for heart disease).
Association of BMI and TyG index

Table 3 shows the associations of BMI with TyG index. After

adjusting for potential confounders (in model 2), compared with
Frontiers in Endocrinology 0781
participants with underweight and normal weight, participants with

overweight and obesity had higher TyG index (overweight: adjusted b,
0.28; 95% CI, 0.25– 0.32; obesity: adjusted b, 0.47; 95% CI, 0.42–0.52).
Mediation and interaction analysis

Table 4 show the findings from 4-way decomposition model.

Analysis by BMI categories yielded the adjusted HR for the total

association of BMI with incident CVD was 1.28 for overweight vs the

reference normal weight (CVD: adjusted HR, 1.28; 95% CI, 1.14–1.45;
TABLE 2 Continued

Outcome
No. of

event/total

Model 1 a Model 2 b

HR (95% CI) P value P for trend c HR (95% CI) P value P for trend c

Quartile 1 [5.18, 8.2.0] 73/1810 1.00 [Reference] 1.00 [Reference]

Quartile 2 (8.20, 8.57] 101/1807 1.40 (1.04–1.90) 0.028 1.40 (1.03–1.89) 0.031

Quartile 3 (8.57, 9.00] 141/1808 1.99 (1.49–2.64) <0.001 1.96 (1.48–2.61) <0.001

Quartile 4 (9.00, 13.00] 149/1808 2.17 (1.64–2.88) <0.001 2.17 (1.63–2.88) <0.001

TyG index continuous e 464/7233 1.31 (1.21–1.42) <0.001 1.31 (1.21–1.42) <0.001

Heart disease

Body mass index, kg/m2 <0.001 <0.001

Under and normal (<24.0) 559/4390 1.00 [Reference] 1.00 [Reference]

Overweight (24.0–27.9) 345/2088 1.29 (1.13–1.48) <0.001 1.26 (1.10–1.45) 0.001

Obesity (≥28.0) 173/755 1.90 (1.60–2.26) <0.001 1.85 (1.55–2.20) <0.001

Body mass index continuous e 1077/7233 1.22 (1.16–1.29) <0.001 1.21 (1.14–1.28) <0.001

Quartiles of the TyG index d 0.059 0.131

Quartile 1 [5.18, 8.2.0] 239/1810 1.00 [Reference] 1.00 [Reference]

Quartile 2 (8.20, 8.57] 265/1807 1.08 (0.91–1.29) 0.396 1.06 (0.89–1.26) 0.525

Quartile 3 (8.57, 9.00] 282/1808 1.13 (0.95–1.34) 0.180 1.10 (0.93–1.31) 0.266

Quartile 4 (9.00, 13.00] 291/1808 1.18 (0.99–1.40) 0.063 1.14 (0.96–1.35) 0.143

TyG index continuous e 1077/7233 1.07 (1.01–1.14) 0.016 1.06 (1.00–1.13) 0.044
HR, hazard ratio; CI, confidence interval; TyG, triglyceride-glucose.
aAdjusted for age and gender.
bAdjusted for age, gender, marital status, residence, education level, smoking status, and drinking status.
cTests for linear trend were done by modeling the median value of each group to test ordered relations across groups of body mass index or TyG index.
dTyG index was calculated as ln (triglycerides [milligrams per deciliter] × fasting blood glucose [milligrams per deciliter]/2).
eHRs given per 1-SD increase.
TABLE 3 Association between body mass index and TyG index.

Body mass index, kg/m2 No. of total
Model 1 a Model 2 b

b (95% CI) P value b (95% CI) P value

Under and normal (<24.0) 4390 0.00 [Reference] 0.00 [Reference]

Overweight (24.0–27.9) 2088 0.30 (0.26–0.33) <0.001 0.28 (0.25–0.32) <0.001

Obesity (≥28.0) 755 0.48 (0.43–0.53) <0.001 0.47 (0.42–0.52) <0.001
CI, confidence interval.
aAdjusted for age and gender.
bAdjusted for age, gender, marital status, residence, education level, smoking status, and drinking status.
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TABLE 4 Decomposition of the association of body mass index with incident cardiovascular disease including mediation and interaction associations by TyG index using causal mediation analysisa.

Obesity (Ref. Under and normal weight)

HR (95% CI) P value
Percentage of excess
association (95% CI)

P value

1.91 (1.63 to 2.23) <0.001 100.0

1.76 (1.47 to 2.10) <0.001 83.4 (69.6 to 97.3) <0.001

-0.00 (-0.20 to 0.19) 0.992 -0.1 (-18.3 to 18.1) 0.991

0.07 (-0.10 to 0.23) 0.445 7.2 (-11.1 to 25.5) 0.440

1.09 (1.03 to 1.15) 0.004 9.5 (2.2 to 16.7) 0.011

2.13 (1.63 to 2.78) <0.001 100.0

1.72 (1.24 to 2.38) 0.001 62.3 (46.3 to 78.3) <0.001

0.02 (-0.31 to 0.34) 0.907 1.7 (-22.9 to 26.4) 0.892

0.19 (-0.09 to 0.47) 0.177 16.9 (-6.0 to 39.7) 0.148

1.22 (1.11 to 1.33) <0.001 19.1 (5.6 to 32.7) 0.006

1.85 (1.55 to 2.21) <0.001 100.0

1.82 (1.49 to 2.23) <0.001 96.6 (78.5 to 114.6) <0.001

-0.00 (-0.24 to 0.24) 0.997 -0.1 (-22.4 to 22.3) 0.996

0.00 (-0.20 to 0.21) 0.971 0.4 (-23.4 to 24.3) 0.971

1.03 (0.96 to 1.10) 0.440 3.1 (-4.9 to 11.0) 0.450

ure indirect association (PIA) was done according to the 4-way decomposition causal mediation analysis method proposed
e, education level, smoking status, and drinking status as depicted in the directed acyclic graph (DAG).
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Association
component

Overweight (Ref. Under and normal weight)

HR (95% CI) P value
Percentage of excess
association (95% CI)

P value

Cardiovascular disease

Total association 1.28 (1.14 to 1.45) <0.001 100.0

Controlled direct association 1.28 (1.13 to 1.45) <0.001 98.6 (27.7 to 169.6) 0.006

Reference interaction b 0.00 (-0.10 to 0.10) 0.987 0.3 (-72.2 to 72.8) 0.993

Mediated interaction b -0.05 (-0.11 to 0.01) 0.129 -17.0 (-40.8 to 6.8) 0.160

Pure indirect association 1.05 (1.02 to 1.09) 0.004 18.1 (2.2 to 34.0) 0.025

Stroke

Total association 1.41 (1.15 to 1.74) 0.001 100.0

Controlled direct association 1.35 (1.08 to 1.69) 0.008 84.0 (23.7 to 144.4) 0.006

Reference interaction b -0.02 (-0.20 to 0.17) 0.861 -4.0 (-74.9 to 67.0) 0.913

Mediated interaction b -0.04 (-0.15 to 0.06) 0.430 -10.4 (-38.3 to 17.5) 0.465

Pure indirect association 1.13 (1.07 to 1.19) <0.001 30.3 (4.1 to 56.5) 0.023

Heart disease

Total association 1.26 (1.10 to 1.45) 0.001 100.0

Controlled direct association 1.27 (1.10 to 1.47) 0.001 103.5 (10.2 to 196.8) 0.030

Reference interaction a 0.00 (-0.12 to 0.12) 0.948 1.5 (-90.7 to 93.7) 0.974

Mediated interaction a -0.03 (-0.10 to 0.04) 0.428 -11.0 (-38.8 to 16.8) 0.439

Pure indirect association 1.02 (0.98 to 1.06) 0.440 6.0 (-9.8 to 21.7) 0.457

HR, hazard ratio; CI, confidence interval; TyG, triglyceride-glucose.
aDecomposition of total associations into controlled direct association (CDA), reference interaction (INTref), mediated interaction (INTmed), and p
by VanderWeele. CIs were calculated according to the delta method procedure. All models were adjusted for age, gender, marital status, residen
bINTref and INTmed are the estimation of additive excess relative risk due to interaction using HRs.
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stroke: adjusted HR, 1.41; 95% CI, 1.15–1.74; heart disease: adjusted

HR, 1.26; 95% CI, 1.10–1.45), which increased to 1.91 for the obesity

group (CVD: adjusted HR, 1.91; 95% CI, 1.63–2.23; stroke: adjusted

HR, 2.13; 95% CI, 1.63–2.78; heart disease: adjusted HR, 1.85; 95% CI,

1.55–2.21). The 4 components method show that when using TyG

index as a mediator, There was no evidence that BMI interacted with

TyG via INTref or INTmed, and the majority of the association was

direct, with the remainder being purely indirect, the proportions

mediated were 18.1% for overweight (CVD: 18.1%; 95% CI, 2.2%–

34.0%; stroke: 30.3%; 95% CI, 4.1%–56.5%), and 9.5% for obesity

(CVD: 9.5%; 95% CI, 2.2%–16.7%; stroke: 19.1%; 95% CI, 5.6%–

32.7%). Notably, for heart disease, virtually all of the association was

direct, no evidence of mediation and interaction.
Subgroup and sensitivity analysis

Subgroup analysis among women (Supplementary Table S2),

the proportions mediated of TyG index between BMI and CVD

were increased (overweight, 37.5%; obesity, 12.3%), while the

proportions mediated decreased (overweight, 6.2%; obesity, 4.6%)

among men (Supplementary Table S3). Similar trends were

observed in the complete data analysis (Supplementary Table S4).

Moreover, the results remained consistent even after excluding

participants with a BMI <18.5 kg/m2 (Supplementary Table S5).
Discussion

In this large cohort study, we found that the TyG index

independently raised the risk of CVD. Additionally, a minor portion

of the BMI-CVD association was mediated by the TyG index.

Epidemiological studies consistently show a positive correlation

between higher BMI and subsequent CVD risk (33–37). Our study

findings align with these conclusions, revealing that an increase in BMI

by per 1-SD increased the risk of CVD by 23%. Moreover, stratifying

participants by BMI categories revealed a 28% increased CVD risk

among overweight individuals and a nearly twofold elevation (HR,

1.90) among those with obesity compared to the baseline population of

normal weight. Notably, individuals classified as overweight or obese

exhibit a higher propensity for developing insulin resistance, signaling

early signs of disrupted glucose metabolism (38, 39). Epidemiological

study have showed a direct correlation between insulin resistance and

CVD, which persists independently of diabetes and is aggravated when

obesity (40). Thus, BMI and CVD risk may be mediated by

insulin resistance.

Our study furnishes empirical evidence substantiating the

biologically conceivable conjecture that insulin resistance serves

as a pivotal intermediary in the linkage between obesity and CVD.

We determined that the TyG index accounted for 18.1% of the

mediating proportion in cases of overweight and 9.5% in instances

of general obesity. Notably, insulin resistance frequently coexists

with an array of traditional risk factors including dyslipidemia,

glucose dysregulation, and hypertension, all of which have been

corroborated in prior research as mediators in the causal pathway

between obesity and CVD (41, 42). A retrospective cohort analysis
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including 6 078 participants aged 60 years and older elucidated that

the TyG index served as a mediator in the relationship between BMI

and CVD events. Previous studies have not firmly established

insulin resistance’s role in BMI and CVD. However, a study

involving 6078 participants aged ≥60 years showed that BMI and

CVD events were the mediated by TyG index. But, the study did not

furnish information regarding the proportion mediated (43).

Another prospective cohort study of 94 136 participants in which

most were coal miners revealed that TyG index was a mediator in

the relationship between BMI and CVD events (proportion

mediated: 47.81% for overweight, 37.94% for obesity) (20).

Limitations include population heterogeneity, absence of

generalizable, which results in a higher proportion of TyG

mediation compared to our results. In contrast, our prospective

analysis centered on the general population and employed a novel

method to calculate the mediated proportion of TyG index.

Collectively, our results, along with previous studies, suggest that

controlling the TyG index may help mitigate the effects of BMI on

CVD. However, this effect may not be pronounced in the Chinese

general population.

The deleterious impact of BMI on CVD susceptibility is well-

documented. The underlying pathophysiological mechanisms

potentially involve several pathways. Adipose tissue expansion

instigates heightened basal lipolysis, liberating free fatty acids

(FFA), interleukins, and cytokines. These biochemical mediators

contribute to cardiac dysfunction by expediting atherosclerotic

progression and modulating factors implicated in inflammation,

endothelial dysfunction, and coagulation abnormalities (44).

Elevated FFA levels attributable to obesity precipitate insulin

resistance, exacerbating impaired insulin signaling and

attenuating insulin-mediated glucose uptake in skeletal muscle

while augmenting hepatic glucose output (45). Moreover, a state

of positive energy balance engenders adipocyte hypertrophy and

ectopic fat deposition, fostering metabolic perturbations such as

insulin resistance and beta-cell dysfunction (46). Additionally, the

pro-inflammatory milieu associated with obesity potentiates

lipolytic processes and hepatic triglyceride synthesis, exacerbating

hyperlipidemia through heightened fatty acid esterification (13).

Notably, insulin resistance constitutes a pivotal nexus in the

interplay between obesity and CVD risk. Consequently, the TyG

index emerges as a plausible intermediary linking obesity with

heightened CVD susceptibility.

Our findings are notable as they stem from a comprehensive,

representative cohort of the Chinese general population, with a

prolonged follow-up period. This extended duration is crucial for

meaningfully exploring longitudinal associations, especially those

concerning obesity and CVD. Additionally, we applied a

counterfactual framework to analyze mediation in an innovative

way, our implementation of the 4-way decomposition approach

enabled the simultaneous examination of the TyG index’s role as

both modifiers and mediators.

However, our study also has limitations. First, we used BMI to

ascertain overweight and obesity, while widely employed and easily

calculable, offers a suboptimal estimate of fat mass proportion and

distribution. There was a lack of alternative metrics, such as waist

circumference (47), waist-to-hip ratio (47, 48), or body fat
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composition analysis (49), that could be used to quantify visceral fat

more accurately. Second, the reliance on self-reporting for CVD

diagnosis introduces a methodological challenge. While the

CHARLS dataset lacks medical records, preventing the validation

of self-reported CVD incidents, it’s important to acknowledge that

other large-scale studies, like the English Longitudinal Study of

Ageing, have demonstrated notable agreement between self-

reported CVDs and medical records (50). Third, although we

cannot definitively rule out the possibility of unmeasured

confounding, the observed effect sizes’ magnitude makes it

improbable for unmeasured confounding to entirely elucidate our

observed associations. Four, the concurrent measurement of BMI

and the TyG index at baseline does not guarantee temporality

between exposure and mediator, introducing the potential for

reverse causality. However, there exists sufficient biological

rationale and explanation for BMI influencing insulin resistance

(51–53). Last, due to the considerable sample size and associated

costs, data on insulin resistance were not collected, preventing

the use of homeostasis model assessment of insulin resistance

(HOMA-IR) for reflecting insulin resistance, necessitating

further investigations.
Conclusions

Our results indicate that the TyG index is valuable for

identifying individuals prone to CVD development. Additionally,

it acts as a minor mediator in the association between BMI

and CVD within our general population cohort. Consequently,

further exploration of the pathways connecting BMI to CVD is

essential for comprehending disease origins and pinpointing

populations that could gain the most from strategies aimed at

reducing BMI.
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The non-linear relationship
between the visceral
adiposity index and the risk
of prediabetes and diabetes
Lan Huang, Jing Liao, Chunyan Lu, Yiqiong Yin, Yanling Ma
and Yue Wen*

Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan
University/West China School of Nursing, Sichuan University, Chengdu, China
Background: The visceral adiposity index is a valuable tool for assessing visceral

fat accumulation. However, its non-linear association with prediabetes and

diabetes requires further elucidation. Therefore, we aim to clarify the intricate

interplay between the visceral adiposity index and these dysglycemic conditions.

Methods: The National Health and Nutrition Examination Survey database from

1999 to 2018 was utilized to analyze health data from 24,072 participants. A

multivariate logistic regressionmodel was employed to evaluate the independent

association between the visceral adiposity index and prediabetes and diabetes

while considering potential confounding factors. Generalized additive models

were used to identify any non-linear relationships by fitting smooth curves.

Additionally, a stratified analysis based on different baseline characteristics was

conducted, along with an interactive analysis.

Results: After accounting for all relevant variables, individuals in the lowest

quartile of the visceral adiposity index had a notably diminished likelihood of

progressing to prediabetes and diabetes when compared with those in the other

three quartiles. The odds ratios and 95% confidence intervals were as follows:

1.37 (1.23, 1.53), 1.87 (1.65, 2.12), and 2.80 (2.33, 3.37). More importantly, a non-

linear association was observed between the visceral adiposity index and

prediabetes and diabetes, with a threshold identified at 2.10.

Conclusions: There exists a notable and positive association between the

visceral adiposity index and prediabetes and diabetes, displaying non-linear

attributes in this evaluation of the relationship. Risk assessment and early

prevention strategies targeting the maintenance of low levels of visceral

adiposity index may substantially diminish the likelihood of developing

prediabetes and diabetes.
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1 Introduction

The incidence of diabetes, a chronic metabolic disease

characterized by hyperglycemia, has been rising in recent decades.

Moreover, it has become one of the principal contributors to global

mortality and disability, imposing significant medical and economic

burdens (1). In 2021 alone, approximately 529 million individuals

were affected by diabetes globally, with projections indicating a

staggering increase to 1,310 million by 2050 (2). The prediabetic

condition signifies a substantial risk for progressing to diabetes, and

its importance in public health must not be overlooked (3).

Projections indicate that more than 470 million people are

expected to be affected by prediabetes by 2030, exhibiting twice

the incidence rate compared to diabetes itself (4).

Furthermore, an alarming statistic revealed that approximately

5% to 10% of those with prediabetes will progress to full-blown

diabetes annually. This figure escalates to an astonishing 50% after

10 years (4, 5). A strong association was found between prediabetes

and heightened risks for stroke, cardiovascular disease, kidney

disease, and all-cause mortality (6–9). Additionally, several

investigations have shown that individuals in the prediabetic state

have the opportunity to reverse the condition and return to normal

glucose metabolism before developing diabetes (10). Therefore,

efficient management strategies necessitate the early detection of

prediabetes along with individualized interventions aimed at

reducing the burden imposed by diabetes while preventing

associated complications.

Obesity, particularly the accumulation of visceral fat, has been

firmly linked to a broad spectrum of metabolic disorders (11).

Visceral fat accumulation can stimulate excessive secretion of pro-

inflammatory factors and adipokines, exacerbating insulin

resistance and abnormal blood glucose levels (12). While

magnetic resonance imaging and computed tomography (CT) are

the best methods for measuring visceral fat, their application in

large-scale population screening is limited by cost, complexity, and

potential radiation exposure (13). In 2010, Amato et al. introduced

the visceral adiposity index (VAI), a novel way to quantify visceral

adiposity using waist circumference (WC), body mass index (BMI),

triglyceride (TG) levels, and high-density lipoprotein cholesterol

(HDL-C) (14). Studies have shown a strong concordance between

VAI and CT measurement of visceral fat, which can better predict

the occurrence of glucose and lipid metabolism disorders.

Furthermore, VAI exhibited an inverse correlation with insulin

sensitivity (14). Compared to conventional indicators of adiposity,

VAI exhibits superior predictive performance across diverse

populations with chronic diseases, serving as a simple and

efficacious tool for assessing visceral fat accumulation and

dysfunction (15–17). Additionally, an association between VAI

and diabetes has been reported, with VAI potentially acting as an

independent predictor of diabetes (18).

However, limited research has considered the diabetic

population collectively, leaving the complex associations between

VAI and prediabetes and diabetes largely unexplored. Furthermore,

few previous studies have involved U.S. populations. Therefore, our

objective was to evaluate the connection between VAI and
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prediabetes and diabetes by analyzing data from the National

Health and Nutrition Examination Survey (NHANES), while also

exploring any potential non-linear associations.
2 Methods

2.1 Study population

Data from the NHANES, a nationally representative survey of

American civilians, was used in this study. The database employs a

comprehensive multi-stage complex sampling methodology and

incorporates data obtained from questionnaires, physical

examinations, and laboratory tests, all of which are publicly

accessible. All the participants signed an informed consent form.

Furthermore, the study protocol received prior approval from the

Institutional Review Board of the National Center for Health

Statistics (NCHS).

The study was a cross-sectional study that utilized NHANES

data spanning from 1999 to 2018, encompassing a total of 101,316

initial participants across the 10 consecutive survey cycles.

Exclusion criteria were patients who did not have a determined

prediabetes and diabetes status (n=31,476), who were younger than

18 years (n=12,606), who did not have a calculated VAI (n=32,895),

and who had an extreme VAI value (mean ± 3 standard deviations)

(n=267). Finally, a total of 24,072 eligible participants were included

in the analyses (Figure 1).
2.2 Exposure and outcome variables

The exposure variable in this study was VAI, a trustworthy tool

for evaluating visceral fat function (14). The computation formula

for VAI is as follows: for men, VAI = [WC (cm)/(39.68 + 1.88 x BMI

(kg/m2))] × (TG (mmol/L)/1.03) × (1.31/HDL-C (mmol/L)]; for

women, VAI = [WC (cm)/(36.58 + 1.89 x BMI (kg/m2))]×(TG

(mmol/L)/0.81)×(1.52/HDL-C (mmol/L)).

Prediabetes and diabetes were included as outcome variables in

our study. Prediabetes was determined according to any of the

following criteria: diagnosed by a physician or health professional,

fasting plasma glucose (FPG) levels ranging from 5.6 to 7 mmol/L,

glycosylated hemoglobin (HbA1c) levels ranging from 5.7% to 6.5%,

or an FPG value during a 2-hour oral glucose tolerance test (OGTT)

ranging from 7.8 mmol/L to 11.0 mmol/L. Diabetes was defined as a

self-reported physician diagnosis, HBA1c level greater than 6.5%,

FPG level greater than 7 mmol/L, or 2-hour OGTT plasma glucose

level greater than 11.1 mmol/L. In this study, combined prediabetes

and diabetes were analyzed as an outcome variable.
2.3 Covariates

Age, gender, race, education level, smoking, drinking, economic

levels, physical activity, blood pressure, triglyceride, total cholesterol

(TC), estimated glomerular filtration rate (eGFR), lipid-lowering
frontiersin.org
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medications, and antihypertensive medications were included as

covariates of no interest into the analyses to correct for error

correlations. Among these, race is categorized into non-Hispanic

white, non-Hispanic Black, Mexican American, and others.

Education level was divided into three groups based on the

completion of high school as the distinguishing criterion. Using self-

reported data, tobacco smoking status was categorized into three

groups: never smokers (smoked <100 cigarettes), former smokers

(smoked≥100 cigarettes but had currently quit smoking), and current

smokers. We categorized current drinkers according to their alcohol

intake as mild drinkers, moderate drinkers, and heavy drinkers. The

economic levels were quantified as the poverty-income ratio (PIR),

which represents the household income relative to the federal poverty

line. These levels were categorized into three groups based on two

thresholds: 1.3 and 3.5. The respondents’ weekly activity level was

evaluated using metabolic equivalents of task (METs). Additionally,

eGFR was estimated utilizing the creatinine equation developed by the

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) in

2009 (19). All variables were collected simultaneously with prediabetes

and diabetes prevalence.
2.4 Statistical analysis

The baseline characteristics of the participants were described

by VAI quartiles. Continuous variables were expressed as means ±
Frontiers in Endocrinology 0388
standard deviation and categorical variables as percentages. One-

way ANOVA and chi-square tests were used to compare the

differences between the four groups. To elucidate the association

between VAI and prediabetes and diabetes, we constructed three

multiple logistic regression models while adjusting for various

covariates. Additionally, a generalized additive model (GAM) was

employed to fit the dose-response curve. The characteristics of the

fitted smooth curve guided the application of a two-part logistic

regression model to investigate potential non-linear associations. A

comparison was made between standard and segmented logistic

regression models using the log-likelihood ratio test to identify any

turning points (considered significant at P<0.05). Moreover, we

investigated whether the relationship between VAI and prediabetes

and diabetes varied across different subgroups stratified by baseline

characteristics such as gender, age, smoking status, alcohol

consumption, and hypertension. All data were processed and

analyzed using R 3.5.3 and EmpowerStats software, and statistical

significance was defined as P < 0.05.
3 Results

3.1 Baseline characteristics of participants

The study enrolled a cohort of 24,072 individuals with an

average age of 47.30 ± 19.08 years, among whom 51.43% were

female. Table 1 displayed the baseline characteristics of the

participants, described based on the quartile distribution of the

VAI. Statistically significant differences were noted for all variables

except METs/week among the four VAI groups. Compared with the

group with lower VAI levels, participants in the highest VAI

quartile (Q4) were characterized as older, more women, more

non-Hispanic white, lower educational level, more current or

former smokers, higher frequency of alcohol consumption, lower

PIR, higher blood pressure levels, and lower eGFR. Most notably,

the prevalence of prediabetes and diabetes was also higher in those

with higher VAI levels.
3.2 Relationship between VAI and
prediabetes and diabetes

A multivariate logistic regression analysis was conducted to

assess the correlation between VAI and prediabetes and diabetes, as

presented in Table 2. The results consistently demonstrated positive

associations between continuous VAI values and prediabetes and

diabetes across all models, regardless of adjustment for confounding

factors. In addition, participants were stratified into quartiles based

on their VAI levels, using the first quartile (Q1) as the reference

category. We found that with a quarter increase in VAI, there was a

significant elevation in the ORs for prediabetes and diabetes,

indicating a notable contribution of elevated VAI levels to the

prevalence of these conditions (P-value for trend <0.001).

Furthermore, the results obtained by fitting a smooth curve and

the two-part logistic regression model suggested that there is also a
FIGURE 1

Flowchart of the study. *Extreme outlier values were defined as
those over 3 standard deviations from the mean.
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TABLE 1 Baseline characteristics of the participants.

Characteristic VAI quartiles P-value

Q1 (0.09-0.88)
N=6018

Q2 (0.88-1.45)
N=6018

Q3 (1.45-2.45)
N=6018

Q4 (2.45-10.44)
N=6018

Age (years) 42.77 ± 19.29 46.51 ± 19.35 49.47 ± 18.86 50.45 ± 17.86 <0.001

Gender (%) <0.001

Male 53.79 47.92 46.46 46.10

Female 46.21 52.08 53.54 53.90

Race/ethnicity (%) <0.001

Non-Hispanic white 37.42 42.90 44.52 48.55

Non-Hispanic Black 32.49 22.93 16.45 10.30

Mexican American 12.99 16.93 20.99 24.13

Others 17.10 17.23 18.05 17.02

Educational level (%) <0.001

Less than high school 22.91 25.89 29.63 33.63

High school 22.65 24.13 23.71 24.58

More than high school 54.44 49.98 46.66 41.80

Smoking (%) <0.001

Never 60.09 56.38 53.32 49.15

Former 21.64 23.88 26.16 27.59

Now 18.26 19.74 20.52 23.26

Drinking (%) <0.001

Never 13.24 14.27 14.31 16.59

Former 11.95 15.49 19.37 21.96

Mild 37.20 33.80 32.85 29.94

Moderate 17.72 15.90 13.50 12.03

Heavy 19.88 20.54 19.96 19.48

PIR (%) <0.001

Low 28.91 29.99 31.32 34.80

Medium 37.54 37.57 39.72 38.39

High 33.55 32.44 28.96 26.81

METs/week (%) 0.097

Low 95.24 94.90 95.55 94.96

Moderate 2.37 3.02 2.62 3.15

Vigorous 2.39 2.09 1.83 1.89

BMI (kg/m²) 25.61 ± 5.83 27.88 ± 6.37 29.83 ± 6.71 31.01 ± 6.34 <0.001

SBP (mmHg) 119.76 ± 17.98 121.79 ± 18.62 123.84 ± 19.13 125.93 ± 19.39 <0.001

DBP (mmHg) 67.99 ± 11.57 69.06 ± 11.92 69.69 ± 12.24 70.84 ± 12.48 <0.001

TG (mg/dl) 58.38 ± 17.18 89.74 ± 20.56 127.36 ± 29.44 221.50 ± 80.22 <0.001

TC (mg/dl) 179.72 ± 37.10 188.33 ± 39.24 195.78 ± 41.12 207.55 ± 44.55 <0.001

eGFR (ml/min/1.73 m2) 102.28 ± 23.58 97.60 ± 24.12 94.90 ± 24.61 93.22 ± 25.25 <0.001

(Continued)
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non-linear association between VAI and prediabetes and diabetes

(Table 3, Figure 2). The inflection point was found to be 2.10 after

the threshold effect analysis. When the VAI was <2.10, the OR (95%

CI) was 2.47 (2.21,2.76); when the VAI> 2.10, the OR (95% CI) was

1.57 (1.46,1.70). This shows that before and after the inflection

point, VAI was significantly positively correlated with prediabetes

and diabetes. The log-likelihood ratio test showed statistical

differences in the slopes between the standard logistic regression

model and the piecewise logistic regression model (p<0.001).
3.3 Subgroup analyses

In an effort to ascertain the robustness of the association between

VAI and prediabetes and diabetes, we executed stratified subgroup

analyses alongside interaction testing (Figure 3). Our findings

indicated a maintained positive correlation between VAI and both

prediabetes and diabetes across various strata defined by gender, age,
Frontiers in Endocrinology 0590
smoking habits, alcohol intake, and hypertension. In addition, no

significant interaction was reported in all subgroups, indicating that

the positive correlation between VAI and prediabetes and diabetes

was not related to the above stratification parameters (all p>0.05 for

interactions). The stratified analyses revealed that the non-linear

correlations of each subgroup were consistent with the overall

trend, and there was no significant heterogeneity among different

subgroups (Figure 4).
4 Discussion

The purpose of this study was to assess the relationship between

the VAI and prediabetes and diabetes among a sample of adult

individuals sourced from NHANES data collected from 1999 to

2018. Our results demonstrated a notable positive association

between the VAI and both prediabetes and diabetes, which

persisted regardless of adjustments for confounding variables. In

addition, we found a non-linear relationship between the VAI and

both prediabetes and diabetes and determined an inflection point of

2.10 for the VAI level. When the population was stratified by

gender, age, smoking, drinking, and hypertension, the results were

consistent with the overall population, and no effect modifiers were

detected that influenced the changes in the association of the VAI

with prediabetes and diabetes. These findings supported the

potential utility of VAI as a predictive tool for recognizing

individuals susceptible to prediabetes and diabetes in an early stage.

The association of the VAI, as an index innovatively devised to

gauge visceral adiposity function, with diabetes has been established in

many previous studies (18, 20). A meta-analysis reported a significant

positive correlation between the VAI and diabetes, which emphasizes

the potential role of the VAI in the development of diabetes (18).

Similarly, an aggregated examination of 216 longitudinal studies

demonstrated that every unit increase in the VAI is associated with a

42% increase in the likelihood of developing diabetes (21). A study in

the Chinese population showed that compared with TG, HDL-C, and

other indicators, the VAI had obvious advantages in predicting diabetes

in normoglycemic subjects (22).
TABLE 1 Continued

Characteristic VAI quartiles P-value

Q1 (0.09-0.88)
N=6018

Q2 (0.88-1.45)
N=6018

Q3 (1.45-2.45)
N=6018

Q4 (2.45-10.44)
N=6018

Lipid-lowering medications (%) 11.06 14.87 19.03 21.49 <0.001

Antihypertensive
medications (%)

19.02 25.41 31.73 36.51 <0.001

Glucose metabolism state (%) <0.001

Normal 61.25 52.18 42.92 33.50

Prediabetes 30.13 34.53 37.54 38.92

Diabetes 8.62 13.29 19.54 27.58
VAI, visceral adiposity index; PIR, poverty income ratio; MET, metabolic equivalent of task; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, triglyceride; TC, total cholesterol;
eGFR, estimated glomerular filtration rate.
TABLE 2 Relationship between the VAI and prediabetes and diabetes in
different models.

VAI Model 1 Model 2 Model 3

Continuous 1.32 (1.29, 1.34) 1.30 (1.27, 1.32) 1.71 (1.59, 1.85)

Quartiles

Q1(0.09-0.88) Reference Reference Reference

Q2(0.88-1.45) 1.45 (1.35, 1.56) 1.37 (1.27, 1.49) 1.37 (1.23, 1.53)

Q3(1.45-2.45) 2.10 (1.95, 2.26) 1.89 (1.74, 2.05) 1.87 (1.65, 2.12)

Q4(2.45-10.44) 3.14 (2.91, 3.38) 2.93 (2.69, 3.19) 2.80 (2.33, 3.37)

P for trend <0.001 <0.001 <0.001
Model 1: Non-adjusted.
Model 2: Adjusted for age, gender, race/ethnicity, and education level.
Model 3: Adjusted for age, gender, race/ethnicity, education level, smoking, drinking, PIR,METs/
week, SBP, TG, TC, eGFR, lipid-lowering medications, and antihypertensive medications.
VAI, visceral adiposity index; PIR, poverty income ratio; MET, metabolic equivalent of task;
SBP, systolic blood pressure; TG, triglyceride; TC, total cholesterol; eGFR, estimated
glomerular filtration rate.
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There are a large number of people in the prediabetic state, and

many patients may even be undetected. If not taken seriously, they may

progress to diabetes and have an increased risk of developing many

chronic diseases. Therefore, we included the prediabetic population in

this study, together with diabetes as an outcome variable, to evaluate

their association with the VAI. We found that subjects in the

uppermost quarter of VAI had a 2.8 times increased likelihood of

prediabetes and diabetes compared to those in the lowest quarter. A

study of the Chinese population supports our findings (23). Similarly, a

meta-analysis of 112,603 participants showed that VAI might increase

the risk for prediabetes (24). In addition, in the German population

study, VAI was also found to have high sensitivity for the identification

of both prediabetes and diabetes, and its ability to distinguish

abnormal blood glucose was comparable to that of HOMA-IR, an

established marker for the diagnosis of insulin resistance (25). In

addition, our subgroup analyses showed that the association of the

VAI with prediabetes and diabetes was independent of factors such as

age, gender, smoking, alcohol consumption, and hypertension. This

suggests that the VAI may be a potential independent risk indicator for

prediabetes and diabetes.

The presence of excessive abdominal fat is linked to an

increased likelihood of insulin resistance and impaired b-cell
function (26). The VAI, a proxy for cardiometabolic risk in

healthy individuals, has shown a significant inverse correlation

with insulin sensitivity (14). The biological pathways through

which heightened VAI levels contribute to the augmented risk of

prediabetes and diabetes potentially involve impacts on insulin

resistance, pancreatic b-cell function, and adiponectin levels (27).

Adipose tissue is known to release multiple pro-inflammatory

factors and adipokines, fostering a chronic inflammatory state

that can induce b-cell damage and exacerbate insulin resistance,

eventually leading to diabetes (28, 29). Secondly, a high level of free

fatty acids in individuals with obesity increases TG storage in the

muscle and liver, reduces insulin sensitivity, and causes lipotoxic

responses (30, 31). In addition, studies have shown that the VAI is

the only determinant of adiponectin levels and can play an indirect

role in impaired adiponectin levels and glucose metabolism (32, 33).
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It is noteworthy that the relationship between the VAI and

prediabetes and diabetes also exhibited a non-linear pattern.

However, the results of previous studies are still controversial. A

study was consistent with our results in patients with hypertension

(34). Furthermore, a dose-response meta-analysis of longitudinal

studies also revealed a monotonic positive association between the

VAI and the risk of diabetes (21). In contrast, the study by Fang

et al. stated that no non-linear relationship was detected between

the VAI and diabetes (18). This disparity could stem from

variations in participant selection criteria or might be ascribed to

dissimilarities in the research methodologies and designs employed.

In our study, we observed a significant non-linear relationship

between the VAI and the prevalence of prediabetes and diabetes,

which showed a parabolic curve trend. Specifically, the risk of

prediabetes and diabetes increased significantly with increasing

VAI values. However, after the VAI values exceeded a specific

threshold of 2.10, the rate of increase plateaued, although the risk

remained high. The explanations for these results may be as follows:

first, excessive accumulation of visceral fat may adversely affect

metabolic processes such as insulin sensitivity and inflammatory

response, thereby increasing the risk of diabetes. However, when

visceral fat accumulates to a certain extent, the increased risk may

no longer follow a simple linear pattern due to limitations in

biological mechanisms or individual metabolic differences. In

addition, we need to consider possible biases in study design and

data collection. A significant proportion of overweight individuals

or individuals with obesity may have been excluded from the study

due to death, serious illness, or other reasons that precluded

participation in the interview. Nonetheless, the identification of

the VAI inflection point provides a reference value for clinicians to
TABLE 3 Threshold effect analysis of the VAI on prediabetes and
diabetes using a two-part logistic regression model.

VAI Adjusted OR* (95% CI) P-value

Model I

Fitting by the standard
linear model

1.71 (1.59, 1.85) <0.0001

Model II

Inflection point 2.10

< Inflection point 2.47 (2.21, 2.76) <0.0001

> Inflection point 1.57 (1.46, 1.70) <0.0001

Log likelihood ratio / <0.001
*Adjusted for age, gender, race/ethnicity, education level, smoking, drinking, PIR, METs/
week, SBP, TG, TC, eGFR, lipid-lowering medications, and antihypertensive medications.
VAI, visceral adiposity index; OR, odd ratio; CI, confidence interval.; PIR, poverty income
ratio; MET, metabolic equivalent of task; SBP, systolic blood pressure; TG, triglyceride; TC,
total cholesterol; eGFR, estimated glomerular filtration rate.
FIGURE 2

The non-linear association between the VAI and the prevalence of
prediabetes and diabetes. Age, gender, race/ethnicity, education
level, smoking, drinking, PIR, METs/week, SBP, TG, TC, eGFR, lipid-
lowering medications, and antihypertensive medications were
adjusted for. VAI, visceral adiposity index; PIR, poverty income ratio;
MET, metabolic equivalent of task; SBP, systolic blood pressure; TG,
triglyceride; TC, total cholesterol; eGFR, estimated glomerular
filtration rate.
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FIGURE 3

Stratified analyses between the VAI and the prevalence of prediabetes and diabetes. *Each stratification adjusted for all the factors (age, gender,
race/ethnicity, education level, smoking, drinking, PIR, METs/week, SBP, TG, TC, eGFR, lipid-lowering medications, and antihypertensive medications)
except the stratification factor itself. OR, odd ratio; CI, confidence interval; VAI, visceral adiposity index; PIR, poverty income ratio; MET, metabolic
equivalent of task; SBP, systolic blood pressure; TG, triglyceride; TC, total cholesterol; eGFR, estimated glomerular filtration rate.
FIGURE 4

Stratified analyses (by (a) gender; (b) age; (c) smoking; (d) drinking; (e) hypertension) between VAI and the prevalence of prediabetes and diabetes
using generalized additive model and smooth curve fittings. *Each generalized additive model and smooth curve fitting was adjusted for all factors,
including age, gender, race/ethnicity, education level, smoking, drinking, PIR, METs/week, SBP, TG, TC, eGFR, lipid lowering medications, and
antihypertensive medications, except for the stratification factor itself. VAI, visceral adiposity index; PIR, poverty income ratio; MET, metabolic
equivalent of task; SBP, systolic blood pressure; TG, triglyceride; TC, total cholesterol; eGFR, estimated glomerular filtration rate.
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assess an individual’s risk of developing prediabetes or diabetes

more accurately. At the same time, this finding also highlights the

need for further research on the VAI and its complex relationship

with prediabetes and diabetes risk.

Nonetheless, the research has certain limitations. First, it should

be noted that the study relies exclusively on a cross-sectional

methodology, which ultimately obstructs the determination of a

causal connection regarding the relationship between the VAI and

prediabetes and diabetes. Consequently, further extensive

prospective studies are required to validate these findings. Second,

it is important to acknowledge that the dataset employed for this

study originated from the NHANES database, which may restrict its

generalizability across diverse ethnicities and populations.

Moreover, a considerable number of participants who lacked

essential data for VAI calculation were excluded from the

analysis. Finally, despite our consideration of various potential

effect modifiers, there remains a possibility of unidentified

confounders leading to selection bias. Therefore, cautious

interpretation is warranted when considering the outcomes

derived from this investigation.
5 Conclusions

This cross-sectional study, utilizing the NHANES database, has

substantiated a non-linear positive association between the VAI and

prediabetes and diabetes. These findings suggest that the VAI has

potential as a biomarker for predicting the onset of prediabetes and

diabetes, offering novel perspectives for risk evaluation and

preventive healthcare approaches. Nevertheless, further prospective

cohort studies are warranted to validate these observations.
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